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ABSTRACT
Productivity, quality, and flexibility are key production targets pursued by companies that adopt
Industry 4.0. However, it is unclear how Industry 4.0 technologies can help achieve these differ-
ent and sometimes competing targets. This study investigates this relationship through a survey
of 92 manufacturers. The study employs Exploratory Factor Analysis to define four main technol-
ogy arrangements basedon18 Industry 4.0 technologies: Vertical Integration, VirtualManufacturing,
AdvancedManufacturingProcessingTechnologies, andOnline Traceability. Then, independent sam-
ples tests were conducted to compare the implementation status of these arrangements when
manufacturing flexibility, process quality, and productivity are (or are not) pursued as the main
production targets. The results show that Vertical Integration is a general-purpose technology
arrangement because it supports all targets. On the other hand, Virtual Manufacturing and Online
Traceability are specific-purpose arrangements, adopted especially for flexibility and productivity
targets, respectively. Advanced Manufacturing Processing Technologies, in turn, is an integrative-
purpose technology arrangement since it is adopted when two competing targets are pursued:
productivity and manufacturing flexibility. The study ends with a decision model to implement
Industry 4.0 based on the production targets a company may pursue. It shows the interconnection
and trade-offs between these production targets and the Industry 4.0 technologies adopted.
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Introduction

Mass production and lean manufacturing are mainly
concern with improving productivity and quality of pro-
duction systems (Marodin et al. 2017). On the other
hand, production flexibility has often been considered an
production target that odds with productivity. The trade-
off between flexibility and productivity was depicted
in Hayes and Wheelwright’s (1979) Product-Process
matrix, which shows that highly flexible systems operate
with lower productivity. Thus, a reduction in flexibility
is needed to increase productivity. For instance, univer-
sal machines, multitask workers, and a wider product
mix – to the detriment of large-scale production – will
better cope with changes in the market and the supply
chain (Pérez Pérez, Serrano Bedia, and López Fernán-
dez 2016; Eslami et al. 2021). While these are different
production targets, Industry 4.0 has been proposed as a
new industrial maturity stage in which these targets can
converge in the same system (Moeuf et al. 2017; Grassi
et al. 2021; Jiang et al. 2022). Industry 4.0 considers the

CONTACT Alejandro G. Frank ag.frank@ufrgs.br Av. Osvaldo Aranha 99 - Sala LOPP 508 - 5° andar. Escola de Engenharia. Universidade Federal do Rio
Grande do Sul, Centro, CEP 90035190 - Porto Alegre, RS – Brazil

use of cutting-edge technologies supported by the Indus-
trial Internet of Things (IIoT) to create smart manufac-
turing environments, also called cyber-physical systems
(Li 2018; Zhang and Chen 2020; Bueno et al. 2020).
According to a company’s specific needs, these new envi-
ronments will be based on different technology arrange-
ments (Benitez et al. 2021). Such technology arrange-
ments are expected to provide more productive and flex-
ible manufacturing systems following high-quality stan-
dards (Schuh et al. 2020).

Prior empirical studies have considered relation-
ships between Industry 4.0 and operational perfor-
mance (e.g. Lee, Bagheri, and Kao 2015; Brettel, Klein,
and Friederichsen 2016; Zhong et al. 2017; Nayer-
nia, Bahemia, and Papagiannidis 2021), or with pro-
duction targets and expected benefits that drive the
decision-making for investing in Industry 4.0 tech-
nologies (Dalenogare et al. 2018; Frank, Dalenogare,
and Ayala 2019). A detailed description of these stud-
ies is provided in Appendix A. Most of these studies
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acknowledge that Industry 4.0 can make general con-
tributions for production targets (Gillani et al. 2020),
while some studies suggest that different targets will be
achieved with specific Industry 4.0 technologies (Moeuf
et al. 2017; Dalenogare et al. 2018). However, when the
literature considers Industry 4.0 technology adoption,
it usually follows rigid technology roadmaps that do
not consider the nuances of different production targets
aimedwith these sets of technologies. The priority among
these technology sets must not necessarily follow a single
roadmap but can be adopted differently according to the
production target pursued.

Moreover, when production targets are considered in
the Industry 4.0 literature, the debate mainly concen-
trates on increasing productivity and quality, probably
due to the legacy of mass production and lean manu-
facturing concerns (Schumacher, Erol, and Sihn 2016;
Vasiliev, Aleksandrova, and Alexandrov, 2017; Mittal
et al. 2018; Asif 2020). Paradoxically, although the aim
of obtaining more flexible operations has been at the
core of the Industry 4.0 concept (Schuh et al. 2020),
few empirical studies have considered how companies
adopt Industry 4.0 technologies to achieve this produc-
tion target, which remains a theoretical gap in the lit-
erature (Enrique et al. 2022; Dalenogare et al. 2018).
Flexible operations gained importance in turbulent envi-
ronments when industries face uncertainties and need
to respond quickly to changes in the market and sup-
ply chain (Sreedevi and Saranga 2017; Kamalahmadi,
Shekarian, and Mellat Parast 2021; Eslami et al. 2021),
but the answer on which specific Industry 4.0 technolo-
gies can better support such flexibility is still open. In
this context, more balanced analysis of productivity, flex-
ibility, and quality becomes necessary for manufacturing
companies to adopt Industry 4.0-related technologies to
ensure a technology-target alignment and avoid a lack of
effectiveness due to the wrong implementation of Indus-
try 4.0 technologies.

Although it is well known that Industry 4.0 can help
companies to achieve quality, productivity, and flexibility,
there is a lack of understanding on which specific tech-
nologies are adopted when each of these three specific
targets is pursued or when companies want to achieve
some of them simultaneously. Thus, the study proposes
the following research question:Which Industry 4.0 tech-
nologies can be adopted by manufacturers to achieve spe-
cific production targets such as productivity, quality, and
operational flexibility? By answering this question, the
contribution of this study relies on exploring the trade-
offs between such targets when companies follow differ-
ent Industry 4.0 technologies to achieve them.

Thus, this study investigates which technologies of the
Industry 4.0 concept are adopted bymanufacturers when

they pursued productivity, quality, or flexibility (or a mix
of them) as the main production target. The aim is to
identify sets of Industry 4.0 related technology (tech-
nology arrangements) that are organised and adopted
around specific production targets to provide a better
understanding of how Industry 4.0 is conceived when
manufacturers look for different goals. To this aim, this
study performed a quantitative survey with 92 manufac-
turers from the machinery and equipment industry. The
study analyses the specific Industry 4.0 technologies these
companies adopt when they pursue productivity, qual-
ity, and/or flexibility as production targets. Exploratory
Factor Analysis (EFA) was first used to define sets of
technology arrangements that these companies imple-
ment together. These arrangements were categorised
into four main groups: Vertical Integration technolo-
gies, Advanced Manufacturing Processing technologies,
Virtual Manufacturing technologies, and Online Trace-
ability technologies. Then, an independent sample test
was used to assess the relationship between the produc-
tion targets pursued by these companies and the Indus-
try 4.0 technology arrangements adopted by them. The
results show that these Industry 4.0 technology arrange-
ments make different contributions to production tar-
gets. Some of them can be considered general-purpose
technologies because they are adopted to achieve all
of these three production targets; others can be con-
sidered specific-purpose technologies because they are
adopted to increase productivity or flexibility targets;
finally, another arrangement of Industry 4.0 technologies
was named as integrative-purpose technologies because
these technologies are used to reconcile the productivity
vs. flexibility trade-offs, helping to balance both produc-
tion targets. The main contribution of this study is that it
explores the trade-offs between production targets show-
ing how different sets of Industry 4.0 technologies can
contribute to them either by supporting each of them
or helping to balance such targets better. In this sense,
this study advances the debate of driving Industry 4.0
adoption by production targets instead of considering
a mandatory set of technologies that must be necessar-
ily implemented step-by-step independently of the target
being pursued. The study shows that some Industry 4.0
technologies are dependent on specific targets pursued,
while others are always necessary as the initial ground of
Industry 4.0 implementation. As a final contribution, the
study proposes a decision model to implement Industry
4.0 technologies according to the expected production
targets a company may pursue. The findings help oper-
ations managers understand which technology to adopt
based on the operations strategy they want to follow.

The remaining sections are organised as follows.
First, the study begins with a theoretical background
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section, where the conceptual framework and the pro-
posed hypotheses are introduced. In Section 3, the data
and the measurements used to test the hypotheses are
described. In Section 4, the analysis and findings are
presented. Finally, in Sections 5 and 6, theoretical impli-
cations and managerial insights are discussed, and future
research directions are proposed.

Industry 4.0 and production targets

Industry 4.0 is considered a new industrial maturity
stage represented by several technologies that consol-
idate cyber-physical systems based on the Industrial
Internet of Thinks (Frank, Dalenogare, and Ayala 2019).
Industry 4.0 comprises several technology applications,
including SmartManufacturing, Smart Products and Ser-
vices, Smart Supply Chain, and Smart Working (Frank,
Dalenogare, and Ayala 2019; Meindl et al. 2021). This
paper considers only the Smart Manufacturing dimen-
sion, which comprises the technologies associated with
the manufacturing production system (Meindl et al.
2021). Since the initial concept was developed in Ger-
many and then disseminated worldwide, some authors
have considered it an international technology diffusion-
adoption process, inwhich countries and companies con-
solidate a set of technologies to increase performance
and, consequently, their competitiveness (Dalenogare
et al. 2018). Such a view is based on the innovation
diffusion theory proposed by Rogers (1995), which con-
siders five main factors that influence the adoption of
technological innovation: relative advantage, compatibil-
ity, complexity, reliability, and observability. The relative
advantage is how new technology is considered bene-
ficial for companies and can be measured in terms of
costs, productivity, market opportunities, convenience,
and satisfaction. This view has been addressed in differ-
ent technology adoption studies that have shown that the
expected targets to be achieved with technology adop-
tion are factors that impact the decision to adopt such
technologies (Wang, Wang, and Yang 2010; Aboelmaged
2014).

Studies in the Industry 4.0 literature have followed the
diffusion-adoption view when considering the technol-
ogy adoption process (Almeida et al. 2022). For instance,
Ghobakhloo and Ching (2019) showed that small com-
panies are more prone to adopt smart manufacturing
technologies when they realise potential gains in pro-
ductivity, agility, and improve response. Dalenogare et al.
(2018) identified which Industry 4.0 is most adopted in
the Brazilian industry when companies want to increase
operational goals based on productivity metrics. More-
over, Simões, Soares, and Barros (2020) investigated the
main reasons companies adopt collaborative robots and

showed the importance of speed in executing tasks and
cost benefits as main determinants. These are some
examples of studies that address adoption levels of the
disseminated technologies based on targets that com-
panies may want to achieve in the production system.
As shown in these studies, managerial objectives and
expectations are the driving force behind the adoption
of Industry 4.0 technologies (Horváth and Szabó 2019).
This study calls these objectives as production targets,
representing the main goal the manufacturing system
should achieve by implementing technologies and pro-
cess execution (Größler, Grübner, and Milling 2006).

One of the most discussed concepts in the literature
regarding production targets is the manufacturing trade-
offs suggested by Skinner (1969). According to this con-
cept, unless there is slack in the system, improving one
of the generic capabilities (targets) is only possible at
the expense of the others (Da Silveira and Slack 2001;
Größler, Grübner, andMilling 2006). On the other hand,
through the implementation of manufacturing meth-
ods and technologies, modern manufacturing systems
should allow improvements inmore than one production
target simultaneously. This is known as the cumulative
view, according to Ferdows andMeyer (1990). A cumula-
tive view of production trade-offs focuses on continuous
changes in performance. The cumulative view does not
deny the trade-off challenge between production targets,
but it suggests that companies could achieve a balance,
maybe with lower but more balanced results.

The literature review presented in Appendix A anal-
yses how the Industry 4.0 literature has considered the
adoption of Industry 4.0 technologies, targets that lead
companies to adopt such technologies, and the perfor-
mance that companies have achieved with such tech-
nologies. As it is possible to see, the literature has been
more focused on performance measurement, which does
not necessarily represent the main production target that
triggers the technology adoption. Some authors have
consideredmotivations, drivers, or expected benefits (e.g.
Büchi, Cugno, and Castagnoli 2020; Cugno, Castagnoli,
and Büchi 2021), but when such aspects are considered,
Industry 4.0 technologies are not differentiated. This
present study aims to address such a gap in two differ-
ent ways: firstly, by considering, through the innovation
diffusion-adoption theory (Rogers 1995), the main pro-
duction targets that trigger the adoption of different types
of Industry 4.0 related technologies. This study hypothe-
sises that specific production targetswillmake companies
more prone to invest in some sets of Industry 4.0 related
technologies, creating different nuances of adoption pat-
terns. Secondly, by considering the cumulative view of
production targets trade-offs (Ferdows andMeyer 1990),
this study acknowledges that some targets can be pursued
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simultaneously (or not) by adopting Industry 4.0 related
technologies.

Hypotheses development

The hypotheses of this study are built around three pro-
duction targets defended as the core of the Industry 4.0
implementation: productivity, quality, and operational
flexibility (Schuh et al. 2020). Although other production
targets could be present, these three metrics are the most
common alongside the Industry 4.0 literature (Appendix
A). In this sense, this study follows Boyer and Lewis’
(2002) perspective on competitive priorities that define
the operations strategy model, including the technol-
ogy that should be implemented. According to them, the
main competitive priorities (i.e. production targets) can
be divided into cost, delivery, quality, and flexibility. Pro-
ductivity can be used as an alternative to summarise costs
and delivery since it represents the rate between total
output (product delivery) and total input (cost reduc-
tion) (Huang et al. 2003). Any other production target
should derivate from these three essential priorities of
manufacturing decision-making (Boyer and Lewis 2002).
Next, the study provides evidence about the reasons for
such connection and the hypotheses derived from such
production targets.

Industry 4.0 and productivity

Productivity is generally related to the effort necessary to
produce goods using fewer resources (de la Fuente-mella
et al. 2019). Productivity gains can be associated with
several resources, such as labour productivity, space util-
isation, inventory turnover, energy costs, and equipment
utilisation (Backhaus and Nadarajah 2019; de la Fuente-
mella et al. 2019). Prior studies have shown that increased
industrial computerisation and automation have gener-
ated stable productivity growth in companies using fewer
workers (Autor, Mindell, and Reynolds 2020). Indus-
try 4.0 thus considers a set of technologies aiming to
increase resource consumption and autonomy to exe-
cute tasks and complete operation cycles, which should
result in productivity gains (Schuh et al. 2020). Sens-
ing capabilities help machines better utilise materials,
combined with optimisation algorithms and the inten-
sive use of data to learn the best way to use production
resources (Dalenogare et al. 2018). Moreover, Industry
4.0 also considers smart production planning and con-
trol based on advanced technologies and real-time data,
which helps themanufacturing systemorganise its sched-
ule and save time (Bueno et al. 2020). Workers can also
become more productive with the aid of smart devices
supported by Augmented Reality (AR), Virtual Reality
(VR), and other digital tools that can help them improve

focus on their tasks or provide additional skills to support
their decision-making processes (Pereira and Romero
2017; Realyvásquez-vargas et al. 2019; Fareri et al. 2020).

The Industry 4.0 literature provides several examples
of specific technologies that are suggested to increase pro-
ductivity. For instance, intelligent systems can optimise
manufacturing processes, especially in terms of resources
and energy consumption, representing the second-
highest production cost inmany sectors (Fatorachian and
Kazemi 2018). Moreover, additive manufacturing max-
imises the use of materials and the manufacture of a wide
variety of parts, also permitting scalability (Alcácer and
Cruz-machado 2019). Adopting Manufacturing Execu-
tion Systems (MES) and other information systems with
real-time data collection can support process monitor-
ing and production planning to better use production
resources (Chiarini and Kumar 2020; Büchi, Cugno, and
Castagnoli 2020). Robots are another important tech-
nology in the Industry 4.0 context. They are associated
with productivity gains, especially in highly repetitive
tasks in the production environment, including process-
ing, material handling, and inspection systems (Frank,
Dalenogare, and Ayala 2019; Dalenogare et al. 2018). In
sum, the Industry 4.0 literature mentions a wide range
of technologies for productivity. However, many of them
are only assumed to be important to this production tar-
get without the backing of empirical tests. Therefore, the
following hypothesis is proposed:

H1: Companies that pursue productivity as an important
production target are more likely to have a higher level
of use of some specific Industry 4.0 technologies than
companies that do not.

Industry 4.0 and quality

Quality of products and processes can become the main
competitive target of the company.While product quality
is associated with product design requirements, the qual-
ity of the process is related to the production systemactiv-
ities, which is the focus of this study. This is a production
target related to how the manufacturing system should
work to reduce process variability and non-conformities
in the final product (Flynn, Schroeder, and Sakakibara
1994; Goyal, Agrawal, and Saha 2019). Process quality
considers implementing best practices and technologies
to standardise processes, improve and maintain equip-
ment operation, and check for potential failures and non-
conformities in the production line (Flynn, Schroeder,
and Sakakibara 1994; Asif 2020).

According toDutta et al. (2021), the available literature
on integrating quality practices in a digital environment
is limited, deserving more attention in the Industry 4.0
domain. Nonetheless, some studies have mentioned how
Industry 4.0 technologies can support process quality
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in different ways. According to Markulik, Sinay, and
Pačaiová (2019), Industry 4.0 technologies in three main
areas of process quality: digital quality management,
advanced process control, and statistical process con-
trol. The intensive adoption and use of sensors in the
production line ensures better control of quality parame-
ters, and machine connectivity allows monitoring such
parameters in real-time (Wang et al. 2016a; Aleksan-
drova, Vasiliev, and Alexandrov 2019). Sensing capabil-
ities on the shop floor enable the tracking of materials,
supporting product components’ traceability to identify
non-conformities (Ramadan, Al-maimani, and Noche
2016). An online check of equipment conditions is also
an importantmaintenance tool, contributing to improve-
ments in predictive models of equipment failure and
preventive maintenance that will ensure process qual-
ity (Shivajee, Singh, and Rastogi 2019). Moreover, the
intensive use of automated machines and robots helps
implement standardised processes that reduce poten-
tial quality problems due to high operations variability
(Dalenogare et al. 2018). On the other hand, when pro-
duction tasks are manual-intensive, tools such as AR
and VR can help better execute repetitive operations and
reduce the chance of workers’ mistakes. (Elia, Gnoni, and
Lanzilotto 2016; Tzimas, Vosniakos, and Matsas 2019;
Urbas and Vukašinović 2019). These technologies can
also be useful in training workers to ensure a certain
quality standard in their activities (Roldán et al. 2019).
Furthermore, according to the results of Závadská and
Závadský (2020), smart devices such as smartwatches
and smart glasses have the greatest presence in processes
such as non-compliance management, quality control,
and change management, and visual management Qual-
ity managers and their future technological expectations
related to Industry 4.0. These are some examples of the
use of Industry 4.0 technologies when companies have
process quality as a main target of the manufacturing
system. These are evidence reported in the literature sug-
gesting that there are different arrangements of Indus-
try 4.0 technologies that can improve process quality.
Therefore, the following hypothesis is proposed:

H2: Companies that pursue quality as an important pro-
duction target are more likely to have a higher level of
use of specific Industry 4.0 technologies than companies
that do not.

Industry 4.0 andmanufacturing flexibility

Flexibility can be developed at different levels in the
company. The operations management literature has
considered some levels, such as supply chain flexibil-
ity, organisational flexibility, and operational flexibility
(Pérez-Pérez et al. 2018; Aldrighetti et al. 2022). This

paper focuses on operational flexibility, which is the level
of flexibility a company may pursue in the shop floor
through adaptation of its manufacturing process and
activities to different types of orders (Koste andMalhotra
1999). This level of flexibility considers the production
system’s ability to handle changes in the product mix and
production volumes, as well as dealing with uncertain-
ties related to manufacturing resources, with a minimum
impact in terms of time, costs, and performance (Gerwin
1993; Pérez Pérez et al. 2016).

Operational flexibility has been identified as one of the
main targets of Industry 4.0 (Long, Zeiler, and Bertsche
2017; Fatorachian and Kazemi 2018).

The Industry 4.0 literature highlights that cyber-
physical systems can improve a company’s ability to
introduce new products rapidly and/or change its prod-
uct mix, both key characteristics of manufacturing flex-
ibility (Pérez-Pérez et al. 2018). In this sense, smart
production planning and control systems are expected
to be one of the main drivers for introducing flexibil-
ity in the production system because they can quickly
reconfigure the production schedule (Bueno et al. 2020).
However, this could also require the complement of flex-
ible machines. Additive manufacturing is considered the
extreme in this flexibility concept since such technology
would ideally allow a company to produce any product
component in the same machine (Kim, Lin, and Tseng
2018;Haleem and Javaid 2019). Smart and reconfigurable
machines facilitate new products, as they are much more
flexible than fixed automatic systems (Wang et al. 2016b).
Assembly lines can also be benefited by the combina-
tion of the labour force and collaborative robots (cobots),
which, when combined, can boost flexibility by allowing
workers to focus on the most value-added and flexible
workwhile a cobot handles the repetitive tasks previously
performed by humanworkers (Liu andWang 2017; Zolo-
tová et al. 2020). Other technologies, such as AR and VR
systems, improve the information exchange process and
train operators to quickly adapt to changes (Mourtzis,
Zogopoulos, and Vlachou 2017). In terms of product mix
flexibility, Robots with Artificial Intelligence (AI), which
are both adaptive and flexible, can more quickly learn
how to produce new products, thus adding the flexibil-
ity component to the already known benefit of reducing
production costs (Zhong et al. 2017; Alcácer and Cruz-
machado 2019). In addition, process simulation tools and
virtual commissioning can be used to view, analyse and
control the state of a part or process and to build dif-
ferent scenarios before introducing real changes in the
production system (Mourtzis, Zogopoulos, and Vlachou
2017; Coronado et al. 2018; Schamp et al. 2019; Zhuang,
Gong, and Liu 2020). However, although several Indus-
try 4.0 technologies are proposed to increase flexibility
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in the production system, Frank, Dalenogare, and Ayala
(2019) and Dalenogare et al. (2018) showed that this is
usually one of the biggest challenges of manufacturing
companies. As they suggested,more research is needed to
understand which technologies effectively contribute to
this concept in companies’ real environments. Therefore,
the literature suggests this association, but it still lacks
empirical evidence on what specific Industry 4.0 tech-
nologies are pursued when operational flexibility is the
company’s main target. Thus, the following hypothesis is
proposed:

H3: Companies that pursue flexibility as an important
production target aremore likely to have a higher level of
use of specific Industry 4.0 technologies than companies
that do not.

Summary of the conceptual researchmodel

Figure 1 shows the conceptual research model that sum-
marises the three hypotheses proposed. As the figure
shows, it is assumed that companies can pursue differ-
ent production targets (Productivity, ProcessQuality, and
Manufacturing Flexibility). Such targets may drive to the
adoption of different Industry 4.0-related technologies
to facilitate their achievement. However, since Indus-
try 4.0 solutions can be represented by a combination
of different technologies (technology arrangements), the
study aims to define these arrangements to understand
how they are adopted based on the production targets
pursued.

Researchmethod

Sample and data collection

This study performed a cross-sectional survey of manu-
facturing companies associated with the southern chap-
ter of the Brazilian Machinery and Equipment Builders’

Figure 1. Conceptual research model.

Association (ABIMAQ-Sul).1 This association was cho-
sen due to its relevance in the Brazilian industry and for
Industry 4.0 in the country: it is one of the most rep-
resentative manufacturing sectors in the country, and it
is engaged with the Industry 4.0 platform promoted by
the Brazilian Chamber of Industry 4.0, which is part of
the Brazilian FederalMinistry of Science andTechnology.
The questionnaire was sent by e-mail to the 143 com-
panies that are member of ABIMAQ’s southern chap-
ter and obtained a return of 92 useable questionnaires,
representing a response rate of 64.33%. The question-
naire was addressed to the CEOs or Operations Direc-
tors or equivalents with knowledge on the company’s
operations management activities, including technol-
ogy investments and performance metrics. The research
obtained a high engagement rate among the target public
because the industry association promoted the research
in business seminars on Industry 4.0 and because the
survey was distributed through the associations’ mailing
channels. Therefore, although the absolute number of the
sample size may not seem too large, it is focused on a sin-
gle industry and represented by a high response rate (65%
of the representatives). The final sample was composed
of 41% of small enterprises (<100 employees), 37% of
medium enterprises (100–500 employees), and 22% of
large enterprises (>500 employees). The companies rep-
resenting this industry sector serve a high diversity of
markets, including the agricultural, chemical, furniture,
and food industries. Table 1 shows the characteristics of
the sample.

Definition of the variables

The questionnaire (see Appendix A) aimed to assess the
level of adoption of a set of Industry 4.0-related technolo-
gies and three production targets pursued by companies
when the implement Industry 4.0 technologies and con-
cepts. The list of technologies related to the Industry
4.0 concept was adapted from previous industry surveys
on this topic conducted by the National Confederation
of Industries (CNI 2016), as well as by other previous
studies from the literature (Lu and Weng 2018; Frank,
Dalenogare, andAyala 2019). This survey also considered
production targets from which the three most represen-
tative ones were selected, namely productivity, manufac-
turing flexibility, and process quality. These three targets
were included because most of the studies presents them
as the key targets in the Industry 4.0 concept (Dalenogare
et al. 2018; Tortorella, Giglio, and Van Dun 2019; Schuh
et al. 2020; Szász et al. 2020) while other targets and per-
formance metrics described in Appendix A, such as costs
reduction, time-to-market improvement, among others,
can be directly or indirectly related to them (Dalenogare
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Table 1. Demographic characteristics of the sample.

Category Description (%) Category Description (%)

Main industries attended by the
manufacturing companies of the
sample (diversity of the products
provided by the investigated sector)

Agriculture 48% Company’s size Small (< 100 employees) 41%

Biotechnology 1%
Chemicals 24% Medium (100 - 500 empl.) 37%
Construction 10%
Energy 15% Large (> 500 empl.) 22%
Food products 29%

Leather products 3% Respondent’s profile Managers or directors 78%
Mining 21% Supervisors 10%
Furniture 10%
Pharmaceutical 10% Analysts 4%
Pulp and paper 16%
Software and technology 17% Other 8%
Steelworks 18%
Transport 13%
Metal products 34%
Other manufacturing 24%

Table 2. Rotated Factor-Loading Matrix from EFA.

Factor loadings (a)

Industry 4.0 technologies Digital Manuf. Vertical Integ. Advanced Manuf. Online traceability Commu nalities

Process control (PLCs and sensors) 0.265 0.730 0.143 0.159 0.649
SCADA 0.263 0.813 0.029 −0.042 0.733
MES 0.325 0.556 0.355 0.336 0.654
Real-time monitoring 0.307 0.706 0.216 0.141 0.581
Virtual commissioning 0.674 0.336 0.044 0.111 0.566
M2M communication 0.585 0.286 0.338 0.164 0.544
AI for maintenance 0.582 0.373 0.259 0.000 0.543
AI for PPC 0.444 0.455 0.219 0.301 0.514
Process simulation 0.530 −0.005 0.382 0.295 0.635
Automated failure detection 0.706 0.084 0.165 0.321 0.903
Remote operation 0.687 0.261 0.134 −0.069 0.900
AR for maintenance 0.655 0.341 0.266 −0.007 0.789
AR for workers training 0.722 0.254 0.085 0.057 0.584
Rawmaterial online traceability 0.058 0.145 0.127 0.929 0.558
Product online traceability 0.133 0.096 0.091 0.930 0.658
Robots 0.107 0.292 0.815 0.170 0.563
Collaborative robots 0.241 0.218 0.681 0.116 0.616
3D printing 0.188 −0.003 0.723 0.012 0.596
Eigenvalue 7.496 1.794 1.250 1.047
%of variance (cumulative) 22.214 38.662 51.829 64.368
Cronbach’s alpha 0.869 0.830 0.725 0.924

(a)High factorial loadings are represented in bold and underlined.

et al. 2018). A five-point Likert scalewas used for technol-
ogy adoption varying from 1 – Very low implementation
to 5- Advanced implementation. The production targets
were assessed through the following question: ‘Which
of the following production targets do you pursue with
the implementation of Industry 4.0 technologies?’. A list
of targets was provided with binary options: 0-Not a
competitive priority or 1- competitive priority. The ques-
tionnaire was pretested and refined using interviews with
15 scholars and seven CEOs that compose the board of
directors of ABIMAQ-Sul. The list of technologies and
production targets assessed in the questionnaire are pro-
vided together with the results, in Tables 1 and 2, while
the full questionnaire is provided in Appendix B.

Sample and commonmethod variance bias

To check response bias, the t-test for equality of means
and Levene’s test for equality of variance were used when
early and late respondents are compared; 63 compa-
nies represented the early respondents, i.e. those that
answered in the first wave of data collection. In com-
parison, 29 companies composed the group of late
respondents that answered in the following rounds of
data collection. None of the 18 technologies investigated
showed statistical differences between these waves of
respondents (<0.05), suggesting that there is no signif-
icant difference of populations between samples (Arm-
strong and Overton 1977).
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Some strategies proposed by Podsakoff et al. (2003)
were adopted to deal with potential common method
variance. Firstly, the procedure was to randomised the
technologies list to avoid any intentional correlation
between them by respondents. It was also highlighted
in the questionnaire introduction that the answers were
anonymous and free from judgment. The questionnaire
was also sent to specific respondents, namely CEOs and
Operations Directors, and explained that they should
deeply understand technical issues pertaining to the
operations of their companies. Furthermore, a statistical
remedy was adopted by running Harman’s single-factor
test (Podsakoff et al. 2003). This test with all variables
resulted in a first factor that comprehended only 40%
of the observed variance. Therefore, there was no single
factor accounting for the majority of the variance in the
model.

Data analysis

Data analysis was performed in twomain stages. Firstly, it
was proceeded with the technology clustering in order to
define subsets of Industry 4.0 technology arrangements.
Therefore, Exploratory Factor Analysis (EFA) was used
to summarise the 18 Industry 4.0 technologies in the
technology arrangements, following Hair et al.’s (2009)
procedures. The EFA technique is used when researchers
need to find common underlying patterns between vari-
ables from exploratory analysis to synthesise new factors
representing those variables with similar characteristics
(Hair et al. 2009). A similar approach has been used in
other studies in the operations management field when
technologies or practices are grouped based on simi-
lar implementation profiles (e.g. Marodin et al. 2017;
Dalenogare et al. 2018). This study adopted such an
approach to group Industry 4.0 technologies in common
groups of technologies with similar profiles of implemen-
tation, as previously done by Dalenogare et al. (2018).
A qualitative analysis of the sample size was performed
before conducting the EFA feasibility tests (reported in
the Results Section). The common practice on the use of
EFA technique recommends that (Hair et al. 2009, 101):
a) there should be not used less than 50 observations to
conduct this technique; b) the sample must have more
observations than variables, and c) a good minimum
sample for EFA should use five or more observations per
variable. This study used 92 observations, exceeding the
criteria (a) and (b). Regarding criteria (c), the study anal-
yses 18 variables (technologies) in the EFAmodel, which
would demand a minimum size of 18 (variables) x 5
(minimum size per variable) = 90 observations. There-
fore, based on these criteria, the sample used is above the
minimum recommendation for a reliable EFA.

The technology arrangements were defined based on
those technologies with high factor loading on the same
factor, which means that those technologies were usually
implemented jointly. In this sense, the labels of the factors
(technology arrangements) were defined by considering
the technologies’ main characteristics of the group and
contrasting themwith prior studies with similar arrange-
ments (Hair et al. 2009). The average of these technolo-
gies was used to represent the new constructs used as
new dependent variables for the second stage of the anal-
ysis. The reliability of the constructs was also assessed
using Cronbach’s alpha with a required threshold higher
than 0.7, as recommended in the literature (Hair et al.
2009). Data validity was also assessed qualitatively, based
on similar profiles of technology arrangements found in
the literature. In this sense, the results did not define
technologies arrangements that present significant differ-
ences from those used in other studies (e.g. Dalenogare
et al. 2018; Frank, Dalenogare, and Ayala 2019).

In the second stage of analysis, which aimed to test
the hypotheses, a series of independent samples t-tests
for two groups were conducted. Independent tests allow
differentiating levels of adoption of the Industry 4.0 tech-
nology arrangements when different production targets
are set as priority, a similar approach to the one used
by Marodin et al. (2016) when they compared levels
of implementation of lean practices. In this sense, the
present study compared whether companies prioritising
each of the three production targets (productivity, pro-
cess quality, ormanufacturing flexibility) showed levels of
implementation of each Industry 4.0 technology arrange-
ment different from those of companies that did not
prioritise the same target. For the comparison of means,
Levene’s test was used to define whether the t-test should
assume equal variance at p<0.05.

Results

Industry 4.0 technology arrangements

The data analysis synthesised 18 technologies in themain
categories using an Exploratory Factor Analysis (EFA).
The EFA technique allowed to obtain broader technolo-
gies implementation arrangements based on the partial
contribution of different but correlated measures (Hair
et al. 2009). Based on Hair et al. (2009), the procedure
was divided into two steps: validation of EFA adequacy
to the sample and reduction of variables using the EFA
technique.

For the EFA validation, the Kaiser-Meyer-Olkin
(KMO) test was used to measure sampling adequacy and
Bartlett’s test of sphericity. These tests allowedus to assess
whether the EFAwould suit this sample (Hair et al. 2009).
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Both tests indicated that the dependent variables could
be reduced using EFA: KMO’s test was 0.821 (i.e. much
above the threshold value of 0.5), and Barlett’s test of
sphericity showed a p-value < 0.001 (i.e. lower than the
suggested p < 0.05 significance level) (Hair et al. 2009).

The technology arrangements containing different
Industry 4.0 technologies were defined using a Varimax
orthogonal rotation factor solution for the EFA since it
reduces ambiguities related to non-rotated analysis (Hair
et al. 2009). The optimal number of components was
selected using the latent root criterion, which includes
factors only when they show an eigenvalue higher than
1.0, and it was also supported by the percentage of vari-
ance criterion, which considers only factors that exceed
60% of the total variance (Hair et al. 2009). The results
obtained four main factors that accounted for 64.37% of
the total variance (Table 3). The four main factors were
defined according to the variables with high factor load-
ing (>0.5) represented in them. Only one item (AI for
PPC) showed a slightly lower factor loading, but it was
strongly distributed in two factors. It was accounted for
it in the first factor (Virtual Manufacturing) because it
is theoretically more strongly associated (Bueno et al.
2020). The average of the technologies with high fac-
tor loadings was used to represent each arrangement’s
final score in the independent sample tests. Table 4 also
shows the reliability analysis for the three constructs
using Cronbach’s alpha, all above 0.75 (Hair et al. 2009).

As a result, the four factors labels were defined based
on the items representing them. The first factor, named
Virtual Manufacturing, is the group with the largest
number of technologies, nine in total. This dimen-
sion includes a set of AI and simulation technologies
designed for simulation, virtual validation, and system
self-configuration. AI technologies enable companies
to achieve intelligent functions at all stages of indus-
trial value, from customer demand, R&D design, opera-
tionsmanagement, production and processing, and other
activities (Zhang et al. 2019). Within AI technologies,
computer vision, machine learning, and AR are included.
Furthermore, simulation technologies comprise a set of
tools and technological methods to experiment and vali-
date the design and configuration of products, processes,

and systems (Mourtzis, Doukas, and Bernidaki 2014) and
the virtual validation of automation equipment through
commissioning virtual.

The second factor, technologies for Vertical Integra-
tion, comprises the set of technologies used in the Indus-
try 4.0 context to integrate several information layers in
the company. This begins at the machines with process
control through PLCs and sensors, then the collection of
data through Supervisory Control and Data Acquisition
(SCADA), and this being integrated from different work
stations in the Manufacturing Execution System (MES),
which finally provides real-time monitoring of the pro-
duction system (Dalenogare et al. 2018). These real-time
monitoring systems include tools for quick production
(re)scheduling, helping to define production routes and
redistribution of activities according to the current situ-
ation of the factory and equipment (Bueno et al. 2020;
Tabim, Ayala, and Frank 2021). In this sense, the tech-
nologies included under this label have been broadly
considered as components of the vertical integration pro-
cess necessary in the Industry 4.0 domain (Dotoli et al.
2019).

The third factor was named Advanced Manufactur-
ing Processing Technologies and integrates robots, cobots,
and additive manufacturing (3D printing) as a single
construct focused on manufacturing processing. This
name was given because the technologies included only
comprise hardware tools that are part of the Industry
4.0 domain and used for manufacturing processing pur-
poses. This refers to the creation of interconnected and
modular processing systems that guarantee automated
industrial plans. These technologies include automatic
material-moving systems and advanced robotics, the lat-
ter of which are now on the market as ‘cobots’ (col-
laborative robots) or automated guided vehicles (Büchi,
Cugno, and Castagnoli 2020). They are processing tools
because in the case of robots and collaborative robots
(cobots), they can execute processing activities like weld-
ing, machining, handling or packing (Lee and Murray
2019; Cohen et al. 2021), and 3D printers can print prod-
ucts components through additive manufacturing (Mani
et al. 2017). Several studies consider such tools as part
of the Industry 4.0 context, even robots, because they

Table 3. Correlation matrix and descriptive analysis.

Mean S.D. Skewness Kurtosis 1 2 3 4 5 6

1- Vertical_integration 2.984 0.999 0.202 −0.897 –
2-Digital_manufacturing 2.278 0.705 1.170 1.747 0.709∗∗∗ –
3- Online Traceability 3.076 1.183 0.114 −1.347 0.332∗∗∗ 0.336∗∗∗ –
4-Advanced manuf. 2.359 0.924 0.607 −0.160 0.486∗∗∗ 0.555∗∗∗ 0.294∗∗∗ –
5-Manuf. flexibility 2.315 1.157 0.789 −0.246 −0.053 −0.087 −0.090 −0.097 –
6-Produtivity 4.217 0.767 −0.842 0.548 −0.189∗∗ −0.169∗ 0.054 −0.003 0.206∗∗ –
7-Product quality 4.250 0.909 −1.506 2.619 −0.165∗ −0.083 −0.018 0.071 0.091 0.488∗∗∗
∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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are becoming more usual and integrated with data and
machine-to-machine communication, to operate in an
integrated process in the factory (Frank, Dalenogare, and
Ayala 2019).

The final factor is Online Traceability, which refers
to automatic identification technologies that can track
raw material and products, and components along the
value chain, enabling and transferring data with lim-
ited human intervention (Ustundag and Cevikcan 2017;
Schuitemaker and Xu 2020; Eichstädt et al. 2021). Online
Traceability in the Industry 4.0 context is mainly based
on RFID solutions applied in materials and products to
better track them in the factory (Meindl et al. 2021).

Production targets and industry 4.0 technologies

Table 3 provides the correlation matrix for the final vari-
ables used in the second stage of analysis, including
means, standard deviation, and normality checks using
the Skewness and Kurtosis of the data.

Table 4 presents the independent samples t-test for
comparison of means. The means differences were com-
pared between the technology arrangements when each
of the three production targets was or was not a priority.

For productivity as a production target (H1, Model
1), it was found that Vertical Integration (t = −3.557,
p = 002), Online Traceability (t = −1.922, p = 0.058),
and Advanced Manufacturing Processing Technologies
(t = −2.436, p = 0.017) were statistically significant as
technology arrangements adopted for this target, sup-
porting H1. Regarding H2, which considers process qual-
ity targets and its relationship with Industry 4.0 (Model
2), the results showed statistical support for Vertical
Integration (t = −2.311, p = 0.023) presented a signif-
icant difference between groups, supporting the hypoth-
esis, but only for one of the technology arrangements.
Finally, for manufacturing flexibility (H3, Model 3), the
results indicate that companies pursuing this target are
more likely to have increased adoption of Vertical Inte-
gration (t = −4.238, p<0.001), Virtual Manufacturing
(t = −2.246, p = 0.025) and Advanced Manufactur-
ing Processing Technologies (t = −2.082, p = 0.05).
Consequently, the results support the three hypothe-
ses and provide further refinement, showing that dif-
ferent technology arrangements are adopted depending
on the specific production target pursued. As shown
in this table, although the results support all the three
hypotheses, several nuances are shown in these results
that deserve more exploration, especially those related to
technologies that attend to production targets that com-
pete in a trade-off, as explained in the theoretical section.
Therefore, such differences are discussed in the next
section.
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Discussions

The discussions are divided into two main sections.
First, a conceptual discussion about the findings is pro-
vided, explaining the reasons why Industry 4.0 technol-
ogy arrangements from the findings are connected to
the production targets observed. Then, the second part
of the discussion shows how these technology arrange-
ments can be organised in a decision model that can
enable manufacturers to choose and adopt Industry 4.0
technologies that would serve their strategic needs the
most.

Connecting industry 4.0 technology arrangements
to production targets

The main empirical findings are summarised in the con-
ceptual framework of Figure 2. This framework rep-
resents the relationships between the three production
targets and the main Industry 4.0 technology arrange-
ments adopted to achieve such targets. Results indicate
that companies implement complementary technologies
that configurate clusters or technology arrangements, as
previously suggested also by other studies (e.g. Dalenog-
are et al. 2018; Frank, Dalenogare, and Ayala 2019; Chae
and Olson 2021). Four main arrangements were identi-
fied: Vertical Integration, Advanced Manufacturing Pro-
cessing Technologies, Virtual Manufacturing, and Online
Traceability. Although they have a primary objective (e.g.
online traceability is to track components and materials,
or vertical integration is to integrate information layers
to provide real-time data flow), the results showed that
the adoption of these arrangements depends on the type

of production target pursued. This means that instead of
pursuing the full implementation of Industry 4.0-related
technologies, as usually presented in some Industry 4.0
technology roadmapmodels (e.g. Frank,Dalenogare, and
Ayala 2019), companies should first consider which pro-
duction target they want to improve to then adopt the
most appropriate technology arrangement. In this sense,
the innovation diffusion-adoption view of Industry 4.0,
which was adopted as theory lens of this study, needs
to be based on production targets that companies aim
to achieve rather than on prescriptive linear models of
technology diffusion and adoption in which technologies
are proposed to be implemented in a prescriptive order
independently of the production target pursued.

The study also helps to explore the trade-offs between
these three production targets. The findings showed that
some technologies are implemented for specific targets,
and others are adopted in more than one of the pro-
duction targets. In this sense, if there are technologies
adopted by companies independently of the target pur-
sued, although such targets can compete with each other,
such technologies should contribute to the cumulative
view of production trade-offs explored in the theoreti-
cal background (Ferdows andMeyer 1990). In this sense,
the conceptual framework of the results evidence which
technologies contribute to the cumulative view of the tar-
gets helping the pursued goals achieve a balance, maybe
with lower but more balanced results between such
targets with specific technologies (Ferdows and Meyer
1990). Next, it is explained how the different technol-
ogy arrangements are adopted according to trade-offs
and complement between production targets shown in
Figure 2.

Figure 2. Conceptual framework of the empirical findings.
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Regarding Vertical Integration, the results show that
this is a general-purpose technology arrangement (Figure 2)
because it is adopted by companies independently on
the production target pursued. This means that Verti-
cal Integration is a primary focus of companies when
adopting an Industry 4.0 approach, being always present
in the Industry 4.0 journey. Vertical Integration helps
to achieve the first objective of Industry 4.0, which is
the visibility and transparency of the manufacturing pro-
cesses (Tabim, Ayala, and Frank 2021; Schuh et al. 2020).
Visibility means that decision-makers will be able to
‘realise’ what is happening in different stages of the pro-
cess, while transparency means that they will be able
to ‘understand’ relationships between different process
parameters (Schuh et al. 2020). Although it is known
that such objectives are only achieved when information
layers supported by PLCs, SCADA, MES, and other sys-
tems are integrated (Tabim, Ayala, and Frank 2021), the
results provide empirical evidence that the basic integra-
tion of information provided by this technology arrange-
ment is necessary for all these production targets. This
result also clarifies why Dalenogare et al. (2018) did not
find support for a positive association between Vertical
Integration and the expected benefits they can produce
for operational performance. In that study, the authors
considered a single construct for operational benefits in
which many other production targets were also included
(and may not be correlated to these technologies). By
deploying expected operational benefits in only three
main production targets, the results showed that there is,
in fact, a strong association of the three targets investi-
gated with Vertical Integration adoption. Therefore, the
lack of analysis on trade-offs by Dalenogare et al. (2018)
might confound this correlation.

Moreover, the results showed that Vertical Integration
is the only technology arrangement highly adopted when
companies pursued process quality as the main produc-
tion target (Table 3). Vertical Integration allows one to
visualise and analyse what is happening in the different
stages of the production process (Chiarini 2020). Conse-
quently, decision-makers can quickly detect and correct
non-conformities and improve process parameters based
on the resulting analysis of the data (Souza et al. 2020).
Furthermore, the theoretical view adopted in this study
on cumulative production targets argues that companies
can pursue some complementary targets (Ferdows and
Meyer 1990). In this sense, manufacturing studies have
shown that quality and productivity, or quality and flex-
ibility are complementary targets in production systems
(Marodin et al. 2019). Consequently, process quality and
Vertical Integration are shown in the results as highly
correlated contributing for the whole Industry 4.0 sys-
tem, independently whether the company may pursue

additional manufacturing flexibility or productivity, as
represented in Figure 2.

The findings suggest that two technology arrange-
ments – Virtual Manufacturing and Online Traceability –
are specific purposes technologies because they are adopted
when two different competing targets are pursued (Da
Silveira and Slack 2001; Größler, Grübner, and Milling
2006). The findings show that when companies pur-
sue productivity as the main production target, besides
implementing Vertical Integration, they also implement
Online Traceability. This latter helps companies track
raw materials and product components on the shop
floor using technologies such as RFID, allowing them to
reduce the time of supporting material handling activi-
ties (such as material identification, product allocation,
production routing of material inputs, etc.) and, conse-
quently, reduce process inefficiencies (Guo et al. 2014;
Ramadan, Al-maimani, and Noche 2016). The combi-
nation of Online Traceability with Vertical Integration
should allow companies to achieve a fully integrated,
real-time data flow in the manufacturing activity, one
of the advantages proposed by the Internet of Things
concept to increase productivity (Wang et al. 2016a,b).
The real-time data flow helps companies understand
andmake decisions to improvemanufacturing indicators
such as overall equipment efficiency (OEE), take times,
or downtimes (Lee, Bagheri, and Kao 2015; Rosin et al.
2020).

On the other hand, when companies pursue manufac-
turing flexibility as the main production target, the find-
ings show that they implement Virtual Manufacturing,
besides Vertical Integration. The literature has acknowl-
edged that digital tools such as simulation, virtual com-
missioning, and augmented reality help operations man-
agers to make complex decisions before taking the risks
of physical changes in the manufacturing layout or pro-
duction scheduling (Baykasoglu and Gorkemli 2017; Tao
et al. 2019; Bueno et al. 2020). Advanced applications
of the Industry 4.0 domain comprehend the creation of
cyber-physical systems by combining Virtual Manufac-
turing with Vertical Integration, which allows simulating
changes in real-time based on the information collected
from the integrated systems from vertical integration
(Dalenogare et al. 2018). Consequently, the findings show
that Virtual Manufacturing is not mainly adopted when
companies aim for productivity as a production target
but when they look for flexibility. The literature has usu-
ally included Virtual Manufacturing as a contribution to
productivity (Autor, Mindell, and Reynolds 2020; Büchi,
Cugno, and Castagnoli 2020), but this is because such
studies have not addressed trade-offs between targets
as different main options that decision-makers can take
when adopting Industry 4.0.
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The results also show that, while there are two specific-
purpose technologies for the competing targets, there is
also a technology arrangement that should be consid-
ered integrative-purpose because it is adopted for the two
competing targets (productivity vs. flexibility). This is the
case with Advanced Manufacturing Processing Technolo-
gies. This arrangement allows reconciling two trade-offs.
Thus, it is useful to balance manufacturing flexibility and
productivity, i.e. contribute to the cumulative produc-
tion targets view of Ferdows and Meyer (1990). From a
practical perspective, this means that EFA results pointed
out that robots, collaborative robots, and 3D printing are
more prone to be implemented by the same type of com-
panies and that such companies are pursuing both com-
peting production targets together. In this sense, the lit-
erature has acknowledged that 3D printing is still limited
for high productivity, but it contributes to high flexibility
(Mellor, Hao, and Zhang 2014; Niaki and Nonino 2017)
and that robots may sometimes be too ‘rigid’ for flexible
operations, but help for productivity (Autor,Mindell, and
Reynolds 2020). Nevertheless, manufacturing processes
using a technology arrangement that combines these
characteristics can help achieve an integrative purpose
of such targets. For example, the literature has reported
factories with high join adoption of different advanced
hardware for Industry 4.0, including robots, collaborative
robots, and additive manufacturing (3D printing). Such
factories would be those pursuing a better balance for a
cumulative perspective of production targets (Szász et al.
2020).

Organising the industry 4.0 technology
arrangements in a decisionmodel towards different
production targets aimed

Considering the discussions on the conceptual frame-
work of Figure 2, the last step to understanding the
Industry 4.0 technology arrangements obtained is organ-
ising the different technologies into a decision path that
connects such technologies with the production targets
they can contribute to. This is represented in the deci-
sion model in Figure 3. The model describes three main
decision paths based on the production target aimed. In
the horizontal axis, the implementation steps between the
different technology arrangements are represented. In the
vertical axis, the implementation steps within each tech-
nology arrangement are represented. Next, the rationale
behind these steps is explained.

First, the model (Figure 3) shows that companies
could start withVertical Integration, as usually considered
in the maturity models. This start points out visibility
and transparency (i.e. characteristics of vertical integra-
tion) as the first aims (Schumacher, Erol, and Sihn 2016;

Mittal et al. 2018; Santos and Martinho 2019) since this
is a general-purpose technology arrangement useful to
any target. Considering previous studies on Vertical Inte-
gration (e.g. Tabim, Ayala, and Frank 2021; Dalenogare
et al. 2018), it is well established that such implementa-
tion should start with the usage of sensors andPLCs at the
manufacturing stations. Thiswill be followed by adopting
a SCADA to integrate the data and then adopting anMES
that allows organising the activities based on the informa-
tion flow from themanufacturing stations (Tabim, Ayala,
and Frank 2021). Finally, this will enable achieving a real-
time monitoring system that can provide scheduling, i.e.
an advanced planning and scheduling (APS) based on
(quasi)real-time operations (Bueno et al. 2020).

As discussed in the previous subsection, the next step
will depend on the specific target pursued. Therefore,
different paths will be followed depending on each com-
pany’s needs (Figure 3). The decision model shows that
there are no necessary further technology arrangements
for the Quality target to be adopted. Quality can be con-
trolled through data acquisition and monitoring, which
is already comprised in Vertical Integration. Still, other
technologies can serve specific quality purposes, such as
using collaborative robots to execute quality measures
(Dornelles et al. 2022). In this sense, the model only
describes the main functions to which such technolo-
gies can contribute. On the other hand, for Productivity
and Flexibility targets, further steps of implementation
must be considered. Therefore, Quality is represented as
a primary target with a shorter process of implementa-
tion that will create the base for the other two targets,
as represented in Figure 3 with the shorter arrow in the
horizontal axis.

The model of Figure 3 shows that when Productivity
is the target, Online Traceability should be the next step
of implementation, following Vertical Integration. This
is because it requires data acquisition from sensors and
data distribution from information systems provided by
the technologies involved in the first step (Enrique et al.
2022). Regarding the steps withinOnline Traceability, the
model emphasises that rawmaterial traceability would be
the first necessary step to be monitored to increase shop
floor productivity, followed by the finished products that
will be sent to the inventories. Besides, Advanced Manu-
facturing can be implemented concurrently with Online
Traceability, but the model highlights that these are more
complex technologies that will require greater changes
and adaptations of the manufacturing production line,
being, therefore, one of the last steps of implementa-
tion, as previously demonstrated by Dalenogare et al.
(2018) and Frank, Dalenogare, and Ayala (2019). A simi-
lar sequence of steps is proposedwhen companies aim for
Flexibility (Figure 3). In such a case, Vertical Integration



7014 D. V. ENRIQUE ET AL.

Figure 3. Decision model to implement Industry 4.0 technologies according to the expected production targets.

is followed byVirtual Manufacturing because the virtual-
isation of themanufacturing (e.g. virtual commissioning,
simulation, etc.) requires first visibility and transparency
of the process through the integration of systems (Schuh
et al. 2020). Again, Advances in Manufacturing can be
implemented concurrently. Still, the benefits should be
better when there is a virtualisation of the factory that
allows simulation and organisation of the way robots and
3D printers will operate (Enrique et al. 2022). Thus, as
previously discussed,AdvancedManufacturing technolo-
gies can be used either for Productivity, Flexibility, or
even for both combined. This will depend on how such
technologies are configurated, which demands higher
complexity of the implementation (Frank, Dalenogare,
and Ayala 2019; Dalenogare et al. 2018).

Conclusions

This study investigated the relationship between Indus-
try 4.0 technology adoption and production targets. The
study surveyed 92 manufacturers and analysed which
Industry 4.0 technologies they adopted when pursu-
ing three different targets: productivity, manufactur-
ing flexibility, and process quality. It was shown that
manufacturers tend to adopt 18 technologies analysed
in four different arrangements represented by technol-
ogy clusters: Vertical Integration, VirtualManufacturing,
Advanced Manufacturing Processing Technologies, and
Online Traceability.

Theoretical contribution

Industry 4.0 has been presented as a concept that should
be implemented to achieve several performance metrics

such as productivity, quality, and flexibility (seeAppendix
A). This present study shows that the concept needs
to consider different technology arrangements accord-
ing to the different production targets that are aimed to
achieve. This study opens a new perspective for Indus-
try 4.0 theory by showing the interconnection between
specific targets and technologies. Firstly, scholars should
study the variety of Industry 4.0 technology roadmaps
that can be implemented based on specific production
targets. The message of the findings is that Industry 4.0
technologies should be configurated according to the
production targets pursued by the companies. There-
fore, generic models can fail when they do not con-
sider the variety of production targets pursued. Secondly,
this study showed that production targets could compete
or be complementary. Therefore, Industry 4.0 arrange-
ments can also be combined and configurated to different
multi-target approaches. A third theoretical contribu-
tion of this study is that it provides evidence of how
each technology arrangement is associated with the pur-
sued production targets. In this sense, Vertical Integra-
tion acts as a general-purpose technology arrangement
for companies to implement any of the production tar-
gets investigated. On the other hand, Virtual Manufac-
turing and Online Traceability are specific-purpose tech-
nology arrangements adopted when companies aim for
flexibility or productivity. Advanced Manufacturing Pro-
cessing Technologies (robots, cobots, and 3D printing)
are useful as an integrative-purpose technology arrange-
ment since they are adopted for two competing targets,
either for manufacturing flexibility or productivity. Such
understanding is important for the advance of theory. For
instance, flexible operations have become the main req-
uisite in companies due to the pandemic impacts (Liu,
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Yi, and Yin 2021). In such a case, the present findings
enlighten which technologies are seen asmore promising
in Industry 4.0 adoption to achieve such flexible opera-
tions. Scholars can find in these results a starting point
for investigation of the detailed implementation of such
technologies to attend the pursued production targets.

Practical implications

The decisionmodel proposed (Figure 3) helps operations
and technology managers to understand which tech-
nology arrangement they should choose based on the
production target pursued. The main message to prac-
titioners is that they need to consider the production
targets they aim with the implementation of Industry
4.0 technologies because this will guide the adoption of
different types of technology arrangements. Practition-
ers need to question such targets to look at the broad
picture of Industry 4.0 technologies before adopting spe-
cific technologies. Then, technologies can be grouped
around targets, as shown in the conceptual framework
that summarises the findings (Figure 2). From a practi-
cal perspective, the study shows what technologies are
more prone to be implemented together and to attend to
the specific target expected. This can provide insights for
managers that aim to develop their Industry 4.0 journey
of their factories.

Limitations and future research

The research method presented some limitations that
should be considered for the reading of the obtained
findings. Firstly, this study analysed a single industry sec-
tor with particularities. This sector is mainly focused on
lower volumes and high added value. However, the study
lacks an analysis of manufacturing sectors with large
economies of scale, such as the automotive or fashion
industries. In such sectors, the considered technologies
can present other behaviour than those considered here.

Second, the study only consideredwhatwe call the first
generation of technologies in the Industry 4.0 domain,
which are focused on obtaining a smart and intercon-
nected factory. Recent literature has emphasised the
social aspects of the factory, showing that workers should
be better integrated and enhanced by the Industry 4.0
technologies (Marcon et al. 2021; Meindl et al. 2021). In
this vein, Dornelles, Ayala, and Frank (2022) showed that
AI and AR technologies should also be applied to work-
ers’ manufacturing activities like assembly or processing,
which were not included in our study. As Industry 4.0
technologies and their focus are constantly evolving in
this emerging field, future studies should address other
new technologies in this field.

A third aspect is that the study only considers inde-
pendent samples t-tests, presenting limitations for deeper
conclusions. Larger samples would allow othermultivari-
ate techniques such as regression models that would help
obtain explanatory power on the targets pursued when
different technologies are adopted. The used method
helps to detect differences between groups but not to
know how much each target explains the technolo-
gies adopted. Future studies could advance in such a
direction.

Regarding future opportunities for research, this study
discussed the relationship between technology and pro-
duction targets, which allows understanding why com-
panies implement some specific types of Industry 4.0
technologies. However, this study did not consider per-
formancemetrics from such technology adoption. Future
studies can advance in this direction by applying regres-
sion models to analyse how the combination of such
arrangements may increase the different production tar-
gets. To this aim, future research should ideally consider
longitudinal data to verify effects during a longer period
since technology adoption can require time to become
effective. Moreover, the study did not consider the nec-
essary investments for the different technology arrange-
ments analysed. Prior research has considered tech-
nology investment frameworks (e.g. Frank et al. 2013;
Dreyer et al. 2022; Almeida et al. 2022). Such studies
could be adapted to investigate how companies prioritise
their investments in the set of technologies that com-
prise each technology arrangement. For instance, adopt-
ing Advanced Manufacturing Processing Technologies
to integrate flexibility with productivity requires invest-
ments in robots, cobots, and 3D printing. Thus, a finan-
cial appraisal is necessary to ensure that such investments
are feasible. Besides, technology adoption is a complex
process that depends of a large number of contingency
factors such as company size, demand characteristics,
corporate strategy, among others (Marcon et al. 2021;
Enrique et al. 2022) that must be analysed in future
studies.
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Appendices

Appendix A. Literature review.

Authors Aim Method Industry 4.0 implementation Operational Target/ Performance

Fatorachian and Kazemi
2018

This study investigated the academic
research and industrial reports in
the industry 4.0 area and smart
Manufacturing to provide insights
on the execution of Industry 4,0

Literature Review • Industrial Internet
• Internet of Things
• Cyber-physical-Sytems
• Information Network
• Software Sytems
• Cloud Computing

Drivers and benefits of industry 4.0
• Meeting individual customer

demands
• Flexible and agile engineering and

Manufacturing
• Improved information sharing and

decision-making
• Improved integration and

collaboration
• Improved Resource Productivity
• Mass customisation

Dalenogare et al. 2018 This study analysed the potential
benefits for product development,
operations, and side-effects aspects
of the Brazilian industry when
implementing the Industry 4.0
related technologies.

OLS regression
Sample Size:
Aggregated
data from 2225
companies

The authors used single variables to measured
Industry 4.0 implementation:

• Computer-Aided Design integrated
with Computer-Aided
Manufacturing

• Integrated engineering systems
• Digital automation with sensors
• Flexible manufacturing lines
• MES and SCADA systems
• Big data
• Digital Product-Services
• Additive manufacturing
• Cloud services

Expected benefits: Product: Improvement
of product customisation, Improvement
of product quality, Reduction of product
launch time. Operational: Reduction of
operational costs, Increase productivity,
Increase processes visualisation, and control.
Side-Effects: Improving sustainability
(externalities), Reduce of labour claims
(worker satisfaction)

Tortorella, Giglio, and Van
Dun 2019

This study aimed to examine the
moderating role of Industry 4.0
technologies on the relationship
between lean production (LP)
and operational performance
improvement within Brazil, a
developing economy context.

OLS regression-
(Moderation
test) Sample
Size: 147

Industry 4.0 was measured using two Con-
structs:Process-related:Digital automation
without sensors, Digital automation with
process control sensors, Remote monitoring,
flexible lines. Product/Service-related:
Integrated engineering systems for product
development, 3D printing.

Performance construct:
• Productivity,
• Delivery service level,
• Inventory level,
• Quality (scrap and rework) and
• Safety (accidents).

(continued)
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Appendix A. Continued.

Authors Aim Method Industry 4.0 implementation Operational Target/ Performance

Szász et al. 2020 This study investigated the perfor-
mance impact of implementing
Industry 4.0 and how important
contingency factors (plant size,
multinational status, country
context) affect implementation
efforts.

Structural equation
modeling
Sample Size: 705

The Industry 4.0 implementation construct
was developed using three individual items:

• Use of advanced processes
• Development of ‘the factory of the

future’
• Engaging in process automation

programmes

Four constructs measured
operational Performance.
Quality: Conformance quality,
Product quality and reliability
Flexibility: Volume flexibility, Mix flexibility
Delivery: Delivery speed, Delivery reliability
Cost:Manufacturing cost, Ordering costs,
Manufacturing lead time

Tortorella et al. 2020 This study aimed to understand the
effect of the interaction between
Healthcare 4.0 technologies and
barriers on hospitals’ Performance?

One-Way –ANOVA
Sample Size: 181

Two constructs measured indus-
try 4.0 implementation:
Sensing Communication: Biomedi-
cal/digital sensors, IoT, Big data, Cloud
computing, Remote control or monitoring
Processing–Actuation: 3D printing, Col-
laborative robots, Machine/deep learning,
Augmented reality/simulation

Performance Construct: Cost, Productivity,
Quality, Patient satisfaction, Patient safety

Büchi, Cugno, and
Castagnoli (2020)

This study analysed the causal
relationship between this degree
of openness to Industry 4.0 and
Performance.

OLS- Regression
Sample Size: 231

The degree of openness to Industry 4.0 was
investigated using two indicators: breadth,
thenumber of technologies used, anddepth,
or thenumberof value chain stages involved.
The breadth of Industry 4.0: This indicator
was measured by the sums of 10 Industry
4.0 enabling technologies. Each technology
is a dummy variable, coded as zero to
indicate these were not implemented, while
one indicates these were implemented.
Depth of industry 4.0: Is a single indicator
measured by the sum of the frequency of
use in the value chain of 10 Industry 4.0
technologies.

Perceived opportunities: It was measured
by a single indicator obtained through the
sums up the six opportunity variables, each
of which is a dummy variable coded as zero
and one to indicate no opportunities and
perceived opportunities,
respectively:

• Less time fromprototype toproduc-
tion,

• Greater productivity through
shorter set-up times,

• Reduction of errors and machine
downtimes,

• Better quality and less waste,
• Greater product competitiveness

due to greater product
functionality.
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Chauhan, Singh, and
Luthra (2021)

This study analysed how the
intrinsic and extrinsic barriers to
digitalization affect Industry 4.0
adoption by the firms. The paper
also evaluates how these barriers
influence the linkage between
digitalization and the firm’s
Performance regarding its supply
chain competency and operational
Performance.

Structural Equation
Modeling
Sample Size: 143

Industry 4.0 Adoption Construct:
• Digital automation but no sensors
• Sensors in place for process control
• Remote monitoring with produc-

tion control
• Sensors for identification of operat-

ing conditions, products, and flexi-
ble production lines

• Integrated engineering systems for
development and production

• Additive manufacturing and rapid-
prototyping

• Designing and commissioning by
simulations and analysis of virtual
models

• Gathering and analysing huge
datasets (big data)

• Linking product to cloud and using
cloud services

• Incorporating digital services such
as IoT in products

Operational Performance: Decrease in
operating costs,Decrease in time required
for creating and delivery of new products,
Successful launches of new products,
Improvement in the quality of products, Rise
in product innovativeness Improvement in
product capability and Performance

Stentoft et al. (2020) This study aimed to investigate the
drivers and barriers for Industry
4.0 readiness and practice among
Danish small and medium-sized
manufacturers.

A mixed-method
approach that
combines
elements of
quantitative
and qualitative
research
approaches
Quantitative
Approach:
Mediation test
Sample Size: 308

Industry 4.0 implementation was measured
using 12 technologies grouped into five
sub-categories: (1) Data, computational
power, and connectivity (Big Data
and Analytics, IoT, Cloud Computing,
Horizontal and Vertical System Integration,
Mobile Technologies and RFID and RTLS
systems); (2) Analytics and intelligence
(Artificial Intelligence and Simulation); (3)
Human-machine interaction (Augmented
Reality); (4) Digital-to-physical conversion
(Autonomous Robots and Additive
Manufacturing) and
(5) Cybersecurity (Cybersecurity).

Performance variables as drivers for
Industry 4.0:

• Tomeet theCustomer requirements
• To reduce costs
• To improve time-to-market

(continued).
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Appendix A. Continued.

Authors Aim Method Industry 4.0 implementation Operational Target/ Performance

Li, Dai, and Cui (2020) How digital technologies influence
economic and environmental
Performance in the new era of
Industry 4.0.

OLS regression-
(Mediation test)
Sample Size: 188

Digital technologies Construct:
• Cloud computing,
• Big data,
• Analytics,
• Internet of Things

Economic Performance Construct:
Growth in return on sales, Growth in
profit Growth in return on investment,
Growth in sales, Growth in market share
Environmental performance Construct:
Reduction of air emission, Reduction of
wastewater, Reduction of solid wastes,
Improvement of the firm’s environmental
situation

Gillani et al. 2020 This paper studied the role played by
technological context, organisa-
tional context, and environmental
context of firms in the implemen-
tation of the digital manufacturing
technologies (DMT)

Structural equation
modelling
Sample Sizes:
931

DMT construct:
• Use of advanced processes, such as

laser andwater cutting, 3D printing,
high precision technologies

• Development towards ‘the factory
of the future’ (e.g. smart/digital
factory, adaptive manufacturing
systems, scalable Manufacturing)

• Engaging in process automation
programmes (e.g. automated
machine tools and han-
dling/transportation equipment,
robots)

• Engaging in product/part tracking
and tracing programs (bar codes,
RFID)

Operational Performance Construct:
Flexibility:Mix Flexibility, Volume Flexibility
Delivery:Delivery Speed Delivery Reliability
Design: New Product Introduction Ability
Product Customization Ability
Quality: Product Quality, Conformance
Quality

Cugno, Castagnoli, and
Büchi 2021

This paper explores the impact of
barriers and incentives on the
relationship between openness to
Industry 4.0 and Performance.

Mixed-Method:
Qualitative and
quantitative
approach
Quantitative
Approach:
OLS regression
Sample Size: 500

The breadth of Industry 4.0: This indicator was
measured by the sums of 10 Industry 4.0
enabling technologies. Each technology is a
dummy variable, coded as zero to indicate
these were not implemented, while one
indicates these were implemented.

The performance variable is a single indicator
measured by the sum of seven variables,
where each is a dummy variable coded as 1
to indicate perceived opportunities.

• Production Flexibility,
• Speed of serial prototypes,
• Greater output capacity,
• Reduced set-up costs,
• Fewer errors and shorter machine

downtimes,
• Higher product quality and fewer

rejected products,
• Customers’ improved opinion of

products,
• Improved productivity of human

resources
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Appendix B. Questionnaire

1. Indicate which of the following production targets your company want to achieve with the adopted Industry 4.0 technologies:

• Productivity
• Process quality
• Manufacturing flexibility

2. Indicate the degree of implementation of the following technologies from Industry 4.0 in your company. Likert scale varying
from 1-Not implemented to 5-Advanced Implementation

• Process control (PLCs and sensors)
• Supervisory Control and Data Acquisition (SCADA) systems
• Manufacturing Execution Systems (MES)
• Real-time monitoring tools
• Virtual commissioning tools
• Machine-to-Machine (M2M) communication systems
• Artificial Intelligence tools for maintenance
• Artificial Intelligence tools for Production Planning and Control
• Process simulation tools
• Automated failure detection systems
• Remote operation systems
• Augmented Reality tools for maintenance
• Augmented Reality tools for workers training
• Raw material online traceability in the shop floor
• Product online traceability in the shop floor
• Robots for processing activities
• Collaborative robots
• 3D printing (additive manufacturing)
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