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Acoustics problems are governed by the linearized Euler equations.
According 1o wave propagation theory, the pumber of wave modes and
their wave propagation characteristics are ail encoded in the dispersion
relations of the govetaing equations. Thus ane is assured that the
numerical solutions of a high order finite difference scheme will have
the same number of wave modes (namely, the acoustic, vorticity, and
entropy waves), the same wave propagation characteristics (namely,
nondispersive, nondissipative, and isotrapic) and the same wave
spoeds as those of the solutions of the Euler equations if both systemns
of equations have the same dispersion relations. Finite difference
schemes which have the same dispersion relations as the original partial
differential equations are referred to as dispersion-relation-preserving
{DRP) schemes. A way to construct time marching DRP schemes by
optimizing the finite difference approximations of the space and time
derivatives in the wave number and frequency space is proposed. The
stability of these schemes is analyzed and a sufficient condition for
numerical stability is established. A set of radiation and outflow
boundary conditions compatible with the DRP schemes is constructed.
These conditions are derived from the asymptotic solutions of the
governing equations. The asymptotic solutions are found by the use
of Fourier-Laplace transforms and the method of stationary phase,
A sequence of numerical simulations has been caried out. These
simulations ate designed to test the effectiveness of the DRP schemes
and the radiation and outflow boundary conditions. The computed
solutions agree very favorably with the exact solutions. The radiatian
boundary conditions perform satisfactorily causing little acoustic
reflections. The outflow boundary conditions are found to be quite
transparent to outgoing disturbances even when the disturbances are
made up of a combination of acoustic, vorticity, and entropy waves.
€ 1993 Academic Press, Inc.

. INTRODUCTION

Most current computational fluid dynamics (CFD) [inite
difference schemes are designed for the solution of time
independent problems. In the formulation of these schemes
the requirements of consistency and numerical stability are
imposed. By invoking the Lax equivalence theorem the con-
vergence of these schemes is then assured. The quality of
CFD schemes is generally ranked by the order of {Taylor
series) truncation. It is expected that a fourth-order scheme
1s better than a second-order scheme and 50 on. For time
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independent problems the above criteria are quite sufficient.
Great progress has been made over the years in the applica-
tion of CFD methods to aerodynamics and aircrafl design
problems (see Rels. [1-9]).

For time dependent problems, especially acoustics
problems, a consistent, stable, and convergent high order
scheme docs not guarantee a good quality numerical wave
solution. A simple analysis of the linearized compressible
Euler equations reveals that in a uniform mean flow the
partial differential equations support three types of waves,
namely, the acoustic, the entropy, and the vorticity waves.
The acoustic waves are isotropic, nondispersive, non-
dissipative and propagate with the speed of sound. The
entropy and vorticity waves are nondispersive, non-
dissipative, and highly directional. They propagate (con-
vected) in the direction of the mean ftow with the same
speed as the flow. There is no guarantee in most of the
popular CFD schemes that the finite difference equations
support waves with these characteristics. In fact, many
current CFD codes are dispersive, anisotropic, and even
highly dissipative (sometimes artificial dissipation terms are
deliberately added to improve numerical stability, e.g.,
Ref. [4]). Thus by using existing CFD codes for acoustics
computations one is certain of obtaining a numerically
stable solution but whether the solution (for finite Ax, Ay)
adequately simulates the wave solution of the governing
partial differential equations is an open question.

The main objective of this paper is to present a new
optimized high order finite difference scheme which not only
meets the usuad conditions of consistency, stability, and
hence convergence but also supports, in the case of smali
amplitude waves, wave solutions which have (as nearly as
possible} the same characteristics as those of the linearized
Euler equations. A second objective of this paper is to
present a set of radiation and outflow boundary conditions
which ase compatible with the proposed high order finite
difference scheme,

it is well known in wave propagation theory (eg.,
Whitham [[10]) that the propagation characteristics of the
waves governed by a system of partial differential equations
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are encoded in the dispersion relation in the frequency and
wave number space. The dispersion relation is a functional
relation between the angular frequency of the waves and the
wave numbers of the spatial variables. This relation is
usually obtained by taking the space and time Fourier
transforms of the governing equations. The dispersiveness,
damping rate, isotropy or amisotropy, group and phase
velocities of all the waves supported by the medium
governed by the partial differential equations are all deter-
mined by the dispersion relation. With this understanding it
is clear that what is needed is a finite difference scheme
which has the same or almost the same dispersion relation
as the original partial differential equations. In a discretized
system a minimum of five mesh points is needed to define a
period of a sine wave. Hence the above statement needs only
to be true for waves with wave numbers o, 8 such that a 4x,
B Ay < w2 (ie, waves with wavelengths greater than or
equal to four mesh spacings), where 4x and 4y are the mesh
sizes in the x and y directions, respectively. This class of
finite difference schemes will be referred to as dispersion-
relation-preserving (DRP) schemes.

In developing finite difference approximation of partial
derivatives the standard way is to use a truncated Taylor
series. But from the wave propagation point of view this is
not necessarily the best way. If the motivation is to preserve
the dispersion relation then the finite difference approxima-
tion should be constructed so that the Fourier transform is
preserved. In other words, it would be desirable to have a
finite difference scheme with nearly the same Fourier trans-
form in space or time as the original partial derivative.
Obviously this step is crucial to the dispersion-refation-
preserving method. Finite difference approximation of the
spatial derivatives formulated in this way will be discussed
in detail in Section 2. The treatment for the time derivative
requires slightly different consideration. It is discussed in
Section 4.

High order finite difference schemes invariably introduce
extraneous numerical solutions. The nature of these solu-
tions depends strongly on the chosen values of the computa-
tional parameters. For numerical stability it is important
that the parameter be set to the proper numerical range so
that the extraneous solutions are all heavily damped. An
analysis of the numerical stability of the DRP schemes is
given in Section 3. It turns out that the requirement of mini-
mum numerical damping to the physical acoustic wave
solution sometimes imposes an even more stringent condi-
tion on the size of the time marching step than numerical
stability. Numerical damping of the computed solution is
often not a critical issue in computational fluid dynamics.
However, it is of vital importance to the quality of the solu-
tion for acoustics problems. A way to estimate the size of the
time step needed to meet a permissible level of degradation
of the computed solution by numerical damping is discussed
in Section 6,
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To ensure good quality global computational acoustic
solutions the outer boundaries of the computational
domain must be transparent to all outgoing waves. For the
linearized Euler equations with a uniform mean flow the
acoustic waves are the principal outgoing waves except on
the outflow boundary. Along the outflow boundary the out-
going disturbances consist of a combination of acoustic,
entropy, and vorticity waves, Hence special outflow bound-
ary conditions are needed to allow the exit of these waves
from the computation domain without reflection. For the
other boundaries the imposition of a simple acoustic radia-
tion boundary condition is sufficient. Radiation and outfllow
boundary conditions have been considered by numerous
investigators in the past. Bayliss and Turkel [11,12]
developed a family of radiation boundary conditions based
on the far field asymptotic solution of the simple wave equa-
tion. Engquist and Majda [13, 14] used a pseudo-differen-
tial operator technique to construct absorbing boundary
conditions. The absorbing boundary condition minimizes
the reflected waves off the artificial boundary of the
computation domain. This idea has since been refined by
Higdon [15, 16] and Jiang and Wong [17]. Kosloff and
Kosloff [18] proposed the incorporation of an artificial
damping layer as absorbing boundaries for wave propaga-
tion problems. Most recently Thompson [19,20] for-
mulated radiation and outflow boundary conditions by
means of the characteristics of the governing partial dif-
ferential equations. In this work the radiation and outflow
boundary conditions are derived from the far field
asymptotic solutions of the linearized Euler equations. For
disturbances with wavelengths longer than five mesh
spacings these conditions are compatible with the numerical
solutions of the DRP scheme.

To validate the effectiveness of the DRP scheme and the
radiation and outflow boundary conditions proposed in this
paper, a sequence of numerical experiments and com-
parisons with exact solutions of the linearized Euier equa-
tions have been carried out. In the numerical experiments
reported in detail in Section 8 an acoustic wave puise is
initiated at the center of the computation domain super-
imposed on a uniform flow. The acoustic disturbance
propagates outward at the speed of sound and at the
same time it is convected downstream by the mean flow.
Downstream of the acoustic pulse an entropy and a vor-
ticity pulse are simultaneously introduced into the flow. The
separation distances of the pulses are so arranged that ali of
them exit the outflow boundary at the same time. This offers
a critical test of the outfllow boundary conditions. Computa-
tion results indicate that the calculated waveforms are in
good agreement with the exact solution. There are no
noticeable effects of dissipation and dispersion. When the
disturbances reach the boundaries of the computation
domain only very low amplitude reflected waves can be
detected. A clear message from all the computed results
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is that the DRP scheme together with the radiation and
outflow boundary conditions can be used to provide high
quality solutions to computational acoustics problems.

2. OPTIMIZED SPATIAL DISCRETIZATION

Consider the approximation of the first derivative éf/dx
at the /th node of a uniform grid. Suppose M values of f'to
the right and N values of f to the left of this point are used
to form the finite difference approximation, ie.,

Dol S ay
dx l_ijzé,rvaj {+ -

The usual procedure is to expand the right-hand side of
(2.1} in Taylor series of Ax and then determine the coef-
ficients 4; by equating coefficients of the same powers of 4x.
Finite difference schemes constructed in this way will be
referred to as the standard schemes. In this paper the coef-
ficients a; are to be chosen in a different way. It is proposed
that they be determined by requiring the Fourier transform
of the finite difference scheme on the right of (2.1) to be a
close approximation of that of the partial derivative on the
left.

The finite difference equation {2.1} is a special case of the
following equation in which x is a continuous variable:

(z.1)

M

Z ajf(x+.fo)§

=-~N

af . 1
EI(X)_ij (22)

(2.1) can be recovered from (2.2) by setting x=/Ax. The
Fourier transform and its inverse of a function are related
by

Fer=on | fixemsran (232)

flxy=| : F(o) e da. (23b)

The Fourier transform of the left and right sides of (2.2) are

- 1 X ae ) =
I'Q‘.fﬁ (E Z ajewudx)f: (24)

i==N

By comparing the two sides of (2.4) it is clear that the
quantity

M

faAx
2 ae
f=—N

i
x

l

&= (2.5)

"

is effectively the wave number of the Fourier transform of
the finite difference scheme (2.2) or (2.1); & Ax is a periodic

TAM AND WEBB

function of « Ax with period 2n. To assure that the Fourier
transform of - the finite difference scheme is a good
approximation of that of the partial derivative over the
range of wave numbers of interest (waves with wave length
longer than four 4x or |« Ax| < 7/2) it is required that a; be
chosen to minimize the integrated error E defined

w2
E=|
— /2

Jxﬁ
— /2

The conditions that £ is a minimum are

| Ax — & Ax|* d(o Ax)

2

dx. (2.6}

. M
K— Y ae’™
j=—N

E

5—01_—0, j=—Nto M,

(2.7)

(2.7) provides a system of linear algebraic equations by
which the coefficients a; can be easily determined.

The special case of N = M is of particular interest. In this
case & is real and the right-hand side of (2.5) is a truncated
Fourier sine series. In other words, the finite difference
scheme tries to approximate the partial derivative by a
Fourier sine series in the wave number space. If ¥V and M are
not equal (the stencil is unsymmetric) & is complex. It can be
shown that when such an unsymmetric stencil is used over
a large region it will generally lead to spatially growing
wave solutions. To avoid this type of numerical instability,
in this work, only central difference schemes will be used.
Unsymmetric stencils may, however, be employed in limited
regions {such as at the boundary regions of the computa-
tion domain} without leading to accumulated numerical
instability.

It is possible to combine the traditional truncated Taylor
series finite difference approximation and the wave number
space approximation described above. For instance, if
N=M=73 one can impose the condition that (2.2) be
accurate to order {4x}*. This leaves one of the coefficients,
say a,, as a free parameter. This parameter can then be
chosen to minimize the error integral E of (2.6). When this
constrained minimization is carried out, it is straight-
forward to find that the coefficients are

ag="0
a;=—ag_,=0.79926643
a,=—a_,= —0.18941314
a;= —a_,=0.02651995.
Figure | shows the relation & Ax and « Ax over the interval

0 to =, using the above coefficients. For o Ax up to 1.45 the
curve is nearly the same as the straight line @ = a. Thus the
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FIG. 1. & Ax versus a Ax for the optimized fourth-order central finite
difference scheme (¥ = M =3).

finite difference scheme can provide an adequate
approximation to the partial derivative for waves with wave
lengths longer than 4.5 mesh spacings. For o 4x greater
than 2.0 the &(a) curve deviates increasingly from the
straight line relationship. Because of this the wave propaga-
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FIG. 2. &Ax versus a dx: optimized fourth-order scheme;

——- standard sixth-order scheme; —-— standard fourth-order scheme;
—~ standard second-order scheme.

265

tion characteristics of the short wave components of the
finite difference equations would be very different from
those of the partial differential equations.

Figure 2 shows the & Ax versus « Ax relation for the
standard sixth-order (¥ = M = 3, a seven-point stencil} cen-
tral finite difference scheme. 1t 1s easy to see that the curve
starts to deviate from the linear relation § =« at ¢ Ax =1.0.
In other words, the standard scheme can provide adequate
approximation to waves with wave lengths longer than 6.5
mesh spacings. On comparing with the optimized fourth-
order scheme it is seen that the latter significantly improves
the resolution power of the computation at virtually no
additional effort and computing time. Shown in Fig. 2 also
are the & Ax versus & Ax curves for the standard second-
(three-point stencil) and fourth- (five-point stencil) order
central finite difference schemes. It is easy to find that they
give good approximations to the first derivative for ja dx|
up to 0.4 and 0.8, respectively. This means that they are
adequate to resolve waves with wave lengths longer than 16
and 8 mesh spacings, respectively. Thus the use of a high
order optimized scheme is necessary in problems involving
high frequency (short wave length) waves.

3. DISPERSION RELATIONS AND ASYMPTOTIC
SOLUTIONS OF THE LINEARIZED
EULER EQUATIONS

Consider small amplitude disturbances superimposed on
a uniform mean flow of density pg, pressure p, and velocity
e in the x-direction. The linearized Euler eguations for the
disturbances in two dimensions are

v o or_ "
8t dx oy 1)
where
P Pott+ pg pov
U=1" , E= ot + p/py ’ F= 0
B L Plpo
P g p+ypoti YPol

The nonhomogeneous term H on the right side of (3.1)
represents distributed unsteady sources.

The Fourier-Laplace transform of a function fi(x, y, t)
{denoted by /) and its inverse are related by:

o~

T b= [ ] s

X e ~ilex + By =) g gy dy (3.2)
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=] [ o perereen

-0

x dot df deo. (3.3)

In (3.3) the contour ["is a line parallel to the real axis in the
complex w-plane above all the poles and singularities of the
integrand.

The general initial value problem of (3.1) for arbitrary
northomogeneous source term H can be solved formally by
Fourier-Laplace transforms. On applying Fourier-Laplace
transforms to Equation (3.1) the equation for U becomes

AU=G, (3.4)
where
(w—aug) —por  —pof 0
A= 0 {0 —aup) 0 —a/pg (3.4a)
0 0  w—ouy —pipe
0 —YPo®  —ypef w—auy

and G =i(A+U,,,,/2n) represents the sum of the trans-
forms of the source term and the initial conditions. It is easy
to show that the eigenvalues 4; and eigenvectors X, (j=1,
2,3, 4) of matrix A are

A=A =(w—auy) (3.5)
{3.6)

(3.7}

Ay = (0 —outy) + ag{a® + p7)?

Ag = w—aug) — ag(a® + )7

1 0
X 0 ( g
1= ol X;= —y
0 Y (3.8)
— 1 = w 1 =
a a;
— o o
X,= Poao(a2+52)i/2 . Xo=| poaole® + ' |,
-8 B
pody(a® + p*)1? poaofa’ + p*)'*
- 1 - L 1 -

where ag = (ypo/po)"? is the speed of sound. The solution
of (3.4) may be expressed as a linear combination of the
eigenvectors:

<,

5_Cix .G
U= 7— 7 X2+A Xy + 71X, (3.9)
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The coefficient vector C, having elements C, (j=1to 4), is
given by

C=X"1G. (3.10)
X ! is the inverse of the fundamental matrix
— 1
1 0 0 ——Eﬁ
ay
__k _r
i | @R @+ ) .
ﬁi Poldo _1 Poay B l ’
2 (az + ﬁ2)~1,’2 2 (az +B2)1,’2 2
0 1 Poldp l Polof i
L 22+ B 247 2 -
3.11)

(3.9) represents the decomposition of the solution into the
entropy wave, X,, the vorticity wave, X,, and the two
modes of acoustic waves, X, and X,

According to standard wave propagation theory, e.g.,
Ref. [107 the dispersion relations of the waves governed by
Eq.{3.4} are given by the zeros of the determinant A.
However, the determinant A is zero whenever w, %, and f§
are so related that any one of the eigenvalues 4, (j=1, 2, 3,
4) is equal to zero. Thus the dispersion relations of the
waves of the linearized Euler equatlons can be found by
setting the eigenvalues to zero.

3.1. The Entropy Wave

The entropy wave consists of density fluctuations alone,
ie., u=v= p=0 The dispersion relation is given by the
poles of (3.9) in the transform planes or

A= (w—auy)=0. (3.12)

By inverting the Fourier-Laplace transform, it is straight-
forward to find that p is given by

pix, y, ‘)=L£(:(T—q;70)8
x da df do.

ifax + fy — wi)

(3.13)

For large time, 1 = oo, the threefold integrals of (3.13) can
be evaluated formally {see Appendix A). If the source has a
finite duration the formal solution has the form

x(x—uyt, y), X—mw

pM%U=%

Thus the entropy wave is convected downstream by the
uniform mean flow without distortion,

(3.14)

X = —C0.
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3.2. The Vorticity Wave

The vorticity wave consists of velocity fluctuations alone.
That is, there are no pressure and density fluctuations
associated with this wave mode (p = p = (). The dispersion
relation is given by

Ar=(w—oaug)=0 (3.15)
which is identical to that of the entropy wave. Therefore,
the vorticity wave has the same wave propagation charac-
teristics as the entropy wave. By inverting the Fourier-
Laplace transforms it is easy to find that for large time the
formal solution has the form

ay
u(xsys!): E, T

0, X = —

— o (3.16)
vo(x, y, t)=< dx ' e

0, X = —m,

where | =y (x — uyt, »).

3.3. The Acoustic Wave

The acoustic waves involve fluctuations in all the physical
variables. The dispersion relation is given by
Ayhg= (0 —aug)’ —aj(a’ + B7)=0. (3.17)
The formal solution can be found by inverting the
Fourier-Laplace transforms. In the far field, that is, in
regions away from the sources, the inversion integrals can
be evaluated by the method of residues and the method of
stationary phase (see Appendix A). The asymptotic solution

{r — oo; r and @ are the polar coordinates) may be written
in the form

- 1 7]
P aﬁ
()
i Fr/V(0)—1, 0
) VO =1 6) (r”?z ) podo | +O(r 3, (3.18)
(8)
P Podo
1
where
V(8)=ug cos 8+ ag(1 — M ? sin® §)'/%; M =uy/a,

cos 8 — M(1 — M?sin” 8)'7?
(1 —M?sin? )2 — M cos

6(0) =sin O{(1 — M ?sin? 8)" 4+ M cos 07;

4(f8) =
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V(0) is the effective velocity of propagation in the
#-direction.

4. OPTIMIZED TIME DISCRETIZATION

In this paper the primary interest is on developing an
explicit time marching scheme. However, the procedure
formulated below may also be used to develop implicit time
marching schemes.

The linearized Euler equations (3.1) provide the time
derivatives of U. Suppose the solution is known up to a time
level t =n 4. To advance to the next time step a four-level
finite difference approximation in the form

3 {n—j}
U U™ ar y bj(@) (4.1)
i=0

dt

is proposed. To ensure that the scheme is consistent, three
of the four coefficients b; (=1, 2, 3} will be chosen so that
(4.1) is satisfied to order (4¢)° when both sides are expanded
by Taylor series. This leaves one free parameter b,. The
relations between the other coefficients and b, are

bl—_——3b0+%, b2=3b0_%s b3=_b0+%‘32_ (4'2)

The remaining coefficient b, will now be determined by
requiring that the Laplace transform of the above finite
difference scheme (4.1} be a good approximation of that of
the partial derivative.

The finite difference equation (4.1) is a special case of the
difference equation in which ¢ is a continuous variable,

Ut 4+ Aey—U(r) =~ At i

i=0

d .. .
by Uli —j Aoy

(4.3)
(4.3) is identical to (4.1) if ¢ is set equal to n 4r. Tt will be
assumed for the time being that U satisfies the following
trivial initial conditions, ie.,

U{r)=0,

t< AL, (4.4)

The appropriate nonzero initial conditions for the time
marching finite difference scheme will be discussed later.

By applying the Laplace transform to (4.3) it is casy to
obtain

&
dt’

I-(e—imdr _ 1)

. T T 45
YA, et (*>)

~

where represents the Laplace transform. The Laplace
transform of the time derivative of U, ie., the right side of
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(4.5), is, however, equal to —iwU. Thus by comparing the
two sides of (4.5) the quantity

I'(e—iwd.!_ l)

215 b )

(I):

is the effective angular {requency of the time discretization
scheme (4.1). The weighted integral error, £, incurred by
using @ to approximate ¢ will be defined by

0.5
E, =f {o[Re(@ At —w 41))2 + (1 — a)
0.5

x [Im{@ 4t — w0 41)]} d(w A1), (4.7)

where ¢ is the weight on the real part. The value b, is chosen
to minimize E,. It is the root of the equation

dE, _

. (4.8)

As an example, if a weight ¢ =036 is used (4.8) gives
bo=12.30255809. From (4.2) the other coefficients are

b, = —2.49100760,
b, = —0.38589142.

b, =1.57434093,
(4.9)

The weight ¢ allows one to adjust the degree of emphasis
one wishes 1o impose on the optimization process in favor
of having better wave propagation characteristics (real part
of @) or damping characteristics (imaginary part of @). The
value o =0.36 appears to be a well-balanced choice.

The relationship between @ and  is not one to one. This
means that the finite difference marching scheme (4.1) will
contain spurious numerical solutions. It is easy to see that
for a given @ 4 there are four values of w 4¢ which satisfy
(4.6). Figures (3a) and (3b) show the dependence of the real
and imaginary parts of these roots on @ Az over the range
0< @ 4t <n using the coefficients of (4.9). For negative
values of @ the values of @w may be found by the extension
formula

w(—o)=—w*a) (4.10)
(* indicates the complex conjugate} which is implicit in
(4.6). It is to be noted that three of the roots have negative
imaginary parts over the entire range of @ At shown. The
fourth root has negative imaginary part only for & A4¢ < 0.4.
For larger values of & 4¢ the imaginary part of this root
becomes positive. It will be shown later that this spurious
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FIG. 3. The dependence of the four roots of w Aron @ 4t (6 =0.36):
(a) real parts; (b) imaginary parts.

root could cause numerical instability if too large a time step
is used.

A closer examination of Fig. 3 reveals that only the root
with nearly zero imaginary part gives a good approximation
to the desired straightline relation @ = over a limited
range of @ At (w Ar < 0.6; note the optimized range in (4.7)
has accordingly been chosen to be from —0.5 to 0.5).
To ensure that the dispersion relation of the wave modes
supported by the finite difference scheme are close approxi-
mations of the corresponding wave modes of the Euler
equations, the values of w A in the entire computation must
be restricted to the range of —0.6 to 0.6.

5. STABILITY OF DISPERSION-RELATION-
PRESERVING SCHEMES

It will now be shown that by applying the optimized spa-
tial discretization scheme of Section 2 and the optimized
time discretization scheme of Section 4 to the linearized
Euler equations (3.1) a DRP finite difference scheme is
obtained. Let the x — p plane be divided into a mesh of
spacings 4x and A4y in the x and y directions, respectively.
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It is easy to find that the discretized form of (3.1) is (for the
N=M =73 case)

1 3

—_— (n)

Ax Z ajEl+j,m
X2

] 3
_ij=_3

()
Kl,m_ -

a;F)  +HP)

Lom+j

(5.1

3
(r+ 1) — rin) (n =)
U =u,+ 4t Y bKy T,

J=0

(5.2)

where /, m are the indices of the mesh points and #n is the
time level. If U = U,,;,;,, at ¢ =10 is the initial conditions for
the Euler equations, the appropnate initial conditions for
the finite difference marching scheme (5.1)-(5.2) is

U =Uia, U =0for negative n. (5.3}
To find the dispersion relations of the above finite difference
scheme consider the generalized form of these equations
with continuous variables. The complete problem consists
of the following equations and initial conditions:

1 3
Kix,y, )= — e Y aE(x+jdx,p,1)
ji=-3
1 3
_A_y Z ajF(x9y+jAyst)
j=-3
+ H(x, y, 1)

Ulx, y, 1+ A1) = U(x, y, 1)

(5.4)

3

+ At 2 bKix, y, t—j4r)
j=0

Uininar(x, ), Or<d:

0, t<0.

(5.5)

U(x, y, t)={ (5.6)

Now by taking the Fourier-Laplace transforms of
difference equations (5.4) and (5.5} it is straightforward to
find after using initial conditions (5.6} that the equation for
the transform of U denoted by U is

Pt
]
Il

&

(5.7}

where G = i(H + (@/2nw) U, )- Here an overbar is used
to denote the variables and parameters associated with the
finite difference equations, This is to distinguish them from
those of the original partial differential equations. The coef-
ficient matrix A of {5.7) is the same as that of Eq. (3.4),
provided the transform variabies «, 8, and w in (3.4a) are
replaced by &, f, and @, respectively. &, f§, and @ are the
effecttve wave numbers and frequency of the difference
scheme given by (2.5) and (4.6). It will be shown below that
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it is possible to choose At so that the finite difference
marching scheme of (5.1) and {5.2) will always operate in
the range of w At for which @ ~ w as discussed at the end of
Section 4. Also if only disturbances with wave lengths
longer than or equal to § 4x or 5 Ay, whichever is the larger,
are considered, the wave numbers of the finite difference
scheme are equal to those of the Fourter transforms, ic.,
&~aand f ~ B. Thus (5.7), to the numerical accuracy con-
sidered, 1s identical to the transform of the Euler equations
{3.4). The matrices A and A, being equal, would have the
same eigenvaiues and eigenvectors. In other words, other
than the spurious numerical waves contained in them, finite
difference equations (5.1} and (5.2} support the same
entropy, vorticity, and acoustic waves as the linearized
Euler equations (3.1). The dispersion relations of these
waves are identical, guaranteeing that the computed wave
speeds and other wave propagation characteristics including
isotropy and nondispersiveness are the same as those of the
original partial differential equations. For this reason the
finite difference scheme (5.1)-(5.2) will be referred to as a
DRP scheme.

To implement the DRP scheme of (5.1)-(5.2) the size of
the time step 4¢ must be chosen small enough to aveid
numerical instability. To establish a criterion for deter-
mining such a 4¢ consider the pressure field of the finite
difference equations (5.4) and (5.5). It is given by the sum
of the fourth components of the two acoustic wave vectors
of the solution of (5.7) (see (3.9) for their counterparts for
the linearized Euler equations). By inverting the Fourier—
Laplace transforms it is easy to find

_ «© f[Poag&éz‘*'B(:;s“"(@_&”o)éd
e A

X By =00 gy g deo, (5.8)

where a(2), f(B), and @(w) and its inverse w = w(®) are
given by (2.5) and (4.6). From the theory of Laplace
transform it is well known that for large ¢ the dominant
contribution to the w-integral comes from the residue of the
pole of the integrand which has the largest imaginary part
in the complex w-plane. In (5.8) the pole corresponding to
the outgoing acoustic wave is given implicitly by

@(w) = a(a) uy + ao(&*(a) + f7(B))'>. (59)

As has been discussed in Section 4 for a given & there are
four values of w. Thus there are four wave solutions
associated with the & pole of (5.9), three of which are
spurious. Let the roots be denoted by w, (k =1, 2, 3, 4) with
@, corresponding to the physical acoustic wave. On
completing the contour in the lower haif e-plane by a large
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semi-circle, by the residue theorem, the pressure field given
by (5.8) becomes

p(x1y='{)= Z _(27”)
Xl:ﬂ'w i[poag&éz+ﬁé3+(a‘)—u0&) 54]

2D — gy ) 0

—oo =y

xei{nt.t+ﬂ_v) dCZ dﬁ:| e—!wkf' (510)

To obtain numerical stability a sufficient condition is

Im{w,) <0, k=1,2,3,4 (5.11)
It is to be noted from Fig. 1 that for arbitrary values of o

and § the inequalities

@Ax<175, BAy<1.75 (5.12)
hold true. Substitution of (5.12} into (5.9) and upon multi-

plying by At it is found that

L. Ax\2\ 172
& At < 75“°[M+(1+(—x)) ]m, (5.13)
Ax Ay

where M =uy/a, is the mean flow Mach number. From
Fig. 3 it 1s clear that if |@ A4¢| is less than 0.4 then all the
roots of w,, especially the spurious roots, are damped.
Therefore to ensure numerical stability it is sufficient by
(5.13) to restrict A7 to less than Ar,,, where 4¢.,,, is given
by

At = 04 A
T LISIM + (1 + (Ax/4y)Y) 2] ay

(5.14)

Similar analysis for the entropy and the vorticity wave
modes of the finite difference scheme vields the criterion for
numerical stability

04 dx

At < ————;
L75M a,

(5.15)

{5.14) is a more stringent condition than (5.13). Therefore,
for Ar< dt,,, the DRP scheme would be numerically
stable.

6. NUMERICAL DAMPING

The time discretization scheme discussed in Section 4 not
only introduces spurious numerical solutions but also
numerical damping of the physical waves in the computa-
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tion. For accurate acoustic prediction numerical damping is
most undesirable. It turns out that the amount of damping
depends on the size of the time step, 4, used. Here a discus-
sion of how to control the effect of numerical damping by
the proper selection of At is provided.

It can be seen in Fig. 3b that within the numerically stable
range of the DRP scheme (& 4¢ < 0.4) the physical wave
solution (the one with ¢ ~ w) has a small imaginary part.
By (5.10) this wili lead to a time damping factor of the form
expl(w;?), where ¢ is the lapsed time and w, is the imaginary
part of @, (the root which yields the physical solution).
The vaiue of w, 4¢ given by the finite difference scheme
is a strong function of @ As. This relationship may be
represented by the equation

—w,; dt= Q(@ 4r). (6.1)
Figure 4 shows a typical graph of the function Q(@® 4¢) for
the case ¢ = 0.36. The prominent feature of this graph is the
steep gradient implying a large change in w, 4t for a
relatively small change in & 4t

Suppose the distance between the acoustic sources and
the computational boundary is N 4x, where N is the num-
ber of mesh spacings. The time needed for acoustic waves to
propagate to the edge of the computation domain against
a mean flow n, is N Ax/{a,—u,). The total damping
introduced by the finite difference scheme during this period
of time is, therefore, equal o

10

1 =
EREA |

—a it

=7

0.05 0.10 0.15 020 025
wit

0.30

FIG. 4. Numerical damping as a function of frequency
Eq. (6.1} with 6 = 0.36; ——— Eq. (6.5) with Ax= 4y, M =0.5, N = 100, and
4=035.
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where M =u,/a, is the flow Mach number. Assume that a
degradation of 4 dB (A may be 0.5, 1, or more, depending
on the problem) of the computed acoustic wave solution
due to numerical damping is acceptable. Then the maxi-
mum value of w; allowed is given by the equation

w,N dx
: — =104 6.2
“p[UAM) ao] (62)
The natural logarithm of (6.2) yields
N A A
22X 2 h(10). (6.3)

(1— M) aq 20

Since the amount of damping depends strongly on the fre-
quency of the wave, to preserveé the quality of the computed
acoustic waves it is sufficient that {6.3) is true for the highest
frequency encountered in the finite difference computation.
The highest computed frequency of the DRP scheme is
given by Eq. (5.13), ie.,

AN\ Y2 g At
pAr=175| M 1 — .
@ [ +( +(Ay)) ] Ax
By eliminating Ax/a, from (6.3) and (6.4) it is easy to find

I 172
aar-13s [+ (1+(22)) "]
Ay

0 N
DN An,
X 4 in(10) 1=z (@40

(64)

(6.5)

The two equations (6.1} and (6.2) may be solved
simultaneously for @ 4¢ and (—w, 4r), the highest fre-
quency and damping rate of the DRP scheme. This can
easily be done graphically by finding the intersection of the
two graphs as illustrated in Fig. 4. In this figure the numeri-
cal values of the various parameters arc taken to be
Ax=dy, M=05 N=100, 4=0.5.

Let the value of @ A¢ found in this way be € (2 ~0.19 in
Fig. 4). Then on eliminating & 4¢ in {6.4) the size of the time
step At sufficient to meet the numerical damping criterion is
given by

_ 2 Ax
TLTS[M 4+ (1 + (Ax/40)H) ] ay

At (6.6)

In the numerical simulations to be discussed later in
Section 8 it is found that (6.6) is a more stringent criterion
than that required for numerical stability (Eq. (5.14)). In
other words to avoid excessive numerical damping a small
time step is needed.
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7. RADIATION AND OUTFLOW
BOUNDARY CONDITIONS

Many interesting acoustic problems are exterior
problems. To simulate this class of problems it is necessary
to impose radiation and outflow boundary conditions at the
edges of the finite computation domain. To ensure that
the computed solutions are of high qualty these boundary
conditions must be sufficiently transparent to the outgoing
disturbances so that they exit the computation domain
without significant reflections. As discussed in Section 3 the
linearized Euler equations can support three types of waves.
Thus, in general, the outgoing disturbances would contain
a combination of acoustic, entropy, and vorticity waves,
each having distinct wave propagation characteristics. In
this section a set of radiation and outflow boundary condi-
tions compatible with the DRP scheme will be developed.
The effectiveness of these boundary conditions will be tested
in the next section.

Consider the exterior problem involving a uniform flow
of velocity 1, and sound speed a, past some arbitrary
acoustic, vorticity, and entropy sources as shown in Fig. 5.
It will be assumed that the boundaries of the computation
domain are quite far from the sources. From the analysis of
Section 3 it is clear that at the outflow. boundary on the
right of Fig. 5 the outgoing disturbances would, in general,
contain a superposition of acoustic, entropy, and vorticity
waves. On the other hand, at the top and bottom bound-
aries, as well as the left inflow boundary of the computation
domain, the outgoing disturbances consist of only acoustic
waves. Now that the boundaries are far from the sources,
the outgoing waves in the regions close to boundaries are,
therefore, given by the asymptotic solutions of the DRP

acoustic
waves

0%

u sources
outgoing
vorticity
and
entropy
WavEes

S

FIG. 5. Acoustic, vorticity, and entropy wave sources in a uniform
flow.
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scheme (5.1) and (5.2) or the more general finite difference
equations (5.4) and (5.3). The importance of using the
asymptotic solutions of the finite difference equations to
develop radiation boundary conditions has recently been
pointed out by the present authors [21]. However, in the
useful range of the wave numbers the DRP scheme and the
partial differential equations have (almost) identical disper-
sion relations so that they have the same asymptotic solu-
tions. These solutions are given by (3.14), (3.10), and (3.18).
A set of radiation and outflow boundary conditions will
now be constructed from these asymptotic solutions.

7.1. Radiation Boundary Conditions

At boundaries where there are only outgoing acoustic
waves the solution is given by (3.18} which may be rewritten
in the form

— i -
2
a,
p Pa -
w0}
u u, Frivi®y—1,0 ~
» = » =Laﬁ§—) Lol +O(r 3;'2),
‘ o(6)
p Pa
Podp
1
o - (7.1)

where V{0)=a,[ M cos &+ (1 — M?sin? §)'*]. The sub-
script “a” in (p,, u,, v, P,) above indicates that the
disturbances are associated with the acoustic waves alone.
By taking the time {7) and r derivatives of (7.1} it is straight-
forward to find that for arbitrary function F the acoustic

disturbances satisfy the equations

P

Lo 8 1\|u
_ 4 — ={ =32y, 7.2
(V(9)5t+8r+2r) o [70FOUTT 02)

P

(7.2) is the sought after radiation boundary condition.

7.2, Qutflow Boundary Conditions

At the outflow region the outgoing disturbances, in
general, consist of a combination of acoustic, entropy, and
vorticity waves. Thus by means of the asymptotic solutions
of (3.14), (3.16), and (3.18) the density, velecity, and
pressure fluctuations are given by

X(x—'uofa}’)"'ﬁ'a —|

J
_Kb (x—ugt, yy+u,
ay

- + e, (13)

fa~ T -~ =
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where the explicit form of (p,, u,, v,, p,) may be found in
(7.1). The functions y, , and F are entirely arbitrary. It is
observed that the total pressure fluctuation comes only
from the acoustic component of the outgoing disturbances.
Thus the appropriate outflow boundary condition for p
is the same as that of (7.2). On writing out in Cartesian
coordinates it is

1 2 ) )
—£+cos 9—p+sm6—p+£—=0,
dx dy

¥(8) o 2r (7.4)

where 0§ is the angular coordinate of the boundary point.
By differentiating the expression for p in (7.3) with respect
to r and x the following gquation is found:

0pa
Ugy ax R

a_p+u gg—ap“
ot Yax  ar

(7.5)

But p,=p.fai=p/aj and p is known from (74). By
eliminating p, the outflow boundary condition for p
becomes
ap dp 1 /dp ap
- —=—=="4uy=—|- 7.6
ar T oy aé(at Ho 6x) (7:6)
Similarly by differentiating the expressions of « and v in
(7.3) it is easy to find

Ju ou  ou Ju

Ay =By gy e 7.7
o e T o T (77)
dv Juv dv v

Lo Z= Ty g S 78
ot o dx Ot tia ox (7:8)

However, the acoustic component satisfies the momentum
equations of the (linearized) Euler equations, i.e.,

1 dp, la_p

=P 7.9
ar 1 ax po Ox Po Ox (79)
ov ov 1 dp 1 ap
e o —He_ T 7.1
a T Ty peay U0

Upon eliminating #, and v, from (7.7) and (7.8) by (7.9) and
(7.10) the outflow boundary conditions for the velocity
components may be written as

ou du 1 ép
5t+u°6x__poa (7.11)
o dv 1 dp
at+u°6x_ Tondy (7.12)
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In summary, the outflow boundary conditions are

ép dg 1 [dp Bp)
6t+u°6x_a§(6t+u°5x
., wu_ 1
ot Max Po 0x
(7.13)
o o1
o ek 2o 0¥
1 dp 4 ap P
— L cos0L LA
vy o e T Ty

7.3. Implementation of Radiation and Outflow boundary
Conditions

The central difference scheme for approximating spatial
derivatives introduced in Section 2 invariably gives rise to
ghost peints at the boundary of the computation domain.
For a seven-point stencil three ghost points are created. To
advance the entire computation to the next time level, a way
to calculate the unknowns at the ghost points must be
specified. Here it is suggested that this is done using the
radiation or outflow boundary conditions.

Figure 6 shows the upper right-hand corner of the com-
putation domain. Three columns or rows of ghost points are
added to form a boundary region surrounding the original
computation domain. For grid points inside and on the
boundary of the interior region the DRP scheme of (5.1)
and (5.2) is used to advance the calculation of the unknowns

!

&
€

Interior region Boundary

| It
I I

region
] |

FIG. 6. The interior and boundary regions of the computation
domain. Also shown are typical stencils for interior points (A) and
boundary or ghost points (B).

273

to the next time level. In the boundary region it will be
assumed that the solution is made up of outgoing disturban-
ces satisfying the radiation or outflow boundary conditions
of (7.2) or (7.13). The time derivatives of these equations are
discretized in the same manner as described in Section 4.
With the same time marching scheme all the unknowns in
the boundary as well as the interior regions can be advanced
simultaneously. To approximate spatial derivatives sym-
metric spatial stencils are not always possible for the points
in this region. Optimized backward differences (involving
seven points) are to be used whenever necessary. An exam-
ple of such a backward difference stencil is illustrated by
that of the corner point “8” in Fig. 6. In the boundary
region the domain of dependence of the outgoing waves is
consistent with that of the backward difference approxima-
tions. Unlike the use of unsymmetric stencil at interior
points, where waves may propagate in any direction, no
numerical instability would be created unless there are
strong reflections of waves back into the interior.

8. DIRECT NUMERICAL SIMULATIONS

To test the effectiveness of the DRP schemes and inde-
pendently the radiation and outflow boundary conditions of
Section 7, a sequence of direct numerical simulations has
been carried out. As a part of this effort three exact solutions
of the linearized Euler equations have also been developed.
These solutions are reported in Appendix B. The first solu-
tion involves an initial axisymmetric pressure pulse. When
released at time ¢ =90 an acoustic pulse is generated. The
wave front of the acoustic pulse expands radially. But
because of the mean flow the whole wave pattern is being
convected downstream at the same time. The other two
solutions involve initial distributions of vorticity and
density inhomogeneties. These vorticity and density pulses
are convected downstream by the mean flow without any
distortion. These exact solutions will be used to compare
with the numerical solutions. They provide a standard
for measuring the accuracy and quality of the computed
solutions.

Due to space limitation only the results of one special
simulation involving all three types of disturbances will
be described in detail here. Some general resuits observed in
other simulations will, however, be briefly discussed. In the
special simulation an acoustic pulse is generated by an
initial Gaussian pressure distribution at the center of the
computation domain. The mean flow Mach number is taken
to be 0.5. Downstream of the pressure pulse at a distance
equal to § of the length of the computation domain a vor-
ticity pulse and an entropy pulse (also with Gaussian dis-
tribution) are generated at the same time. Since the acoustic
pulse travels three times faster than the vorticity and
entropy pulses in the downstream direction, this arrange-
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ment ensures that all the three pulses reach the outflow
boundary simultaneously. In this way it is possible to obtain
a critical test of the effectiveness of the radiation as well as
the outflow boundary conditions in a single simulation.

In the simulation the variables are nondimensionalized
by the following scales:

length scale = 4x = Ay
velocity scale = a,
time scale = Ax/a,
density scale = p,

pressure scale = pya2.

The computation domain is divided into a 200 x 200 mesh.
The parameters of the initiai pressure, vorticity, and
entropy pulses are (see Appendix B):

pressure pulse amplitude g, = 0.01,
half-width = 3.0
entropy pulse amplitude &, = 0.001,

half-width=5.0

vorticity pulse amplitude &, = 0.0004,
half-width = 5.0.

The computer code in this work is written for the full Euler
equations. However, the disturbance amplitudes have been
chosen to be relatively small so that the numerical solutions

may be compared with the exact solution of the linearized -

cguations.

The results of the special simulation wiil now be pre-
sented. Figure 7a shows the density contours of the acoustic
pulse at the center of the computation domain and the
entropy pulse downstream at time ¢ = 0. The vorticity pulse
has no density fluctuations and therefore, cannot be seen in
this figure. Figure 7b shows the computed density contours
after 500 time steps (4¢ = 0.0569). At this time the radius of
the acoustic pulse has expanded considerably while that of
the entropy pulse remains the same. The centers of the two
pulses have moved downstream by an equal distance.
Figure 7c shows the locations of the two pulses at 1000 time
steps. The acoustic pulse has now caught up with the
entropy pulse. At a slightly later time the density contours
of the pulses merge and exit the outflow boundary together.
Based on the 1% contour plot no noticeable reflections
have been observed, indicating that the outflow boundary
condition is transparent. At a still later time the acoustic
pulse reaches and leaves the computation domain through
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the top and bottom boundaries. Again little or no reflections
can be found (to 1% of the incident wave amplitude). This
is shown in Figure 7d. Finally at 3200 time steps the
acoustic wave front reaches the inflow boundary on the left.
The pulse exits the computation domain again with little
observable reflections.

Figure 8a shows the pressure contours of the acoustic
pulse at 500 time steps in the simulation. Since both the
entropy pulse and the vorticity pulse contain no pressure
fluctuations they are not seen in this figure. Figure 8b gives
the pressure contours at 1250 time steps. At this time, part
of the acoustic puise has already left the outflow boundary.
Once more no noticeable reflections can be detected. As the
simulations goes on, the pressure contours leave the top
and bottom boundaries and then the left boundary. The
radiation boundary conditions imposed in these regions
appear to be very effective. Little reflections are observed.

Figure 9a shows the contours of the magnitude of the
velocity fluctuations (or speed) at 500 time steps. The center
circles are those of the acoustic pulse. The circles to the right
are contours associated with the vorticity pulse. The con-
tours are constructed by interpolation between mesh points.
To the accuracy allowed by this procedure the expanding
circles are, indeed, circular so that the computed acoustic
wave speed is the same in all directions. Figure 9b gives the
speed contours at 1500 time steps. At this time the main part
of the acoustic pulse has already left the outflow boundary.
The vorticity pulse, having a slower velocity, has, however,
not completely left the right boundary. A smail piece of it
can still be seen just at the outflow boundary. In this figure
the 1% contour exhibits some minor wiggles. A closer
examination of the computed data indicates that they
are generated by the graphic program and not by the
simulation.

The computed density waveform along the x-axis at 500
time steps is given in Fig. 10a. Shown by the dotted line is
the exact solution. The exact and computed waveforms are
clearly almost identical. Figure 10b provides both the
computed and the exact waveforms at 1000 time steps when
the acoustic pulse has caught up with the entropy pulse.
Again there is good agreement between the two waveforms.
Figures 11a and 11b provide comparisons between the com-
puted and the exact pressure waveforms at 500 and 1150
time steps. It is evident that the agreements are good. Exten-
sive comparisons between the computed density, pressure,
and velocity waveforms have been carried out at different
directions of propagation up to 4500 time steps when nearly
all the disturbances have exited the computation domain,
Good agreements are found regardless of the direction of
wave propagation. Such good agreements are maintained in
time up to the termination of the simulation.

In addition to the simulation described in detail above,
several series of simulations using more than one acoustic
pulse generated at various locations of the computation
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domain have been carried out. Good agreements are again
found when compared with the exact solutions of the
linearized Euler equations. This is true as long as the
predominant part of the wave spectrum has wave numbers
o and § such that 2 Ax and § Ay are both less than 1.4.
Overall, the results of all the simulations strongly suggest

that the DRP scheme can be relied on to yield accurate
results when used to simulate isotropic, nondispersive, and
nondissipative acoustic, vorticity, and entropy waves.
Furthermore, the scheme can be expected to reproduce the
wave speeds correctly.

It is important to point out that the radiation boundary
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conditions (7.2) and the outflow boundary conditions (7.13)
depend on the angle 8. If the boundaries are far from the
source then the exact location of the source is not impor-
tant. But if the source is close to a boundary the effectiveness
of these boundary conditions would deteriorate as the direc-

tion of wave propagation is in error. An extensive series of
tests involving an acoustic source put closer and closer to
the boundaries have been carried out. The radiation bound-
ary conditions appear to perform quite well even when the
center of the acoustic pulse is at 20 mesh points away from
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the boundary. The reflected wave amplitude is generally
less than 2% of the incident wave amplitude. The outflow
boundary conditions, on the other hand, have been
observed to cause a moderate level of reflection; 15% for
acoustic pulse initiated at 20 mesh points away. This is

exact solution;
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true with or without mean flow. Recall that the radiation
and outllow boundary conditions were developed from
asymptotic solutions; the degradation of the effectiveness
of the boundary conditions for sources located close to a
boundary should, therefore, be expected.
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9. DISCUSSION

The central idea of this paper is that a time marching high
order finite difference scheme can faithfully reproduce the
three types of waves, namely the acoustic, vorticity, and
entropy waves, of the linearized Euler equations if the
dispersion relations of the finite difference scheme are the
same as those of the partial differential equations. A way
to construct such a DRP scheme is proposed. The major
restriction appears to be that the dispersion relations can
be preserved only for waves with wave lengths longer than
four or five mesh spacings.

In the past, the importance of the dispersion relations of
finite difference schemes has been recognized by a number of
investigators, e.g., Vichnevetsky and coworkers [22, 23]
and Trefethen [24]. Through the use of the dispersion rela-
tion these authors were able to predict the group and phase
velocities of the computed wave solutions. In developing
the dispersion relation of a finite difference equation they
followed the elementary plane wave method commonly
used in wave propagation theory [10]. This way of obtain-
ing the dispersion relation is simple and conventent. In this
paper the method of Fourier-Laplace transforms is used
instead. Although it is slightly more complicated, the trans-
form method, however, offers a number of significant
advantages. Most important of all, it provides a way to
investigate possible numerical instabilities inherent in the
finite difference scheme. In addition the transform method
can be used to construct asymptotic solutions of the finite
difference equations. This possibility has recently been
exploited by the present authors in investigating the effect
of numerical dispersion on finite difference solutions of
propeller noise problems [25] and in constructing non-
reflective boundary conditions for the Helmholtz equation
[21]. Here the asymptotic solutions are used to develop
radiation and outflow boundary conditions for the DRP
scheme. The effectiveness of these radiation and outflow
boundary conditions has been confirmed by direct numeri-
cal simulations.

Traditional finite difference schemes for approximating
the derivative of a function are often constructed by the
truncated Taylor series method. In this work this standard
method is not used. Instead the finite difference scheme is
constructed by optimizing the approximation in the wave
number and frequency space. Lele [26] in his work on
compact finite difference schemes gave very detailed com-
parisons of the accuracies of the compact schemes, the
standard schemes, and modified versions of the optimized
scheme in approximating the spatial derivatives in wave
number space. He showed that a pentadiagonal compact
scheme can give accurate approximation for values of a Ax
as large as 2.5. This is very attractive. Unfortunately, the
computation time needed to implement the compact scheme
is of an order of magnitude more than the simple optimized
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scheme discussed and used in this investigation. Also the
compact scheme, together with the Runge-Kutta time
marching method employed by Lele, is not dispersion
relation preserving. There is, thercfore, no guarantee that
the waves as computed by such an elaborate scheme would
propagate with the correct wave speeds.

One point that should be emphasized is that wave
propagation involves the interplay between space and time.
To be able to compute a wave solution aceurately it is not
sufficient to have good approximation of the spatial
derivatives alone or of the time derivatives alone. Both must
be well approximated in a related way as dictated by the
dispersion relations of the original partial differential
equations. If this is not done correctly the wave modes
may become numerically coupled. When this happens the
numerical solutions are liable to yield misleading results.

Finally, in this paper, for simplicity, most of the analyses
have been carried out in two dimensions. All the results
are, however, extendable to three dimensions in a straight-
forward manner. In three dimensions there are two linearly
independent vorticity waves so that the linearized Euler
equations support a total of five wave modes. Efforts are
currently underway to test the applicability of the present
computation scheme to the fully nonlinear Euler equations.
It is believed that with suitable modifications the DRP
scheme can provide high quality noalinear wave solutions.

APPENDIX A: ASYMPTOTIC SOLUTIONS

Al, Entropy Waves
The entropy wave solution is given by Eq. (3.13). As

- noted before the contour I lies in the upper half w-plane

above all poles and singularities of the integrand. Thus
the value @ in the denominator of (3.13) has a positive
imaginary part. For large [x| the contribution to the
a-integrand comes mainly from the poles of the integrand.
In this case the pole is given by the zeros of the dispersion
relation, i.e., « = w/u,. The pole lies in the upper half «-plane
as shown in Fig. 12. Now the x-integral can be evaluated by
adding a large semi-circle in the upper (lower) half «-plane
for x greater (less) than zero. Upon using the residue
theorem it is easy to find

J- J-w 2niC, i/ — ) + ify dg dw,
r — Uy

L 1)~ e
pix, ¥, 1) ‘o o

0, X — —a0,

or in a more convenient form,

X(x_u()ta.y)r
s W ty=
plx, ¥, 1) {0’ X —0,

X — 00 (A1)
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im{a)
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£ Refe)

FIG. 12. Inversion contours and pole in the complex a-plane.

where the function y depends on the initial conditions and
the source distributions,

A2, Vorticity Waves

The vorticity wave solution can be found by inverting the
Fourier-Laplace transforms of the second vector of (3.9).
That is,

Ulx, y, 1) = L ﬂm ¢y,

—eo € — Dy

x e+ B0 dy g oo, (A2)

Since the first and last elements of X, are zero, there is no
density or pressure fluctuation associated with the vorticity
waves. The poles of the above a-integral are the same as
those of the entropy waves. The integral can, therefore, be
evaluated in the same manner yielding

o
u(x,y, t)= 5, xo e
0, X = —o0
(A3)
o
o(x, y, )=4{ obx T
0, X — —oo,

where iy = (x —ugt, »).

Al. Acoustic Waves

The acoustic wave solution can be obtained by inverting
the Fourier-Laplace transforms of the last two vectors of
(3.9). On writing out in full the formal solution becomes

581/10%2-6
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[ﬂ] _ L ﬂ"“; poad(aGy + BGs) + (w —aug) G,

P - (@0 —aup)® — aj(e’ + )
1
x| a2 [ e B e duy dp de (A4)
1
u [= 8]
HENE
fo = auo) Gy + BGy )@’ + ) + Galpo
(w —auy)® — aj(e® + p*)
X [;] =T+ BY =) gy (A doy (AS)

Now the integrals of (A4) will be evaluated in the limit
(x*+ y?) > o0. The B integral will be evaluated first. The
poles in the fi-plane are at §, which are given by

_ 29172
g+=if[a2—(ﬁ—f@} : (A6)
+ P
The branch cuts of the above square root function in the
#-plane are taken to be

_ 27172
_ggarg[dz_(&ﬂ‘i} gg, (A7)

2
Q0

where the left (right) equality sign is to be used when @ is
real and positive (negative). The branch cut configuration
and the position of the inverse ¢-contour are shown in
Fig. 13. This configuration is valid regardless of whether @
is real and positive or negative. In the f-plane the integrand
of (A4} has a simple pole at £, in the upper half plane and

imfe)

inversion contour

FIG. 13. The branch cut configuration and inversion contour in the
complex a-plane.
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a simple pole at §_ in the lower hall plane (see Fig. 14). For
y>0 (y<0) the inversion contour may be closed in the
upper {lower) half planc by adding a large semi-circle as
shown. By invoking the residue theorem, the expressions for
p and p simplify to

P ] ., =
= G, +B.G
[p] U_Mm [poad(aC, + 5. Gy)
1
+(wgauo)é4] 'a_g Pl bl —iwt g g (A8)
1

In (A8) r and @ are the polar coordinates and @ = a cos 6 +
i[a? — (@ — auy)?faj]"* sin 6.

In the far field, where r — a0, the a-integral of (A8) can be
evaluated by the method of stationary phase. A straight-
forward appilication of this method gives

[f,] ~[" 5 toudiG+ 4.5

1
+ (w— asug)é,,] a_S
1

2n \M* . .
% ( ) et[r/V(S‘) —t]w + inf4sgn(P”) d(.l), (Ag)
r|@"|
where o, is the stationary phase point, 8, =f, («,), ®"{a,} =
8*®/da’|,_,., and V() =wu,cos 8 + ay(1 — uf sin’ B/ag) /%
{A9) may be rewritten in the more convenient form

1
l:p] — F(r/V(all),zk f, 8) a_é + O(r—3/2}_ (A].O)
P r |
Im)
. 8,
—— Re(f)
* B

FIG. 14. The poies and invetsion contour in the complex S-plane.
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Finally, by evaluating the integrals of (A3) in exactly the
same way, the asymptotic solution given by (3.18) can be
easily derived.

APPENDIX B: EXACT SOLUTIONS OF THE
LINEARIZED EULER EQUATIONS

Consider wave disturbances generated by initial excita-
ttons in a uniform mean flow of Mach number M. If the
amplitude of the waves ‘are smali they are governed by the
linearized Euler equations. To construct exact solutions of
the linearized Euler equations it is advantageous to use a
coordinate system moving with the mean flow. Let (x, y, 1)
and (x', y', t') be the Cartesian coordinates and time of the
stationary and moving coordinate systems, respectively. It
will be assumed that dimensionless variables (with respect
to the scales given in Section 8) are used. The relationship
between the two coordinate systems are

=1, x'=x-— M, ¥ =y {B1)
In the moving frame of reference the lincarized Euler
equations may be written in the form

P u v
¢ | u a1l p d|o
Pyl +a 0 +5_y’ ’ =1 (B2)
p u v

B1. Acoustic Waves

Acoustic wave solutions can be found in terms .of the
velocity potential ¢ which is related to the physical variables
by
¢

P:*Et_,: P

v=V'g, P (B3)

it is easy to find from (B2} and (B3) that the governing
equation for ¢ is the simple wave equation. Consideration
will now be restricted to cylindrical waves. For this family of
waves the simple wave equation reduces to

LW

2o (391
((3:"2 ror (B4)

o

where ' is the radial distance in polar coordinates. Let the
initial conditions be

r=0, (B3)

In (B5) the function g is arbitrary, The initial value problem
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of (B4) and {B5) can be solved by means of the order-zero
Hankel transform. If (&) is the Hankel transform of the
initial data it is straightforward to find that the velocity
potential is given by

#r,0)= [ EE)sin@) IV d, (B6)
where J, is the Bessel function of order zero. Substituting

(B6) into (B3} it is readily found that in terms of the
physical variables the initial conditions are

=0, u=v=0, p=p=g(r) (B7)

Of interest 1o the direct numerical simulation in Section 8
is a Gaussian initial pressure distribution. For this case the
full solution in the stationary frame of reference may be

written as

t=0, u=v=0, p=p=ge ™" (B3)
_E(x = M) e g,
”(X,y, [)_’ 20:1” J; €
x sin(&0) J,(Eq) E dE (B%)
_E8Y [Tt
vix, y, t)~2cx,r1 -fu e
x sin{t)y Ji(En) & d (B10)
IR T T G- P
pno i [
x cos(&1) Jo(én) & dE, {Bi1)

where 1= [ (x — M1)® + »*]"? and J, is the Bessel function
of order one. The parameter g, is refated to the half-width
of the Gaussian, b, by «, =In 2/h%

B2. Entropy Waves

In the moving coordinate system a family of entropy wave
solutions is given by

p=u=0v=0, p=¥(x',yv'), {B12)
where ¥ is arbitrary. If the initial distribution is Gaussian

the full solution in the stationary coordinate system is

aplix — Mol + 32]

p:u::t,;:()q p=82€7 (B13)

B3. Vorticity Waves

In the moving coordinate system a family of vorticity
waves is given by the time independent solutions of
V' .v=0,

p=p=0. {Bi14)
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Suppose the initial velocity distribution s

! —ar;r'2 ’

1=0, u=¢g;y'e , v=—g;xe” @ (BI5)

It is easy to check that (Bi5) satisfies (B14). The fuil
solution in the stationary frame of reference is

p=p=0

u=g, ye—aattx—M1F+y2] (B16)

v= —gs(x_ Mt) e—aa[(x—Mr)2+y1]_
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