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An approach which closely maintains the non-dissipative nature of classical fourth-
or higher-order spatial differencing away from shock waves and steep gradient re-
gions while being capable of accurately capturing discontinuities, steep gradient,
and fine scale turbulent structures in a stable and efficient manner is described. The
approach is a generalization of the method of Gustafsson and Olsson and the artificial
compression method (ACM) switch of Harten. Spatially non-dissipative fourth- or
higher-order compact and non-compact spatial differencings are used as the base
schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM
switch is used to signal the appropriate amount of second- or third-order total varia-
tion diminishing (TVD) or essentially non-oscillatory (ENO) types of characteristic
based numerical dissipation. This term acts as a characteristic filter to minimize
numerical dissipation for the overall scheme. For time-accurate computations, time
discretizations with low dissipation are used. Numerical experiments on 2-D vortical
flows, vortex—shock interactions, and compressible spatially and temporally evolv-
ing mixing layers showed that the proposed schemes have the desired property with
only a 10% increase in operations count over standard second-order TVD schemes.
Aside from the ability to accurately capture shock—turbulence interaction flows, this
approach is also capable of accurately preserving vortex convection. Higher accuracy
is achieved with fewer grid points when compared to that of standard second-order
TVD, positive, or ENO schemes. © 1999 Academic Press
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1. INTRODUCTION

Modern shock-capturing methods such as total variation diminishing (TVD) or variants
essentially non-oscillatory (ENO) types of schemes that are higher than third-order accu
are usually CPU intensive, involve large grid stencils, and require special treatment r
boundary points. In spite of their high-resolution shock-capturing capability, these scher
often exhibit undesirable amplitude and/or phase errors for vortical and turbulent convec
flows and complex wave propagation phenomena. See NASA Conference Publication 3
May 1995 [1], and Sandham and Yee [2] and references cited therein for some discussiol
compensate for the somewhat ad hoc ways of utilizing TVD, positive, or ENO schemes
compressible viscous flows, Toro [3] proposed a viscous flux limiter approach to deal w
scalar mixed hyperbolic—parabolic problems. Systemic extension of Toro’s idea to a sys
of equations containing other than a single scalar viscosity term remains a challenging
of research. The objective of this paper is to propose a compromise between the above
approaches while maintaining an efficient way to closely maintain fourth- or higher-orc
accuracy without using higher than third-order TVD or ENO dissipations. Hereafter \
refer to “high-order schemes” as base schemes with spatial accuracy gneaisr than
three The term base scheme will be defined in Section 2.

Accurate and efficient direct numerical simulation (DNS) of turbulence in the presence
shock waves represents a significant challenge for numerical methods. A numerical sct
for DNS of shock—turbulence interactions of high-speed compressible flows would idee
not be significantly more expensive than the standard fourth- or sixth-order compact orr
compact central differencing scheme. It should be possible to resolve all scales down tc
order of the Kolmogorov scales of turbulence accurately and efficiently, while at the sa
time being able to capture steep gradients occurring at much smaller scales. Approp
numerical schemes should not interfere with the turbulence mechanisms resulting dire
from the governing equations. See Sandham and Yee [2] and references cited therein
discussion.

Gustafsson and Olsson [4] developed stable high-order centered schemes with stabl
merical boundary condition treatments. For problems containing shocks, they used a s
shock-capturing filter. Such schemes have advantages over higher-order ENO sch
which require very large grid stencils even for modest orders of accuracy. (For exe
ple, a seven-point grid stencil is required for a second-order ENO scheme.) In this pe
we propose to use the narrow grid stencil of high-order classical spatial differencing
base schemekow-order TVDQ weighted ENQWENQ), positive and ENO dissipatiom
conjunction with the Harten artificial compression method (ACM) switch [5] are used
characteristic filters. The ACM switch procedure is similar to Harten but applied in a sligh
different context. The final grid stencil of these schemes, for example, is five if secol
or third-order TVD or WENO schemes are used as filters and seven if second-order E
schemes are used as filters for a fourth-order base scheme. Numerical boundary conc
treatment is simple and can be the same as for the existing base and filter schemes. Hel
propose to use filter operators that have similar grid stencil widths as the base schem
efficiency and ease of numerical boundary treatment. Higher than third-order filter opera
are, of course, applicable, but they are more CPU intensive and require special treatt
near boundary points for stability and accuracy. On the one hand, this would defeat
purpose of achieving efficiency. On the other hand, near shocks and shears, the resol
of higher-than-third-order TVD or ENO schemes is comparable to their lower-order cou
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except with a slight gain in resolution in regions near steep gradients and smooth flow:
lower-order filters are able to minimize but at the same time provide the proper amoun
numerical dissipation away from shocks and shears to stabilize the non-dissipative ne
of the high-order base scheme, we would achieve similar resolution with improved e
ciency. This is the philosophy used to design the schemes. Our approach is aimed mair
problems containing vortex convections, and shock, shear, and turbulence interaction:
illustrated in later sections, these types of characteristic TVD (and ENO or WENO) filte
can even improve fine scale flow structure when applied to existing methods of Harten
7] and Yee [8-10].

Section 2 describes the numerical algorithm. Section 3 illustrates the performance
these algorithms for a variety of unsteady flows where most conventional methods ext
difficulty in obtaining low dissipative solutions in an efficient and stable manner. The fir
problem is a stationary vortex evolution. The second problem is a convecting vortex. In
third problem, a vortex pairing in a time-developing mixing layer, shock waves form arou
the vortices. In the fourth problem, a shock wave impinging on a spatially evolving mixil
layer, the evolving vortices must pass through a shock wave, which in turn is deforn
by the vortex passage. To demonstrate the applicability of these schemes in sustal
turbulence where shock waves are absent, a simulation of compressible turbulent che
flow in a small domain is carried out. For problems three and four, the detailed physics
extensive evaluation of the proposed scheme were reported in a separate paper by Sar
and Yee [2]. Here, only certain aspects of the performance of these schemes for the
problems are described. The study of the performance of this approach for time marcl
to the steady-state numerical solutions is in progress.

2. HIGH-ORDER SHOCK-CAPTURING SCHEMES
USING CHARACTERISTIC FILTERS

For simplicity of presentation, the discussion will concentrate on the convection part
the Navier—Stokes equations. Analogous order of accuracy of spatial discretizations fol
viscous terms will be briefly described at the end of this section.

In vector notation the 2-D compressible time-dependent Euler equations in conserva
form for an equilibrium real gas can be written as

Ui+ Fy+ Gy =0, (2.1a)
whereU; = 2, F, = 2% ‘andG, = % and theU, F, G, vectors given by
p pu pv
u=|" I e I I (2.1b)
pv |’ ouv |’ ov? + p '
e eu+ pu ev + pv

The dependent variablé is the vector of conservative variables, apd u, v, p)' is the
vector of primitive variables. Hergis the densityu andv are the velocity componentsy
andpv are thex- andy-components of the momentum per unit volurpés the pressure,
e=ple + (U +v?)/2] is the total energy per unit volume, aads the specific internal
energy.
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For a thermally perfect gas, the equation of state is
p=pRT, (2.2)

whereR is the specific gas constant, ahds the temperature with=¢(T). For constant
specific heats (calorically perfect gas)

e=c,T, (2.3)

wherec, is the specific heat at constant volume.

The eigenvalues associated with the flux Jacobian matricEsaoildG are (u, u, u £ ¢)
and (v, v, v+ ¢), wherec is the sound speed. The twpu andv, v characteristics are
linearly degenerate. Hereafter, we refer to the fields associated withtteandv £+ c
characteristics as thenlinear fieldsand the fields associated with theu andv, v char-
acteristics as thinear fields

The basic idea of these shock-capturing schemes constiste sfepsThe first step is the
high-order spatial and tempotahse scheméany standard high-order non-dissipative or
low-dissipative base schemesfitin the present framework. The second step is the approj
filter for stability, shocks, contact discontinuities, and fine scale flow structure capturil
Many TVD, positive, WENO and ENO dissipations, after a minor modification, are suitak
candidates as filters.

2.1. The Base Schemes

In this paper, only the method of lines approach is considered. We divide the discuss
of the base schemes into temporal and spatial base schemes. The filter step either do
directly involve the time discretizations or uses the same time discretizations as the |
scheme, depending on the types of temporal schemes.

2.1.1. Temporal Base Schemes

Third- or higher-order linear multistep methods (LMMs) (Gear [11], Lambert [12]) ar
possible temporal base schemes. However they usually involve more than three time e
and initial starting schemes are required. For stiff problems, stiffly stable implicit methods
base schemes are desirable, especially for time marching to steady-state numerical solu
Examples of explicit LMMs are explicit Euler and Adams—Bashforth. Examples of implic
LMMs are backward Euler, trapezoidal rule, and three-point backward differentiation. F
non-stiff or moderately stiff multidimensional problems, one of the easiest procedures
obtaining higher than second-order temporal base schemes is the Runge—Kutta me
There are many variants of the Runge—Kutta method in the literature. See Lambert
Butcher [13], Carpenter and Kennedy [14], and Gottlieb and Shu [15] for details. Let

U =LU)jk (2.4)

be the semi-discrete form of (2.1), whdrés the spatial discretization operator ferFy —

Gy) to be discussed in the next section. If viscous terms are prdséntjudes the vis-
cous spatial discretizations. Hells i is a discrete approximation &f at x = jAx and
y =kAy, whereAx andAy are the grid spacing in the andy-directions, and andk are
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the corresponding spatial indices. For simplicity of discussion, uniform Cartesian grids
assumed. Generalization of the method to nonuniform grids with analytical coordinate tre
formation is straightforward. For body conforming geometry without analytical coordina
transformation, the same spatial base scheme can be used to approximate transforn
metrics.

The following indicate two possible explicit temporal base schemes. The fourth-ort
classical Runge—Kutta method takes the form

ki = L(UM
ko = L(UrI + Atk]_)
2
ke = L <u“ + %b) (2.5)

ks = L(U"+ Atks)
N At
urtt=un4 f[kl+2k2+2k3+k4]'

Shu’s third-order Runge—Kutta [16] form that is compatible with TVD, TVB (total variatior
bounded), and ENO schemes takes the form

U =uU"+ AtLUM
3 1 1
@ _ Ty Zy@® = (1)
U _4u +4U +4AtL(U ) (2.6)

~ 1 2 2
untt = U+ éu@ + éAtL(u<2>).

HereU ™! might not beU "1 —the full step Runge—Kutta solution at+ 1—if the filter
step is applied after the completion of the temporal base scheme. The procedure to &
the filter step will be discussed in Section 2.2.1.

In choosing an appropriate temporal base scheme, the order of the temporal discretiz
might not be the key measure of the choice of temporal method. Attimes, one may be ma
interested in the phase error of the solution. Schemes which have higher-order-acct
phase error might have lower order when measured in the stahdaatm. For hyperbolic
and wavelike problems, one usually desires the accuracy in time and space to be e
Another consideration is that the combined spatial and temporal discretizations might |
a very stringent time step constraint for the overall scheme. In addition, the proper chc
of time discretization that is compatible with a chosen spatial discretization is crucial
achieving low phase and amplitude errors for time-accurate computations. This is a sut
of ongoing research. For all the model test problems considered in this paper, the clas
fourth-order Runge—Kutta method appears to work well.

2.1.2. Spatial Base Schemes for the Convection Terms

Denoting F; ¢ as the discrete approximation of the convection fluat (j Ax, kAy),
samples of the high-order base schemeRp((similarly for Gy) can be of the following
four types.
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Central differencinggfourth- and sixth-order). Here

1
Fy ~ E(Fﬁz,k — 8Fj+1k +8Fj_1k — Fj—2x), (2.7)

1
Fx ~ @(Fjﬂk — 9Fj 2k + 45Fj 11k — 45Fj_1k + 9Fj ok — Fj_3k). (2.8)

Compact central differencing$ourth- and sixth-order, Hirsh [17], Ciment and Leventhal
[18], and Lele [19]). Here

1
Fy A~ B(AxlBXF)j,k, (2.9a)
where for a fourth-order approximation
1
(AxF)jk = é(FH—l,k +4Fjk + Fj—11), (2.9b)
1
(BxF)jx = E(Fj+l,k —Fj—1K), (2.9¢)
and for a sixth-order approximation
1
(AxF)jk = E(Fj+1,k+3Fj,k+ Fi—1K), (2.9d)
1
(BxF)jx = &(Fj-ﬂ,k + 28Fj 1k — 28F_1x — Fj_2k). (2.9¢)
Predictor—corrector differencing§ourth- and sixth-order). Here
. 1
Predictor: @(—7Fj,k +8Fj_1k — Fj—2x), (2.10a)
1
Corrector: GA—XGFLK —8Fj11k + Fj+24), (2.10b)
and
. 1
Predictor: m(_Sﬂsz + 45Fj,1,k - 9Fj,2,k + Fj,37k), (2.118.)
1
Corrector: @(375* —45F 11k + 9Fj12k — Fji3k). (2.11b)

New forms of the upwind-biased predictor—corrector methods including compact f
mulations recently developed by Hixon and Turkel [20] are also applicable as spa
base schemes. Interested readers should refer to their paper for the various upwind-b
predictor—corrector formulae. The choice of the time integrators for these types of predict
corrector methods is more limited. For example, if second-order time accuracy is desi
then (2.10) and (2.11) in conjunction with tlegpropriate second-order Runge—Kutta
method are analogous to the familiar 2—4 and 2—-6 MacCormack schemes develope
Gottlieb and Turkel [21] and Baylisst al.[22]. Here the first number refers to the order of
accuracy for the time discretization and the second number refers to the order of accu
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for the spatial discretization. However, in this case one achieves the second-order time
curacy without dimensional splitting of the Strang type [23]. For higher-than-second-or
time discretizations, only certain even stage Runge—Kutta methods are applicable. For ¢
patible fourth-order Runge—Kutta time discretizations, see Hixon and Turkel for possi
formulae. For example, the classical fourth-order Runge—Kutta is applicable provided
applies the predictor and the corrector step twice for the four stages, i.e., the predictor
for the first and third stages and the corrector step for the second and fourth stages.

The SHOEC differencings.The split high-order entropy conserving scheme (SHOEC) c
Gerritsen [24] extends the summation by parts and entropy splitting idea of Olsson [25,
to the 2-D Euler equations for an ideal gas. It is based on the entropy splitting of
convection flux using Harten’s symmetrized form via entropy variables [27]. Using tl
entropy variable transformatio’W = W(U), one splits, for example,

B 1

= F FwW, 2.12a
l+’3x+1+’3Wx ( )

Fx

with 8 £ —1 andFy = % The vectolW is chosen such that bof(U (W)) andU (W) are
homogeneous functions of the appropriate ogldfor the perfect gas 2-D Euler equations
W, andFy andGyy are of the following form.

Forh(S) = Ke¥©@*+r) whereSis a dimensionless entropy (nondimensionedhy, K
is a constant, anh is a differentiable function o§,

T

* -1
P ¢ p —pu —pv p| , (2.12b)

W=—|e+
p y—1

and the upper triangular part of the symmetric matthx is

[ap  apu apv S+ - -4p |
apu?—p  apuv u[5oU?+ v? — bp
Uy = —
Y apv? — p v[§p (U2 4+ v?) — bp|
i — BB bp? +v?) + 3p(u? + )2

(2.12¢)
Here, p* and p are related through
p* = XeS/(a+y) — X(pp_y)l/(aﬂ'), (2.12d)
with x = —%. The variablep* andg are given by
., v—1 1 w%
p* = wy— =—= ], (2.12¢)
o 2 w3
p="1 i )}: : (2.12f)

whereqx is a constant. The constamtsh, andcarea=(1—«o —y)/a,b=y/(y — 1), and
c=1-2y)/(r = D.
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The flux vectors, expressed in thi¢ variables, are given by

2 _ T
FUW) = > {—wz Y2 | pr 122 —w2<w1+ Vap*)] . (2.129)
p W4 Wq Wy Yy — 1

2 T
cuwy) =2 {—ws wals 3 | —“’3<w1 + “p*)] . @azn)
p W4 Wq Wy Yy — 1

The upper triangular part of the symmetric matriegs) (W))w andG (U (W))w, expressed
in theU variables, is given by

o
p*
fapu  apu?—p apuv u[§p(u?+v?) — bp| i
u@ou? —3p) v(@p?—p) —b% +cpt? + 2o+ v — LpZ+1?)
X 9
u(apv® — p) Uv [Cp—i— %p(uz + vz)]
i u[bc%2 + cp(u? +v?) + Sp (U2 +v?)?] |
(2.12i)
1
Gw = —
p*
[apv apuv apr? —p v[5pU? +v?) — bp
v(@pu? — p) u(apv?— p) uv[cp+ 5p(u? + v?)]
X

v(apv? — 3p) —b%2 +cpv? — % p(U? +v?) + §p (U2 + vH)v?

v [bc%2 + cp(u? +v?) + §p(U2 +v?)?] |
(2.12))

In all of the numerical examples presented in Gerritsen [243,1 — 2y.

The high-order base scheme using the SHOEC splitting applies the fourth- and si;
order central differencings té, (and Gy) and W, (andW,). Note that this splitting of
the flux consists of a conservative and a hon-conservative part. The non-conservative
appears not to produce wrong shock locations traditionally associated with the use of r
conservative formulations of the Euler equation for computations. This splitting seem:
require less numerical dissipation for the Euler computations over the non-split form. ¢
Gerritsen [24] for illustration. Recently, Vinokur (1998, private communication) extende
the SHOEC idea to a thermally perfect gas. Comparison of SHOEC with other base sche
requires a separate study and is in progress.

Stable boundary schemes for high-order base schen@ansistent and stable one-sided
boundary stencils for numerical boundary treatments using fourth- and sixth-order cer
spatial differencing have not been available until recently. These stable boundary sche
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employ the summation-by-parts idea to derive an energy estimate for the high-order cel
spatial differencings as interior schemes. See Kreiss and Scherer [28], Strand [29],
Gustafsson and Olsson [4] for the boundary scheme formulae.

2.1.3 Spatial Base Schemes for Viscous Terms

For simplicity letVyx be a viscous term in one dimension. The possible high-order ba
schemes foW, can be as follows.
Central differencingg¢fourth- and sixth-order). Here

Viy A m(Vj+2 —16Vj41 + 30V — 16V_1+ V|_2), (2.13)
1
Vyx & M(ZVJ +3— 27\/]+2 + 270\/j+1 — 490\/]' + 270\/]‘_1
—2Nj_2+2V_3). (2.14)

Compact central differencingfourth- and sixth-order, Hirsh [17], Ciment and Leventhal
[18], and Lele [19]). Here

Vix & & (C'DxV),, (2.15a)

where for a fourth-order approximation
(CV)j = 1i2(v”1 + 10V; + Vj_1), (2.15b)
(DxV)j = V11— 2Vj +V,_1, (2.15c¢)

and for a sixth-order approximation

(CxV)j = Vj1 +aVj + Vj_1, (2.15d)
(DxV)j = bo(Vj41— 2V, + Vj_1) + %(VHZ —2Vj +Vj_2), (2.15e)
ao = 5.5, (2.15f)
bo = 4(a0 — 1)/3, (2.159)
Co = (10— ap)/3. (2.15h)

2.2. Characteristic Filters

In this section we first discuss the procedure for applying the characteristic filter for m
tistage and LMM types of time discretizations. We then discuss forms of the characteri
filter.

2.2.1 Procedure to Apply the Filter Step

If a multistage time discretization like the Runge—Kutta method is desired, the spa
base scheme discussed in the previous section is applied at every stage of the Runge-
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method. If viscous terms are present, it is more consistent to use the same order and
of viscous base scheme as for the convection terms.

There are two methods in applying the characteristic filter. Method 1 is to apply t
filter at every stage of the Runge—Kutta step. For inviscid and strong shock interactions,
approach might be more stable. The second method is to apply the filter at the end of the
Runge—Kutta step. L&l "+ be the solution after the completion of one full Runge—Kutte
step of the base scheme advancementLLebe the filter operator with

* * 1 = % = % 1 =k *
Li(F*,GY)jk= H[FjJrl/Z,k = Fi_yaid + ?y[Gj,k+l/2 — Gjko12, (2.16)

whereF 172k andé’jﬁkJrl/2 are the dissipative numerical fluxes for the filter operator. Here
after, we refer toF 7, andGj .4, as the “filter numerical fluxes.” Possible formulae
for the filter numerical flux will be discussed shortly. Then, we define the new time level

yntl — gn+t + AtL ¢ (F*, G*)j,k. (2.17)

The filter numerical querNj-‘H/z’k andé]ﬁkﬂ/2 are evaluated 41", If physical viscosity
is present, method 2 can be viewed as a mechanism in applying the filter with the phys
dissipation taken into consideration. In all of the numerical examples, method 2 is use

If one desires a time discretization that belongs to the class of LMMs, then the fil
operatorL ; can be applied as a dissipative numerical flux in conjunction with the ba
scheme. The filter numerical que:qu/zk andé‘]-‘,kﬂ/2 in this case are evaluated@t for
explicit LMMs. For implicit LMMs additional similar filter numerical fluxes evaluated at
then+ 1 time level are involved. Alternatively, procedure (2.17) can be applied to LMM
as well, whereJ"+! is the solution after the completion of one LMMs step of the bas
scheme.

For time marching to steady states using implicit LMMs, certain flow physics onl
requires an explicit dissipation term. Also, the implicit operator can be different from tl
explicit operator. See Yee [8, 30, 31] and Yeteal. [32] for some efficient conservative
linearized implicit forms.

2.2.2. The Filter Numerical Fluxes

There are many possible candidates for the filter operator in conjunction with hic
order base schemes. Here, we propose to use filter operators that have similar wid
grid stencils as the base scheme for efficiency and ease of numerical boundary treatr
Higher-than-third-order filter operators are, of course, applicable, but they are more C
intensive and require special treatment near boundary points for stability and accuracy
the one hand, this would defeat the purpose of achieving efficiency. On the other hand, |
shocks and shears, the resolution of higher-than-third-order TVD, WENO, or ENO scher
is comparable to that of their lower-order cousin except with a slight gain in resolution
regions near steep gradients and smooth flows (Engquist and Sjogreen [33], Donat [34]
Carpenter and Casper [35]). If the lower-order filters are able to minimize but at the sz
time provide the proper amount of numerical dissipation away from shocks and she
to stabilize the non-dissipative nature of the high-order base scheme, we would ach
similar resolution with improved efficiency. This is the philosophy used to choose the fil
numerical fluxes.
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The simplest form is a scalar linear filter proposed by Gustafsson and Olsson [4]. |
a similar form used by Jamese al. [36] to supply a linear second-order dissipation to
a low-order (second-order) central differencing for shock-capturing purposes. Gustafs
and Olsson used a switch similar to that of Harten [5]. The Harten switch was desigt
for self-adjusting hybrid schemes between Harten'’s first-order ACM scheme and secc
or higher-order schemes. Instead of switching from a higher-order scheme to a first-o
scheme for shock and shear capturing, we generalized Harten'’s idea of achieving,
loose sense, a low-dissipative high-order shock-capturing scheme by nearly maintai
the accuracy of the high-order non-dissipative property using nonlinear characterist
based filters. The reason for the nonlinear characteristic base filters is that scalar li
filters do not take into account the different wave characteristics of the Euler equatic
For complex shock waves and shear—turbulence interactions, one has better control ¢
amount of dissipation associated with each wave.

Filter numerical fluxes and nonlinear dissipation of shock-capturing schenwss.start
with any second- or third-order TVD, positive, WENO, or ENO scheme that caadaet
as the sum o€entral differencingandnonlinear dissipation termd&Recall that the Harten
[6, 7], Yee and Harten [37], and Yee's [8] symmetric TVD schemes are already cast in t
form. For example, let 4 be a TVD (or ENO) spatial operator with

1 - ~ 1 -~ -
Lowd(F, G)jk = B[Fju/z,k —Fj_124] + ?y[Gj,k+l/2 —Gjk-12]. (2.18)
Take, for example, th& flux. We cast the numerical qui,—H/z,k into the form

~ 1
Fitiok = E[Fj+1,k + Fjk + Rjy12®j41/2]. (2.19)

Here,%[FHl,k + Fj«] is the central differencing portion of the numerical flb':>5+1/2,k,
and the last terRj;12>® 412 (with the suppression of thke index) is the “nonlinear
dissipation " For characteristics-based methods, the quéRitity is the right eigenvector
matrix of  using, for example, Roe’s approximate average state. Note that the eigenve
Rj11/2 should not be confused with tHe in (2.2). Similarly, we cast thej,kﬂ/z in the
same manner.

We use these nonlinear dissipation terms in conjunction with Harten’s switch appliec
each characteristic wave as the filter numerical fluxes. In essence, the nonlinear dissip
terms act as second- or third-order ACM-like operators instead of Harten’s first-order AC
The switch is used to signal the amount of nonlinear dissipation to be added to the h
order nondissipative scheme, one wave at a time. The base scheme is activated at all
Thus, the current approach is also different in spirit from using ACM to sharpen the cont
discontinuities in the original Harten second-order TVD scheme [6]. Now we discuss |
filter numerical flux in more detail. It is of the form

= % 1 *
j+1/2k = éRj+1/2q>j+1/2- (2.20)
This filter numerical quxF"‘+l 2« Should not be confused with the standard numerical flu.
FJH/Z k for Fx in (2.18). FJ+1/2 « Is the modified form of the nonlinear dissipation portion
of FJH/Z k. The elements ob* 412 denoted byle/z are

¢J+1/2 = K0}+1/2¢|j+1/2~ (2.21)
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@)1, in (2.21) are the elements @b}, , in (2.19). The functioncs},, , is the key
mechanism for achieving high accuracy of the fine scale flow structure as well as sh
waves in a stable manner. In other words, the element’of , are the same as the
nonlinear dissipation portion of the TVD or ENO scheme (2.19) with the exception
premultiplying byx@}ﬂ/z. The parameter is problem dependent. For smooth flowds
used to improve nonlinear stability and can be very small. For the numerical example
Section 3, different examples require a different value because of the large variant of
the flow property. The range effor these problems is.03<« < 2. The function9}+1/2 is
the Harten switch. For a generah2- 1 points base scheme, Harten recommended

0} 110 =maxX(O 1. ... 0] ), (2.22)
Al ‘O‘IJ+1/2‘ - ’“'j—l/Z| ’
I | . (2.23)
| 10| + |12

Instead of varyinge for the particular physics, one can vapy The higher thep, the less
the amount of numerical dissipation is added. Note that by varyingothd in (2.23),
one can essentially increase the order of accuracy of the dissipation term. The order o
dissipation depends on the value@{Bjorn Sjogreen, private communication, 1998). For
all of the numerical examples, we upe=1 and

0112 = max(8]. 0] ,1). (2.24)

Theoz'jH/2 are elements de‘jl/z(UHl —Uj). The shock—turbulence interaction examples
appear to favor this form (ﬁ}+1/2'

Formulae forqb'Hl/2 are well known and can be found in the literature. For illustratior
purposes, we show a form of tlmd;ﬂ/z function in which all of the examples shown in
Section 3 are used for the computations. We choose the Harten—Yee upwind TVD fo
where

1
iae = 5V (@1402) (111 + d) = V(@41 +7)100) @1 (2.258)

| | | |
g1 - 9))/el 12 #0
{( j+1 ]) j+1/2 j+1/2 (225b)

1
| |
Vity2 = §¢(3J+1/2) |
@2 =0

Other shock-capturing schemes with structure similar to (2.19) such as the symmetric T
schemes (Yee [8, 9]) and Roe second-order upwind scheme (Roe [38]) are also applic
The a'j +1/2:1=1,2,3, 4, are the characteristic speedsgéfevaluated at some symmetric
average o  andU;j1 x. The Roe’s average is an example of this (Roe [39]). The functio
¥ is an entropy correction tka'j+1/2|. One possible form is (Harten and Hyman [40])

| a1l | 112| = 81
¥ (aj,10) = | 2 | (2.25¢)
[(B422)" +82] /281 [a] 0] < 2.

For problems containing only unsteady shodkss usually set to zero. Note that entropy-
violating phenomena occur only for steady or nearly steady shocks. For steady-s
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problems containing strong shock waves, a proper control of the side iefvery im-
portant, especially for hypersonic blunt-body flows. See éfead. [32]) for a discussion.
Examples of the commonly used “limiter” functicg‘Ja can be expressed as

gj = minmod(} ;5. &} ,1,5). (2.25d)
9) = (o) 4220 172+ [ 11720} _1j0]) / (¢ 412+ @ 12). (2.25¢)
o) = {o _1a[ (0} 10)" + 02] + &) gyl (@ _12)” + 2]}/
[(@ 1% + (o _1/2)* + 282], (2.25f)
g} = minmod(2 _y . 20} 15, 5 (] 12+ @) _12)) (2.259)
g) = S-max(0, min(2|a.s/z|. S+ o)y 2), Min([ed] 1], 28+ @y 2) ]
S=sgn(a},). (2.25h)

Heres, is a small dimensionless parameter to prevent division by zero ar(d'jggylz) =
sign(a'Hl/z). In practical calculations ¥ <8, <107° is a commonly used range. For
ol 1040 4,=0,d, issettozeroin (2.25e). The minmod function of a list of argument
is equal to the smallest number in absolute value if the list of arguments is of the s
sign, or is equal to zero if any arguments are of opposite sign. Later development in limi
have flooded the literature and has created much debate. Most of the improvements
been problem dependent. See Donat [34], Engquist and Sjogreen [33], and Jin and Lin
on the error propagation for nonlinear approximations to hyperbolic equations contain
discontinuities in derivatives or discontinuous solutions.

2.3. Computer Implementation

To avoid additional logical statements in the actual coding and to promote parallelizati
several of the forms with the potential of dividing by zero are modified. They are

¥v(2) = V(8 + 23, (2.26a)
1y (a g —gh)al
Vj|+1/2 — 5 ( J+l/2)|( ]Jrl2 J) ]+l/2. (226b)
(efi1)2)" +e
We use the switch
||°‘"+1 2| - ’0‘"—1/2H
o) = L/ J (2.26¢)

b o) yao| + |0 ypo] + €

In all of the computations, we take=10"". The value o was taken to be /116 (unless
indicated) to satisfy an entropy condition. However, the fine scale flow structure shov
minor sensitivity to the value of this constant.
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2.4. Other Applicable Base Schemes

There are other possible high-order base schemes that one can use. For example, the
or seventh-order upwind schemes and the 2—4 or 2—6 MacCormack scheme. If the fiftt
seventh-order upwind schemes are used as base schemes, to reduce numerical dissi
one needs tgubtractthe dissipation portion of these upwind scherfrem the filter step
The dissipation portion of these upwind schemes can be obtained by rewriting the sch
into two parts, a central part and the “rest.” The “rest” is the dissipation portion. For the 2
or 2—6 MacCormack scheme, the time discretization is an integral part and one has tc
the complete scheme as the base scheme. For the filter step, one adds the filter num
fluxes as an added corrector step as described in Yee [8] or Yee and Shinn [42]. The f
numerical flux is the same as (2.20) but 1751@1/2 has a slightly different form to take into
account the Lax—Wendroff type aft? term. See Yee [8] or Young and Yee [43] for the
formula.

2.5. Other Applicable Characteristic Filters

MUSCL approach using an approximate Riemann solv&he filter numerical flux
function for an upwind MUSCL-type scheme as described in Yee [8] using an approxim.
Riemann solver can be expressed as

~ 1 R .
Flvyzk = ERj-&-l/Z(Dj-;—l/z‘ (2.27a)

The elements ob5, , , and the vecto(a®); 1/, are given by

@112 = K012 (@) 11/2) @)1/ (2.27b)
@)j4172 = (R)112(Uf 12 = Uliga)s (2.27¢)

wherey (@', ,) can bej(@”)' ., ,| or the same form as (2.25c). He@)' . ,, are the
eigenvalues aniy , , is the eigenvector matrix (gﬁ evaluated using a symmetric average
betweerU R ; , andUj,, »; i.e.,

(ao)lj+1/2 =4 (UjR+1/27 UjL+1/2)’ (2.27d)
RT+1/2 = R(UjFil/za UjL+1/2)- (2.27¢€)

The switch(@o)'j +1/2 Isthe same as (2.22) and (2.23) except it is evaluated using a symir
ric average betweeujj'cfw2 andeL+1/2. However, there are options in applying the limiters
for system cases. Namely, one can impose limiters on the conservative, primitive, or cl
acteristic variables. Thd R andU * are the upwind-biased interpolation of the neighboring
U; k values with slope limiters imposed.

MUSCL approach using the Lax—Friedrichs numerical fluXhe filter numerical flux
function fora MUSCL-type approach using the higher-order Lax—Friedrichs numerical fl
(Yee [8, 10]) can be expressed as

~, 1. .
i+1/2.k1 = E[(Djﬂ/z], (2.28a)
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where®j , , is

Qf 1 =—@ )Tf)l(/z( Rz = Ula2)s (2.28b)
and(ao)rj‘"j_"l‘/2 can be

@) 712 = x(Uj,q/l + Cj11p). (2.28¢)

where < x <1.The overbar for the quantlt‘J(JHl/2 1+1/2) means the Harten switch
together withe is applied to each element of the vector. However,olhei/2 in 91+1/2 are
replaced with a jump in the the conservative var|ale§§1/2 andUHl/2 If primitive or
other variables are used for the right and left states, the switch together wfitbuld be
applied to the corresponding variables.

2.6. Filter Numerical Flux for Time Marching to Steady States

For time marching to the steady states, one usually needs to add a fourth-order dissip
to a second-order spatial differencing scheme (Beam and Warming [44]). For the pre:
schemes using characteristic filters, in addition to the filter opetatpone might need to
add a sixth-order dissipation to a fourth-order spatial base scheme and an eighth-orde
sixth-order spatial base scheme in regions away from shocks for stability and converge
Let Ly be such an operator. Take the case of a Runge—Kutta time discretization a
Section 2.2.1. There are two ways to incorporateltheperator. One way is to incorporate
it at every stage of the Runge—Kutta method. The other is to include it as part of the fi
step (2.17), i.e.,

UM™L = U™ 4 AtL(F*, G*)jk 4+ AtLg(U™h) (2. 29)

whereL ¢ (F*, G*); « is the same as in (2.17). These two ways of applyindtheperator
are most likely problem dependent and time integrator dependent. Extensive numel
experimentation is needed. For LMM type of time integratdrs,s used in conjunction
with L ; as an additional dissipation, as discussed in Section 2.2.1.

To minimize the amount df 4 in the vicinity of shock waves, there should be a switching
mechanismey (different from in (2.21)) to turn off theL 4 operator in the vicinity of
shock waves. Thiey operator can be applied to the conservative, primitive, or characteris
variables. The simplest form is to apfly to the conservative variables. Alternatively, since
all of the work in computing the average states and the characteristic variable is done
thelL ¢ operator, one can apply thg operator on the characteristic variables instead of th
conservative variable. In this case, the switching mechanjsoan be a vector so that it is
more in tune with the shock detector of the approximate Riemann solver.

3. NUMERICAL EXAMPLES

In all of the computations the classical fourth-order Runge—Kutta time discretization
employed. The detailed programming allows the Euler and viscous terms to be compt
using separate methods. The basic spatial schemes are (i) non-compact central, (ii) cor
central, and (i) predictor—corrector upwind or upwind biased. Non-compact schemes
the standard second-, fourth-, and sixth-order methods. Compact schemes are eithe
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TABLE 3.1
Notation for Numerical Methods

Order Order Shock Artificial
Method (Euler)  (viscous) capturing compression Compact

CEN44 4 4 No No No
TVD22 2 2 Yes No No
TVD44 4 4 Yes No No
TVD66 6 6 Yes No No
ACM22 2 2 Yes Yes No
ACM44 4 4 Yes Yes No
ACM66 6 6 Yes Yes No
ACM44C 4 4 Yes Yes Yes
ACM66C 6 6 Yes Yes Yes

Note.Order of accuracy refers to the formal order of the base scheme.

standard symmetric fourth-order or the sixth-order Pade schemes. For the purposes o
paper we concentrate on the central schemes with the same order of accuracy and type o
scheme for the convection and viscous terms. Comparable accuracy was obtained wit
upwind or upwind-biased schemes proposed by Hixon and Turkel [17]. The filter opera
(2.16), in conjunction with (2.20)—(2.26), is used as a filter step at the end of the full Runc
Kutta time step. Hereafter, we refer to this approach as the ACM/TVD (or simply ACM
method, indicating the fact that only one type of TVD dissipation is used for the numeri
study. The various combinations of schemes considered for numerical experiments
shown in Table 3.1. The notation shown in Table 3.1 will be used for discussing the res
for different numerical schemes. Here, the notation “TVD” with the various orders attach
at the end means the second-order TVD dissipation (without the ACM switch) is usec
the filter with the indicated order of the base scheme for the convection and viscous ter
For simplicity of discussion, unless otherwise indicated, the term TVD or ACM schen
means the selected base schemes indicated in Table 3.1 using the TVD or ACM/TVD fi
Studies using ENO or WENO dissipation as filters are planned. Computations using
SHOEC splitting in conjunction with high-order central differencings as base schemes
a variety of perfect gas and nonequilibrium flow applications are also planned. It appe
that the SHOEC splitting is more stable and requires less numerical dissipation.

Without introducing additional notation, for inviscid flow simulations the same notatic
is used except the viscous terms are not activated.

Five test cases are considered. The firsttwo are inviscid and the last three are compres
DNS computations. These test cases are chosen to examine the versatility and accure
the proposed schemes for a variety of flows where most conventional methods ext
difficulty in obtaining low-dissipative solutions in an efficient and stable manner. All th
test cases use either a uniform or mildly stretched Cartesian grid ig-ttieection. No
attempt is made to enhance the resolution using appropriate adaptive grid procedure
present, the code used for the test cases reduces to lower-order central base scheme
the boundary points since either these test cases employ periodic boundary condition o
effect of lower-order boundary schemesis illustrated. Stable boundary treatments sugge
by Gustafsson and Olsson [4] should be used and are not yet implemented for the pre
study. Nonreflecting boundary conditions or characteristic inflow and outflow boundz
treatment are also not implemented.
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The five test cases are: (1) a stationary vortex evolution; (2) a horizontally convect
vortex, (3) a vortex pairing in a time-developing mixing layer with shock waves forme
around the vortices; (4) a shock wave impinging on a spatially evolving mixing layer whe
the evolving vortices must pass through a shock wave, which in turn is deformed by
vortex passage; and (5) a 3-D compressible turbulent channel flow to validate that
proposed schemes are, in fact, capable of sustaining turbulence. To examine the resol
of the proposed schemes where shock waves are absent, the computation was com
with the CEN44 (the classical spatially fourth-order central differencing for the convecti
and diffusion terms) before shock waves were developed for the vortex pairing case. G
agreement was obtained.

Aside from evaluating the vortex preservation property, the performance of these sche
with the presence of shock waves and turbulence are evaluated based on the follo
factors:

(a) effect of the ACM term,

(b) effect of the order of the base scheme,

(c) effect of the grid size (grid refinement study),

(d) effect of employing a compact or non-compact base scheme,
(e) effect of the adjustable parametefor the particular physics,

() effect of the flux limiters,

(9) shear and fine scale flow structure capturing capability.

3.1. Isentropic Vortex Evolution

The first two test cases are chosen to assess the performance of the proposed schen
evolution of a 2-D inviscid isentropic vortex in a free stream. Similar test cases have &
been used by several authors for testing other schemes with respect to vortex preserv
(Gerritsen [21], Davoudzadett al. [45], and Shu (private communication, 1996)). The
mean flow velocityu,, andv,; pressurep,.; and densityo,, are considered to be free
stream. Test case 1 is a stationary (steady) vortex with v.,) = (0, 0), and case 2 is a
horizontally convecting vortex witlu.,, vo.) = (1, 0). In both caseP, = poo = 1.

As an initial condition, an isentropic vortex with no perturbation in entréy&=€ 0) is
added to the mean flow field. The perturbation values are given by

(8u, Sv) = %eﬂ—fzvz(—y, X), (3.1)

_ (J/ - 1)ﬂzelfr2

8T =
8ym?

) (3.2)
whereg is the vortex strength and = 1.4. Note that the vortex strengfhshould not be
confused with thes in Section 2.1.2. Herd = E, Too=1.0, (X, Y) = (X — Xy, ¥ — Yoo):
wherex,, andy,, are coordinates of the center of vortex initially, arfd=X? + y2. The
entire flow field is required to be isentropic so, for a perfect gl = 1.

From the relations,0 = ps + 80, U=Uy + U, V=1vy +8v, T =To + 8T, and the
above isentropic relation, the resulting state for conservative variables is given by

1/(y—1
B (J/ _ 1)ﬁze]_—r2 /(y—1)

p= TY@-D (T + ST)l/(y_l) = |1
8ym

(3.3)
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pU = p(Us +8U) = p {1 — Zieﬂfzw] (3.4)
pU = p(voo +8V) = p {1+ %eﬂ—'z)/z] (3.5)
p=p" (3.6)
e— p 1 2 2 3 7
—m+§p(u + v9). ()

These two vortex problems provide a good test bed for evaluating the schemes pel
mance with the absence of shock waves and turbulence. The exact solution with given ir
states is just a passive convection of the vortex with the mean velocity and thus provid
good measure of the accuracy of the schemes for smooth solutions of the Euler equat
The initial vortex covers a domain ofOx <10 and—5<y <5.

Periodic boundary conditions (BCs) in both directions are traditionally used for the
test cases. Since the code reduces to lower-order central base schemes near the bot
points, and nonreflecting BCs are not used, non-periodic BCs simulations would prov
the opportunity to examine the effect of the sizes of computational boxes on preserv
the vortex core during time evolution. Nonreflecting BCs and stable boundary treatme
suggested by Gustafsson and Olsson [4] will be implemented for a future study.

Both test cases employ a uniform Cartesian grid. Density profiles at the centgeliris,
cutting through the center of the vortex of the various schemes are used for compari
Data on the centerline was extracted up to 5 unit lengths away to the left and the right, fi
the location of the center of the vortex. In all of the computations for the vortex evolutic
unless otherwise indicate8i=0.01 (2.26a) and limiter (2.25f) are used.

3.1.1. Stationary Vortex

For the stationary vortex test case, a uniform grid spacinpof Ay = 0.125, covering
the domain of Gx x <50 and—5<y <5, is used. The grid is 40% 81. The vortex is
placed at the center of the rectangbe— x,,, Y — Y,,) = (25, 0). For reasons of economy,
only the left and right boundaries in tledirection are kept fairly distant from the center of
the vortex core at 25 unit lengths. Only 5 unit lengths are used irytlieection. Since
there are no shock waves or steep gradient regions for this flow, the filter is used to stab
the nonlinear governing equations. For this reason, the filter coeffici€h21) should be
kept very small. We use = 0.05 for all of the computations. The time step is also fixec
with At =0.04.

The density profiles across the vortex at the centenire, for the various schemes are
illustrated in Fig. 3.1. Figure 3.1 which shows the effect of increasing the accuracy fr
second- to fourth- and sixth-order using the TVD filter (TVD22, TVD44, and TVD66
compared with the ACM/TVD filter (ACM22, ACM44, and ACM66). Although the order
of the viscous terms is indicated in the method, the viscous terms are not activated.
ure 3.1a compares the exact solution with the solutions obtained by the TvD22, TVD
and TVD66 methods dt=50 (after 1250 time steps). All of the TVD methods, regardles
of the order of the base schemes, are very diffusive, especially around the vortex c
Higher-order base schemes exhibit slightly better resolution than the second-order |
method. Figure 3.1b displays the same computation at a laterttiaE00 (after 2500
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t=50 t=100

Density cut at y=0

Density cut at y=0

FIG. 3.1. Stationary vortex: comparison of the various orders of TVD and ACM methods with the exa
solution, illustrated by density profiles at the centerline 0, att =50 andt = 100 for a 401x 81 grid (¢ = 0.05).

time steps). The computed vortex core is even more diffused compared with the e
solution.

Figures 3.1c and 3.1d show the same computatidr=e80 and 100 using the various
orders of the base scheme with the ACM/TVD filter. These figures display the effect of |
ACM/TVD filter on the vortex core. The ACM methods, regardless of the order, have r
diffused the vortex core aftér=50. All numerical solutions fall almost on top of the exact
solution, except for very small differences for the ACM66 method. At100, the ACM66
resolution has been slightly displaced due to the boundary effects. However, the ACN
and ACM44 remain quite accurate.

3.1.2. Horizontally Convecting Vortex

Forthe horizontally convecting vortex, again, a uniform grid spacingof Ay = 0.125,
covering the domainof @ x <110 and-5<y <5, isused. The grid is 482 81 fort =50
and 881x 81 fort =100. The vortex is initially placed &k — X,,, ¥ — Y.,) = (5, 0). The
time step,At =0.04, is fixed for all runs, as is the vortex strengsh+= 5. The adjustable
parameteri, is set equal to @5 as in case 1. The vortex is convected to the right by th
mean flow velocity.

The physics of the present vortex evolution is similar to that of the stationary case, exc
the vortex is convecting. Since the ACM44 and ACM66 are less diffusive than the ACM
for case 1, only the ACM44 and ACM66 are used for the present computation. Figure
displays density profiles across the centerling &t0, comparing the exact solution with
the ACM44 and ACM66 methods at=50 andt =100, and after 1250 and 2500 time
steps, respectively. All numerical solutions are very accurate and fall almost on top of
exact solution. In these computations no visible boundary effects are seen because the
boundary of the domain in the direction of the vortex convection is initially kept relative
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£=50, 481x81

=100, 881x81

0.81

Density cut at y=0

0.6

—— Exact
....... ACM44
---- ACM66

()

1.0

0.8

0.6

(b)

—— Exact
~~~~~~~ ACM44
---- ACM66

0.4

10

FIG.3.2. Convecting vortex: comparison of ACM44 and ACM66 with the exact solution, illustrated by densi
profiles at the centerling=0, att =50 andt = 100 for a 481x 81 and 881x 81 grid, respectivelyx = 0.05).

far away. Although not visible from the density profiles, ACM44 exhibits small oscillator
solutions at = 100. However, the ACM66 exhibits only small oscillations at the outer edg
of the vortex. Figure 3.3 shows the density contours comparison of the exact solution v
ACM44 and ACM66 at =100. We reran the same case using ACM44 and an increas
« =0.07. The small oscillation disappeared and the solution is as accurate as for the ACI
using« = 0.05. Both ACM44 and ACM66 exhibit good vortex preservation. Figure 3..
also shows the comparison of the two different values oking ACM44. These results
indicate the effect of on the various orders of the ACM methods. For viscous flow, in th
presence of shocks, shears and turbulence, the effeatrothe resolution of fine scale flow
structure plays a different role than for the inviscid flows with smooth solution. When we r
the same case using CEN44, the solution blew up=a65. We ran the same case using
ACM44 with « = 0.07 untilt = 200, convected for 20 vortex diameters. The solution is stil
very accurate but slightly diffuse compared with the exact solution.

3.1.1. Boundary Effects on the Stationary Vortex

The effect of the size of the computational boxes was studied for the stationary vor
evolution, case 1. Allthe numerical experiments with the TVD and ACM methods discuss
for case 1 were repeated on a smaller computational domaigef€10 and-5<y <5
for which the initial vortex touches the boundary of this smaller computational box. T
grid spacings and time step are the same as before, except the grid is Rl 8Figure 3.4
shows the computations on the reduced domain. Comparison with Fig. 3.1 clearly den
strates the effect of the physical boundary distances ixttigection. The discrepancies
between corresponding results on the larger and smaller domains are more pronounc

Exact (Initial) ACM44, k=0.07 ACMEE, k=0.05

ACM44, k=0.05

FIG. 3.3. Convecting vortex: comparison of the ACM44 and ACM66 with exact solutioh=ai00 for
« =0.07 andc = 0.05, illustrated by density contour for a 88181 grid.
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t=50

t=100

219

Density cut at y=0

Density cut at y=0

0.8

0.6

(d)

FIG. 3.4. Stationary vortex: comparison of various orders of TVD and ACM methods with the exact solutio

04

illustrated by density profiles at the centerline: 0, att = 50 and = 100 for a smaller computational box (8181)
showing the boundary effect & 0.05).

t =100 for the ACM methods. Figure 3.5 compares the numerical solution of the ACM
method on larger and smaller domains with the exact solution.

Figure 3.6 displays the effect of the adjustable parametercontrolling the boundary
effects k-direction) for the ACM44 and ACM66 methods & 100. We reduced the

value from 005 to Q035 on the same smaller computational box. The profiles for bo
methods are on top of each other. The deviation from the exact solution of the compt

solution due to boundary effects is less pronounced than$00.05. Figure 3.7 shows the
effect of using different limiters (limiter (2.25f) vs limiter (2.25h))tat 100 on the same
smaller computational box.

12
o jobEEEIIIICCIL PEEFEEPEFREEE
1]
>
5
3 081
=y
% T=100
A 0] —— Exact
el . S 2, ACMG66 81x81
- --. ACM66 401x81
0.4 ; ' ' :
0 s 4 6 8 10

FIG. 3.5. Stationary vortex: comparison of the exact solution with ACM686-atL00 on the small computa-
tional box (81x 81) and a larger computational box (40B1) (x = 0.05).
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1.2

Density cut at y=0

0.4 T T T T

FIG. 3.6. Stationary vortex: comparison of the exact solution with ACM44 and ACM66=a100 for the
small computational box using a 8181 grid ¢ =0.035).

3.2. Vortex Pairing in a Time-Developing Mixing Layer

This test case studied vortex growth and pairing in a temporal mixing layer at a convec
Mach number equal to 0.8. At this Mach number there are shock waves (shocklets)
form around the vortices and the problem is to compute accurately the vortex evolut
while avoiding oscillations around the shocks. Previous calculations of the problem car
found in Sandham and Reynolds [46], Lumpp [47], and Fu and Ma [48]. Figure 3.8 show
schematic of the physical problem. Here we set up a base flow as in Sandham and Yee

u = 0.5 tanh2y), (3.8)

with velocities normalized by the velocity jump — u, across the shear layer and distance:s
normalized by vorticity thickness,

up—u
L= iUz (3.9)
(du/dY)max
1.2
- 1.0_-..-..-..-.:.-..-..-.:.'..-.:,\ PRtetetrtvtvivteletebrboly
1
-~
=
S 0.8
2
g T=100
5 Exact
61 N J o ACM44-lim 3
-=-. ACM44-lim 5
04 T T T T
0 2 4 6 8 10

FIG. 3.7. Stationary vortex: comparison of the exact solution with ACM44 using two different flux limiter:
(lim3 (2.25f) and lim5 (2.25h)) at= 100 for the small computational box using a:881 grid ( = 0.05).
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L.

FIG. 3.8. Schematic of the vortex pairing in a time-developing mixing layer.

Subscripts 1 and 2 refer to the uppgr{ 0) and lower § < 0) streams of fluid, respectively.
The normalized temperature, and hence local sound speed squared, is determined frc
assumption of constant stagnation enthalpy

~1
¢ =+ 1= (- ). (3.10)

Equal pressure through the mixing layer is assumed. Therefore, for this configuratior
u, = —u; both fluid streams have the same density and temperaturg-fettco. The
Reynolds number defined by the velocity jump, vorticity thickness, and kinematic viscos
at the free-stream temperature is set here to be 1000. The Prandtl number is set to 0.7
ratio of specific heats is taken gas= 1.4, and Sutherland’s law with reference temperature
Tr =300 K is used for the viscosity variation with temperature. The reference sound sp
squaredg?, is taken as the average @fover the two free streams.

Disturbances are added to the velocity components in the form of simple waves. For
normal component of velocity we have the perturbation

2
v =" acos2rkx/Ly + ¢x) exp(—y*/b), (3.11)
k=1

where Ly =30 is the box length in th&-direction andb =10 is they-modulation. In
our test case we simulate pairing in the center of the computational box, by choosing
initially most unstable wavk = 2 to have amplitude, = 0.05 and phaseé, = —x/2, and
the subharmonic wave= 1 with a; =0.01 and¢; = —n /2. Theu-velocity perturbations
are found by assuming that the total perturbation is divergence free. Even though tt
fluctuations correspond only approximately to eigenfunctions of the linear stability probls
for a compressible mixing layer, they serve the purpose of initiating the instability of t
mixing layer and have the advantage as a test case in that they can be easily coded.

Numerically the grid is equally spaced and periodic in xhéirection and stretched in
the y-direction, using the mapping

_ Lysinhbyn) (3.12)
2 sinh(by)

where we take the box size in tlyedirectionLy = 100, and the stretching factby = 3.4.

The mapped coordinatg is equally spaced and runs froml to +1. The boundaries at
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+L /2 are taken to be slip walls. For example, at the lower boundary

p1L = P2, (3.133a)
(pW)1 = (pu)2, (3.13b)
(pv)1 =0, (3.13c)
(€)1 = [4(e)2 — (0)3]/3, (3.13d)

where subscripts here refer to the grid point arnislthe total energy.

3.2.1. Computational Results

We compute this test case on 40401, 201x 201, 101x 101, and 41 41 grids. There
is little to choose in the shock resolution properties with the variation in order of accure
of the scheme since the proposed method will not improve the resolution of the shock we
over standard TVD or ENO schemes. We choose to compare temperature contours, W
are most sensitive to oscillations (Lumpp, private communication), and accuracy of the
scale structure. Figure 3.9 shows a snapshot of the temperature contotr$t80, 120,
and 160 using ACM44, illustrating the roll-up of the primary vortices followed by vorte
merging. Shock waves and shears form around the vortices with a peak Mach number a
of the vortex of approximately 1.55 &= 120. The grid is 20k 201. The majority of the
comparisons, however, use a 0101 grid. In all of the computations for the vortex pairing
case, unless indicated, limiter (2.25f) ahe-1/16 (2.26a) are used. The majority of the
computations used = 0.7 (2.21) for the nonlinear fields for the ACM methods.

It is noted that a similar vortex pairing was used by ®hal. [50] to evaluate the per-
formance of high-order ENO schemes. The present results show superior performance
the result of Shet al.

T at t=40 T at t=80 T ot t=120 T at t=160
T T — T T T T T T T

40 40 40

-40 -40 ~40

- M L (Y

L1 .
o 20 o] 20 o 20 1) 20

201x201 Grid 201x201 Grid 201x201 Grid 201x201 Grid

FIG. 3.9. Four stages in the vortex pairing, at timtes 40, 80, 120, 160, showing the temperature contours
for a 201x 201 grid withx = 0.7 for the nonlinear fields and= 0.35 for the linear fields using ACM44.
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a) T at t=160, ACM44 (b) TVD22 (c) TVD44 (d) TVD66
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FIG. 3.10. Effect of order of accuracy on TVD methods (TVD22, TVD44, and TVD66), compared with th
ACMA44 solution at = 160, illustrated by temperature contours at160 for a 101x 101 grid.

Effect of the ACM term and the order of the base scherRiggure 3.10 shows the effect
of increasing the accuracy from second to fourth and sixth order using the TVD fil
(TVD22, TVD44, and TVDG66). As can be seen there is almost ho improvement as the or
of accuracy is raised. Figure 3.11 shows the same plot using the ACM/TVD filter (ACMZ

(a) T at t=160, Ref. b) T ot t=160, ACM22 c) T ot t=160, ACM44 d) T at t=160, ACM66
— = T A e e e

T

I N L /\ L /\ T N
0 20 0 20 [ 20 o 20
201x201 Grid 101x101 Grid 101x101 Grid 101x101 Grid

FIG. 3.11. Effect of order of accuracy on ACM methods (ACM22, ACM44, and ACM66) 21160 for a
101x 101 grid compared with the reference solution (ACM44, 20201 grid) usingc = 0.7 for the nonlinear
fields andc = 0.35 for the linear fields.
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ACM44, and ACM66). Here there is an improvement, although the results even for |
lowest order are quite good. All the ACM schemes capture the shock waves with minir
oscillations. Although not shown, the temperature contours for the TVD filter of variol
orders using a 10% 101 grid are not nearly as accurate as the ACM44 using-a4iiLgrid.
(See the last plot of Fig. 3.12 of Ye# al. [51] or Sandham and Yee [2] for illustrations.)
It can be seen that there is a significant advantage in moving from second to fourth or
but there is a smaller gain in moving from fourth to sixth order using TVD or ACM/TVL
as a filter. (This is contrary to the isentropic vortex convection, where there are defir
benefits of moving from fourth order to sixth order. The effect of order of accuracy is mc
pronounced for long-time integration of pure convection.) The fine scale flow structul
are nearly resolved using a 1@1101 grid compared with the reference solution using
ACM44 and a 20X 201 grid. Results from the ACM method are far superior to those fror
the standard TVD formulation. Note that there is no improvement in the shock resoluti
among the various orders of the base schemes, since the ACM term limited the am
of dissipation away from shocks and steep gradient areas, whereas the shock resoluti
dictated by the flux limiter.

Effect of the grid size (grid refinement studyJo investigate the effect of order of the
accuracy in more detail we consider simulations on a very coarse grid#41points.
Such a case corresponds in practice to simulation of scales of turbulence arising f
shear layers only two or three computational cells across. To ensure that the fine scale
structure is fully resolved by the 204201 reference grid, the same simulation was don
on a 401x 401 grid (figures not shown). The resolution of the ACM methods onxa 41
grid is comparable to that of TVD methods on a 20101 grid.

Effect of compact or non-compact base schenk®r wave propagation and computa-
tional problems the performance of fourth- and sixth-order compact schemes, altho
more CPU intensive, appears to be superior to that of their non-compact cousin. For p
lems with shock waves the benefit of compact over non-compact schemes is less kn
due to the filter step. For this purpose we conduct similar experiments using (2.9) as |
schemes. Results for the fourth- and sixth-order compact schemes are similar to re
from the sixth-order non-compact scheme. Again there is little improvement compal
with the fourth-order non-compact scheme. The compact schemes are almost double
CPU over their non-compact cousin for this 2-D compressible DNS computation using
fourth-order Runge—Kutta method. For this particular flow physics, a conclusion is tf
the use of the ACM in the filter step is essential to get the benefits of moving from secc
to fourth order, but even with the compact method as the base scheme, there is little be
in moving to even higher-order base schemes. See Sandham and Yee [2] for illustrati
This is in contrast to the isentropic vortex convection where there are benefits of mov
from fourth order to sixth order for long-time integration.

Effect of the adjustable parameterand shear and fine flow structure capturing capa-
bility. The ACM switch has been demonstrated to give good shock resolution and to
essential if the benefits of higher-order discretization schemes are to be realized. T
is, however, an adjustable parameten the formulation, and results are sensitive to the
precise choice of its value. Figures 3.12a and 3.12d illustrate the effect on the result u
ACM44 for the pairing test case of reducing the parameter from®0.35. The vortic-
ity and momentum thickness development is improved due to the reduction in numer
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(a) k=0.7 (b) lin. k=0.35 (c) lin. x=0.0 (d) k=0.35
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FIG. 3.12. Effect of k in the ACM44 scheme on the fine scale flow structure, illustrated by temperatu
contours at = 160: (a)x =0.7 for all fields; (b)x = 0.7 for the nonlinear fields, and= 0.35 for the linear fields;
(c) k = 0.7 for the nonlinear fields and= 0.0 for the linear fields; and (&) = 0.35 for all fields for a 101x 101
grid.

dissipation. From the temperature contours on Figs. 3.12a and 3.12d it can be seen
this has been achieved at the cost of formation of small oscillations around the sh
wave. For the present problem one would be ready to pay this price to get the more a
rate vortex evolution. However, in general it is not known how such numerically induc
oscillations interact with small scales of turbulence. For the current method the correct |
cedure for a simulation of shock—turbulence interaction would be to find the smallest ve
of k to resolve the shock waves satisfactorily and then increase the grid resolution u
the turbulence is adequately resolved. There are perhaps other formulations of the A
switch parametex based on the flow physics that can perform the adjustment to higt
values automatically when stronger shock waves are present. This is a subject of fu
research.

To balance the shear and shock capturing, one alternative is to switch to a more c
pressive limiter (see Yee [31]) for the linear characteristics fields. Another alternative is
reduce the value of for the u, v linear fields. The comparison of using different values
of  for the linear and nonlinear fields is also shown in Fig. 3.12b and in Sandham &
Yee [2].

Shock capturing schemes are designed to accurately capture shock waves, but with
accurate capturing capability for contact discontinuities. In fact, the mixing layer seen «
large scale is a contact discontinuity. If one uses enough grid points to resolve the re
of high shear in conjunction with the physical viscosity, it might not need to be “capture
Contact discontinuities relate to the characteristic velocitieed v. As an experiment,
these linear characteristics were computed with no numerical dissipation. Filters were (
applied to the nonlinear characteristic fields- ¢ and v & ¢ using the ACM44 method.
Interestingly, the computation was no less stable than that of the full TVD or ACM schem
Figure 3.12c shows the resulting temperature field. It can be seen that good results !
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(a) T at t=160, lim1 (b) T at t=160, lim2 (c) T at t=160, tim4 (d) T at t=160, lim5
TV =T | T T |

1 =

o 20

A =

o 20
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FIG. 3.13. Effect of flux limiters in the ACM44 scheme on the solution resolution, illustrated by temperatur
contours at = 160: (a) lim1 (2.24d), (b) lim2 (2.24e), (c) lim4 (2.24g), and (d) lim5 (2.24h) for ax£@D1 grid
with « = 0.7 for the nonlinear fields and= 0.35 for the linear fields.

obtained, although there is a trace of oscillation near the shock wave. This could be reme
by increasinge slightly. However, the flow features of the shear and fine flow structure a
accurately captured with similar resolution as the 20201 grid with ACM44 applied
to all of the characteristic fields. Comparison of the differe@66: x < 2 values for the
nonlinear fields with the = 0.0 for the linear fields was also performed and the solution i
very stable. See Yeet al.[51] for illustration.

Effect of the different flux limiters and the adjustable constaf#.26a). Figure 3.13
shows the comparison of the five classical flux limiters (2.25d)—(2.25h) (see Fig. 3.12a
lim3). Lim4 (2.25¢g) appears to perform the best with thehock, shear layer, and fine
scale structure similar to those of the reference solution but using half of the grid size
each spatial direction. Figure 3.14 shows the effect of the vafidgsmuy indicated on
the plots) values on the fine scale flow structure capturing. It appeasthaperform the
best, exceptin this case the TVD filter is technically entropy violating. For this computati
Kk is set to 07 for all characteristic fields.

3.2.2. First-Order Upwind Dissipation As Characteristic Filter Computations

To examine the performance of using first-order dissipation as characteristic filters
high-order base schemes, we considered an entropy modification of Roe’s first-order d
pation by redefining; ,, , in (2.21) to be

¢|j+1/2 = _@”(alj+1/2)“|j+1/2~ (3.14)

Figure 3.15 shows the computation using the modified Roe’s first-order dissipation &
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(a) smu=0.25 (b) smu=0.15 (c) smu=0.1 (d) smu=0.0
AN Pl T e e
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FIG. 3.14. Effect of § ((smuf) in the ACM44 scheme on the solution resolution, illustrated by temperatur
contours at = 160: (a)§ =1/16, (b)s =0.0225, (c)§ =0.01, and (d) = 0.0 for a 101x 101 grid withx =0.7
for all fields.

filter with the various orders of central differencing base scheme denoted by ACM22/:
ACM44/1st, and ACM66/1st. Thé&is set equal to 216 using (2.26a) fot (a|j+1/2)' The
result is comparable to TVD22, TVD44, and TVD66. Rerunning the same case witt
smallers results in more accuracy than usiig- 1/16.

Q) T ot t=160, ACM44 (b) ACM22/1st (c) ACM44/1st (d) ACM86/1st
e A 2 Pness S el s S

[\

L L] M|
o] 20 20 0 20 [ 20
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FIG.3.15. Effectof order of accuracy (using the first-order dissipation filter) on ACM22/1st, ACM44/1st, ar
ACM®66/1st on the solution resolution, illustrated by temperature contoties 260: (a) ACM44, (b) ACM22/1st,
(c) ACM44/1st, and (d) ACM66/1st for a 104101 grid withx = 0.7 for the nonlinear fields and= 0.35 for the
linear fields.
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3.2.3. Lax—Wendroff-Type TVD Dissipation As Characteristic Filter Computations

To examine the applicability of using the Lax—Wendroff-type TVD dissipation filter, w
recompute Fig. 3.11 using

¢|J'+1/2 =0 (alj+1/2) (g|i+l + glJ) 4 (a|i+l/2 + le+1/2)0‘|j+1/2’ (3.153)
1 At 2
| | |
9j+12= 5 ¥ (@)110) — B(aj-&-l/z) (3.15b)
| 1 /) |

(gjy1—9)) /112 @jip#0

Vicre = 0 (81172) | : (3.15¢)
0 Ajy12=0

In other words, using the Lax—Wendroff TVD dissipation as a filter involves an ext
%(a'jﬂ/z)2 term in theyr function compared with (2.25). This term is due to theterm
in the Lax—Wendroff formulation. Note that the use of (3.15) is not consistent in two way
First, the base scheme uses Runge—Kutta time integrator and the filter step uses the
Wendroff type of mixed space and time formulation. Second, for 2-D, one has to use
Strang [23] type of splitting to retain second-order time accuracy.

Disregarding the inconsistency, Figure 3.16 shows a comparison of the various or
of base schemes using (3.15) together with the ACM switch, denoted by AGRI22/
ACM44/2, and ACM6612. The solutions are more diffusive but slightly more stable
than the corresponding cases without tRgerm (Fig. 3.11). Although the use of (3.15)
is not consistent, the results are far superior to the TVD22, TVD44, and TVD66 methc
(Fig. 3.10).

a) T at t=160, ACM44 (b) T at t=160, ACM22/1* (c) T ot t=160, ACM44/v* (d) T at t=160, ACM66/1*
T~ T L B e | N T T N T T

P o N Y MY I WY < W
0 20 [ 20 0 20 o 20
201x201 Gri 101x101 Grid 101x101 Grid 101x101 Grid

FIG. 3.16. Effect of order of accuracy on ACM2%, ACM44/v2, and ACM6612 on the solution resolution,
illustrated by temperature contourstat 160: (a) ACM44, (b) ACM2242, (c) ACM44h?, and (d) ACM661? for
a 101x 101 grid with« = 0.7 for the nonlinear fields and= 0.35 for the linear fields.
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FIG. 3.17. Schematic of the shock Impingement on a spatially developing mixing layer.

3.3. Shock Wave Impingement on a Spatially Evolving Mixing Layer

The fourth test case has been developed to test the behavior of the schemes for s
waves interacting with shear layers where the vortices arising from shear layer instab
are forced to pass through a shock wave. Figure 3.17 shows the schematic of the phy
problem. An oblique shock is made to impact on a spatially developing mixing layer
an initial convective Mach number of 0.6. The shear layer vortices pass through the sk
system and later through another shock, imposed by reflection from a (slip) wall at the lo
boundary. The problem has been arranged with the Mach number at the outflow boun
everywhere supersonic so that no explicit outflow boundary conditions are required. T
allows us to focus on properties of the numerical schemes rather than on the boun
treatment.

Figure 3.18 illustrates the nature of the flow on a 64161 grid illustrating the pressure,
density, and temperature fields using the ACM44 method and limiter (2.25f with.35

(a) p at t=120 (min= 0.314432 max= 2.83920), 641x161
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(b) p ot t=120 (min= 0.218441 max= 0.718442), 641x161
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(c) T ot t=120 (min= 0.196550 mox= 1.16033), 641x161

S22, (@é 3

FIG. 3.18. The reference solution for the shock—shear—layer interaction probléms 220. Contours are
shown of (a) pressure, (b) density, and (c) temperature for a8l grid withk = 0.7 for the nonlinear fields
and«x = 0.35 for the linear fields.
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for nonlinear characteristic fields amd=0.175 for the linear characteristic fields. The
parametes is set to 025. This computation is used as the reference solution. An obligt
shock originates from the top left-hand corner and this impacts on the shear layer at arc
x =90. The shear layer is deflected by the interaction. Afterward we have a shock w
below the shear layer and an expansion fan above it. The shock wave reflects from the Ic
solid wall and passes back through the shear layer. The lower wall uses a slip condi
S0 no viscous boundary layer forms and we focus on the shock-wave interaction with
unstable shear layer. The full no-slip problem would, however, make a challenging test
for the future.
The inflow is specified again with a hyperbolic tangent profile, this time as

u=2.5+ 0.5 tanh2y), (3.16)

giving a mixing layer with upper velocity; = 3, lower velocityu, = 2, and hence a velocity
ratio of 1.5. Equal pressures and stagnation enthalpies are assumed for the two stre
with convective Mach number, defined by

u; — Uz

Mc = , 3.17
s (3.17)

wherec; andc; are the free stream sound speeds equaBolhe reference density is taken
as the average of the two free streams and a reference presspieras,)(U; — U)?/2.
This allows one to compute the inflow parameters as given in the first two columns
Table 3.2. Inflow sound speed squared is found from the relation for constant stagna
enthalpy (3.10).

The upper boundary condition, given in column 3 of Table 3.2, is taken from the flc
properties behind an oblique shock with angle: 12°. The table also gives the properties
behind the expansion fan (column 4) and after the oblique shock on the lower strean
fluid (column 5) computed by standard gasdynamics methodwit88.118. In practice,
the conditions in regions 4 and 5 do not correspond exactly to the simulations due to
finite thickness of the shear layer. The Mach number of the lower stream after this shoc
approximatelyMs = 1.6335 and remains supersonic through all the successive shocks

TABLE 3.2
Flow Properties for the Shock-Wave/Shear-Layer Test Case
in Various Regions of the Flow

Property 1 2 3 4 ®)
u-velocity 3.0000 2.0000 2.9709 2.9792 1.9001
v-velocity 0.0000 0.0000 —0.1367 —0.1996 —0.1273
0 () 0.0000  0.0000 2.6343 3.8330 3.8330
Densityp 1.6374 0.3626 2.1101 1.8823 0.4173
Pressurep 0.3327 0.3327 0.4754 0.4051 0.4051
Sound speed 0.5333 1.1333 0.5616 0.5489 1.1658

Mach numbetM| 5.6250 1.7647 5.2956 5.4396 1.6335

Note. (1) upper stream inflow; (2) lower stream inflow; (3) upper stream
after obliqgue shock; (4) upper stream after expansion fan; (5) lower stream
after shock wave.
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expansion fans up to the outflow boundary. The resulting shock waves are not strong.
tests showed that they could not be computed without using shock-capturing techniq
The lower boundary was specified with the same slip condition used for the pairing ¢
(Eq. (3.13)).

The Prandtl number and ratio of specific heats were taken to be the same as for the v
pairing test case. The Reynolds number was chosen to be 500.

Fluctuations are added to the inflow as

2
v' = accos2rkt/T + ) exp(—y?/b), (3.18)
k=1

with periodT = 1 /u., wavelengthh = 30, convective velocity, = 2.68 (defined byu; =
(U1C2 + UzCy) /(€ +C2)), and b=10. Fork=1 we takea; =0.05 and¢ =0, and for
k =2 we takea, =0.05 and¢ = /2. No perturbations are added to tlreomponent of
velocity.

The grid is taken to be uniform iwand stretched iy according to Eq. (3.12) withy = 1.
This stretching is much milder than for the pairing problem, as we have to resolve the st
layer even when it deflects away froy= 0. The box lengths were taken to hg =200
andLy =40.

The reference solution indicates that vortex cores are located by low-pressure regions
the stagnation zones between vortices by high-pressure regions. The shock waves are
to be deformed by the passage of the vortices. Another interesting observation is the
the core of the vortex at = 148 has been split into two by its passage through the reflect
shock wave. In spite of the relatively high amplitude chosen for the subharmonic infl
perturbation there is no pairing of vortices within the computational box. We do, howev
begin to see eddy shock waves around the vortices near the end of the computationa
where the local convective Mach number has increased to aro66dihe oscillations seen
near the upper boundary far> 120 occur where the small Mach waves from the initial
perturbations arrive at the upper boundary. The use of characteristic boundary condit
should remove this problem. Practically, the amplitude of oscillations is not sufficient
cause numerical instability or affect the remainder of the flow.

The test case was also run on a grid of 3281 with At =0.12,5 =1/16, andc =0.35
up tot = 120. Figures 3.19 and 3.20 show the effect of increasing the accuracy of the k
scheme using the TVD and ACM/TVD filters. Again it can be seen that the ACM switc
is essential for obtaining good vortex evolution (additionally, better shock resolution
obtained). For a more quantitative comparison, see Figs. 18 and 19 of Sandham anc
[2]. From Fig. 3.19 it is apparent that all the standard TVD schemes, of whatever orc
miss the correct vortex formation. From Figs. 3.19 and 3.20 there is a definite benefi
moving from second- to higher-order differencing, both in the amplitude of the fluctuatio
and in the correct convective velocity of the vortices. Figure 3.21 shows the effect®df th
values on the fine scale flow structure capturing. For this computatief.35 is used for
all characteristic fields.

Disregarding the inconsistency, Fig. 3.22 shows a comparison of T\(Bwith ACM44/
v2 on two grids. The solutions are again more diffusive but slightly more stable than 1
corresponding cases without theterm. Although the use of (3.15) together with the ACM
switch is not consistent, the results are far superior to TVD44 using (3.15) or (2.25) with
the ACM switch.
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FIG. 3.19. Comparison of density contours a& 120 for the shock—shear—layer test case: (a) TVD22,
(b) TVDA44, and (c) TVD66 for a 32k 81 grid.
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FIG. 3.20. Comparison of density contours &t=120 for the shock—shear—layer test case: (a) ACM22,
(b) ACM44, and (c) ACM66 for a 32% 81 grid with « =0.7 for the nonlinear fields and =0.35 for the
linear fields.
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FIG. 3.21. Effect of § ((smuf) in the ACM44 scheme on the solution resolution, illustrated by density
contours at =120: (a)§ =0.0225, (b)s = 0.01, (c)§ = 0.0 for a 321x 81 grid withx = 0.7 for all fields.
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FIG.3.22. Comparison of density contourstat 120: (a) ACM441?2 (641x 161), (b) TVD44h? (321x 81),
and (c) ACM441? (321 x 81) with x = 0.7 for all fields.
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3.4. Compressible Turbulent Channel Flow

As a final topic we consider the numerical simulation of three-dimensional turbulen
Given the additional numerical dissipation of shock-capturing schemes, even where st
waves are not present, it seems prudent to use this test case to validate that the new sct
proposed here are in fact capable of sustaining turbulence, before moving to comg
simulations of shock—turbulence interactions. The case that we choose is similar to
of Colemanet al. [52]. In this problem we choose to normalize distances with half th
separation between the walls, densities with the average densigjocities with the fric-
tion velocity u,, and temperature with the fixed wall temperatiire We take the pure
pressure-driven flow, where forcing terms correspondinggdx = —1 are added to the
X-momentum equation. For a computational domain we use a box size with a stre:
wise length of 3 (channel half widths) and spanwise length.6f While it is not suf-
ficient for the two-point correlation to fall to zero, these box lengths are adequate
common turbulence statistics, as illustrated in Table 3.3, which compares the standar
compressible results of Kimat al. [53] with incompressible data computed by the first
author with a fully spectral code on the small grid. It is likely that the same size domz
will be a suitable test case for compressible flow provided the Mach number is low.
higher Mach numbers it is known [52] that correlation lengths increase. The advant:
of the small domain calculation as a test case for numerical methods is the small m
ory requirement, making it feasible to run the calculations on workstations with limite
memory.

For the compressible calculation we take the Mach number based on the friction velo
and sound speed corresponding to wall temperature tod% @iving a centerline Mach
number of approximately 1.1. A full grid-refinement study has not yet been attempted
this configuration. Results have been prepared for a grid ef 82x 32, which is the same
as that which has proved sufficient for good statistics up to triple moment budgets for
fully spectral code (Sandham and Howard [54]). The ACM44 method was applied w
x =0.35 as in previous sections. The turbulence was indeed able to sustain itself, allow
the accumulation of statistical quantities for the flow. Figure 3.23a shows the mean velo
profile compared with the standard law of the wall (with Karman constant 0.41 and addit
constant5.5). The shift of the curve upward relative to the incompressible result is consis
with the findings of Colemasgt al. Figure 3.23b shows the Favre-averaged strgss’v”
and the total stress found by adding the contribufialu/dy. The total stress must equal
the non-dimensiona coordinate for the statistically converged flow. Favre averages a
defined using mass weightingiés- pu/p and fluctuations given by’ = u — . A detailed
study will be reported in a future paper.

TABLE 3.3
Comparison of Incompressible Channel Flow Statistics
between Large and Small Domain Calculations

Property [8] Small domain
Centerline velocity 18.20 18.23
Mean velocity 15.63 15.69
Shape factor 1.62 1.61

Skin friction 0.00818 0.00811
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FIG. 3.23. Compressible turbulent channel flow: (a) mean velocity profile (solid line) compared to the line
law u* = y* and the semi-logarithmic law of the wall, with Karman constaAtltand additive constant® and
(b) Favre-averaged (solid line) and total stresses (dashed line) compared to the linear result (chain dotted lir

3.5. Computational Costs

For the DNS computations using the fourth-order Runge—Kutta method, the non-comj
base schemes with the ACM/TVD filter are only around 25% more expensive than
same base schemes without ACM/TVD filter. This has been achieved by only requiring
application of the ACM/TVD filter per full time step for the convection terms. For LMM
time discretizations, the non-compact base scheme with the ACM/TVD filter is only 1C
more expensive than standard second-order TVD schemes.

For the Cray C90 it was found that the compact schemes were significantly more ex
sive, but this result was distorted for the present code by incomplete vectorization. An e
cost of around 2/3 is expected from considerations of operations count.

4. CONCLUSIONS

A generalization of the work of Gustafsson and Olsson and the ACM switch of Harten
a class of versatile low-dissipative high-order shock-capturing methods using character
based filters is proposed. The design principle of these schemes consists of two steps
first step is the high-order spatial and temporal base scheme. A variety of standard h
order non-dissipative or low-dissipative base schemes fits in the present framework.
second step is the appropriate filter for stability and shocks, shear layers, and fine s
flow structure capturing. Many of the TVD, positive, WENO, and ENO dissipations, afte!
minor modification, are suitable candidates as filters. The final grid stencil of these sche
is five if second-order TVD schemes are used as filters and seven if second-order E
schemes are used as filters for a fourth-order base scheme. Numerical boundary conc
treatment is simple and can be the same as for the existing base and filter schemes.

The reason for proposing filter operators that have similar width of grid stencils as
base scheme is for efficiency and ease of numerical boundary treatment. Higher-than-tl
order filter operators are applicable, but they are more CPU intensive and require spe
treatment near boundary points for stability and accuracy. It is well-known that near sho
and shears, the resolution of higher-than-third-order TVD or ENO schemes is compar:
to their lower-order cousin except with a slight gain in resolution near steep gradie
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and smooth flows. The five test cases show that an increased in resolution with imprc
efficiency can be accomplished if we limit the proper amount of numerical dissipation aw
from shocks and shears to stabilize the non-dissipative nature of the high-order base sch

The approach is prompted partly by a need for an efficient method which is capable
highly resolved DNS of compressible turbulence in the presence of shock waves for a vat
of flow speeds and partly by the need for the preservation of vortex convection and fine s
flow structure capturing. The five test cases illustrate the versatility of the proposed sche
in accurately capturing a variety of flow features, where most conventional methods exh
difficulty in obtaining low-dissipative solutions in an efficient and stable manner. High
accuracy is achieved with fewer grid points when compared with standard TVD or EN
schemes. In all of the test cases, if adaptive grid refinements were used, additional ga
efficiency and accuracy should be realized. Application of these schemes for time marcl
to the steady states is a subject of future research.
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