

Αριθμητικός Έλεγχος Εργαλειομηχανών

Ενότητα 5: Programming Coordinates

Δημήτρης Μούρτζης, Επίκουρος Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

COMPUTER NUMERICAL CONTROL OF MACHINE TOOLS

Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics University of Patras, Greece

Dr. Dimitris Mourtzis Assistant Professor

Patras, 2015

Objectives of section 5

- Explain what a hole operation is
- Program hole operation coordinates using absolute and incremental positioning
- Program milling coordinates using absolute and incremental positioning

Hole Operations

- The holes is one of the most common processes
- In most cases, the creation of a hole requires the repetition of particular steps
- The standardization of these steps allows the introduction of drilling cycles to simplify programming
- For drilling the holes a **control method from point to point** is used
 - Control the movement of the cutter at X-Y axes with maximum speed

Control of the Z axis with cutting speed (feed-rate)

Drilling a Hole

Minimum number of steps for drilling a hole:

- 1st Step : Rapid cutting tool movement of the at the hole ... movement in axes X and / or Y
- 2nd Step : Rapid movement at the cutting height movement in the Z axis
- 3rd Step : Cutting with feed-rate speed to the desired depth of the hole movement in the Z axis
- 4th Step : Return to the reference plane movement in the Z axis

Different Types of Canned Drilling Cycles

• G code :

- G80	- Cancel canned cycle
– G81	- Simple drilling cycle
– G82	- Drilling cycle with dwell
– G83	- Peck drilling cycle
– G84	- Tapping cycle, right-hand thread

- G85 Reaming cycle
- G86 Boring cycle and spindle stop

FIGURE 1 Titanium Drilling

Milling Operations

MILLING Operations

- The system of coordinates presented thus far is used for centering a spindle over a particular location specified on a drawing
- This means that when a coordinate location is given to the machine the center of the spindle is sent to that location

Milling Cutters PROBLEM

- More than the correct amount of stock would be removed from the part
- This amount will be equal to the *Radius of the Cutter*

SOLUTION

 When positioning the spindle for the milling operation an *allowance* must be made for the radius of the cutter

Summary

- To program a *hole location* coordinate, the *center line* for the hole is used
- To program a coordinate for milling operations, the coordinate for the location must include an appropriate allowance for the radius of the cutter
- For *absolute positioning*, the datum reference plane remains the X0, Y0 point for all programmed moves
- For *incremental positioning*, the current coordinate location is the X0, Y0 point for the next move
- CNC machines are capable of mixing absolute and incremental positioning. This allows for flexibility in programming
- Metric measurement in the machine shop is based on the millimetre, where: 0.02mm is roughly equivalent to 0.001inch
- To **convert** an inch dimension to millimetres, *multiply the inch dimension by 25.4*
- To **convert** a metric dimension to inches, *multiply the metric dimension by* 0.03937, or
- Divide the *metric dimension by 25.4*

End of Section

Funding

- This educational material has been developed in the teaching duties of the respective educator.
- The Project "Open Academic Courses at the University of Patras" has funded only the reformation of the educational material.
- The Project is implemented within the context of the Operational Programme "Education and Lifelong Learning" (EdLL) and is cofunded by the European Union (European Social Fund) and national resources.

Reference Note

Copyright University of Patras, School of Engineering, Dept. of Mechanical Engineering & Aeronautics, Dimitris Mourtzis. Dimitris Mourtzis. «Computer Numerical Control of Machine Tools. Programming Coordinates». Version: 1.0. Patras 2015. Available at: https://eclass.upatras.gr/courses/MECH1213/

License Note

This material is provided under the license terms of Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) [1] or newer, International Version. Works of Third Parties (photographs, diagrams etc) are excluded from this license and are referenced in the respective "Third Parties' works Note"

[1] https://creativecommons.org/licenses/by-nc-nd/4.0/

As **NonComercial** is denoted the use that:

does not involve directed or indirect financial profit for the use of this content, for the distributor and the licensee

does not involve any financial transaction as a prerequisite of the using or accessing this content

does not offer to the distributor and licensee indirect financial profit (e.g. ads) from websites

The owner can provide the licensee a separate license for commercial use upon request.

Notes Preservation

Any reproduction or modification of this material must include:

- the Reference Note
- the License Note
- the Notes Preservation statement
- the Third Parties' Works Note (if exists)

as well as the accompanying hyperlinks.

Third Parties' Works Note

This Work makes use of the following works:

Figure 1: slide 6, CC BY-SA 3.0,

https://en.wikipedia.org/wiki/Drilling#/media/File:Percage_sineholing_mitis.jp

Any content that is not referenced or cited has been created by the respective course instructor and/or his colleagues and is provided under the same license CC BY-NC-ND 4.0

