
10. COMPLEX NUMBERS

Using complex numbers easily in C is relatively new - it has been introduced only
in the late nineties. Therefore, many old(er) books use structures when complex
numbers are involved, and all necessary mathematical operations are hardwired.
With the new (C99) standard, things are much easier nowadays.

10.1 Required libraries

All the functions required for complex calculus and the necessary modifications of
data types are included in the library file complex.h .

10.2 Variable declaration

In C, a complex variable is declared by adding ”complex ” to the data type, such
as

...
float complex x;
double complex y;
int complex d;
float complex * fptr;
...

Each of these variables will be a complex number consisting of a real and an imag-
inary part. If you want to assign a value to these variables, you must use a state-
ment of the following form

x = 5.0 + I * 3.0;

the resulting value of x is (in mathematical notation) x = 5.0 + 3.0i.
You have to be careful that, when using the complex.h library, you never

declare a variable named I in your main program or any function of your own;
the symbol I is then reserved for the complex unit (I =

√−1 = 0.0 + 1.0i).

10. COMPLEX NUMBERS

Code 10.1: Dynamic memory allocation for complex numbers.

01 ...
02 #include<complex.h>
03 ...
04 int main()
05 {
06 ...
07 double complex * C;
08 double real,imag;
09 ...
10 C = (double complex *) malloc(10 * sizeof(double complex));
11 ...
12 C[6]=5.0+I * 3.0;
13 real=creal(C[6]);
14 imag=cimag(C[6]);
15 ...
16 free(C)
17 }

Once you have declared some complex variables and assigned values to them,
you can do the standard mathematical operations as demonstrated in the code of
listing (10.2). You just have to be careful when using the mathematical function
defined in math.h - these are not conform with complex algebra. Instead, you have
to use the modified functions, some of which are listed in section 10.5.

10.3 Dynamic memory allocation

Dynamic memory allocation for complex numbers follows the rules for real num-
bers. First, you declare a pointer of the data type you need (e.g., float complex

* , double complex * , ...). Then, you use the function malloc to allocate mem-
ory for as many elements as required. The last step of your program will be to
release the memory using the function free . See code (10.1).

112

10.4. ... AND FOR FUNCTIONS

10.4 ... and for functions

The same rules apply for complex numbers and arrays as for real arrays; you will
just have to use the proper complex data type in the parameter list of a function or
the data type of a function, e.g.

double complex * funct_name(...,float complex * x,...)
{

...
}

is the frame of a function definition that returns an array of data type double
complex and receives (among others) an array of data type float complex .

10.5 Build-in functions

A never complete(?) list:

creal to obtain the real part of a complex number (e.g., r = creal(z);)

cimag to isolate the imaginary part of a complex number (c = cimag(z);)

cabs to calculate the absolute value of a complex number (a = sqrt(r * r + c * c);)

cpow for the calculation of z1 = Zz3
2

csqrt to determine the value of z1 =
√

z2

catan Some trigonometric functions for complex numbers

ccos

csin

clog to determine the natural logarithm of a complex number

cexp to calculate z1 = ez2

clog10 in principle the same as for real numbers

clog2

113

10. COMPLEX NUMBERS

With most of these function you must be careful. Atan, sqrt, pow, ... have peri-
odic solutions; these functions above determine the solution for the first (or main)
”branch”, but other possible solutions are not considered. In doubt, consult your
mathematical skills and knowledge (or your complex calculus books).

Listing (10.2) shows some typical complex calculations in a C-program.

Code 10.2: Sample program on the use of complex numbers in C.

01 #include<stdio.h>
02 #include<math.h>
03 #include<complex.h>
04 / * --
05 Example program of how to use the complex functions
06 in C. Note that the compiler must be compatible to
07 the C99 standard.
08 This version runs with the Intel icc compiler.
09 The gnu comiler (gcc) doesn’t need the double specifier
10 before the complex statement.
11 Compiling command:
12 icc -lm -o test_complex test_complex.c
13 -- * /
14 int main()
15 {
16 double x1,y1;
17 int i;
18 double complex z;
19 double complex w;
20 double complex r;
21 double complex * D;
22
23 / * --- Write the complex numbers --- * /
24 / * -------------------------------------
25 I is the imaginary unit, defined in
26 complex.h
27 ------------------------------------- * /
28 x1=10.0;
29 y1=15.0;
30 z=10.0-3.5 * I;
31 w=x1+y1 * I;

114

10.5. BUILD-IN FUNCTIONS

32
33 r=z+w;
34 printf("\n%lf+%fi",creal(r),cimag(r));
35 r=z * w;
36 printf("\n%lf+%fi",creal(r),cimag(r));
37 r=z/w;
38 printf("\n%lf+%fi",creal(r),cimag(r));
39 r=csqrt(z);
40 printf("\n%lf+i%f",creal(r),cimag(r));
41
42 D=(double complex *) malloc(sizeof(double complex) * 5);
43 for(i=0;i<5;i++)
44 D[i]=i * x1+i * y1 * I;
45 for(i=0;i<5;i++)
46 printf("\n%lf+%fi",creal(D[i]),cimag(conj(D[i])));
47 free(D);
48 printf("\n");
49 }

115

10. COMPLEX NUMBERS

116

