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Performance of High-Order-Accurate, Low-Diffusion
Numerical Schemes for Compressible Flow
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High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first
class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space
discretizations. The methods postprocess the computed solution with explicit spectral-type filters. The second
class of methods uses centered schemes with characteristic-based filters and the artificial compression method,
which makes it appropriate for discontinuous flows. The third class is the weighted essentially nonoscillatory finite
difference schemes. Numerical solutions of model aeroacoustic problems and compressible flowfields are computed,
and the accuracy of each method is evaluated.

I. Introduction

H IGH-ORDER-ACCURATE numerical solutions are required
for direct and large eddy simulations (LES) of compressible

flows where the diffusion of the numerical solution must be kept
at a very low level to preserve small-scale turbulent fluctuations.
Aeroacoustics is another area where accurate convection of small-
scale disturbances plays a crucial role. Total variation diminishing
(TVD), shock-capturing schemes are not usually optimal for LES
of turbulent flow or computation of aeroacoustic disturbances. In
recent years, there have been numerous efforts in optimizing these
schemes1 to make possible LES computations of shock/turbulence
interaction and aeroacoustic noise sources, where small scales can be
seriously diffused by the numerical dissipation, which is necessary
to resolve shock waves.

Numerical solutions of flows over wings at high incidence and
over helicopter rotors require high resolution, often achieved by
the use of a large number of grid points, to preserve tip vortices,
vortical wakes, and detached shear layers that have a significant
influence on loading. For these problems, as an alternative to high
grid density, methods that are high-order accurate in space may
be used. High-order-accurate numerical solutions with nondissi-
pative centered schemes have an advantage over shock-capturing
schemes for aeroacoustics and isotropic problems, such as vortex
convection. However, centered schemes discretizations of nonlin-
ear problems require some form of numerical smoothing to elimi-
nate high-frequency oscillations arising from nonlinear instabilities.
Yee et al.2 have developed characteristic-based filters. Gaitonde and
Visbal3 have used spectral-type filters, which have improved prop-
erties compared to similar filters proposed by Lele.4 On the other
hand, essentially nonoscillatory (ENO) schemes5,6 avoid oscilla-
tions by choosing among available stencils around the discontinuity.
Recently, weighted essentially nonoscillatory (WENO) schemes7

have been developed as a follow-up of ENO schemes to cure the
order dependency of ENO related to the free stencil adaptation in
smooth regions. WENO schemes use a convex combination of the
ENO stencils. They assign almost zero weight to the stencil that
includes the discontinuity and at the same time yield a higher order
of accuracy for the same stencil size compared to ENO schemes.
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The objectives of this work are to evaluate the accuracy of ex-
isting high-order-accurate finite difference methods and apply them
for the computation of flows in complex domains, where the use of
a curvilinear stretched grid is necessary. Three different high-order-
accurate, low-diffusion finite difference methods are evaluated. The
first two methods use centered compact space differentiation of the
convective fluxes. The first method8 is appropriate only for compu-
tations of flows without discontinuities, such as low-Mach-number
subsonic flows and aeroacoustic problems. It has been developed
and tested by Gaitonde and Visbal3 and Visbal and Gaitonde.8,9

This method was recently used for LES of compressible flows.10 It
performs high-order-accurate, compact space discretization of the
convective fluxes4 and postprocesses the computed solution with
a spectral-type low-pass filter3 to eliminate nonlinear instability,
aliasing errors, and spurious modes of the solution occurring from
the application of boundary conditions. The second method2 can be
used for high-resolution computations of flows with discontinuities.
It also uses centered fourth- or sixth-order-accurate discretization
of the convective fluxes and characteristic-based filters2 combined
with the artificial compression sensor of Harten.11 This method is
similar to the fourth-order-accurate scheme of Ref. 12, which uses
artificial numerical smoothing. It has been demonstrated1,2 that the
characteristic-based filters can significantly reduce numerical diffu-
sion. The third method is the curvilinear coordinates form of high-
order-accurate WENO schemes.7 In addition, the compact WENO
scheme recently proposed by Pirozzoli13 is also used.

The ability of all high-order accurate stencils to perform long time
integration is evaluated first. Computations of aeroacoustic distur-
bances with the numerical solution of the full nonlinear Euler equa-
tions are carried out next. Finally, the shock-capturing capability of
centered schemes with characteristic filters and WENO schemes of
different order is evaluated.

II. Governing Equations
The strong conservation law form of the full compressible Navier–

Stokes equations in curvilinear coordinates is
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In Eq. (1), Q = {ρ, ρu, ρv, ρw, ρE)T denotes the solution vector,
J = ∂(x, y, z)/∂(ξ, η, ζ ) is the Jacobian of the transformation, and
E, F, and G and Ev, Fv , and Gv are the inviscid and viscous flux
vectors, respectively.

III. Numerical Method
Space discretization of the governing equations (1) is performed

with high-order-accurate finite difference schemes. Time marching
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is performed by both implicit and explicit methods. Time and space
discretization methods are summarized next.

A. Temporal Schemes
The third-order-accurate Runge–Kutta (RK3) method (see

Refs. 6, 14, and 15) is used for explicit time marching. Further-
more, the factored, implicit, second-order accurate in space and
time Beam–Warming algorithm16 (BW-22) that overcomes stability
limitations of explicit methods can be used. The BW-22 algorithm
augmented with Newton-like subiterations is[
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where θ = 1/(1 + ϑ), RHS is the right-hand side, and �Qp =
Qp + 1 − Qp . The implicit, iterative scheme of Eq. (2) yields first-
(ϑ = 0) or second-order (ϑ = 1

2 ) accuracy in time. For one subit-
eration, p = 1 and Qp = Qn , and, as p → ∞, linearization and
factorization errors are eliminated and Qp → Qn + 1.

The spatial derivatives in Eq. (2) are computed with second-order-
accurate finite differences to retain the block tridiagonal structure of
the implicit operators. The original implicit scheme of Eq. (2) (BW-
22) algorithm was modified in Ref. 17 to obtain higher-order spatial
accuracy. It was shown17 that use of compact fourth-order-accurate
formulas retains the block tridiagonal structure of the implicit opera-
tors and yields fourth-order spatial accuracy. The resulting (BW-24)
algorithm requires only a negligible increase in computing cost.

B. High-Order Centered Schemes
A five-point wide stencil, finite difference discretization of any

spatial derivative of a scalar pointwise discrete quantity f in Eq. (1),
such as metric terms or flow variables, is obtained in the computa-
tional domain by

B f ′
j + 2 + A f ′

j − 1 + f ′
j + A f ′

j + 1 + B f ′
j + 2 = a[( f j + 1 − f j − 1)/2]

+ b[( f j + 2 − f j − 2)/4] + c[( f j + 3 − f j − 3)/4] (3)

where A, B, a, b, and c determine the spatial accuracy of the dis-
cretization. Different values of the coefficients in the formula of
Eq. (3) yield schemes of different accuracy, ranging from the 4th-
order explicit method to the compact 10th-order-accurate scheme.
The values of the coefficients in Eq. (3) for schemes of different
orders of accuracy can be found in Refs. 4 and 9. Stable, accurate
formulas for the boundary points can be found in Ref. 18. Numerical
solutions of nonlinear hyperbolic equations with central-difference
methods develop spurious modes arising from unresolvable scales
and inaccuracies in the application of boundary conditions. The de-
velopment and application of spectral-type filters that can be used
to stabilize numerical solutions performed with central-difference
methods for flows without discontinuities are given in Ref. 3.

C. Characteristic-Based Filters
The characteristic filter2 can be used in combination with central-

difference high-order-accurate schemes for both smooth flows and
flows with discontinuities. This filter is applied on the solution vec-
tor, Q̄n + 1, either at the end of a Runge–Kutta step or at the end of a
full implicit sweep after the completion of the pth subiteration with
Eq. (2). After filtering, the solution Qn + 1at the new time level is
defined as

Qn + 1 = Q̄n + 1 + �t L f (E∗, F∗, G∗)i, j,k (4)

The filter operator L f (E∗, F∗, G∗)i, j,k is applied for each flux on
a dimension-to-dimension basis. For example, the filter operator for
the flux F is

L f (F∗)i, j,k = (1/�η)
[
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2 ,k − F̃
∗
i, j − 1
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(5)

The filter dissipative numerical fluxes F̃
∗
i, j + 1/2,k for the operator

of Eq. (5) are evaluated at Q̄n + 1. They have the form
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where R j + 1/2 is the right eigenvector matrix of the flux Jacobian
B = ∂F/∂Q. The elements φl∗

j + 1/2 of 
∗
j + 1/2 are given by
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2
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2
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(7)

where φl
j + 1/2 are the nonlinear dissipation portions of a TVD, ENO,

or WENO scheme.2,19 The function κθ l
j + 1/2 is the key mechanism

to achieve high accuracy for the fine-scale structures and smooth
regions of the flow, as well as stability and shock capturing. The
parameter κ is problem dependent2 and ranges as 0.03 < κ < 2. The
function θ l

j + 1/2 is the Harten switch11 given by
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where αl
j − 1/2 are the elements of the left eigenvector matrix R−1

j + 1/2
of the flux Jacobian B = ∂ F/∂q.

D. WENO Schemes
The basic problem of the ENO finite difference formulation is the

conservative approximation of the derivative u′ of a function u(x)
starting from the pointwise values of the function (finite difference
approach) given on a set of grid points ui = u(xi ), i = 1, 2, . . . , N ,
with uniform grid spacing h. Note that the uniform grid assump-
tion is essential for the development of finite difference ENO and
WENO schemes. The approximation of the derivative u′(xi ) to
kth-order accuracy is achieved when a numerical flux function
ũi + 1/2 at the intermediate nodes i + 1

2 and i − 1
2 can be found

so that (1/h)(ũi + 1/2 − ũi − 1/2) = u′(xi ) +O(hk), i = 1, 2, . . . , N .
It was shown5,20 that the solution to this problem is equivalent to
the interpolation problem where the reconstruction of the function
u(x) at the intermediate nodes ũi + 1/2 is evaluated starting from its
cell-averaged values:

ūi =
∫ x

i + 1
2

x
i − 1

2

u(x) dx

The approximation of the derivative is kth-order accurate when the
condition ũi + 1/2 = ui + 1/2 +O(hk) is satisfied. For a k point stencil
xi − r , . . . , xi + s , where r + s = k − 1, the numerical flux ũi + 1/2 is
expressed as

ũi + 1
2

=
k − 1∑
j = 0

cr j ui − r + j (9)

where the coefficients cr j (see Ref. 20) yield different stencils for
kth-order-accurate approximations with Eq. (9). Given the k stencils
for the approximations of the numerical flux ũi + 1/2, ENO piecewise
polynomial reconstruction of degree at most k − 1 can be obtained.
This is achieved by adaptively selecting the appropriate stencils
based on the absolute values of divided differences. The resulting
ENO reconstruction is uniformly high-order accurate up to the dis-
continuity, and the accuracy condition is satisfied for any cell in the
smooth flow regions.

The reconstruction process has the following drawbacks. The
free adaptation of the stencil with the ENO reconstruction process
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is not necessary in smooth flow regions. The appropriate stencil
is selected among k candidate stencils that cover 2k − 1 cells, and
the stencil choosing procedure is time consuming. The most recent
attempt to improve on ENO is the WENO scheme that uses a convex
combination of all k potential stencils to obtain (2k − 1)th-order
accuracy in smooth regions. WENO reconstruction with a convex
combination of all values of the numerical flux ũ(r)

i + 1/2 of Eq. (9) is
obtained with the following approximation:

ũi + 1
2

=
k − 1∑
r = 0

ωr ũ(r)

i + 1
2
, ωr ≥ 0,

k − 1∑
r = 0

ωr = 1 (10)

The weights of Eq. (10) are computed as

ωr = αr/(α1 + · · · + αk − 1), r = 0, . . . , k − 1

αr = dr

/
(ε + βr )

2 (11)

where ε is a small parameter to avoid division by zero (ε = 10−6)
and Br are the so-called smoothness indicators.

Smoothness indicators and WENO weights are tabulated in
Refs. 6, 20, and 21. High-order WENO stencils21 for r = 4, 5, and 6
that yield (k = 2r − 1)th-order accuracy are fifth-order accurate for
r = 3:

f̃i + 1
2

= (1/30) fi − 2 − (13/60) fi − 1 + (47/30) fi

+ (9/20) fi + 1 − (1/20) fi + 2 (12)

seventh-order accurate for r = 4:

f̃i + 1
2

= −(1/140) fi−3 + (5/84) fi − 2 − (101/420) fi − 1

+ (319/420) fi + (107/210) fi + 1 + (19/210) fi + 2

+ (1/105) fi + 3 (13)

and ninth-order accurate for r = 5:

f̃i + 1
2

= (1/630) fi − 4 − (41/2520) fi − 3 + (199/2520) fi − 2

− (641/2520) fi − 1 + (1789/2520) fi + (275/504) fi + 1

− (61/504) fi+2 + (11/504) fi + 3 − (1/504) fi + 4 (14)

Furthermore, the following compact WENO scheme developed
by Pirozzoli13 may be used for the evaluation of the numerical flux
with fifth-order accuracy:

9 f̃i − 1
2

+ 18 f̃i + 1
2

+ 3 f̃i + 3
2

= fi − 1 + 19 fi + 10 fi + 1 (15)

The compact WENO scheme of Eq. (15) has improved resolution
in wave space13 compared to equivalent or higher-order explicit
WENO stencils of Eqs. (12) and (13).

The Lax–Friedrichs flux or the Roe flux can be used as build-
ing blocks with the WENO schemes of Eqs. (12–15). Evaluation
of the Lax–Friedrichs flux is less computationally intensive, and,
for high-order WENO schemes, no significant differences are ob-
served from the results obtained with Roe’s flux. For the evalua-
tion of the conservative kth-order approximation of the flux deriva-
tive ∂F j/∂η = (F̃ j + 1/2 − F̃ j − 1/2)/�η + O(�ηk), the numerical
flux F̃ j + 1/2 with WENO schemes of different order of accuracy
O(2r − 1) can expressed as

F̃ j − 1
2
=

j + r − 1∑
m = j − r + 2

cmFm + R−1
j + 1

2
ϕN (a0, a1, . . . , a2r − 1) (16)

where the first part is a central interpolation of the physical flux
F j combined with the WENO part ϕN (a0, a1, . . . , a2r − 1) that in-
cludes the smoothness measures of Eqs. (10) and (11) and the
building block Lax–Friedrichs flux F = F+ + F− and F± = F + αQ

where α = λ and λ is the maximum eigenvalue of the flux Jacobian.
To have continuous higher derivatives of the split fluxes, select
α = √

(ε2 + λ2) and ε = 0.05.
Boundary conditions for WENO schemes are difficult to formu-

late. One possibility is to preserve formal order of accuracy and
switch from WENO to standard extrapolation on the boundaries. An-
other possibility is to reduce the order of accuracy on the boundary
with lower order stencils. The ghost approach that makes the overall
scheme more stable and does not require branching for boundary
treatment is used in this work.

IV. Results
The resolving ability and the performance for long time integra-

tion of the numerical schemes presented in the preceding section
are evaluated first for simple linear problems. The performance of
centered and WENO schemes for aeroacoustics by the use of the full
Euler equations is considered next. Finally, centered schemes with
characteristic-based filters are compared with WENO schemes for
problems with strong shocks in curvilinear coordinates. The com-
puted solutions are compared with available exact solutions.

A. Performance for Linear Convection
Long time integration is important in many practical applications,

such as aeroacoustics, LES, and helicopter rotor calculations where
the tip vortex and the rotor wake need to propagate for long dis-
tances. Therefore, the ability of symmetric, centered compact, and
noncompact schemes, as well as several WENO high-order-accurate
stencils is evaluated first for wave convection. Sufficiently accurate
convection of simple Gaussian pulses, u(x, t = 0) = e−ax2

, with 12
points per waveform (not shown here) was achieved even with ex-
plicit fourth-order accurate in space methods.

Further accuracy tests are shown for linear wave convection by the
one-dimensional wave equation ut + cux = 0. Numerical solutions
with unit wave speed c = 1 are obtained for long propagation times.
Time marching is performed with the RK3 method.6,14 A time step
of �t = 0.1, which is below the stability limit of the method, is used
for all tests to keep time integration errors at low level.

The first test is propagation of a high-frequency sinusoidal wave
u0(x) = sin(πx/6). Convection of the sinusoidal wave is obtained
with �x = 0.1 (12 points per wavelength) and periodic boundary
conditions. The mean square error obtained from explicit space
discretizations with the symmetric fourth- and sixth-order-accurate
schemes and with WENO schemes of fifth- and seventh-order ac-
curacy [Eqs. (12) and (13)] is shown in Table 1. It appears that
only the schemes with formal accuracy of more than five are ca-
pable of obtaining a sufficiently accurate solution for long time
integration.

Further evaluation of high-order-accurate symmetric explicit and
compact schemes and WENO stencils to perform linear wave
convection is carried out with the following modulated wave
uo(x) = cos(a|x |)e−b|x | with a = 3/4 and b = 1/10 as initial con-
dition. For explicit schemes, time integration is performed until
T = 200. For compact schemes, which have increased resolving
ability, time integration is performed until the final time T = 500.
A comparison of the solutions computed using explicit high-order
symmetric schemes and WENO stencils with the exact result is
shown in Fig. 1. Note that at least sixth-order accuracy is needed for
long time propagation. The mean square error of the solutions com-
puted with different schemes is shown in Tables 2 and 3. It appears
that the ninth-order-accurate WENO stencil provides a uniformly
high order of accuracy for smooth initial data.

Table 1 L2 error at T = 200 for the
convection of sin(πx/6) with explicit schemes

Explicit schemes L2 error

4th-order centered 0.2E00
6th-order centered 0.11E–2
5th-order WENO 0.12E–1
7th-order WENO 0.14E–3
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Table 2 L2 error at T = 200 for the convection
of cos(a||x||)e−b||x|| with explicit schemes

Scheme L2

6th-order centered 0.4E–3
5th-order WENO 0.1E–2
7th-order WENO 0.7E–4
9th-order WENO 0.7E–2

Table 3 L2 error at T = 500 for the convection
of cos(a||x||)e−b||x|| with compact schemes

Compact scheme L2 error

5th-order WENO 0.19E–3
6th-order centered 0.57E–4
8th-order centered 0.92E–5
10th-order centered 0.53E–5

Fig. 1 Comparison of the exact solution uo(x) = cos(a||x||)e−b||x|| at
T = 200 with results computed with explicit schemes.

The mean square error for long time integration, T = 500, of
high-order compact schemes (Table 3) also remains at low levels.
Note that compact schemes with formal order of accuracy more
that four perform adequately. The high-order-accurate compact
schemes appear to be particularly suitable for linear aeroacoustic
problems.

The computing time the explicit schemes is proportional to the
width of the stencil. The computing cost of the 8th- and 10th-order
compact schemes that require pentadiagonal matrix inversion is the
highest and almost double compared to the time required by the ex-
plicit schemes. However, the use of very high-order centered meth-
ods may be required for wave convection over long time periods.

B. Performance for Aeroacoustics
Symmetric schemes with spectral-type filtering and charact-

eristic-based filters, as well as WENO schemes of different or-
ders of accuracy, are used to compute spread and reflection of a
pressure disturbance. The full nonlinear Euler equations are used
for this test. At the far-field boundaries of the domain, a radiation
boundary condition was used. On the solid surface, the normal to
the wall velocity component was set to zero, whereas the density
and pressure were extrapolated from the interior under the assump-
tion that ∂ρ/∂n = ∂p/∂n = 0 or ∂ρ/∂y = ∂p/∂y = 0. It was found
that it is required to use high-order-accurate approximations of the
derivatives at the wall to retain the accuracy of the numerical so-
lution. For example, the pressure is extrapolated with the follow-
ing one-seeded, fourth-order-accurate approximation of the first
derivative (dp/dy)1 = (−25p1 + 48p2 − 36p3 + 16p4 − 3p5)/12.
The computed results are compared with the exact solution,22

which gives the time variation of an initial pressure disturbance

p(x, y) = exp{−ln 2[x2 − (y − yo)
2]}. The initial disturbance is lo-

cated at y = yo, and, as it spreads, it reflects from a solid wall at
y = 0.

A comparison of the solution computed on an artificially distorted
mesh9 by WENO schemes with r = 3 and 5 is shown in Fig. 2. Note
that the solution computed with the (r = 5) ninth-order accurate
WENO scheme on the baseline 100 × 50 point grid, which provides
12 points per wave, is almost indistinguishable from the solution
computed with the (r = 3) fifth-order-accurate WENO scheme on a
200 × 100 point grid, refined in both directions. Note that the full
WENO scheme with the appropriate smoothness measures must
be used for the propagation of the pressure disturbance with the
nonlinear Euler equations. Numerical solutions of the liniearized
Euler equations that describe the propagation of the acoustic-type
pressure disturbance may be possible only with the optimal WENO
stencils of Eqs. (12–14).

A grid-independent solution was obtained for the solution com-
puted with the ninth-order-accurate (r = 5) WENO scheme because
the error does not change for computations performed with the base-
line 100 × 50 point grid and refined 200 × 100 and 400 × 200 point
grids. Therefore, the errors of the baseline grid are mainly due to
the temporal integration scheme. The error of the solutions obtained
with different methods, along the normal to the wall symmetry line,
is shown in Figs. 3 and 4. Similarly to the WENO scheme that

Fig. 2 Comparison of WENO scheme computations with the exact
solution.

Fig. 3 Comparison of the error obtained with WENO schemes and
centered schemes with characteristic-based filters κ= 0.1.
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Fig. 4 Effect of the ACM filter parameter on the accuracy of the com-
puted solution.

required use of smoothness, characteristic-based filters are used for
the computation of aeroacoustic pulse propagation with the full non-
linear Euler equations. For the comparisons of Fig. 3, the same
value of the artificial compression method (ACM) filter parameter
(κ = 0.1) was used. Note that the WENO schemes provide a com-
parable level of accuracy with the centered schemes.

The effect of the order of the ACM filter parameter on the accuracy
of the computed solution is shown in Fig. 4. Note that increase of κ
deteriorates the accuracy of the solution. The comparisons of Fig. 4
demonstrate that reduction of the ACM filter parameter κbelow a
certain level does not improve the solution. The solution obtained
with the spectral-type filter has the smallest error. Among the results
compared in Fig. 4, the solution computed with the spectral-type
filter was the most efficient. The results computed with the ACM
filter required approximately 20% more time compared to the so-
lution obtained with the spectral filter. The solution obtained with
the WENO scheme required approximately 30% more time com-
pared to the solution obtained with the spectral filter. Despite the
longer computing time, both WENO schemes and the ACM filter
provide shock-capturing capability that is of interest in aeronautical
applications.

It can be concluded that both the centered and WENO schemes
of seventh-order or higher are appropriate for aeroacoustic compu-
tations of subsonic flows. For flows with shocks, however, WENO
schemes appear to be more appropriate for aeroacoustics because
computation of these flows require high values of the ACM filter
parameter (κ > 0.5) to prevent numerical oscillations. Numerical
solutions obtained for the same problem on artificially distorted
meshes have demonstrated that the accuracy of the solution does
not deteriorate when the definition of the metrics is consistent9,19

and the metrics are computed with a high-order method.
In earlier comparisons, the RK3 of Refs. 6 and 14 was used,

even though higher-order or optimized Runge–Kutta methods can
further reduce temporal errors. Furthermore, it was found that suf-
ficiently accurate computations of aeroacoustic phenomena can be
obtained when implicit time marching is performed with Eq. (2)
with p = 2 − 3 subiterations within each physical time step. The
error of the solutions computed with the explicit RK3 method and
the modified implicit BW-24 algorithm17 with n = 2 is almost the
same. The error of these computations is shown in Fig. 5.

C. Shock-Capturing Capability
The performance of WENO and centered schemes with

characteristic-based filters is evaluated for flows with shocks.

Fig. 5 Error of the solutions computed with implicit and explicit time
integration.

Fig. 6 Comparison of the computed pressure at y = 0.5 with the exact
solution.

The oblique shock reflection problem at M∞ = 2.9 is chosen as
the test case. The pressure at y = 0.5, computed with WENO
schemes of fifth-, seventh-, and ninth-order accuracy is compared
with the exact solution in Fig. 6. The computations were per-
formed on a uniformly spaced 200 × 50 point grid in a domain
−2.0 ≤ x ≤ 2.0, 0 ≤ y ≤ 1.0. At the left inflow boundary, freestream
was specified. At the right outflow boundary, all quantities were ex-
trapolated. On the solid wall at y = 0, a slip boundary condition
was specified, and at the top, the flow quantities were specified
as ρ = 1.69997, u = 2.61934, υ = −0.506, and p = 1.528. A suffi-
cient number of ghost points, depending on the order of the scheme,
were used at the edges of the domain to retain the formal order of
the scheme. For example, computations with the seven-point wide
WENO-5 scheme required three ghost points, whereas solutions
with the sixth-order accurate ACM method require two ghost points.

At steady state, an oblique incident shock and a reflected shock
were generated. The comparison of the computed pressure with
the exact solution of Fig. 6 shows that, as the order of the WENO
scheme increases, the computed solution approaches the exact solu-
tion. For all computations, the shocks are captured within two cells.
The pressure fields obtained from the numerical solutions with the
fourth-order-accurate compact centered scheme with κ = 0.7 and
the fifth-order-accurate WENO scheme on an artificially distorted
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mesh are shown in Fig. 7. Both solutions were computed with the
explicit time marching scheme. Note that both methods can cap-
ture the oblique strong shock without oscillations. Furthermore, the
artificially distorted mesh does not cause oscillations.

The numerical solution for the same problem was computed with
the implicit time marching scheme of Eq. (2). The convergence
rates of the numerical solutions obtained for different numbers of
subiterations are shown in Fig. 8. For reference, the convergence rate
of the solution obtained with the explicit Runge–Kutta method6,14

is also shown in Fig. 8. At convergence, all solutions were the same,
and computed pressure and density obtained from implicit or explicit
time marching were almost identical.

A comparison of the computed pressure at y = 0.5 from the solu-
tion obtained with the fifth-order accurate WENO scheme and the
solutions obtained with different values of the ACM parameter are
shown in Fig. 9. It appears that the computed solution is sensitive

Fig. 7 Pressure fields computed with WENO fifth-order and fourth-
order centered scheme with characteristic-based filter (ACM parameter
κ= 0.7) on an artificially distorted mesh.

Fig. 8 Convergence rate of solutions computed with implicit time
marching.

Fig. 9 Effect of ACM parameter on the computed pressure at y = 0.5.

Fig. 10 Computed entropy and pressure fields with the ninth-order-
accurate WENO scheme at M∞ = 5.0.

to the selection of the ACM parameter. Furthermore, the choice of
the upwind TVD limiter2 affects the solution.

D. Blunt-Body Supersonic Flow
Supersonic flows over a cylinder at various Mach numbers are

computed next. These solutions are obtained by the use of WENO
schemes. An algebraically generated 181 × 51 point grid was used
for this computation of supersonic flows over the cylinder. Similarly
to the shock reflection case, a sufficient number of ghost points,
depending on the order of the scheme, was used at the edges of the
domain. At the inflow, freestream supersonic flow was specified. At
the outflow, all quantities were extrapolated from the interior. On the
cylinder solid surface, the normal to the surface velocity component
was set to zero, and all of the other quantities were extrapolated from
the interior with high-order extrapolation and under the assumption
that the normal derivative is zero.

The computed pressure and entropy fields at M∞ = 5.0 are shown
in Fig. 10. The resolution of the strong shock generated by the high-
speed flow is captured without oscillations. Similar to the oblique
shock computations of the preceding section, the shock for the su-
personic cylinder flow (Fig. 10) is captured within two cells. The
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Fig. 11 Convergence history at M∞ = 3.0, 5.0, and 10.0 with the base-
line and refined grids.

Fig. 12 Pressure at the symmetry line for M = 3, 4, 5, and 10.

convergence rates obtained at different Mach numbers, order of ac-
curacy, and for baseline (91 × 51) and refined (181 × 101) grids are
shown in Fig. 11. All computations were obtained at the same time
step and with the TVD Runge–Kutta method.6,14 For all cases, the
convergence was satisfactory, and the solution practically remained
unchanged when the residuals drop four orders of magnitude. A
comparison of the computed pressure distributions for the grid line
on the symmetry axis that passes through the stagnation point is
shown in Fig. 12. Note that the shock is captured within two com-
putational cells and the solution is free from oscillations.

E. Airfoil Flows
Inviscid flows solutions over a NACA-0015 airfoil are computed

with the fifth-order-accurate WENO scheme. The computed pres-
sure fields at transonic and supersonic speed are shown in Figs. 13
and 14. The solutions were computed with the explicit time march-
ing scheme on a 261 × 51 point, C-type grid. The airfoil grid in-
cluded three ghost points at the edges of the domain to use the
WENO-5 scheme for the entire domain without dropping the sten-
cil accuracy at the airfoil surface and the wake. The supersonic
and transonic flow computations were obtained on the same grid.
For both flow speeds, a smooth solution is obtained on the highly
stretched, high-aspect-ratio, C-type grid.

Fig. 13 Computed pressure field over a NACA-0015 airfoil for super-
sonic flow; M = 2.0 and α= 0.0 deg.

Fig. 14 Computed pressure field over a NACA-0015 airfoil for tran-
sonic flow; M = 0.8 and α= 0.1 deg.

Fig. 15 Comparison of the computed pressure surface pressure co-
efficient for NACA-0012 airfoil at M = 0.8 and α= 0.1 deg with the
experiment.
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The computed pressure field at M∞ = 2.0 is shown in Fig. 13. The
computed pressure field shows adequate resolution of the leading-
edge bow shock and the two shocks at the trailing edge, despite the
coarseness of the grid. The same type of inflow/outflow and solid
wall boundary conditions as the supersonic cylinder flow were used.
At the wake of the C-type grid, averaging was used.

For the transonic flow computation at M∞ = 0.8, the shocks of
the upper and lower surface shown by the pressure contours of
Fig. 14 are well resolved. For this computation, the inflow and
outflow boundary conditions were specified with one-dimensional
Riemann invariants. A comparison of the computed surface pressure
coefficient for transonic flow over the NACA-0012 airfoil with the
experimental data is shown in Fig. 15. The overall agreement of the
computed inviscid solution with the experiment is satisfactory, and
the shock is resolved within two cells.

V. Conclusions
High-order-accurate finite difference schemes for the compress-

ible flow equations have been evaluated for test problems. The ability
of high-order discretizations to perform long time convection carries
over to the propagation of aeroacoustic disturbances with the full
Euler equations. For aeroacoustics of complex flows with discon-
tinuities, high-order WENO schemes have an advantage because
they provide the required accuracy level, and they do not require
adjustment of parameters. WENO schemes were found accurate
and robust for the computation of supersonic and transonic flows
in general geometries. For these flows, the centered schemes with
characteristic-based filters require careful selection of the ACM pa-
rameter. These methods are, however, more efficient, and they can
be used once the ACM parameter is chosen according to the flow
features, as suggested in Ref. 1.
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