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Mechanics in deforming processes

Introduction

Deforming processes convert the original shape of a solid to another shape without changing
its mass or material composition. During this process, cohesion is maintained among
particles.

The relation between stress and strain for most solids is graphically described in Figure 1:
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Figure 1: Stress-strain relationship.

1. For stress smaller than the point (A) of proportionality, stress and strain are
proportional. Specifically o=Ee, where E is Young’s modulus. This is the elastic region

2. For stress larger than the proportionality limit, but smaller than the offset yield
(point B), there is plastic deformation. In case of no more force is applied, the strain
may follow a curve parallel to the elastic region, as indicated in Figure 1 by the
dashed curve BX.

3. For stress larger than the offset yield, but smaller than the Extension-under-load
(EUL) yield strength (point C), there is reduction of strain when force is no more
applied, but not parallel to the elastic curve.

4. For stresses larger than the EUL yield strength, the whole strain generated by the
applied stress remains as plastic deformation. Stress increases until it reaches the
tensile strength. Further deformation does not correspond to further increase in the
required stress, until it reaches the fracture point (the endpoint of Figure 1 curve).

Depending on the material and the region of the curve of Figure 1, several approximations
to the curve of Figure 1 can be used. Such approximations are shown in Figure 2.
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Figure 2: Models of stress-strain relationship.

The term stress (S) is used to express the loading in terms of force applied to a certain cross-
sectional area of an object. From the perspective of loading, stress is the applied force or
system of forces that tends to deform a body. From the perspective of what is happening
within a material, stress is the internal distribution of forces within a body that balance and
react to the loads applied to it. The stress distribution may or may not be uniform,
depending on the nature of the loading condition. For example, a bar loaded in pure tension
will essentially have a uniform tensile stress distribution. However, a bar loaded in bending
will have a stress distribution that changes with distance perpendicular to the normal axis.

Some common measurements of stress are:

Psi = Ibs/in* (pounds per square inch)

ksi or kpsi = kilopounds/in® (one thousand or 10° pounds per square inch)
Pa = N/m 2 (Pascals or Newtons per square meter)

kPa = Kilopascals (one thousand or 10° Newtons per square meter)

GPa = Gigapascals (one million or 10° Newtons per square meter)

Stresses in most 2-D or 3-D solids are complex and need to be defined methodically. The
internal force acting on a small area of a plane can be resolved into three components: one
normal to the plane and two parallel to the plane. The normal force component divided by
the area gives the normal stress (S), and parallel force components divided by the area give
the shear stress (t). These stresses are average stresses as the area is finite, but when the
area approaches zero, the stresses become stresses at a point. Since stresses are defined in
relation to the plane that passes through the point under consideration, and the number of
such planes is infinite, there appear an infinite set of stresses at a point. It can be proven
that the stresses on any plane can be computed from the stresses on three orthogonal
planes passing through the point. As each plane has three stresses, the stress tensor has
nine stress components, which completely describe the state of stress at a point.
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Figure 3a: Stresses in a Solid

Figure 3b: Stresses on an infinitesimal part of a material.

As visible in Figure 3b, in order to completely describe the stresses, nine quantities have to
be determined. They can be organized in the form of a matrix, like

Oy O O
O =0y Oypn Oy

O3 O3 Og

Due to physical reasons (conservation of angular momentum), the stress tensor is
symmetric. Since the matrix is symmetric, its eigenvalues are real, they are called the
principal stresses and notated as o;, 0, and g3, or g,, 0, and o,.

Strain is the response of a system to an applied stress. When a material is loaded with a
force, it produces a stress, which then causes a material to deform. Engineering strain is
defined as the amount of deformation in the direction of the applied force divided by the
initial length of the material. This results in a number without units, although it is often left
in a form, such as inches per inch or meters per meter. For example, the strain in a bar that



is being stretched in tension is the amount of elongation or change in length divided by its
original length. As in the case of stress, the strain distribution may or may not be uniform in
a complex structural element, depending on the nature of the loading condition
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Figure 4: Strains on a 2D infinitesimal part of a material.

As shown in Figure 4, the strain, like the stress, can be organized in the form of a matrix.
Figure 4 shows the strain for a two dimensional problem; in general, for a three dimensional
problem the strain can be organized as

Ultimate tensile strength (UTS), often shortened to tensile strength (TS) or ultimate strength,
is the maximum stress that a material can withstand while being stretched or pulled before
failing or breaking. Tensile strength is not the same as compressive strength and the values
can be quite different. It is the strength at point C of Figure 1 and is usually notated by oy or

ay.
Yielding

Yielding is a particular point at the stress - strain curve, where the plastic behavior begins.
This happens typically at 0.2% strain. There are several criteria for identifying the conditions
of yielding:

Maximum Principal Stress:

Plastic deformation starts when the maximum of the principal stresses o exceeds a given
threshold: 0 = 0.
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Figure 5: Maximum stress criterion (Yielding notated by circle).

Tresca Criterion:

A threshold is set for the shear stress (dislocation). Plastic deformation is considered to
occur when o7 — 03 = 0.

Figure 6: Tresca criterion for the case of Figure 3 (T4 = 07 /2).

von Mises Criterion:

Plastic deformation is considered occurring when o,>0,,

where o, is the von Mises stress or equivalent tensile stress which is defined as

Oy = \/%[(0—11 — 092)% + (092 — 033)? + (033 — 011)% + 6(0}s + 021 + 03]




The von Mises criterion is an energy-related criterion, as the square of the stresses is

involved.
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Figure 7: von Mises and Tresca criteria comparison for the case of Figure 3.
Bending Model

Figure 8 depicts the geometry of V-bending process in the x-y plane. A three point bending is
taking place (two supports and one ram) and the result is bending the sheet forming to a
desired angle. Technically, the depth (z dimension) is considered to be much larger than the
other dimensions and every measure is expressed per unit of depth. This state is called
"plane strain". Thus, every strain component involving z is equal to zero. Also, all the cross
terms are set equal to zero, as the coordinate system (x,y) is supposed to be local at every
point of the bended area.

Figure 8: Bending Geometry.

One assumption is that plane normal section remains plane and normal.

Also, if I, is the original length at the center, then line CD, may change its length to CD and it
is stretched to a new length /; during bending (Figure 9):

Iy = pb

The line AB, (Figure 9) at the distance y from the center will deform to AB:
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Figure 9: Bending Geometry Detail.

The axial strain at the line AB is
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where:

e g, is the strain at the middle surface or the membrane strain
e g, isthe so called bending strain

Finally, one can claim that where the radius of the curvature is large compared with the
thickness, the bending strain can be simplified:

g, =+ Ly~
p P
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Figure 10: Linear approximation of the strain distribution at plane normal section.

Finally, there are considered to be three components of stress and strain. Concerning the
strains, since an incompressible material is considered, the following relation
(incompressibility condition) has to be taken into consideration:

& t+e e, =0
So, one can easily derive that:
&y = —&
As far as the stresses are concerned, only pure bending moments are concerned, thus:
g, =0
Regarding the other two components, the following formula has to be used:
0, = Vpi0x

As vy, one has to define a Poisson ratio for the case of incompressibility, thus a value of % is

used.



Bending Numerical Example

In the following figure, the geometry is set. Also, in the following table, the data of the
problem are given. What is asked is the Force P that achieves a bending of 8 = 15°.

Description Variable Value
Final bending angle 0 (180 — 15)°
Thickness of metal sheet t 1 mm
Material model (annealed o=Ke" K=430 MPa, n=0.45

304 stainless steel, strain
hardening model of Figure 2)

Radius of Ram nose R 2 mm
Friction Coefficient u 0.15
Distance between B; and B, A2 BB, 8 mm

Figure 11: Bending geometry for numerical example

From the equilibrium of forces in the y direction (for the whole body), this is what is derived:

P—2N< 9+ '9)
= cos— + psin

From the equilibrium of moments of the C,B; part, the following formula is obtained:

2M,
N=——
2w + ut

Regarding the length B, C,, taking into account Figure 12, it can be computed using:




(¢ + R)sing + wsin o = 2
Sln(p WSlnz—z
Y.
Y.

\;
Re| L
A 2
d G

Figure 12: Detail in geometry

Then, using the fact that KC, L B,C, = ¢ = g— g,

) 6 2
(t + R)sing + wsin—- = =
2 2
%— (t+ R)sin%
w = =..=7.86mm

COS =
2

The bending moment is given by the following relationship:

t/2 t/2 t/2
y n 1 n tn+2
j— —_ n = —_ = —_ _——-
0 0 0
=42.5Nm/m

In continuation,
N =51kN/m

and finally:

P =9kN/m

Assumptions that were taken into consideration:



e The area outside the supports B; & B, is not of any interest.

e The forces create only bending moment

e The outer curvature of the work-piece is driven by the ram

e The area outside bending remained rigid, whilst the bended area is plastic and is
governed by power law stress-strain relationship.

e There is no spring-back effect

e Along the curved area, moment remains constant

e There are no thermal terms in modeling

e Every measure is calculated per unit of depth (plane strain)

Upsetting Model

Upsetting is a different deforming process, used to change the shape of a workpiece, as
shown in Figure 13. Because of the geometry of the problem polar cylindrical coordinates
will be used.
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Figure 13: Upsetting
The determination of upsetting forces is given by the equilibrium in the radial direction, in

the case of Figure 14.

d
o,rldp — (0, +do,)(r +dr)lde + ZO'tSiTL?q) ldr — 2uo,rdepdr =0

Assuming that g, = g;, that sina = a and if all higher order derivatives second rank
variations are set equal to zero, then one comes up with:

do, 2u
dr +T

g,=0
Then, applying the Tresca yield criterion one finds:
0p — 0, = Of

the following equation comes up:
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Figure 14: Modeling Upsetting

The solution to this differential equation using the boundary condition o,.|,—4/, = 0 is the
following:

O-T = —O'f I:eZT”(%—T) —_ 1] 'O-Z = _O_erT#(%—T)

Using the Taylor expansion, the following formula can be valid:

2u ¢d
7=~ |1+ (7))

. - . - . d
Also, it is worth mentioning that in the case of frictionless upsetting, % = 0, thus g, = —oy.

Upsetting Numerical Example #1

Using the following values, a numerical example is formed.

Description Variable Value
Initial height ly 8cm
Final height l 6 cm
Initial radius dy 5cm
Friction Coefficient U 0.5
Yield Strength for Steel Of 300 MPa

The upsetting force is equal to:




/2 2w a/2 2w 2# d
F =f f o,pdpdp = —off f (1 +T(§—p)) pdedp
0 0 0 0
ajz 21 d
F=-2 1+—|(=— d
o [ (1422 o) o

F=-2 d2+d3“
= o9\ T 24l

Making use of the fact that
nd3(ly — /4 = nl(d? — d3) /4
the force is found to be equal to:

do—1+1o)? (do—1+1p)?
F=—27T0f<(0 - )" | (o o 0)“>=..=900k1v

Upsetting Numerical Example #2: Upsetting a nail

Using the following values, a numerical example is formed.

Description Variable Value
Initial height ly 0.5 mm
Final height l 0.2 mm
Initial radius dy 1 mm
Friction Coefficient U 0.5
Yield Strength for Steel af 300 MPa

The upsetting force is found to be equal to:

F =1300N
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