

Μηχανουργική Τεχνολογία Ι

"**Εργαλειομηχανές** – Προγραμματισμός Παραγωγής"

Καθηγητής Γεώργιος Χρυσολούρης Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Manufacturing Processes I

"Machine Tools - Process Planning"

Professor George Chryssolouris School of Engineering Dept. of Mechanical Engineering & Aeronautics

MANUFACTURING PROCESSES ALTER A GIVEN MATERIAL'S FORM, SHAPE, AND/OR PHYSICAL PROPERTIES

MANUFACTURING EQUIPMENT

Performs or assists to perform a manufacturing process

•MACHINE TOOLS

ROBOTS AND HANDLING DEVICES

•CARTS AND AUTOMATED GUIDED VEHICLES (A.G.V.)

MACHINE TOOL

A non-portable machine with an integral power source which causes the relative motion of a tool and a workpiece to produce a predetermined geometric form or shape. •ECONOMIC IMPORTANCE: MAJOR ROLE IN PRODUCING INDUSTRIAL GOODS

•PRODUCT QUALITY/MFG. COST DEPENDS ON MACHINE TOOL TECHNOLOGY

•PROCESS/MATERIALS DEVELOPMENT DRIVES MACHINE TOOL DEVELOPMENT

Major Machine Tool Producing Countries

	1968	1972	1976	1980	1984	1985	1986
USA							
Share of world production	26.3%	14.2%	16.3%	18.2%	12.0%	12.4%	9.7%
Exports/domestic production	12.6%	18.8%	23.6%	15.3%	15.5%	16.6%	19.8%
Imports/domestic consumption	9.8%	10.0%	16.4%	23.3%	38.0%	43.4%	49.2%
Total shipments (\$ millions)	1722.8	1269.3	2178.2	4812.4	2412.5	2717.8	2830.0
Share of world exports	10.0%	7.6%	8.5%	7.3%	4.8%	4.7%	4.1%
West Germany							
Share of world production		-	18.3%	17.9%	14.0%	14.5%	17.8%
Exports/domestic production	68.3%	55.7%	70.2%	62.6%	59.6%	62.2%	60.2%
Imports/domestic consumption	21.4%	22.1%	27.7%	32.8%	35.3%	23.3%	34.8%
Total shipments (\$ millions)	_	-	2450.0	4750.0	2803.8	3168.6	5210.1
Share of world exports	28.9%	27.4%	28.5%	24.8%	22.3%	20.3%	22.9%
Japan							
Share of world production	7.5%	7.5%	7.9%	14.5%	22.3%	24.3%	24.2%
Exports/domestic production	10.6%	13.4%	34.9%	37.9%	38.9%	41.1%	41.3%
Imports/domestic consumption	18.6%	12.2%	9.3%	8.5%	6.2%	6.6%	5.6%
Total shipments (\$ millions)	488.9	675.6	1058.9	3830.3	4474.6	5316.7	7081.6
Share of world exports	3.6%	7.6%	7.2%	13.2%	21.5%	22.6%	21.4%

- *Manufacturing Equipment* ranges from hand tools to complex automated machining centers.
- *Machine tools* have been used in industrial production for over 100 years.
- *Manufacturing Equipment* and *Machine tools* are the critical link between intermediate products formed from raw materials and finished discrete parts and components.

The Evolution of the Lathe

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p126. © Springer, 2006

Historical Development of Tool Materials

MANUFACTURING PROCESSES

- Primary Forming: Original creation of a shape/molten, gaseous, solid
 Cohesion is created
- Deforming: Change the shape of a solid without changing the mass or material composition *Cohesion is maintained*
- Removing:
- Joining:

- Removal of Material Cohesion is destroyed
- Unite Individual Work pieces Cohesion is increased
- Changing Material Properties:

Purposely change workpiece characteristics to achieve desirable properties.

DEFORMING PROCESSES

- According to the stresses experienced by the material
 - Compressive
 - Tensile
 - Compressive & Tensile
 - Bending
 - Shearing
- According to the temperature of the material during forming
 - Hot forming
 - Cold forming
- According to changes in mechanical properties
 - With no change in mechanical properties
 - With temporary changes
 - With permanent changes

METAL (DE)FORMING

Technological Characteristics

- High loads and stresses
 - The entire workpiece deforms (or a substantial part of it) 50-2.500 N/mm² or up to 300.000 psi
 - Forging presses up to 750 MN (85 kilotons)
 - Cutting machinery 20 KN (2,3 tons)
- Tools are large, heavy, and often expensive
 - Special machining methods
 - Special skills
 - High volume to justify the cost/minimum quantity
- Advantages
 - Short production times
 - Often high accuracy
 - Good mechanical properties

TYPICAL PRODUCTS MADE BY DEFORMING PROCESSES

- 1. Components for automobiles and machine tools as well as for industrial plants and equipment. Here metal forming is a vital link in the development of modern design in light alloys.
- 2. Hand tools, such as hammers, pliers. Screwdrivers, and surgical instruments.
- 3. Fasteners, such as screws, nuts, bolts, and rivets.
- 4. Containers, such as metal boxes, cans, and canisters.
- 5. Construction elements used in tunnelling, mining, and quarrying (roofing and walling elements, pit props, etc.)
- 6. Fittings used in the building industry, such as for doors and windows.

MACHINE TOOLS FOR DEFORMING

(converting a given shape of a solid to another shape without change in mass or material composition/maintaining cohesion)

MACHINE CLASSIFICATION BASED ON THE <u>MAIN STRESSES</u> EXPERIENCED BY THE MATERIAL DURING THE PROCESS: MACHINES FOR: •COMPRESSION FORMING •TENSION FORMING •TENSION/COMPRESSION FORMING •BENDING

MACHINE TOOLS FOR DEFORMING

MACHINE CLASSIFICATION BASED ON THE <u>TEMPERATURE</u> EXPERIENCED BY THE MATERIAL DURING THE PROCESS: MACHINES FOR: •COLD FORMING/ROOM TEMPERATURE •HOT FORMING/TEMPERATURE ABOVE RECRYSTALLIZATION

MACHINE CLASSIFICATION BASED ON <u>FUNCTIONAL PRINCIPLE</u>: MACHINE CAPACITY CHARACTERIZED BY:

•ENERGY•MOVEMENT•FORCE

Machines for Deforming

Linear Tool Movement (a) Rolling (b) Drawing (c) Upsetting

Machines for Deforming

Non-linear Tool Movement (a) Rolling (b) Bending (c) Stretch-Forming

Material Removal

MACHINE TOOLS FOR SEPARATING (machining or removal of material/*destroying cohesion*). MACHINES FOR SEPARATING WITH NO CHIP REMOVAL *** SHEARING MACHINES** * NIBBLING MACHINES * LASER CUTTING MACHINES E.T.C. MACHINES FOR SEPARATING WITH CHIP REMOVAL MACHINES USING SINGLE-CUTTING -EDGE TOOL MAIN CUTTING MOTION: TRANSLATORY * PLANNING MACHINES * SHAPING MACHINES * BROACHING MACHINES E.T.C. MAIN CUTTING MOTION : ROTARY * LATHES *** DRILLING MACHINES** * MILLING MACHINES, E.T.C.

MACHINE TOOLS FOR SEPARATING (machining or removal of material/*destroying cohesion*).

MACHINES USING NO SINGLE-CUTTING-EDGE TOOL MAIN CUTTING MOTION : TRANSLATORY/ROTARY *** GRINDING MACHINES** * HONING MACHINES * LAPPING MACHINES E.T.C. NON TRADITIONAL CUTTING TECHNIQUES * LASER MACHINES * E.D.M MACHINES * E.C.M MACHINES E.T.C.

MACHINE TOOLS ELEMENTS

• FRAMES

LOAD CARRYING BODIES WHICH SUPPORT INDIVIDUAL CONSTRUCTIONAL/FUNCTIONAL MACHINE ELEMENTS.

- GUIDEWAYS AND BEARINGS
 CONSTRUCTION UNITS WHICH GUIDE/SUPPORT
 MACHINE TOOL MOTIONS
- MAIN DRIVES

DRIVE UNITS WHICH PROVIDE THE MAIN WORKING MOTIONS OF A MACHINE TOOL.

• FEED DRIVES

DRIVE UNITS WHICH PROVIDE THE MOTIONS OF THE TOOL AND/OR WORKPIECE REQUIRED TO PRODUCE A GIVEN CONTOUR ON THE WORKPIECE.

MACHINE FRAMES

- **REQUIREMETS/MATERIALS**
- FORCE FLUX AND DEFORMATION
- STATIC LOADS
- DYNAMIC LOADS
- THERMAL LOADS
- **COMPUTATION METHODS**

REQUIREMENTS/MATERIALS

• OVERALL DESIGN GOAL:

TO MINIMIZE UNDESIRED RELATIVE DISPLACEMENT

BETWEEN TOOL AND WORKPIECE DUE TO THE PROCESS

- MODULAR DESIGN WITH JOINTS
- SIZE/FORM/SHAPE OF FRAME ELEMENTSDEPENDS UPON:
 - POSITION OF MOVING AXES
 - LENGTH OF MOVING A XES
 - DIRECTION/MAGNITUDE OF PROCESS FORCES
 - ACCESSIBILITY
 - •MANUFACTURABILITY
- MATERIALS:
 - •STEEL
 - •CAST IRON
 - •ALUMINUM
 - •COPPER
 - •BRASS
 - •TITANIUM
 - •CONCRETE
 - •COMPOSITES(?)

Frames: "C" and "O" Types

Frames: Bed Constructions

Frames (*Static Behaviour*) Horizontal Milling Machine: *Force Flux*

Frames (*Static Behaviour*)

Horizontal Milling Machine: Forces & Deflections

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p171. © Springer, 2006

COMPUTATION METHODS FOR FRAMES

•THEORY OF ELASTICITY

•EXACT SOLUTIONS

•SIMPLIFIED PROBLEM USING ADEQUATE ASSUMPTIONS

APPROXIMATIONS

•ANALYTICAL METHODS

•NUMERICAL METHODS

•FINITE DIFFERENCES

•FINITE ELEMENTS

Frames (Static Behaviour)

A Finite Element Model of a Milling Machine

•TIME CHANGING PROCESS FORCES•MOVING MACHINE MASSES•FLOOR MOTIONS

THEY RESULT IN MACHINE VIBRATIONS •INDEPENDENTLY EXCITED •SELF-EXCITED

DYNAMIC BEHAVIOUR OF MACHINE TOOLS:
•MASS DISTRIBUTION
•STIFFNESS
•DAMPING

System Analysis

GUIDEWAYS AND BEARINGS

CLASSIFICATION ACCORDING TO: TYPE OF MOVEMENT/DEGREES OF FREEDOM •LINEAR ROTARY COMBINATION OF ABOVE CONTACT CONDITIONS/LUBRICATION •HYDRODYNAMIC •HYDROSTATIC AERODYNAMIC •AEROSTATIC •ROLLING

Guideways & Bearings

Degrees of Freedom

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p193. © Springer, 2006

Guideways & Bearings

Type Examples

CONTROL FUNTIONS OF MACHINE TOOLS

AUTOMATION STAGES

DRIVING FORCE

- **HIGHER PRODUCTIVITY** (faster and easier manufacture of increasing quantities)
- HIGHER LABOUR COST (higher wages/less working hours)
- **BETTER WORK CONTENT** (jobs with greater interest and satisfaction

•HIGHER FLEXIBILITY (one-off / small quantity production)

Type of Control	Problem	Tool Action	Fig 3.119 Application
Point -to-point or positional control	y ₂ y ₁ y ₁	No cutting during table movement	Drilling, spot welding
Line -motion control (simple)	y_2 y_1 x_1 x_2 x_3 No interpolator	Cutting during table movement	Parallel turning, milling
Line -motion control with linear interpolation	y_2 y_1 y_1 y_1 x_1 x_1 y_2 y_2 y_2 y_1 y_1 x_1 x_2 With gear engagement or linear interpolator	Cutting during table movement	Turning, Milling
Continuous path or contour control	y_{2} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} x_{1} y_{2} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{1} y_{2} y_{2} y_{1} y_{2} y_{2	Cutting during table movement	Turning, Milling, Flame cutting (any contour)

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p227. © Springer, 2006

The Process Planning Function

Establish the sequence of the manufacturing processes to be used in order to convert a part from an initial to a final form. Sequence incorporates:

process description

process parameters

•equipment and tool selection

Process Planning

Computer Aided Process Planning

Variant: Uses library retrieval procedures to find standard plans for similar components

Generative: Plans generated automatically for new components without reference to existing plans

Variant Process Planning Stages

Preparatory Stage:

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p287. © Springer, 2006

Variant Process Planning Stages

Production Stage:

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, p287. © Springer, 2006

Funding

- This educational material has been developed in the teaching duties of the respective educator.
- The project **«Open Academic Courses at the University of Patras**» has funded only the reformation of the education material.
- The Project is implemented within the context of the Operational Programme "Education and Lifelong Learning" (EdLL) and is co-funded by the European Union (European Social Fund) and national resources.

Reference Note

Copyright University of Patras, School of Engineering, Dept. of Mechanical Engineering & Aeronautics, Prof. George Chryssolouris. «Manufacturing Processes I. "Machine Tools -Process Planning"». Version: 1. Patras 2015. Available at: https://eclass.upatras.gr/courses/MECH1111/.

License Note

This material is provided under the license terms of Creative Commons Attribution-NonCommercial-NonDerivatives (CC BY-NC-ND 4.0) [1] or newer, International Version. Works of Third Parties (photographs, diagrams etc) are excluded from this license and referenced in the respective "Third Parties' works Note"

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

As NonComercial is denoted the use that:

- does not involve directed or indirect profit for the use of this content, for the distributor and the licensee
- does not involve any financial transaction as a prerequisite of the using or accessing this content
- does not offer to the distributor and licensee indirect financial profit (e.g. ads) from websites

The owner can provide the licensee a separate license for commercial use upon request

Notes Preservation

Any reproduction or modification of this material must include:

- the Reference Note
- the License Note
- the Notes Preservation statement
- the Third Parties' Works Note (if exists)

as well as the accompanying hyperlinks.

