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Aspects of Numerical Uncertainties in Time Marching
to Steady-State Numerical Solutions
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Knowledge from recent advances in the understanding of global nonlinear behavior of numerical schemes is
employed to isolate some aspects of numerical uncertainties in time-marching approaches to obtain steady-state
numerical solutions. Strong dependence on initial data and the permissibility of spurious steady-state numerical
solutions, stabilization of unstable steady states by implicit time discretizations, and convergence properties and
spurious behavior of high-resolution shock-capturing schemes are discussed and illustrated with examples. The
goal is to illustrate the important role that global nonlinear behavior of numerical schemes can play in minimizing
sources of numerical uncertainties in computational fluid dynamics.

I. Introduction

S INCE the late 1980s, many computational fluid dynamics (CFD)
related journals have imposed an editorial policy statement on

numerical uncertainty that pertained mainly to the accuracy issue.
However, the study of numerical uncertainties in practical computa-
tional physics encompasses very broad subject areas. These include
but are not limited to 1) problem formulation and modeling; 2) type,
order of accuracy, nonlinear stability, and convergence of finite dis-
cretizations; 3) limits and barriers of existing finite discretizations
for highly nonlinear stiff problems with source terms and forcing
and/or for wave propagation phenomena; 4) numerical boundary
condition procedures; 5) finite representation of infinite domains;
6) solution strategies in solving the nonlinear discretized equations;
7) procedures for obtaining the steady-state numerical solutions; 8)
grid quality and grid adaptations; 9) multigrids; and 10) domain de-
composition (zonal or multicomponent approach) in solving large
problems. See Refs. 1-9 and the references cited therein. At present
some of the numerical uncertainties can be explained and minimized
by traditional numerical analysis and standard CFD practices. How-
ever, such practices might not be sufficient for strongly nonlinear
and/or stiff problems. Examples of this type of problem are combus-
tion, direct numerical simulations, high-speed and reacting flows,
and certain turbulence models in Navier-Stokes computations. We
believe that a good understanding of the nonlinear behavior of nu-
merical schemes being used should be an integral part of code veri-
fication and validation. See Jackson10 for the definition of genuinely
(or strongly) nonlinear problems.

The need for the study of nonlinear behavior of numerical
schemes is prompted by the fact that the type of problem stud-
ied using CFD has changed dramatically over the past decade. CFD
is undergoing an important transition, and it is increasingly used
in nontraditional areas. But even within its field, many algorithms
widely used in practical CFD were originally designed for much
simpler problems, such as perfect or ideal gas flows. As can be
seen in the literature, a straightforward application of well-validated
CFD codes to poorly understood physical problems can lead to
wrong results, excess slow convergence, or even nonconvergent so-
lutions. Understanding the nonlinear behavior, limits, and barriers,
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and isolating spurious behavior of existing numerical schemes are
the basic steps toward dealing with emerging disciplines. This paper
addresses the time marching to the steady-state numerical solutions
aspect of the subject. Yee et al.8 addresses spurious behavior in un-
derresolved grids and/or semi-implicit temporal discretizations for
unsteady computations. Yee and Sweby9 gives an overview of the
subject for both steady and unsteady computations. We emphasize
here that in our study, unless otherwise stated, we always assume
the continuum (governing equations) is nonlinear.

Section II discusses some elements and issues of nonlinear be-
havior of numerical schemes that are relevant to time marching to
the steady-state numerical solutions. Some of the subtleties dis-
cussed are necessary to illuminate and isolate the sources of nu-
merical uncertainties due to factors such as slow convergence or
nonconvergence of numerical schemes and nonlinear behavior of
high-resolution shock-capturing schemes. These include spurious
steady-state numerical solutions and spurious asymptotes. Here spu-
rious numerical solutions is used to mean numerical solutions that
are true solutions of the discretized counterparts but are not solutions
of the underlying differential equations (DEs). The term discretized
counterparts is used to mean the finite difference equations result-
ing from finite discretizations of the underlying DEs. Asymptotic
solutions include steady-state solutions, periodic solutions, limit cy-
cles, chaos, and strange attractors.11 •12 Section III gives an overview
of selected results on nonlinear behaviors of numerical schemes.
Section IV illustrates examples in CFD computations that exhibit
similar spurious behavior. Because of limited space, see Ref. 9 and
references cited therein for some suggestions to minimize spuri-
ous steady-state numerical solutions using knowledge of nonlinear
behavior of numerical schemes. We conclude the paper with some
remarks in Sees. V and VI.

II. Elements and Issues in Time Marching
to the Steady State

The time-marching approach for obtaining steady-state numer-
ical solutions has been considered the method of choice in CFD
for nearly two decades, since the pioneering work of Crocco13 and
Moretti and Abbett.14 Moretti and Abbett used this approach to solve
the inviscid supersonic flow over a blunt body without resorting to
solving the steady form of partial differential equations (PDEs) of
the mixed type. The introduction of efficient CFD algorithms15"18

in the 1970s marked the beginning of numerical simulations of
two-dimensional and three-dimensional Navier-Stokes equations
for complex configurations. It enjoyed much success in computing
a variety of weakly and moderate nonlinear fluid flow problems.
For strongly nonlinear problems, the situation is more complicated.
To aid the understanding of the scope of the situation, first, it is
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important to identify all of the sources of nonlinearities. Second, it is
necessary to isolate the elements and issues of numerical uncertain-
ties due to these nonlinearities in time marching to the steady state.

A. Sources of Nonlinearities in CFD
The sources of nonlinearities that are well known in CFD are due

to the physics. Examples are convection, diffusion, forcing, turbu-
lence source terms, reacting flows, combustion related problems, or
any combination thereof. The less familiar sources of nonlinearities
are due to the numerics. Generally, there are three major sources:

1) Nonlinearities are due to time discretizations, that is, the dis-
cretized counterpart is nonlinear in the time step. Examples of this
type are Runge-Kutta methods. It is noted that linear multistep meth-
ods (LMMs) are linear in the time step (see Lambert19 for the forms
of these methods).

2) Nonlinearities are due to spatial discretizations; in this case,
the discretized counterpart can be nonlinear in the grid spacing
and/or the scheme. Examples of nonlinear schemes are the total
variation diminishing (TVD) and essentially nonoscillatory (ENO)
schemes. See Yee20 and references cited therein for the forms of
these schemes.

3) Nonlinearities are due to complex geometries, boundary inter-
faces, grid generation, grid refinements and grid adaptations; each
of these procedures can introduce nonlinearities.

The behavior of these nonlinearities due to the numerics are not
well understood. Only some preliminary development is beginning
to emerge recently. The following isolates some of the elements and
issues of numerical uncertainties related to these nonlinearities in
time marching to the steady state. The elements and issues discussed
are supported by a series of research studies reported in Refs. 9 and
21-26.

B. Discretized Counterparts as Discrete Dynamical Systems
When we try to use numerical methods to gain insight into the

fluid physics, there is an added new dimension to the overall prob-
lem. Even though we freeze the physical parameter, the resulting
discretized counterparts are not just a nonlinear system of differ-
ence equations; they are also a nonlinear but discrete dynamical
system on their own. From nonlinear dynamics, we know that dis-
crete dynamical systems possess much richer dynamical behavior
than the continuum dynamical systems.21"24 These discrete dynam-
ical systems are a function of all of the discretized parameters that
are not present in the governing equations. There exist solutions of
the discretized counterparts that are not solutions of the governing
equations.8'9-21"26 This is one of the key factors influencing the nu-
merical solutions to depart from the physical ones if the governing
equations are strongly nonlinear and stiff.

C. Solving an Initial Boundary Value Problem
with Unknown Initial Data

When time-marching approaches are employed to obtain steady-
state numerical solutions, a boundary value problem (B VP) is trans-
formed into an initial boundary value problem (IB VP) with unknown
initial data. The time differencing in this case acts as a pseudotime.
Linearized stability analysis indicates that a subset of the numer-
ical solutions for certain ranges of the discretized parameters and
boundary conditions mimic the true solution behavior of the gov-
erning equation. However, it is less known that outside these safe
regions the numerical solution, depending on the initial data, does
not necessarily undergo instabilities. In addition, there exist asymp-
totic numerical solutions that are not solutions of the continuum
even inside the safe regions.21"26 Unlike nonlinear problems, the
numerical solutions of linear or nearly linear problems are indepen-
dent of the discretized parameters and initial data as long as the
discretized parameters are inside the stability limit [or the Courant-
Friedrich-Lewy (CFL) condition]. That is, the topological shapes
of these solutions remain the same within the stability limit and
accuracy of the scheme for linear behavior. Yee and Sweby22"24

illustrated the strong dependence of numerical solutions on initial
data for various nonlinear model DEs. It turns out that if constant
time steps are used, stability, convergence rate, and the occurrence
of spurious numerical solutions are intimately related to the choice
of initial data (or start-up solution).

D. Reliability of Residual Test
Consider a quasilinear PDE of the form

ut = G(u, ux, uxx, a, e) (1)

where G is nonlinear in u, ux, and uxx. The values a and 6 are
system parameters. For simplicity consider a two-time-level and a
(p + q + 1) point grid stencil numerical scheme of the form

= u*j - H(u"j + (], . . . . n», . . . ,!«;_,, a, €> Af , (2)

for the PDE (1). Note that the discussion need not be restricted
to explicit methods or two-time-level schemes. Let U*9 a vector
representing (u*j+q, . . . , u*jt . . . , w j _ p ) , be a steady-state numerical
solution of Eq. (2). When a time-marching approach such as Eq. (2)
is used to solve the steady-state equation G(u,ux, uxx, a, 6) = 0,
the iteration typically is stopped when the residual H and/or some
€2 norm of the dependent variable u between two successive iterates
is less than a preselected level.

Aside from the various standard numerical errors such as trunca-
tion error, machine round-off error, etc., there is a more fundamental
question of the validity of the residual test and/or i2 norm test. If
the spatial discretization happens to produce spurious steady-state
numerical solutions, these spurious solutions would still satisfy the
residual and €2 norm tests in a deceptively smooth manner. More-
over, depending on the combination of time as well as spatial dis-
cretizations, it is not easy to check whether G(u*, u*, u*xx, a, e) -> 0
even though H(U* , or, e, A/, AJC) — > 0, because spurious steady
states (and asymptotes) can be independently introduced by spatial
and time discretizations.25'26 This is contrary to the ordinary differ-
ential equation (ODE) case where, if u* is a spurious steady state of
du/dt = S(u), then S(u*) ^ 0. Furthermore, if a steady state has
been reached with a rapid convergence rate, it does not necessarily
imply that the steady state obtained is not spurious (see Sec. Ill for
an overview or Refs. 9 and 21 for details).

E. Methods Used to Accelerate Convergence Process
Methods such as iterations and relaxation procedures, and/or con-

vergence acceleration methods such as conjugate gradient methods,
have been utilized to speed up the convergence process.27 Also tech-
niques such as preconditioning28 and multigrid29 combined with
iteration, relaxation, and convergence acceleration procedures are
commonly used in CFD. Depending on the type of PDEs, proper
preconditioners can be established for the PDEs or for the particular
discretized counterparts. Multigrid methods can be applied to the
steady PDEs or the time-dependent PDEs. In either case, a combina-
tion of these methods can still be viewed as pseudo-time-marching
methods (but not necessarily of the original PDE that was under con-
sideration). However, if one is not careful, numerical solutions other
than the desired one can be obtained in addition to spurious asymp-
totes due to the numerics. From here on the term time-marching
approaches is used loosely to include all of the discussed methods.
It is remarked that multigrid methods can be viewed as the (gen-
eralized) spatial counterpart of a variable time step control in time
discretizations.

F. Methods for Solving the Nonlinear Algebraic Equations
from Implicit Methods

When implicit time discretizations are used, one has to deal with
solving systems of nonlinear algebraic equations. Aside from the ef-
fect of the different methods discussed to accelerate the convergence
process, we need to know how different the dynamical behavior is
for the different procedures, e.g., iterative vs noniterative, in solv-
ing the resulting nonlinear difference equations (see Refs. 22-24
and the next section for a discussion).

G. Mismatch in Implicit Schemes
It is standard practice in CFD to use a simplified implicit operator

(or mismatched implicit operators) to reduce CPUs and to increase
efficiency. These mismatched implicit schemes usually consist of
the same explicit operator but different simplified implicit operators.
The implicit time integrator is usually of the LMM type. One popular
form of the implicit operator is the so-called delta formulation.16' n
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The original logic in constructing this type of scheme is that the
implicit operators act as a relaxation mechanism. However, from a
dynamical system standpoint, before a steady state is reached, the
nonlinear difference equations representing each of these simpli-
fied implicit operators are different from each other. They have their
own dynamics as a function of the time step, grid spacing, and initial
data. They also can exhibit different types of nonlinear behavior if
one is solving strongly nonlinear time-dependent PDEs. Depend-
ing on the initial data, time steps, and grid spacings, when steady
states have been reached, these steady states might not converge
to the same steady state due to the different forms of the implicit
temporal operator. On the other hand, spurious steady states can be
introduced by spatial discretizations, and even if these mismatched
implicit schemes converge to the same steady state, that steady state
can still be spurious because the same explicit spatial operator is
used. Consequently, these mismatched implicit operators can have
different spurious dynamics and/or different convergence rates for
the entire solution procedure30'31 (see Sec. IV and Sec. 4.3 of Yee
and Sweby9 for examples using TVD types of schemes).

H. Nonlinear Schemes
It is well known that all of the TVD, total variation bounded

(TVB) and ENO schemes32'33 are nonlinear schemes in the sense
that the final algorithm is nonlinear even for the constant-coefficient
linear PDE. These types of schemes are known to have a slower con-
vergence rate than classical shock-capturing methods and can occa-
sionally produce unphysical solutions for certain combinations of
entropy satisfying parameters and flux limiters (despite that entropy
satisfying TVD, TVB, and ENO schemes can suppress unphysical
solutions). See Yee20 for a summary of the subject. The second as-
pect of these nonlinear schemes is that even if the numerical method
is formally of more than first order and if the approximation con-
verges, the rate may still be only first order behind the shock (not
just around the shock). This can happen for systems where one char-
acteristic may propagate part of the error at a shock into the smooth
domain. Engquist and Sjogreen34 illustrate this phenomena with ex-
amples (see Sec. IV.B for a discussion). The third aspect of these
higher-order nonlinear schemes is their true accuracy away from
shocks (see Donat,35 Casper and Carpenter,36 and Yee and Sweby9

for a discussion).

I. Schemes That are Linear vs Nonlinear in At
The obvious classification of time-accurate schemes for time-

marching approaches to the steady state are explicit, implicit, and
hybrid explicit and implicit methods. A less-known classification of
numerical schemes for time-marching approaches is the identifica-
tion of schemes that are linear or nonlinear in the At parameter space
when applied to nonlinear DEs. As mentioned before, all LMMs (ex-
plicit or implicit) are linear in At and all multistage Runge-Kutta
methods are nonlinear in At. Lax-Wendroff and MacCormack type
of nonseparable full discretizations also are nonlinear in At. A de-
sirable property for a scheme that is linear in At is that, if the nu-
merical solution converges, its steady-state numerical solutions are
independent of the time step. On the other hand, the accuracy of the
steady-state numerical solutions (also for time-accurate numerical
solutions) depends on At if the scheme is nonlinear in Ar. Certain
of these types of schemes are more sensitive to At than others. For
example, Lax-Wendroff and MacCormack methods are more sen-
sitive than the Lerat and Sides variant.37 A less-known property of
schemes that are nonlinear in At is that this type of scheme has an
important bearing on the existence of spurious steady-state numeri-
cal solutions due to time discretizations. Although schemes such as
LMMs are immune from exhibiting spurious steady-state numerical
solutions, as seen in Yee and Sweby,22"24 a wealth of surprisingly
nonlinear behavior of implicit LMMs that had not been observed
before were uncovered by the nonlinear study (see Yee and Sweby9

and the next section for a review).

J. Adaptive Time Step Based on Local Error Control
It is a standard practice in CFD to use local time step (varied

from grid point to grid point using the same CFL) for nonuniform
grids. However, except in finite element methods, adaptive time

step based on local error control is rarely use in CFD. Adaptive
time step is builtin for standard ODE solver computer packages.38

It enjoyed much success in controlling accuracy and stability for
transient (time-accurate) computations. The issue is: to what extent
does this adaptive local error control confer global properties in
long time integration of time-dependent PDEs? Can one construct
similar error control that has guaranteed and rapid convergence to
the correct steady-state numerical solutions in the time-marching
approaches for time-dependent PDEs? Section III.C summarizes
the status of this subject.

K. Nonunique Steady-State Solutions of Nonlinear DEs
vs Spurious Asymptotes

The phenomenon of generating spurious steady-state numeri-
cal solutions (or other spurious asymptotes) by certain numerical
schemes is often confused with the nonuniqueness (or multiple
steady states) of the governing equation. In fact, the existence of
nonunique steady-state solutions of the continuum can complicate
the numerics tremendously and is independent of the occurrence
of spurious asymptotes of the associated scheme. But, of course, a
solid background in the theory of nonlinear ODEs and PDEs and
their dynamical behavior is a prerequisite in the study of the dynam-
ics of numerical methods for nonlinear PDEs. A good understanding
of the subject can shed some light on the controversy about the true
existence of multiple steady-state solutions through numerical ex-
periments for certain flow types of the Euler and/or Navier-Stokes
equations.

III. Overview of Selected Results
In a series of papers,8'21"26'39"41 the nonlinear dynamics of fi-

nite discretizations for constant time steps and fixed or adaptive
grid spacings was studied using tools from dynamical systems the-
ory. The approach was to take continuum nonlinear model ODEs
and PDEs with known analytic solutions, discretize them accord-
ing to various standard numerical methods, and apply techniques
from discrete dynamical systems theory to analyze the nonlinear
behavior of the resulting nonlinear difference equations. Particular
attention was paid to the isolation of the different nonlinear behavior
and spurious dynamics due to some of the numerical uncertainties
that were observed in practical CFD computations. The numerical
schemes considered for these nonlinear model ODEs and PDEs were
selected to illustrate the following different nonlinear behavior of
numerical methods: 1) occurrence of stable and unstable spurious
asymptotes above the linearized stability limit of the scheme (for
constant time steps), 2) occurrence of stable and unstable spurious
steady states below the linearized stability limit of the scheme (for
constant time steps), 3) stabilization of unstable steady states by
implicit and semi-implicit methods, 4) interplay of initial data and
time steps on the occurrence of spurious asymptotes, 5) interference
with the dynamics of the underlying implicit scheme by procedures
in solving the nonlinear algebraic equations (resulting from implicit
discretization of the continuum equations), 6) dynamics of the lin-
earized implicit Euler scheme solving the time-dependent equations
vs Newton's method solving the steady equation, 7) spurious dy-
namics independently introduced by spatial and time discretizations,
8) convergence problems and spurious behavior of high-resolution
shock-capturing methods, 9) numerically induced and suppressed
chaos and numerically induced chaotic transients, and 10) spurious
dynamics generated by grid adaptations.

Because of the complexity of the nonlinear analysis, a logi-
cal breakdown of the key nonlinear studies can consist of 1) ini-
tial value problems (IVPs) of explicit and implicit temporal dis-
cretizations, 2) BVPs of linear and nonlinear spatial discretizations,
3) IBVPs of time-accurate schemes, 4) IBVPs of time marching to
the steady state, and 5) nonlinearities introduced by grid generation,
grid adaptation and complex geometries.

Spurious behavior of spatial discretizations for BVPs was dis-
cussed in Refs. 9 and 21. Spurious behavior of IBVPs for time-
accurate schemes was discussed in Refs. 8 and 9. To gain an under-
standing of the nonlinear behavior of time discretizations without
the influence from the spatial discretizations, Refs. 21-24 studied
commonly used time discretizations for nonlinear ODE models. For
the purpose of this paper, the next section summarizes some aspects
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of the nonlinear behavior of time discretizations for constant time
steps. We remark that time-marching approaches to the steady state
rarely employed constant time steps but rather use local time steps
based on the Jacobian of the curvilinear grid transformation and the
CFL constraint. However, a basic understanding of the dynamics of
constant time steps is essential to improve the solution procedures
and to the understanding of the dynamics of variable time steps
based on local error control.42'43

A. Nonlinear Behavior of Time Discretization
The global asymptotic nonlinear behavior and bifurcation phe-

nomena for the explicit Euler method, five different multistage
Runge-Kutta methods (modified Euler, improved Euler, Heun,
Kutta, and fourth-order methods), two- and three-step predictor-
corrector methods, Adams-Bashforth method, a semi-implicit
method, and four implicit LMMs (implicit Euler, trapezoidal, three-
point backward differentiation and midpoint implicit methods) with
four ways for solving the nonlinear algebraic equations are com-
pared for different nonlinear model ODEs in Refs. 21-24. The em-
phasis is on the interplay of initial data and time steps on the occur-
rence of spurious asymptotic numerical solutions. The four ways for
solving the nonlinear algebraic equations considered are the non-
iterative linearized form, simple iteration, Newton, and modified
Newton methods. The five multistage Runge-Kutta methods and
the predictor-corrector methods are nonlinear in the discretized pa-
rameter space Ar, whereas the four implicit LMMs are linear in Ar.

In general, some of the second-order or higher explicit Runge-
Kutta methods can introduce spurious steady states below the lin-
earized stability limit of the schemes whereas implicit LMMs can
stabilize an unstable steady state of the governing equations. The
dynamics of these time discretizations differ significantly from each
other, and the different methods of solving the resulting nonlinear
algebraic equations are very different from each other because dif-
ferent numerical methods and solution procedures result in entirely
different nonlinear difference equations. For systems of nonlinear
ODEs, the steady-states numerical solutions can change types as
the time step is varied for the studied unconditionally stable im-
plicit LMMs. An unstable steady state of the governing equation
can become stable and can, e.g., change from a saddle to a sta-
ble or unstable node (for the same system parameter). One major
consequence of this behavior is that part or all of the flow pat-
tern can change type as the discretized parameter is varied. Even
though LMMs preserve the same number but not the same types
of steady states as the underlying DEs, LMMs can introduce spu-
rious asymptotes other than spurious steady states. Consequently,
for given initial data and two finite but different Ar that are below
the linearized stability limit of the scheme, their numerical solutions
might converge to two different solutions even if no spurious stable
steady-state numerical solution is introduced by the scheme and the
initial data are physically relevant. The source of the behavior is due
to the existence of unstable spurious asymptotes, stable asymptotes
other than steady states, or stabilization of unstable steady states. In
other words, for a given Ar below the linearized stability limit, the
numerical solution can, depending on the initial data, 1) converge
to the correct steady state, 2) converge to a different steady state, 3)
converge to a spurious periodic solution or limit cycle, 4) stabilize
an unstable steady state of the governing equations, 5) yield spuri-
ous asymptotes other than solution 1-4, or 6) diverge, even though
the initial data are physically relevant.

B. Strong Dependence on Initial Data
One of the key concepts in understanding the interplay of initial

data and time steps on the occurrence of spurious asymptotes is
basins of attraction. The basin of attraction of an asymptote (for
the DEs or their discretized counterparts) is a set of all initial data
asymptotically approaching that asymptote. In other words, a basin
of attraction tells which initial data lead to which asymptotes. For
each asymptote of the DE and the underlying difference equation,
the terms exact basin of attraction and numerical basin of attraction
refer to the basin of attraction of the DE and basin of attraction of the
underlying discretized counterpart, respectively. For a constant time
step, spurious asymptotic numerical solutions, if they exist, occupy
their own numerical basins of attraction. The size of these basins of

attraction varies from one time step to another and, consequently,
interfere with the size of the numerical basins of attraction of the
true steady states.

In Refs. 22-26, the authors showed how numerical basins of at-
traction can help in gaining a better understanding of the global
asymptotic behavior of numerical solutions for nonlinear DEs. In
particular, they showed how in the presence of spurious asymptotes,
the basins of the true stable steady states can be segmented by the
basins of the spurious stable and unstable asymptotes. One major
consequence of this phenomenon, which is not commonly known,
is that this spurious behavior can result in a dramatic distortion and,
in most cases, a dramatic shrinkage and segmentation of the basin of
attraction of the true solution for finite time steps. Such distortion,
shrinkage, and segmentation of the numerical basins of attraction
will occur regardless of the stability of the spurious asymptotes. In
other words, the size of the domain of initial data approaching the
underlying asymptotes changes with the time step even when one
operates with time steps that are below the linearized stability limit.
Studies showed that all of the four implicit LMMs exhibit a drastic
distortion but less shrinkage of the basin of attraction of the true
solution than explicit methods. As is the case for standard explicit
methods, but in some cases with smaller Ar, the implicit LMMs
exhibit enlargement of the basins of attraction of the true solution.
Such enlargement occurs when Ar is small or in the vicinity of the
stability limit of standard explicit method counterparts.

Although unconditionally stable implicit methods allow theoret-
ically large Ar (in the order of 103-106), the numerical basins of
attraction for large Ar sometimes are so fragmented and/or so small
that the safe (or practical) choice of Ar is slightly larger or compa-
rable to the stability limit of standard explicit methods (but with a
much larger numerical basin of attraction than their explicit method
counterparts). In general, if one uses a Ar that is a fraction of the
stability limit, one has a higher chance of convergence to the correct
asymptote because the numerical basins of attraction more closely
resemble the exact basin of attraction. Thus, for the same Ar, un-
conditionally stable LMMs are safer to use than explicit methods.
Some of the phenomena observed in our study can be used to explain
the root of why one cannot achieve the theoretical linearized stabil-
ity limit of the typical explicit and implicit time discretizations in
practice when solving strongly nonlinear DEs, e.g., in CFD. These
behaviors indicate that it is plausible to rely on time marching to the
steady-state numerical solutions with unknown initial data. An im-
portant implication of the basin of attraction study is that associated
with static initial data, stable spurious solutions, if they exist, are
also very likely to be stable under static initial data perturbations.

C. Suppression of Spuriosity by Error Control
The preceding sections discussed the spurious behavior of long

time integrations of IVPs of nonlinear ODE solvers for constant
step sizes. The use of adaptive step size based on local error control
for implicit methods was studied by Dieci and Estep.42 Dieci and
Estep concluded that for the implicit LMMs with local step size
error control and depending on the method of solving the resulting
nonlinear algebraic equations, spurious behavior can occur. Our
study on two-variable step size control methods22 indicated that
one shortcoming is that the size of Ar needed to avoid spurious
dynamics is impractical to use. Aves et al.43 addressed the heart of
the question of whether local error control confers global properties
of steady states of the IVP of autonomous ODEs using adaptive
Runge-Kutta type methods.

The work of Aves et al. is concerned with long-term behavior
and global quantities of general explicit Runge-Kutta methods with
step size control for autonomous ODEs. They believed that the limit
tn -> oo is more relevant than the limit of the variable step sizes
Ar -» 0. They studied spurious steady states that persist for arbi-
trarily small error tolerances r. This type of adaptive Runge-Kutta
method usually consists of primary and secondary Runge-Kutta
methods of different order. Their main result is positive. When stan-
dard local error control is used, the chance of encountering spurios-
ity is extremely small. For general systems of ODEs, the constraints
imposed by the error control criterion make spuriosity extremely
unlikely. For scalar problems, however, the mechanism by which
the algorithm succeeds is indirect; spurious steady states are not
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removed, but those that exist are forced by the step size selection
mechanism to be locally repelling [with the relevant eigenvalues
behaving as O(l/r)].

David Griffiths is currently working on the application to hyper-
bolic PDEs. His preliminary results (1996) showed it is by no means
clear at the moment whether stable spurious solutions may be elim-
inated. The difference is that, unlike physical problems governed
by nonlinear ODEs, nonlinear PDEs may have wavelike solutions
rather than steady states due to the spatial derivatives.

D. Nonlinear Behavior and Spurious Dynamics
of Full Discretizations

A similar study for selected finite difference methods in the frame-
work of a nonlinear model scalar reaction-convection PDE was re-
ported in Lafon and Yee.25'26 In their study, they also investigated
the possible connection of incorrect propagation speeds of discon-
tinuities with the existence of some stable spurious steady-state nu-
merical solutions. The effect of spatial as well as time discretizations
on the existence and stability of spurious steady-state numerical so-
lutions was discussed. They also investigated the effect of different
methods of numerical evaluation of the nonlinear source term on
stability and accuracy of the overall scheme. They found that spa-
tial and time discretizations and numerical treatment of the source
term can independently introduce spurious dynamics to the overall
scheme. Some of the spurious behavior observed in time discretiza-
tions in Refs. 21-24 were also observed in this PDE case.

E. Spurious Dynamics in Time-Accurate Computations
In the examples chosen by Lorenz,44 he showed that numerical

chaos always precedes divergence of a computational scheme. He
suggested that computational chaos is a prelude to computational
instability. Poliashenko and Aidun45 showed that this is not a uni-
versal scenario. Yee et al.21 and Yee and Sweby22"24 showed that
numerics can introduce chaos. Using a simple example, Corless46'47

showed that numerics can suppress chaotic solutions. The work of
Poliashenko and Aidun45 also discussed spurious numerics in tran-
sient computations. Adams48 discussed spurious chaotic phenomena
in astrophysics and celestial mechanics. He showed that the source
of certain observed chaotic numerical solutions might be attributed
to round-off errors. Adams also discussed the use of interval arith-
metics (interval mathematics or enclosure methods) to avoid this
type of spurious behavior. Moore et al.49 discussed the reliability of
numerical experiments in thermosolutal convection. Keener50 dis-
cussed the uses and abuses of numerical methods in cardiology. Yee
et al.8 discussed spurious behavior in practical time-accurate CFD
simulations.

In addition to the inherent chaotic and chaotic transient behavior
in some physical systems, numerics can independently introduce
and suppress chaos as well as chaotic transients. Section 5.1 of Yee
and Sweby9 shows a practical example of a numerically induced
chaotic transient near the onset of turbulence in a direct numerical
simulation of a three-dimensional channel flow studied by Keefe in
1996. Loosely speaking, a chaotic transient behaves like a chaotic
solution.51 A chaotic transient can occur in a continuum or a discrete
dynamical system. One of the major characteristics of a numerically
induced chaotic transient is that if one does not integrate the dis-
cretized equations long enough, the numerical solution has all of the
characteristics of a chaotic solution. The required number of integra-
tion steps might be extremely large before the numerical solution can
get out of the chaotic transient mode. In addition, standard numerical
methods, depending on the initial data, usually experience drastic
reductions in step size and convergence rate near a bifurcation point
(in this case the transition point) in addition to the bifurcation points
due solely to the discretized parameters (see Yee and Sweby9'22

for a discussion). Consequently, the possible numerically induced
chaotic transient is especially worrisome in direct numerical simu-
lations (DNS) of transition from laminar to turbulent flows. Except
for special situations, it is impossible to compute the exact transi-
tion point by mere DNS of the Navier-Stokes equations. Even away
from the transition point, this type of numerical simulation is already
very CPU intensive and the convergence rate is usually rather slow.
Because of the limited computer resources, the numerical simulation
can result in chaotic transients indistinguishable from sustained tur-

bulence, yielding a spurious picture of the flow for a given Reynolds
number. Consequently, it casts some doubt on the reliability of nu-
merically predicted transition points and chaotic flows.8'9 It also
influences the true connection between chaos and turbulence.

IV. Spurious Dynamics in Steady-State Computations
Any CFD practitioner would agree that making a time-marching

CFD computer code converge efficiently to a correct steady state
for a new physical problem, which was previously not understood,
is still an art rather than a science. Most often, even after tuning
the code, one might still encounter one or more symptoms such as
blowup, nonconvergence, and unphysical or slow convergence of the
numerical solution. Some of these phenomena have been reported
in conference proceedings and reference journals, but the major-
ity have been left unreported. Although these behaviors might be
caused by factors such as poor grid quality, underresolved grids, im-
proper numerical boundary conditions, etc., most often they can be
overcome by employing standard procedures such as using physical
guidelines, grid refinement, improved numerical boundary treat-
ments, reducing the time step in half, and using more than one
scheme to double check if the numerical solution is accurate and
physically correct. However, these standard practices alone may
sometimes be misleading, not possible, e.g., too CPU intensive, or
inconclusive due to the various numerical uncertainties (see Sees. I
and III) that can be attributed to the overall solution process. Con-
sequently, isolation of the sources of numerical uncertainties is of
fundamental importance. Section III isolates some of the spurious
numerics for elementary models. Complementing the phenomena
observed in Sec. Ill, this section illustrates examples from CFD
computations. We concentrate mainly on the convergence issues
that are contributed by the spurious dynamics that are inherent in
the schemes.

A. One-Dimensional Chemically Relaxed Nonequilibrium
Flow Model

This section discusses the analysis of numerical basins of at-
traction for the simulation of a one-dimentional chemically relaxed
nonequilibrium flow model for an (N2, N) mixture.52 This type of
flow is encountered in various physical situations, such as shock
tube experiments (the mixture behind the shock being in a highly
nonequilibrium state) or a high-enthalpy hypersonic wind tunnel.
Under these assumptions the steady one-dimensional Euler equa-
tions can be reduced to a single ODE,

(3)

where z is the mass fraction of the N2 species, p is the density of the
mixture, and T is the temperature. There are two algebraic equations
for p and T. This system consists of a large disparity in the range
of parameter values and is stiff and highly nonlinear.

The derivation of the model is as follows. The one-dimensional
steady Euler equations for a reacting (N2, N) mixture are

£'
—

— [
dx

(4a)

(4b)

(4c)

(4d)

where Eq. (4a) is the balance equation for the N2 species and w^2 is
the production rate of the N2 species with density p^2. The variables
p, u, E, and p are density, velocity, total internal energy per unit
volume, and pressure, respectively.

The production rate iyN2 of species N2 is the sum of the production
rates for the two reactions

N2 + N2 ̂  2N + N2 (5a)
(5b)
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and is computed using Park's model53 that has been used exten-
sively for hypersonic computations (see the 1991 Workshop on
Hypersonics54 for some discussion). These reaction rates involve
an equilibrium constant Keq, which is determined by a polynomial
fitting to experimental data and, as such, is only valid for a certain
range of temperatures. In particular, a cutoff value has to be intro-
duced for low temperatures, a typical choice being rmin = 1000 K
(Ref. 55).

The systems (4) and (5) must be closed by a thermodynamic rep-
resentation of the mixture. Here a simple model, with no vibrational
effects, has been chosen. The details have been omitted for brevity.

Equations (4b-4d) simply integrate to give

pu — #00 (6a)
pu2 + p = POO (6b)

H = (E + p)/p = #00 (6c)

where H is the total enthalpy and #00, P<x, and H^ are all constants.
Finally, denoting the mass fraction of the N2 species by

z = PN2/P (7)
and using Park's reaction rate model54 and the thermodynamic clo-
sure, Eq. (3) can be written as

2 S-P2T

(8a)

where
4p

Keq = 106 exp[d + c2Z + c3Z2 + c4Z3 + c5Z4] (8b)

The density p is obtained from

^(8-2z)(l/A>)2-(10-

+ 2(2-z)[#oo-(l-*)41=0

the temperature T from

T =
MlP

and the pressure from

The model uses the constants

'ci = 3.898
c2 =-12.611
c3 = 0.683
c4 =-0.118
c5 = 0.006
MI = 28 x 103

(8c)

(8d)

(8e)

'Ai = 3.7 x 1015 "
A2 = 1.11 x 1016

5 =-1.6
6 = 1.132x 105

e\ = 3.355 x 107

R = 8.3143

The input parameters q^, P^, and H^ are set equal to 0.0561,
158,000, and 27.4 x 106, respectively. A limitation of the model is
T > rmin = 1000 K. The acceptable root of Eq. (8c) is taken to be
real and positive. In addition, solutions are nonphysical if z £ [0,1],
if p < 0, or if p is complex.

In the integration of Eq. (3), the spatial variable x acts as a time-
like variable. The asymptotic state is the equilibrium state given
by S(p, T, z) = 0. Equation (8a) was integrated using the Euler,
modified Euler [a second-order Runge-Kutta (R-K 2)], improved
Euler (R-K 2), Heun [a third-order Runge-Kutta (R-K 3)], Kutta
(R-K 3), and fourth-order Runge-Kutta (R-K 4) schemes.

There are two strategies possible when implementing these
schemes. One is to freeze the values of p and T at the beginning
of each step when calculating S(p, T, z) at the intermediate stages.
The other is to update the values at each evaluation of the function S.
The results presented here employ the latter strategy because this is
the more proper implementation; however, it is interesting to note
(see following discussion) that results obtained by freezing p and
T for intermediate calculations exhibit a slightly richer dynamic
structure.

In each case, the computations were performed for a range of
initial z and integration steps AJC. For each fixed Ax and each initial
datum, the discretized equations were preiterated 1000 steps before
a full bifurcation diagram (of the asymptotic states) together with
basins of attraction were produced. The preiterations are necessary
for the solutions to settle to their asymptotic values. To obtain a bi-
furcation diagram with numerical basins of attraction superimposed,
the preselected domain of initial data and the preselected range of the
AJC parameter are divided into 256 or 512 equal increments. We keep
track where each initial datum asymptotically approaches, and color
code each basin according to the individual asymptotes. Figures 1
show the results obtained from these computations. Because for each
AJC, only two distinct basins of attraction are present for all of the
computations, only the grey-scale version of these plots are shown.
In all of these plots the shaded region denotes the basin of attraction
in which combinations of initial upstream input z values and step size
AJC converge to the stable asymptotes of the discretized equations,
shown by the solid black line or black dots. The unshaded regions
indicate regions of upstream initial input, where the combinations
of upstream input z and AJC do not converge or converge to a non-
physical solution of the problem [see condition following Eq. (8c)].
As can be seen in all cases, there is a drastic reduction in the basins
of attraction with just a slight increase in the grid spacing. (The axis
scale is 10~5.) Note that the allowable upstream initial input (exact
basin of attraction) for the governing equation (3) is 0 < z < 1.

The explicit Euler scheme (Fig. la) obtains the correct equilib-
rium state up to its linearized stability limit, where there is a very
small region of period two spurious solutions before it diverges.
Similar behavior is observed for the improved Euler (Fig. Ic) and
Kutta (Fig. If) schemes, the latter also exhibiting a much more con-
stricted basin of attraction for any given AJC. The Heun scheme
(Fig. Id) exhibits a distinct region where stable spurious periodic
solutions occurred just above the linearized stability limit.

As is typical with the modified Euler scheme (Fig. Ib) a tran-
scritical bifurcation occurs at its stability limit, which leads to a
spurious (AJC-dependent) solution near the stability limit. Note also
the solid line at about z = 0.25 down on the plot, outside of the
shaded region. This appears to be an unstable feature picked up by
our method of asymptotic equilibrium state detection (comparison
of initial data with the 1000th iterate) and is unlikely to arise in
practical calculations unless the initial data are on this curve. The
R-K 4 scheme (Fig. le) also exhibits a transcritical bifurcation at
the linearized stability limit; however, this is discernible more by
the sudden narrowing of the basin of attraction because the spurious
asymptotic state varies only slightly with AJC.

If the values of p and T are frozen for intermediate calculations,
the dynamics are somewhat modified. All schemes with the excep-
tion of the explicit Euler have a slightly larger basin of attraction
for values of Ax within the stability limit and all schemes have pe-
riod two behavior at the stability limit, there being no transcritical
bifurcations for any of the schemes. The modified Euler scheme
also has embedded period doubling and chaotic behavior below the
linearized stability limit. For the classification of bifurcation points
and their effects on the existence of spurious asymptotic numerical
solutions, see Ref. 9, 21, or 56.

These computations illustrate the sensitivity of the allowable up-
stream initial inputs to the slight increase in the grid spacing. In
other words, with a slight increase in the grid spacing, the allowable
upstream initial inputs quickly become numerically unphysical. Al-
though the dynamical behavior of the studied schemes is perhaps
not as rich as in some of simple examples discussed in Refs. 21-26,
spurious features can still occur in practical calculations so care must
be taken in both computation and interpretation. The computations
using implicit LMMs are reported in Ref. 8.
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Fig. 1 Bifurcation diagrams of fixed points of three-species reacting flow model.

B. Convergence Rate and Spurious Dynamics of High-Resolution
Shock-Capturing Schemes

We have seen in Sec. Ill elementary examples and references
cited therein on how the proper choice of initial data and the step
size combination can avoid spurious dynamics. Yet for other com-
binations the numerical solutions can get trapped in a spurious limit
cycle. We have also seen that the convergence rates of the schemes
are greatly affected by the step sizes that are near bifurcation points.
Here we include the dynamics of full discretization of two non-
linear PDE examples. The spatial discretizations are of the high-
resolution shock-capturing type (nonlinear schemes). This includes
TVD and ENO schemes. Section IV.B.l discusses how this nonlin-
ear scheme affects the convergence rate of systems of hyperbolic
conservation laws. Section IV.B.2 illustrates the existence of spu-
rious asymptotes due to the various flux limiters that are builtin to
TVD schemes.

1. Convergence Rate for Systems of Hyperbolic Conservation Laws
This section summarizes the results of Engquist and Sjogreen57

and Sjogreen (1996). These results concern the convergence rate for
discontinuous solutions of a system of nonlinear hyperbolic conser-
vation laws. For a scalar nonlinear conservation law, the character-

istics point into the shock. According to the linear theory of Kreiss
and Lundqvist,58 dissipative schemes damp out errors propagating
backwards against the direction of the characteristics. Thus, it is
reasonable to expect that the locally large errors at the shock stay in
a layer near the shock. In numerical experiments we usually obtain
O(hp) convergence away from the shock with difference schemes
of formally pth order.

For the systems case, the scalar conservation law reasoning cannot
be applied. In this case other families of characteristics intersecting
the shock cause the situation to be more involved. Thus, it is possible
that the large error near the shock propagates out into the entire
post-shock region by following a characteristic that emerges from
the shock.

This effect cannot be seen in a simple scalar Riemann problem
(problem with jump initial data), because exact global conservation
determines the postshock states. The system model problem, taken
from Engquist and Sjogreen,57

(u2/4)x = 0, — OO < X < OO, 0 <t

vx + g(u) = 0, g(u) = (u

(9a)

(9b)
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gives an example of propagation of large errors. The function g(u)
has the properties g(l) = g(-l) = g(|) = 0, and g(u) ^ 0
for — 1 < u < 1 except at u = ~. The initial data was given as

x <0,
x > 0,

(9c)

so that the exact solution of the u equation is a steady shock. The
eigenvalues of the Jacobian matrix of the flux (u2/4, v)T for Eq. (9)
are AI = u/2 and A2 = 1. The eigenvalue A.I = u/2 corresponds
to a strictly nonlinear field, and X2 = 1 corresponds to a linearly
degenerate field.

With these initial data [Eq. (9c)], it gives rise to a steady 1-shock,
with the 1-characteristics having a slope \ to the left of the shock
and a slope — ^ to the right of the shock. These thus intersect the
shock when time increases. The 2-characteristics of the linear field
have slope 1 on both sides of the shock. These characteristics thus
enter the shock from the left and exit to the right. The v component
of the solution is passively advected along the 2-characteristics.
When these characteristics exit from the shock at x = 0, an error,
coming from poor accuracy locally at the shock, is picked up and
advected along with the solution into the domain x > 0. The shock
curve x = 0 ( in the x-t plane ) acts as an inflow boundary for
the domain x > 0. The error coming from the shock is similar to
an error in given inflow data and is, therefore, not affected by the
numerical method used in the interior of the domain. Thus it is not
surprising that this error is of first order, even when the equation is
solved by a method of higher formal order of accuracy.

Figure 2 shows the numerical solution, computed by a second-
order accurate ENO method using 50 grid points at the time T =
5.68. The points in the shock give a large error, which is coupled to
the v equation through g(u). The exact solution for vis I . Numerical
investigation of the convergence rate of the error in v to the right

as
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Fig. 2 For a second-order ENO scheme, u and v components of Eq. (9).
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Fig. 3 Error in momentum of Eq. (9).

gave the exponent 1.047. Thus, one has first-order convergence for
this second-order accurate method.

Similar effects can be seen in computing the quasi-one-dimen-
sional nozzle flow. Engquist and Sjogreen34 computed the solution
on the domain 0 < x < 10 for a nozzle with the following cross-
sectional area variation:

A(JC) = 1.398 + 0.347 tanh(0.8;c - 4) (10)

This problem is studied in Yee et al.59 for a class of explicit and
implicit TVD schemes. The solution has a steady shock in the middle
of the domain. Figure 3 shows the error in momentum for the steady-
state solution on grids of 50, 100, and 200 points for a fourth-
order ENO scheme and a second-order TVD scheme. For the fourth-
order method, the convergence exponent is 3.9 before the shock and
1.0 after the shock, when going from 100 to 200 points. For the
second-order TVD the same quantities have the values 2.2 and 1.1,
respectively.

Sjogreen recently conducted the same numerical study for the
two-dimensional compressible Euler equations for a supersonic flow
past a disk with Mach number 3. The equations were discretized by
a second-order accurate uniformly npnoscillatory (UNO) scheme,32

which, unlike TVD schemes, is formally second order everywhere
including smooth extrema. He computes the error in entropy along
the stagnation line for the steady-state solution on grids with 33x17,
65 x 33, and 129 x 65 grid points. The result is shown in Fig. 4,
where the error and convergence exponent in the region behind the
bow shock are plotted. The convergence exponent is between the
65 x 33 and the 129 x 65 grids. The disk has radius 0.5, and it is
centered at the origin, which means that the line is attached to the
wall for —0.5 < x. A convergence exponent of 1.5 is observed for
this formally second-order method.
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Fig. 4 Second-order UNO scheme.

2. Spurious Dynamics of TVD Schemes for the Embid et al. Problem
It has long been observed that the occurrence of residual plateau-

ing is common when TVD and ENO types of schemes are used
to time march to the steady state. That is, the initial decrease in
the residual levels out and never reaches the convergence tolerance
(seeRefs. 20, 30, 31, 59, and 60 for discussion). This has often been
overcome by ad hoc modification of the flux limiter or similar device
in problem regions.

In a recent study, Burton and Sweby61 investigated this phe-
nomenon using a dynamical systems approach for the one-dimen-
sional scalar test problem of Embid et al.,62

with boundary conditions

«(0) = 1, (l ib)

This equation with the flux function f ( u ) = u2/2 has the property
that there are two entropy satisfying steady solutions consisting of
stationary shocks jumping between the two solution branches

ur(x) =

(12a)

(12b)

For this problem the two possible solutions consist of a single shock,
either approximately at x\ — 0.18 or x2 = 0.82. It can then be
shown62 that the solution with a shock at x\ is stable to perturbations
whereas the solution with a shock at ;c2 is unstable.

Embid et al.62 solved Eq. (11) using three different methods:
the first-order implicit upwind scheme of Engquist and Osher, its

second-order counterpart, and the second-order explicit MacCor-
mack scheme. All three schemes used time stepping as a relaxation
technique for solving the steady-state equation. The initial condi-
tions were taken to follow the solution branches (12) from the bound-
ary values with a single jump between the two branches. The results
obtained showed, although the implicit schemes allowed large time
steps and hence fast convergence, if the initial jump was taken too
near the unstable shock position jc2, then for some ranges of Courant
number,

c = w(A//A;c) (13)

the schemes would converge to the physically unstable shocks. This
phenomenon was studied both for these three schemes and a variety
of flux limited TVD schemes63 in Burton and Sweby,61 where not
only the full problem was studied but also a reduced 2 x 2 system
was investigated using a dynamical system approach. We summa-
rize this investigation here.

The schemes investigated were explicit and implicit versions of
the Engquist-Osher and TVD flux limiter schemes using the min-
mod, van Leer, van Albada, and superbee flux limiters. For the time
discretization, explicit Euler was used for the explicit implementa-
tions, whereas linearized implicit Euler was used for the implicit
computations. For the second-order flux limiter schemes the Jaco-
bian matrix for the implicit part was taken to be that of the first-order
Engquist-Osher to allow easy inversion.

Denoting / as the convection flux, the schemes for the explicit
Euler and linearized implicit Euler are

(14)

i)~] <15)

respectively, where ff are the Engquist-Osher numerical fluxes

fj~ = /(min(w/, 0)) (16b)

The flux differences are given by

(17)

(18)

and the solution monitors by

Finally, J is the Jacobian matrix, and the flux limiter 0(r) is one of
the following.

First-order Engquist-Osher (E-O) scheme:

0o(r) = 0
The minmod limiter:

0i (r) = max(0, min(r, 1))

Roe's superbee limiter:

02 (r) — max(0, min(2r, 1), min(r, 2))

Van Leer's limiter:
r + |r|

Van Albada's limiter:

(19)

(20)

(21)

(22)

(23)

Numerical experiments reported in Burton and Sweby61 used a grid
spacing of A* = 0.025 with initial conditions consisting of a single
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Table 1 Convergence regions for the explicit schemes Table 3 Analytical fixed points of the reduced system

Scheme CJ
E-O
Minmod
Superbee
van Leer
van Albada

0.65
0.5

0.6
0.6

0.9
0.75
0.7
0.7
0.7

Table 2 Convergence regions for the implicit schemes

Scheme Converges to x\

E-O c<n
Minmod c < 1 1
Superbee c < 1 1
van Leer ——
van Albada c < 1 1

Converges to xi

c > 22.5
c>21.5

c > 22.5

jump between the solution branches (12) near either the stable shock
(jci) or the unstable shock (jc2). The convergence criterion used was
the following bound on the residual:

E»r ' -< 10- (24)

with an upper limit of 2000 iterations being performed.
The results of applying these schemes to problem (11) largely

echoed those reported by Embid et al.62 For the explicit schemes
convergence, when it occurred, was to the stable shock. It was found
that there were regions of Courant number (c < c/) for which the
schemes converged, regions (c/ < c < GJ) for which convergence
did not take place using Eq. (26) within 2000 iterations, and regions
(c > Cj) for which the schemes were unstable. This is summarized in
Table 1 . The absence of an entry corresponds to residual plateauing.

Notice that for the superbee flux limiter there was no range of
Courant numbers for which the scheme converged. Closer inspec-
tion reveals residual (defined as rn — \un+l — u"\) plateauing at
around 10~3. For the other schemes, when q < c < GJ, the non-
convergence observed arises from a similar process, except that the
residual does not necessarily level out completely, but decreases at
a very gradual rate, resulting in very slow convergence.

The implicit scheme experiments revealed that the choice of initial
conditions could cause convergence to the unstable shock for certain
ranges of Courant number. For an initial jump near the stable shock,
the schemes (with the exception of the van Leer limiter) converge
to the stable shock for c < 11. However, for an initial discontinuity
near the unstable shock, convergence could sometimes be toward
the unstable shock. The situation is summarized in Table 2, where
again the absence of an entry corresponds to residual plateauing.

To gain further insight into this problem, Burton and Sweby con-
sidered a reduced problem consisting of two free points at one of
the shocks, with exact solution values being imposed as boundary
conditions on either side. This then leads to a two-dimensional dy-
namical system, which, although obviously a gross simplification of
the full problem, was hoped to still maintain some of the qualitative
behavior.

The situation is as shown in Fig. 5, where the free points are X
and 7, the remaining points being (£///, [//, f/rr, and Ur) set at exact
analytic values to provide boundary conditions. Two such values are
needed on either side to provide the necessary information for the
flux limiters. Substitution of these points into the numerical scheme
then leads to a two-dimensional system. For example, the explicit
E-O scheme yields

= X" - (Ar/40)[/-(7")

y n + l = yn _ (Ar/40) [/~ ([/,) + /+(7")

(25a)

(25b)

At stable shock At unstable shock
Scheme Stable Stable

Explicit E-O 0.36 -0.47 At < 0.057

Implicit E-O 0.37 -0.48 VAf

0.40 -0.32 ——
0.52 0.26 At< 0.1043

-0.29 -0.53 A f < 0.1031
0.40 -0.32 A f > 1.0585
0.52 0.26 VAr

-0.29 -0.53 VAf

Uii

© variable

1 fixed

Fig. 5 Grid points of the reduced Embid et al.62 problem,

For the first-order explicit and implicit schemes some analysis
on the reduced problem can be performed. Table 3 summarizes the
findings. Note that for both schemes spurious asymptotes are intro-
duced by the simplification of the problem. These both have X and Y
of the same sign and would not be tolerated for the full problem. It is
only the proximity of the boundary conditions for the reduced prob-
lem that allow them to exist as asymptotes. However, the remaining
asymptotes and their stability agree well with numerical results ob-
tained for the full problem.

Analytical results could only be obtained for the first-order
scheme, and so numerical experiments were performed for the flux
limiter schemes. These consisted of generating bifurcation diagrams
for X and Y against Ar and the plotting of basins of attraction in
the (X, Y) plane for fixed values of Ar. The explicit schemes were
shown to possess no spurious dynamics below their respective sta-
bility limits, apart from that introduced by the simplification of the
problem, i.e., outside of the quadrant (X > 0, Y < 0). As At was
increased above the stability limit the schemes entered a period of
bifurcation and chaos accompanied by a dramatic shrinkage in the
numerical basins of attraction.

The dynamics of the implicit schemes at the unstable shock
showed the falsely stable steady state becoming stable for large
values of Ar. For all of the limiters tested the stabilizing of the
steady state was accompanied by the introduction of additional,
spurious (period two) asymptotes. These spurious solutions caused
a reduction in size of the basin of the falsely stable steady state.
The fact that the more compressive limiters took longer to recover
from the effects of the spurious asymptotes seems a possible cause
of the phenomenon of residual plateauing experienced in the full
problem. Because of limited space, see Burton and Sweby61 for the
illustrations.

It must be realized that although the residual plateauing illustrated
is around the physically unstable shock (to which we would usually
not wish to converge), the fact that it is not a repelling phenomenon
will in itself have repercussions on convergence to the correct, phys-
ically stable shock. We conclude this section by emphasizing that
the reduced problem indicated a possible cause for residual plateau-
ing. However, for certain situations the dynamics of the full problem
does not coincide precisely with that of the reduced problem.

3. Dynamics of Grid Adaption
Consider a model convection-diffusion equation of the form

f ( u ) x = (26)

where a step size of AJC = ~ has been used.

with the linear case, f ( u ) = u and the nonlinear case, f ( u ) = ^u2

(the Burgers equation), respectively. The boundary conditions for
the linear case are u(Q, t) = Q and u(\, t) = 1 and for the nonlin-
ear case are w(0, t) = 1 and u(l,t) = —l. These boundary condi-
tions result in steady-state solutions of a boundary layer at x = 1
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and a viscous shock at jc = ^, respectively. In both cases the steep-
ness of the feature is governed by the diffusion coefficient param-
eter £. Besides its steepness feature, one of the main reasons for
considering the linear convection-diffusion equation is to show
that grid adaptation alone and/or nonlinear schemes such as TVD
schemes can introduce unwanted dynamics to the overall solu-
tion procedure. The authors realize that model (26) is not the best
model to illustrate the dynamics of the studied schemes because
the model is not stable under perturbations. However, it serves to
show what type of spurious numerics would occur under such an
environment.

One common criterion used for grid adaptation is the equidistri-
bution of a positive definite weight function w(x, t), often taken to
be some monitor of the numerical solution u(x, t) of the underlying
PDE. A grid *<> < x\(i) < - • • < xj-\(t) < x j , where *0 and xj
are fixed, equidistributes w(x,t) (at time t) if

rxj /•*,• + ! i rxj
I w(x,t)dx = w(x,t)dx = —

Jxj-i Jxj J JxQ
w(x,t)dx (27)

for j = 1, . . . , / . A one-parameter family of weight functions

w(x, t) = l-a+ au2
x(x, t), a € [0, 1] (28)

can be chosen where GL — \ corresponds to equidistribution in the
arc length and a — 0 yields a uniform grid. Approximating w ( x , t )
to be constant in each interval (#/_i , Xj) yields

(29)

Given a numerical solution of the PDE we can approximate the
derivatives by

(30)

Equation (29) is nonlinear in {xj} if we use Eq. (30). However,
Eq. (29) is linear in {xj} if {*_/} in Eq. (30) uses the existing grid. In
this case we can solve the tridiagonal system (29) for a new set of
[xj] to obtain an updated grid.

Given a set of initial data and an initial grid, the procedure is to
numerically solve the PDE and Eq. (29) in a time-lagged manner.
We use nodal placement and the £2 norm of the solution to illustrate
our results. We use the previous time step value for Xj in Eq. (30) to
achieve a linear tridiagonal system for the updated grid in Eq. (29).
Our preliminary study shows that the solution procedures of Ren
and Russel64 and Budd et al.65 in solving the coupled PDE and
Eq. (29) are less stable than the present linearized form. Also see
Neil66 for a similar study and conclusion. The regridding strategy
adopted was to regrid after every time step of the PDE method,
either interpolating updated solution values from the old grid or
performing no adjustment at all due to grid movement. This latter
approach in effect presents the PDE method with new initial data to
the problem at each step.

The dynamics of the preceding one-parameter family of mesh
equidistribution schemes coupled with different spatial and time
discretization were studied numerically in Sweby and Yee41 and
Yee and Sweby23 using the described numerical procedure. The
spatial discretizations include three-point central, second-order up-
wind and second-order TVD schemes. The time discretizations in-
clude explicit Euler, R-K 2 and R-K 4, and the linearized implicit
Euler methods. In a parallel study, Budd et al.67 made use of the
AUTO computer bifurcation package68 to obtain bifurcation dia-
grams for similar grid adaptation methods for the steady part of the
described PDEs with a different form than Eq. (29). However, the
dependence on known solutions of the discretized PDEs and grid
equations as starting values limits its usage. In Sweby and Yee41 we
utilize the power of the highly parallel Connection Machine CM-5
to undertake a purely numerical investigation into the dynamics of
the time-marching adaptive procedure.

We divided a chosen parameter space, e.g., €, into 512 equal
intervals, with all other parameters (a, Af , initial data) fixed. For
each chosen parameter value, we iterated the discretized PDE and
the grid function, in general, 4000 steps (8000 steps for explicit
methods) to allow the solution to settle to an asymptotic state. Then
we performed a series of time step/regridding stages, during which
we investigated the dynamics by producing an overlaid plot of the £2
norms of the numerical solution and the grid distribution at each step.
This resulted in a bifurcation type diagram or the grid displacement
diagram as a function of the physical or discretized parameters. We
also performed numerical studies by only preiterating the discretized
PDEs to the steady state for a fixed grid before solving both the
discretized PDE and the grid adaptation function. We found in most
cases the solution process is less stable and more likely to get trapped
in a spurious mode than in the aforementioned process.

For this study, we took into consideration the grid density, an even
and odd number of nodes, and whether or not there is interpolation
after each regridding. The grid density studies consist of 4, 5, 6,
9, 10, 19, 20, 49, and 50 grid points. There is no apparent sign of
even or odd grid dependence. The resolution and stability of TVD
schemes are also grid independent. However, the central difference
scheme experienced instability more often for coarser grids, and
the second-order upwind is slightly more stable, with better reso-
lution than the central scheme. As expected, the stable time step
required for the explicit methods was orders of magnitude lower
than that for the implicit method. For the TVD schemes, compar-
ison of the dynamical behavior of the five limiters of Eq. (3.50)
of Yee20 was performed. Four of the limiters are the same as Eqs.
(19-23). Because of the simplicity of the PDEs, their dynamical
behavior is similar, although there were slight differences in the sta-
bility and resolution. Because of space limitations, we summarize
the results without presenting the actual computational figures. In-
terested readers should refer to our original papers for details. The
following summarizes the results of this subsection.

V. Summary
We consider separately the cases with and without interpolations.

The term scheme from here on means the overall adaptive scheme
procedure.

Case A
In the no interpolation case for the linear problem, the behavior of

the adaptive TVD schemes is similar to that of the classical shock-
capturing methods. As opposed to the uniform grid case, the adaptive
TVD schemes without interpolations behave rather poorly in terms
of stability and allowable 6 values (see Figs. 11 and 12 of Yee and
Sweby24). The solutions refuse to settle down for larger A/ and/or
smaller e. For the nonlinear problem, the behavior of the adaptive
TVD schemes is similar to that of the uniform grid case. The range
of allowable e and Ar in terms of stability and convergence rate
and settling of the grid distribution are far better than in the linear
problem. It appears that for problems with shocks, adaptive TVD
schemes favor no interpolation after each regridding (see Figs. 13
and 14 of Yee and Sweby24).

CaseB
In the case with interpolations for the linear problem, as expected,

both adaptive TVD schemes and adaptive classical schemes behave
in a similar manner in terms of stability and convergence. Adaptive
TVD schemes are less stable and have a smaller allowable range of 6
than the uniform grid case. Overall, adaptive TVD schemes behave
far better than their counterparts without interpolation for the linear
problem as can be seen in Figs. 11 and 12 of Yee and Sweby.24 For the
nonlinear problem, the adaptive TVD schemes with interpolations
behave like the classical shock-capturing method. They experience
nonconvergence of the solution, and the grid distribution cannot
settle down for a certain range of Af. This can be seen in Figs. 13
and 14 of Yee and Sweby.24

It is surprising to see the opposite behavior of the adaptive implicit
TVD schemes for the two model PDEs with and without interpola-
tion combinations, especially when the same physical parameters,
discretized parameters, and initial data were used.
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VI. Concluding Remarks
We have revealed and isolated some of the causes of spurious

phenomena due to the numerics in an attempt to improve the un-
derstanding of the effects of numerical uncertainties in CFD in time
marching to the steady-state numerical solutions. The nonlinear phe-
nomena and spurious behavior exhibited by the numerics in solving
genuinely nonlinear problems reveal many of the limitations, chal-
lenges, and barriers in CFD. The knowledge gained so far has already
provided some improved guidelines for overcoming the spurious
behaviors without resorting entirely to the tuning of computational
parameters (see Yee and Sweby9'24 for some suggestions to mini-
mized spurious numerics). We believe the knowledge of nonlinear
behavior of numerical schemes can be a viable complement to the
standard guidelines from numerical analysis and CFD practices. Be-
fore additional theories are established, we conclude that the safest
route is to have some understanding of the nonlinear behavior of
the numerical method being used. Knowledge from the recent ad-
vances in nonlinear behavior are summarized in Sees. II and III.
There remains the challenge of constructing adaptive time step con-
trol methods that are suitable yet practical for time marching to the
steady states for aeronautical CFD applications. Another even more
challenging area is the quest for an adaptive numerical scheme that
leads to guaranteed and rapid convergence to the correct steady-
state numerical solutions. These two key challenges are particularly
important for CFD.
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