AIФAटIKH POH YГР $\mathbf{~ N - A E P I \Omega N ~}$

ПEPIEXOMENA TPITOY MEPOY天

1．ЕІटАГ $\Omega Г \mathrm{H}$ 1.1
 1.1
1．2．Роїкє́ऽ $\pi \varepsilon \rho ь \chi \varepsilon ́ \varsigma ~ \sigma \varepsilon ~ к \alpha \tau \alpha \kappa о ́ \rho v \varphi \eta ~ \pi \rho о \varsigma ~ \tau \alpha \alpha ́ v \omega ~ \rho о \eta ́$ 1.2
1．3．Роїкоí $\chi \alpha ́ \rho \tau \varepsilon \varsigma ~ \gamma 1 \alpha \kappa \alpha \tau \alpha к о ́ \rho v \varphi \eta ~ \rho о \eta ́ ~$ 1.4
 1.4
1．5． Роїкоí $\chi \alpha ́ \rho \tau \varepsilon \varsigma ~ \gamma 1 \alpha ~ о \rho ı \zeta o ́ v \tau ı \alpha ~ \rho о \eta ́ ~$ 1.6
1．6．Роїкє́ऽ $\pi \varepsilon \rho ь \chi \varepsilon ́ \varsigma ~ \sigma \varepsilon ~ к \varepsilon к \lambda 兀 \mu \varepsilon ́ v \eta ~ \rho о \eta ŋ ~$ 1.7
2．ANA 1 Y ΣH POIK Ω N MEГE $\Theta \Omega \mathrm{N} \triangle I \Phi A \Sigma I K H \Sigma$ POH Σ 2.1
2．1．Eıб $\alpha \gamma \omega \gamma \eta ́$ 2.1
2．2．Паро́ $\mu \varepsilon \tau \rho о$ бічабюки́s рои́s 2.2
2．3．$\quad \mathrm{B} \alpha \theta \mu i ́ \delta \varepsilon \varsigma ~ \pi i \varepsilon \sigma \eta \varsigma ~ \sigma \tau \eta ~ \delta i \varphi \alpha \sigma ı к ŋ ́ ~ \rho о \eta ́ ~$ 2.5
3．YПО $Ю Г І \Sigma М О \Sigma ~ А П \Omega \wedge E I \Omega N ~ П I E \Sigma H \Sigma ~ \Sigma E ~ \triangle I Ф A \Sigma I K H ~ P O H ~$ YГР $\Omega \mathrm{N}-\mathrm{AEPI} \Omega \mathrm{N}$ 3.1
3．1．Movté入o ouoyદvov́s pońs 3.1
3．2．Movté $\frac{\tau}{} \tau v$ Lockhart－Martinelli 3.3
3．3．Movté̀o $\tau \omega v$ Baroczy－Chisholm 3.6
3．4．To μ ov τ д́久o 兀ov Friedel 3.8
 3.9
3．6．To $\mu \circ v \tau \varepsilon ́ \lambda o \tau \omega v$ Baker－Jardine－Associates 3.12
3．7．To μ ov $\tau \dot{\lambda} \lambda_{o} \tau \omega v$ Dukler－Flanigan 3.17
4．ФYГIKOMA＠HMATIKH ПPOГOMOI $\Sigma \mathrm{H} \triangle \mathrm{I} Ф A \Sigma I K H \Sigma$ POH Σ ҮГР $\Omega \mathrm{N}-\mathrm{AEPI} \mathrm{\Omega N}$ 4.1
4．1．Eıб $\sigma \boldsymbol{\gamma} \boldsymbol{\gamma} \eta{ }^{2}$ 4.1
 4.2
 4.6
4．3．1．E 4.6
4．3．2．Еร̌íб $\omega \sigma \eta$ ориŋ́s 4.7
 4.9
5．ANA \triangle Y $\Sigma H \Sigma H M A N T I K \Omega N ~ O P \Omega N ~ K A I ~ M E Г E ~ \Theta \Omega N ~ T O Y ~$ $\Sigma \mathrm{Y} \Sigma \mathrm{THMATO} \Sigma \mathrm{T} \Omega \mathrm{N}$ E $\Xi I \Sigma \Omega \Sigma E \Omega \mathrm{~N} \triangle \mathrm{IATHPH} \Sigma H \Sigma$ 5.1
5．1．K Káб $\mu \alpha$ кعvov́ 5.1
 5.2
5．1．2．K Káб $\mu \alpha$ кєvov́ $\gamma 1 \alpha$ б $\tau \alpha \theta \varepsilon \rho o ́ ~ \lambda o ́ \gamma o ~ \tau \alpha \chi \nu \tau \eta ́ \tau \omega v ~$ 5.2
5．1．3．K K $\alpha \sigma \mu \alpha$ кєvov́ $\mu \varepsilon$ то $\varepsilon \mu \pi \varepsilon \iota \rho ı к o ́ ~ \mu о v \tau \varepsilon ́ \lambda о ~ \tau o v ~ P r e m o l i ~$ 5.3
5．1．4．K K $\alpha \sigma \mu \alpha ~ к \varepsilon v o v ́ ~ \gamma ı \alpha ~ s t r a t i f i e d ~ \tau ט ́ \pi o ~ م о \eta ́ s ~$ 5.6
5．1．5．K入áб $\mu \alpha$ квvov́ $\gamma \downarrow \alpha$ bublle ти́то рои́s 5.11
 5.12
5．1．5．2 Movté ${ }^{2} \mathrm{\tau} \tau \omega v$ Beggs－Brill 5.13
5．2 $\Delta \downarrow \tau \tau \eta \tau \imath \kappa \eta$ $\tau \alpha ́ \sigma \eta ~ \sigma \tau о ~ \tau о i ́ \chi \omega \mu \alpha$ 5.16
 5.16
5．2．2．$\Delta ı \tau \tau \mu \tau \tau \kappa \check{\prime} \tau \alpha ́ \sigma \eta ~ \sigma \tau \eta \nu$ stratified $\rho \circ \eta$ 5.18
5．2．3．$\Delta \iota \alpha \tau \mu \eta \tau \iota \kappa \eta ́ \tau \alpha ́ \sigma \eta ~ \sigma \tau \eta \nu$ annular $\rho о \eta ́$ 5.19
5．2．4．$\Delta \downarrow \tau \mu \eta \tau \iota к \grave{\tau} \tau \alpha ́ \sigma \eta ~ \sigma \tau \eta \nu$ bubble $\rho о \eta$ 5.21
5．2．4．1 Movté $\lambda o \tau \omega v$ Beggs－Brill 5.21
5．2．4．2 Movté ${ }^{\text {a }}$ тov Wallis 5.23
5．2．4．3 Movtéえo 兀ov FML 5.24
5．2．4．4 Movt乇́ λ o $\tau \omega v$ Jayanti－Hewitt 5.27
 5.28
 5.29
 5.29
 5.31
 5.32
6． $\mathrm{ME} \Theta \mathrm{O} \triangle \mathrm{O} \Sigma \mathrm{T} \Omega \mathrm{N}$ XAPAKTHPIETIK $\Omega \mathrm{N}$ 6.1
6．1．М 6.1 $\pi \lambda \eta \dot{\gamma} \gamma \mu \tau \circ \varsigma$
6.1.1. Ефа \quad ноүๆ́ $\tau \eta \varsigma \mu \varepsilon$ Өóסov 6.1
 6.9
 6.12
6.2.1. Ефариоүף́ $\tau \eta \varsigma \mu \varepsilon$ но́סоv 6.12
 6.17
6.2.3. \quad さvvoрıккє́s бvvӨŋ́кєऽ 6.19
7. Y \triangle POПNEYMATIKE Σ ANTAIE Σ 7.1
 7.1
 7.1
7.1.2. $\quad А \pi \alpha ı \tau о ט ́ \mu \varepsilon \vee \eta ~ \pi о \sigma o ́ \tau \eta \tau \alpha ~ \kappa \alpha ı ~ \pi i ́ \varepsilon \sigma \eta ~ \alpha \varepsilon ́ \rho \alpha ~$ 7.4
 7.7
 7.8
 7.9
 7.10
7.2. $\Theta \varepsilon \omega \rho \eta \tau \iota \kappa \eta ์ ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu о v ์ ~ v \delta \rho о \pi v \varepsilon v \mu \alpha \tau \iota \kappa ळ ́ v ~ \alpha v \tau \lambda ı \omega ́ v$ 7.12
7.2.1. Eıб $\alpha \gamma \omega \gamma$ ๆ́ 7.12
 7.14 бтєрєळ́v
 7.15
 7.19
 7.21
 7.23
 7.25
7.2.8. $\Sigma \nu \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha \alpha v \alpha ́ \lambda v \sigma \eta \varsigma ~ \sigma \chi \varepsilon \delta 1 \alpha \sigma \mu \circ v ́ v \delta \rho о \pi v \varepsilon v \mu \alpha \tau \tau \kappa \omega ́ v \alpha v \tau \lambda \tau \omega ́ v$ 7.31
8. ВІВ Λ IOГРАФІА 8.1

1. EILAГ $\Omega \Gamma$

 $\tau \omega \vee$ роїкळ́v $\pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho \omega \vee \pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha ı ~ \kappa \alpha ́ \theta \varepsilon ~ \varepsilon i ́ \delta o \varsigma ̧ ~ \rho о \eta ́ \varsigma, ~ \alpha v o ́ \lambda о \gamma \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon \pi i \lambda \varepsilon \gamma \varepsilon i ́ ~ к \alpha ı ~ \tau о ~$

 а́ $\mu \varepsilon \sigma \alpha \mu \varepsilon$ то $\varepsilon i \delta o \varsigma \tau \eta \varsigma$ роฑ́s.

 $\pi о 1 о ́ \tau \eta \tau \alpha \varsigma ~ \tau о v ~ \varepsilon \xi \alpha \tau \mu 兀 \zeta ́ o ́ \mu \varepsilon v o v \mu i ́ \gamma \mu \alpha \tau о \varsigma$.

 тоєф́ $\mu \alpha \tau \circ \varsigma ~ \tau о v ~ \alpha \gamma \omega \gamma о v ́$.

 к $\lambda \dot{\mu} \mu \alpha \kappa \alpha, \eta$ роŋ́ тєívєı va $\pi \alpha ́ \rho \varepsilon ı ~ \pi \alpha \lambda \mu о \varepsilon ı \delta ́ ~ \mu о \rho \varphi \eta ́, ~ \varphi \alpha ı v o ́ \mu \varepsilon v o ~ \pi о v ~ \delta v \sigma \chi \varepsilon \rho \alpha i ́ v \varepsilon ı ~ \tau \eta ~ \mu \varepsilon ́ \tau \rho \eta \sigma \eta ~$ $\tau \eta \varsigma \pi i \varepsilon \sigma \eta \varsigma$.
3. Poŋ́ $\mu \varepsilon$ avatapágés (Churn flow) : Avtó тo عíסo̧ $\tau \eta \varsigma ~ \rho о \eta ́ s ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~$ $\chi \alpha \rho \alpha к \tau \eta \rho 1 \sigma \tau \varepsilon i ́ ~ \sigma \alpha v ~ \mu \mu \alpha ~ \mu \eta ~ \mu о ́ v ц \eta ~ \mu о \rho \varphi \eta ́ ~ \rho о \grave{s ~ s l u g, ~} \eta$ олоí $\delta 1 \alpha \sigma \pi \alpha ́ \tau \alpha 1 ~ \lambda o ́ \gamma \omega ~ \tau о v$

 роŋ́ η рои́ $\mu \varepsilon$ vү $\rho \alpha \sigma^{\prime} \alpha$ (mist flow).

- x $\pi \mathrm{o}$ ú kov α ó $\sigma \tau 0$: Bubble flow
- $0.0<x \leq 0.1 \quad$: Slug flow
- $x=0.1$: Churn flow
- $0.1<x \leq 1.0 \quad$: Annular flow
- $0.9 \leq x \leq 1.0 \quad$: Mist flow

'Evav téroto $\chi \alpha ́ \rho \tau \eta ~ \pi \alpha р о v \sigma i ́ \alpha б \alpha v ~ o l ~ H e w i t t ~ \& ~ R o b e r t s ~ \sigma \tau о v ~ о л о i ́ o ~ o l ~ \sigma u v \tau \varepsilon \tau \alpha ү \mu \varepsilon ́ v \varepsilon \varsigma ~$
 $\sigma \chi \emptyset ́ \mu \alpha$ (1.2) .

 ठוрабぃи́ร рои́s, аєрíov-vүрои́.

1. $\Sigma \tau \rho \omega \mu \alpha \tau о \pi о \imath \mu \varepsilon ́ v \eta ~ \rho о \eta ́ ~(S t r a t i f i e d ~ f l o w): ~ О ~ \delta ı \alpha \chi \omega \rho ı \sigma \mu o ́ s ~ \tau \eta \varsigma ~ \rho о \eta ́ s ~ \lambda o ́ \gamma \omega ~$
 бто $\pi \alpha ́ v \omega \mu$ ц́poç.
2. Δ tó $\sigma \pi \alpha \rho \tau \eta ~ \rho о \eta ์ ~ \varphi v \sigma а \lambda i ́ \delta \omega v ~(D i s p e r s e d-B u b b l e ~ f l o w): ~ O t ~ \varphi u б \alpha \lambda i ́ \delta \varepsilon \varsigma ~ \tau \eta \varsigma ~ \alpha \varepsilon ́ p ı \alpha \varsigma ~$
 μ е́pos тov aүшүоv́.

β) Slug flow.
y) Semislug flow.

Графıкŋ́ $\pi \alpha \rho \alpha ́ \sigma \tau \alpha \sigma \eta ~ \tau \omega v ~ \mu о v \tau \varepsilon ́ \lambda \omega v ~ \varphi a i v \varepsilon \tau \alpha ı ~ \sigma \tau о ~ б \chi \eta ́ \mu \alpha ~(1.3) . ~$.

1.5. Роїкоí $\chi \alpha ́ \rho \tau е \varsigma ~ \gamma ı \alpha ~ o p ı \breve{̧ o v t ı \alpha ~ \rho о \eta ́ . ~}$

 $\varepsilon є \neq \eta ์ \gamma \alpha \gamma \varepsilon \tau 1 \zeta \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho o v \varsigma ~: ~$

$$
\lambda_{B}=\left(\frac{\rho_{G}}{\rho_{A}} \cdot \frac{\rho_{L}}{\rho_{W}}\right)^{0.5}
$$

$$
\Psi_{B}=\frac{\sigma_{W}}{\sigma} \cdot\left[\frac{\mu_{\mathrm{L}}}{\mu_{\mathrm{W}}} \cdot\left(\frac{\rho_{\mathrm{W}}}{\rho_{\mathrm{L}}}\right)^{2}\right]^{\frac{1}{3}}
$$

 $\sigma \tau 0 ~ \sigma \chi ŋ ́ \mu \alpha$ (1.5), о́ $\pi \omega \varsigma ~ \pi \rho о \tau \alpha ́ \theta \eta \kappa \varepsilon \alpha \pi о ́ ~ \tau о v ~ B e l l . ~$

1.6. Роїкє̧́ $\pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma ~ \sigma \varepsilon ~ к \varepsilon к \lambda \mu \mu \varepsilon ́ v \eta ~ \rho о \eta ́ . ~$

 aүळүov́.
 бuvo $\tau \tau к \alpha ́$ ol $\alpha к о ́ \lambda o v \theta \varepsilon \varsigma ~ \mu \varepsilon ́ \theta o \delta o l . ~$

 $\pi \cup \kappa \vee о ́ \tau \eta \tau \alpha \varsigma$.

 клion $\pm 10^{\circ}$.

 $\gamma i ́ v o v \tau \alpha l ~ \chi \omega \rho i \varsigma ̧ ~ \tau \eta ~ \beta o \eta ́ \theta \varepsilon ı \alpha ~ \tau \omega v ~ f l o w ~ p a t t e r n s . ~ ' O \mu \omega \varsigma ~ \pi \alpha \rho \alpha ́ ~ \tau \eta \nu ~ \pi \rho o ́ \sigma \theta \varepsilon \tau \eta ~ \delta v \sigma к о \lambda i ́ \alpha ~ \pi o v ~$

2.1 Eıбаушүү์.

$$
\begin{equation*}
\frac{d p}{d z}=\frac{d p_{F}}{d z}+\frac{d p_{G}}{d z}+\frac{d p_{A}}{d z} \tag{2.1}
\end{equation*}
$$

 $\theta \varepsilon \rho \mu о ́ \tau \eta \tau \alpha \varsigma$.

- G : Poŋ́ $\mu \alpha ́ \zeta \alpha \varsigma ~ \alpha v \alpha ́ ~ \mu о v \alpha ́ \delta \alpha ~ \varepsilon \pi и \varphi \alpha ́ v \varepsilon 1 \alpha \varsigma ~ \tau о v ~ \mu i ́ y \mu \alpha \tau о \varsigma ~$

- γ : $\Delta є \pi \tau 1 \varphi \alpha v \varepsilon 1 \alpha к \eta ́ ~ \tau \alpha ́ \sigma \eta ~$
- ε : Iбоঠи́vано и́чоऽ трахи́тптац

- ρ_{L} : Пuкขótทта vүрŋ́s 甲áбŋร
- Про́бסшоך $\theta \varepsilon \rho \mu o ́ \tau \eta \tau \alpha \varsigma$

 $\varepsilon \xi \alpha \kappa \rho \imath \omega \theta \varepsilon i ́, \sigma v v^{\prime} \theta \omega \varsigma \alpha \mu \varepsilon \lambda \varepsilon i \tau \alpha \alpha$.

 $\tau \eta \varsigma \beta \alpha \theta \mu i \delta \alpha \varsigma \pi i \varepsilon \sigma \eta \varsigma$ каı $\mu \alpha ́ \lambda_{\imath \sigma \tau \alpha} \alpha \rho к \varepsilon \tau \alpha ́$ о $\eta \mu \alpha v \tau \iota \kappa \varepsilon ́ \varsigma$.

 $\sigma \tau \eta \mu о$ оорабки́ рои́.

 $\varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$ бтоv о́ро $\tau \eta \varsigma \beta \alpha \theta \mu i ́ \delta \alpha \varsigma ~ \pi i \varepsilon \sigma \eta \varsigma ~ \lambda o ́ \gamma \omega ~ \beta \alpha \rho v ́ \tau \eta \tau \alpha \varsigma ~ \lambda o ́ \gamma \omega ~ \mu \varepsilon \tau \alpha \beta о \lambda \eta ́ s ~ \tau \eta \varsigma ~ \mu \varepsilon ́ \sigma \eta s ~$

 $\alpha v \varepsilon \xi \alpha \rho \tau \tau \tau \tau \eta \mu \tau \alpha \beta \lambda \eta \tau \eta$.

 คоп́ vүрои́-аعрíov, $\eta ~ \pi р о ́ \sigma \delta \omega \sigma \eta ~ \theta \varepsilon \rho \mu о ́ \tau \eta \tau \alpha \varsigma ~ \alpha \pi о к \tau \alpha ́ ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~ \gamma 1 \alpha ~ \mu i ́ \gamma \mu \alpha \tau \alpha$

 $\beta \alpha \theta \mu i \delta \alpha$ т $\eta \varsigma \pi i \varepsilon \sigma \eta \varsigma$.

Н $\pi \rho o ́ \sigma \delta \omega \sigma \eta ~ \theta \varepsilon \rho \mu o ́ \tau \eta \tau \alpha \varsigma$ о́ $\mu \omega \varsigma \varepsilon \pi i ́ \sigma \eta \varsigma \varepsilon \pi i \delta \rho \alpha ́ \sigma \tau \eta \beta \alpha \theta \mu i ́ \delta \alpha \pi i \varepsilon \sigma \eta \varsigma \kappa \alpha 1 \gamma 1 \alpha \mu i \gamma \mu \alpha \tau \alpha \mu \varepsilon$

 (mist flow).

 عíסoऽ 兀пऽ роŋ́s.

POH YГP Ω N-AEPI Ω N

 $\varepsilon \pi 1 \varphi \alpha ́ v \varepsilon 1 \alpha \varsigma ~ \kappa \alpha \iota \tau \alpha \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \tau \tau 1 \kappa \alpha ́ ~ \sigma \cup \mu \pi \tau \varepsilon \sigma \tau o ́ \tau \eta \tau \alpha \varsigma ~ \tau \eta \varsigma \mu 1 \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma, \delta \eta \lambda$. $\tau \eta \varsigma ~ \alpha \varepsilon ́ \rho 1 \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma$.

 $\varepsilon i ́ \delta o \varsigma ~ \tau \eta \varsigma ~ \rho о \eta ́ \varsigma . ~ \Sigma \tau o ~ к \varepsilon \varphi \alpha ́ \lambda \alpha 1 o ~ \alpha v \tau o ́, ~ \pi \alpha \rho о v \sigma i \alpha ́ \zeta o v \tau \alpha ı ~ \varepsilon \pi i \lambda \varepsilon \gamma \mu \varepsilon ́ v \alpha ~ \mu о v \tau \varepsilon ́ \lambda \alpha ~ v \pi о \lambda о \gamma ı \sigma \mu о v ́ ~ \tau \eta \varsigma ~$

3.1. Movté2o ouoyєvov́s poŋ́s

$$
\begin{equation*}
-\frac{\mathrm{dP}_{\mathrm{F}}}{\mathrm{dz}}=\frac{2 \cdot \mathrm{f}_{\mathrm{TP}} \cdot \dot{\mathrm{~m}}^{2}}{\mathrm{D} \cdot \rho_{\mathrm{H}}} \tag{3.1}
\end{equation*}
$$

 ع $\pi 1 \varphi$ áv $1 \alpha \varsigma\left(\mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}\right)$.
 Reynolds, $\mathrm{Re}_{\mathrm{TP},}$ o o oлoío̧ $\delta i ́ v \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \eta v ~ \alpha к o ́ \lambda o u \theta \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$R e_{T P}=\frac{\dot{m} \cdot D}{\mu_{T P}}$

 عivaı η $\sigma \chi \varepsilon ́ \sigma \eta$ 兀ou McAdams :
$\frac{1}{\mu_{T P}}=\frac{x}{\mu_{G}}+\frac{1-x}{\mu_{L}}$

$$
\begin{equation*}
\Phi_{\mathrm{L}}^{2}=\left(1+x \cdot \frac{\rho_{\mathrm{L}}-\rho_{\mathrm{G}}}{\rho_{G}}\right) \cdot\left(1+x \cdot \frac{\mu_{\mathrm{L}}-\mu_{\mathrm{G}}}{\mu_{G}}\right)^{-1 / 4} \tag{3.4}
\end{equation*}
$$

 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

$\left(\frac{d P_{F}}{d z}\right)=\Phi_{L}^{2} \cdot\left(\frac{d P_{F}}{d z}\right)_{L}$

о́тои :
$\left(\frac{d P_{F}}{d z}\right)_{L}=\frac{2 \cdot f_{L} \cdot \dot{m}^{2} \cdot(1-x)^{2}}{D \cdot \rho_{L}}$

 $\alpha v \tau i ́ \sigma \tau o \chi o v ~ \alpha \rho ı \theta \mu$ vú Reynolds :
$\operatorname{Re}_{\mathrm{L}}=\frac{\dot{m} \cdot(1-x) \cdot D}{\mu_{\mathrm{L}}}$

 Reynolds, ó $\pi \omega \varsigma ~ \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \tau o v ~ B l a s i u s ~: ~$
$f=0.079 \cdot\left(\frac{\dot{m} \cdot D}{\mu}\right)^{-1 / 4}$
 $\pi \rho о к и ́ \pi \tau \varepsilon \iota ~ к \alpha ı ~ \tau о ~ \gamma \nu \omega \sigma \tau o ́ ~ \delta t o ́ \gamma \rho \alpha \mu \mu \alpha ~ M o o d y . ~$

 тпऽ $\chi \omega$ рाఠтйऽ poñs.

3.2. Movtédo $\tau \omega v$ Lockhart-Martinelli

H $\pi \tau \omega ́ \sigma \eta \pi i \varepsilon \sigma \eta \varsigma ~ \lambda o ́ \gamma \omega ~ \tau \rho ı \eta ́ s ~ v \pi о \lambda о \gamma i \zeta \varepsilon \tau \alpha 1 ~ \sigma \alpha v ~ \sigma u v \alpha ́ \rho \tau \eta \sigma \eta ~ \tau \omega v ~ \delta ı \varphi \alpha \sigma 1 \kappa \omega ́ v ~$

$-\frac{d P_{F}}{d z}=\Phi_{G}^{2} \cdot\left(\frac{d P_{F}}{d z}\right)_{G}=\Phi_{L}^{2} \cdot\left(\frac{d P_{F}}{d z}\right)_{L}$

о́точ :

 $\mu o ́ v o ~ \tau \eta \varsigma ~ v \gamma \rho \eta ́ s ~ \varphi \alpha ́ \sigma \eta \varsigma . ~$

$X^{2}=\frac{\left(\frac{d P_{F}}{d z}\right)_{L}}{\left(\frac{d P_{F}}{d z}\right)_{G}}$

о́тои :
$\left(\frac{d P_{F}}{d z}\right)_{L}=\frac{2 \cdot f_{L} \cdot \dot{m}^{2} \cdot(1-x)^{2}}{D \cdot \rho_{L}}$

коı
$\left(\frac{d P_{F}}{d z}\right)_{G}=\frac{2 \cdot f_{G} \cdot \dot{m}^{2} \cdot x^{2}}{D \cdot \rho_{G}}$

 Reynolds :
$\operatorname{Re}_{G}=\frac{\dot{m} \cdot x \cdot \mathbf{D}}{\mu_{G}}$
$R e_{L}=\frac{\dot{m} \cdot(1-x) \cdot D}{\mu_{\mathrm{L}}}$

 Colebrook-White.

 тоддатдабабто́v.

Ot Lockhart каı Martinelli $\pi \alpha \rho \circ v \sigma i ́ \alpha \sigma \alpha v ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \tau o v \varsigma ~ \sigma \varepsilon ~ \mu о р \varphi \eta ́ ~ \delta ı \alpha \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma, ~$

 Chisholm (1967) :

$$
\begin{align*}
& \Phi_{L}^{2}=1+\frac{C}{x}+\frac{1}{x^{2}} \tag{3.15}\\
& \Phi_{G}^{2}=1+C \cdot x+x^{2} \tag{3.16}
\end{align*}
$$

Poń uүpoú	Poŋ́ ąpíov	Δ ¢íkтๆऽ	C
Tupßஸ́סףऽ	Tvpßஸ́反ךऽ	tt	20
$\Sigma \tau \rho \omega \tau \dot{\square}$		vt	12
Tupßஸ́סп¢	$\Sigma \tau \rho \omega \tau \dot{\prime}$	tv	10
$\Sigma \tau \rho \omega \tau \check{\prime}$	$\Sigma \tau \rho \omega \tau \dot{\prime}$	vv	5

 (Chisholm, 1967).

3.3. Movtédo $\tau \omega v$ Baroczy-Chisholm

$\Phi_{\mathrm{L}}^{2}=1+\left(\mathrm{Y}^{2}-1\right) \cdot\left[\mathrm{B} \cdot \mathrm{x}^{(2-n) / 2} \cdot(1-\mathrm{x})^{(2-n) / 2}+\mathrm{X}^{2-\mathrm{n}}\right]$

 $\eta \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho \circ \varsigma$ B סívєтаı a $\pi o ́ ~ \tau ı \varsigma ~ \sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~: ~$
$\mathrm{B}=\frac{55}{\dot{\mathrm{~m}}^{1 / 2}} \quad \gamma 1 \alpha \quad 0<\mathrm{Y}<9.5$
$\mathrm{B}=\frac{520}{\mathrm{y} \cdot \dot{\mathrm{m}}^{1 / 2}} \quad \gamma 1 \alpha \quad 9.5<\mathrm{Y}<28$
$\mathrm{B}=\frac{1500}{\mathrm{y}^{2} \cdot \dot{\mathrm{~m}}^{1 / 2}} \quad \gamma 1 \alpha \quad 28<\mathrm{Y}$

к01
$Y^{2}=\frac{\left(d P_{F} / d z\right)_{G}}{\left(d P_{F} / d z\right)_{L}}$

 $1 \delta 10 ́ \tau \eta \tau \varepsilon \varsigma \tau \eta \varsigma \alpha \varepsilon ́ \rho 1 \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma$, к $\alpha 1$

Oı $\beta \alpha \theta \mu i ́ \delta \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \delta i ́ v o v \tau \alpha ı ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \alpha к o ́ \lambda o u \theta \varepsilon \varsigma ~ \sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~: ~$

$$
\begin{align*}
& \left(\frac{d P_{F}}{d z}\right)_{G}=\frac{2 \cdot f_{G} \cdot \dot{m}^{2} \cdot x^{2}}{D \cdot \rho_{G}} \tag{3.20}\\
& \left(\frac{d P_{F}}{d z}\right)_{L}=\frac{2 \cdot f_{L} \cdot \dot{m}^{2} \cdot(1-x)^{2}}{D \cdot \rho_{L}} \tag{3.21}
\end{align*}
$$

 $\alpha v \tau i ́ \sigma \tau o \imath \chi \omega v \alpha \rho 1 \theta \mu \omega ́ v$ Reynolds :
$R e_{G}=\frac{\dot{m} \cdot x \cdot D}{\mu_{G}}$

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{L}}=\frac{\dot{\mathrm{m}} \cdot(1-\mathrm{x}) \cdot \mathrm{D}}{\mu_{\mathrm{L}}} \tag{3.23}
\end{equation*}
$$

 $\sigma \tau \rho \omega \tau \mathfrak{n} \rho \circ \eta(\operatorname{Re}<2000) ~ \imath \chi \chi \cup ́ \varepsilon ı \pi \alpha ́ v \tau \alpha \eta$ $\sigma \chi \varepsilon ́ \sigma \eta \mathrm{f}=16 / \operatorname{Re}$.

$$
\begin{equation*}
\left(\frac{d P_{F}}{d z}\right)=\Phi_{L}^{2} \cdot\left(\frac{d P_{F}}{d z}\right)_{L} \tag{3.24}
\end{equation*}
$$

 $\sigma \cup v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ์ \varsigma \Phi_{\mathrm{L}}$ Sívetal $\alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta:$

$$
\begin{equation*}
\Phi_{\mathrm{L}}^{2}=\mathrm{E}+\frac{3.24 \cdot \mathrm{~F} \cdot \mathrm{H}}{\mathrm{Fr}^{0.045} \cdot \mathrm{We}^{0.035}} \tag{3.25}
\end{equation*}
$$

о́лои :
$E=\left(1-x^{2}\right)+x^{2} \cdot \frac{\rho_{L} \cdot f_{G}}{\rho_{G} \cdot f_{L}}$
$F=x^{0.78} \cdot(1-x)^{0.24}$
$H=\left(\frac{\rho_{\mathrm{L}}}{\rho_{\mathrm{G}}}\right)^{0.91} \cdot\left(\frac{\mu_{\mathrm{G}}}{\mu_{\mathrm{L}}}\right)^{0.91} \cdot\left(1-\frac{\mu_{\mathrm{G}}}{\mu_{\mathrm{L}}}\right)$
$F r=\frac{\dot{m}^{2}}{g \cdot D \cdot \rho_{T P}^{2}} \quad$, a $\rho i \theta \mu$ ós Froude
$\mathrm{We}=\frac{\dot{\mathrm{m}}^{2} \cdot \mathrm{D}}{\rho_{\text {TP }} \cdot \sigma} \quad, \alpha \rho \imath \theta \mu$ ó ς Weber
$\Sigma \pi \iota \varsigma \pi \alpha \rho \alpha \pi \alpha ́ v \omega \sigma \chi \varepsilon ́ \sigma \varepsilon 1 \varsigma \varepsilon$ cival :

$\rho_{\mathrm{G}}=\eta \pi \nu \kappa v o ́ \tau \eta \tau \alpha \tau \eta \varsigma \alpha \varepsilon ́ \rho 1 \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma$,
$\rho_{\mathrm{L}}=\eta \pi v \kappa v o ́ \tau \eta \tau \alpha \tau \eta \varsigma$ vүрท́ऽ ழáбๆऽ,
$\mu_{G}=\tau 0 \downarrow \xi \omega \dot{1} \delta \varepsilon \varsigma \tau \eta \zeta \alpha \varepsilon ́ \rho 1 \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \zeta$,

$\rho_{T P}=\left(\frac{x}{\rho_{G}}+\frac{1-x}{\rho_{L}}\right)^{-1}$

 $\delta 1 \varphi \alpha \sigma і к \varepsilon ́ \varsigma ~ \rho о \varepsilon ́ \varsigma . ~ П а р \alpha ́ ~ \tau \eta \vee ~ \pi о \lambda \nu \pi \lambda о к о ́ \tau \eta \tau \alpha ́ ~ \tau о v, ~ \sigma ט \gamma к \rho ı v o ́ \mu \varepsilon v o ~ \mu \varepsilon ~ \tau \alpha ~ \pi \rho о \eta \gamma о и ́ \mu \varepsilon v \alpha ~ \mu о \vee \tau \varepsilon ́ \lambda \alpha, ~$

3.5. To $\mu \circ \mathrm{v} \mathrm{\tau} \mathrm{\varepsilon ́} \mathrm{\lambda o} \mathrm{\tau} \mathrm{\omega v} \mathrm{Beggs-Brill}$

$\rho_{s}=\rho_{L} \cdot H_{L}+\rho_{G} \cdot H_{G}$

$$
\begin{equation*}
H_{G}=1-H_{L} \tag{3.33}
\end{equation*}
$$

 $\sigma \chi \varepsilon ́ \sigma \eta$:

$$
\begin{equation*}
\frac{\mathrm{dP}_{\mathrm{G}}}{\mathrm{dz}}=\mathrm{g} \cdot \rho_{\mathrm{s}} \cdot \sin \mathrm{a} \tag{3.34}
\end{equation*}
$$

H $\beta \alpha \theta \mu i ́ \delta \alpha \pi i \varepsilon \sigma \eta \varsigma ~ \lambda o ́ \gamma \omega ~ \tau \rho ı ß \eta \varsigma \varsigma ~ \delta i ́ v \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$\frac{d P_{F}}{d z}=\frac{f_{T P} \cdot \rho_{n} \cdot V_{m}^{2}}{2 \cdot D}$
ó $\pi 00$:
$\rho_{\mathrm{n}}=\rho_{\mathrm{L}} \cdot \lambda_{\mathrm{L}}+\rho_{\mathrm{G}} \cdot \lambda_{\mathrm{G}}$
$\lambda_{L}=\frac{V_{L}}{V_{m}}$
$\lambda_{G}=\frac{V_{G}}{V_{m}}$
$f_{T P}=f_{n} \cdot \frac{f_{T P}}{f_{n}}$

$$
\begin{equation*}
V_{m}=V_{L}+V_{G} \tag{3.40}
\end{equation*}
$$

$R e_{n}=\frac{\rho_{n} \cdot V_{m} \cdot D}{\mu_{n}}$

$\mu_{\mathrm{n}}=\mu_{\mathrm{L}} \cdot \lambda_{\mathrm{L}}+\mu_{\mathrm{G}} \cdot \lambda_{\mathrm{G}}$
 vло入оүі̧́६таl $\alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$\frac{f_{T P}}{f_{n}}=e^{s}$
ó ơ :
$S=\ln y /\left[-0.0523+3.182 \cdot \ln y-0.8725 \cdot \ln ^{2} y+0.01853 \cdot \ln ^{4} y\right]$
$\kappa \alpha 1$
$y=\frac{\lambda_{L}}{H_{L}^{2}(a)}$

$S=\ln (2.2 \cdot y-1.2)$

$$
\begin{equation*}
\frac{d P_{A}}{d z}=\frac{\rho_{s} \cdot V_{m} \cdot V_{G}}{P} \cdot \frac{d P}{d z} \tag{3.47}
\end{equation*}
$$

$$
\begin{equation*}
E_{k}=\frac{\rho_{s} \cdot V_{m} \cdot V_{G}}{P} \tag{3.48}
\end{equation*}
$$

 $\varepsilon \pi \imath \tau \alpha \chi \cup v \sigma \eta \varsigma, ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$

$$
\begin{equation*}
\frac{d P}{d z}=\frac{\frac{d P_{A}}{d z}+\frac{d P_{F}}{d z}}{1-E_{k}} \tag{3.49}
\end{equation*}
$$

3.6. To μ оvт ́̇̇o $\tau \omega v$ Baker-Jardine-Associates

Avtó тo $\mu \circ \vee \tau \varepsilon ́ \lambda o ~ \varepsilon ́ \chi \varepsilon ı ~ \alpha v \alpha \pi \tau v \chi \theta \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau o v \varsigma ~ B a k e r-J a r d i n e-A s s o c i a t e s ~ \kappa \alpha ı ~ \sigma \tau \alpha ~ \varepsilon \pi o ́ \mu \varepsilon v \alpha ~$

 $\mu \kappa \rho о ́ \tau \varepsilon \rho \eta$ ало́ 0.1 .

To μ оvтé入o BJA $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ t \alpha l ~ \alpha \pi o ́ ~ \delta v ́ o ~ к v ́ p l \alpha ~ \mu \varepsilon ́ \rho \eta, ~ \tau o ~ \pi \rho o ́ \tau o ~ \alpha \pi o ́ ~ \tau \alpha ~ o \pi о i ́ \alpha ~$

 $\pi \alpha \rho \alpha \mu \varepsilon ́ v \varepsilon \imath ~ \sigma \tau \alpha ́ \sigma \not \mu \%$.
 $\tau \eta$ б $\chi \varepsilon \varepsilon^{\eta}$:
$S_{L}=H_{L}-\lambda_{L}$

$F_{T P}=1-S_{L}$

$D_{E}=D \cdot F_{T P}{ }^{0.5}$
 т оотототиц́vov $\beta \alpha \theta \mu \circ$ и́ $\pi \lambda \eta \rho о ́ \tau \eta \tau \alpha \varsigma ~ \tau \eta \varsigma ~ v \gamma \rho \eta ́ \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma ~: ~$
$\rho_{T P}=\rho_{L} \cdot \lambda_{L}^{\prime}+\rho_{G} \cdot \lambda_{G}^{\prime}$
$\mu_{\mathrm{TP}}=\mu_{\mathrm{L}} \cdot \lambda_{\mathrm{L}}^{\prime}+\mu_{\mathrm{G}} \cdot \lambda_{\mathrm{G}}^{\prime}$
órov:
$\lambda_{L}^{\prime}=\frac{\lambda_{\mathrm{L}}}{\mathrm{F}_{\mathrm{TP}}}$
kar
$\lambda_{G}^{\prime}=1-\lambda_{L}^{\prime}$

$V_{T P}=\frac{Q_{L}+Q_{G}}{A \cdot F_{T P}}$

 $\alpha p ı \mu$ ó Reynolds $\alpha \pi$ ó $\tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$R e_{T P}=\frac{D_{E} \cdot V_{T P} \cdot \rho_{T P}}{\mu_{T P}}$

 олоі́ α є $\mu \varphi \alpha$ ví̧єтои $\sigma \alpha v ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau о v ~ \sigma \chi \eta \mu \alpha \tau \iota \sigma \mu о v ́ ~ \tau \omega v ~ к \cup \mu \alpha ́ \tau \omega v ~ \sigma \tau \eta ~ \delta 1 \alpha \chi \omega р ı \tau \tau ו к \eta ́ ~$
 тov̧ Duns kau Ros.

$W e=\frac{\rho_{G} \cdot V_{G}^{2} \cdot E_{i}}{\sigma}$
$N_{\mu}=\frac{\mu_{L}^{2}}{\rho_{\mathrm{L}} \cdot \sigma \cdot E_{i}}$

$E_{i}=\frac{34 \cdot C_{1} \cdot \sigma}{\rho_{G} \cdot V_{m} \cdot C_{2}} \quad \gamma 1 \alpha \quad$ We $\cdot N_{\mu} \leq 0.005$

бıароретиќ́:
$E_{i}=\frac{170 \cdot \mathrm{C}_{1} \cdot \sigma \cdot\left(\mathrm{We} \cdot \mathrm{N}_{\mu}\right)^{0.3}}{\rho_{\mathrm{G}} \cdot \mathrm{V}_{\mathrm{m}} \cdot \mathrm{C}_{2}} \quad \gamma 1 \alpha \quad \mathrm{We} \cdot \mathrm{N}_{\mu}>0.005$

 $\varepsilon \lambda \alpha ́ \chi 1 \sigma \tau 0 v$ opíov, $\omega \varsigma \varepsilon \xi \xi \mathfrak{\eta} \varsigma$:
 E_{p}, 七ó $\tau \varepsilon \theta \varepsilon \omega \rho \varepsilon$ ítaı ó $\tau \iota$:
$\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{p}} \quad \gamma 1 \alpha \quad \mathrm{E}_{\mathrm{i}}<\mathrm{E}_{\mathrm{p}}$
 $\alpha \gamma \omega \gamma o v$, , тó $\tau \varepsilon$ Өع $\omega \rho \varepsilon$ ítal ó $\tau \imath$:

$$
\begin{equation*}
E_{i}=\frac{D}{2} \quad \gamma 1 \alpha \quad E_{i}>\frac{D}{2} \tag{3.64}
\end{equation*}
$$

 тou vүрои́ $\sigma \tau o v ~ \alpha \gamma \omega \gamma o ́, ~ \tau o ́ \tau \varepsilon ~ Ө \varepsilon \omega \rho \varepsilon i ́ t \alpha l ~ o ́ \tau ı ~: ~$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}}=\frac{\mathrm{h}_{\mathrm{L}}}{4} \quad \gamma l \alpha \quad \mathrm{E}_{\mathrm{i}}>\frac{\mathrm{h}_{\mathrm{L}}}{4} \tag{3.65}
\end{equation*}
$$

 $\tau \rho \alpha \chi \cup ́ \tau \eta \tau \alpha \mathrm{E}_{\mathrm{a}} \alpha \pi \sigma ́ \tau \eta \sigma \chi \varepsilon ́ \sigma \eta$:

$$
\begin{equation*}
E_{a}=\frac{L_{i} \cdot E_{i}+L_{G} \cdot E_{p}}{L_{i}+L_{G}} \tag{3.66}
\end{equation*}
$$

о́лои :

$$
\begin{equation*}
L_{i}=D \cdot \sin (\theta / 2) \tag{3.67}
\end{equation*}
$$

$L_{G}=\pi \cdot D-L_{L}$

$$
\begin{equation*}
L_{L}=\theta \cdot \frac{D}{2} \tag{3.69}
\end{equation*}
$$

О $\delta \iota \varphi \alpha \sigma \varkappa о ́ \varsigma ~ \sigma ט \nu \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ์ \varsigma ~ \tau \rho ß ŋ ́ s ~ \mu \pi о \rho \varepsilon i ́ ~ \tau \omega ́ \rho \alpha ~ v \alpha ~ v \pi о \lambda о \gamma ı \sigma \theta \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \tau \omega v ~$ Colebrook-White, $\omega \varsigma ~ \varepsilon \xi \dot{\eta} \varsigma$:
$\frac{1}{f_{T P}^{0.5}}=2 \cdot \log _{10}\left[\frac{2.51}{\operatorname{Re}_{T P} \cdot f_{T P}} \frac{(E / D)_{\mathrm{e}}}{3.7}\right]$

о́ло⿱ :
$(E / D)_{e}=\frac{E_{a}}{D_{e}}$

 oүદ́ఠך :

$$
\begin{equation*}
\frac{d P_{F}}{d z}=\frac{f_{T P} \cdot \rho_{T P} \cdot V_{T P}^{2}}{2 \cdot D_{e}} \tag{3.72}
\end{equation*}
$$

$\frac{d P_{G}}{d z}=g \cdot \rho_{G} \cdot \sin a$

 oхદ́on :
$\frac{d P_{G}}{d z}=g \cdot \rho_{A} \cdot \sin a$
ónov:
$\rho_{A}=\rho_{L} \cdot H_{L}+\rho_{G} \cdot\left(1-H_{L}\right)$

 $\pi \rho о \eta \gamma о и ́ \mu \varepsilon v \alpha$ ．

＊Oגıкย́乌 $\alpha \pi \omega ் \lambda \varepsilon เ \varepsilon \varsigma ~ \pi i ́ \varepsilon \sigma \eta ร$

$$
\begin{equation*}
\frac{d P}{d z}=\frac{d P_{F}}{d z}+\frac{d P_{G}}{d z}+\frac{d P_{A}}{d z} \tag{3.76}
\end{equation*}
$$

3．7．To $\mu \mathrm{ov} \mathrm{\tau}$ と́̇ı $\tau \omega v$ Dukler－Flanigan

 $\alpha \gamma \omega \gamma \circ v ́ \varsigma ~ \mu \varepsilon \gamma \alpha ́ \lambda \omega v \alpha \pi 0 \sigma \tau \alpha ́ \sigma \varepsilon \omega v$ ．

 $\pi i \varepsilon \sigma \eta \varsigma ~ \pi о v ~ \sigma u \mu \beta \alpha i ́ v o u v ~ \kappa \alpha \tau \alpha ́ ~ \mu \eta ́ \kappa o \varsigma ~ \varepsilon v o ́ \varsigma ~ \alpha \gamma \omega \gamma o v ́ ~ \alpha \pi о \tau \varepsilon \lambda о v ́ v \tau \alpha 兀 ~ \alpha \pi o ́ ~ \delta v ́ o ~ \sigma u v i \sigma \tau \omega ́ \sigma \varepsilon \varsigma ~: ~ \lambda o ́ \gamma \omega ~$
 $\alpha \mu \varepsilon \lambda \eta \tau \varepsilon \varepsilon \varsigma$.

 Sívovtal $\alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$\Delta P_{F}=\frac{f_{n} \cdot f_{T P} \cdot \rho_{k} \cdot V_{m}{ }^{2} \cdot L_{m}}{0.146223 \cdot D}$

$\rho_{k}=\frac{\rho_{L} \cdot \lambda_{L}^{2}}{H_{L d}}+\frac{\rho_{G} \cdot\left(1-\lambda_{L}\right)^{2}}{1-H_{L d}}$

 oxદ́ఠๆ :
$\lambda_{L}=\frac{Q_{L}}{Q_{L}+Q_{G}}$

$f_{n}=0.0056+0.5 \cdot\left(R_{y}\right)^{-0.32}$

$\operatorname{Re}_{\mathrm{y}}=\frac{124 \cdot \rho_{\mathrm{k}} \cdot \mathrm{V}_{\mathrm{m}} \cdot \mathrm{D}}{\mu_{\mathrm{n}}}$

$\mu_{n}=\mu_{L} \cdot \lambda_{L}+\mu_{G} \cdot\left(1-\lambda_{L}\right)$

$$
\begin{equation*}
V_{m}=V_{L}+V_{G} \tag{3.83}
\end{equation*}
$$

 Flanigan, хрŋбцото1óvтац $\tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~: ~$
$\Delta P_{G}=\frac{\rho_{L} \cdot H_{L f}}{144} \cdot \Sigma Z_{e}$

 ó $\lambda \omega v \tau \omega v \tau \mu \eta \mu \alpha ́ \tau \omega v \tau o v \alpha \gamma \omega \gamma \circ v$.

$$
\begin{equation*}
\frac{d P}{d z}=\frac{d P_{F}}{d z}+\frac{d P_{G}}{d z} \tag{3.85}
\end{equation*}
$$

 $\alpha \pi о \kappa \tau \alpha ́ \tau \alpha 1 ~ \tau о ~ к \rho ı \tau \eta ́ \rho ı ~ \varepsilon \pi і \lambda о \gamma \eta ́ s ~ \varepsilon v o ́ s ~ \varepsilon ט ́ \lambda о \gamma o v ~ \alpha \rho ı \theta \mu о v ́ ~ \tau \mu \eta \mu \alpha ́ \tau \omega v ~ \gamma 1 \alpha ~ \tau \eta ~ \beta \varepsilon \lambda \tau ı \tau \tau о \pi о і ́ \eta \sigma \eta ~ \tau \omega v$

