ANOIKTA

Mnұаvoupүıкŋ́ Teхvo入oүía I
 ＂乏uбtń $\mu \alpha \tau \alpha$ Параүшүńs＂

По入utعХviкń $\Sigma \chi о \lambda n ́$

ANOIKTA

Manufacturing Processes I
 "Manufacturing Systems"

Professor George Chryssolouris
School of Engineering
Dept. of Mechanical Engineering \& Aeronautics

THE SYSTEM OF MANUFACTURING

Product design
 Design-manufacturing interfaces

processes equipment
 systems

MANUFACTURING ATTRIBUTES

OBJECTIVES ... GOALS ... CRITERIA

A MANUFACTURING DECISION

Era of
Mass Production

Era of
Global Competition

Era of
Market Niches

MANUFACTURING DECISION MAKING

- Requires trade-offs between different types of attributes
- informed trade-offs require quantifiable attributes
- cost
- time/rate
- quality

- flexibility

Few quantitative definitions

COST

- Equipment and facilities
- Materials
- Labor
- Energy
- Maintenance
- Training
- Overhead
- Cost of capital

COST

Costs related to manufacturing encompass a number of different factors which can be broadly classified into the following categories:

- Equipment and facility costs. These include the costs of equipment necessary for the operation of manufacturing processes, the facilities used to house the equipment, the factory infrastructure, etc.
- Materials. This cost includes the raw materials for producing the product, and tools and auxiliary materials for the system, such as coolants and lubricants.
- Labour. The direct labour needed for operating the equipment and facilities.
- Energy required for the performance of the different processes. In some manufacturing industries, this cost may be negligible compared to other factors, while in others it contributes significantly to be financial burden of the manufacturing system.
- Maintenance and training. This includes the labour, spare parts, etc., that are needed to maintain the equipment, facilities and systems, as well as the training necessary to accommodate new equipment and technology.
- Overhead. This is the portion of cost that is not directly attributable to the operation of the manufacturing system, but supports its infrastructure
- The cost of capital, which may be not readily available within the manufacturing firm, and therefore must be borrowed under specific terms.

PROCESS GEOMETRY (TURNING)

TECHNOECONOMICAL MODEL (TURNING)

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { Cost } \\
\text { Per } \\
\text { Workpice }
\end{array}=\left[\begin{array}{c}
\text { Machining } \\
\text { Rate }
\end{array}+\begin{array}{c}
\text { Labour } \\
\text { Rate }
\end{array}+\begin{array}{c}
\text { Overhead } \\
\text { Rate }
\end{array}\right] \mathrm{x}\left[\begin{array}{c}
\text { Reeding } \\
\text { Time }
\end{array}+\begin{array}{c}
\text { Rapid } \\
\text { Feeding } \\
\text { Time }
\end{array}+\begin{array}{c}
\text { Portion of Tool Insert } \\
\text { Replacement Time } \\
\text { Per Workpiece }
\end{array}\right]+\begin{array}{c}
\text { Cost } \\
\text { Per } \\
\text { Noor Workpieces Bet. } \\
\text { Tool Insert Changes }
\end{array}\right] \\
& \mathrm{C}=\mathrm{M} \times\left[\frac{D(L+e)}{318 f_{r} v}+\frac{R}{r}+\frac{D L t_{d}}{318 f_{r} v T}\right]+\frac{D L}{318 f_{r} v T} \times\left[C_{i}\right] \\
& \text { C Cost for turning one workpiece [\$] } \\
& \text { fr Feed per revolution [mm] } \\
& \text { v Cutting speed [m/min] } \\
& \text { M Machining + labour + overhead rate [\$/min] } \\
& \mathrm{N}_{\mathrm{IR}} \quad \text { Number of workpieces between insert changes } \\
& \mathrm{C}_{\mathrm{I}} \quad \text { Cost per insert [\$] } \\
& \text { D Workpiece diameter [mm] } \\
& \text { L Length of workpiece [mm] } \\
& \text { e Extra travel at feed rate } \mathrm{f}_{\mathrm{r}}[\mathrm{~mm}] \\
& \text { R Total rapid traverse distance for one part [mm] } \\
& \text { r Rapid traverse rate [mm/min] } \\
& \mathrm{t}_{\mathrm{d}} \quad \text { Tool insert replacement time [min] } \\
& \text { T Tool life [min] }
\end{aligned}
$$

- Derived from process physics and geometry.

TECHNOECONOMICAL MODEL

MACHINING RELATIONSHIPS

TECHNOECONOMICAL MODEL

MACHINING RATE RELATIONSHIPS

EQUATIONS FOR OPERATING TIME PER PIECE

Turning

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{op}}=\frac{\mathrm{D}(\mathrm{~L}+\mathrm{e})}{3.82 \mathrm{f}_{\mathrm{r}} \mathrm{v}}+\frac{\mathrm{R}}{\mathrm{r}}+\mathrm{t}_{\mathrm{i}}+\frac{\mathrm{DL} \mathrm{t}_{\mathrm{d}}}{3.82 \mathrm{f}_{\mathrm{r}} \mathrm{vT}} \\
& \mathrm{t}_{\mathrm{op}}=\frac{\mathrm{D}(\mathrm{~L}+\mathrm{e})}{3.82 \mathrm{Z}_{\mathrm{f}} \mathrm{v}}+\frac{\mathrm{R}}{\mathrm{r}}+\mathrm{t}_{\mathrm{i}}+\frac{\mathrm{L}_{\mathrm{t}}}{\mathrm{Z}_{\mathrm{T}}}
\end{aligned}
$$

Drilling and Reaming $t_{o p}=\frac{D(L+e)}{3.82 f_{r} v}+\frac{R}{r}+t_{i}+\frac{L_{t_{d}}}{T_{F}}$
Tapping

$$
\mathrm{t}_{\mathrm{op}}=\frac{\mathrm{mD}(\mathrm{~L}+\mathrm{e})}{1.91 \mathrm{v}}+\frac{\mathrm{R}}{\mathrm{r}}+\mathrm{t}_{\mathrm{i}}+\frac{\mathrm{L}_{\mathrm{t}_{\mathrm{d}}}}{\mathrm{~T}_{\mathrm{F}}}
$$

Center drilling and Chamfering

$$
\mathrm{t}_{\mathrm{op}}=\frac{\mathrm{D}(\mathrm{~L}+\mathrm{e})}{3.82 \mathrm{f}_{\mathrm{r}} \mathrm{v}}+\frac{\mathrm{R}}{\mathrm{r}}+\mathrm{t}_{\mathrm{i}}+\frac{\mathrm{u}_{\mathrm{c}} \mathrm{t}_{\mathrm{d}}}{\mathrm{~T}_{\mathrm{h}}}
$$

EQUATIONS FOR PRODUCTION RATE

$$
P=\frac{60}{\left(\sum t_{\text {op }}+t_{i}+\frac{t_{d}}{N_{t}}\right)}
$$

PRODUCTION RATE AFFECTS OTHER ATTRIBUTES

e.g. transfer line

high production rate
\longrightarrow Low flexibility

Hole Making
 Process Speed: $10 \mathrm{~mm} / \mathrm{min}$, 1 station

Total station time $=20 \mathrm{~mm} / 10 \mathrm{~mm} / \mathrm{min}=2 \mathrm{~min} \Rightarrow$
\Rightarrow Production Rate $=0.5$ parts $/ \mathrm{min}$

Hole Making Process Speed: $10 \mathrm{~mm} / \mathrm{min}, 2$ stations

Station 2

Hole Making

Process Speed: $10 \mathrm{~mm} / \mathrm{min}$, 2 stations

Total station time $=10 \mathrm{~mm} / 10 \mathrm{~mm} / \mathrm{min}=1 \mathrm{~min} \Rightarrow$
\Rightarrow Production Rate $=1$ parts $/ \mathrm{min}$

RELIABILITY AND PRODUCTION RATE

Failure Rate (λ): number of failures over a time period
Mean Time Between Failure(MTBF): 1/ג

Reliability (R):
$R=e^{-\lambda T}$

The probability that a system or component will perform its required functions under stated conditions for a specified period of time.

Availability (A): $\mathrm{A}=\frac{M T B F}{M T B F+M T T R} \quad$ MTTR:Mean time to repair.

AVAILABILITY EXAMPLE 1

Failure rate $\lambda=3 / 8$
MTBF $=1 / \lambda=8 / 3$

Reliability $=e^{-\lambda T}=e^{-3}$
$=5 \%$ for the 8 hrs period.

$$
\text { Availability }(\mathrm{A})=\frac{\mathrm{MTBF}}{\mathrm{MTBF}+\mathrm{MTTR}}=\frac{2.67}{2.67+1.17}=0.7
$$

AVAILABILITY EXAMPLE 2

Failure rate $\lambda=3 / 8$
MTBF $=1 / \lambda=8 / 3$

Reliability $=e^{-\lambda T}=e^{-3}$
$=5 \%$ for the 8 hrs period.

$$
\text { Availability }(\mathrm{A})=\frac{\mathrm{MTBF}}{\mathrm{MTBF}+\mathrm{MTTR}}=\frac{2.67}{2.67+0.4}=0.87
$$

$$
\text { MTTR }=\frac{(1-0.5)+(4-3.8)+(7.5-7)}{}=0.4
$$

3

AVAILABILITY

TRANSFER LINE RELIABILITY

$\mathrm{R}=\mathrm{R}_{1} \times \mathrm{R}_{2} \times \cdots \times \mathrm{R}_{n}$ $e^{\lambda_{t}}=e^{\lambda_{1} t} \times e^{\lambda_{2} t} x \cdots x e^{\lambda_{n} t}$ $\lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$

TRANSFER LINE RELIABILITY

DESIGN

MANUFACTURING

MANUFACTURING QUALITY

How well production process meets design specifications

- feature geometries
- material properties
- mechanical properties
- chemical properties

Issues:

- repeatability
- longevity/maintainability

Quality is traditionally measured by

- percent defective: the percent of parts produced that do not meet required specifications
- warranty costs: the costs that occur in the manufacturing organisation due to the failure of parts during operation
- process capability index, defined as the tolerance over six standard deviations,
$\mathrm{Cp}=\frac{\text { tolerance }}{6 \times \text { Standard Deviation }}$
Where tolerance is defining the range of the specifications which are acceptable for a particular quality characteristic of a part or a product and the standard deviation is derived from the distribution of this quality characteristic.

QUALITY

Process Capability Index, C_{p}

Process-oriented indicator of quality,

$$
C_{p}=\frac{\text { tolerance }}{6 \times \text { standard deviation }}
$$

QUALITY

Quality Characteristic Distributions

(for two processes)

QUALITY

EXAMPLE: Process Capability Index, C_{p}

Tolerance Range: 10 for both A and B

QUALITY

Quality Loss Function

MEASURES OF QUALITY

| \% DEFECTIVE | WARRANTY COST |
| :---: | :---: | :---: |
| PROCESS CAPABILITY INDEX | QUALITY LOSS FUNCTION |
| Quality Characteristic y | |
| $\mathrm{Cp}=\frac{\text { tolerance }}{6 \mathrm{x} \sigma}$ | |

THE SIGNIFICANCE OF FLEXIBILITY

Flexibility will be the key predicator of manufacturing competitiveness in the 1990's.

Mass produced cars are a thing of the past because customers today demand more diversity.
-Knishi Yamamote, Mazda Chairman

It is not the volume of Japanese cars that western carmakers will come to fear most. It is their devastating variety.
-The Economist, July 211990

WHY MEASURE FLEXIBILITY?

Having flexibility can give a manufacturing system 3 important advantages.

1. Investment efficiency.

The system can make more parts with less equipment.
2. Breakdown tolerance.

The system is able to maintain production when machines break down.
3. Large capacity range.

The system is easy to expand and to reduce in size.

Measuring flexibility provides a quantitative assessment of the extent to which a given manufacturing system possesses the above advantages.

FLEXIBILITY

Definition: SENSITIVITY OF COST TO CHANGE

THREE TYPES OF FLEXIBILITY

Product flexibility enables a manufacturing system to make a variety of part types with the same equipment.

Advantages: • small lot sizes become economical

- investment efficiency.

Operation flexibility is the ability to produce a set of products using different machines, materials, operations, and sequences of operations.

Advantage: • breakdown tolerance

Capacity flexibility allows a manufacturing system to vary the production volumes of different products to accommodate changes in demand while remaining profitable.

Advantage: • insensitive to market variations

FLEXIBILITY

Product flexibility

- Enables a manufacturing system to make a variety of part types with the same equipment.
- Over the short term, the system can adapt to changing demands for various products.
- Over the long term, the system's equipment can be used across multiple product life cycles, increasing investment efficiency.

FLEXIBILITY

Operation flexibility

- The ability to produce a set of products using different machines, materials, operations, and sequences of operations.
- It provides breakdown tolerance.
- It affects mass production in particular, where the production quantity is often the most significant indicator of manufacturing success.

FLEXIBILITY

Capacity flexibility

- Allows a manufacturing system to vary the production volumes of different products to accommodate changes in demand while remaining profitable.
- Critical for make-to-order systems.
- Important in mass production of high-value products.

MEASUREMENT OF FLEXIBILITY

Flexibility: sensitivity of a manufacturing system to change
Measurement must account for:

- penalty for change
- low penalty \longrightarrow high flexibility
- high penalty \rightarrow low flexibility
- demand for change
- responsiveness to highly likely changes more important than responsiveness to unlikely changes

Penalty Of Change $=$ Penalty x Probability

Funding

- This educational material has been developed in the teaching duties of the respective educator.
- The project «Open Academic Courses at the University of Patras» has funded only the reformation of the education material.
- The Project is implemented within the context of the Operational Programme "Education and Lifelong Learning" (EdLL) and is co-funded by the European Union (European Social Fund) and national resources.

Reference Note

Copyright University of Patras, School of Engineering, Dept. of Mechanical Engineering \& Aeronautics, Prof. George Chryssolouris. «Manufacturing Processes I. "Manufacturing Systems"». Version: 1. Patras 2015. Available at: https://eclass.upatras.gr/courses/MECH1111/.

License Note

This material is provided under the license terms of Creative Commons Attribution-NonCommercial-NonDerivatives (CC BY-NC-ND 4.0) [1] or newer, International Version. Works of Third Parties (photographs, diagrams etc) are excluded from this license and referenced in the respective "Third Parties' works Note"

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/
As NonComercial is denoted the use that:

- does not involve directed or indirect profit for the use of this content, for the distributor and the licensee
- does not involve any financial transaction as a prerequisite of the using or accessing this content
- does not offer to the distributor and licensee indirect financial profit (e.g. ads) from websites
The owner can provide the licensee a separate license for commercial use upon request

Notes Preservation

Any reproduction or modification of this material must include:

- the Reference Note
- the License Note
- the Notes Preservation statement
- the Third Parties' Works Note (if exists)
as well as the accompanying hyperlinks.

