

Αριθμητικός Έλεγχος Εργαλειομηχανών

Evóτητα 11: Do Loops and Subprograms

Δημήτρης Μούρτζης, Επίκουρος Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

COMPUTER NUMERICAL CONTROL OF MACHINE TOOLS

Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics University of Patras, Greece

Dr. Dimitris Mourtzis Assistant Professor

Patras, 2015

Objectives of section 11

- Describe a **do loop**
- Describe a **subprogram**
- Describe **nested loops**
- Write simple programs using loops, subroutines and nested loops

Do loops

- If an operation is to be repeated over a number of equal steps, it may be programmed in what is referred to as a do loop
- In a do *loop*, the MCU is instructed to *repeat an operation* (in this case, drill a hole five times) rather than be programmed for five separate hole locations.
- A do loop simply instructs the MCU to repeat a series of NC program statements a specified number of times.
- Usually, looping capability on a CNC controller is an optional item, therefore not all controllers have it. The looping feature is sometimes added to the controller by the controller's manufacturer
- In other cases, it is **programmed** into the controller by the machine tool manufacturer.
- This means that the NC codes used to initiate a **do loop** can vary widely from machine to machine, even if they are all equipped with the same basic controller model

Do loops

Programming a Loop

• Naturally, there is a **G code** to institute a **do loop**

• As mentioned previously, there are no standard codes for **do loops**

• The method described in this section *is only one of the schemes in use*

Do loops

• The **format** for a **do loop** is:

N... **G25 Pppp Qqqq Ll** N**ppp** X/Y/Z N... X/Y/Z N... X/Y/Z N**qqq** X/Y/Z

• <u>Where</u>:

G25 – Signals the start of a loop

P – Specifies the beginning block number of the loop

Q – Specifies the ending block number of the loop

L – Specifies the number of times to perform the loop

Subprograms

• A *subprogram* is a separate program called by another program

- The use of subprograms can significantly reduce the amount of programming required on some parts.
- One way to use a *subprogram* is to place one or more do loops in the subprogram. This is known as <u>nesting</u>
- Subprograms can also be nested in other subprograms, or nested within do loops
- This gives the programmer a great deal of flexibility and a powerful programming tool.

Calling Subprograms

Main Program O0001 N001 X/Y/Z N002 -N003 -N004 M98P2000L1 N005 -N006 - Subprogram O2000 N001 X/Y/Z N002 -N003 -N004 M99

• Where:

N008 M30

N007 -

- M98 Instructs the MCU to jump to a subprogram
- P2000 Tells the MCU that O2000 is the subprogram ID
- L1 Instructs the MCU to execute the subprogram one time

Calling Subprograms

Subprogram Explanation

- Notice that a subprogram has its own program ID number, in this case
 O1000
- The sequence blocks also are numbered independently from the main program
- The only difference between the subprogram and an independent program is the return to calling program command (M99) at the end of the program

Subroutines

• Subroutines :

- Independent program which is called within the program
- Used when there is **need for repeating** a sequence of commands
- Programming time saving
- Register orders once, recall anywhere in the program and repeat as many times as needed
- M98, M99 commands

Subroutines

Programming with FANUK MCU

Nested Loops

Do loops may nest inside other do loop or subprograms

• Similarly, **subprograms** may *nest* inside other subprograms

 In writing a CNC program, a reference sketch, is a valuable aid in developing a machining strategy

• It also provides a way for the programmer to **check** his or her work

Summary

The important **concepts** presented in this section are:

- A do loop instructs the MCU to repeat a series of instructions a specified number of times
- The **format** for a do loop is;

<u>G25P...Q..-L.</u>

> Where:.

G25 turns on the loop

- **P** is the **beginning block** number of the loop.
- **Q** is the **ending block** number of the loop.
- L is the **number of times** to repeat the loop.

Summary

- A subprogram is a program called by another program in a parent-child
- The **format** for calling a subprogram is:

<u>P....M98L</u>.

- > Where:
- **P** is the **program number** of the subprogram.
- **M98** causes subprogram **P** to **execute**.
 - specifies the **number of times** subprogram **P** executes.
- **Nested loops** are placed inside other loops or **inside** subprograms
- The codes for subprograms and do loops vary from controller
- To program a particular machine, it will be necessary to consult the programming manual for the machine in question.

Vocabulary Introduced in this section

- Do loop
- Main program
- Nested loop
- Subprogram
- Subroutine

End of Section

Funding

- This educational material has been developed in the teaching duties of the respective educator.
- The Project "Open Academic Courses at the University of Patras" has funded only the reformation of the educational material.
- The Project is implemented within the context of the Operational Programme "Education and Lifelong Learning" (EdLL) and is cofunded by the European Union (European Social Fund) and national resources.

Reference Note

Copyright University of Patras, School of Engineering, Dept. of Mechanical Engineering & Aeronautics, Dimitris Mourtzis. Dimitris Mourtzis. «Computer Numerical Control of Machine Tools. Do Loops and Subprograms». Version: 1.0. Patras 2015. Available at: https://eclass.upatras.gr/courses/MECH1213/

License Note

This material is provided under the license terms of Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) [1] or newer, International Version. Works of Third Parties (photographs, diagrams etc) are excluded from this license and are referenced in the respective "Third Parties' works Note"

[1] https://creativecommons.org/licenses/by-nc-nd/4.0/

As **NonComercial** is denoted the use that:

does not involve directed or indirect financial profit for the use of this content, for the distributor and the licensee

does not involve any financial transaction as a prerequisite of the using or accessing this content

does not offer to the distributor and licensee indirect financial profit (e.g. ads) from websites

The owner can provide the licensee a separate license for commercial use upon request.

Notes Preservation

Any reproduction or modification of this material must include:

- the Reference Note
- the License Note
- the Notes Preservation statement
- the Third Parties' Works Note (if exists)

as well as the accompanying hyperlinks.

