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Απαγορεύεται η αναπαραγωγή ή η μετάφραση όλου ή οποιουδήποτε τμήματος 

του βιβλίου και με οποιοδήποτε τρόπο χωρίς την γραπτή άδεια του συγγραφέα. 
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Η ροή κοντά στην επιφάνεια σώματος επηρεάζεται σημαντικά από τη 

συνεκτικότητα. Η σχετική ταχύτητα του ρευστού ως προς ένα σώμα είναι 

μηδενική στην επιφάνειά του. Αυτό έχει σαν αποτέλεσμα τη δημιουργία ενός 

στρώματος μεταξύ της επιφάνειας και της ελεύθερης ροής πάχους δ, στο οποίο 

λαμβάνει χώρα σημαντική μεταβολή της ταχύτητας (Σχήμα 4.1). Το στρώμα 

αυτό αποκαλείται οριακό στρώμα της ταχύτητας και οφείλεται στην τριβή που 

αναπτύσσεται μεταξύ των στοιχείων του ρευστού. Η ταχύτητα αυξάνει με την 

απόσταση από το τοπικό στερεό όριο και τείνει στην τιμή της τοπικής 

ελεύθερης ροής ( )U . Το πάχος δ θεωρείται η απόσταση όπου η ( )u y  γίνεται 

 0.99 U . Η γωνία   εκφράζει την τοπική κλίση ( )/u y   του προφίλ της 

ταχύτητας. Γενικά, η κλίση   βαίνει μειούμενη, δηλαδή είναι / 0y    ή 

2 2 0u y    προς το άκρο του στρώματος. 

Το οριακό στρώμα αποτελεί ξεχωριστό χαρακτηριστικό του ροϊκού πεδίου, 

διακριτό από τα άλλα φαινόμενα που αναπτύσσονται λόγω συνεκτικότητας, 

όπως το απόρρευμα πίσω από ένα σώμα (Σχήμα 4.2). Κύριο χαρακτηριστικό 

του οριακού στρώματος είναι ότι είναι πολύ λεπτό, δηλαδή το πάχος του είναι 

κατά πολύ μικρότερο από τις διαστάσεις του σώματος. Εξωτερικά του 

στρώματος αυτού, η ροή μπορεί να προσεγγιστεί ως μη συνεκτική (άτριβη).  

 

y u(y)

ω 

 

Σχήμα 4.1: Μεγέθυνση της περιοχής του οριακού στρώματος πάχους   για την 

ανάδειξη του προφίλ της ταχύτητας. 
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Όταν η επιφάνεια του σώματος έχει διαφορετική θερμοκρασία από αυτήν 

της ελεύθερης ροής, αναπτύσσεται ένα παρόμοιο στρώμα το οποίο 

αποκαλείται θερμοκρασιακό οριακό στρώμα. Ο αριθμός Prandtl εκφράζει το 

λόγο του πάχους των δύο στρωμάτων ταχύτητας και θερμοκρασίας. 

Ο L. Prandtl το 1904 ήταν ο πρώτος που μελέτησε τη δημιουργία του 

οριακού στρώματος και διατύπωσε εξισώσεις που το περιγράφουν. Οι 

εξισώσεις του οριακού στρώματος είναι μία απλοποίηση των εξισώσεων ροής 

που αναπτύχθηκαν στο Κεφάλαιο 3. 

 

 

Σχήμα 4.2: Οριακό στρώμα στην επιφάνεια αεροδυναμικού (λεπτού) σώματος 

και απόρρευμα πίσω από αυτό. 

 

 

4.1 Πάχος του Οριακού Στρώματος 

 

Θεωρείται το πρόβλημα της διάχυσης λόγω της συνεκτικότητας, το οποίο 

εκφράζεται από την παρακάτω εξίσωση: 

 
2

2

u u
v

t y

 
= 

 
 (4.1) 

Η (4.1) μπορεί να εκφραστεί προσεγγιστικά θεωρώντας τη διεργασία της 

διάχυσης. Σε χρόνο t  σχηματίζεται το οριακό στρώμα πάχους   ξεκινώντας 

από την επιφάνεια. Η μεταβολή της ταχύτητας στην απόσταση   είναι 
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( ) ( )0u y u y u= − = = . Επομένως, γράφοντας προσεγγιστικά την (4.1), 

προκύπτει: 

 
2

u u

t



     t    (4.2) 

Δηλαδή, η διεργασία της διάχυσης προχωρεί σχετικά αργά, με την τετραγωνική 

ρίζα του χρόνου.  

Η διεργασία της μεταφοράς εξελίσσεται ανάλογα με το χρόνο και την 

ταχύτητα του πεδίου. Συγκεκριμένα, στον ίδιο χρόνο διάχυσης t , το στοιχείο 

ρευστού διανύει απόσταση στην ελεύθερη ροή ίση με: 

 L U t=   

Αντικαθιστώντας τον χρόνο στην (4.2) , προκύπτει ότι: 

 
L

U






 ή     

L

1
 

ReL


 (4.3) 

Σε ροές όπου η διεργασία της μεταφοράς των ροϊκών μεγεθών «υπερισχύει» 

της διάχυσής τους, δηλαδή ο αριθμός Reynolds είναι μεγάλος, προκύπτει ότι το 

πάχος του οριακού στρώματος είναι πολύ μικρό σε σχέση με το μήκος του 

σώματος.  

Αξίζει επίσης να αναφερθεί ότι τα ηχητικά κύματα διαδίδονται στην 

ελεύθερη ροή με την ταχύτητα του ήχου c  σε απόσταση L c t =   στο χρόνο 

t . Ο λόγος των αποστάσεων στις οποίες διαδίδεται μια «πληροφορία» με τους 

μηχανισμούς της μεταφοράς και του ήχου, ορίζει τον αδιάστατο αριθμό Mach. 

 
L U t U

L c t c

 


 


= =  
 

 

 

Ο αριθμός Mach είναι η πιο σημαντική παράμετρος σε συμπιεστές ροές 

σχετικά υψηλής ταχύτητας. 
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4.2 Μορφές του Οριακού Στρώματος 

 

Η μορφή του οριακού στρώματος, δηλαδή το προφίλ μεταβολής της 

ταχύτητας σε μία θέση της επιφάνειας ενός σώματος, καθορίζεται σημαντικά 

από τη βαθμίδα πίεσης κατά τη διεύθυνση της ροής. Προκειμένου να μελετηθεί 

η σχέση μεταξύ της μορφής του προφίλ της ταχύτητας και της βαθμίδας της 

πίεσης ( /dp dx ), θεωρούμε την εξίσωση της x  - ορμής στην επιφάνεια. 

Θέτοντας τις ταχύτητες (  ,u  ) μηδέν στο τοίχωμα ( 0y = ), προκύπτει:  

 

2

2
00 yy

u dp

dxy


==


=


 (4.4) 

Η βαθμίδα της πίεσης μπορεί να υπολογιστεί με χρήση της εξίσωσης Bernoulli 

θεωρώντας την «έξω» από το οριακό στρώμα ροή ότι είναι άτριβη και έχει 

ταχύτητα ( )U x : 

 
2

2
p U ά


 + =      

dp dU
U

dx dx
 

= −  (4.5) 

 

Όπως θα δειχθεί σε επόμενο τμήμα του κεφαλαίου αυτού, στο οριακό στρώμα 

η βαθμίδα της πίεσης στην επιφάνεια είναι περίπου ίση με τη βαθμίδα έξω από 

το οριακό στρώμα ( )/dp dx . Επομένως, με βάση την (4.5), η (4.4) γίνεται: 

 
2

2
0y

u dU
U

dxy
  



=


= −


 (4.6) 

Σε αυτό το σημείο διακρίνονται δύο περιπτώσεις: (α) επιτάχυνση της ροής 

( )/ 0dU dx  , και (β) επιβράδυνση της ροής ( )/ 0dU dx  .  

Στην επιταχυνόμενη ροή, η (4.6) δίνει αρνητική καμπυλότητα ( )2 2u y   

του προφίλ κοντά στο τοίχωμα. Δηλαδή, η γωνία /u y =    βαίνει μειούμενη 

με την απόσταση y  συνεχώς έως το άκρο του στρώματος. Η ταχύτητα αυξάνει 

συνεχώς στο προφίλ όπως απεικονίζει το Σχήμα 4.3, το οποίο επίσης 

περιλαμβάνει και τις κατανομές των /u y   και 2 2u y  . 
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Αντίθετα, στην περίπτωση της επιβραδυνόμενης εξωτερικής ροής, η σχέση 

(4.6) δίνει θετική καμπυλότητα ( )2 2u y   κοντά στο τοίχωμα, ενώ αυτή είναι 

αρνητική στο άκρο του στρώματος. Δηλαδή, υπάρχει σημείο καμπής 

( )2 2 0u y  =  στο προφίλ όπως απεικονίζει το Σχήμα 4.4. Η κλίση του προφίλ 

( )/u y =    αρχικά αυξάνει και μετά το σημείο καμπής μειώνεται όπως 

δείχνει το προφίλ της /u y   και της ταχύτητας ( )u y  στο Σχήμα 4.4. 

Το Σχήμα 4.3 και το Σχήμα 4.4 απεικονίζουν τα κύρια χαρακτηριστικά του 

προφίλ ταχύτητας για επιταχυνόμενη και επιβραδυνόμενη ροή, αντίστοιχα. 

Στην πρώτη περίπτωση η συνεκτική τάση η οποία εκφράζεται από την κλίση 

u y   μειώνεται μονοτονικά από το τοίχωμα έως την άκρη του στρώματος. Το 

ίδιο ισχύει και για τον όρο συνεκτικότητας 
2 2( / )u y   .  

 

 

Σχήμα 4.3: Προφίλ της ταχύτητας και των παραγώγων της για επιταχυνόμενη 

ροή ( / 0)dU dx  . 

 

 

Στο προφίλ της επιβραδυνόμενης ροής, η συνεκτική τάση xy  παίρνει 

μέγιστη τιμή στην θέση του σημείου καμπής του προφίλ της ταχύτητας.  
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Σχήμα 4.4: Προφίλ της ταχύτητας και των παραγώγων της για επιβραδυνόμενη 

ροή ( / 0)dU dx  .  

 

Η αύξηση της πίεσης κατά την κατεύθυνση της ροής οδηγεί στην 

επιβράδυνσή της και στην αναστροφή της σε πολλές περιπτώσεις. Με απλά 

λόγια, όταν η ροή «συναντά» αυξανόμενη πίεση ( / 0)dp dx  , τα στοιχεία 

ρευστού κοντά στο τοίχωμα, τα οποία έχουν μικρή ταχύτητα, «εμποδίζονται» 

στην κίνησή τους από την δύναμη της πίεσης, και μπορεί να κινηθούν προς την 

αντίθετη φορά από αυτήν της εξωτερικής ροής (ανακυκλοφορία). Αυτή η 

διεργασία απεικονίζεται στο Σχήμα 4.5. Το φαινόμενο αυτό ονομάζεται και 

αποκόλληση της ροής.  

 

xy

0

0
y

u

y
=






0

0
y

u

y
=


=



0

0
y

u

y
=






 

Σχήμα 4.5: Η αύξηση της πίεσης μπορεί να οδηγήσει σε αναστροφή της ροής 

(ανακυκλοφορία) κοντά στην επιφάνεια.  

 

Το Σχήμα 4.5 απεικονίζει την μεταβολή του προφίλ ταχύτητας. Η αναστροφή 

θεωρείται ότι αρχίζει εκεί που: 
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0

0w
y

u

y
 

=


= =


 

Παρατηρούμε ότι στο προφίλ με ανακυκλοφορία η κλίση /u y   αλλάζει 

πρόσημο από αρνητική στην επιφάνεια σε θετική στην άκρη του στρώματος. 

Δηλαδή, το προφίλ της ταχύτητας εμφανίζει ένα σημείο καμπής. 

Θεωρώντας τη ροή γύρω από μία αεροτομή περιγράμματος l , ένα μέρος 

της αντίστασης που παρουσιάζεται κατά την κίνησή της μέσα στο ρευστό, 

οφείλεται στην τριβή του τοιχώματος της αεροτομής με το ρευστό (Σχήμα 4.6). 

 

l

 

Σχήμα 4.6: Οι δυνάμεις τριβής στην ροή γύρω από αεροτομή. 

 

Η συνολική αντίσταση τριβής ( )fD  προκύπτει με ολοκλήρωση της δύναμης 

τριβής σε όλο το περίγραμμα ( l ) της αεροτομής: 

 f
wl

u U
D dl

y U







= 

  (4.7) 

Δηλαδή, η κλίση του προφίλ στο τοίχωμα καθορίζει την αντίσταση. 

 
 

4.3 Οι Εξισώσεις του Οριακού Στρώματος 
 

Οι εξισώσεις της ροής μπορούν να λάβουν απλούστερη μορφή στην 

περιοχή του οριακού στρώματος. Η απλοποίηση αυτή βασίζεται στις 

ακόλουθες βασικές παραδοχές:  

(i) σταθερή ροή στο χρόνο,  

(ii) ασυμπίεστη ροή ( ), ,   ί ά      , και  

(iii) πολύ λεπτό οριακό στρώμα ( L ), δηλαδή Re 1, βάση της σχέσης 

(4.3). 
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Για απλότητα θεωρείται δισδιάστατο πεδίο. Η εξίσωση της συνέχειας (αρχή 

διατήρησης της μάζας) εκφράζεται από την ακόλουθη εξίσωση: 

 0
u

x y

 
+ =

 
 (4.8) 

Η (4.8) θα χρησιμοποιηθεί όπως έχει για το οριακό στρώμα. 

Η εξίσωση της ορμής στη x - διεύθυνση είναι: 

 

2 2

2 2

1u u p u u
u

x y x x y




 

     
+ = − + + 

      

 (4.9) 

και στη y - διεύθυνση η εξίσωση της ορμής είναι: 

 

 
2 2

2 2

1 p
u

x y y x y

    


 

     
+ = − + + 

      

 (4.10) 

Εφόσον η ροή είναι ασυμπίεστη, δε χρειάζεται η εξίσωση της ενέργειας για 

να προσδιοριστεί το πεδίο ταχυτήτων. 

Οι εξισώσεις του οριακού στρώματος προκύπτουν, θεωρώντας την τάξη 

μεγέθους των όρων στις (4.8), (4.9) και (4.10). Η τρίτη παραδοχή του λεπτού 

στρώματος ( )L   θα παίξει καθοριστικό ρόλο στην απαλοιφή όρων. 

Η x - συνιστώσα της ταχύτητας (u ) μεταβάλλεται από 0, στην επιφάνεια, 

στην τιμή U  σε απόσταση   από αυτήν. Η μεταβολή της δηλαδή, κατά την 

εγκάρσια διεύθυνση είναι της τάξης ( )O U . Κατά τη διεύθυνση της ροής, η 

μεταβολή της U  είναι γενικά πολύ μικρότερη σε σχέση με τη μεταβολή 

/u y  . Η x - συντεταγμένη μεταβάλλεται από 0 έως το χαρακτηριστικό μήκος 

του σώματος L , ενώ η y - συντεταγμένη μεταβάλλεται από 0 έως  , που είναι 

το πάχος του οριακού στρώματος. Ισχύει συνεπώς, για τη μεταβολή στην  

x - διεύθυνση: 

 
( )

( )

u O U

x O L

 = 


 = 
   

u U
O

x L

 
= 

 
 (4.11) 

 

Η τάξη μεγέθους της y - συνιστώσας της ταχύτητας ( ), εκτιμάται από την 

εξίσωση της συνέχειας (4.8) ως εξής: 
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u U

O O
y x L

 


     

= −  =    
     

  

 O U
L


 

 
=  

 
 (4.12) 

 

Από την (4.12), συνεπάγεται ότι u  . Πιο συγκεκριμένα, ο λόγος U   

είναι της τάξης του 1 ReL  όπως προκύπτει από τις (4.3) και (4.12). Σε αυτό 

το σημείο, πρέπει να τονιστεί ότι έχει γίνει η επιπλέον παραδοχή της 

επιφάνειας με μικρή καμπυλότητα. Διαφορετικά, οι δύο συνιστώσες u  και   

είναι της ίδιας τάξης μεγέθους. 

Εξετάζοντας την τάξη μεγέθους των όρων στην εξίσωση της ορμής στη  

x - διεύθυνση (σχέση (4.9)), προκύπτει: 

   

2 2

   ,   
u U u U U

u O O U O O
x L y L L





  



        
= =  =                 

 (4.13) 

δηλαδή, οι όροι μεταφοράς είναι της ίδιας τάξης μεγέθους. 

Για τους όρους συνεκτικότητας ισχύει: 

 

2 2

2 2 2 2
   ,    

u U u U
O O

x L y 

    
= =   

    
 (4.14) 

 

Το πάχος του οριακού στρώματος έχει θεωρηθεί πολύ μικρότερο του 

χαρακτηριστικού μήκους του σώματος ( L  ), το οποίο συνεπάγεται ότι 

2 2 2 2/ /u x u y     . Αυτό σημαίνει πως ο όρος 
2 2/u x   μπορεί να 

αμεληθεί στην εξίσωση (4.9) σε σχέση με τον ομοειδή του όρο 
2 2/u y  . 

Η βαθμίδα της πίεσης ( )p x   δεν μπορεί γενικά να αμεληθεί στην 

εξίσωση της ορμής. Θα πρέπει ωστόσο, να συγκριθεί ο όρος της 

συνεκτικότητας ( )/ yyu    που απομένει, με τους όρους μεταφοράς xu u  και 

yu  , οι οποίοι έχουν τάξη μεγέθους 2 /U L . Η σχέση (4.3), δίνει την τάξη 

μεγέθους του συντελεστή κινηματικού ιξώδους ( )/v   , και η προσέγγιση 

(4.13) δίνει την τάξη μεγέθους του όρου yyu . Επομένως, έχουμε: 
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2 2

2yy
U U U

O u
L L

 
 

 

  
    

= =             

 (4.15) 

 

δηλαδή, ο όρος παραμένει μαζί με τους όρους μεταφοράς, εφόσον είναι της 

ίδιας τάξης μεγέθους με αυτούς. Συνεπώς, η (4.9) απλοποιείται στην ακόλουθη 

μορφή για την περιοχή του οριακού στρώματος: 

 
2

2

1u u p u
u

x y x y




 

   
+ = − +

   
 (4.16) 

Θεωρώντας την εξίσωση της ορμής στη y - διεύθυνση (4.10), εξετάζεται 

η τάξη μεγέθους των επί μέρους όρων που εμφανίζονται. Με βάση την 

προσέγγιση (4.12), ισχύει: 

 

    

    

2

2

2

2

1
= 

1
 = 

U
u O U U O

x L L L

U
O U U O

y L L L

 


  
 




 


 

   
=           

   
=           

 (4.17) 

όπου παρατηρούμε ότι οι όροι μεταφοράς είναι της ίδιας τάξης μεγέθους. 

Όσον αφορά τους όρους συνεκτικότητας, έχουμε: 

     

2 2

2 2 2 2

1 1
  ,   O U O U

L Lx L y

   


 

   
=  =   

    
 (4.18) 

 

Ο λόγος τάξεων μεγέθους των δυο όρων συνεκτικότητας είναι:  

        
( )

( )

2

1xx

yy

O

LO

 



 
=  
 

 

Επομένως, μπορεί να αμεληθεί ο όρος xx  σε σχέση με τον ομοειδή του yy . 

Το επόμενο βήμα είναι η σύγκριση της τάξης μεγέθους του όρου 

συνεκτικότητας ( )/ yy    με αυτή των όρων μεταφοράς στις σχέσεις (4.17). 

Η τάξη μεγέθους του συντελεστή κινηματικής συνεκτικότητας ( )/   

συνδέεται με το πάχος ( ) με βάση την (4.3):  
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2U

L

 




 
=  

 
 

. 

Με βάση την ανωτέρω καθώς και την εκτίμηση του μεγέθους της ταχύτητας   

(σχέση (4.12)), έχουμε:  

    

2 2 2

2 2

1U U
U

L L L Ly

    

 

 


   
=    =    

      

 

Παρατηρούμε ότι ο όρος συνεκτικότητας είναι της ίδιας τάξης με τους όρους 

μεταφοράς. Οι τρεις όροι είναι της τάξης του / L  το οποίο είναι πολύ μικρό. 

Συνεπώς, αμελούνται όλοι οι όροι αυτοί της εξίσωσης της y - ορμής (4.10), το 

οποίο μας δίνει και την τάξη μεγέθους της βαθμίδας της πίεσης: 

 
2p U

O
y L L


 

=  
   

      

 

     0
p

y





 (4.19) 

 

Η (4.19) είναι σημαντική, γιατί δηλώνει ότι η πίεση μπορεί να θεωρηθεί 

σταθερή κατά το πάχος του οριακού στρώματος. Δηλαδή, η πίεση του ροϊκού 

πεδίου έξω από το οριακό στρώμα ταχύτητας «αποτυπώνεται» στην επιφάνεια. 

Επαναλαμβάνεται εδώ ότι έχει θεωρηθεί μικρή καμπυλότητα της επιφάνειας. 

Στην περίπτωση καμπύλης επιφάνειας, γενικά υπάρχει βαθμίδα πίεσης κάθετα 

στην επιφάνεια. Η δύναμη πίεσης ισορροπεί τη φυγόκεντρη δύναμη η οποία 

αναπτύσσεται στα στοιχεία του ρευστού, τα οποία «εκτελούν» καμπύλη 

τροχιά. 

Συνήθεις οριακές συνθήκες που διέπουν τις εξισώσεις του οριακού 

στρώματος, είναι οι ακόλουθες: 

    

                                 0: 0, 0, wy u T T= = = =  

 

Δηλαδή, στην επιφάνεια η ταχύτητα του ρευστού είναι μηδενική και η 

θερμοκρασία του ίση με τη θερμοκρασία της επιφάνειας. 
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                                 : ,y u U T T → = =  

 

Μακριά από την επιφάνεια η x - συνιστώσα της ταχύτητας του ρευστού και η 

θερμοκρασία του είναι ίση με την ταχύτητα και τη θερμοκρασία της ελεύθερης 

ροής. Δεν υπάρχει οριακή συνθήκη για την συνιστώσα   της ταχύτητας στο 

όριο y → . 

Είναι σημαντικό να τονιστεί ότι, όταν λαμβάνει χώρα εκτεταμένη 

αποκόλληση της ροής, τότε οι εξισώσεις του οριακού στρώματος δεν ισχύουν 

πλέον, καθότι η παραδοχή ότι L  δεν ισχύει. 

 

 

 

4.4 Η Λύση Blasius για Ροή Χωρίς Βαθμίδα Πίεσης 
 

Στην περίπτωση που δεν υπάρχει βαθμίδα πίεσης κατά τη διεύθυνση της 

ροής, όπως είναι η ροή πάνω από μία επίπεδη επιφάνεια, το προφίλ ταχύτητας 

του οριακού στρώματος παρουσιάζει ομοιότητα σε κάθε θέση. Αυτό επιτρέπει 

την επίλυση των εξισώσεων του οριακού στρώματος με βάση ένα 

μετασχηματισμό ομοιότητας, ο οποίος δίνει το ίδιο προφίλ ταχύτητας σε κάθε 

θέση της επιφάνειας. Αυτός ο ειδικός μετασχηματισμός απεικονίζεται στo 

Σχήμα 4.7. 

 

δ

x

n

δεν αλλάζει με το x

(ειδική συντεταγμένη)

/Uu 

 

Σχήμα 4.7: Οριακό στρώμα σε επίπεδη επιφάνεια με / 0dp dx = . Ειδικός 

μετασχηματισμός στη y– διεύθυνση οδηγεί σε ένα μόνο προφίλ 

ταχύτητας κατά μήκος της πλάκας. 



Βασική Ρευστομηχανική - 2023                        Ι. Καλλιντέρης                    4-14 

 

 

Η επιφάνεια θεωρείται απείρου μήκους, έτσι ώστε η ροή να μελετηθεί 

μακριά από άκρα τα οποία θα επέβαλαν μεγάλη αλλαγή της ροής κατά τη  

x - διεύθυνση, το οποίο συνεπάγεται ότι δεν ισχύουν οι απλοποιημένες 

εξισώσεις του οριακού στρώματος. Το Σχήμα 4.8 απεικονίζει προφίλ της 

ταχύτητας σε τρεις θέσεις στην επιφάνεια. Παρατηρείται ότι διαίρεση των 

μηκών κατά τη y - διεύθυνση με το τοπικό πάχος του στρώματος ( ), μπορεί 

να μετασχηματίσει τα τρία προφίλ σε ένα. Για παράδειγμα, τα σημεία 1, 2 και 

3 μπορούν να μετασχηματισθούν στο ίδιο σημείο όταν χρησιμοποιείται η 

συντεταγμένη /n y = , αντί για την y. 

1

1

2

3

Διαφορετικά προφίλ κατά τη 

x-διεύθυνση

1 2 3 

Το ίδιο προφίλ κατά τη 

      x-διεύθυνση

●

●

● ●

y y
n


=

u /Uu 

U

 

Σχήμα 4.8: Ειδικός μετασχηματισμός της y - συντεταγμένης. 

 

Στο τμήμα 4.1 εκτιμήθηκε η τάξη μεγέθους του πάχους   ίση με v x U  

για χαρακτηριστικό μήκος της x - συντεταγμένης. Θεωρείται λοιπόν, ο εξής 

μετασχηματισμός: 

 
y

n
x

U





=


 (4.20) 

Εφόσον το προφίλ της ταχύτητας δεν μεταβάλλεται κατά τη x - διεύθυνση στο 

μετασχηματισμένο σύστημα συντεταγμένων , xu U y
U






 
 
 

, 
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μπορούμε να εκφράσουμε την ταχύτητα σαν μια συνάρτηση ( )f n  η οποία θα 

πρέπει να υπολογιστεί. «Μιμούμενος» ο Blasius τη συνάρτηση δυναμικού της 

οποίας η παράγωγος δίνει την ταχύτητα, όρισε συνάρτηση f  τέτοια ώστε: 

 ( )
u

f n
U

=  (4.21) 

όπου 
df

f
dn

  . 

Το επόμενο βήμα είναι ο μετασχηματισμός των εξισώσεων του οριακού 

στρώματος, για μηδενική βαθμίδα πίεσης, στο νέο σύστημα συντεταγμένων. 

Αυτό που θα προκύψει είναι μία απλούστερη εξίσωση για την άγνωστη 

συνάρτηση f , η οποία επιλύεται αριθμητικά. Συγκεκριμένα, οι παράγωγοι 

στις εξισώσεις εκφράζονται ως εξής: 

2 2

n y U n

x x x x


= − = −
 

  

n U

y x


=
 

  

( )( )
2

U f nu f f n n
U U U f

x x x n x x


  

      
= = = = −

    
 (4.22) 

( )( )U f nu f f n U
U U U f

y y y n y x

 
  

      
= = = =

     
 (4.23) 

2 2

2

u U U f U
U f U f

y x x y xy



   
  

 

     
 = = = 

       
 (4.24) 

Η εξίσωση της συνέχειας χρησιμοποιείται για να υπολογιστεί η ταχύτητα  : 

 
u

y x

 
= − 

 
      

u
dy

x



= −


  

 

Εναλλάσσοντας τους τελεστές της παραγώγισης και της ολοκλήρωσης στην 

ανωτέρω εξίσωση, και αντικαθιστώντας την u  από την σχέση (4.21), 

προκύπτει: 

 ( ) ( )    
y

U f n dy U f n d
x x

  


 
  

 = −  = −
     (4.25) 
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Από την (4.20) προκύπτει ότι 
y x

U



 

 
=


. Αντικαθιστώντας στην εξίσωση 

(4.25) και ολοκληρώνοντας, έχουμε: 

 ( )  
x

U f n
x U


 



  
= −     

  

Εκτελώντας και την παραγώγιση προκύπτει η τελική έκφραση για την 

κατακόρυφη συνιστώσα της ταχύτητας: 

           
x f x

U U f
U x x U

  



 

 

     
= − −       

  

 ( ) 
1

2
n f f

U U x

 

 

= −  (4.26) 

Παρατηρείται ότι η y - συνιστώσα της ταχύτητας είναι διάφορη του μηδενός.  

Αντικαθιστώντας τις σχέσεις των παραγώγων (4.22) έως (4.24) καθώς και τις 

εκφράσεις των ταχυτήτων (4.21) και (4.26), στην εξίσωση της  x - ορμής του 

οριακού στρώματος (4.16), προκύπτει μετά από εκτενή άλγεβρα: 

 

  2 0f f f + =  (4.27) 

 

Η εξίσωση (4.27) είναι γνωστή ως εξίσωση Blasius. Είναι μία μη γραμμική 

συνήθης διαφορική εξίσωση και επιλύεται με υπολογιστή με βάση τις 

ακόλουθες μετασχηματισμένες συνοριακές συνθήκες: 

Στην επιφάνεια ( 0n = ) ισχύει με βάση τις σχέσεις (4.21) και (4.26) για τις 

ταχύτητες u  και  : 

 
0 (0) 0

0 (0) 0

u f

f

=  =

=  =
 (4.28) 

Μακριά από την επιφάνεια ( n = ) ισχύει ότι:  

 1 ( ) 1
u

f
U

=   =  (4.29) 

Ωστόσο, η ανωτέρω συνθήκη δεν μπορεί να χρησιμοποιηθεί ως έχει. Για την 

επίλυση, θεωρείται ότι:  
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 (0)f a =   

όπου η a  έχει μια τυχαία τιμή. Λύνεται η εξίσωση (4.27) επαναληπτικά με 

διάφορες τιμές a , έως ότου να προσεγγίζεται η (4.29) ικανοποιητικά. Τελικά, 

προκύπτει: 0,332a  . Αυτή η τεχνική αριθμητικής επίλυσης της διαφορικής 

εξίσωσης ονομάζεται στην βιβλιογραφία “shooting method”. 

Ο Πίνακας 1 δίνει την αριθμητική λύση της εξίσωσης Blasius (4.27) για 

τιμές της n  από 0 έως 8. Στο Σχήμα 4.9, δίνεται γραφικά η μεταβολή των 

συνιστωσών της ταχύτητας u  και  . Επειδή η ταχύτητα   είναι κατά πολύ 

μικρότερη της u , στο γράφημα αδιαστατοποιείται κατάλληλα έτσι ώστε να 

αναπαρασταθεί μαζί με την ταχύτητα u . Παρατηρείται ότι η συνιστώσα   στο 

άκρο του στρώματος είναι διάφορη του μηδενός.  

Η άκρη του οριακού στρώματος μπορεί να οριστεί σαν η θέση εκείνη, στην 

οποία ισχύει: 0,99u U  . Η θέση αυτή αντιστοιχεί στη συντεταγμένη 5n  , 

όπως δίνει ο Πίνακας 1. Αντικαθιστώντας στην (4.20) με την y = , έχουμε :  

5
x U



 

=


. 

Συνεπώς, το πάχος του οριακού στρώματος, σε απόσταση x από την αρχή της 

επίπεδης επιφάνειας, είναι ίσο με: 

 
5

5  ή
Rex

x

U x

 





= =  (4.30) 

Πρέπει να τονιστεί ότι η λύση Blasius ισχύει στην περιοχή της επιφάνειας 

μακριά από την αρχή της ( 0x = ), γιατί στην περιοχή αυτή δεν ισχύουν οι 

εξισώσεις του οριακού στρώματος, λόγω της σχετικά μεγάλης μεταβολής των 

ταχυτήτων κατά τη x - διεύθυνση. 
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n  f  
u

f
U

 =  f   

0,0 0,0000 0,0000 0,3321 

0,5 0,0415 0,1659 0,3309 

1,0 0,1656 0,3298 0,3230 

1,5 0,3701 0,4868 0,3026 

2,0 0,6500 0,6298 0,2668 

2,5 0,9963 0,7513 0,2174 

3,0 1,3968 0,8461 0,1614 

3,5 1,8377 0,9131 0,1078 

4,0 2,3058 0,9556 0,0642 

4,5 2,7902 0,9795 0,0340 

5,0 3,2833 0,9915 0,0159 

5,5 3,7806 0,9969 0,0066 

6,0 4,2797 0,9990 0,0024 

6,5 4,7794 0,9997 0,0008 

7,0 5,2793 0,9999 0,0002 

7,5 5,7793 1,0000 0,0001 

8,0 6,2793 1,0000 0,0000 

 

Πίνακας 1: Αριθμητική λύση της εξίσωσης Blasius. 
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Rex
U





U

u



n

Αδιάστατες ταχύτητες
 

Σχήμα 4.9: Μεταβολή των συνιστωσών της ταχύτητας με βάση τη λύση Blasius. 

Ο λόγος των συνιστωσών ( /u  ) είναι ανάλογος του Rex . 

 

 

 

4.4.1 Η δύναμη τριβής στο τοίχωμα 
 

Η τριβή της ροής στην επιφάνεια είναι ίση με: 

 ( )
0

0w
y

u U
U f n

y v x
   


=

 
= = = 

 
 (4.31) 

Ο συντελεστής τριβής ορίζεται ως: 

 
21

2

w
fC

U



 

  (4.32) 

Ο Πίνακας 1 δίνει την τιμή του όρου ( 0)f n =  η οποία είναι 0,332. Επομένως 

ο συντελεστής τριβής είναι:  
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0,664

Re
f

x

C =  (4.33) 

όπου ο αριθμός Reynolds ( Rex ) ορίζεται ως: 

 Rex
U x

v

 
  

Η αντίσταση της επιφάνειας στη ροή, είναι ίση με: 

 

0

L

wD b dx=    

όπου b  είναι το πλάτος της επιφάνειας, και L  είναι το μήκος της.  

Αντικαθιστώντας στην ανωτέρω την (4.31) καθώς και την τιμή 0,332 για τον 

όρο ( 0)f n = , προκύπτει ότι: 

      

0

0,332     0,664  

L
U U L

D U b dx D U b
v x v

  
 =   =   (4.34) 

Ο συντελεστής αντίστασης ορίζεται ως: 

 
21

2

D
D

C

U b L 

  (4.35) 

Αντικαθιστώντας την (4.34) στην (4.35) προκύπτει ότι: 

 
1,328

ReL
DC =  (4.36) 

 

όπου ο αριθμός Reynolds ( ReL ) ορίζεται ως: 

 ReL

U L

v

 
   

 

4.5 Πάχος Μετατόπισης και Πάχος Ορμής 

 

Το οριακό στρώμα προκαλεί μείωση της παροχής μάζας, ορμής και 

ενέργειας σε σχέση με ομοιόμορφη ροή ταχύτητας U . Ορίζονται ειδικά 

μεγέθη τα οποία εκφράζουν αυτό το έλλειμμα. 

Ελεύθερη ροή ταχύτητας U  συναντά επίπεδη πλάκα πλάτους b  και 

αναπτύσσει οριακό στρώμα όπως απεικονίζει το Σχήμα 4.10. Η αρχή 



Βασική Ρευστομηχανική - 2023                        Ι. Καλλιντέρης                    4-21 

 

διατήρησης της μάζας στην επιφάνεια ελέγχου του σχήματος (διακεκομμένη 

γραμμή) εκφράζεται ως εξής: 

 in out em m m= +  (4.37) 

όπου em  είναι η εκροή μάζας λόγω της  y - συνιστώσας της ταχύτητας, ενώ 

inm  και outm  εκφράζουν την εισροή και εκροή μάζας στο τμήμα του πεδίου 

ροής όπως απεικονίζεται στο σχήμα. 

Θεωρώντας τα αντίστοιχα ολοκληρώματα τα οποία εκφράζουν παροχή μάζας, 

η (4.37) δίνει: 

 

0 0

em U bdy ubdy

 

 = −   (4.38) 

 

Το έλλειμμα παροχής μάζας κατά την x - διεύθυνση συνδέεται με την εκροή 

μάζας κατά την y - διεύθυνση. Η ανωτέρω σχέση μπορεί να εκφραστεί ως εξής: 

 

 1em U b =  (4.39) 

 

όπου 1  ορίζεται το πάχος μετατόπισης ως: 

 1

0

1
u

dy
U






 
 − 

 
  (4.40) 

 

inm outm



em

 
Σχήμα 4.10: Ισοζύγιο μάζας σε επιφάνεια ελέγχου για τον προσδιορισμό του 

πάχους μετατόπισης οριακού στρώματος σε επίπεδη επιφάνεια. 
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Παρατηρείται δηλαδή, ότι το πάχος μετατόπισης αποτελεί μέτρο του 

ελλείμματος στη ροή μάζας λόγω του οριακού στρώματος, όπως απεικονίζει το 

Σχήμα 4.11. Η παροχή μάζας του πραγματικού προφίλ ταχύτητας ( )u y  του 

οριακού στρώματος είναι ίση με την παροχή ενός προφίλ ελεύθερης ροής U  

μετατοπισμένου κατά απόσταση 1 . Το έλλειμμα παροχής μάζας του 

πραγματικού προφίλ σε σχέση με την ελεύθερη ροή είναι: 

( )
0

U u dy


  −  

 

Το έλλειμμα αυτό εκφράζεται με το πάχος μετατόπισης 1  ως εξής:  

1
U   

Εξισώνοντας τις δύο εκφράσεις έχουμε: 

( ) 1
0

U u dy U


   =−  

Το οποίο δίνει την σχέση (4.40) για το μέγεθος 1 . 

 

y

πάχος μετατόπισης  1

y

u u

U U

 

Σχήμα 4.11: Το οριακό στρώμα προκαλεί μείωση της παροχής μάζας της 

ελεύθερης ροής. Τα δυο προφίλ "δίνουν" την ίδια παροχή μάζας 

κατά τη x - διεύθυνση. 

 

Στη γενική περίπτωση που η ροή είναι συμπιεστή, δηλαδή μεταβάλλεται η 

πυκνότητα, το πάχος μετατόπισης ορίζεται ως: 

 1

0

1
u

dy
U





 

 
 − 

 
  (4.41) 
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Το πάχος μετατόπισης εκφράζει ακόμη τη μετατόπιση των γραμμών ροής λόγω 

της παρουσίας του οριακού στρώματος. Δηλαδή, η εξωτερική ροή «βλέπει» το 

σώμα πιο «παχύ» από όσο πραγματικά είναι.  

Με βάση τη λύση Blasius, από τη σχέση (4.21) για την ταχύτητα, προκύπτει 

 ( )1

0 0

1 1
u

dy f n dy
U

 


−

 
= − =  −    

 
   

Αντικαθιστούμε την μεταβλητή y  με την n :   

y x
n dy dn

Ux

U



 



=  =  

Με την χρήση της λύσης Blasius (Πίνακας 1) προκύπτει: 
 

     
5

1 0
1 ( ) 5 (5)  = 5 3,28

x x x
f n dn f

U U U

  


  

= − = − −   

 

 1 1,72
v x

U





=  (4.42) 

Το πάχος 1  μπορεί να συνδεθεί απευθείας με το πάχος   του οριακού 

στρώματος. Ισχύει ότι 5 x U  =  το οποίο αντικαθίσταται στην ανωτέρω 

σχέση (4.42) και δίνει 1 0,344 = . 

Ένα άλλο χρήσιμο χαρακτηριστικό μέγεθος του οριακού στρώματος είναι 

το πάχος ορμής ( 2 ), το οποίο ορίζεται με τον ίδιο τρόπο όπως και το μέγεθος 

1  ως εξής: 

 2

0

1
u u

dy
U U




 

 
 − 

 
  (4.43) 

Το πάχος ορμής εκφράζει την απώλεια x - ορμής λόγω της επιβράδυνσης της 

ροής στο οριακό στρώμα. Αντικαθιστώντας τη λύση Blasius για την ταχύτητα 

u U  (εξίσωση (4.21)), προκύπτει: 

            
5 5

2 0 0
( ) ( ) ( ) 

x
f n dn f n f n dn

U






   = − 
  
   (4.44) 
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Το δεύτερο ολοκλήρωμα της σχέσης (4.44) υπολογίζεται με ολοκλήρωση κατά 

παράγοντες:  

 ( )
5 5 5

0 0 0
( ) ( ) ( ) ( )  ( ) ( ) f n f n dn f n f n dn f n f n dn    =  −      

Χρησιμοποιώντας την σχέση  ( ) ( ) 2 ( )f n f n f n  = −  (εξίσωση (4.27)), 

προκύπτει ότι: 

 ( )  

5 5 5

0 0 0
( ) ( ) ( ) ( )  2 ( ) f n f n dn f n f n dn f n dn    =  +     

Η ανωτέρω έκφραση αντικαθίσταται στην εξίσωση (4.44). Τα ολοκληρώματα 

υπολογίζονται χρησιμοποιώντας την λύση Blasius (Πίνακας 1), και προκύπτει 

η παρακάτω σχέση για το πάχος ορμής: 

 2
ν

0,664
x

U





=  (4.45) 

 

4.5.1 Η τριβή στο τοίχωμα – Η δύναμη αντίστασης 
 

Η απώλεια της ορμής συνεπάγεται δύναμη η οποία εξασκείται στο σώμα με 

βάση τον νόμο του Νεύτωνα. Υπολογίζοντας, ή μετρώντας το έλλειμμα της 

ταχύτητας στο απόρρευμα της ροής γύρω από ένα σώμα (Σχήμα 4.12) εξάγεται 

η τιμή της δύναμης τριβής που ασκείται από την ροή. Η δύναμη αντίστασης 

(“Drag”) είναι ίση και αντίθετης φοράς με την δύναμη τριβής. Αφορά την 

περίπτωση που το σώμα κινείται μέσα σε ακίνητο ρευστό. 

U
Drag

F

 
 

Σχήμα 4.12: Ροή γύρω από σώμα: η απώλεια ορμής της ροής συνδέεται με τη 

δύναμη τριβής ( F ) ή αντίστασης ( DragF ) που ασκείται στο σώμα. 
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Στην περίπτωση ακίνητης επίπεδης πλάκας μήκους L και πλάτους b (Σχήμα 

4.13), η δύναμη τριβής είναι ίση με: 

 2 2
0

0

ορμή ορμή
x x L

u dyF U bh b


  = =
= − = −   (4.46) 

Η ροή μάζας είναι ίση με:  
 

 

0 0

1

y

m U h u dy h u dy
U

 

 
=

= =  =    

Ορίζουμε δηλαδή, το ύψος h έτσι ώστε οι δύο παροχές να είναι ίσες, οπότε 

αντικαθιστώντας στην (4.46) προκύπτει: 

 ( )
0

b u U u dyF


 = −      

η οποία συνεπάγεται ότι: 

 

    2
2U bF  =  (4.47) 

 

 

 

 

x=0 x=L

h
δ

 

Σχήμα 4.13: Η δύναμη λόγω τριβής σε πλάκα με υπολογισμό της απώλειας 

ορμής σε κατάλληλη επιφάνεια ελέγχου. 

 

Παρατηρούμε ότι το πάχος ορμής 2  συνδέεται άμεσα με την δύναμη τριβής η 

οποία εξασκείται στην πλάκα λόγω της ροής.  
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Η διατμητική τάση σε μία θέση της πλάκας ( )w x , συνδέεται με το πάχος 

ορμής ( )2  όπως δείχνεται κατωτέρω. Η δύναμη τριβής η οποία ασκείται στο 

μήκος x  της επίπεδης επιφάνειας είναι: 

 ( ) ( )
0

x

wx b x dxF =    

 w
d

b
dx

F =  (4.48) 

 

Επίσης, με βάση την (4.47), προκύπτει: 

 
2 2d d

U b
dx dx

F 
 =  (4.49) 

Από τις (4.48) και (4.49) συνεπάγεται: 

 ( ) 2 2
w

d
x U

dx


  =  (4.50) 

Η ανωτέρω εξίσωση εκφράζει ότι η τριβή στην επιφάνεια προκαλεί μείωση της 

ορμής του οριακού στρώματος. Η σχέση (4.50) εξήχθη από τον von Karman 

και ισχύει και για τυρβώδη ροή την οποία θα εξετάσουμε σε επόμενο τμήμα 

του κεφαλαίου αυτού. 

 

4.6 Οριακό Στρώμα Θερμοκρασίας 

 

Σε μία συνεκτική ροή εκτός από την τριβή που αναπτύσσεται μεταξύ των 

στοιχείων του ρευστού και των στερεών επιφανειών, λαμβάνει χώρα και 

μεταφορά θερμότητας, λόγω αγωγιμότητας, μεταξύ των επιφανειών αυτών και 

του ρευστού. Αυτό οδηγεί στην ανάπτυξη ενός στρώματος μέσα στο οποίο η 

θερμοκρασία μεταβάλλεται από την τιμή που έχει στην επιφάνεια του 

σώματος, στην τιμή που επικρατεί στην περιοχή της ελεύθερης ροής. Το 

στρώμα αυτό αποκαλείται οριακό στρώμα θερμοκρασίας, όταν το πάχος του 

( )T  είναι πολύ μικρότερο της χαρακτηριστικής διάστασης του σώματος ( L ). 
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Κατά την αδιαστατοποίηση των εξισώσεων ροής, στην περίπτωση της 

εξίσωσης της ενέργειας, προέκυψε ο αδιάστατος αριθμός Prandtl (Pr), ο 

οποίος εκφράζει το λόγο του πάχους του οριακού στρώματος της ταχύτητας 

( )u  προς το πάχος του θερμοκρασιακού οριακού στρώματος ( )T . Τα πάχη 

αυτά απεικονίζονται στο (Σχήμα 4.14). 

yy

Οριακό Στρώμα Ταχύτητας Οριακό Στρώμα Θερμότητας

u
T


 

Σχήμα 4.14: Στην περίπτωση της ροής αέρα, ο αριθμός Prandtl είναι 

μικρότερος της μονάδας, και το οριακό στρώμα ταχύτητας έχει 

μικρότερο πάχος από αυτό του οριακού στρώματος θερμοκρασίας. 

 

Για στρωτή ροή αέρα η τιμή του αριθμού Prandtl είναι ίση με 0,7 περίπου, 

ενώ στην περίπτωση της τυρβώδους ροής η τιμή του είναι κοντά στο 1. Στην 

περίπτωση ροής λαδιού η τιμή του Pr είναι κατά πολύ μεγαλύτερη της μονάδος 

της τάξεως του 103 (Σχήμα 4.15).  

y
y

T

wT T


u

 

Σχήμα 4.15: Στην περίπτωση της ροής λαδιού, ο αριθμός Prandtl είναι πολύ 

μεγαλύτερος της μονάδας, και το πάχος του οριακού στρώματος 

ταχύτητας είναι κατά πολύ μεγαλύτερο από το πάχος του οριακού 

στρώματος θερμοκρασίας. 
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Η εξίσωση της ενέργειας του οριακού στρώματος θα προκύψει με την 

απαλοιφή των όρων της οι οποίοι έχουν μέγεθος μικρότερης τάξης, όπως έγινε 

και με την εξίσωση της ορμής.  Αρχικά, ορίζεται η αδιάστατη θερμοκρασία με 

βάση την ακόλουθη σχέση: 

 
w

T T T T

T T T
  



− −
 

− 
 (4.51) 

Για χρονικά αμετάβλητη, ασυμπίεστη, και δισδιάστατη ροή, η εξίσωση της 

ενέργειας (σχέση 3.67), αδιαστατοποιώντας τους όρους της με βάση τον 

Πίνακα 3.1, έχει τη μορφή: 

 

3 * *
* * * *

* * * *

pC U T U p p
u u

L Lx y x y

   
 

 
      

+ = + +  
         

 

 
2 2 2

*
2 *2 *2 2

k T U

L x y L

   
   

+ + +  
   

 (4.52) 

όπου η συνάρτηση απωλειών (
* ) δίνεται από τη σχέση (3.63): 

 

2 2 2
* * * *

*
* * * *

2 2
u u

x y x y

         
 = + + +     

             

 

Από την (4.52) προκύπτει: 

 

2 * *
* * * *

* * * *
p

U p p
u u

C Tx y x y

 
 

    
+ = + + 

     

 

 2 *

p p

k U

C U L C L T




 




+  + 


 (4.53) 

Στους παραπάνω όρους εμφανίζεται ένα ακόμα αδιάστατο μέγεθος, ο αριθμός 

Eckerd, ο οποίος ορίστηκε στο προηγούμενο κεφάλαιο ως εξής: 

2

p

U
E

C T




 

Η (4.53) με βάση τους ορισμούς των αριθμών Reynolds, Prandtl και Eckerd, 

γράφεται ως εξής: 

 * * * * 2 *
* *

1

RePr Re

E
u E V p

x y

 
 

 
+ =   +  + 

 
 (4.54) 
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Στην συνέχεια θα θεωρηθούν αδιαστατοποιημένα μεγέθη και θα παραληφθεί 

το σύμβολό τους (*). 

Θεωρώντας την τάξη μεγέθους των επί μέρους όρων που εμφανίζονται 

στην (4.54), με βάση τα πάχη των οριακών στρωμάτων ( ),u T  , 

παρατηρείται ότι οι όροι 
2 2/ ,  /y u y     είναι της τάξης μεγέθους ( )21/ TO   

και ( )1/ uO  , αντίστοιχα. Οι όροι αυτοί είναι κατά πολύ μεγαλύτεροι σε 

σύγκριση με τους υπόλοιπους. Ο όρος ( )/Eu p x  , ο οποίος εκφράζει το έργο 

λόγω της δύναμης της πίεσης, «έρχεται» από την ροή έξω από το οριακό 

στρώμα και δεν μπορεί γενικά να αμεληθεί. Στην περίπτωση μηδενικής 

βαθμίδας πίεσης, η εξίσωση της ενέργειας μπορεί να απλοποιηθεί στην 

παρακάτω μορφή για το οριακό στρώμα: 

 

22

2

1

RePr Re

E u
u

x y yy

  


    
+ = +  

    
 (4.55) 

όπου ,u
x y

 


 

 
 είναι οι όροι μεταφοράς θερμότητας, ο όρος 

2

2

1

RePr y




 

εκφράζει τη διάχυση θερμότητας μέσα στο ρευστό λόγω αγωγιμότητας, και ο 

όρος ( )
2

Re

E
u y   αφορά την παραγωγή θερμότητας με την τριβή μεταξύ των 

στοιχείων του ρευστού. 
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4.7 Εισαγωγή στο Τυρβώδες Οριακό Στρώμα 

 

Κάθε πραγματική ροή, ανεξάρτητα από την πολυπλοκότητά της, γίνεται 

τυρβώδης όταν ο αριθμός Reynolds υπερβεί μία συγκεκριμένη τιμή. Στην 

περίπτωση της τύρβης, παρατηρούνται τυχαίες διακυμάνσεις των ροϊκών 

μεγεθών, όπως απεικονίζεται στο Σχήμα 4.16 για την ταχύτητα u  σε μία θέση 

στο πεδίο. 

u

t

 

Σχήμα 4.16: Η τύρβη χαρακτηρίζεται από τυχαίες διακυμάνσεις των ροϊκών 

μεγεθών. 

 

Η τύρβη προκαλεί ανάμιξη των στοιχείων της ροής και αυξάνει σημαντικά 

τη συνεκτικότητά της. Μέσα στη ροή αναπτύσσονται τρισδιάστατες δομές με 

αρκετά ευρύ φάσμα κλιμάκων. Εξαιτίας της τύρβης προκαλείται μεταφορά 

ενέργειας από την «μέση» ροή στις δομές μεγάλου μεγέθους και κατόπιν στις 

δομές ολοένα και μικρότερου μεγέθους. Οι μικρές δομές προκαλούν 

μετατροπή της κινητικής ενέργειας της τύρβης σε θερμότητα. Η ανάμιξη αυτή 

της ροής, αυξάνει σημαντικά την αντίσταση που αναπτύσσεται σε σώματα 

κατά την κίνησή τους μέσα στο ρευστό. Επίσης, οι τυρβώδεις ροές 

χαρακτηρίζονται από μεγαλύτερη κινητική ενέργεια στο οριακό στρώμα σε 

σύγκριση με τις στρωτές ροές, γεγονός που προκαλεί μείωση ή αποφυγή της 

αποκόλλησης του οριακού στρώματος. 

Στην περίπτωση της ροής πάνω από μία επίπεδη επιφάνεια, 

παρατηρούνται οι εξής περιοχές, οι οποίες απεικονίζονται στο Σχήμα 4.17: 
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(i) Περιοχή στρωτής ροής η οποία ξεκινά από την αρχή της πλάκας. Το πάχος 

του οριακού στρώματος είναι ανάλογο του όρου x , όπως έχει δειχθεί. 

(ii) Περιοχή μετάβασης της ροής από στρωτή σε τυρβώδη. 

(iii) Περιοχή πλήρως ανεπτυγμένης τυρβώδους ροής. Εδώ το πάχος αυξάνει 

ανάλογα με τον όρο 4 5x , όπως θα αναφερθεί παρακάτω. 

 

Στρωτή ΤυρβώδηςΜετάβαση

0.5x

0.8x

 

Σχήμα 4.17: Μετάβαση της ροής σε τυρβώδη στο οριακό στρώμα πάνω από 

επίπεδη επιφάνεια. 

 

Για την περίπτωση της πλάκας, έχει παρατηρηθεί πειραματικά ότι η ροή 

μεταβαίνει σε τυρβώδη όταν ο τοπικός αριθμός Reynolds ( )Rex  ξεπεράσει την 

τιμή: 

 
5Re 5 10x    (4.56) 

Εκφράζοντας τον αριθμό Reynolds ως προς το πάχος του οριακού 

στρώματος, παρατηρείται το εξής: 

 

2 2 2

Re
U U U U

U du

dy


    

  


   


 =    

Δηλαδή, ο αριθμός Reynolds εκφράζει το λόγο των δυνάμεων της αδράνειας 

(«αποσταθεροποίηση» της στρωτης ροής), προς τις δυνάμεις ιξώδους 

(απόσβεσης διαταραχών). Αύξησή του στη στρωτή ροή οδηγεί σε μετάβαση 

στην τύρβη. 
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4.7.1 Μέση ροή και τυχαίες διακυμάνσεις – Η αποσύνθεση 
Reynolds 

 

 

Όπως αναφέρθηκε, βασικό χαρακτηριστικό της τυρβώδους ροής είναι οι 

τυχαίες διακυμάνσεις των ροϊκών μεγεθών. Για το λόγο αυτό, μαθηματικά 

διαχωρίζονται τα ροϊκά μεγέθη σε μέσες τιμές στο χρόνο, και σε διακυμάνσεις. 

Έτσι, οι στιγμιαίες ταχύτητες και η πίεση εκφράζονται ως: 

 

u u u

p p p

  

= +

= +

= +

 (4.57) 

όπου , ,u p  είναι οι μέσες τιμές στο χρόνο των ταχυτήτων και της πίεσης, και 

, ,u p    είναι οι στιγμιαίες διακυμάνσεις. Στο Σχήμα 4.18 παριστάνεται 

γραφικά η μέση τιμή και η διακύμανση της ταχύτητας u  με το χρόνο σε μια 

θέση του πεδίου ροής. 

 

t

u

u

 

Σχήμα 4.18: Μέση τιμή και διακύμανση της ταχύτητας σε τυρβώδες πεδίο ροής. 

 

Η (4.57) ορίζει τη λεγόμενη αποσύνθεση Reynolds (“Reynolds Decomposition”) 

των ροϊκών μεγεθών. Οι μέσες τιμές στο χρόνο ορίζονται με βάση την 

ακόλουθη σχέση για το μέγεθος  : 

 
1

t t

t

dt
t

 

+

=
   (4.58) 

 

Εξ ορισμού, η μέση τιμή των τυχαίων διακυμάνσεων είναι μηδέν, εφόσον τότε 

ισχύει: 
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 ( )
1 1 1

0

t t t t

t t

dt dt t
t t t

      

+ +

 = − = −  = − =
     (4.59) 

 

Μέσες τιμές γινομένων υπολογίζονται ως εξής: 

                ( ) ( )u u u u u u u            = +  + =  +  +  +  =  

               u u u u      =  +  +  +      u u u    =  +   (4.60) 

Οι όροι που αποτελούνται από το γινόμενο της μέσης τιμής με την τυχαία 

διακύμανση μηδενίζονται αν θεωρηθεί η μέση τιμή τους. Με βάση την (4.60), 

ισχύει ότι: 

 
2 2 2u u u= +  (4.61) 

Με την αποσύνθεση αυτή προκύπτουν εξισώσεις για την τυρβώδη ροή οι 

οποίες είναι παρόμοιες με αυτές της στρωτής. Εμφανίζονται όμως, όροι των 

διακυμάνσεων, όπως u   , 
2u , 

2  οι οποίοι πρέπει να υπολογιστούν. Οι 

επιπλέον εξισώσεις που χρησιμοποιούνται μπορεί να είναι αλγεβρικές, ή 

κανονικές διαφορικές, ή μερικές διαφορικές εξισώσεις. 

 

 

4.7.2 Τυρβώδεις Τάσεις 
 

Θεωρείται η επιφάνεια στο Σχήμα 4.19 μέσα σε ένα πεδίο ασυμπίεστης 

τυρβώδους ροής. Ο ρυθμός μεταφοράς της x - ορμής στη  x - διεύθυνση δια 

μέσου της επιφάνειας ( A ) είναι:  

 ( ) ( )
2

xxJ u A u u u A  =   = +    

και ο ρυθμός μεταφοράς της x - ορμής στη y - διεύθυνση είναι ίσος με: 

 ( ) ( )( )xyJ u A u u A     =   = + +    
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ΔΑ

xx

xy

 

Σχήμα 4.19: Επιφάνεια εμβαδού A  μέσα στο πεδίο ροής, με την ορθή ( xx ) 

και διατμητική ( xy )  τάση που ενεργούν σε αυτήν. 

 

Θεωρώντας τις μέσες τιμές του ρυθμού μεταφοράς ορμής, προκύπτει: 

 

( )

2 2
xx

xy

J u u A

J u u A



  

 = +  
 

 =  +  

  

Ο λόγος /J A  εκφράζει τη δύναμη ανά επιφάνεια (τάση) που ενεργεί στην 

επιφάνεια. Ο λόγος /xxJ A  εκφράζει την τάση xx , ενώ ο λόγος /xyJ A  

την xy . Δηλαδή, η μέση ορθή τάση είναι: 

 
2 2

xx u u   = + 
 

 (4.62) 

και η μέση διατμητική τάση είναι ίση με: 

 ( )xy u u    =  +   (4.63) 

Παρατηρείται ότι η τύρβη συμβάλει στις τάσεις που αναπτύσσονται στην 

επιφάνεια, μέσω των όρων διακύμανσης. Οι τάσεις που οφείλονται στις 

τυρβώδεις διακυμάνσεις της ταχύτητας είναι ίσες με: 

 
xx

xy

u u

u

 

  

  = 

  = 
 (4.64) 

και ονομάζονται τάσεις Reynolds. Το στερεό όριο «αποσβένει» τις τυρβώδεις 

διακυμάνσεις, δηλαδή εκεί οι τάσεις (4.64) μηδενίζονται. 
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4.7.3 Εξισώσεις τυρβώδους οριακού στρώματος 
 

Θεωρείται δισδιάστατη και ασυμπίεστη ροή, με τη μέση τιμή των μεγεθών 

της χρονικά αμετάβλητη. Η εξίσωση διατήρησης της μάζας για το τυρβώδες 

οριακό στρώμα προκύπτει αν στην (4.8) εφαρμοστεί η αποσύνθεση Reynolds 

των ροϊκών μεγεθών (4.57). Προκύπτει τότε για την εξίσωση της μάζας 

(συνέχειας): 

 ( ) ( ) 0
u

u u
x y x y


 

   
 + = + + + =

   
 (4.65) 

Αν θεωρηθούν οι μέσες τιμές στο χρόνο των όρων που εμφανίζονται στην 

ανωτέρω, συνεπάγεται ότι: 

 0
u

x y

 
+ =

 
 (4.66) 

Σημειώνεται ότι, 0u = , 0 =  και u u= ,  = . Ακόμη, με αφαίρεση της 

(4.66) από την (4.65), προκύπτει: 

 

 0
u

x y

  
+ =

 
 (4.67) 

 

Δηλαδή, και το πεδίο των τυρβωδών διακυμάνσεων είναι επίσης ασυμπίεστο. 

Η εξίσωση της ορμής στη x - διεύθυνση προκύπτει με παρόμοιο τρόπο. 

Αντικαθιστώντας τις σχέσεις της αποσύνθεσης Reynolds (4.57) στην εξίσωση 

της ορμής οριακού στρώματος (4.16) και θεωρώντας μέσες τιμές στο χρόνο, 

προκύπτει:  

 
u u u u p u

u u
x y x y x y y

    
          

 + + + = − +            
 (4.68) 

 

Πολλαπλασιάζοντας την εξίσωση (4.67) με u  και θεωρώντας μέσες τιμές στο 

χρόνο για τους όρους της προκύπτει:  

 

 0
u

u u
x y


 

  
 + =
 

 (4.69) 
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Προσθέτοντας τις (4.68) και (4.69), προκύπτει: 

u u u u u
u u u u

x y x x y y

p u

x y y


    



            
   + + + + +              

   
= − +  

   

 (4.70) 

Οι εκφράσεις στο πρώτο μέλος της (4.70) μπορούν να απλοποιηθούν, 

χρησιμοποιώντας τις παρακάτω σχέσεις: 

 
( ) ( )u uu u u u

u u
x x x x


 
            
 + = = 
    

  

 
( ) ( )uu u

u
y y y y

  
  
            
 + = = 
    

  

Αντικαθιστώντας τις ανωτέρω στην εξίσωση (4.70) προκύπτει: 

 

( ) ( )u u uu u p u
u

x y x y x y y

  
  

               
+ + + = − +            

 (4.71) 

Ο όρος ( )u u x       είναι κατώτερης τάξης μεγέθους στο οριακό στρώμα σε 

σχέση με τον όρο ( )u y      , και επομένως μπορεί να αμεληθεί. Αυτό 

προκύπτει λαμβάνοντας υπόψη την παραδοχή του λεπτού οριακού στρώματος 

( )L , αλλά και το ότι οι τυρβώδεις διακυμάνσεις u  και   έχουν ίδια τάξη 

μεγέθους. Μεταφέροντας τον όρο ( )u y       στο δεξί μέλος της εξίσωσης 

(4.71), προκύπτει η παρακάτω μορφή:  

 
u u p u

u u
x y x y y

    
       

  + = − +  −     
       

 (4.72) 

Η (4.72) είναι η εξίσωση της ορμής στη x - διεύθυνση για το τυρβώδες οριακό 

στρώμα. Παρατηρείται ότι ο όρος που εκφράζει τις συνεκτικές τάσεις 

αποτελείται από δύο διακριτά μέρη: 

l
u

y
 


=


  t u   = −   
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Το πρώτο ( )l  είναι τάση στρωτής μέσης ροής, ενώ το δεύτερο ( )t  

αντιπροσωπεύει τάση της τυρβώδους ροής. Ο Boussinesque θεώρησε έναν 

συντελεστή τυρβώδους συνεκτικότητας ( )t , ο οποίος, παρόμοια με τον  , 

μπορεί να εκφράσει τις τυρβώδεις τάσεις ως: 

 t t
u

y
 


=


 (4.73) 

Συνεπώς, η (4.72) μπορεί να γραφτεί ως: 

 ( )
1 1

t
u u p u

u
x y x y y

  
 

     
+ = − + + 

     
 (4.74) 

Απομένει, βέβαια, να υπολογιστεί ο όρος t . Αυτός υπολογίζεται με διάφορα 

μοντέλα τύρβης τα οποία έχουν αναπτυχθεί, και εκφράζουν τον συντελεστή 

αυτόν σαν συνάρτηση του μέσου πεδίου ροής. 

Για την εξίσωση της ορμής οριακού στρώματος στη y-διεύθυνση 

ακολουθείται και πάλι η ίδια διαδικασία και προκύπτει, ότι για το τυρβώδες 

οριακό στρώμα σε σώματα με μικρή καμπυλότητα, ισχύει: 

 

 0, 0
p p

y y

 
 

 
 (4.75) 

 

Για τον προσδιορισμό της εξίσωσης της ενέργειας για το τυρβώδες οριακό 

στρώμα, θεωρείται η αποσύνθεση του θερμοκρασιακού πεδίου: 

   = +  (4.76) 

Γίνεται χρήση της εξίσωσης της ενέργειας (4.55). Με βάση τις αποσυνθέσεις 

Reynolds των ροϊκών μεγεθών (4.57) και (4.76), και θεωρώντας επιπλέον τις 

μέσες τιμές στο χρόνο, προκύπτει: 

 

2

2

2 2

1

RePr

Re

u
u

x y x y y

E u u

y y

     


          
+ = − + + 

     

 
     + +        

 

 (4.77) 
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Οι μέσες τιμές του θερμοκρασιακού πεδίου αναφέρονται στο στρωτό μέρος 

της ροής, ενώ οι διακυμάνσεις αναφέρονται στο τυρβώδες μέρος αυτής. 

 

 

4.7.4 Οι τρεις περιοχές του προφίλ τυρβώδους οριακού 

στρώματος 

 

Πειραματική μελέτη του προφίλ ταχύτητας του τυρβώδους οριακού 

στρώματος κατέδειξε ότι μπορεί να διαιρεθεί σε τρεις περιοχές: στο στρωτό 

υπόστρωμα, στην ενδιάμεση περιοχή, και στην πλήρως τυρβώδη περιοχή. Η 

διαίρεση του προφίλ στις τρεις αυτές περιοχές βασίζεται σε μια αδιάστατη 

μορφή της ταχύτητας και του μήκους. Για την αδιαστατοποίηση 

χρησιμοποιείται η  τριβή στην επιφάνεια ( )w . 

Η τριβή στην επιφάνεια μπορεί να προσεγγιστεί ως εξής:  

w
w

u u u

y y y


   



 
=   = 

 
 

w y
u



 
   

Παρατηρούμε ότι ο όρος w   έχει μονάδες του τετραγώνου της ταχύτητας. 

Συχνά λοιπόν, χρησιμοποιείται η διατμητική τάση πάνω στο τοίχωμα για την 

αδιαστατοποίηση της ταχύτητας και του μήκους. Συγκεκριμένα, ορίζεται η 

ταχύτητα τριβής : 

 
* wu




  (4.78) 

με βάση την οποία ορίζεται η αδιάστατη ταχύτητα: 

 
*

u
u

u

+   (4.79) 

και η αδιάστατη y - συντεταγμένη: 

 
*

*

y u y
y

u 

+ 
 =  (4.80) 

όπου   είναι ο συντελεστής του κινηματικού ιξώδους. 
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Αν θεωρηθεί γραμμικό προφίλ ταχύτητας, προκύπτει μία απλή σχέση 

μεταξύ u+  και y+ . Συγκεκριμένα, 

 
*2

u u u u u y

uy u yy y u w y
y

   

 

+

+

   
= = = =

    


 

και θεωρώντας γραμμικό προφίλ ταχύτητας προκύπτει η απλή σχέση: 
 

 u y+ +=   

Χρησιμοποιώντας τις ειδικές αυτές συντεταγμένες u+  και y+  του 

τυρβώδους οριακού στρώματος, οι τρεις περιοχές του απεικονίζονται στο 

Σχήμα 4.20. 

 

1 5 30

u+ Πλήρως 

τυρβώδες

Ενδιάμεση 

ζώνη

log( )y+

Στρωτό

υπόστρωμα

 

Σχήμα 4.20: Σχέση μεταξύ των ειδικά αδιαστατοποιημένων μεγεθών u+  και 

y+  για τυρβώδες οριακό στρώμα πάνω από πλάκα. Διακρίνονται 

τρεις περιοχές. Ο οριζόντιος άξονας είναι σε λογαριθμική κλίμακα. 

 

 

Με βάση το Σχήμα 4.20, διακρίνονται οι εξής περιοχές: 

• Στρωτό υπόστρωμα (“Laminar sublayer”): 

                               
+0 5,    u ,   ty y  + +  =  (4.81) 

• Ενδιάμεση ζώνη (“Buffer zone”): 

 +5 30,    u 5log 3,05 ,    ty y  + +  = −   (4.82) 
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• Πλήρως τυρβώδης περιοχή (“Fully turbulent”): 

 +30,    u 2,5log 5,5 ,    ty y  + + = +  (4.83) 

 

Οι τιμές στις ανωτέρω σχέσεις είναι προσεγγιστικές και προέρχονται από 

πειραματικά αποτελέσματα. 

 
 

 

4.7.5 Τυρβώδης ροή σε επίπεδη επιφάνεια 
 

 

Μία πειραματική προσέγγιση της κατανομής της ταχύτητας στο τυρβώδες 

οριακό στρώμα πάνω από οριζόντια πλάκα, αποτελεί η ακόλουθη εκθετική 

μεταβολή:  

 

1 7
u y

U 

 
=  
 

 (4.84) 

 

Το μοντέλο αυτό της μέσης ταχύτητας αποτυγχάνει στην επιφάνεια, όπου 

προβλέπει άπειρη τιμή για την παράγωγο u y  . Η τυρβώδης, όμως, τάση 

( )t u y    μπορεί να είναι πεπερασμένη θεωρώντας ότι η τύρβη, και άρα ο 

συντελεστής t  εξασθενεί όσο πλησιάζουμε το στερεό όριο.  

Η σχέση (4.50) συνδέει την μεταβολή του πάχους ορμής ( )2  με την 

διατμητική τάση στην επιφάνεια της πλάκας ( )w . Το πάχος ορμής για το 

τυρβώδες προφίλ υπολογίζεται αντικαθιστώντας την έκφραση για την 

ταχύτητα (4.84) στη σχέση (4.43):  

 

1/7 1/7

2 0

7
1

72

y y
dy


 

 

    
 = − =   

     
   (4.85) 

Η διατμητική τάση στην επιφάνεια της πλάκας ( )w  υπολογίζεται από την 

παρακάτω ημιεμπειρική σχέση:  

 

1/4

2
0,0233w U

vU

 



−




 
=  

 
  (4.86) 
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Αντικαθιστώντας τις σχέσεις (4.85) και (4.86) στην (4.50) προκύπτει η 

παρακάτω κανονική διαφορική εξίσωση για το πάχος του τυρβώδους οριακού 

στρώματος: 

1/4
1/4 0,240

d U

dx






−
 

=  
 

 

Ολοκληρώνοντας με δεδομένο ότι για 0x =  είναι 0 = , προκύπτει η λύση της 

διαφορικής εξίσωσης: 

 

1 5
4 50,382 x

U






 
=   

 
 ,   ή        

1/5

0,382

Rex
x


=  (4.87) 

Το πάχος του τυρβώδους οριακού στρώματος αυξάνει κατά 0,8x . Συγκριτικά, 

αναφέρεται ότι το πάχος του στρωτού οριακού στρώματος μεταβάλλεται ως 

προς 0,5x . Δηλαδή, παρατηρείται ότι το τυρβώδες οριακό στρώμα μεγαλώνει 

σε πάχος περισσότερο σε σύγκριση με το στρωτό οριακό στρώμα ταχύτητας. 

Η διατμητική τάση στην επιφάνεια της πλάκας ( )w  υπολογίζεται ως 

συνάρτηση της συντεταγμένης x  αντικαθιστώντας τη σχέση (4.87) στην  

(4.86) και προκύπτει:  

 

1/5
20,0297w

U x
U

v
 

−



 

=  
 

  (4.88) 

Ο τοπικός συντελεστής τριβής είναι:  

   
1 52

0,0594

1 Re
2

w
f

x

C

U



 

 =     (4.89) 

, σχέση η οποία προσεγγίζει ικανοποιητικά και πειραματικά δεδομένα για 

τυρβώδες οριακό στρώμα πάνω από επίπεδη επιφάνεια. 

 

Στο Σχήμα 4.21 παρουσιάζεται ποιοτικά η μεταβολή του συντελεστή τριβής 

( )fC  συναρτήσει της εξέλιξης του αρχικά στρωτού οριακού στρώματος πάνω 

σε επίπεδη επιφάνεια. 
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μετάβαση

Τυρβώδες

1

x


1

x


f
C

Στρωτό

1 5

x

 

Σχήμα 4.21: Μεταβολή του τοπικού συντελεστή τριβής συναρτήσει της εξέλιξης 

του οριακού στρώματος πάνω από επίπεδη πλάκα. 

 

 

Η ολική δύναμη τριβής στην επιφάνεια προκύπτει με βάση την (4.88): 

2
1/50

0,037
Re

L
w

L

Lb
F bdx U   =  =

,

 

όπου L είναι το μήκος της πλάκας και b το εκπέτασμά της. 

Ο συντελεστής τριβής ή ισοδύναμα της αντίστασης ( )D  στην κίνηση της 

πλάκας με ταχύτητα U  είναι: 

 
1/5

0,074

Re
D

L

C =     (4.90)   

 

 

4.7.6 Τυρβώδης ροή σε αγωγούς 
 

Η ροή μέσα σε έναν ευθύγραμμο αγωγό κυκλικής διατομής διαμέτρου D  

και ακτίνας R , όπως απεικονίζεται στο Σχήμα 4.22, εξελίσσεται σε πλήρως 

ανεπτυγμένη ροή σε κάποια απόσταση από την είσοδο του αγωγού. Ανάλογα 

με τον αριθμό Reynolds με βάση τη διάμετρο του αγωγού ( )ReD , η ροή 
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εξελίσσεται σε πλήρως τυρβώδη ή παραμένει στρωτή. Πειραματικά έχει 

παρατηρηθεί ότι η ροή είναι τυρβώδης στον αγωγό όταν ο αριθμός Reynolds 

με βάση την διάμετρο D  είναι: 

 Re 2300D   (4.91) 

 

D

 
 

Σχήμα 4.22: Εξέλιξη της ροής μέσα σε ευθύγραμμο αγωγό με κυκλική διατομή. 
 

 

Ο κρίσιμος αυτός αριθμός Reynolds εξαρτάται από την ομοιομορφία της 

εισερχόμενης ροής καθώς και από την τραχύτητα της επιφάνειας.  

Στην περίπτωση που η ροή είναι τυρβώδης μέσα στον αγωγό, μπορεί η 

μεταβολή της ταχύτητας να προσεγγιστεί ως εκθετική όπως και στην επίπεδη 

επιφάνεια. Συγκεκριμένα: 

 

1 7

max

u R r

U R

− 
=  
 

 (4.92) 

Για τη μέση ταχύτητα της ροής στην περίπτωση αυτή ισχύει: 

0.8 maxU Umean  , ενώ για τη στρωτή ροή η μέση τιμή είναι το μισό της 

μέγιστης. Δηλαδή, το προφίλ της ταχύτητας στην τυρβώδη ροή είναι πιο 

«γεμάτο» σε σύγκριση με το προφίλ για τη στρωτή ροή, όπως απεικονίζεται 

στο Σχήμα 4.23.  
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maxU

(α)

(β)

meanU

meanU

maxU

 

Σχήμα 4.23: Σύγκριση των προφίλ ταχύτητας (α) στρωτής, και (β) τυρβώδους  

ροής σε κυκλικό αγωγό για την ίδια παροχή μάζας. 

 

Σε προηγούμενο κεφάλαιο ορίστηκε ο συντελεστής επιδερμικής τριβής ή 

συντελεστής Fanning ως: 

21

2

w

mean

fC

U





  

όπου w  είναι η διατμητική τάση στο τοίχωμα του αγωγού. 

Επίσης ορίστηκε ο συντελεστής τριβής Darcy ως: 

                                         
21

2
mean

p

L
U

D



 =



  

όπου p  είναι η πτώση πίεσης λόγω τριβής για ροή σε αγωγό μήκους L  και 

διαμέτρου D . 

Στην στρωτή ροή στον κυκλικό αγωγό έχουμε: 16 Ref DC =  και 

64 Re .D =  Οι δυο συντελεστές συνδέονται με τη σχέση 4 fC =  , η οποία 

ισχύει και για τυρβώδη ροή. 
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Με βάση πειράματα, προκύπτουν προσεγγίσεις του συντελεστή τριβής Darcy 

( )  σε σχέση με τον αριθμό Reynolds ( ReD ) για τυρβώδη ροή. Η παρακάτω 

έκφραση είναι μια απλοποίηση τέτοιων σχέσεων για λεία τοιχώματα αγωγού: 

 1 4 50,316 Re ,   4000 Re 10D D
− =     (4.93) 

 

Ο συντελεστής επιδερμικής τριβής υπολογίζεται στο ίδιο εύρος ReD  ως 

4fC =  , αντικαθιστώντας τον   από την ανωτέρω εξίσωση. 

Πρέπει να τονιστεί ότι οι συντελεστές τριβής   και fC  του αγωγού στην 

περίπτωση της τυρβώδους ροής εξαρτώνται σημαντικά από την τραχύτητα της 

επιφάνειας του τοιχώματος. 

Στο Σχήμα 4.24 παριστάνεται ποιοτικά η μεταβολή του συντελεστή τριβής 

Darcy ( )  συναρτήσει του αριθμού Reynolds με βάση τη διάμετρο του 

αγωγού. Η απεικόνιση αυτή ονομάζεται διάγραμμα Moody. Παρατηρείται ότι 

στην περίπτωση της στρωτής ροής η κλίση της μεταβολής είναι πιο μεγάλη σε 

σύγκριση με αυτή της τυρβώδους. 

 

Στρωτή

2000 4000

( )log 

Τυρβώδης ροή

( )log ReD
 

Σχήμα 4.24: Διάγραμμα Moody για τη ροή μέσα σε ευθύγραμμο αγωγό κυκλικής 

διατομής. Η καμπύλη στην τυρβώδη περιοχή εξαρτάται από την 

τραχύτητα της επιφάνειας. 
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4.8 Παραδείγματα – Ασκήσεις 

 

4.8.1 Δύναμη για την κίνηση κύβου σε επιφάνεια λαδιού 
 

Ένας κύβος με εμβαδόν επιφάνειας ίσο με 2 2  2m , επιπλέει πάνω από 

μία επιφάνεια λαδιού. Να βρεθεί η δύναμη που απαιτείται, ώστε ο κύβος να 

κινηθεί με ταχύτητα 0,05U =  seccm , αν το ιξώδες και η πυκνότητα του 

λαδιού είναι 38,1 10 −=   
2

sec
N

m
  και 860 =  3kg m , αντίστοιχα. 

 

Λύση 

Αρχικά εξετάζεται αν η ροή στην επιφάνεια του κύβου είναι στρωτή ή 

τυρβώδης. 

 

4

6

10 10
Re 106,2

/ 9,42 10
L

U L

 

−

−

 
= = =


 

 

Άρα, η ροή είναι στρωτή, συνεπώς με βάση τη λύση του Blasius ο συντελεστής 

αντίστασης είναι ίσος με: 

 0,129
1,328

Re
DC

L
==   

Η δύναμη που απαιτείται για να κινηθεί ο κύβος με τη συγκεκριμένη ταχύτητα, 

είναι ίση με την αντίσταση που αναπτύσσεται στον κύβο λόγω τριβής : 

 
2 61

55,47 10
2

DD C U A N −
=  =   
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4.8.2 Υπολογισμός πάχους μετατόπισης και ορμής 
 

 

Θεωρείται το ακόλουθο προφίλ ταχύτητας μέσα σε στρωτό οριακό 

στρώμα: 
u y

a
U 

= .  

1) Να υπολογιστούν τα πάχη 1  και 2 , για ασυμπίεστη ροή. 

2) Να βρεθούν τιμές του a  για τις οποίες το προφίλ ταχύτητας προσεγγίζει 

αυτό της λύσης Blasius. Για αυτές τις τιμές του a , ποιο είναι το σφάλμα 

για τα πάχη 1  και 2  , σε σχέση με τη λύση Blasius; 

 

Λύση 

1) Το πάχος 1 , για ασυμπίεστη ροή, ορίζεται με βάση την ακόλουθη 

σχέση: 

 

0

11
u

dy
U




 

 −  
 

  

 

και με αντικατάσταση του προφίλ ταχύτητας και ολοκληρώνοντας, προκύπτει 

ότι:  

 1 1
2

a
 

 
= − 
 

  (1) 

 

 

Το πάχος 2 , για ασυμπίεστη ροή, ορίζεται με βάση την ακόλουθη σχέση: 

 

 

0

12
u u

dy
U U




 

 −  
  

  

 

από την οποία προκύπτει ότι:  

 
2

2
2 3

a a
 

 = −   (2) 
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2) Αρχικά, για τη λύση Blasius η ταχύτητα έχει την τιμή u U=  όταν 

y = . Με βάση αυτό το κριτήριο, το προφίλ της ταχύτητας που δίνεται 

προσεγγίζει αυτό της λύσης Blasius για 1a =  και οι τιμές για τα πάχη από τις 

Εξισώσεις (1) και (2) είναι: 1 0,5 =  και 2 0,167 = . 

Η λύση Blasius για τα πάχη 1  και 2 , δίνει αντίστοιχα:  

 
 1, .

ν 1,72
1,72 0,344

5
Bl

x

U
  


= = =



  (3) 

 

 
 2, .

ν 0,664
0,664 0,133

5
Bl

x

U
  


= = =



  (4) 

 

Τα ποσοστιαία σφάλματα για τα πάχη 1  και 2  μπορούν να οριστούν ως:  

 

 
1

 

 

1 1, .

1, .

100
Bl

Bl

E
 



−
=     (5) 

 

 
2

 

 

2 2, .

2, .

100
Bl

Bl

E
 



−
=     (6) 

 

και προκύπτει ότι 
1

45,3E =   και 
2

E =  . 

 

 

 

Τιμές της σταθεράς a  μπορούν φυσικά να βρεθούν και με κριτήριο τη 

σύμπτωση είτε του πάχους 1  είτε του 2  με αυτά της λύσης Blasius, δηλαδή 

την ελαχιστοποίηση των σφαλμάτων 
1

E  και 
2

E . 

Με βάση τα πάχος 1 , από τις Εξισώσεις (1) και (3) προκύπτει ότι η σταθερά 

a  πρέπει να ικανοποιεί την παρακάτω εξίσωση:  

 
1,72

1
2 5

a
− =  

 

της οποίας η λύση είναι η τιμή 1,312a = . 
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Με βάση το πάχος 2 , από τις Εξισώσεις (2) και (4) προκύπτει ότι η σταθερά 

α πρέπει να ικανοποιεί την παρακάτω εξίσωση:  

 

2 0,664

2 3 5

a a
− =  

  

Οι λύσεις της ανωτέρω εξίσωσης είναι οι τιμές 1 0,346a =  και 2 1,155a = .  

 

Οι τιμές των σφαλμάτων 
1

E  και 
2

E  υπολογίζονται για όλες τις ανωτέρω 

τιμές του a  μέσω των Εξισώσεων (1) έως (6) και παρουσιάζονται στον 

παρακάτω Πίνακα: 

 

Τιμή της σταθεράς a  Ποσοστιαίο σφάλμα 
1

E  Ποσοστιαίο σφάλμα 
2

E  

0,346 140,4 % 0 % 

1 45,3 % 25,3 % 

1,155 22,8 % 0 % 

1,312 0 % 38,2 % 

Πίνακας. Τιμές των ποσοστιαίων σφαλμάτων ως προς τη λύση Blasius για το πάχος 

1  ( )
1

E  και το πάχος 2  ( )
2

E  για τις διάφορες τιμές της σταθεράς a . 
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4.8.3 Ανάλυση προφίλ οριακού στρώματος 
 

Από πειραματικά αποτελέσματα για ασυμπίεστη στρωτή ροή πάνω από 

οριζόντια πλάκα, προέκυψε ότι το προφίλ της ταχύτητας μπορεί να 

προσεγγισθεί με βάση την ακόλουθη σχέση: 

 

3
u y y

a b
U  

   
= +   

   

  

Με βάση την παραπάνω σχέση να υπολογιστούν οι σταθερές ,a b  από τις 

οριακές συνθήκες στα άκρα του οριακού στρώματος. Εν συνεχεία να 

προσδιοριστεί το πάχος του οριακού στρώματος, το πάχος μετατόπισης, το 

πάχος ορμής, η διατμητική τάση πάνω στην πλάκα και ο ολικός συντελεστής 

αντίστασης και να συγκριθούν με τη λύση Blasius. 

 

 

Λύση 

Οι συνοριακές συνθήκες του προβλήματος είναι οι ακόλουθες: 

 

 0: 0, 0y u = = =  (1) 
 

 : , 0
u

y u U
y

 


= = =


 (2) 

Προφανώς, η συνθήκη (1), ικανοποιείται άμεσα από την σχέση της ταχύτητας. 

Με βάση την (2) ωστόσο μπορούν θα προσδιοριστούν οι σταθερές ,a b . Ισχύει 

λοιπόν, με εφαρμογή της (2): 

 
1

3 0

a b

a b

+ =

+ =
  

και η λύση του παραπάνω συστήματος δίνει: 3 2, 1 2a b= = − . Οπότε η 

εξίσωση της ταχύτητας είναι τελικά ίση με: 

 

3
3 1

2 2

u y y

U  

   
= −   

   
  

Για να υπολογίσουμε το πάχος του οριακού στρώματος παίρνουμε την σχέση 

που συνδέει το πάχος ορμής με τη διατμητική τάση πάνω στο τοίχωμα της 

πλάκας: 
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2 2

w
d

U
dx


  =  (3) 

όπου, 

 
3

20

du U
w dy y

  

= =

=

  

και  

 2

0

1
u u

dy
U U




 

 
= − 

 
   

 

Με αντικατάσταση των τελευταίων σχέσεων στην (3) και λαμβάνοντας υπ’ 

όψη το προφίλ της ταχύτητας, προκύπτει: 

 

 

3 33 3 1 3 12 1
2 2 2 2 2

0

U y y y y
U dy

x




    

               = −  − +                     
   

 

 

23 39

2 280

U U

x

  



 =


  

 

Από την τελευταία σχέση έχουμε  

2280 280
2

13 13

v
dx d x C

U U


  

 

=  + =   

 
280

( )
13

v x
x C

U


 
= +

 

  

 

όπου C  η σταθερά ολοκλήρωσης και προφανώς ίση με μηδέν εφόσον το πάχος 

του οριακού στρώματος στην ακμή προσβολής της πλάκας είναι μηδέν. 

Συνεπώς, 

 
4,64

( )
Re

x
x

x




=   

Παρατηρείται ότι το πάχος είναι περίπου 7% μικρότερο από το πάχος που δίνει 

η λύση Blasius. 

Το πάχος μετατόπισης υπολογίζεται με εφαρμογή του ορισμού του: 

 

0

3
1 1,741 8

u x
dy

U U




 
 

= − = =  
  

   

Το αποτέλεσμα αυτό είναι 1% μεγαλύτερο από αυτό που δίνει η λύση Blasius. 
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Ομοίως, από τον ορισμό του πάχους ορμής προκύπτει ότι: 

 0,6462
x

U


 =



  

το οποίο είναι 2,7% μικρότερο από αυτό που προκύπτει από την λύση Blasius. 

Η διατμητική τάση πάνω στην πλάκα προκύπτει είτε από τον ορισμό της 

ως: 

 
3

0,323
20

du U U
Uw dy xy

  
 
 

= = =

=

  

για 0x  , αποτέλεσμα το οποίο είναι 2,7% χαμηλότερο από τη λύση Blasius. 

Τέλος, ο ολικός συντελεστής αντίστασης είναι ίσος με: 

 0

1 12 2

2 2

L
w

D

bdxD
C

U A U b L



 

= = 

 


 

 
1,292

Re
D

L

C =   

αποτέλεσμα το οποίο διαφέρει επίσης κατά 2,7% από τη λύση Blasius. 
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4.8.4 Πάχος οριακού στρώματος σε ροή νερού πάνω από 
πλάκα 

 

Θεωρείται ροή νερού πάνω από επίπεδη πλάκα. Να βρεθεί σε ποια 

απόσταση το πάχος του οριακού στρώματος είναι ίσο με 2 cm = . Το νερό 

βρίσκεται στους 20οC και η ταχύτητα της ελεύθερης ροής είναι 50 /U m s= .  

 

Λύση 

Με βάση τη λύση Blasius το πάχος του οριακού στρώματος δίνεται από την 

ακόλουθη σχέση: 

 5 796
vx

x m
U

 =  =



 

Η λύση Blasius ισχύει μόνο για στρωτή ροή, συνεπώς πρέπει να εξεταστεί αν η 

ροή είναι στρωτή η τυρβώδης. 

 
1050 796

Re 3,96 10
61,005 10

U x
x v

= = = 
−

 

ο οποίος είναι πολύ μεγάλος για στρωτή ροή.  

Άρα η ροή είναι τυρβώδης σε μεγάλο μέρος της επιφάνειας, οπότε 

χρησιμοποιούμε την αντίστοιχη ημιεμπειρική σχέση για το πάχος του 

τυρβώδους οριακού στρώματος: 

 

1/5
4/50,382 2,10x x m

U






 
=  = 

 
 

Για αυτήν την απόσταση προκύπτει 8Re 1.04 10x =   που επαληθεύει την 

υπόθεση της τυρβώδους ροής. Παρατηρούμε ότι το πάχος του οριακού 

στρώματος αυξάνει πολύ πιο γρήγορα στην τυρβώδη απ’ ότι στην στρωτή ροή. 

Στην παρούσα προσέγγιση αγνοήθηκε η μικρή περιοχή στην αρχή της πλάκας 

στην οποία η ροή είναι ακόμα στρωτή. 
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4.8.5 Ροή διαφορετικών ρευστών πάνω από πλάκα 
 

Θεωρείται η ροή ρευστού πάνω από την πλάκα όπως φαίνεται στο 

παρακάτω σχήμα 

 

b=3m

L=1m

2
sec

m
U =

 

Να θεωρηθεί το ρευστό ότι είναι: 

i.    Αέρας ( 5 21,46 10 secv m−=  ) 

ii. Νερό ( 6 21,02 10 secv m−=  ) 

και για κάθε περίπτωση να υπολογιστούν το πάχος του οριακού στρώματος και 

ο τοπικός συντελεστής τριβής στο τέλος της πλάκας. 

 

Λύση 

i) Υπολογίζουμε τον αριθμό Reynolds της ροής 

 137000L
U L

Re
v

= =  

Συνεπώς, η ροή είναι στρωτή και με βάση τη λύση Blasius, ισχύει: 

 5 13,5
vL

mm
V




= =  

 
30,664

1,8 10
Re

f
L

c −= =   

ii) Στην περίπτωση του νερού έχουμε: 

6Re 1,96 10L =   

δηλαδή τυρβώδη ροή.  

Επομένως, το πάχος του οριακού στρώματος δίνεται από την σχέση 

 

1/5
4/50,382 21,1x mm

V






 
= = 

 
 

και ο συντελεστής τριβής τυρβώδους ροής είναι: 
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3
1/5

0,0594
3,28 10

Re
f

L

c −= =   

Παρατηρούμε στην τυρβώδη ροή έχουμε μεγαλύτερο πάχος οριακού 

στρώματος και μεγαλύτερο συντελεστή τριβής. Στην περίπτωση αυτή 

αγνοήθηκε η αρχική περιοχή στρωτής ροής. 
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4.8.6 Αντίσταση σε πλάκα για στρωτή και τυρβώδη ροή  
 

Θεωρείται οριζόντια πλάκα σε ροή αέρα ταχύτητας 100 m/sec. Το 

μήκος της πλάκας (L) είναι 2m και το πλάτος της (b) 20m. Δίνονται 

31,22 /kg m =  και 51,79 10 sec/kg m −=  .  

Να υπολογιστεί η αντίσταση στην πλάκα θεωρώντας στρωτή ροή, και 

εν συνεχεία τυρβώδη ροή. Τέλος, να υπολογιστεί η αντίσταση θεωρώντας 

αρχικά στρωτή και μετά τυρβώδη ροή πάνω στην πλάκα. 

 

Λύση 

Ο αριθμός Reynolds της ροής είναι 
7Re 1,36 10=  . Ο συντελεστής 

αντίστασης για στρωτή ροή δίνεται από τη λύση Blasius: 

 

 
41,328

3,60 10
RelDC

L

−= =   

οπότε η αντίσταση είναι ίση με: 

 
21

87,8
2 ll DD U LbC N = =  

Στην περίπτωση της τυρβώδους ροής ο συντελεστής αντίστασης είναι: 

 
3

0,2

0,074
2,77 10

Re
D

L
t

C −= =   

και άρα η αντίσταση στην πλάκα είναι: 

 

 
21

675,9
2

t Dt
D U LbC N = =  

Παρατηρείται ότι 7,7t

l

D

D
 . 

 

Η πραγματική ροή είναι στρωτή αρχικά και έπειτα γίνεται τυρβώδης. 

Υποθέτουμε απότομη μετάβαση στην τυρβώδη ροή, το οποίο σημαίνει 

μηδενικό μήκος στην πλάκα της περιοχής μετάβασης από στρωτή σε τυρβώδη. 

Υπολογίζουμε το σημείο μετάβασης της ροής, δηλαδή τη θέση όπου 

5Re 5 10=   ως 
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55 10 0,073

/

tr
tr

UL
L m

 
 =  =  

Επομένως, η αντίσταση του τμήματος όπου η ροή είναι στρωτή είναι 

2
1

1 1,328
16,72

2 Re
tr

tr

D U L b N = =  

Για να βρεθεί η αντίσταση του τμήματος στο οποίο η ροή είναι τυρβώδης 

κάνουμε την θεώρηση ότι αυτή είναι ίση με την αντίσταση αν ήταν όλη η ροή 

τυρβώδης (675,9 Ν) και αφαιρούμε την «τυρβώδη» αντίσταση του αρχικού 

τμήματος μήκους trL . 

Η αντίσταση αυτή είναι: 

2 2
2 0,2 0,2

1 0,074 1 0,074
675,9 47,8 628,1 

2 2Re Re
tr

L tr

D U Lb U L b N  = − = − =  

Οπότε και ακριβής λύση της συνολικής αντίστασης είναι:  

1 2 644,8D D D N= + =  

 

Μια απλούστερη θεώρηση από την παραπάνω είναι να θεωρήσουμε μόνο την 

αντίσταση του τυρβώδους τμήματος χρησιμοποιώντας απ’ ευθείας την 

αντίσταση της τυρβώδους ροής και την επιφάνεια της τυρβώδους περιοχής ως: 

( )

2
0.2

1 0,074
( ) 655,8

2 Re
tr

tr

L L

D U L L b N 

−

= − =  

 

Παρατηρούμε ότι το σφάλμα της θεώρησης τυρβώδους ροής πάνω σε 

ολόκληρη την πλάκα και της προσέγγισης συγκριτικά με την ακριβή λύση 

είναι 4,8% και 1,7% αντίστοιχα, που επιβεβαιώνει την συνήθη προσέγγιση να 

θεωρούμε όλη τη ροή τυρβώδη στην πλάκα για περιπτώσεις όπου η στρωτή 

περιοχή είναι σχετικά μικρή. 
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4.8.7 Πτήση του αεροσκάφους μυϊκής πρόωσης «Δαίδαλος» 
 

Το 1988 το αεροσκάφος μυϊκής πρόωσης Δαίδαλος (“human powered 

aircraft”) πέταξε με μέση ταχύτητα 18,5 /miles h , καλύπτοντας τη διαδρομή 

Ηράκλειο – Σαντορίνη συνολικής απόστασης 74 miles , σημειώνοντας νέο 

παγκόσμιο ρεκόρ απόστασης πτήσης με μυϊκή πρόωση. To ύψος πτήσης ήταν 

6 m , όπου η μέση θερμοκρασία την ημέρα της πτήσης ήταν 26οC. Η πτέρυγα 

του αεροσκάφους είχε μέση χορδή ( wc ) 2,9ft και εκπέτασμα ( wb ) 114ft, ενώ 

το κουβούκλιο του πιλότου (άτρακτος) είχε μήκος ( fc ) 9ft και ύψος ( fb ) 4ft. 

Να βρεθεί πόσες θερμίδες καταναλώθηκαν από τον ποδηλάτη λόγω της 

αντίστασης τριβής του αεροσκάφους.  

 

Λύση 

Για τις συνθήκες πτήσης, το ιξώδες και η πυκνότητα του αέρα είναι ίσες 

αντίστοιχα με 
51,56 10v −=   2 /m s  και 1,184 =  

3/kg m . 

 

Η ταχύτητα του αεροσκάφους είναι: 

 

1609
18,5 / sec 8,27 / sec

3600
U m m= =  

 

A) Υπολογισμός αντίστασης πτέρυγας: 

 

Ο αριθμός Reynolds για τη ροή πάνω στην πτέρυγα είναι: 

8,27 2,9 0,305 5Re 4,69 10
51,56 10

wU c
w v

  
= = = 

−
 

Επομένως η ροή πάνω στην πτέρυγα είναι στρωτή. Θεωρώντας την πτέρυγα ως 

επίπεδη πλάκα και προσεγγίζοντας τη αντίστασή της με αυτή της στρωτής 

ροής κατά μήκος των δυο πλευρών της πτέρυγας, είναι για την αντίσταση:  
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2 2 2

5

1 1,328
2 1,184 8,27 2,9 114 0,305

2 4,69 10
w D w wD C U b c=  =     



 

    4,83wD N=  

 

 

B) Υπολογισμός αντίστασης ατράκτου: 

68,27 9 0,305
Re 1,45 10

51,56 10

f
f

U c

v

  
= = = 

−
 

Επομένως η ροή πάνω στην άτρακτο είναι τυρβώδης.  

 

Υπολογίζουμε το σημείο μετάβασης της ροής, δηλαδή τη θέση όπου 

5Re 5 10=   ως: 

 
55 10 0,94tr

tr
U c

c m
v

 =  =  

Επειδή το μεγαλύτερο μέρος της ροής στην άτρακτο ( 70% ) είναι τυρβώδης, 

θα προσεγγίσουμε τη αντίστασή της με αυτή της τυρβώδους ροής σε όλο το 

μήκος των δυο πλευρών της ατράκτου:  

 

( )
2 2 2

0,2
6

1 0,074 1
2 2 1,184 8,27 9 4 0,305

2 2
1,45 10

f D f fD C U b c=  =     



 

1,17fD N=  

Επομένως η συνολική αντίσταση του αεροσκάφους είναι: 

4,83 1,17 6tot w fD D D N= + = + =  

Το έργο που δαπανήθηκε από τον ποδηλάτη κατά τη διαδρομή ( S ) λόγω της 

αντίστασης τριβής του αεροσκάφους είναι: 

6 74 1609 714,4totW D S N m Kjoule=  =   =     ή 170 Κcal 


