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Τύποι Δυνάμεων

Κατηγορίες δυνάμεων

1. Δυνάμεις επαφής (δυνάμεις οι οποίες ασκούνται όταν ένα σώμα βρίσκεται 
σε επαφή με κάποιο άλλο) . 

2. Δυνάμεις από απόσταση ( Βαρυτικές, Ηλεκτρικές , Μαγνητικές δυνάμεις )

Σε ένα σύστημα σωμάτων διακρίνουμε δύο είδη δυνάμεων:

α) Αυτές που προέρχονται αποκλειστικά από τα σώματα που αποτελούν το

σύστημα και τις οποίες ονομάζουμε εσωτερικές,

β) Δυνάμεις που προέρχονται από άλλα σώματα και οι οποίες

ονομάζονται εξωτερικές.
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Τύποι Δυνάμεων
Μια χωρική δύναμη ή δύναμη πεδίου είναι μια δύναμη που δρα σε όλο τον όγκο

ενός σώματος. Οι δυνάμεις λόγω της βαρύτητας, των ηλεκτρικών πεδίων και των

μαγνητικών πεδίων αποτελούν παραδείγματα χωρικών δυνάμεων. Οι δυνάμεις του

σώματος αντιτίθενται στις δυνάμεις επαφής ή στις επιφανειακές δυνάμεις που

ασκούνται στην επιφάνεια ενός αντικειμένου.

Οι ορθές δυνάμεις και οι διατμητικές δυνάμεις μεταξύ των αντικειμένων είναι

επιφανειακές δυνάμεις καθώς ασκούνται στην επιφάνεια ενός αντικειμένου. Όλες οι

επιφανειακές δυνάμεις καθώς και οι δυνάμεις επαφής μεταξύ των αντικειμένων

θεωρούνται επίσης ως επιφανειακές δυνάμεις.

Φανταστικές δυνάμεις όπως η φυγόκεντρη δύναμη, η δύναμη του Euler και το

φαινόμενο Coriolis είναι επίσης παραδείγματα σωματικών δυνάμεων.
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Τύποι Δυνάμεων
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Ομογενές – Συνεχές - Ισότροπο - Ανισότροπο

Ομογενές Υλικό: Οι ιδιότητες είναι ανεξάρτητες της θέσης του υλικού σημείου 
μέσα στη μάζα.

Ανομοιογενές Υλικό: Οι ιδιότητες εξαρτώνται από τη θέση του υλικού σημείου 
μέσα στη μάζα.

Ισότροπο Υλικό: Οι ιδιότητες είναι ανεξάρτητες της διεύθυνσης 

Ανισότροπο Υλικό: Οι ιδιότητες εξαρτώνται από την διεύθυνση.

Συνεχές Υλικό: Αυτό που δεν παρουσιάζει ασυνέχειες στη δομή του.
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Βασικοί τύποι Μηχανικής Φόρτισης

9

Compression

TorsionShear

Tension



Μηχανικές Φορτίσεις 
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Μηχανικές Καταπονήσεις
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Μηχανικές Καταπονήσεις
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ΤΑΣΕΙΣ



Η έννοια της Μέσης Ορθής Τάσης

• Οι τάσεις αναπτύσσονται στο εσωτερικό του σώματος ως αντίδραση στην
επιβολή επάνω στο σώμα, εξωτερικών φορτίων (δυνάμεων ή ροπών).

• Ετσι, σε κάθε διατομή αναπτύσσεται μία κατανομή δυνάμεων.
• Το μέτρο της συνισταμένης της επιφανειακής κατανομής των δυνάμεων κατά

την κάθετη προς την διατομή διεύθυνση είναι η μέση ορθή τάση
14



Ομοιόμορφη και μη-ομοιόμορφη κατανομή τάσεων

Ομοιόμορφη 
Κατανομή

Ανομοιόμορφη 
Κατανομή
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Μέση Ονομαστική Ορθή Τάση

Όπου:

Ρ = Η εξωτερικά Εφαρμοζόμενη Δύναμη σε [Ν]
Α0 = Επιφάνεια της διατομής πριν την επιβολή του 
φορτίου, σε [m2]

Μονάδα Μέτρησης: 1Pa = 1N/m2
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Μέση Ονομαστική Ορθή Τάση

Προσοχή !!! Για να ισχύει η σχέση της μέσης ορθής
τάσης, θα πρέπει: 1) η κατανομή των ορθών τάσεων σε
κάθε διατομή να είναι ομοιόμορφη και 2) ο φορέας της
συνισταμένης των εσωτερικών δυνάμεων να διέρχεται
από τα κ.β. όλων των διατομών και να συμπίπτει με τον
φορέα της εξωτερικά εφαρμοζόμενης δύναμης P. Σε
αντίθετη περίπτωση, η Ρ , εκτός από εφελκυσμό θα
προκαλέσει και κάμψη του δοκιμίου. 17



Μέση Ονομαστική Τάση και Μέση Πραγματική Τάση

Στον ορισμό που δώσαμε προηγουμένως για την μέση ορθή τάση,

Υποτίθεται ότι πληρούνται οι προϋποθέσεις:

1. Η κατανομή των τάσεων είναι ομοιόμορφη
2. Η εγκάρσια διατομή Α0 δεν μεταβάλλεται κατά τον εφελκυσμό
3. Ο φορέας της P να διέρχεται από τα κ.β. όλων των διατομών

Για τον λόγο αυτό, την παραπάνω μέση ορθή τάση την καλούμε και 
μέση ονομαστική τάση.

Όμως, ιδιαίτερα στα όλκιμα υλικά η διατομή μειώνεται κατά τον 
εφελκυσμό. Οπότε, αν λάβουμε υπ’ όψιν την μεταβολή της 
διατομής συναρτήσει του επιβαλλόμενου φορτίου P, τότε ορίζουμε 
την μέση πραγματική τάση, ως:

P

A
 = Όπου Α το εμβαδό της πραγματικής διατομής
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Διατμητική Δύναμη και Διατμητική Τάση
Στη Μηχανική, η διατμητική δύναμη (ή διατμητική τάση, όταν 
αναφέρεται ως ένταση) είναι η δύναμη που δρα παράλληλα
σε μια επιφάνεια ενός σώματος και έχει ως αποτέλεσμα την 
παραμόρφωση ή ολίσθηση των στρωμάτων του υλικού το ένα 
ως προς το άλλο.

Τί είναι διατμητική δύναμη:

•Ορισμός:
Η διατμητική δύναμη (shear force) είναι η συνιστώσα 
δύναμης που δρα παράλληλα σε μια επιφάνεια ή κάθετα 
στον άξονα ενός στοιχείου, με αποτέλεσμα τη ροπή που τείνει 
να "κόψει" ή να "γλιστρήσει" τα μέρη του σώματος μεταξύ 
τους.
•Σύμβολο: Συνήθως συμβολίζεται με V για την διατμητική 
δύναμη (shear force) ή τ για την διατμητική τάση (shear
stress).



Διατμητική Δύναμη και Διατμητική Τάση

Η διατμητική δύναμη είναι μια εσωτερική δύναμη που δρα 
παράλληλα με την εγκάρσια διατομή ενός υλικού, ενώ η 
διατμητική τάση είναι το μέτρο αυτής της δύναμης ανά 
μονάδα επιφάνειας (τ=F/A). 

Με απλά λόγια, η διατμητική δύναμη είναι η ίδια η δύναμη και 
η διατμητική τάση είναι η ένταση αυτής της δύναμης σε μια 
συγκεκριμένη περιοχή. 

Μια διατμητική δύναμη προκαλεί την ολίσθηση ή την 
παραμόρφωση ενός αντικειμένου διαγώνια και η 
προκύπτουσα τάση είναι αυτή που αντιστέκεται σε αυτήν την 
παραμόρφωση.



Διατμητική Δύναμη

Ορισμός: Διατμητική δύναμη είναι η εσωτερική δύναμη που 
αναπτύσσετε μέσα σε ένα σώμα και είναι παράλληλη με μια 
τομή του σώματος.

Προκύπτει από δύο αντίθετες δυνάμεις που πιέζουν 
διαφορετικά μέρη του αντικειμένου σε αντίθετες 
κατευθύνσεις.

Μέτρηση: Μετράται σε Newton (N).

Παράδειγμα: Όταν χρησιμοποιείτε ψαλίδι για να κόψετε 
χαρτί, η δύναμη που ασκείται κατά μήκος των λεπίδων είναι 
μια δύναμη διάτμησης, η οποία προκαλεί την ολίσθηση και 
τον διαχωρισμό του χαρτιού.



Διατμητική Τάση

Ορισμός: Διατμητική τάση είναι το μέτρο της 
διατμητικής δύναμης που κατανέμεται σε μια 
συγκεκριμένη επιφάνεια, ανά μονάδα αυτής της 
επιφάνειας. Εκφράζει την ένταση της διατμητικής 
δύναμης που δρα παράλληλα προς την επιφάνεια. 

Μέτρηση: Μετράται σε Pascals (Pa) ή Newtons ανά 
τετραγωνικό μέτρο (N/m2). Τύπος: (τ=F/A), όπου, τ, 
είναι η τάση διάτμησης, F, είναι η δύναμη διάτμησης 
και A, είναι η περιοχή στην οποία ασκείται η δύναμη. 

Παράδειγμα: Στο παράδειγμα με το ψαλίδι και το 
χαρτί, η τάση διάτμησης είναι η διατμητική δύναμη 
διαιρούμενη με την επιφάνεια της εγκάρσιας 
διατομής του χαρτιού στο σημείο κοπής.



Διατμητική Τάση



Διαφορές μεταξύ ορθής και διατμητικής δύναμης

Η διατμητική δύναμη είναι ένα από τα βασικά είδη φορτίσεων στη Μηχανική. Είναι σημαντικό 
να λαμβάνεται υπόψη στον σχεδιασμό κατασκευών και μηχανικών εξαρτημάτων, ώστε να 
αποφεύγεται η αστοχία λόγω "διάτμησης" (π.χ. κόψιμο, ολίσθηση ή ρωγμή).

Βασική Διαφορά: Η ορθή δύναμη προκαλεί μόνο αλλαγή των διαστάσεων και όχι του σχήματος 
ενώ η διατμητική προκαλεί μεταβολή του σχήματος.



Παραδείγματα Διάτμησης (Shear)
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Παραδείγματα Διάτμησης (Shear)
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Κατανομή των τάσεων (Stress Distribution) – Αρχή του Saint 
Venant (Saint-Venant’s Principle)
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Συγκέντρωση Τάσεων (Stress Concentration)
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K = Stress Concentration Factor



Τάση σε Σημείο Διατομής

• Η τάση που αναπτύσσεται σε ένα σημείο στο εσωτερικό
ενός σώματος σαν αντίδραση από τα επιβαλλόμενα
εξωτερικά φορτία, εξαρτάται από το επίπεδο της τομής
στο οποίο θεωρούμε ότι ανήκει το συγκεκριμένο σημείο.
Και επειδή από κάθε σημείο του χώρου διέρχονται
άπειρα επίπεδα, έπεται ότι δεν έχει νόημα η τάση σε
ένα σημείο αν δεν ορίσουμε πρώτα το επίπεδο της
τομής στο οποίο θεωρούμε ότι ανήκει αυτό το σημείο.

• Εξ’ αυτού του λόγου, η τάση σε ένα σημείο μίας επίπεδης τομής δεν είναι απλά ένα 
διανυσματικό μέγεθος με τρεις συνιστώσες, αλλά, όπως θα δούμε στη συνέχεια, είναι 
ένας τανυστής δευτέρας τάξεως με 6 ανεξάρτητες συνιστώσες.

• Παρόλα αυτά, μεταβατικά, μπορούμε να ορίσουμε ένα διάνυσμα τάσης το οποίο θα μας 
βοηθήσει να μεταβούμε στην έννοια του τανυστή και να την κατανοήσουμε πληρέστερα.
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Τάση σε Σημείο Διατομής
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Τάσεις σε Πλάγιο Επίπεδο
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Μεταβολή των ανηγμένων τάσεων με την κλίση της επίπεδης τομής
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Παραμορφώσεις



Η Έννοια της Μέσης Ορθής ή Αξονικής Παραμόρφωσης

0 00,    Δl=l-l 0,     ΔD=D-D 0P   

0

xx

l

l



=

0

yy

D

D



=

Διαμήκης ορθή παραμόρφωση

Εγκάρσια ορθή παραμόρφωση

Ο κύλινδρος παραμένει κύλινδρος αλλά με άλλες διαστάσεις
Οι Ορθές παραμορφώσεις αλλάζουν μόνο τις διαστάσεις και όχι το Σχήμα 
του σώματος
Η μέση ορθή παραμόρφωση ισχύει υπό την προϋπόθεση ότι η κατανομή 
των τάσεων στην διατομή είναι ομοιόμορφη.
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Η Έννοια της Μέσης Ορθής ή Αξονικής Παραμόρφωσης και 
της Πραγματικής Παραμόρφωσης

Αν η κατανομή των τάσεων δεν είναι ομοιόμορφη:

( ) '
xx

dl dl dl

dl dl


 −
= =

( )
0 0

L L

xxL dl L dl =    = 

Πραγματική Ορθή 
παραμόρφωση

Μέση Ορθή 
Παραμόρφωση

Μέση Ορθή 
Παραμόρφωση

Μεταβολή του 
Μήκους
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Ισορροπία Διατμητικών Τάσεων

Η διαμήκης (ή ορθή) παραμόρφωση περιγράφει την μεταβολή των διαστάσεων της ράβδου, που
προκαλεί την μεταβολή του όγκου της. Για να μελετήσουμε την μεταβολή του σχήματος ενός
σώματος, λόγω της δράσης εξωτερικών δυνάμεων, θεωρούμε ένα στερεό σώμα σχήματος
ορθογωνίου παραλληλεπιπέδου αρχικών διαστάσεων a, b, και c. Το σώμα αυτό καταπονείται στην
πάνω και την κάτω έδρα, με μία ομοιόμορφη κατανομή διατμητικών τάσεων τ1.

Η φόρτιση αυτή εξασφαλίζει την ισορροπία δυνάμεων κατά την διεύθυνση την παράλληλη προς την
ακμή a (με συνισταμένη σε κάθε έδρα τ1.a.b), πλην όμως συνιστούν ένα ζεύγος δυνάμεων (τ1ab)c που
τείνει να περιστρέψει το σώμα γύρω από άξονα που είναι παράλληλος στην ακμή b. Για να
αποφευχθεί αυτό, εφαρμόζεται ομοιόμορφη κατανομή τάσεων τ2 στις δύο κατακόρυφες έδρες.
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Ισορροπία Διατμητικών Τάσεων

Οι δύο νέες κατανομές, συνθέτουν δύο ίσες κατά μέτρο και αντίθετες δυνάμεις μεγέθους τ2(bc),
που αποτελούν ένα ζεύγος δυνάμεων με μοχλοβραχίονα c. Η ροπή του ζεύγους των δύο αυτών
δυνάμεων είναι ίση με τ2(abc). Για να μην περιστρέφεται το στοιχείο, θα πρέπει:

( ) ( )1 2abc abc =  1 2 =
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Η Διατμητική Παραμόρφωση

Ας δούμε τώρα πώς παραμορφώνεται το
ορθογώνιο παραλληλεπίπεδο λόγω της δράσης
των διατμητικών τάσεων τ1=τ2. Λόγω των
διατμητικών αυτών τάσεων, το ορθογώνιο
παραλληλεπίπεδο θα παραμορφωθεί σε ένα
πλάγιο παραλληλεπίπεδο, όπως φαίνεται στο
Σχήμα, όπου η ορθή γωνία των ακμών a και c θα
μεταβληθεί σε οξεία γωνία, που θα την
δηλώνουμε με θ.

2


 = −
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Ορίζουμε ως διατμητική παραμόρφωση γ των
ακμών a και c του στοιχείου, την μεταβολή (σε
ακτίνια), που υπέστη η αρχική ορθή γωνία
τους, δηλαδή



Η Διατμητική Παραμόρφωση
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Λόγος του Poisson (Poisson’s Ratio)
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xx yy zz yy xx

xx


    


+ + + =  = −  − =  0.5 =

Ο λόγος του Poisson παίρνει τιμές στο διάστημα: 1 0.5−  

𝜀𝑦𝑦 = 𝜀𝑧𝑧

P

P



Σχέσεις Τάσεων-Παραμορφώσεων



Ο Νόμος του Hooke στον Εφελκυσμό

Στη Φυσική, ο νόμος του Hooke είναι ένας εμπειρικός νόμος 
που δηλώνει ότι η δύναμη (F) που απαιτείται για να 
επιμηκυνθεί ή να συμπιεστεί ένα ελατήριο κατά (x) 
μεταβάλλεται ανάλογα με την μετατόπιση. Δηλαδή, 

όπου k είναι μία σταθερά χαρακτηριστική του ελατηρίου (που 
εκφράζει την δυσκαμψία του) και x είναι η μετατόπιση η οποία 
θεωρείται μικρή σε σχέση με τη συνολική πιθανή επιμήκυνση 
του ελατηρίου.

Ένα ελαστικό σώμα ή υλικό το οποίο υπακούει σε αυτή την 
εξίσωση λέγεται γραμμικά ελαστικό ή Hookean.

𝐹 = −𝑘. 𝑥



Ο Νόμος του Hooke (Hooke’s Law) 
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Ο Νόμος του Hooke
Θεωρήστε ένα απλό ελικοειδές ελατήριο που έχει το ένα άκρο 
προσαρτημένο σε κάποιο σταθερό αντικείμενο, ενώ το 
ελεύθερο άκρο του έλκεται από μια δύναμη του οποίου το 
μέγεθος είναι F. Ας υποθέσουμε ότι το ελατήριο έχει φτάσει σε 
κατάσταση ισορροπίας , όπου το μήκος του δεν αλλάζει πλέον. 
Έστω x το ποσό κατά το οποίο το ελεύθερο άκρο του 
ελατηρίου μετατοπίστηκε από τη «χαλαρή» του θέση (όταν 
δεν τεντώνεται). Ο νόμος του Hooke ορίζει ότι

𝐹 = −𝑘. 𝑥

ή, ισοδύναμα, σε απόλυτες τιμές,

𝑥 =
𝐹

𝑘



Ο Νόμος του Hooke
Μια ράβδος από οποιοδήποτε ελαστικό υλικό μπορεί να 
θεωρηθεί ότι λειτουργεί ως ένα γραμμικό ελατήριο . Αν η 
ράβδος έχει μήκος L και εμβαδόν διατομής A, τότε η τάση 
εφελκυσμού σ θα είναι γραμμικά ανάλογη με την 
παραμόρφωση ε και του μέτρου ελαστικότητας E :

𝜎 = 𝐸. 𝜀

Αν το μέτρο ελαστικότητας θεωρηθεί σταθερό και λάβουμε 
υπόψιν ότι 

𝜀 =
𝛥𝐿

𝐿

Τότε, ισχύει ότι:

.
    =     L= .

. .

F F F L
L

A A AE E A


   =  =  = 𝛥𝐿 = 𝜀. 𝐿 =

𝐹. 𝐿

𝐸. 𝐴



Hooke’s Law for Normal Stresses 
Ο Νόμος του Hooke για Ορθές Τάσεις
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.
.

.

F L
L

E A
 =    =



Μία σημαντική παρατήρηση

ΠΡΟΣΟΧΗ : Στο παραπλεύρως διάγραμμα, 
παρατηρούμε ότι τα διάφορα υλικά μπορεί να 
έχουν το ίδιο μέτρο ελαστικότητας αλλά να 
παρουσιάζουν διαφορετική αντοχή καθώς και 
διαφορετική παραμόρφωση σε θραύση.

Επομένως, το ότι δύο υλικά έχουν το ίδιο μέτρο 
ελαστικότητας, δεν συνεπάγεται το οποιοδήποτε 
συμπέρασμα σχετικά με την αντοχή ή την 
παραμόρφωση σε θραύση τους.



Παραμορφώσεις κατά τον εφελκυσμό
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Τι είναι το Μέτρο Διάτμησης?

Στην επιστήμη των υλικών, το μέτρο διάτμησης, που 
συμβολίζεται με G, ή μερικές φορές με μ, είναι ένα μέτρο της 
ελαστικής δυσκαμψίας ενός υλικού και ορίζεται ως ο λόγος της 
διατμητικής τάσης προς την διατμητική παραμόρφωση:



Διατμητικές Παραμορφώσεις
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Τριαξονική Φόρτιση
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Ο Γενικευμένος Νόμος του Hooke για Ομογενή και Ισότροπα Υλικά
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Ο Γενικευμένος Νόμος του Hooke για Ομογενή και Ισότροπα Υλικά
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Ο Πίνακας των Μέτρων Ένδοσης 
The Compliance Matrix Sij
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Ο Πίνακας των Μέτρων Δυσκαμψίας 
The Stiffness Matrix Cij

Shear Modulus

The Generalized Hooke’s Law for Homogeneous and Isotropic Materials in Matrix Form



Ανηγμένη διόγκωση

Η ανηγμένη διόγκωση (ή αλλιώς ογκομετρική ανηγμένη παραμόρφωση, στα αγγλικά: volumetric
strain) είναι ένας σημαντικός όρος στη Μηχανική, ειδικά σε προβλήματα υδροστατικής φόρτισης, 
πλαστικής παραμόρφωσης και ανάλυσης τάσεων/παραμορφώσεων.

Ορισμός: Τί είναι η ανηγμένη διόγκωση;

Η ανηγμένη διόγκωση είναι το άθροισμα των ορθών παραμορφώσεων στις τρεις κατευθύνσεις:

Εκφράζει την σχετική μεταβολή όγκου του υλικού:

𝜀𝜐 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧

𝜀𝜐 =
𝛥𝑉

𝑉



Σχέση της Ανηγμένης Διόγκωσης με τον λόγο του 
Poisson και την ορθή παραμόρφωση

Ας υποθέσουμε ένα σώμα που επιμηκύνεται μόνο στον άξονα 𝑥, ενώ στους άλλους άξονες δεν υπάρχει 
άμεση φόρτιση (αλλά αναπτύσσονται παραμορφώσεις λόγω Poisson):
•Ορθή παραμόρφωση κατά 𝑥:

𝜀𝑥 = 𝜀

Οι εγκάρσιες παραμορφώσεις λόγω του φαινομένου Poisson θα είναι:

𝜀𝑦 = 𝜀𝑧 = −𝜈𝜀

(το μείον γιατί υπάρχει συστολή στους εγκάρσιους άξονες)

Άρα η ανηγμένη διόγκωση θα είναι: 𝜀𝜐 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 = 𝜀 − 𝜈𝜀 − 𝜈𝜀 = 𝜀. 1 − 2𝜈



Σχόλια στην Τελική Σχέση

Τελική σχέση: 𝜀𝜐 = 𝜀. 1 − 2𝜈

όπου:
•𝜀𝑣 :ανηγμένη διόγκωση 
•𝜀: ορθή παραμόρφωση στην κύρια διεύθυνση φόρτισης
•𝜈: λόγος του Poisson

Σχόλιο:

•Για ν = 0.5 (ασυμπίεστο υλικό, όπως πολλά υγρά): 𝜀𝜐 = 𝜀. 1 − 2.0.5 = 0

⇒ Καμία μεταβολή όγκου!

Για στερεά υλικά όπως ο χάλυβας (𝜈 ≈ 0.3), έχουμε μικρή αλλά υπαρκτή μεταβολή όγκου.



Παράδειγμα εφαρμογής της σχέσης

Αν ένα υλικό επιμηκύνεται κατά 1% (𝜀 = 0.01) και έχει λόγο Poisson 𝜈 = 0.3, τότε:

ευ = 0.01⋅(1−2⋅0.3) = 0.01⋅0.4 = 0.004 = 0.4%

Άρα ο όγκος του αυξάνεται κατά 0.4%.



Γενικές μορφές της σχέσης σε περιπτώσεις 
πολυ-αξονικής φόρτισης
Πάμε να δούμε τη γενικευμένη μορφή της ανηγμένης διόγκωσης (ογκομετρικής παραμόρφωσης) 
σε τρισδιάστατη εντατική κατάσταση – δηλαδή όταν ασκούνται τάσεις και στις τρεις διευθύνσεις.

Έστω ότι έχουμε:

•𝜎𝑥, 𝜎𝑦 , 𝜎𝑧 :οι ορθές τάσεις στους τρεις κύριους άξονες.

•Το υλικό είναι γραμμικά ελαστικό και ισότροπο.
•Οι παραμορφώσεις που αντιστοιχούν σε αυτές τις τάσεις 
δίνονται από τις εξισώσεις Hooke:

𝜀𝑥 =
1

𝐸
𝜎𝑥 − 𝜈 𝜎𝑦 + 𝜎𝑧

𝜀𝑦 =
1

𝐸
𝜎𝑦 − 𝜈 𝜎𝑥 + 𝜎𝑧

𝜀𝑧 =
1

𝐸
𝜎𝑧 − 𝜈 𝜎𝑥 + 𝜎𝑦



Ανηγμένη διόγκωση στην τρισδιάστατη 
εντατική κατάσταση
Η συνολική ογκομετρική παραμόρφωση είναι το άθροισμα 
των τριών ορθών παραμορφώσεων:

𝜀𝑣 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧

Αν προσθέσουμε τις τρεις παραπάνω εξισώσεις:

𝜀𝑣 =
1

𝐸
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 2𝜈 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

𝜀𝜐 =
1 − 2𝜈

𝛦
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧



Σχόλια στην Τελική Σχέση

Όπως είδαμε, η τελική σχέση της ανηγμένης διόγκωσης στην τρισδιάστατη εντατική κατάσταση, 
είναι: 

𝜀𝜐 =
1 − 2𝜈

𝛦
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

Η σχέση αυτή γράφεται και ως:

𝜀𝜐 =
1 − 2𝜈

𝛦
. 𝑡𝑟[𝝈]

όπου tr[𝜎] είναι το ίχνος του τανυστή τάσεων, δηλαδή το άθροισμα των κύριων τάσεων και 
ισούται με 3 φορές τη μέση υδροστατική τάση σm:

tr[σ]=3σm όπου σm ​= (σxx+σyy​+σzz)/3​​   

𝑡𝑟 𝜎 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 = 𝜎𝐼 + 𝜎𝐼𝐼 + 𝜎𝐼𝐼𝐼



Το Μέτρο Διόγκωσης Κ

Στη Μηχανική, το μέτρο διόγκωσης (ή μέτρο όγκου – στα αγγλικά: bulk modulus, συμβολίζεται συνήθως 
με K) είναι μια ελαστική σταθερά που περιγράφει το πόσο δύσκολο είναι να συμπιεστεί ένα υλικό.

Ορισμός:
Το μέτρο διόγκωσης K ορίζεται ως:

𝐾 = −
Δ𝑝

Δ𝑉
𝑉

όπου:
•Δ𝑝: η μεταβολή πίεσης που ασκείται στο σώμα (θετική σε συμπίεση),
•Δ𝑉/𝑉: η σχετική μεταβολή του όγκου (λόγος μεταβολής όγκου προς αρχικό όγκο),
•το αρνητικό πρόσημο μπαίνει επειδή η αύξηση πίεσης προκαλεί μείωση όγκου.



Φυσική Σημασία του Μέτρου Διόγκωσης

Φυσική σημασία:

▪ Όσο μεγαλύτερο είναι το K, τόσο λιγότερο συμπιέσιμο είναι το υλικό.

▪ Ιδανικά άκαμπτα υλικά → 𝐾 → ∞

▪ Πολύ "μαλακά" υλικά ή υγρά → μικρότερο 𝐾



Σχέση του Μέτρου Διόγκωσης με άλλα Ελαστικά Μεγέθη
Αν υποθέσουμε ότι το υλικό είναι ισότροπο και γραμμικά ελαστικό, τότε το μέτρο διόγκωσης 𝐾 συνδέεται 
με:
•το μέτρο ελαστικότητας του Young (Ε)
•το μέτρο διάτμησης (G)
•τον συντελεστή Poisson (𝜈)

Οι σχέσεις είναι:

1. Με 𝐸και 𝜈:

𝐾 =
𝐸

3 1 − 2𝜈
2. Με 𝐺και 𝜈:

𝐾 =
2𝐺 1 + 𝜈

3 1 − 2𝜈

Αντίστροφα, μπορούμε να εκφράσουμε και τα άλλα μεγέθη συναρτήσει του 𝐾, π.χ.:

𝐸 = 3𝐾 1 − 2𝜈



Παράδειγμα

Ένα απλό παράδειγμα:

Για τα περισσότερα μέταλλα:

•𝜈 ≈ 0.3

•Αν γνωρίζουμε το μέτρο του Young 𝐸, μπορούμε να υπολογίσουμε το 𝐾

𝐾 =
𝐸

3 1 − 2 ⋅ 0.3
=

𝐸

3 ⋅ 0.4
=

𝐸

1.2



Συνοπτικά Συμπεράσματα για τα Μέτρα

Μέγεθος
Τι περιγράφει

𝐸 (Μέτρο του Young) Αντίσταση σε εφελκυσμό ή θλίψη

𝐺 (Μέτρο Διάτμησης) Αντίσταση σε παραμόρφωση διάτμησης

𝐾 (Μέτρο Διόγκωσης) Αντίσταση σε ογκομετρική μεταβολή

𝜈 (Λόγος τουPoisson)
Λόγος της εγκάρσιας προς την διαμήκη 
παραμόρφωση



Πώς προκύπτουν οι σχέσεις που συνδέουν το 
μέτρο διόγκωσης Κ με τα E, G και ν?

Οι σχέσεις μεταξύ των ελαστικών μεγεθών (K, E, G, ν) προκύπτουν από τη γενική θεωρία γραμμικής 
ελαστικότητας για ισότροπα και ομογενή υλικά. Παρακάτω θα δείξουμε πώς προκύπτουν βήμα-βήμα
αυτές οι σχέσεις από τις βασικές εξισώσεις.

Βασικά μεγέθη:

•𝐸: Μέτρο του Young (ή μέτρο ελαστικότητας, Young’s Modulus)
•𝐺: Μέτρο διάτμησης (shear modulus)
•𝐾: Μέτρο διόγκωσης (ή μέτρο όγκου, bulk modulus)
•𝜈: Συντελεστής Poisson



Πώς προκύπτουν οι σχέσεις που συνδέουν το 
μέτρο διόγκωσης Κ με τα E, G και ν?

Ξεκινάμε από τις βασικές σχέσεις παραμόρφωσης
Για ισότροπα υλικά, οι σχέσεις μεταξύ των τάσεων και 
παραμορφώσεων δίνουν:

𝜀𝑥 =
1

𝐸
𝜎𝑥 − 𝜈 𝜎𝑦 + 𝜎𝑧

𝜀𝑦 =
1

𝐸
𝜎𝑦 − 𝜈 𝜎𝑥 + 𝜎𝑧

𝜀𝑧 =
1

𝐸
𝜎𝑧 − 𝜈 𝜎𝑥 + 𝜎𝑦



Βήμα 1: Ανηγμένη Διόγκωση

Βήμα 1: Ανηγμένη Διόγκωση

Η ολική ανηγμένη διόγκωση (δηλ. η μεταβολή του όγκου προς τον αρχικό όγκο) είναι:

Δ𝑉/𝑉 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧

Αν προσθέσουμε τις 3 προηγούμενες εξισώσεις:

𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 =
1

𝐸
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 1 − 2𝜈



Βήμα 2. Από τον ορισμό του μέτρου διόγκωσης

Βήμα 2: Ορισμός του μέτρου διόγκωσης

Αν εφαρμόσουμε ισότροπη πίεση (δηλαδή υδροστατική πίεση), τότε:

𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = −𝑝

(Αρνητικό πρόσημο γιατί πρόκειται για πίεση.)

Άρα:

𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 =
1

𝐸
−3𝑝 1 − 2𝜈 = −

3𝑝 1 − 2𝜈

𝐸



Βήμα 2. (συνέχεια)
Αλλά από τον ορισμό του K:

𝐾 = −
𝑝

Δ𝑉/𝑉
= −

𝑝

𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧

Άρα:

𝐾 =
𝑝

3𝑝 1 − 2𝜈
𝐸

=
𝐸

3 1 − 2𝜈

Αυτή είναι η βασική σχέση:

𝐾 =
𝐸

3 1 − 2𝜈



Σχέση του K με G και ν

Από τη γνωστή σχέση μεταξύ E, G και ν:

𝐸 = 2𝐺 1 + 𝜈

Και την σχέση Ε= 3Κ.(1-2ν), προκύπτει ότι:

𝐾 =
2𝐺 1 + 𝜈

3 1 − 2𝜈

𝐾 =
2𝐺 1 + 𝜈

3 1 − 2𝜈



Περίληψη των Βασικών Σχέσεων

Σχέση Ερμηνεία

𝐾 =
𝐸

3 1 − 2𝜈

Μέτρο διόγκωσης συναρτήσει των E και ν

𝐸 = 2𝐺 1 + 𝜈
Μέτρο του Young συναρτήσει των G και το ν

𝐾 =
2𝐺 1 + 𝜈

3 1 − 2𝜈

Μέτρο διόγκωσης συναρτήσει των G και ν



Αριθμητικό Παράδειγμα

Δεδομένα: Ένα ισότροπο, ελαστικό υλικό έχει:

•Μέτρο του Young:
𝐸 = 210 G𝑃a

•(τυπική τιμή για χάλυβα)

•Συντελεστής Poisson:
𝜈 = 0.3

Ζητούνται:
1.Το μέτρο διάτμησης 𝐺
2.Το μέτρο διόγκωσης 𝐾



Υπολογισμοί των G και Κ

Υπολογισμός G
Χρησιμοποιούμε τη σχέση:

𝐸 = 2𝐺 1 + 𝜈 ⇒ 𝐺 =
𝐸

2 1 + 𝜈
Άρα:

𝐺 =
210

2 1 + 0.3
=

210

2.6
≈ 80.77 GPa

Υπολογισμός K
Χρησιμοποιούμε τη σχέση:

𝐾 =
𝐸

3 1 − 2𝜈
Άρα:

𝐾 =
210

3 1 − 2 ⋅ 0.3
=

210

3 0.4
=

210

1.2
= 175 GPa



Σχέση της ανηγμένης διόγκωσης με το μέτρο 
διόγκωσης στην τρισδιάστατη εντατική κατάσταση

Θυμόμαστε ότι:

𝐾 =
𝐸

3 1 − 2𝜈
⇒

1 − 2𝜈

𝐸
=

1

3𝐾
Άρα:

𝜀𝑣 =
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3𝐾
ή:

𝜀𝑣 =
tr 𝝈

3𝐾

Και επειδή tr[σ] = 3σm , έπεται ότι: 𝜀𝜐 =
𝜎𝑚

𝐾



Συμπεράσματα

Συμπεράσματα:

•Η ανηγμένη διόγκωση εξαρτάται μόνο από την υδροστατική (μέση) τάση.

•Δεν επηρεάζεται από τάσεις διάτμησης (shear).

•Σε ασυμπίεστα υλικά, για τα οποία 𝜈 = 0.5, προκύπτει 𝜀𝑣 = 0 (ο όγκος δεν αλλάζει).



Παράδειγμα

Έστω: 𝜎𝑥 = 100 MPa, 𝜎𝑦 = 50 MPa, 𝜎𝑧 = 75 MPa

Υλικό με 𝐸 = 200 GPa, 𝜈 = 0.3

Υπολογίζουμε:

𝜀𝑣 =
1 − 2 ⋅ 0.3

200 × 103
⋅ 100 + 50 + 75 =

0.4

200 × 103
⋅ 225

𝜀𝑣 =
0.4 ⋅ 225

200000
=

90

200000
= 0.00045 = 0.045%

Άρα το υλικό αυξάνει τον όγκο του κατά 0.045% υπό αυτή τη φόρτιση.



Ο Λόγος του Poisson και οι βασικές σχέσεις

ΔV=Διόγκωση
ν=Λόγος του Poisson
ε=Παραμόρφωση
V0=Αρχικός όγκος, πριν 
την παραμόρφωση

Ε=Μέτρο Ελαστικότητας
ν=Λόγος του Poisson
G=Μέτρο Διάτμησης
Κ=Μέτρο Διόγκωσης



Ελαστική Συμπεριφορά
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Ένα υλικό λέμε ότι παρουσιάζει ελαστική συμπεριφορά, όταν:

▪ Μετά την αποφόρτιση επιστρέφει στις αρχικές του διαστάσεις.
▪ Η επιστροφή στις αρχικές διαστάσεις ακολουθεί τον ίδιο δρόμο με εκείνον της φόρτισης.
▪ Η επιστροφή στις αρχικές διαστάσεις, συμβαίνει ακαριαία.

• Αν επιπλέον των παραπάνω συνθηκών η τάση
είναι ανάλογη της παραμόρφωσης, τότε η
συμπεριφορά ονομάζεται γραμμικά ελαστική
(linear elastic behavior).

• Αντίθετα, αν ισχύουν οι τρεις βασικές συνθήκες
αλλά η η τάση δεν είναι ανάλογη της
παραμόρφωσης, τότε η συμπεριφορά
ονομάζεται μη-γραμμικά ελαστική (non-
linearly elastic behavior).



Αιτίες Αστοχίας των Πολυμερών

1. Λόγω μεγάλης ελαστικής παραμόρφωσης

Ιδιαίτερα σε φέρουσες κατασκευές, λόγω μη επαρκούς στιβαρότητας (rigidity) ή δυσκαμψίας (stiffness). 
Σε αυτήν την περίπτωση, ο καθοριστικός παράγοντας είναι το μέτρο ελαστικότητας.

2. Λόγω διαρροής ή εκτεταμένης πλαστικής παραμόρφωσης

Σε κάποιες εφαρμογές, τα πολυμερή αποτυγχάνουν να φέρουν τα φορτία που προκαλούνται από 
εξωτερικά αίτια λόγω μη επαρκούς αντοχής (strength). Για την ποσοτικοποίηση αυτών των αστοχιών, 
είναι απαραίτητη η γνώση της τάσης διαρροής (yield strength) και της αντίστοιχης παραμόρφωσης (yield 
strain).

3. Λόγω θραύσης

Οι ρωγμές είναι περιοχές ασυνέχειας (discontinuity areas) των υλικών που συχνά οδηγούν στην θραύση 
(fracture). Η θραύση μπορεί να συμβεί ξαφνικά και απροειδοποίητα και το υλικό να σπάσει ψαθυρά 
(brittle fracture), η μπορεί να σπάσει λόγω κόπωσης με μία σταδιακή διαδικασία (progressive fracture).



Συμπεριφορά σ-ε των πολυμερών

• Τα πολυμερή παρουσιάζουν μία ποικιλία συμπεριφορών, 
που εκτείνεται, ανάλογα με τις συνθήκες, από την απόλυτα 
ψαθυρή έως την απόλυτα όλκιμη.

• Η χρησιμότητα των διαγραμμάτων σ-ε των πολυμερών 
διευρύνεται αν γίνουν πειράματα τάσης-παραμόρφωσης 
σε διάφορες θερμοκρασίες και διάφορους ρυθμούς 
παραμόρφωσης (Strain-rates).

• Όπως θα δούμε και στην συνέχεια, αυξανομένης της 
ταχύτητας παραμόρφωσης, αυξάνεται το μέτρο 
ελαστικότητας και η αντοχή, ενώ μειώνεται η 
παραμόρφωση θραύσης.



Σημαντικά μεγέθη: Ορισμοί

Μέση Ορθή Τάση:

Μέση Ορθή 
Παραμόρφωση:

Πραγματική Ορθή Τάση:

Πραγματική Ορθή Παραμόρφωση:



Stress-Strain Relation in Linear Elastic Behavior



Γραμμικά Ελαστική και μη-Γραμμικά Ελαστική Συμπεριφορά
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Καμπύλες σ - ε
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σΑ = Όριο Αναλογίας           σC = Άνω Όριο Διαρροής        σΕ = Αντοχή σε Εφελκυσμό
σΒ = Όριο Ελαστικότητας    σD = Κάτω Όριο Διαρροής      σF = Τάση Θραύσεως                                                    



Καμπύλη σ – ε πολυμερούς

Αυτή είναι μία γενική μορφή 
καμπύλης σ-ε ενός πολυμερούς. Με TS 
συμβολίζεται η αντοχή σε εφελκυσμό 
(Tensile Strength) και με σy η τάση 
διαρροής (Yield Stress) του 
πολυμερούς.

Όπως θα δούμε, υπάρχουν καμπύλες 
σ-ε διαφορετικής μορφής. Η μορφή 
των καμπυλών σ-ε εξαρτάται από την 
φύση του πολυμερούς, καθώς και από 
τις πειραματικές συνθήκες.





Διάφοροι τύποι καμπυλών σ-ε πολυμερών



Μηχανική Συμπεριφορά των Πολυμερών



Μηχανική Συμπεριφορά Πολυμερών



Συμπεριφορά σε θλίψη των άμορφων πολυμερών

Το κύριο χαρακτηριστικό της συμπεριφοράς 
σε θλίψη των άμορφων πολυμερών είναι οι 
μεγάλες παραμορφώσεις που αναπτύσσουν.



Συμπεριφορά σε θλίψη Κρυσταλλικών πολυμερών 

Δεν παρουσιάζουν ένα εμφανές όριο διαρροής.



Συμπεριφορά του PS σε θλίψη και σε εφελκυσμό. 

• Σε εφελκυσμό το PS παρουσιάζει ψαθυρή 
συμπεριφορά, ενώ σε θλίψη, όλκιμη. 

• Το μέτρο και η αντοχή του PS σε θλίψη είναι 
πολύ μεγαλύτερα από τα αντίστοιχα μεγέθη 
σε εφελκυσμό.



Θερμικές τάσεις και παραμορφώσεις 
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Free Thermal Expansion
Ελεύθερη θερμική διαστολή

Thermal strain
θερμική παραμόρφωση

α = Γραμμικός συντελεστής θερμικής διαστολής
α = Linear Coefficient of Thermal Expansion (LCTE)

Thermal deformation
Θερμική επιμήκυνση
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( )
P

Ea
A

 = = −

Θερμικές τάσεις και παραμορφώσεις 



Παράρτημα: Εισαγωγή στους Τανυστές
Ο Τανυστής των Τάσεων



Εισαγωγή

• Σε αυτό το Κεφάλαιο θα ασχοληθούμε με μία ανασκόπηση της γραμμικής
άλγεβρας και ιδιαίτερα της Θεωρίας των Τανυστών που είναι απαραίτητη
για την κατανόηση των επόμενων Κεφαλαίων.

• Δεδομένου ότι θα περιοριστούμε σε τανυστικούς μετασχηματισμούς που
αφορούν σε δεξιόστροφα ορθογώνια Καρτεσιανά συστήματα
συντεταγμένων, η ανασκόπηση δεν θα επεκταθεί πέρα από αυτούς τους
μετασχηματισμούς.

• Πριν ασχοληθούμε με τους τανυστές θα υπενθυμίσουμε μερικά στοιχεία
που αφορούν στην Άλγεβρα των Πινάκων και την στροφή συστήματος
συντεταγμένων.
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Υπενθυμίσεις από τους Πίνακες
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ΟΡΙΣΜΟΙ:

• Αν τα στοιχεία ενός πίνακα είναι σε μία στήλη, τότε λέγεται «πίνακας στήλη» ή «πίνακας 
διάνυσμα».

• Τετραγωνικός Πίνακας λέγεται ο πίνακας που έχει ίσο αριθμό γραμμών και στηλών.

• Μοναδιαίος Πίνακας [J] είναι ο τετραγωνικός πίνακας του οποίου οι διαγώνιοι όροι είναι 
μονάδες και οι εκτός διαγωνίου όροι είναι μηδέν. Τα στοιχεία του πίνακα [J] πολλές φορές 
συμβολίζονται με το

ij

ij

1 αν i=j

0 αν i j





=

= 
 

1 0 0

J 0 1 0

0 0 1

 
 

=  
 
 

• Ο πρώτος δείκτης υποδηλώνει την γραμμή και ο δεύτερος την στήλη.

• Το         ονομάζεται δέλτα του Kronecker και είναι ένας τελεστής.𝛿𝑖𝑗
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Υπενθυμίσεις από τους Πίνακες
• Ανάστροφος Πίνακας [Α]Τ ενός τετραγωνικού πίνακα [Α] ονομάζουμε τον πίνακα που προκύπτει 

από τον [Α] αν οι γραμμές γίνουν στήλες και οι στήλες γραμμές.

   
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

      

a a a a a a

a a a a a a

a a a a a a



   
   

 =   =   
   
   

• Ένας τετραγωνικός πίνακας [Α] λέγεται “συμμετρικός” αν 

ij ji = ή    


 = 

• Ένας τετραγωνικός πίνακας [Α] λέγεται “αντισυμμετρικός” αν 

ij ji = − ή    


 = − 

• Είναι σαφές ότι τα στοιχεία της κύριας διαγωνίου ενός αντισυμμετρικού πίνακα είναι μηδέν.

• Ονομάζουμε Ίχνος ενός nxn τετραγωνικού πίνακα [A], το άθροισμα των όρων της κύριας διαγωνίου:

 
1

Ίχνος =
n

ii

i


=

 



Παραδείγματα
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Ανάστροφος Πίνακα:

Συμμετρικός Πίνακας:

Αντισυμμετρικός Πίνακα:
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Άλγεβρα Πινάκων
Δύο πίνακες [Α](mxn) και [Β](mxn) είναι ίσοι αν έχουν τον ίδιο αριθμό γραμμών (m) και τον ίδιο αριθμό 
στηλών (n) και αν τα αντίστοιχα στοιχεία αij και bij είναι ίσα:

ij ijb =

Το Άθροισμα δύο πινάκων [Α] και [Β] ορίζεται μόνον αν οι [Α] και [Β] έχουν τον ίδιο αριθμό γραμμών 
m και τον ίδιο αριθμό στηλών n. Το άθροισμα [Α]+[Β] είναι τότε ένας πίνακας [C] με τον ίδιο αριθμό 
γραμμών m και στηλών n όπως οι πίνακες [Α] και [Β], ενώ για τα στοιχεία του πίνακα [C] ισχύει:

ij ij ijc b= +           C =  +  

Η Διαφορά δύο πινάκων [Α] και [Β] ορίζεται μόνον αν οι [Α] και [Β] έχουν τον ίδιο αριθμό γραμμών m 
και τον ίδιο αριθμό στηλών n. Η Διαφορά [Α]-[Β] είναι τότε ένας πίνακας [C] με τον ίδιο αριθμό 
γραμμών m και στηλών n όπως οι πίνακες [Α] και [Β], ενώ για τα στοιχεία του πίνακα [C] ισχύει:

            C =  −   ij ij ijc b= −



Μία Χρήσιμη Ιδιότητα των Τετραγωνικών Πινάκων
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“Κάθε τετραγωνικός πίνακας [Α] μπορεί να γραφεί ως άθροισμα ενός 
συμμετρικού πίνακα [Β] και ενός αντισυμμετρικού πίνακα [C]”.

Πράγματι, αν ορίσουμε:

 
   ( )

 
   ( )

,      και         = 
2 2

C

 
 +   − 

 =

Τότε,      C =  +

Όπου,            και    C C
 

 =  = −



Πολλαπλασιασμός
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Πολαπλασιασμός ενός πίνακα [Α] με μία σταθερά c δίνει έναν πίνακα [Β] τα στοιχεία του 
οποίου είναι:

  .[ ]          b .ij ijc c =   =

Το γινόμενο δύο πινάκων [Α] (nxm) και [Β] (mxl) υπάρχει, αν ο αριθμός m των στηλών του 
[Α] είναι ίσος με τον αριθμό των γραμμών του [Β]. Το γινόμενο [Α].[Β] είναι τότε ένας 
πίνακας [C] τα στοιχεία του οποίου υπολογίζονται αν πολλαπλασιαστούν τα στοιχεία της i 
γραμμής  του [A] με τα στοιχεία της j στήλης του [Β] και τα γινόμενα προστεθούν. Δηλαδή:

      ( ) ( )
1

.          c =    1, 2,...,  ,  1, 2,...,
m

ij ik kj

k

C b i n j l
=

=    = =

Είναι προφανές ότι:        
1

.           c
m

ij ik kj

k

C J C c 
=

=  = 

Ανάστροφος γινομένου πινάκων:        ( )        . . . . . .C D D C
    

  =  



Παραδείγματα Γινομένων Πινάκων
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(2 x 3)

(3 x 2) (2 x 2)

(2 x 2) (2 x 3)

(2 x 3)



Αντίστροφος Πίνακα
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[A]-1 = [A]T /det[A]

Όπου [A]Τείναι ο ανάστροφος του πίνακα του οποίου τα στοιχεία (i,j) είναι τα 

Αλγεβρικά συμπληρώματα των στοιχείων αij του [Α] και det[A] είναι η ορίζουσα 
του [Α].

Ισχύει ότι:          
1 1

. . J
− −

  =   =

Αν            
1 1 1

.           .C C
− − −

=    =  



Παραδείγματα αντιστροφής πινάκων
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1.          Έστω πίνακας:    με    0
b

d bc
c d




 
 = −  

 

τότε ο αντίστροφος πίνακας είναι:

 
1 1 d b

cd bc 

− − 
 =  

−−  

2.          Έστω πίνακας:

   
1

3 1 2 3 4 1 5 4

0 2 1   1 4 1 3 4

1 1 2 1 2 1 3 2

−

− −   
   

 = −   = −   
   −   



Ιδιότητες Πινάκων
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 

   ( )    

 ( )  

   ( )    

 ( )  ( )
1

1

.

. .

c c




  

 

  

 −
− 

  =  

 +  =  + 

 = 

  =  

 = 

Αν οι πίνακες [Α] και [Β] είναι m x n

Αν ο [Α] είναι m x p και o [Β] p x n

Αν ο [Α] είναι αντιστρέψιμος και n x n



Παράγωγος Πίνακα
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 
 

111

11 1

1 1

     

n

n

m mn m mm

a a

a a



 


 

 

 
    
   

 =  =           
  











Ορθογώνιοι Πίνακες
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Ένας τετραγωνικός πίνακας [Q] (n x n) είναι ορθογώνιος, αν 

         

   
1

. .

δηλαδή, αν  

Q Q Q Q J

Q Q

 

 −

= =

=

Παράδειγμα:

Ο πίνακας    
cos sin

sin cos
Q

 

 

− 
=  

 
Είναι ορθογώνιος γιατί

 
2 2

2 2

cos sin cos sin cos sin cos sin
. .

sin cos sin cos sin cos sin cos

1 0cos sin 0

0 10 cos sin
J

       

       

 

 

− −       
= =       

− −       

 +  
= =    

+   



Γραφή με δείκτες – Σύμβαση Άθροισης Einstein
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Αν ένας δίκτης εμφανίζεται δύο φορές στον ίδιο όρο, αυτό σημαίνει άθροισμα των όρων που
προκύπτουν όταν ο επαναλαμβανόμενος δείκτης που λέγεται «άεργος δείκτης» πάρει διαδοχικά τις
τιμές 1,2,3, ...,m.

 Έτσι, το γινόμενο δύο πινάκων γράφεται:  

     
1

.          c =       ή      c
m

ij ik kj ij ik kj

k

C b b 
=

=    =

Ο  δείκτης k είναι ο άεργος δείκτης ως προς τον οποίο γίνεται η άθροιση, ενώ οι δείκτες i , j είναι οι 
ελεύθεροι δείκτες που παίρνουν μία συγκεκριμένη τιμή. Το αποτέλεσμα θα ήταν το ίδιο αν τον δείκτη k 
τον αντικαθιστούσαμε με το λ ή το μ ή με οποιοδήποτε άλλο γράμμα του αλφαβήτου.

Ο επαναλαμβανόμενος δείκτης μπορεί να υπάρχει και στο ίδιο σύμβολο, οπότε έχουμε:

11 22 33

1

...
m

ii ii mm jj kk

i

       
=

 = + + + +  
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Γραφή με δείκτες – Σύμβαση Άθροισης Einstein

Εσωτερικό γινόμενο δύο διανυσμάτων: ( )1 2 3, ,   


και ( )1 2 3, ,b b b b


1 1 2 2 3 3 i ib a b a b a b a b = + + 



Ομοίως, 

     
1

.           c
m

ij ik kj

k

C J C c 
=

=  =  ή cij ik kjc =

Η σχέση αυτή λέγεται και «πράξη αντικατάστασης», επειδή το γινόμενο επί το δέλτα 
προκαλεί αντικατάσταση του άεργου δείκτη k με τον ελεύθερο δείκτη j του δέλτα.
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A (x1, x2, x3)

Στροφή Συστήματος Αναφοράς

1 2 30x x x =

1 2 30x x x   =

( ) ( )1 2 3 1 2 3, , , ,x x x x x x   = =


Αρχικό Σύστημα Αναφοράς

Τελικό Σύστημα Αναφοράς

1 1 2 2 3 3 1 1 2 2 3 3x i x i x i x i x i x i      = + + = + +
  

Αν πολλαπλασιάσουμε εσωτερικά και διαδοχικά με 
και ορίσουμε :

( ). cos ,jm j m j mr i i x x  =


1 2 3, ,    

τότε
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A (x1, x2, x3)

Στροφή Συστήματος Αναφοράς

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

x r x r x r x

x r x r x r x

x r x r x r x

 = + +

 = + +

 = + +

ή
i ij jx r x =

ή

1 111 12 13

2 21 22 23 2

31 32 333 3

x xr r r

x r r r x

r r rx x

    
     =    

         

ή     X R X =

( )1,2,3i =

   R ί ή   =
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Στροφή Συστήματος Αναφοράς

A (x1, x2, x3)

1 2 30x x x =

1 2 30x x x   =

( ) ( )1 2 3 1 2 3, , , ,x x x x x x   = =


Αρχικό Σύστημα Αναφοράς

Τελικό Σύστημα Αναφοράς

1 1 2 2 3 3 1 1 2 2 3 3x i x i x i x i x i x i      = + + = + +
  

Αν πολλαπλασιάσουμε εσωτερικά και 
διαδοχικά με                     και ορίσουμε :1 2 3, ,  



( ). cos ,jm j m j mr i i x x  =


τότε
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Στροφή Συστήματος Αναφοράς

1 11 1 21 2 31 3

2 12 1 22 2 32 3

3 13 1 23 2 33 3

x r x r x r x

x r x r x r x

x r x r x r x

  = + +

  = + +

  = + +
A (x1, x2, x3)

1 111 21 31

2 12 22 32 2

13 23 333 3

x xr r r

x r r r x

r r rx x

    
     =    

        

     X R X


=

j kj kx r x=
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Στροφή Συστήματος Αναφοράς

i ij jx r x =
j kj kx r x=Από και          0i ij kj k ik k ij kj kx r r x x r r x   =  − =

ij kj ikr r =

Από k kj jx r x = και i ki kx r x=          0i ki kj j ij j ki kj jx r r x x r r x=  − =



 ki kj ijr r =

ik jk ijr r =

Επομένως:
ik jk ki kj ijr r r r = =
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Στροφή Συστήματος Αναφοράς

ik jk ki kj ijr r r r = =Από προκύπτουν οι σχέσεις:

2 2 2

11 12 13

2 2 2

21 22 23

2 2 2

31 32 33

11 21 12 22 13 23

21 31 22 32 23 33

31 11 32 12 33 13

1

1

1

0

0

0

r r r

r r r

r r r

r r r r r r

r r r r r r

r r r r r r

+ + =

+ + =

+ + =

+ + =

+ + =

+ + =
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Στροφή Συστήματος Αναφοράς

Από τις σχέσεις:     X R X =      X R X


=και 

      X R R X


 = και       X R R X


=

Επομένως:         R R R R J
 

= =

ik jk ki kj ijr r r r = =
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Στροφή Συστήματος Αναφοράς

Από την σχέση:      R R J


=          
1 1

. .R R R J R
 − −

=

    
1

R R
 −

=

Αν πάρουμε την 
ορίζουσα της σχέσης:         R R R R J

 
= = 

1R =
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Εφαρμογή στον διδιάστατο χώρο

ΟΑ1= x1 ΟΑ2= x2

ΟΑ’1= x’1 ΟΑ’2= x’2

0

Α

x1

x2

x’1

x’2

Α1

Α2

Α’1Α’2

1i


2i


1i



2i


θ

θ 11 12

21 22

cos               sin

sin             cos

r r

r r

 

 

= =

= − =

cos sin

sin cos
R

 

 

 
=  

− 

1 1

2 2

cos sin
.

sin cos

x x

x x

 

 

    
=     −    

    X R X =



Τανυστές
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Τανυστής Μηδενικής Τάξης:

«Τανυστής Μηδενικής τάξης είναι το βαθμωτό μέγεθος, δηλαδή μία
ποσότητα που παραμένει αναλλοίωτη στους μετασχηματισμούς του
συστήματος αναφοράς».

• Μερικά παραδείγματα βαθμωτών μεγεθών είναι η θερμοκρασία, η 
πυκνότητα, το έργο κλπ.

• Να σημειωθεί ότι τα βαθμωτά μεγέθη προσδιορίζονται από έναν αριθμό
που παριστάνει το μέγεθος ή την τιμή του και δεν χρειάζεται καμία
σύνδεση με κάποιο σύστημα αναφοράς.
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Τανυστές

Τανυστής Πρώτης Τάξεως:

Τανυστής πρώτης τάξεως είναι ένα μέγεθος το οποίο κατά την στροφή του 
συστήματος αναφοράς υπακούει στον νόμο:

     .      ή     t i ik kR r t  =  =

Όπου:  
1

2

3

t

t

t

 
 

 =  
 
 

και

1 111 12 13

2 21 22 23 2

31 32 333 3

t tr r r

t r r r t

r r rt t

    
     =    

         

Έτσι, ο τανυστής πρώτης τάξεως είναι το διάνυσμα. Για παράδειγμα, η δύναμη, η
ταχύτητα, η ορμή, η επιτάχυνση και κάθε διανυσματικό μέγεθος είναι τανυστής πρώτης
τάξεως.
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Τανυστές

Τανυστής Δευτέρας Τάξεως:

Τανυστής δευτέρας τάξεως είναι ένα μέγεθος το οποίο κατά την στροφή του 
συστήματος αναφοράς υπακούει στον νόμο:

       . .      ή     t ij ik jm kmR R r r t


  =  =

11 12 13 11 12 13 11 12 13 11 21 31

21 22 23 21 22 23 21 22 23 12 22 32

31 32 33 31 32 33 31 32 33 13 23 33

. .

t t t r r r t t t r r r

t t t r r r t t t r r r

t t t r r r t t t r r r

         
          =       
                

Τανυστές 2ας τάξεως είναι η τάση, η παραμόρφωση, η ροπή αδράνειας, ο συντελεστής 
θερμικής διαστολής, η αγωγιμότητα και άλλα.



Στροφή τανυστή 2ης τάξης στον χώρο Ε2
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       . .      ή     t ij ik jm kmR R r r t


  =  =

cos sin

sin cos
R

 

 

 
=  

− 

  11 12

21 22

t t

t t

 
 =  

 

  11 12

21 22

t t

t t

  
 =    

Νόμος Μετασχηματισμού

Πίνακας 
Στροφής

Ο τανυστής στο 
αρχικό Σύστημα 
Αναφοράς

Ο τανυστής στο τελικό 
Σύστημα Αναφοράς

0 x1

x2

x’1

x’2

1i


2i


1i



2i


θ

θ
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( )

( )

( )

( )

2 2

11 11 12 21 22

2 2

12 22 11 12 21

2 2

21 22 11 12 21

2 2

22 11 12 21 22

cos sin cos sin

sin cos cos sin

sin cos sin cos

sin sin cos cos

t t t t t

t t t t t

t t t t t

t t t t t

   

   

   

   

 = + + +

 = − + −

 = − − +

 = − + +

0 x1

x2

x’1

x’2

1i


2i


1i



2i


θ

θ

Στροφή τανυστή 2ης τάξης στον χώρο Ε2

Ιδιαίτερα στην περίπτωση συμμετρικού τανυστή όπου 

ij jit t= οι παραπάνω σχέσεις μπορούν να γραφούν

11 22 11 22
11 12

11 22
12 21 12

11 22 11 22
22 12

cos 2 sin 2
2 2

sin 2 cos 2
2

cos 2 sin 2
2 2

t t t t
t t

t t
t t t

t t t t
t t

 

 

 

+ −
 = + +

−
 = = − +

+ −
 = − −



Πολλαπλασιασμός Τανυστών
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Αν αναφερθούμε στον τανυστή πρώτης τάξης (το διάνυσμα), γνωρίζουμε δύο τρόπους πολλαπλασιασμού. Το 
εσωτερικό                και το εξωτερικό γινόμενο . Εδώ, θα ορίσουμε και έναν άλλο τρόπο, το τανυστικό 
γινόμενο             . Το γινόμενο αυτό βρίσκεται αν πολλαπλασιάσουμε αλγεβρικά τα διανύσματα.

 • 
 

xB


   Β


1 1 2 2 3 3

1 1 2 2 3 3

i i i

b i b i b i

   = + +

 = + +

 

 

Οπότε:                            ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

    Β =          

                   +    +       

                   +    +       

C b i i b i i b i i

b i i b i i b i i

b i i b i i b i i

  

  

  

=  + +

+

+

  




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Πολλαπλασιασμός Τανυστών
Οι ποσότητες (I,j = 1,2,3) παριστάνουν τη βάση του διανυσματικού χώρου Ε3xE3 , 
όπως είναι η βάση του διανυσματικού χώρου Ε3 στον οποίο ορίζονται οι τανυστές 
πρώτης τάξης (διανύσματα). Οι συνιστώσες του      , μπορούν να γραφούν, κατ’αναλογία με την 
γραφή των διανυσμάτων, με την μορφή πίνακα:

(      )j ki i


ji


( )1,2,3j =

C


 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a b a b a b

C a b a b a b

a b a b a b

 
 

=  
 
 

Το γινόμενο αυτό βρίσκεται από τα μητρώα - διανύσματα

 
1

2

3







 
 

 =  
 
 

 
1

2

3

b

b

b

 
 

 =  
 
 

και Με τον ακόλουθο τρόπο:      .C


=  

ij i jc b=ή
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Μία Ενδιαφέρουσα Ιδιότητα του Πολλαπλασιασμού των Τανυστών

Θα αποδείξουμε ότι: Το γινόμενο δύο τανυστών πρώτης τάξης είναι τανυστής δευτέρας 
τάξεως.

Πράγματι,

     

     

           

     

.

.

. .

' .

C

R

R R

C



  



=  

 = 

  =    = 

 =  

         

       

. . .

. .

C R R

C R C R

 



 =   

 =

Άρα, αφού ο τανυστής C, ικανοποιεί τον μετασχηματισμό των τανυστών δευτέρας τάξεως, 
είναι τανυστής δευτέρας τάξεως.



Γραφή του εξωτερικού γινομένου με δείκτες
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Εισάγουμε το δεύτερο σύμβολο του Kronecker ή μεταθετικό σύμβολο:

ijk =
1 αν τα i, j, k είναι κυκλική μετάθεση των 1, 2, 3
-1 αν τα i, j, k είναι κυκλική μετάθεση των 3, 2, 1
0 αν δύο ή και τρία από τα i, j, k συμπίπτουν 

( ) ( )1 2 3 1 2 3, , ,  , ,b b b   
 

( )1 2 3, ,C c c c


i ijk j kc b=

Γνωρίζουμε ότι το εξωτερικό γινόμενο δύο διανυσμάτων                                               είναι ένα 
διάνυσμα                          κάθετο στα Α και Β. Σύμφωνα με την σύμβαση, θα ισχύει:

 
2 3 3 2

3 1 1 3

1 2 2 1

xB=

b b

C b b

b b

 

 

 

− 
 

=  − 
 − 


 

1

2

3







 
 

 =  
 
 

 
1

2

3

b

b

b

 
 

 =  
 
 
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Γραφή του Μικτού Γινομένου με δείκτες

( )

 x c εμβαδόν βάσης

cos ύψος h

Όγκος V =  x c . cos

V=a   x c

b

b

b

 

 

=

=

•

 



 



1 2 3

1 2 3

1 2 3

    

V=       

      

b b b

c c c

  

V= ijk i j kb c
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Διαγωνοποίηση Τριδιάστατου Συμμετρικού Τανυστή 2ης Τάξης

Όπως είδαμε, με την βοήθεια των σχέσεων        . .      ή     t ij ik jm kmR R r r t


  =  =

μπορούμε να βρούμε τις συνιστώσες ενός τανυστή 2ας τάξεως σε ένα οποιοδήποτε σύστημα 
αναφοράς. Θα αποδείξουμε ότι υπάρχει κάποιο σύστημα αναφοράς, το οποίο μπορεί να 
προσδιοριστεί, και στο οποίο οι συμμετρικοί τανυστές έχουν συνιστώσες μόνο κατά την κύρια 
διαγώνιό τους, ενώ όλες οι άλλες είναι μηδέν. Δηλαδή,

 

0 0

0 0

0 0

I

II

III

t

t

t

 
  =  
 
 

, ,I II IIIt t tΟι συνιστώσες                      αποτελούν τις κύριες τιμές του τανυστή, ενώ το σύστημα αναφοράς 
στο οποίο αυτές εμφανίζονται, ονομάζεται κύριο σύστημα αναφοράς.
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Διαγωνοποίηση Τριδιάστατου Συμμετρικού Τανυστή 2ης Τάξης

Η διαδικασία εύρεσης των κυρίων τιμών και του κύριου συστήματος, λέγεται 
«διαγωνοποίηση» του συμμετρικού τανυστή. 

Απόδειξη: Γνωρίζουμε ότι:        . .      ή     t ij ik jm kmR R r r t


  =  =

Πολλαπλασιάζουμε τη σχέση από αριστερά με [R]Τ οπότε προκύπτει η σχέση: 

       
T

R ' . R


 =

Το γινόμενο [Τ].[R]T δημιουργεί έναν νέο τετραγωνικό πίνακα. Είναι σαφές ότι η πρώτη
στήλη του πίνακα αυτού είναι το γινόμενο του [Τ] επί την πρώτη στήλη του [R]T, ενώ η
πρώτη στήλη του πρώτου μέλους δίνεται από το [R]T επί την πρώτη στήλη του [Τ’].
Δηλαδή,
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 
11 I 1111 21 31

12 12 22 32 I 12

13 23 3313 13

r t rr r r

. r r r r . 0 t r

r r r 0r r



     
     

= =     
      
      

Με την ίδια λογική, η δεύτερη στήλη είναι: 

 
21 21

22 22

23 23

r r

. r t r

r r



   
   

=   
   
   

και η τρίτη στήλη είναι: 

 
31 31

32 32

33 33

r r

. r t r

r r



   
   

=   
   
   

     1 I 1. t X  =ή

ή

ή

     2 2. t X  =

     3 3. t X  =
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Άρα και οι τρεις σχέσεις είναι της μορφής

     . t. X  = ή    ( )  t J . X 0 − =

Για να έχει λύση το ομογενές γραμμικό σύστημα, πρέπει η ορίζουσα των συντελεστών των αγνώστων 
να είναι μηδέν. Άρα τα tI, tII , tIII προσδιορίζονται ως οι τρεις ρίζες της χαρακτηριστικής εξίσωσης

   t J 0 − =

11 12 13

21 22 23

31 32 33

t t t t

t t t t 0

t t t t

−

− =

−

Αυτή είναι μία εξίσωση τρίτου βαθμού της οποίας οι ρίζες είναι 
οι κύριες τιμές ή ιδιοτιμές του τανυστή [Τ].  

I II IIIt , t , tΣτη συνέχεια, αντικαθιστούμε την κάθε μία από τις ιδιοτιμές                         μέσα στην εξίσωση

   ( )  t J . X 0 − =

I II IIIt , t , t

και βρίσκουμε το αντίστοιχο ιδιοδιάνυσμα [Χ]. Το κάθε ιδιοδιάνυσμα είναι 
το αντίστοιχο μοναδιαίο διάνυσμα στον κύριο άξονα του κυρίου 
συστήματος αναφοράς. Τα ιδιοδιανύσματα τα συμβολίζουμε με I II IIIn ,n ,n


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1x

2x

3x

0

Ix

IIx

IIIx

1i


2i


3i


In


IIn


IIIn


0x1x2x3 = Αρχικό Σύστημα Αναφοράς
0xIxIIxIII = Κύριο Σύστημα Αναφοράς
0xI , 0xII , 0xIII = Κύριοι Άξονες
                      = Ιδιοδιανύσματα ή Μοναδιαία διανύσματα 
πάνω στους κύριους άξονες που καθορίζουν τις κύριες 
διευθύνσεις.         
                   = Ιδιοτιμές ή Κύριες τιμές που βρίσκονται 
πάνω στους αντίστοιχους κύριους άξονες (π.χ. κύριες 
τάσεις ή κύριες παραμορφώσεις)

I II IIIn ,n ,n


I II IIIt ,t ,t

3111 21

I I 12 II II 22 III III 32

13 23 33

rr r

t n r ,   t n r ,   t n r

r r r

    
    

→ = → = → =     
     
     



Τα επίπεδα τα κάθετα στους κύριους άξονες ονομάζονται κύρια επίπεδα.
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Ισχύει η πρόταση: “Η χαρακτηριστική εξίσωση είναι ανεξάρτητη από το σύστημα αναφοράς 
στο οποίο εξετάζεται ο τανυστής. Δηλαδή, οι ιδιοτιμές του τανυστή είναι ανεξάρτητες του 
συστήματος αναφοράς”.

Απόδειξη: Η χαρακτηριστική εξίσωση είναι:    t J 0 − =

Σε ένα νέο σύστημα αναφοράς, θα ισχύει:    t J 0  − =

Δεδομένου ότι:      R T R


  =      J R J R


 =και

       ( )            
TTt J R T t J R R . T t J . R T t J  − = − = − = −Θα έχουμε:

Που αποδεικνύει την πρόταση.
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Αν αναπτύξουμε την χαρακτηριστική εξίσωση    t J 0 − = του τανυστή 2ας τάξεως, τότε:

3 2

1 2 3 0t I t I t I− + − =

Όπου:  

 

( )

 

1 11 22 33

2

22 23 11 13 11 12 2

2

32 33 31 33 21 22

11 12 13

3 21 22 23

31 32 33

 ίχνος του 

άθροισμα των ελασσόνων οριζουσών των διαγωνίων στοιχείων του 

1

2

1
ορίζουσα του 

6

ii

ij ji ii

I t t t t

I

t t t t t t
I t t t

t t t t t t

t t t

I t t t t

t t t

=  =  + +

= 

= + + = −

=  = = ( ) 3 2 3ii ij jk ki ii jk kjt t t t t t+ −

Τα τρία αυτά μεγέθη ονομάζονται, πρώτη, δεύτερη και τρίτη αναλλοίωτος του τανυστή γιατί 
παραμένουν αναλλοίωτα κατά τους μετασχηματισμούς.
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Από τα προηγούμενα προκύπτει ότι αν τα                     είναι αναλλοίωτα μεγέθη, τότε και τα 
είναι αναλλοίωτα μεγέθη και αντιστρόφως. 

1 2 3, ,I I I 1 2 3, ,J J J

Όπου: 

1

2

3

ii

ij ji

ij jk ki

J t

J t t

J t t t

=

=

=

Στο Κύριο Σύστημα όπου τα μη διαγώνια στοιχεία είναι μηδέν, οι τρεις αναλλοίωτες γράφονται:

I I II III

II I II II III III I

III I II III

I t t t

I t t t t t t

I t t t

= + +

= + +

=
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Απόδειξη του Αναλλοίωτου Ι1

 t ij ik jm kmr r t =
Από τον νόμο 
μετασχηματισμού των 
τανυστών δευτέρας τάξεως

 ii ik im kmt r r t =

ik im kmr r =  ii km km mmt t t = =αλλά

Μία σημαντική πρόταση είναι η εξής:

Οι ιδιοτιμές είναι στάσιμες τιμές των διαγωνίων όρων του τανυστή [Τ]. 

Η πρόταση αυτή σημαίνει ότι αν                                   τότε οι τιμές            και              αποτελούν το μέγιστο 
και το ελάχιστο αντίστοιχα των τιμών που μπορούν οι διαγώνιοι όροι ενός τανυστή [Τ] σε οποιοδήποτε 
σύστημα αναφοράς.

, ,I II IIIt t t

I II IIIt t t 
It IIIt
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Αν   11 12

21 22

t t

t t

 
 =  

 
τότε η χαρακτηριστική εξίσωση είναι:

11 12

21 22

0
t t t

t t t

−
=

−

 ( ) ( )2

11 22 11 22 12 21 0t t t t t t t t− + + − = 

2

211 22 11 22
, 12

2 2
I II

t t t t
t t

+ − 
=  + 

 
Οι Κύριες τιμές είναι:

Όπου η τιμή tI αντιστοιχεί στο πρόσημο (+) και η τιμή tII στο πρόσημο (-).

Στη συνέχεια βρίσκουμε τα ιδιοδιανύσματα που καθορίζουν τις κύριες διευθύνσεις με την 
διαδικασία που ήδη περιγράψαμε.
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Ιδιαίτερα στην περίπτωση συμμετρικού τανυστή όπου 

ij jit t= είδαμε ότι Ισχύουν οι σχέσεις:

11 22 11 22
11 12

11 22
12 21 12

11 22 11 22
22 12

cos 2 sin 2
2 2

sin 2 cos 2
2

cos 2 sin 2
2 2

t t t t
t t

t t
t t t

t t t t
t t

 

 

 

+ −
 = + +

−
 = = − +

+ −
 = − −

Αν το τονούμενο σύστημα είναι το κύριο σύστημα, 
τότε: 

12 21t t 0 = = 

11 22
12 21 12sin 2 cos 2 0

2

t t
t t t 

−
 = = − + =  12

11 22

2t
tan 2

t t
 =

−

0 x1

x2

x’1

x’2

1i


2i


1i



2i


θ

θ
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11 22 11 22
11 12

11 22
12 21 12

11 22 11 22
22 12

cos 2 sin 2
2 2

sin 2 cos 2
2

cos 2 sin 2
2 2

t t t t
t t

t t
t t t

t t t t
t t

 

 

 

+ −
 = + +

−
 = = − +

+ −
 = − −

Στο ίδιο αποτέλεσμα θα καταλήγαμε, αν 
αναζητούσαμε τα ακρότατα των 
Δηλαδή, αν παίρναμε

11 22t , t 

11 22t t
0   ή    0

 

  
= =

 

0 x1
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