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Abstract

A glance back on significant accomplishments in computational fluid dynamics for aerodynamic application has been

performed to highlight the outstanding achievements by pioneers of this discipline. It is an ardent hope that this

abridged literature review will aid to reaffirm excellence in research and to identify knowledge shortfalls both in fluid

dynamics and its modeling and simulation capability. The future modeling and simulation technology needs, as well as

potential and fertile research areas are offered for consideration.
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Nomenclature

A elementary area of control surface

B magnetic flux density

E electric field intensity

F flux vector

J electric current density

n surface outward normal

U dependent variables

V elementary control volume

Q radiant heat flux

k heat conductivity

l bulk viscosity

m molecular viscosity

r density

t shear stress

Superscripts
0 denotes fluctuating property

� denotes vector

= denotes tensor
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1. Historical perspective

The development of computational fluid dynamics

(CFD) can be traced back as far as the early 1900s. The

pioneering efforts by Richardson [1], Courant, Frie-

drichs, and Lewy [2], Southwell [3], von Neumann [4],

Lax [5], as well as Godunov [6] address the fundamental

issues in numerical analyses for CFD. It is immediately

clear that a major portion of these efforts was focused

on one of the most difficult problems in resolving the

discontinuous fluid phenomena in a discrete space—the

Riemann problem [7]. As it will be seen later, it remains

the most studied problem in CFD. However, if one is

interested in viscous flow simulation, Thom [8] probably

obtained the first-ever numerical solution by solving the

partial differential equation for a low speed flow past a

circular cylinder. For a scholarly description of the CFD

historical perspective, the books by Roache [9] and

Tannehill, Anderson, and Pletcher [10] are highly

recommended.

In the early 1940s, finite-difference methods for

solving partial differential equations were put to use in

practical problems at Los Alamos National Laboratory

with the first electronic computer. These works were

strictly limited to atomic weapon system development

and wartime technology. The applications widened to

include fluid dynamics when the ENIAC was installed at

Aberdeen. The advent of the computer has revolutio-

nized a wide range of scientific research; however, fluid

dynamics is the most affected by this revolution. The

computational physicist can now add insight and

independent views to hasten the maturation of the

previously unsolvable nonlinear problems. At the very

beginning, the approach of CFD is to solve the

governing equations in discrete space with uncompro-

mising rigor. By imposing the proper initial and

boundary conditions and without ad hoc simplifying

approximations, the computing simulation is an imita-

tion of a physical experiment.

Harlow first proposed the celebrated particle-in-cell

(PIC) method in 1957 at Los Alamos National

Laboratory [11]. This method uses a combination
Lagrangian–Eulerian description of the fluid motion.

In discrete space, the solving procedure consists of fixed

Eulerian cells through which the fluid moves. The fluid is

represented by Lagrangian mass particles with a fixed

mass of fluid. The sum of the particle masses within the

cell is the mass of the cell. The calculation proceeds

through a sequence of finite time steps. After the particle

transport is completed, final values of internal energy

and velocity are obtained from the new total mass,

momentum, and energy in the cells. The sum of these

final values of the system is then checked for conserva-

tion before advancing to the next time level. In short, the

PIC method has demonstrated to be well suited to study

the time dependent and multi-dimensional fluid motion.

The effectiveness of this method is demonstrated

through the applications to shock interaction by Evans

et al., supersonic wakes by Amsden and Harlow, as

well as to hypersonic sharp leading edge flows by Butler

[12–14].

The development of this numerical procedure was

accompanied by exhaustive proof in order to illustrate

the range of validity of the approximations. The PIC

method actually set the standards for the future

development of all CFD algorithms and numerical

procedures. The detailed derivation of all pertinent

formulations and extensive discussions on computa-

tional accuracy and limits of applicability become the

accepted tradition in CFD research. At that time, the

computed resource was severely limited and allowed

only a small number of representative calculations in an

investigation; and yet the experience has shown that the

extensive and detailed information obtainable from

CFD is immeasurable. The complementary contribution

to better understand the basic physics with experiments

and theoretical analysis is fully appreciated.

A fluid dynamic problem of great concern for

aerodynamic performance is that of flow separation at

which point the boundary-layer approximation breaks

down. Lees and his students [15] led the first few well-

known applications for complex aerodynamic problems

involving boundary-layer/shock-wave interaction. His

basic approach is built on the integral momentum
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equation and his incisive insight on the self-similar

boundary layer. The interacting boundary solution

method eventually adopted the boundary-layer code

developed by a CFD pioneer, Davis [16]. Davis actually

solved the multi-dimensional compressible boundary-

layer equation based on the physics by a combined

implicit–explicit, finite-difference approximation. He

solved the rapidly changing and steep flow field gradient

across the boundary layer by the tridiagonal Thomas

algorithm, and the relatively slow varying streamwise

variation by a forward differencing scheme. His

numerical procedure for solving the compressible

boundary-layer equation is accurate and robust.

The separated flow solution was recoverable by a

trial-and-error method; the final solution is the numer-

ical result that passed the saddle point at flow

separation. In this connection, the triple deck theory

of Stewartson [17] has provided a scaling law for the

interacting boundary layers and demonstrated that the

singular point of flow separation in the interacting

boundary layer is indeed removable. This scaling law

was successfully incorporated into the interacting

laminar boundary-layer method to provide insight into

the evolution of the separating flow structure [18].

For inviscid flow in the supersonic domain, the

method of characteristics has been developed to a very

high level of sophistication for three-dimensional flows.

In fact, Rakich [19], another pioneer of CFD, devised a

complex three-dimensional network of grid points to

describe the intersections of the Mach cone and stream

surface. The bicharacteristics that describe the compat-

ibility conditions are partial differential equations

containing cross-derivatives normal to the characteris-

tics. For steady supersonic blunt body simulation, a set

of initial data is needed for the hyperbolic equation

system. These initial values, downstream of the limiting

characteristics, may not be available for complex

aerodynamic shapes, thus limiting its applications.

However, this limitation was removed by the work of

Moretti and Abbett [20]. They solved the time-depen-

dent Euler equation by a finite-difference method, and

the flow field was obtained as the steady-state asymp-

tote. Their work has made two very important

contributions to CFD; first, the time marching formula-

tion permits the unsteady Euler equation retaining the

hyperbolic formulation even for the subsonic flows.

Second, they demonstrate that the Rankine–Hugoniot

shock jump condition can be captured by the finite-

difference approximation. Meanwhile, the vortex lattice

method derived from the small perturbation theory was

advanced to application for inviscid subsonic flows over

aircraft [21]. This simple yet elegant method is still in use

for commercial aircraft design and becomes a classic

example in engineering that followed the axiom that was

frequently attributed to Einstein, ‘‘keep it simple but not

simpler’’.
The first coherent and structured CFD organization

solely for aerodynamic application was the brainchild of

Dean Chapman, then the Director of Aeronautical

Science Directorate of the NASA Ames Research

Center. He successfully recruited and nurtured a large

group of devoted talent for CFD. During that time, a

rare genius in digital computer design, Seymour Cray

made high-speed computers commercially available such

as CDC6400 and CDC 7600. The combination of talent

and support infrastructure led to a revolutionary

advance in computational aerodynamic research. It

was an unprecedented, and still never duplicated,

amount of attention to detail and encouragement by

organization leaders at the national level to a technical

endeavor. For example, any CFD presentation from the

Ames Research Center to a professional society was

reviewed and rehearsed by the then Center Director,

Hans Mark. It remains a shining case study of how to

develop cutting edge technology in any arena. The

research leadership role was entrusted on the shoulders

of Harvard Lomax and Robert MacCormack. They

carried out their duty faithfully and exerted their effort

to achieve a new culture for scientific excellence.

Therefore, it should not be surprising that a large group

of legendary scientists were trained and got their

baptism in CFD. The group of luminaries includes

William Ballhous, Richard Beam, Steven Diewert, C.M.

Hung, John Kim, Paul Kutler, Parviz Moin, Earll

Murman, Thomas Pulliam, Joseph Steger, Robert

Warming, Helen Yee, and many others. The impact of

the Ames Research Center to the CFD community

extends worldwide; distinguished scientists such as Kozo

Fujii and S. Obayashi of Japan, Rizzi of Sweden, as well

as Wolfgang Schmidt of Germany have either an

extensive visiting tour or sustained collaboration with

scientists at the NASA Ames Research Center.

Equally important, the Ames Research Center has not

only set the standard for scientific research, but also

established the collaborative culture in the CFD

community. The close working relationship among

researchers at the center and a large group of constantly

circulating visiting scientists through the center actually

created a close-knit CFD community. A tradition of

hard working, generously sharing, and strong mutual

support was achieved and maintained in a very

competitive environment. One cannot help but remem-

ber the long working hours, the endless toiling, but

exciting challenge for gaining new knowledge, and the

wonderful times together with respected colleagues. This

goodwill and unwritten mutual esteem have been

sustained and are apparent in all international symposia,

even today.

The successful activities at the NASA Ames Research

Center inspires similar activity at other NASA science

and technology centers such as the Langley and now

Glenn Centers. The military service branches also
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appreciated the need to develop this modeling and

simulation technology. CFD research groups were also

organized in the Air Force Research Laboratory, Army

Research Laboratory, and Navy Research Laboratory.

In order to gain a global competitive edge, CFD

research also thrived in the aerospace industries. Boeing,

General Dynamics, Lockheed, McDonnell, Douglas,

Northorp, and Grumman aircraft companies also

established sizable research and development CFD

teams. At the beginning of CFD development the flow

of knowledge was highly nontraditional. In a stark

contrast to most scientific discipline development, the

traditional path of knowledge flow from academia to

government and industry was reversed. One cannot help

but believe this was the beginning of 30 years of

galloping of CFD research.
2. Governing equations

The genesis of CFD has evolved in solving the time-

dependent Navier–Stokes equations, a system of five

nonlinear partial differential equations for three-dimen-

sional fluid motion. This set of governing equations for

incompressible flow has been known since 1827 [22]. It

becomes conventional to refer to the complete set of

equations of fluid motion as the Navier–Stokes equa-

tions for compressible medium including Fourier’s law

for conducting heat transfer. The Navier–Stokes equa-

tions are the macroscopic description of the conserva-

tion laws of mass, momentum, and energy. In the

Eulerian frame of reference, these conservation laws in

integral form are

q
qt

Z Z Z
r dV þ

Z Z
%n � r %u dA ¼ 0; ð1Þ

q
qt

Z Z Z
r %u dV þ

Z Z
%n � r %u %u dA

¼
Z Z

%n � t dA þ
Z Z Z

r %f dV ; ð2Þ

q
qt

Z Z Z
re dV þ

Z Z
%n � re %u dA

¼
Z Z

%n � ð %u � t� %qÞ dA þ
Z Z Z

rð %f � %u þ QÞ dV :

ð3Þ

The integral equations hold for any control volume

element contained in the flow field and are the

foundation for the conservation law and finite-volume

algorithm. The equivalent differential equations are

obtained by a limiting process of the control volume.

Through Gauss’ divergence theorem, the governing

equations become

qr
qt

þr � r %u ¼ 0; ð4Þ
qr %u
qt

þr � ðr %u %u � tÞ � r %f ¼ 0; ð5Þ

qre

qt
þr � ðre %u � %u � tþ %qÞ � rð %f � %u þ QÞ ¼ 0: ð6Þ

In these equations, the shear stress includes the Reynolds

stress tensor and the heat transfer contains Fourier’s law

for heat conduction, as well as the energy transfer by

turbulent fluctuations. Q is the heat sink or source within

the control volume, i.e. the radiation heat transfers, and f

is the external force exerted on the gas medium.

t ¼ ð�p þ lr � uÞ%%I þ mðr þr0Þu � ru0u0;

%q ¼ �krT þ re0u0:

The Navier–Stokes equations in this form are classified

as the incompletely parabolic differential system [23].

The equation system is not closed: there are five

equations but nine dependent variables (u, v, w, r, p, T,

m, l, and k). Additional equations must be introduced

through the constitutive relations for the transport

properties of the fluid medium and the equation of state.

For laminar flow, with a set of appropriate initial and

boundary conditions, the differential equation system is

solvable in principle. For turbulent flow, the current

computational capability is unable to resolve the fluid

motion in the Kolmogorov microscales [24]. One must

be satisfied with the solution of the ensemble average

with turbulence closure models. The ensemble average

process is equivalent to the time average for statistically

stationary flow. However, this process also eliminates

several key characteristics of turbulence—the frequency,

phase, and wavelength of the fluctuating motion. This is

usually not critical for some practical applications, but

remains as the Achilles’ heel of CFD. To date the most

widely used ensemble average is mass–weight, due to

Favre [25], and is based on the fact that the average mass

of fluid in a control volume moves at a constant mean

mass–weight velocity. This observation is also supported

by the fact that the density variation has a volumetric,

rather than a dynamic effect on the velocity field in a

compressible turbulent flow.

In literature, the mass–average Navier–Stokes equations

are written in flux vector form. The Cartesian coordinates

are always adopted as the basic frame of reference for all

successive coordinate transformations necessary to de-

scribe a specific configuration. The flux vectors are often

split into the inviscid and viscous components subject to

different numerical approximations.

qU

qt
þ

qFx

qx
þ

qFy

qy
þ

qFz

qz
¼ 0; ð7Þ

where the dependent variables and the flux vector

components in three spatial dimensions are

U ¼ ½r; ru;rv; rw;re
�T
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Fx ¼

ru

ru2 þ p � txx

ruv � txy

ruw � txz

ðre þ pÞu � ðutxx þ vtxy þ wtxzÞ þ qxÞ

2
6666664

3
7777775
;

Fy ¼

rv

ruv � txy

rv2 þ p � tyy

rvw � tyz

ðre þ pÞv � ðutxy þ vtyy þ wtyzÞ þ qyÞ

2
6666664

3
7777775
;

Fz ¼

rw

ruw � txz

rvw � tyz

rw2 þ p � tzz

ðre þ pÞw � ðutxz þ vtyz þ wtzzÞ þ qzÞ

2
6666664

3
7777775
:

In practical applications via a finite-difference method, the

flux vector equations are always transformed into a

generalized curvilinear, body-oriented coordinate system

to facility the boundary conditions implementation. By

invoking a metrics identity from coordinate transforma-

tion, the flux vector from of the Navier–Stokes equations

for a finite-difference approximation can still retain the

strong conservation form. Now the flux vector compo-

nents explicitly contain the Jacobian of coordinate

transformation, J.

qU

qt
þ
qFx

qx
þ

qFZ

qZ
þ
qFz

qz
¼ 0; ð8Þ

x ¼ xðx; y; zÞ; Z ¼ Zðx; y; zÞ; z ¼ zðx; y; zÞ;

%U ¼ %Uðr=J ;ru=J; rv=J; rw=J; re=JÞ:

The flux vectors in the transformed space become

Fx ¼ ðxxFx þ xyFy þ xzFzÞ=J;

FZ ¼ ðZxFx þ ZyFy þ ZzFzÞ=J;

Fz ¼ ðzxFx þ zyFy þ zzFzÞ=J :

Physically meaningful boundary conditions, in general,

require the no-slip condition for the velocity components

on the solid surface, and the prescribed surface or

adiabatic condition for the temperature. The density is

determined by the vanishing outward normal pressure

gradient at the solid surface. This widely used numerical

boundary condition is an outgrowth of the boundary-

layer approximation and is further reinforced by the inner

layer structure of the triple deck theory of Stewartson [17].
3. Early milestones

In 1969, MacCormack [26] published his first of many

landmark numerical algorithm research results in the

form of an explicit, predictor–corrector procedure that

bears his name. His second-order accurate algorithm is

known for its simplicity in programming and robustness

in resolving aerodynamic problems involving extremely

strong flow field gradients. A key element of this method

is the often misquoted or wrongly attributed spectral

damping terms built into his numerical procedure

together with Baldwin [27]. This numerical damping

term controls the numerical instability by adding

artificial viscosity proportional to the local pressure

gradient and spectral radius for shock capturing (|u|+c)

|rp|. The introduced truncation error is proportional to

Dt (Dx)3, which is two orders of magnitude smaller than

the discrete approximation and reveals the remarkable

insight of this modest scientist. The MacCormack

explicit scheme has widely been used for more than 30

years as the critical research tool in CFD. Perhaps it is

not surprising that this method is still in use for complex

and difficult interdisciplinary investigations in penetra-

tion mechanics and electromagnetic energy deposition

for aerodynamic control. For this reason, this funda-

mental numerical algorithm is still taught in most CFD

classes.

MacCormack’s lasting contribution to CFD is also

reflected strongly in shock-boundary interaction pro-

blems. The physics of viscous–inviscid flow interaction

must be recovered from solving the Navier–Stokes

equations. The early works in compression ramp and

shock-boundary interactions by Hung and MacCor-

mack [28], Horstman et al. [29], and Shang and Hankey

[30] have provided a better basic understanding of the

boundary-layer separation and exposed the weakness of

rudimentary turbulent closure models. The very few

early solutions by solving the Reynolds-averaged

Navier–Stokes equations were for shock-boundary-layer

interaction over a two-dimensional compression ramp

including flow separation. The comparison of the

numerical simulation and a Schlieren photograph is

depicted in Fig. 1 to show that the numerical results

indeed capture the essential feature of this fundamental

aerodynamic phenomenon. In this connection, Knight

[31] also first applied this numerical technique to

simulate realistic high-speed inlets for analyzing the

performance of air-breathing engines. A sustained

research effort in shock-boundary interactions has been

maintained for the past 30 years, and recently David

Dolling has summarized all these efforts in an excellent

review article [32].

In the 1970s, even a three-dimensional hypersonic

compression corner problem was successfully simulated

using the MacCormack explicit method [33]. The

computational domain of a strong hypersonic
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Fig. 1. Shock-boundary-layer interaction over a compression ramp.
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shock-boundary-layer interaction was confined in a

frustum of a rectangular pyramid by a mesh system of

(8� 32� 36) bounded by a wedge and a flat plate. The

mesh system consisted of a measly 9216 points, but it

already occupied the complete memory capacity of the

CDC 7600 computer. A physically meaningful solution

was obtained by invoking the salient feature from the

hypersonic equivalence principle—the dominant flow

perturbation occurs mostly in the cross flow plane. The

numerical results reached impressive agreement with

experimental measurements in heat transfer rate and

surface pressure distribution. Equally important, the

triple-point shock structure was captured at the inter-

section of the wedge shock and the induced shock from

the sharp leading edge flat plate (Fig. 2). From this

calculation, the hot spot of the corner was also identified

as the penetrating inviscid stream at the shock triple

point. Although these types of numerical computations

resolved only the essential feature of interacting flow

field, it began to become a powerful tool in aerodynamic

research.

Another previously unsolvable nonlinear transonic

flow phenomenon has also attracted a lot of research

efforts. The basic physics of transonic flow emerges from
the fact that a flow disturbance must propagate in

drastically changing domains of dependence. If one opts

to study transonic flow using the Euler equations, the

governing nonlinear partial equations system changes

from the elliptic, parabolic, and hyperbolic type

corresponding to whether the flow field exists in the

subsonic, transonic, or supersonic flow regimes respec-

tively. Aside from the unknown and uncertain well-

posed boundary condition criterion for the discrete

approximation, there is ambiguity as how to best satisfy

the directional signal propagation according to the

eigenvalue of the differential system.

A breakthrough in transonic flow simulation is

attributed to Murman and Cole [34]. Their novel

approach was the first to use a combination of central

and windward difference approximations to satisfy the

domain of dependence. The transonic small disturbance

theory was used to solve the flow past thin airfoils with

imbedded shock waves. The governing equation is a

mixed elliptic–hyperbolic differential equation that was

solved by a separate difference formula in the elliptic

and hyperbolic regions to account properly for the

local domain of dependence. Their accomplishment

again reinforces the fundamental rule in algorithm
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Fig. 2. Triple shock structure in a 3D corner, M=12.6.

J.S. Shang / Progress in Aerospace Sciences 40 (2004) 173–197 179
development—the most accurate and efficient numerical

procedure for problem solving is the one that best

mimics the physics.

During the same time frame, Jameson [35] started to

develop a widely used explicit numerical procedure for

transonic flows and initiated an illuminative career and

became one of the most respected leaders in CFD. The

most remarkable achievements by Jameson are his

emulation of the shockless transonic wing, multigrid

algorithm development, and his ingenious aerodynamic

optimizing techniques. His numerous contributions to

transonic airfoil and wing designs have no peer and

equally impressive is his natural ability in nurturing

young talents and bringing out the most creativity from

them.

The venturing of CFD into practical applications was

greatly aided by the body orientated coordinate genera-

tion technique introduced by Thompson [36]. He ranks

among all pioneers in CFD and uniquely possesses an

unfailing courtesy of southern gentry. His work indeed

has opened a new avenue for CFD applications to

practical and complex configurations ahead of any other

physics-based simulation discipline such as computa-

tional electromagnetics (CEM). For structured grid

computations, the grid generation by solving partial

elliptic [36], hyperbolic [37], and algebraic [38] equations

is the cornerstone for application to complex configura-

tions.

Since a major portion of engineering applications is

time dependent, some numerical simulations with bodies

of relative motion have to be obtained from a moving

grid. When the governing equations are mapped onto a

moving computational domain and solved by a

finite-difference technique in the strong conservation

form, the geometrical conservation law by Thomas

and Lombard [39] must be observed to eliminate

computational errors. In essence, the geometrical con-

servation law stresses the coupling between the numer-

ical algorithms and the moving grid metric calculations.
This requirement arises from a mathematical identity in

the metrics evaluation and must be satisfied simulta-

neously with the governing equation. The geometrical

conservation law has provided a solid foundation for

extending CFD applications to the moving frame of

reference.

As the complexity of CFD simulations has increased,

efforts were focused on accelerating the numerical

convergence rate and stability of the numerical algo-

rithm to reduce the required computing resources. It has

been known for quite a while, that the implicit schemes,

in general, possess the more favorable stability property

for solving linear partial differential equations [40,41].

This class of algorithms is commonly referred to as the

ADI (alternating direction implicit) scheme, and indeed

it is unconditionally stable when applied to three-

dimensional parabolic and elliptic partial differential

equations and two-dimensional hyperbolic systems.

Since the discrete system of equations must be solved

simultaneously, a matrix inversion procedure is re-

quired. The inversion process not only needs a much

greater computer addressable memory, but also may

incur round-off error. However, the gain in computing

stability has frequently compensated for the additional

resources required over that of explicit schemes. The

pioneering contributions by Briley and McDonald who

used the ADI scheme to solve the Navier–Stokes

equations were first published in 1970 in a laboratory

report and a year later in more accessible sources in 1971

and 1974 [42,43]. Beam and Warming made sustained

and substantial contributions to the factorized implicit

numerical algorithms. They first presented their work in

solving the compressible Navier–Stokes equations in

1977 and published it a year later [44]. This algorithm

has been subjected to systematic development by an

exceptional group of individuals, such as Pulliam, Steger

among others, to become the most widely used

numerical procedure in the CFD community for the

next few decades [45].
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Fig. 3. Reentry vehicle X-24C-10D simulations.
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An insignificant event in research that reflects the

ingrained tradition of peer review and the open debate

amongst the CFD community is probably worth

sharing. At the AIAA 1977 Summer Meeting in

Albuquerque, Briley, Warming, Lomax, and Shang got

together for a technical exchange on the development

and relative merits of ADI schemes. One cannot help

but feel proud about the open and earnest discussion

and the sense of fairness in the CFD discipline. This

feeling prevailed and in 2001, when McDonald became

the Director of the NASA Ames Research Center, he

bestowed the coveted J. Allen Award to Dick Beam and

Bob Warming for their accomplishments in developing

the factored implicit numerical procedures.

The search for high computing efficiency reflects an

impressive creativity in the CFD community. The

Newton quadrature scheme probably has the fastest

convergence rate known to us, but the scheme also

requires that an initial estimate of the solution must be

within a convergence tolerance. The overall convergence

rate of an equation system is closely tied to the spectral

radius of its eigenvalues and the elimination of error

residue from its initial estimate. To achieve a fast

convergence rate of an iterative approach to a steady-

state asymptote for the Navier–Stokes equations, a

new strategy is required. Brandt met this need by

introducing the multi-grid method [46]. The basic idea is

to filter out the low-frequency numerical error by

interpolating the finer grid result to a coarser grid,

and to obtain the correction to the fine grid by an

up-sweeping process. This method has exhibited a

substantial improvement of rate of iterative conver-

gence. The attraction of the multi-grid iterative techni-

que also lies in its broad range of applicability to CFD

problems.

The introduction of the implicit and iterative algo-

rithm, grid generation techniques, and physically based
approximations such as the parabolized [47] and thin-

layer [45] Navier–Stokes equations greatly enhanced the

range of CFD applications. Some early CFD applica-

tions in aerodynamics include the transonic airfoil by

Levy [48], aileron buzz by Steger and Bailey [49], airfoil

dynamic stall by Tassa and Sankar [50], scramjet flow

field by Drummer and Weidner [51], boundary-layer

instability by Fasel [52], bodies at high angle of attack

by Helliwell et al. [53]. Shang and Scherr in 1985

eventually simulated the aerodynamic performance of a

complete reentry vehicle (X-24C) on the Cray 1

computer using the MacCormack explicit scheme

on the grid generated by Steger’s hyperbolic grid

generator [54]. The computed surface shear stress map

and oil film pattern on a scaled X24C model is depicted

in Fig. 3.
4. Achievements in the eighties

4.1. Finite-volume methods

The finite-volume formulation of the macroscopic

conservation law is intrinsic in the Eulerian frame of

reference. The concept of conservation laws is actually

defined for an arbitrary control volume. The variation of

dependent variables within the control volume, whether

they are mass or components of momentum or internal

energy, are balanced by the flux across the control

surface of this volume. The basic formulation uses the

integral form of the Navier–Stokes equations. The finite-

volume formulation rigorously enforces the conservative

law both on each elementary cell and for the complete

control volume of the flow field. This formulation is less

susceptible to singular behavior of a geometrical shape

than the metrics of coordinate transformation in the

finite-difference approximation. The first numerical
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result of this formulation for the Navier–Stokes

equations is attributed to MacCormack and Paullay

[55], but Rizzi and Inouye first coined the term [56]

finite-volume method. However, the finite-volume

method was not widely used until the 1980s. Thomas

and Walters [57] and MacCormack [58] implemented

this formulation for the Navier–Stokes equations by an

implicit Gauss-Seidel relaxation algorithm, which led to

a group of robust numerical procedures as the mainstay

of present CFD applications.

The basic formulation of the finite-volume scheme

requires the reconstruction of the flux vector normal to

the elementary volume; it is therefore natural to

introduce the windward differencing approximation that

had been consistently advocated by van Leer [59].

Furthermore, the reconstruction process on the control

surfaces also easily permits the development of high-

resolution procedures. The seminal contribution by

Harten [60] for the high-order reconstruction process,

and the contributions to windward approximation and

total variation diminishing (TVD) scheme, and the

contribution to the monotone scheme by Osher and

Chakravarthy [61] should be noted.

4.2. Characteristic-based methods

Using the compatibility condition to solve the steady,

supersonic Euler equations was at the very beginning of

aerodynamic research [5,6]. In fact, it was the genesis of

the method of characteristics since 1929 by Busemann

[62], and was developed further to include rotational

flow by Ferri in the late 1940s [63]. However, predicting

a multi-dimensional flow field that contains shock waves

and contact surfaces was presented in a landmark paper

by Godunov [6]. He treated discontinuities of the

hyperbolic differential systems by assuming a piecewise

continuous data distribution within a control volume

and by solving the Riemann problem across each cell

interface. The flux vector is computed by the windward

approximation to satisfy the governing equation in an

integral conservation form. By solving sets of Riemann

problems over the entire computational domain, this

approach honors the physics of domain of dependence

using the correct database according to the directional

propagation of wave motions.

In 1973, Boris and Book introduced the flux correc-

tion approach [64], and independently a few years later,

Steger and Warming [65] introduced the flux-splitting

method to the CFD community. In this outstanding

work of Steger and Warming, they have shown system-

atically the relationship of the real eigenvalue and

diagonalizable eigenvector and the split flux formula-

tion. They have also pointed out that if the equation of

state can describe the pressure as the product of density

and a function of internal energy, P=rf(e), the Euler

equations possess the homogeneous function of
degree one property; qF=qx ¼ ðqF=qUÞðqU=qxÞ: These
properties of flux vectors together with the diagonaliz-

able Jacobian matrices qF=qU make the split

flux possible. They also pointed out that the splitting

of the flux vector according to the sign of the associated

eigenvalues is not unique. The flux-splitting scheme

has proved to be effective in resolving the shock,

but a deficiency also appears at the sonic and stagnation

points. The basic issue is that the split flux components

are not continuously differentiable at these points. This

behavior is also the peculiarity of the approximate

governing equations. van Leer addressed this short-

coming by introducing the flux difference splitting

method [66]. Other ideas for splitting the Euler

equations have also been introduced [10].

The basic idea of flux splitting is to process data

according to the direction of information propagation

and to better approximate the Riemann problem. For

Navier–Stokes equations, the inviscid terms in the flux

vector Fx; Fy; and Fz; Eq. (7), are the Euler equations

that constitute a hyperbolic differential system with all

real eigenvalues. Therefore the inviscid flux vector can

be split according to the signs of their corresponding

eigenvalues [65,66]. For an approximate solution in

discrete space, the flux vectors are computed as a point

value or values on contagious sides of control

surface. This approach for solving hyperbolic partial

differential equations not only ensures the well-posed

condition of the differential system, but also enhances

the stability of the numerical procedure. The split fluxes

of this initial-value problem are calculated by a wind-

ward algorithm to honor the zone of dependence. The

splitting formulation however is only achievable for each

single time–space dimension, and has an identically

cyclic structure in all other spatial dimensions. The

eigenvalues of the Jacobian (coefficient) matrix in x–t

plane are

l1 ¼ l2 ¼ l3 ¼ k1u þ k2v þ k3w;

l4 ¼ l1 þ cðk � kÞ1=2;

l5 ¼ l1 � cðk � kÞ1=2; ð9Þ

where c is the local speed of sound and k (k1, k2, k3) are

arbitrary real numbers. According to Steger and

Warming, the three-dimensional, generalized flux vector

can be given as [65]

F ¼ r=2g

�

2ðg� 1Þl1 þ l4 þ l5
2ðg� 1Þul1 þ ðu þ ck1Þl4 þ ðu � ck1Þl5
2ðg� 1Þvl1 þ ðv þ ck2Þl4 þ ðv � ck2Þl5
2ðg� 1Þwl1 þ ðw þ ck3Þl4 þ ðw � ck3Þl5

ðg� 1ÞU2l1 þ Uþl4=2þ U�l5=2þ W þ P

2
6666664

3
7777775
;

ð10Þ
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where

U2 ¼ u2 þ v2 þ w2;

Uþ ¼ ðu þ ck1Þ
2 þ ðv þ ck2Þ

2 þ ðw þ ck3Þ
2;

U� ¼ ðu � ck1Þ
2 þ ðv � ck2Þ

2 þ ðw � ck3Þ
2;

W ¼ ð3� gÞðl4 þ l5Þc2=2ðg� 1Þ;

P ¼ 2rðg� 1Þk1ðk2w � k3vÞl1:

The similarity transformation S, of the Jacobian matrix

ðqF=qxÞ for the flux vector is constructed by using the

eigenvectors as the column arrays. Even though the

eigenvalues of the matrix contain multiplicities, the

linearly independent eigenvector still can be found by

reducing the coefficient matrix to the Jordan normal

form. The similarity transformation exists, all flux

vectors are split according to the signs of the eigenvalues

to appear as

Fþ ¼ SlþS�1U ;

F� ¼ Sl�S�1U : ð11Þ

All the flux-splitting schemes prove to be dissipative, and

thoughtful questions have been raised when applying

them to the Navier–Stokes equations. For most viscous

flux reconstruction, it must satisfy the discrete maximum

principle and the linearity-preserving property in addi-

tion to the conservation law. In any event, the flux

splitting schemes by van Leer [66] and Roe [67,68] are

routinely and widely used to resolve shock waves in

CFD applications. A collection of computed Mach

number distributions across a normal shock at a free-

stream value of 16 is presented in Fig. 4. These

numerical results reflect the progress for shock-captur-

ing technique that has been made over the years.
Fig. 4. Results of flux splitting schemes (courtesy of M.

Aftosmis).
In many ways, van Leer and Roe provided the

impetuous in refining upwind schemes to evaluate

convective fluxes using approximate Riemann solvers.

Roe has pointed out that one could not expect to find a

legitimate solution by solving differential equations in

regions where the true solution is not differentiable.

Therefore, the shock-capturing methods must be built

on the integral rather than differential conservative laws.

The numerical scheme also needs to incorporate the

ideas drawn from the theory of characteristics. These

resultant methods are robust and have been widely

researched. A scholarly treatise by Roe [67] summarizing

all characteristic methods was published in 1981. This

paper probably is the article that has the highest

literature citations in CFD and was selected for

reprinting in 25th anniversary issue of Journal of

Computational Physics. It is a text highly recommended

to all. Both van Leer and Roe are respected as

exceptional teachers and mentors to students in CFD.

On May 1, 1992, the CFD community endured a

serious loss by the pre-mature passing away of Joseph L.

Steger. There is no doubt that Steger was the most

creative CFD pioneer. His outpouring of original ideas

spans an extreme range from numerical algorithms for

transonic flow, gas dynamics, overset grid, (he loved to

call it Chimera), hyperbolic grid generator, and numer-

ous challenging aerodynamic problems including the

space shuttle in ascending flight. In addition, he was a

caring and meticulous teacher to his students. Most of

all, Steger was the standard bearer of the excellent and

cherished CFD tradition—he shared his ideas unselfishly

and enjoyed other’s successes equally as his own.

4.3. Unstructured grid technique

Applications of CFD for predicting aerodynamic

performance extended to an ever-widening range to

include automobile design, marine architecture, weather

prediction, and internal combustion engines. The

resources required in the pre-processing grid generation

process for a complex configuration became a major

portion of the entire simulation process. For example,

the first F-16A aircraft simulation took 3 months for

data processing on a CRAY-1 computer, another 3

months for validating and interpreting numerical results

for engineering analysis, but required 11 months to

generate the three-dimensional grids before computa-

tions could even start. The unstructured grid emerged in

the late 1980s as a revolutionary change for CFD

application. At the very beginning, only the Delaunay

Scheme [69] was used for generating the two-dimen-

sional triangular and three-dimensional tetrahedron

mesh. A property of the Delaunay mesh requires that

no other grid points be within a circumscribing sphere

passing through the four points of a tetrahedron. From

the analytic geometrical viewpoint, the pyramidal
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control volume topology is natural to uniquely define

the control surface. Since only three coplane points

can be contained in a plane surface, the structured

hexahedron grid must stipulate that the extra point

resides in the same plane. Today, unstructured grid

generation is highly developed and very efficient. Using

the advancing front or Delaunay triangulation schemes,

a mesh system around a complex aerodynamic shape

can be obtained in days.

Morgan, Lohner, and others had long toiled in

developing the finite-element algorithms for CFD [70].

However Jameson et al. [71], as well as, Stoufflet et al.

[72] were among the first to apply the unstructured

technique to complex aerodynamic configurations. In

spite of the tremendous advantage of a shortened

preprocessing time for numerical simulation, in its early

stage of development the unstructured grid methodology

suffered data structure redundancy and thus required

excessive computer memory space and computing

resources on vector processors than its structured grid

counterpart. In addition, the immediately adjacent cells

connectivity is often over determined for flux calculation

on the control surface, so a least square or other

approximation must be used in flux reconstruction to

limit the spatial accuracy to second order. Although the

quadrature reconstruction, in principle, can extend this

method to higher order of accuracy [73], the misalign-

ment of the control surface along the shock front is
Fig. 5. Unstructured grid for wing
detrimental to high-speed aerodynamic simulation. This

shortcoming is reflected by multiple slip streams

associated with high vorticity originating from misalign-

ments. As a consequence, numerical results by an

unstructured grid technique for the viscous–inviscid

interaction without grid refinement can be inaccurate.

This issue and the high-order method development for

the unstructured grid method will remain as the

mainstay for CFD research for some time to come.

As an illustration, an unstructured grid system at the

joint of a diamond wing is presented in Fig. 5. The grid

generation process was simple and straightforward.

Although the wing intersection contains some concave

surface segments and distinct surface topologic con-

structions, the grid generation has been accomplished

without any difficulty. The numerical simulation was

successfully followed shortly there after with only a

minimum amount of effort to control the quality of the

mesh system for the element skewness. In contrast to the

hexahedron grid construction, the tetrahedron grid

generation requires a minimum number of input data.

Furthermore, the unstructured methodology has two

unique and yet frequently overlooked attributes. First

this grid system offers an advantage in solution-adaptive

grid refinement, because it is intrinsic to the concept of

an unstructured mesh. Secondly the neighbor-cell

connectivity of an unstructured grid formulation en-

hances an exceptionally scalable, parallel computing
joint (courtesy of C. Tyler).
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Fig. 6. CFD simulations of aerospace vehicle.
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performance when this numerical procedure is ported to

multi-computers using a domain decomposition strategy

[74–76].

The massively parallel computing technology elevates

the unstructured grid methodology to a higher level of

performance. For processing a huge amount of data of

complex physics or complicated aerodynamic shapes, a

host of distributive (IBM SP, Cray T3D) and shared-

distributive memory (Intel Origin 2000) computing

systems was developed in the early 1990s. These

massively parallel computing systems consisted of a

large number of reduced instruction set computers

(RISC) connected by a high-speed intercommunicating

network. For large-scale computing simulations, the

domain decomposition strategy is most efficient when

using the message-passing paradigm [74,75]. The re-

dundant data structure for the unstructured grid

procedure is actually required for the domain decom-

position approach. In addition, the load balancing for

efficient parallel computing is nearly automatically

achievable to make all unstructured grid procedures

scalable. Astonishingly highly parallel numerical simula-

tion efficiency and versatility of unstructured Navier–

Stokes/Euler equations solvers has been demonstrated

by the work of Strang et al. [76]. In Fig. 6, all numerical

simulations for a wide range of aerospace vehicles were

generated by a single computer program and provided

practical aerodynamic performance data for engineer-

ing. A dream that one can evaluate the aerodynamic

performance of any complete aircraft in two weeks has

been realized over the past 30 years.
5. Recent progress

5.1. High-resolution algorithms

Despite these impressive accomplishments, our nu-

merical algorithm efficiency has still fallen short of the

theoretical limit for approximation in discrete space.

According to the Nyquist frequency criterion, two

discrete points per wavelength is the absolute minimum

grid-point density needed to achieve a meaningful

simulation of the physics [77]. A typical second-order

method in use requires a grid density of 20–30 points per

wavelength to maintain suitable engineering accuracy.

Therefore, there is a realizable 1000-fold improvement

of numerical efficiency for three-dimensional calcula-

tions. The more recent high-resolution algorithm re-

search has made significant progress to bridge the gap

between the spectral limit and conventional numerical

procedures. The required computational efficiency for

turbulence research and bringing CFD applications to

interdisciplinary applications is paramount. This basic

approach seeks algorithms that have a small stencil

dimension and yet maintain a lower level of dispersive

and dissipative error as compared to conventional

numerical schemes.

Numerical resolution is naturally quantifiable by

Fourier analysis in terms of normalized wave number.

In applications, the grid-point density per wavelength

provides the measuring metrics. All numerical schemes

have a limited wave number range for accurate

computations. However, this simple criterion becomes
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insufficient when the computational domain consists of

heterogeneous media with a wide range of characteristic

impedances. The need to develop high-resolution

schemes for extending the present simulation capability

to higher frequency spectra is imperative.

Using the formal order of accuracy of truncation

errors exclusively to select an algorithm for time-

dependent simulation is an oversimplification [78–80].

The cutting edge effort by Tam and Weber [79] and Lele

[80] are the most elucidated. According to Tam and

Weber [79] and Lele [80], the desired feature of a

numerical scheme may be derived from optimization in

Fourier space rather by focusing on the lowest possible

truncation error. In light of this line of reasoning,

compact differencing and optimized finite differencing

are viable methods by which to achieve high resolution.

Both approaches seek algorithms that have a small

stencil dimension and yet maintain a lower level of

dispersive and dissipative error than the conventional

numerical schemes. The basic idea of the compact

difference approximation is not as radical as it sounds.

Collatz has pointed out in the mid-1960s that the

compact difference scheme is based on Hermite’s

generalization of the Taylor series [78].

The basic formulation of compact differencing is an

implicit procedure for evaluating the derivatives of the

dependent variables. The stencil structure for most

compact-difference formulas is spatially central and

requires additional derivative values at boundaries [80–

82]. The spatially center scheme is inapplicable to the

immediately adjacent mesh point at a boundary. An

additional transitional numerical scheme from the

boundary to the interior domain is required. The

transitional boundary scheme not only requires trans-

mitting data from the boundary but also preserving the

stability and accuracy of interior domain for global

resolution. This unique feature of compact-difference

schemes also is one of the sources of spurious high-

frequency oscillations. Furthermore, higher numerical

resolution often exposes poorly imposed boundary

conditions and poorly constructed meshes that are

masked by numerical dissipation.
Fig. 7. No-reflection far field condition via spatial fi
For the spatially central algorithms, both the bound-

ary conditions as well as the mesh stretching have a

profound effect on computational stability and accu-

racy, often leading to divergent results. A practical

approach towards ensuring stability is using the

mechanism of spatial filtering [81]. This effective remedy

is derived from a procedure of modifying only the

amplitude of Fourier components within a designated

frequency spectrum. From experience in numerical

analysis, the higher frequency components of solutions

always become unstable first. Therefore, the numerical

stability is enhanced by suppressing the amplitude of

high-frequency Fourier components in the numerical

solution. In fact, these components are already unsup-

portable by the mesh system and are truly parasitic. The

accomplishments in high-resolution algorithm research

have developed several numerical procedures that

approach the spectral-like performance for practical

applications [77–82].

An unexpected benefit in using the spatial filter is

revealed by its ability to eliminate the reflected wave in a

finite computational domain. This unique feature is

clearly demonstrated in Fig. 7. It was a fundamental

challenge for time-dependent computational aeroacous-

tics and computational electromagnetics in a truncated

computational domain. The most recent advancement

made by Visbal and Gaitonde using the low-frequency

bypass filter for suppressing time delay instability and

enforcing the no-reflection boundary condition at the

truncated computational far field are impressive [82].

5.2. DNS and LES

It is too well known that the Achilles’s heel of CFD as

a scientific discipline is the inadequate turbulence

closure. It is also perfectly understandable in view of

the fact that turbulence is still one of the outstanding

problems in physics. A century has passed since the first

turbulence experiment by Osborne Reynolds; at the

present only the statistical theories of turbulence have

generated reasonable scaling laws for turbulence

[24,83,84]. There should not be any doubt that the
lter (courtesy of V. Visbal and D. Gaitonde).
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correct physics is embedded in the time-dependent,

three-dimensional Navier–Stokes equations. Unfortu-

nately, turbulent flows have broadband spectra, and

most numerical methods in CFD applications are

inaccurate in resolving physics to the pertinent kinetic

scales that carry significant energy. In addition, turbu-

lence cannot be characterized in single space and time

scales necessary to analyze the truncation error, like all

other nonlinear problems, associated with a board

spectrum of scales. The discrete error of turbulent

simulation may have to be analyzed in spectral space

using the modified wave number [85]. The question

remains as what is the most efficient numerical

procedure required to resolve the formidable micro-

scales and for the entire flow field. This critical research

arena requires long-term vision, sustained support, and

rigorous peer review.

The direct numerical simulation (DNS) of turbulence

is the most straightforward approach to simulate

turbulence. In principle, all the scales of motion can be

resolved accurately and its application at the present

time is limited by its cost. According to the Kolmogorov

microscales, the ratio between the largest and smallest

eddy of fluid motion is proportional to the three-quarter

power of the characteristic Reynolds number, Rey3/4

[24]. To resolve all scales of three-dimensional motion,

the number of grid points required becomes astronom-

ical and proportional to the value of Rey9/4 [86]. The

computing resource requirement even challenges the

existing massively concurrent computers. For this

reason, the DNS is used sparingly only for the

laminar-turbulent transition, vorticity and energy pro-

duction to acquire insight on the detailed spatial

relations in kinematics and dynamics of turbulent

eddies. The pioneering effort using direct numerical

simulations by Fasel [52], and Rai and Moin [87] have

offered a glimpse of promise. A more recent summary

can be found in the work of Moin and Hahesh [83].

One of the most striking examples of using DNS to

successful simulate the laminar–turbulent transition was

produced by Rist and Fasel [88]. In Fig. 8, the sequential

numerical results of the fine-scale vortical structure in a

boundary layer over a flat plate are presented from the

rapid growth to breakdown processes. These numerical

results actually show that the high shear layer indeed

rides on top of the L vortex. This computed result fully

substantiates early experimental observations to provide

a new level of insight for the bifurcating phenomenon.

An intermediate approach to turbulent flow for

complicated geometry and flow separation is the large

eddy simulation (LES). The basic premise is that only

the large eddies containing information about the

geometry and dynamics of the flow have to be resolved,

and the eddies of smaller scale have the universal

structures according to Kolmogorov [24,84–86]. In spite

of the elegance of this concept, realistically there is no
clear separation between the scales of large and small

eddies. Nevertheless in LES, the contribution of the

large energy-carrying structures to momentum and

energy transfer is computed exactly. The systematic

procedure in LES is built on the concept of a filter

function that eliminates the small-scale fluctuations and

retains only the smoothed large-scale structures.

Uðr; tÞ ¼
Z

Uðr; tÞf
r � Z
D

� 	
dZ:

The resolvable large eddy motion is controlled by the

filter width D of the smoothing function. Meanwhile, the

small-scale structures tend to depend mostly on viscosity

and become somewhat universal. The effect of the

smallest scales of turbulence is modeled [85, 86].

A primary function of the subgrid scale (SGS) model

is to remove energy from the resolved scales to mimic

the drain of the energy cascade [86]. Over the past

decade the Smagorinsky model has demonstrated

practical applications for flows over complicated geo-

metries and complex flows containing multiple flow

regimes [84–86]. However in applications, the coeffi-

cients in the model require tuning for different simula-

tions like the turbulent closure models in the Reynolds

averaged Navier–Stokes computations (RNS). The more

recent advance in the dynamic SGS model by Germano

et al. [89] are free from this limitation. The coefficients of

the dynamic model are determined by the calculation

procedure, based on the energy content of the smallest

resolved scale rather than prior input.

In order to develop the crucial filter function and the

SGS model, the mathematical structure of the Navier–

Stokes equations have imposed constraints on the

formulation. Ghosal has made several incisive observa-

tions [85]: First, the Navier–Stokes equations and all the

basic laws of physics are Galilean invariant and the

Navier–Stokes equations exhibit invariance under trans-

lation, rotation, reflection, and different scales. The

spatial filter functions for LES shall preserve the

symmetry under arbitrary Galilean transformation.

Second, the requirement of a non-negative value of the

turbulent kinetic energy or the so-called realizability of

the SGS models needs to reinforce. In practice, the

realizability condition is strict, validated only in the case

of non-negative filters. Finally, the quadratic nonlinear-

ity, such as uiuj is an inherent property of the Navier–

Stokes equations. The power spectra of the numerical

errors contain quadratic terms that can be invaluable to

differentiate the physics and the numerical artifacts.

Another interesting observation in accurate LES com-

putation is that the practice of using a filter width

significantly greater than the grid spacing, which high-

lights the basics of all numerical analyses in wave

number space.

The experience in using LES has been enriched by

applications to canonical problems, transitional flows,
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Fig. 8. Shear layer structures in a controlled transition (courtesy of H. Fasel).
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unsteady or three-dimensional separated boundary

layers, and flows over configuration with discontinuous

surface segments. Recently the unstructured grid tech-

nique is further developed in LES research to have a

novel feature that discretely conserves kinetic energy

[90]. LES also shows great potential in breaking new

ground for turbulent combustion and acoustics simula-

tions. Lesieur and Metais [91] and Moin and Hahesh

[83] have accomplished scholarly surveys to show

encouraging progress and invaluable insights in LES

and DNS research.

In summary, turbulence research is the vital area of

fluid dynamics and the principal obstacle that prevents

CFD to become a truly predictive tool and an internally

consistent scientific discipline. The physics of turbulence

is complex and always is a genuine three-dimensional,

multiple-scale, nonlinear phenomenon. The challenge of

turbulence is present in each and every engineering

application, except perhaps in some very limited micro-

fluidic environments. An unwavering and persisting

support to this basic research arena is critical to sustain

the future advancement of fluid dynamics and aerospace

science.
6. Interdisciplinary computing simulation

CFD by definition is a multi-disciplinary endeavor,

which requires the knowledge of fluid dynamics, applied
mathematics, and computing science. As a design tool,

CFD can only provide the aerodynamic performance

evaluation for a particular configuration. To analyze a

complete aerospace vehicle’s performance, the interac-

tion between the structure and aerodynamic force, the

thermodynamic dynamic properties of the high-tem-

perature gas surrounding the flight vehicle and within

the propulsive system, as well as the flight control and

communication systems must be integrated into the

iterative design process. All these requirements demand

an in-depth physical understanding and modeling of

these physics into a common frame with the aerody-

namics. Therefore it is natural for CFD to expand into

the interdisciplinary computational domain [92].

6.1. Aeroelasticity

As the application range expands, the level of

engineering detail becomes more demanding. In transo-

nic flight, the challenge to resolve the buffeting, limit-

cycle oscillation, and flutter phenomena arises. The

nonlinear interaction between aerodynamic forces and

structure response can lead to catastrophic structure

failure or become the limiter of air vehicle performance.

The pioneering effort of Dowell in his study of panel

flutter used linear aerodynamic models and was

summarized in an exceptional review article of aero-

elastic stability of plates and shells [93]. Some of these

aeroelasticity problems can only be resolved by solving
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Fig. 9. Temporal development of flutter, M=0.5 (courtesy of

Gordnier and Visbal).
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the structural dynamic equations simultaneously with

the Euler or Navier–Stokes equations. The early effort

by Levy [48] and the more recent contribution by

Obayashi and Guruswamy [94] is just the tip of the

iceberg. Historically, the dynamic aeroelastic computa-

tions were performed using Euler or Navier–Stokes

numerical procedures to solve flow field over 3D rigid

bodies, then extended to include aeroelastic effects.

Today, the advance in nonlinear aeroelasticity pro-

gresses at a very rapid rate to address the long

outstanding problems in structural response to aero-

dynamic forces and moments [95–99]. Nonlinear aero-

dynamic effects on transonic divergence, flutter, and

limit-cycle oscillations were studied by the harmonic

balance approach in the frequency domain, and

extended into multiple structural degrees of freedom.

The aerodynamic force in this analysis by Thomas et al.

is calculated from the Euler equations [95]. In the same

time frame, Gordnier and Visbal developed a more

rigorous aerodynamic calculation procedure to solve the

nonlinear panel flutter by coupling the three-dimen-

sional Navier–Stokes equations and the von Karman

plate equation [96]. In most numerical procedures, the

aerodynamic and structural dynamic equations are

solved in sequence or in a loosely coupled manner. A

lagging error of numerical simulation was noticed. An

innovative subiteration strategy was adopted to syn-

chronize the solutions of aerodynamic motion and

structural response. Their approach demonstrated that

the elimination of a lagging error is important to study

the temporal development of flutter as the computed

results exhibit in Fig. 9.

The most recent developments for aeroelasticity

simulation are focused on the introduction of the

finite-element method for direct structural dynamics

computations. Farhat and Lesoinne developed a variety

of techniques for the coupling aerodynamic and

structural dynamics computational methods [97]. They

solved the coupled system of equations via a partition

procedure in which a staggered algorithm is employed

for the time discretized equation system. For a strongly

coupled aerodynamic and structure phenomenon, Ru-

gonyi and Bathe implemented the finite-element method

to both the fluid and structure formulations and

solved fully coupled equations simultaneously [98].

Gordnier and Fifthen, on the other hand, coupled a

Navier–Stokes solver with a nonlinear finite-element

model for isotropic and orthotropic plates via a

subiteration procedure [99]. Excellent agreement be-

tween the computed and theoretical results was obtained

for all cases considered. In an effort to improve the

computational efficiency of aeroelasticity, Dowell et al.

have introduced the concept of reduced order aero-

dynamic models [100]. This area of research will lead to

a wide range of aeroelasticity simulations for industrial

applications.
6.2. Aerothermodynamics

Hypersonic flow is one of the last few frontiers in

aerodynamics because this flight region resides in the

upper speed limit of flight, and more importantly, it is

also the necessary passage for space access. This

observation can be fully appreciated by the string of

hypersonic vehicle programs worldwide such as the Star-

H in France, Saanger/Horus in Germany, Hope in

Japan, Hotol in United Kingdom, NASP in US, and

Oryol (Raduga D-2) and Neva in the former USSR. The

hypersonic flight vehicle must perform in an extreme

high-temperature environment that brings in complex

chemical kinetics issues beyond the combustion process

for propulsive systems. For example, the air temperature

around a reentry vehicle is around 12,000K. At this

temperature, the nitrogen is almost completely disso-

ciated and is partially ionized. The problems of energy

management and thermal protection require new mate-

rial research and the complication of the rarefied gas

effect also becomes pronounced in flight at extremely

high altitude [101].

For high-speed CFD simulation in the hypersonic

flow regime, the chemical kinetics must be considered

[101,102]. Energy conversion from kinetic to thermal

energy by the enveloping bow shock wave leads to a flow

medium with nonequilibrium excited internal degrees of

freedom. Fig. 10 yields a convincing illustration even at

a moderate Mach number of 12. In this simulation, only

the nonequilibrium dissociation of air is modeled and

the chemical kinetics is solved simultaneously with the

compressible Navier–Stokes equations [103]. It is clearly

indicated that the standoff distance of the bow shock for

the ogive-nosed blunt body is slightly reduced by the

nonequilibrium gas effect, but the downstream flow field

is profoundly altered. The simulated chemical kinetic
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Fig. 10. Real gas effect on shock-layer structure.

J.S. Shang / Progress in Aerospace Sciences 40 (2004) 173–197 189
relaxation within the shock layer also correctly describes

the physics that is dominated by collision processes.

For interplanetary reentry simulation, the vehicle is

required to perform in a high-temperature ionized air

mixture. A total of 11 species of the air mixture must be

considered: N2, O2, NO, N, O, N2
+,O2

+, NO+, N+, O+,

and e� [104]. The knowledge required for the high-

temperature gas must be derived from statistical

thermodynamics involving partition functions to model

the rotational, vibrational, and electronic excitations.

The macroscopic equilibrium properties of the indivi-

dual chemical species can be obtained through a

description of an assembly of microscopic particles

using statistical mechanics. The fundamental quantity

linking details of molecular structure to thermodynamic

behavior is the partition function. The total internal

energy of the gas mixture is derived from the factoriza-

tion property of the partition functions [105],

Z ¼
X

i

gi exp �
ei

kT

n o
; ð12Þ

Z ¼ ZtrsZrotZvibZdisZion;

where ei denotes the energy level associated with the

permissible quantum state of each particle, and gi is the

degeneracy of level i.

The complete physical-based simulation requires the

description of finite-rate chemical reactions and quan-

tum chemical physics for rotation, vibration, dissocia-

tion, and ionization excitations. For the finite-rate
chemical reaction calculation, there exists a huge base

of experience in propulsion technology. The species

concentration can be calculated from the law of mass

action that is derived from the equations of reaction

equilibrium for a general set of chemical reactions [105],X
i

v0iai ¼
X

i

v00i ai; ð13Þ

where v0a and v00a are the stoichiometric coefficients of the

chemical reaction and ai is the chemical species. For a

system in chemical equilibrium, the partial pressure of

the reacting species pa in the mixture must satisfy the law

of mass action.

Pðpa=p�Þv
00
a�v0a ¼ expð�De=kTÞ: ð14Þ

In the above equation, e is frequently referred to as the

chemical potential and is a function of the partial

pressure and temperature. The species concentrations of

the chemically reacting system, including the dissocia-

tion and ionization can be calculated by the net reaction

rate,

dai

dt


 �
j

¼ ðv00i;j � v0i;jÞKf ; jPðaiÞ
v0i; j

þ ðv0i; j � v00i; jÞKb;jPðaiÞ
v00i j ; ð15Þ

Rf ;i ¼ Kf ;iðTÞPðaiÞ
v0i ; Rb;i ¼ Kb;iðTÞPðaiÞ

v00i :

The so-called rate constants Kf ;i and Kb;i are obtained

from the data-fitting Arrhenius equation. The additional

complication of physics from chemical reactions is far
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beyond the species concentration computation. In a

heterogeneous gas mixture, the diffusion phenomena

also play a dominant role in gas dynamics [105]. The

concerns are clearly linked to the uncertainty in

determining transport properties of the gas mixture.

Fortunately, the thermal, pressure, and forced diffusion

mechanisms are negligible in most aerodynamic applica-

tions. The ordinary diffusion has traditionally and

effectively been described by the similarity parameter,

Lewis number.

In the nonequilibrium environment of hypersonic

flights in the Earth’s atmosphere, three different

characteristic temperatures may exist. For engineering

approximations, Park suggests that the translational–

rotational temperature, the vibrational–electronic tem-

perature, and the electronic thermal temperature shall be

considered individually with some validation calcula-

tions [104]. For modeling the vibration and electronic

excitations, there are approaches ranging from multi-

temperature models, Landau–Taylor, to the Master

equation [104–106]. The chemical and thermodynamic

nonequilibrium simulation capability has also been

successfully used for oxygen iodine laser development

[101].

In hypersonic simulation computations, there is little

doubt that the leaders of this field are Park [102],

MacCormack and Candler [107], Gnoffo, and Moss

[108,109]. Moss actually has sustained the rarefied gas

dynamics research using the direct simulation Monte

Carlo (DSMC) method. However, the pacing item for

simulating hypersonic flow shall focus on the irreversible

thermodynamic and nonequlibrium chemical kinetics

phenomenon and the largely uncertain transport proper-

ties of the high-temperature gas. These shortfalls of

fundamental knowledge in this area have hobbled the

progress in hypersonic flow research since the 1960s.

This scientific discipline is the cornerstone of statistical

thermodynamics and yet has been overlooked. Engi-

neering applications requiring validating database for

high-temperature gas behavior in flight conditions are

left wanting. This an area of research that is under

funded and under explored.

6.3. Computational electromagnetics

James Clerk Maxwell established the fundamental

equations of electromagnetics in 1873, and they were

experimentally verified by Heinrich Hertz in 1888. The

governing equations consist of the Faraday induction

law, the generalized Ampere law, and Gauss laws for the

electric and magnetic fields. The governing equations

constitute a hyperbolic system and are the classic initial-

value problem. Since the electric and the magnetic fields

are closely interwoven, the Gauss laws usually are not

included in the computing procedure but are satisfied by
the appropriately imposed initial conditions.

q %B
qt

þr� %E ¼ 0;

q %D

qt
�r� %H ¼ � %J;

r � %B ¼ 0;

r � %D ¼ 0: ð16Þ

The boundary conditions for the governing equations

are required on the interfaces of different media.

Without exception, the tangential components of the

electric field and the normal components of magnetic

field are continuous across the boundary. The disconti-

nuity of tangential component of magnetic intensity, H

and the normal component of electric displacement D

must be balanced by the surface current density Js and

the surface charge density rs; respectively.
The computational capability developed in the CFD

community has also effectively spun off into other

simulation and modeling disciplines. However, the most

effective sharing of knowledge is with the computational

electromagnetics in the time domain (CEM) [110].

Traditionally, solutions of Maxwell equations were

generated in the frequency domain by the Fourier

transform or the separation of variables technique to

isolate all electromagnetic computations at a given

frequency. The resultant governing equation system is

elliptic and linear in most applications; therefore,

theoretical development was the mainstay of CEM in

the frequency domain and it achieved a remarkable

degree of sophistication.

Time-domain CEM was initiated in the IEEE com-

munity in 1966 by the pioneering effort of Yee using the

middle point Leapfrog scheme to solve the time-

dependent Maxwell equations [111]. His ingenuity is

revealed by his insight of the interweaving nature of the

electromagnetic field and his first use of staggered grids

for treating electrical and magnetic fields separately but

simultaneously. In the ensuing years, Umashankar,

Taflove, Luebber, and others have developed this

approach on the Cartesian frame to an impressive level

of sophistication for electromagnetic wave scattering

calculations [110–112].

In the late 1980s, the characteristic-based CFD

technique in generalized curvilinear coordinates started

to transfer to the CEM community [110]. In fact,

Shankar [113] has led the way for this technical

transition. The time-dependent Maxwell equations are

classified as the hyperbolic partial differential system,

and in nearly all practical applications the system of

equations is linear. For the wave-motion-dominated

simulations, the difficulties of propagating waves across

media of different intrinsic impedances and performing

calculations in a truncated computational domain are

easily solved by the Riemann approximation. Therefore,
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all characteristic-based methods developed in the CFD

community are directly applicable to CEM [113–116]. In

Fig. 11, the computed bistatic radar cross-sections of a

perfectly electrical conducting sphere at three different

frequencies are presented together with the Mie’s series.

Using the coordinate transformation technique, the

radar cross sections of complete aircraft were obtained.

The accuracy of numerical results was also verified by

comparing with radar range data [110]. Equally im-

portant, these numerical procedures have been success-

fully ported onto massively parallel computers to

expand the application frequency range of the CEM

by orders of magnitude.

The influx of CFD techniques has enriched the tool

set for electromagnetic research and solved many

scattering problems from very large electrical shapes,

radar range profiles, and transient phenomena asso-

ciated with microwave horns, antennas, and micropatch

antenna radiation [110, 113–116].

6.4. Computational magneto-fluid dynamics

Computational magneto-fluid dynamics (CMD) is a

natural extension of CFD application for hypersonic

flows. In practical aerodynamic applications, the air

requires a rather large amount of energy to achieve the

ionized state by thermal collision process and energy

transfer between internal degrees of freedom. For

example, the ionization potentials for oxygen and

nitrogen molecule are 13.6 and 14.6 eV, respectively,

and the charged particles concentration for an effective

magneto-aerodynamic interaction such as in the reentry
Fig. 11. Bistatic radar cross-section cal
condition has the range from 1012 to 1016 cm�3.

However, this condition is naturally occurring in most

hypersonic flights. The strong compression of a bow

shock wave converts nearly all kinetic energy to thermal

energy. The air mixture bounded by the bow shock wave

and the vehicle achieves highly excited internal energy

modes. As the air temperature exceeds 5000K, a

fraction of the dissociating molecules will shed their

electrons [117]. The ionized air mixture is then char-

acterized by a finite value of electrical conductivity,

which may exceed a value of 100mho/m depending on

the flight speed and altitude. The interaction of charged

particles with an applied electromagnetic field generates

the Lorentz force (J�B) and Joule heating (E � J) as
additional mechanisms that influence aerodynamic

performance. These observations were strongly sup-

ported by the pioneering effort by Bush, Meyer, Ziemer,

and others [118,119].

Four decades ago, Resler and Sears recognized the

tremendous application potential of the electromagnetic

effect for enhanced aerodynamic performance [118].

Their vision introduces a new physical dimension into

conventional aerodynamics to enrich the fluid dynamic

behavior. The added coupling of velocity and tempera-

ture by plasma through Joule heating makes some

impossible flow fluid field manipulations realizable. One

of the possible uses of the Lorentz force is to accelerate

or decelerate plasma continuously without choking at

subsonic or supersonic inlets. The flow orientation of

plasma can also be altered by the intrinsic relationship

of the Hall current and the helical trajectory in a

magnetic field.
culations at different frequencies.
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The development of CMD for aerospace application

really started a few years ago. Prior to the late 1990s,

CMD were most concentrated on the problem in

astrophysics and geophysics [119]. For studying these

phenomena, the so-called ideal magneto-hydrodynamic

(MHD) equation is adequate to describe all pertinent

physics [120,121]. The MHD equations are nonconvex,

thus, the wave structure is much more complicated than

the Euler equations [120]. To simulate wave motion

dominant phenomena, the characteristic-based or ap-

proximate Riemann algorithm in CFD, fits perfectly for

solving the hyperbolic equation system [67,68]. Brio and

Wu [120], and Powell et al. [121] were the first few to

apply the upwind differencing schemes to solve the ideal

MHD problems. Their numerical procedures were

developed from the eigenvector structure of the non-

strictly hyperbolic differential system. In essence, the

governing equations consist of the approximate Maxwell

equation for plasma physics and the Euler equations. In

fact, both Brio and Wu adopted Roe’s scheme and

successfully simulated a MHD shock tube problem to

show numerically for the first time the much more

complex shock wave formation and wave propagation

speed over that of aerodynamics [120]. Power et al.

derived the flux splitting formulation for ideal

MHD based on the four distinct wave speeds in

plasma [121].

MacCormack has modified the Jacobian of the

coefficient matrix for the flux splitting formulation of

the magneto-fluid-dynamics (MFD) equations to pre-

serve the homogenous of degree one property [122]. His

effort allows the use of characteristic-based schemes for

ideal MHD by Powell to solve the inviscid terms of the

MFD equations [121]. Gaitonde has achieved the first

ever and comprehensive three-dimensional MGD scram-

jet flow path simulation for propulsion enhancement

[123]. In addition, MacCormack and Hoffmann et al.

have led the interdisciplinary CMD development by

including nonequilibrium chemical kinetics in their

respective formulations [118,121].

MacCormack, Gaitonde, Hoffmann, and others have

made impressive contributions to the maturation of

CMD for aerospace application [119,122,123]. In CMD,

the classic plasma assumptions of the electrically global

neutrality and the negligible displacement current

compared to the conducting current prevailed. In most

aerospace applications, the magnetic Reynolds number,

Reym=msuL of the MFD field is also much less than

unity; the induced magnetic field becomes negligible in

contrast to the externally applied field. Therefore, the

Faraday induction law can be decoupled from the

governing equation system. Under this circumstance, the

fluid medium is described as a single electrically

conducting fluid with the usual dependent variables of

fluid motion, and the Lorentz force and the Joule

heating appear in the Navier–Stokes equations as
resource terms.

qr
qt

þr � ðrUÞ ¼ 0;

qrU

qt
þr � ðrUU þ p%%I � tÞ � J � B ¼ 0;

qre

qt
þr � ½reU þ Q þ U � ðp%%I � tÞ
 � E � J ¼ 0;

qre

qt
þr � J ¼ 0: ð17Þ

The last equation of the above governing system is

adopted as a constraint and is known as the charge

conservation equation, which is derived from the

generalized Ampere law and Gauss laws for electric

displacement. In solving the MFD equations, this

equation usually is included to ensure a self-consistent

electric field as a compatible condition. Meanwhile,

Ohm’s law is also required to relate the displacement

current J and the electrical field E.

J ¼ s � ½E þ U � B � bðJ � BÞ þ aðJ � B � BÞ
: ð18Þ

In this formulation, the Hall effect and the ion slip are

explicit contained in Ohm’s law. For CMD computa-

tions, the distributions of electrical conductivity and the

charged particles concentration are required. Again the

description of transport properties for the electrically

conducting medium presents a formidable challenge. In

a high-temperature environment, the concentrations of a

weakly ionized gas can be calculated by the chemical

kinetics, such as the Saha equation [105,117]. However,

the electrical conductivity of the gas is still unknown and

frequently relies on plausible assumptions. For most

recent magneto-aerodynamic actuator applications, the

plasma generation is exclusively dependent on the

secondary electron emission. In this mode of ionization,

the thermal collision process does not apply. The freed

electrons are obtained mainly from secondary emission

caused by the bombardment of the cathode by positively

charged ions, and this electro-dynamics phenomenon is

controlled by the drift and diffusive motion of charged

particles.

An international collaboration for glow discharge

modeling by Surzhikov and Shang has taken place in

2002 [124,125]. They realized the vast majority of plasma

generation processes in experiments are based on the gas

discharge and launched a research effort based on the

drift-diffusion model by Raizer [126]. For the three-

component plasma model, the charged particles con-

centrations are computed by the continuity equations

for the singly charged ions and electrons. The conserva-

tion of momentum equations for charged particles have

replaced the approximate Ohm’s law. In this formula-

tion, the computed current density, electrical field

intensity, and magnetic flux density are obtainable after

satisfying the charge conservation law, and the external

circuit equation, E=Vn+InRn. Although additional
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verification of the computing model is still required, this

research result shows promise for practical application.

In order to expand physical dimensions for flow

control and improved aerodynamic performance of

aerospace vehicles, magneto-aerodynamic interaction is

introduced into the hypersonic flows. In Fig. 12, a gas

discharge from two electrodes parallel to the leading

edge of a flat plate is implemented as a hypersonic flow

control device [125]. The modified displacement thick-

ness of the boundary layer by Joule heating is further

amplified by viscous–inviscid interaction to produce a

greater pressure plateau than the classic pressure

interaction. The additional pressure increment by the

magneto-aerodynamic actuator is equivalent to a one-

degree deflection of the plate at a Mach number of 5.15.

The total energy supply to this magneto-aerodynamic

actuator for flow control is 60W. The energy needed for

practical flow control application can be scaled as

18.9W/cm for the required electrode dimension. The

computed pressure distributions have been verified by

experimental observations [125].

To take this idea a step further, the magneto-

aerodynamic interaction together with a nonlinear

aerodynamic amplifier is equally applicable to create a

virtual variable-geometry, hypersonic inlet for a com-

bined cycle propulsive system. In principle, a series of

segmented, glow discharge electrodes in a hypersonic

inlet can generate a nearly isentropic compression that is

impossible to achieve by a pure fluid dynamic mechan-

ism alone [118].

In short, CMD has made impressive progress in the

past few years. The predictive capability has advanced to

a level of maturation for practical aerospace application

[119,126,127]. The most efficient and accurate modeling
Fig. 12. Hypersonic magneto-aerodynamic interaction over flat

plate.
and simulation procedure is built on the low magnetic

Reynolds assumption. The most recent research in

magneto-aerodynamic includes fluid dynamics, electro-

magnetics, and chemical kinetics, which is the most

complex governing equation system in computing

science. A potential technologic breakthrough for

improving aerodynamic performance is anticipated.
7. Outlook

In any human endeavor, the knowledge sharing

among peers and passing from generation to generation

is paramount to maturate a scientific discipline to a new

horizon. The education and training for CFD were

strongly emphasized from day 1. There is a wonderful

tradition in the aerospace industry of using workshop to

bring new technology to the community. In the early

1970s, numerous CFD workshops were held either by

government agencies or professional societies such as

AIAA and ASME to compensate for the lack of

textbooks. The workshop usually consisted of lectures

and a few sample computer codes. In fact, it was the way

one learned the basics in CFD at the very beginning. A

lot of successful stories were originated from this type of

training process.

Over the years, a series of excellent textbooks began to

appear [9,10,128] and the learning process was also

formalized. In most universities, CFD was offered in

two to three consecutive classes; the syllabus roughly

divided into the basics concepts of CFD, the classic

algorithms, and numerical methods used. Professional

societies have also sustained the seminar series and the

self-study option. Most new generation CFD users

educated under these more rigorous education programs

tend to have a better grasp of the basics and benefited

greatly from their formal training.

Now the most common practice for those who

are proficient with workstations and PCs is to use

Math Libraries or commercially available software

packages. The computed results are displayed or

analyzed with canned graphic software. However, the

best practice shall still be derived from understanding

the underlying physics and judiciously choosing a

numerical procedure to achieve the best simulation.

The computing error can be simply eliminated or

alleviated by well-posed initial/boundary conditions

and grid density refinement. However, the error incurred

by using the inappropriate governing equation or initial/

boundary conditions is uncorrectable. This required

judgment can only be nurtured through rigorous

education and training.

The future direction of CFD is easily determined from

two overriding perspectives—faultless scientific founda-

tion and practical application needs. It is too well known

that the weakest link in CFD as a scientific discipline is
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the inadequate description of turbulence. This critical

research arena requires long-term vision, sustained

support, and rigorous peer review. The pioneering

efforts using DNS and LES have opened research

avenues for all to follow.

Modeling and simulation needs in aerospace engineer-

ing are clearly reflected by the unresolved and least

understood problems in fluid dynamics, which are

unsteady bifurcation and vortex interaction [92]. All

these physical phenomena are nonlinear and have a

strong element of time dependency associated with

them. In the present context, bifurcation is defined as

the transition between different dynamic states of fluid

motion. The separated flow, laminar-turbulent transi-

tion, control surface buffeting and fluttering, lifting

surface dynamic stall, inlet unstart, combustion instabil-

ity, propulsive system surge, and rotating stall compres-

sor all belong to this category. These phenomena

are the aerodynamic performance pacing items,

therefore they must be conquered with a consorted

effort. As far as the vortex interaction is concerned

Kuchemann has best described the importance of vortex

dynamics in fluid dynamics—vortices are the sinews and

muscles of fluid motion. Any future improvement in

aircraft performance must rely on a better under-

standing and more accurate description of vortex

interaction.

Equally important for future needs is system en-

gineering. There is an urgent need to sustain the further

development of interdisciplinary CFD capability. This

ability to solve the show-stopping system issue and to

weed out the unproductive ideas at the onset by

interdisciplinary modeling and simulation tools will

drastically shorten the design cycle and push CFD

research for the unforeseeable future. In this sense CFD

is not a mature technical discipline. However one should

always bear in mind for future pursuit the two axioms

from lessons learned; first, keep it simple but not

simpler; it is truly an invaluable gift from Einstein.

Second, research in CFD must return to basics to affect

the widest applications; any basic research accomplish-

ment will have a greatly enhanced value if it can be

applied effectively.
8. Epilogue

Narrating a technical endeavor spanning nearly a

century by an aerodynamicist and with a limited

knowledge, numerous as well as significant contribu-

tions to CFD will be unintentionally overlooked either

by author’s limited exposure, personal bias, fading

memory, or combination of these. Most importantly,

the present effort only reflects a personal experience in a

scientific discipline that is vast; please accept my sincere

apology for any omission.
Acknowledgements

The stimulating discussions with Prof. Robert W.

MacCormack, Dr. Datta Gaitonde, Dr. Miguel Visbal,

and helps in preparing this manuscript by my colleague,

Prof. James Menart and Prof. David Johnston of

Wright State University are sincerely appreciated.
References

[1] Richardson LF. The approximate arithmetical solution

by finite differences of physical problems involving

differential equations, with an application to the stresses

in a masonry dam. Phil Trans R Soc London, Series A

1910;210:307–57.

[2] Courant R, Friedrichs KO, Lewy H. Uuber die partiellen

Differenzen-gleichungen der Math. Physik, Math Ann

1928;100:32–74.

[3] Southwell RV. Relaxation methods in engineering

science. London, UK: Oxford University Press; 1940.

[4] von Neumann J, Richtmeyer RD. A method for the

numerical calculation on the hydrodynamic shocks.

J Appl Phys 1950;21:232–7.

[5] Lax PD. Weak solution of nonlinear hyperbolic equa-

tions and their numerical computation. Commun Pure

Appl Math 1954;7:159–63.

[6] Godunov SK. Finite-difference method for numerical

computational of discontinuous solution of the equations

of fluid dynamics. Mat Sb 1959;47:271–306.

[7] Riemann GFB. Uber die Fortpflanzung Ebener Luftwel-

len von Endlicher Schwingungsweite. Abh Konigl Ges

Wiss Gottingen 1860;8:449.

[8] Thom A. The flow past circular cylinder at low speeds.

Proc R Soc London, Series A 1933;141:651–66.

[9] Roache PJ. Computational fluid dynamics. Albuquerque,

NM: Hermosa Publishers; 1976.

[10] Tannehill JC, Anderson DA, Pletcher RH. Computa-

tional fluid mechanics and heat transfer, 2nd ed.

Philadelphia, PA: Taylor & Francis; 1997.

[11] Harlow FH. The particle-in-cell computing method for

fluid dynamics. Methods in computational physics, vol.3.

New York: Academic Press; 1964. p. 319–43.

[12] Evans MW, Harlow FH, Meixner BD. Interaction of

shock or rarefaction with a bubble. Phys Fluids

1962;5:651–6.

[13] Amsden AA, Harlow FH. Numerical calculation of

supersonic wake flow. AIAA J 1965;3:2081–6.

[14] Butler TD. Numerical solutions of hypersonic sharp

leading edge flows. Phys Fluids 1967;10:1205–15.

[15] Lees L, Reeves BL. Supersonic separated and reattaching

laminar Flows: I. General theory and application to

adiabatic boundary-layer/shock-wave interactions. AIAA

J 1964;2:1907–20.

[16] Davis RT, Flugge-Lotz I. Second-order boundary effects

in hypersonic flow past axisymmetric blunt bodies.

J Fluid Mech 1964;20:593–623.

[17] Stewartson K, Williams PG. Self-induced separation.

Proc R Soc London, Series A 1969;312:181–206.



ARTICLE IN PRESS
J.S. Shang / Progress in Aerospace Sciences 40 (2004) 173–197 195
[18] Burggraf OD, Rizzetta D, Werle MJ, Vatsa VN. Effect of

Reynolds number on laminar separation of supersonic

stream. AIAA J 1979;17(4):336–43.

[19] Rakich JV. A method of characteristics for steady three-

dimensional supersonic flow with application to inclined

bodies of revolution. NASA TN D-5341; 1969.

[20] Moretti G, Abbett M. A time-dependent computational

method for blunt-body flows. AIAA J 1966;4(12):

2136–41.

[21] Rubbert P. On the continuing evolution of CFD for

airplane design. Conference text book, supercomputing,

Japan-91. April 1991.

[22] Navier M. Memoire sur les Lois du Mouvements des

Fluides. Mem Acad Sci Inst Fr 1827;6:389.

[23] Strikwerda JC. Initial boundary value problems for

incompletely parabolic system. PhD dissertation, Stan-

ford University, CA, 1976.

[24] Friedlander SK, Topper L. Turbulence: classical papers

on statistical theory. New York: Interscience Publisher;

1962.

[25] Favre A. Equations des Gaz Turbulents Compressible.

J de Mec 1965;4(3):361–90.

[26] MacCormack RW.The effect of viscosity in hyper

velocity impact cratering. AIAA paper 69-354; 1969.

[27] Baldwin BS, MacCormack RW. Numerical solution of

the interaction of a strong shock wave with a hypersonic

turbulent boundary layer. AIAA paper 74-558; 1974.

[28] Hung CM, MacCormack RW. Numerical solutions of

supersonic and hypersonic laminar flows over two-

dimensional compression corner, AIAA 75-2; 1975.

[29] Horstman CC, Kussoy MI, Coakley TJ, Rubesin MN,

Marvin JG. Shock-wave induced turbulent boundary-

layer separation at hypersonic speeds. AIAA 75-4;

1975.

[30] Shang JS, Hankey WL. Numerical solution of the

Navier–Stokes equations for supersonic turbulent flow

over a compression ramp. AIAA 75-3; 1975. AIAA

J 1975;13(10):1368–74.

[31] Knight DD. Numerical simulation of realistic high-speed

inlets using the Navier–Stokes equations. AIAA

J 1977;15:1583–9.

[32] Dolling DS. Fifty years of shock/boundary interaction:

what next. AIAA J 2001;39:1517–31.

[33] Shang JS, Hankey WL. Numerical solution of the

compressible Navier–Stokes equations for a three-dimen-

sional corner. AIAA 77-169, 1979; AIAA J 1977;15:

1575–82.

[34] Murman EM, Cole JD. Calculation of plane steady

transonic flows. AIAA J 1971;9:114–21.

[35] Jameson A. Iterative solution of transonic flows over

airfoils and wings including flows at mach 1. Commun

Pure Appl Math 1974;17:283–309.

[36] Thompson JF, Thames FC, Mastin CW. Automatic

numerical generation of body-fitted curvilinear coordi-

nate system for field containing any number of arbitrary

two-dimensional bodies. J Comput Phys 1974;15:

299–319.

[37] Steger JL, Sorenson RL. Use of hyperbolic partial

differential equations to generate body fitted coordinates,

numerical grid generation techniques. NASA Conference

Pub. 2166; 1980. p. 463–78.
[38] Eiseman PK, Smith RE. Mesh Generation using algebraic

techniques, numerical grid generation techniques. NASA

Conference Pub. 2166; 1980. p. 73–120.

[39] Thomas PD, Lombard CK. The geometric conservation

law—a link between finite-difference and finite-volume

methods of flow computation on moving grids. AIAA

78-1208; 1978.

[40] Peaceman DW, Rachford HH. The numerical solution of

parabolic and elliptic differential equations. J Soc Ind

Appl Math 1955;3:28–41.

[41] Douglas J, Gunn J. A general formulation of alternating

direction methods, I, parabolic and hyperbolic problems.

Numer Math 1964;6:428–53.

[42] Briley WR. A numerical study of laminar separation

bubbles using the Navier–Stokes equations. J Fluid Mech

1971;47:713–36.

[43] Briley WR, McDonald H. Solution of the three-dimen-

sional compressible Navier–Stokes equations by an

implicit technique. Lecture notes in Physics, vol. 35.

New York: Springer; 1974. p. 105–10.

[44] Beam RM, Warming RF. An implicit factored scheme for

the compressible Navier–Stokes Navier Stokes equations.

AIAA J 1978;16:393–401.

[45] Pulliam TH, Steger JL. Implicit finite difference simula-

tion of three-dimensional compressible flow. AIAA J

1980;18(2):159–67.

[46] Brandt A. Multi-level adaptive technique (MALT) for

fast numerical solution to boundary value problem.

Lecture notes in physics, vol. 18. Berlin: Springer; 1973.

p. 82–9.

[47] Rudman S, Rubin SG. Hypersonic viscous flow over

slender bodies with sharp leading edges. AIAA J 1968;

6(X):1883–9.

[48] Levy LL. Experimental and computational steady and

unsteady transonic flows about a thick airfoil. AIAA J

1978;16(6):564–72.

[49] Steger JL, Bailey HE. Calculation of transonic aileron

buzz. AIAA J 1980;18(3):249–55.

[50] Tassa Y, Sankar NL. Dynamic stall of an oscillating

airfoil in turbulent flow using time dependent Navier–

Stokes equations. Unsteady turbulent shear flows. New

York: Springer; 1981. p. 185–96.

[51] Drummer PJ, Weidner EH. Numerical study of a

scramjet engine flow field. AIAA J 1982;20(9):1182–7.

[52] Fasel H. Investigation of the instability of boundary

layers by a finite-difference model of the Navier–Stokes

equations. J Fluid Mech 1976;72(2):355–83.

[53] Helliwell WS, Dickinson RP, Lubard SC. Viscous flow

over arbitrary geometries at high angle of attack. AIAA J

1981;19(2):191–7.

[54] Shang JS, Scherr SJ. Navier–Stokes solution for a

complete reentry configuration. AIAA 85-1509; J Aircraft

1986;23(12):881–8.

[55] MacCormack RW, Paullay AJ. Computational efficiency

achieved by time splitting of finite difference operators.

AIAA 72-154; 1972.

[56] Rizzi A, Inouye M. Time-splitting finite-volume method

for three-dimensional blunt-body flow. AIAA J 1973;

11(11):1478–85.

[57] Thomas JL, Walters RW. Upwind relaxation algorithms

for the Navier–Stokes equations. AIAA 85-1501; 1985.



ARTICLE IN PRESS
J.S. Shang / Progress in Aerospace Sciences 40 (2004) 173–197196
[58] MacCormack RW. Current status of numerical solutions

of the Navier–Stokes equations. AIAA 85-0032; 1985.

[59] van Leer B. On the relation between the upwind

differencing schemes of Godunov, Enquist-Osher, and

Roe. SIAM J Sci Stat Comput 1984;5:1–20.

[60] Harten A. High-resolution schemes for hyperbolic con-

servation laws. J Comput Phys 1983;49:375–85.

[61] Osher S, Chakravarthy SR. Upwind schemes and

boundary conditions with applications to Euler equations

in general coordinates. J Comput Phys 1983;50:447–81.

[62] Busemann A. Drucke auf Kegelforminge Spitzen bei

Bewegung mit Uberschallgeschwindigkeit, Z. Angew

Math. Mech. Vol. 9, 1929, p. 496.

[63] Ferri A. Elements of aerodynamics of supersonic flows.

New York: Macmillan; 1949.

[64] Boris J, Book D. Flux-corrected transport: I SHASTA, a

fluid transport algorithm that worked. J Comput Phys

1973;11:38–69.

[65] Steger JL, Warming RF. Flux vector splitting of the

inviscid gas dynamics equations with application to finite

difference methods. J Comput Phys 1981;40:263–93

NASA TM D-78605; 1979.

[66] van Leer B. Flux vector splitting for the Euler equations.

Lecture notes in physics, vol. 170. New York: Springer;

1982. p. 507–12.

[67] Roe PL. Approximate Riemann solvers, parameter

vectors and difference schemes. J Comput Phys 1981;

43:357–72.

[68] Roe PL. Characteristic-based schemes for Euler equa-

tions. Annu Rev Fluid Mech 1986;8:337–65.

[69] Delaunay B. Sur la Sphere Vide. Bull Acad Sci, USSR,

VII, Class Sci Mat Nat 1934; 793–800.

[70] Lohner R, Morgan K, Zienkiewicz T. An adaptive finite

element procedure for compressible high speed flows.

Comput Methods Appl Mech Eng 1985;51:441–65.

[71] Jameson A, Baker TJ, Weatherill NP. Calculation of

inviscid transonic flow over a complete aircraft. AIAA

86-0103; January 1986.

[72] Stoufflet B, Periaux J, Fezoui F, Dervieux A. Numerical

simulation of 3-D hypersonic Euler flows around space

vehicles using adaptive finite elements. AIAA 87-0560;

January 1987.

[73] Barth TJ, Frederickson PO. High-order solution of the

Euler equations on unstructured grids using quadratic

reconstruction. AIAA 90-0013; January 1990.

[74] Simmon HD. Partitioning of unstructured problems for

parallel processing. Comput Syst Eng 1991;2:135–48.

[75] Shang JS, Wagner M, Pan Y, Blake DC. Strategies for

time domain CEM computations on multicomputers.

IEEE Comput Sci Eng 2000;2(1):10–21.

[76] Strang WZ, Tomaro RF, Grismer MJ. The defining

methods of cobalt: a parallel, implicit, unstructured

Euler/Navier–Stokes flow solver. AIAA 99-0786; January

1999.

[77] Gottlieb D, Orsag S. Numerical analysis of spectral

methods. Philadelphia: SIAM; 1997.

[78] Collatz L. The numerical treatment of differential

equations. New York: Springer, 1966. p. 538.

[79] Tam CKW, Weber JC. Dispersion-relation-preserving

finite difference schemes for computational acoustics.

J Comput Phys 1977;24:10–22.
[80] Lele SK. Compact finite difference schemes with spectral-

like resolution. J Comput Phys 1992;103:16–42.

[81] Gaitonde DV, Shang JS, Young JL. Practical aspects of

higher-order numerical schemes for wave propagation

phenomena. Int J Numer Methods Eng 1999;45:1849–69.

[82] Visbal MR, Gaitonde DV. On the use of higher order

finite difference schemes on curvilinear and deforming

mesh. J Comput Phys 2002;181:155–85.

[83] Moin P, Hahesh K. Direct numerical simulation: a tool in

turbulent research. Annu Rev Fluid Mech 1998;30:

539–78.

[84] Piomelli U, Balaras E. Wall-layer models for large-eddy

simulations. Annu Rev Fluid Mech 2002;34:349–74.

[85] Ghosal S. Mathematical and physical constraints on LES.

AIAA 98-2803, Albuquerque, NM, June 1998.

[86] Piomelli U. Large-eddy simulation: achievements and

challenges. Prog Aerospace Sci 1999;35:335–62.

[87] Rai MM, Moin P. Direct numerical simulation of

turbulent flow using finite-difference schemes. J Comput

Phys 1991;96:15–53.

[88] Rist U, Fasel H. Direct numerical simulation of

controlled transition in a flat-plate boundary layer.

J Fluid Mech 1995;298:211–48.

[89] Germano M, Piomelli U, Moin P, Cabot WH. A dynamic

subgrid-scale eddy viscosity model. Phys Fluids 1991;

A3:1760–5.

[90] Moin P. Advances in large eddy simulation methodology

for complex flows. Int J Heat Fluid Flow 2002;23:710–20.

[91] Lesieur M, Metais O. New trends in large-eddy simula-

tions of turbulence. Annu Rev Fluid Mech 1996;28:

45–82.

[92] Shang JS. Assessment of technology for aircraft devel-

opment. J Aircraft 1995;32(3):611–7.

[93] Dowell EH. Panel flutter: a review of the aeroelastic

stability of plates and shells. AIAA J 1970;8:385–99.

[94] Obayashi S, Guruswamy G. Unsteady shock-vortex

interaction on a flexible delta wing. J Aircraft 1992;

26(5):790–8.

[95] Thomas JP, Dowell EH, Hall KC. Nonlinear inviscid

aerodynamic effects on transonic divergence, flutter, and

limit-cycle oscillations. AIAA J 2002;49:638–46.

[96] Gordnier RE, Visbal MR. Development of a three-

dimensional viscous aeroelastic solver for nonlinear panel

flutter. J Fluid Struct 2002;16:497–727.

[97] Farhat C, Lesoinne M. Mixed explicit/implicit time

integration of couple aeroelastic problems: three-field

formulation geometric conservation and distributed

solution. Int J Numer Meth Fluids 2001;21:807–35.

[98] Rugonyi S, Bathe KJ. On finite element analysis of fluid

flows fully coupled with structural interaction. Comput

Model Eng Sci 2001;2:195–212.

[99] Gordnier RE, Fithen R. Coupling of a nonlinear finite

element structural method with a Navier–Stokes solver.

Comput Struct 2003;81:75–89.

[100] Dowell EH, Thomas JP, Hall KC. Transonic limit cycle

oscillation analysis using reduced order aerodynamic

models. AIAA 2001-1212; April 2001.

[101] Shang JS. Numerical simulation of hypersonic flows. In:

Murthy T, editor. Computational methods in hypersonic

aerodynamics. Boston: Kluwer Academic Publisher;

1991. p. 81–114.



ARTICLE IN PRESS
J.S. Shang / Progress in Aerospace Sciences 40 (2004) 173–197 197
[102] Park C. Non-equilibrium hypersonic aero-thermody-

namics. New York: Wiley; 1990.

[103] Josyula E, Shang JS. Numerical study of hypersonic

dissociated air past blunt bodies. AIAA J 1991;29:704–11.

[104] Park C. A review of reaction rates in high temperature

air. AIAA 89-1740; Buffalo, NY, 1989

[105] Clarke JF, McChesney M. The dynamics of real gas.

Washington: Butterworths; 1964.

[106] Josyula E, Bailey WF. Vibration-dissociation coupling

using master equations in nonequilibrium hypersonic blunt-

body flow. J Thermophys Heat Transfer 2001;15:157–67.

[107] Candler GV, MacCormack RW. The Computation of

hypersonic ionized flows in chemical and thermal none-

quilibrium. J Thermophys Heat Transfer 1991;5(3):266–73.

[108] Gnoffo PA, Weilmuenster KJ, Hamilton HH, Olynick

DR, Venkatapathy E. Computational aerothermody-

namic design issues for hypersonic vehicles. J Spacecraft

Rockets 1999;36:21–43.

[109] Moss JN. DSMC computations for regions of shock/

shock and shock/boundary layer interaction. AIAA 2001-

1027; Reno, NV, 2001.

[110] Shang JS. Shared knowledge in computational fluid

dynamics, electromagnetics, and magneto-aerodynamics.

Prog Aerospace Sci 2002;38(6–7):449–67.

[111] Yee KS. Numerical solution of initial boundary value

problems involving Maxwell equations in isotropic

media. IEEE Trans Antennas Propag 1966;AP-14:302–6.

[112] Tafflove A. Computational electromagnetics, the finite-

difference time-domain method. Boston: Artech House

Inc.; 1995.

[113] Shankar V, Hall WF, Mohammadian AH. A time-

domain differential solver for electromagnetic scattering

problems. Proc. IEEE 1989;77(5):709.

[114] Shang JS. Characteristic based methods for the time-

domain Maxwell equations. AIAA 91-0606; Reno, NV,

1991.

[115] Shang JS, Gaitonde D. Characteristic-based, time-depen-

dent Maxwell equation solver on a general curvilinear

frame. AIAA J 1995;33(3):491–8.
[116] Shang JS. Characteristic-based algorithms for solving the

Maxwell equations in the time domain. Antennas Propag

1995;37(3):15–25.

[117] Zel’dovich YaB, Raizer YuP. Physics of shock waves and

high-temperature hydrodynamic phenomena. Minola,

NY: Dover Publications Inc.; 2002.

[118] Resler EL, Sears WR. The prospects for magneto-

aerodynamics. J. Aeronaut Sci 1958;25:235–245, 258.

[119] Shang JS. Recent research in magneto-aerodynamics.

Prog Aerospace Sci 2001;37:1–20.

[120] Brio M, Wu CC. An upwind differencing scheme for the

equations of ideal magnetohydrodynamics. J Comput

Phys 1988;75:400–22.

[121] Powell KG, Roe PL, Myong RS, Gombosi T, Aee DD.

An upwind scheme for magnetohydrodynamics.

AIAA95-1704-CP; 1995. p. 661–71.

[122] MacCormack RF. An upwind conservation form method

for the ideal magnetohydrodynamics equations. AIAA

99-3609; June 1999.

[123] Gaitonde DV. Numerical exploration of 3-D turbulent

scramjet flowpath with MGD control. AIAA-2003-0172;

January 2003.

[124] Surzhikov ST, Shang JS. Glow discharge in magnetic

field. 41st Aerospace Science Meeting. AIAA 2003-1054;

Reno, NV, 2003.

[125] Shang JS, Surzhikov ST. Magneto-fluid-dynamics inter-

action for hypersonic flow control. AIAA 2004-0508;

Reno, NV, 2004.

[126] Raizer YuP, Surzhikov ST. Two-dimensional structure of

the normal glow discharge and the role of diffusion in

forming of cathode and anode current spots. High

Temperature 1988;26(3):169–77.

[127] Shang JS. Historical perspective of magneto-fluid-dy-

namics. Introduction to magneto-fluid-dynamics for

aerospace applications, Lecture Series 2004-01. Rhode-

ST-Genese, Belgium: von Karman Institute for Fluid

Dynamics; October 2003.

[128] Hirsch Ch. Numerical computation of internal and

external flows, vols. I & II. Chichester: Wiley; 1990.


	Three decades of accomplishments in computational fluid dynamics
	Historical perspective
	Governing equations
	Early milestones
	Achievements in the eighties
	Finite-volume methods
	Characteristic-based methods
	Unstructured grid technique

	Recent progress
	High-resolution algorithms
	DNS and LES

	Interdisciplinary computing simulation
	Aeroelasticity
	Aerothermodynamics
	Computational electromagnetics
	Computational magneto-fluid dynamics

	Outlook
	Epilogue
	Acknowledgements
	References


