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The stability characteristics of various compact fourth- and sixth-
order spatial operators are assessed with the theory of Gustafsson,
Kreiss, and Sundstrom {G-K-5) for the semidiscrete initial boundary
value problem. These results are generalized to the fully discrete case
with a recently developed theory of Kreiss and Wu, In all cases,
favorable comparisons are obtained between G-K-§ theory, eigenvalue
determination, and numerical simulation. The conventional definition
aof stability then is sharpened 1o include enly those spatial discretiza-
tions that are asymptotically stable (bounded, left half -plane eigen-
values), Many of the higher order schemes that are G-K-5 stable are
not asymptotically stable. A series of compact fourth- and sixth-order
schemes that are both asymptotically and G-K-S stable for the scalar
case are then developed. € 1993 Academic Press, Inc.

INTRODUCTION

Recently, higher order numerical wethods have seen
increasing use in the direct numerical simulation (DNS) of
the Navier-Stokes equations. Although these metheds do
not have the spatial resolution of spectral methods, they
offer significant increases in accuracy over conventional,
sccond-order methods. These methods are generally more
robust and less costly than spectral methods. The issue of
the relative cost of various higher order schemes (accuracy
weighted against physical and numerical cost) is a complex
issue that is ultimately dependent on what features of
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the solution are sought and how accurately they must
be resolved. In any event, {urther development of the
underlying stability theory of these schemes is important.
The state of higher order temporal discretizations is well
developed and relies greatly on the existing ordinary dif-
ferential equation (ODE) literature. Higher order spatial
discretizations are also well documented in the literature.
For example, entire classes of centered explicit spatial
schemes are described in the text of Kopal [1]. In practice,
compact schemes (methods in which both the solution and
its derivatives are treated as unknowns and are solved for
simultaneously) are more accurate than optimai explicit
schemes ( Nth-order schemes that involve N + t grid points)
and have recently gained much attention for use in DNS,
The [undamental ideas of compact schemes, as well as
derivation techniques, can be found in the work of
Vichnevetsky [27] and witl not be pursued i this work. The
primary difficulty in using higher order schemes is iden-
tilication of stable boundary schemes that preserve their for-
mal accuracy. For a hyperbolic system to preserve formal
spatial accuracy, an Nth-order inner scheme must be closed
with at least an (N — 1 )th-order boundary scheme {3]. To
date, many higher order inner schemes are used with lower
order boundary schemes because no stable, higher order
formulations are known. The formal accuracy of these
formulations is thus reduced to one order more than the
boundary condition (BC) accuracy, so that the additional
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work incurred with the higher order inner scheme is difficult
to justify.

Determination of the numerical stability of a fully discrete
approximation for a linear hyperbolic partial-differential
equation is a difficult task. For the Cauchy problem on an
infinite domain (— o0, o0}, standard techniques based on
Fourier methods generally provide the necessary conditions
for stability of the numerical scheme. For the initial
boundary value problem (IBVP) on the semiinfinite domain
[0, «0), or the finite domain [ —1, 1], Fourier techniques
are not straightforward to apply and do not provide suf-
ficient conditions for numerical stability, To address these
issues, Osher [47], Kreiss [5], and later Gustafsson et al.
[6] developed stability analysis techniques based on
normal modal analysis. Their work (generally referred to as
G-K-S stability theory) established conditions that the
inner and boundary schemes must satisfy to ensure stability.
The G-K-S theory states that hyperbolic systems are
assumed stability if no eigenvalues or generalized ecigen-
values exist for the IBVP. Trefethen [7] further clarified the
physical meaning of the G-K-S condition by noting that
the concept of stability at a boundary could be related to the
group velocity of the boundary scheme (specifically,
whether energy is carried into or out of the numericai
domain).

One of the weak points of fully discrete G-K-8 theory
has been the complexity in its application to higher order
numerical schemes. If the spatial or temporal accuracy is
raised, then the complexity of the polynomials that govern
the stability of the numerical approximation is generally
increased {the order increases, which gives rise to more
roots). In multistage time discretization schemes (e.g.,
Runge-Kutta (R-K) schemes with three or more stages),
where boundary conditions must be applied at intermediate
levels, the stability polynomials that must be tested at each
boundary are nearly insurmountable with analytic techni-
ques. The analysis can be simplified by addressing the semi-
discrete problem as a method-of-lings IBVP rather than the
fully discrete problem. The underlying G-K-S theory
for the semidiscrete problem was initially developed by
Strikwerda [8]. He showed that by discretizing space and
leaving time continuous, the necessary and sufficient condi-
tions for method-of-lines IBVP stability are analogous to
those that govern the stability of the fully discrete case.

The precise connection between the semidiscrete stability
bounds and those obtained in the fully discrete analysis is
not always straightforward. Recently, however, Kreiss ef al,
[10] have shown that under very weak conditions, stability
of the semidiscrete approximation infers stability in the
fully discrete approximation if specific R-K time-marching
schemes are used. Therefore, the semidiscrete G-—K~S
theory can be relied on to assess the stability with R-K
integration of various higher order spatial discretization
operators, which simplifies the calculations considerably.
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There are other methods for establishing boundary
stability for the IBVP, most notably the work of Goldberg
and Tadmor (e.g, [9]). They have addressed the com-
plexity of G-K-§ analysis by devising more versatile and
convenient stability criteria for wide classes of finite-dif-
ference approximations. Unfortunately, the discretizations
we are considering fall outside of the validity of their work
since we are not using translatory boundary conditions for
the spatial operator.

The emphasis of this work is to apply semidiscrete
G-K-S theory to several higher order spatial operators
for the IBVP. Because compact methods naturally lend
themselves to fewer implementational difficulties at the
boundaries, these methods will be the primary focus. Stable
boundary formulations that preserve the formal accuracy of
the inner scheme will be presented for spatial derivative
operators of up to sixth order.

MODEL EQUATION FOR IBVP

The Euler equations of fluid dynamics in one spatial
dimension can be written as a system of hyperbotic
equations with the form

where 4 is a matrix with real eigenvalues, Fis a source term,
and boundary and initial data are supplied in the form

ONG, O+ TUMO, 0)=g{r),  Ulx,0)=f(x), (2)

where T is a matrix that describes the boundary conditions.
The problem is well posed if the solution U(x, ¢) depends
smoothly on the initial and boundary data. The focus in this
work will be on the scalar form of Egs. (1) and (2), where
the matrix A4 is a negative real constant ¢ and the source
term is F=0. This simplification can be justified because
stability of a numerical scheme on the scalar equation
implies stability of the system if boundary conditions are
imposed in a characteristic form (e.g., Gottlieb et al. [11]).

SEMIDISCRETIZATION

In this work, the numerical discretization of Eq. (1) will
be accomplished in two separate steps. The spatial
derivatives first will be approximated with appropriate for-
mulas, which leaves what is generally referred to as a semi-
discretization. The numerical solution will then be advanced
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in time in a method-of-lines approach with a stable
temporal scheme. The continuous domain [(, 1] is divided
inte & uniform intervals of width dx, where N dx=1. The
continuous derivative U, is then replaced with a finite-
difference representation that involves the functional values
U; at the discrete points. A system of ODEs results in the
form

~d—V-M+V (3)
dr
where
Z am Vit ko j=0,...,N (4)

k= —L

and L and R are the width of the stencil that extends to the
left and right of grid point j, respectively. Note that m , Ly,
and R, are functions of j. Consider the case where the same
spatial stencil is used at every interior grid point in the
domain such that L, =L and R, = R. This scheme can only
be used for L < j<N R since for other values of J, the
stencil protrudes through the boundary. Thus, exactly
L+ R additional formulas have to be defined near the
boundaries. Because only one physical boundary condition
exists, L.+ R—1 of the schemes are strictly numerically
motivated. These schemes are generally referred to as
numerical boundary schemes (NBS).

The physical boundary condition g(¢) is imposed at the
grid point /=0, and Eq. (3) can be rewritten as

dv
ar _ 5
— MV + Bg{t), (3)

where M is an N x N matrix and B is a vector of dimension
N, which describes the dependence of the jth scheme on the
boundary data. The matrix M usuaily is diagonal of order
L+ R+1 for most explicit methods, but can in general be
full. For stability analysis, g(7) can be set to zero with liitle
loss of generality. The exact solution of the semidiscretiza-
tion described by Eq. {5) for homogeneous boundary data
becomes

V()= flx) ™. (6)

The stability of the numerical scheme depends on the
properties of M, which includes information from the
interior and boundary discretizations.

These points about boundary closures can be clarified
with examples of explicit and implicit spatial schemes. Con-
centration will be on schemes that have at least fourth-order
spatial accuracy because most of the difficulties associated
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with high-order stencils are not observed with second-order
schemes. The first is an explicit five-point scheme reported
by Gary [12] and later shown by Strikwerda [8] to be
G-K-S stable. The scheme is uniformiy fourth order in
space. The spatial discretization is accomplished with the
stencils

%?:Q_IA;(_25V0+48V1~36V2+I6V3-3V4)
%;1—2:—( IWo— 10V, + 18V, — 6V + V)
%.?ﬂzlm( SN
(=2, .. N=2)
51;";-1 ﬁ( Ve a6V s—18Vy_,

+ 10V +3Vy)

vy 1

P T CLOVBTE LUV LV
— 48V, _, +25V,). (7)
The terms in Eq. (3) take the form
p— —y
Vs
¥y
Vy
ve=| .
Vi-z
VN-—]
VN
y
25 48 —36 16 —3
-3 -10 18 -6 1
1 -8 0 8 -1 0
_ 1 -8 0 8 —1
M*= N :
180 8 -
0 ~1 6 —18 10 3
L 3 16 36 —48 25
(8)
where M * =(a/12 4x) M *. Four NBSs are required to

close the numerical scheme, only one of which will be over-
written by a physical boundary condition. The boundary
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condition is accounted for at the grid point j =0 in Eq. (8),
which results in expressions for Eq. (5) of the form

-V
v,

2

€
Vo2
V-
L v
——10 18 —6 1 -

-8 0 8 -1 0
-8 0 8 -1

1 -8 0 8 -1
0 -1 6-18 10 3
3 —16 36 —48 25_|

i
!
VS

J

G,
I

=

| 0

where M =(a/12 Ax) M and B=(a/12 Ax) B. The matrix
M is the Nx N submatrix of the matrix M *, which
corresponds to 1 <4, j<N.

The implicit fourth-order example is a compact dis-
cretization in which the numerical approximation to dU/,/dx
is made in the form

oV, v,
Ox dx
i
=m(—ITVO+9V1+9V2— V)
av,_, E_IQ_{_OVJ,.H

0x dx Ox
(10}

(—3V,_1+3V.)

o
La
P
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In matrix notation, Eq. (10} is often expressed in the form
M (dV/idx)y=M3}V,where M* =(M )" M, and

v,
vy
ve=t |
VN—.‘.
L VN
C6 18
1 4 1 0
M- - , (11)
0 1 4 1
i 18 6
m 17 9 9 —1
30 3 0
M= s ;
0 -3 0 3
a 1 —9 —9 17

where M} =(a/4x) M,. The boundary information is
imposed at grid joint j = 0 to reduce the matrix by one order
and to yieid matrix equations for the reduced vector ¥ of the
form

6 6
1 4 1 0
M, = B . ?
0 1 4 1
R 18 6
—1 9
-3 0 3 0
M,= R , (12)
0 -3 0 3
| 1 -9 -9 17
-4
0
Bz= *
0
L. O

where B, = (a/4x) B,. Because a matrix multiplication was
used to determine the spatial operator for grid points
1< j< N, matrix 3 is not a simple submatrix of matrix
M * as it was with the explicit scheme. The spatial operator
described by Eq. (12) is compact because both M, and M,
involve only three grid points (except near the boundary in
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M ). Because of this compaciness, £.= R =1 and only two
NBSs must be defined (one of which includes, but is not
replaced by, the physical boundary condition). This
algorithm expressed in the form of Eq. (5) yields

M=M'M,, B=M'B,. (13)
Although the algorithm is implementationally compact, the
resuiting M is a full N x N matrix.

The structure of the two spatial discretizations described
thus far and all of the discretizations analyzed in this work
have the property of “asymmetry.” Specifically, a central
difference scheme is used in the interior of the domain, and
identical NBSs are used at both ends of the spatial operator.
{This is the property which yields the work of Goldberg and
Tadmor inapplicable.) With this property the matrix M
defined by Eq. (5) is identicai (to within a sign) regardless of
which end of the domain the physical boundary cendition is
applied. Therefore, stability is guaranteed for both positive
and negative wave speeds. This is important from a practical
point of view because the signs of the eigenvalues of the
matrix A4 in Eq. (1) are not known a priori for a hyperbolic
system. Typicaily, the numerical solution is advanced in
time for the entire domain j=0, N, followed by a charac-
teristic decomposition. The boundary conditions are
imposed at either =0 or j= N, depending on the signs of
the eigenvalues so that the resulting system is well posed.

For future reference, a convenient nomenclature is
defined to describe these matrices. Let matrix M7 be
described as (NBS,,..NBS,— CD—NBSg, .., NBS,),
where CD is the order of the central-difference operator
used in the interior and NBS; is the order of the NBS used
at each of the points next to the boundary. For example, the
explicit, uniformly fourth-order scheme represented by
matrix equation (8) is denoted by the nomenclature
(4, 444, 4}, where the -4 denotes the inner scheme that is
approximated with a fourth-order stencil and the symmetric
4,4 denotes fourth-order stencils at j=0,1, and
Jj=N—1, N. The three-point compact scheme described by
Eq. (11) is denoted (4—4—4). Again, the —4- refers to the
inner-scheme accuracy, and the symmetric 4's indicate
closure on the boundaries of {ourth-order accuracy. No
ambiguity exists in the nomenclature between the compact
and explicit schemes since only the compact scheme can
retain fourth-order inner accuracy with one NBS at each
boundary.

STABILITY OF THE IBVP

The eigenvalues of matrix M from Eq. {5) which result
from higher order finite-difference approximations of U,
align along the imaginary axis in complex conjugate pairs.
To time advance Eq. (5) efficiently, the time discretization
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algorithm should include a large portion of the imaginary
axis in its stability domain. Conventional R-K time-advan-
cement algorithms of third or fourth order are well suited
for semidiscretizations of hyperbolic equations and are the
only method considered in this study. In particular, the
standard fourth-order method of Kutta (e.g., Gear [13])
will be used in this study because of the fourth-order
nonlinear accuracy, the large stability envelope, and the iow
storage requircments.

Our objective is to analytically determine the stability of
various higher order spatial discretizations advanced with
the fourth-order R-K time scheme. Conventional G-K-5
theory for the fully discrete IBVP with a second-order space
discretization involves solving polynomials of eighth order
in x at the boundaries. Closed-form solutions are difficult to
obtain under these circumstances and are more complicated
with increasing spatial accuracy. The analysis can be greatly
simplified by relying on three fundamental theorems of
stability analysis that are valid for the conditions in this
study. Each will be discussed briefly, but for further
clarification, the original works should be consulted. The
essential elements of the theorems that form the basis of
this work follow.

THEOREM 1. G-K-S§ theory ( fully discrete [6] or semi-
discrete [8]) asserts that to show stability for the finite-
domain problem, the inner scheme must be Cauchy stable on
{— oo, o0), and that each of the rwo quarter-plane problems
must be stable with the use of normal modal analysis. Thus,
the stability of the finite-domain problem is broken into the
summation of three simpler problems.

THEOREM 2. For each quarter-plane problem that arises
in Theorem 1, a necessary and sufficient condition for
stability of the IBVP is that no eigensolution exists. This
theorem is true for either the fully discrete case {6] or the
semidiscrete case [8].

The algebraic complexity involved in showing stability of
the IBVP is dramatically reduced in the semidiscrete case
because time remains continuous. Ultimately, numerical
stability is a fully discrete concept, and a connection
between the semidiscrete and fully discrete stabilities must
be used. The third theorem provides this connection.

THEOREM 3. Under mild restrictions [10], if a semi-
discrete approximation is stable in a generalized sense and an
R-K method thar is locally stable is used to time march
the semidiscretization, then the resulting rotally discrete
approximation is stable in the same sense as long as the
stability region of the R—K method encompasses the norm of
the semidiscretization.

The stability definitions [10] used in the first two
theorems (G-K-S§ stability) are different than that used in
the third (generalized stability). The first two theorems rely
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on G-K-§ stability (sometimes referred to as the Kreiss
condition) in the semi discrete and fully discrete cases. At
least two different definitions of G-K-S stability are
encountered in the works concerning G-K-S8 analysis. The
subtle differences between these definitions of stability
will not affect the conclusions in this work, and the
terms G-K-S stability and Lax stability will be used
interchangeably. We now describe in some detail the
implications of the three theorems.

Because Fourier methods are not well suited for the finite
domain, stability analysis can be carried out by energy
methods, matrix methods, or by normal modal analysis.
Energy and matrix methods are, in general, difficult to per-
form on high-order schemes. The modal relationships are
simple to define, but analytic solutions are often intractable.
Theorem 1 describes how G-K-S analysis can be used to
augment finite domain model analysis. The original finite-
domain modal analysis is broken into the analysis of three
equivalent, yet simpler, modal problems. With the assump-
tion that a Cauchy-stable scheme is used for the interior grid
points, the inner scheme is tested for stability at each
boundary in a semi-infinite spatial domain. In so doing, the
stability of each boundary is independent of the influence
from the other boundary. Stability of the two boundary
problems implies stability of the finite-domain numerical
method. In addition, Theorem 1 provides a perturbation
test for generalized eigensolutions. The test establishes the
stability of certain borderline cases in normal modal
analysis.

To fully appreciate the power of G~K-S analysis, a
normal modal analysis of the fourth-order compact scheme
(4-4-4) described by Eq. (12) is presented for the coupled
finite-domain problem. We proceed with the assumption
that the semidiscrete probiem defined in Eq, (5} has a
solution of the form

V(1) =S4, (14)

where S are the eigenvalues of the matrix M 'M;.
Substitution into Eq. (5) yields the generalized eigenvalue
problem

MPSV, =M}V, (15)

for which we have assumed g{r) = 0. The resolvent equation
provided by the inner scheme is

(¢j—l+4¢j+¢j+1)'§=3(*¢jﬁl+¢j+l}s
i=2 .. N—1, (16

S81/108/2-6
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where S = (a/4x) . Assuming #,= ¢,k yields the following
equation for the eigenvalues:

1 4 —1
(—+4+K)S=3(——+K).
K K

This is a quadratic expression in x, which will in general
have two solutions which satisfy Eq. (17). Therefore, the
eigenvectors are of the form ¢,=C,x/+ C,x3. Simple
manipulations show that the two roots are related by

(17)

~2—x

K, =K, Ky= Tt (18)
and
¢j=clxi+c2(_2f“)j. (19)
2t 1
We note that if ¥ = a + ib, then
el =a? 4 5, MA=ag%£§£%? (20)

and |x,| = 1 implies lx,| < 1. Thus, each x is dominant near
one of the boundaries, and its influence decays monotoni-
cally as the distance from that boundary increases. The
forms of €| and C, must be determined from the boundary
conditions at j=1 and j=N. The conditions at the two
boundaries can be represented as

C[8—Fy(k)1+ Co[8— Fi(k,)1=0

A - (21)
CifS—Fy(k )]+ CoLS— Fu(k,)1=0,

where F, and F,, are the functional relations that result from
substituting ¥,(1}=e%y; with ,=C,k{ 4 C,xJ into the
expressions at grid points j =1 and j = N, respectively. Note
that § = §(x) and every term is a function of k. No general
solution to this problem exists with the exception of the tri-
vial one. Nonzero solutions exist for the condition in which
the determinant is equal to zero. The determinant condition
gives an expression for k. The roats of this expression, with
Egs. (17) and (19), give the eigenvalues and eigenvectors of
the system.

No closed-form expressions are known for the roots of
the determinant polynomial in this case or for any other
reasonable boundary closures. To find the numerical
solution of the determinant polynomial, the roots of an
Nth-order polynomial in k must be found, and numerical
techniques must be used. {Note that this is equivalent
to casting the original matrix operator as an ecigenvalue
problem.) The power of G-K-S theory results from breaking
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the normal modal problem into three se¢parate problems.
The roots to the x polynomials do not depend on
the boundary-to-boundary coupling that is inherent in
Egs. (20) and (21).

Theorem 2 describes what constitutes stability for the two
1BV Ps in Theorem 1 for the fully discrete or the semidiscrete
case and staies that Eq. (1) must satisfy the condition that
no eigenvalues or generalized eigenvalues exist. Both
Theorems 1 and 2 rely on a definition of an eigensolution for
their quarter-plane anaiysis. Here, an eigensolution is
presented for the semidiscrete case. Similar definitions exist
for the fully discrete case.

DeriNITION 1. An eigensolution for the IBVP defined
by Eq. (5) is the nontrivial function ¥{x, s), which satisfies

[3]: )
L SV=MV(x=0)
I v, 8)—- 7¢O, $)=0
HI. @#(S)=0
V. For #(5)>0, ¥(x, §)is bounded as x » o

V. For #(S)=0and |x| =1, a perturbation inside the

unit circle of x {{x] =1-—¢, > 0) produces an eigenvalue
A(8)>8,86>0. :

Because § =y x’, condition I'V implies x| < 1.

An eigensolution satisfying condition IV or V is referred
to as a G-K-§ eigenvalue or a generalized G-K-5 eigen-
vaiue, respectively. With these conditions, the test for
numerical stability has been simplified from the coupled
normal modal analysis to tests that involve #(S)>0 for
[x| <1 at each boundary and the exceptional case when
R(S)=0and |k|=1.

Theorem 3 relates the stability of the semidiscretization
to that of the fully discrete numerical method and relies on
temporal advancement schemes that are locally stable. For
a locally stable numerical method, the stability envelope
|z| €1 (z is the amplification factor) in the complex plane
encompasses within the left hall-plane (LH-P) an open
semicircle of radius R, centered at the origin and symmetric

about the real axis. The standard fourth-order R—K method

satisfies this condition. A discretization of time with the
fourth-order R-K method in Eq. (5) produces a fully
discrete method defined by

P(t+ k)= L{kM) V(¢) + L(k) Bg(2), (22)
where the time step 4r = k and where L{kA) is the polyno-
mial in kM and describes the time discretization. Under
very mild restrictions (see Kreiss [10]) on the eigenvalue
structure of the matrix L(kM) and if the semidiscrete
approximation is stable in a generalized sense, then the

totally discrete approximation is stable in the same sense for
leM] < R,.
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We have outlined a systematic approach to address the
finite-domain stability problem for the fully discrete numeri-
cal approxitmation to Eq. (1). The remainder of this work
will describe the application of these techniques to several
higher order finite-difference schemes,

FOURTH-ORDER BOUNDARY CONDITIONS

Before the stability analysis of various higher order
boundary conditions is presented, an example illustrates the
necessity of (N — 1)th-order boundary closure for an Nth-
order inner scheme. The example aiso provides a numerical
test to verify that G-K-S theory accurately predicts the
stability behavior of the various numerical schemes.
Consider the method-of-lines approximation to the scalar
wave equation

W . W_o, —1<x<l, 130 (23)
Jt  Ox

—1Yy=si —1—1),
Uz, —1)=sin 2x( ) (24)

U{0, x) =sin 2nx, —lgx<l, =0,
where the spatial discretization is accomplished by the
fourth-order compact scheme described in detail by
Eq. (11). The exact solution is

U(t, x)=sin 2n(x —t), -1<€x<1, r=0.  (25)
A grid convergence study with boundary conditions of
various orders is performed to show the formal accuracy of -
the resulting schemes. The boundary condition formulas

expressed at the grid point j=0 are

%Ee+3%=a-;_x(_1wo+9v,+9vz— v, (26)
‘3_6’% 2%}:%(—5%“1/& vy) (27)
%?Jr%:i_x(—r/ﬁ V) (28)

%?:Z%(——Vo—i— V) {(29)

which represent fourth-, third-, second-, and first-order
closures at the inflow boundary, respectively. As mentioned
earlier, the physical boundary condition is imposed at the
point j=0, but actually occurs at the point j=1. The
closure could have been written explicitly for the point j=1
by combining Eq. (30)

av, 4,
Ox ox

oV
ax

(—3V,+3V,) (30)

1
Ax
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with Eqgs, (26)-(29) to yield

o,

o —a—=g—lj;(—Vn—9V]+9V2+V3) (3N
% %:ﬁ(—m—w#svz) (32)
3%-'% %%:J—x(d%_zvlwvz) (33)
4%?‘ %=31;(—2V0—V1+3V2). (34)

At the outflow boundary, closure was accomplished with
the expressions

aal;NHar;A;_l: _GLX(—17VN+9VN_1
+9V N 2~ Vy_3) (35)
aai”+alg§‘1= _2;x(_VN+ V) e
S (Wt Vas) (38)

which represent fourth-, third-, second-, and first-order
spatial accuracies, respectively. These expressions are valid
for the point j = & because no physicai condition is imposed
there.

In all cases, the temporal discretization was accomplished
with the fourth-order R—K algorithm. At every iteration, the
solution was advanced for the grid points j =0, N, followed
by overwriting the boundary condition at the point j=0,
Because the inflow boundary condition is a nonlinear
function of time, the physical boundary condition must be
applied at the proper intermediate level in time. Failure to
do so degrades the formal accuracy of the method. The CFL
used in the simulations was in the range 0.1 < CFL < 1, well
within the Von Neumann stability condition for the Cauchy
problem. The formal truncation of the method is O(A4r%);
the error in time decays to the fourth power of the CFL
for a given grid and can be made as small as desired by
decreasing the CFL. Typically, CFLs < 0.1 were not needed
because the dominant temporal terms in the modified equa-
tion were negligible compared with spatial terms. Further
reduction of the CFL resulted in no change in the error of
the scheme. This method was used in the sixth-order simula-
tions to determine formal accuracy by decreasing the CFL
further and ensuring that no temporal error remained in the
solution. Finally, a third-order R—-K was used to test the
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generality of the temporal discretization in several cases.
The results were quantitatively similar,

An equivalent time 7= 25 was used in all simulations for
all grids and methods at CFL =0.25. The error at T was
then calculated and reported as an L, norm. The L, norm
produced similar results, but it is not reported here. For
methods that are Lax stabie, the error is bounded uniformiy
at each stage for O < At <t and O <k A1 < T, where & is the
number of time steps. If the grid at constant CFL is doubled,
then the error should decrease at time level T by a factor
{3)?, where p is the order of the method. The formal
accuracy of each scheme was determined in this manner for
each of the Lax-stable schemes.

Tables Ia, Ib, and Ic show the effects of boundary closure
on the global accuracy of the fourth-order compact inner
scheme. Shown are the closure orders at each boundary, the
absolute log (L,) error at a fixed time 7 for various grids,
and the convergence rate between two successive grid
densities. Three scenarios are studied: (1) equivalent but
low-order closure at each boundary; {2) high-order inflow
closure with low-order outflow closure; (3) low-order inflow
closure with high-order outflow closure. The grid density
ranges from 10 to 25 grid points/2xn rad. Increased solution
accuracy is achieved as the boundary accuracy is increased.
No apparent benefit is achieved by closing only one
boundary with high-order boundary conditions.

The theory of Gustafsson {3] predicts that boundary
conditions of order N — I must be imposed to retain Nth-
order global accuracy. In all cases, the results in Tables I
agree with the theory of Gustafsson. Specifically, first-order
closure resuits in second-order accuracy, second-order
closure results in third-order accuracy, third- and fourth-
order closure result in fourth-order accuracy. Note that the
convergence rates are bounded from above by the theoreti-
cal limit, but often they can be as much as one order less
than the theoretical accuracy. In this study, the imposition
of lower order boundary conditions at the outflow plane
results in a greater degree of error than at the infllow plane.
Although the characteristic is pointing out of the domain at
the outflow boundary, the error is not swept immediately
out of the domain as might be expected.

The formal stability of the numerical boundary condi-
tions used in this example are now derived. The fourth-
order compact scheme is Cauchy stable for CFL < 1.63. The
stability of the inflow and outflow boundary conditions on
the semi-infinite domain must be demonstrated. We begin
by testing the outflow stability. The partial differential
equation is

au
v o

= >0,
a1 ox x20

(39)

No boundary condition is required in this problem,
although an NBS is imposed at x ={0. As was done on the
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TABLESI

Comparative Study of Effects of Boundary Closure on Formal
Accuracy for Fourth-Order Compact Inner Scheme

TABLE Ia

Equivalent Inflow and Outflow Accuracy

Inflow order Ist 2nd 3rd 4th

Cutflow order 1st Ind 3rd -dth
Grid log(F,} Rate log(l,] Rate log{L,} Rawe log{L,] Rate
21 —0.831 NA 2803 NA —2046 NA -—2835 NA
31 —1.289 —1.13 —3499 —1.72 -3291 —307 —4758 —4.74
41 —1.636 —1.21 4023 —1.82 —4179 -308 —5965 —4,19
51 —1914 —1.25 —4448 —190 —4.868 —309 —6760 —3.56

TABLE b |

Fixed Fourth-Order Inflow with Variable Outflow Accuracy

Inflow order 4th 4th 4th 4th

Outflow order st Ind Ird 4th
Gnd logiZ,) Rate log{L,) Rate log{lL,) Rate log{L.} Rate
n 1230 WA 0932 NA —1864 WA 2835 NA
3 0490 —1.83 1935 -247 —3240 —339 4758 474
41 0031 —1.60 —2587 -226 —4.176 —325 —5965 —4.19
51 —0.252 —1.26 —3087 —224 —4858 —305 —6760 —3.56

TABLE Ic

Variable Inflow and Fixed Fourth-Order Qutflow Accuracy

Inflow order 1st 2nd 3rd 4th
Qutflow order  4th 4th dth 4th
Grid log(tf,} Rate log(L,) Rate log(L,) Rate log(L;) Rate
21 —L715 NA =217 NA 2412 NA 2835 NA
31 —2185 —116 —3.130 —-235 -~3809 —344 -4758 —474
41 —2541 —123 —3792 230 4761 -3 5965 —41%
51 —2.823 —1.26 —4.298 227 —5478 —321 —-6.760 —3.56
Note. The test case was the equation u, + u, = 0 with sinusoidal inflow

{all tables).

normal modal analysis for the finite domain, a solution of
the form ¥,(r) = %', is assumed where ¢, = ¢k’ Substitu-
tion into the inner scheme produces the resolvent condition
for the eigenvalue S,

. (=1
(1+4+x>5=3(—+x),
K K

at each grid point where j=1. At grid peint =10, the
scheme was closed with one of the boundary expressions

(40)
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given in Egs. (26)-(29). Substitution of ¥,(r) into these
expressions yields

(6+18xk)S= —17+ 9 + 9> —* (41)

(24+4x) S= —5 44k +x? {42)

24+26)S=—-14x (43)

S=—1+x (44)

Equation (40) is solved for § and substituted into Egs.
(41)—(44) to yield polynomials in k of the form

(k—1)°=0 (4th) {45)
(k—1)=0 (3rd) {46)
(k—1P=0 (2nd) (47)
(k=17 (x+2)=0 (Ist). (48)

Clearly, the only value of x that will simultaneously satisfy
the inner resolvent condition and any of the outflow
boundary conditions is k= 1. Substitution of k=1 into
the resolvent condition produces S= 0, the case for which
the perturbation test in G-K-S theory (condition V) must
be used to show stability. Substitution of x =1 —¢ into the
resolvent condition produces to first order
65 = —6e. (49)
For >0 and |x| <1, § <0 shows stability of the perturba-
tion. All of the tested outflow boundary conditions are
G-K-5 stable; thus, x = 1 is not a generalized eigenvalue.
To show stability of the inflow conditions, we study the
partial differential equation

('J‘U au

;5
ot x20

(50)

with the boundary condition imposed at x =0 of the form

U0, )= g(r), 120 (51)
Despite the physical boundary condition imposed at j=90,
an NBS must be imposed at j=1 and must be tested for
stability. Substitution of V;(1)=e¢, {where ¢,=¢ k')
into the inner scheme produces the resolvent condition
(1/x +4+x)S=—3(—1/k +x). Substitution into the
first- through fourth-order boundary conditions defined by
Eqs. (31)-(34) produces equations for § of the form

(6+6x)S=—9+9% + «? (52)
(4426) §= —4+5x (53)
(3+K)S=-2+3 (54)

(d+k)S=~1+3« (55)
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Without loss of generality, we have assumed that g(¢t) =0on
the inflow boundary j= 0, which eliminates the influence of
j=01in the boundary polynomial and reduces the order of
the polynomials by one. The resolvent equation is solved for
$ and is substituted into Egs. (52)}-(55) to yield polynomials
in x of the form

(k*—5k* + 10k — 9+ 9}=0 (4th) (56)
() =4k + 5 —8)=0 (3rd) (57)
(x’—2x+7)=0 (2nd) (58)
(k?—2xk—11)=0 (lst), (59)
(60)

the roots of which are
x=2286+1215i, 02134+ 1.138; (4th) (61)
x =3.218,0.3906 + 1.527i (3rd) (62)
K=14./61 (2nd) (63}
k=1%£2./3i {1st}), (64)

where i=./—1, In all of these expressions |x]>1. No
eigenvalues or generalized eigenvalues exist, and the inflow
boundary is stable for these closures. The fact that the
Cauchy problem and the two gquarter-plane problems are
stable implies that the finite-domain problem defined in
Eq. {11) is G-K-§ stable for all boundary conditions
specified thus far.

A more rigorous example of the ability of the G-K-8
theory to predict the stability of the fourth-order compact
scheme is demonstrated by a pathological inflow boundary
scheme. Because the inflow problem involves an NBS at the
grid point j= [, which is biased in the downwind direction,
the scheme should be more sensitive to instability than the
outflow boundary. A bounded scheme is formulated that is
a linear combination of the first- and second-order schemes,
both of which are stable boundary treatments. The resulting
scheme that is used at the inflow boundary is

v, oV 1
S =214 B (— Vot V)

1 ¢
(1+26) éx + éx Ax

(65)

where § is the amount of the first-order influence in the
formula. For f=0, the standard second-order closure is
obtained. For all other values of f, the scheme is formally
first-order accurate. This scheme is denoted as (1'—4-4)
because the inflow boundary is a one-parameter family of
first-order schemes and the outflow is closed with a fourth-
order formula. As was done previously, the dependence of
the formula on the space derivative at j=0 is eliminated
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from Egq. (65) by the inner scheme written at j=1. The
resulting expression is

16V, (1+28)0V
[2(1+2B)—5]57' U+ 26) ;ﬁ)gﬁ
i
=m[*(1+4ﬁ)Vo*2(1+ﬁ)V1
+3(1428) V). (66)

Substitution of ¥,(¢}=e>'¢,, where ¢, = ¢, x’, into Eq. (66}
(assuming g(z)=0) results in a boundary scheme of the
form

[2(1+2ﬁ)%ﬂ+“+22'8)x$'
=—(1+B)+%(1+2ﬂ)x. (67)

If the inner scheme equation (40) is solved for § and
substituted into Eq. (67), then a polynomial in x results of
the form

(=142 x>+ (2—48)k—(T+228)=0.  (68)
Solving for x yields
k=116 +1)/(26—1), B#L  (69)

A double root exists for f= —1/4 and x = 1. Substitution of
% = 1 into the resolvent expression yields § = 0; a perturba-
tion test shows that the boundary exhibits a generalized
eigenvalue instability. Further inspection of Eg. (69) shows
that |k| <1 over the range —5/8<f< —1/4. All other
values of f need not be considered as candidates for
instability because |x| > 1. Substitution of the expression for
k obtained from Eq. (69) into Eq. (67) yields an expression
for S in terms of the parameter §. Numerical evaluation of
this expression shows that A(S)=0for —0.37< B<—1/4.
Thus, an eigensolution exists for this range, and the coupled
imner boundary scheme is unstabie.

To verify these findings, the model scalar wave equation
described by Egs. (23}-(25} was solved with the pathologi-
cal inflow boundary conditions described in Eq. (65).
Fourth-order boundary conditions were used at the ocutflow
boundary. Figure 1 shows the results of the numerical
investigation. Log,, of the L, error of the solution
integrated to a fixed time T, as a function of the parameter
B, ranging from [, 1], is plotted. The grid densities shown
in the study behave similarly, The theoretically predicted
range of instability —0.37< < —1/4 is replicated in the
numerical study to within graphical limitations of the plot.
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FIG. 1. Numerical determination of L, error at time level “T” from a

one-parameter family of closure formulas at the inflow boundary (inner
scheme is the fourth-order Padé scheme) with stable inflow conditions.

In the unstable regime, the error grew exponentially with
the number of iterations required to reach the time level T
and quickly became very large.

Although these boundary conditions are pathological,
this study indicates that imposition of first-order inflow
boundary conditions is not sufficient to guarantee stability
with the fourth-order compact inner scheme. A similar
experiment was performed on the outflow boundary with a
linear combination of first- and second-order boundary
conditions. For those boundary conditions, no eigensolu-
tions could be found. Although this does not establish that
any first-order outflow boundary condition is stable, it does
indicate that the outflow is less susceptible to instabilities
than the inflow boundary.

SEMIDISCRETE EIGENVALUE ANALYSIS

The uniformly fourth-order explicit scheme (4, 444, 4)
analyzed by Strikwerda [8] and the uniformly fourth-order
compact scheme (4—4-4) presented here are both G-K-§
stable for the semidiscrete problem and, therefore, will
exhibit peneralized stability for the fully discrete problem if
advanced with a locally stable temporal scheme. This
definition of stability ensures that the error of the numerical
solution wiil remain uniformly bounded for all times by an
exponentially increasing amount. The exponential growth
rate of the error is asymptotically independent of the grid
used (N — co, where N is the total number of grid points
used). Thus, grid refinement studies with these methods,
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performed by integrating the governing equation to a fixed
time level T on successively finer grids, will demonstrate
that the numerical solution converges to the exact solution
at a rate of at least the order of the method.

A disturbing feature of this stability definition is that the
solution is not required to remain bounded for all times,
even though the physical solution remains bounded for all
times. Figure 2 shows a grid refinement study performed
with the fourth-order compact (4-4-4) scheme to
demonstrate this behavior. In the model equation was that
described by Egs. {23)-(25), the time interval was
0<r<100 and the grids used were 21, 41, and 81 grid
points, respectively. Time was advanced with a fourth-order
R-K scheme in all cases. The exact solution is a traveling
sine wave of amplitude one for all times. Shown is the log,
of the L, error, plotted as a function of time. Simulations on
all three grids were run at various CFLs. The initial portion
of the simulation is characterized by nearly constant levels
of error on all three grids. After a sufficientiy long time, the
unstable modes in the numerical solution dominate the
spatial truncation error. From that point on, the solution
diverges exponentially from the exact solution. The growth
rate in time of the unstable modes of the solution in nearly
grid independent; at any time T, a refinement of the grid by
3 factor of 2 results in a decrease in the error by a factor of
16. At large times, the actual error will be exponentially
large. An interesting feature of the numerical method is that
the exponential growth of the solution is dependent upon
the CFL used to advance the solution. For CFL =1, the
solution does not grow in time, but for CFL €  (« is some

? LINES: CFL=0.25; SYMBOLS: CFL=1.C
2L ~——- 21 points e
s 41 peoints ///
1L 81 points e
a 21 points ,//
g © 41 points //’/
& 81 peints -

LOG(L, ERROR)

100

20 40 60 80
TIME

FIG. 2. The L, error as a function of time from uniformly fourth-order
Padé scheme (4-4-4) for various CFLs and grid densities,
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critical value less than CFL,,,), exponential growth is
observed. (This feature will be explained later in terms of the
amplification factor of the scheme.) Regardless of the CFL,
fourth-order convergence is observed with the scheme.

To understand the fundamental nature of the fixed-
grid temporal divergence of the solution in the previous
example, the eigenvalue spectrum of the spatial discretiza-
tion operator is examined. As a semidiscretization, Eq. (23)
can be written in the form of Eq. (5} as

dv
_dt_=MV+ Bgit), {7

where M is the Nx N matrix that describes the spatial
discretization operator and Bg(t) represents the physical
boundary data. Assume that

PT'MP=S5,

P'U=V, P 'Bg(t)=H, (1)

where S is a diagonal matrix and P~ and P are similarity
transforms composed of the left and right cigenvectors of
the matrix M, respectively. Equation (70¢) then takes the
form

dU
—=SU+H

dt (72)

The solution to Eq. (72) is

U,(1)=e5'U,(0) + fo eS OH (t)dr, j=1,.,N.
(73)

In this form, the solution to Eq. (72) depends exponentially
on the eigenvalues S, of the matrix M. This solution assumes
that the eigenvalues S; are not degenerate and H(¢) is not at
a resonance frequency. If either of these situations occur,
then the solution would include terms proportional to t%e",
where p is the order of the degeneracy. The precise behavior
depends on the temporal nature of H(r), but for boundary
data that remains bounded for all time, the solution
generally grows only for the modes that have eigenvalues S
with positive real parts. In addition, the growth rate will be
governed by the eigenvalue with the largest positive compo-
nent. Thus, any spatial discretization to the semidiscrete
problem defined in Eqg. (70} will exhibit exponential
divergence of the solution from the bounded physical
solution, if it has an cigenvalue in the right half of the
compiex plane (RH-P). '

Figures 3 and 4 show the eigenvalue spectrum that resuits
from the explicit fourth-order and the compact fourth-order
spatial operators, which are closed at the boundaries
with schemes of third- or fourth-order accuracy. In short-
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FIG. 3. Numerically determined eigenvalue spectrum from explicit
fourth-order inner scheme, closed with either third- or fourth-order
boundary schemes.

hand nomenclature, the explicit cases (3, 3-4-3, 3) and
(4,444 4) are shown in Fig. 3, and the compact cases
{3-4-3) and (4-4-4) are shown in Fig. 4. The spectrums are
shown on grids of 21, 41, and 81 points, respectively. If the
inner schemes are closed with third-order NBSs in both
cases, then an eigenvalue spectrum results that is bounded
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FIG. 4. Numerically determined eigenvalue spectrum from fourth-
order Padé inner scheme, closed with cither third- or fourth-order
boundary schemes.
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to the LH-P while the uniformly fourth-order schemes cross
over the imaginary axis into the RH-P.

For long times, the maximum eigenvalues from the
uniformly fourth-order schemes accurately predict the
exponential growth of the solution. In Fig, 2, the solutions
obtained from the (4-4-4) compact scheme grow exponen-
tially in time. If the error can be represented functionally as
en{t)=¢5(0) e** (where N is the number of grid points
used in the spatial discretization ), then a growth rate &, can
be determined numerically. From an eigenvalue determina-
tion, an effective growth rate «g defined by ¥4’ =
|G ac(48)|™ can be similarly calculated, where G, is the
numerical amplification obtained from the temporal
advancement scheme. For the fourth-order R—K scheme,

(S,4r7) (S, 48%) (S, 41*)
G,=1+5 41+ Tt A ’4! ,
j=1,..N, (74)

and |G| will frequently correspond to the maximum
eigenvalue #(S,,,). Table Il shows a comparison of the
observed growth rate of the (4-4-4) compact scheme with
the growth rate predicted from an eigenvalue determination.
In each case, the maximum eigenvalue is used to predict the
temporal growth of the solution. The agreement is very
.good, with a slight discrepancy for the 81-grid-point case.
In Fig. 2, note the oscillatory growth of the solution. The
uncertainty of the phase.of the solution accounts for the
discrepancy in the predicted growth rate in that case.

A necessary condition for Lax stability of the finite-
domain semidiscretization can be expressed in terms of the
eigenvalues of the spatial matrix operator as

20, j=1,..N, (75)

where S, are the eigenvalues of the spatial operator and N
is an arbitrary number. The eigenvalue structure asymptoti-
cally approaches a bound in the RH-P as N — . All the
fourth-order schemes presented thus far have satisfied this
constraint. For the third-order NBSs (3, 3-4-3,3) and
(3-4-3), the constant is « =10; for the fourth-order NBSs,
the constant is greater than zero.

As mentioned earlier, a curious feature of the (4-4-4) (as
well as other high-order spatial schemes) is that the growth

TABLE II
Numerical versus Theoretical Growth Rate (4-4-4)

Grid % Numerical ad?lsmsx!
21 0.1321 0.1315
41 0.1476 0.1474
81 0.1537 0.1479

of the solution is CFL dependent on all grids. For CFLs
close to the CFL,,,,, as determined from Von Neumann
stability analysis, the schemes are bounded in time. For suf-
ficiently small CFLs, the schemes begin to diverge exponen-
tially in time. (In either case, the scheme is still G—K-S§ or
Lax stable.) This behavior can be explained by noting a par-
ticular feature of the fourth-order R-K time-advancement
scheme, as well as some of the other locally stable time
schemes. The stability bound of a time-advancement scheme
is defined as the locus of points in the complex plane where
|z} 1. Clearly, |z|] =1 divides the plane into two regions.
When the spatial eigenvalues (scaled by A¢) of a particular
discretization lie entirely within the |z] =1 boundary, the
combined time-space scheme is generally stable. The
stability regime of these schemes includes a semicircular
portion of the complex plane that is centered at the origin,
is symmetric about the real axis, and extends into the LH-P.
In addition, the stability regimes contain a small part of the
RH-P, although not near the origin. If the spatial eigen-
values that lic in the RH-P are encompassed by the |z{ =1
boundary, then the resulting scheme is stable. If a Ar is
chosen such that the |z| = 1 line does not contain the RH-P
eigenvalues, then the solution diverges with time. Figure 5
shows this feature for the (4-4-4) spatial scheme and the
fourth-order R-K scheme in time. For CFLs near the
CFL,,.., the maximum amplification rate |G,,,,} is less than
one. For sufficiently small CFLs, the |G,,,| is greater than
one by an amount that is proportional to #(S,..), and the
sotution will diverge exponentially in time. A spatial scheme
that has RH-P eigenvalues can always be made to diverge
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FIG. 5. Maximum numerical amplification factor as a function of
CFL, plotted for uniformly fourth-order Padé scheme with a fourth-order
R—K time-advancement scheme.
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exponentially for sufficiently smali CFLs, if a conventicnal
third- or fourth-order R—K time-advancement scheme is
used.

ASYMPTOTIC STABILITY

The previous discussion of Figs. 2 through 5 brings out a
subtle point in the Lax stability theory. Different limit
processes can be considered with numerical integration of
time-dependent partial diflerential equations. One limit
is the behavior of the numerical solution as the mesh size
4x —0 for a fixed time T. Another is the behavior of the
solution for a fixed mesh as the time T tends to infinity.

Lax stability addresses the first issue, which is the
boundedness of the numerical solutions as the mesh is
refined at a fixed physical time. The Lax equivalence
theorem states that if the numerical solution is bounded in
this sense, then it converges to the true solution in the limit
Ax — 0. To obtain an approximation to the true solution at
time T, the IBVP is integrated up to time 7 on a sequence
of grids as Ax — 0. This sequence converges to the exact
solution for all time levels T.

Nothing in this definition excludes growth in time; the
definition specifically allows exponential growth in time.
Moreover, if each of the quarter-plane problems is stable
and allows no growth in time, then the combined finite
interval problem still allows exponential growth in time.
(The Laplace transforms used in the G-K-8 theory are
legitimate only if growth in time is allowed.)

Unfortunately, for genuinely time dependent problems,
this stability definition might be too weak, particulariy if
simulations are petformed for long physical times. In order
to achieve any reasonable accuracy for large times an
excessive number of grid points are needed. For long time
numerical sirnulations to be useful, the solution of the semi-
discrete problem defined in Eq. (5) must be bounded in time
as well. So, for a fixed mesh ¥, the eigenvalues of the matrix
M in Eq. (5) have nonpositive real part, and those with zero
real part have a geometrical multiplicity of one. This is
called asymptotic stability.

By itself, asymptotic stability does not imply Lax
stability. Numerous examples can be found in the literature
of fully discrete schemes that are symptoticaily stable, but
not Lax stable. The classic example is the case of a first-
order upwind spatial operator that is advanced with an
Euler explicit time-advancement scheme. The eigenvalues
for the fuily discrete system are (1-—2) and occur a
degenerate N times. Eigenvalue determination suggests that
the CFL of the scheme should be two; however, Von
Neumann analysis and practical experience suggest that a
CFL of one is the maximum stable CFL. The discrepancy
can be explained by the fact that for 1 <« CFL < 2, the matrix
norm first grows rapidly and then decays asymptotically to
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zero. This difficulty might have been suspected by noting
that, in the semidiscrete case, the degenerate eigenvalues
allow geometric growth in time and only later are
dominated by the exponentially decaying terms in the
expressions.

An e¢xample for the semidiscrete case is now presented.
Consider Eq. (5) with g{r) = 0. Let the matrix A be defined
by the second-order central-difference operator for the
interior points. In matrix form, M can be written as

-1 1
-1 0 1 0
M= o e
0 -1 01

-1 1

where the boundary closures at grid points j=1 and j=N
are artificially chosen. With semidiscrete modal analysis, we
determine a solution to Eq. (5) by assuming the form
V(1) =e>¢; with ¢ = Ax’ + B~ 1/x)’. The resolvent condi-
tion from the interior scheme yields §;=35(x — 1/k). The
boundary conditions are used at point j=1 and j=N to
determine the values of 4 and B which yield the expression
for x of the form

(k+ D[(=1)¥=x*¥]=0. (77)
The roots to Eq.(77) are x=—1 and x=ie™" for
j=1,N—1. Thus, the eigenvalues are S=0 and S=
icosinj/N) for j=1, N—1, and are purely imaginary. For
values of N which are odd, the spatial discretization satisfies
our definition as asymptotic stability.

The spatial discretization defined by Eq. {76) admits a
generalized eigenvalue instability at the inflow boundary.
The use of G-K-S analysis for the inflow boundary
produces compatibility equations of the form

2§x=x—1,

28k =k* —k,

-
/ (78)
j——~2,

for which the only solution is k=1, $= 0. The boundary
condition is unstable to perturbations away from the unit
circle and, therefore, exhibits a generalized eigenvalue
instability at the boundary. Asymptotic stability for the
semidiscrete problem does not guarantee Lax stability.
Additionally, Reddy and Trefethen [ 15] have shown that
consideration of the exact eigenvalues is not sufficient to
determine the stability of a method. The famous Kreiss
matrix theorem gives necessary and sufficient conditions for
Lax stability in terms of the eigenvalues of the matrix M. A
useful and equivalent test for determining stability is the
analysis of the resolvent condition, which is interpreted by
Reddy and Trefethen to involve not only the eigenvalues of
the matrix M, but also to involve the ¢ pseudospectrum of
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the discretization matrix. This pseudospectrum is obtained
by perturbing the matrix M by an arbitrary matrix of norm
. Examples of where the & pseudoeigenvalues determine the
stability bounds of numerical methods are given by Reddy
etal [15].

A stability definition based on the eigenvalue determina-
tion of the spatial operator is not sufficient to guarantee
stability. (No attempt has been made to address the variable
coefficient, nonlinear scalar cases, or the hyperbolic system.
[t is unlikely that the definition will generalize to ail these
situations.) However, for the present applications of higher
order schemes, a restriction of the allowable numerical
discretizations to those that possess Lax stability and the
property of bounded LH-P cigenvalues is useful. For a
broad class of spatial discretizations, these constraints are
sufficient for the stability of the resulting numerical scheme
and will be pursued in the remainder of this work.

Before this discussion on fourth-order spatial discretiza-
tions is completed, a uniformly fourth-order scheme should
be devised We know that conventional discretization
formulas at the boundaries result in G-K-S stable, but not
asymptotically stable, schemes for both the explicit and
compact cases. The NBSs used in cach case relied-on
optimal order schemes at the boundary, where N+1
constraints were used to devise the Nth-order scheme. By
removing the constraint of using optimal schemes at the
boundaries, an NBS with different dissipative charac-
teristics can be devised and an asymptotically stable spatial
scheme can be found that is uniformly fourth-order.

An asymptotically stable fourth-order compact scheme is
devised first, which we shall denote as (4°-4-4°). The 4°
signifies that the boundary point is closed with a fourth-
order three-parameter family of schemes. The scheme
defined at grid point j= 0 can be written as

al, 1
e (CoUp + C U+ C, U, + C U, + Cu U,
dx  Ax

+ CsUs+ CeUg+ C, U (79)

To be formally fourth-order accurate, Taylor series trunca-
tion analysis relates the coefficients as

Co= —(x— 288 + 322y + 13068)/5040
C, = + (a— 278 + 295y + 5040)/720
Cy = — (& — 268 + 270y + 2520)/240
Cy= +(x— 258 + 247y + 1680)/144
Cy= —(x— 248 + 226y + 1260)/144
Cs= +(a— 238 + 207y + 1008)/240
Cos= —(a— 228 + 190y + 840)/720
Co= +(2— 218+ 175y + 720)/5040,

(80)
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with similar expressions defined for the closure at the other
end of the domain. By systematically searching the three-
parameter space spanned by the parameters o, 8, and 7,
coeflicients can be obtained to yield an eigenvalue spectrum
that is bounded to the LH-P. The values of «,”f, and v are
not unique, and no atiempt was made to optimize the spec-
trum. A particular set of coefficients that makes the scheme
asymptotically stable are a«= —1560, f= —355 and
y = —35. Figure 6 shows the resulting spectrum from the
(2-4-2), (3-4-3), and (4°—4-4%) schemes. In all cases the
cigenvalues are bounded to the LH-P, and the resulting
scheme is asymptotically stable.

Because the asymptotic stability condition #(S;) < w for
w=90 is a very strong, necessary condition, but is not a
sufficient condition, G-K-S§ stability will still be shown for
this case. For the outflow problem, the model equation is

U AU

=0, =0,
a1 ox *

(81)

No boundary condition is required in this problem,
although an NBS is imposed at x =0. If a solution of the
form V,(t)=¢%¢$, is assumed where ¢;=¢,x’, then
substitution into the inner scheme produces the resolvent
condition for the eigenvalue §,

a -1
(proen)s=3(F+x)
K K

(82)
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FIG. 6. Numerically determined cigenvalue spectrum from the
fourth-order Padé inner scheme, closed with either second-, third-, or
newly developed fourth-order boundary schemes.
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at each grid point where j>1. At grid point j=0, the
parameter scheme produces an equation of the form

3608 = — (+727 — 1370k 4+ 1110x> — 875x* + 775x*
— 552K + 220k — 35x7). (83)

The resolvent condition for $ is solved and substituted into
the boundary scheme to yield a polynomial in x of the form

(k — 1)° (35K* +95x> — 168K% — 227 — 353} =0. (84)

When the polynomial is solved for x, no roots are produced
that are less than one in magnitude; thus, a stable condition
results. The possibility that k = 1 exists and must be checked
for generalized eigenvalues. This condition is the same con-
dition that was tested for outflow stability in Eq. (49}, which
was shown to be stable. Thus, the parametric fourth-order
outflow scheme is G—K-S stable for the parameters o, §, and
y presented above.

To show stability of the parameter scheme at the inflow,
we study the partial differential equation

U ov

T = 23 t;,
w T x20 0

(85)

with the boundary condition imposed at x =0 of the form

U, ny=g(r), 120 (86)

Elimination of dU,/dx between the boundary scheme at
/=0 and the inner scheme at j=1 yields a combination
boundary scheme of the form

;.
1440 ig—l + 360 ——9-3
dx- ax

1
= — -~ (353Ug + 13700, — 2190, + 875U, ~ 775U,

+ 552U, — 220U, + 35U,). (87)

Substitution of V (1)=¢%¢,x/ into the inner scheme and
boundary schemes produces the resolvent condition
equation (40) and
(1440x + 360x%) 8 = (4 353U, + 1370« " — 2190x% + 875x>
— 775x* + 552x — 220%5 + 35k7).
(88)

Equation (40) is solved for § and substituted into Eq. (88),
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together with the condition that U, = 0 yields a polynomial
in « of the form

®(—2950 + 2210x" — 2195k + 1615x> — 1673k + 1213x°
—293x% — 80k’ + 35k%) = 0. (89)

No roots for which |k| < 1 result when this polynomial is
solved. The only possibility for instability is the condition
li| = 1. Again, this condition was checked previously for the
other fourth-order schemes and was shown to be stable for
the inflow. The compact three-parameter family (4°-4-4%}is
stable for inflow and outflow when the parameters are
= —1560, f=—355 and y= —35 In addition, the
scheme produces an etgenvalue spectrum for the scalar wave
equation that is bounded to the LH-P. When the inflow and
outflow boundaries of the explicit fourth-order scheme are
treated in a similar manner (47, 4-4-4, 4*), an asymptoti-
cally stable scheme is also produced. The resulting scheme
was not tested for G-K-5 stability in this work.

SIXTH-ORDER SCHEMES

As a last step in this work, the ideas and techniques used
to analyze the fourth-order compact schemes are applied to
sixth-order compact schemes. All the schemes tested here
are based on the sixth-order, compact inner scheme
developed by Lele [ 16]. The scheme is written as

au,_, ou, au; .,
dx +3 8x+ dx

_ 1
T 12 4x

j=2,..N=2.

(—U;_,—28U,_, +28U,,,+ U,,,),
(90)

The scheme utilizes information from five points explicitly
and three points implicitly. As a consequence of the five-
point width of the stencil, NBSs must be provided at two
points at each end of the domain: j=0,1 and j=N—1, N.
The physical boundary condition is used at one of the inflow
points. To ensure formal sixth-order accuracy for the hyper-
bolic problem, the boundary points must be closed with at
least fifth-order formulas; for the optimal schemes, the
shorthand nomenclature would be (5, 5-6-5, 5). In keeping
with the convention of this work, the closure at each end of
the domain is done in an asymmetric manner so that either
the inflow or the outflow problem can be easily accom-
modated.

Formally sixth-order accurate G-K-S stable schemes are
difficult to find. Therefore, the discussion begins with the
stability analysis of a family of lower order schemes. Two
of the schemes in this family are the (3, 5-6-5,3) and
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(4, 5-6-5, 4). The formal accuracies of these schemes are
fourth and fifth order, respectively. The closure at the grid
point j = 0 (with corresponding formulas written at j = N) is
accomplished by using

0o 20U _ 1 sy vav,+u 9
dx éx  24x ot 40+ ) on
aU0 ou, 1 '

S+t 6Ax(—17U0+9U1+9U2—U3) (92)

for the third- and fourth-order schemes, respectively; the
fifth-order closure at the point next to the wall is accom-
plished in all cases by the scheme

Wy 301,320,
ox éx
1
=3—x(—10U0—9U1+18U2+U3). (93)

Wider spatial stencils produce stability polynomials of
dramatically increased complexity. Despite the fact that
MACSYMA was used to determine all of the spatial
formulas and the stability polynomial of the sixth-order
schemes, the possibility for error still exists. With the ability
of the G-K-S theory to accurately predict the stability
envelope of the one-parameter family of fourth-order com-
pact schemes (1'-4—4), a simple test was devised to verify
the accuracy of the G-K-S calculations. A one-parameter
family of schemes was created by combining the third- and
fourth-order closure formula at each end of the domain.
Symbolically, the combined scheme is represented by
(3!, 5-6-5, 3") and is written as

2Ax

- )[60'0

><(—17U0+9U1+9U2AU3)]=0

ou ol 1
ox dx

av, 1

éx 6Ax

(94)

For @ =0 (or 1), the scheme produces the optimal fourth-
order (or third-order) variant; for all other vaiues of «, the
formula is a third-order scheme.

The model equation for the outflow quarter-plane
problem is the same as described in Eq. (81). Solutions of
the form U,(1) =e®¢,x’ satisfy the numerical scheme and
give the sixth-order inner scheme the resolvent condition

(l+3+x)§=(—%—§+28x+x )/12 (95)
K
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for the eigenvalue S. In general, only two roots of the
resolvent equation will yield |k| <1 for a polynomial of
degree four. The other two roots will become exponentially
unbounded as j becomes large and can be ignored. The
general solution has the form U, (r)=e%(C k] + Cyx9).
Substitution of this expression into the boundary equations
{93) and (94) yiclds expressions for the constants C,
and C.:

CyFolx))+ CyFo(k,) =0 06)
C,F (k)4 C,F (x,) =0,
where
Fo(x)=[—(60+18) x — 18x3] § — [ (22 + 3) + (3x + 27} k
— (6o +27) 12 + (2 —3) 3] (97)
Fix)=[(1+6x+3x?) 5§ —(—10—9x + 18«2 + 1x3)/3].

Equation (96) has only the trivial solution unless the
determinant condition is satisfied (Fy(x,) Fix,)—
F{k,;) Fo(x,)=0). When the resolvent equation (95) is
solved for S and substituted into the determinant condition,
an expression that relates the two «’s results:

(k=1 (1, = 1P [(Ta =3 k ks +{—=22+3)

X(x,+x,)—3x—31=0. (98)
The solution to Eq. (98) yields x, =1, x,=1, or
(Qe—3) Kk, +3x+3 (99) ’

T e —3) k=224 3

To obtain an additional independent relationship for x| and
K,, the resolvent condition equation (95) is used. The
resolvent equation is solved for S (note that both k, and «,
satisfy this expression for §) to yield

(—1/x7— 28/, + 28k, + k1)
2(Lk, +3+7,)

(= 1/K3— 28/, + 28k, + K3)
- 12(1/K, + 3 + x,) '

Un

(100)

A combination of Eqgs. (99} and (100) produces a single,
sixth-order polynomial in x,, for which the roots can be
found numerically. Equations (99) and (95) are then used to
determine the numerical values of x, and S. An eigen-
solution exists for the problem if, for |x,| <1 and |k,| <1,
an § exists with real part greater than zero.

If the outflow polynomial is solved for x,, then the
boundary is unstable for —9.16 <a< —1.86. The two
limiting cases (¢ =0 and x=1) for which the scheme is
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fourth- or third-order accurate are stable. The possibility of
instability also exists for the cases where x, =«, and «,
or k,=1. However, none of these conditions showed
eigenvalue instability,

The model equation for the inflow quarter-plane problem
is the same as that described in Eqgs. (85) and (86). Solutions
of the form U,(1)=e¢ox’, will satisfy the numerical
scheme to give the sixth-order inner scheme the resolvent
condition

{ A 2
12 (—+3+K)S= —(——15——8+28x+1c2). (101)
K K K

Elimination 4/,/0x between the boundary schemes at grid
points j=0 and j=1, yields an expression written for grid
point j=1 of the form

8U, oU,
Al =E
(6 + 18) 3 +18 3

|

= [(2a+3 27
e [0 43) U+ Ba+ 2 U,
=

60 +2T) U, + (a—3) Us 1. (102)

The general solution has the form U,(1) = ¢ (C, k4 + C,k4).
Substitution of this expression into the boundary expres-
sions at j= 1, 2 yields two expressions for the constants C,
and C;,

CiFi(k)+ CyF (k) =0

(103)
CiFyr )+ CoFy(k,) =0,

where
Fi(k)=[—(6a+18)k—18x*] 8 — [+ (B +27) &
— {60 +27) K+ (a— 3) 3] (104)
Fik)=1.

The simple form of the expression F,=1 results from
reducing the modal equation at point j=2 (with U, set
to zero) by use of the resolvent condition (with U, not
equal to zero). Equations (103) can only have a nontrivial
solution if the determinants are identically zero. Equation
(101) is solved for § and substituted into the determinant
condition from Eqgs. {103) to yield

((2a~3)xf+ (= 50+ 15) = 30k + (6a+24)x%)
+(=22a—33) k! — (a+3)
283+ 6K1 12
(22=3) x5+ (— 5+ 15} x5 —30i3 4 (60 + 24) k2
( +(—220—33) Kb — (e + 3) )
25+ 6K3 + 2

(105)
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Together, Egs. {100) and (105} provide two equations for
the unknown «, and x,.

The inflow polynomial equations are far more difficult to
solve because they do not {actor appreciably. A change of
variables from x, and «, to x and y simplifies the algebra.
Substitution of

Ky +uy=2y
e (106)
KKy =X
into Eq. (100) yields
(—8x—8) y>+ (—12x2— 224x— 12} y
—2x —166x—166x—2=0 (107)

which has the solution

—(3x* + 56x + 3 +./5x* 4 2490x°
e {3x " +56x+3+./5x" + x4+ 5) (108)

4x+4
for x# —1. (The case x= —1 degenerates into y=0 for
which 1, = —x; = 1, a condition that produces no eigen-

solutions). Either root can be used because the final polyno-
mial results from the square of an intermediate result (to
clear the square root in the expression). Equation (106) is
substituted into Eq. (105) and, further, is simplified with the
expression for y from Eq. (108) to yield a ninth-order poly-
nomial in the variable x, with coefficients that are functions
of the variable a. This expression is solved numerically to
yield the roots for x. The values of y are then determined

20 -
181 -]
16| .
14k *
~ izt .
[=}
£ e
s-({)a 10F ® : o
= ° o
W 8 .
6 o ;u °
AL ::: .;“ & 21 points -°
A SR O 41 peinis -
)
Y | > 81 points - —
-10 -8 -6 —4 -2 0 2
&

FIG. 7. Maximum real part of the numerically determined eigenvalue
spectrum (3%, 5-6-5, 3!) from a sixth-order Padé inner scheme and a
one-parameter family (in @) of third-order boundary schemes.
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from Eq.(108), and the values of x, and x, arec obtained
from Eq. (106). Again, the condition x=1 and the case
where x, = x, did not show instability over the parameter
range tested in this study. For the inflow boundary condi-
tion, the instability envelope for the parameter o was deter-
mined to be —186<a< —0447. The two degenerate
conditions, x=0 and =1, are G-K-S stable for the
inflow. By combining the inflow and outflow results, the
theoretical (G-K-S) range of instability for the one-
parameter family of schemes (3!, 5-6-5, 37} was determined
to be —918<ua< —0447. The two degenerate cases,
(3, 5-6-5,3) and (4, 5-6-5,4), were both G-K-S stable
schemes.

To determine the accuracy of the G-K-S calculations,
another method of showing stability was used and the
results were compared. The necessary condition for stability
on the cigenvalue structure #(S,,,,) provides such a test.
Figure 7 shows the results of an eigenvalue determination
that spans the range —10<a <2, as determined numeri-
cally. The maximum eigenvalue %#(S,,,,) (the cigenvalue
with the largest absolute real component) is plotted as a
function of the parameter o for three grid densities. Because
Lax stability in a finite domain regquires that #(S) < w for
@ =0, the #(S,,., )} should remain bounded with increasing
grid density if the scheme is to be stable for a particular
value of . Figure 7 shows that the stability boundary at
a= —9.15 is accurately predicted by G-K-S theory. The
stability boundary at a = —0.45 is less well defined in the
eigenvalue determination and must be further investigated
to show the correlation between G-K-S theory and
eigenvalue determination. On the relatively coarse grids
presented in Fig. 7, the maximum eigenvalues near the
limit x= —0.45 grow as grid density increases. Whether
they grow in a bounded manner determines if they satisfy
the necessary condition for stability, Table III shows the
behavior of (S ,.,,) for various grid densities at a = —0.4.

As the number of grid points becomes larger, the
maximum eigenvalue asymptotes to a constant w; thus, a
stable condition results. Note that the convergence to the

asymptotic limit is slow for « = —0.4. Similar grid refine-
ment studies at values of x = —0.45 and —0.5 showed linear
TABLE III

Grid Convergence of #(S,,,) fora= —04

Grid RS max) 4%
21 1.000 NA
41 1.250 25
81 1.360 8

161 1.582 16
321 1704 8
641 1.780 3
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growth for all grids, which resulted in an unstable condition.
Based on a numerically determined cigenvalue determina-
tion over the range of —10<a<2, the G-K-S theory
accurately predicts the stability envelope. The slow
convergence to the asymptotic determination a somewhat
unreliable method for determining stability. However, for
many nonborderline cases, it does provide an accurate
measure of stability.

The eigenvalue determination provides information on
the asymptotic stability of the schemes as well. If the
(S max) < 0 for all the grids, then the scheme is asymptoti-
cally stable. For values of the parameter < —9.15 and
&= 0.4, eigenvalue determination indicates the asymptotic
as well as the Lax stability of the resulting scheme. Figure 8
shows the cigenvalue spectrum of the (3,5-6-5,3) and
(4, 5-6-5, 4) schemes. Both schemes satisfy the necessary
condition of Lax stability; the (3, 5-6-5,3) scheme is
asymptotically stable. Because of the eigenvalues in the
RH-P, the (4, 5-6-5, 4) scheme does not exhibit asymptotic
stability, Figure 9 shows a plot of the error of the solution
to the scalar wave equation defined by Eqs. (23)-(25) when
discretized with the (4, 5-6-3, 4) scheme. The time interval
was 0 < 1 < 100, and time was advanced with a fourth-order
R-K scheme. The log,, of the L, error is plotted as a func-
tion of time for grid densities of 21, 41, and 81 points,
respectively. For a CFL = 1, the error does not grow in time.
For CFLs of order 0.1, the error is nearly uniform for a
period of time; then it grows exponentially with time. In all
cases, the error of the simulation decreases by a factor of 16
to 32 when the grid is doubled. {Error is dominated by

150+ A (3,5"'6_5,3)21 po!nfs
© (3,5~6-5,3}41 points
¢ (3,5~6-5,3)81 points §
+ (4,5~6-5,4)21 poinis 3
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FIG. 8. Numerically determined eigenvalue spectrum from sixth-order
Padé inner scheme, closed with either third- or fourth-order boundary
schemes.
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TABLE IV

Numerical versus Theoretical Growth Rate
for {4, 5-6-5, 4) Scheme

Grid YMumerical }’y( Stoax b
21 0.1245 0.1228
a1 0.1402 0.1381
g1 0.1351 0.1354

either the fourth-order time or the fifth-order space trunca-
tion terms.) The amplification is accurately predicted by the
eigenvalue determination. Table IV compares the numerical
amplification rate yyumericar With that obtained theoretically
with %#(5,,,,). The agreement is excellent.

The preceding examples of sixth-order schemes show the
strength of G-K-S analysis for accurate prediction of the
stability of complex, higher order schemes. These examples
also show the intimate relationship between the eigenvalues
of the spatial operator and the stability of the resulting
scheme.

We now present formally the sixth-order accurate
schemes that-are closed at the boundaries by at least fifth-
order stencils. Our first attempt is with optimal fifth-order
closure at the boundaries, which results in the scheme
(5, 5-6-5, 5). Figure 10 shows the error of the simulation of
the scalar wave equation defined by Eqs. (23)-(25). The
behavior of this scheme is fundamentally different from the
(4, 5-6-5, 4) scheme in several ways. On all grids, the error
always increases monotonically in time. For CFLs near the

LINES: CFL=0.25; SYMBOLS: CFL=1.0

) I—

LOG(L, ERROR)
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41
81
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81

points
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points
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theoretical maximum value, the error increases at a lower
rate, but it is not suppressed as with the lower order
schemes. In addition, the exponential growth rate of the
error increases as the grid density increases. On the grids
shown, the error in the solution could not be systematically
reduced by refining the grid and repeating the calculation
to a specified time level T. In spite of these differences,
the ecigenvalue determination still accurately predicts the
growth of the solution. Table V shows a comparison of the
numerical and theoretical amplification rates. The theoreti-
cal vaiues are determined from the #(S,,,,) for each grid.

Again, the agreement is excellent. The solution grows at
a rate that, for long times, is dominated by the eigenvalue
with the maximum real part. The eigenvalue determination
accurately predicts the behavior of the numerical solution,
even for this case, which appears not to be Lax stable.

Figure 11 shows a plot of the eigenvalue spectrum for the
(5, 5-6-3, 5) scheme on grids of 21, 41, and 81 points. The
(S 4, ) Obviously increases for these grids and appears to
increase without bound (as opposed to an asymptotic
limit), which violates a necessary condition for Lax stability.
As in the (3%, 5-6-5, 3') example, a precise conclusion can-
not be drawn from grid-refined eigenvalue determination,
although the trends have been the same in the cases
presented thus far. G-K-S§ stability theory must ultimately
be relied upon to determine if the scheme is stable.

We begin by determining the stability of the outflow
boundary for the (5, 5-6-5, 3) scheme. The quarter-plane
probiem appropriate for this analysis is that described in
Eq. (81). No boundary conditions are necessary, but NBSs

100
TIME

FIG. 9. The L, error as a function of time from uniformly sixth-order
Padé scheme with fourth-order boundary closure (4, 5-6-5, 4) for various
CFLs and grid densities.
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FIG. 10. The L, error as a functicn of time from uniformly sixth-order
Padé scheme with fifth-order boundary closure (3, 5-6-5, 5) for various
CFLs and grid densities.



292

TABLE Y

Numerical versns Theoretical Growth Rate
for (5, 5-6-5, 5) Scheme

CARPENTER, GOTTLIEB,

Grid ¥ Numerical ¥ #(Smar)
2 0.7121 07138
41 1.104 1010
81 1,749 1742

are used at grid points j=0, 1. The closure at grid point
Jj=0is accomplished with

Uy, (3U,_ 1

T

—8U
> 12 A 3TV, + 88U, + 36U, 3+ Uy)

(109)

while that of grid point j=1 is accomplished with Eq. (93).
Solutions of the form U, (1) = % ¢« will satisfy the numeri-
cal scheme, which gives the sixth-order inner scheme the
resolvent condition shown in Eg. (95). The fourth-order
polynomial in x will have two roots that are x| <1, and
the general solution will have the form U(t)=
e*(C, ki + C,x%). This expression is substituted into the
two boundary conditions to yield boundary expressions for
the constants C, and C, of the form

C Fylic,) + Cr Fylk;) =0

{110)
C Filk )+ CFi(x,) =0,
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FIG. 11. Numerically determined eigenvalue spectrum from sixth-

order Padé inner scheme, closed with conventional fifth- or newly
developed fifth-order boundary schemes.
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where

Fo(x)=(1+4x,) §—(—
Fi(x)

37 + 8k + 36x% — 8k + x¥)/12

= (146K +3x2) § — (~ 10— 9k + 18x2 + )3
(111)

Equation (110) can only have a nontrivial solution if the
determinant condition Fy(x,) F (x,)— F,(x;) Fo(x,)=0is
satisfied. The resolvent condition equation (95) is solved for
§ and substituted into the determinant condition to produce

{r)— 1)4 (r,— 1)4 (ka— Ky 4K 6 + K, + 5, —6)
1445, 1y (k3 4 3, + D3 + 3k, + 1)

=0.
(112)

Equation (112) is solved to yield x, =1, k, =1, Kk, =k,, or
the expression

Kz‘_ﬁ
4K2+1.

(113)

Kl=ﬁ.-

The first two roots are the same roots that have previously
been shown to be stable. The condition that both roots must
be |k| <1 precludes the last root. The third root can be
shown to be stable by testing the derivative condition of the
polynomial as follows. Multiplication and division of
Eq. (110} by the nonzero rows and columns does not
change the roots of the determinant conditions. The
resulting expression is

O
Fi(ky) = Fulka)|
R

The limit as k, -k, is taken to yieid the expression
for the determinant condition Fy(k}(dF,(x)/dr)—Fy(x)
(dF,y(ic)/dx) =0. The resulting expression for x i3

{(x—1)12 B
14413 (K2 + 3k + 12

(114

Thus, the outflow boundary is stable for the (5, 5-6-5, 5)
scheme. '
The model equation for the inflow quarter-plane problem
is the same as that described in Eqs. (85) and (86). Solutions
of the form U (r)=e5gox’/ will satisfy the numerical
scheme, which gives the sixth-order inner scheme the same
resolvent condition as in Eq. (101}, Again, the general solu-
tion will have the form U,(r)=e%(C,x{+ C,x%). This
expression is substituted into the two boundary conditions
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and U, =0, which produces two.equations for the constants
C, and C, of the form

C F(x)+ CiF(x,)=0

{(115)
C Fy(ky) + G Fy{x,) =0,

where

Fi(x)= (2K + 3x?) §— (+44x — 36x° — 12k> + k*)/12 (116)
Fy(x)=1.

The determinant condition, for which a nontrivial solution
exists is simplified to F(k;)—F,(x,)=0 and, with
Eq. (100), provides two equations for the two unknowns %,
and k,. With the change of variables x,+x,=2y and
K K, =Xx, Eq. (116) becomes

645+ (192—96x) 1* + (— 163+ 352x—240) »°
+(120x2-504x + 160} ¥+ (83> — 2162+ 360x — 56) y
—18x7 + 142x% — 142x + 18 =0, L)

The functional relationship y = y(x) provided by Eq. (108)
is substituted into Eq. (117) and simplified to yield

(x—1)x+1)% (x"* +261x" + 2429810
+ 864903x° + 5558711x® + 16502410x7
+27479264x5 + 28538822x° + 5255107x*

+429169x° + 18614x> +435x + 5)=0.  (118)

Two roots to this polynomial give rise to eigenvalues S that
arc in the RH-P. They are x = ( —0.0196916 + 0.0239802;),
which yields »,=(0.157055, $0.943601)), and «,=
(—0.0281082, F0.0161902i), for § = (0.0428389, =+ 1.39944i).
The numerical solutions satisfy the governing equations to
approximately machine precision (1.0e —13). Thus, the
inflow for the (5, 5-6-35, 5) scheme is G-K-S unstable. This
result verifies the trends indicated earlier by the eigenvalue
grid refinement analysis and the simulation of the scalar
wave equation, both of which indicated that the sixth-order
scheme was Lax unstable.

The unstable scheme (5, 5-6-5, 5) previously discussed
was implemented with optimal fifth-order boundary for-
mulas. If the constraint of optimal-order schemes at the
boundaries is relaxed, then the possibility of a fifth-order
closure that is G-K-S stable still exists. Taylor series trun-
cation analysis was used te develop parametric relations for
the closure formulas at the two NBSs. These parametric
relations were constrained to be fifth order and explicit in
nature. To facilitate a wide range of closures, each point was
given two degrees of freedom. Thus, the symbolic formula

581/108/2-7
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for the new scheme is (5%, 5-6-5%, 5%). The scheme defined
at grid point j =0 and 1 can be writen as

al L
_0=—(C0U0+ C]_ U1+C2U2+C3U3+C4U4
0x Ax
+CsUs+ CeUs + C7Us) (119}
eu

1
a—xl=ﬂ(DoUo+D1U1+DzU2+DaU3+D4U4

+DsUs+ DsUs+ D7 Us), (120)

where

Co= — {0ty — 288, + 13068)/5040
C, = +{ag— 27f, + 5040)/720
C, = — {0y — 268, + 2520)/240
Cy= +{ag— 256, + 1680)/144
Ca= — (g — 248, + 1260)/144

Cs= + (2 — 238, + 1008)/240
Ce= — (29— 22B, + 840)/720

Cy= +(otg — 218, + 720)/5040

(e, — 218, + 720)/5040
(&, — 208, — 1044)/720
(2, — 198, — 720)/240
(

I
+

Il
+

x, — 188, — 360)/144
(a, — 178, — 240)/144
+ (2, — 168, — 180)/240
= — (2, — 158, — 144)/720
+ (a2, — 148, — 120)/5040

Dl}
Dl
D,
D,
D,=
Dy
Dﬁ
D?

with similar expressions defined for the closure at the other
end of the domain. By systematically searching the four-
parameter space spanned by the parameters a,, f,, o, and
B, with an eigenvalue code, an arbitrary eigenvalue spec-
trum can be approximated. A particular set of coeflicients
for which the eigenvalue spectrum is bounded to the LH-P
is o= 1809.257, B,=—65.1944, a, = —262.16, and §,=
—26.6742. The values are not unique and no attempt has
been made to find optimal values for these coefficients. The
cigenvalue spectrum for this case is shown in Fig. 11, Note
that the shape of the spectrum is similar to that of the
(5, 5-6-5, 5} scheme, but that the 2(S,,..} <0 instead of
increasing without bound. The scheme satisfies the
necessary condition for Lax stability and is asymptotically
stable by our definitions.
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The stability analysis for the two quarter-plane problems
that establish the G-K-S stability of the new (57,
52-6-5%, 5%) scheme is extremely formidable; MACSYMA
is pushed to the limits of its capabilitics on present
machines. In addition, 128-bit arithmetic is required to
ensure precision in the determination of the roots of the
resulting polynomials in x. The scheme is G-K-S stable for
the parameters given above for the inflow and ocutflow
problems. Thus, a formally sixth-order scheme has been
developed that is G-K-S (Lax) stable and asymptotically
stable for the scalar case.

Table VI shows a grid refinement study performed with
the new sixth-order scheme to verify its accuracy, The model
problem is the scalar wave equation defined by Egs.
(23)—(25). The time-advancement scheme is the fourth-
order R—K algorithm with a CFL of 0.1. Temporal refine-
ment studies were performed to ensure that the leading
error terms on all grids were from the spatial discretization
operator. The grid, its error, and the slope between each
successive refinement are listed in the table. The asymptotic
stability of the spatial operator ensures that the solution
does not grow exponentially for long times.

In Table VI, the data point for 21 grid points is erroneous
because the grid is too coarse for the scheme to exhibit its
higher order properties. In this example, the scheme
becomes at least fifth-order accurate at approximately 10
grid points/2x rad. In the limit N — oo, where &V is the num-
ber of grid points, the scheme shows a slope of —6, which
is the formal accuracy of the inner scheme. For small values
of N, the four points that are treated with fifth-order
accuracy degrade the formal accuracy by one degree.

An asymptotically stable, sixth-order spatially accurate
scheme has been developed for use in a method-of-lines dis-
cretization of a hyperbolic partial differential equation. The
eigenvalues of the new scheme are for the scalar case, which
is bounded to the LH-P for all N. The necessary condition
for Lax stability is therefore satisfied. In addition, the
scheme has been shown to be G-K-S8 stable for the com-
bined inflow and outflow quarter-plane analysis and is
therefore formaily Lax stable for the scalar case.

TABLE VI
Grid Refinement Study of the (52, 52-6-5°, 5%) Scheme

Grid log(L,) rate - Slope
21 —2.363 NA
31 —3.582 —6.9
41 -—-4.225 —351
51 —4724 —51
61 —5.150 -54
81 —5.849 —56

101 —6.406 —57
121 —6.867 —538

CARPENTER, GOTTLIEB, AND ABARBANEL -

For the hypérbolic system of equations, the use of any of
the Lax stable schemes presented in this work guarantees
the Lax stability of the resulting spatial discretization when
the boundaries are imposed in characteristic form. The
concept of asymptotic stability does not carry over from the
scalar case to the system. For the system, when all of the
physical eigenvalues have the same sign, the asymptotic
stability is retained. When the eigenvalue signs are mixed,
although asymptotically stable for the scalar case, exponen-
tial growth of the solution may occur for boundaries that
are imposed in characteristic form. Research continues to
determine a stronger necessary condition for asymptotic
stability that will allow the use of scalar analysis to.
determine spatial schemes that are asymptotically stable for
the system.

CONCLUSIONS

The stability characteristics of various compact fourth-
and sixth-order spatial operators were assessed with the
theory of Gustafsson, Kreiss, and Sundstrém (G-K-S) for
the semidiscrete initial boundary value problem (IBVP).
The class of central-difference interior schemes with
asymmetrically closed boundaries was analyzed. Because
of formal accuracy considerations, those schemes with
boundary closures of at least (N — 1)th spatial order for an
(N)th-order inner scheme were the focus of the work.
Conventional third- or fourth-order boundary conditions,
when coupled with the fourth-order compact inner scheme,
resulted in a G-K-S§ stabile scheme. For the sixth-order
compact inner scheme, the conventional boundary closures
of fifth and higher order were found to be G-K-S unstable.
Fourth-order and lower order closure formulas were found
to be G-K-S stable. These results were then generalized to
the fully discrete case with a recently developed theory of
Kreiss, which states that under weak constraints, the
stability of the semidiscrete operator implies stability of the
fully discrete operator if a locally stable temporal method is
used.

The conventional definition of stability was then
sharpened to include only those spatial discretizations that
are asymptotically stable (bounded left half-plane (LH-P)
cigenvalues). Many of the higher order schemes which are
G-K-S stable were found not to be asymptotically stable.
Fourth-order boundary conditions were found to be
asymptotically unstable for the schemes tested, specificaliy:
(4-4—4) and (4, 5-6-5, 4). A series of compact fourth- and
sixth-order schemes that were both asymptotically and
G-K-S stable were then developed. The constraint of
optimal accuracy from a specific number of constraints was
abandoned, which enabled several-parameter boundary
closures to be developed. A three-parameter, uniformly
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fourth-order scheme (4°-4-47) and a four-parameter sixth-
order scheme with fifth-order boundaries {52, 57-6-52, 57)
were developed which were asymptotically stable. No
attempt was made to optimize the parameters.

All the schemes that were G-K-S stable were subjected to
extensive comparisons between the G-K-S stability predic-
tions, semidiscrete eigenvalue determination, and numerical
simulations. In all cases, consistent and complementary
results were achieved with all the methods. In addition, the
eigenvalue determination accurately predicted the exponen-

TABLE VII

Stability of High Order Discretizations for U, =al
with Various Boundary Conditions

Order Scheme Type G-K-§ Re(S)<0
2nd 1-2-1 Explicit Yes Yes
2nd 2-2-2 Explicit Yes Yes
2nd 1, 14-1,1 Explicit Yes Yes
3rd 2,2-4-22 Explicit Yes Yes
4th 3,34-33 Explicit Yes Yes
4th 4,4-44 4 Explicit Yes No
2nd 141 Compact Yes Yes
3rd 24-2 Compact Yes Yes
4th 3-4-3 Compact Yes Yes
4th 444 Compact Yes No
4th 43443 Compact Yes Yes
4th 3,4-6-4.3 Compact Yes Yes
5th 4,464, 4 Compact Yes No
6th 5 56-5,5 Compact No No
6th 52, 5%-6-5% 5% Compact Yes Yes

tial divergence of the solution for the cases that were not
asymptoticaily stabie. Table VII presents a summary of the
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sults.
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