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Μοντελοποίηση της Βισκοελαστικής Συμπεριφοράς

Ελατήριο δυσκαμψίας k
Αποσβεστήρας με ρευστό 
ιξώδους η

▪ Τα βισκοελαστικά μοντέλα αποτελούν συνδυασμό των δύο παραπάνω στοιχείων.
▪ Μπορούν να περιγράψουν την συμπεριφορά των υλικών σε χαλάρωση τάσης
▪ Τα ελατήρια περιγράφουν την ελαστική απόκριση του υλικού
▪ Οι αποσβεστήρες περιγράφουν την ιξώδη απόκριση του υλικού
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Συμπεριφορά των Στοιχείων



Διέγερση και Απόκριση των Πολυμερών

Στιγμιαία Ελαστική Απόκριση

Ερπυσμός υπό σταθερή τάση

Χαλάρωση τάσης υπό σταθερή παραμόρφωση

d: Στιγμιαία Ελαστική Επανάταξη

e: Καθυστερημένη Επανάταξη

f: Παραμένουσα Παραμόρφωση



Το Μοντέλο Maxwell

▪ Ένα ελατήριο και ένας αποσβεστήρας 
σε σειρά.

▪ Τα δύο στοιχεία έχουν την ίδια τάση 
και διαφορετική παραμόρφωση.

▪ Η συνολική παραμόρφωση ισούται με 
το άθροισμα των παραμορφώσεων 
των δύο στοιχείων.



Καταστατική Εξίσωση του Μοντέλου Maxwell



Εφαρμογή του Μοντέλου Maxwell στον Ερπυσμό

Η καταστατική εξίσωση του μοντέλου είναι:
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Επομένως, το Μοντέλο Maxwell προβλέπει για τον ερπυσμό, ότι: ( ) 0t t
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Δηλαδή, το Μοντέλο Maxwell προβλέπει ότι στον ερπυσμό η παραμόρφωση μεταβάλλεται γραμμικά 
με τον χρόνο. Κάτι τέτοιο όμως δεν συμβαίνει στην πραγματικότητα. Επομένως:
Το Μοντέλο Maxwell αποτυγχάνει να προβλέψει σωστά τον ερπυσμό.



Η ποσότητα η/Ε έχει μονάδες χρόνου και στην περίπτωση του ερπυσμού ονομάζεται 
“χρόνος καθυστέρησης” (retardation time).

Ο πρώτος όρος της εξίσωσης 

περιγράφει την ελαστική απόκριση του ελατηρίου, ενώ ο δεύτερος όρος περιγράφει την 
βισκοελαστική απόκριση του αποσβεστήρα. Επιπλέον, παρατηρούμε ότι η παραμόρφωση ε(t) 
που προβλέπει το μοντέλο του Maxwell για τον ερπυσμό είναι γραμμική συνάρτηση του 
χρόνου, πράγμα που στην πράξη δεν ισχύει. 

Επομένως το μοντέλο του Maxwell αποτυγχάνει να περιγράψει τον ερπυσμό. 

retardation relaxation


 


 =

( ) 0t t
 


 

 
= + 

 

Εφαρμογή του Μοντέλου Maxwell στον Ερπυσμό
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Εφαρμογή του Μοντέλου Maxwell στον Ερπυσμό

Παρατηρούμε ότι όσο 
μεγαλύτερος είναι ο 
χρόνος καθυστέρησης 
(retardation time), τόσο 
μικρότερος είναι ο ρυθμός 
αύξησης της 
παραμόρφωσης.



Το Μέτρο Ένδοσης σε Ερπυσμό (Creep Compliance)

Ο λόγος ε(t)/σ0 ονομάζεται “Μέτρο ΄Ενδοσης σε Ερπυσμό”
(Creep Compliance), C(t), 

Creep Compliance (Μέτρο Ένδοσης σε Ερπυσμό) = 
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▪ Το Μέτρο Ένδοσης σε Ερπυσμό, έχει μονάδες GPa-1 και εκφράζει την 
παραμόρφωση που αναπτύσσεται στο υλικό ανά μονάδα τάσης, συναρτήσει του 
χρόνου. 

▪ Το Μέτρο Ένδοσης σε Ερπυσμό είναι ανεξάρτητο του επιβαλλόμενου φορτίου.

Για το Μοντέλο Maxwell είναι:
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Παρατηρούμε ότι για 
t = 0,  C(0) = 1/E
ενώ για 
t > 0,  C(t) > 1/E

▪ Επίσης παρατηρούμε ότι το μέτρο ένδοσης 
δεν εξαρτάται από το φορτίο που 
επιβάλλουμε στο δοκίμιο, αλλά μόνο από 
το μέτρο Ε και τον χρόνο καθυστέρησης τ = 
η/Ε.

▪ Αυτό σημαίνει ότι αν εκτελέσουμε n 
πειράματα ερπυσμού ενός υλικού σε n 
διαφορετικά επίπεδα τάσης, υπό τις ίδιες 
περιβαλλοντικές συνθήκες, θα εξάγουμε n 
καμπύλες ερπυσμού, αλλά μόνο μία 
καμπύλη C(t)=f(t).

Μεταβολή του Μέτρου Ένδοσης με τον χρόνο 
σύμφωνα με το μοντέλο Maxwell



Εφαρμογή του Μοντέλου Maxwell στη Χαλάρωση



Πρόβλεψη του Μοντέλου Maxwell για τη Χαλάρωση



Εφαρμογή του Μοντέλου του Maxwell στη 
Χαλάρωση Τάσης

Παρατηρούμε ότι:

Όσο μεγαλύτερος είναι ο 
χρόνος χαλάρωσης (relaxation 
time), τόσο μικρότερος είναι ο 
ρυθμός μείωσης της τάσης.



Το Μέτρο Χαλάρωσης (Relaxation Modulus)

Ορισμός: Σε ένα πείραμα χαλάρωσης, ορίζουμε ως Μέτρο Χαλάρωσης (Relaxation Modulus) τον λόγο 
της μεταβλητής με τον χρόνο τάσης, προς την σταθερή παραμόρφωση που επιβάλλουμε στο υλικό. 
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Όπως όμως θα δούμε στη συνέχεια, σε πολυπλοκότερα μοντέλα, οι δύο αυτοί χρόνοι είναι διαφορετικοί μεταξύ τους, ενώ τα γενικευμένα μοντέλα που θα

εξετασθούν αργότερα, δεν χαρακτηρίζονται από έναν και μοναδικό χρόνο καθυστέρησης ή χρόνο χαλάρωσης αλλά από ένα φάσμα χρόνων καθυστέρησης

και ένα φάσμα χρόνων χαλάρωσης.

Το Μέτρο Χαλάρωσης εκφράζει την τάση ανά 
μονάδα παραμόρφωσης, συναρτήσει του χρόνου 
και έχει μονάδες GPa.

Το Μέτρο Χαλάρωσης είναι ανεξάρτητο του μέτρου της 
επιβαλλόμενης σταθερής παραμόρφωσης.



Μέτρο Χαλάρωσης R(t) σύμφωνα με το 
Μοντέλο Maxwell
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Ερπυσμός και Χαλάρωση κατά το Μοντέλο Maxwell

▪ Ο μηχανισμός λειτουργίας του μοντέλου

του Maxwell μπορεί να εξηγηθεί ως εξής:

▪ Κατά την φάση του ερπυσμού, και για

t=0, λόγω της ταχείας αύξησης της

παραμόρφωσης, δρα μόνο το ελατήριο

ενώ ο αποσβεστήρας παραμένει αδρανής.

Στη συνέχεια, η παραμόρφωση αυξάνει

σταδιακά και η μεταβολή με τον χρόνο

οφείλεται στον αποσβεστήρα.

▪ Κατά την φάση της χαλάρωσης, όταν η

παραμόρφωση διατηρείται σταθερή, τότε

λόγω του αποσβεστήρα, η τάση

μειώνεται εκθετικά με τον χρόνο και σε

μεγάλους χρόνους τείνει στο μηδέν.



Εφαρμογή του Μοντέλου Maxwell για 
σταθερό ρυθμό φόρτισης

Η επιβολή φορτίου με σταθερό ρυθμό μεταβολής, λ, προκαλεί την ιξώδη απόκριση του 
αποσβεστήρα. Έτσι, έχουμε:

Από  την  χαρακτηριστική      

H τελευταία εξίσωση προβλέπει ότι αν εφαρμόσουμε σταθερό ρυθμό φόρτισης τότε ο ρυθμός 
μεταβολής της παραμόρφωσης μεταβάλλεται γραμμικά με τον χρόνο. Βέβαια αυτή η πρόβλεψη 
αφορά μόνο το μοντέλο Maxwell.

𝜎 +
𝜂

𝛦

𝑑𝜎

𝑑𝑡
= 𝜂

𝑑𝜀

𝑑𝑡

d 1 t

dt




 

 
= + 

 

( )
1

d t t

dt E

 



 
= + 

 
( )

2

2

t
t t

E






 
= + 

 

( )
.

d t

dt


 = = ( ) .t t =



Παρατηρούμε ότι:

Όσο μεγαλύτερος είναι ο 
ρυθμός φόρτισης, τόσο 
μεγαλύτερη είναι η τάση που 
αναπτύσσεται στο υλικό για 
την ίδια τιμή της 
παραμόρφωσης



Εφαρμογή του Μοντέλου Maxwell για 
σταθερό ρυθμό παραμόρφωσης

Έστω ότι εφαρμόζουμε στο μοντέλο Maxwell σταθερό ρυθμό παραμόρφωσης: σταθ.

τότε από την καταστατική εξίσωση του Μοντέλου Maxwell

προκύπτει ότι:

η οποία με την υπόθεση ότι για t = 0, σ = 0, έχει λύση:
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Εφαρμογή του Μοντέλου Maxwell για 
σταθερό ρυθμό παραμόρφωσης

Παρατηρούμε ότι:

Όσο αυξάνει ο ρυθμός 
της παραμόρφωσης, μ, 
τόσο αυξάνει η τιμή της 
τάσης για σταθερή τιμή 
παραμόρφωσης.



Το Μοντέλο Kelvin - Voigt

Αν συνδυάσουμε παράλληλα ένα ελατήριο και έναν 
αποσβεστήρα, τότε προκύπτει το πρότυπο του Voigt.

Σε αυτήν την περίπτωση, η ολική τάση σ αναλύεται στην 
τάση σ1 στο ελατήριο και την τάση σ2 στον αποσβεστήρα, 
ενώ η παραμόρφωση ε είναι η ίδια και στα δύο στοιχεία. 
Έτσι, έχουμε:

Για το ελατήριο:

Για τον αποσβεστήρα:

Για την ολική τάση:
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Καταστατική Εξίσωση 
του Μοντέλου Voigt



Εφαρμογή του Μοντέλου Kelvin – Voigt στον Ερπυσμό

Ας υποθέσουμε ότι υποβάλλουμε το πρότυπο Voigt σε πείραμα ερπυσμού. Αυτό σημαίνει ότι
Για t = 0- , σ = 0 και για t = 0+ ,  σ = σ0 

Η καταστατική εξίσωση του Μοντέλου είναι : 
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Λύνουμε τη διαφορική εξίσωση (πρώτης τάξεως) με αρχική συνθήκη,
Και βρίσκουμε: 
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χρόνος καθυστέρησης (retardation time)



▪ Όσο μεγαλύτερος ο 
χρόνος καθυστέρησης, 
τοσο πιο αργά φθάνει η 
καμπύλη ερπυσμού στην 
οριακή τιμή της 
παραμόρφωσης σ0/Ε

▪ Για τον ίδιο χρόνο, η 
καμπύλη ερπυσμού με τον 
μικρότερο χρόνο 
καθυστέρησης 
παρουσιάζει την 
μεγαλύτερη 
παραμόρφωση.



τ= 50min
Παρατηρούμε ότι:

Σε υψηλότερα επίπεδα 
τάσης, αναπτύσσονται 
μεγαλύτερες 
παραμορφώσεις στον ίδιο 
χρόνο φόρτισης.



Αναφερόμενοι στο πρότυπο του Voigt, παρατηρούμε ότι η συμπεριφορά του είναι η 
αναμενόμενη, γιατί στην αρχή το ελατήριο περιορίζεται από τον αποσβεστήρα ενώ στη 
συνέχεια, καθώς ο αποσβεστήρας εκτείνεται, παραμορφώνεται καθυστερημένα. Τελικά, 
καθώς ο χρόνος τείνει στο άπειρο, η παραμόρφωση στον αποσβεστήρα παίρνει την τιμή 
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Μέτρο Ένδοσης για το Μοντέλο Kelvin - Voigt
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Παρατηρούμε ότι το Μέτρο Ένδοσης (Creep Compliance), είναι ανεξάρτητο του επιπέδου τάσης.
Αυτό σημαίνει ότι αν στο ίδιο υλικό εκτελέσουμε έναν αριθμό πειραμάτων ερπυσμού σε διάφορα 
επίπεδα τάσης, τότε για όλα τα επίπεδα τάσης θα υπάρξει μία και μοναδική καμπύλη Μέτρου 
Ένδοσης συναρτήσει του χρόνου.



Το Μοντέλο Standard Linear Solid
(Maxwell Presentation)



Η πρόβλεψη του Μοντέλου Standard Linear Solid
(Maxwell Presentation) για την χαλάρωση

( ) ( )( )0 1 2 expt t  =  +  −



Το Μοντέλο Standard Linear Solid
(Kelvin Presentation)



Αναλυτική λύση του μοντέλου (SLS)

Το ζητούμενο είναι η καταστατική εξίσωση ενός συστήματος όπου:

•Το ελατήριο Ε₁ είναι σε σειρά με
•Ένα μοντέλο Voigt (παράλληλα ελατήριο Ε₂ και ιξώδες η).

Στη σύνδεση σε σειρά:
•Το φορτίο (τάση) είναι κοινό: σ₁ = σᵥ = σ
•Η ολική παραμόρφωση είναι άθροισμα: ε = ε₁ + εᵥ

1. Σχέσεις των επιμέρους στοιχείων
Ελατήριο Ε₁ (Hooke):

𝜎 = 𝐸1𝜀1 ⇒ 𝜀1 =
𝜎

𝐸1

Voigt (E₂ ‖ η):
𝜎 = 𝐸2𝜀𝑣 + 𝜂 ሶ𝜀𝑣



Αναλυτική λύση του μοντέλου (SLS)

2. Σύνδεση σε σειρά

Ολική παραμόρφωση:

𝜀 = 𝜀1 + 𝜀𝑣 =
𝜎

𝐸1
+ 𝜀𝑣 ⇒ 𝜀𝑣 = 𝜀 −

𝜎

𝐸1

Αντικαθιστούμε στο Voigt:

𝜎 = 𝐸2 𝜀 −
𝜎

𝐸1
+ 𝜂 ሶ𝜀 −

ሶ𝜎

𝐸1



Αναλυτική λύση του μοντέλου (SLS)

3. Αναμόρφωση

Αναπτύσσουμε:

𝜎 = 𝐸2𝜀 −
𝐸2

𝐸1
𝜎 + 𝜂 ሶ𝜀 −

𝜂

𝐸1
ሶ𝜎

Ομαδοποιούμε τους όρους σε σ και ሶ𝜎:

𝜎 1 +
𝐸2

𝐸1
+

𝜂

𝐸1
ሶ𝜎 = 𝐸2𝜀 + 𝜂 ሶ𝜀

Πολλαπλασιάζουμε με 𝐸1:

𝐸1 + 𝐸2 𝜎 + 𝜂 ሶ𝜎 = 𝐸1𝐸2 𝜀 + 𝐸1𝜂 ሶ𝜀



Αναλυτική λύση του μοντέλου (SLS)

Τελική καταστατική εξίσωση του μοντέλου

𝜂 ሶ𝜎 + 𝐸1 + 𝐸2 𝜎 = 𝐸1𝐸2 𝜀 + 𝐸1𝜂 ሶ𝜀

Αυτή είναι η ζητούμενη διαφορική καταστατική σχέση 

του συστήματος ελατήριο Ε₁ σε σειρά με μοντέλο Voigt (E₂, η).



Εύρεση της Creep Compliance του μοντέλου

1. CREEP COMPLIANCE 𝐽 𝑡

Εφαρμόζουμε βηματική τάση 𝜎 𝑡 = 𝜎0𝐻 𝑡 .

Συνολική παραμόρφωση:
•Το ελατήριο 𝐸1παραμορφώνεται στιγμιαία:

𝜀1 0+ =
𝜎0

𝐸1



Εύρεση της Creep Compliance του μοντέλου

•Το Voigt δεν παραμορφώνεται στιγμιαία

(το dashpot εμποδίζει την άμεση παραμόρφωση):

𝜀𝑣 0+ = 0

Η μακροχρόνια παραμόρφωση του Voigt είναι:

𝜀𝑣 ∞ =
𝜎0

𝐸2



Εύρεση της Creep Compliance του μοντέλου

Η ολική παραμόρφωση:

𝜀 𝑡 =
𝜎0

𝐸1
+

𝜎0

𝐸2
1 − 𝑒−𝑡/𝜏 , 𝜏 =

𝜂

𝐸2

Άρα η Creep Compliance:

𝐽 𝑡 =
𝜀 𝑡

𝜎0
=

1

𝐸1
+

1

𝐸2
1 − 𝑒−𝑡/𝜏



Εύρεση του Relaxation Modulus

2. RELAXATION MODULUS 𝐺 𝑡

Εφαρμόζουμε βηματική παραμόρφωση 𝜀 𝑡 = 𝜀0𝐻 𝑡 .

Στο 𝑡 = 0+:

Το Voigt δεν μπορεί να παραμορφωθεί στιγμιαία ⇒ όλη η 
παραμόρφωση επιβάλλεται στο ελατήριο 𝐸1:

𝜎 0+ = 𝐸1𝜀0



Εύρεση του Relaxation Modulus

Μακροχρόνια κατάσταση:

Η τάση τείνει στην τάση του ισοδύναμου ελατηρίου των 𝐸1και 
𝐸2σε παράλληλη μορφή του SLS:

𝐸eff =
𝐸1𝐸2

𝐸1 + 𝐸2

Μορφή αποδιέγερσης

𝜎 𝑡 = 𝐸eff 𝜀0 + 𝐸1 − 𝐸eff 𝜀0 𝑒−𝑡/𝜏𝑟 ,  𝜏𝑟 =
𝜂

𝐸1 + 𝐸2



Εύρεση του Relaxation Modulus

Άρα το Relaxation Modulus:

𝐺 𝑡 =
𝜎 𝑡

𝜀0
= 𝐸eff + 𝐸1 − 𝐸eff 𝑒−𝑡/𝜏𝑟 𝐸eff =

𝐸1𝐸2
𝐸1 + 𝐸2

𝜏𝑟 =
𝜂

𝐸1 + 𝐸2

Τελικές Απαντήσεις

𝐽 𝑡 =
1

𝐸1
+

1

𝐸2
1 − 𝑒−𝑡𝐸2/𝜂

𝐺 𝑡 =
𝐸1𝐸2

𝐸1 + 𝐸2
+ 𝐸1 −

𝐸1𝐸2

𝐸1 + 𝐸2
𝑒−𝑡 𝐸1+𝐸2 /𝜂



Σταθερός ρυθμός φόρτισης

Σταθερός ρυθμός φόρτισης ሶ𝜎 = 𝜆 = σταθ.

Η καταστατική εξίσωση του μοντέλου (που βρέθηκε 
προηγουμένως) είναι:

𝜂 ሶ𝜎 + 𝐸1 + 𝐸2 𝜎 = 𝐸1𝐸2𝜀 + 𝐸1𝜂 ሶ𝜀 (1)

σ˙(t)=λ ⇒ σ(t)=λt 

Αντικαθιστούμε την 𝜎 𝑡 και ሶ𝜎 = 𝜆 στην (1):
𝜂𝜆 + 𝐸1 + 𝐸2 𝜆𝑡 = 𝐸1𝐸2𝜀 𝑡 + 𝐸1𝜂 ሶ𝜀 𝑡

Διαιρούμε με 𝐸1𝜂:

ሶ𝜀 +
𝐸2

𝜂
𝜀 =

𝜆

𝐸1
+

𝐸1 + 𝐸2 𝜆

𝐸1𝜂
𝑡

Αυτή είναι μια γραμμική ΔΕ πρώτης τάξης.

Χρησιμοποιούμε παράγοντα ολοκλήρωσης 𝑒 𝐸2/𝜂 𝑡.



Σταθερός ρυθμός φόρτισης

Τελική μορφή της λύσης

𝜀 𝑡 =
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑡 − 𝜏 + 𝜏𝑒−𝑡/𝜏 𝜏 = 𝜂/𝐸2

όπου:

• ο πρώτος όρος 
𝜆

𝐸1
𝑡 είναι η παραμόρφωση του ελατηρίου E₁

• ο δεύτερος όρος είναι η συμβολή του Voigt, το οποίο 
συμπεριφέρεται ιξωδοελαστικά



Οριακές τιμές για σταθερό ρυθμό φόρτισης

σ˙=λ, σ(t)=λt 

Η παραμόρφωση που βρέθηκε είναι:

𝜀 𝑡 =
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑡 − 𝜏 + 𝜏𝑒−𝑡/𝜏

𝜏 =
𝜂

𝐸2

Όριο 𝑡 → 0
Αναπτύσσουμε τον εκθετικό:

𝑒−𝑡/𝜏 = 1 −
𝑡

𝜏
+ 𝑂 𝑡2

Ο δεύτερος όρος:

𝑡 − 𝜏 + 𝜏𝑒−𝑡/𝜏 ≈ 𝑡 − 𝜏 + 𝜏 1 −
𝑡

𝜏
= 0 + 𝑂 𝑡2

Άρα:

𝜀 𝑡 ≈
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑂 𝑡2

Τελικό όριο:

𝜀 𝑡 → 0 =
𝜆

𝐸1
𝑡

δηλαδή στιγμιαία αποκρίνεται μόνο το ελατήριο 𝐸1 ,όπως πρέπει, αφού το Voigt δεν 
παραμορφώνεται στιγμιαία (λόγω του dashpot).



Οριακές τιμές για σταθερό ρυθμό φόρτισης

Όριο 𝑡 → ∞
Ο εκθετικός όρος → 0:

𝜀 𝑡 →
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑡 − 𝜏

Άρα:

𝜀 𝑡 → ∞ = 𝜆𝑡
1

𝐸1
+

1

𝐸2
−

𝜆𝜏

𝐸2

Η παραμόρφωση αυξάνεται γραμμικά με κλίση:

ሶ𝜀 ∞ = 𝜆
1

𝐸1
+

1

𝐸2

δηλαδή το υλικό αστοχεί με ιξωδοελαστικό ερπυσμό.

σ˙=λ, σ(t)=λt 

Η παραμόρφωση που βρέθηκε είναι:

𝜀 𝑡 =
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑡 − 𝜏 + 𝜏𝑒−𝑡/𝜏

𝜏 =
𝜂

𝐸2



Σταθερός Ρυθμός Παραμόρφωσης

Η καταστατική εξίσωση του μοντέλου (που βρέθηκε 
προηγουμένως) είναι:

𝜂 ሶ𝜎 + 𝐸1 + 𝐸2 𝜎 = 𝐸1𝐸2𝜀 + 𝐸1𝜂 ሶ𝜀 (1)

ε˙(t)=μ ⇒ ε(t)=μt

Αντικαθιστούμε στην (1):
𝜂 ሶ𝜎 + 𝐸1 + 𝐸2 𝜎 = 𝐸1𝐸2 𝜇𝑡 + 𝐸1𝜂𝜇

Μεταφέρουμε:
𝜂 ሶ𝜎 + 𝐸1 + 𝐸2 𝜎 = 𝐸1𝐸2𝜇𝑡 + 𝐸1𝜂𝜇

Διαιρούμε με 𝜂:

ሶ𝜎 +
𝐸1 + 𝐸2

𝜂
𝜎 =

𝐸1𝐸2

𝜂
𝜇𝑡 + 𝐸1𝜇



Σταθερός Ρυθμός Παραμόρφωσης

Τελική λύση:

𝜎 𝑡 = 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2 𝜏 + 𝜇𝐸2 𝜏 𝑒−𝑡/𝜏

𝜏 = 𝜂/ 𝐸1 + 𝐸2

όπου:

• ο όρος 𝜇 𝐸1 + 𝐸2 𝑡 αντιστοιχεί στην ασυμπτωτική
«πλαστική» ιξώδη συμπεριφορά,

•ο εκθετικός όρος δείχνει την αποδιέγερση του Voigt.



Οριακές τιμές για σταθερό ρυθμό 
παραμόρφωσης

ε˙= μ,  ε(t) = μt 

Η τάση που βρέθηκε είναι:

𝜎 𝑡 = 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2𝜏 + 𝜇𝐸2𝜏𝑒−𝑡/𝜏

𝜏 =
𝜂

𝐸1 + 𝐸2

Όριο 𝑡 → 0

Αναπτύσσουμε πάλι:

𝑒−𝑡/𝜏 = 1 −
𝑡

𝜏
+ 𝑂 𝑡2

Ο εκθετικός όρος γίνεται:

𝜇𝐸2𝜏 1 −
𝑡

𝜏
= 𝜇𝐸2𝜏 − 𝜇𝐸2𝑡

Άρα:
𝜎 𝑡 ≈ 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2𝜏 + 𝜇𝐸2𝜏 − 𝜇𝐸2𝑡

𝜎 𝑡 ≈ 𝜇𝐸1𝑡



Οριακές τιμές για σταθερό ρυθμό 
παραμόρφωσης

Τελικό όριο:

𝜎 𝑡 → 0 = 𝜇𝐸1𝑡

Δηλαδή αρχικά αντιδρά μόνο το ελατήριο 𝐸1 ,γιατί το Voigt 
δεν προλαβαίνει να παραμορφωθεί στιγμιαία.



Οριακές τιμές για σταθερό ρυθμό 
παραμόρφωσης

Όριο 𝑡 → ∞

Ο εκθετικός όρος → 0: 𝜎 𝑡 → 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2𝜏

ε˙= μ,  ε(t) = μt 

Η τάση που βρέθηκε είναι:

𝜎 𝑡 = 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2𝜏 + 𝜇𝐸2𝜏𝑒−𝑡/𝜏

𝜏 =
𝜂

𝐸1 + 𝐸2



Οριακές τιμές για σταθερό ρυθμό 
παραμόρφωσης

Τελικό όριο:

𝜎 𝑡 → ∞ = 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2𝜏

Η τάση αυξάνει γραμμικά, δηλαδή το υλικό 
εμφανίζει ιξωδοελαστική σκλήρυνση, με 
ασυμπτωτική κλίση:

ሶ𝜎 ∞ = 𝜇 𝐸1 + 𝐸2



Τελική Σύνοψη ορίων

Για σταθερό ρυθμό φόρτισης ሶ𝜎 = 𝜆:

•Μικροί χρόνοι:

𝜀 𝑡 ≈
𝜆

𝐸1
𝑡

•Μεγάλοι χρόνοι:

𝜀 𝑡 ∼ 𝜆𝑡
1

𝐸1
+

1

𝐸2

Για σταθερό ρυθμό παραμόρφωσης ሶ𝜀 = 𝜇:

•Μικροί χρόνοι:
𝜎 𝑡 ≈ 𝜇𝐸1𝑡

•Μεγάλοι χρόνοι:
𝜎 𝑡 ∼ 𝜇 𝐸1 + 𝐸2 𝑡



Τελικές απαντήσεις

Τελικές απαντήσεις συνοπτικά

Για σταθερό ρυθμό φόρτισης ሶ𝜎 = 𝜆:

𝜀 𝑡 =
𝜆

𝐸1
𝑡 +

𝜆

𝐸2
𝑡 − 𝜏 + 𝜏𝑒−𝑡/𝜏 , 𝜏 =

𝜂

𝐸2

Για σταθερό ρυθμό παραμόρφωσης ሶ𝜀 = 𝜇:

𝜎 𝑡 = 𝜇 𝐸1 + 𝐸2 𝑡 − 𝜇𝐸2 𝜏 + 𝜇𝐸2 𝜏𝑒−𝑡/𝜏, 𝜏 =
𝜂

𝐸1 + 𝐸2



Βισκοελαστικά Μοντέλα
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