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An approach which closely maintains the non-dissipative nature of classical fourth-
or higher-order spatial differencing away from shock waves and steep gradient re-
gions while being capable of accurately capturing discontinuities, steep gradient,
and fine scale turbulent structures in a stable and efficient manner is described. The
approach is a generalization of the method of Gustafsson and Olsson and the artificial
compression method (ACM) switch of Harten. Spatially non-dissipative fourth- or
higher-order compact and non-compact spatial differencings are used as the base
schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM
switch is used to signal the appropriate amount of second- or third-order total varia-
tion diminishing (TVD) or essentially non-oscillatory (ENO) types of characteristic
based numerical dissipation. This term acts as a characteristic filter to minimize
numerical dissipation for the overall scheme. For time-accurate computations, time
discretizations with low dissipation are used. Numerical experiments on 2-D vortical
flows, vortex–shock interactions, and compressible spatially and temporally evolv-
ing mixing layers showed that the proposed schemes have the desired property with
only a 10% increase in operations count over standard second-order TVD schemes.
Aside from the ability to accurately capture shock–turbulence interaction flows, this
approach is also capable of accurately preserving vortex convection. Higher accuracy
is achieved with fewer grid points when compared to that of standard second-order
TVD, positive, or ENO schemes. c© 1999 Academic Press
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1. INTRODUCTION

Modern shock-capturing methods such as total variation diminishing (TVD) or variants of
essentially non-oscillatory (ENO) types of schemes that are higher than third-order accurate
are usually CPU intensive, involve large grid stencils, and require special treatment near
boundary points. In spite of their high-resolution shock-capturing capability, these schemes
often exhibit undesirable amplitude and/or phase errors for vortical and turbulent convection
flows and complex wave propagation phenomena. See NASA Conference Publication 3300,
May 1995 [1], and Sandham and Yee [2] and references cited therein for some discussion. To
compensate for the somewhat ad hoc ways of utilizing TVD, positive, or ENO schemes for
compressible viscous flows, Toro [3] proposed a viscous flux limiter approach to deal with
scalar mixed hyperbolic–parabolic problems. Systemic extension of Toro’s idea to a system
of equations containing other than a single scalar viscosity term remains a challenging area
of research. The objective of this paper is to propose a compromise between the above two
approaches while maintaining an efficient way to closely maintain fourth- or higher-order
accuracy without using higher than third-order TVD or ENO dissipations. Hereafter we
refer to “high-order schemes” as base schemes with spatial accuracy that isgreater than
three. The term base scheme will be defined in Section 2.

Accurate and efficient direct numerical simulation (DNS) of turbulence in the presence of
shock waves represents a significant challenge for numerical methods. A numerical scheme
for DNS of shock–turbulence interactions of high-speed compressible flows would ideally
not be significantly more expensive than the standard fourth- or sixth-order compact or non-
compact central differencing scheme. It should be possible to resolve all scales down to the
order of the Kolmogorov scales of turbulence accurately and efficiently, while at the same
time being able to capture steep gradients occurring at much smaller scales. Appropriate
numerical schemes should not interfere with the turbulence mechanisms resulting directly
from the governing equations. See Sandham and Yee [2] and references cited therein for a
discussion.

Gustafsson and Olsson [4] developed stable high-order centered schemes with stable nu-
merical boundary condition treatments. For problems containing shocks, they used a scalar
shock-capturing filter. Such schemes have advantages over higher-order ENO schemes
which require very large grid stencils even for modest orders of accuracy. (For exam-
ple, a seven-point grid stencil is required for a second-order ENO scheme.) In this paper
we propose to use the narrow grid stencil of high-order classical spatial differencing as
base schemes.Low-order TVD, weighted ENO(WENO), positive, and ENO dissipationin
conjunction with the Harten artificial compression method (ACM) switch [5] are used as
characteristic filters. The ACM switch procedure is similar to Harten but applied in a slightly
different context. The final grid stencil of these schemes, for example, is five if second-
or third-order TVD or WENO schemes are used as filters and seven if second-order ENO
schemes are used as filters for a fourth-order base scheme. Numerical boundary condition
treatment is simple and can be the same as for the existing base and filter schemes. Here, we
propose to use filter operators that have similar grid stencil widths as the base scheme for
efficiency and ease of numerical boundary treatment. Higher than third-order filter operators
are, of course, applicable, but they are more CPU intensive and require special treatment
near boundary points for stability and accuracy. On the one hand, this would defeat the
purpose of achieving efficiency. On the other hand, near shocks and shears, the resolution
of higher-than-third-order TVD or ENO schemes is comparable to their lower-order cousin
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except with a slight gain in resolution in regions near steep gradients and smooth flows. If
lower-order filters are able to minimize but at the same time provide the proper amount of
numerical dissipation away from shocks and shears to stabilize the non-dissipative nature
of the high-order base scheme, we would achieve similar resolution with improved effi-
ciency. This is the philosophy used to design the schemes. Our approach is aimed mainly at
problems containing vortex convections, and shock, shear, and turbulence interactions. As
illustrated in later sections, these types of characteristic TVD (and ENO or WENO) filters
can even improve fine scale flow structure when applied to existing methods of Harten [6,
7] and Yee [8–10].

Section 2 describes the numerical algorithm. Section 3 illustrates the performance of
these algorithms for a variety of unsteady flows where most conventional methods exhibit
difficulty in obtaining low dissipative solutions in an efficient and stable manner. The first
problem is a stationary vortex evolution. The second problem is a convecting vortex. In the
third problem, a vortex pairing in a time-developing mixing layer, shock waves form around
the vortices. In the fourth problem, a shock wave impinging on a spatially evolving mixing
layer, the evolving vortices must pass through a shock wave, which in turn is deformed
by the vortex passage. To demonstrate the applicability of these schemes in sustaining
turbulence where shock waves are absent, a simulation of compressible turbulent channel
flow in a small domain is carried out. For problems three and four, the detailed physics and
extensive evaluation of the proposed scheme were reported in a separate paper by Sandham
and Yee [2]. Here, only certain aspects of the performance of these schemes for the two
problems are described. The study of the performance of this approach for time marching
to the steady-state numerical solutions is in progress.

2. HIGH-ORDER SHOCK-CAPTURING SCHEMES

USING CHARACTERISTIC FILTERS

For simplicity of presentation, the discussion will concentrate on the convection part of
the Navier–Stokes equations. Analogous order of accuracy of spatial discretizations for the
viscous terms will be briefly described at the end of this section.

In vector notation the 2-D compressible time-dependent Euler equations in conservation
form for an equilibrium real gas can be written as

Ut + Fx + Gy = 0, (2.1a)

whereUt = ∂U
∂t , Fx = ∂F

∂x , andGy= ∂G
∂y , and theU , F , G, vectors given by

U =


ρ

ρu
ρv

e

 ; F =


ρu

ρu2+ p
ρuv

eu+ pu

 ; G =


ρv

ρuv

ρv2+ p
ev + pv

 . (2.1b)

The dependent variableU is the vector of conservative variables, and(ρ, u, v, p)T is the
vector of primitive variables. Hereρ is the density,u andv are the velocity components,ρu
andρv are thex- andy-components of the momentum per unit volume,p is the pressure,
e= ρ[ε+ (u2+ v2)/2] is the total energy per unit volume, andε is the specific internal
energy.
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For a thermally perfect gas, the equation of state is

p = ρRT, (2.2)

whereR is the specific gas constant, andT is the temperature withε= ε(T). For constant
specific heats (calorically perfect gas)

ε = cvT, (2.3)

wherecv is the specific heat at constant volume.
The eigenvalues associated with the flux Jacobian matrices ofF andG are(u, u, u± c)

and (v, v, v± c), wherec is the sound speed. The twou, u andv, v characteristics are
linearly degenerate. Hereafter, we refer to the fields associated with theu± c andv± c
characteristics as thenonlinear fieldsand the fields associated with theu, u andv, v char-
acteristics as thelinear fields.

The basic idea of these shock-capturing schemes consists oftwo steps. The first step is the
high-order spatial and temporalbase scheme. Many standard high-order non-dissipative or
low-dissipative base schemes fit in the present framework. The second step is the appropriate
filter for stability, shocks, contact discontinuities, and fine scale flow structure capturing.
Many TVD, positive, WENO and ENO dissipations, after a minor modification, are suitable
candidates as filters.

2.1. The Base Schemes

In this paper, only the method of lines approach is considered. We divide the discussion
of the base schemes into temporal and spatial base schemes. The filter step either does not
directly involve the time discretizations or uses the same time discretizations as the base
scheme, depending on the types of temporal schemes.

2.1.1. Temporal Base Schemes

Third- or higher-order linear multistep methods (LMMs) (Gear [11], Lambert [12]) are
possible temporal base schemes. However they usually involve more than three time levels
and initial starting schemes are required. For stiff problems, stiffly stable implicit methods as
base schemes are desirable, especially for time marching to steady-state numerical solutions.
Examples of explicit LMMs are explicit Euler and Adams–Bashforth. Examples of implicit
LMMs are backward Euler, trapezoidal rule, and three-point backward differentiation. For
non-stiff or moderately stiff multidimensional problems, one of the easiest procedures for
obtaining higher than second-order temporal base schemes is the Runge–Kutta method.
There are many variants of the Runge–Kutta method in the literature. See Lambert and
Butcher [13], Carpenter and Kennedy [14], and Gottlieb and Shu [15] for details. Let

Ut = L(U ) j,k (2.4)

be the semi-discrete form of (2.1), whereL is the spatial discretization operator for(−Fx−
Gy) to be discussed in the next section. If viscous terms are present,L includes the vis-
cous spatial discretizations. HereU j,k is a discrete approximation ofU at x= j 1x and
y= k1y, where1x and1y are the grid spacing in thex- andy-directions, andj andk are
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the corresponding spatial indices. For simplicity of discussion, uniform Cartesian grids are
assumed. Generalization of the method to nonuniform grids with analytical coordinate trans-
formation is straightforward. For body conforming geometry without analytical coordinate
transformation, the same spatial base scheme can be used to approximate transformation
metrics.

The following indicate two possible explicit temporal base schemes. The fourth-order
classical Runge–Kutta method takes the form

k1 = L(Un)

k2 = L

(
Un + 1t

2
k1

)
k3 = L

(
Un + 1t

2
k2

)
(2.5)

k4 = L
(
Un +1tk3

)
Û n+1 = Un + 1t

6
[k1+ 2k2+ 2k3+ k4].

Shu’s third-order Runge–Kutta [16] form that is compatible with TVD, TVB (total variation
bounded), and ENO schemes takes the form

U (1) = Un +1t L(Un)

U (2) = 3

4
Un + 1

4
U (1) + 1

4
1t L

(
U (1)

)
Û n+1 = 1

3
Un + 2

3
U (2) + 2

3
1t L

(
U (2)

)
.

(2.6)

HereÛ n+1 might not beUn+1—the full step Runge–Kutta solution atn+ 1—if the filter
step is applied after the completion of the temporal base scheme. The procedure to apply
the filter step will be discussed in Section 2.2.1.

In choosing an appropriate temporal base scheme, the order of the temporal discretization
might not be the key measure of the choice of temporal method. At times, one may be mainly
interested in the phase error of the solution. Schemes which have higher-order-accurate
phase error might have lower order when measured in the standardL2 norm. For hyperbolic
and wavelike problems, one usually desires the accuracy in time and space to be equal.
Another consideration is that the combined spatial and temporal discretizations might pose
a very stringent time step constraint for the overall scheme. In addition, the proper choice
of time discretization that is compatible with a chosen spatial discretization is crucial in
achieving low phase and amplitude errors for time-accurate computations. This is a subject
of ongoing research. For all the model test problems considered in this paper, the classical
fourth-order Runge–Kutta method appears to work well.

2.1.2. Spatial Base Schemes for the Convection Terms

DenotingFj,k as the discrete approximation of the convection fluxF at ( j 1x, k1y),
samples of the high-order base scheme forFx (similarly for Gy) can be of the following
four types.
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Central differencings(fourth- and sixth-order). Here

Fx ≈ 1

121x
(Fj+2,k − 8Fj+1,k + 8Fj−1,k − Fj−2,k), (2.7)

Fx ≈ 1

601x
(Fj+3,k − 9Fj+2,k + 45Fj+1,k − 45Fj−1,k + 9Fj−2,k − Fj−3,k). (2.8)

Compact central differencings(fourth- and sixth-order, Hirsh [17], Ciment and Leventhal
[18], and Lele [19]). Here

Fx ≈ 1

1x

(
A−1

x Bx F
)

j,k
, (2.9a)

where for a fourth-order approximation

(Ax F) j,k = 1

6
(Fj+1,k + 4Fj,k + Fj−1,k), (2.9b)

(Bx F) j,k = 1

2
(Fj+1,k − Fj−1,k), (2.9c)

and for a sixth-order approximation

(Ax F) j,k = 1

5
(Fj+1,k + 3Fj,k + Fj−1,k), (2.9d)

(Bx F) j,k = 1

60
(Fj+2,k + 28Fj+1,k − 28Fj−1,k − Fj−2,k). (2.9e)

Predictor–corrector differencings(fourth- and sixth-order). Here

Predictor:
1

61x
(−7Fj,k + 8Fj−1,k − Fj−2,k), (2.10a)

Corrector:
1

61x
(7Fj,k − 8Fj+1,k + Fj+2,k), (2.10b)

and

Predictor:
1

301x
(−37Fj,k + 45Fj−1,k − 9Fj−2,k + Fj−3,k), (2.11a)

Corrector:
1

301x
(37Fj,k − 45Fj+1,k + 9Fj+2,k − Fj+3,k). (2.11b)

New forms of the upwind-biased predictor–corrector methods including compact for-
mulations recently developed by Hixon and Turkel [20] are also applicable as spatial
base schemes. Interested readers should refer to their paper for the various upwind-biased
predictor–corrector formulae. The choice of the time integrators for these types of predictor–
corrector methods is more limited. For example, if second-order time accuracy is desired,
then (2.10) and (2.11) in conjunction with theappropriate second-order Runge–Kutta
method are analogous to the familiar 2–4 and 2–6 MacCormack schemes developed by
Gottlieb and Turkel [21] and Baylisset al. [22]. Here the first number refers to the order of
accuracy for the time discretization and the second number refers to the order of accuracy
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for the spatial discretization. However, in this case one achieves the second-order time ac-
curacy without dimensional splitting of the Strang type [23]. For higher-than-second-order
time discretizations, only certain even stage Runge–Kutta methods are applicable. For com-
patible fourth-order Runge–Kutta time discretizations, see Hixon and Turkel for possible
formulae. For example, the classical fourth-order Runge–Kutta is applicable provided one
applies the predictor and the corrector step twice for the four stages, i.e., the predictor step
for the first and third stages and the corrector step for the second and fourth stages.

The SHOEC differencings.The split high-order entropy conserving scheme (SHOEC) of
Gerritsen [24] extends the summation by parts and entropy splitting idea of Olsson [25, 26]
to the 2-D Euler equations for an ideal gas. It is based on the entropy splitting of the
convection flux using Harten’s symmetrized form via entropy variables [27]. Using the
entropy variable transformationW=W(U ), one splits, for example,

Fx = β

1+ β
Fx + 1

1+ β
FWWx (2.12a)

with β 6=−1 andFW= ∂F
∂W . The vectorW is chosen such that bothF(U (W)) andU (W) are

homogeneous functions of the appropriate orderβ. For the perfect gas 2-D Euler equations
W, andFW andGW are of the following form.

For h(S)= KeS/(α+γ ), whereS is a dimensionless entropy (nondimensioned byCv), K
is a constant, andh is a differentiable function ofS,

W = p∗

p

[
e+ α − 1

γ − 1
p −ρu −ρv ρ

]T

, (2.12b)

and the upper triangular part of the symmetric matrixUW is

UW = 1

p∗



aρ aρu aρv a
2ρ(u2+ v2)− 1

γ−1 p

aρu2− p aρuv u
[

a
2ρ(u2+ v2)− bp

]
aρv2− p v

[
a
2ρ(u2+ v2)− bp

]
− b

γ−1
p2

ρ
− bp(u2+ v2)+ a

4ρ(u2+ v2)2


.

(2.12c)

Here,p∗ and p are related through

p∗ = χeS/(α+γ ) = χ(pρ−γ )1/(α+γ ), (2.12d)

with χ =− K
β

. The variablesp∗ andβ are given by

p∗ = γ − 1

α

(
w1− 1

2

w2
2

w3

)
, (2.12e)

β = α + γ

1− γ
, (2.12f)

whereα is a constant. The constantsa, b, andc area= (1−α− γ )/α, b= γ /(γ −1), and
c= (1− 2γ )/(γ − 1).
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The flux vectors, expressed in theW variables, are given by

F(U (W)) = p

p∗

[
−w2

w2
2

w4
+ p∗

w2w3

w4
−w2

w4

(
w1+ γ − α

γ − 1
p∗
)]T

, (2.12g)

G(U (W)) = p

p∗

[
−w3

w2w3

w4

w2
3

w4
+ p∗ −w3

w4

(
w1+ γ − α

γ − 1
p∗
)]T

. (2.12h)

The upper triangular part of the symmetric matricesF(U (W))W andG(U (W))W, expressed
in theU variables, is given by

FW = 1

p∗

×



aρu aρu2− p aρuv u
[

a
2ρ(u2+ v2)− bp

]
u(aρu2− 3p) v(aρu2− p) −b p2

ρ
+ cpu2+ a

2ρ(u2+ v2)u2− 1
2 p(u2+ v2)

u(aρv2− p) uv
[
cp+ a

2ρ(u2+ v2)
]

u
[
bcp2

ρ
+ cp(u2+ v2)+ a

4ρ(u2+ v2)2
]


,

(2.12i)

GW = 1

p∗

×



aρv aρuv aρv2− p v
[

a
2ρ(u2+ v2)− bp

]
v(aρu2− p) u(aρv2− p) uv

[
cp+ a

2ρ(u2+ v2)
]

v(aρv2− 3p) −b p2

ρ
+ cpv2− 1

2 p(u2+ v2)+ a
2ρ(u2+ v2)v2

v
[
bcp2

ρ
+ cp(u2+ v2)+ a

4ρ(u2+ v2)2
]


.

(2.12j)

In all of the numerical examples presented in Gerritsen [24],α= 1− 2γ .
The high-order base scheme using the SHOEC splitting applies the fourth- and sixth-

order central differencings toFx (and Gy) and Wx (and Wy). Note that this splitting of
the flux consists of a conservative and a non-conservative part. The non-conservative part
appears not to produce wrong shock locations traditionally associated with the use of non-
conservative formulations of the Euler equation for computations. This splitting seems to
require less numerical dissipation for the Euler computations over the non-split form. See
Gerritsen [24] for illustration. Recently, Vinokur (1998, private communication) extended
the SHOEC idea to a thermally perfect gas. Comparison of SHOEC with other base schemes
requires a separate study and is in progress.

Stable boundary schemes for high-order base schemes.Consistent and stable one-sided
boundary stencils for numerical boundary treatments using fourth- and sixth-order central
spatial differencing have not been available until recently. These stable boundary schemes
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employ the summation-by-parts idea to derive an energy estimate for the high-order central
spatial differencings as interior schemes. See Kreiss and Scherer [28], Strand [29], and
Gustafsson and Olsson [4] for the boundary scheme formulae.

2.1.3 Spatial Base Schemes for Viscous Terms

For simplicity letVxx be a viscous term in one dimension. The possible high-order base
schemes forVxx can be as follows.

Central differencings(fourth- and sixth-order). Here

Vxx ≈ 1

121x2
(Vj+2− 16Vj+1+ 30Vj − 16Vj−1+ Vj−2), (2.13)

Vxx ≈ 1

1801x2
(2Vj+3− 27Vj+2+ 270Vj+1− 490Vj + 270Vj−1

− 27Vj−2+ 2Vj−3). (2.14)

Compact central differencings(fourth- and sixth-order, Hirsh [17], Ciment and Leventhal
[18], and Lele [19]). Here

Vxx ≈ 1

1x2

(
C−1

x DxV
)

j
, (2.15a)

where for a fourth-order approximation

(CxV) j = 1

12
(Vj+1+ 10Vj + Vj−1), (2.15b)

(DxV) j = Vj+1− 2Vj + Vj−1, (2.15c)

and for a sixth-order approximation

(CxV) j = Vj+1+ a0Vj + Vj−1, (2.15d)

(DxV) j = b0(Vj+1− 2Vj + Vj−1)+ c0

4
(Vj+2− 2Vj + Vj−2), (2.15e)

a0 = 5.5, (2.15f)

b0 = 4(a0− 1)/3, (2.15g)

c0 = (10− a0)/3. (2.15h)

2.2. Characteristic Filters

In this section we first discuss the procedure for applying the characteristic filter for mul-
tistage and LMM types of time discretizations. We then discuss forms of the characteristic
filter.

2.2.1 Procedure to Apply the Filter Step

If a multistage time discretization like the Runge–Kutta method is desired, the spatial
base scheme discussed in the previous section is applied at every stage of the Runge–Kutta
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method. If viscous terms are present, it is more consistent to use the same order and type
of viscous base scheme as for the convection terms.

There are two methods in applying the characteristic filter. Method 1 is to apply the
filter at every stage of the Runge–Kutta step. For inviscid and strong shock interactions, this
approach might be more stable. The second method is to apply the filter at the end of the full
Runge–Kutta step. Let̂Un+1 be the solution after the completion of one full Runge–Kutta
step of the base scheme advancement. LetL f be the filter operator with

L f (F∗, G∗) j,k = 1

1x
[ F̃∗j+1/2,k − F̃∗j−1/2,k] + 1

1y
[G̃∗j,k+1/2− G̃∗j,k−1/2], (2.16)

whereF̃∗j+1/2,k andG̃∗j,k+1/2 are the dissipative numerical fluxes for the filter operator. Here-
after, we refer toF̃∗j+1/2,k andG̃∗j,k+1/2 as the “filter numerical fluxes.” Possible formulae
for the filter numerical flux will be discussed shortly. Then, we define the new time level as

Un+1 = Û n+1+1t L f (F∗, G∗) j,k. (2.17)

The filter numerical fluxes̃F∗j+1/2,k andG̃∗j,k+1/2 are evaluated at̂Un+1. If physical viscosity
is present, method 2 can be viewed as a mechanism in applying the filter with the physical
dissipation taken into consideration. In all of the numerical examples, method 2 is used.

If one desires a time discretization that belongs to the class of LMMs, then the filter
operatorL f can be applied as a dissipative numerical flux in conjunction with the base
scheme. The filter numerical flux̃F∗j+1/2,k andG̃∗j,k+1/2 in this case are evaluated atUn for
explicit LMMs. For implicit LMMs additional similar filter numerical fluxes evaluated at
then+ 1 time level are involved. Alternatively, procedure (2.17) can be applied to LMMs
as well, whereÛ n+1 is the solution after the completion of one LMMs step of the base
scheme.

For time marching to steady states using implicit LMMs, certain flow physics only
requires an explicit dissipation term. Also, the implicit operator can be different from the
explicit operator. See Yee [8, 30, 31] and Yeeet al. [32] for some efficient conservative
linearized implicit forms.

2.2.2. The Filter Numerical Fluxes

There are many possible candidates for the filter operator in conjunction with high-
order base schemes. Here, we propose to use filter operators that have similar width of
grid stencils as the base scheme for efficiency and ease of numerical boundary treatment.
Higher-than-third-order filter operators are, of course, applicable, but they are more CPU
intensive and require special treatment near boundary points for stability and accuracy. On
the one hand, this would defeat the purpose of achieving efficiency. On the other hand, near
shocks and shears, the resolution of higher-than-third-order TVD, WENO, or ENO schemes
is comparable to that of their lower-order cousin except with a slight gain in resolution in
regions near steep gradients and smooth flows (Engquist and Sjogreen [33], Donat [34], and
Carpenter and Casper [35]). If the lower-order filters are able to minimize but at the same
time provide the proper amount of numerical dissipation away from shocks and shears
to stabilize the non-dissipative nature of the high-order base scheme, we would achieve
similar resolution with improved efficiency. This is the philosophy used to choose the filter
numerical fluxes.
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The simplest form is a scalar linear filter proposed by Gustafsson and Olsson [4]. It is
a similar form used by Jamesonet al. [36] to supply a linear second-order dissipation to
a low-order (second-order) central differencing for shock-capturing purposes. Gustafsson
and Olsson used a switch similar to that of Harten [5]. The Harten switch was designed
for self-adjusting hybrid schemes between Harten’s first-order ACM scheme and second-
or higher-order schemes. Instead of switching from a higher-order scheme to a first-order
scheme for shock and shear capturing, we generalized Harten’s idea of achieving, in a
loose sense, a low-dissipative high-order shock-capturing scheme by nearly maintaining
the accuracy of the high-order non-dissipative property using nonlinear characteristics-
based filters. The reason for the nonlinear characteristic base filters is that scalar linear
filters do not take into account the different wave characteristics of the Euler equations.
For complex shock waves and shear–turbulence interactions, one has better control of the
amount of dissipation associated with each wave.

Filter numerical fluxes and nonlinear dissipation of shock-capturing schemes.We start
with any second- or third-order TVD, positive, WENO, or ENO scheme that can berecast
as the sum ofcentral differencingandnonlinear dissipation terms. Recall that the Harten
[6, 7], Yee and Harten [37], and Yee’s [8] symmetric TVD schemes are already cast in this
form. For example, letL tvd be a TVD (or ENO) spatial operator with

L tvd(F, G) j,k = 1

1x
[ F̃ j+1/2,k − F̃ j−1/2,k] + 1

1y
[G̃ j,k+1/2− G̃ j,k−1/2]. (2.18)

Take, for example, theF flux. We cast the numerical flux̃F j+1/2,k into the form

F̃ j+1/2,k = 1

2
[Fj+1,k + Fj,k + Rj+1/28 j+1/2]. (2.19)

Here, 1
2[Fj+1,k + Fj,k] is the central differencing portion of the numerical fluxF̃ j+1/2,k,

and the last termRj+1/28 j+1/2 (with the suppression of thek index) is the “nonlinear
dissipation.” For characteristics-based methods, the quantityRj+1/2 is the right eigenvector
matrix of ∂F

∂U using, for example, Roe’s approximate average state. Note that the eigenvector
Rj+1/2 should not be confused with theR in (2.2). Similarly, we cast thẽG j,k+1/2 in the
same manner.

We use these nonlinear dissipation terms in conjunction with Harten’s switch applied to
each characteristic wave as the filter numerical fluxes. In essence, the nonlinear dissipation
terms act as second- or third-order ACM-like operators instead of Harten’s first-order ACM.
The switch is used to signal the amount of nonlinear dissipation to be added to the high-
order nondissipative scheme, one wave at a time. The base scheme is activated at all time.
Thus, the current approach is also different in spirit from using ACM to sharpen the contact
discontinuities in the original Harten second-order TVD scheme [6]. Now we discuss the
filter numerical flux in more detail. It is of the form

F̃∗j+1/2,k =
1

2
Rj+1/28

∗
j+1/2. (2.20)

This filter numerical fluxF̃∗j+1/2,k should not be confused with the standard numerical flux
F̃ j+1/2,k for Fx in (2.18).F̃∗j+1/2,k is the modified form of the nonlinear dissipation portion
of F̃ j+1/2,k. The elements of8∗j+1/2 denoted byφl ∗

j+1/2 are

φl ∗
j+1/2 = κθ l

j+1/2φ
l
j+1/2. (2.21)
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φl
j+1/2 in (2.21) are the elements of8l

j+1/2 in (2.19). The functionκθ l
j+1/2 is the key

mechanism for achieving high accuracy of the fine scale flow structure as well as shock
waves in a stable manner. In other words, the elements of8∗j+1/2 are the same as the
nonlinear dissipation portion of the TVD or ENO scheme (2.19) with the exception of
premultiplying byκθ l

j+1/2. The parameterκ is problem dependent. For smooth flows,κ is
used to improve nonlinear stability and can be very small. For the numerical examples in
Section 3, different examples require a different value ofκ because of the large variant of
the flow property. The range ofκ for these problems is 0.03≤ κ ≤ 2. The functionθ l

j+1/2 is
the Harten switch. For a general 2m+ 1 points base scheme, Harten recommended

θ l
j+1/2 = max

(
θ̂ l

j−m+1, . . . , θ̂
l
j+m

)
, (2.22)

θ̂ l
j =

∣∣∣∣∣
∣∣αl

j+1/2

∣∣− ∣∣αl
j−1/2

∣∣∣∣αl
j+1/2

∣∣+ ∣∣αl
j−1/2

∣∣
∣∣∣∣∣

p

. (2.23)

Instead of varyingκ for the particular physics, one can varyp. The higher thep, the less
the amount of numerical dissipation is added. Note that by varying thep≥ 1 in (2.23),
one can essentially increase the order of accuracy of the dissipation term. The order of the
dissipation depends on the value ofp (Bjorn Sjogreen, private communication, 1998). For
all of the numerical examples, we usep= 1 and

θ l
j+1/2 = max

(
θ̂ l

j , θ̂
l
j+1

)
. (2.24)

Theαl
j+1/2 are elements ofR−1

j+1/2(U j+1−U j ). The shock–turbulence interaction examples
appear to favor this form ofθ l

j+1/2.
Formulae forφl

j+1/2 are well known and can be found in the literature. For illustration
purposes, we show a form of theφl

j+1/2 function in which all of the examples shown in
Section 3 are used for the computations. We choose the Harten–Yee upwind TVD form,
where

φl
j+1/2 =

1

2
ψ
(
al

j+1/2

)(
gl

j+1+ gl
j

)− ψ
(
al

j+1/2+ γ l
j+1/2

)
αl

j+1/2, (2.25a)

γ l
j+1/2 =

1

2
ψ
(
al

j+1/2

){(gl
j+1− gl

j

)
/αl

j+1/2 αl
j+1/2 6= 0

0 αl
j+1/2 = 0.

(2.25b)

Other shock-capturing schemes with structure similar to (2.19) such as the symmetric TVD
schemes (Yee [8, 9]) and Roe second-order upwind scheme (Roe [38]) are also applicable.
Theal

j+1/2, l = 1, 2, 3, 4, are the characteristic speeds of∂F
∂U evaluated at some symmetric

average ofU j,k andU j+1,k. The Roe’s average is an example of this (Roe [39]). The function
ψ is an entropy correction to|al

j+1/2|. One possible form is (Harten and Hyman [40])

ψ
(
al

j+1/2

) =

∣∣al

j+1/2

∣∣ ∣∣al
j+1/2

∣∣ ≥ δ1[(
al

j+1/2

)2+ δ2
1

]/
2δ1

∣∣al
j+1/2

∣∣ < δ1.

(2.25c)

For problems containing only unsteady shocks,δ1 is usually set to zero. Note that entropy-
violating phenomena occur only for steady or nearly steady shocks. For steady-state
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problems containing strong shock waves, a proper control of the size ofδ1 is very im-
portant, especially for hypersonic blunt-body flows. See Yeeet al. [32]) for a discussion.

Examples of the commonly used “limiter” functiongl
j can be expressed as

gl
j = minmod

(
αl

j−1/2, α
l
j+1/2

)
, (2.25d)

gl
j =

(
αl

j+1/2α
l
j−1/2+

∣∣αl
j+1/2α

l
j−1/2

∣∣)/(αl
j+1/2+ αl

j−1/2

)
, (2.25e)

gl
j =

{
αl

j−1/2

[(
αl

j+1/2

)2+ δ2
]+ αl

j+1/2

[(
αl

j−1/2

)2+ δ2
]}/

[(
αl

j+1/2)
2+ (αl

j−1/2

)2+ 2δ2
]
, (2.25f)

gl
j = minmod

(
2αl

j−1/2, 2αl
j+1/2,

1
2

(
αl

j+1/2+ αl
j−1/2

))
, (2.25g)

gl
j = S ·max

[
0, min

(
2
∣∣αl

j+1/2

∣∣, S · αl
j−1/2

)
, min

(∣∣αl
j+1/2

∣∣, 2S · αl
j−1/2

)];
S= sgn

(
αl

j+1/2

)
. (2.25h)

Hereδ2 is a small dimensionless parameter to prevent division by zero and sgn(αl
j+1/2)=

sign(αl
j+1/2). In practical calculations 10−7≤ δ2≤ 10−5 is a commonly used range. For

αl
j+1/2+αl

j−1/2= 0, gl
j is set to zero in (2.25e). The minmod function of a list of arguments

is equal to the smallest number in absolute value if the list of arguments is of the same
sign, or is equal to zero if any arguments are of opposite sign. Later development in limiters
have flooded the literature and has created much debate. Most of the improvements have
been problem dependent. See Donat [34], Engquist and Sjogreen [33], and Jin and Lin [41]
on the error propagation for nonlinear approximations to hyperbolic equations containing
discontinuities in derivatives or discontinuous solutions.

2.3. Computer Implementation

To avoid additional logical statements in the actual coding and to promote parallelization,
several of the forms with the potential of dividing by zero are modified. They are

ψ(z) =
√

(δ + z2), (2.26a)

γ l
j+1/2 =

1

2

ψ
(
al

j+1/2

)(
gl

j+1− gl
j

)
αl

j+1/2(
αl

j+1/2

)2+ ε
. (2.26b)

We use the switch

θ l
j =

∣∣∣∣αl
j+1/2

∣∣− ∣∣αl
j−1/2

∣∣∣∣∣∣αl
j+1/2

∣∣+ ∣∣αl
j−1/2

∣∣+ ε
. (2.26c)

In all of the computations, we takeε= 10−7. The value ofδ was taken to be 1/16 (unless
indicated) to satisfy an entropy condition. However, the fine scale flow structure showed
minor sensitivity to the value of this constant.
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2.4. Other Applicable Base Schemes

There are other possible high-order base schemes that one can use. For example, the fifth-
or seventh-order upwind schemes and the 2–4 or 2–6 MacCormack scheme. If the fifth- or
seventh-order upwind schemes are used as base schemes, to reduce numerical dissipation,
one needs tosubtractthe dissipation portion of these upwind schemesfrom the filter step.
The dissipation portion of these upwind schemes can be obtained by rewriting the scheme
into two parts, a central part and the “rest.” The “rest” is the dissipation portion. For the 2–4
or 2–6 MacCormack scheme, the time discretization is an integral part and one has to use
the complete scheme as the base scheme. For the filter step, one adds the filter numerical
fluxes as an added corrector step as described in Yee [8] or Yee and Shinn [42]. The filter
numerical flux is the same as (2.20) but theφl

j+1/2 has a slightly different form to take into
account the Lax–Wendroff type of1t2 term. See Yee [8] or Young and Yee [43] for the
formula.

2.5. Other Applicable Characteristic Filters

MUSCL approach using an approximate Riemann solver.The filter numerical flux
function for an upwind MUSCL-type scheme as described in Yee [8] using an approximate
Riemann solver can be expressed as

F̃∗j+1/2,k =
1

2
R◦j+1/28

◦
j+1/2. (2.27a)

The elements of8◦j+1/2 and the vector(α◦) j+1/2 are given by

(φ◦)l
j+1/2 = −κ(θ◦)l

j+1/2ψ
(
(a◦)l

j+1/2

)
(α◦)l

j+1/2, (2.27b)

(α◦) j+1/2 = (R◦)−1
j+1/2

(
U R

j+1/2−U L
j+1/2

)
, (2.27c)

whereψ((a◦)l
j+1/2) can be|(a◦)l

j+1/2| or the same form as (2.25c). Here(a◦)l
j+1/2 are the

eigenvalues andR◦j+1/2 is the eigenvector matrix of∂F
∂U evaluated using a symmetric average

betweenU R
j+1/2 andU L

j+1/2; i.e.,

(a◦)l
j+1/2 = al

(
U R

j+1/2,U L
j+1/2

)
, (2.27d)

R◦j+1/2 = R
(
U R

j+1/2,U L
j+1/2

)
. (2.27e)

The switch(θ◦)l
j+1/2 is the same as (2.22) and (2.23) except it is evaluated using a symmet-

ric average betweenU R
j+1/2 andU L

j+1/2. However, there are options in applying the limiters
for system cases. Namely, one can impose limiters on the conservative, primitive, or char-
acteristic variables. TheU R andU L are the upwind-biased interpolation of the neighboring
U j,k values with slope limiters imposed.

MUSCL approach using the Lax–Friedrichs numerical flux.The filter numerical flux
function for a MUSCL-type approach using the higher-order Lax–Friedrichs numerical flux
(Yee [8, 10]) can be expressed as

F̃∗j+1/2,k,l =
1

2
[8◦j+1/2], (2.28a)
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where8◦j+1/2 is

8◦j+1/2 = −(a◦)max
j+1/2

(
U R

j+1/2−U L
j+1/2

)
, (2.28b)

and(a◦)max
j+1/2 can be

(a◦)max
j+1/2 = χ(|u◦j+1/2| + c◦j+1/2), (2.28c)

where1
2 ≤χ ≤ 1. The overbar for the quantity(U R

j+1/2−U L
j+1/2) means the Harten switch

together withκ is applied to each element of the vector. However, theαl
j+1/2 in θ̂ l

j+1/2 are
replaced with a jump in the the conservative variablesU R

j+1/2 andU L
j+1/2. If primitive or

other variables are used for the right and left states, the switch together withκ should be
applied to the corresponding variables.

2.6. Filter Numerical Flux for Time Marching to Steady States

For time marching to the steady states, one usually needs to add a fourth-order dissipation
to a second-order spatial differencing scheme (Beam and Warming [44]). For the present
schemes using characteristic filters, in addition to the filter operatorL f , one might need to
add a sixth-order dissipation to a fourth-order spatial base scheme and an eighth-order to a
sixth-order spatial base scheme in regions away from shocks for stability and convergence.
Let Ld be such an operator. Take the case of a Runge–Kutta time discretization as in
Section 2.2.1. There are two ways to incorporate theLd operator. One way is to incorporate
it at every stage of the Runge–Kutta method. The other is to include it as part of the filter
step (2.17), i.e.,

Un+1 = Û n+1+1t L f (F∗, G∗) j,k +1t Ld(Û
n+1) j,k, (2. 29)

whereL f (F∗, G∗) j,k is the same as in (2.17). These two ways of applying theLd operator
are most likely problem dependent and time integrator dependent. Extensive numerical
experimentation is needed. For LMM type of time integrators,Ld is used in conjunction
with L f as an additional dissipation, as discussed in Section 2.2.1.

To minimize the amount ofLd in the vicinity of shock waves, there should be a switching
mechanismκd (different fromκ in (2.21)) to turn off theLd operator in the vicinity of
shock waves. TheLd operator can be applied to the conservative, primitive, or characteristic
variables. The simplest form is to applyLd to the conservative variables. Alternatively, since
all of the work in computing the average states and the characteristic variable is done for
theL f operator, one can apply theLd operator on the characteristic variables instead of the
conservative variable. In this case, the switching mechanismκd can be a vector so that it is
more in tune with the shock detector of the approximate Riemann solver.

3. NUMERICAL EXAMPLES

In all of the computations the classical fourth-order Runge–Kutta time discretization is
employed. The detailed programming allows the Euler and viscous terms to be computed
using separate methods. The basic spatial schemes are (i) non-compact central, (ii) compact
central, and (iii) predictor–corrector upwind or upwind biased. Non-compact schemes are
the standard second-, fourth-, and sixth-order methods. Compact schemes are either the
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TABLE 3.1

Notation for Numerical Methods

Order Order Shock Artificial
Method (Euler) (viscous) capturing compression Compact

CEN44 4 4 No No No
TVD22 2 2 Yes No No
TVD44 4 4 Yes No No
TVD66 6 6 Yes No No
ACM22 2 2 Yes Yes No
ACM44 4 4 Yes Yes No
ACM66 6 6 Yes Yes No
ACM44C 4 4 Yes Yes Yes
ACM66C 6 6 Yes Yes Yes

Note.Order of accuracy refers to the formal order of the base scheme.

standard symmetric fourth-order or the sixth-order Pade schemes. For the purposes of this
paper we concentrate on the central schemes with the same order of accuracy and type of base
scheme for the convection and viscous terms. Comparable accuracy was obtained with the
upwind or upwind-biased schemes proposed by Hixon and Turkel [17]. The filter operator
(2.16), in conjunction with (2.20)–(2.26), is used as a filter step at the end of the full Runge–
Kutta time step. Hereafter, we refer to this approach as the ACM/TVD (or simply ACM)
method, indicating the fact that only one type of TVD dissipation is used for the numerical
study. The various combinations of schemes considered for numerical experiments are
shown in Table 3.1. The notation shown in Table 3.1 will be used for discussing the results
for different numerical schemes. Here, the notation “TVD” with the various orders attached
at the end means the second-order TVD dissipation (without the ACM switch) is used as
the filter with the indicated order of the base scheme for the convection and viscous terms.
For simplicity of discussion, unless otherwise indicated, the term TVD or ACM scheme
means the selected base schemes indicated in Table 3.1 using the TVD or ACM/TVD filter.
Studies using ENO or WENO dissipation as filters are planned. Computations using the
SHOEC splitting in conjunction with high-order central differencings as base schemes for
a variety of perfect gas and nonequilibrium flow applications are also planned. It appears
that the SHOEC splitting is more stable and requires less numerical dissipation.

Without introducing additional notation, for inviscid flow simulations the same notation
is used except the viscous terms are not activated.

Five test cases are considered. The first two are inviscid and the last three are compressible
DNS computations. These test cases are chosen to examine the versatility and accuracy of
the proposed schemes for a variety of flows where most conventional methods exhibit
difficulty in obtaining low-dissipative solutions in an efficient and stable manner. All the
test cases use either a uniform or mildly stretched Cartesian grid in they-direction. No
attempt is made to enhance the resolution using appropriate adaptive grid procedures. At
present, the code used for the test cases reduces to lower-order central base schemes near
the boundary points since either these test cases employ periodic boundary condition or the
effect of lower-order boundary schemes is illustrated. Stable boundary treatments suggested
by Gustafsson and Olsson [4] should be used and are not yet implemented for the present
study. Nonreflecting boundary conditions or characteristic inflow and outflow boundary
treatment are also not implemented.
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The five test cases are: (1) a stationary vortex evolution; (2) a horizontally convecting
vortex, (3) a vortex pairing in a time-developing mixing layer with shock waves formed
around the vortices; (4) a shock wave impinging on a spatially evolving mixing layer where
the evolving vortices must pass through a shock wave, which in turn is deformed by the
vortex passage; and (5) a 3-D compressible turbulent channel flow to validate that the
proposed schemes are, in fact, capable of sustaining turbulence. To examine the resolution
of the proposed schemes where shock waves are absent, the computation was compared
with the CEN44 (the classical spatially fourth-order central differencing for the convection
and diffusion terms) before shock waves were developed for the vortex pairing case. Good
agreement was obtained.

Aside from evaluating the vortex preservation property, the performance of these schemes
with the presence of shock waves and turbulence are evaluated based on the following
factors:

(a) effect of the ACM term,
(b) effect of the order of the base scheme,
(c) effect of the grid size (grid refinement study),
(d) effect of employing a compact or non-compact base scheme,
(e) effect of the adjustable parameterκ for the particular physics,
(f) effect of the flux limiters,
(g) shear and fine scale flow structure capturing capability.

3.1. Isentropic Vortex Evolution

The first two test cases are chosen to assess the performance of the proposed schemes for
evolution of a 2-D inviscid isentropic vortex in a free stream. Similar test cases have also
been used by several authors for testing other schemes with respect to vortex preservation
(Gerritsen [21], Davoudzadehet al. [45], and Shu (private communication, 1996)). The
mean flow velocity,u∞ andv∞; pressure,p∞; and density,ρ∞ are considered to be free
stream. Test case 1 is a stationary (steady) vortex with(u∞, v∞)= (0, 0), and case 2 is a
horizontally convecting vortex with(u∞, v∞)= (1, 0). In both casesp∞= ρ∞= 1.

As an initial condition, an isentropic vortex with no perturbation in entropy (δS= 0) is
added to the mean flow field. The perturbation values are given by

(δu, δv) = β

2π
e(1−r 2)/2(−ȳ, x̄), (3.1)

δT = − (γ − 1)β2

8γπ2
e1−r 2

, (3.2)

whereβ is the vortex strength andγ = 1.4. Note that the vortex strengthβ should not be
confused with theβ in Section 2.1.2. HereT = p

ρ
, T∞= 1.0, (x̄, ȳ)= (x− xv0, y− yv0),

wherexv0 and yv0 are coordinates of the center of vortex initially, andr 2= x̄2+ ȳ2. The
entire flow field is required to be isentropic so, for a perfect gas,p/ργ = 1.

From the relations,ρ= ρ∞+ δρ, u= u∞+ δu, v= v∞+ δv, T = T∞+ δT , and the
above isentropic relation, the resulting state for conservative variables is given by

ρ = T1/(γ−1)= (T∞ + δT)1/(γ−1) =
[
1− (γ − 1)β2

8γπ
e1−r 2

]1/(γ−1)

(3.3)



216 YEE, SANDHAM, AND DJOMEHRI

ρu = ρ(u∞ + δu) = ρ

[
1− β

2π
e(1−r 2)/2

]
(3.4)

ρv = ρ(v∞ + δv) = ρ

[
1+ β

2π
e(1−r 2)/2

]
(3.5)

p = ργ (3.6)

e= p

γ − 1
+ 1

2
ρ(u2+ v2). (3.7)

These two vortex problems provide a good test bed for evaluating the schemes perfor-
mance with the absence of shock waves and turbulence. The exact solution with given initial
states is just a passive convection of the vortex with the mean velocity and thus provides a
good measure of the accuracy of the schemes for smooth solutions of the Euler equations.
The initial vortex covers a domain of 0≤ x≤ 10 and−5≤ y≤ 5.

Periodic boundary conditions (BCs) in both directions are traditionally used for these
test cases. Since the code reduces to lower-order central base schemes near the boundary
points, and nonreflecting BCs are not used, non-periodic BCs simulations would provide
the opportunity to examine the effect of the sizes of computational boxes on preserving
the vortex core during time evolution. Nonreflecting BCs and stable boundary treatments
suggested by Gustafsson and Olsson [4] will be implemented for a future study.

Both test cases employ a uniform Cartesian grid. Density profiles at the centerline,y= 0,
cutting through the center of the vortex of the various schemes are used for comparison.
Data on the centerline was extracted up to 5 unit lengths away to the left and the right, from
the location of the center of the vortex. In all of the computations for the vortex evolution,
unless otherwise indicated,δ= 0.01 (2.26a) and limiter (2.25f) are used.

3.1.1. Stationary Vortex

For the stationary vortex test case, a uniform grid spacing of1x=1y= 0.125, covering
the domain of 0≤ x≤ 50 and−5≤ y≤ 5, is used. The grid is 401× 81. The vortex is
placed at the center of the rectangle,(x− xv0, y− yv0)= (25, 0). For reasons of economy,
only the left and right boundaries in thex-direction are kept fairly distant from the center of
the vortex core at 25 unit lengths. Only 5 unit lengths are used in they-direction. Since
there are no shock waves or steep gradient regions for this flow, the filter is used to stabilize
the nonlinear governing equations. For this reason, the filter coefficientκ (2.21) should be
kept very small. We useκ = 0.05 for all of the computations. The time step is also fixed
with 1t = 0.04.

The density profiles across the vortex at the centerline,y= 0, for the various schemes are
illustrated in Fig. 3.1. Figure 3.1 which shows the effect of increasing the accuracy from
second- to fourth- and sixth-order using the TVD filter (TVD22, TVD44, and TVD66)
compared with the ACM/TVD filter (ACM22, ACM44, and ACM66). Although the order
of the viscous terms is indicated in the method, the viscous terms are not activated. Fig-
ure 3.1a compares the exact solution with the solutions obtained by the TVD22, TVD44,
and TVD66 methods att = 50 (after 1250 time steps). All of the TVD methods, regardless
of the order of the base schemes, are very diffusive, especially around the vortex core.
Higher-order base schemes exhibit slightly better resolution than the second-order base
method. Figure 3.1b displays the same computation at a later timet = 100 (after 2500
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FIG. 3.1. Stationary vortex: comparison of the various orders of TVD and ACM methods with the exact
solution, illustrated by density profiles at the centerliney= 0, att = 50 andt = 100 for a 401× 81 grid (κ = 0.05).

time steps). The computed vortex core is even more diffused compared with the exact
solution.

Figures 3.1c and 3.1d show the same computation att = 50 and 100 using the various
orders of the base scheme with the ACM/TVD filter. These figures display the effect of the
ACM/TVD filter on the vortex core. The ACM methods, regardless of the order, have not
diffused the vortex core aftert = 50. All numerical solutions fall almost on top of the exact
solution, except for very small differences for the ACM66 method. Att = 100, the ACM66
resolution has been slightly displaced due to the boundary effects. However, the ACM22
and ACM44 remain quite accurate.

3.1.2. Horizontally Convecting Vortex

For the horizontally convecting vortex, again, a uniform grid spacing of1x=1y= 0.125,
covering the domain of 0≤ x≤ 110 and−5≤ y≤ 5, is used. The grid is 481× 81 fort = 50
and 881× 81 for t = 100. The vortex is initially placed at(x− xv0, y− yv0)= (5, 0). The
time step,1t = 0.04, is fixed for all runs, as is the vortex strength,β = 5. The adjustable
parameter,κ, is set equal to 0.05 as in case 1. The vortex is convected to the right by the
mean flow velocity.

The physics of the present vortex evolution is similar to that of the stationary case, except
the vortex is convecting. Since the ACM44 and ACM66 are less diffusive than the ACM22
for case 1, only the ACM44 and ACM66 are used for the present computation. Figure 3.2
displays density profiles across the centerline aty= 0, comparing the exact solution with
the ACM44 and ACM66 methods att = 50 andt = 100, and after 1250 and 2500 time
steps, respectively. All numerical solutions are very accurate and fall almost on top of the
exact solution. In these computations no visible boundary effects are seen because the right
boundary of the domain in the direction of the vortex convection is initially kept relatively
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FIG. 3.2. Convecting vortex: comparison of ACM44 and ACM66 with the exact solution, illustrated by density
profiles at the centerliney= 0, att = 50 andt = 100 for a 481× 81 and 881× 81 grid, respectively (κ = 0.05).

far away. Although not visible from the density profiles, ACM44 exhibits small oscillatory
solutions att = 100. However, the ACM66 exhibits only small oscillations at the outer edge
of the vortex. Figure 3.3 shows the density contours comparison of the exact solution with
ACM44 and ACM66 att = 100. We reran the same case using ACM44 and an increased
κ = 0.07. The small oscillation disappeared and the solution is as accurate as for the ACM66
usingκ = 0.05. Both ACM44 and ACM66 exhibit good vortex preservation. Figure 3.3
also shows the comparison of the two different values ofκ using ACM44. These results
indicate the effect ofκ on the various orders of the ACM methods. For viscous flow, in the
presence of shocks, shears and turbulence, the effect ofκ on the resolution of fine scale flow
structure plays a different role than for the inviscid flows with smooth solution. When we ran
the same case using CEN44, the solution blew up att = 65. We ran the same case using
ACM44 with κ = 0.07 until t = 200, convected for 20 vortex diameters. The solution is still
very accurate but slightly diffuse compared with the exact solution.

3.1.1. Boundary Effects on the Stationary Vortex

The effect of the size of the computational boxes was studied for the stationary vortex
evolution, case 1. All the numerical experiments with the TVD and ACM methods discussed
for case 1 were repeated on a smaller computational domain of 0≤ x≤ 10 and−5≤ y≤ 5
for which the initial vortex touches the boundary of this smaller computational box. The
grid spacings and time step are the same as before, except the grid is now 81× 81. Figure 3.4
shows the computations on the reduced domain. Comparison with Fig. 3.1 clearly demon-
strates the effect of the physical boundary distances in thex-direction. The discrepancies
between corresponding results on the larger and smaller domains are more pronounced at

FIG. 3.3. Convecting vortex: comparison of the ACM44 and ACM66 with exact solution att = 100 for
κ = 0.07 andκ = 0.05, illustrated by density contour for a 881× 81 grid.
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FIG. 3.4. Stationary vortex: comparison of various orders of TVD and ACM methods with the exact solution,
illustrated by density profiles at the centerliney= 0, att = 50 andt = 100 for a smaller computational box (81× 81)
showing the boundary effect (κ = 0.05).

t = 100 for the ACM methods. Figure 3.5 compares the numerical solution of the ACM66
method on larger and smaller domains with the exact solution.

Figure 3.6 displays the effect of the adjustable parameterκ in controlling the boundary
effects (x-direction) for the ACM44 and ACM66 methods att = 100. We reduced theκ
value from 0.05 to 0.035 on the same smaller computational box. The profiles for both
methods are on top of each other. The deviation from the exact solution of the computed
solution due to boundary effects is less pronounced than forκ = 0.05. Figure 3.7 shows the
effect of using different limiters (limiter (2.25f) vs limiter (2.25h)) att = 100 on the same
smaller computational box.

FIG. 3.5. Stationary vortex: comparison of the exact solution with ACM66 att = 100 on the small computa-
tional box (81× 81) and a larger computational box (401× 81) (κ = 0.05).
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FIG. 3.6. Stationary vortex: comparison of the exact solution with ACM44 and ACM66 att = 100 for the
small computational box using a 81× 81 grid (κ = 0.035).

3.2. Vortex Pairing in a Time-Developing Mixing Layer

This test case studied vortex growth and pairing in a temporal mixing layer at a convective
Mach number equal to 0.8. At this Mach number there are shock waves (shocklets) that
form around the vortices and the problem is to compute accurately the vortex evolution
while avoiding oscillations around the shocks. Previous calculations of the problem can be
found in Sandham and Reynolds [46], Lumpp [47], and Fu and Ma [48]. Figure 3.8 shows a
schematic of the physical problem. Here we set up a base flow as in Sandham and Yee [49]

u = 0.5 tanh(2y), (3.8)

with velocities normalized by the velocity jumpu1− u2 across the shear layer and distances
normalized by vorticity thickness,

δω = u1− u2

(du/dy)max
. (3.9)

FIG. 3.7. Stationary vortex: comparison of the exact solution with ACM44 using two different flux limiters
(lim3 (2.25f) and lim5 (2.25h)) att = 100 for the small computational box using a 81× 81 grid (κ = 0.05).
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FIG. 3.8. Schematic of the vortex pairing in a time-developing mixing layer.

Subscripts 1 and 2 refer to the upper (y > 0) and lower (y < 0) streams of fluid, respectively.
The normalized temperature, and hence local sound speed squared, is determined from an
assumption of constant stagnation enthalpy

c2 = c2
1 +

γ − 1

2

(
u2

1− u2
)
. (3.10)

Equal pressure through the mixing layer is assumed. Therefore, for this configuration of
u2=−u1 both fluid streams have the same density and temperature fory→±∞. The
Reynolds number defined by the velocity jump, vorticity thickness, and kinematic viscosity
at the free-stream temperature is set here to be 1000. The Prandtl number is set to 0.72, the
ratio of specific heats is taken asγ = 1.4, and Sutherland’s law with reference temperature
TR= 300 K is used for the viscosity variation with temperature. The reference sound speed
squared,c2

R, is taken as the average ofc2 over the two free streams.
Disturbances are added to the velocity components in the form of simple waves. For the

normal component of velocity we have the perturbation

v′ =
2∑

k=1

ak cos(2πkx/Lx + φk) exp(−y2/b), (3.11)

where Lx = 30 is the box length in thex-direction andb= 10 is they-modulation. In
our test case we simulate pairing in the center of the computational box, by choosing the
initially most unstable wavek= 2 to have amplitudea2= 0.05 and phaseφ2=−π/2, and
the subharmonic wavek= 1 with a1= 0.01 andφ1=−π/2. Theu-velocity perturbations
are found by assuming that the total perturbation is divergence free. Even though these
fluctuations correspond only approximately to eigenfunctions of the linear stability problem
for a compressible mixing layer, they serve the purpose of initiating the instability of the
mixing layer and have the advantage as a test case in that they can be easily coded.

Numerically the grid is equally spaced and periodic in thex-direction and stretched in
the y-direction, using the mapping

y = L y

2

sinh(byη)

sinh(by)
, (3.12)

where we take the box size in they-directionL y= 100, and the stretching factorby= 3.4.
The mapped coordinateη is equally spaced and runs from−1 to+1. The boundaries at
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±L y/2 are taken to be slip walls. For example, at the lower boundary

ρ1 = ρ2, (3.13a)

(ρu)1 = (ρu)2, (3.13b)

(ρv)1 = 0, (3.13c)

(e)1 = [4(e)2− (e)3]/3, (3.13d)

where subscripts here refer to the grid point ande is the total energy.

3.2.1. Computational Results

We compute this test case on 401× 401, 201× 201, 101× 101, and 41× 41 grids. There
is little to choose in the shock resolution properties with the variation in order of accuracy
of the scheme since the proposed method will not improve the resolution of the shock waves
over standard TVD or ENO schemes. We choose to compare temperature contours, which
are most sensitive to oscillations (Lumpp, private communication), and accuracy of the fine
scale structure. Figure 3.9 shows a snapshot of the temperature contours att = 40, 80, 120,
and 160 using ACM44, illustrating the roll-up of the primary vortices followed by vortex
merging. Shock waves and shears form around the vortices with a peak Mach number ahead
of the vortex of approximately 1.55 att = 120. The grid is 201× 201. The majority of the
comparisons, however, use a 101× 101 grid. In all of the computations for the vortex pairing
case, unless indicated, limiter (2.25f) andδ= 1/16 (2.26a) are used. The majority of the
computations usedκ = 0.7 (2.21) for the nonlinear fields for the ACM methods.

It is noted that a similar vortex pairing was used by Shuet al. [50] to evaluate the per-
formance of high-order ENO schemes. The present results show superior performance over
the result of Shuet al.

FIG. 3.9. Four stages in the vortex pairing, at timest = 40, 80, 120, 160, showing the temperature contours
for a 201× 201 grid withκ = 0.7 for the nonlinear fields andκ = 0.35 for the linear fields using ACM44.
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FIG. 3.10. Effect of order of accuracy on TVD methods (TVD22, TVD44, and TVD66), compared with the
ACM44 solution att = 160, illustrated by temperature contours att = 160 for a 101× 101 grid.

Effect of the ACM term and the order of the base scheme.Figure 3.10 shows the effect
of increasing the accuracy from second to fourth and sixth order using the TVD filter
(TVD22, TVD44, and TVD66). As can be seen there is almost no improvement as the order
of accuracy is raised. Figure 3.11 shows the same plot using the ACM/TVD filter (ACM22,

FIG. 3.11. Effect of order of accuracy on ACM methods (ACM22, ACM44, and ACM66) att = 160 for a
101× 101 grid compared with the reference solution (ACM44, 201× 201 grid) usingκ = 0.7 for the nonlinear
fields andκ = 0.35 for the linear fields.
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ACM44, and ACM66). Here there is an improvement, although the results even for the
lowest order are quite good. All the ACM schemes capture the shock waves with minimal
oscillations. Although not shown, the temperature contours for the TVD filter of various
orders using a 101× 101 grid are not nearly as accurate as the ACM44 using a 41× 41 grid.
(See the last plot of Fig. 3.12 of Yeeet al. [51] or Sandham and Yee [2] for illustrations.)
It can be seen that there is a significant advantage in moving from second to fourth order,
but there is a smaller gain in moving from fourth to sixth order using TVD or ACM/TVD
as a filter. (This is contrary to the isentropic vortex convection, where there are definite
benefits of moving from fourth order to sixth order. The effect of order of accuracy is more
pronounced for long-time integration of pure convection.) The fine scale flow structures
are nearly resolved using a 101× 101 grid compared with the reference solution using
ACM44 and a 201× 201 grid. Results from the ACM method are far superior to those from
the standard TVD formulation. Note that there is no improvement in the shock resolution
among the various orders of the base schemes, since the ACM term limited the amount
of dissipation away from shocks and steep gradient areas, whereas the shock resolution is
dictated by the flux limiter.

Effect of the grid size (grid refinement study).To investigate the effect of order of the
accuracy in more detail we consider simulations on a very coarse grid of 41× 41 points.
Such a case corresponds in practice to simulation of scales of turbulence arising from
shear layers only two or three computational cells across. To ensure that the fine scale flow
structure is fully resolved by the 201× 201 reference grid, the same simulation was done
on a 401× 401 grid (figures not shown). The resolution of the ACM methods on a 41× 41
grid is comparable to that of TVD methods on a 101× 101 grid.

Effect of compact or non-compact base scheme.For wave propagation and computa-
tional problems the performance of fourth- and sixth-order compact schemes, although
more CPU intensive, appears to be superior to that of their non-compact cousin. For prob-
lems with shock waves the benefit of compact over non-compact schemes is less known
due to the filter step. For this purpose we conduct similar experiments using (2.9) as base
schemes. Results for the fourth- and sixth-order compact schemes are similar to results
from the sixth-order non-compact scheme. Again there is little improvement compared
with the fourth-order non-compact scheme. The compact schemes are almost double the
CPU over their non-compact cousin for this 2-D compressible DNS computation using the
fourth-order Runge–Kutta method. For this particular flow physics, a conclusion is that
the use of the ACM in the filter step is essential to get the benefits of moving from second
to fourth order, but even with the compact method as the base scheme, there is little benefit
in moving to even higher-order base schemes. See Sandham and Yee [2] for illustrations.
This is in contrast to the isentropic vortex convection where there are benefits of moving
from fourth order to sixth order for long-time integration.

Effect of the adjustable parameterκ and shear and fine flow structure capturing capa-
bility. The ACM switch has been demonstrated to give good shock resolution and to be
essential if the benefits of higher-order discretization schemes are to be realized. There
is, however, an adjustable parameterκ in the formulation, and results are sensitive to the
precise choice of its value. Figures 3.12a and 3.12d illustrate the effect on the result using
ACM44 for the pairing test case of reducing the parameter from 0.7 to 0.35. The vortic-
ity and momentum thickness development is improved due to the reduction in numerical
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FIG. 3.12. Effect of κ in the ACM44 scheme on the fine scale flow structure, illustrated by temperature
contours att = 160: (a)κ = 0.7 for all fields; (b)κ = 0.7 for the nonlinear fields, andκ = 0.35 for the linear fields;
(c) κ = 0.7 for the nonlinear fields andκ = 0.0 for the linear fields; and (d)κ = 0.35 for all fields for a 101× 101
grid.

dissipation. From the temperature contours on Figs. 3.12a and 3.12d it can be seen that
this has been achieved at the cost of formation of small oscillations around the shock
wave. For the present problem one would be ready to pay this price to get the more accu-
rate vortex evolution. However, in general it is not known how such numerically induced
oscillations interact with small scales of turbulence. For the current method the correct pro-
cedure for a simulation of shock–turbulence interaction would be to find the smallest value
of κ to resolve the shock waves satisfactorily and then increase the grid resolution until
the turbulence is adequately resolved. There are perhaps other formulations of the ACM
switch parameterκ based on the flow physics that can perform the adjustment to higher
values automatically when stronger shock waves are present. This is a subject of future
research.

To balance the shear and shock capturing, one alternative is to switch to a more com-
pressive limiter (see Yee [31]) for the linear characteristics fields. Another alternative is to
reduce the value ofκ for the u, v linear fields. The comparison of using different values
of κ for the linear and nonlinear fields is also shown in Fig. 3.12b and in Sandham and
Yee [2].

Shock capturing schemes are designed to accurately capture shock waves, but with a less
accurate capturing capability for contact discontinuities. In fact, the mixing layer seen at a
large scale is a contact discontinuity. If one uses enough grid points to resolve the region
of high shear in conjunction with the physical viscosity, it might not need to be “captured.”
Contact discontinuities relate to the characteristic velocitiesu andv. As an experiment,
these linear characteristics were computed with no numerical dissipation. Filters were only
applied to the nonlinear characteristic fieldsu± c andv± c using the ACM44 method.
Interestingly, the computation was no less stable than that of the full TVD or ACM schemes.
Figure 3.12c shows the resulting temperature field. It can be seen that good results were
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FIG. 3.13. Effect of flux limiters in the ACM44 scheme on the solution resolution, illustrated by temperature
contours att = 160: (a) lim1 (2.24d), (b) lim2 (2.24e), (c) lim4 (2.24g), and (d) lim5 (2.24h) for a 101× 101 grid
with κ = 0.7 for the nonlinear fields andκ = 0.35 for the linear fields.

obtained, although there is a trace of oscillation near the shock wave. This could be remedied
by increasingκ slightly. However, the flow features of the shear and fine flow structure are
accurately captured with similar resolution as the 201× 201 grid with ACM44 applied
to all of the characteristic fields. Comparison of the different 0.05≤ κ ≤ 2 values for the
nonlinear fields with theκ = 0.0 for the linear fields was also performed and the solution is
very stable. See Yeeet al. [51] for illustration.

Effect of the different flux limiters and the adjustable constantδ (2.26a). Figure 3.13
shows the comparison of the five classical flux limiters (2.25d)–(2.25h) (see Fig. 3.12a for
lim3). Lim4 (2.25g) appears to perform the best with theλ shock, shear layer, and fine
scale structure similar to those of the reference solution but using half of the grid size in
each spatial direction. Figure 3.14 shows the effect of the variousδ ((smu)2 indicated on
the plots) values on the fine scale flow structure capturing. It appears thatδ= 0 perform the
best, except in this case the TVD filter is technically entropy violating. For this computation
κ is set to 0.7 for all characteristic fields.

3.2.2. First-Order Upwind Dissipation As Characteristic Filter Computations

To examine the performance of using first-order dissipation as characteristic filters for
high-order base schemes, we considered an entropy modification of Roe’s first-order dissi-
pation by redefiningφl

j+1/2 in (2.21) to be

φl
j+1/2 = −ψ

(
al

j+1/2

)
αl

j+1/2. (3.14)

Figure 3.15 shows the computation using the modified Roe’s first-order dissipation as a
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FIG. 3.14. Effect of δ ((smu)2) in the ACM44 scheme on the solution resolution, illustrated by temperature
contours att = 160: (a)δ= 1/16, (b)δ= 0.0225, (c)δ= 0.01, and (d)δ= 0.0 for a 101× 101 grid withκ = 0.7
for all fields.

filter with the various orders of central differencing base scheme denoted by ACM22/1st,
ACM44/1st, and ACM66/1st. Theδ is set equal to 1/16 using (2.26a) forψ(al

j+1/2). The
result is comparable to TVD22, TVD44, and TVD66. Rerunning the same case with a
smallerδ results in more accuracy than usingδ= 1/16.

FIG. 3.15. Effect of order of accuracy (using the first-order dissipation filter) on ACM22/1st, ACM44/1st, and
ACM66/1st on the solution resolution, illustrated by temperature contours att = 160: (a) ACM44, (b) ACM22/1st,
(c) ACM44/1st, and (d) ACM66/1st for a 101× 101 grid withκ = 0.7 for the nonlinear fields andκ = 0.35 for the
linear fields.
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3.2.3. Lax–Wendroff-Type TVD Dissipation As Characteristic Filter Computations

To examine the applicability of using the Lax–Wendroff-type TVD dissipation filter, we
recompute Fig. 3.11 using

φl
j+1/2 = σ

(
al

j+1/2

)(
gl

j+1+ gl
j

)− ψ
(
al

j+1/2+ γ l
j+1/2

)
αl

j+1/2, (3.15a)

σ l
j+1/2 =

1

2

[
ψ
(
al

j+1/2

)− 1t

1x

(
al

j+1/2

)2
]

(3.15b)

γ l
j+1/2 = σ

(
al

j+1/2

)
(
gl

j+1− gl
j

)/
αl

j+1/2 αl
j+1/2 6= 0

0 αl
j+1/2 = 0

. (3.15c)

In other words, using the Lax–Wendroff TVD dissipation as a filter involves an extra
1t
1x (al

j+1/2)
2 term in theψ function compared with (2.25). This term is due to theUtt term

in the Lax–Wendroff formulation. Note that the use of (3.15) is not consistent in two ways.
First, the base scheme uses Runge–Kutta time integrator and the filter step uses the Lax–
Wendroff type of mixed space and time formulation. Second, for 2-D, one has to use the
Strang [23] type of splitting to retain second-order time accuracy.

Disregarding the inconsistency, Figure 3.16 shows a comparison of the various orders
of base schemes using (3.15) together with the ACM switch, denoted by ACM22/ν2,
ACM44/ν2, and ACM66/ν2. The solutions are more diffusive but slightly more stable
than the corresponding cases without theν2 term (Fig. 3.11). Although the use of (3.15)
is not consistent, the results are far superior to the TVD22, TVD44, and TVD66 methods
(Fig. 3.10).

FIG. 3.16. Effect of order of accuracy on ACM22/ν2, ACM44/ν2, and ACM66/ν2 on the solution resolution,
illustrated by temperature contours att = 160: (a) ACM44, (b) ACM22/ν2, (c) ACM44/ν2, and (d) ACM66/ν2 for
a 101× 101 grid withκ = 0.7 for the nonlinear fields andκ = 0.35 for the linear fields.
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FIG. 3.17. Schematic of the shock Impingement on a spatially developing mixing layer.

3.3. Shock Wave Impingement on a Spatially Evolving Mixing Layer

The fourth test case has been developed to test the behavior of the schemes for shock
waves interacting with shear layers where the vortices arising from shear layer instability
are forced to pass through a shock wave. Figure 3.17 shows the schematic of the physical
problem. An oblique shock is made to impact on a spatially developing mixing layer at
an initial convective Mach number of 0.6. The shear layer vortices pass through the shock
system and later through another shock, imposed by reflection from a (slip) wall at the lower
boundary. The problem has been arranged with the Mach number at the outflow boundary
everywhere supersonic so that no explicit outflow boundary conditions are required. This
allows us to focus on properties of the numerical schemes rather than on the boundary
treatment.

Figure 3.18 illustrates the nature of the flow on a 641× 161 grid illustrating the pressure,
density, and temperature fields using the ACM44 method and limiter (2.25f) withκ = 0.35

FIG. 3.18. The reference solution for the shock–shear–layer interaction problem att = 120. Contours are
shown of (a) pressure, (b) density, and (c) temperature for a 641× 161 grid withκ = 0.7 for the nonlinear fields
andκ = 0.35 for the linear fields.
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for nonlinear characteristic fields andκ = 0.175 for the linear characteristic fields. The
parameterδ is set to 0.25. This computation is used as the reference solution. An oblique
shock originates from the top left-hand corner and this impacts on the shear layer at around
x= 90. The shear layer is deflected by the interaction. Afterward we have a shock wave
below the shear layer and an expansion fan above it. The shock wave reflects from the lower
solid wall and passes back through the shear layer. The lower wall uses a slip condition
so no viscous boundary layer forms and we focus on the shock-wave interaction with the
unstable shear layer. The full no-slip problem would, however, make a challenging test case
for the future.

The inflow is specified again with a hyperbolic tangent profile, this time as

u= 2.5+ 0.5 tanh(2y), (3.16)

giving a mixing layer with upper velocityu1= 3, lower velocityu2= 2, and hence a velocity
ratio of 1.5. Equal pressures and stagnation enthalpies are assumed for the two streams,
with convective Mach number, defined by

Mc = u1− u2

c1+ c2
, (3.17)

wherec1 andc2 are the free stream sound speeds equal to 0.6. The reference density is taken
as the average of the two free streams and a reference pressure as(ρ1+ ρ2)(u1− u2)

2/2.
This allows one to compute the inflow parameters as given in the first two columns of
Table 3.2. Inflow sound speed squared is found from the relation for constant stagnation
enthalpy (3.10).

The upper boundary condition, given in column 3 of Table 3.2, is taken from the flow
properties behind an oblique shock with angleβ = 12◦. The table also gives the properties
behind the expansion fan (column 4) and after the oblique shock on the lower stream of
fluid (column 5) computed by standard gasdynamics methods withβ = 38.118◦. In practice,
the conditions in regions 4 and 5 do not correspond exactly to the simulations due to the
finite thickness of the shear layer. The Mach number of the lower stream after this shock is
approximatelyM5= 1.6335 and remains supersonic through all the successive shocks and

TABLE 3.2

Flow Properties for the Shock-Wave/Shear-Layer Test Case

in Various Regions of the Flow

Property (1) (2) (3) (4) (5)

u-velocity 3.0000 2.0000 2.9709 2.9792 1.9001
v-velocity 0.0000 0.0000 −0.1367 −0.1996 −0.1273
θ (◦) 0.0000 0.0000 2.6343 3.8330 3.8330
Densityρ 1.6374 0.3626 2.1101 1.8823 0.4173
Pressurep 0.3327 0.3327 0.4754 0.4051 0.4051
Sound speedc 0.5333 1.1333 0.5616 0.5489 1.1658
Mach number|M | 5.6250 1.7647 5.2956 5.4396 1.6335

Note. (1) upper stream inflow; (2) lower stream inflow; (3) upper stream
after oblique shock; (4) upper stream after expansion fan; (5) lower stream
after shock wave.
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expansion fans up to the outflow boundary. The resulting shock waves are not strong, but
tests showed that they could not be computed without using shock-capturing techniques.
The lower boundary was specified with the same slip condition used for the pairing case
(Eq. (3.13)).

The Prandtl number and ratio of specific heats were taken to be the same as for the vortex
pairing test case. The Reynolds number was chosen to be 500.

Fluctuations are added to the inflow as

v′ =
2∑

k=1

ak cos(2πkt/T + φk) exp(−y2/b), (3.18)

with periodT = λ/uc, wavelengthλ= 30, convective velocityuc= 2.68 (defined byuc =
(u1c2+ u2c1)/(c1+ c2)), and b= 10. For k= 1 we takea1= 0.05 andφ= 0, and for
k= 2 we takea2= 0.05 andφ=π/2. No perturbations are added to theu-component of
velocity.

The grid is taken to be uniform inx and stretched iny according to Eq. (3.12) withby= 1.
This stretching is much milder than for the pairing problem, as we have to resolve the shear
layer even when it deflects away fromy= 0. The box lengths were taken to beLx = 200
andL y= 40.

The reference solution indicates that vortex cores are located by low-pressure regions and
the stagnation zones between vortices by high-pressure regions. The shock waves are seen
to be deformed by the passage of the vortices. Another interesting observation is the way
the core of the vortex atx= 148 has been split into two by its passage through the reflected
shock wave. In spite of the relatively high amplitude chosen for the subharmonic inflow
perturbation there is no pairing of vortices within the computational box. We do, however,
begin to see eddy shock waves around the vortices near the end of the computational box
where the local convective Mach number has increased to around 0.66. The oscillations seen
near the upper boundary forx > 120 occur where the small Mach waves from the initial
perturbations arrive at the upper boundary. The use of characteristic boundary conditions
should remove this problem. Practically, the amplitude of oscillations is not sufficient to
cause numerical instability or affect the remainder of the flow.

The test case was also run on a grid of 321× 81 with1t = 0.12,δ= 1/16, andκ = 0.35
up tot = 120. Figures 3.19 and 3.20 show the effect of increasing the accuracy of the base
scheme using the TVD and ACM/TVD filters. Again it can be seen that the ACM switch
is essential for obtaining good vortex evolution (additionally, better shock resolution is
obtained). For a more quantitative comparison, see Figs. 18 and 19 of Sandham and Yee
[2]. From Fig. 3.19 it is apparent that all the standard TVD schemes, of whatever order,
miss the correct vortex formation. From Figs. 3.19 and 3.20 there is a definite benefit in
moving from second- to higher-order differencing, both in the amplitude of the fluctuations
and in the correct convective velocity of the vortices. Figure 3.21 shows the effect of theδ

values on the fine scale flow structure capturing. For this computationκ = 0.35 is used for
all characteristic fields.

Disregarding the inconsistency, Fig. 3.22 shows a comparison of TVD44/ν2 with ACM44/
ν2 on two grids. The solutions are again more diffusive but slightly more stable than the
corresponding cases without theν2 term. Although the use of (3.15) together with the ACM
switch is not consistent, the results are far superior to TVD44 using (3.15) or (2.25) without
the ACM switch.



FIG. 3.19. Comparison of density contours att = 120 for the shock–shear–layer test case: (a) TVD22,
(b) TVD44, and (c) TVD66 for a 321× 81 grid.

FIG. 3.20. Comparison of density contours att = 120 for the shock–shear–layer test case: (a) ACM22,
(b) ACM44, and (c) ACM66 for a 321× 81 grid with κ = 0.7 for the nonlinear fields andκ = 0.35 for the
linear fields.
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FIG. 3.21. Effect of δ ((smu)2) in the ACM44 scheme on the solution resolution, illustrated by density
contours att = 120: (a)δ= 0.0225, (b)δ= 0.01, (c)δ= 0.0 for a 321× 81 grid withκ = 0.7 for all fields.

FIG. 3.22. Comparison of density contours att = 120: (a) ACM44/ν2 (641× 161), (b) TVD44/ν2 (321× 81),
and (c) ACM44/ν2 (321× 81) with κ = 0.7 for all fields.
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3.4. Compressible Turbulent Channel Flow

As a final topic we consider the numerical simulation of three-dimensional turbulence.
Given the additional numerical dissipation of shock-capturing schemes, even where shock
waves are not present, it seems prudent to use this test case to validate that the new schemes
proposed here are in fact capable of sustaining turbulence, before moving to complete
simulations of shock–turbulence interactions. The case that we choose is similar to that
of Colemanet al. [52]. In this problem we choose to normalize distances with half the
separation between the walls, densities with the average density ¯ρ, velocities with the fric-
tion velocity uτ , and temperature with the fixed wall temperatureTw. We take the pure
pressure-driven flow, where forcing terms corresponding todp/dx=−1 are added to the
x-momentum equation. For a computational domain we use a box size with a stream-
wise length of 3 (channel half widths) and spanwise length of 1.5. While it is not suf-
ficient for the two-point correlation to fall to zero, these box lengths are adequate for
common turbulence statistics, as illustrated in Table 3.3, which compares the standard in-
compressible results of Kimet al. [53] with incompressible data computed by the first
author with a fully spectral code on the small grid. It is likely that the same size domain
will be a suitable test case for compressible flow provided the Mach number is low. At
higher Mach numbers it is known [52] that correlation lengths increase. The advantage
of the small domain calculation as a test case for numerical methods is the small mem-
ory requirement, making it feasible to run the calculations on workstations with limited
memory.

For the compressible calculation we take the Mach number based on the friction velocity
and sound speed corresponding to wall temperature to be 0.05, giving a centerline Mach
number of approximately 1.1. A full grid-refinement study has not yet been attempted for
this configuration. Results have been prepared for a grid of 32× 81× 32, which is the same
as that which has proved sufficient for good statistics up to triple moment budgets for the
fully spectral code (Sandham and Howard [54]). The ACM44 method was applied with
κ = 0.35 as in previous sections. The turbulence was indeed able to sustain itself, allowing
the accumulation of statistical quantities for the flow. Figure 3.23a shows the mean velocity
profile compared with the standard law of the wall (with Karman constant 0.41 and additive
constant 5.5). The shift of the curve upward relative to the incompressible result is consistent
with the findings of Colemanet al.Figure 3.23b shows the Favre-averaged stress−ρu′′v′′

and the total stress found by adding the contributionµdū/dy. The total stress must equal
the non-dimensionaly coordinate for the statistically converged flow. Favre averages are
defined using mass weighting asũ= ρu/ρ̄ and fluctuations given byu′′ = u− ũ. A detailed
study will be reported in a future paper.

TABLE 3.3

Comparison of Incompressible Channel Flow Statistics

between Large and Small Domain Calculations

Property [8] Small domain

Centerline velocity 18.20 18.23
Mean velocity 15.63 15.69
Shape factor 1.62 1.61
Skin friction 0.00818 0.00811
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FIG. 3.23. Compressible turbulent channel flow: (a) mean velocity profile (solid line) compared to the linear
law u+ = y+ and the semi-logarithmic law of the wall, with Karman constant 0.41 and additive constant 5.5, and
(b) Favre-averaged (solid line) and total stresses (dashed line) compared to the linear result (chain dotted line).

3.5. Computational Costs

For the DNS computations using the fourth-order Runge–Kutta method, the non-compact
base schemes with the ACM/TVD filter are only around 25% more expensive than the
same base schemes without ACM/TVD filter. This has been achieved by only requiring one
application of the ACM/TVD filter per full time step for the convection terms. For LMM
time discretizations, the non-compact base scheme with the ACM/TVD filter is only 10%
more expensive than standard second-order TVD schemes.

For the Cray C90 it was found that the compact schemes were significantly more expen-
sive, but this result was distorted for the present code by incomplete vectorization. An extra
cost of around 2/3 is expected from considerations of operations count.

4. CONCLUSIONS

A generalization of the work of Gustafsson and Olsson and the ACM switch of Harten to
a class of versatile low-dissipative high-order shock-capturing methods using characteristic
based filters is proposed. The design principle of these schemes consists of two steps. The
first step is the high-order spatial and temporal base scheme. A variety of standard high-
order non-dissipative or low-dissipative base schemes fits in the present framework. The
second step is the appropriate filter for stability and shocks, shear layers, and fine scale
flow structure capturing. Many of the TVD, positive, WENO, and ENO dissipations, after a
minor modification, are suitable candidates as filters. The final grid stencil of these schemes
is five if second-order TVD schemes are used as filters and seven if second-order ENO
schemes are used as filters for a fourth-order base scheme. Numerical boundary condition
treatment is simple and can be the same as for the existing base and filter schemes.

The reason for proposing filter operators that have similar width of grid stencils as the
base scheme is for efficiency and ease of numerical boundary treatment. Higher-than-third-
order filter operators are applicable, but they are more CPU intensive and require special
treatment near boundary points for stability and accuracy. It is well-known that near shocks
and shears, the resolution of higher-than-third-order TVD or ENO schemes is comparable
to their lower-order cousin except with a slight gain in resolution near steep gradients
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and smooth flows. The five test cases show that an increased in resolution with improved
efficiency can be accomplished if we limit the proper amount of numerical dissipation away
from shocks and shears to stabilize the non-dissipative nature of the high-order base scheme.

The approach is prompted partly by a need for an efficient method which is capable of
highly resolved DNS of compressible turbulence in the presence of shock waves for a variety
of flow speeds and partly by the need for the preservation of vortex convection and fine scale
flow structure capturing. The five test cases illustrate the versatility of the proposed schemes
in accurately capturing a variety of flow features, where most conventional methods exhibit
difficulty in obtaining low-dissipative solutions in an efficient and stable manner. Higher
accuracy is achieved with fewer grid points when compared with standard TVD or ENO
schemes. In all of the test cases, if adaptive grid refinements were used, additional gain in
efficiency and accuracy should be realized. Application of these schemes for time marching
to the steady states is a subject of future research.
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