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Απαγορεύεται η αναπαραγωγή ή η μετάφραση όλου ή οποιουδήποτε τμήματος 

του βιβλίου και με οποιοδήποτε τρόπο χωρίς την γραπτή άδεια του συγγραφέα. 

 



Βασική Ρευστομηχανική - 2023                    Ι. Καλλιντέρης  

 

                                                                                                                                                            

3-2 

 

Οι εξισώσεις που διέπουν τα ροϊκά πεδία εκφράζουν τη διατήρηση της 

μάζας και της ενέργειας, καθώς και τη μεταβολή της ορμής με την ενέργεια 

των δυνάμεων. 

 

3.1 Οι Τάσεις στο Πεδίο Ροής 

 

Σε κάθε στοιχείο ρευστού αναπτύσσονται δυνάμεις πίεσης, τριβής, καθώς 

και πεδιακές δυνάμεις όπως είναι η βαρύτητα. Ο Νεύτωνας παρατήρησε ότι σε 

ορισμένα ρευστά, η δύναμη τριβής μεταξύ δύο στρωμάτων ( F ) είναι ανάλογη 

της επιφάνειας επαφής τους ( A ) και της διαφοράς στην ταχύτητά τους, όπως 

απεικονίζει το Σχήμα 3.1. Συγκεκριμένα, η σχέση για την δύναμη τριβής του 

σχήματος είναι: 

 
u

F A
y




=


 (3.1) 

 

u

y

u
F

y




 

Σχήμα 3.1: Η δύναμη τριβής ( F  ) μεταξύ δυο γειτονικών στοιχείων ρευστού. 

 

 

Τα ρευστά στα οποία ισχύει η σχέση (3.1), αποκαλούνται Νευτώνεια ρευστά. 

Στη συνέχεια η ανάπτυξη θα επικεντρωθεί σε αυτή την κατηγορία ρευστών. Η 

σταθερά αναλογίας ( ) ονομάζεται δυναμικό ιξώδες του ρευστού. 
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Το δυναμικό ιξώδες είναι ιδιότητα του ρευστού και έχει μονάδες 

( )2/ secN m  . Τιμές του δίνονται στον πίνακα του Παραρτήματος για αέρα και 

νερό. Θεωρώντας ένα τρισδιάστατο στοιχείο ρευστού, όπως απεικονίζεται στο 

Σχήμα 3.2, σε μία έδρα του αναπτύσσονται οι ακόλουθες συνεκτικές τάσεις: 

 

τxy

τxx

τxz

τyx

y

x

z
 

Σχήμα 3.2: Τάσεις συνεκτικότητας σε τρισδιάστατο στοιχείο ρευστού. 

 

1.  Η 
xx

  είναι η ορθή τάση που ενεργεί στην έδρα την κάθετη στη 

διεύθυνση x, και είναι παράλληλη προς τη διεύθυνση x. 

2. Η 
xy

  είναι η διατμητική τάση που ενεργεί στην έδρα την κάθετη στη 

διεύθυνση x, και είναι παράλληλη προς τη διεύθυνση y. 

3. Η 
xz

  είναι η διατμητική τάση που ενεργεί στην έδρα την κάθετη στη 

διεύθυνση x, και είναι παράλληλη προς τη διεύθυνση z. 

Εφαρμόζοντας την ισορροπία των ροπών ως προς το κέντρο βάρους του 

στοιχείου του ρευστού, προκύπτει ότι οι διατμητικές τάσεις που «δείχνουν» 

στην ίδια ακμή του στοιχείου είναι ίσες. Για παράδειγμα, ισχύει ότι: 

 
xy yx

 =  (3.2) 

Η εντατική κατάσταση που αναπτύσσεται σε ένα τρισδιάστατο στοιχείο 

ρευστού, περιγράφεται από τον τανυστή συνεκτικών τάσεων και τον τανυστή 

της υδροστατικής πίεσης. Αντίστοιχα, έχουν την ακόλουθη μορφή: 
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xx xy xz

yx yy yz

zx zy zz
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 
 
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 (3.3) 
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 

=
 
  

 (3.4) 

Συνεπώς, η συνολική εντατική κατάσταση δίνεται από τον τανυστή τάσεων 

P = − . 

Το Σχήμα 3.3 απεικονίζει την εντατική κατάσταση στοιχείου ρευστού στις δυο 

διαστάσεις.

p

pp

p

+

yy

Υδροστατική Πίεση
Συνεκτικές Τάσεις

yx

xy

xy

yy

yx

xx xx

 

Σχήμα 3.3 Η εντατική κατάσταση στοιχείου ρευστού είναι άθροισμα της 

υδροστατικής πίεσης και των συνεκτικών τάσεων που 

αναπτύσσονται στο πεδίο ροής. 

 

Οι διατμητικές (συνεκτικές) τάσεις είναι υπεύθυνες για την αλλαγή 

σχήματος (“shear deformation”), καθώς και για την περιστροφή του στοιχείου. 

Οι ορθές τάσεις είναι υπεύθυνες για την αλλαγή όγκου (“dilatation”) ενός 

στοιχείου ρευστού, όπως είδαμε στο πρώτο κεφάλαιο. 
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Οι συνεκτικές τάσεις είναι άμεσα συνδεδεμένες με τον ρυθμό 

παραμόρφωσης και για ένα Νευτώνειο ρευστό στο οποίο είναι ίδια η τιμή του 

συντελεστή   σε όλες τις διευθύνσεις (ισότροπο ρευστό), η σχέση μεταξύ 

τάσεων και ρυθμού παραμόρφωσης είναι γραμμική. Συγκεκριμένα, για τις 

διατμητικές τάσεις ισχύει: 

 

v u
xy yx x y

w v
yz zy y z

u w
xz zx z x

  

  

  

  
= = + 

  

  
= = + 

  

  
= = + 

  

 (3.5) 

Η έκφραση των τάσεων στην (3.5) έχει προκύψει λαμβάνοντας υπ’ όψη τον 

τανυστή του ρυθμού παραμόρφωσης που διατυπώθηκε στο Κεφάλαιο 1. 

Για τις ορθές τάσεις, η παραδοχή του ισότροπου ρευστού, επιβάλλει αυτές 

να εξαρτώνται μόνο από τον ρυθμό της ορθής παραμόρφωσης. Ο Stokes το 

1845 διατύπωσε τις ακόλουθες σχέσεις για τις ορθές τάσεις για ένα Νευτώνειο 

ρευστό: 
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
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

 (3.6) 

Ο Stokes πρότεινε την παρακάτω σχέση μεταξύ των συντελεστών λ και μ: 

 
2

3
 = −  (3.7) 

που είναι γνωστή ως υπόθεση Stokes και η οποία επαληθεύεται πειραματικά. 

Σε μία πραγματική ροή οι ορθές συνεκτικές τάσεις είναι σημαντικές μόνο όταν 

ο ρυθμός μεταβολής του όγκου είναι μεγάλος, όπως συμβαίνει μέσα σε ένα 

κρουστικό κύμα. Ωστόσο, στην πλειονότητα των ροών αυτές οι τάσεις είναι 

πολύ μικρές. 
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3.2 Θερμική Αγωγιμότητα 

 

Όταν υπάρχει ανομοιόμορφη κατανομή της θερμοκρασίας μέσα σε ένα 

ρευστό, λαμβάνει χώρα μεταφορά ενέργειας, υπό μορφή θερμότητας, από τις 

περιοχές υψηλής θερμοκρασίας στις περιοχές χαμηλής θερμοκρασίας. Το 

Σχήμα 3.4 απεικονίζει ροή θερμότητας κατά την y-διεύθυνση. Η ροή 

θερμότητας ανά μονάδα επιφάνειας (Q ) στην y-διεύθυνση είναι ανάλογη της 

βαθμίδας της θερμοκρασίας στη διεύθυνση αυτή (Q T yky  = − ). 

Η γενική έκφραση είναι:  

  Q k T= −   (3.8) 

 

Η σχέση (3.8) είναι γνωστή ως νόμος Fourier. Η σταθερά αναλογίας 

k ονομάζεται συντελεστής θερμικής αγωγιμότητας ο οποίος είναι ιδιότητα του 

ρευστού. 

 

Τ

y Qy

 

Σχήμα 3.4: Ροή θερμότητας λόγω βαθμίδας θερμοκρασίας στην y-διεύθυνση. 

 

 

3.3 Η Επιτάχυνση στο Πεδίο Ροής  

 

Η κινηματική μελέτη του πεδίου ροής απαιτεί τον προσδιορισμό της 

επιτάχυνσης σε κάθε στοιχείο του ρευστού. Θεωρείται ένα στοιχείο σε μία ροή 

με βαθμίδα ταχύτητας, όπως απεικονίζεται στο Σχήμα 3.5. 
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A

B

u

y

u u
u y t

y t

 
+  + 
 

u

 

Σχήμα 3.5: Επιτάχυνση στοιχείου ρευστού το οποίο κινείται από τη θέση Α στη 

θέση Β σε πεδίο με βαθμίδα ταχύτητας. 

 

Το στοιχείο διανύει κατακόρυφη απόσταση y  σε χρόνο t  από το σημείο Α 

στο σημείο Β. Η x– συνιστώσα της ταχύτητας στο σημείο Β προσεγγίζεται ως 

εξής: 

 
B A

u u
u u t y

t y

 
= +  + 

 
 (3.9) 

Η μέση επιτάχυνση του στοιχείου ρευστού κατά τη  x – διεύθυνση είναι: 

 B A
u u u u y

t t y t

−   
= + 

   
 (3.10) 

Συνεπώς, η επιτάχυνση ( )xa  του στοιχείου προκύπτει: 

 x

u u
a v

t y

 
= +
 

 (3.11) 

όπου v  είναι η συνιστώσα της ταχύτητας του πεδίου κατά την y-διεύθυνση. 

Παρατηρούμε ότι εκτός από τον όρο u t   της χρονικής μεταβολής του 

πεδίου, υπάρχει και ο όρος v u y   χωρικής μεταβολής. Το στοιχείο 

“πηγαίνοντας” στη θέση Β “αποκτά” την τοπική ταχύτητα 
B

u  πράγμα που 

συνεισφέρει στην επιτάχυνσή του. 

Ακολουθείται η ίδια διαδικασία για μία χρονικά μεταβαλλόμενη 

τρισδιάστατη ροή, με το στοιχείο ρευστού να κινείται σε χρόνο t  από ένα 

σημείο Α σε ένα σημείο Β κατά αποστάσεις , ,x y z   . Το ανάπτυγμα Taylor 

της συνιστώσας της ταχύτητας u  στο σημείο Β ως προς το σημείο Α, στο χώρο 
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και στο χρόνο, μέχρι όρους πρώτης τάξης, είναι: 

 
B A

u u u u
u u t x y z

t x y z

   
= +  +  +  + 

   
 (3.12) 

Η μέση επιτάχυνση του στοιχείου στη x-διεύθυνση, είναι ίση με: 

 B A
u u u u x u y u z

t t x t y t z t

−       
= + + +

       
 (3.13) 

οπότε, η στιγμιαία επιτάχυνση είναι ίση με: 

 
u u u u

a u v w
x t x y z

   
= + + +
   

 (3.14) 

Ανάλογα προκύπτουν και οι υπόλοιπες συνιστώσες της επιτάχυνσης για τις 

ταχύτητες v  και w . Έτσι, το διάνυσμα της επιτάχυνσης σε ένα τυχαίο στοιχείο 

ρευστού, εκφράζεται ως εξής: 

 ( )
V

a V V
t


= + 


 (3.15) 

Παρατηρείται, δηλαδή, ότι η επιτάχυνση του ρευστού, οφείλεται: (i) στη 

χρονική μεταβολή της ροής η οποία περιγράφεται από τον όρο V t  , και (ii) 

στην βαθμίδα της ταχύτητας ( )V V . 

Ο τελεστής: 

 
D

V
Dt t


 + 


 (3.16) 

αποκαλείται ολική ή ουσιώδης παράγωγος και εκφράζει την ολική μεταβολή 

ενός μεγέθους μέσα στο ροϊκό πεδίο, λόγω της μεταβολής του πεδίου στο 

χρόνο και της μεταφοράς του μεγέθους αυτού στο χώρο. 

 

3.4 Αρχές Διατήρησης της Μάζας, Ορμής και Ενέργειας 

 

Οι αρχές διατήρησης των ποσοτήτων της ροής (μάζα, ορμή και ενέργεια) 

είναι η  βάση της  μελέτης  των ροϊκών πεδίων.  Βασίζονται  στον  ορισμό ενός   

όγκου ελέγχου και στην εφαρμογή του ισολογισμού διατήρησης της ποσότητας, 

λαμβάνοντας υπ’ όψη τη χρονική μεταβολή της στο εσωτερικό του όγκου, 
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καθώς και τη ροή της δια μέσου των ορίων του. Αποτελούν επίσης, τη βάση 

της εφαρμογής της αριθμητικής μεθόδου των Πεπερασμένων Όγκων στην 

Υπολογιστική Ρευστοδυναμική. 

Για καλύτερη εποπτεία θα θεωρηθεί η περίπτωση των δύο διαστάσεων, 

όπως η επιφάνεια ελέγχου στο Σχήμα 3.6. Η αρχή της διατήρησης δηλώνει ότι: 

Η εκροή μίας ποσότητας   δια μέσου των ορίων της επιφάνειας ελέγχου είναι 

ίση με το ρυθμό ελάττωσης της   μέσα στην επιφάνεια. 

S

n

l

V

 

Σχήμα 3.6: Επιφάνεια ελέγχου σε διδιάστατο ροϊκό πεδίο. 

 

Η εκροή της ποσότητας   δια μέσου ενός τμήματος dl  του ορίου ανά 

μονάδα βάθους του πεδίου, είναι ίση με: 

 nV dl V n dl  =     (3.17) 

 

Συνεπώς, η ολική εκροή της ποσότητας   δια μέσου του ορίου είναι: 

 

 ( )
l

V n dl    (3.18) 

Όπου V  είναι το διάνυσμα της ταχύτητας στο όριο l  και n  είναι το κάθετο 

στο όριο μοναδιαίο διάνυσμα με φορά προς το εξωτερικό της επιφάνειας. Ο 
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ρυθμός ελάττωσης της ποσότητας   μέσα στην επιφάνεια ελέγχου είναι ίσος 

με: 

 

S

dS
t




−
 

 (3.19) 

Με βάση τη διατύπωση της αρχής διατήρησης, ισχύει ότι: 

 

( )
l S

V n dl dS
t

 


  = −
    (3.20) 

Στις τρεις διαστάσεις η ολοκληρωτική εξίσωση διατήρησης εκφράζεται 

παρόμοια θεωρώντας όγκο ελέγχου V που έχει όριο επιφάνεια S: 

 

( )
V

S

V n dS dV
t

 


  = −
    (3.21) 

Η διαφορική μορφή της ανωτέρω αρχής προκύπτει με εφαρμογή του 

θεωρήματος Gauss για το επικαμπύλιο ολοκλήρωμα: 

 

 ( ) ( )
S

l

V n dl V dS   =      (3.22) 

Αντικαθιστώντας την εξίσωση (3.22) στην (3.20), προκύπτει ότι: 

 

 ( ) 0

S

V dS
t




 
+   = 

 
  (3.23) 

από την οποία προκύπτει η διαφορική εξίσωση διατήρησης: 

 ( ) 0V
t





+   =


 (3.24) 

Η ίδια εξίσωση ισχύει και για τις τρεις διαστάσεις. 

 

Η αρχή διατήρησης της μάζας  προκύπτει με επιλογή της πυκνότητας   

(μάζα ανά μονάδα όγκου) για τη μεταβλητή  , και μαθηματικά εκφράζεται με 

βάση τη σχέση (3.20): 

 

( ) 0

V S

dV V n dS
t

 


+   =
    (3.25) 
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και η διαφορική της μορφή ακολουθεί την γενική σχέση (3.24): 

 ( ) 0V
t





+   =


 (3.26) 

Ο δεύτερος νόμος του Νεύτωνα ορίζει ότι η μεταβολή της ορμής του 

ρευστού που περικλείει ο όγκος ελέγχου, ισούται με τη συνολική δύναμη ( )F  

που ενεργεί στο ρευστό που περικλείει ο όγκος. Θεωρώντας ότι V =  (ορμή 

ανά μονάδα όγκου), προκύπτει: 

 ( )
V S

VdV V V n dS F
t

 


 +    = 
    (3.27) 

Αν ληφθούν υπ’ όψη μόνο οι δυνάμεις πίεσης και συνεκτικότητας, οι 

οποίες ενεργούν στο όριο ( S ) του όγκου, ο όρος F  εκφράζεται ως εξής:  

 ( )
S

F P n dS = − +   (3.28) 

όπου P  και   είναι οι τανυστές της πίεσης και των συνεκτικών τάσεων, 

αντίστοιχα. Δυνάμεις οι οποίες ενεργούν στο σύνολο του ρευστού που 

περικλείει ο όγκος, όπως είναι η βαρύτητα και η άνωση, ονομάζονται πεδιακές 

δυνάμεις και εκφράζονται ως V

V

f dV , όπου Vf  είναι η δύναμη ανά μονάδα 

όγκου. 

Η διαφορική μορφή της εξίσωσης μεταβολής της ορμής, είναι: 

 
( )

( )
V

V V p
t


 

 
 +    = − +
 

 (3.29) 

Η συνολική μεταβολή της ενέργειας ( E ) στον όγκο ελέγχου V  εκφράζεται 

θέτοντας E   στην εξίσωση (3.21). Εδώ υπεισέρχεται το έργο των δυνάμεων 

( )w  που ενεργούν στο πεδίο, καθώς και ή θέρμανση ή ψύξη του ρευστού η 

οποία λαμβάνει χώρα με ρυθμό q . Η εξίσωση της ενέργειας λοιπόν, έχει τη 

μορφή: 

 ( ) ( )
V S V

EdV E V n dS q w dV
t


+   = +

     (3.30) 

και η διαφορική της μορφή είναι: 
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 ( )
E

E V q w
t


+   = +


 (3.31) 

Στις ανωτέρω ο όρος E  δηλώνει την ολική ενέργεια του ρευστού ανά 

μονάδα όγκου, και είναι ίσος με: 

  

1
 

2
E e V V

 
= +  

 
 (3.32) 

όπου e  είναι η εσωτερική ενέργεια ανά μονάδα μάζας, και  

1

2
V V  είναι η 

κινητική ενέργεια ανά μονάδα μάζας. 

Ο όρος q  δηλώνει τη ροή θερμότητας ανά μονάδα όγκου λόγω αγωγιμότητας 

και θεωρείται θετικός όταν θερμότητα εισέρχεται στον όγκο ελέγχου. Η 

έκφραση του όρου αυτού για τη ροή θερμότητας στην x-διεύθυνση προκύπτει 

εξετάζοντας τις ροές θερμότητας διαμέσου των επιφανειών ενός στοιχείου 

ρευστού διαστάσεων dx  και dy  και μοναδιαίου βάθους, όπως απεικονίζεται 

στο Σχήμα 3.7. Ο όρος Q  εκφράζει ροή θερμότητας ανά μονάδα επιφάνειας. 

DE

Dt
xQ dy x

x

Q
Q dx dy

x

 
+  

 

 

Σχήμα 3.7: Ροή θερμότητας λόγω αγωγιμότητας σε στοιχείο ρευστού στη x- 

διεύθυνση. 

 

Η συνολική εισροή θερμότητας λόγω αγωγιμότητας στην x-διεύθυνση είναι 

ίση με: 

 ( ) ( ) ( )1 1 1x x
x x

Q
Q dy Q dx dy

x

Q
dx dy

x

 
  − +   

 


= − 


 (3.33) 

και εκφράζεται ανά μονάδα όγκου ως: 

 

( )1

1
x

x

x

Q
Q

q

dx dy
x
dx dy x



= =



− 

 −
 

 (3.34) 
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Λαμβάνοντας υπ’ όψη και τη ροή θερμότητας στις άλλες διευθύνσεις, 

προκύπτει ότι η συνολική εισροή θερμότητας ανά μονάδα όγκου εκφράζεται 

ως εξής: 

 
yx z

QQ Q
q Q

x y z
= = −

 
− − −

  
 (3.35) 

H ροή θερμότητας ανά μονάδα επιφάνειας ( )Q  δίνεται από τον νόμο Fourier 

[σχέση (3.8)]: 

 Q k T= −    

Ο όρος w  στην (3.31) δηλώνει τον ρυθμό παραγωγής μηχανικού έργου ανά 

μονάδα όγκου, και περιλαμβάνει το έργο της δύναμης πίεσης, και των 

συνεκτικών τάσεων, οι οποίες δυνάμεις ενεργούν στην επιφάνεια του όγκου 

ελέγχου. Επίσης, περιλαμβάνει το έργο των πεδιακών δυνάμεων οι οποίες 

ενεργούν σε όλο τον όγκο. Ο όρος w  θεωρείται θετικός, όταν προσδίδεται 

έργο στο ρευστό. Στο Σχήμα 3.8 απεικονίζονται οι συνιστώσες του έργου των 

δυνάμεων πίεσης και τριβής κατά τη x-διεύθυνση σε ένα στοιχείο ρευστού 

μοναδιαίου βάθους.  

 

DE

Dt

xxu dy

( )yx

yx

u
u dy dx

y




  
  +

 
 

u pdy

yxu dx

( )xx
xx

u
u dx dy

x




  
 + 

 

( )u p
u p dx dy

x

   
 + 

 

 

Σχήμα 3.8: Το έργο της δύναμης πίεσης και των δυνάμεων συνεκτικότητας στη  

x-διεύθυνση. 
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Η ισχύς της δύναμης πίεσης στη x-διεύθυνση είναι ίση με: 

 
( ) ( )

,p x

u p u p
W u p u p dx dy dx dy

x x

      
=  −  + = −  

   
 (3.36) 

 

Η ισχύς λόγω της ορθής τάσης xx , στη x-διεύθυνση, είναι ίση με: 

 
( ) ( )

    
xx xx

xx xx

u u
u dy u dx dy dx dy

x x

 
 

    
−  +  + = 

  
 

Με ανάλογο τρόπο, προκύπτει και η ισχύς λόγω της διατμητικής τάσης yx , 

στη x-διεύθυνση: 

 
( ) ( )

    
yx yx

yx yx

u u
u dx u dy dx dx dy

y y

 
 

    
 −  +  + =

  
 

 

Αθροίζοντας τις δύο ανωτέρω εκφράσεις προκύπτει ότι η ισχύς των δυνάμεων 

συνεκτικότητας, στη x-διεύθυνση, είναι ίση με: 

 
( ) ( )

  ,

yxxx
x

uu
W dx dy

x y


   
 = +

  
 

 (3.37) 

Λαμβάνοντας υπ’ όψη και τις υπόλοιπες διευθύνσεις, προκύπτει ότι η ισχύς 

της πίεσης και των συνεκτικών δυνάμεων, ανά μονάδα όγκου, είναι ίση με:  

 ( )pw V P= −   (3.38) 

 ( )w V =    (3.39) 

 

Τέλος, η ισχύς των πεδιακών δυνάμεων είναι: 

 V Vw V f=   (3.40) 

όπου Vf  το διάνυσμα των πεδιακών δυνάμεων του οποίου το μέτρο είναι ανά 

μονάδα όγκου. 

Σε πολλές περιπτώσεις χρησιμοποιείται μια εναλλακτική μορφή της 

εξίσωσης ενέργειας, η οποία, σε αντίθεση με την εξίσωση (3.31), δεν περιέχει 

τον όρο της κινητικής ενέργειας του ρευστού 21

2
V

 
 
 

. Πολλαπλασιάζοντας 
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την εξίσωση της ορμής (3.29) με V  και εκτελώντας κάποιες πράξεις 

λαμβάνοντας υπόψη και την εξίσωση μάζας (3.26), προκύπτει ότι η μεταβολή 

της κινητικής ενέργειας συσχετίζεται με την πίεση και τις συνεκτικές τάσεις 

μέσω της παρακάτω σχέσης: 

 ( )  

2 21 1

2 2
V V V V p V

t
  

    
+    = −  +      

    
 (3.41) 

Αντικαθιστώντας την εξίσωση (3.41) αλλά και τις εξισώσεις (3.8), (3.35), 

(3.38), (3.39) στην (3.31), και πραγματοποιώντας κάποιες πράξεις, προκύπτει η 

εναλλακτική μορφή της εξίσωσης ενέργειας, η οποία είναι εκπεφρασμένη μόνο 

ως προς την εσωτερική ενέργεια του ρευστού ( )e : 

 
( )

( ) ( ) ( )  

e
e V p V k T

t


 


+  = −  +   + 


 (3.42) 

Στην εξίσωση (3.42) αμελείται η ισχύς των πεδιακών δυνάμεων. 

Ο όρος   ονομάζεται συνάρτηση απωλειών (“Dissipation Function”) και 

εκφράζει το έργο της τριβής μεταξύ των στοιχείων του ρευστού. Στις δύο 

διαστάσεις και για Νευτώνειο ρευστό, δίνεται από την εξίσωση:  

 

2 2 22
2

2 2
3

u v v u u v

x y x y x y

           
  + + + − +       

            
  (3.43) 

 

 

3.5 Οι Εξισώσεις της Ροής Navier - Stokes 

 

Το σύστημα των εξισώσεων Navier-Stokes εκφράζουν την αρχή 

διατήρησης της μάζας, ορμής κι ενέργειας για ένα Νευτώνειο ρευστό. 

Ιστορικά, οι εξισώσεις της ορμής είναι οι Navier-Stokes, έχει όμως επικρατήσει 

να ονομάζεται έτσι όλο το σύστημα των εξισώσεων. Δεν υπάρχει γενική 

αναλυτική λύση του συστήματος, και για αυτό το λόγο, επιλύεται 

προσεγγιστικά με υπολογιστή.  

Η γενική ολοκληρωτική μορφή του συστήματος προκύπτει από τις αρχές 

διατήρησης όπως εκφράστηκαν στις σχέσεις (3.25), (3.27), και (3.30). 
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Θεωρώντας σταθερή στο χρόνο επιφάνεια ελέγχου, στις δύο διαστάσεις, 

και αμελώντας πεδιακές δυνάμεις, προκύπτει η γενική έκφραση: 

 ( ) ( )C C V V

S l l

UdS F dy G dx F dy G dx
t


+ − = −

     (3.44) 

Η ισοδύναμη διαφορική μορφή προκύπτει από το θεώρημα Gauss και είναι: 

 C C V VF G F GU

t x y x y

   
+ + = +

    
 (3.45) 

όπου: 

  , , ,
T

U u v E    (3.46) 

είναι το διάνυσμα κατάστασης (“state vector”), οι όροι 

 

 

( ) ( )

2

2
,  C C

u v

uvu p
F G

uv v p

E p u E p v

 



 

   
   

+    
   +
   

+ +      

 (3.47) 

 

είναι τα διανύσματα των όρων μεταφοράς (“convective flux vectors”), και  

 

 

00

,  V V

yxxx

xy yy

xx xy x yx yy y

F G

u v Q u v Q



 

   

  
  
  

    
  

 +  −   +  −    

 (3.48) 

είναι τα διανύσματα συνεκτικής (ιξώδους) ροής (“viscous flux vectors”). 

Τέλος, οι τάσεις συνεκτικότητας ( , ,xx yy xy   ) δίνονται από τις σχέσεις:  

 

2
2

3

2
2

3

xx

yy

xy

u v

x y

v u

y x

u v

y x

 

 

 

  
= − 

  

  
= − 

  

  
= + 

  

 (3.49) 
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και οι όροι ροής θερμότητας, σύμφωνα με το νόμο Fourier, είναι:  

 

x

y

T
Q k

x

T
Q k

y


= −




= −



 (3.50) 

όπου k  είναι ο συντελεστής θερμικής αγωγιμότητας. 

 

 

3.5.1 Βοηθητικές εξισώσεις 
 

Στο σημείο αυτό παρατηρείται ότι εκτός από τους τέσσερεις βασικούς 

αγνώστους ( ρ, u, v, Ε ) υπάρχουν στο σύστημα (3.44) ή (3.45) και τέσσερεις 

επιπλέον ( p , T, μ, k). Απαιτούνται επομένως, τέσσερις ακόμα βοηθητικές 

σχέσεις για να επιλυθεί το σύστημα. Η πρώτη από αυτές λαμβάνεται από την 

παραδοχή του τέλειου αερίου για το ρευστό. Έτσι, χρησιμοποιείται η 

καταστατική εξίσωση: 

 p RT=  (3.51) 

όπου R  είναι η σταθερά του αερίου. 

Μια δεύτερη βοηθητική σχέση συνδέει την ολική ενέργεια ανά μονάδα 

όγκου E  με την πίεση p . Η ολική ενέργεια περιλαμβάνει την εσωτερική και 

την κινητική ενέργεια: 

 ( )1 2 2

2
E e u v =  + +  (3.52) 

όπου η εσωτερική ενέργεια ανά μονάδα όγκου δίνεται από την ακόλουθη 

σχέση για τέλειο αέριο:  

 Ve C T=   (3.53) 

Ο συντελεστής VC  καλείται συντελεστής ειδικής θερμότητας υπό σταθερό όγκο 

και δίνεται από τη σχέση: 

 V
1

R
C


=

−
 (3.54) 

όπου R  και   είναι σταθερές οι οποίες χαρακτηρίζουν ένα αέριο. 
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Συνδυάζοντας τις σχέσεις (3.52), (3.53) και (3.54), συσχετίζεται η πίεση με την 

ενέργεια: 

 ( ) ( )1 2 21
2

p E u v 
 

= −  − + 
 

 (3.55) 

Τέλος, πειραματικοί νόμοι μπορούν να χρησιμοποιηθούν για το ιξώδες 

( ), και το συντελεστή θερμικής αγωγιμότητας ( )k . Συγκεκριμένα, ο νόμος 

του Sutherland για το ιξώδες, για αέρια σε χαμηλές και μέσες θερμοκρασίες, 

εκφράζει την εξάρτηση του ιξώδους από τη θερμοκρασία: 

 

3 2
110,4

110,4

T T

T T






 

  +
=  

+ 
 (3.56) 

Τα ,T
 

 είναι μεγέθη αναφοράς που ορίζονται ανάλογα με το πρόβλημα. 

Για το συντελεστή θερμικής αγωγιμότητας ( )k  χρησιμοποιείται ο αδιάστατος 

αριθμός Prandtl, ο οποίος ορίζεται ως εξής: 

  

 Pr
pC

k

 
  (3.57) 

Ο συντελεστής pC  καλείται συντελεστής ειδικής θερμότητας υπό σταθερή πίεση 

και δίνεται από τη σχέση: 

  

1
p V

R
C C





= =

−
 (3.58) 

Συνήθεις πειραματικές τιμές για τον αριθμό Prandtl είναι 1 για τυρβώδη ροή 

και 0,7 για στρωτή ροή. Ο αδιάστατος αυτός αριθμός εκφράζει τον λόγο του 

πάχους του οριακού στρώματος της ταχύτητας προς το αντίστοιχο της 

θερμοκρασίας σε ροές με στερεή επιφάνεια. Το οριακό στρώμα θα μελετηθεί 

σε επόμενο κεφάλαιο. 
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3.5.2 Οι εξισώσεις της ασυμπίεστης ροής 
 

Στην περίπτωση της ασυμπίεστης ροής η πυκνότητα (  ) είναι σταθερή, καθώς 

και οι συντελεστές   και k . Η εξίσωση της μάζας απλοποιείται στην 

παρακάτω μορφή:  

 0V =  (3.59) 

 

Επίσης, η διαφορική εξίσωση διατήρησης (3.24) μπορεί να απλοποιηθεί 

χρησιμοποιώντας την εξίσωση (3.59):  

 ( ) ( ) 0  0V V V
t t

 
  

 
+   =  +  +    = 

 
      

 0V
t





+  =


 (3.60) 

Το αριστερό μέλος της εξίσωσης (3.60) είναι η ολική παράγωγος 
D

Dt


 (σχέση 

(3.16)). Δηλαδή, στην περίπτωση της ασυμπίεστης ροής, η αρχή διατήρησης 

εκφράζει ότι η ολική παράγωγος 
D

Dt


 της ποσότητας   είναι μηδέν. 

 

Η εξίσωση της ορμής γίνεται: 
 

 
21DV

p V
Dt



 
= −  +   (3.61) 

Χρησιμοποιώντας την εξίσωση (3.59) η εξίσωση της ενέργειας (3.42) λαμβάνει 

την παρακάτω απλοποιημένη μορφή στην περίπτωση της ασυμπίεστης ροής: 

 2 
De

k T
Dt

 =  +   (3.62) 

H συνάρτηση απώλειών (Φ) για την περίπτωση της ασυμπίεστης ροής παίρνει 

την παρακάτω απλοποιημένη μορφή, η οποία προκύπτει συνδυάζοντας τις 

σχέσεις (3.43) και (3.59): 

 

2 22

2 2
u v v u

x y x y

       
  + + +     

        
 (3.63) 

Εναλλακτικά, η εξίσωση της ενέργειας μπορεί να εκφραστεί ως προς την 
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ενθαλπία του ρευστού ανά μονάδα όγκου ( )h . Για την ενθαλπία ισχύουν οι 

παρακάτω σχέσεις: 

   
p p

h e e h
 

= +  = −  (3.64) 

  Ph C T=  (3.65) 

 

Αντικαθιστώντας την εξίσωση (3.64) στην (3.62), παίρνουμε την παρακάτω 

μορφή της εξίσωσης ενέργειας: 

 2 
Dh Dp

k T
Dt Dt

 = +  +   (3.66) 

ή για διδιάστατη ροή: 

 
2 2

2 2

P P

T T T p p p
C C u v u v

t x y t x y

T T
k

x y

 



        
 +   + = + + +   

        

  
+  + +  

  

     

    

 (3.67) 

Στο αριστερό μέλος της εξίσωσης (3.67) βρίσκονται οι όροι μεταφοράς της 

ενθαλπίας και της χρονικής μεταβολής της, ενώ στο δεξί υπάρχουν οι όροι της 

θερμικής αγωγιμότητας, της πίεσης και της τριβής. 

 

 

3.5.3 Άλλες ειδικές περιπτώσεις των εξισώσεων ροής 
 

Θεωρώντας χρονικά αμετάβλητη, μη συνεκτική, μονοδιάστατη ροή, από 

την εξίσωση της ορμής για ασυμπίεστη ροή (3.61), προκύπτει ότι: 

  

2

0 σταθερά
2

du dp u
u dp u du p

dx dx
  = −  + =  + =  

δηλαδή, η εξίσωση Bernoulli. 

Για σταθερή στο χρόνο, μονοδιάστατη ροή σε αγωγό μεταβλητής 

διατομής (Α), ισχύει ότι η παροχή μάζας είναι σταθερή σε κάθε τμήμα του 

αγωγού: 

 0m u ά u d du u d    =  =  +  +  =   
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1 1 1

0
d d du

dx dx u dx






+ + =


 (3.68) 

Αν στο σύστημα (3.44) αμεληθούν οι όροι συνεκτικότητας, τότε 

προκύπτουν οι εξισώσεις της μη συνεκτικής ροής, που είναι γνωστές ως 

εξισώσεις Euler: 

 ( ) 0C C

S l

UdS F dx G dy
t


+ − =

    (3.69) 

Το σύστημα (3.69) δίνει ικανοποιητικά αποτελέσματα σε πρακτικές εφαρμογές 

στις οποίες το οριακό στρώμα το οποίο εφάπτεται με τις στερεές επιφάνειες 

έχει αμελητέα επίδραση (είναι λεπτό και δεν έχει αποκολληθεί). 

Υπάρχουν αρκετές άλλες απλοποιήσεις των εξισώσεων Navier-Stokes, 

ανάλογα με τις εφαρμογές. Σε επόμενο κεφάλαιο, θα αναπτυχθεί η πιο γνωστή 

από αυτές, οι εξισώσεις του οριακού στρώματος. 

 

 

3.6 Η εξίσωση της στροβιλότητας 
 

Η στροβιλότητα είναι μια ποσότητα της ροής η οποία μεταβάλλεται στο 

χρόνο, μεταφέρεται με την τοπική ταχύτητα του πεδίου, καθώς και διαχέεται 

λόγω της τριβής μεταξύ των στοιχείων του ρευστού. Επομένως, μπορεί να 

εκφραστεί η μεταβολή της στροβιλότητας με παρόμοια εξίσωση με την 

εξίσωση της ορμής (3.61) για ασυμπίεστη ροή. 

Αρχικά, εφαρμόζεται ο τελεστής ( )  στην εξίσωση της ορμής (3.61): 

 ( ) ( )21DV
p V

Dt



 
 = −   +    (3.70) 

Εφαρμόζοντας την ταυτότητα του διανυσματικού λογισμού ( ) 0p  =  και 

αναδιατάσσοντας τους τελεστές προκύπτει:  

 
( )

( )2D V
V

Dt






=    (3.71) 

Λαμβάνοντας υπ’ όψη τον ορισμό της στροβιλότητας V =  αλλά και τον 
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ορισμό της ολικής παραγώγου (3.16) προκύπτει η εξίσωση της στροβιλότητας: 

 
2V

t

 
 




+  = 


 (3.72) 

Η στροβιλότητα συνδέεται άμεσα με την εντροπία ( )S . Χρησιμοποιώντας τις 

ιδιότητες του διανυσματικού λογισμού, μπορεί να αποδειχθεί πως για σταθερή 

στο χρόνο ροή ισχύει ότι: 

 ( )21

2

DV
V V V V V

Dt

 
=  =  −   

 
 (3.73) 

Θεωρώντας σταθερή στον χρόνο, ασυμπίεστη, και μη συνεκτική ροή, η σχέση 

(3.73) αντικαθίσταται στην εξίσωση της ορμής (3.61) και προκύπτει ότι: 

 ( )21

2

p
V V V



 
 −   =− 
 

 (3.74) 

Ο ορισμός της στροβιλότητας χρησιμοποιείται στην (3.74) και προκύπτει ότι: 

 21

2

p
V V



 
 =  + 

 
 (3.75) 

Σύμφωνα, με τον πρώτο θερμοδυναμικό νόμο ισχύει: 
 

 
dp

TdS dh


= −  (3.76) 

ο οποίος σε μορφή τελεστών γράφεται: 

 
p

T S h



 =  −  (3.77) 

Το σύμβολο h αναφέρεται στην ενθαλπία.  

Η ολική ενθαλπία ( 0h ) παραμένει σταθερή για πεδίο μονωμένο στα όριά του:  

 

2

0
2

V
h h= +     

21

2
h V

 
 = − 

 
 (3.78) 

 

Από τις σχέσεις (3.75), (3.77), και (3.78), προκύπτει τελικά ότι: 

 V T S = −   (3.79) 

Η (3.79) είναι γνωστή ως θεώρημα του Crocco. Από την εξίσωση αυτή, 

παρατηρείται ότι: 
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1. Για ισεντροπική ροή, το πεδίο ταχυτήτων είναι αστρόβιλο ή το 

διάνυσμα της ταχύτητας είναι παράλληλο σε αυτό της στροβιλότητας 

(V // ), που είναι μια ειδική περίπτωση η οποία απαντάται μόνο σε 

τρισδιάστατες ροές. 

2. Αν το πεδίο ταχυτήτων είναι αστρόβιλο, τότε η ροή είναι ισεντροπική. 

3. Μεταβολή της εντροπίας "γεννά" στροβιλότητα. 

 

Η απόδειξη της εξίσωσης (3.79) έγινε για σταθερή στον χρόνο, μη συνεκτική 

και ασυμπίεστη ροή, ωστόσο η ίδια εξίσωση ισχύει και στην περίπτωση που η 

ροή είναι συμπιεστή. 

 

 

 

3.7  Αδιάστατοι Αριθμοί Ροϊκών Πεδίων 
 

 

Σε μεγάλο εύρος εφαρμογών και κατά κανόνα στην Υπολογιστική 

Ρευστοδυναμική χρησιμοποιείται αδιάστατη μορφή των εξισώσεων. Τα μεγέθη 

στις εξισώσεις διαιρούνται με κατάλληλα επιλεγόμενα αντίστοιχα μεγέθη 

αναφοράς. Η επιλογή μεγέθους αναφοράς δεν είναι μοναδική. Για παράδειγμα, 

η πίεση μπορεί να αδιαστατοποιηθεί με την πίεση p  της ελεύθερης ροής ή με 

τον όρο 
2u  . Συνήθεις επιλογές μεγεθών αναφοράς δίνονται στον Πίνακα 

3.1. Ο δείκτης ( ) αναφέρεται στην ελεύθερη ροή, και L είναι ένα 

χαρακτηριστικό μήκος της γεωμετρίας του πεδίου ροής. Τα μεγέθη της 

ελεύθερης ροής ( ,  ,  u p   ) που δίνονται στον πίνακα χρησιμοποιούνται 

επίσης, πολύ συχνά για να εκφράσουν τις οριακές συνθήκες ενός προβλήματος.  
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Μέγεθος Μέγεθος Αναφοράς Αδιάστατη Μορφή 

,x y  L  
* x

x
L

= ,   
* y

y
L

=  

  


 
* 




=



 

u  u


 
* u

u
u

=



 

p  
2u 

 
 

 

*

2

p
p

u 

=


 

E  
2u 

 
 2

* E
E

u 

=


 

T  T


 
* T

T
T

=



 

t  
L

u
 * t

t u
L

=  

u


 u


 * 1u =


 




 


 
* 1 =



 

p


 2u 
 

 
*

2

p
p

u

=



 

 

k  k


 
* k

k
k

=



 

  


 
* 




=



 

 

Πίνακας 3.1: Μεγέθη αναφοράς και αδιάστατες μορφές των μεταβλητών των 

εξισώσεων ροής. 

 

Στη συνέχεια, αδιαστατοποιούνται οι εξισώσεις της ορμής και της 

ενέργειας (3.45) και προκύπτουν τρεις σημαντικοί αδιάστατοι αριθμοί. Η 

αδιάστατη εξίσωση της μάζας έχει την ίδια μορφή με την αντίστοιχή της με 

διαστάσεις. Για την εξίσωση της ορμής αρκεί η αδιαστατοποίηση μόνο 

μερικών χαρακτηριστικών όρων:  
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( ) ( )2

4
... ... ...

3

uu u

t x x x




   
+ + = + +      

 

 

( ) ( )* * * *22 *
*

* * * *

1 4
... ... ...

3

u uu u u u

L u L L Lt x x x

   
     



      
+ + = + +  

    
 

  

 
( ) ( )* * * *2 *

*

* * * *

1 4
... ... ...

Re 3

u u u

t x x x

 


    
+ + = + + 

    
 

όπου, 

 Re
u L


 



  (3.80) 

είναι ο αριθμός Reynolds της ελεύθερης ροής. Ο ανωτέρω ορισμός μπορεί να 

γραφτεί ως εξής:  

 

2

Re
u

u

L




 

 

=
 
 
 

 

Παρατηρούμε ότι εκφράζει το λόγο του μεγέθους των όρων μεταφοράς 

( )2u   προς το μέγεθος των όρων συνεκτικότητας ( )u L  . Με τον ίδιο 

τρόπο γίνεται η αδιαστατοποίηση και των υπολοίπων όρων. 

Αντίστοιχα, για την εξίσωση της ενέργειας προκύπτει:  

( )
... ...

xxuE T
k

t x x x

    
+ = +  

    
 

( )* *

* *2 * 2 *
*

* 2 * 2 * *
... ...

x x
uu E u k T T

k
L u t L x L x x

      



      
+ + = +  

    
 

         

( )
( )

* *

* ** *
*

* * 2 * *

1 1
... ...

Re 1 RePr

x x
uE T

k
t x x x



 

     
+ + = + 

  −    
 (3.81) 

Η απόδειξη της ανωτέρω δίνεται στην Άσκηση 3.9.5. 
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Στην ανωτέρω, ο αδιάστατος αριθμός Prandtl ( Pr ) ορίζεται ως εξής: 

 Pr
pC

k






  (3.82) 

Ο ανωτέρω ορισμός μπορεί να γραφτεί επίσης ως:  

 Pr

p

k

C






 
 
 

 (3.83) 

Ο συντελεστής συνεκτικότητας ( )  εκφράζει τη διάχυση της ορμής του 

ρευστού, ενώ ο λόγος pk C  εκφράζει την διάχυση της θερμότητας του 

ρευστού. Η διαδικασία της διάχυσης είναι αυτή που «ευθύνεται» για το 

σχηματισμό του οριακού στρώματος, το οποίο συναντάται κατά τη ροή 

ρευστού κοντά στην επιφάνεια ενός σώματος. Επομένως, από την εξίσωση 

(3.83) προκύπτει ότι  ο αριθμός Prandtl ( Pr ) εκφράζει το λόγο του πάχους του 

οριακού στρώματος της ταχύτητας ( u ) προς το πάχος του θερμοκρασιακού 

οριακού στρώματος ( T ). Τα πάχη αυτά απεικονίζονται στο Σχήμα 3.9. Τόσο 

το οριακό στρώμα ταχύτητας όσο και το οριακό στρώμα θερμοκρασίας θα 

μελετηθούν αναλυτικά στο επόμενο κεφάλαιο. 

u

y

Οριακό Στρώμα Ταχύτητας

T

y

Οριακό Στρώμα Θερμοκρασίας

Tu

 

Σχήμα 3.9: Πάχος οριακού στρώματος ταχύτητας ( u ) και θερμοκρασίας ( T ). 
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Ο τρίτος αδιάστατος αριθμός στην (3.81) είναι ο αριθμός Mach ( M ) ο 

οποίος ορίζεται ως:  

 M u c    (3.84) 

όπου c  είναι η ταχύτητα του ήχου στην ελεύθερη ροή. Ο αδιάστατος αυτός 

αριθμός είναι η σημαντικότερη παράμετρος στις ροές ταχυτήτων συγκρίσιμων 

με την ταχύτητα του ήχου. 

 

 

3.8 Αναλυτικά Πεδία Ροής 
 

Αναλυτικές λύσεις των εξισώσεων της ροής είναι ελάχιστες και αφορούν 

πεδία ροής τα οποία περιγράφονται από απλοποιημένες εξισώσεις. Στο παρόν 

τμήμα, θα εξεταστεί η τεχνική απλοποίησης των εξισώσεων με βάση τις 

παραδοχές που γίνονται, καθώς και την επίλυσή τους με κατάλληλη εφαρμογή 

των οριακών συνθηκών. Οι ροές αφορούν αγωγούς με κινούμενα και ακίνητα 

τοιχώματα. 

 

 

3.8.1 Ροή Couette μεταξύ δύο παράλληλων πλακών 
 

Θεωρείται η ροή μεταξύ δύο παράλληλων πλακών οι οποίες απέχουν 

απόσταση h  μεταξύ τους. Η κάτω πλάκα είναι ακίνητη, ενώ η επάνω κινείται 

με ταχύτητα U , όπως απεικονίζεται στο Σχήμα 3.10. 

h

U

 

 

Σχήμα 3.10: Ροή μεταξύ παράλληλων πλακών με κινούμενη την επάνω 

επιφάνεια. 
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Η συγκεκριμένη ροή θεωρείται ότι είναι χρονικά αμετάβλητη και 

ασυμπίεστη. Επίσης, είναι πλήρως ανεπτυγμένη κατά τη x-διεύθυνση το οποίο 

σημαίνει ότι δεν μεταβάλλεται κατά το μήκος των πλακών. Δηλαδή, ισχύει ότι 

( ) 0t   = , οι ποσότητες   , ,      είναι σταθερές, καθώς και ότι ( ) 0x   = . 

Από την εξίσωση της μάζας για ασυμπίεστη ροή (3.59), προκύπτει: 

  0 ( ) σταθερά
v

v y
y


=  =


 (3.85) 

Εφόσον η ταχύτητα του ρευστού στην κάτω πλάκα είναι μηδενική, αυτό 

σημαίνει ότι  ( ) 0v y = .  

Η εξίσωση της ορμής (3.61) για την παρούσα ροή εκφράζεται στις δύο 

διαστάσεις ως εξής: 

 

2 2

2 2

2 2

2 2

1
:

1
:

u u p u u
x ύ u v

x y x x y

v v p v v
y ύ u v

x y y x y


 

 


 

 

     
− + = − + +       

     
− + = − + +       

 (3.86) 

Εφαρμόζοντας την παραδοχή ότι ( ) 0x   = , και ότι 0v = , οι ανωτέρω 

εξισώσεις απλοποιούνται σημαντικά: 

 

2

2
:  0

u
x ύ

y
 


− =


 (3.87) 

 :  0
p

y ύ
y

 


− =


 (3.88) 

Η ταχύτητα της ροής στην κάτω πλάκα είναι μηδέν εφόσον αυτή είναι 

ακίνητη, αλλά στην πάνω πλάκα έχει την ίδια ταχύτητα U  με αυτήν. Δηλαδή, 

ισχύουν οι εξής συνοριακές συνθήκες:  

 
( )

( )

0 0u y

u y h U

= =

= =
 (3.89) 

Το προφίλ της ταχύτητας θα προσδιοριστεί ολοκληρώνοντας την (3.87), 

από την οποία συνεπάγεται ότι:  

 1 2u C y C=  +  (3.90) 



Βασική Ρευστομηχανική - 2023                    Ι. Καλλιντέρης  

 

                                                                                                                                                            

3-29 

 

όπου 1 2,C C  είναι σταθερές. Από τις συνοριακές συνθήκες (3.89) προκύπτει 

ότι 1 2 και 0C U h C= = . Συνεπώς, η ταχύτητα μεταβάλλεται σύμφωνα με την 

ακόλουθη σχέση:  

 
y

u U
h

=   (3.91) 

Δηλαδή, η ταχύτητα μεταβάλλεται γραμμικά με την απόσταση από την 

ακίνητη πλάκα. Επίσης, η ταχύτητα είναι ανεξάρτητη από τη συνεκτικότητα 

του ρευστού. Στο Σχήμα 3.11, παριστάνεται γραφικά το προφίλ της ταχύτητας 

για το πεδίο αυτό το οποίο ονομάζεται ροή Couette. 

 

h

U

y

x

( )yu

 

Σχήμα 3.11: Γραμμικό προφίλ της ταχύτητας στη ροή Couette. 

 

 

 

3.8.2 Κατανομή της θερμοκρασίας στη ροή Couette  
 

Από την εξίσωση της ενέργειας (3.67), για ασυμπίεστη ροή θα 

προσδιοριστεί η κατανομή της θερμοκρασίας στην ροή Couette. Θεωρείται ότι 

η θερμοκρασία των πλακών είναι σταθερή και ίση με 
1
  για την κάτω, και 

2
  

για την πάνω πλάκα. Δηλαδή, ισχύουν οι ακόλουθες οριακές συνθήκες: 

 
( )

( )

0
1

2

T y T

T y h T

= =

= =
 (3.92) 

Εφόσον η ροή είναι χρονικά αμετάβλητη, από την (3.67) προκύπτει 

απλοποιημένη μορφή της εξίσωσης ενέργειας:  
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2 2

2 2p

p p
C u v k u v

x y x yx y
 

           
  + =  + + + +              

 

 

Η παραδοχή της πλήρως αναπτυγμένης ροής δίνει ότι:  

2

2
0 , 0 , 0 και 0

p u

x x xx

    
= = = =

  
 

και έχοντας ότι 0v = , η εξίσωση της ενέργειας απλοποιείται περαιτέρω στην: 

 
22

2

T u
k

yy

  

 = −  
 

 (3.93) 

όπου η συνάρτηση απωλειών   της σχέσης (3.63) απλοποιείται στην: 

( )
2

u y =   . Ο όρος 
2 2T y   εκφράζει την ροή θερμότητας λόγω 

αγωγιμότητας, ενώ ο όρος ( )
2

u y    εκφράζει την παραγωγή θερμότητας 

λόγω της τριβής μεταξύ των στοιχείων του ρευστού. Όπως αποδείχτηκε στην 

προηγούμενη ενότητα, το προφίλ της ταχύτητας στη ροή Couette είναι 

γραμμικό, οπότε η (3.93) δίνει:  

 

22

2

T U
k

hy


  
 = −  
  

 (3.94) 

Η ανωτέρω σχέση ολοκληρώνεται ως εξής: 

 
2 2 2

12 2 2

T U T U
y C

k y ky h h

  
= −  = − + 


 

 
2 2

1 22 2

U y
T C y C

k h


= −  +  +  (3.95) 

όπου οι σταθερές ,
1 2

C C  θα προσδιοριστούν με βάση τις οριακές συνθήκες 

(3.92). Προκύπτει, ότι: 

 

2

1 2 1

2 1

1

2

U
C

k h

C T

 
=  − +   
 

=

 (3.96) 

οπότε, θέτοντας ως 2 1T T T  − , με βάση τις (3.95) και (3.96), συνεπάγεται: 
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2

1 1
2

T T y U y y

T h k T h h

  
 
 

−
= + −

 
 (3.97) 

 

Στην (3.97), ορίζεται ο ακόλουθος παράγοντας αδιαστατοποίησης: 

 

2 2
p

p

CU U
Pr E

k T k C T


=  = 

 
 (3.98) 

όπου, 

 

2

p

U
E

C



 (3.99) 

ορίζεται ως ο αδιάστατος αριθμός Eckert, ο οποίος εκφράζει το λόγο της 

κινητικής ενέργειας της ροής προς τη διαφορά ενθαλπίας κατά το πάχος του 

θερμοκρασιακού οριακού στρώματος.  

Αν αγνοηθεί η συνεκτικότητα, η (3.97) απλοποιείται στην ακόλουθη μορφή: 

 1T T y

T h

−
=


 (3.100) 

Στο Σχήμα 3.12 απεικονίζεται το προφίλ της θερμοκρασίας για διάφορες 

τιμές του αδιάστατου παράγοντα Pr E . Η μηδενική τιμή του παράγοντα 

αφορά τη μη συνεκτική ροή. 

 

 

1

2 1

−

 −

1

1

 

Σχήμα 3.12:Το προφίλ της θερμοκρασίας στη ροή Couette για διάφορες τιμές 

των συντελεστών ιξώδους και θερμικής αγωγιμότητας, όπως 

εκφράζει το γινόμενο των αδιάστατων αριθμών Pr και E. 
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3.8.3 Ροή σε ορθογώνιο αγωγό 

 

Θεωρούνται δύο ακίνητες παράλληλες πλάκες, μεταξύ των οποίων ρέει 

ρευστό εξ’ αιτίας βαθμίδας πίεσης στη x-διεύθυνση ( )0dp dx  . Η ροή 

θεωρείται χρονικά αμετάβλητη, ασυμπίεστη, και πλήρως ανεπτυγμένη στη x-

διεύθυνση. Δηλαδή, ισχύει ότι:  

 
( ) ( )

0, τα μεγέθη , ,  είναι σταθερά, και 0
t x

  
   

= =
 

 

Οι οριακές συνθήκες με βάση τη γεωμετρία του προβλήματος (Σχήμα 

3.13), είναι: 

 
0 :   0

:     0

y u v

y h u v

= = =

= = =
 (3.101) 

Δηλαδή, η ταχύτητα της ροής στις πλάκες είναι μηδενική. 

 

h ( )yu 0
dp

dx


 

 

Σχήμα 3.13: Ροή μεταξύ ακίνητων παράλληλων πλακών (ορθογώνιος αγωγός) 

λόγω βαθμίδας πίεσης. Το προφίλ της ταχύτητας είναι παραβολικό. 

 

Από την εξίσωση της συνέχειας για ασυμπίεστη ροή (3.59), προκύπτει ότι: 

 0 ( )
v

v y ά
y




=  =


   

και εφόσον η ταχύτητα της ροής στις πλάκες είναι μηδενική, προκύπτει ότι η  

y-συνιστώσα της ταχύτητας ( v ) είναι μηδέν παντού. 

Από την εξίσωση της ορμής (3.61), για την y-διεύθυνση συνεπάγεται: 
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 0
p

y


=


 (3.102) 

 

δηλαδή, δεν υπάρχει βαθμίδα πίεσης στη y-διεύθυνση, ενώ για τη x-διεύθυνση 

η εξίσωση της ορμής απλοποιείται στην: 

 
2

2

u dp

dxy



=


 (3.103) 

 

Ολοκληρώνοντας την (3.103), προκύπτει το προφίλ της ταχύτητας: 

 

2

12

1 1u dp u dp
y C

dx y dxy  

 
=  =  + 


 

 2
1 2

1
( )

2

dp
u y y C y C

dx
=  +  +  (3.104) 

 

Οι σταθερές 1 2,C C  θα προσδιοριστούν με βάση τις οριακές συνθήκες (3.101).  

 

Προκύπτει ότι: 

 
1

2

1

2

0

dp
C h

dx

C


= −

=

 (3.105) 

Οπότε, 

 

 ( )21
( )

2

dp
u y y hy

dx
=  −  (3.106) 

Παρατηρείται ότι το προφίλ είναι παραβολικό, όπως απεικονίζεται στο 

Σχήμα 3.13. Η μέγιστη ταχύτητα είναι στη θέση στην οποία ( ) 0u y  = , 

δηλαδή: 

 ( )
1

2 0
2 2

dp h
y h y

dx
− =  =   

 

Δηλαδή, η μέγιστη τιμή της ταχύτητας εμφανίζεται στο μέσον μεταξύ των 

πλακών, και είναι: 
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2 2 2

max

1

2 4 2 8

dp h h h dp
u

dx dx 

 
= − = −  

 
 (3.107) 

όπου η βαθμίδα της πίεσης είναι αρνητική. Εκφράζοντας τη βαθμίδα ως 

συνάρτηση της maxu , και αντικαθιστώντας στη σχέση (3.106) προκύπτει 

εναλλακτική μορφή της εξίσωσης για την κατανομή της ταχύτητας: 

 ( )
max

4 1
y y

u y u
h h

 
=  − 

 
 (3.108) 

 

 

 

Η τριβή στην κάτω πλάκα είναι ίση με: 

 ( )
1

2
02

w

w

u dp
y h

yy dx
  



 
= = −   = 

  

                                           
2

w

h dp

dx
 = −   (3.109) 

 

Παρατηρείται ότι η τριβή εξαρτάται από την απόσταση των δύο πλακών και τη 

βαθμίδα πίεσης, αλλά όχι από τον συντελεστή συνεκτικότητας. 

Η μέση ταχύτητα στον αγωγό ( meanu ) εκφράζεται συναρτήσει της μέγιστης 

ταχύτητας ( maxu ), ως εξής: 

 max
2

3
meanu u=  (3.110) 

όπως αποδεικνύει η Άσκηση 3.9.6.  

 

 

3.8.4 Ροή σε κυκλικό αγωγό  

 

Στην περίπτωση του αγωγού κυκλικής διατομής στο Σχήμα 3.14, 

χρησιμοποιείται κυλινδρικό σύστημα συντεταγμένων. Θεωρείται και πάλι 

χρονικά αμετάβλητη, ασυμπίεστη και πλήρως ανεπτυγμένη ροή κατά τον 
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άξονα του αγωγού με βαθμίδα πίεσης 0dp dx  . Η ροή αυτή ονομάζεται και 

ροή Hagen-Poiseuille. 

R

x

 

 

Σχήμα 3.14: Αγωγός κυκλικής διατομής 

 

Οι παραδοχές είναι ίδιες με την περίπτωση του ορθογώνιου αγωγού: 

( ) ( )
0,  τα μεγέθη , ,  είναι σταθερά, και 0

t x
  

   
= =

 
 

Επίσης, επειδή η ροή στον κυκλικό αγωγό είναι αξονοσυμμετρική, ισχύει ότι 

κανένα μέγεθος της ροής δεν μεταβάλλεται κατά την περιφερειακή διεύθυνση 

( )
0



  
= 

 
. Με βάση αυτό, μπορεί να αποδειχθεί ότι η συνιστώσα της 

ταχύτητας κατά την διεύθυνση   είναι μηδενική ( )0V = . Έστω λοιπόν ότι  u  

είναι η συνιστώσα κατά την x  - διεύθυνση και v  είναι η ακτινική συνιστώσα 

της ταχύτητας. 

Οι συνοριακές συνθήκες της ροής είναι οι εξής: 

 :   0r R u v= = =  (3.111) 

Δηλαδή, στο τοίχωμα η ταχύτητα είναι μηδενική. 

Η εξίσωση της συνέχειας σε κυλινδρικές συντεταγμένες έχει την ακόλουθη 

μορφή:  

 
( )1 1

0
v r Vu

x r r r





  
+ + =

  
 (3.112) 

η οποία με βάση τις παραδοχές απλοποιείται στην ακόλουθη μορφή: 
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( )

0
v r

r

 
=


 (3.113) 

από την οποία συνεπάγεται ότι: 
 v r ά =  

και εφόσον για r R=  είναι 0v = , προκύπτει ότι: 

 0v =  (3.114) 

παντού μέσα στον αγωγό. 

 

Η εξίσωση της ορμής σε κυλινδρικές συντεταγμένες στην ακτινική 

διεύθυνση έχει τη μορφή: 

 ( )
2

2

1 1v v p v
u v v r

x r r r r r x



 

       
+ = − +  +  

       
 (3.115) 

από την οποία, με βάση τις παραδοχές και τις οριακές συνθήκες, προκύπτει ότι: 

 0
p

r


=


 (3.116) 

Δηλαδή, δεν υπάρχει βαθμίδα πίεσης στην ακτινική διεύθυνση στον αγωγό. 

Η εξίσωση της ορμής σε κυλινδρικές συντεταγμένες κατά τον άξονα του 

αγωγού είναι: 

 
2

2

1 1u u p u u
u v r

x r x r r r x



 

       
+ = − + +  

       
 (3.117) 

από την οποία συνεπάγεται ότι: 

 
1 u dp u r dp

r r
r r r dx r r dx




      
=  =   

      
 

και με δύο διαδοχικές ολοκληρώσεις προκύπτουν οι παρακάτω σχέσεις: 

 

 1

2

u r dp C

r dx r


= +


 (3.118) 

 ( )
2

1 2ln
4

r dp
u r C r C

dx
= + +  (3.119) 

Η παράγωγος 
u

r




 δεν μπορεί να είναι άπειρη στον άξονα του σωλήνα ( 0r = ). 
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Επομένως, με βάση την σχέση (3.118), η σταθερά 1C  πρέπει να είναι μηδέν. 

Στο τοίχωμα  ( r R= ) η ταχύτητα είναι μηδέν: 

 

2

20
4r R

dp R
u C

dx =
=  = −  (3.120) 

Οπότε, το προφίλ της ταχύτητας στον αγωγό είναι παραβολικό και δίνεται από 

τη σχέση: 

 ( ) ( )2 21

4

dp
u r r R

dx 
= −  (3.121) 

Η ταχύτητα γίνεται μέγιστη στο κέντρο  ( 0)r = , και είναι:  

 

2

max
4

R dp
u

dx
= −  (3.122) 

 

Επίσης, χρήσιμη είναι η έκφραση της ταχύτητας ( )u r  με βάση τη μέγιστη τιμή 

της max:u  

 ( )
2

max 2
1

r
u r u

R

 
= −  

 
 (3.123) 

Η Άσκηση 3.9.7 αποδεικνύει ότι η μέση ταχύτητα είναι το μισό της μέγιστης: 

 max

1

2
meanu u=  (3.124) 

Συγκρίνοντας την μέγιστη ταχύτητα που αναπτύσσεται στην περίπτωση της 

ροής μεταξύ δύο παράλληλων ακίνητων πλακών με αυτήν στον αγωγό 

κυκλικής διατομής διαμέτρου ( D ) ίσης με την απόσταση των πλακών ( h ), 

έχουμε: 

 

2

max
8ώ

h dp
u

dx  
= −  (3.125) 

 

2

max
16ό

h dp
u

dx  
= −  (3.126) 

Παρατηρείται ότι η μέγιστη ταχύτητα στον κυκλικό αγωγό είναι ίση με το μισό 

της μέγιστης ταχύτητας της ροής στον ορθογώνιο αγωγό. 

Συγκρίνοντας τις σχέσεις μεταξύ μέσης και μέγιστης ταχύτητας στον 
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ορθογώνιο και στον κυκλικό αγωγό, παρατηρούμε ότι το προφίλ είναι πιο 

«γεμάτο» στον ορθογώνιο αγωγό, εφ’ όσον η μέση ταχύτητα είναι πιο κοντά 

στην τιμή της μέγιστης.  

 Υπάρχει μια απλή σχέση η οποία συνδέει την τριβή στα τοιχώματα του 

κυκλικού αγωγού με τον αριθμό Reynolds, ο οποίος ορίζεται με βάση την 

διάμετρο του αγωγού και την μέση ταχύτητα ( Re /D meanu D    ). Προς το 

σκοπό αυτό, η ταχύτητα εκφράζεται με βάση την μέση τιμή της στο προφίλ, 

συνδυάζοντας τις εξισώσεις (3.123) και (3.124): 

2

2 1
mean

u r

u R

  
= −  

   

         (3.127) 

Η τριβή στο τοίχωμα του αγωγού προκύπτει παραγωγίζοντας την ανωτέρω 

έκφραση  της ταχύτητας: 

 
4

W
r R

meanudu

dr R




=

 
= − = 

 
 (3.128) 

Ορίζεται ο συντελεστής επιδερμικής τριβής ή συντελεστής Fanning ( fC ) του 

αγωγού ως: 

 
21

2

W
f

mean

C

u





  (3.129) 

Από τις (3.128) και (3.129) προκύπτει ότι: 

                                                      
16

Re
f

D

C =  (3.130) 

Μια ακόμη παράμετρος που εξετάζεται συχνά είναι η πτώση πίεσης ( )p   

λόγω της τριβής για ροή σε αγωγό μήκους ( )L . Πειραματικές μελέτες έχουν 

δείξει πως η πτώση πίεσης είναι ανάλογη του λόγου του μήκους προς τη 

διάμετρο του αγωγού ( )L D  καθώς και ανάλογη του τετραγώνου της μέσης 

ταχύτητας ( )2
meanu . Οι παρατηρήσεις αυτές οδηγούν στην παρακάτω σχέση για 

την πτώση πίεσης: 
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2

2

meanuL
p

D


 =   (3.131) 

Η ανωτέρω σχέση καλείται εξίσωση Darcy-Weisbach και ο συντελεστής   

είναι αδιάστατος και καλείται συντελεστής τριβής Darcy. 

 

Ο συντελεστής   μπορεί να εκφραστεί αναλυτικά ως συνάρτηση του αριθμού 

Reynolds ( )ReD . Επιλύοντας την (3.131) ως προς   προκύπτει ότι: 

 
2

2
mean

p

uL

D




 =



  

 (3.132) 

Η βαθμίδα πίεσης συνδέεται με τη μέση ταχύτητα, συνδυάζοντας τις σχέσεις 

(3.122) και (3.124) : 

 
2

8
mean

dp
u

dx R


= −    

και εφόσον η 
dp

dx
 είναι σταθερή κατά το μήκος L  του αγωγού προκύπτει ότι η 

πτώση πίεσης είναι: 

 
2

8
mean

Ldp
p L p u

dx R


 =    =     (3.133) 

 

Αντικαθιστώντας την (3.133) στην (3.132) προκύπτει η έκφραση του 

συντελεστή τριβής Darcy: 

                                                       
64

ReD

 =  (3.134) 

Παρατηρείται ότι οι δύο συντελεστές τριβής, των σχέσεων (3.130) και (3.134), 

εξαρτώνται με τον ίδιο τρόπο από τον αριθμό Reynolds ( )ReD  και τους 

συνδέει η παρακάτω σχέση αναλογίας: 

                                                       4 fC =   (3.135) 
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Παράρτημα 
 

Α. Ιδιότητες αέρα 

 

Θερμοκρασία 

T (οC) 

Πυκνότητα 

ρ (kg/m3) 

Δυναμική 

Συνεκτικότητα  

μ [(Ν / m2) sec] 

Κινηματική 

Συνεκτικότητα 

v (m2/sec) 

-20 1.395 1.63 E-5 1.17 E-5 

0 1.292 1.71 E-5 1.32 E-5 

5 1.269 1.73 E-5 1.36 E-5 

10 1.247 1.76 E-5 1.41 E-5 

15 1.225 1.80 E-5 1.47 E-5 

20 1.204 1.82 E-5 1.51 E-5 

25 1.184 1.85 E-5 1.56 E-5 

30 1.165 1.86 E-5 1.60 E-5 

40 1.127 1.87 E-5 1.66 E-5 

50 1.109 1.95 E-5 1.76 E-5 

60 1.060 1.97 E-5 1.86 E-5 

70 1.029 2.03 E-5 1.97 E-5 

80 0.9996 2.07 E-5 2.07 E-5 

90 0.9721 2.14 E-5 2.20 E-5 

100 0.9461 2.17 E-5 2.29 E-5 

200 0.7461 2.53 E-5 3.39 E-5 
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Β. Ιδιότητες νερού  

 

Θερμοκρασία 

T (οC) 

Πυκνότητα 

ρ (kg/m3) 

Δυναμική 

Συνεκτικότητα  

μ [(Ν / m2) sec] 

Κινηματική 

Συνεκτικότητα 

v (m2/sec) 

0 999.9 1.787 Ε-3 1.787 Ε-6 

5 1000.0 1.519 Ε-3 1.519 Ε-6 

10 999.7 1.307 Ε-3 1.307 Ε-6 

20 998.2 1.002 Ε-3 1.004 Ε-6 

30 995.7 7.975 Ε-4 8.009 Ε-7 

40 992.2 6.529 Ε-4 6.580 Ε-7 

50 988.1 5.468 Ε-4 5.534 Ε-7 

60 983.2 4.665 Ε-4 4.745 Ε-7 

70 977.8 4.042 Ε-4 4.134 Ε-7 

80 971.8 3.547 Ε-4 3.650 Ε-7 

90 965.3 3.147 Ε-4 3.260 Ε-7 

100 958.4 2.818 Ε-4 2.940 Ε-7 
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3.9 Παραδείγματα - Ασκήσεις 
 

 

3.9.1 Εύρεση πεδίου ταχύτητας σε μη μόνιμη ροή 
 

Θεωρείται μονοδιάστατη μη μόνιμη ροή, όπου ( ),u u x t= . Αν η 

πυκνότητα  , μεταβάλλεται σύμφωνα με την εξίσωση: 

0
ate  −=  

όπου 0  είναι η πυκνότητα την αρχική στιγμή 0t = , να βρεθεί το πεδίο 

ταχύτητας, αν η ταχύτητα θεωρείται ότι είναι σταθερή για όλες τις χρονικές 

στιγμές στη θέση 0x = , δηλαδή, ( ) 00,u x t u= = . 

 

Λύση 

Η μονοδιάστατη εξίσωση της μάζας (συνέχειας) για συμπιεστή ροή είναι: 

( )
0

u

t x

  
+ =

 
 

Ο ρυθμός μεταβολής της πυκνότητας στο χρόνο είναι: 

0
ata e

t




 −= −


 

Συνεπώς, 

0 0
( )u uat ata e u a e

x x x

 
  

  − −=  + =
  

 

Από την εξίσωση για την πυκνότητα ισχύει ότι 
x




=0, οπότε έχουμε 

0 0 0
u u uat at ata e e a e a
x x x

   
  − − −=  =  =
  

 

Με ολοκλήρωση της τελευταίας, προκύπτει ότι: 

( , ) ( )u x t ax C t= +  

όπου ( )C t  είναι μία συνάρτηση του χρόνου που προσδιορίζεται από τη 

συνοριακή συνθήκη  
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0 0(0, ) ( )u t u C t u=  = . 

Άρα, το πεδίο ταχύτητας δίνεται από την εξίσωση: 

0( )u x ax u= +  

 

 

3.9.2 Ροή δύο ρευστών σε διάκενο 
 
 

Δύο μη αναμειγνυόμενα ασυμπίεστα υγρά, ρέουν στο διάκενο 2h  

μεταξύ δύο οριζοντίων παραλλήλων πλακών μήκους L  και πλάτους b . Οι 

παροχές των δύο υγρών είναι ρυθμισμένες έτσι ώστε, το καθένα από αυτά να 

καταλαμβάνει το μισό χώρο του διακένου, με το πυκνότερο και με μεγαλύτερο 

ιξώδες 1  υγρό, να βρίσκεται στο κάτω μισό, και το αραιότερο και με 

μικρότερο ιξώδες 2  στο άνω μισό. Να βρεθεί το συνολικό προφίλ ταχύτητας 

στον αγωγό. 

 

 

 

Λύση 

Η ροή είναι ασυμπίεστη και χρονικά αμετάβλητη ανάμεσα στις δύο 

πλάκες οπότε η διατήρηση της χ-ορμής στον αγωγό είναι 

 

2 2

2 2

1u u p u u
u v

x y x x y



 

     
+ = − + + 

      

 

Ισχύει επίσης για την συγκεκριμένη ροή ότι 0v =  και / 0u x  =  αφού η ροή 

είναι πλήρως ανεπτυγμένη, οπότε η εξίσωση της ορμής απλοποιείται στην 

μορφή 
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2

2

1u p

xy 

 
=


 

Ολοκληρώνοντας την παραπάνω σχέση δυο φορές και για κάθε ρευστό έχουμε 

 

2
1 1 2

1

2
2 3 4

2

1
( )

2

1
( )

2

p
u y y C y C

x

p
u y y C y C

x






= + +




= + +



 

Οι σταθερές θα υπολογιστούν με βάση τις οριακές συνθήκες. Στα τοιχώματα 

έχουμε  

2
1 1 2

1

1
( ) 0 0

2

p
u h h C h C

x


− =  − + =


    (1) 

2
2 3 4

2

1
( ) 0 0

2

p
u h h C h C

x


=  + + =


    (2) 

Εξάλλου, για την θέση 0y =  πρέπει να ισχύει ότι  

  

 1 2 2 4(0) (0)u u C C=  =    (3) 

αλλά και ότι οι διατμητική τάση είναι ίση  

 1 2
1 2 1 2 1 1 2 3

0 0

(0) (0)

y y

u u
C C

y y
     

= =

 
=  =  =

 
 (4) 

Από την λύση του συστήματος (1)-(4) προκύπτουν οι τιμές των σταθερών ως 

2 1
1

1 2 1

2 1
3

2 2 1

2
2 4

2 1

1

2

1

2

1

p
C h

x

p
C h

x

p
C C h

x

 

  

 

  

 

− 
=

+ 

− 
=

+ 


= = −

+ 
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3.9.3 Ροή μεταξύ δύο παράλληλων πλακών με μετάδοση 
θερμότητας 

 

 

Υποθέτουμε δύο παράλληλες πλάκες, όπου η μία είναι ακίνητη και η 

άλλη κινείται με ταχύτητα 50 mU
s

= . Η απόσταση μεταξύ των δύο 

παραλλήλων πλακών είναι 0,25h mm= . Το ρευστό είναι αέρας. Θεωρείται 

ασυμπίεστη ροή και η θερμοκρασία των δύο πλακών είναι 

288,15e wT T K= = . Να υπολογιστούν: 

1. Το προφίλ της ταχύτητας. 

2. Η διατμητική τάση στην πάνω πλάκα. 

3. Η μέγιστη θερμοκρασία της ροής. 

4. Η μεταφορά θερμότητας σε κάθε τοίχωμα. 

5. Αν η κάτω πλάκα είναι αδιαβατική να υπολογιστεί η θερμοκρασία της. 

Δίνονται για τον αέρα 
51,8 10 /kg s m −=   και 0,025 /k W mK=  

 

Λύση 

Η ροή στη συγκεκριμένη περίπτωση είναι ροή Couette. 

1. Το προφίλ ταχύτητας στη ροή Couette είναι γραμμικό και εκφράζεται 

από την παρακάτω σχέση: 

 
y

u U
h

=  

 

2. Η διατμητική τάση στην πάνω πλάκα είναι ίση με: 

 
5

3

50
1,8 10 3,6

0,25 10
e

m
u U kg ss Pa
y h m m

   −
−


= = =  =

 
 

3. Η κατανομή της θερμοκρασίας δίνεται από την σχέση του βιβλίου: 

 

2 2 2 2 2

2 2

1

2 2 2
w w

U y U U y y
T y T T T

k k h k hh h

    
= − + +  = + − 

 
 

 

Παρατηρείται ότι η κατανομή της θερμοκρασίας είναι παραβολική και με βάση 

το γεγονός ότι οι πλάκες έχουν την ίδια θερμοκρασία, η μέγιστη τιμή της 
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θερμοκρασίας αναπτύσσεται στο μέσο της ροής / 2y h= . Με αντικατάσταση 

προκύπτει ότι, 

 max 288,38T K=  

4. Η μεταφορά θερμότητας σε κάθε τοίχωμα είναι ίδια, εφόσον η 

κατανομή της θερμοκρασίας είναι παραβολική και οι πλάκες έχουν την ίδια 

θερμοκρασία. Οπότε, 

 

2

2
0

90
2

w
y

T U W
q k k

y k h m



=


= − = − = −


 

5. Αν η κάτω πλάκα θεωρηθεί ότι είναι αδιαβατική τότε αλλάζει η 

εξίσωση του θερμοκρασιακού πεδίου αφού η προηγούμενη είχε προκύψει 

θεωρώντας σταθερή θερμοκρασία στην κάτω πλάκα. Από την γενική σχέση 

του βιβλίου για την θερμοκρασία πριν προσδιοριστούν οι τιμές των σταθερών 

έχουμε  

 

2 2

1 22 2

U y
T C y C

k h


= − + +   

και  

2

12

T U
y C

y k h


= − +


 

Από τις νέες οριακές συνθήκες για την θερμοκρασία έχουμε 

 

1
0

2

2

0 0

( )
2

y

w w

T
C

y

U
T h T C T

k



=


=  =



=  = +

 

Άρα η θερμοκρασία της κάτω πλάκας είναι 

 

2

(0) 289,05
2

w
U

T T K
k


= + =  
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3.9.4 Υπολογισμός μεγεθών σε οριακό στρώμα επίπεδης 
πλάκας 

 

Θεωρείται η ροή κατά μήκος πλάκας πλάτους b, όπως φαίνεται στο 

Σχήμα. Εξαιτίας της τριβής, η ταχύτητα του ρευστού πάνω στην πλάκα είναι 

ίση με μηδέν. Έτσι, κάθετα στη διεύθυνση ροής (δηλαδή στη y  διεύθυνση), η 

ταχύτητα του ρευστού μεταβάλλεται από μηδέν, πάνω στην πλάκα, στην 

ταχύτητα της ελεύθερης ροής 0u , μακριά από αυτήν. Η περιοχή που λαμβάνει 

χώρα η μεταβολή αυτή, ονομάζεται οριακό στρώμα. Το πάχος του οριακού 

στρώματος ( ), αυξάνει με την απόσταση x  από το χείλος προσβολής της 

πλάκας κατά μήκος της διεύθυνσης ροής, δηλαδή ισχύει ( )x = . 

Σε αυτό το παράδειγμα, θεωρείται ότι ομοιόμορφη ροή 0u  προσεγγίζει 

την πλάκα, της οποίας η κατανομή της ταχύτητας κάθετα στη διεύθυνση της 

ροής και σε απόσταση L  από το χείλος προσβολής της πλάκας είναι 

παραβολική, δηλαδή: 

0

2
y

u u


 
=  

 
 

όπου ( )x L = = . Ζητείται να υπολογιστεί η ροή μάζας στο άνω όριο του 

ανοιχτού συστήματος και η δύναμη που ασκεί το ρευστό στην πλάκα . Η ροή 

θεωρείται ότι είναι μόνιμη, ασυμπίεστη και διδιάστατη. 

1

4

3

2

u

L

4
m

 

Σχήμα: Ανοιχτό σύστημα ροής κοντά σε επίπεδη πλάκα 
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Λύση 

Η αρχή διατήρησης μάζας στο πεδίο ροής που έχουμε γράφεται στην 

ολοκληρωτική της μορφή ως 

 

   ( ) 0

V S

d
dV V n dS

dt
 +  =   

 Θεωρώντας μόνιμη ροή συνεπάγεται ότι 0

V

d
dV

dt
 =  και λαμβάνοντας 

υπ’ όψη και τα τέσσερα όρια του πεδίου, και αντικαθιστώντας όπου 

dS b d=  , το επιφανειακό ολοκλήρωμα μετατρέπεται σε επικαμπύλιο και η 

διατήρηση της μάζας εκφράζεται αναλυτικά ως: 

 

( ) ( ) ( ) ( )
1 2 3 4

0V n b d V n b d V n b d V n b d    +  +  +  =     

 

όπου b  είναι το πλάτος της πλάκας. 

 

Σε κάθε όριο έχουμε τις ακόλουθες συνθήκες: 

1 0
ˆV u i= ,   1

ˆn i= − ,  1d dy=  

2

2 0
ˆ ˆy

V u i v j


 
= + 

 
, 2

ˆn i= ,  2d dy=  

3 0V = ,   3
ˆn j= − ,  3d dx=  

4V ά= ,  4
ˆn j= ,  4d dx=  

 

Καθ’ ένα από τα γνωστά συνοριακά ολοκληρώματα υπολογίζεται ως εξής: 

( ) ( ) ( )
1 1 1

0 0 0

0 0 0

ˆ ˆV n b dy u i i b dy u b dy u b

  

     =   − = − = −    
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( ) ( )
2 1 1

2 2

0 0

0 0 0

3

0 02
0

ˆ ˆ ˆ

33

y y
V n b dy u i v j i b dy u b dy

y
u b u b

  



  
 


 



    
  =  +   =  =   

     

 
= = 

  

  
 

( )
30

0

L

V n b dx  =  

( )
4

4

0

L

V n b d m  =  

 

Αντικαθιστώντας τα παραπάνω στην εξίσωση διατήρησης μάζας έχουμε: 

0 0 4 4 0

2
0 0

3 3
u b u b m m u b


    − + + + =  =  

 

Συνεπώς, λόγω της τριβής του ρευστού (ιξώδες) που επιβραδύνει τη ροή στην 

εγγύς περιοχή της πλάκας, τα δύο τρίτα της εισερχόμενης μάζας εκτοπίζονται 

μακριά από αυτήν. 

 

Για τον υπολογισμό της οριζόντιας δύναμης που ασκεί η ροή στην πλάκα ( xF ) 

θα χρησιμοποιήσουμε την αρχή διατήρησης της x-ορμής στο χωρίο μας για 

μόνιμη ροή: 

( ) x

S

u V n dS F  =  

Γράφοντας αναλυτικά την παραπάνω σχέση για κάθε όριο του χωρίου έχουμε: 

 

( ) ( ) ( )

( )

1 1 2 2 3 31 2 31 2 3

4 444
x

u V n b dS u V n b dS u V n b dS

u V n b dS F

  



 +  +  +

+  =

  


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και αντικαθιστώντας τα γνωστά μεγέθη όπως προηγουμένως: 

 

( )
1 2 4

4
2 2

0 0 0 4

0 0 0

0

L

x
y

F u b dy u bdy u V n b dx

 

  


 
= − + + +   

     

( )
4

5
2 2

0 0 04 4
0 0

5

L

x
y

F u b u b u V n b dx



   


 
= − + +  

  
  

Για το όριο 4 χρησιμοποιούμε το προηγούμενο αποτέλεσμα από την αρχή 

διατήρησης μάζας αφού: 

 

( ) ( )
4 4

2
0 0 04 4

0 0

2

3

L L

u V n b dx u V n b dx u b    =  =   

 

Πραγματοποιώντας την πρόσθεση των όρων στην εξίσωση της ορμής, 

προκύπτει ότι η εξωτερική δύναμη που ασκείται στη ροή είναι : 

2
0

2

15
xF u b = −  

Η δύναμη που ασκεί η ροή στην πλάκα είναι ίση και αντίθετη με την 

παραπάνω. 
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3.9.5 Αδιαστατοποιήσεις όρων ροϊκών εξισώσεων 
 

Να αδιαστατοποιηθούν οι όροι των παρακάτω ροϊκών εξισώσεων: (i) εξίσωση 

ενέργειας, (ii) καταστατική εξίσωση τελείου αερίου και (iii) σχέση του 

Sutherland. 

 

Λύση 

(i) Ο όρος που προκύπτει κατά την αδιαστατοποίηση της εξίσωσης της 

ενέργειας είναι: 

 
2

3 2 22 Re Pr

P P P

PP

k T

k T C C T C TL
u L CCu u u L uu

kL



  


 

    

       
 

= = =
  

 

 

Χρησιμοποιώντας την σχέση  (3.58) αλλά και την σχέση για την ταχύτητα του 

ήχου c RT = , ο παραπάνω όρος γίνεται: 

 

( ) ( ) ( )

2

2 2 2 2

1

Re Pr 1 Re Pr 1 Re Pr 1 Re Pr

PC T RT c

u u u



  

  

   

= = =
  −   −   −  

 

 

(ii) Η καταστατική εξίσωση του τέλειου αερίου αδιαστατοποιείται ως εξής:  

 
2 * * *p RT u p R T      =  =    

 

2 *
* * *

* * 2

1u p
p

RT


 



 

=   =
 

  

όπου, 

 
u u

M
c RT




 



 =   

είναι ο αριθμός Mach της ελεύθερης ροής.  

 

(iii) Η σχέση του Sutherland για το ιξώδες, μπορεί να αδιαστατοποιηθεί ως 

εξής: 
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 ( )
3

2 3
* * 2

*

110,4
1

110,4

110,4110,4





 

 



+
   + 

=  =  
 +   +



  

 

 

 

3.9.6 Μέση ταχύτητα ροής σε ορθογώνιο αγωγό 
 

Να εκφράσετε τη μέση ταχύτητα ροής σε ορθογώνιο αγωγό συναρτήσει της 

μέγιστης ταχύτητας ροής. 

 

Λύση 

Η παροχή μάζας με βάση τη μέση ταχύτητα είναι: 1meanm u h=     

 

Η παροχή μάζας μπορεί επίσης να υπολογιστεί με βάση το προφίλ της 

ταχύτητας:  

0

( )

y h

y

m u y dy

=

=

=    

 

Εξισώνοντας τις δύο εκφράσεις έχουμε: 

max

0 0

1
1 ( ) 4 1

y h h

mean mean

y

y y
u h u y dy u u dy

h h h
 

=

=

 
   =   =  − = 

 
 

2 2 3

max max max2 3 2 3
0 0

1
4 4 4

62 3

hh
y y y y

u dy u u
h h h h

   
=  − =  − =      

    
  

max
2

3
meanu u =  
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3.9.7 Μέση ταχύτητα ροής σε κυκλικό αγωγό 
 

Να εκφράσετε τη μέση ταχύτητα ροής σε κυκλικό αγωγό συναρτήσει της 

μέγιστης ταχύτητας ροής. 

 

Λύση 

 
 

Η σχέση της μέσης ταχύτητας ( meanu ) με τη μέγιστη ταχύτητα στον κυκλικό 

αγωγό ( maxu ) βρίσκεται εκφράζοντας την παροχή μάζας ( m ) με βάση τη μέση 

ταχύτητα, καθώς και με βάση το προφίλ ταχύτητας: 

 

2

0

( )2

R

meanm u R u r r dr   =   =    

2
2

max 2

0

2 (1 )

R

mean

r
u R u r dr

R
   = −  

2

max 2 2

0

2 (1 )

R

mean

r r
u u dr

R R
 = − =

3

max 2 4

0

1
2

R
r

u rdr rdr
R R

 
− =  

 
  

2 4
max

max 2 4

0 0

2
22 4

R R

mean

ur r
u u

R R

 
  = − =
 
 
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3.9.8 Ροή ανάμεσα σε ομόκεντρους κυλίνδρους 
 
 

Θεωρείστε χρονικά αμετάβλητη, ασυμπίεστη ροή ανάμεσα σε δύο 

ομόκεντρους κυλίνδρους, όπως φαίνεται στο Σχήμα. Ο εσωτερικός κύλινδρος 

περιστρέφεται με γωνιακή ταχύτητα i , ενώ ο εξωτερικός κύλινδρος είναι 

ακίνητος. Δεν υπάρχει καμία κίνηση κατά μήκος των αξόνων των κυλίνδρων. 

Να βρεθεί η ταχύτητα του ρευστού ανάμεσα στους κυλίνδρους. 

 

ir

or

r
V

i

Ρευστό

 

Σχήμα: Ροή ανάμεσα σε δύο ομόκεντρους κυλίνδρους. 

 

Λύση 

Για την επίλυση του προβλήματος θα χρησιμοποιηθεί το πολικό σύστημα 

συντεταγμένων. Έστω u  η ταχύτητα κατά τη διεύθυνση των αξόνων των 

κυλίνδρων (x-διεύθυνση), και rV  και V  οι ταχύτητες στην ακτινική και την 

περιφερειακή διεύθυνση αντίστοιχα. 

Η ροή θεωρείται χρονικά αμετάβλητη. Επίσης, δεν υπάρχει καμία κίνηση κατά 

την x-διεύθυνση. Επομένως, ισχύουν τα παρακάτω : 

 
( ) ( )

0,  0,  0u
t x

   
= = =

 
 (1) 
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Ακόμη, η ροή είναι αξονοσυμμετρική, επομένως κανένα μέγεθος του ροϊκού 

πεδίου δεν μεταβάλλεται στην περιφερειακή διεύθυνση. Ισχύει δηλαδή ότι : 

 
( )

0


 
=


 (2) 

Οι συνοριακές συνθήκες του προβλήματος, με βάση το σχήμα είναι: 

 
:   0,  

:   0

i r i i

o r

r r V V r

r r V V





= = =  

= = =
 (3) 

H εξίσωση της συνέχειας για ασυμπίεστη ροή, σε πολικές συντεταγμένες, 

είναι: 

 ( )
1 1

0r

Vu
V r

x r r r





 
+  + =

  
 (4) 

 

Η σχέση (4) με βάση τις (1) και (2) γίνεται: 

 ( ) 0    r r

d
V r V r ά

dr
 =   =   

Εφόσον η ταχύτητα rV   είναι μηδενική και στον εσωτερικό και στον εξωτερικό 

κύλινδρο (σχέση (3)), προκύπτει ότι η rV  είναι μηδενική παντού. 

 

Η εξίσωση της ορμής στη διεύθυνση  , για ασυμπίεστη ροή, και 

χρησιμοποιώντας τις παραδοχές της σχέσης (1) είναι: 

( )
2

2 2 2

1 1 1 2r r
r

V V V V V Vp V
V V r

r r r r r r r r r

    
 

  

         
+ + = − +  + +   

         
 

η οποία με βάση την παραδοχή της σχέσης (2) αλλά και το ότι  0rV =  

απλοποιείται στην παρακάτω μορφή: 

 ( )
1

0
d d

V r
dr r dr


 

 = 
 

 (5) 

Με δύο διαδοχικές ολοκληρώσεις της σχέσης (5), προκύπτει η παρακάτω λύση 

για την ταχύτητα V  : 
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 2
1

C
V C r

r
 = +  (6) 

Οι σταθερές 1C  και 2C  βρίσκονται εφαρμόζοντας τις συνοριακές συνθήκες για 

την ταχύτητα V  (σχέση (3)): 

 2
1:       i i i i i i

i

C
r r V r C r r

r
= =    + =    (7) 

 2
1:   0    0o o

o

C
r r V C r

r
= =  + =  (8) 

Επιλύοντας το σύστημα των εξισώσεων (7) και (8) προκύπτει ότι οι σταθερές 

έχουν τις τιμές: 

 
2 2 2

1 22 2 2 2

 
 , i i i i

i i

r r r
C C

r r r r



 

−    
= =

− −
  

και αντικαθιστώντας τες στην σχέση (6) προκύπτει η τελική λύση για την 

ταχύτητα V : 

 
2 2

2 2
i i

i i
i ii

r r r r r r
V r r

r r r r rr r

  


 

   −
= − =     −−  

 (9) 

 


