
Stochastic Mechanics 

Random Media 

Signal Processing 

and Image Synthesis 

Mathematical Economics 

Stochastic Optimization 

and Finance 

Stochastic Control 

Applications of 
Mathematics 
Stochastic Modelling 
and Applied Probability 

44 
Edited by 1. Karatzas 

M. Yor 

Advisory Board P. Bremaud 
E. Carlen 
w. Fleming 
D. Geman 
G. Grimmett 
G. Papanicolaou 
J. Scheinkman 

Springer Science+Business Media, LLC 



Applications of Mathematics 

1 FleminglRishel, Deterministic and Stochastic Optimal Control (1975) 
2 Marchuk, Methods of Numerical Mathematics, Second Ed. (1982) 
3 Balakrishnan, Applied Functional Analysis, Second Ed. (1981) 
4 Borovkov, Stochastic Processes in Queueing Theory (1976) 
5 Uptser/Shiryayev, Statistics of Random Processes I: General Theory (1977) 
6 Uptser/Shiryayev, Statistics of Random Processes II: Applications (1978) 
7 Vorob'ev, Game Theory: Lectures for Economists and Systems Scientists 

(1977) 
8 Shiryayev, Optimal Stopping Rules (1978) 
9 IbragimovlRozanov, Gaussian Random Processes (1978) 
10 Wonham, Linear Multivarlable Control: A Geometric Approach, Third Ed. 

(1985) 
11 Hida, Brownian Motion (1980) 
12 Hestenes, Conjugate Direction Methods in Optimization (1980) 
13 Kallianpur, Stochastic Filtering Theory (1980) 
14 Krylov, Controlled Diffusion Processes (1980) 
15 Prabhu, Stochastic Storage Processes: Queues, Insurance Risk, Dams, 

and Data Communication, Second Ed. (1998) 
16 lbragimov/Has'minskii, Statistical Estimation: Asymptotic Theory (1981) 
17 Cesari, Optimization: Theory and Applications (1982) 
18 Elliott, Stochastic Calculus and Applications (1982) 
19 MarchuklShaidourov, Difference Methods and Their Extrapolations (1983) 
20 Hijab, Stabilization of Control Systems (1986) 
21 Protter, Stochastic Integration and Differential Equations (1990) 
22 Benveniste/MetivierlPriouret, Adaptive Algorithms and Stochastic 

Approximations (1990) 
23 KloedenIPlaten, Numerical Solution of Stochastic Differential Equations 

(1992) 
24 Kushner/Dupuis, Numerical Methods for Stochastic Control Problems 

in Continuous Time (1992) 
25 Fleming/Soner, Controlled Markov Processes and Viscosity Solutions 

(1993) 
26 BaccellilBremaud, Elements of Queueing Theory (1994) 
27 Winkler, Image Analysis, Random Fields, and Dynamic Monte Carlo 

Methods: An Introduction to Mathematical Aspects (1994) 
28 Kalpazidou, Cycle Representations of Markov Processes (1995) 
29 Elliott! AggounIMoore, Hidden Markov Models: Estimation and Control 

(1995) 
30 Hemfuldez-LermalLasserre, Discrete· Time Markov Control Processes: 

Basic Optimality Criteria (1996) 
31 Devroye/GyorfilLugosi, A Probabilistic Theory of Pattern Recognition (1996) 
32 Maitra/Sudderth, Discrete Gambling and Stochastic Games (1996) 

(continued after index) 



Richard Serfozo 

Introduction to 
Stochastic Networks 

, Springer 



Richard Serfozo 
School of Industrial and Systems Engineering 
Georgia Institute of Technology 
Atlanta, GA 30233 
USA 
rserfozo@isye.gatech.edu 

Managing Editors 

1. Karatzas 
Departments of Mathematics and Statistics 
Columbia University 
New York, NY 10027, USA 

M. Yor 
CNRS, Laboratoire de Probabilites 
Universite Pierre et Marie Curie 
4, Place Jussieu, Tour 56 
F-75252 Paris Cedex 05, France 

With 9 figures. 

Mathematics Subject Classification (1991): 60K25, 60G55, 90B22 

Library of Congress Cataloging-in-Publication Data 
Serfozo, Richard. 
Introduction to stochastic networks I Richard Serfozo. 

p. cm. - (AppIications of mathematics ; 44) 
IncIudes bibliographicai references and index. 
ISBN 978-1-4612-7160-4 ISBN 978-1-4612-1482-3 (eBook) 
DOI 10.1007/978-1-4612-1482-3 
1. Queuing theory. 2. Stochastic analysis. I. Title. 

n. Series 
QA274.8.S47 1999 
5l9.8'2--dc21 98-17363 

Printed on acid-free paper. 

© 1999 Springer Science+Business Media New York 
Originally published by Springer-Verlag New York lnc. in 1999 
Softcover reprint ofthe hardcover Ist edition 1999 
Ali rights reserved. Ihis work may not be translated or copied in whole or in part without the 
written permission ofthe publisher (Springer Science+Business Media New York), except 
for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any 
form of information storage and retrieval, electronic adaptation, computer software, or by similar 
or dis similar methodology now known or hereafter developed is forbidden. 
Ihe use of general descriptive names, trade names, trademarks, etc., in this publication, even ifthe 
former are not especially identified, is not to be taken as a sign that such names, as understood by 
the Irade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. 

Production managed by Robert Bruni; manufacturing supervised by Jeffrey Taub. 
Camera-ready copy prepared from the author' s 1F.JX files. 

9 8 7 6 5 432 1 

ISBN 978-1-4612-7160-4 SPIN 10712659 



To Joan and Kip 



Preface 

The term stochastic network has several meanings. Here it means a system in 
which customers move among stations where they receive services; there may be 
queueing for services, and customer routing and service times may be random. 
Such a system is often called a queueing network. 

Typical examples of stochastic networks are as follows: 
Computer and Telecommunications Networks: Data packets, read/write transac
tions, files, or telephone calls move among computers, buffers, operators, or 
switching stations. 
The Internet: Queries, e-mail, advertisements, purchase orders, news, and zillions 
of other e-messages move among host computers, pes, people, and mail-order 
stores. 
Manufacturing Networks: Parts, orders, or material move among work stations, 
inspection points, automatically-guided vehicles, or storage areas. 
Equipment Maintenance Networks: Parts or subsystems move among usage sites 
and repair facilities. 
Logistics and Supply-Chain Networks: Parts, material, personnel, trucks, or equip
ment move among sources, storage depots, and production facilities. 
Parallel Simulation and Distributed Processing Systems: Messages, data packets 
and signals move among buffers and processors. 
Stochastic networks also arise in many other areas such as in biology, physics, and 
economics. 

Issues concerning the operation of a stochastic network include the following: 
Where are its bottlenecks or major delays? How does one network design com
pare with another? What are good rules for operating the network (e.g., customer 
priorities or routings)? What is a least-cost network (e.g., numbers of machines, 
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tools, or workers). Examples of performance objectives of a network are as fol
lows. The probability of a busy signal in a telecommunications network should be 
less than one percent. The expected waiting times in a computer system should 
be less than certain values. The probability of meeting manufacturing deadlines 
should be above ninety percent. 

To address such issues requires an understanding of the behavior of the network 
in terms of the equilibrium (or stationary) probability distribution of the numbers 
of units at the nodes. These distributions are used to evaluate a variety of perfor
mance measures such as throughputs on arcs and at nodes, expected costs, and 
percentage of time a node is overloaded. The equilibrium distribution is a basic 
ingredient for constructing objective functions or constraints used in mathemati
cal programming algorithms to select optimal network designs and protocols. The 
quality of a network is also determined by the duration of travel and sojourn times 
in it, such as the time for a unit to travel from one sector to another or the amount 
of time it takes for a unit to visit a certain set of nodes. Equilibrium distributions 
are used in describing the means or distributions of such travel times. 

This book describes a number of stochastic network models that have been 
developed over the last thirty years. The focus is on Markov process models, whose 
equilibrium distributions and performance parameters are analytically tractable via 
closed form expressions or computational algorithms. The network models can be 
categorized as follows: 
• Classical Jackson and multiclass BCMP and Kelly networks. The development 
of these networks in Chapters 1 and 3 is under a unified framework of a Whittle 
network. 
• Reversible networks. A self-contained description of these networks and the 
related theory of reversible Markov processes is in Chapter 2. 
• Networks with string transitions. These are extensions of Whittle networks to 
batch movements and more intricate transitions involving strings of events; see 
Chapter 7. 
• Networks with product form stationary distributions. Chapter 8 characterizes 
these networks, which include quasi-reversible networks. 
• Spatial queueing systems in which customers move in a general space where they 
obtain services (e.g., mobile phones moving in a region). The space-time Poisson 
models in Chapter 9 are generalizations of the classical M / G / 00 infinite-server 
system; they are characterized via random transformations of Poisson processes. 
The models in Chapter 10 are spatial analogues of Whittle networks. 

In addition to describing network models, a major aim of this book is to provide 
introductions to Palm probabilities for stationary systems and to Little laws for 
queues and utility processes. These topics are the subjects of Chapters 4-6, which 
also address network issues concerning customer travel times, flows between nodes 
and network sojourn times. To emphasize its simplicity and usefulness, the sub
theory of Palm probabilities for stationary Markov processes comes before the 
theory for general stationary processes. Palm probabilities for Markov processes 
are simply ratios of rates of certain events, where the rates are obtained by an ex
tended Levy formula. The classical Levy formula is for expectations of functionals 
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of Markov process, and the extended formula in Chapter 4 applies to functionals 
that may include information about the entire sample path of the Markov process. 
Chapter 5 gives a rather complete development of Little laws that describe a va
riety of sample path averages of waiting times and other performance parameters 
of queues and general stochastic systems. 

Many properties of networks are represented by point processes. Chapters 4 and 
6 use point processes as a framework for counting events over time, and Chapters 
9 and lOuse point processes to represent customer locations in a region. These 
applications of point processes are self-contained and understandable without a 
knowledge of the theory of point processes. Aside from the last chapter, most of the 
point process material concerns Poisson processes. Chapter 4 presents necessary 
and sufficient conditions for a point process functional of a Markov process to 
be a Poisson process. These conditions establish, for instance, that the departure 
times from a stationary Jackson network form a Poisson process. Another topic in 
Chapter 9 concerns random transformations of Poisson processes (e.g., translations 
and partitions) that result in new Poisson processes. These transformations are 
useful for representing particle movements in space and time. 

The book is intended for engineers, scientists, and system analysts who are 
interested in stochastic network models and related fundamentals of queueing 
theory. My aim was to write a monograph that would be useful as a reference and 
for teaching as well. All or parts of Chapters 1-6 and sections 1-7 in Chapter 9 could 
be used in graduate courses related to network modeling or applied probability. 
The more advanced models discussed in Chapters 7-10 would be suitable for 
seminars. A prerequisite for the first eight chapters is an introduction to stochastic 
processes (not using measure theory) covering Markov chains, Poisson processes, 
and continuous-time Markov processes. Knowledge of measure theory is needed 
for the spatial models discussed in the last two chapters. 

Finally, I would like to express my appreciation to those who helped create and 
perfect this book. First, I thank the taxpayers of this country who have supported the 
NSF, which funded part of my research. I am grateful to Karl Hinderer for inviting 
me to present my initial crude network notes in a short course in Karlsruhe. Many 
thanks go to Bingyi Yang and Xiaotao Huang for doing their Ph.D. research with 
me that resulted in Chapters 7 and 10, respectively. Chapter 8 is based on joint 
work with Xiuli Chao, Masakiyo Miyazawa, and H. Takada. I thank them for the 
insightful wrestling matches with notation we had via numerous e-mail exchanges. 
My last thanks go to Bill Cooper, Christian Rau, and German Riano for their superb 
proofreading, which eliminated many errors. 
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1 
Jackson and Whittle Networks 

This chapter describes the equilibrium behavior of Jackson and Whittle networks. 
In such a network, the numbers of discrete units or customers at the nodes are 
modeled by multidimensional Markov processes. The main results characterize the 
equilibrium distributions ofthe processes. These distributions yield several perfor
mance parameters of the networks including throughput rates, expected customer 
waiting times, and expected busy periods for servers. 

1.1 Preliminaries on Networks and Markov Processes 

In this section, we present the framework we will use for modeling a stochastic 
network as a Markov process. Included is a review of some basics of Markov 
processes. 

We will consider a network that operates as follows. The network consists of 
m nodes, labeled 1, 2, ... , m, where m is finite. Discrete units or customers move 
among the nodes where they are processed or served. We will often use the word 
"unit" instead of customer because it is shorter and has a broader connotation. 
For example, in a computer or telecommunications network, a node might be a 
computer, data file, or switching station; and a unit might be a data packet, message 
(batch of packets), telephone call, or transaction. In a manufacturing network, a 
node might be a work station, storage area, inspection point, source of demands, 
or station for automatically-guided vehicles; and a unit might be a part, group of 
parts, request for a product, or a message. 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999



2 1. Jackson and Whittle Networks 

In our m-node network, randomness may be present in the servicing or rout
ing of the units-it may emanate from the units' characteristics or the nodes' 
structures or a combination of both. The evolution of the network is represented 
by a continuous-time stochastic process {XI : t ::: O} whose states are vectors 
x = (x I, ... , xm) in a finite or infinite state space lE, where x j denotes the number 
of units at node j. Chapters 3 and 8 discuss processes with more general states 
that include information other than the quantities of units at the nodes. 

The network is closed with v units in it if the total number of units Ix I = 
XI + ... + Xm is always equal to v. Then lE = {x : Ixl = v}. Otherwise, the 
network is open-it is open with finite capacity v iflE = {x : 0 ::: Ixl ::: v}, and it 
is open with unlimited capacity iflE = {x : 0::: Ixl < co}. 

Assume that X is a continuous-time Markov jump process (or continuous-time 
Markov chain). Then its probability distribution is determined by its transition 
rates 

q(x, y) == limt- I P{XI = ylXo = x}, y =f. x, 
I~O 

and q(x, x) == O. We adopt the standard convention that the process X is regular 
in the sense that it cannot take an infinite number of jumps in a finite time interval. 
Also, to avoid degeneracies, we assume the process does not have any absorbing 
states. To model an actual network by this process, one must translate the opera
tional features of the nodes and the rules of routing units into a specific transition 
rate function q. We will study several networks in this framework. We call X a 
Markov network process that represents the numbers of units at the nodes of an 
m-node network. 

Since X is a Markov jump process, its sojourn time in any state is exponentially 
distributed. Specifically, whenever X enters a state x, it remains there for a time 
that is exponentially distributed with rate q(x) == Ly q(x, y). Then it jumps to a 
state y with probability p(x, y) == q(x, y)/q(x). These exponential sojourns and 
transitions continue indefinitely. The resulting sequence of states X visits forms a 
Markov chain with transition probabilities p(x, y). 

A standard way of defining the transition rates q(x, y) is to specify the exponen
tial sojourn rates q(x) and probabilities p(x, y) and then determine q by setting 
q(x, y) = q(x)p(x, y). The following example illustrates how this is done for a 
Markov process that may have transitions from a state back to itself. Such situ
ations arise in networks where a unit exiting a node may be instantaneously fed 
back to the same node for another service. 

Example 1.1. Construction ofa Markov Process. Suppose X is a stochastic pro
cess on a countable state space lE such that the sequence of states it visits is a 
Markov chain with transition probabilities p(x, y), where the probability p(x, x) 
of a transition from the state x back to itself may be positive. In addition, whenever 
the process is in state x, the time to the next transition is exponentially distributed 
with rate ).,(x). Now, the sequence of "distinct" states visited by X is clearly a 
Markov chain with transition probabilities p(x, y) = p(x, y)/(l - p(x, x». Also, 
if p(x, x) > 0, the "entire" sojourn time in a state x is the sum of successive expo-
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nential times with rate )..(x) until a transition takes it to a new state with probability 
1 - p(x, x). Consequently, the sojourn time is exponentially distributed with rate 
q(x) = )..(x)(1 - p(x, x» (see Exercise 1). Then by the discussion above, X is a 
Markov process with transition rates q(x, y) = q(x)p(x, y) = )..(x)p(x, y). 0 

Much of our focus will be on the network process X with single-unit movements 
described as follows. Envision the units as moving within the set of nodes M = 
{I, ... , m} if the network is closed or M = {O, 1, ... , m} if the network is open. 
Here node 0 denotes the outside of the network. This node 0 is only a source 
or sink; the network state x does not record any population size for it. A typical 
transition of X will be triggered by the movement of one unit from some node j 
to some node k in M. Specifically, when X is in state x and a unit moves from j 
to k, then the next state of the network is TjkX, which is the vector x with one less 
unit at node j and one more unit at node k. For example T30X is the vector x with 
X3 replaced by X3 - 1. We will sometimes write TjkX = x - e j + eb where eo = 0 
and e j is the unit vector with 1 in component j and 0 elsewhere, for j = 1, ... , m. 

The exponential sojourn time in state x is usually formulated as follows. For 
each pair j, k in M, one assumes that the time to the next "potential" movement of a 
unit from j to k, or potential transition from x to TjkX is exponentially distributed 
with rate q(x, TjkX), and these times are independent. The form of q(x, TjkX) 
depends on the network being modeled. Then the sojourn time in state x, being 
the minimum of these independent exponential times, is also exponential with rate 
q(x) = Lj Lk q(x, TjkX). Such sums are for all j and k in the node set M unless 
specified otherwise. Moreover, q(x, TjkX)/q(X) is the probability that the jump 
is triggered by the j -to-k movement. This interpretation of the transition rates in 
terms of exponential times to potential movements is often used as a guide for 
formulating the rate function q for particular networks. 

Later chapters cover networks with more general concurrent or multi-unit move
ments in which a typical transition is from x to x + a - d, where a = (a J. ... , am) 
and d = (dl, ... , dm) denote the numbers of arrivals to and departures from the 
respective nodes. In these instances, the natural assumption is that, whenever the 
network is in state x, the time to the next potential transition to state x - d + a is 
exponentially distributed with rateq(x, x -d +a) and these times are independent 
for the possible vectors d and a. 

To describe the equilibrium behavior of Markov processes, we will use the fol
lowing notation. Assume that {Xt : t ~ O} is a Markov jump process as described 
above on a countable state space lE with transition rates q(x, y). A positive measure 
rr on lE is an invariant measure for X (or for q) if it satisfies the balance equations 

rr(x) L q(x, y) = L rr(y)q(y, x), x E E. (1.1) 
y y 

The measure may be infinite and the process may be reducible or null recurrent. If 
X is irreducible and positive recurrent, then there is a unique positive probability 
measure rr that satisfies the balance equations. In this case, X is called an ergodic 
process, and rr is called the stationary or equilibrium distribution of X. For sim-
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plicity, we will often present an invariant measure for an ergodic process and not 
take the extra step to normalize the measure to be a stationary distribution. 

When the process X is ergodic, its stationary distribution 7r is also the limiting 
distribution in the sense that 

lim PIX, = x} = 7r(x). 
'--+00 

A stochastic process is stationary if its finite-dimensional distributions are invariant 
under any shift in time. Because X is a Markov process, a necessary and sufficient 
condition for it to be stationary (or in equilibrium) is that PIX, = x} = 7r(x) for 
each x and t. 

A variety of costs and performance parameters of Markov processes are ex
pressible in terms of the following functionals. Suppose that a value (e.g., a cost 
or utility) is incurred continuously at the rate of f(x) per unit time whenever the 
process X is in state x. Then the total value incurred in the time interval (0, t] is 

l' f(Xs)ds. 

One may also be interested in values associated with the transitions of X. Suppose 
h(x, y) is a value associated with each transition of X from x to y. Then the total 
value for the transitions in (0, t] is 

Lh(X,._I' X,.)l(t'n E (0, t]), 
n 

where ° == t'o < t'l < t'2 ••• are the transition times of X. Note that X'. is the 
value of X at the nth transition. Here, l(statement) denotes the indicator function 
that is 1 or ° depending on whether the "statement" is true or false. 

The ergodic theory for Markov processes justifies that the limiting averages of 
the preceding functionals exist. Furthermore, these limits are expected values of 
the functionals when the process X is stationary. These properties are summarized 
in the following result. We say that a sum Ln an exists (or is absolutely convergent) 
if Ln lanl < 00. 

Theorem 1.2. (Law of Large Numbers) If the Markov process X is ergodic with 
stationary distribution 7r, then with probability one (w.p.1) 

lim rl r f(Xs)ds = L7r(x)f(x), 
'--+00 10 x 

,~~ rl L h(X,._" X,.)l(t'n E (0, t]) = L 7r(x) L q(x, y)h(x, y), 
n x y 

provided the sums exist. These limit statements also hold when the randomfunctions 
are replaced with their expectations. Furthermore, if X is stationary, then the 
preceding limits are the respective expected values 

E 11 f(Xs)ds, E Lh(X,._I' X,.,)l(t'n E (0, 1]). 
n 
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This theorem yields the following properties. First, the average number of 
transitions of X from a set A to a set B per unit time is 

Jrq(A, B) == LJr(x) Lq(x, y) 
XEA yEB 

= I~~ t- I L I(X,,,_, E A, X,,, E B, 'fn E (0, tl). 
n 

This is also the expected number of such transitions in a unit time interval when 
X is stationary. The quantity Jrq(A, B) is sometimes called the probability flux 
between A and B. In particular, Jrq(x, y) is the average or equilibrium rate of 
transitions from x to y (the q(x, y) is the "infinitesimal" transition rate). In light 
of this, the total balance equations (1.1) are Jrq(x, IE) = Jrq(lE, x), x E IE. That is, 
in equilibrium, the average number of transitions per unit time from x to all the 
other states equals the average number of transitions from the other states into x. 
Or, loosely speaking, the rate of flow out of x equals the rate of flow into x. 

More generally, summing the total balance equations on x E A yields 

Jrq(A, IE) = Jrq(lE, A). 

Also, subtracting Jrq(A, A) from this equation yields 

Jrq(A, AC ) = Jrq(AC , A), (1.2) 

where A C denotes the complement of A. This says the rate of flow out of A equals 
the rate of flow into A, which is what one would anticipate for a stable system. 

The rate of flow into A is related to the number of entrances of X into A in the 
time interval (0, t], which is 

NA(t) = L I(X,,,_, E AC , X,,, E A, 'fn E (0, tl). 
n 

The rate at which the process X enters A is defined by 

A(A) == lim rl NA(t) w.p.I. 
1--+00 

Then it follows that 

)"(A) = Jrq(AC , A) = L Jr(x) Lq(x, y). 
xEAc yEA 

This rate is also related to the time Tn of the nth entrance of X into ,A.. Namely, by 
the law of large numbers for point processes (see Theorem 5.8), 

lim n-ITn = A(A)-I w.p.I. (1.3) 
n--+oo 

Another quantity of interest for the Markov process X is the average sojourn or 
waiting time in A defined by 

n 

W(A) = lim n- I "Wi(A) w.p.I, 
n--+oo ~ 

i=1 

where Wi(A) is the time X spends in A on its ith visit. 
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Theorem 1.3. If the Markov process X is ergodic with stationary distribution 1(, 

then the limit W(A) exists and 

W(A) = )'(A)-l L 1(x). 
XEA 

If in addition X is stationary, then W(A) is also the expected waiting time in A 
with respect to the Palm probability that X enters A at time O. 

PROOF. The first assertion follows since applications of (1.3) and Theorem 1.2 
yield 

1T,'+1 
W(A) = lim n- 1Tn+1 lim Tn-~\ I(Xt E A)dt 

n---+oo n---+oo 0 

= )'(A)-l L1(x) w.p.1. 
XEA 

The second assertion follows from Theorem 4.31 in Chapter 4, where Palm prob
abilities are first introduced. The second assertion is also a special case of the 
inversion formula for Palm probabilities in Corollary 6.16. 0 

The following notion of reversibility plays an important role in network 
modeling. 

Definition 1.4. The Markov process X is reversible if there is a positive measure 
1( on IE that satisfies the detailed balance equations 

1(x)q(x, y) = 1(y)q(y, x), x, y E K (1.4) 

The 1( is an invariant measure since it also satisfies (1.1), which are the detailed 
balance equations summed over y. We also say that q is reversible with respect to 
1(. 

By the law oflarge numbers for Markov processes, the detailed balance equation 
(1.4) says that, for an ergodic process, the average number of transitions of the 
process from state x to state y is equal to the average number of transitions in the 
reverse direction from y to x. And if the process is stationary, then the expected 
number of transitions x to y is equal to the expected number of y to x transitions. 

A distinguishing feature of reversible transition rates is that they have the 
following simple, canonical form. 

Theorem 1.5. The transition rate q is reversible if and only if it is of the form 

q(x, y) = y(x, Y)/1(x), x =1= y E IE, (1.5) 

for some positive function 1( on IE and some nonnegative function y on IE x IE such 
that y(x, y) = y(y, x), x, y E KIn this case, 1( is an invariant measure for q. 

PROOF. If q is reversible with respect to 1(, then (1.5) is satisfied with y(x, y) = 
1(x)q(x, y). Conversely, any transition function of the form (1.5) satisfies the 
detailed balance equations, and hence q is reversible. 0 
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The canonical representation (1.5) is useful as a quick check for determin
ing whether a process is reversible: just find a symmetric function y such that 
q(x, y)/y(x, y) is independent of y. The preceding representation is the only 
property of reversibility needed in this chapter. We will resume the discussion 
of reversible Markov processes and reversible networks in the next chapter. 

1.2 Tandem Network 

This section gives a glimpse of what lies ahead. It describes the equilibrium 
behavior of a tandem network, which is an example of an open Jackson network. 

Consider a network consisting of m nodes in series as shown in Figure 1.1 below. 
Units enter node 1 according to a Poisson process with intensity A. Each unit is 
served at nodes 1, ... , m in that order, and then it exits the system. Each node 
is a single server that serves the units one at a time on a first-come, first-served 
basis, and a unit's service time at node j is exponentially distributed with rate IL j' 
independent of the arrival process and other services. When a unit arrives to a node 
and the server is busy, the unit joins the queue at that node to wait for its service. 

The state of the network is represented by a vector x = (Xl, ... ,xm) in the set 
IE == {x : Ixi < oo}, where Xj denotes the number of units at node j. Let XI 
denote the state of the network at time t. The process X = {XI: t ~ O} is an open, 
unlimited-capacity network process that evolves as follows. Upon entering a state 
x, it remains there until a new unit arrives to node 1, or there is a service completion 
at one of the nodes. In other words, typical transitions of the process are from x to 
Tolx = X + el (an arrival into node 1), or from x to Tj,j+IX = X - ej + ej+l (a 
service completion at node j), provided Xj ~ 1. Here m + 1 == O. The time until 
such a transition is exponentially distributed, and so X is a Markov process. Its 
transition rates are 

q(X, TOlX) = A, 

and otherwise the rates are O. 
The balance equations that an invariant measure 1f must satisfy are 

m m+l 

1f(x) Lq(x, Tj,j+IX) = L1f(Tj,j-IX)q(Tj,j-IX,x)l(xj ~ 1), x E IE. 
j=O j=l 

Since each node j resembles an M / M /1 queueing process with input rate A and 
service rate IL j' one might conjecture that the stationary distribution of the process 

FIGURE 1.1. Tandem Network 
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is a product of stationary distributions of M I Mil systems of the form 

m 

1l'(x) = n(1 -Pj)p?, 
j=l 

where Pj == }..,IJ.Lj' We assume Pj < 1 for each j. 
To prove this conjecture, note that from the definition of q and m + 1 = 0, it 

follows that 1l' defined above satisfies 

1l'(X)q(X, TOIX) = 1l'(x)}.., = 1l'(Tomx)q(Tomx, x), 

1l'(x)q(x, Tj,j+lX) = 1l'(x)J.Lj l(xj ~ 1) 

= 1l'(Tj ,j_lX)q(Tj ,j_lX, x)l(xj ~ 1), 1::: j ::: m. 

Summing these equations, we see that 1l' satisfies the balance equations above. The 
preceding are partial balance equations that say the average number of movements 
of units per unit time from node j to node j + 1 that takes the network out of state 
x is equal to the average number of movements from j - 1 to j that takes the 
network into state x. 

For the rest of this section, suppose the tandem network process X is stationary. 
Because its stationary distribution 1l' has a product form, the numbers of units at the 
nodes at any fixed time t are independent, and the number of units at each node j has 
a geometric distribution (1- Pj)p? ,just as if it were an MI Mil queueing system 
operating in isolation. A typical item of interest is the probability distribution of 
the total number of units in the network. This distribution is P { I X,I = n} = 
Llxl=n 1l'(x). From a result we will prove later (Proposition 1.31), it follows that 

m m 

P{IX,I = n} = n(1- Pj) LP;+m-l n(pi - pt)-l, 
j=l i=l ti-i 

when the P j'S are distinct. For nondistinct P j 's, Proposition 1.32 applies. 
This distribution is useful for optimization problems such as the following. 

Suppose there is a cost C j per unit time of having a service rate J.L j at node j. Then 
the problem is 

m 

min L CjJ.Lj 
Jil,···,Jim j=l 

s.t. P{IX,I > b} ::: p. 

Here b is a desired upper bound on the total system quantity, and p is a probability 
representing the quality of service. 

A related quantity for the system is the average time W(A) the system spends 
in the set A = {x : Ixi > b}. The average rate at which X enters this set is 

}"'(A) = L 1l'(x)q(x, TOIX) = }"'P{lX,1 = b}. 
Ixl=b 
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Then by Theorem 1.3, 

W(A) = iT(A)/)"(A) = P{lXtl > b} 
AP{lXtl = b} 

Next, consider the point process Nj(t) that denotes the number of units that 
move between node j and node j + 1 in time t. The rate of flow between j and 
j + 1 is 

ENj (1) = LiT(x)q(x, Tj,j+lx) = A. 
x 

By a result we prove later (Theorem 4.22), it follows that Nj is a Poisson process 
with intensity A. A key ingredient for this is that each unit can make at most one 
visit to node j. 

For a unit that enters the system in equilibrium at time 0, let Wj denote the 
time the unit spends in node j. We will show in Theorem 4.43 that Wt. ... , Wm 
are independent exponential random variables and Wj has a rate JL j - A. These 
exponential waiting times are with respect to the Palm probability that a unit enters 
the system at time O. We discuss Palm probabilities in Chapters 4 and 5. This result 
is useful for addressing issues concerning the total time WI + ... + W m a unit spends 
in the network. 

1.3 Definitions of Jackson and Whittle Processes 

In this section, we define Jackson and Whittle processes. They are Markov pro
cesses that represent networks in which units move among the nodes according to 
independent Markovian routing and their service rates depend on the congestion. 
In a Jackson network, the service rate at each node depends only on the number 
of units at that node, whereas in a Whittle network, the service rate at each node 
is a function of the numbers of units at all the nodes. 

Throughout this section, we assume that {Xt : t ~ O} is a stochastic process that 
represents the numbers of units at the nodes in an m-node network with single
unit movements. It is convenient to consider closed and open networks at the same 
time. Accordingly, assume the network may be anyone of the following types: 
• Closed network with v units and state space lE = {x : Ixl = v}. 
• Open network with unlimited capacity and state space lE = {x : Ixl < oo}. 
• Open network with finite capacity v and state space lE = {x : Ixl ::: v}. 
Think of the units moving in the node set 

/
{1, ... ,m} 

M= 
- {O, 1, ... , m} 

if the network is closed 

if the network is open. 

In Chapter 3, we discuss how our results apply to networks with multiple types of 
units. 

The major assumption we make is that whenever the network is in state x, the 
time to the next movement of a single unit from node j to node k (Le., a transition 
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from X to TjkX = X - ej + ek) is exponentially distributed with rate AjktPj(X). The 
Ajk are nonnegative with Ajj = 0, and tPj(x) is positive except that tPj(x) = 0 if 
x j = 0 and j =f:. O. This assumption of exponential times to movements is satisfied 
under the following conditions: 
(i) Whenever the network is in state x, the time to the next departure from node j 
is exponentially distributed with rate tPj(x). 
(ii) Each departure from j is routed to node k with probability Ajko independently 
of everything else. 

For our development, we follow the standard convention that Ajk may either 
be a routing probability or a nonnegative intensity of selecting the nodes j and k 
(like intensities in birth-death processes) and call it the j-to-k routing intensity 
or routing rate. Think of Ajk as the transition rates of a continuous-time Markov 
jump process that depicts the movement of one unit in the node set M -this is 
an artificial routing process separate from the network process. With no loss in 
generality, we assume the routing process does not have transient states and it need 
not be irreducible (further comments on this are in the next section). 

The tPj(x) is the service rate or departure intensity at node j when the net
work state is x. If the network is open, units enter it at node k according to a 
system-dependent Poisson process with intensity AOk4>o(X). The 4>o(x) is the "ar
rival intensity" from the outside. When 4>0 ( .) == 1, the arrivals from outside into the 
respective nodes are independent Poisson processes with intensities AOI, •.• , AOm 

(a zero intensity for a node means it does not have arrivals from outside). With a 
slight abuse of notation, we refer to Ajk and tP/x) individually as rates or intensi
ties, even though they are only parts of the compound rate A jktP j (x). Also, we call 
them "routing" and "service" rates, but they may have other interpretations. 

Under the preceding assumptions, X is a Markov network process with single
unit movements and its transition rates are 

if y = TjkX E lE for some j =f:. k in M 

otherwise. 
(1.6) 

We sometimes express these transition rates compactly as q(x, TjkX) = AjktPj(X), 
where it is understood that TjkX is in IE. 

In addition to the assumption on exponential times to movements, we assume 
the service intensities are balanced as follows. 

Definition 1.6. The service intensities tP j are <f)-balanced if <f) is a positive function 
on lE such that, for each x E lE and j, k E M with TjkX E lE, 

This is a natural condition on the service intensities under which the process has a 
tractable stationary distribution. More insights on <f)-balance are in Section 1.13. 
Here is an important example. 

Example 1.7. Independently Operating Nodes. Consider the case in which each 
tPj(x) is a function tPj(Xj) of only xj-there are no additional restrictions on the 
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fonn of these functions. We sometimes refer to these functions as being node
dependent service rates. An easy check shows that these rates are balanced by 

Xi 

Cl>(x) = n n <pj(n)-l. 
jEMn=1 

Here and below, we use the convention that n~=l an = 1 if X = o. o 

This completes the description of the network processes we will study. We name 
them as follows. 

Definition 1.S. The Markov network process X with transition rates (1.6) and 
Cl>-balanced service intensities is a Whittle process. It is a Jackson process if the 
service intensity <P j (x) is a function <P j (x j) only of x j' for each j = 1, ... , m, and 
ifJoO == 1 when the network is open. 

Jackson and Whittle network processes are prominent because their stationary 
distributions have closed-fonn expressions. It is convenient to study these pro
cesses together since they have many features in common. Note that in a Jackson 
process, the service intensities <Pj(Xj) are "node-dependent" (a function of Xj), 
indicative of independently operating nodes. In a Whittle process, however, the ser
vice intensities are "system-dependent" (a function of x), indicative of dependently 
operating nodes. Jackson processes were named after Jackson who introduced 
them in 1957. Special cases of Whittle processes have been studied, but not under 
this name. We introduce the name Whittle processes to recognize his major con
tributions to the understanding of networks with system-dependent transitions. 

Throughout the rest of this chapter, we will assume that X is either a Jackson 
process or a Whittle process as defined above. We will make it clear when results 
apply specifically to a Jackson process. 

The following are some observations about the sample paths, services and rout
ings in the Whittle process X. Because it is a Markov process, each of its sojourn 
times in state x is exponentially distributed with rate 

LLq(x, Tjkx) = L<Pj(x) LAjk. 
j k j k 

Also, when the network is in state x, the time until a "potential" departure from 
node j (the minimum of the departures times to nodes k "I j) is exponentially 
distributed with rate <Pj(x) Lk Ajk. This follows because the minimum of inde
pendent exponential variables is also exponential with rate being the sum of the 
rates of the variables. Upon ending a sojourn in state x, the process jumps to state 
TjkX E lE with probability 

Pjk=q(x,Tjkx)/Lq(x,Tjlx)=Ajk!LAjt, j,kEM. (1.7) 
l t 

Note that this probability is independent of <Pj(x) and the state x. The {pjd is a 
Markov chain matrix with P jj = O. We refer to P jk as the routing probabilities of 
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X. The pjk is the conditional probability that a unit moves from j to k given that 
it does move out of j. Since expression (1.7) is independent of x, one can view 
the units departing from node j as being routed independently and identically 
according to the probabilities Pjko k E M. 

The convention A jj = 0 does not rule out the possibility that a unit exiting node 
j may be fed back to j for another service. Such feedbacks are modeled as follows. 

Example 1.9. Networks with Feedbacks at Nodes. Consider the Whittle process X 
under the assumption that, whenever it is in state x, the time to the next departure 
from node j is exponentially distributed with rate ~ j (x). But now, assume that a unit 
departing node j enters node k with probability Pjko independently of everything 
else, where the probability P jj of a feedback may be positive. Then it follows, from 
the construction of Markov processes with feedbacks described in the last section, 
that the process X is a Whittle process with transition rates q(x, TjkX) = Pjk~j(X). 
In this case, a transition from x to TjkX occurs with probability P jko and the 
exponential sojourn time in state x has the rate Lj ~j(x)(1 - Pjj). 0 

In a transition from x to TjkX, we refer to a "single unit" moving from j to 
k. However, more than one unit may actually move in the transition, as long as 
the node populations before and after the transition are x and TjkX, respectively. 
For instance, in a manufacturing network, a part exiting a certain node j may be 
considered as a completed part that actually exits the network and triggers another 
unit outside the network to take its place and enter node k. 

1.4 Properties of Service and Routing Rates 

This section gives more insight into service intensities. It also shows how the 
routing rates determine the irreducibility of Jackson and Whittle processes. 

The service intensities of a Jackson or Whittle network have various inter
pretations. The following are standard examples of node-based intensities; more 
intricate system-dependent intensities are discussed later. Viewing the node
dependent ~j(Xj)'s as relative service intensities, we say that node j consists ois 
exponential servers with rate J,L j if ~j(x j) = J,L j min{x j. s}, Xj ::: 1. This typically 
represents the case in which there are s independent servers, I ~ s ~ 00, and 
their service times (or the service times required by the units) are independent and 
exponentially distributed with rate J,L j. This node therefore operates independently 
of the other nodes in that its rate does not depend on Xko for k =I- j. A number of 
service disciplines are allowable since the units are indistinguishable (e.g., first
come, first-served, service in random or arbitrary order, or last-come-Iast-served). 
The case ~j(Xj) = J,LjXj (when s = 00) implies that node j is simply a delay 
point for each unit, and each delay is independent of everything else. Such a delay 
might be a time for a self-processing operation (e.g., a think time, maturation time, 
storage period, or self-maintenance time). 

Another interpretation of ~j is that it represents a processor-sharing scheme 
in which units are processed as follows. At any instant when x j units are present, 
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the time to the next "potential" departure of the ith unit there is exponentially 
distributed with rate J..Li(Xj) > 0 such that L;~I J..Li(Xj) = rPj(Xj)' That is, node j 
works on the ith unit with intensity or rate J..Li(Xj), and all the units receive service 
simultaneously. This is egalitarian processor-sharing when J..Li (x j) = rP j (x j) / x j: 
each unit gets the same share of the rP j (x j). Regardless of the particular processing 
rule, the total departure intensity is simply rP j (x j). Keep in mind that a processor
sharing intensity function rP j can have any form. For example, rP j (x j) = J..L j can 
be a processor-sharing intensity even though it can also represent a single server 
with a first-come, first-served discipline. 

The following result is a criterion for the network process X to be irreducible. 
Recall that the routing process of X is a Markov process with transition rates Ajk. 
The sequence of states this routing process visits forms a Markov chain, whose 
transition probabilities are the routing probabilities Pjk = Ajk/ Lk' Ajk'. 

Proposition 1.10. The Jackson or Whittle process X is irreducible if and only if 
its routing process is irreducible. 

PROOF. First, assume X is irreducible. To prove the routing process is irreducible, 
it suffices to show that, for any fixed j =J. k in M, there exist j I, ... , h in M such 
that 

(1.8) 

Choose x and i in IE such that x j and i k are positive. The irreducibility of X 
ensures that there exist jl, ... , h in M such that the states 

(1.9) 

form a feasible path from x to i, and so 

q(x, XI)q(XI, x 2) ... q(xl, i) > O. (1.10) 

This selection of states first chooses jl and h such that q(x, Xl) and q(Xl, i) are 
positive, and then chooses x2, ... , Xl-I such that x I, ... , Xl is a feasible path from 
x I to Xl. Since the rP j 's implicit in (1. 10) must be positive, then (1.1 0) yields (1.8). 

Now, suppose the routing process is irreducible. Fix any x =J. i in IE. Choose 
j =J. k such that x j and i k are positive, and then choose j I, ... , h in M that satisfy 
(1.8). Consider the states defined by (1.9). Then (1.8) and the positiveness of the 
rPj'S yield (1.10). This shows that the process X can communicate between any x 
and i, and hence it is irreducible. D 

Remark 1.11. (Routing in Jackson Networks). Suppose the network is a Jackson 
network and the routing rates A j k are reducible with n disjoint recurrent communi
cation classes in M. Then one can view the network as consisting of n subnetworks. 
The subnetworks would be independent, because the service intensity at each node 
does not depend on units elsewhere. Consequently, one could analyze the subnet
works as a collection of separate irreducible network processes. Therefore, with no 
loss in generality, we will assume that the routing rates are irreducible for Jackson 
networks. 
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A Whittle network with reducible routing, however, would be a collection of 
subnetworks that are independent in their routing, but dependent through their 
service intensities. We discuss such interacting subnetworks and partially open 
networks as well in Sections 1.13 and 3.1. 

1.5 Equilibrium Behavior 

We are now ready to characterize invariant measures for Jackson and Whittle 
processes. 

In addition to the notation above, let W j, j EM, denote a positive invariant 
measure that satisfies the routing balance equations or traffic equations 

Wj LAjk = L WkAkj, j EM. (1.11) 
kEM kEM 

To simplify some expressions, we adopt the convention that Wo = 1 when the 
network is open. The existence of such an invariant measure is ensured, because 
M is a finite set and the routing process does not have transient states. When the 
network is closed, one may want to normalize W to be a probability distribution. 
Then it would be an invariant distribution for the routing rates Ajk and also for the 
routing probabilities pjk = Ajkl Lk' Ajk'. 

When X is a Jackson process, we assume, as mentioned above, that A jk is 
irreducible. Hence X is irreducible by Proposition 1.10. When X is a Whittle 
process, we allow A jk to be reducible or irreducible-hence X may be reducible 
or irreducible. 

The following results describe the equilibrium behavior of Jackson processes. 

Theorem 1.12. 1/ X is a closed Jackson process with v units. then it is ergodic 
and its stationary distribution is 

m Xj 

7f(x) = c n w? n lPj(n)-1 • x E lE = {x : Ixl = v}, (1.12) 
j=1 n=1 

where the W j' s satisfy (1.11). The c is the normalizing constant given by 

m Xj 

c- I = L n w? n lPj(n)-I. 
XEIE j=1 n=1 

Theorem 1.13. If X is an open Jackson process with finite capacity v, then the 
assertions o/Theorem 1.12 with lE = {x : Ix I ~ v} apply to this process. 

Theorem 1.14. If X is an open Jackson p~ocess with unlimited capacity, then it 
has an invariant measure o/the/orm (1.12) with lE = {x : Ixl < oo}. Hence, the 
process is positive recurrent if and only if 

00 Xj 

-I _ ""' Xj nA.. ( )-1 cj = ~ Wj 'l'j n < 00, j = 1, ... ,m. 
Xj=o n=1 
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In this case, its stationary distribution is 

1r(x) = 1r1 (XI)· . ·1rm (xm ), X E lE, (1.13) 

where 
Xj 

1rj(Xj) = Cjw? n r!Jj(n)-1 , n:::: O. 
n=1 

Recall that the node-dependent intensities r!Jj(Xj) of a Jackson network are bal
anced by <l>(x) = nj=1 n~~1 r!Jj(n)-I. Consequently, the preceding theorems for 
Jackson networks are special cases of the following theorem for Whittle networks. 

This result describes the equilibrium behavior of a Whittle process; the func
tion <l> that balances its system-dependent service rates is characterized later in 
Proposition 1.46. 

Theorem 1.15. An invariant measure for the Whittle process X is 

m 

1r(x) = <l>(x) n w?, X E lE, 
j=1 

(1.14) 

where the w / s satisfy (1.11). The measure 1r also satisfies the partial balance 
equations 

1r(x) Lq(x, TjkX) = L1r(Tjkx)q(Tjkx,x), j E M,x E lE. (1.15) 
kEM kEM 

PROOF. Because the process X has single-unit movements, the balance equations 
an invariant measure 1r must satisfy are 

1r(x) LLq(x, TjkX) = LL1r(Tjkx)q(Tjkx,x), x E lE. 
j k j k 

Since these equations are the sum of (1.15) over j, it follows that any measure 
satisfying (1.15) is an invariant measure. Therefore, it suffices to show that 1r given 
by (1.14) satisfies (1.15). 

To this end, fix a j E M and x E lEo If x j = 0, then both sides of (1.15) are zero 
since TjkX rf.lE for each k. Now, assume Xj > O. By the definitions of q and Wj. 
the left side of (1.15) is 

1r(x) Lq(x, Tjkx) = 1r(x)r!Jj(x) LAjk = 1r(x)r!Jj(X)wj l L WkAkj. 
k k k 

Next, note that the definition of 1r and the <l>-balance property yield the identity 

1r(x)r!Jj(X)wj l wk = 1r(TjkX)r!Jk(TjkX), k E M. 

Using this in the preceding equation, we have 

1r(x) Lq(x, TjkX) = L1r(Tj kX)r!Jk(Tj kX)Akj = L 1r(TjkX)q(TjkX, x). 
k k kEM 

ThUS,1r satisfies the partial balance equations (1.15). D 

Here are some observations about the preceding results. 
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Remark 1.16. (Partial Balance). From the law of large numbers for Markov 
processes, condition (1.15) says that the average number of units departing from 
node j per unittime when X is in state x equals the average number of units entering 
node j per unit time that land X in state x. Or, loosely speaking, the equilibrium 
flow of units out of node j, for any state x, equals the flow into j. Equations 
(1.15) are called partial balance equations because they are only a part of the 
total balance equations. They are also called station balance equations because 
they say the flow into each station or node equals the flow out of the station. The 
partial balance equations are also satisfied by Jackson processes described in the 
theorems above. 

Remark 1.17. (Traffic Equations). Although the traffic equations (1.11) precede 
Theorem 1.15, they are also a consequence of the result. Namely, upon substituting 
the measure:rr given by (1.14) in the partial balance equations (1.15), the service 
rate functions cancel and the traffic equations are what is left. In other words, the 
traffic equations are a necessary and sufficient condition for:rr to satisfy (1.15). 

Remark 1.lS. (Nonuniqueness o/the wi's). Note that the invariant measure:rr in 
the results above is the same for any positive solution w to the traffic equations. 
This follows since the normalization constant c is a function of w. In particular, 
the w j 's need not sum to one. 

Remark 1.19. (Can Any Measure be an Invariant Measure?). Any measure on lE 
can be an invariant measure of a Whittle process. For instance, the process with 
q(x, Tjkx) = \II(x - ej)/:rr(x), where Ajk == 1 and Wj == 1, has invariant measure 
:rr. For Jackson processes, however, only product form measures can be invariant 
measures, since <l> is always a product form. 

Remark 1.20. (Additional Modeling Capabilities). In Chapter 3, we discuss ap
plications of the results in this chapter to the following types of networks. 
• Jackson and Whittle networks with multiple types of units. 
• Kelly networks in which units have deterministic routes depending on their type. 
• BCMP networks with multiple types of units and processor sharing. 
• Networks in which the service time distributions can be general rather than ex
ponentially distributed. 
• Networks with an infinite number of nodes and units. 

Remark 1.21. (Other Types o/State Spaces). One can define Jackson and Whittle 
processes on state spaces other than the three standard spaces we are considering. 
For instance, one may want to restrict the number of units at the nodes to be below 
certain levels. Network processes on other spaces, however, may not have invariant 
measures as those above. The reason is that there may be boundary effects in the 
spaces that do not have the same balance properties. There are some networks with 
reversible or locally reversible routing, however, that still have invariant measures 
as above; see Sections 2.4, 2.5, 2.7, 2.9, 3.5, and 3.6. 

Remark 1.22. (Weak Coupling 0/ Services and Routing). The transition function 
q of the Whittle process is a "weak coupling" of two transition functions in the 
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sense that 

q(X, y) = q, (x, y)q2(X, y), x I- y E lE, (1.16) 

where q, (x, TjkX) == Ajk involves only the routing rates, and q2(X, TjkX) == rPj(x) 
involves only the service rates. Theorem 1.15 with rPj == 1 says that Jl',(x) = 
n7=, w? is an invariant measure for qt. Similarly, Theorem 1.15 with A jk == 1 
says that Jl'2(X) = <I>(x) is an invariant measure for q2. In addition, Theorem 1.15 
says that an invariant measure for q is the product Jl'(x) = Jl', (X)Jl'2(X). This prod
uct form does not automatically follow by the coupling (1.16). It is due to these 
additional properties: 
(i) q2 is reversible with respect to Jl'2 (because the service intensities are <1>
balanced; see Section 1.13). 
(ii) Jl'2(X)q2(X, TjkX) is independent of k for each j and x. 
These are strong conditions, which are generally not satisfied for Markov processes. 

The preceding remark raises the following question: Are there more general 
routing and service rates that lead to tractable stationary distributions? Some insight 
into this issue is given by the following result. Suppose the transition rates of the 
process X are of the form 

jrPi(X)Ajk(X) 
q(x, y) = 0 

if y = TjkX for some j I- k in M 

otherwise, 

where A jk(X) is a routing rate as a function of the state x. 

(1.17) 

Proposition 1.23. (State-dependent Routing) For the network process with tran
sition rates (1.17), assume that the rP j are <I>-balanced and that there is a positive 
function A on lE such that 

A(x) I>jk(X) = L A(TjkX)Akj(TjkX), j E M, x E lE with Xj ~ 1. (1.18) 
k k 

Then an invariant measure of the process is 

Jl'(X) = <I>(x)A(x), x E lEo (1.19) 

PROOF. The proof is similar to that of Theorem 1.15. The approach is to show 
that Jl'(x) = <I>(x)A(x) satisfies the partial balance equations (1.15). The main step 
is that, for each x E lE with x j ~ 1, 

Jl'(x) Lq(x, Tjkx) = <I> (x)rPj (x)A(x) LAjk(X) 
k k 

= L <I>(TjkX)rPk(TjkX)A(TjkX)Akj(TjkX) 
k 

= L Jl'(Tjkx)q(TjkX, x). 0 
k 

Although this result provides a general framework for state-dependent routing, it 
does not solve the problem of finding Jl' • This is because obtaining a A that satisfies 
(1.18)-without any more information about Ajk(x)-is essentially equivalent to 
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finding 1f. In other words, for general routing or service transition functions in the 
coupled transition rate (1.16), the problem amounts to finding invariant measures 
for general transition rates of the form q(x, Tjkx) = qjk(X). 

1.6 Production-Maintenance Network 

Before developing further properties of networks, we give an application in this 
section of a closed Jackson network. This network is indicative of maintenance 
networks that arise in industrial and military settings for maintaining expensive 
equipment to produce goods or services or to perform a mission. 

Consider a system shown in Figure 1.2 in which v machines (subsystems, trucks 
or electronic equipment) are available for use at some facility or location called 
node 1. At most SI machines can be in use at node 1 at any time for producing goods 
or services. Therefore, if XI machines are present then min{xI' SI} of these will 
be in use. After a machine is put into use, it operates continuously until it fails or 
degrades to a point that it requires a repair. The total operating time is exponentially 
distributed with rate JL I. At the end of this time, the unit is transported to a repair 
facility. The transportation system (which may involve initial processing and rail 
or air travel) is called node 2, and the unit's time at this node is exponentially 
distributed with rate JL2; there is no queueing for the transportation. 

The repair facility consists of nodes 3, 4, 5, which are single-server nodes with 
respective rates JL3, JL4, JL5. Depending on the nature of the repair, the unit goes 
to one of these nodes with respective probabilities P23, P24, P25. After its repair, 
the unit goes to another transportation system, called node 6, for an exponen
tially distributed time with rate JL6. And then it enters node 1 to begin another 
production/repair cycle. 

Let X denote the process representing the numbers of machines at the respective 
nodes. Under the preceding assumptions, X is a closed Jackson process in which 
each node j is an srserver node, where S2 = S6 = 00 and Sj = 1 for j = 3,4,5. 
The rate of each server at node j is JL j. The routing intensities are the routing 
probabilities A\2 = A56 = A61 = 1 and A2k = P2k for k = 3,4,5; the other Ajk'S 
are O. The traffic equations (1.11) for these routing probabilities have a solution 
Wj = 1 for j = 1,2,6 and Wj = P2j for j = 3,4,5. Then by Theorem 1.12, the 

FIGURE 1.2. Production-Maintenance Network 
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stationary distribution of X is 

1 XI 1 6 

Jl'(X) = C-,-, n. n(Wj/ILJJ , x E IE, 
X2· X6· n=1 mm{n, stl j=1 

where C is the normalization constant. 
The quality of this maintenance system is measured by the number of machines 

in productive use at node 1. Suppose the aim is to find the number of machines v* to 
provision for the network such that the probability of having less than x I machines 
in use at node 1 is below P (for instance .10). From the stationary distribution 
above, it follows that the equilibrium probability of having less than XI machines 
at node 1 (as a function of v) is 

p(v) = LJl'(x)l(x; < XI) 
X 

xI-I 1 6 1 6 

= c"" - "" 1("" X· = v - n)-n(w -IlL fJ. L..... ILnn! L..... ~ J X2!X6!. J J n=O I X2 ••••• x6 J=2 J=2 

Then the desired provisioning quantity is v· = min (v : p( v) < P}. This is obtained 
by computing p(v) for v = XI, XI + 1 ... until it falls below p. 

1.7 Networks with Special Structures 

The structure of a network is determined by the communication graph of its Markov 
routing process. The set of all communication graphs of Markov processes is vast. 
When the finite node set M is not too large, one can use a standard numeri
cal procedure for finding an invariant measure W j for the transition probabilities 
Pjk = Ajk/ Ll Ajl. In some cases, however, these measures have closed-form 
expressions. This section describes several elementary examples that are relevant 
for networks. 

Example 1.24. Nearest Neighbor Travel. Suppose the routing of units in a closed 
network is a simple random walk on the nodes 1, ... , m in which a unit at node j 
moves to j + 1 or j - 1 with respective probabilities P j and 1 - P j, where PI = 1 
and Pm = O. In this case, it is well known that an invariant measure of the routing 
rates is WI = 1 and 

Po'" Pj-I Wj= , j=2, ... ,m. 0 
(1 - PI)" . (I - Pj) 

Example 1.25. Progress-or-Return-to-Origin Network. This type of closed net
work with m = 5 nodes has a communication graph shown in Figure 1.3 below. 
Here the routing rates A12, Aj.j+1 andAjl are positive for 1 ~ j ~ m,andallother 
rates are O. Then the traffic equations are 

m 

WIAI2 = L WjAjl, Wj{Ajl + Aj.j+l) = Wj_IAj_l.j, 2 ~ j ~ m. 
j=2 
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FIGURE 1.3. Progress-or-Retum-to-Origin Network 

A solution is WI = 1 and 

j 

Wj = OO"i-l,i/(Ail + Ai,i+I», 2 ~ j ~ m. 0 
i=1 

When the routing rates A jk are reversible, then its invariant measure has a closed-
form expression given by Theorem 2.8. We will see later in Example 2.25 that 
reversible routing is a necessary and sufficient condition for a Jackson or Whittle 
network process to be reversible. For instance, Example 2.10 describes a circular 
network with reversible routing. Another example is the following special case of 
Example 2.25. 

Example 1.26. Star-Shaped Network. The graph of a star-shaped or central
processor network with m = 5 nodes is shown in Figure 1.4. Node 1 is the 
center node and nodes 2, ... , m are points of the star such that the routing rates 
Alj and Ajl are positive. All the other routing rates are O. 

In this case, the traffic equations (1.11) are WjAjl = WIAlj' 2 ~ j ~ m. Then 
the routing rates are reversible with respect to the invariant measure WI = 1 and 
Wj = AIj/AjJ, 2 ~ j ~ m. 0 

1.8 Properties of Jackson Equilibrium Distributions 

In this section, we discuss how one can obtain the normalization constants and 
marginal distributions for the equilibrium distribution of a Jackson network. For 
this discussion, we assume that X is an ergodic Jackson process for a network that 
may be open or closed. 

FIGURE 104. Star-Shaped Network 



1.8 Properties of Jackson Equilibrium Distributions 21 

First, consider the case in which the network is open with unlimited capacity. 
By Theorem 1.14, the stationary distribution of X is 

,,(x) = D "i(Xi) = D [Ci D w;' D ~i(n)-l] , Ix I < 00. 

Recall that the W j 's satisfy the traffic equations 

Wj I>.jk = L WkAkj, j EM. 
kEM kEM 

This distribution 11: is a product of its marginal distributions 11: j. Consequently, if X 
is stationary, then, for each fixed t, its m components X: ' ... , X':' are independent. 

Of course, xi and xl for s #- t are dependent, and hence so are Xs and XI' Note 
that each marginal distribution 11: j is the equilibrium distribution of a birth-death 
queueing process with transition rates 

q(n, n') = Wj l(n' = n + 1) + tPj(n)l(n' = n - 1 ::: 0). 

In other words, each node j in equilibrium appears to be like a single node in 
isolation in which units arrive by a Poisson process with intensity W j, and when 
n units are present, they are served at the rate tPj(n). The actual arrival process of 
units into node j in equilibrium, however, is generally not a Poisson process. 

Next, consider the case in which the Jackson network is closed with v units. By 
Theorem 1.12, the stationary distribution of the process X is 

m 

11:(x) = c n h(Xj), x E IE, 0.20) 
j=1 

where hen) = wj TI~=I tPj(r)-1 and the wj's satisfy the traffic equations. Al
though the distribution 11: is a product form, it is not a distribution of independent 
random variables since Ixi = v. 

We now show that the normalization constant and marginal distributions are 
expressible in terms of convolutions of functions. The convolution I * g of two 
functions I and g on the nonnegative integers is defined by 

n 

1* g(n) = L I(i)g(n - i), n::: O. 
i=O 

For a sequence of such functions II, /2, ... , it follows by induction on m that 
m 

II * ... * Im(n) = L n I/xj), n::: 0, m::: 1. (1.21) 
x:lxl=n j=1 

This property yields the following computational procedure. 

Remark 1.27. (Normalizing Constant lor Closed Jackson Network). The normal
izing constant c has the representation 

m 

c- I = L n h(Xj) = II * ... * Im(v). (1.22) 
x:lxl=v j=1 
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One can compute c by the following procedure. For each.e = I, ... , v, define 
gt(n) = II * ... * Ii(n), for 0 ~ n ~ v. Then compute these convolutions by the 
recursion 

gt(n) = Ii * gi-I(n), 0 ~ n ~ v, 

for.e = 2, ... ,m. The final iteration yields gm, from which one obtains c- I 

gm(v). The number of computations for this procedure is of the order mv. 

Remark 1.28. (Marginal Distributions 01 Closed Jackson Networks). Knowing 
1f, one can obtain the marginal eqUilibrium distribution of the number of units at a 
single node or of the numbers in sets of nodes as follows. We call a subset of nodes 
J c M a sector ofthe network. Associated with J, we define x(J) = LjeJ Xj, 
and let /J denote the convolution of the functions {/j, j E J}. Now consider any 
disjoint sectors JI , ••• , Jt whose union is M. The joint equilibrium distribution 
of n I, ... , ni units in these sectors is 

i 

1fJ" .... Jt(nJ. ... , ni) = c TI L l(x(J;) = n;) TI /j(Xj) 
;=1 Xj:jeJj jeJj 

i 

= c TIh(n;), nl + ... +ni = v. 
;=1 

The last equality follows by property (1.21) for convolutions. From these distri
butions, one can obtain means, variances, covariances, and other items of interest 
such as expected costs for the process. In particular, the marginal equilibrium 
distribution of the number of units in the sector J is 

n';{n) = cl;(n)/J,,(v - n), 0 ~ n ~ v, (1.23) 

where Je is the complement of J. 

Next, suppose X is an open Jackson process with capacity v. Here, the normal
ization constant for its stationary distribution (1.20) (where lE = {Ix I ~ v}) has 
the representation 

m v 

c- I = L TI/j(Xj) = L/I * ... * Im(n). 
x:lxl::O::v j=1 n=O 

Also, the joint eqUilibrium probability of n I, ... , ni units in the respective sectors 
J I, ... , Ji that partition M is 

i 

1fJI, ... ,J,(nl, ... , nd = c TI /Jj(n;), nl + ... + ni ~ v. 
;=1 

Keep in mind that W j implicit in the functions /j is the invariant measure of the 
routing intensities for the "open" network; consequently, II * ... * Im(n) is not 
necessarily the inverse of the normalization constant for the related closed network 
with n units (although it appears to be). 



1.8 Properties of Jackson Equilibrium Distributions 23 

Another useful observation is that one can interpret this finite-capacity open 
network process X as a closed network process on {O, 1, ... , m} with the same 
routing and service intensities as X, plus the intensity l/JoO == 1 for node O. 
Then clearly n(xt. ... ,xm) = if(v - lxi, Xt, ... ,xm), where if is the stationary 
distribution of the closed network. 

Jackson networks with infinite-server nodes are useful for modeling storage 
systems or service systems in which the units move independently and there is no 
queueing. Expressions for their equilibrium distributions are as follows. 

Example 1.29. Jackson Networks with Infinite-Server Nodes. Suppose X is a 
Jackson network process, where each node j is an infinite-server node and each 
server has rate JL j. The departure intensity is therefore l/J j (x j) = x j JL j. Then its 
stationary distribution (1.20) is 

c x x n(x) = r t l ••• rmm , 

Xt!···xm! 
(1.24) 

where r j = W j / JL j. In case X is an open network with unlimited capacity, 

m () n -r· Xj/ I n x = e Jrj Xj., 

j=t 

which is a product of Poisson distributions. In case X is a closed network, its 
distribution (1.24) is the multinomial distribution 

vI 
n(x) = I . ,P;I ... p!m, Ixi = v, 

Xt····xm· 

where P j = rj /(rt + .. +r m). This follows by applying the multinomial expansion 

to (1.24). In this closed network, each unit is moving independently as a Markov 
chain whose stationary distribution is {p j }. One would therefore anticipate that, 
in equilibrium, the numbers of units at the nodes have the preceding multinomial 
distribution. Because of the multinomial form, the number of units in any sector 
J has a binomial distribution with parameters v and LjE) Pj. Finally, when X is 
an open network with finite capacity, then 

Ixl! XI x 
H(X) = Pt ... Pmm , Ixl:::: v. 

Xt!···xm! 

This is a conditional multinomial distribution given that there are Ix I units in the 
system. 0 

Example 1.30. Jackson Networks with Single-Server Nodes. Suppose X is a Jack
son process in which each node j is a single-server node with rate JL j. Then its 
stationary distribution (1.20) is 

(1.25) 
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where r j = W j / J1. j. In case X is an open network with unlimited capacity, then 

m 

H(X) = nO -rj)r?-
j=1 

This is a product of equilibrium distributions of birth-death processes with birth 
rates W j and death rates J1. j. If X is closed or open with finite capacity v, then the 
distribution (1.25) has normalization constants given respectively by 

v 

c- I = II * ... * 1m (v), c- I = L II * ... * 1m (n), 
n=O 

where hen) = rj. These are very special convolutions that have closed form 
expressions given in the next section. 0 

1.9 Convolutions for Single-Server Nodes 

For closed or finite-capacity open Jackson networks with single-server nodes, the 
preceding example showed that their equilibrium distributions have normalization 
constants that are functions of the convolution II * ... * 1m (v), where h (n) = rj. 
Their marginal distributions involve similar convolutions. The following results 
are closed form expressions for these convolutions. 

Proposition 1.31. II rl, ... , r m are distinct, then 
m 

II * ... * Im(v) = I:>rm- t D(rj - rkr t • (1.26) 
j=1 k#j 

PROOF. Consider the generating function 
00 

G(z) = L II * ... * Im(v)zv. 
V=o 

Then we can write 

II * ... * Im(v) = G(v)(O)/v!, (1.27) 

where G(v) is the vth derivative of G. Since the generating function of a convolution 
of functions is the product of the generating functions of the convolved functions, 
and hen) = rj, we have 

m 00 m 

G(z) = n L h(v)zV = nO- rjz)-I. 
j=1 v=o j=1 

Now, since rl, ... , rm are distinct, the standard partial fraction expansion of this 
product is 

m c. 
G(z) = L 0 _ J . )' 

j=1 rJz 
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wnere 

Then clearly G(v)(O) = v! Lj=1 cjrJ. This and (1.27) yield (1.26). o 

When the parameters rj are not distinct, II * ... * Im(v) has the following 
expression. 

Proposition 1.32. Let rl, ... , r", be the distinct r j' s and let nt denote the number 
olrj's equal to ft. Then 

", 

II * ... * Im(v) = L(_l)nt-l(fdv+m-nth(nt, m, Iii) (1.28) 
e=1 

where 

~ (_I)i t (m. +, il,)! h(nt, m, Iii) = ~ 
i,+.+i .. =n,-I le·m . 

n", (nu + iu - I)! (- )i 1(- - )n +i 
X • , , ru u rt - ri U ". 

-I -1.0 lu·(nu - 1). u- ,uTc-

PROOF. Proceeding as in the proof above, we have (1.27), where 

m ", 

G(z) = nO -rjz)-I = no -flz)-n,. 
j=1 t=1 

Clearly G is analytic in the complex plane, except at 11ft. ... 1 If"" which are poles 
of G of orders n I, ... , n"" respectively. Then by the Cauchy integral formula for 
derivatives, 

G(v)(O) = v! .1 I(z) dz, 
2HI Izl=E 

(1.29) 

where/(z) = G(z)lzv+1 andtheintegraliscounterclockwiseonthecurvelzl = e, 
for some e < min{l/f l , ... I/f",}. 

For a fixed b > max{l/ft. ... I/f",}, the function I is analytic in the region 
Izl ~ b, except at 0, 11ft. ... I/f"" which are poles of I. Then by the residue 
theorem for complex integrals, 

~ 1, I(z)dz = Res{z=o}/ + tReS{Z=I/rtll = 0, 
2m Izl=b 1.=1 

(1.30) 

where Res{z=S11 denotes the residue of I at ~. That this integral is zero is a 
standard result for a function such as I that is a ratio of polynomials in which the 
denominator has a degree that is at least two more than the numerator. Now, 

Res{z=o}/ = 21 .1 I(z) dz, 
HI IZI=b 
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and since l/rt is a pole of order ni, 

1 (d )n'-I 
Reslz=l/rtll = (ne _ I)! dz [(z - Ilrit'/(z)] Iz=l/r,. 

Consequently, (1.27), (1.29), and (1.30) yield 

'" (-llr)n, (d)nt-I '" 
II * ... * 1m (v) = - L ( _il)1 d [Z-v-I nO -hz)-nk ] Iz=l/r,. 

e=1 ne . Z k#i 

This reduces to (1.28) by applying the multinomial derivative formula 

(d)n I 
_ hl(z)." h",(z) = '" . n .. 
dz £...oJ '11.··,-, "+ +" •. ·m· II ••• 'Iii=n 

( d )il (d )im 
X dz hl(z)··· dz h",(z). 

This concludes the proof. o 

For a closed or finite-capacity Jackson network, recall that the joint equilibrium 
distribution of the numbers of units in sectors 11, ... , Ie that partition the nodes is 
given by 1l"JI ••.. ,J,(nJ, ... ,nd = c n:=1 !J.(ni), where!J. is the convolution of the 
functions Ii for j E Ii' These convolutions can be computed by the formulas in the 
preceding results. The joint equilibrium distribution is also useful for computing 
other quantities. For instance, for the closed network in equilibrium, the expected 
number of units in the sector I is 

v 

LJ = C L nIAn)/Jc(v - n). 
n=1 

The c is the normalization constant that we have already discussed. For con
venience, assume rl, ... , r m are distinct. Then (1.26) and a little algebra 
yield 

L J = eLL (rj~lr:+mhj(l)hk(r) 
jEJ kEF 

x [1 - rJk(vrjk + v + 1)1/(1 - rjd] , 

where III is the number of nodes in I and hj (l) = niEJNj(rj - ri)-I. An 
analogous formula can be obtained from (1.28) for nondistinct r j's. 

1.10 Throughputs and Expected Sojourn Times 

The performance or quality of a network is typically measured by its expected 
queue lengths, the speeds at which units move through it (throughput rates), ex
pected sojourn times of the network, and expected sojourn times of units at the 
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nodes. In this section, we will describe these quantities for Jackson and Whittle 
networks. 

Consider a Jackson or Whittle network that is represented by an ergodic process 
X whose equilibrium distribution 7r is given in Theorems 1.12-1.15. The number 
of units that move from a node j to a node k in the time interval (0, tJ is 

Njk(t) = L I(Xrn = TjkXrn_" 'l'n E (0, tD, 
n 

where ° == 'l'O < 'l'J < 'l'2 ••• are the transition times of X. More generally, the 
number of units that move from a sector J to a sector K during (0, tJ is 

NJK(t) = LLNjk(t). 
jEJ kEK 

The sets J and K may overlap. The average number of such movements per unit 
time is 

Also, P J K = EN J K (1) when the process X is stationary. The P J K is called the 
throughput from J to K. Another performance measure is the throughput of sector 
J defined by AJ = PjCj, which is the average number of units that enter J per 
unit time. It also equals the average number of units P J jC that exit J per unit time 
since the process is ergodic. Note that 

By the law of large numbers for Markov processes, we have the general 
expression 

Pjk = L7r(x)q(x, TjkX ) = Ajk L7r(x)tflAx)l(xj ~ I), j, k E M. (1.31) 
XEE XEE 

This expression simplifies in the following cases. 

Proposition 1.33. Suppose that X is a Jackson process, or that X is a Whittle 
process with service rates of the form 

tflAx) = <Il(x - ej)/<Il(x), x E E, j EM. 

If X is open with unlimited capacity, then 

Pjk = WjAjko j, k E M. 

If X is closed with v units (or open with capacity v), then 

j,k E M. 

Here Cv is the normalizing constant for the equilibrium distribution of the closed 
network with v units (or the open network with capacity v). 
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PROOF. Under the hypothesis, (1.31) is 

Pjk = W/Ajk L1l'(x - ej)I(xj ~ 1). (1.32) 
XEIE 

Then the first assertion follows since the last sum is 1 for the unlimited capacity 
network with Ixi < 00. Also, the second assertion follows from (1.32), since the 
summation equals Cv/Cv-I' which is clear by the definition of CV • D 

Another important feature of a network process is its sojourn or waiting times in 
certain sets of its state space. The following expression for average waiting times 
follows from Theorem 1.3. 

Proposition 1.34. The average waiting time of X in a set A C lE is 

W(A) = 1l'(A)/)"(A), 

where 

)"(A) = L 1l'(x)q(x, Tjkx)I(Tjkx E A). 
XEAC 

The following is a typical example. Here we define x(J) = LjEJ Xj and let /J 
denote the convolution of the functions {fj : j E J}. 

Example 1.35. Busy Periods and High-Level Exceedances. Suppose X represents 
a closed Jackson network with v units. Consider the length of time that the number 
of units in a sector J exceeds a level b. This is the sojourn time of X in the set 
A = {x : x(J) > b}. By the preceding proposition, the average sojourn time in A 
is 

W(A) = L~=b+1 /J(n)/Jc(v - n) 

/J(b)/Jc(v - b) LjEJ LkEJC )..jk 
(1.33) 

Indeed, the numerator is 1l'(A)/c (recall the marginal distribution (1.23», and the 
denominator is )..(A)/c. This formula for W(A) is especially nice because it does 
not involve the normalization constant c. 

For a high level b, the average high-level exceedance period W(A) might be 
used as a guide in designing a network. For instance, one might select service 
rates such that W(A) is below a certain value. One could use (1.33) to characterize 
the set of service rates for which the constraint is satisfied. Another quantity of 
interest is the average duration of a busy periodfor sector J. This quantity is given 
by (1.33) with b = O. The approach in this example can be used to obtain average 
exceedance periods for other types of Markovian networks. D 

We now tum to expected queue lengths and sojourn times of units in a sector J 
of the network. First note that the average number of units in J per unit time is 

LJ = lim t- I r Xs(J)ds = Lx(J)1l'(x) w.p.I, 
1-+00 10 x 

where XI(J) = x(J) == LjEJ Xj when XI = x. This follows by the law of large 
numbers for Markov processes. For convenience, we assume L J is finite. 
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Next, consider the sojourn times (or waiting times) WI (J), W2(J), ... of units in 
J, where Wi(J) is the sojourn time of the ith unit to enter J. There is no restriction 
on the nodes at which the units enter and leave J; a unit may have multiple visits to 
the nodes in J before it exits, and units need not exit J in the same order in which 
they entered. We only assume J =1= M when the network is closed (otherwise all 
sojourns would be infinite). Then the average waiting time of units in the sector J 
is 

n 

WJ = lim n- I "Wi(J) w.p.1, 
n->oo ~ 

;=1 

provided the limit exists. 
The existence of these average waiting times is justified by the following Little 

laws. These results follow immediately from Theorems 5.1 and 5.2 that hold for 
Markovian systems that are recurrently empty. The emptiness condition is that the 
network contains a state x with x(J) = O. This is automatically true in this case 
by the form of the state space. 

Theorem 1.36. The average waiting time WJ exits and LJ = AJ WJ. 

When the process X is stationary, WJ is an expected waiting time as follows-its 
expectation is with respect to a Palm probability of the process, which is defined 
in Chapter 4. 

Theorem 1.37. Suppose the process X is stationary and let WJ denote the ex
pected sojourn time in J with respect to the Palm probability of the stationary 
process X conditioned that a unit enters J at time O. Then the expectation WJ is 
finite and L J = AJ WJ. Furthermore, L J = EXt(J) and AJ = ENJ<J(1). 

When J is a single node j, we write the preceding Little law as L j = A j Wj . 
Since the number of units in J at any time is the sum of the units at the single 
nodes in J, it follows that LJ = LjEJ L j . Similarly, AJ = LjEJ Aj. Although 
this additivity is not generally true for waiting times, it is clear that WJ = L j EJ Wj 
if and only if a unit's waiting time in J involves exactly one visit to each node in 
J. 

In an open network, a quantity of interest is the average time a unit spends in 
J (in possibly multiple visits to J) during its total stay in the network. This and 
related quantities for closed networks are as follows. The average waiting time of 
a unit in a sector J while it is in a larger sector K :J J is defined by 

n 

wI = lim n- I " Wi(J)K w.p.I. 
n-+oo ~ 

i=1 

Here W;(J)K is the time the ith unit entering K spends in J before exiting K. 
A unit may have several visits to J while in K, and so W;(J)K is the sum of all 
these waits in J. Note that WI =1= 0 since each unit entering K has a positive 
probability of entering J (if the probability of moving from K\J to J is 0, then 
the irreducibility of the process ensures that there is a positive probability that a 
unit may enter J directly from KC). 
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The general Little laws that justify the preceding results also apply to yield 
the following Little laws for W f. Let L f and A f denote the associated average 
queue length and arrival rate. Note that Lf = LJ and Af = AJ since J C K. 
An analogue of Theorem 1.36 is as follows. There is also an obvious analogue of 
Theorem 1.37. 

Theorem 1.38. The average waltmg time Wf exists and L J 
Furthermore, Wf = AJAKIWJ' 

1.11 Algorithms for Performance Parameters 

This section contains recursive equations for computing the performance param
eters for closed Jackson networks; namely, marginal eqUilibrium distributions, 
average queue lengths, waiting times, and throughputs. Recall that an open Jack
son network with finite capacity can be interpreted as a closed Jackson process with 
node set {O, 1, ... , m} and service rate r/JoO == 1 for node O. Therefore, the per
formance parameters for this open network can also be computed by appropriate 
modifications of the results below. 

Throughout this section, we assume the network process X represents a closed 
Jackson network. Let M be a collection of disjoint sectors whose union is M = 
{I, ... , m}. The aim is to obtain the performance parameters Lj, Wj, Aj, 7rJ 

for each sector J E M. One's choice of M would depend on the sectors of 
interest, but M must be a partition of M for completeness in the computations. 
For instance, if one were interested in the performance parameters of each node, 
then M would be all singleton nodes. If one were interested in the single nodes 
j, k, and i along with sectors J, J' not containing these nodes, then M would be 
{{j}, {k}, {it, J, J', 1"}, where 1" is the sector consisting of the remaining nodes. 
If one were interested in sectors J, K that are not disjoint, then the procedure 
below would have to be performed separately for the two partitions M = {J, Je} 
andM = {K, Ke}. 

Due to the structure of the equilibrium distribution of the process X, the perfor
mance parameters for this v-unit network process are expressible as functions of 
the performance parameters ofa (v -I )-unit network process with the same routing 
probabilities and service rate functions. This is the key idea in the following result, 
which evaluates the performance parameters successively for the network with 
n units in it, where n = 1,2, ... , v. Here we let LAn), WAn), AAn), 7rJ(i; n) 
denote the parameters for the n-unit network and each J E M. 

Let h denote the convolution of the functions {fj : j E J}, where fj{i) = 
w~ n~=1 tPj(r)-I. Define 

aJ = L L WlAlj, hJ(i) = ajl h(i)/J{i - 1)-1. 
iEJ< jEJ 
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Proposition 1.39. For each n = 1, 2, ... , v and J E M, 
n 

Wj(n) = Lihj (i)7rj(i - 1; n - 1), 
;=1 

},o}{n) = najJ L aJ'WJ'(n), 
J'eM 

Lj(n) = Aj(n)Wj(n), 

n 

7rAO; n) = 1 - L7rj(i; n), 
;=1 

where Lj(O) = 0 and 7rj(O; 0) = l,/or J EM. 

(1.34) 

(1.35) 

(1.36) 

(1.38) 

Remark 1.40. To use these equations for computations, set n = 1 and compute 
(1.34}-(1.38) for each J E M. Then repeat the computations for n = 2, 3, ... , v. 

PROOF. Consider the equations (1.34)-( 1.38) from last to first. Expression (1.38) 
simply says the probabilities there must sum to 1. To verify (1.37), recall from the 
preceding section that the marginal distribution for sector J is 

where Cn is the normalizing constant for the n-unit network. This expression and 
its analogue for the (n - I)-unit network yield 

7rAi; n) = ajcnJcn- 1h j (i)7rj(i - 1; n - 1). 

Also, we know that the throughput for J is AAn) = ajcnJcn-l. Substituting this 
in the preceding display proves (1.37). 

Next observe that (1.36) is the Little law in Theorem 1.36. To prove (1.35), we 
use the facts that the network is closed, M is a partition of M, and (1.36) to obtain 

n = L LJ'(n) = L AJ'(n)WJ'(n). (1.39) 
J'eM J'eM 

From the throughput expression above, AJ'(n) = Aj(n)aJ'Jaj. Substituting this 
in (1.39) yields (1.35). 

Finally, by (1.36) and the definition of LAn), it follows that 

n 

Wj(n) = Aj(n)-I Lj(n) = Aj(n)-I Li7rj(i; n). 
i=1 

Applying (1.37) to the last summation yields (1.34). o 

Note that the evaluation of the performance parameters Lj, Aj, and Wj by the 
preceding result requires the marginal distributions 7r j. We now show that the 
marginal distributions are not needed when the network has only single-server 
or infinite-server nodes. Here we only consider the performance parameters for 
single nodes and not sectors, since the sector parameters can be obtained from 



32 1. Jackson and Whittle Networks 

single node parameters via the relations 

Corollary 1.41. Suppose each node j in the closed network is a single-server 
node with f/Jj(n) = IL j andjirst-in,jirst-out service, or an infinite-server node with 
f/Jj(n) = nILj (each server has rate ILj). Then,for each n = 1, ... , v and j EM, 

{
[I + Lj(n - l)](ILj ~Ajd-l 

W·(n) = 
J (ILjLAjk)-1 

k 

Aj(n) = najl Lap Wj'(n), 
j' 

Lj(n) = Aj(n)Wj(n), 

where L j (0) = 0 and a j = W j Lk A jk. 

if j is single-server 

if j is infinite-server, 

PROOF. These equations are simply special cases of (1.34)-(1.36) with J repre
senting the single node j. Namely, if node j is a single-server node with f/J j (i) = IL j 
and h(i) = w~ILji, then (1.34) reduces to 

Wi(n) ~ (" i ~). i')-' (t(i - I)"i(i - I; " - 1)+ 1 ) 

= (ILj LAjd-1 (Lj(n - 1) + 1). 
k 

And if j is an infinite-server node with f/J j (i) = ilL j' then Ij (i) = w~ IL t Ii! and 
hj(i) = Wjl(ajILji). Hence (1.34) reduces to Wj(n) = Wjl(ILjaj)' 0 

1.12 Monte Carlo Estimation of Network Parameters 

We now discuss Monte Carlo procedures for estimating performance parameters 
of Jackson and Whittle networks. This approach is an alternative to the computa
tional algorithms above for Jackson networks, and it is especially useful for Whittle 
networks that do not have such algorithms. We will give a brief overview of two pro
cedures: random sampling and Metropolis Markov chain sampling. The latter has 
been used in several areas including estimating parameters in Gibbs distributions 
of Markov random fields and in optimization via simulated annealing. 

Suppose that X is an ergodic Jackson or Whittle process that represents a closed 
or finite-capacity open network. The procedures below are for finite state spaces, 
but they can be extended to the unlimited capacity open network. We write the 
stationary distribution of X as 

Jl"(X) = c1/(x), x E ]E, 
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where l1(x) = Cl>(x) nj=, w? and c = 1/ Lx l1(x) is the normalization constant. 
Assume that Cl>(x), W j and hence 11 (x ) are known, but that c is not known. Many 
performance parameters of the process can be expressed as an expected value of 
the form 

JL = Lg(x);rr(x), 
XEIE 

for some function g. We will focus on describing estimators for JL. 
A typical example of JL is the throughput on the arc from node j to node k, 

which according to (1.31) is 

Pjk = L ;rr (x)q (x , Tjkx). 
XEIE 

Another family of examples is as follows. Suppose f(x) is a cost rate of being in 
state x and h(x, y) is the cost or value of a transition from x to y. Then by the law 
of large numbers for Markov processes, the average cost per unit time is 

lim r'[ t f(Xs)ds + Lh(Xs-, Xs)] 
1-+00 10 ":9 

= L[f(x) + L q(x, y)h(x, y)];rr(x) w.p.I. 
XEIE y 

Note that the mean JL = LXEIE g(x);rr (x) depends on the unknown normalization 
constant c of the distribution ;rr. Also, note that c is a special case of JL with g(x) = 
l/l1(x). We will now show how to estimate JL as well as c from data generated 
by a Markov chain. For this, we use an ergodic Markov chain Y = {Yn : n :::: O} 
on lE with a stationary distribution p, which is specified. This is an artificially 
constructed chain (separate from the network process X) that is to be simulated. 
We consider two cases in which p is known and p = ;rr. The latter may seem 
surprising since the normalizing constant for ;rr is unknown. 

Upon observing the values Y1, ••• , Yn of the chain for n steps, the procedure is 
to use estimators cn, JLn defined as follows for c, JL. An estimator JLn of JL is said 
to be consistent if JLn --+ JL w.p.I. 

Proposition 1.42. Suppose Y is an ergodic Markov chain on lE with stationary 
distribution p. Then a consistent estimator for c- I is 

n 

;;;;1 = n- I L l1(Yi)/P(Yi). 
i=l 

Furthermore, a consistent estimator for JL = LXEIE g(x);rr(x) is 

A L7=, g(Yi)I1(Yi)/P(Yi ) 

JLn = L7=II1(Yi)/p(Yi) . 
(l.40) 

For the case p = ;rr, this estimator reduces to iln = n- I L7=1 g(Yd. 
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PROOF. The first assertion follows since, by the law oflarge numbers for Markov 
chains, 

~-I '" () -I 1 cn -+ ~ T/ x = c w.p.. 
x 

This and another application of the law of large numbers yields 

n 

P-n = cnn- I Lg(Y;)T/(Y;)/p(Y;) -+ c Lg(x)T/(x) = IL w.p.I. 0 
;=1 x 

To use the estimator P-n, one would simulate the Markov chain Yn for a large 
number of steps n and then take the resulting P-n as the value of IL. To complete the 
description of this Monte Carlo procedure, it remains to select a probability law 
for Yn that is easy to simulate. Two standard approaches for this are as follows. 

Example 1.43. Random Sampling. Take Yn to be independent and identically 
distributed with distribution p. The challenge is to choose an efficient distribution 
p.1t is natural to choose p such that the variance of T/(Y;)/p(Y;) is small and its 
shape is consistent with that of T/. Typical choices to use in the estimator (1.40) are 

p(x) = b n r?, and p(x) = b n r? /Xj!. 0 
jEM jEM 

Example 1.44. Metropolis Method of Sampling. We now describe a method of 
choosing Markov transition probabilities for the Markov chain Y, whose stationary 
distribution is p = 7r. Surprising, this is possible even though the normalization 
constant c for 7r is unkoWD. A general candidate for the transition probabilities is 

P(X, y) = y(x, Y)/T/(x), x, Y E E, (1.41) 

where y satisfies Ly y(x, y) = T/(x) and y(x, y) = y(y, x) for each x, y E Eo 
By Theorem 1.5, these transition probabilities are reversible and 7r is their station
ary distribution. The reversibility property is not especially important. However, 
reversible chains do have a fast geometric rate of convergence to their stationary 
distribution. 

The Metropolis Markov chain is a special case in which the transition 
probabilities (1.41) have the following special form. Let 

E(x) = {y E E : y = Tjkx, for some j i- k in M}, x E Eo 

This is the set of all states that can be reached by subtracting one unit from some 
coordinate j and adding one unit to some coordinate k i- j (the j or k may be 0 
if the network is open). For each x E E and y E E(x), define 

{ 
1/IE(x)1 

P(x, y) = 
T/(Y) / [T/(x ) I E(x) I] 

Also, let P(x, y) = 0 for Y ¢ E(x) U {x} and let 

if T/(Y) :::: T/(x) 

if T/(Y) < T/(x). 

P(x, x) = 1 - L P(x, y). 
YEE(x) 
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Computations of these probabilities involve computing 

ll(Y)/ll(x) = WkWjl¢Jj(x)/¢Jk(TjkX), when y = TjkX. 

This expression follows because 

m 

1l'(x) = Cll(x) = ccI>(x) n w? 
j=1 

Clearly, the transition probabilities P(x, y) defined above are of the form (1.41), 
and hence the resulting Markov chain has the stationary distribution 1l' . In this case, 
P-n = n- I .E7=1 g(Yi ) is the appropriate estimator for /L. 

To simulate a Markov chain with these transition probabilities, one generates a 
transition from a state x to the next state y as follows: 
(1) Randomly selectay = Tjkx E lE(x) with probability 1/IIE(x)1 to be a candidate 
for the next state of the chain. (This amounts to selecting a pair j =F k.) 
(2) Accept y = TjkX as the next state with probability min{l, ll(Y)/ll(x)}. If y is 
not accepted, then take the next state to be the current state x. 
This procedure is easy to implement because each transition involves changing 
only one or two coordinates of the state x. 0 

1.13 Properties of Whittle Networks 

In a Whittle network, the service rates at a node may depend on the numbers of 
units at the other nodes, while in a Jackson network, a node's service rate depends 
only on the number of units at that node. This section gives insight into the added 
richness of routing and cI>-balanced service rates in Whittle networks. We explain 
the meaning of cI>-balance and give a few examples of sector-dependent services. 
Expanding on the ideas here, Section 3.1 shows how networks with multiclass 
customers can be modeled by Whittle networks. 

Throughout this section, assume that X is a Whittle process with routing rates). jk 
and service rates ¢J j, which are cI>-balanced. We begin with some observations about 
reducible routing and subnetworks. Suppose that MI, ... , Mn denote subsets of M 
such that each node j =F 0 is in exactly one of the subsets and, when the network is 
open, the outside node 0 may be in several of the sets. Assume the routing rates). jk 
are irreducible on each Mi. Consider the network process X as the vector process 
Xt = (Xl, ... , X~) on E = EI X ••. x En, where X; = (Xt(j) : j E Mi\{O}) 
is the restriction of X to the subnetwork Mi\{O}, and its state space Ei may be 
closed or open. 

The process Xi is irreducible on Ei since the routing rates are irreducible on Mi; 
this is justified by the argument used in proving Proposition 1.10. Then the network 
process X is irreducible and invariant measures for it are given by Theorem 1.15. 
The X is called a mixed process if some of the Xi'S operate like open networks 
and the others operate like closed networks. Although the routings of the Xi'S are 
separate, these processes are dependent via the system-dependent service rates. 
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In some cases, it is also natural that each lPj(x) depends only on x restricted to 
the nodes in the subnetwork Mi that contains j. In this case, the Xi,S may stilI be 
dependent. 

The preceding observations show that reducible routing is a viable option for 
Whittle networks. In contrast, we saw that reducible routing is not of interest for 
Jackson networks. 

We now explain the meaning of <II-balance and give several characterizations of 
this property. Recall that the service intensities lP j are <II-balanced if <II is a positive 
function on E such that, for each x E E and j, k E M with TjkX E E, 

<II(x)lPj(x) = <II(TjkX)lPk(Tjkx). 

To understand the motivation for this assumption, consider the transition rate 
function 

ij(X, TjkX) == lPj(x), 

which is the same as q given by (1.6) with Ajk = 1. By Definition 1.4 of rever sibiI
ity, it follows that lPj are <II-balanced if and only if ij is reversible with respect 
to <II. The importance of this reversibility was discussed in the remark on weak 
coupling following Theorem 1.15. 

The preceding observation and the canonical form of reversible transition rates 
in Theorem 1.5 yield the following result. 

Proposition 1.45. The lP j are <II-balanced if and only if each lP j is of the form 

lPj(x) = 'I1(x - ej)/<II(x), x E E, 

for some nonnegative function \II defined on {x - e j : x E IE, j E M}. 

The preceding canonical form for <II-balanced service intensities lP j is useful 
when <II is known. How about when <II is unknown? Can one construct <II as a 
function of the lP j 's? The next result gives such a construction. It also characterizes 
the <II-balance property directly in terms of the lP j 'so Here we say that xo, ... ,xn E 

E is a direct path from XO to xn if Xi = Xi -I - e j; + e j: for some ji, j[ in M such 
that n = Ixo - xn I. 

Proposition 1.46. The service intensities lPj are <II-balanced if and only if, for 
each j, k, l E M and x E E with Tjex, Tux E E, 

lPj(x)lPk(Tjex)lPe(Tux) = lPk(x)lPj(Tux)lPe(Tjf.x). (1.42) 

In this case, lPj are <II-balanced by 

n 

<II(x) = n lPj;(xi-l)/lPj(xi), x E E, (1.43) 
i=1 

for any direct path xO, ... ,xn from a fixed reference state xO to xn = x, where 
Xi = xi-I - ej; + ej! for some ji, j[ in M such that n = Ixo - xl. 

PROOF. We pointed out above that lP j are <II-balanced if and only if the rates 
ij(x, TjkX) = lPj(x) are reversible with respect to <II. Then the assertions follow 
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from Theorem 2.8 and Proposition 2.21 in the next chapter. Expression (1.42) is a 
special case of the Kolmogorov reversibility criterion, and (1.43) is a special case 
of the canonical distribution for reversible processes. D 

Condition (1.42) is easy to verify for specific qJj's and, when it holds, one can 
easily construct <P by (1.43). This condition, which involves three-step paths, has 
a simpler version involving only two-step paths when the service intensities satisfy 
another mild condition; see Exercise 13. 

A useful class of service intensities are compound service intensities of the form 
qJj(x) = f17=1 qJj(x), where qJj are <Pi-balanced for each i. In this case, qJj are <P

balanced, where <p(x) = 07=1 <Pi (x). Such compound intensities are natural when 
there are several sources contributing to the departure intensity. A large class of 
compound service intensities is as follows. 

Example 1.47. Sector-dependent Service Rates. Associated with the Whittle net
work process X we are studying, let S denote the collection of all subsets (or 
sectors) of {I, ... , m}. Let S j C S denote the family of sectors that contain node 
j. For each sector J E S there is a nonnegative function qJJ(n) defined on the 
nonnegative integers n that is 0 only if n = O. Think of qJJ(x(J» as a "departure 
intensity," which depends on the number of units x(J) == LjeJ Xj in J. The qJJ 
affects the departures at each node j in J. Specifically, we assume these sector 
intensities are compounded such that the departure intensity at each node j =f. 0 is 

qJj(x) = n qJJ(x(J», x E E. (1.44) 
JeSj 

Typically, there will be sectors J with qJJO == 1; they do not affect any node and 
hence are not relevant. In addition, if the network is open, we assume the intensity 
qJo is a positive function of the form ~(Ix I). We call these qJ j 's sector-dependent 
departure intensities. D 

Invariant measures of Whittle network processes with sector-dependent 
departure intensities are as follows. 

Theorem 1.48. The sector-dependent departure intensities described above are 
balanced by the function 

Ixl x(J) 

<p(x) = n qJo(i - 1) n n qJJ(n)-I, x E E, 
i=1 JeS 11=1 

where ~ == 1 if the network is closed. Hence, the Whittle network process X with 
these sector-dependent departure intensities has art invariant measure 

m 

1l"(x) = <p(x) n w?, x E E. 
j=1 

(1.45) 

PROOF. The first assertion follows by Proposition 1.45, since an easy check shows 
that qJj(x) = qJo(lx - e;l)<P(x - ei)/<P(x). The second assertion of the theorem 
follows by Theorem 1.15. D 
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There are many types of sector-dependent departure rates based on interacting 
sUbpopulations. The trick is to identify relevant sectors J and their compounding 
intensities tPJ to model the dependency at hand. Here are some illustrations. 

Example 1.49. Treelike Networks with Load Balancing. Suppose the Whittle net
work process X represents an open network, and the communication graph of the 
routing intensities Ajk is a tree with one root node and each unit moves up some 
branch beginning from the root node. Assume that its nonzero transition rates are 

if j = 0 

if j ¥= O. 

The tPj is a "local service intensity" and tPBj(x(Bj» is a "load-balancing inten
sity" that is a function of the number of units in the branch B j that contains node 
j. The departure intensities are clearly sector dependent with the relevant sectors 
being branches and single nodes. Then the invariant measure (l.45) for the process 
is 

m Ixl Xj x(Bj} 
1l"(x) = n w? n t/Jo(i - 1) n tPj(n)-1 n tPBj(n,)-I, x E E. 

j=1 ;=1 n=1 n'=1 

Another natural dependency would be that departures at a node depend on the 
number of units "immediately above" the node on the branch, a special case being 
route-to-the-shortest-queue. Unfortunately, these dependencies (which are well 
known to be intractable) cannot be modeled by sector-dependent rates defined 
~. 0 

Example 1.50. Manufacturing Networks with Work Centers. A manufacturing 
facility commonly consists of work centers that contain several work stations 
whose processing rates may depend on the congestion in the work center and the 
overall congestion in the facility as well. As an elementary example, consider 
the Whittle network process X where the m nodes represent work stations and 
they are partitioned into work centers. Assume the arrival intensity from outside 
into node k is AOkt/Jo(lx I), and assume the departure intensity at node j is the 
compound intensity tPj(Xj)tPCj(x(Cj»tPMo(lxl). Here tPj(Xj) is the work-station 
intensity, tPcj(x(Cj » is the work-center intensity depending on the number of 
units x(Cj ) in the work center Cj containing station j, andtPMo(lxl) is the network 
intensity depending on the total number of units in Mo == {I, ... , m}. These 
intensities are sector dependent, where the relevant sectors are single nodes, work 
center node sets, and Mo. Then the process has an invariant measure given by 
(1.45), where 

Ixl Xj X(Cj) Ixi 
<Il(x) = n t/Jo(i - 1) n tPj(n)-1 n tPcj(n,)-1 n tPMo(n,,)-1 . 

;=1 n=1 n'=1 n"=1 
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o 

1.14 Exercises 

1. Suppose X is a stochastic process on a countable state space IE such that 
the sequence of states it visits is a Markov chain with transition probabilities 
fJ(x, y) and, whenever the process is in state x, the time to the next transition is 
exponentially distributed with rate A(X). The probability fJ(x, x) of a transition 
from state x back to itself may be positive. Show that X is a Markov process 
with transition rates q(x, y) = A(X)fJ(X, y). To do this, note that each sojourn 
time of X in a state x (including possible feedbacks) is equal in distribution 
to W = L;:,~l Wi, where Wi> W2, ... are independent and exponentially 
distributed with rate A(X), and N is independent of these variables. The N 
represents the number of feedbacks to x until another state is selected, and 
N = 0 when fJ(x, x) = O. Show that W is exponentially distributed with rate 
q(x) = A(X)(l - fJ(x, x». 

2. Consider a tandem network as in Section 1.2 that consists of only two nodes. 
Assume the network process is stationary. Find the percentage of time that 
node 2 contains more units than node 1. This is the percentage of time X is 
in the set of states A = {x : Xl < X2}. Show that the average waiting time in 
this set is W(A) = Ij(A(1 - P2». 

3. Give an expression for an invariant measure W j for routing intensities A jk, 

whose communication graph determines the following types of networks. 
(a) Closed cyclic network: the nodes form a circle that each unit traverses 
clockwise. (b) A closed treelike network with one root node (node 1) and the 
units move up the tree from the root to the leaves and a unit departing from 
a leaf node returns to node 1. (c) An open treelike network with one root 
node (node 1) and the units move up the tree from the root to the leaves and 
a unit departing from a leaf node exits the network. (d) An open feedforward 
network: The nodes can be labeled such that node 1 has no predecessors 
(Ajl = 0 for j =1= 0), node m has no successors (Amj = 0 for j =1= m), and 
Ajk = 0 if j < k, for each 1 < j < m. 

4. An open in-tree network is a treelike network with one root node, where all 
units move from the leaves to the root. The communication graph of such a 
network is shown in Figure 1.5. Such networks arise when routes of customers 
merge near the end of their network sojourns. Find a formula for an invariant 
measure for the routing rates Ajk of the in-tree as in Figure 1.5. Extend this 
formula for a general in-tree network. 

S. Give an expression for the equilibrium distribution of a Jackson process in 
which each node j is an s rserver node (1 ::: S j ::: 00), where each server 
works at the rate JL j . 

6. For an open ergodic Jackson network with unlimited capacity, show that if 
W j < lim inf n->oo cP j (n), then the average queue length L j at node j is finite. 
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FIGURE 1.5. In-Tree Network 

7. Consider an ergodic Jackson or Whittle process, and let r = (rl, ... , rt) 
denote distinct nodes that form a route in the network. Find conditions on the 
routing and service intensities under which the average travel time of units on 
this route is W'I + ... + W't' where Wj is the average sojourn time in node j. 

8. Suppose X is an ergodic open or closed Whittle process with service rates 
of the form <Pj(x) = cI>(x - ej)/cI>(x). Consider the event that a transition 
consists of a unit moving on anyone of the arcs 1 --+ 2, 2 --+ 1, 3 --+ 4, or 
6 --+ 5 (j --+ k means the unit moves from node j to node k). Let N(t) denote 
the number of times in the time interval (0, t] that this transition event occurs. 
Assuming X is stationary, give an expression for EN(1). 

9. Open Jackson Networks with Population-dependent Entries. Suppose X is 
an open Jackson network process with the added generality that, instead of 
f/JoO == 1, the rate <Po is a positive function <Po(lxl) of the total population Ixl 
in the network. This implies that the arrivals into node k from outside form a 
system-dependent Poisson process with intensity AOk<Po(lxl). Show that X is 
a Whittle process and that an invariant measure for it is 

Ixl-1 m Xj 

rr(x) = n <Po(i) n n <pj(n)-I, x E IE. 
;=0 j=1 n=1 

For the unlimited-capacity case, give a necessary and sufficient condition for 
the process to be positive recurrent and describe its normalization constant. 
Consider the case in which X has a finite capacity v and f/Jo(lx I) = 1/I(v -Ix I), 
where 1/I(r) is the intensity when there is room for r more units in the network. 
Show that the stationary distribution for X is 

v-Ixi m Xj 

rr(x) = c n 1/I(i) n n <pj(n)-I, x E IE. 
;=1 j=1 n=1 

10. Prove the convolution formula (1.21). 
11. Prove expression (1.26) using a direct induction argument. 
12. Proposition 1.39 contains an algorithm for computing performance parameters 

for a closed Jackson process. One might think this result automatically applies 
to an open Jackson process with finite capacity. The proof, however, contains 
a key equation that requires a closed network, and the equation is not valid for 
an open network. Specify this key equation. 
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13. Two-Step Criterion for cI>-balance. Prove the following results for system
dependent service intensities l/J j (x). 
(a) Suppose the network is open and l/Jo has the form l/Jo(lxl). Then l/Jj are cI>
balancedifandonlyif,foreachj,k E M\{O} and x E lEwithx-ej,x-ek E 

lE, 

In this case, 

n 

cI>(x) = n l/Jo(i - l)/l/Jki(Xi), x E lE, 
i=1 

for any direct path xo, ... ,xn from xo = 0 to xn = x, where n = Ix I and 
Xi = Xi-I + eki. 
(b) Suppose the network is closed and there is a node l such that l/Jt has the 
form l/Je (Xt , Ixl). Then l/Jj are cI>-balanced if and only if, for each j, k E M\{l} 
and x E lE with Tjex, Tk/x E lE, 

In this case, 

v 

cI>(x) = n l/Jt(v - i + 1, i - 1)/l/Jdxt x E lE, 
i=1 

for any direct path xo, ... , XV from xo = vet to XV = x, where Xi = Xi-I -
ee + eki. 
These results can be proved directly by induction. Another approach is to 
use the property that cI>-balance is equivalent to q(x, Tjkx) = l/Jj(x) being 
reversible with respect to cI>. Then show that the Kolmogorov criterion (in 
the next chapter) for reversibility, for paths of any length, is implied by each 
criterion above, which is a Kolmogorov criterion for paths of length two. 

14. Networks with Single-Server and Infinite-Server Nodes. Suppose X is a closed 
Jackson network process in which each node j in a certain sector J is a single
server node with rate IL j and each node k E JC is an infinite-server node with 
rate ILk for each of its servers. Show that the stationary distribution of X is 

where r j = W jilL j and the normalization constant is given by 

II! V 

c- I = L(ie)v+IJI-nt He(J) L(rlie)n In!. (1.46) 
e=1 n=O 

Here I J I is the number of nodes in J and r = LkEJC rk. Also, as in Proposi
tion 1.32, the it. ... , ill! denote the distinct r/s in J and Ht(J) is the term in 
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brackets in (1.28). In particular, if the r j'S in J are distinct, then 

v 

c- I = L(rj)v+IJI-1 n (rj - rk)-I L(r/rj)n/nL 
jEJ kEJ,ki'j n=O 

Hint: Use the expression 

15. Networks with -jM/s Nodes or Limited Queue Dependency. Suppose X is a 
closed Jackson network process in which each node has limited queue depen
dency in the sense that its departure rate function is constant when the queue 
length is above a certain level. Let n j be such that tP j (n) = tP j (n j), for n :::: n j. 
An example is an srserver node with departure rate tPj(n) = ILj min{n, Sj}, 

which equals the constant JL j S j for n :::: S j. Then the stationary distribution 
of X is 1l'(x) = c nj /j(Xj), where /j(n) = n~~1 wjtPAn)-I. By an obvious 
evaluation, the generating function of the convolution II * ... * 1m (which is 
the product of their generating functions) is 

where b j = W j / tP An j). Then proceeding as in Proposition 1.32, obtain a 
closed form expression for c- I = G(v)(O)/vL 
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2 
Reversible Processes 

An ergodic Markov process is reversible if, in equilibrium, the expected number of 
transitions per unit time from one state to another is equal to the expected number 
of the transitions in the reverse order. This is also equivalent to a time-reversibility 
property that, at any instant, the future of the process is stochastically indistin
guishable from viewing the process in reverse time. A remarkable feature of such 
a process is that its equilibrium distribution is readily obtainable as a certain prod
uct of ratios of its transition rates. A classic example is a birth-death queueing 
process. This chapter describes a wide class of reversible Markov network pro
cesses with batch or multiple-unit movements as well as single-unit movements. 
Examples include multivariate birth-death processes with single and batch incre
ments and reversible Jackson and Whittle processes. The last two sections cover 
partition-reversible processes, which are generalizations of reversible processes. 
Invariant measures for such processes are obtainable by solving balance equations 
separately on subsets that partition the state space. 

2.1 Reversibility 

Reversible Markov processes are very tractable because their transition rates and 
equilibrium distributions have canonical forms. We will describe these and other 
fundamental properties of reversibility in the first four sections. The rest of the 
chapter covers reversible network processes. 

Unless specified otherwise, we assume that {Xc : t ~ O} is a Markov jump 
process on a countable state space IE, and its transition rates are denoted by q(x, y). 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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Recall from Definition 1.4 that the process X is reversible if there is a positive 
measure 7r on IE that satisfies the detailed balance equations 

7r(x)q(x, y) = 7r(y)q(y, x), x, y E IE. (2.1) 

We also say that q is reversible with respect to 7r. The measure 7r is necessarily 
an invariant measure of q (or of X) since it satisfies the total balance equations, 
which equal the sum of (2.1) over y. 

Equation (2.1) implies that, for an ergodic process, the average number of tran
sitions of the process from state x to state y is equal to the average number of 
transitions in the reverse direction from y to x. These average numbers of tran
sitions are also expected numbers of transitions per unit time when the process 
is stationary. Note that if q is reversible, then it has the two-way communication 
property that, for each x =f. y E IE, the q(x, y) and q(y, x) are both positive or 
both equal to O. This yields the simple but useful criterion that a process is "not 
reversible" if a transition from some x to y is possible, but a transition in the reverse 
direction is not possible. 

Recall from Theorem 1.5 that q is reversible if and only if it is of the form 

q(x, y) = y(x, Y)/7r(x), x =f. y E IE, (2.2) 

for some positive function 7r on IE and some nonnegative function y on IE x IE such 
that y (x, y) = y(y, x), x, Y E IE. In this case, q is reversible with respect to 7r • 

In addition to its use for verifying reversibility, the canonical representation 
(2.2) is useful for constructing reversible processes or modifying processes to be 
reversible-we will see examples shortly. Another observation is that any positive 
distribution 7r on IE is the stationary distribution of a reversible Markov process 
with transition rates (2.2). 

Note that the process X need not be stationary. Another approach to reversibility 
is to define it in terms of time reversals (discussed in the next section) and then 
show its equivalence to the preceding algebraic definition. This alternate approach 
requires the Markov process to be stationary, which is not needed for many results. 

The definition of reversibility also applies to discrete-time Markov chains, in 
which case q(x, y) are its one-step transition probabilities. All the results below 
hold for Markov chains with q(x, y) interpreted as transition probabilities and the 
time parameter is discrete instead of continuous. Note that the definition applies 
to any nonnegative rates or probabilities as an algebraic property, not necessarily 
associated with a stochastic process. Recall that the sequence of states visited by 
X is a Markov chain with transition probabilities p(x, y) = q(x, y)/q(x), where 
q(x) = Ly q(x, y). Clearly, q is reversible with respect to 7r if and only if pis 
reversible with respect to 7r(x)q(x). 

A quintessential reversible process is the following classical birth-death process. 

Example 2.1. Birth-Death Process. Suppose the process X represents the number 
of units in a service system (or in any population) and its state space IE is the set 
of nonnegative integers. Assume that whenever there are x units in the system, the 
time to the next arrival (birth) is exponentially distributed with rate >..(x), and the 
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time to the next departure (death) is exponentially distributed with rate /L(x). Then 
the transition rates for the process are 

{
A(X) 

q(x, y) = ~(X) 

ify=x+l 

ify=x-I~O 

otherwise. 

This process is the classical birth-death process. Its detailed balance equations for 
y = x + I and y = x - I are respectively 

n(x)A(x) = n(x + l)/L(x + 1), x ~ 0, 

n(x)/L(x) = n(x - I)A(x - 1), x ~ 1. 

But these two equations are the same. The second one yields 

n(x) = n(x - I)A(x - l)//L(x), x ~ 1. 

By a backward iteration of this equation, it follows that it has a solution 

x 

n(x) = n(O) n A(n - 1)//L(n), x ~ 1. (2.3) 
n=1 

Thus, the process is reversible with invariant measure n. Furthermore, n is its 
stationary distribution and 

00 x 

n(O)-1 = I + L n A(n - l)//L(n), 
x=1 n=1 

provided this sum is finite. o 

The next result is a sufficient condition for reversibility. The communication 
graph of the rate function q is an undirected graph whose set of vertices is the state 
space IE and there is an edge linking a pair x, y if either q(x, y) or q(y, x) is not 
O. The graph is connected when X is irreducible (which we have assumed). 

Theorem 2.2. lithe process X is ergodic and its communication graph is a tree, 
then X is reversible. 

PROOF. Let n denote the stationary distribution of X. Recall that 

nq(A, B) = L L n(x)q(x, y) 
xeA yeB 

is the average rate of flow from A to B, and we noted in (1.2) that nq(A, AC ) = 
nq(AC , A) for any A. 

Now, suppose x, y are vertices in the communication graph that are linked by 
an edge. Let Ax be the set of states in IE reachable from x if the edge were deleted. 
Since the graph is a tree, it follows by the definition of Ax and the observation 
above that 

n(x)q(x, y) = nq(Ax, A~) = nq(A~, Ax) = n(y)q(y, x). 
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Thus, the detailed balance equations are satisfied and hence X is reversible. 0 

Note that the communication graph of the classical birth-death process in Exam
ple 2.1 is a tree, but there are many reversible processes whose communication 
graphs are not trees. 

2.2 Time Reversal 

Let us see how reversibility is related to the behavior of a process in reverse time. 
For fixed 'l' > 0, consider the process 

x; = Xr - t , 0 ~ t ~ 'l'. 

This process xr on the time set [0, 'l'] is the time reversal of X at 'l'. It represents 
the evolution of X in reverse time beginning at 'l'. If one thinks of a sample path 
of X as a video tape, where X t is the picture at time t, then one would see the 
corresponding sample path of xr by viewing the tape in reverse beginning at time 
'l'. 

Proposition 2.3. The process xr is a Markov jump process with (time-dependent) 
transition probabilities 

r r P{Xr - t = y} 
P{Xt = ylX, = x} = P{Xt- s = xlXo = y}, 0 ~ s ~ t ~ 'l'. 

P{Xr - s = x} 
(2.4) 

If X is stationary with distribution rr, then xr is also a stationary Markov process 
with distribution rr, and its transition rates are 

qr(x, y) = rr(x)-l rr (y)q(y, x), x -I- y E IE. (2.5) 

PROOF. Consider the probability 

r r P{Xr - t = y, X r - s = x, A} 
PIX! = ylXs = x, A} = , 

P{Xr-,I' = x, A} 

for any 0 < s ~ t ~ 'l' and event A generated by {X~ : 0 ~ r < s}. To prove the 
first assertion, it suffices to show that this fraction equals the right side of (2.4). 
But this equality follows since the denominator equals 

P{Xr- s = x}P{AIXr- s = x} 

and the numerator equals 

P{Xr- t = y}P{Xr- s = xlXr- t = y}P{AIXr- s = x}, 

because X is Markovian and A is generated by {X r : 'l' < r < 'l' + s}. 
Now, suppose X is stationary with distribution rr. By the first assertion, xr is a 

Markov process, where the transition probabilities (2.4) now reduce to 

Jl"(x)-l rr (y)p{Xt = xlXo = y}. 
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Dividing this by t and letting t --1- 0 proves (2.5). Also, xr is stationary and its 
distribution is rr since, for each t, the XJ has the same distribution as Xr-I, which 
is rr. D 

The evolution of X backward in time is equal in distribution to its evolution 
forward in time if xr and X are equal in distribution on [0, 'l"] for each 'l" > O. 
That is, for each tl < ... < tn ~ 'l", 

v 
(Xr - /I ' ... , X r - I.) = (XII' ... , XI.)' (2.6) 

This property is related to reversibility as follows. 

Theorem 2.4. The Markov process X is stationary and reversible if and only if 
(2.6) holds. 

PROOF. Suppose X is stationary and reversible and its distribution is rr. Then 

Xo g Xo. Also, by Proposition 2.3, xr is a stationary Markov process with tran
sition function qr given by (2.5). This expression and the reversibility of q implies 
qr = q. Since Xr and X are Markov processes, they are equal in distribution on 
[0, 'l"] for each 'l" > 0, which is equivalent to (2.6). 

Conversely, suppose (2.6) holds. Then, in particular, Xo g X r for each 'l", and 
since X is Markovian, it is therefore stationary. Then by Proposition 2.3, xr is a 

stationary Markov process with transition rates (2.5). Also, (2.6) implies xr g X, 
and hence qr = q. This and (2.5) establish that q is reversible. D 

Statement (2.6) is sometimes used to define reversibility of X. It says that the 
distribution of X is invariant under the compound operation of reflecting the time 
scale about 0 and then shifting it by any amount 'l". Also, a sufficient, but not 
necessary condition for X to be reversible is that 

V 
(XII' ... , XI.) = (XI", ... , XII)' tl < ... < tn· 

It is often natural to consider X as a process {XI: t E JR} whose time set is the entire 
real line JR. In this case, X r , for each 'l", is defined on the time interval (-00, 'l"). 
Furthermore, if X is stationary, then it is reversible if and only if its distribution 

is invariant under a reflection of the time axis about O. That is, XO g X or, 
equivalently, 

V 
(XII"'" XI,,) = (X-II"" X-I.), tl < ... < tn· 

We end this section with more insights into time-reversal processes. This ma
terial does not involve the notion of reversibility. The following result relates the 
balance equations for a Markov process to the time reversal of the process. 

Theorem 2.5. Suppose the Markov process X is ergodic and there exists a positive 
distribution rr on IE and a transition function ij on IE such that 

ij(x, y) = rr(x)-Irr(y)q(y, x), x, y E IE, (2.7) 
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Lq(x, y) = Lq(x, y), X E lEo (2.8) 
y y 

Then 7r is the stationary distribution of X. Also, q is the transition function of a 
time reversal of X when X is stationary. 

PROOF. Under the assumptions, 

7r(x) Lq(x, y) = 7r(x) Lq(x, y) = L7r(y)q(y, x). 
y y y 

This proves the first assertion. The second assertion follows by Proposi
tion 2.3. 0 

The preceding result may be used to verify that a conjectured distribution 7r satisfies 
the balance equations for a Markov process X, and, at the same time, obtain the 
time reversal transition rate q. Namely, define a transition function q by (2.7), 
where 7r is a conjectured stationary distribution of X. Alternatively, one could 
conjecture the form of q for a time reversal of a stationary version of X, and this 
would define 7r by (2.7). In either case, if q satisfies (2.8), then 7r is the stationary 
distribution of X. 

Remark 2.6. Note that verifying (2.8) is the same as verifying directly by 
substitution that 7r satisfies the balance equations (Exercise 3 is an example). 
Consequentially, the preceding result may not be as useful as it appears. However, 
the act of conjecturing what q is for the time reversal of X and using (2.7) might 
give insight into candidates for 7r • 

The time reversal of a process need not be the same type of process as the 
original one. This property is easy to check, however, if one knows the stationary 
distribution of the process. 

Example 2.7. Time Reversal of Jackson and Whittle Processes. Suppose X is a 
stationary Jackson or Whittle process. Then by Proposition 2.3, its time reversal 
XI is an ergodic, stationary Markov process with the same stationary distribution 
7r as X and its transition rates are 

q(x, Tjkx) = 7r(Tjkx)7r(x)-lq(Tjkx,x) 

= }..jkrPj(X), 

where }..jk = WkW-;t Ajk. The wi's that satisfy the traffic equations for Ajk also 

satisfy the traffic equations for}.. j k, since the latter is the time reversal of the former. 
Thus, X is the same type of network process as X; the service rates are the same, 
but the routing rates are the reversal of the original routing rates. Note that this 
result does not say anything about the reversibility of the process X. 0 
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2.3 Invariant Measures 

We now present the canonical form of invariant measures for reversible Markov 
processes. This is linked to Kolmogorov's criterion for characterizing a reversible 
transition function. 

Recall that the Markov process X has the two-way communication property that 
either q(x, y) and q(y, x) are both positive or both equal to 0, for each x =1= y E E. 
Throughout this section, we will assume (at no loss in generality) that X has 
this property. We say that a sequence of states xo, x I , ... ,xn in E is a path if 
q(Xi-I,Xi) > O,i = I, ... ,n. We also use the ratio of rates 

p(x, y) == q(x, y)/q(y, x), for a path x, y. 

The most remarkable feature of a reversible Markov process is that an invariant 
measure for it is automatically given by expression (2.9) below, which is a product 
of ratios of the transition rates. In proving this canonical form, we also establish 
Kolmogorov's criterion, which is a condition equivalent to reversibility, but which 
only involves q. Statement (iii) is a "ratio form" of Kolmogorov 's criterion, which 
is often easier to exploit. 

Theorem 2.S. The following statements are equivalent. 
(i) The transition function q is reversible. 
(ii) (Kolmogorov Criterion) For each n and xo, x I, ... , xn in E with xn = xo, 

n n 

TIq(Xi-I,Xi) = TIq(Xi,Xi- I). 
i=1 i=1 

(iii) For each path xo, Xl, ... , xn in E, the product n:=1 p(Xi- l , xi) depends on 
xo, ... ,xn and n only through xo, xn. 
If q is reversible, then an invariant measure for it is 

n 

1l'(x) = TI p(xi- I, Xi), X E E\{xO}, (2.9) 
i=1 

and 1l'(XO) = 1, where XO, x I, ... ,Xn = x is any path and XO is an arbitrary state 
viewed as an origin. 

Remark 2.9. One can construct the 1l' in (2.9) by the following recursion. Set 
Eo = {xo} and 

En+1 = (x E E\En : q(y, x) > 0 for some y E En}. 

Then let 1l'(xo) == 1 and for each n ~ 1, define 

1l'(x) = p(y, x)1l'(Y), for x E En+1 \En and any y E En with q(y, x) > O. 

PROOF. (i) => (ii). If q is reversible with respect to 1l' , then, for each xO, x I, ... , xn 
= XO inE, 

n n TI 1l'(Xi- l )q(Xi- l , Xi) = TI 1l'(Xi)q(Xi, Xi-I). 
i=1 i=1 
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Cancelling the H'S yields (ii). 
(ii) => (iii). To prove (iii), it suffices to show 

n l 

np(xi-I,xi ) = np(xi-I,xi ), (2.10) 
i=1 i=1 

where xo, ... ,xn and xo, ... , xl are two paths with xo = Xo and xl = xn. Since 
xo, ... , xn, Xl-I, ... , X I, XO is a path from Xo to itself, (ii) implies 

n lin n q(Xi- l , Xi) n q(Xi , Xi-I) = n q(Xi- l , Xi) n q(Xi , Xi-I). 
i=1 i=1 i=1 i=1 

These quantities are positive, by the definition of a path. Then, dividing both sides 
of this equation by the second and fourth products yields (2.10). 
(iii) => (i). Suppose (iii) holds, and let H be defined by (2.9). We will show that q 
is reversible with respect to H. For a fixed x, let xo, ... ,xn = x be a path. Choose 
any y such that q(x, y) > 0. Then using (2.9), 

n 

H(X)q(X, y) = n p(xi- I , Xi)q(x, y) 
i=1 

n 

= q(y, x) n p(Xi- l , Xi)q(X, y)/q(y, x) = q(y, X)H(Y)· 
i=1 

These detailed balance equations also hold trivially for x, y with q(x, y) 
q(y, x) = 0. Thus q is reversible with respect to H. D 

To verify the Kolmogorov criterion, or its ratio analogue (iii), one may not have to 
consider all possible sequences or paths in E. In many instances, certain structural 
properties of q and IE lead to simpler versions of the Kolmogorov criterion. In 
particular, for some processes on vector state spaces such as network processes 
discussed shortly, only a small family of paths generated by the basis vectors 
need be considered. The following is another special case that is illustrated in the 
example below. 
Fact. The Kolmogorov criterion holds for all paths, if it holds for paths consisting 
of distinct states, aside from the same beginning and end states. 
This is because any path can be partitioned into subpaths of distinct states. 

Example 2.10. Circular Birth-Death Process. Suppose the process X has state 
space IE = {O, 1, ... , n}, and it moves as follows: From any state j, it may move 
to j + 1 or j - 1, where n + 1 = ° and -1 = n. Its transition rates are 

{
A(X) 

q(x, y) = ~(X) 

ify = x + 1::: n or (x, y) = (n,O) 

if y = x-I ~ ° or (x, y) = (0, n) 

otherwise. 

This circular birth-death process may not be reversible as its classical counterpart 
is. Let us see the type of birth-death rates under which it is reversible. Note that its 
communication graph is a circle. Consequently, a path of distinct states from any 
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state back to itself consists of all the states. In this case, the Kolmogorov criterion 
for reversibility is 

A(O) ... A(n) = JL(O) ... JL(n). (2.11) 

In other words, the process is reversible if and only if (2.11) holds. In this case, 
the stationary distribution is 

x 

1f(x) = 1f(0) n A(k - 1)/ JL(k), l:s x :s n, 
k=1 

where 1f(0)-1 = L~=o n:=1 A(k - 1)/JL(k). 
This example readily extends to the context in which the communication graph 

of the process X is a tree with leaf-to-rootconnections. Specifically, assume there is 
a single root node 0 for the branches, and there is two-way communication between 
adjacent nodes that form the branches. In addition there is two-way communication 
between the ends of the branches (the leaves of the tree) and node o. This graph is 
a collection of circular graphs connected at node 0, where the unique set of nodes 
leading from a leaf to the root 0 forms a circular graph. Note that a path of distinct 
states (or nodes) from a state back to itself consists of the circular graph that goes 
through that state. Consequently, the Kolmogorov criterion for reversibility of X 
is equivalent to the identity (2.11) for each circular graph of the tree (node n would 
be a leaf of the branch). Some of these equations may be dependent since a node 
may be on several circular graphs. 0 

The following is another example where the Kolmogorov ratio criterion 
simplifies considerably. 

Example 2.11. McCabe's Library. Consider an infinite number of books or items 
labeled 0, 1, ... that are placed in a row on an infinite (virtual) bookshelf. The 
successive book selections by users are independent, and each user selects book 
b with probability Pb. When a book at location 0 is selected, it is returned to that 
location. Otherwise, a book selected from location j ~ 1 is returned to location 
j - 1, and the book there is placed in location j. This switching is done before 
the next book is selected. The state of the library (called McCabe's library) at any 
selection is x = (xo, XI, ••• ), where x j denotes the book at location j. Whenever 
the library is in state x and the book x j at location j is selected, then the new state 
is the vector x with the entries Xj and Xj_1 interchanged if j ~ 1, and the state 
remains the same if j = o. Without loss of generality, assume the initial state of 
the library is in the set lE of all permutations of the books (0, 1, ... ) obtained by a 
finite number of book selections. Then the states of the library at successive book 
selections is a Markov chain {Xn : n ~ O} on lEo Its transition probabilities are 
P(x, y) = PXj if y is obtained from x after selecting the book at location j for 
some j ~ 0 and P(x, y) = 0 otherwise. 

We will show that the Markov chain X n is reversible and has an invariant measure 

n(x) 

1f(x) = n p~~-Xj), X E lE, (2.12) 
j=O 
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where n(x) = min{n : Xj = j, j > n}. This n(x) is finite since x is obtained from 
(0, 1, ... ) by a finite number of book selections. Note that if the book collection 
were finite, then the resulting Markov chain would have the same invariant measure 
as above (Exercise 4), where IE is the finite set of all permutations of the books. 

To establish reversibility, we use the Kolmogorov ratio criterion. For any path 
xo, ... , xn of distinct states, 

n n n p(Xi-I,Xi)/p(Xi , xi-I) = nPb'/Piii , 

i=1 i=1 

where bi is the book selection that yields Xi from Xi -I and bi is the book selection 
that yields Xi - I from xi. This product simplifies because of the following prop
erties. To move from xo to xn, each book xi with (xi < xJ) has to be selected 

at least (xJ - xi) times. And after the (xJ - xi)th one, each subsequent bi book 

selection has to be compensated by the associated book bi • Similarly, to move in 
reverse from xn to xo, each book xJ with (xJ < xi) has to be selected at least 

(xi - xJ) times. And after the (xi - xJ)th one, each subsequent bi selection has 
to be compensated by the associated bi • Consequently, 

This quantity does not depend on the interior states xl, ... , xn- I of the path. Then 
by Theorem 2.8, the Markov chain Xn is reversible and an invariant measure for 
it is the preceding product evaluated at xn = x, where Xo is fixed. In other words, 
for xo = (0, 1, ... ) this invariant measure is (2.12) as asserted. 

Note that the state of the library can also be represented by the vector Z = 

(zo, ZI, ••• ), where Zb denotes the location of book b. The Z is the inverse of the 
corresponding state x in that zx} = j and XZb = b. Because of this one-to-one 
correspondence between x's and z's, the successive values of this shelf variable 
Zn also form a reversible Markov chain on the state space IE. Since {Zn = z} = 
{Xnzb = b, b ::: OJ, it follows that an invariant measure for Zn is 

n(z) 

1l'z(z) = n PbZb - b), Z E IE, 
b=O 

where n(z) = min{n : Zb = b, b > n}. This measure is (2.12) with the variable 
Xj changed to b and j = ZXj = Zb. D 

2.4 Construction of Reversible Processes 

This section covers elementary results that are handy for identifying or constructing 
reversible processes. The focus is on reversible processes restricted to subsets of 
their state spaces, independent reversible processes, and compounding of reversible 
transition rates. 
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Our first observation is that a reversible process restricted to any subspace is also 
reversible. Suppose that X is a Markov process on lE with transition rates q(x, y). 
Fix a subset i c lE, and let X be a Markov process on i whose transition rates 
are the rates q(x, y), with x, y restricted to i. The process X is the restriction of 
X to i. This restriction X can be viewed as the process X with its transitions from 
states inside i to states outside ofi "blocked" or suppressed. The following result 
is an immediate consequence of the definition of reversibility. 

Proposition 2.12. If X is reversible with respect to rr:, then its restriction X to i 
is also reversible with respect to rr: restricted to i. If in addition, X is ergodic and 
X is irreducible, then X is ergodic and its stationary distribution is 

ir(x) = rr:(x)/ Lrr:(y), x E i. 
yet 

This is the conditional stationary distribution of X being in state x given that it is 
ini. 

Suppose one is considering a new Markov process and recognizes that it is a 
restriction of a known reversible process whose stationary distribution is known. 
Then by the preceding result, one automatically knows the stationary distribution 
of the new process. Restrictions of reversible processes are also of interest when 
studying the effect of changing the operation of a reversible process by blocking 
certain transitions. Here is a typical example. 

Example 2.13. Truncated Birth-Death Process. Suppose the process X represents 
the classical birth-death process in Example 2.1 with birth and death rates ).,(x) 
and /L(x). Consider a truncated variation of this process in which the system can 
only accomodate at most v units; arrivals are blocked or lost from the system when 
v units are present. Also, assume the system does not serve customers whenever 
the number of customers is below a prescribed lower limit Vo < V. For instance, 
the servers may be assigned to other duties such as maintenance when the queue is 
below Vo. For simplicity, assume the number of units in the system at time 0 is in the 
set i = {vo, Vo + 1, ... , v}. Otherwise, the queue length will eventually reach this 
set and stay there. Under these assumptions, the number of units Xt in the system 
at time t is a process that is a restriction of X to i. Thus, by Proposition 2.12, the 
process X is reversible and its stationary distribution is 

x 

ir(x) = ir(vo) n ).,(n - 1)//L(n), x E i, 
n=Vo+1 

where ir(VO)-1 = L~=Vo f1~=Vo+1 ).,(n - 1)/ /L(n). 0 

The next result says that a juxtaposition of independent reversible processes is 
also reversible. This simple property follows immediately from the definition of 
reversibility. There are several interesting dependencies that can be modeled by re
stricting such multivariate independent processes to smaller subspaces. Examples 
are in the next section. 
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Proposition 2.14. Suppose XI = (Xi, ., . , X,:), t ::: 0, where Xl, ... , xm are in
dependent, irreducible, reversible Markov processes on lEI, ... , lEn" respectively, 
and X j has transition rate function q j and invariant measure 1C j. Then X is an 
irreducible Markov process on lE = lEI X ••• x lEm with transition rates 

if Yk = Xk for k i- j for some j E {I, ... , m} 

otherwise, 

which is reversible with respect to 1C(X) = 1C1 (XI)' • '1Cm(Xm), X E lE. 

The next observation is that a transition function is reversible if it is a 
compounding of reversible transition functions. 

Proposition 2.15. Suppose q(x, y) = ql(X, y)q2(X, y), x, y E lE, where ql and 
q2 are irreducible transition functions on lE. If q I and q2 are reversible with respect 
to 1C1 and 1C2, respectively, then q is reversible with respect to 1C(X) = 1C1 (X)1C2 (x). 
Furthermore, ifq and ql are reversible with respect to 1C and 1C1, respectively, then 
q2 is reversible with respect to 1C2(X) = H(X)j1CI(X), 

This result follows immediately from the definition of reversibility. It readily ex
tends to multiple compounds q(x, y) = ql (x, y) . .. qn(x, y) as follows. If any n 
of the transition functions q, ql, ... ,qn are reversible, then the other one is also 
reversible and their invariant measures are related by 1C(X) = 1C1 (x)· . ·1Cn(X). 

2.5 More Birth-Death Processes 

Classical birth-death processes have natural extensions to multivariate processes, 
including processes with mUltiple births and deaths. A few examples are as follows. 

The first example is indicative of a wide class of multivariate birth-death pro
cesses constructed by a coupling together of several one-dimensional birth-death 
processes. 

Example 2.16. Multiple Birth-Death Processes with Population Constraints. 
Consider m populations that operate like independent irreducible birth-death pro
cesses, but the vector of the respective population sizes x = (XI, ... , xm) is 
constrained to be in a subset lE of lE = {x : Xj = 0,1, ... ; 1 ~ j ~ m}. For 
instance, if the total number of units in the populations is constrained to not ex
ceed v, then lE = {x : ° :s: Ixi :s: v}. To model the m population sizes, consider 
the process XI = (Xi, ... , X,:), t ::: 0, where Xl, ... , xm are independent irre
ducible birth-death processes on the nonnegative integers. An invariant measure 
for xj is 1Cj(n) = 0:=1 Aj(k - l)j/Lj(k), n ::: 1, where Aj(-) and /Lj(') are the 
birth and death rates. Now the sizes of the m populations can be represented by 
the process X that is the restriction of X to the subset lE. By Proposition 2.14, X is 
reversible with respect to a measure that is the product of the invariant measures 
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7rj. Then by Proposition 2.12, X is reversible with respect to 

m Xj 

jf(x) = n n A/n - l)/JL/n), x E t. 
j=IIl=1 

The process X is a special multivariate birth-death process where the populations 
operate independently subject to the constraint of the restricted subspace-hence 
the populations are dependent. There are many applications of this model in which 
1E is the set of population vectors x that satisfy linear constraints such as a j ::: x j ::: 

hj, Lj=1 rjxj ::: r, or 

m 

LrijXj ::: ri, i = I, .. . 1. 
j=1 

For instance, the last constraint applies when each unit of population j requires rij 
units of a resource i and there are only ri units of the resource available. Typical 
resources are space, computer memory, manufacturing tools, and money. Other 
common constraints are that J;(x) ::: 0, i = I, .. . 1, where J; are nonlinear 
functions. 0 

The preceding example, which is a rich source of applications, could be covered 
in an elementary course that introduces reversibility along with Propositions 2.12 
and 2.14. A special case of this example is as follows. 

Example 2.17. Communication Network with Capacity Constraints and Blocking. 
Consider a communication network that services m types of units. The units arrive 
to the network according to independent Poisson processes with respective rates 
AI, ... , Am. For its communication across the network, each type j unit requires 
the simultaneous use of aij channels on link i for each i in the set f of links of the 
network. Some of the aij 's may be O. If these quantities of channels are available, 
they are assigned to the unit, and the unit holds the channels for a time that is 
exponentially distributed with rate JL j. At the end of this time, the unit releases 
the channels and exits the network. The total number of channels available on link 
i E f is hi. If a unit arrives and its required channel quantities are not available, 
then it cannot enter the network (it is blocked or lost). 

Let XI = (Xl, ... , X;") denote the numbers of the m types of units in the 
network at time t. Think of the m populations as nodes of a "virtual network," not 
to be confused with the underlying communication network. When X is in state 
x, the number of channels in use on link i is Lj aijXj. Then the state space of X 
is lE = {x : 0 ::: Lj aijXj ::: hi, i E l}. Note that if the state of the process is 
x, then a type j unit can enter the network provided x E E j = {x : Lk aikXk ::: 
hi - aij, i E f}. Under these assumptions, X is a constrained multivariate birth
death process as described in the preceding example. It has single-unit movements 
and its transition rates are q(x, x + ej) = Aj, if x E lEj and q(x, x - ej} = JLj' if 
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x j :::: 1. Then its stationary distribution is 

m 

Jr(x) = C DO.j/JLjYJ, x E lE, 
j=1 

where c is the normalization constant. 
The quality of the network is usually assessed in terms of blocked or lost cus

tomers. The probability that a type j arrival is blocked in equilibrium is Jr(lEj). 
Ideally, the channel capacities hi would be sized such that the blocking probability 
Jr(lEj) would be less than some small amount such as .01. The Jr also provides 
insight into which links cause the blocking. For instance, the probability that a type 
j is blocked because of the load on link i is full is LXEIE~ Jr(x)I(Lk aikXk > hi). 

J 

What is the average number of type j units blocked per unit time? To determine 
this, consider rj(t) = J~ l(X" E lEj)ds, which is the amount of time in [0, t] that 
type j units are blocked. Now, the number of type j units blocked in [0, t] can 
be expressed as Nj(rj(t», where Nj{t) is a Poisson process with rate Aj and Nj 
is independent of X. Thus, by the strong law of large numbers for Nj(t) and for 
tj(t), the number of type j units blocked per unit time is 

lim t-I Nj(rj(t» = lim tj{t)-I Nj (tj (t»rj {t)/t = AjJr{lEj) w.p.1. 
1-+00 1-+00 

A related process for assessing loads on the network links is YI = (Y} : i E /) 

where Y} = L j aij X I is the number of channels on link i that are in use at time t. 
Although this process Y is not Markovian, its stationary distribution, as a function 
ofJr, is 

Jry(y) = LJr{x)l(LaijXj = Yi, i E I). 
XEIE j 

This distribution can be used to determine various performance parameters such 
as the percent of time that link i is idle or the stationary probability that link i 
has more channels in use than link k. Another parameter of interest is the average 
number of channels in use on link i, which is Lj aij LXEIE XjJr(x). 0 

Note that any Markov jump process on the nonnegative integers that has only 
unit increments is a classical birth-death process, and hence it is reversible. What 
about processes on the integers whose increments may be more than one unit? A 
necessary and sufficient condition for such a process to be reversible is given in 
the following example. 

Example 2.1S. Batch Birth-Death Process. Consider a generalization of the 
classical birth-death queueing process in which there are batch arrivals and batch 
departures, whose size a is in a set A of allowable increments. Let XI denote the 
number of units in the system at time t. The state space lE of X is the set spanned by 
the elements of A. For simplicity, assume the least common divisor of the elements 
in A is 1, and so lE is the set of nonnegative integers. Assume the transition rates 
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of this process are 

{
Aa(X) 

q(X, y) = ~a(X) 

if y = x + a, a E A 

if y = x - a ::: 0, a E A 

otherwise. 

The Aa(X) and lLa(X) are the positive rates for births and deaths of size a when the 
process is in state x. From a result we will prove shortly, Theorem 2.22, it follows 
that the process X is reversible if and only if the birth and death rates satisfy 

x+a-I 

Aa(X)/lLa(X +a) = n Al (n)/ILI (n + 1), x E lE, a E A. (2.13) 
n=x 

Assuming this is true, then an invariant measure for X is 

x 

1f(x) = 1f(0) n Al (n - 1)/ ILl (n), 
n=1 

which is the same as (2.3) for the classical birth-death process with unit increments. 
This equality of invariant measures is somewhat surprising. However, we will 
discuss shortly how it can be explained in terms of the Kolmogorov criteria for 
reversibility. Another insight is that one can view the batch increment process as a 
"random time transformation" of the unit increment case, where time is stopped at 
each batch arrival or departure and the stopped batch process has the same ergodic 
behavior as the unstopped unit-increment process. 0 

2.6 Reversible Network Processes 

We now characterize invariant measures for reversible network processes. The 
focus will be on a general network process whose increments are selected by 
reversible intensities and whose departure-arrival intensities are also reversible. 
Examples include reversible Jackson and Whittle processes and multi-dimensional 
batch birth-death processes. 

Assume that tXt : t ::: O} is an m-node Markov network process whose state 
x = (XI, ... , xm) represents the number of units at the respective nodes. The 
network may be open or closed, and its state space lE is any set of m-dimensional 
vectors with nonnegative integer entries. Assume also that the process is irreducible 
on lEo We envision the units moving in batches or one at a time in the node set 
M, where M = to, 1, ... , m} if the network is open, and M = {I, ... , m} if 
the network is closed. A typical transition will be from x to x - d + a, where 
a, d are vectors in a prescribed set A of allowable increments of X. We adopt the 
convention that either aj or dj equals 0 for each j = 1, ... , m. This means that 
a and d represent the net numbers of arrivals and departures from the respective 
nodes. These batch arrivals and departures are sometimes called concurrent or 
synchronous movements of several units. With no loss in generality, assume A 
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contains eo = 0 and the unit vectors el, ... ,em. This is not a restriction since one 
can choose any basis that spans the sets A and IE to represent their vectors; the 
form of the basis is not important here. 

We assume that whenever the network process X is in state x, the time to the 
next transition to state x - d + a is exponentially distributed with rate Ada4Jda(X). 
In other words, the transition rates of X are 

if y = x - d + a E IE for some a, dE A 

otherwise. 

These rates are analogous to those for Jackson or Whittle processes. Think of Ada 
as the relative increment-selection or routing intensities. They are independent of 
the state x and Ada = 0 if a j d j > 0 for some j. This ensures that d and a are 
net increments. Also, think of 4Jda(X) as the relative departure-arrival intensity at 
which the vector d is deleted from the network and the vector a is added to the 
network. Assume these intensities are positive except that 4Jda (x) = 0 if d j > x j 
for some j. We write Ajk = Aejek and 4Jjk = 4Jejek' for j, k E M. 

Our aim is to derive a Kolmogorov-type criterion for the process X to be re
versible and to give an expression for its invariant measures. We will exploit the 
fact that the transition rate function q is a compounding (or weak coupling) of 
increment-selection and departure-arrival intensities. Specifically, we can write 

q(x, y) = q)..(x, y)q,p(x, y), x, y E IE, (2.14) 

where q).. and q,p are transition rate functions defined (excluding the zero entries) 
by 

q)..(x, x - d + a) = Ada, q,p(X, x - d + a) = 4Jda(X). 

These two rate functions define irreducible Markov jump processes on IE. The next 
results give necessary and sufficient conditions for their reversibility. 

Proposition 2.19. The q).. is reversible ifand only ifAjk is reversible with respect 
to some W j' j EM .. and Ada is reversible with respectto w(a) = OJ= I w?, a E A, 
where Wo = 1 if the network is open. In this case, an invariant measure of q).. is 

m 

1f(x) = n w? ' x E IE. 
j=1 

PROOF. Suppose q).. is reversible. Consider any distinct aO, ... , an in A that form 
a path for the rates Ada. Fix XO E IE and define Xi = Xi-I _ai-I +ai, for 1 ::: i ::: n. 
Then xO, ... , xn is a path in IE for q)... Since q).. is reversible, the Kolmogorov ratio 
criterion says that 

n n n' /' n (i-I i)/ (i i-I) "'ai-Iai "'aiai-I = q).. X ,x q).. X ,x 
i=1 i=1 

depends only on XO and xn = XO + E7= I (a i - ai -I) = xO +an - aO. In other words, 
this product of A ratios does not depend on ai, ... ,an-I. Hence Ada is reversible 
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on A. Now, Ada is also reversible on any subset of A, and so Ajk is reversible with 
respect to some W j, j EM. Since q).. is reversible with respect to rr, for each 
a, d E A there is an x ~ d in IE such that 

W(d)Ada = rr(x)Ada/rr(X - d) = rr(x - d + a)Aad/rr(X - d) = w(a)Aad. 

Consequently, Ada is reversible with respect to w(a). 
Conversely, suppose A jk is reversible with respect to w j and Ada is reversible 

with respect to w(a) = OJ=1 w? Then q).. is reversible with respect to rr(x) = 

OJ=1 w?, since, for any x, a, and d such that d ::: x, 

rr(x)Ada = rr(x - d)w(d)Ada = rr(x - d)w(a)Aad = rr(x - d + a)Aad. 0 

To describe the reversibility of qq,(x, y) = lPda(X), we will use the following 
notion. 

Definition 2.20. The intensities lPda are 4>-balanced departure-arrival intensities 
if 4> is apositivefunction on IE such that, forx E lEanda, d E A withx-d+a E IE, 

4>(X)lPda(X) = 4>(x - d + a)lPad(X - d + a). 

This condition is the same as saying that qq, is reversible with respect to 4>. By 
Theorem 1.5, the lPda are 4>-balanced if and only if, for any x E IE and d, a, E A 
such that x - d + a E IE, 

lPda(X) = g(x, X - d + a)/4>(x), (2.15) 

for some function g that satisfies g(x, y) = g(y, x) for each x, y E IE. 
A more useful characterization is the following special Kolmogorov criterion. 

Here we saythatxO, ... , xn E lEisadirectpathfromxo toxn ifxi = xi-1-eji+eki 
for some ji, ki in M such that n = Ixo - xnl. 

Proposition 2.21. The lPda are 4>-balanced departure-arrival intensities if and 
only iffor each j, k, i E M, and x E IE with Tjex, Tux E IE, 

lPje(x)lPkj(Tjex)lPek(Ttex) = lPte(x)lPjk(Tux)lPej(Tjex), (2.16) 

and, for each d, a E A with x - d + a E IE, and any direct path xo, ... , xn from 
Xo = x to xn = X - d + a, 

n 

lPda(X)/lPad(X - d + a) = n lPjiki(Xi-I)/lPkiji(Xi). (2.17) 
i=1 

In this case, 
n 

4>(x) = n lPjiki (Xi-I)/lPkij j (xi), x E IE, (2.18) 
i=1 

for any direct path xo, ... , xn from a fixed reference state Xo to xn = X. 

PROOF. Since the 4>-balance of the lPda 's is equivalent to the reversibility of qq" it 
suffices to show that qq, is reversible if and only if (2.16) and (2.17) hold. And if qq, 
is reversible, then (2.18) is an invariant measure for it. To prove these assertions, 
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first note that transition rates under q", are positive for any unit increment. Then it 
follows by Theorem 2.8 that q", is reversible if and only if the Kolmogorov ratio 
criterion holds for only direct paths. But this criterion for direct paths is clearly 
equivalent to (2.16) and (2.17). This proves that q", is reversible if and only if (2.16) 
and (2.17) hold. Theorem 2.8 also justifies that if q", is reversible, then (2.18) is an 
invariant measure for it. 0 

We are now ready to consider the reversibility and invariant measures of the 
process X with transition rates q(x, x - d + a) = Ada<Pda(X). 

Theorem 2.22. Suppose the following conditions hold: 
(a) Ajk is reversible with respect to Wj, where Wo = 1 if the network is open; and 
Ada is reversible with respect to w(a) = nj=1 w?, a E A. 
(b) <Pda are <I> -balanced departure-arrival intensities. 
Then the network process X is reversible with respect to 

m 

;rr(x) = <I>(x) n w? ' x E lE, (2.19) 
;=1 

where <II is given by (2.18). Conversely, if X is reversible, then (a) is equivalent to 
(b). 

PROOF. Consider the compound transition rate 

q(x, x - d + a) = Ada<Pda(X) = q).(x, y)q",(x, y). 

From the definition of reversibility and Proposition 2.15, it follows that if any 
two of the q, q)., and q", are reversible, then so is the third. In this case, invariant 
measures for the three rates are related by ;rr(x) = ;rr).(x)ir(x). This observation 
and Propositions 2.19 and 2.18 prove the assertions of the theorem. 0 

2.7 Examples of Reversible Networks 

Let us explore some examples of the network process X discussed in the preceding 
section. First note that an important subclass of departure-arrival intensities are 
separable ones of the form 

<Pda(X) = <Pd(X)1/Ia(x). 

The <Pda are <I>\II-balanced departure-arrival intensities if <Pd are <I>-balanced 
departure intensities and 1/Ia are \II-balanced arrival intensities as follows. 

Definition 2.23. The <Pd are <II-balanced departure intensities if <I> is a positive 
function on lE such that, for each x E lE and a, d E A with x - d + a E lE, 

<I>(X)<Pd(X) = <I>(x - d + a)<pa(x - d + a). (2.20) 

The 1/Ia are \II-balanced arrival intensities if \II is a positive function on lE such 
that, for each x E lE and a, dE A with x - d + a E lE, 

\II(x)1/Ia(x) = \II(x - d + a)1/Id(x - d + a). 
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It is clear that l/Jd are <I>-balanced departure intensities if and only if 

l/Jd(X) = "'(x - d)/<I>(x), j E M, x E IE, 

for some nonnegative function'" defined on {x - d : x E IE, dE A}. This follows 
by setting "'(x - d) = <I>(x - d + a)l/Ja(x - d + a) for a fixed a. Similarly, 1/I'a are 
"'-balanced arrival intensities if and only if 

l/Ja(x) = "'(x + a)/<I>(x), j E M, x E IE, 

for some nonnegative function'" defined on {x + a : x E IE, a E A}. These 
representations are special cases of the canonical form of reversible transition 
rates in Theorem 1.5. 

The following are some illustrations of separable departure-arrival intensities. 

Example 2.24. Networks with Single-Unit Movements and Independent Nodes. 
Consider the special case in which the process X has unit increments and its 
transition rates are 

if y = x - ej + ek for some j, k E M 

otherwise. 

In addition to the usual departure intensity l/J j (x j), there is a pull or attraction 
intensity 1/I'k(Xk) at each node k that affects where the departure from j goes next. 
The departure-arrival rates l/Jj(x j )1/I'k(xd are clearly <I>-balanced, where 

m Xj 

<I>(x) = n n 1/I'j(i - 1)/l/Jj(k), x E IE. 
j=1 ;=1 

This follows by the criterion (2.15) since 

l/Jj(Xj)1/I'k(Xk) = <I>(x - ej + ek)/<I>(x). 

Then by Theorem 2.22, the process X is reversible if and only if the rates Ajk on M 
are reversible with respect to WO, ... , Wm , where Wo = 1 if the network is open. 
In this case, an invariant measure for X is Jr(x) = <I>(x) nj=1 w?, x E IE. 0 

Example 2.25. Reversible Jackson and Whittle Processes. Suppose X is a Jackson 
or Whittle process. This is a special case of the process in the preceding example 
with 1/I'j{-) = 1. Therefore, X is reversible if and only if Ajk is reversible. As an 
illustration, suppose the network is a closed starlike network with the following 
routing. The communication graph of A jk is a star whose center consists of the 
single node 1, and Mi is a collection of subsets of M, called points of the star, 
whose union is M and whose intersection is the center node 1. This network is 
a generalization of the one discussed in Example 1.26. Also, Ajk = 0 if j and k 
are not in the same point set. This means that in order for a unit to travel from 
one point of the star to another, it must go through the center node 1 (the central 
processor). Assume that A jk restricted to each M; is reversible with respect to some 
w~, j E Mi. Then clearly Ajk on M is reversible with respect to Wj = w~, for 
j E M;. Thus it follows that X is reversible. 0 
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If a network process is reversible, then we know that its restriction to any sub
space is also reversible. The next two examples describe restrictions that arise 
when (1) nodes have finite capacities resulting in blocked transitions; or (2) units 
require resources for services, and transitions are blocked when the resources are 
not available. 

Example 2.26. Reversible Network Processes with Communication Blocking. 
Consider a reversible network process with single-unit movements that has a known 
invariant measure (e.g., a Jackson or Whittle process). Now, suppose X is the 
process with the added restriction that the number of units at each node j cannot 
exceed a prescribed bound b j' which may be infinite. That is, the routing and 
services are the same, but transitions from x to TjkX are not allowed when Xk = bk. 
This is called communication blocking. The standard interpretation is that when 
Xk = bk, any unit at j that is potentially scheduled to enter k cannot begin its 
service at j until there is a departure at k. Another equivalent interpretation is 
that services at j continue, but a departing unit from j scheduled to enter k must 
return to j for another service as if it were a new arrival. These interpretations are 
equivalent because the time to a departure is exponentially distributed. Another 
type of blocking, called manufacturing blocking, assumes that when Xk = bk, the 
services at the other nodes continue, but a job at j attempting to enter k will remain 
at j until a space at k becomes available, at which time it immediately enters k. 

Under the preceding communication-blocking assumption, the process X is the 
original network process restricted to the state space E = {x E IE : x ::: b}. 
Hence X is also reversible, and its invariant measures are those of the original 
process restricted to E. Similar blockings can be defined for networks with batch 
movements. 0 

Example 2.27. Reversible Networks with Resource Constraints. Consider a re
versible network process with single-unit movements that has a known invariant 
measure (e.g., a Jackson or Whittle process). Now, suppose X is the process with 
the added restriction that the units require certain sets of resources for their pro
cessing as follows. The network contains quantities bi , i E I, of resources that 
the units may use. Each unit entering node j requires the prescribed quantities 
aij, i E I, of the resources for its processing at that node. If these quantities are 
available, they are assigned instantaneously to the unit which holds the resources 
throughout its stay at the node, without sharing them with other units. Upon leaving 
j, the unit releases the resources so that they can be used again. If the resources are 
not available for a unit attempting to enter node j, the unit is blocked from being 
served and its service can begin when the resources become available. Whenever 
the network is in state x, the quantities of resources held by the units is Ax, where A 
is the matrix with entries aij. Under these assumptions, a transition from x to TjkX 
is blocked if ATjkx ::: b is violated. Then the process X is the original reversible 

network process restricted to the state spaceE = {x E IE: Ax::: b}.Consequently, 
X is also reversible and its invariant measures are the original invariant measures 
restricted to E. Note that this example with A equal to the m-dimensional identity 
matrix is the same as the communication blocking example above. 0 
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The next example, which is a generalization of the classical birth-death process, 
describes a variety of population models including many service systems with 
queueing. 

Example 2.28. Multivariate Batch Birth-Death Processes. Consider the case in 
which the process X has transition rates 

{
""Ax) 

q(x, y) = ~a(X) 

if y = x + a for some a E A 

if y = x - a for some d E A 

otherwise. 

Think of the process as representing the sizes of m populations or queues in which 
a batch arrival a = (a I, ... , am) increases the population j by the amount a j, 
I ::: j ::: m, and a departure of a decreases the populations similarly. There 
is no routing among the populations; a unit departing from a population exits 
the system. The populations are dependent because the arrival and departure rate 
functions 1/Ia(x) and <Pa(x) may depend on the system state x. We assume that <Pd 
are <I>-balanced departure intensities and that 1/1 a are '" -balanced arrival intensities. 

Note that the transition rates can be written as 

q(x, x - d + a) = <Pd(x)1/Ia(x)l( a = 0 or d = 0). 

Now, the routing intensity function (the indicator function) is automatically re
versible with respect to w(a) == 1. Also, the departure-arrival intensities are 
<I>"'-balanced. Then by Theorem 2.22, the process X is reversible with respect to 
H(X) = <I>(x)'" (x), x E lE. We call such a process a multivariate batch birth-death 
process. 

Consider the special case in which X represents the size of a single population 
(m = 1) and there are no assumptions on the departure or arrival intensities. Then 
it follows by Proposition 2.21 and Theorem 2.22 that X is reversible if and only if 

x+a-I 

<Pa(x)/1/Ia(x + a) = n <PI (n)/1/I1 (n + 1), x E lE, a E A. (2.21) 
n=x 

In this case, an invariant measure for X is 
x 

H(X) = n 1/11 (n - l)/</JI (n), x E lE. 
n=1 

The key observation for this result is that, according to Proposition 2.21, the condi
tion (2.21) is necessary and sufficient for <Pd1/la to be <I>-balanced departure-arrival 
intensities, where <I> = H. This one-dimensional batch birth-death process was 
mentioned in Example 2.18. D 

2.8 Partition-Reversible Processes 

In this and the next section we study a generalization of reversibility called 
partition-reversibility. A Markov process is partition-reversible if its average flows 



2.8 Partition-Reversible Processes 65 

rates are balanced in a certain way over sets that partition the state space. This prop
erty is a "macro" version of the detailed balance property of reversible processes. 
A key feature of a partition-reversible process is that its stationary distribution is 
obtainable by solving the balance equation separately on the sets of the partition. 

Throughout this section, we assume {XI: t :::: O} is an ergodic Markov jump 
process with a countable state space IE, transition rates q(x, y), and stationary 
distribution H. Here is an example of what lies ahead. 

Example 2.29. Suppose X takes values in the set of integers. Assume that in order 
for it to move between the positive and negative integers it must pass through 0 
and, it can enter 0 only from states 1 or -1. The communication graph of the 
process is therefore a star with center set lEo = {OJ and point sets lEI = {l, 2, ... } 
and 1E2 = { ... , -2, -I}. Assume the restrictions of the process to the sets IE; 
and to lEo U IE; are ergodic, and let H; and HO; denote their respective stationary 
distributions. Under these minimal assumptions, the stationary distribution of the 
process has the form 

H(X) = H(O)(HO;(O)-I - I)H;(x) = H(O)HO;(O)-IHO;(X), x E IE;, i = 1,2, 

where H(O)-I = HOI (0)-1 + H02(0)-1 - 1. The first equality says that H is a 
"collage" or pasting together of HI and H2. Similarly, the second equality says that 
H is a collage of HOI and H02. D 

We now develop this theme for the general ergodic Markov process X. Suppose 
there is a partition {IE; : i E I} of the state space IE such that q restricted to IE; defines 
an ergodic Markov process on IE;, and let H; denote its stationary distribution. Let 
L denote the set of pairs of indices (i, j) such that the process X can jump (in one 
transition) from IE; to IE) or vice versa; L consists of the "links" in the partition. 
For each such pair, assume that q restricted to IE; U IE) defines an ergodic Markov 
process, and let H;) denote its stationary distribution. 

We say that the distribution H is a collage of {H; : i E I} if H is a multiple of H; 
on IE;, for each i E I. The aim is to characterize this property in terms of how the 
process moves between pairs of sets IE; and IE j . 

Definition 2.30. The process X (or q) is reversible over the partition {IE; : i E I} 
if, for each (i, j) E L, 

H(X) L q(x, y) = L H(y)q(y, x), X E IE; U IE). (2.22) 
yelEj yelEj 

That is, the average number of jumps per unit time from x to IE) equals the average 
for the reverse jumps from IE) to x. Being symmetric in i and j, this equation also 
holds with IE; replaced by IE). 

The following is a characterization of partition-reversibility in terms of the 
"local" distributions H; and Hi). The stationary distribution of a partition-reversible 
process is the collage (2.24), or its relative (2.25). Condition (c) is a convenient 
criterion for establishing partition-reversibility. 
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Theorem 2.31. The following statements are equivalent. 
(a) The process X is reversible over the partition {lEi : i E I}. 
(b) The distribution 7r is a collage of {7ri : i E I}, and 7r on lEi U lEj is a multiple 
of7rij,for each (i, j) E L. 
(c) For each (i, j) E L, the distribution 7rij balances q on lEi, and the matrix 

If(i, j) E L 

otherwise, 
(2.23) 

is reversible. 
(d) For each (i, j) E L, the distribution 7rij balances q on lEi and 7rij(lEd 
Pi!(Pi + P j) for some positive probability measure Pi, i E I. 
If these statements hold, then 

7r(x) = Pi7ri(X), x E lEi, i E I, (2.24) 

where Pi, i E I is the stationary distribution ofrij;furthermore, Pi = 7r(lEi) and 

7r(x) = (Pi + Pj)7rij(x), x E lEi U lE j , (i, j) E L. (2.25) 

PROOF. For convenience, let 

7rq(A, B) = L L 7r(x)q(x, y). 
xeA yeB 

Then the balance equations that determine 7r are 7rq(x, lE) = 7rq(lE, x), x E IE. 
(a) {} (b). Clearly (a) is equivalent to the conditions 

7rq(x, lEi) = 7rq(lEi' x), X E lEi, i E I, 

7rq(x, lEi) + 7rq(x, lEj ) = 7rq(lEi' x) + 7rq(lEj, x), x E lEi U IEj, (i, j) E L. 

The latter uses (2.22) with lEi replaced by IE j. Now, these equations say that 7r 
balances q on lEi, i E I, and 7r balances q on lEi U IEj, (i, j) E L. But this 
statement is equivalent to (b) by the uniqueness property of invariant measures. 
Thus statements (a) and (b) are equivalent. 

(c) {} (d). If (c) holds, then, by the definition of reversibility, there exists a 
positive probability measure Pi on I such that 

Pi7rij(lEj) = Pj7rij(lEi), (i, j) E L. 

This and 7rij(lEi) + 7rij(lEj ) = 1 yield 7rij(lEi) = Pi!(Pi + Pj). Thus (c) implies 
(d). Conversely, if (d) holds, then rij = Pi!(Pi + Pj) is reversible since this is the 
canonical form of reversible rates; recall Theorem 1.5. Hence (d) implies (c). 

(b) {} (d). Note that in statement (d) the condition that 7rij balances q on lEi is 
equivalent (since 7rij is a multiple of 7ri) to 

7rij(x) = 7rij(lEi)7ri(X), x E lEi. 

This relation also holds with lEi replaced by lE j since lEi U lE j is symmetric in i 
and j. From these observations, it follows that (d) is equivalent to the following: 
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(d') There is a probability measure Pi on I such, for each (i, j) E L, 

Pi 

{ 
Jl'i(X) ifxElEi 

Pi + Pj 
1fij(X) = p. (2.26) 

----'-"J_1f j (x) if x E lE j . 

Pi + Pj 

We will complete the proof by showing that (b) and (d') are equivalent. Suppose 
(d') holds. Then (2.26) implies that 1fij balances q on lEi' Consider the distribution 
1f on lE defined by 

(2.27) 

For any x E lE and i such that x E lEi, the property that 1fi balances q on lEi and 
the assumption that 1fij balances q on lE j yield 

1fq(x, lE) = Pi1fi(X)q(X, lEi) + L(Pi + Pj)1fij(x)q(x, lEj )l«i, j) E L) 
Hi 

= Pi L 1fi(y)q(y, x) + L(Pi + Pj) L 1fij(y)q(y, x)I«i, j) E L) 
yEE j j#i yEEj 

= 1fq(lE, x). 

Hence 1f defined by (2.27) is the stationary distribution of the process X, and its 
structure implies statement (b). 

Now suppose (b) holds. Then the stationary distribution 1f of X satisfies (2.27) 
with Pi = 1f(lEi ). The second equality in (2.27) says that 1fij is given by (2.25), 
and so (d') is true. 

The last sentence of the theorem was justified in proving that (b) is equivalent 
to (d') and by the reversibility of Tij. 0 

Note that when checking condition (c) for partition-reversibility, one can take 
advantage of the theory of reversibility to determine whether the transition rates 
Tij defined by (2.23) are reversible. The obvious benefit for a partition-reversible 
process is that the problem of obtaining its stationary distribution reduces to 
finding several stationary distributions on smaller subspaces, either by analytical 
means or simulations or by a combination of both. Partition-reversibility is also 
a natural framework for analyzing Markov processes in random environments, 
Markov-modulated processes, or controlled Markov processes. Here the environ
ment or control parameters (possibly dependent on the parent process) determine 
the appropriate partition of the state space. Examples are in the next section. 

Theorem 2.31 and the other results here also apply to a discrete-time Markov 
chain with transition probabilities P(x, y) by viewing these probabilities as transi
tion r~tes for a continuous-time process. In this setting, 1fij(x) = iiij(x)/ P(x, lEi U 
IEj), where iiij is the stationary distribution of the Markov chain matrix P(x, y) 
restricted to lEi U lEj' which is Pij(x, y) = P(x, y)/ P(x, lEi U IEj). 

Since reversibility and partition-reversibility are defined in terms of average 
numbers of transitions per unit time, these notions readily extend to non-Markovian 
processes in continuous or discrete time. To see this, suppose X is a stochastic 



68 2. Reversible Processes 

process that takes jumps in its countable state space lE at the times 0 = To < TI < 
... , where Tn --+ 00 as n --+ 00 w.p.I. The average number of jumps per unit time 
that X makes from A to B is 

n 

)"(A, B) = lim Tn-I" I(XT; E A, XTi+1 E B). 
n-+-oo ~ 

i=1 

The process X is reversible if ).,(x, y) = ).,(y, x) for each x, y in IE. Similarly, X is 
reversible over the partition {lEi : i E I} if 

(2.28) 

2.9 Examples of Partition-Reversible Processes 

We now discuss special cases of partition-reversible processes whose com
munication structure between sets of the partition form circles, trees, or 
stars. 

We will use the notation of the previous section. We say that {lEI, ... , lEd is a 
circular partition if whenever X is in lEi, it can make a transition only into lEi -I U 
lEi U lEi+1o where lEl+I = lEI and lEo = lEi. The following is a characterization of 
circular partition-reversible processes. 

Corollary 2.32. If {lEI, ... , lEi} is a circular partition, then X is reversible over 
this partition if and only if each rri,i + I balances q on lEi and 

where ai = 1l"i,i+l(lEi+I). In this case, rr(x) = Pirri(X), x E lEi, i = 1, ... , t, 
where 

i 

Pi = PI n an-I/(l - an), 2 ~ i ~ t, 
n=2 

and PI I = 1 + Ef=2 n~=2 an-I/(I - an). 

PROOF. Consider the rates defined by (2.23). The communication graph of these 
rates is circular because the partition is circular. Then the rates are reversible by 
Example 2.1 0 if and only if (2.29) holds. This result and Theorem 2.31 (c) prove 
the assertion. 0 

We now discuss treelike and starlike partition-reversible processes. We say the 
partition {lEi : i E l} of the process is a tree if it has a single root set lEo and, 
whenever X is in some set lEi, its one-step transitions can be back into lEi or into 
one of its neighboring sets (its single predecessor or its possibly multiple successors 
in the tree). That is, X can move up and down each branch, and it can move from 
branch to branch only via lEo. This partition is a star if each branch consists of lEo 
and some lEi; the lEi'S are points of the star with center lEo. 
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When the partition for X is a tree, the communication graph of the rates rij 
defined by (2.23) is a tree. Then these rates are reversible by Proposition 2.2 and 
their stationary distribution is 

(2.30) 

where 0, iI, ... , in, j is the unique subbranch from 0 to j in the tree. 

Corollary 2.33. Suppose the partition of the process X is a tree. Then X is 
partition-reversible if and only if, for each predecessor-successor pair lEi and IE j, 
the distribution 1fij balances q on lEi. In this case, the stationary distribution 1f of 
X has the form (2.24) or (2.25) with Pi given by (2.30). If the partition is a star, 
then X is partition-reversible if and only if each 1fOj balances q on lEo (which is 
automatically true when the center set lEo is a singleton). In this case, 

1f(X) = Po1fo(x), x E lEo, 

and,for x E lEi and i =I- 0, 

1f(x) = po(1foi(IEo)-1 - 1)1fi(X) = p01foi(IEo)-I1fOi(x), 

where Po = 1f(1E0) = [1 + Li#O(1fOi(IEO)-1 - 1)]-1. 

PROOF. Since the rates rij are reversible, the first assertion is a consequence of 
Theorem 2.31 (part (c) and (2.25». The other assertions follow immediately from 
the first one and Pi = POrOi / riO, i =I- O. 0 

Example 2.34. A Multiclass Service System with Blocking. Consider a service sys
tem that operates as follows. The system serves m classes of customers that arrive 
according to m independent Poisson processes with respective rates A I, ... , Am. 
The system can serve only one class of customer at any time. While it is serving 
customers of class i, any arrivals of other classes of customers cannot enter the 
system and are turned away, but new type i arrivals are permissible. Also, the 
number of these type i customers in the system behaves as an ergodic Markov 
process with transition rates qi(X, y). Here qi(X, x + 1) = Ai, but the transition 
rates for departures are left unspecified. We assume the stationary distribution of 
qi can be obtained either analytically or by a simulation. Assume the system starts 
empty-thereafter it can contain, at most, one class of customer. 

We represent the system as an m-dimensional queueing process X with states 
of the form x = (XI, ... , xm), where Xi is a nonnegative integer and, at most, one 
of the Xi'S is positive. The state space IE is a star with center lEo = {OJ and point 
sets 

lEi = {(XI. ... , Xm) : Xi > 0, Xl = 0, I =I- n, i = 1, ... , m. 

That is, the process X cannot transfer from a state in lEi to a state in IE j, j =I- i, 
unless it passes through O. Under the preceding assumptions, it follows that the 
transition rates of X are 

( ) Iqi(X, y) 
q X, Y = 0 

if X, Y E lEo U lEi, and y = ei if X = 0; i = 1, ... , m 

otherwise. 
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Since the state space of X is a star and lEo is the single state 0, its stationary 
distribution :n: is given by Corollary 2.33. In this case, :n:Oi (x) = ifi (Xi) where ifi is 
the stationary distribution of qi. Therefore, 

:n:(x) = POifi(O)-lifi(Xi), x E lEi. i f:. 0, 

where :n:(0) = Po = [1 + Lj#o(ifj(O)-1 - 1)r l . 0 

Example 2.35. Service System with State-dependent Service Rates. Consider a 
service system in which customers arrive at a single server according to a Poisson 
process with rate A. The service times are independent exponentially distributed 
with rate depending on the number of customers present. When there is one cus
tomer present, the service rate is JL and remains at this value until the number of 
customers reaches the level M. At that instance, the service rate takes a higher value 
JL' and remains there until a departure leaves m customers behind (m < M)-then 
the rate returns to JL. Assume A < JL', which is necessary and sufficient for stability, 
as the analysis below shows. 

Under these assumptions, the system is described by a Markov process X with 
states denoted by i (or i') when there are i customers in the system and JL (or JL') 
is in use. Then the state space is a star with center 

lEo = Ii, i' : m ::: i ::: M - I} U {M'}, 

and point sets 

lEI = {i : 0 ::: i < m}, lE2 = {i' : i > M}. 

Since q is a birth-death process on each of lEI and lE2, it follows that 

:n:1 (i) = (1 - p)pi 1(1 - pm), 0::: i < m 

:n:2(i') = (1 - p')p,(M-i'l, i' ~ M, 

where p = AI JL, p' = AI JL'. And solving the balance equations on lEo yields 

:n:o(i) = api-m(1 - pM-i)/(1 - p), m::: i < M 

:n:o(i') = apM-m-1 p'(1 - p,(i-m»/(1 - p'), m < i ::: M, 

where a is the normalization constant. 
We now establish that the stationary distribution of X is the collage of :n:o, :n:1, 

and :n:2. By Corollary 2.33, it suffices to show that each :n:Oi balances the transition 
function on lEo. Since the process X restricted to lEI U {m} is a truncated birth-death 
process, 

(2.31) 

And because lEo and lEI communicate only via states m - 1 and m, the preceding 
equation implies that :n:OI balances q on lEo. 

Now the balance equations for :n:02 on lEo U lE2 are 

A:n:02(m) = JL:n:02(m + 1) + JL':n:02((m + I)') 
(A + JL):n:02(i + 1) = A:n:02(i) + JL:n:02(i + 2), m::: i ::: M - 2 

(A + JL):n:02(M - 1) = A:n:02(M - 2) 
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and 

(A + JL')1f02«m + 1)') = JL'1f02«m + 2)') 

(A + JL')1fo2(i') = A1f02«i + 1)') + JL'1f02«i + I)'), m + 2 :::: i < M 

(A + JL')1fo2(M') = A1f02(M - 1) + A1f02«M - I)') + JL'1f02«M + I)') 

(A + JL')1fd(i + 1)') = A1f02«i - 1)') + JL'1f02«i + I)'), i > M. 

Since lEo and 1E2 communicate only via states M' and M + 1, the 1f02 balances q 
on lEo and on 1E2 if and only if 

A1f02(M') = JL'1fo2«M + I)'). 
To show this, note that balance equations above yield 

A1f02(M - 1) = JL'1fo2«m + I)'), 

A1f02«M - I)') + JL'1f02«m + I)') = JL'1fo2(M'). 

These equations imply 

JL'1f02(M') = A1f02(M - 1) + A1f02«M - I)'). 

But this is equivalent, by the balance equation for the state M', to (2.32). 

(2.32) 

In summary, the stationary distribution 1f of X is a collage of 1fo, 1f1, and 1f2 as 
in (2.24), where (2.26), (2.31), and (2.32) yield 

PI = poJL1fo(m)/(A1f1 (m - 1», P2 = pOA1fo(M')/(JL'1f2«M + 1)'», 

and Po is determined by Po + PI + P2 = 1. D 

2.10 Exercises 

1. Consider a Markov jump process whose transition rates are 

q(x, y) = q(f(x), f(y», x, y E IE, 

where q is an ergodic transition rate on E and f is a function from IE to E. Show 
that if q is reversible with respect to if on E, then q is reversible with respect 
to 1f(x) = if(f(x». 

2. Networks with Environmental Influences. Suppose X is a Markov jump process 
that represents the state of an m-node network that is subject to environmental 
influences such as the status of machines or quantities of resources available 
for services. The state of the process x is in a countable set IE of vectors, matri
ces, or functions that contains all the pertinent information about the network 
and environment. When the system is in state x, the numbers of units at the 
respective nodes are given by the function n(x) = (nl (x), ... , nm(x». Assume 
the transition rates of the process are 

q(x, y) = ql(n(x), n(y»q2(X, y), x, y E IE. 
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This is a "compounding" of a population rate ql and an environment rate q2. 
Suppose ql is the rate for a reversible, ergodic Whittle or Jackson process. 
Prove that q is reversible if and only if q2 is reversible. In this case, an invariant 
measure of q is 1f(x) = 1f1 (n(x»1f2(X), where 1fi is an invariant measure for qi. 

3. Use Theorem 2.5 on time reversals to prove Theorem 1.15 that an invariant 
measure for the Whittle process X is 1f(x) = <I>(x) n7=1 w? Is this approach 
simpler than the direct-substitution proof of Theorem 1.15? 

4. Finite McCabe Library. Show that an invariant measure for a McCabe library 
with n books is given by (2.12) where lE is the finite set of all permutations of 
the n books. 

5. MIMIl Queue with Variable Waiting Space. Consider an MlMIl queueing 
system with arrival rate A and service rate IL in which the allowable number in 
the system varies randomly over time. Specifically, the number of customers in 
the system at time t, denoted by Xr. cannot exceed a value ft. The f operates 
like an irreducible reversible Markov process with transition rates qy(y, y') and 
stationary distribution 1fy(y), but it is constrained by the inequality Xt :::: ft. 
That is, whenever Xt = flo the arrivals for X are turned away; also, transitions 
of f t below Xt are not allowed. More precisely, assume that (Xt, f t ) is an 
irreducible Markov process on the space lE = {(x, y) : x :::: y} and its transition 
rates are 

{
qX(X' x') 

q«x, y), (x', y'» = ~y(y, y') 

if y' = y and x' :::: y 

if x' = x and y' :::: x 

otherwise. 

Here qx(x, x') is the transition rate function for the unrestricted MlMI1 queue
ing process on the nonnegative integers. Show that the process (X, f) is 
reversible with respect to 1f(x, y) = (AI ILY 1fY(Y). 

6. Networks with Variable Waiting Spaces. Consider an m-node open network 
process X t = (X}, ... , X~) that represents the numbers of units at the 
nodes at time t. Suppose the waiting spaces at the nodes vary such that 
f t = (f/, ... , ftm) is the maximum numbers of units allowed at the nodes 
at time t. Suppose {(Xt, f t ): t:::: O} is an irreducible Markov process on 
lE = {(x, y) E lEx x lEy : x:::: y}, where lEx = {x : Ixl < oc} = lEy. Assume 
that its transition rates are I AjklPj(Xj) 

q«x, y), (x', y'» = ( ') 
qy y, y 

o 

if x' = Tjkx, y' = y 

and Xk < Yk for some j, k E M 

if x' = x and y' :::: x'. 

otherwise. 

The X is an open Jackson process whose node populations are restricted by 
the process f with transition rates qy. Assume that the routing rates Ajk 
are reversible with respect to W j and that qy is reversible with respect to 
1fy. Show that the process (X, f) is reversible with respect to 1f(x, y) = 
1fy(y) n7=1 Wj n~~llP(n)-I. Describe similar results for a Whittle process 
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and any network process that is reversible when it is unrestricted. Take care 
in defining the state spaces. 

2.11 Bibliographical Notes 

Kolmogorov (1936) was the founder of reversible Markov processes. A related 
article is Hostinsky and Potocek (1935). Kingman (1969) was the first to model 
reversible stochastic networks. Reversibility of Markov processes and networks 
was developed further by Kelly (1979) and Whittle (1986b). The McCabe library 
and related library models in computer science are discussed in Letac (1974) and 
Suomela (1979). The material on batch movements in birth-death processes and 
reversible networks is from Serfozo (1993), and partition-reversible processes are 
introduced in Alexopoulos et al. (1999). 



3 
Miscellaneous Networks 

This chapter deals with several applications and variations of the network models 
developed in the preceding chapters. We first show how to use Whittle processes 
to model networks with multiple types of units, where the routings and services 
may depend on a customer's type. This includes Kelly networks with determin
istic routes for units, and BCMP networks with Cox and general service times 
depending on a unit's type. We also discuss several forms of blocking in networks, 
and bottlenecks in closed Jackson networks. The chapter ends with a discussion 
of partial balance equations in modeling networks. 

3.1 Networks with Multiple Types of Units 

Chapter I covered Jackson and Whittle networks in which the routing and departure 
intensities are the same for each unit. We will now show that the results for these 
networks with homogeneous units also apply to networks with multiple types of 
units, where the routing and services may depend on a unit's type in a certain way. 
The only difference is that we now keep track of the number of units of each type 
ata node. 

Consider an m-node network in which each unit carries an attribute or class label 
from a finite set. A unit's class is a distinguishing characteristic that determines 
its routing or service rates. The class label may be permanent, or temporary and 
subject to change as the unit moves. Examples of permanent labels are: 
• The size of a unit when it is a batch of subunits such as data packets, orders to 
be filled, or capacity of a circuit. 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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• The type of part or tool in a manufacturing network. 
• The origin or destination of a unit. 
• The general direction in which a unit moves through the network (e.g., north to 
south). 
Examples of temporary labels are: 
• The status of a part as it is being produced. 
• The number of nodes a unit has visited. 
• The number of times a unit has been fed back to the node where it resides. 
• The phase of service that a unit is undergoing, when it has a phase-type 
distribution. 

We make the following assumptions about the network, which are consistent 
with those for Jackson and Whittle networks. The evolution of the network over 
time is represented by a Markov process tXt : t ~ O} whose state is a vector 
x = (xaj : aj E M, j f:. 0), where Xaj is the number of a-units at node j. The 
number of units at node j is x j == La Xaj. We now envision that each unit moves 
in the set M of all pairs aj, where a is a class label and j is a node number, possibly 
0, when the network is open. We denote the state space by JE. The network may 
be closed (Laj Xaj = v), or open with finite or unlimited capacity. In addition, 
the network may be a mixture of these three types: The network may consist of 
several subprocesses that operate like closed or open networks. 

Whenever the process is in a state x, a typical transition consists of an a-unit 
departing from node j and moving instantaneously into a node k and entering 
there as a ~-unit. We denote the new state by Taj,PkX == x - eaj + epk, where eaj 

denotes the unit vector with a I in component aj and 0 elsewhere, and eao == O. It 
is allowable that k = j or a = ~, provided aj f:. ~k. 

We assume that the transition rates of the process X are of the form 

( ) _ {Aaj,PklPaj (x) 
q x, y = 0 

if y = Taj,PkX E lE for some aj f:. ~k in M 

otherwise. 

The lPajO are service rate functions or intensities and Aaj,Pk are routing rates or 
intensities. The service rates lPaj are ¢I-balanced in that ¢I is a positive function 
on lE such that, for each aj and x with ~k f:. aj and Taj,PkX E lE, 

¢I(x)lPaj(x) = ¢I(Taj,PkX)lPPk(Taj,pkX), 

The routing rates Aaj,Pk may be reducible, but they do not contain transient states. 
We let Waj be positive numbers that satisfy the traffic equations 

Waj L Aaj,Pk = L WpkApk,aj, aj EM. (3.1) 
pkeM pkeM 

And WaO = 1 when the network is open. 
We call the process X with these properties a multiclass Whittle network process. 

We call X a multiclass Jackson network process if each service intensity lPaj (x) is 
a function lPaj(xaj) only of Xaj and l/JoO == 1 when the network is open. In this 
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case, the service intensities are <I>-balanced by 

Xj 

<I>(x) = n n lPaj(n)-[. 
ajeM n=[ 

The following result describes the equilibrium behavior of multiclass Whittle 
and Jackson networks. This result is just a restatement of Theorem 1.15 with the 
single subscripts j replaced by double subscripts aj. 

Theorem 3.1. For the multiclass Whittle network process X, an invariant measure 
is 

1l'(X) = <I>(x) n w~jj, x E IE. 
ajeM 

It is clear that the basic theory of Whittle and Jackson networks for homogeneous 
units in Chapter I also applies to their multiclass analogues-one just replaces all 
the single-node subscripts j in Chapter I with a double subscript aj. We already 
saw this in the traffic equation above. An important difference, however, is that 
multiclass labels can be exploited for modeling additional features or dependencies 
in networks. 

To obtain an invariant measure for a multiclass network, one proceeds as in a 
network with homogeneous units by evaluating the function <I> and determining 
the Waj'S that satisfy the traffic equations. The characterizations of the function <I> 
in Section 1.13 for homogeneous units readily extend to the present context with 
multiclass units. One result is that the lPaj are <I>-balanced if and only if each lPaj 
is of the form 

lPaj(X) = \II(x - eaj)/<I>(x), x E IE, (3.2) 

for some nonnegative function \II defined on {x - eaj : x E IE, aj EM}. 
The following examples give more insights on service rates; also see Exercise I. 

Example 3.2. Service Rates Proportional to Local Populations. A natural 
processor-sharing service discipline is one with service intensities 

Xaj 
lPaj(x) = -lP/X[, ... , xm). 

Xj 

Think of lP j (x[ , ... , xm) as the total service capacity at node j, and the amount of 
this allocated to a-units is the proportion Xaj/Xj of those units present. Another 
interpretation is that Xaj/Xj is the probability of an a-unit departing when the 

intensity is lPj(x[, ... ,xm). Suppose lPj are <i>-balanced. Then the service rates lPaj 
are balanced (Exercise 2) by the function 

_ m I 
<I>(x) = <I>(x[, ... , xm) n Xj! n -.r· 

j=[ a XaJ • 

o 

Example 3.3. Sector-dependent Service Rates. The sector-dependent service rates 
in Example 1.47 also apply as follows to the multiclass network we are studying. 
Let S denote the collection of all subsets (or sectors) of M. For each sector J E S, 
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there is a "departure intensity" lPJ(x(J», which is a function of the number of 
units x(J) == LajeJ Xaj in J. This intensity is D only if x(J) = D. Assume these 
sector intensities are compounded such that the departure intensity for aj #- aD is 

lPaj(x) = n lPJ(x(J», x E lE, 
JeSuj 

where Saj is the collection of subsets that contain aj. Also, in case the network is 
open, we assume the intensity lPo is a positive function of the form lPo(lx D. 

These sector-dependent service rates are balanced (Exercise 2) by the function 

~I-I x(J) 

<I>(x) = n lPo(k) n n lPJ(n)-I, x E lE, (3.3) 
k=O JeS n=1 

where l/Jo == 1 if the network is closed. o 

We now tum to properties of the routing rates Aaj.Pk' The structure of these 
rates may be such that the multiclass network contains one or more families of 
permanent and transient units. This is illustrated in the next three examples. 

Example 3.4. Multichain Routing. Suppose the routing rates Aaj,Pk are reducible 
(with no transient states), and let Mi , i E I, denote the disjoint subsets of M upon 
which the rates irreducible. Then the solution of the traffic equations has the natural 
partition {waj} == {{ W~j} : i E I}, where {w~j} satisfies the traffic equations on 

Mi. Similarly, the network process is the partition Xt = (X; : iE/}, where Xi 
is the subprocess on Mi. Now, if Mi contains aD for some a, then the subprocess 
Xi on Mi operates as an open network. Otherwise, Xi on Mi operates as a closed 
network with Vi == LajeMi Xaj units permanently in Mi. The number of units in 
each open subprocess could be limited or unlimited. 

Example 3.5. Permanent Class Labels. Suppose each unit in the network process 
X carries a label that does not change. In this case, Aaj,Pk = D if a #- fJ. Conse
quently, each a-unit would be routed in the network via the rates Aaj,ak' Then for 
each a, the Waj would be a solution to the traffic equations 

Waj L Aaj,ak = L WakAak,aj, j EM. 
keM keM 

In this setting, there may be several classes of permanent and transient units. 0 

Example 3.6. Class Changes Separate from Routing. Suppose class changes of 
units in the network process X are independent of their routing, and the routing 
rates are of the form 

Aaj,Pk = 'iaPA jk· 

Interpret 'iaP as the intensity of an a-unit changing to a fJ-unit and Ajk as the 
intensity of a unit at j moving into k. If wa and W j are respective solutions to 
their "traffic equations," then it is clear that Waj = wa W j is a solution to the traffic 
equations for Aaj,Pk' 0 
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Chapter I showed how routing rates determine throughputs in networks. Analo
gous results apply to multiclass networks as follows. Let PaUlk denote the average 
number of units that move from aj to {Jk per unit time; this is the throughputfrom 
j to k of a to (J class changes. We know by the law of large numbers for Markov 
processes that 

Paj.{lk = L1l'(x)q(x, Taj.{3kX) = Aaj.{3k L1l'(x)<paj(x)l(xaj ~ 1). (3.4) 
xeE xeE 

This expression has the following tractable forms. Here, we will assume that the 
service rates of the multiclass network are of the form 

<Paj(X) = <I>(x - eaj)/<I>(x), x E IE, j E M. (3.5) 

This is true, in particular, for the Kelly and BCMP networks we discuss in the next 
two sections. 

Proposition 3.7. Suppose (3.5) holds, and let M' denote an irreducible class in 
M for the routing rates as described in Example 3.4. If the subnetwork on M' is 
open with unlimited capacity, then 

Paj.{3k = Waj Aaj.{3k. aj, {Jk EM'. 

If the subnetwork on M' is closed with v units (or open with capacity v), then 
-I , 

Paj.{3k = CVcv_ 1 Waj lloaj.{3k, aj, {Jk EM'. 

Here Cv is the normalizing constant for the equilibrium distribution of the closed 
network with v units (or the open network with capacity v). 

In the multiclass network we are studying, a sector J is a subset of an irreducible 
routing subset M' of M. The throughput from a sector J to a sector K in M' is 

PJK = L L Paj.{3k. 
ajeJ {3keK 

Also, the throughput of sector J is 

AJ = PJCJ = L L Paj.{3k. 
ajeJC {3keJ 

We now tum to expected sojourn times of units in the sector J. The average 
sojourn time (or waiting time) of units in J is 

n 

WJ = lim n-I "" Wi(J) w.p.I, 
n-+oo ~ 

i=1 

provided the limit exists, where Wi(J) is the waiting time of the ith unit to enter J. 
We assume J 1= M' when the subnetwork is closed (otherwise all sojourns would 
be infinite). In addition, assume that the average number of units in J per unit time 
given by 

LJ = L L Xaj1l'(x) 
x ajeJ 
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is finite. The following result is the analogue of Theorems 1.36 and 1.37. 

Theorem 3.8. The average waiting time WJ exits, and L J = AJ WJ.lftheprocess 
X is stationary, then L J = 'A J WJ, where these terms are expected values: LJ is 
the expected number of units in J at any time instant, 'AJ is the expected number 
of units entering J per unit time, and WJ is the expected sojourn time in J with 
respect to the Palm probability of the stationary process X conditioned that a unit 
enters J at time O. 

The procedures in Sections 1.11 and 1.12 for computing expected throughputs 
and waiting times are also valid for multiclass networks. 

3.2 Kelly Networks: Route-dependent Services 

In this section, we discuss networks in which units are divided into classes depend
ing on their routes through the network, and a unit's service times at the nodes 
depend on its route. These are multiclass networks introduced by Kelly in 1975. 

Consider an open m-node network in which the routing of units is as follows. 
A typical route of a unit is a finite sequence r = (r\, ... , rt) of nodes inside the 
network, where rs is the node the unit visits at stage s of its route, 1 :::: s :::: £; 
the length £ == £(r) is route dependent. Upon leaving the last node rt, the unit 
exits the network. A node may appear more than once on a route, and the set of all 
relevant routes, for simplicity, is finite. Units that traverse a route r arrive to the 
network according to a Poisson process with rate 'A(r), and these arrival processes 
are independent for all the routes. Then the total arrival stream to the network is a 
Poisson process with rate Lr 'A(r). 

The preceding description applies to several scenarios. One is that a deterministic 
route r is an attribute of a unit and that all units that traverse a given route are in the 
same class. A second scenario is that each unit carries a permanent class label that 
determines its route. A third possibility is that deterministic routes are obtained 
by random routes as follows. The units arrive to the network by a Poisson process 
with rate 'A, and each unit independently selects or is assigned a route r with 
probability p(r). In this case, 'A(r) = p(r )'A. For instance, a route may be selected 
by Markov probabilities p j k such that POrI Prl r2 ... Prt-I rt is the probability of the 
route r = (r\, ... , rd. Combinations of the preceding scenarios yield further 
possibilities. 

To formulate the network as a multiclass Whittle network, we assign a class 
label to each unit to denote its routing status at any time in the network. Namely, 
if a unit is traversing route r and is at stage s in this route, we call it a r s-unit. Let 
M denote the set of all route-stage labels r s, including the outside node 0 as well. 

We represent the state of the network by the vector x = (xrs : rs E M\{O}), 
where Xrs denotes the number of rs-units in the network at node rs. The node at 
which a unit resides is specified by the label r s, and so we need not specify the 
unit's location separately as we did above by the class-node label aj. Assume that 
whenever the network is in state x, the time to the next departure of an rs-unit 
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from its current node location rs is exponentially distributed with rate <Prs(x). The 
departing unit goes immediately to its next node rs+ I and becomes an r(s + 1 )-unit. 
In case s = l, the rHI = 0, which means that the route is complete and the unit 
exits the network. Assume that <Prs are <I>-balanced departure intensities. 

Let {XI : t 2: O} denote the stochastic process representing the network. Under 
the preceding assumptions, X is a Markov process with transition rates 

/

A(r) 

q(x, y) = ~rs(X) 

if y = x + erl E lE for some r 

if y = x - ers + er(s+l) E lE for some rs E M 

otherwise. 

Note that this is a multiclass Whittle network process, where the class label for a 
unit describes the route it is taking and where it is on the route. 

Using the notation in the preceding section, the routing rates for the units are 
AO,rl = A(r) and Ars,r(s+l) = 1 for rs i- O. Then the traffic equations for these 
rates are Wo = 1 and, for each route r, 

Wrl = A(r), Wrs = Wr(s-I), S = 2, ... , i. 

A solution to these equations is Wrs = A(r) for each rs i- O. Consequently, 
Theorem 3.1 yields the following result. 

Corollary 3.9. An invariant measure for the network process X with transition 
rates described above is 

11' (x) = <I> (x ) fl A(r )X, , x E lE, 

where Xr == L~=l Xrs · 

Since the network model we are discussing is a special case of that in the 
preceding section, all the results there also apply. For instance, suppose the network 
is such that each node is a processor-sharing node as discussed in Example 3.2 
with service rates 

where j = rs and JL j (x j) is the departure intensity for node j when it contains 
x j = Lr's' Xr' s' 1 (r;, = j) units. In this case, the <I> in the preceding result is 

The network process we are discussing is for an open network with unlimited 
capacity. The following extension covers the finite-capacity case. 

Example 3.10. System-dependent Arrival Rates. Suppose the arrivals from outside 
are dependent on the network such that q(x, x + erl) = A(r)<Pro(lxl). This would 
allow for a finite capacity network or subnetworks by assuming <pro(n) = 0 for 
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n = Vr • For this more general arrival rate, the invariant measure from Theorem 3.1 
would be 

Ixl 

H(X) = <I>(x) TI A(rr' TI <PrO(n - 1), x E lE. 
r n=l 

3.3 BCMP Networks: Class-Node Service 
Dependencies 

o 

This section describes multiclass BCMP networks, which were introduced by 
Baskett, Chandy, Muntz, and Palacios in 1975. The distinguishing feature of such 
a network is that a unit's service rate at a node is a compounding of two intensities
one intensity is a function of the total number of units at the node, and the other 
intensity is a function of the number of units in the same class as the one being 
served. 

We begin with a general framework for modeling networks with class-node 
service dependencies. Consider a multiclass Whittle network as described in 
Section 3.1. Assume that the service rates for each node j =I- 0 are of the form 

(3.6) 

where gaj and haj are functions on the nonnegative integers. These are sector
dependent service rates, where gaj(Xj) is the node intensity and haj(xaj) is the 
class intensity. In case the network is open, assume, for each a and x, that 

(3.7) 

where IXal = Lj=l Xaj is the number of a-units in the network. 
By Example 3.3, these service rates are balanced by the function 

m 

<I>(x) = n h(x), 
j=O 

where !o(x) = 1 if the network is closed, 

Ixl-l Ixal-l 

!o(x) = n go(n) n TI hao(n'), if the network is open, and 
n=O a n'=O 

Xj xu) 

h(x) = n n gaj(n)-l n haAn,)-l, j =I- O. 
a n=l n'=l 

The routing rates Aaj,{3k are the same as those in Section 3.1, and Waj is a 
solution to the traffic equations (3.1). Then the following result is an immediate 
consequence of Theorem 3.1. 
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Corollary 3.11. Under the preceding assumptions, an invariant measure for the 
network process is 

1r(X) = <I>(X) n w~jj, x E lEo 
ajeM 

The main example of this result is as follows. 

Example 3.12. BCMP Networks. The network described above is a BCMP net
work if each of its nodes is one of the following four types. 
• First-Come, First-Served node with service rates tPaAx) = ILj(Xj). Each unit (as 
in a Jackson network) has exponential service time with the same load-dependent 
service rate ILj(Xj). 
• Processor-Sharing node with service rates tPaj(x) = XajXj'lLaj(Xj). The 
lLaj(Xaj) is a customer-load-dependent service rate, which is apportioned equally 
among the Xaj a-units at the node. 
• Last-Come, First-Served with Preemption node with service rates as in the pre
ceding PS case. 
• Infinite-Server node with service rates tPaj (x) = Xaj lLaj (xaj). 
Also, in case the network is open, the arrival rates from outside are AaolLo(lx I). 

An invariant measure for this BCMP network is given by Corollary 3.11 with 

Ix 1-1 
fo(x) = n lLo(n), if the network is open, 

n=O 

and the other Ii's are as follows for the four types of nodes: 

FCFSnode 

PS or LCFSPR node 

IS node. 

This BCMP network can be extended to model service times with nonexponential 
distributions. This is explained in the next section. 0 

3.4 Networks with Cox and General Service Times 

Although the Markov network processes we have been studying have exponential 
times between transitions, the processes can model general service times at the 
nodes. We will show this for the BCMP networks discussed in the preceding 
section. 

We begin with a few comments on service times. An Erlang service time with 
parameters n and IL is the sum of n independent exponential random variables with 
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rate JL. Its density is 

Think of this Erlang service as consisting of n independent identical exponential 
phases performed in series. A generalization of this is a hypo-exponential service 
time consisting of a series of n independent exponential phases with respective 
rates JL I, ... , JLn, which may be different. 

A versatile generalization of Erlang and hypo-exponential random variables is a 
Cox random variable defined as follows. Consider a series of n exponential phases 
with rates JLI, ... , JLn as shown in Figure 3.1. In this system, a service begins by 
performing phase 1 (an exponential phase with rate JLI). Upon completing phase 
1, the service enters phase 2 with probability PI or the service terminates with 
probability 1 - PI. If phase 2 is entered, then upon completing this exponential 
phase, the service enters phase 3 with probability P3 or terminates with probability 
1 - P3. These phases are continued until the service terminates prior to or after 
phase n. The probability that the service consists of exactly the first s phases (or 
stages) is PI ... Ps-I (1 - Ps), where Po = Pn = 1. The total time to complete the 
service is a Cox random variable. Its distribution is 

n 

F(t)=LPI···PS-I(1-Ps)H(tIJLI, ... ,JLs), t~O, (3.8) 
s=1 

where H(tIJLI,"" JLs) is the hypo-exponential distribution of completing s 
phases. 

Cox distributions are a subclass of phase-type distributions (the distributions of 
absorption times for Markov processes). Note that a Cox distribution is a mixture 
of hypo-exponential distributions. This implies that a mixture of Cox distributions 
is also a Cox distribution. Another useful property is that a sum of independent Cox 
random variables is again a Cox random variable. Because of these properties, the 
time to complete a complex job consisting of independent series-parallel subtasks 
with Cox distributions can be modeled by a Cox distribution (a mixture models 
parallel subtasks, and a sum models subtasks in series). 

An important feature of Cox distributions is that they form a dense subset 
within the set of all distributions of nonnegative random variables. This means 
that any general service time distribution can be approximated by a Cox distribu
tion. We will now describe how to use this property for modeling networks with 
nonexponential service times. 

FIGURE 3.1. Phases of a Cox Service Time 
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Consider the multiclass Whittle network defined in Section 3.1 with the follow
ing additional assumptions. Suppose that the service time requirement for each 
a-unitatnodejhasaCoxdistributionwithparameterSlLajsoPajs,fors = 1, ... , n. 
The number of phases n may depend on a and j. To incorporate these Cox services 
into the network state, we assign the class label ajs to an a-unit that is in phase s 
of its service at node j. We let Xajs denote the number of such units at node j, and 
represent the state of the network by the vector x = (xajs : aj s EM, j =f. 0), 
where M denotes the set of all class labels aj s. 

Assume that each node j is one of the following types . 
• A processor sharing node with service rates 

rPajs(x) = Xaj.,xj I lLajs. 

The rate lLajs is apportioned equally among the Xajs aj-units at the node in phase 
s of their service . 
• Infinite-server node with service rates rPajs(x) = XajslLajs' 

Also, in case the network is open, assume the arrival rates from outside are 
AaolLo(lx I). 

The routing rates Aaj,{Jk must also be augmented to contain the phase parameter. 
From the definition of a Cox distribution, it is clear that the new routing rates for 
the network should be 

Aajs,aj(s+l) = 1 - Pajs, 1 ~ s < n, 

Aajn,{Jkl = Aaj,{Jko 

with the rest of the rates being O. An easy check shows that traffic equations for 
these rates have a solution 

s-I 

Wajs = Waj n Pajl, ajs E M, 
l=1 

where Waj is a solution to the traffic equations for Aaj,{Jk' 

Then from Corollary 3.11, it follows that an invariant measure for the network 
is 

Ixl-I m 1 
rr(x) = n 1L0(n) n Yj n -.-, (Wajs/lLajs)Xaj , 

n=O j=1 a,s xaJs · 

(3.9) 

where Yj = x j! or 1 according to whether node j is a PS node or an IS node, and 
1L00 = 1 if the network is closed. 

One can use this result for modeling networks with general service times. Specif
ically, consider the network with the modification that the service times have 
general distributions. Since these distributions can be approximated by Cox distri
butions, the invariant measure above for the approximating Cox distributions can 
be used as an approximation for the network with general service times. Unfortu
nately, such approximations tend to be difficult for large numbers of phases and 
customer types. 



3.5 Networks with Constraints 85 

3.5 Networks with Constraints 

Sections 2.4 and 2.5 discussed reversible processes with constraints. The central 
idea was that a reversible Markov process restricted to a subset of its state space 
is also a reversible Markov process, and its stationary distribution is a truncation 
of the original distribution to the subset. In this section, we expand on this theme 
for Whittle networks that are locally reversible. 

We begin with a general result concerning locally reversible Markov processes 
with constraints. Consider a Markov process X on a countable space IE with tran
sition rates q(x, y). Without loss in generality, assume that X is ergodic, and let 
rr denote its stationary distribution. Fix a subset i c IE, and let X be a Markov 
process on i whose transition rates, denoted by q(x, y), are the rates q(x, y) re
stricted to i (transitions from states inside i to states outside of i are "blocked" 
or suppressed). Assume that X is irreducible. 

Definition 3.13. Suppose the restricted process X is ergodic and its stationary 
distribution is 

if(x) = rr(x)j L rr(y), x E i. 
YEt 

This is the conditional probability stationary distribution of X conditioned that it 
is in i. We say that X is a truncation of the process X to i. 

This truncation property is typically not true. It obviously holds if and only if if 
satisfies the balance equations for X, which is equivalent to rr satisfying 

rrq(x, i) = rrq(i, x), x E i, (3.10) 

where rrq(A, B) == LXEA rr(x) LYEB q(x, y). Another characterization is as 
follows. 

Proposition 3.14. The process X is a truncation of X to i if and only if 

rrq(x, iC) = rrq(iC , x), x E i. (3.11) 

In particular, if X is reversible on i or on i c , then X is a truncation of X to i. 

PROOF. The balance equations that rr satisfies, which are rrq(x, IE) = rrq(lE, x), 
can be written as 

rrq(x, i) + rrq(x, ie) = rrq(i, x) + rrq(iC , x), x E IE. 

From this it follows that (3.11) is equivalent to (3.10). This equivalence establishes 
the first assertion. The second assertion of the theorem follows since X being 
reversible on i or on i c would imply (3.10) or (3.11), respectively. 0 

We will now apply this result to networks. For the rest of this section, assume 
the Markov process X represents an open or closed Jackson or Whittle network 
process with service and routing intensities f!JjO and Ajk' j, k E M (0 E M if 
the network is open). We will consider a modification of this process in which the 
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numbers of units in a sector J c M are restricted. Specifically, assume that the 
state space of the network is 

IE = {x E IE: (Xj : j E J) E A}, (3.12) 

where A is the set of "allowable" values of the vector (x j : j E J). 
The following are typical examples: 

• Nodes with Finite Capacities. IE = {x E IE: Xj ~ i j , j E J}, where i j is the 
capacity of node j. In this case, whenever some node k E J is such that Xk = ik, 
then no additional units can enter that node until a unit departs from it. This is 
called communication blocking. 
• Sectors with Capacity or Load Constraints. 

IE = {x E lE: XI +X2 ~ i 12 ,XI +X4 ~ X2 +X5}, 

where J = {I, 2, 4, 5}. In this case, sector {I, 2} cannot contain more than i l2 

units and sector {1, 4} cannot contain more units than sector {2, 5}. 

• Resource Constraints. IE = {x E lE: LjeJ rjjxj ~ rj, i E I}. Here each unit at 
node j requires rij units of a resource i, and there are only rj units of the resource 
available. Typical resources are space, computer memory, manufacturing tools, 
and money. Other common constraints can be formulated by functions of the state 
x. 

For the next result, assume that X is the resulting network process on the 
restricted state space IE as in (3.12). Define 

J = J U {k ¢ J : Ajk or Akj > 0 for some j E J}. 

Theorem 3.15. If the rates (Ajd are reversible on j, then the network process 

X is a truncation of X to IE. 

PROOF. It suffices to verify the balance equations (3.10). But these will follow 
upon showing that 

I>'q(x, TjkX) = ~::>'q(TjkX, x), j E M, x E IE. (3.13) 
k k 

To this end, first consider the case j E J. Then (3.13) is equivalent to 

I>q(x, TjkX) + I>'q(x, TjkX) = L lrq(TjkX, x) + L lrq(TjkX, x). 
kel keF kel kelc 

(3.14) 

The first and third sums are equal since an easy check shows that the kth term 
in these sums are equal by the assumption that Ajk is reversible on J. Also, this 
assumption and Proposition 3.14 applied to A jk ensure that 

Wj L Ajk = L WkAkj, j E P'. 
kelc kelc 

Using this, one can show that the second and fourth sums in (3.14) are equal. Thus 
(3.14) holds for j E J. 
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Next, consider the case j E jc. Then A jk = Akj = 0 for k E J, and so (3.13) is 
equivalent to 

L 1l'Q(x, TjkX) = L 1l'Q(TjkX, x). 
kEF kEF 

But this equation holds because Proposition 3.14 applied to the reversible rates 
{Ajk} on J ensures that 

Wj L Ajk = L WkAkj, j E JC. 
kEF kEF 

This completes the proof of (3.13). 0 

3.6 Networks with Blocking and Rerouting 

The last section discussed networks with blocking whose invariant measures agree 
with those of the original network. We now discuss a variation of this theme in 
which a Markov network process with blocking plus "rerouting" has invariant 
measures that agree with the original network process. 

We begin with a basic result for Markov chains, which underlies our results for 
networks. Let {Pjk : j, k E J} denote irreducible Markov transition probabilities 
on a countable set J. Consider a Markov chain on a subset I of J that moves as 
follows. Whenever it is in state j E I, a sequence of states is selected by the proba-
bilities P jk until a state k E I is selected. That is, a sequence of states kJ, ... , ke, k 
is selected with probability P jk\ Pk\k2 ••• Pktk. where ki rt I, i = 1, ... , l, and 
k E I. Then the chain moves from j to k. Let rjk denote the transition probability 
of the chain moving from j to k. This Markov chain on I with transition proba
bilities {rjk} can be interpreted as the Markov chain with transition probabilities 
Pjk restricted to the subset I by rerouting. 

It follows, by conditioning on the first state selected, that 

rjk = Pjk + L PjiTJik> j, k E I. 
i¢/ 

(3.15) 

Here TJik is the probability that, for a Markov chain on J with transition probabilities 
{p j k}, the first entry into I starting from i rt I occurs in state k E I. These 
absorption probabilities are the solution to the equations 

TJjk = Pjk + L PjiTJik. j rt I, k E I. 
i¢/ 

(3.16) 

Proposition 3.16. If{1l'j : j E J} is an invariant measure for {Pjk}, then {1l'j : 

j E I} is an invariant measure for {r jk}. 

PROOF. Suppose that {1l'j : j E J} is a positive measure that satisfies 

1l'j = L1l'kPkj, j E J. 
kEJ 

(3.17) 
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We will show that {7rj : j E l} satisfies 

By (3.17), we know that 

7rj = L7rkrkj, j E I. 
kEf 

7rj = L7C'kPkj + L7C'kPkj, j E I. 
kEf k¢f 

Now, from (3.l6), (3.17), and (3.15), we have 

L 7rkPkj = L 7rk(TJkj - LPkiTJij) 
k~ k~ i~ 

= L L trk Pki TJij - L trk L Pki TJij 
i¢f kEf k¢f i¢f 

= L trk L Pki TJij 
kEf i¢f 

= L 7rk(rkj - Pkj). 
kEf 

(3.18) 

(3.l9) 

For the second equality, k is changed to i and (3.17) is applied. Substituting the 
preceding expression in (3.19) yields (3.18). D 

We will now consider the notion of blocking and rerouting in networks. Suppose 
that {XI: t ~ O} is the generalization of Jackson and Whittle processes discussed 
in Proposition 1.23. Namely, X is a Markov process with transition rates 

!cPj(X)Ajk(X) if y = Tjkx for some j i=- k in M 
q(x, y) = 0 otherwise, 

where Ajk(X) is a routing rate as a function of the state x. For simplicity, assume 
that Ajk(X) is the probability of a unit moving from node j to node k, and so 
Lk Ajk(X) = 1. Assume that the cPj are <I>-balanced, and that there is a positive 
function A on lE such that 

A(x) = L A(TjkX)Akj(TjkX), j E M, x E lE with Xj ~ 1. 
k 

(3.20) 

These assumptions imply, by Proposition 1.23, that an invariant measure of the 
process is 

7r(X) = A(x)<I>(x), x E lE. (3.21) 

We will consider this network with the following blocking and rerouting proto
col. Suppose the network is in state x E lE, and a unit departs from node j. The 
disposition of the rest of the units in the network is given by the vector x - e j. For 
each such vector, there is a partition of the node set M such that only movements 
of units under the probabilities {A jk(X)} between nodes in the same subset of the 
partition are admissible. We let I (x - e j) denote a typical partition subset. The 
partition may consist of the singleton M, but we disregard the degenerate case 
where the partition is the singleton M for each x - e j (then there is no blocking). 
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Now, we assume that the unit departing from node j in some partition subset I == 
/(x - ej) selects a sequence of nodes according to the probabilities P.jk(X)} until 
a state k E I is selected. That is, the unit selects a sequence of states k I , ... , ke, k 
with the probability Ajk,(X))l.k,k2(X)··· Aktk(X), where k; f/. I, i = 1, ... ,.e, and 
k E I. Then the unit moves from node j to node k. This selection process is done 
instantaneously. Let rjk(x) denote the probability that the unit moves from j to k 
according to this blocking-rerouting procedure. 

As in the case of the Markov chain model above, it follows that 

rjk(X) = Ajk(X) + I>j;(X)1];k(X), j, k E I. 
i¢1 

(3.22) 

Here 1]ik(X) is the probability that, for a Markov chain on M with transition prob
abilities {Ajk(X)}, the first entry into I starting from i f/. I occurs in state k E I. 
These absorption probabilities are the solution to the equations 

1]jk(X) = Ajk(X) + I>ji(X)1]ik(X), j f/. I, k E I. 
i¢l 

(3.23) 

The resulting network process {.t : t ~ O} is a Markov process. Its transition 
rates are 

q(X, y) = (jJj(x)rjk(x) 

if y = TjkX for some j =f:. k in M and j, k are in the same subset of nodes with 

admissible transitions; and q(x, y) = 0 otherwise. Suppose that X is irreducible 
on a space t c IE. We interpret the network process X as a restriction of X under 
blocking and rerouting. 

Theorem 3.17. An invariant measure for X is ii(x) = <1>(x)A(x), x E t. 
PROOF. To prove the assertion, it suffices by Proposition 1.23 to show that 
equation (3.20) holds for x E t. This equation can be written as 

A(x + ej} = L l(j E I(x)) L A(x + edAkj(x + ed, 
I(x) k 

where x + e jEt with x j ~ 1 and j EM. The first sum is over all subsets I (x) 
that partition M. To prove the preceding equation, it suffices to show that, for each 
subset I (x), 

7rj = L 7rkrkj, j E I(x), 
kEI(x) 

where 7rj == A(x + ej) and rjk == rjk(x + ej). 

(3.24) 

Now, setting Pjk == Ajk(X + ej), it follows that the relations (3.22) and (3.23) 
are the same as (3.15) and (3.16), respectively. Consequently, the Markov chain 
with transition probabilities {r jk : j, k E I (x)} is a restriction with rerouting of 
the Markov chain with transition probabilities {Pjk : j, k EM}. Also, (3.20) with 
the preceding notation implies that {7rj : j E M} is an invariant measure for {Pjk : 
j, k EM}. Then the desired expression (3.24) follows by Proposition 3.16. 0 
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3.7 Bottlenecks in Closed Jackson Networks 

We now switch from blocking to bottlenecks. In this section, we address the ques
tion: How does the stationary distribution of a closed Jackson network change as 
the number of units in the network tends to infinity? We show that (a) the num
ber of units in the nodes with the largest traffic intensity tends to infinity, and (b) 
the distribution of the numbers of units in the remaining nodes converges to the 
distribution of an open Jackson network. 

Consider a closed Jackson network with v units and load-independent service 
rates lPj(x) = J.Lj' for j E M = {t, ... , m}. From Theorem 1.12, its stationary 
distribution is 

n X· 
1l'(x) = cv r/ ' Ixi = v, 

jeM 

where r j = W j / J.L j is the traffic intensity, and the W j 's satisfy the traffic equations 

Wj LAjk = LWkAkj, j EM. 
keM keM 

We will consider the convergence of this stationary distribution as v -+- 00. 

Let (Xr, ... , X~) denote a random vector with the distribution 1l' that represents 
the numbers of units at the nodes in steady state. The superscript v highlights the 
number of units v in the network, which we now treat as a variable. The nodes 
with the largest traffic intensity would be the bottlenecks when v is large. In other 
words, the heaviest traffic would be in the sector 

J == {j EM: rj = r == max{rlo ... , rm}}. 

The traffic in the complement K == MV would be lighter. Recall that X] = (Xj 
j E J) denotes the state of the nodes in J andx(J) == Lje] Xj is the total number 
of units in J. For each k E K, the ratio Pk == rd r is the traffic intensity at node 
k relative to the traffic intensity r at the nodes in J. Assume K is not empty; an 
empty K is not of interest. 

The following result says that the distribution of XK converges to the distribution 
of an open Jackson network on K as v -+- 00. Also, the number of units X(J)" 
in the bottleneck sector J converges to infinity. This implies that, for a closed 
Jackson network with a large number of units and load-independent service rates, 
the distribution of its nonbottleneck nodes can be approximated by a product-form 
distribution as in an open network. 

Theorem 3.18. Under the preceding assumptions, X(J)V converges in distribution 
to 00 as v -+- 00, and 

lim P{XK = XK} = n (I - Pk)P;t, XK:::: O. 
V ..... 00 keK 

PROOF. It suffices to show that, for any vector XK :::: 0 and integer l :::: x(K), 

lim P{X(Jt :::: l - x(K), X K = XK} = n (l - Pk)p;t . (3.25) 
V ..... 00 keK 
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From the distribution 7r above, it follows that 

P{X(J)V :::: i - x(K), X~ = xKl 

= L7r(y)l(y(J) :::: i - x(K), YK = XK) 
Y 

v 

= Cv L L l(x(J) = n) n r? n rtk 
n=i-x(K) XJ jEJ kEK 

v 

= cvr-v L IJln n ptk • 

n=t-x(K) kEK 

Here I J I is the number of nodes in J. Using similar reasoning, 
v 

-I -v'" IJln Cv = r ~ av- n , 

n=O 

where 

ai = L l(x(K) = i) n ptk • 

XK kEK 

Combining the preceding displays, we have 

P{X(J)V > i - x(K) Xv = x } = L~=i-x(K) IJl n n Xk. (3.26) 
- 'K K "V IJln Pk 

~n=O av- n kEK 

Now, supposing that the nodes are labeled such that K = {I, 2, ... , IKIl, then 

I I-XI i-xl-,,,-xIKI_1 

ai = LL'" L nptk 

~ n (1 - Pk)-I , as i ~ 00. 

kEK 

In light of this, letting v ~ 00 in equation (3.26) yields (3.25). 

3.8 Modeling Whittle Networks by Locations of the 
Units 

o 

We have been representing networks by the numbers of units at their nodes. Another 
approach is to depict the evolution of a network by the locations of its units. In this 
section, we describe this approach for closed and finite-capacity Whittle networks 
with processor-sharing nodes, and comment on its applicability to other types of 
networks. 

Consider an m-node Whittle network that is closed with v units or open with 
capacity v. As in Chapter I, let A j k denote the routing rates of the individual units 
and let lPj(x) denote the service rate when there are x = (Xl. •.. , xm ) units at the 
respective nodes. Assume the rates Ajk are irreducible on the node set M, where 
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M == {I, ... , m} or {O, 1, ... , m} according as the network is closed or open. Let 
Wj denote the stationary distribution of the routing process with rates Ajk. Then by 
Theorem 1.15, we know that the process {X t : t :::: O} that represents the numbers 
of units at the nodes has the stationary distribution 

1l'(x) = cct>(x) n w? 
jeM 

We will now analyze the network in terms of the locations of the units. In case 
the network is closed, we label the units as 1, ... , v. In case the network is open, we 
assume that the indices 1, ... , v are labels or tokens that the units in the network 
carry as follows. Whenever there are n < v units in the network, a unit entering 
the network selects one of the v - n unused labels with equal probability. The unit 
retains the label until it exits the network, and then the label becomes available for 
another unit. The unit carrying the label i is called unit i. 

We assume that the services at each node are under a processor sharing discipline 
in which each unit at a node receives the same service treatment. Then the time 
to a potential departure of a unit i from a node j has an exponential distribution 
with rate 4> j (x)x j \ . Here 1/ x j is the probability that unit i is one selected to depart 
from the x j units at node j. 

We will represent the network by the stochastic process Y(t) == (Y\(t), ... , 
Yv(t», where Yi(t) denotes the node location of unit i at time t. A typical state 
of the process Y is a vector y = (y\, ... , Yv) in MV. Whenever Y is in state y, 
a transition is triggered by some unit i moving from its current node Yi to some 
node k. Let T~ Y denote the resulting state, which is y with Yi replaced by k. Also, 
let n(y) == (n\ (y), ... ,nv(Y», where 

v 

n j(Y) == L I(Yi = j), j E M, Y E M V , 

i=\ 

which is the number of units in node j. 
Under the preceding assumptions, Y is a Markov process and its transition rates 

are 

if y' = T~ Y for some i and k 

otherwise. 

The proof (Exercise 6) of the following result is similar to the proof of Theorem 1.15 
for Whittle processes. 

Theorem 3.19. The location process Y defined above is ergodic, and its stationary 
distribution is 

1 n n·(y) 1l'y(y) = ,ct>(n(y» w/ nj(Y)!, 
v. jeM 

This distribution satisfies the partial balance equations 

1l'y(y) Lq(y, T~y) = L1l'y(T~y)q(T~y, y), 
keM keM 

1 = 1, ... , v. 
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The marginal distributions of rry are also related to those of rr. Indeed, the 
stationary distribution of the location process of the ith unit is (Exercise 6) 

rry;(j) = v-1L j , j EM, (3.27) 

where L j denotes the expected number of units at node j (L j can be computed 
from the jth marginal distribution of rr). 

The location process Y does not have an exact analogue for an unlimited capacity 
open Whittle network, since the convention of labeling a fixed number of units 
does not apply to a varying and unlimited number of units. For such a network, 
however, we can say the following. If the associated network process X is ergodic 
and stationary, then conditional stationary probabilities for the unit locations are 

P{the unit locations are Ylo ... , Yv IIXol = v} = rry(y). 

3.9 Partially Balanced Networks 

We saw in Theorems 1.12-1.15 that Jackson and Whittle networks satisfy certain 
partial balance equations. These balance equations are a coarser version of the de
tailed balance equations that reversible Markov processes satisfy. Since reversible 
Markov processes have canonical representations of their transition rates and in
variant measures, a natural question is: Do analogous canonical representations 
hold for partially balanced Markov processes and networks? The answer is no, 
because this would be tantamount to asking for a canonical representation of in
variant measures for any Markov process. However, there are some partial results 
along these lines that we now present. 

Throughout this section, we assume that {Xt : t ~ O} is an irreducible Markov 
jump process on a countable state space IE with transition rates q(x, y) and an 
invariant measure rr. For subsets A and B of IE, we write 

rrq(A, B) == L L rr(x)q(x, y). 
XEA yEB 

When the process is ergodic, rrq(A, B) is the probability flux between A and B, 
or the average number of jumps that X makes from A to B per unit time. 

Recall that q is reversible with respect to rr if it satisfies the detailed balance 
equations rrq(x, y) = rrq(y, x), x, y E IE. We will now consider the following 
general partial balance condition. 

Definition 3.20. For each x E IE, let lEy (x) and 1E~(x), Y E r, be two partitions 
of IE. The q is partially balanced over {lEy, IE~} with respect to rr if rr is a positive 
measure on IE such that 

rrq(x, lEy(x» = rrq(IE~(x), x), x E IE, Y E r. (3.28) 

A measure rr satisfying this definition is an invariant measure since it satisfies the 
total balance equations rrq(x, IE) = rrq(lE, x), which are the sum of (3.28) over 
y. Note that partial balance partitions always exist: The degenerate case with the 
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coarsest partitions lEy(x) = 1E~(x) == IE is always possible. The opposite extreme 
is when the two partitions consist of single-point sets (the finest partitions), which 
corresponds to detailed balance. 

Partial balance equations (3.20) are potentially easier to solve for 17: than the 
total balance equations, provided that one can find them. Partial balance also yields 
insights into what subsets of transitions are balanced. There are generally many 
partial balance partitions for a process and it is of interest to identify the finest 
ones possible. Although the index set r in the definition above is the same for both 
partitions, some of the sets in a partition may be empty and the number of non empty 
sets in the two partitions may be different. In some cases, the two partitions are the 
same. For instance, the partial balance equations in Theorem 1.15 for the Jackson 
and Whittle network processes are based on the balance partitions 

IEj(x) = IEj(x) = {Tjkx E IE : k EM}, j E M. 

A canonical representation of partial balance transition rates is as follows. It 
is useful for checking whether certain partitions of a process are partial balance 
partitions. Its proof (Exercise 3) is similar to that of Theorem 1.5. 

Proposition 3.21. The transition rate function q is partially balanced over 
{lEy, IE~} if and only if it is of the form 

q(x, y) = r(x, Y)/17:(X), x, Y E IE, 

where 17: is a positive measure on IE and r is a nonnegative function on 1E2 that 
satisfies 

L r(x, y) = L r(y, x), x E IE. 
yeEy(x) yelE'y(x) 

In this case, 17: is an invariant measure for q. 

The next result is a key tool for identifying or constructing partially balanced 
processes. It is the basis of quasi-reversible network processes, which we discuss 
in Chapter 8. Suppose the transition rates of the process X have the form 

q(x, y) = q[(h(x), h(y»q(x, y), x, y E IE, (3.29) 

where h is a function from IE to a countable set I, and q [ and q are transition 
rates for irreducible Markov jump processes on I and IE respectively. Let Iy(i) and 
I;(i), i E I and Y E r, denote partial balance partitions for q[ with respect to a 
measure 17:[ on I. Associated with Iy(i), define partitions on IE by 

lEyi(x) = {y E IE: h(y) = i E Iy(h(x))}, 

X E IE, i E I, Y E r. 
Let lE~i(x) and 1E~(x) be similar partitions associated with I;(i). 

Theorem 3.22. For the Markov process X with transition rates (3.29), suppose 
q is partially balanced over {IEYi' lE~i : Y E r, i E I} with respect to ir, and 



3.9 Partially Balanced Networks 95 

ii'ij(x,lEyi(x» is independent ofi for each x and y. Then q is partially balanced 
over {lEy, 1E~} with respect to 

1T(X) = 1T/(h(x»ii'(x), x E IE. 

PROOF. The assertion follows since, for each x and y, 

1Tq(X, lEy (x» = L L 1T/q/(h(x), h(y»ii'ij(x, y) 
iE/y(h(x)) YElEyj(X) 

L 1T/q/(h(x), i)ii'ij(x, lEyi(x» 
iE/y(h(x)) 

L 1T/q/(i, h(x»ii'ij(lE~i(x), x) 
iE/y(h(x» 

L L 1T/q/(h(y), h(x»ii'ij(y, x) 
iE/y(h(x» YEIE~j(X) 

= 1Tq(IE~(X), x). 

The second and fourth equalities follow since h(y) = i when y E lEyi(x). And the 
third equality follows by the partial balance of q / and ij and the assumption that 
ii'ij(x, lEyi(x» is independent of i. 0 

The preceding result, loosely speaking, says the following. Suppose q is the 
product of q / and ij, and one knows or can obtain invariant measures 1T / and ii' for 
them separately. If in addition, ii'ij(x, lEyi(x» is independent ofi, then an invariant 
measure of q is the product of 1T / and ii'. This "divide and conquer" strategy is 
predicated on obtaining 1T / and ii' . 

The following is an immediate consequence of Theorem 3.22, where h is the 
identity function. 

Corollary 3.23. Suppose the transition rates of the Markov process X are 

q(x, y) = q\(x, y)q2(X, y), x, y E IE, 

where q\ and q2 are irreducible transition rates on IE. Let {lEy,IE~} be partial 
balance partitions for q\ with respect to 1T\. Suppose q2 is reversible with respect 
to 1T2, and 1T2q2(X, y) is the same for each x, y and y E lEy (x) U 1E~(x). Then q is 
partially balanced over {lEy, 1E~} with respect to 

1T(X) = 1T\(X)1T2(X), x E IE. 

We end this section with a network example of the preceding result. 

Example 3.24. Partially Balanced Network. Suppose that X is a slight extension 
of a Whittle network process with transition rates 

q(x, Tjkx) = Ajkr!Jjk(X), x E IE. 

The departure intensities r!Jjk(X) are now allowed to depend on k. The network may 
be closed or open with finite or unlimited capacity. 



96 3. Miscellaneous Networks 

Suppose thatAjk are irreducible transition rates on the node set M. Let {Jy, I;} 
be partial balance partitions for A jk with respect to a positive measure W j on M, 
where Wo = 1 if the network is open. Associated with Iy(j), define partitions on 
lE by 

lEyj(x) = {TjkX E lE : k E Iy(j)}, 

lEy(x) = UjEMlEyj(X), x E lE, j E M, Y E r. 
Let lE~j(x) and lE~(x) be similar partitions associated with I;(j). 

Assume that t/J jk are If)-balanced departure-arrival intensities in the sense that 
If) is a positive function on lE such that for x E lE and j, k E M with TjkX E lE, 

If)(X)t/Jjk(X) = If)(Tjkx)t/Jkj(TjkX). 

In addition, assume that these quantities are the same for each k E Iy(j) U I;(j) 
and any j, x and y. Then q is partially balanced over {lEy, lE~} with respect to 

m 

rr(x) = If)(x) n w?, x E lE. 
j=1 

(3.30) 

To see this, note thatql (x, TjkX) = A jk are transition rates for a Whittle network 
process with departure rates t/J j = 1. Then it follows similarly to Theorem 1.15 
thatql is partially balanced over {lEyj, lE~j} with respect to the measure nj=1 W;i. 
Also, the transition rate function q2 = t/J j k (x) is reversible with respect to If). Thus 
it follows by Corollary 3.23 that q is partially balanced over {lEy, lE~} with respect 
to the measure (3.30). 0 

3.10 Exercises 

1. Suppose the multiclass network process X in Section 3.1 represents an open 
network, and t/Jo has the form t/Jo(lxl), where Ixi = "£ajXaj. Show that the 
service rates are balanced by the function 

n 

If)(x) = n t/Jo(i - l)/t/J«(3klj (X i ), x E lE, 
i=1 

where xo, ... ,xn is a direct path from xO = 0 to xn = x with n = Ix I and 
ii-I + X = X e«(3klj • 

2. Show that the service rates in Exercise 1 are a special case of the sector
dependent service rates in Example 3.3. Show that the latter rates are balanced 
by If) given by (3.3). 

3. Prove Proposition 3.21. 
4. Networks with infinite number of nodes or classes. Consider a Whittle network 

with the modification that it has an infinite number of nodes labeled 1,2, ... , 
where the number of units is still finite for the unlimited capacity open network 
case. Assume that its routing rates Ajk satisfy "£:1 Ajk < 00 and they do not 
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have transient states. What additional assumption on the service rates is needed 
(for the closed or open cases) in order for the network process to be a well
defined Markov process? Under these assumptions, an invariant measure for the 
network (as in Theorem 1.15) is 1l'(x) = cJ>(x) n~l w? In case the network 
has unlimited capacity and the W j < 1 for each j, is another assumption needed 
in order for the infinite product in this distribution to be positive? If so, what is 
it? Specify the comparable assumptions needed to model a multiclass Whittle 
network with a "finite" number of nodes and an infinite number of classes. 

5. Networks with infinite number of units. It is possible to define a Whittle process 
with an infinite number of nodes and units, where each node contains a finite 
number of units. Specify additional assumptions on the routing and service 
rates that yield a well-defined Markov network process with invariant measure noo x· 
1l'(x) = <I>(x) j=l W / • 

6. Prove Theorem 3.19 and expression (3.27). Hint: Use the properties n(y) = 
n(Y2, ... , Yv) + ey, and 

L("') = L L(" .)I(n(y) = x). 
y x y 

7. In the setting of Theorem 3.19, consider the modification in which each unit i has 
irreducible routing rates Ai (j, k) on M that are a function of i. Let Wi (j) denote 
the stationary distribution of Ai(j, k). Show that the stationary distribution of 
the location process Y, under this modification, is 

v 

1l'y(y) = ccJ>(n(y» n Wi(Yi) n nj(Y)!, Y E MV. 
i=l jEM 

3.11 Bibliographical Notes 
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tributions, see Asmussen (1987) and Neuts (1994). Another useful approximation 
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This book does not cover multiclass networks with FCFS single servers and 
general service time distributions that depend on the customer class. Such net
works in heavy traffic can be approximated by fluid models or by diffusion 
processes. Sample references on this are Harrison and Reiman (1981), Rieman 
(1984), Dai and Harrison (1992), Dai (1995), Mandelbaum and Pats (1998), Bram
son (1998), and Williams, (1998). Another approach to critically loaded networks 
is to approximate their probability distributions via the Kolmogorov backward and 
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forward difference-differential equations using singular perturbation techniques as 
in Knessl and Tier (1995). 

The results on blocking and rerouting are from Economou and Fakinos (1998) 
and Proposition 3.16 is from Kemeny and Snell (1976). Other types of blocking 
are considered for instance in Akyildiz and von Brand (1989); and Perros (1994) 
surveys several approximations for blocking. The elementary model of bottlenecks 
that we discuss has more interesting variations as in Malyshev and Yakovlev (1996). 
The section on partial balance is based on ideas in Whittle (1985,1986a,1986b). 

A sample of network models with special themes or structures that we did 
not cover are in Kumar and Kumar (1994), Gross and Harris (1985), Stecke and 
Solberg (1985), Buzacott and Yao (1986), Boucherie and van Dijk (1990), Kelly 
and Williams (1995), and Glasserman et al. (1996). 



4 
Network Flows and Travel Times 

This chapter addresses the following questions about movements of units in sta
tionary Jackson and Whittle processes. What flows of units between nodes are 
Poisson processes? When a unit moves from one node to another, what is the 
probability distribution of the locations of the other units in the network? What is 
the distribution of the time it takes for a typical unit to traverse a series of nodes? 

The answers to these questions require an understanding of Palm probabilities 
for Markov processes at their transition times. The theory for these probabilities is 
a self-contained, elementary part of the theory of Palm probabilities. We cover this 
subtheory in Section 4.6, and give a more comprehensive study of Palm probabil
ities in Chapter 5. Another key tool for our analysis is a generalization of Levy's 
formula for expectations of functionals of a Markov process. This formula is the 
topic of Section 4.2. 

4.1 Point Process Notation 

In this section, we introduce the notation and a few properties of point processes 
that we use throughout the rest of the book. Additional material on point processes 
is in Chapters 5 and 9. Point processes in time (i.e., on the real line IR or half line 1R+) 
describe such events as customer arrival times, or times at which customers move 
from a node j to a node k. Point processes in a space are natural for modeling such 
things as mobile customers in regions of the plane 1R2• We will also use "space
time" point processes, where each point is a pair of numbers in time and a space 
(e.g., the arrival time of a customer to a system and the location where it enters). 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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To describe point processes on general spaces, we will use the following no
tation, which is now standard in applied probability. Let IE denote a complete, 
separable metric space (a Polish space), and let E denote its family of Borel sets. 
We will describe sets of points in IE by counting measures. For most of our appli
cations, IE will be a Euclidean space. We refer to IE simply as a space, and denote 
other spaces of this type by IE'. (With a slight abuse of notation, we will also con
tinue using IE as the state space for Markov processes; the nature of IE should be 
clear from the context.) 

Suppose that XI, ••• ,Xk are locations of points (or unit masses) in IE. There 
may be more than one point at a location, and the order of the subscripts on 
the locations is invariant under permutations. These points are described by the 
counting measure v on IE defined by 

k 

v(A) = L l(xn E A), A E E, 
n=1 

where v(A) denotes the number of point in A. Let M denote the set of all such 
counting measures on IE that are finite on compact sets. Endow M with the u-field 
M on M generated by the sets {v EM: v(A) = n}, for A E E and n E Z+. 

Definition 4.1. A point process N on IE is a measurable map from a probability 
space (Q, :F, P) to the space (M, M). The quantity N(A) is the number of points 
in the set A E E. We express N as 

N(A) = L I(Xn E A), A E E, (4.1) 
n 

where the Xn's denote the locations of the points of N. The summation is L:~~)' 
where N (IE) may be finite or infinite. 

The space of measures M and related measure theory technicalities are not used 
explicitly in the following discussion. The results are understandable simply by 
thinking of IE as a Euclidean space and N as a counting process on it. When IE = R 
(or R+), we denote the point locations by Tn instead of Xn• Also, unless specified 
otherwise, we assume the points are ordered such that 

... < T-2 < LI < To ::: ° < TI < T2 < .... 

Note that these times are subscripted such that To ::: ° < TI. We also write 
N(a, b] = N«a, b]) for a < b, and N(t) = N(O, t], for t > O. We will frequently 
refer to integrals with respect to such point processes in time. The integral of a 
real-valued process {Yt : t E R} with respect to N is simply the summation 

( YtN(dt) = LYT"I(Tn E B). 18 n 

The probability distribution of a point process N (i.e., P {N E .}) is determined 
by its finite-dimensional distributions 

P{N(AI) = nl,"" N(Ak) = nd, AI,"" Ak E E. 
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It suffices to define these probabilities on sets Ai that generate £. For instance, 
when IE = JR., intervals of the form (a, b] generate £. The point process N is said to 
be simple if P{N({x D ::: I for all x E IE} = I (Le., the point locations are distinct). 
The mean measure of N is JL(A) = EN(A), A E £, which may be infinite. 

The most prominent point processes are Poisson processes defined as follows. 

Definition 4.2. A point process N on IE is a Poisson process with mean measure 
JL if it satisfies the following conditions. 
(a) N has independent increments: The quantities N(A 1), ••• , N(At} are indepen
dent for disjoint sets AI, ... , Ak in £. 
(b) For each A E £, the quantity N(A) is a Poisson random variable with mean 
JL(A); and JL is finite on compact sets. 

In this definition, if JL({xD > 0, then the number of points N({x}) exactly atx has 
a Poisson distribution with mean JL({x D. On the other hand, if JL({x D = 0, then N 
cannot have more than one point at the location x. This occurs, for instance, when 
JL(A) = fA r(x)dx, where r(x) is the intensity or rate of N at the location x, and 
dx denotes the Lebesgue measure. 

Some properties of networks involve point processes on product spaces. To 
define a point process N on a product space IE x IE', it suffices to specify its values 
N(A x B) for product sets A x B E £ X £'. An important case is as follows. 

Definition 4.3. A point process N on JR. x IE is a space-time point process. We 
denote its points by the pairs (Tn' Xn). 

In this definition, it is possible for N (/ x IE) to be infinite for finite intervals I, and 
so it is not appropriate to assume the Tn's are ordered. We also sometimes use the 
nonnegative time axis lR+ instead of IR. A space-time process is a natural arrival 
process for a service system or particle system, where Tn is the arrival time of the 
nth customer or particle, and Xn is the location in a space IE where it enters. The 
preceding definition allows for an infinite number of particles to enter a system 
at a specified time. For instance, an infinite number of points may be present at 
time O. Although the Tn's are not ordered, one can say that the nth particle with 
space-time entry (Tn, Xn) has Lkin I(Tk ::: Tn) predecessors. 

Suppose N is a space-time point process that is Poisson. Consider the special 
case in which its mean measure has the form 

EN«s, t] x B) = a(t - s)F(B), s < t, 

where a > 0 and F is a probability measure on IE' . In this case, the points {Tn} form 
a Poisson process on JR. with rate a, and the {Xn} are independent and independent 
of {Tn}, and each Xn has the distribution F. We say that the space-time Poisson 
process N has a rate a and space distribution F. 



102 4. Network Flows and Travel Times 

4.2 Extended Levy Formula for Markov Processes 

Our study of movements in networks will involve functionals of Markov processes. 
This section covers expressions for their expected values. 

We will use the following notation throughout this chapter. We assume that 
{Xt : t E JR} is a Markov jump process on a countable state space lE with transition 
rates q(x, y). The time axis is the entire real line R because this is natural for 
analyzing stationary systems. The results here automatically apply to processes 
defined only on the nonnegative time axis. The process X has piecewise constant 
sample paths, and we assume its sample paths {Xt : t E IR} are in the set D of all 
functions from IR to lE that are right continuous and have limits from the left. The 
left-hand limit of X at time t is Xt - == limstt Xs. Frequent reference will be made 
to time shifts of the process X defined as follows. 

Definition 4.4. For each t E R, the time-shift operator St on D is a mapping 
St : D --+ D defined by StZ == {z(s + t) : s E JR}, for zED. The process X with 
its time parameter shifted by the amount t is StX == {XHt : s E IR}. 

The time-shifted process StX is what an observer of X would see at time t: 
With t as the time origin, the future would evolve as Xr+u for u ~ 0 and the past 
would be seen as X t - u for u > O. The stochastic process X is stationary if the 
distribution of the process StX is independent of t. 

We denote the transition times of X by 

... < L-2 < L_I < LO :s 0 < LI < L2 < .... 

For this section, we let N denote the point process of these times; that is 

N(A) == L 1(Ln E A) = L 1(Xt f::. X t-), A C R 
n tEA 

Reference to a time set A C JR means that A is a Borel subset of IR (this avoids 
introducing a symbol for the Borel sets). In later sections, we use N to denote other 
point processes. Finally, we say that an expectation of the form E fA Ys ds exists 
if fA E I Ys I ds is finite. 

This section focuses on functionals of the Markov process X associated with 
its transitions times Ln. As a preliminary example, suppose that hex, y) is a value 
(cost or utility) of a transition of the process from state x to state y. Then the value 
of the transitions in the time set A is 

( h(Xt-, Xt)N(dt) = Lh(Xr,,_1' Xr.,)1(Ln E A). 
JA n 

The expectation of this functional can be expressed as follows. 

Example 4.5. Levy's Formula. For h : lE2 --+ JR and A C IR, 

E ( h(Xt -, Xt)N(dt) = E { L q(Xt, y)h(Xt, y)dt, (4.2) 
~ JAy#~ 
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provided the right side exists. This formula follows from the extended Levy formula 
in Theorem 4.6 below with g(t, StX) = h(Xt_, Xt)l(t E A). Note that if the 
process X is stationary with distribution 1C, then (4.2) becomes 

E ( h(Xt-, Xt)N(dt) = (b - a) L1C(X) Lq(x, y)h(x, y). 
1(a.b) x yi-x 

In particular, the expected number of transitions of X from x to y per unit time is 

E ( I(Xt_ = x, Xt = y)N(dt) = 1C(X)q(X, y). 
1(0.1) 

An example of (4.2) is that, for f : IE ~ JR, 

E ( f(Xt)N(dt) = E ( L q(Xt, y)f(y)dt, 
~ ~Yi-~ 

provided the right side exists. Another example is Dynkin's formula; see 
Exercise I. 0 

We now consider the situation for the process X in which a transition at time 
t is associated with a real-valued quantity g(t, StX), which is a function of t and 
St X. This quantity is a function of the future, as well as the past, of the process, 
since the time-shifted process StX is the entire sample path of X "centered" at t. 
Such functionals are the basis of Palm probabilities for Markov processes, which 
we discuss later in this chapter. For g : JR x D ~ JR, t E JR, and x, y E IE, we 
define 

G(t, x, y) == E[g('l'n+I' Srn+, X) I 'l'n = t, Xrn = x, Xrn+1 = y]. 

We assume this expectation exists; it does not depend on n because of the 
Markovian structure of X. The following is an extended Levy formula. 

Theorem 4.6. For g : JR x D ~ JR and U E JR, 

E ( g(t, StX)N(dt) = E { L q(Xt, y)G(1'" Xt, y)dt, (4.3) 
fRo 1JR yf.X, 

provided the last expectation exists. Here 1', == sup{s ::::: t : X" i= Xt} is the time 
of the last transition of X before or at time t. 

PROOF. It suffices to show that, for each n, 

E 1 g(t, StX)N(dt) = ElL q(Xt, y)G(1'" XI! y)dt. 
(rn,rn+d (rn,rn+d Yi-X, 

Clearly, N has exactly one point at 'l'n+1 in the interval ('l'n' 'l'n+t1, and (1'" Xt) = 
('l'n' X rn), for 'l'n < t < 'l'n+ I. Therefore, the preceding display is equal to 

E[g('l'n+t. Srn+,X)] = E[ L q(Xrn , y)G('l'n' Xr", Y)('l'n+1 - 'l'n)]. (4.4) 
yi-XT" 
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We will use the properties that the sojourn times of the Markov process X in 
the states it visits are exponentially distributed, and the sequence of states it visits 
forms a Markov chain. In particular, 

P{t' +1 - t' > t I X t'} = e-q(XT,,)t n n Til' n 

P{Xr"+1 = Y I X r", t'n} = q(Xr" , y)q(Xr.,)-I, 

where q(x) = Ly q(x, y). 
Conditioning the right side of (4.4) on Xr", t'n and using the expression E[t'n+1 -

t'n I X r", t'n] = q(Xr.,)-I, it follows that the right side of (4.4) equals 

E[ L q(Xr" , y)G(t'n, Xr", y)q(XrJ- 1] 

= E[G(t'n, Xr", Xr,,+I)] 

= E[g(t'n+I' Sr"+1 X)]. 

This proves (4.4), which in turn completes the proof of (4.3). D 

The extended Levy formula obviously reduces as follows for stationary 
processes and time-homogeneous functions. 

Corollary 4.7. Suppose the Markov process X is stationary, and denote its 
distribution by 1f(x) == P{Xt = x}, x E IE. Then,for g : D ---+ R 

E 1 g(StX)N(dt) (4.5) 
(a,h] 

= (b - a) L1f(x) Lq(x, y)E[g(Sr, X ) I Xro = x, X T1 = y] 
X y=f.x 

provided the right side of this equality exists. 

The preceding results also apply when the state space of the Markov process X is 
an uncountable Euclidean or Polish space. The only difference is that the transition 
rate q(x, y) for countable states is replaced by a transition kernel q(x, B) for a 
transition from x into a set B. Then sums involving q are replaced by integrals. For 
instance, the right side of (4.2) becomes E[jA fIE q(Xt , dy)h(Xt, y) dt]. Otherwise, 
the proofs are the same. 

4.3 Poisson Functionals of Markov Processes 

There are a variety of point processes associated with the transition times of a 
Markov process. A typical example is the point process of times at which units 
move from node j to node k in a: Jackson process. In this section, we develop 
general criteria for such a point process to be a Poisson process. We apply the 
results in Section 4.5 to characterize Poisson flows in networks. 
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As in the preceding section, assume that {XI : t E JR} is a Markov jump 
process on a countable state space JE with transition rates q(x, y). With no loss in 
generality, assume that X is ergodic and let 1T denote its stationary distribution. 
We will consider certain types of transitions of X as follows. 

Definition 4.8. Suppose To is a subset of E2 that does not contain pairs with equal 
entries. A To-transition of X is a transition from a state x to another state y, for 
some (x, y) E To. The point process N of times at which these transitions occur 
is defined by 

N(A) = L I«Xrn -, Xr.) E To, 'fn E A), A c JR. (4.6) 
II 

The N(A) is the number of To-transitions of X in the time set A. 

The subscript 0 on the set To refers to a transition defined only by the values of the 
process at the transition time viewed as a time origin. The second half of this chapter 
deals with more general transitions called T-transitions that may involve more 
information about the process. There are many examples of point processes of To
transitions since any subset To determines one. For instance, if JE is the nonnegative 
integers and one is interested in the number of jumps whose size exceeds b, then 
this point process is determined by To = {(x, y) E JE2 : Ix - yl > b}. Note that N 
is the point process of all transition times 'fn of X if To = JE2 \ {(x, x) : x E JE}. 

Throughout the rest of this section, we assume that N is the point process of 
To-transitions of X for a fixed transition set To. Although N is a function of the 
transition set To, we suppress the To in its definition. Our interest is in criteria for 
N to be a Poisson process. 

First, we relate the independent increments property needed for N to be a Poisson 
process to the following notion. 

Definition 4.9. The future of N is independent of the past of X, denoted by 
N+..l X_, if {N(A): A C (t, oo)} is independent of {Xs : s:::: t}, for each t E JR.. 

In this definition, {X s : s :::: t} can be replaced simply by X t since X is Markovian. 
Similarly, N _ ..1 X + denotes that the past of N is independent of the future of X. 

Theorem 4.10. If N+ ..1 x_ or N_ ..1 X+. then N is a Poisson process (not 
necessarily time homogeneous). 

PROOF. By a characterization of Poisson processes, the N will be a Poisson 
process if it is simple, has no fixed atoms, and has independent increments. It is 
well known that the probability is 0 that the Markov process X has a jump at any 
specified time. Thus, N is simple with no fixed atoms. 

It remains to show that N has independent increments. First, suppose N + ..1 X _. 
Then for any s < t in JR, 

P{N(s, t] = nIN(A) : A C (00, s]) = E[P{N(s, t] = niX, : r :::: s}] 

= P{N(s, t] = n}. 
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Using this, one can show by induction that N has independent increments on any 
number of disjoint time sets. Similarly, the independent increments property of N 
also follows when N_ .1 X+, since 

P{N(s, t] = nIN(A): A C (t, oo)} = E[P{N(s, t] = nlXu : u > t}] 

= P{N(s, t] = n}. o 

Our next step in analyzing the point process N of To-transitions is to obtain an 
expression for its mean measure. Applying Levy's formula (4.2) to the definition 
of N(A), we have 

EN(A) = i Ea(Xt)dt, (4.7) 

where 

a(x) = Lq(x, y)l«x, y) E To). 
y 

The a(X,) is the "conditional intensity" of N given X, in the sense that 

E[N(t, t + dt]IX,] = a(X,)dt. 

The function a(x) (which is also a function of the transition set To) plays a key 
role in our analysis. 

We are now ready to present our first criterion for N to be a Poisson process. 

Theorem 4.11. The N is a Poisson process with rate a and N + .1 X-if and only 

if 

a(x) = a, x E IE. (4.8) 

PROOF. Suppose (4.8) holds. Fix an s E JR. Then by (4.7), it follows that the 
process 

[
S+' 

M, = N(s, s + t] - s a(Xu)du, t ~ 0, 

is an .1/ -martingale, where F,x is the O'-field generated by {Xu: s :::: u :::: s + t}. 
By Watanabe's characterization of Poisson processes, the N is an .r,x-Poisson 
process, or a Markov-modulated Poisson process. This means that, conditioned 
on X being in state x in a time interval (a, b], the N is a Poisson process on that 
interval with rate a(x). The process A, = 1:+' a(Xu)du is the "compensator" 
of N(s, s + .]. Then under the assumption (4.8), it follows that N(s, s + .] is an 
F,x-Poisson process with rate a. In particular, N(s, s + t] is independent of F; 
for each t. Since these observations hold for each s, it follows that N is a Poisson 
process with rate a and N + .1 X _. 

Conversely, assume the preceding conclusion is true. Then, for any x and t ~ 0, 
it follows by (4.7) that 

at = EN(O, t] = E[N(O, t]IXo = x] = l' E[a(Xs)IXo = x] ds. 
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The integrand is continuous in s since X is a Markov process. Taking the derivative 
of the preceding equation with respect to t yields 

a = E[a(Xt)IXo = xl, t ~ O. 

Then, using the first jump time 'l'1 = inf{t > 0: X t =I Xo}, we can write 

a = a(x)P{'l'1 > tlXo = x} + E[a(Xt)l('l'1 ~ t)IXo = xl. 

Letting t .!- 0 yields (4.8). o 

The preceding criterion for the point process N of To-transitions to be a Poisson 
process is what one might anticipate, and it is often tacitly assumed when one de
fines a particular Markov process. Another less intuitive and more useful criterion 
for N to be Poisson is as follows. 

Theorem 4.12. Suppose the Markov process X is ergodic and stationary. Let rr 
denote its stationary distribution, and define 

a(x) = rr(x)-I L rr(y)q(y, x)l«y, x) E To), x E IE. 
y 

Then N is a Poisson process with rate a and N _ 1.. X+ if and only if 

a(x) = a, x E lEo (4.9) 

PROOF. Consider the time reversal of X, which is Xt - limst-t X-t (this is 
the process {X- t : t E JR} modified to have right-continuous paths). Since X is 
stationary, we know by Theorem 2.5 on time reversals that X is also a stationary 
Markov process with transition rates 

q(x, y) = rr(x)-Irr(y)q(y, x), x, y E lE, 

and its stationary distribution is the same as the stationary distribution rr for X. 
Now, consider the point process 

N(A) = L l«Xt, Xt-) E To), A c JR. 
tEA 

By Levy's formula and the definitions of ij and ii, we have 

EN(A) = E 1 Lq(Xt, y)l«y, Xt) E To)dt = E 1 a(Xt)dt. 
A y A 

Note that N(A) = N(-A), for each A, and so N is the time reversal of N. 
Consequently, N is a Poisson process with rate a if and only if N is. Furthermore, 
since N, X are time reversals of N, X, it follows that N is a Poisson process 
with rate a and N_ 1.. X+ if and only if N is a Poisson process with rate a and 
N+ 1.. X_. But the latter is equivalent to (4.9) by Theorem 4.11. This proves the 
assertion. 0 

Here is a classic application of the preceding theorem. 
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Example 4.13. Birth-Death Process with Poisson Departures. Suppose the 
Markov process X represents a birth--death process with birth rate A and death 
rate JLx, when there are x units in the system. This might represent a queueing 
process with arrival rate A and departure rates JL x. An example is an M / M / s 
queueing system with s independent servers (1 ::::: s ::::: (0) that have exponential 
service times with rate JL, and JLx = JLmin{x, s}. 

The transition rates of the process X are 

q(x, y) = A1(y = x + 1) + JLx1(y = x -1). 

Implicit in the description of the process, the point process of arrivals is Poisson 
with rate A regardless of whether or not X is ergodic. This also follows formally 
by the structure of q and Theorem 4.11 since 

a(x) = Lq(x, y)l(y = x + 1) = q(x, x + 1) = A. 
y 

Next, consider the point process N of times of departures from the system, 
which are To-transition times, where To = {(x + 1, x) : x ~ OJ. Its associated a 
function is 

a(x) = Lq(x, y)l(y = x-I) = JLx-l. 
y 

This depends on x, and so Theorem 4.11 does not ensure that N is Poisson. How
ever, let us now assume that X is ergodic and stationary. Its stationary distribution 
is 

rr(x) = c)..X /(JLI ... JLx), x ~ 1, 

provided c- I = 1 + Lx~1 AX /(JLI ... JLx) is finite, which we assume is true. In 
this case, 

a(x) = rr(x)-I L rr(y)q(y, x)l(y = x + 1) 
y 

= rr(x)-Irr(x + l)q(x + 1, x) = A. 

Thus, Theorem 4.12 ensures that N is a Poisson process with rate A. In particular, 
this result yields the Burke-Reich property that the departure processes for M / M / s 
queues are Poisson. 0 

We now consider a queueing system with non-Poisson departures, but the times 
at which certain batches depart form a Poisson process. 

Example 4.14. A Batch Service System. Consider a Markovian queueing process 
whose state is the number of customers in the system and whose transition rates 
are 

q(x, y) = Al(y = x + 1) + JLl(y = max{O, x - K}). 

Here A, JL, and K are positive, and A < K JL. This represents a system in which 
customers arrive by a Poisson process with rate A and are served in batches as 
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follows. Whenever there are x ~ K customers in the system, batches of K cus
tomers depart at the rate IL; and whenever x < K customers are present, all of the 
customers depart at the rate IL. The system is ergodic and its stationary distribution 
is rr (x) = rX (1 - r), x ~ 0, where r is the unique root in (0, 1) of the equation 

W K+I - ()., + lL)r +)., = O. 

This assertion follows by showing that this distribution satisfies the balance 
equations. 

Now, assume the process is stationary. Let N denote the point process of times 
at which batches of size K depart from the system. Then N is a Poisson process 
with rate IL + ),,(1 - r- I ). This follows by Theorem 4.12 since 

a(x) = rr(x)-Irr(x + K)q(x + K, x) 

= W K = IL + ),,(1 - r- I ). D 

4.4 Multivariate Compound Poisson Processes 

We have been studying the point process N that records times of To-transitions 
of the Markov process X. This section addresses similar issues for multivariate 
Poisson and compound Poisson processes associated with To-transitions of X. 

We begin with a multivariate analogue of Theorem 4.12. This result is useful for 
determining when several flows in a network are independent Poisson processes. 
Suppose that Ni is a point process of To i -transitions of X, for i = 1, ... n. For 
x E lE and U E {O, l}n, define 

a(x, u) == rr- I (x) L rr(y)q(y, x)1 (1(X, y) E To i ) = Uio 1 ~ i ~ n). 
y 

Also, let ei denote the n-dimensional unit vector with a 1 in position i. 

Theorem 4.15. Suppose the Markov process X is ergodic and stationary, and its 
stationary distribution is rr. Then N I , ••• , Nn are independent Poisson processes 
with respective rates ai, ... , an such that (NI' ... , Nn)- ..1 X+ if and only if,for 
each x E lE and U E {D, l}n, 

{
a' 

a(x, u) = 0' 
ifu = edorsome 1 ~ i ~ n 

(4.10) 
otherwise. 

This result is a special case of Theorem 4.19 below for compound point pro
cesses. The criterion (4.10) is the multivariate analogue of the criterion (4.9) in 
Theorem 4.12 for single point processes. A reader interested in seeing how the pre
ceding result characterizes Poisson flows in networks can skip to the next section 
and read the rest of this section later. 

Our aim now is to study multivariate compound point processes associated with 
To-transitions. Let N denote a point process of To-transitions of the Markov process 
X. Assume that whenever X makes an To-transition from x to y, a mark h(x, y) 
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in a complete, separable metric space IE' is assigned to the transition. Then the 
times at which the marks are recorded and the associated marks are modeled by 
the space-time point process M on JR. x IE' defined, for A C JR., B E £', by 

M(A x B) = L l(h(Xt-, Xt) E B)I«Xt_, Xt) E To). (4.11) 
tEA 

The M(A x B) is the number of To-transitions in the time set A at which a mark in 
the set B is recorded. Clearly N(A) = M(A x IE'), which means that M contains the 
point process N of To-transitions at which marks are recorded. Since the probability 
is 0 that X takes a transition at any fixed time, M is a simple point process without 
fixed atoms and M({t} x IE') = 0 or I, for each t E JR.. 

Our interest is in criteria under which M is a space-time Poisson process with 
rate a and space distribution F. That is, it is a Poisson process with mean of the 
form 

EM«s, t] x B) = a(t - s)F(B), 

where a ~ 0 and F is a probability measure on IE'. In this case, N is a Poisson 
process with rate a, and the marks are independent of N and each one has the 
distribution F. 

Let M + ..1 X_denote that the future of M is independent of the past of X; that 
is, (M(A x B) : A C (t, 00), B E £'} is independent of {Xs : s ~ t}, for each 
t E JR.. In addition, for x E IE and B E £', define 

a(x, B) = Lq(x, y)l(h(x, y) E B)l«x, y) E To), 
y 

1 
a(x, B) = - L1f(y)q(y, x)l(h(y, x) E B)l(y, x) E To). 

1f(x) y 

The next three results are analogues of Theorems 4.10, 4.11, and 4.12. Their 
proofs are left as exercises for the reader. 

Theorem 4.16. If M+ ..1 x_ or M_ ..1 X+, then M is a Poisson process. 

Theorem 4.17. The M is a space-time Poisson process with rate a and space 
distribution F such that M+ ..1 X_ ifand only if 

a(x, B) = aF(B), x E IE, BE £'. 

Theorem 4.18. Suppose the Markov process X is ergodic and stationary with 
stationary distribution 1f. Then M is a space-time Poisson process with rate a and 
space distribution F such that M _ ..1 X + if and only if 

a(x, B) = aF(B), x E IE, BE £'. 

We now characterize multivariate compound Poisson processes associated with 
To-transitions. Consider the n-dimensional random measure (M\, ... , Mn) defined 
by 

M;(A) = Lh;(Xt-, Xt)1«Xt-, Xt) E To), A c JR., 1 ~ i ~ n, (4.12) 
tEA 
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where h; is a real-valued function on E2. This is an n-dimensional compound 
Poisson process with rate a and atom distribution F on R n if it has independent 
increments in time and, for any B I, ... , Bn and s < tin R, 

00 

= L Fh(BI X ••• x Bn)ak(t - S)k exp( -a(t - s»/ k!. 
k=O 

The independent increments in time means that, for any disjoint time sets 
A" ... , An, the vectors (MI(A j ), ... , Mn(Aj», 1 :5 j :5 n, are independent. 

For such a process, it follows that each M; is a compound Poisson process with 
rate a; = a[1 - F;(O)] and atom distribution F;, where F; is the ith marginal 
distribution of F. Also, the M; 's are independent if and only if F is a product of 
its marginal distributions. 

The following is an analogue of Theorem 4.18. A corresponding analogue of 
Theorem 4.17 is in Exercise 6. 

Theorem 4.19. Suppose the Markov process X is ergodic and stationary. Let rr 
denote and its stationary distribution and, for x, y E E and BeRn, define 

H(x, y) = (hJ(x, y), ... , hn(x, y», 

a(x, B) = rr-I(x) Lrr(y)q(y,x)I(y, x) E To) I (H(y,x) E B). 
y 

Then (MI, ... , Mn) is a compound Poisson process with rate a and atom 
distribution F such that (MI, ... , Mn)- ..1 X+ if and only if 

a(x, B) = aF(B), x E E, BeRn. (4.13) 

PROOF. Let M denote the space-time point process defined by (4.11) with E' = 
jRn and h = H. We can also express M as 

M(A x B) = L 1 (Tk E A, (ykJ, ... , Yf) E B), 
k 

where the Tk'S denote the times of To-transitions and Yt = h;(XTk-' X Tk ). Using 
this notation, we can write 

M;(A) = LYt1(Tk E A). 
k 

Now, by the preceding expressions and Exercise 3, it follows that (MJ, ... , Mn) 
is a compound Poisson process with rate a and atom distribution F such that 
(MJ, ... , Mn)- ..1 X+ if and only if M is a Poisson process on R x Rn such that 
M_..l X+ and 

E[M«s, s + t] x B)] = atF(B), for each s, t, and B. 

But the latter is equivalent to (4.13) by Theorem 4.18. o 

The preceding result also applies to one-dimensional compound Poisson 
processes. Here is an application. 
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Example 4.20. Busing System With Compound Poisson Departures. Consider a 
Markovian queueing process whose state is the number of customers in the system, 
and its nonzero transition rates are 

q(O, 1) = A(1 - p), q(x, x + 1) = A, x ~ 1, 

q(x,x - n) = ILpn-I(1- p), n = 1, ... ,x - 1, 

q(x,O) = ILpx-l, X ~ 1. 

Here A and IL are positive and 0 < p < 1. This represents a system in which 
customers arrive by a Poisson process with rate A and are served in batches as 
follows. When there are customers in the system, "buses" arrive at a rate IL to 
take them immediately from the system. Busing is common in computer systems 
and material handling systems. The number of customers each bus can take is a 
random variable with the geometric distribution pn-I(I_ p), n ~ 1. When x units 
are present, the actual number that departs in a batch has the truncated geometric 
distribution pn-l(1 - p), for n < x, and pn-l, for n = x. Also, when there are 
no customers in the queue and a customer arrives, then with probability p there is 
a bus available to take the customer without delay. The process is ergodic and its 
stationary distribution is 

1l'(x) = 1l'(0)(1 - p)AX /(IL + PAY, x ~ 1, (4.14) 

provided A < IL + PA, which we assume is true. One can prove this 1l' is the 
stationary distribution by verifying that it satisfies the balance equations. 

Assuming the process is stationary, consider the compound departure process 

M(A) = Lmax{O, X t - X t -}, A CR. 
tEA 

This describes the total number of departures in the time set A; it records both 
the times at which batches of customers depart and the batch sizes. Then M is 
a compound Poisson process with rate A(1 - p) and geometric atom distribution 
rn-IO-r), n ~ 1, where r = PA/(IL+ pA). This follows by Theorem 4.19 since, 
for each x E lEandn ~ 1, 

a(x, n) = 1l'(X)-1 L 1l'(y)q(y, x)[I(x = 0, y = n) + l(x ~ 1, y = x + n)] 
y 

= A(1 - p)rn- l (1 - r). 

4.5 Poisson Flows in Jackson and Whittle Networks 

o 

For this section, we assume that X is an ergodic Jackson or Whittle process as in 
Chapter 1 that represents an open m-node network with unlimited capacity. We 
now apply the results in the preceding section to identify Poisson flows for this 
process. Recall that its transition rates are q(x, TjkX) = Ajk¢j(X), for j =1= kin 
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M = to, I, ... , m}, and its stationary distribution is 

m 

;rr(x) = c<l>(x) n w?, x E lE. 
j=1 

For each j =I- k in M, we define the point process Njk by 

Njk(A) = L I(Xt = TjkXt-), A CR. 
tEA 

The N j k (A) records the number of times units move from node j to node k in the 
time set A. We first consider the arrival and exit processes for the network. 

Theorem 4.21. Suppose X is a stationary Whittle process. Then the following 
statements are equivalent. 
(1) The network's arrival processes NOI, ... , Nom are independent Poisson pro
cesses with respective rates AOI, ... , AOm, and (NOlo ... , Nom )+ ..1. X_. 
(2) The network's exit processes N IO , ... , Nmo are independent Poisson processes 
with respective rates WIAIO, ••• , wmAmO, and (NIO, ... , Nmo)- ..1. X+. 
(3) fPoO == 1. 
These statements hold if X is a stationary Jackson process. 

PROOF. Consider (2) in the setting of Theorem 4.15 applied to NIO, ... , Nmo. In 
this case, 

a(x, u) = _1_ L;rr(y)q(y, x)1 (I(Y = x + ej) = Uj, I ~ j ~ m). 
;rr(x) y 

Then by the structure of;rr and the <l>-balance property, for x E E and I ~ j ~ m, 

a(x, ej) = ;rr-I(x);rr(x + ej)AjofPj(X + ej) = WjAjOfPO(X). 

Also, since only one unit may move at a time in the network, it follows that 
a(x, u) = 0 when u is not a unit vector. Thus, (2) is equivalent to (3) by The
orem 4.15. Similarly, one can prove (1) is equivalent to (3), as we suggest in 
Exercise 8, by verifying (4.40) in Exercise 7. Finally, if X is a Jackson process, 
then (3) is true by assumption, and so (I) and (2) are true. 0 

The preceding result shows that Poisson arrival processes to the network beget 
Poisson exit processes. We now see that some internal flows in the network may 
also be Poisson processes. Suppose M is a sector of the network such that each 
unit exiting M never returns to M. This holds if the routing process on M with 
rates Ajk has the property that whenever it exits M it must enter the outside node 

o before it can return to M again. We will consider the flows Njb for j E M and 

k E Me == M\M. 
Let X denote the process X restricted to the nodes in M; that is, Xt = x if 

Xt = x, where x = (Xj : j E M) denotes the restriction of x to M. Then X is a 

network process with node set M U {OJ and state space IE = {x : x E E}. 
In case X is a Whittle process, we will make the following additional assump

tions on the service rates fPj, which are automatically satisfied when X is a Jackson 
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process. 
• CPj is a function ~j(x) of only x if j E M. 

• CPk is a function ~k (XC) of only XC if 0 =1= k E Me. 

• cfJo(x) = ~o(XC) for some function ~o. 
• {~j : j EMU {On are ci>-balanced (all these functions are defined on IE), where 

~o(-) == 1. Similarly, {~j : j E MC U {On are ci>c-balanced. 

These assumptions ensure that CPj are cI>-balanced, where cI>(x) = ci>(x)ci>C(XC ). 

Theorem 4.22. Suppose X is a stationary Jackson process or a stationary Whittle 
process that satisfies the assumptions above. Then {Njk : j E M, k E M C } are 

independent Poisson processes with respective rates {WjAjk : j E M, k E MC}. 

Furthermore, (Njk : j E M, k E M C )_ 1- X+. 

PROOF. Under the assumptions, X is an open stationary Whittle process on the 
node set M. Indeed, its service rates ~ j are ci>-balanced, and its routing rates are 
clearly 

)..jO = L Ajko and )..jk = Ajk j, k E M. 
kEMC 

Recall that, associated with the process X, there are W j 's that satisfy the traffic 
equations 

Wj LAjk = LWkAkj, j E M. 
kEM kEM 

Under the assumption that a unit exiting if cannot return to if, the preceding 
equations are 

Wj L )..jk = L Wk)..kj, j E MU{O}. 
kEMU(O} kEMU(O} 

Consequently, the parameters W j associated with X are the same as those for the 

larger process X. Thus, X is an ergodic Whittle process whose routing rates and 
W j 's are as above. 

Now, by Theorem 4.21 and the assumption ~o(·) == 1, we know that the exit pro
cesses iljo = LkEMc Njk for X are independent Poisson processes with respective 

rates W j).. jO, j E J. Next, observe that, for each j E J, the Njk's form a partition 

of iljo in which each point of iljo is assigned to the process Njk with probability 

)..jk/)..jO, for k E M c• Thus, by the basic theorem on such partitions of Poisson 
processes (see Theorem 9.17), the Njk's are independent Poisson processes with 
respective rates 

()..jk/)..jO)Wj)..jO = WjAjk' 

We also know by Theorem 4.21 that (iljo 

(Njk : j EM, k E M C)_ 1- X+. 

j E J, k E Mc• 

j E M)_ 1- X+, and therefore 
o 
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FIGURE 4.1. Open Acyclic Jackson Network 

Example 4.23. Open Acyclic Jackson Network. Suppose X represents an open 
Jackson network as shown in Figure 4.1. The flows in the network are acyclic as 
shown by the arrows. Consequently, each unit can visit a node at most once. 

Then for each node j, it follows from Theorem 4.22 with M = j that the 
flows Njk for each k are independent Poisson processes with rates W/Ajk. In other 
words, the flow between each pair of nodes in the network is a Poisson process. This 
property is true for any network in which each unit can visit a node at most once. 
While some of the flows are independent, some of them are dependent. For instance, 
by Theorem 4.22, N23 and N24 are independent; and N40 and Nso are independent. 
However, N23 and N50 are not independent. In general, flows Njlkl ' ... , Nj.k" are 
independent if each unit appearing in one of these flows cannot appear in any of the 
others. To compute the rates of these Poisson processes one must obtain the W j 's 
from the traffic equations Wj = Lk WkPkj, where Wo = 1 and Pjk = Ajkl Lt Ajl. 
An easy check shows that the solution for this example is 

In particular, N35 has the rate 

o 

4.6 Palm Probabilities for Markov Processes 

In this section, we describe Palm probabilities of a stationary Markov process as
sociated with certain point processes of its transition times. The following example 
illustrates the need for Palm probabilities and the types of issues we will address 
for networks. 

Example 4.24. Palm Probabilities for an M I Mil System. Suppose X, represents 
the number of units in a stationary M 1M 11 queueing system at time t. Consider 
the probability that the system contains x + 1 units at some time t "conditioned" 
that there is an arrival at time t. This probability is not a conventional conditional 
probability, since the probability of an arrival at any instant is O. Therefore, it is 
natural to express this probability as the limiting conditional probability 

PN{XO = x + I} = lim PIX, = x + IIX, = Xs + I}. 
st' 
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This is the Palm probability of the process given that there is an arrival at time O. 
We define Palm probabilities by (4.17) below. The subscript N on PN stands for 
the point process of arrival times. The stationarity of X ensures that the probability 
on the right side is independent of t. 

From the discussion below, it follows that the preceding limiting probability can 
be expressed in terms of the stationary distribution of X, which is 1l' (x) = pX (1-p ), 
where p is the arrival rate divided by the service rate. Specifically, by expressions 
(4.16) and (4.19) below, it follows that 

PN{Xo = x + I} = 1l'(x)q(x, x + 1)/ L 1l'(y)q(y, y + 1) = 1l'(x). 
y 

This says that the distribution of the number of units an arrival sees in the system in 
equilibrium is the same as the stationary distribution of X. In other words, arrivals 
see time averages. 

Another quantity of interest is the time W that a typical arrival in equilibrium 
spends in the system (waiting and in service). This sojourn time is naturally de
scribed with respect to the Palm probability given that an arrival occurs at time O. 
That is, 

PN{W :::: t} = lim P{W :::: tlXt = X" + I}. 
stt 

From Exercise 9, this distribution is an exponential distribution with rate JL - A. 
Our aim is to develop similar results for networks. 0 

Throughout the rest of this section, we assume that the Markov process {Xt : 
t E R} is stationary and ergodic, and we let T{ denote its stationary distribution. 
We will consider Palm probabilities of this process associated with certain types of 
transitions occurring at time O. Such a transition may involve only the values of the 
process at a transition time, which we have been calling a To-transition (the arrival 
event in the preceding example is a special case). More common are transitions 
that involve information about the past or future of the process. An example is a 
transition in a network process in which a unit arrives at a node j and no more 
units enter node j until that arrival exits node j. 

We will describe a transition of the process X in terms of a set of sample paths 
or "trajectories" T as follows. Recall that a sample path of X is an element of the 
set D, and t"n's denote the transition times of X. Also, StX = {X,,+t : s E R} is 
the process X with its time parameter shifted by the amount t. 

Definition 4.25. Suppose T is a subset of D such that z(O) # z(O-), Z E T. A 
T-transition of X occurs at time t if StX E T. The point process N of times at 
which T-transitions occur is defined by 

N(A) = L l(t"n E A, Sr"X E T), A cR. 
n 

We also write 

N(A) = L l(Tn E A), A c R, 
n 
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where 

'" < L2 < LI < To ::: 0 < TI < T2 ... 

denote the times of the T-transitions. Although N is a function ofT, we suppress 
the T for simplicity. 

Keep in mind that the T-transition times {Tn: n E Z} are contained in the set of 
all transition times {t'n : n E Z} of X. Also, a transition time t'n of X is aT-transition 
if the sample path of X centered at that time, which is S,,,X, is in T. Note that a To
transition is a special case of a T-transition. For instance, the arrival transition in 
the M/ M/l example above is a To-transition, where To = {(x, x+ 1) : x ~ OJ, and 
this arrival transition is also aT-transition, where T = {z ED: z(O) = z(O-)+I}. 
Another T -transition for the M / M /1 queue is a transition at which a unit exits the 
system and there are no more arrivals during the next b time units. In this case, 
T = {z ED: z(O) = z(O-) - 1, z(t) ::: z(t-), t E (0, b]), and this T-transition 
is not a To-transition. 

Hereafter, we assume that T is a fixed subset of D and that N is the point process 
of T -transitions of X. Since X is stationary, the distribution of the time-shifted 
process StX is independent of t. From this and the preceding definition of N, it 
follows that N is a stationary point process; that is, the distribution of the time
shifted process {N(A + t) : A C R} is independent of t. This stationarity implies 
that 

EN(A) = IAIEN(O, 1], (4.15) 

where IAI is the Lebesgue measure of A. The expectation AT - EN(O, 1] is 
called the intensity of the T-transitions. By the extended Levy formula (4.3), this 
intensity is 

AT = E L 1(t'n E (0, 1], S,,,X E T) (4.16) 
n 

= L1l'(x) Lq(x, y)P{S" X E TIX,o = x, X" = y}. 
x yi'x 

We will only consider T-transitions whose intensity AT is finite and positive. 
Since T-transitions are contained in all transitions of X, it follows by Levy's 
formula that 

AT::: E L 1(t'n E (0, 1]) = L1l'(x) Lq(x, y). 
n x Yi'x 

The last quantity is the intensity of all transitions of X. Thus, the T-transitions 
will have a finite intensity when the intensity of all transitions is finite, which is 
true for most applications. 

The type of Palm probability that we use in this chapter is as follows. 

Definition 4.26. The Palm probability PN of the stationary Markov process X 
given that aT-transition occurs at time 0 is defined by 

PN{X E T'} = AT/AT, T' c T. (4.17) 
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We also call PN the Palm probability of X for the point process N. 

Note that PN{X E T} = 1, which is consistent with saying that aT-transition 
occurs at time O. This justifies confining attention to events of the form X E T', 
where T' is a subset of T rather than D. Equivalently, one could define PN by 

PN{X E T'} = AT/nT/AT, T' c D. 

Keep in mind that N is a special type of point process of X whose time points 
are contained in the transition times of X. The intensities (4.16) of such point pro
cesses are tractable, but the intensities of point processes whose time points are not 
transition times of X are less tractable. Palm probabilities (4.17) for T -transitions 
are adequate for the network analysis in this chapter. More involved applications, 
however, require the use of general Palm probabilities for point processes asso
ciated with stationary processes; see Chapter 5. In this general setting, the point 
process times need not be T -transition times of a process as above. 

Loosely speaking, the Palm probability (4.17) is the portion of T -transitions 
that are also T' -transitions. Another representation of the probability PN in terms 
of the transition times t'n is 

PN{X E T'} = E'En I(ST"X E T', t'n E (0, 1]), T' c T. 
E'En I(ST"X E T, t'n E (0, 1]) 

This is the expected number of times an observer sees X in T' at transitions during 
(0, 1] divided by the expected number of times the observer sees X in T at the 
transitions. The time interval (0, 1] can be replaced by any time set A because the 
stationarity of N ensures that EN(A) = IAIAT. 

Expression (4.16) for intensities of transitions yields the following formulas. 
The probability that X has a transition from x to y at a T-transition is 

PN{XO- = x, Xo = y} = AT1rr(x)q(x, y)P{ST, X E TIXTO = x, XT, = y}. 

Also, when it exists, 

EN[f(X)] = AT! L rr(x)q(x, y)E[f(ST,X)IXTO = x, XT, = y]. (4.18) 
(x,y)ET 

The following result shows that Palm probabilities are limits of conditional 
probabilities as we stated in Example 4.24. 

Proposition 4.27. For any t E IR and T' c T, 

PN{X E T'} = lim P{SIX E T'IS,X E T, XI =I- X s }. 
stl 

(4.19) 

PROOF. Since T' c T, it follows that expression (4.19) can be written as PN{X E 

T'} = aT/aT, where 

aT == lim(t - S)-I P{SIX E T, XI =I- X s }. 
·'tl 

Therefore, to prove (4.19), it suffices to show aT = AT, for any TeD. But this 
is true, since conditioning on X s , XI and using the stationarity of X, the definition 
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of q(x, y), and expression (4.16), 

aT = lim(t - s)-I L P{Xs = xl L[P{X, = ylXs = xl 
st' x YoFX 

x P{S,X E TIXs = x, x, = y}] 

= L1r(x) Lq(x, y)P{STI X E TIXTQ = x, X T1 = yl 
x YoFX 

= AT. o 

The representation (4.19) of a Palm probability as a limit is consistent with 
the usual way of interpreting a probability conditioned on a continuous random 
variable. Expression (4.19) gives insight into the meaning of a Palm probability 
and it may be useful in theoretical studies. To evaluate Palm probabilities, however, 
one typically uses (4.18) or the Campbell-Mecke formulas in Chapter 5. The rest 
of the results in this section are also useful in this regard. 

In some instances, it is convenient to obtain Palm probabilities by appealing to 
time reversals as follows. 

Proposition 4.28. Suppose X is the time reversal of X; that is, X, = limst_, X.,. 
Let PN denote the Palm probability of X, where N denotes the point process of 
T-transitionsofX andT = {z ED: {z(t)} E T}. Then 

PN{X E T'l = PN{X E T'}, T' c T. 

PROOF. Let NT' denote the point process of T' -transitions of X. Then NT' also 
equals the point process of T' -transitions of X. Also, by their definitions, N = N. 
Therefore, 

We next consider Palm probabilities of events at the T -transition times Tn. 
Since the Markov process X is stationary in the time parameter t, intuition might 
suggest that the sequence {XTn : nEil} of X-values at T-transitions is stationary. 
This sequence, however, is not stationary under P-but it is stationary under 
the Palm probability PN • A generalization of this property is as follows. This 
result is a special case of Theorem 6.9 for general Palm probabilities, and the 
strong law of large numbers, Theorem 6.1, for stationary sequences. Recall that 

STnX = {XTn+, : t E RI. 

Theorem 4.29. For h : D ~ JE, define 

Yn = h(STnX), nEil. 

The sequence {Yn : n E III is stationary under PN, and it satisfies the strong law 
of large numbers 

(4.20) 
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As an example of this result, the sequence {Tn+ 1 - Tn : n E Z} of times between 
T -transitions of X is stationary under PN • This sequence, however, is not stationary 
under P. 

We now describe a large family of functionals of the process X at the times Tn 
that are stationary processes under P. The following result is a direct consequence 
of the Campbell-Mecke formula; see Theorem 6.13 and Example 6.15. 

Theorem 4.30. For f : JR x D ~ JR, define 

Yt = L f(t - Tn, ST"X), t E JR. 
n 

The process {Yt E JR} is stationary under P and it satisfies the strong law of large 
numbers 

lim t-1 t Ys ds = EYo, w.p.1 under P. 
t-->oo 10 (4.21) 

Furthermore, 

(, 
EYo = ATEN 10 f(t, X)dt. (4.22) 

4.7 Sojourn and Travel Times of Markov Processes 

In this section, we use Palm probabilities to describe expected sojourn and travel 
times of Markov processes. 

Consider the stationary Markov process X that we have been studying in the 
preceding sections. Sojourn times of X have the following properties. 

Theorem 4.31. Let N denote the point process of entrance times {Tn: n E Z} of 
X into a proper subset B of IE. Let Wn denote the sojourn time of X in B starting 
at time Tn. The sequence {Wn : n E Z} is stationary under PN, and it satisfies the 
strong law of large numbers (4.20). Furthermore, 

EN(Wo) = A-I P{Xo E B}, 

where A = LX\l'B 1l'(x) LYEB q(x, y). 

(4.23) 

PROOF. The times Tn are T-transition times, where T = {z ED: z(O-) f/ 
B, z(O) E B}. The intensity of these transitions equals the A as specified. Clearly, 
Wn = h(ST"X), where h(z) = inf{t > 0 : z(t) f/ B} (the first entrance time to 
Be). Then the first assertion follows from Theorem 4.29. 

To prove (4.23), consider the process 

Yt == I(Xt E B) = L I(Tn :::: t < Tn + Wn), t E lR. 
n 

Using the function f(t - Tn, ST"X) == 1(0 :::: t - Tn < Wn), it is clear that Y 
satisfies the hypotheses of Theorem 4.30. Consequently, Y is a stationary process 
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and 

EYo = ').EN loTI 1(0 ~ t < Wo)dt = ').EN(Wo). 

Also, since Y is stationarity, EYo = P{Xo E B}. These observations yield 
(4.23). 0 

We now consider an elementary travel time problem for the Markov process X, 
Let B and B' be nonempty, disjoint subsets of IE whose union is not IE. Our interest 
is in determining the expected time it takes the process X to travel from B to B', 
This problem is an example of general travel time problems for networks that we 
consider later in Section 6.6. 

We first consider some related passage-time probabilities. Let a(x) denote the 
probability that conditioned on Xo = x, the process enters B' before it enters 
B. Analogously, looking backward in time, let a(x) denote the probability that 
conditioned on Xo = x, the process X exited B prior to time 0, more recently than 
it exited B', We will also use the probability p(x, y) == q(x, y)/ Lyl q(x, y') of a 
transition of X from x to y. 

Proposition 4.32. The probabilities a(x) are the solution to the following 
equations: a(x) = 1 or 0 according to whether x is in B' or in B, and 

a(x) = L p(x, y) + L p(x, y)a(y), x f/ BUB'. 
yeB' y¢B' 

The probabilities a(x) are the solution to the preceding equations, where the roles 
of Band B' reversed and p(x, y) is replaced by 

jj(x, y) = 1l'(y)1l' (X)-I p(y, x). 

PROOF. The first assertion follows by conditioning on the probability p(x. y) that 
the first jump of X is from x to y (a standard argument for Markov processes). 
To prove the second assertion, consider the time reversal of X, which is defined 
by XI = lim"t-I X s • t E JR. Clearly, a(x) is the probability that conditioned on 
Xo = x. the process X enters B before it enters B', Also, from Theorem 2.5 on 
time reversals, we know that jj(x, y) is the probability of a transition of X from x 
to y. Then the second assertion follows from the first assertion applied to X. 0 

We are now ready to determine the expected travel time from B to B'. Let N 
denote the point process of times {Tn : n E Z} at which X exits B and subsequently 
enters B' before returning to B. Let Wn denote the sojourn time of X in the set 
IE\B U B' in the time interval [Tn, Tn+ I)' This Wn is the nth travel time from B to 
B' beginning at time Tn' 

Corollary 4.33. The sequence {Wn : n E Z} of travel times from B to B' is 
stationary under PN, and it satisfies the strong law (4.20). Furthermore, 

EN(Wo) = ').-1 L 1l'(x)a(x)a(x) , (4.24) 
x¢BUB' 
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where A = LXEB 1l'(X) LY¢B q(x, y)a(y) and a(x), a(x) are the probabilities 
described in Proposition 4.32. 

PROOF. The point process N of times at which X begins traveling from B to B' 
is given by 

N(A) = L 1(t"n E A, X~"_l E B, X~n f/ B, l1B'(t"n) < l1B(t"n», 
n 

where l1B(t) == inf{u > t : Xu E B} is the first time after t that X enters B. By the 
extended Levy formula (4.3), the intensity of N is 

A = EN(O, 1] = L 1l'(x) L q(x, y)P{l1B'(t"I) < l1B(t"I) I X~O = X, X~l = y}. 
XEB YEBe 

Clearly, the last conditional probability is the probability a(y) of entering B' before 
B conditioned on starting in state y. 

Now, the travel time can be expressed as Wn = l1B,(Tn), which is the time it takes 
for X to enter B' starting at time Tn. This travel time is of the form Wn = h(ST" X), 
and so the first assertion of the corollary follows by Theorem 4.29. 

Next, proceeding as in the proof of Theorem 4.31, we consider the process 
Y, = Ln I(Tn ~ t < Tn + Wn) and deduce by Theorem 4.30 that Y is a stationary 
process and EYo = AEN(WO)' Now, another representation for Y, is 

Y, = 1 (X, f/ BUB', l1B,(t) < l1B(t), iiB,(t) < iiB(t») , 

where iiB(t) == sup{s < t : Xs E B} is the last exit time of X from B prior to time 
t. Then 

EYo = P{Xo f/ BUB', l1B'(O) < l1B(O), iiB'(O) < iiB(O)} 

= L 1l'(X)P{l1B'(O) < l1B(O)IXo = x} 
x¢BUB' 

x P{iiB'(O) < iiB(O)IXo = x}. 

The last equality used the Markovian property that conditioned on the present 
state, the past and future of the process are independent. Clearly, the product of 
the last two conditional probabilites equals a(x )a(x), where these probabilities are 
described in Proposition 4.32. Thus, the preceding expression for EYo combined 
with EYo = AEN(WO) from above yield (4.24). 0 

4.8 Palm Probabilities of Jackson and Whittle Networks 

The rest of this chapter discusses properties of Jackson and Whittle networks 
that involve Palm probabilities. This section characterizes network transitions un
der which a moving unit sees a time average. This property is applied to obtain 
distributions of sojourn times at nodes. 

For this discussion, we assume that X is an ergodic, stationary Jackson or Whittle 
process that represents an open or closed network. As usual, we denote its transition 
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rates by q(x, TjkX) = Ajk¢j(X), and then its stationary distribution is 

m 

Jr(x) = cCl>(x) n w?, x E lEo 
j=1 

In addition, in case X is a Whittle process, we assume its service rates are of the 
form 

(4.25) 

This condition, which is automatically satisfied for Jackson processes, yields 
simpler formulas for the Palm probabilities we now derive. 

We first consider the disposition of the units at aT-transition of the network. In 
any transition, exactly one unit moves from some node j to a node k and the other 
units do not move. Such a transition can be expressed as a transition from x + e j 
to x + ek, where x is the vector of unmoved units. Let lE' denote the set of all such 
vectors of unmoved units. The probability distribution JrT of the unmoved units at 
a T-transition is defined by 

JrT(X) = L PN{XO- = x + ej, Xo = x + ed, x E lE'. (4.26) 
j,kEM 

Here PN is the Palm probability of the point process N of T -transitions. We are 
interested in finding conditions under which this probability simplifies as follows. 

Definition 4.34. We say that a moving unit sees a time average (MUSTA) at a 
T -transition if JrT = Jr', where Jr' is the distribution defined on lE' as follows. 
• Jr' = Jr and lE' = lE if the network is open with unlimited capacity. 
• Jr' = Jr v-I and lE' = {x : Ix I = v-I} if the network is closed with v units. 
• Jr' = Jrv-I and lE' = {x: Ixl :::: v - I} if the network is open with capacity v. 
In the last two cases, 1Tv-1 is the stationary distribution of a closed network with 
v-I units, or an open network with capacity v-I, respectively. 

The MUSTA property JrT = Jr' implies that JrT is independent ofT since Jr' is. 
In the first case where Jr' = Jr, MUSTA says that a moving unit sees the disposition 
of the unmoved units as if they came from the same type of open network with 
unlimited capacity. An example ofthis is that arrivals to an M / M /1 queue see 
time averages; recall Example 4.24. Similarly, in the second and third cases where 
Jr' = Jrv-h MUSTA says that a moving unit in a T-transition sees the unmoved 
units distributed according to the equilibrium distribution of a network with one 
less unit. In each of these three cases, we have 

m 

Jr'(x) = c'CI>(x) n w?, x E lE', 
j=1 

where c' is the normalization constant. Thus, the moving unit sees an average (the 
stationary distribution) of the same type of network as its parent process. Related 
terms in the literature are ASTA (arrivals see time averages), ESTA (events see 
time averages), and PASTA (Poisson arrivals see time averages). 
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To characterize the MUSTA property, we will use the following representation 
of the rate of T -transitions for the network process X. 

Proposition 4.35. The rate ofT -transitions is 

AT = L 1T'(X}YT(X}, 
XEIE' 

where 

and Ajk(x} = {Xro = X + ej, X" = x + ed,for x E IE', j, k E M. 

PROOF. Using the notation above on unmoved units at a transition, 

AT = L L 1T (x}q(x, Tjkx}P{S" X E T I Xro = x, X" = TjkX} 
XEIE j,k 

= L L[1T{X + ej}q(x + ej, x + ek}] 
XEIE' j,k 

(4.27) 

{4.28} 

Using <I>{x + ej}rpj{x + ej} = <I>{x} from {4.25}, and the expressions above for q, 
1T, and 1T', it follows that the term in brackets in (4.28) equals 

m 

c<l>(x + ej}wj n w:! Ajkrpj(X + ej} = ;WjAjk1T'(X}. 
l=1 c 

Then substituting the last expression back into (4.28) yields (4.27). D 

The distribution of the process X under the Palm probability of the point process 
N ofT-transitions is as follows. 

Corollary 4.36. The Palm probability PN of X is given by 

PN{X E T'} = L 1T'(x}YT,(x}1 L 1T'(Y}YT(Y}, T' c T. (4.29) 
XEIE' yEW 

PROOF. This follows from Proposition 4.35 since PN{X E T'} = AT'/AT. D 

The following is a characterization of the MUSTA property. 

Theorem 4.37. The T -transition has the MUSTA property if and only if YT(X} is 
independent of x.ln this case, 

PN{X E T'} = L 1T'(X} L p{j, k}P{Sr,X E T'IAjk(x)}, {4.30} 
XEIE' j,kEM 

where 

p{j, k} = wjAjkl L WrAj'k" j, k E M. 
j',k'EM 
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PROOF. In light of (4.29), the distribution (4.26) of the unmoved units at a 'I
transition is 

1l"T(X) = L PN{Xo- = x + ej, Xo = x + ek} 
j,keM 

= 1l"'(X)YT(X)/ L 1l"'(Y)YT(Y)· 
yelE' 

Then 1l"T = 1l"' (the 'I-transition has the MUSTA property) if and only if YT(X) 
is independent of x. In this case, a little thought shows that (4.29) reduces to 
(4.30). 0 

The probability p(j, k) above has an interpretation in terms of the Markov routing 
process on M whose transition rates are ).. j k. Namely, p(j, k) is the Palm probability 
of a route transition from j to k given there is a transition. Loosely speaking, p(j, k) 
is the stationary probability that the routing process goes from j to k at a transition. 

Example 4.38. Simple Network Transitions. Consider a transition of the network 
in which a unit moves from node j to node k for some (j, k) in a set X C M2. We 
call this a simple network transition in X. This is aT-transition, where 

T = {{xtl ED: Xo = Tjkxo-, for some (j, k) EX}. 

No other sample path information aside from X is needed to describe this transition. 
In this case, 

YT(X) = ~ " WjAjb c' L...J 
(j,k)ex 

which is independent of x. Thus, there is MUSTA at any simple network 
transition. 0 

Some elementary applications of Theorem 4.37 are as follows. 

Example 4.39. Palm Probabilities for Action at a Node. Consider a fixed node 
j =1= 0 in the network. Let Pj denote the Palm probability of the network transition 
at which a unit enters node j. This is a simple network transition in M x {j}, 
and so it has the MUSTA property as we saw in the preceding example. Let xl 
denote the number of units at node j at time t. Then it follows by (4.30) that the 
probability that an arrival to j sees n customers there is 

Pj {X6 = n + I} = L 1l"'(X) I (Xj = n). (4.31) 
xelE' 

Next, consider the sojourn time Wj at node j of a unit that arrives in equilibrium. 
Then by (4.30), its distribution is 

Pj{Wj ::: t} = L 1l"'(x) L p(i, j)P{Wj ::: tIAij(x)}, t E ~. 
xelE' ieM 

A more specific evaluation of this probability requires knowledge about how node 
j processes units. Assume node j serves units on a first-come, first-served basis 
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and that a unit's sojourn time has a distribution Fj(tln) that depends only on the 
number of units n at the node at the beginning of the sojourn (independent of later 
arrivals and the rest of the network). Then the preceding expression is 

Pj{Wj :::: t} = L 1l"(x)Fj (tlxj + 1). (4.32) 
xelE' 

Now, let us consider these probabilities as seen by a unit departing from node 
j. Let Pj denote the Palm probability of a network transition at which a unit exits 
node j. In addition to the assumptions above on the services, suppose units exit 
node j in the same order in which they arrive. For a unit exiting node j, consider 
the time Wj it just spent at node j. We could use the formula (4.30) as we did 
above to obtain a general expression for Pj{Wj :::: t}, but it would be difficult to 
evaluate (try it for an ./M/s node). Instead, we will take another approach and 
prove 

(4.33) 

This says that the backward-looking sojourn time is equal in distribution to the 
forward-looking sojourn time distribution. 

Consider the process X, = limst_, Xs , which is the time reversal of X. This is 
an ergodic, stationary Markov process with the same stationary distribution 1l' as 
X. Furthermore, X is the same type of network process as X, since its transition 
rates are 

q(X, TjkX) = 1l'(x)-'1l'(TjkX)q(TjkX, x) = )..jktPj(X), 

where )..jk = wj'wkAkj. The wi's that satisfy the traffic equations for Ajk also 

satisfy the traffic equations for )..jko since the latter is the time reversal of the 
former. In addition, the process X has the property that units exit node j in the 
same order as they arrive. 

Because of this structure of X, it is clear that Wj is the sojourn time of an arrival 
into j for the process X. Also, Pj is a Palm probability of X. By Proposition 4.28, 
we know that Pj{X E T} = Pj{X E T}, where T = {{x,} ED: {x,} E T}. 
These observations prove the assertion (4.33) that the backward-looking sojourn 
time in j is the same as the forward-looking sojourn time. A similar argument 
shows that the probability that a departing unit sees n units at j is Pj{Xb = n} = 

Pj{Xb = n}. 0 

Example 4.40. Sojourn Times in a . / M / s Node. Suppose the process X represents 
an. open Jackson network with unlimited capacity. Assume node j is a . / M / s node, 
where each of the s servers works at rate f.L. Let Wj denote the length of time an 
arrival to j must wait in the queue before its service. Since 1l" = 1l' is a product 
form and j is an s-servernode, it follows by (4.31) that 

Pj{Xb = n} = 1l'j(n), 

where 
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Then 
_,-I 

Pj{Wj = O} = Pj{X~ < s} = L1rj(n). 
n=O 

Also, conditioning on Xo, we have 

00 

Pj{Wj > t} = L1rAn)P{Wj > tlXo = n + I}. 
n=s 

Clearly, P{Wj > tlXo = n + I} = P{N(t) < n - s}, where N is a Poisson 
process with rate SIL, and N(t) < n - s is the event that there are fewer than n - s 
service completions in time t (the arrival at time 0 is still in the queue at time t). 
Substituting this Poisson probability in the preceding equation and using a little 
algebra, it follows that 

Pj{Wj > t} = Pj{X~ ~ s}P{~* > t}, t ~ 0, 

where ~ * is an exponential random variable with rate s IL - W j that represents the 
waiting time given that a unit has to wait. 

Next, consider the sojourn time Wj at node j of an arrival. From (4.32), it follows 
that 

00 

Pj{Wj .::: t} = L1rAn)Fj (tln + 1). 
n=O 

Then one can show, as described in Exercise 9, that 

Pj{Wj .::: t} = P{~ .::: t}Pj{X~ < s} + Pj{X~ ~ s}P{~ + ~* .::: t}, 

where ~ is an exponential service time with rate IL that is independent of the 
exponential waiting time ~*. Note that in case s = 1, it follows (Exercise 9) 
that the distribution Pj {Wj .::: t} is exponential with rate IL - W j. This exponential 
sojourn time is a Jackson network version of the exponential sojourn time in a single 
M / M /1 queue as in Exercise 9. Also, from the preceding example, we know that 
the backward-looking sojourn time distribution is the same as its forward-looking 
sojourn time. In other words, a unit departing from node j looking backward 
in time, and not knowing the past, can only surmise that its sojourn time was 
exponentially distributed with rate IL - W j. D 

4.9 Travel Times on Overtake-Free Routes 

In this section we continue our study of the stationary network process X, which 
represents an open or closed Jackson or Whittle network. The previous section 
described sojourn times at isolated nodes in the network. The focus now is on the 
joint distribution of sojourn times at nodes on a certain type of route in the network. 

We begin with a preliminary example of the main result below. 
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Example 4.41. Sojourns in Tandem Jackson Networks with Single-Server Nodes. 
Suppose the process X represents an open tandem network with unlimited capacity 
in which all units enter at node I and proceed to nodes 2, ... , m in that order. As
sume each node j is a single-server node with service rate /L j and it operates under 
a first-in, first-out discipline. Let PI denote the Palm probability of the transition in 
which a unit enters node I at time O. For such an arrival into node I, let WI, ... , W m 
denote its sojourn times at the respective nodes. From Theorem 4.22, it follows that 
the flow of units between each pair of nodes j and j + I is a Poisson process, and 
these flows are clearly dependent. Then each node j in equilibrium operates like 
an M / M / I process. Consequently, the sojourn time of a unit at each node, as we 
saw in Example 4.39, is exponentially distributed. Furthermore, by Theorem 4.43 
below, the sojourn times WI, ... , Wm under PI are independent exponential ran
dom variables with respective rates /LI - WI, •.. , /Lm - Wm• It is surprising that 
these times are independent since the node populations are dependent and the flows 
between the nodes are dependent. 0 

Our terminology for routes will be as follows. A simple route of the network is 
a vector r = (rj, ... , re) of nodes in {I, ... , m} such that 1..'1'2 .. ·I..'t-I't > O. A 
unit traverses the route r if it enters node rl and then proceeds to nodes r2, ... , re 
in that order in its next l - I moves. We will consider a unit's sojourn times at 
nodes on the following type of overtake-free route in which units that traverse the 
route finish it in the same order in which they start it. Furthermore, a unit's sojourn 
time at any node on the route is not affected, even indirectly, by the presence of 
units that start the route later than it did. 

Definition 4.42. A simple route r = (rl' ... , rd is overtake-free if it satisfies the 
following conditions: 
(a) The nodes rl, ... , re are distinct, and each one serves units on a first-in, first-out 
basis. The service times at node ri are independent exponentially distributed with 
rate tP'i (X'i) = /L'i' independent' of X'i . 
(b) For s < t, each feasible path from rs to any i E {rl' ... , re} must pass through 
rs+l. That is, if I.."j ,l..ilh ... Aj"i > 0, then rHI E {jl,"" jn, i}. 
(c) The service intensities of the nodes satisfy the following conditions, which 
automatically hold for Jackson networks. For each s = I, ... , l - 1, let Bs denote 
the set of all nodes on a feasible path from rs to rs+1 that contains rs, rs+1 only at 
the beginning and end nodes, respectively, and Bs contains rs but not rs+l. Think 
of Bs as the set of nodes "between rs and rs+I". For each j E Bs, the service rate 
tPj(x) is independent of Xb for k ¢ Bs. And for each k ¢ BI U ... U Be-I, the rate 
tPk(X) is independent of Xj, for j E BI U .. · U Be-\o 

We are now ready for our main result on travel times. Consider an overtake-free 
route r = (rl' ... , re) of the stationary network process X. Let P'I denote the Palm 
probability of a network transition in which a unit enters node rl at time 0 and 
traverses the route r. Let W'I' ... , W" denote the sojourn times at the respective 
nodes on the route for that unit. Finally, let F(tl/L, n) denote the Erlang distribution 
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with parameters I.L and n. Its density is 

dF(tll.L, n) = 1.L(I.Lt)n-le-/l1 j(n _ I)!, t ~ O. 
dt 

Theorem 4.43. If the process X represents an open network with unlimited 
capacity, then the sojourn times Wr, ' ... , Wr, under the Palm probability Pr, are in
dependent exponential random variables with respective rates I.L" - wr" ... , I.Lre -
Wr,. If X represents a closed network with v units (or a v-capacity open network), 
then, for tt. ... , te in JR, 

e 
P"{W,, ~ t\, ... , W" ~ tel = L1tv-l(x) n F(ti!l.Lri'xri + 1). (4.34) 

XEIE' i=1 

PROOF. For simplicity, renumber the nodes such that (rl' ... ,re) = (l, ... , i). 
Let F(t\, ... , te) = PI (WI ~ t\, ... , Wi ~ tel. Now, the two assertions of the 
theorem can be stated as the single assertion that 

e 
F{tt. ... , te) = L 1t'(x) n F(tdl.Li' Xi + 1). (4.35) 

XEIE' i=\ 

This is the second assertion with 1t' = 1t v-I, and it is the first assertion with 1t' = 1t 
since that assertion is 

i i 

F(t\, ... , ti) = n (l - e-(/li-Wi)li) = L 1t(x) n F(tdl.Li' Xi + 1). 
i=\ XEIE i=1 

The last equality follows as in Example 4.40 since each node i on the route is a 
single-server with rate l.Li. 

We will prove (4.35) by induction on the route length l for all networks of the 
type we are considering. Clearly (4.35) is true for l = 1 by (4.32). 

Now assume (4.35) is true forroutes oflength 1, ... , i-I, for some i. Consider 
a route of length l for the network process X. Let P2 denote the Palm probability 
of a network transition in which a unit traversing the route departs from node 1 
and enters node 2 at time O. Let wt, ... We* denote the sojourn times W\, ... , Wi 
viewed by that unit. That is 

F(tt. ... , tt) = P2{wt ~ t\, ... , We* ~ td. 

It follows by Theorem 4.37 that the transition of a unit moving from node 1 to node 
2 has the MUSTA property, since it is a simple network transition as described in 
Example 4.38. Then expressing the last probability as in (4.30), we have 

F(tt. ... ,te) = L1t'(x)P{wt ~ t\, ... , W; ~ tiIAdx)}. 
XEIE' 

Here Adx) = {Xro = X + et. Xr, = X + e2} is the event that a unit moves from 
node 1 to node 2 at time f\ and the disposition of the unmoved units is x. Let 
J = B I be the set of nodes between 1 and 2 (recall the definition of an overtake
free route), and let K = {I, ... , m} \ J. By the assumed structure of the service 
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intensities fjJ j on an overtake-free route, we can factor rr' as 

m , 

rr'(x) = c'CI>(x) n w? = -!-,rr~(x])rr~(xK)' (4.36) 
j=1 c]cK 

where x] == (Xj : j E J) and rr~(x]) = c~CI> ] (x] ) njE] w? for x] in IE~ = {x] : 
x E IE'}. The rr K is defined similarly on the set IE~ (x] ) of all x K such that x E IE' 
and, IXKI ::: v -Ix] 1-1 if the network is closed with v units or open with capacity 
v. Also, CI>(x) = CI>](X])CI>K(XK). 

Then conditioned on the event A 12(X), the wt is independent of W;, ... , WI; 
wt depends only on x]; and w;, ... , W; depends only onXK. Using this and the 
factored form of rr', we can write 

where 

H(12, ... , It> = L rr~(xK )P{W; ::: 12, ... , Wl* ::: IlIAI2(X)}' 
XKEE~(xJ) 

(4.37) 

We now show that G and H have forms like (4.35). Let xi be an open Whittle 
process on the nodes J with state space IE] = {x] : x E IE} and transition rates 

where 

q(xj, TjkX]) = A fkfjJ j(x]), 

A~k = L WiAib 
i¢] 

j,k E J. 

A solution to the traffic equations for A fk is wf = W j (j E J U {OD, where 
Wj (j E M) is a solution to the equations for Ajk. Consequently, the stationary 
distribution of X] is 

rr](x]) = c]CI>Ax]) n wr 
jE] 

Assume X] is stationary and let PI denote the Palm probability of a simple network 
transition of X] at which a unit departs from node 1 at time O. Let W/ denote the 
sojourn time of that unit at node 1. Then by the definition of G, expression (4.33) 
for the time-reversal process, and the induction hypothesis for one node, we have 

- -] ] 
G(tl) = PdWI ::: tIl = PdWI ::: tIl 

= L rr~(x] )F(tIlJL(, XI + 1). (4.38) 

Next, define an open Whittle process X,K on the node set K with state space 
IE K (x] ) and capacity v - Ix] I. Here x] is fixed. Assume X K is stationary and let P2 
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be the Palm probability of the transition of X K in which a unit enters node 2 at time 
o and traverses the route 2, ... , l, which is overtake-free. Let W2K , ••• , wt denote 
that unit's sojourn times at the respective nodes 2, ... , i. Then by the definition of 
H and the induction hypothesis for overtake-free routes of length l - 1, we have 

H(t2, ... , ti) = P2{W{ ~ t2, ... , wt ~ ttl 
i 

L 7r~(XK) n F(tdJLi,Xi + 1). (4.39) 
XK EIE~(XJ) i=2 

Substituting (4.38) and (4.39) in (4.37) yields 

i 

X L 7r~(XK) n F(tdJLi' Xi + 1). 
XKEE~(xJ) i=2 

Finally, because of (4.36), we can bring these summations together as a sum on 
x E IE' to obtain (4.35). This completes the induction argument. 0 

4.10 Exercises 

1. Dynkin's Formula. Use Levy's formula (4.2) to prove that, for a function f : 
IE ~ JR, 

E[f(Xt ) - f(Xo)] = E{i
t [L q(X., y)(f(y) - f(Xs))]ds}, 

o y'lX., 

provided the last expectation exists. This formula also holds when t is replaced 
by a stopping time of X. 

2. In the context of Theorem 4.10, suppose N + ..1 X _. Prove that N is a Poisson 
process with rate a if and only if 

EN(s, t] = a(t - s), s < t. 

3. Characterization of Compound Poisson Processes. Suppose M is a point pro
cess on JRn+1 with point locations (Tko Yl, ... , Yk), k ~ 1. Define random 
measures MI, ... , Mn on JR by 

Mj(A) = Lyl1(Tk E A), A c JR, 1 ~ j ~ n. 
k 

Prove that (MI' ... , Mn) is a compound Poisson process with rate a and atom 
distribution F on JRn+1 if and only if M is a Poisson process with 

EM«O, t] x B) = at F(B), for each t and B. 
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4. Queue with Compound Poisson Arrivals and Poisson Departures. Consider a 
Markovian queueing process whose state is the number of customers in the 
system and whose transition rates are 

q(x, y) = Axpn-](1- p)1(y = x + n) + I-Lx1(y = x -1 ~ 0). 

Here Ax and /Lx are positive and 0 < p < 1. This process represents a system 
in which batches of customers arrive at the rate Ax when there are x customers 
present, and the number of customers in a batch has a geometric distribution 
with parameter p. Also, customers depart at the rate /Lx when x are in the 
system. Show that the stationary distribution of the process is 

x-I 

rr(x) = rr(O)Aol-Li] ... /L;] n(Ak + P/Lk), x ~ 1, 
k=] 

provided the sum of these terms over x is finite, which we assume is true. Next, 
assume the process is stationary and AO = Ax + P/Lx = a, for each x ~ 1. 
Show that the times of customer departures form a Poisson process with rate a. 

5. For the process in Example 4.20, show that its stationary distribution is given 
by (4.14). 

6. Consider the random measures MJ, ... , Mn defined by (4.12). Show that 
(M], ... , Mn) is an n-dimensional compound Poisson process with rate a and 
atom distribution F such that (M], ... ,Mn)+ 1.. X_ if and only if, for each 
x E E and B] x ... x Bn E IRn, 

Lq(x, y)1«x, y) E To)1(h i (x, y) E Bi , 1 ~ i ~ n) = aF(B] x ... x Bn). 
y 

7. Consider the point processes Ni of To i -transitions as in Theorem 4.15 and define 

a(x, u) = Lq(x, y)l(l(x, y) E To i ) = Ui, 1 ~ i ~ n). 
y 

Show that N], ... , Nn are independent Poisson processes with respective rates 
a], ... , an such that (N], ... , Nn)+ 1.. X_ if and only if, for each x E E and 
u E {O, W, 

lai 
a(x, u) = 0 

if u = ei for some 1 ~ i ~ n 

otherwise. 
(4.40) 

8. In Corollary 4.21, show that (1) is equivalent to (3) by applying the result in 
the preceding exercise. Does this equivalence of (1) and (3) require the process 
to be stationary? 

9. Sojourn Times in M/M/s Systems. Consider a stationary M/M/s queueing 
system with arrival rate A and service rate /L. Its stationary distribution is 

rr(x) = C(A/ I-Lt Ix!, x ~ s, and rr(x) = rr(s)(A/S/LY-s , x > s. 

Let PN denote the Palm probability of the system given that a unit arrives to 
the system. Find the probability PN{XO < s} that an arrival does not have to 
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wait in the queue for service. The Palm probability of the sojourn time in the 
system in equilibrium is 

PN{W .::: t} = L1l'(x)P{W .::: tlXo_ = x, Xo = x + I}. 
x 

This is (4.32) for a network with one node. Explain why 

{ P{~.:::t} 

P{W .::: tlXo- = x, Xo = x + I} = X~l 
P{~ + ~ ~i .::: t} 

i=l 

if x < s 

if x ~ s 

where ~, ~ I , ~2, •.• are independent exponentially distributed random variables 
such that ~ has rate f./, and the others have rate Sf./,. Find the Laplace transform 
of the distribution PN{W .::: t}. Use it to justify 

PN{W .::: t} = P{~ .::: t}PN{XO < s} + PN{Xo ~ s}P{~ + W* .::: t}, 

where W* is an exponential random variable with rate Sf./, - A independent of 
~. One can view ~ as the arrival's service time and W· as its waiting time in 
the queue given that it has to wait. Show that in case s = 1, the distribution 
PN{W .::: t} is exponential with rate f./, - A. 

4.11 Bibliographical Notes 

Standard references for the theory of point processes are Kallenberg (1983), Daley 
and Vere-Jones (1988), Karr (1991), and Brandt and Last (1995). Levy's formula 
appears in several texts, including the last reference and in Baccelli and Bremaud 
(1994). The extension of this formula in Theorem 4.6 has not appeared in the 
literature. The results on Poisson functionals of Markov processes and Poisson 
flows in networks are from Serfozo (1989). The key to these results is Watanabe's 
(1964) characterization of Poisson processes. Burke (1956) and Reich (1957) were 
the first to prove that output processes of certain stationary queueing systems are 
Poisson processes, and extensions of these results to networks using time-reversal 
reasoning are in Kelly (1979). 

Palm probabilities for Markov processes based on the extended Levy formula 
is a subtheory of Palm probabilities covered in Chapter 5 (see the references 
there for Palm probabilities). The distribution of Jackson networks at a transi
tion and the MUSTA property were characterized by direct Markovian reasoning 
in Kelly (1979), Sevcik and Mitrani (1981), and Melamed (1982b). The approach 
in Section 4.8 using the formalism of Palm probabilities is from Serfozo (1993). 
Other variations on the theme of moving units seeing time averages are in Wolff 
(1982), Konig and Schmidt (1990), Melamed and Whitt (1990), and Bremaud et 
al. (1992). The distributions of sojourn times on overtake-free routes in Jackson 
networks were characterized using direct Markovian reasoning in Walrand and 
Varaiya (1980), Melamed (1982a), and Kelly and Pollett (1983). Related articles 



134 4. Network Flows and Travel Times 

are Simon and Foley (1979) and Schassberger and Daduna (1983, 1987). The ap
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5 
Little Laws 

In a Markovian, regenerative, or stationary network, the average sojourn times 
of customers in a sector of the network can often be obtained from a Little law. 
Specifically, a Little law for a service system says that the average sojourn time 
W of a customer in the system and the average queue length L of the system are 
related by L = A W, where A is the average arrival rate of units to the system. 
This fundamental relation is a law of averages or law of large numbers when the 
quantities L, A, W are "limits" of averages. It is also a law of expectations when 
the quantities are expected values. This chapter focuses on Little laws of averages, 
which are based on sample path analysis. The next chapter covers Little laws of 
expectations for stationary systems, which are based on Palm probability analysis. 

In studying a system, one may want to use L = A W to obtain one of these values 
from the other two. Typically, A and L are known or prescribed and one wants to 
determine that W exists and equals A -I L. On the other hand, in a simulation, one 
may want to estimate L in terms of A and W. The law L = A W holds when each 
of the terms exists. In order to apply the law, it is therefore necessary to establish 
the existence of these quantities. 

This chapter addresses the question: If any two of the limits L, A, or Wexist, 
then what additional conditions guarantee the existence of the other limit? Little 
laws for queues are special cases of more general laws for certain two-parameter 
utility processes. Since utility processes cover a rich area of applications and are 
not more complicated than queueing processes, we prove omnibus Little laws for 
utility processes and then apply them to queueing systems. Examples for networks 
are in several sections. 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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5.1 Little Laws for Markovian Systems 

We begin this section by introducing the basic notation for this chapter. Then we 
present Little laws for Markovian systems. Their proofs are in Section 5.5. 

We will consider a general service system or input-output system that processes 
discrete units (or customers). Suppose units arrive at the system at times ° < TI ~ 
T2 ~ ... , where Tn ~ 00 w.p.I. We will often refer to the arrivals by the point 
process 

00 

N(t) = L 1 (Tn E (0, t1), t ~ 0, 
n=1 

which denotes the number of arrivals in the time interval (0, t]. Note that N(Tn) ~ 
n; and N(Tn) = n if Tn-I < Tn < Tn+l • The latter is true when customers arrive 
one at a time. 

Let Wn denote the entire time the nth unit is in the system, including its service or 
multiple service times and any waiting times for service or hiatus times. Following 
tradition, we will often call the sojourn time Wn the waiting time of the nth unit. 
The nth unit departs from the system at time Tn + Wn and never returns. The 
number of units that arrive in the time interval (0, t] and are still in the system at 
time tis 

XI = L I(Tn ~ t < Tn + Wn), t ~ 0. (5.1) 
n 

This queue length process XI has piecewise constant, right-continuous sample 
paths, and the number of its jumps up to time t is finite (it is bounded by 2N(t». 

We make no specific assumptions on the processing of units or the dependencies 
among the variables Tn, Wn, XI' We only assume these variables exist and are finite. 
In this system, units may arrive or depart in groups, a unit may be fed back for 
several services, the interarrival times may depend on the service times, etc. Also, 
this system may represent a special subpopulation of units in a larger system, such 
as the units in a sector of a network. The arrival process N is a function of the 
queue length process X (the arrivals are observable from X). On the other hand, 
the waiting times Wn may not be a function of X. They are, however, when units 
arrive and depart one at a time and units depart in the same order in which they 
arrive. When the queue length process alone does not contain enough information 
to determine Wn, one usually represents Wn or even N and X as functions of some 
general stochastic process that encompasses all the system dynamics. 

We will present conditions that ensure the existence of the limits 

L = lim t- I r X .. ds 
1-+00 10 average number in the system 

A = lim t-I N(t) 
1-+00 

average arrival rate 

n 

W = lim n -I " Wk 
n-+oo L-J 

k=1 

average waiting time. 
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All the limit statements here are w.p.I. For simplicity, we will often omit the phrase 
w.p.I. We say that L exists if the limit L above exists and it is a positive, finite
valued random variable w.p.I. Similarly, we will refer to the existence of A, Wand 
analogous limits below. Some of the results herein also hold for L, W that may be 
zero or infinite, but we will not cover these degenerate cases. 

To simplify notation, we will frequently write convergence statements like 
limn--*oo an / Cn = I w.p.I for random variables an, Cn simply as an '" cn. This 
definition of asymptotic equivalence'" is consistent with the standard definition 
for nonrandom an, cn. 

The key idea behind the Little law L = A W is that the integral of Xt is simply 
another way of recording waiting times. Specifically, if the system is empty at 
times 0 and t (Xo = Xt = 0), then the waiting time of the customers up to time t 
is 

1t N(t) 

X"ds = LWn • 
o n=1 

Even at nonempty times t, many systems satisfy 

t N(t) 

t-110 Xs ds = t- I ?; Wn + 0(1), (5.2) 

where 0(1) -+ 0 as t -+ 00. In this case, if the limits A and W exist, then letting 
t -+ 00 in (5.2) yields L = AW. Indeed, the right side of (5.2) converges to AW 
since L:~l Wn '" N(t)W and N(t) '" tAo We will focus on the relation (5.2) and 
justify the 0(1) term in (5.2) for various settings. 

Since the proofs of Little laws are long, we present several of them in this and 
the next section and prove them later. The following are results for Markovian 
systems. 

Theorem 5.1. Suppose the queue length process is of the form X t = f(Yt ), 

where Y is an ergodic Markov jump process on a countable state space and f is 
a function on this space. Let q(y, y') denote the transition rates of Y and let 11: 
denote its equilibrium distribution. Then the average queue length L and arrival 
rate A, which may be infinite, are given by 

L = L 11: (y)f(y), A = L 11:(Y) L q(y, y')I(f(y') = fey) + 1). 
y y y' 

If these quantities are finite and the process X may equal 0, then W exists and 
L=AW. 

PROOF. The first assertion follows by the ergodic theorem for Markov processes. 
The second assertion follows by Theorem 5.24 below, which describes Little laws 
for regenerative processes. 0 

The preceding Little law is for limiting averages. The version of this law for ex
pected values is as follows. This result is a special case of Theorem 6.22 in the next 
chapter, which is for stationary systems that need not be Markovian, and arrivals 
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may occur in batches. The type of Palm probability here for Markovian systems 
was defined in Chapter 4; general Palm probabilities are covered in Section 6.1. 

Theorem 5.2. In the context of Theorem 5.1, suppose the Markov process Y is 
stationary and the queueing process X may equal O. Assume that customers arrive 
one at a time for service and that each sojourn time Wn is afunction of the queueing 
process after its arrival time Tn (i.e., Wn = g({Xt : t ~ Tn D for some g). If the 
expectations EXo and A == EN(l) are finite, then 

EXo = AEN(W\), 

where EN(W\) is the expected sojourn time of an arrival at time 0 under the Palm 
probability PN that there is an arrival at time O. 

Here is our major application for networks. 

Example 5.3. Sojourn TImes in Markovian Networks. Suppose X is a Markov 
network process that records the numbers of units in an m-node network. For 
instance, X could be a Jackson or Whittle process. Assume X is ergodic and 
denote its equilibrium distribution by 1f(x). Our interest is in sojourn times of 
units in a sector J of the network. The average sojourn time of units in J is 

n 

W} = lim n-\ " W;(J), 
n--+-oo L-J 

;=\ 

where W;(J) is the sojourn time in J of the ithunitto enter J. There is no restriction 
on the nodes at which the units enter and leave J, and a unit may have multiple 
visits to the nodes in J before it exits. Also, the units generally do not exit J in 
the same order in which they entered. 

To evaluate WI, we consider the process (Xt(J) : t ~ O} that denotes the 
number of units in J. Although X(J) is not a Markov process, it is a function 
of the Markov process X. Namely, Xt(J) = f(Xt), where f(x) = LjeJXj' By 
Theorem 5.1, the average number of units in J is 

L} = L LXj1f(X). 
x je} 

And the average arrival rate of units to J from outside of J is 

A} = L1f(x) Lq(x, x')l(f(x) = f(x') + I), 
X x' 

where q(x, x') are the transition rates of X. Assume A} is finite and there is a 
state x of X such that f(x) = 0 (Le., sector J is recurrently empty). Then by 
Theorem 5.1, the average sojourn time W} exists and L} = A} WI' 

Now, in addition to the assumptions above, suppose the Markov process X is 
stationary. Assume that units enter J one at a time, which means that the point 
process N of arrival times into J is simple. Also, assume that each Wn is a function 
of the queueing process after its arrival time Tn. Then Theorem 5.2 yields 

E[Xo(J)] = A} EN[W\ (J)], 
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where EN[W, (J)] is the expected sojourn time of a unit in J that enters J at time 
o. 

It is sometimes of interest to differentiate between customer sojourn times we 
have been discussing and the customer "waiting times for service." To do this, 
one must know the service discipline at the nodes. For simplicity, assume that 
customers are served at each node j on a first -come, first -served basis and an 
arrival to node j does not wait for service when and only when there are less than 
s j customers in the system (like an . / M / s j node). The average waiting time for 
services that units endure in J is 

where W;(J)* is the waiting time for services in J of the ith unit that enters J. 
Then under all the preceding assumptions in this example, the limit W; exists and 
L j = AJ W;, where AJ is as above and L j is the average number of units waiting 
for services in J, which is given by 

Lj = LLXj1f(x)l(xj ~ Sj). 
x jEJ 

In addition, E[Xo(J)*] = AJ EN[W,(J)*], where E[Xo(J)*] is the expected num
ber of units waiting for services in J at time 0 and EN[WI(J)*] is the expected 
waiting time of a unit in J that enters J at time O. 0 

5.2 Little Laws for General Queueing Systems 

We now present basic Little laws for waiting times in general queueing systems, 
including non-Markovian networks. The proofs are in Section 5.5. 

In addition to the notation above, we will use the time 

Tn = max (Tk + Wk), 
'~k~n 

which is the time by which the first n units have departed. We call Tn the thorough 
departure time of the firSI n units. Let N(/) denote the number of Tn's in (0, I] 
and leti = limHOO t- I N(t). We call N the thorough departure process. Note that 
more than n units might depart from the system by time Tn, and so N (t) is generally 
less than or equal to the actual number of departures up to time t. However, if the 
units depart in the same order in which they arrive, then Tn = Tn + Wn and N(t) 
is the actual number of departures up to time t. 

The following result concerns the existence of the three limits L, A, and W when 
two of them are known to exist. 

Theorem 5.4. The following statements are equivalent. 
(a) The limits L, A, and W exist, and L = A W. 
(b) L exists, Tn ~ Tn and either A or i exists. 
(c) L and A exist, and n-' Wn -+ O. 
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(d) L, A, and i exist, and A = i. 
(e) A and Wexist. 

(f) L and W exit, and 1[-' XI dt '" L~=I Wk. 

Note that the thorough departure process it plays a prominent role. Keying the 
departures to it rather than the usual departure process simplifies the analysis and 
leads to more precise equivalent statements. 

The equivalence of (a) and (e) implies that L exists automatically when A and 
W exist. Unfortunately, the existence of W, which is the limit in a law of large 
numbers for the waiting time sequence, is usually difficult to verify because waiting 
times are usually intractable. There are a few exceptions, including systems with 
stationary waiting times as in Theorem 6.25. For cases in which L and A exist, one 
can establish the existence of W and the relation L = A W by verifying anyone of 
the conditions (b), (c), or (d). Condition (c) is often the easiest to verify. 

A consequence of Theorem 5.4 is that L = A W is "universal" in the sense 
that it always holds when all three of the limits exist. In many systems, the three 
limits exist when any two of them exist. This three-for-the-price-of-two property 
is satisfied in systems with regular departures as we now describe. 

Recall that the key relation (5.2) leading to L = A W is automatically true with 
0(1) = 0 at any time t when the system is empty and Xo = o. This suggests that 
a system that empties out occasionally is more likely to satisfy the relation. To 
formalize this idea, we will use the following notion. 

Definition 5.5. The system is recurrently empty if there are strictly increasing 
random times rn t 00 such that rn+1 '" rn and XI = 0 for some t in each interval 
[rn, rn+I). 

The rn will typically be times such as regeneration times that trigger special "cy
cles" in the system. The condition rn+1 '" rn, which is implied by rnln --+- c > 0, 
is all that is needed here. Assuming a system is recurrently empty may be too 
strong in some cases. A weaker notion is as follows. 

Definition 5.6. The departure times of the queueing system are regular with re
spect to strictly increasing random times rn t 00 if rn+1 "" rn and ~n "" rn, 
where 

~n == max{Tk : rn-I ~ Tk < rn}. 

The ~n is the thorough departure time for all arrivals during the time interval 
[rn-I, rn). 

Note that if the system is recurrently empty with respect to rn , then its departure 
times are regular with respect to rn. Indeed, all waiting times beginning in the 
interval [rn -I, rn) terminate before time rn + t. since the system empties during 
[rn, rn+I), and so 
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On the other hand, there are many systems that are not recurrently empty, or never 
empty at all, but their departures are regular. Examples are easy to construct. 
Clearly, the departures are regular with respect to fn if fn+1 "" fn and 

f n- I L Wkl(fn ::: Tk < fn+l) ~ o. 
k 

For systems with regular departures, Theorem 5.4 reduces to the following, 
which is a special case of Theorem 5.17. 

Theorem 5.7. Suppose the queueing system is recurrently empty or, more gener
ally, its departure times are regular. If any two of the limits L, A, and W exist, then 
the other limit exists and L = A W. 

This result implies Theorem 5.1 since the Markovian system in Theorem 5.1 is 
recurrently empty and L and A exist. This yields the existence of W and the relation 
L = A W. Section 5.6 below shows that the assumption of regular departures is 
automatically satisfied for certain systems, such as Markovian and regenerative 
systems; also, see Exercise 4 in this chapter and Exercise 2 in Chapter 6. 

The assumption that a system is recurrently empty or has regular departures is 
rather natural and not restrictive. It simply ensures that customers do not remain 
in the system for indefinitely long periods and that their waiting times are not 
extremely irregular. For instance, a system might have a protocol under which 
services are not performed when the queue length is below a specified level. Then 
some customers may get trapped in the system for irregularly long periods, es
pecially under a "forgetful" or "layed-back" protocol. In these cases, the limit W 
may not exist and some Wn's may even be infinite. 

5.3 Preliminary Laws of Large Numbers 

This section contains several limit theorems that we will use to prove Little laws. 
We begin by relating a law of large numbers for the point process N (t) to a law 

of large numbers for its point locations Tn. As a preliminary, note that N(Tn) is 
the "right-hand inverse" of Tn in the sense that TN(T,,) = Tn. Consequently, the rate 
at which N(t) tends to infinity should be the inverse of the rate at which Tn does. 
This property is formalized as follows. 

Theorem S.S. For a positive A, the following statements are equivalent. 

lim n- I Tn = A -I. 
n~oo 

lim t- I N(t) = A. 
t~oo 

PROOF. Suppose that (5.3) holds. Using TN(t) ::: t < TN(t)+1o we have 

TN(:)+I N(t) < t- I N(t) ::: TN(:)N(t). 

(5.3) 

(5.4) 
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The supposition (5.3) along with N(t) t 00 and N(t)(N(t) + 1)-1 ~ 1 ensure 
that the first and last terms in this display converge to A. This proves (5.4). 

Conversely, suppose (5.4) holds. Consider a fixed (random) 1: ~ TI • Clearly 
N(Tn - 1:) < n ~ N(Tn), and so 

N(Tn)-ITn ~ n-ITn < N(Tn - 1:)-1 Tn. 

The supposition (5.4) along with Tn too and (Tn - 1:)-1 Tn ~ 1 ensure that the 
first and last terms in this display converge to A -I. This proves (5.3). 0 

Note that the preceding result applies to any point process on IR+, since the 
increments of N may be any positive integer. We will frequently use this result 
without mention for N as well as for N. 

We now consider laws of large numbers for more general processes. Assume 
that (Z(t) : t ~ O} is a nonnegative, nondecreasing real-valued stochastic process. 

Lemma 5.9. If the limit Z == limn~oo Tn- 1 Z(Tn) exists and Tn-I'" Tn, then 
limHoo t- I Z(t) = Z. 

PROOF. Since Z(t) is nondecreasing and TN(t) ~ t < TN(t)+J. we have 

TN(t) Z(TN(t» < t-I Z(t) < TN(t)+1 Z(TN(t)+I). 
TN(t)+1 TN(t) - TN(t) TN(t)+1 

Under the hypotheses, the right and left sides of this inequality converge to Z as 
t ~ 00, and hence so does rl Z(t). 0 

We use the following result several times to establish limiting averages of pro
cesses. This result also establishes Little laws for one-parameter utility processes 
and sojourn and travel times for stochastic processes; see Sections 6.5-6.7. Here 
we refer to the limiting averages A == limHoo t- I N(t), 

Z == lim t- I Z(t), Z == lim n- I Z(Tn). 
1""""",,00 n--+-oo 

Theorem S.10. If any two of the limits Z, A, and Z exist, then the other one exists 
andZ = AZ. 
PROOF. If Z and A exist, then by Theorem 5.8 

n- I Z(Tn) = (n- I Tn)(Tn- 1 Z(Tn» ~ A-I Z. 

Thus, Z exists and Z = AZ. If Z and Z exist, then 

n-ITn = (n- I Z(Tn»(TnZ(Tn)-I) ~ ZZ-I, 

and so Theorem 5.8 ensures that A exists and Z = AZ. If Z and Z exist, then 

Tn- t Z(Tn) = nTn-ln-1 Z(Tn) ~ AZ. 

Thus, by Lemma 5.9, the limit Z exists and Z = AZ. o 

The next result is useful for obtaining laws of large numbers for maxima of 
discrete- or continuous-time processes. 
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Lemma 5.11. Suppose that c and Cn (n ~ l) are positive real numbers such that 
n-Icn ---+ c. Then n- I maxk~n Ck ---+ C. 

PROOF. Fix e > 0, and choose nl such that In-Icn - cl < e, for each n ~ nl. 

Since en "" nc ---+ 00, there is an n2 ~ n I such that cn2 = maxk~n2 Ck. Next, choose 
n3 ~ n2 such that n- l cn2 < e, for each n ~ n3. Then, for each n ~ n3, we have 

c - e ::: n-Icn ::: n-I maxck 
k~n 

{ -I -I } + = max n cn2' n max Ck ::: C e. 
n2<k~n 

This proves the assertion. 

5.4 Utility Processes 

o 

Little laws for queueing systems are special cases of Little laws for certain two
parameter utility processes. This section describes this relation, and then specifies 
the utility processes that we will study. 

Example 5.12. Waiting TImes Modeled by a Utility Process. For the queueing 
process X defined above, consider the two-parameter process 

n it U(n, t) = L l(Tk ::: s < Tk + Wk)ds, 
k=1 0 

(5.5) 

This represents the total sojourn time in the system during (0, t] for the first n units. 
Since the queue length process is Xt = Ln l(Tn ::: t < Tn + Wn), the waiting 
time of units during (0, t] of the N (t) arrivals in that interval is 

U(N(t), t) = 1t Xs ds. 

Also, the "total" waiting time for the first n arrivals is 
n 

U(n, Tn) = lim U(n, t) = '" Wk. t~oo ~ 
k=1 

Then the average queue length and waiting times are given by the respective limits 

L = lim rl U(N(t), t), W = lim n-I U(n, Tn). 
t~oo n~oo 

These are time averages and customer averages of the waiting times. 0 

This example shows that it is natural to study waiting times and queue lengths 
in terms of two-parameter utility processes. Accordingly, we will consider Little 
laws for general utility processes defined as follows. 

Consider a stochastic system like the service system above in which there is a 
nondecreasing sequence of times Tn at which some special event occurs, such as an 
order for a product. As above, assume Tn t 00 and let N(t) denote the number of 
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Tn's in the time interval (0, t]. Think of N(t) as a general point process on lR.+; we 
make no assumptions about its distribution or structure (the increments of N are 
positive integer-valued random variables with arbitrary dependencies). Associated 
with this point process is a utility process U(n, t) that measures some real-valued 
quantity (e.g. cost, value, time, stress), for n E Z+, t E lR.+. The quantity U(n, t) 
is the cumulative utility up to time t associated with the first n times TJ , ••• , Tn 
(these times need not be in the interval (0, tD. The utility associated with Tn is not 
necessarily received at time Tn-it may be accumulated in bits or continuously, 
anywhere over the time horizon. For now, we place no monotonicity assumptions 
on the process U(n, t). We will sometimes assume, however, that it is nonnegative 
and nondecreasing (U(n, t) ~ U(n', t') whenever n ~ n', t ~ t'). Each parameter 
nor t may be continuous or discrete, but, for simplicity, we stick to the conventional 
setting in which n is discrete and t is continuous. 

Now, the utility "associated" with the time interval (0, t], or with the N(t) time 
points, is defined by 

U(t) == U(N(t), t). 

This utility may be accumulated after time t as well as before it. The infinite-horizon 
or complete utility for the first n times TJ, ••• , Tn is defined by 

U(n) == lim U(n, t), 
t-+oo 

which is assumed to be finite w.p.l. The time at which the utility associated with 
TJ, ••• , Tn ceases to change is 

Tn = inf{t : U(n, t) = U(n)}. 

We call Tn the nth thorough termination time. This terminology is consistent with 
the notion of a thorough departure time for the queueing system. We assume Tn 
is finite w.p.I. Then U(n) = U(n, Tn). The case Tn = 00 involves technicalities 
that we will not cover. We shall consider the "time average" and "unit average" 
utilities 

U = lim n-JU(n), w.p.I. 
n-+oo 

Our interest is in the relation U = AU, which is a generalization of L = A W. With 
a slight abuse of notation, we use "U" in several ways (U(n, t), U(t), U(n), U, 
U) to emphasize that these quantities are associated with a single utility process. 
Some cases of U = AU have been studied using the abstract notation H = AG, 
which is also related to expression (6.18) below for marked point processes. 

A large class of utility processes are functionals of stochastic processes as 
follows. 

Example 5.13. Additive Utility Processes. Suppose the system is described by a 
stochastic process {Yt : t ::: O} and the times Tn. A natural utility process Un(t) 
associated with each time Tn is 

Un(t) = 1t f(s, Tn, {Yu : u ::: s})ds, 
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where f is a real-valued function of the current time s, the time Tn, and the future 
of the process Y at time s (which is {Yu : u ::: s D. Then the utilities associated 
with T1, ••• , Tn on the respective time intervals (0, t] and R+ are 

n 11 

U(n, t) = L Uk(t), U(n) = L Uk(Tn). (5.6) 
k=l k=l 

This is an additive utility process. Note that the utility process for waiting times 
in the queueing system is an additive utility process. 0 

We will see in Sections 6.5 and 6.6 that sojourn and travel times for processes 
can be formulated by one-parameter uility processes defined as follows. 

Example 5.14. One-Parameter Utilities. Suppose that U(n, t) is a utility process 
in which Tn = Tn, for each n. We call this a one-parameter utility process based 
only on time if U(n, t) == Z(t), independent of n, for some process Z(t). In this 
case, U(t) = Z(t) and U(n) = Z(Tn). Then the Little law for this utility process, 
which is Z = At, can often be established by Theorem 5.10. 

Similarly, we say that U(n, t) is a one-parameter utility process based only on 
cycles if it is of the form U(n, t) == Yn, independent of t, for some sequence Yn• In 
this case, U(t) = YN(/) and U(n) = Yn • Then the Little law for this utility process 
can often be established by the discrete analogue of Theorem 5.10 in Exercise 1. 

o 

5.5 Omnibus Little Laws 

In this section, we present limit theorems for the utility processes defined above. 
Then we apply these results to obtain the Little laws in Sections 5.1 and 5.2 for 
queueing systems. 

Using the notation in the preceding section, we consider the utilities 

U(t) = U(N(t), t), 

associated with the time interval (0, t] and the times Tl, ... , Tn, respectively. The 
first result concerns the existence of the limits U, A, and U, as well as the relation 
U = AU, when only two of the limits exist. 

Theorem 5.15. Suppose the process U(n, t) is nonnegative and nondecreasing 
in (n, t), and Tn'" Tn. Then the following statements are equivalent. 
(a) The limits U, A, and U exist, and U = AU. 
(b) The limits A and U exist. 
(c) The limits A and U exist. 
(d) The limits U and U exist, and U(n) '" U(Tn). 

PROOF. Clearly, (a) implies (b). We next show that (b) implies (c). To determine 
the existence of the limit U, first note that 

U(Tn-) :::: U(n, Tn) :::: U(n, Tn) = U(n) :::: U(N(Tn), Tn) :::: U(Tn). (5.7) 
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These inequalities follow by the monotonicity of the utility process and 

N(Tn-) < n ~ N(Tn), Tn ~ Tn, N(t) ~ N(t). (5.8) 

We will prove that (b) implies U(n) ~ nA-1U. But this will follow by (5.7) upon 
showing that 

(5.9) 

To this end, note that the existence of A ensures that n/Tn ~ n/Tn ~ A, and so 
N(t) ~ At. Also, U(t) ~ tU implies that U(Tn-) ~ TnU ~ nA-1U. Similarly, 
U(Tn-) ~ TnU ~ nA-1U. This proves (5.9) and hence (b) implies (c). 

Next suppose that (c) is true. We will show that (d) holds. To obtain the existence 
of the limit U, we will use the inequalities 

U(N(t» ~ U(n, t) = U(t) ~ U(N(t) + I, TN(t)+l) ~ U(N(t) + I). (5.10) 

These relations are based on (5.8 ) and TfI(l) ~ t < TN(I)+I. Now, arguing as in 

the last paragraph, we have N(t) ~ At and 

U(N(t» ~ N(t)U '" tAU. 

Similarly, U(N(t) + I) ~ tAU. Applying these observations to (5.10) shows that 
U(t) '" tAU. Furthermore, U(Tn) ~ TnAU ~ U(n). This proves (d). 

Finally, if (d) holds, then (a) follows since 

Tn ~ U(Tn)U-1 '" UU- I, 

which ensures that A exists and A = UU- I • o 

We now consider systems that are recurrently empty or have regular termination 
times. The utility termination times Tn are said to be regular with respect to strictly 
increasing random times t'n t 00 if t'n+ I ~ t'n and t'n '" ~n, where 

~n == max{Tk : t'n-I ~ Tk < t'n}. 

This notion is consistent with regular departure times in a queueing system. 
We will show that Theorem 5.15 reduces considerably for systems with regular 

termination times. The proof is based on the following result. 

Lemma 5.16. The following statements are equivalent. 
(a) A exists and the termination times are regular. 
(b) A and i exist and A = i. 
(c) Either A or i exists and Tn ~ Tn. 

PROOF. We first show that (b) is equivalent to (c). If (b) holds, then (c) follows 
since 

Tn ~ nji = njA '" Tn. 

Now, suppose (c) holds. Then (b) follows since the existence of A implies Tn ~ 
Tn ~ n/A, which lields i = A; and the existence of i implies Tn ~ Tn ~ n/i, 
which yields A = A. 
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Next, we show that (a) is equivalent to (b). If (b) holds, then the termination 
times are regular with respect to in = n since 

in "" n - 1 :::: ~n = max{Tk : n - 1 :::: Tk < n} 

:::: TN(n) "" N(n)/A "" in. 

Thus (b) implies (a). 
Now, suppose (a) holds, where the termination times are regular with respect to 

in. To prove (b), it suffices to show Tn "" nA -I. The regularity assumption ~n "" in 
and Lemma 5.11 imply that maXk~n ~k "" in. Using this along with Tn "" n/A, 
Tn :::: Tn and N(t) "" At, we have 

N(in)/A"" TN(,,,) :::: TN('n) :::: T:: ~k "" in "" N(in)/A. (5.11) 

This proves TN(,,,) "" N(in)A -I. Also, N(t) "" At implies 

N(in+I)/N(in) "" in+l/in "" 1. 

Then Tn "" nA -I follows by an application of a discrete-time version of Lemma 5.9 
with the pair Z(t), Tn equal to Tn, N(in). 0 

We are now ready for the main result for systems with regular termination times. 

Theorem 5.17. Suppose U(n, t) is nonnegative and nondecreasing in (n, t), and 
the utility termination times are regular. If any two of the limits U, A, and U exist, 
then the other limit exists and U = AU. 

PROOF. Under the assumption that A exists, the assertions follow by Theo
rem 5.15, since Lemma 5.16 ensures that Tn "" Tn. Now, consider the remaining 
case in which U and U exist. Let in denote the times with respect to which the 
termination times are regular. To establish the existence of A, we first show that 
U(in) "" U(N(in». 

Let TIn = maxk~n ~k. We saw in (5.11) that TN('n) :::: TIn "" in. Using these 
relations along with 

t < TN(t)+Io Tn:::: Tn, in:::: Tln+Io U(n) "" nU, 

and U(t) "" tU, we have 

U(in) :::: U(N(in), TN(,,,)+I) :::: U(N(in) + 1, TN('n)+I) 

= U(N(in) + 1) "" U(N(in» :::: U(N(Tln+I), TIn) 

:::: U(Tln+d "" Tln+1 U "" in+1 U "" inU "" U(in). 

Thus U(in) "" U(N(in ». 
This property and in+1 "" in imply U(t) "" U(N(t» by an application of 

Lemma 5.9 with the pair Z(t), Tn equal to U(t), in. Therefore, 

N(t) "" U(N(t»U- 1 "" U(t)U- 1 "" tUU- I. 

In other words, A exists and U = AU. o 
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Remark 5.1S. (Results for Nonmonotone Utility Processes). Consider a utility 
process oftheform U(n, t) = UI (n, t)- U2(n, t), where Uj(n, t) is nondecreasing 
in (n, t) for i = 1,2. Define Uj(n) = Uj(n, Tn), and let Uj and Uj denote limits 
of the respective averages t- I Uj(t) and n- I Uj(n). Then by obvious applications 
of Theorems 5.15 and 5.17, it follows that their assertions also apply to this more 
general utility process with the modifications that "U exists" is replaced throughout 
by"UI and U2 exist", and "U exists" is replaced throughout by "UI and U2 exist". 

We are now ready to apply the results above to prove the Little laws stated in 
Section 5.2 for queueing systems. Recall that, for a queueing system with regular 
departure times, Theorem 5.7 says that the existence of any two of the limits L, A, 
and W ensures that the other limit exists and L = A W. This result is an immediate 
corollary of the following result, which we stated previously as Theorem 5.4. 

Theorem 5.19. The following statements are equivalent. 
(a) The limits L, A, and W exist, and L = A W. 
(b) L exists, Tn '" Tn, and either A or i exists. 
(c) L and A exist, and n-I Wn ~ O. 
(d) L, A, and i exist, and A = i. 
(e) A and W exist. 

(f) L and W exit, and I;" XS ds '" L:Z=I Wk· 

PROOF. We observed in Section 5.4 that waiting times in the queueing system 
under study are represented by the utility process 

U(n,t)=t t l(Tk~s~Tk+Wdds. 
k=1 10 

Clearly U(n, t) is nonnegative and nondecreasing in (n, t), and 

U(t) = l' Xs ds, 
n 

U(n) = LWk. 
k=1 

First, note that statements (b), (c), and (d) are equivalent by Lemma 5.20 below. 
The proof of the equivalence of (e) and (f) is left as Exercise 2. 

The proof will be complete upon showing (b) =:} (e) =:} (a) =:} (c). Now, Theo
rem 5.15 ensures that (b) =:} (e) =:} (a). Also, if (a) holds, then the existence of W 
implies 

n n-I 

n-IWn =n-I(LWk - LWk) ~ O. 
k=1 k=1 

Thus, (a) =:} (c). o 

Lemma 5.20. For the setting of waiting times in a queueing system, where Tn = 
maxk<n(Tk + Wk). the following statements are equivalent: 
(a) A ~nd i exist and A = i. 
(b) Either A or i exists and Tn '" Tn. 
(c) A exists and n-I Wn ~ O. 
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PROOF. The equivalence of (a) and (b) follows from Lemma 5.16. 
We finish the proof by showing that (a) is equivalent to (c). If (a) holds, then (c) 

follows since using Tn '" nA -I '" Tn, we have 

0:::: n-1Wn :::: n-I(Tn - Tn} ---+ O. 

Now, suppose (c) holds. Then by Tn '" nA -I, n- I Wn ---+ 0 and Lemma 5.11, we 
have 

lim n-1Tn = lim n- I max(Tk + Wd = lim n-I(Tn + Wn) = A -I. 
n-+oo n-+oo k::;;n n-+oo 

This proves that i exists and equals A. Thus (c) implies (a). o 

Remark 5.21. (Results for Nondiscrete Quantities). The preceding results also 
apply to service systems that process nondiscrete quantities like fluids or other 
infinitely divisible items, or a combination of discrete and continuous quantities. 
In particular, a random measure M (t) that represents the total mass that has arrived 
in (0, t] replaces N(t). And T(x) = sup{t : M(t} :::: x} replaces Tn. Similarly, a 
random measure Ai (t), representing the mass that has thoroughly departed in (0, t], 
replaces N(t); and T(x), defined in the obvious way, replaces Tn. Then U(x, t) 
denotes the utility (or waiting time) associated with the quantity x up to time t; 
and U(t) = U(M(t), t) and Vex) = U(x, T(x» denote the utilities (or waiting 
times) up time t and for quantity x, respectively. All the results herein apply with 
the same interpretations; the only difference is the minor change in notation that 
the "quantity parameter" is now x instead of n. 

5.6 Little Laws for Regenerative Systems 

There are a number of queueing systems, such as the G I / G / s system we discuss 
shortly, whose dynamics are expressible by regenerative processes. In this section, 
we apply the general results above to obtain Little laws for such systems. 

We begin with a few comments on regenerative processes. 

Definition 5.22. Let {Y/ : t ::: O} be a continuous-time stochastic process with 
arbitrary state space, and let 0 = t'o < t'l < ... be random times associated with 
Y such that t'n t 00. The nth cycle of Y consists of the information 

~n = (t'n - t'n-], {Y/ : t'n-I :::: t < t'nD. 

This represents the trajectory of Y in the random time interval [t'n-], t'n). The 
process Y is regenerative over the t'n's if~], ~2' ... are independent and identi
cally distributed. For simplicity, the regenerations are assumed to start at time 0; 
otherwise, ~I might not have the same distribution as the other ~n 'so 

Suppose Y is a regenerative process over t'n. Note that the t'n's form a renewal 
process. By the key renewal theorem, we know that if t'l is not periodic and 
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Erl < 00, then the limiting distribution of Y is 

1 l rl Jl'(A) = lim P{Yt E A} = -E I(Yt E A)dt. 
t~oo Erl 0 

(5.12) 

There is an analogous limit when rl is periodic. Many limit laws for functionals 
of Y are special cases of the following result. 

Proposition 5.23. If Z(t) is a nonnegative, nondecreasing process on the same 
probability space as Y such that Z(rn ) - Z(rn_I), n ::: 1, are independent and 
identically distributed, thent-IZ(t) ~ EZ(rl)/Erl asn ~ 00. 

PROOF. The assertion follows by Theorem 5.10, since the classical law of large 
numbers ensures that n-Irll ~ Erl and n- I Z(rn) ~ EZ(rl). 0 

We are now ready to describe the average waiting times in regenerative systems. 

Theorem 5.24. Suppose the queue length process X is regenerative over rn and 
Erl < 00. Let Jl' denote the limiting distribution of X. Then the average queue 
length L and the arrival rate A, which may be infinite, are 

L = LXJl'(x), (5.13) 
x 

If, in addition, L and A are finite and Jl'(0) > 0, then W exists and L = A W. 

PROOF. Since X is regenerative, it follows by two applications of Proposition 5.23 
with Z(t) = J~ XS ds and Z(t) = N(t), that the averages L and A are as in (5.13). 
To prove W exists and L = ).. W, it suffices by Theorem 5.7 to show that the system 
is recurrently empty. 

To this end, let Vn denote the nth cycle in which the system is empty: Vo = 0 
and 

Vn = min{k > Vn-I : Xt = 0 for some t E [rk-I, rk)}, n::: I. 

Set r~ = rv". Then by the regenerative property of X, the r~ - r/,_I' n ::: 1 are 
independent and identically distributed with mean Er{ = EVI Erl. Furthermore, 
VI is a geometric random variable with mean 1/Jl'(0). Then by the classical strong 
law oflarge numbers, r/,+ 1/ r:' rv (n + 1)/ n rv I. Therefore the system is recurrently 
empty with respect to r~. 0 

The preceding result for regenerative systems yields Theorem 5.1 for Markovian 
systems. Note that the assumption Jl'(0) > 0 in Theorem 5.24 is used in the proof 
only to ensure that the system is recurrently empty. This assumption can clearly be 
replaced by any condition that implies the departures are regular or n- I Wn ~ O. 

In Theorem 5.24, the X is regenerative, but the Wn's do not have a standard 
probabilistic structure. Consequently, the limits L and A also have interpretations 
as expected values, but W does not. The next result concerns the reverse situation 
in which the waiting times have a special structure, but the queue length process 
does not. 
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Consider a service system whose dynamics are represented by a process Y that 
is regenerative over 'l"n. When a unit arrives in the time interval ['l"n' 00), a natural 
assumption is that its waiting time is a function of the system dynamics 

l1n = {Y,,,+t : t ~ O} U {'l"n+k - 'l"n : k ~ I} (5.14) 

in the time interval ['l"n, 00). Formally, we say the sequence {Wn} is a 'l"n-shift of 
Y if {Wk : Tk ~ 'l"n} is a function of l1n, for each n. This definition also applies 
when Y is not regenerative. For instance, such random time shifts arise naturally 
in stationary systems that we discuss in the next chapter. The arrival process and 
queue lengths may also have analogous links with the system dynamics l1n. We say 
that N (or X) is a 'l"n-shift ofY if (N('l"n + t) - N('l"n) : t ~ O} (or (X,,,+t : t ~ O}) 
is a function of l1n, for each n. 

The following result concerns two types of regenerative service systems. In part 
(i), the waiting times are a time-shift of the dynamics. In part (ii), the queue length 
process, and hence the arrival process, is a time-shift of the dynamics (this is a 
generalization of the system in Theorem 5.24). 

Theorem 5.25. Suppose Y is regenerative over 'l"n and E'l"\ < 00. 
(i) If {Wn} is a 'l"n -shift of Y and the limit A exists and is finite, then the limits L 
and W exist and are 

1 N(,tJ-\ 

W=-E L Wn, 
AE'l"\ n=O 

L=AW. (5.15) 

(ii) If X is a 'l"n -shift of Y, then so is N and the limits L and A are 

1 1'1 L=--E X,dt, 
AE'l"\ 0 

(5.16) 

If, in addition, L and A are finite and either {Wn } is a Tn -shift of Y or 

P{Xt = Ofor some t E [0, 'l"\)} > 0, 

then the limit W is given by L = AW. The W is also given by (5.15) in case {Wn} 
is a 'l"n -shift of Y. 

PROOF. (i) Since {Wn } is a 'l"n-shift of Y, we can write 

L Wk 1('l"n ~ Tk < 'l"n+l) = h(l1n), 
k 

for some function h, where l1n is defined by (5.14). The regenerative property of Y 
implies that the sequence l1n is stationary and ergodic-these concepts are defined 
in the next chapter. Furthermore, the sequence h(l1n) is also stationary and ergodic. 
Then by the strong law of large numbers in Theorem 6.1 for stationary ergodic 
sequences, 

N(,,,)-l n-\ N(,tJ-\ 

n-\ L Wk = n-\ Lh(l1k) ~ E L Wk. 
k=O k=O k=O 
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Since t'n is a renewal process, we know that t'n '" nEt'I. Also, the existence of 
A implies that N(t'n) '" At'n '" AnEt'I. From these observations and a discrete
time version of Theorem 5.10 with Z(t) = .E~:'~ Wk and Tn = N(t'n) we obtain 
expression (5.15) for W. Furthermore, since A and W exist, Theorem 5.7 yields 
L=AW. 
(ii) Assuming X is a t'n-shift of Y, it follows by the representation 

N(t) = Lmax{O, Xs - Xs-} 
s~t 

that N is also a t'n-shift of Y. To prove (5.16), first argue as in part (i) with h('1n) = 
N(t'n+l) - N(t'n) and obtain 

n-l 
n-1 N(t'n) = n-1 L h(TJk) ~ EN(t'I)' 

k=O 

Inlightoft'n '" nEt'1 and t'n+l '" t'n, Theorem 5.10 with Z(t) = N(t) and Tn = t'n 
yields expression (5.16) for A. To prove expression (5.16) for L, argue as in the 
preceding case with 

l Yn+1 

Xt dt = h(TJn). 
Yn 

Finally, the last assertion in part (ii) follows by part (i) and an argument like the 
proof of Theorem 5.24. D 

Example 5.26. GI/G/s and Regn/G/s Systems. Consider a GI/G/s system 
in which the arrival times form a renewal process and the service times of the s 
servers are independent and identically distributed and independent of the arrivals. 
We shall describe the system by the process Y t = (Xt , W/, ... , Wn, where X t is 
the number of customers in the system at time t and W; is the remaining service 
time for the unit being served at server i at time t. Suppose the system parameters 
and rule for assigning units to servers are such that the process Y is regenerative 
over some t'n's that are stopping times of Y. A typical rule is to route an arrival 
to one of the idle servers arbitrarily, or to the lowest numbered idle server. If the 
system empties out, it is natural to let t'n denote the nth time that an arrival finds the 
system empty. Assume the waiting time of any arrival at time t'n + t is a function 
of YYn+t (e.g., there are no delays caused by other factors). Then clearly {Wn } is a 
t'n -shift of Y. Note also that X is regenerative over t'n. Consequently, Theorems 5.1 
and 5.24 apply to this system. Special cases of this system are the classical M / G / s 
and G I / M / s systems. 

A similar argument justifies that Theorems 5.1 and 5.24 apply to Regn/G/s 
systems defined analogously, where the arrival process is a regenerative process. 
Special cases include the following systems: 
• M X /G/s (compound Poisson arrivals). 
• Glx /G/s (compound renewal arrival process). 
• SM/G/s (semi-Markov arrival process). 
Regn/G/s systems also arise naturally in tandem networks. For instance, in the 
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two-station tandem network G I / G / s --+ . / G / s, the first station is a regenerative 
system, and so the second station is a Regn/G/s system. Similarly, for the more 
general tandem system Regn/G/s --+ -/G/s --+ .... /G/s, or an analogous tree
like network with one-way flows, one can obtain average waiting times at each 
station by Theorems 5.1 and 5.24. 0 

5.7 Exercises 

1. Discrete Analogue of Theorem 5.lD. Suppose that Yn is an increasing sequence 
of random variables associated with a point process N on 1R+. Consider the 
averages 

Y == lim n-I Yn , 
n~oo 

YA l' -Iy == 1m t N(t). 
t~oo 

Show that if any two of the limits Y, A, and Y exist, then the other one exits 
and Y = AY. 

2. In Theorem 5.4 concerning a Little law, show that statement (e) is equivalent 
to statement (t). Hint: Use Theorem 5.15 and Lemma 5.20. 

3. In the context of Theorem 5.4, show that if the limits L and W exit and 

It" Xs ds '" L~=I Wko then J.. exists and L = AW. 
4. In Theorem 5.1, the assumption that the queueing process may equal 0 can be 

replaced by the weaker assumption that the departures are regular, which is 
implied by anyone of the following conditions: 
(i) The {Wn } are functions of Y and there exist stopping times t'n of Y such that 
Y is regenerative over t'n (e.g., the t'n are entrance times to a fixed set) and, for 
each n ~ 1, the {Wk : Tk ~ t'n} are conditionally independent of {Ys : s < t'n} 
given Yru ' 

(ii) There are stopping times t'n of Y such that Y is regenerative over t'n and, 
for each n ~ 1, the {Wk : Tk ~ t'n} is a function of {Yr"+t : t ~ OJ. 
(iii) Y is regenerative over t'n and {Wk : n ~ t'n} is a function of Y in the time 
interval [t'n, (0) for each n. 
Show that (i) implies (ii), and (ii) implies (iii). 

5.8 Bibliographical Notes 

The first references on Little laws are Morse (1958) and Little (1961). The extensive 
literature and history of these laws are reviewed in Whitt (1991), Serfozo (1994), 
and in the comprehensive monograph on sample path properties by El-Taha and 
Stidham (1999). Sample articles in the literature are Stidham (1972, 1974) (con
taining parts of Theorem 5.4); Heyman and Stidham (1980) and Miyazawa (1995) 
(covering H = J..G related to Example 6.15); Rolski and Stidham (1983) and 
Miyazawa (1994) (fluid models); Glynn and Whitt (1988) (functional limit laws); 
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and Stidham and EI-Taha (1989) (paths with embedded point processes). The ma
terial in Chapter 5 comes from Serfozo (1994), which is a distillation and extension 
of ideas from earlier articles. 



6 
Stationary Systems 

This chapter is an introduction to the basics of stationary processes and Palm 
probabilities that are used in queueing theory. This includes Palm calculus and 
Campbell-Mecke formulas for functionals of stationary systems. This material 
is the foundation for modeling networks and queueing systems with stationary 
dynamics, and for obtaining Little laws for such systems. 

6.1 Preliminaries on Stationary Processes 

This section reviews ergodic theorems for stationary processes and the heredity 
property of stationarity. 

We will use the following terminology. A stochastic process X = {Xt : t E 1R} 
with values in a space IE is stationary if the distribution of the time-shifted process 
StX == {Xs+t : s E 1R} is independent of t. A stationary process X is ergodic if 
PIX E A} = 0 or 1 for each set A that satisfies {X E A} = {StX E A}, for t E IR 
(A is a time-shift-invariant set of X). Stationarity and ergodicity of sequences are 
defined similarly-the parameter t in these cases would simply be an integer. 

The following are strong laws of large numbers (or ergodic statements) for 
stationary processes. Assume the processes here are real valued and all the expected 
values are finite. 

Theorem 6.1. (i) /f{Xn : n E Z} is a stationary, ergodic sequence, then 

n 

lim n-1 '" Xk = EXo w.p.l. n~oo ~ 
k=l 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999



156 6. Stationary Systems 

(ii) If{Xt : ( E JR} a is stationary ergodic process, then 

lim (-I r Xsds = EXo w.p.i. 
t-+oo 10 

(iii) If{Zt : t E JR+} is a nondecreasing process and Tn are increasing times such 
that the sequence {(Tn+1 - Tn, Zr,,+1 - ZrJ : n E Z+} is stationary and ergodic, 
then 

I. -I E(Zrl - Zro) 
1m t Zt = w.p.i. 

/-+00 E(TI - To) 

PROOF. Statement (i) is proved in standard texts that cover ergodic theory or 
laws of large numbers. Statement (iii) is for processes with stationary increments 
at special embedded times Tn; it follows from (i) and Theorem 5.10. Statement (ii) 

follows from (iii) with Zt = f~ Xs ds and Tn = n, where EZI = fol EXt dt = 
E Xo by Fubini's theorem. D 

A distinctive feature of stationarity is that many functions of stationary processes 
are also stationary. To discuss this heredity property, suppose that X is a stationary 
process. If Yt = f(Xt), where f is a function on the state space of X, then Y is 
stationary and also ergodic if X is. This assertion is an elementary example of the 
following result, which follows immediately from the definitions of stationarity 
and ergodicity. 

Proposition 6.2. Suppose 

Yt = f(StX), t E JR, (6.1) 

where f is a function on the (measurable) space of sample paths of X. Then 
{Yt : t E JR} and the joint process {(Xt, Yt ) : t E JR} are stationary. These 
processes are also ergodic when X is. 

We will call the process Y defined by (6.1) a stationary functional of X. Note 
that Y is a time-shift invariant function of X in that if X is shifted in time by some 
value, then so is Y. The preceding proposition also applies to multiple processes. 
For instance, if Y and Y are stationary functionals of X, then so are the multidimen
sional processes (Y, h and (X, Y, h. This and the following transitivity property 
are useful for establishing joint stationarity of multidimensional processes. 

Proposition 6.3. If Y is a stationary functional of X, and Y is a stationary 
functional of (X, Y), then Y is a stationary functional of X. 

PROOF. This follows since we can write Yt = j(StX, f(StX», where Yt = 
f(StX), and Yt = j(StX, StY). D 

Analyses of networks and systems with stationary dynamics often involve sta
tionary point processes on the real line. We will use the point process terminology 
in the first section of Chapter 4. Suppose N is a point process on JR with points at 
the locations 
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That is, 

N(A)=Ll(Tn EA), AcR 
n 

The point process N is stationary if the time-shifted process {N(A +t) : A C JR} is 
equal in distribution to N, for each t E JR. The stationarity implies that EN (A) = 
AlAI, where IAI denotes the Lebesgue measure of A and A == EN(O, 1] is the 
intensity of N. With no loss in generality, we assume the intensity is positive and 
finite. 

Ergodicity of a stationary point process is defined in the same way as it is 
for a continuous-time stationary process. If the point process N is stationary and 
ergodic, then it satisfies the two strong laws of large numbers 

t- 1 N(t) ~ A w.p.l as t ~ 00. (6.2) 

(6.3) 

The first strong law follows from (iii) in Theorem 6.1 just as (ii) in Theorem 6.1 
does. The second law is equivalent to the first one by Theorem 5.8. 

Stationary point processes arise naturally as shift-invariant functions of station
ary processes. Namely, suppose X is a continous-time stationary process, and N 
is a point process such that N(A + t) = f(S/X)(A), for each A C JR, where f is 
a function from the space of sample paths of X to the counting measures. Then N 
is stationary, and it is also ergodic if X is. We call N a stationary functional of X. 
This terminology is consistent with that used for (6.1). 

Example 6.4. Stationary Functionals of Networks. Suppose X is a stationary 
process that represents the numbers of units in an m-node network. The process 
that represents the number of units in the sector J is X/(J) = f(X/), where 
f(x) = LjEJ Xj. Clearly XJ is a stationary functional of X. Now, the point 
process N J of arrival times of units in J is given by 

NJ(A) = Lmax{O, X/(J) - Xt-(J)}. 
/EA 

This covers the possibility of batch arrivals, in which case N J is not a simple 
point process. Clearly N(A + t) = LSEA max{O, X s+/ - X(s+/)-}, and so N J is 
a stationary functional of X J. Furthermore, by the propositions above, N J and 
(X J , N J) are stationary functionals of X. 

6.2 Palm Probabilities 

In Chapter 4, we discussed special types of Palm probabilities for stationary 
Markov processes. We now present a more comprehensive study of Palm proba
bilities for general stationary systems. This section covers elementary properties, 
and the next section covers a variety of formulas involving Palm probabilities. 
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In modeling a stationary system, the standard approach is to start with primitive 
information in terms of a stationary process that contains all the essential infor
mation of the system, and then express properties of the system as functionals of 
the primitive process. For our development, we will consider a system in which 
the primitive information is the stationary process () defined as follows. 

Definition 6.5. Let (Q, F, P) denote a probability space. For each t E JR, suppose 
()t: Q -+ Q is a bijection such that the map (t, w) -+ ()t(w) is measurable and 

()s«()t(W» = ()s+t(w), WE Q, s, t E lR. 

In particular, ()o(w) = W and ()-t = ()t- 1• Assume the probability measure P on Q 
is invariant under () in the sense that 

P{()t E A} = P{A}, A E F, t E JR. 

Then () == {Ot : t E JR} is a measurable stationary process on (Q, F, P) with values 
in Q. The process 0 is a stationary .flow on (Q, F, P). 

Stationary functionals of 0 are sometimes called compatible with the flow (). 
Unless specified otherwise, we assume that all stationary processes introduced 
below are stationary functionals of the flow () , and hence they all reside on the single 
probability space (Q, F, P). Recall that any collection of stationary functionals 
of 0 is jointly stationary. 

To model a system in this framework, one takes () as a stationary process that 
contains all the system information. Without loss of generality, one may assume 
that any stationary process {Xt : t E 1R} is a stationary flow, since one can construct 
a flow that is equal in distribution to X. For instance, 0 could be a stationary network 
process X as in Example 6.4 above, where the stationary functionals of X are the 
number of units in a sector of the network and the point process of arrival times to 
the sector. 

We now consider a point process N on IR that is a stationary functional of (). 
Assume N is simple and its intensity A = EN(O, 1] is positive and finite. A typical 
problem is to compute the probability of some event under the condition that N 
has a point at time O. This would be the conditional probability P{AIN({O}) = 1}, 
provided it is well defined. This conditional probability does not exist in the usual 
sense, however, when the event N({O}) = 1 has zero probability. In general, the 
desired "conditional probability" is represented by the Palm probability defined as 
follows. 

Definition 6.6. The Palm probability measure PN associated with N is defined on 
the underlying probability space (Q, F, P) by 

PN{A} = _1_E ( 1«()t E A)N(dt), A E F, 
AIBI JB (6.4) 

where B C IR is a set whose Lebesgue measure I B I is positive and finite. We let 
EN denote the expectation under PN • 
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Since N is a stationary functional of (), the right side of (6.4) does not depend 
on the choice of the set B, and so PN is well defined. Note that (6.4) can also be 
written as 

I 
PN{A} = EN(B) EN{t E B : ()r E A}. 

Another representation based on the times Tn is 

I 
PN{A} = EN(B) E ~ l«()r., E A, Tn E B). (6.5) 

Since ()r., is what an observer "sees" of () on all of R viewing it at Tn, one can say, 
loosely speaking, that Pl'i {A} is the portion of the times Tn that an observer sees () 
in A. 

In the next result, (6.8) says that the Palm probability PN is concentrated on the 
subspace {N({O}) = I} c n. Consequently, PN describes the probabilities of any 
event in this subspace "given that N has a point at 0." Accordingly, (6.6) below is 
the distribution of the process X given that N has a point at O. 

Proposition 6.7. If X is a stationary functional of(), then 

PN{X E C} = A-I E r I(SrX E C)N(dt), 
1(0,1) 

(6.6) 

where C is a set in the space of sample paths of X. In particular, this formula 
applies to X = N, and hence 

PN{N(B) = n} = A-I E r I(N(B + t) = n)N(dt), (6.7) 
1(0,1) 

(6.8) 

PROOF. By (6.4) with B = (0, 1], we have 

PN{X E C} = A-I E r l«()r E {X E C})N(dt). (6.9) 
1(0,1) 

Assuming X takes values in a space IE, we can write XI = g«()r), for some g : 
n ~ IE. Since () is a flow, it follows that, for any t and C, 

(),(w) E ({g«()s) : S E R} E C} if and only if {g«()s+l(w»: S E R} E C. 

That is, 1«(), E {X E C}) = l(SIX E C). Applying this to (6.9) yields (6.6). 
Next, note that (6.7) is a special case of (6.6). Finally, (6.8) follows since 

{N({O}) = I} = {To = O} and, by (6.7), 

PN{N({O}) = I} = A-I E r l(N({t}) = I)N(dt) 
1(0,1) 

= A-1EN(0, 1] = 1. o 

The next example shows that the Palm probabilities we discussed in Chapter 4 
for T -transitions of Markov processes are special cases of the Palm probability 
defined by (6.4). 
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Example 6.S. Palm Probabilities ofT -transitions. Let X be a stationary functional 
of (). Suppose the sample paths of X are contained in the set of all functions from 
lR to IE that are piecewise constant and right-continuous. Let T be a subset of 
these functions. We say that a T-transition of X occurs at time t if Xt I- Xt -

and StX E T. Assume there a finite number of such transitions in any finite time 
interval. Then the times of these transitions form a simple point process N that is 
a functional of (). Assume N has a positive, finite intensity A. Then according to 
(6.4), 

(6.10) 

where AT' = E };O,I] I(Xt I- Xt-, StX E T')N(dt) is the rate of T' -transitions. 
This example shows that PN can be defined by the ratio-of-rates formula (6.10) if 
one is only interested in Palm probabilities for X under T-transitions. 0 

We will now show that certain sequences of events with respect to the times Tn 
are stationary under PN , even though they are not stationary under P. For example, 
the sequence ofinterpoint distances {Tn+l - Tn : n E Z} is stationary under PN , 

but it is not stationary under P. Also, if X is a stationary functional of (), then the 
embedded sequence {Xr" : n E Z} is stationary under PN, but it is not stationary 
under P. These properties are consequences of the following important result for 
Palm probabilities. 

Theorem 6.9. The sequence {()Tn : n E Z} is stationary under PN. Moreover, this 
sequence is ergodic under PN ifand only if() is ergodic under P. 

PROOF. Consider the map 0 == (h, on {To = O} C n. Since PN{To = O} = 1 and 
() is a flow, we can write 

()r" = On w.p.l under PN , for each n E Z. (6.11) 

For instance, ()TJ = ()TJ-T2«()Tr T, «()T,-To» = 03 w.p.l under PN. In light of (6.11), 
the first assertion of the theorem is equivalent to saying that PN is invariant under 
the map 0 in the sense that 

(6.12) 

To see this, note that by (6.5) with B = (0, t] and N(t) = N(O, t], we have 

1 N(t) 1 N(t) 

PN{O-I(A)} = -E L t«()T. E 0-I(A» = -E L t«()T.o+, E A) 
At n=1 n At n=1 • 

t 
= PN{A} + At [P{()TN(.)+, E A} - P{()T, E A, N(t) ~ t}]. 

The last term converges to 0 as t ~ 00, and so (6.12) is true. The second assertion 
of the theorem follows by the definition of ergodicity. 0 

Theorem 6.9 applies as follows to sequences generated by stationary functionals 
of (). Examples of this were the lead-in to Theorem 6.9. 
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Corollary 6.10. If X is a stationary functional of(), then the sequence {ST"X : 
n E Z} of what one sees of X on the entire time axis at the times Tn is stationary 
under PN. This sequence is ergodic under PN ifand only if() is ergodic under P. 

PROOF. It suffices to show that ST" X is a stationary functional of (h, under PN. 
But this follows, since we can write Xt = g«()t) for some g : Q ~ IE, and hence 

ST"X = {Xt+T" : t E JR} = {g«()/(lh.» : t E JR} = h«()T,,), 

where h(w) = {{g«()t(w» : t E JR}. o 

The next result says that laws of large numbers for a stationary process X are 
valid under PN as well as under P. Similarly, laws of large numbers for {()T. : n E 

Z) are valid under P as well as under PN • We use these "cross" ergodic theorems 
to link Little laws for expectations to those for limiting averages. For a proof, see 
the references at the end of this chapter. 

Theorem 6.11. If X is a stationary process and E Xo exists, then 

t- I 1t Xs ds ~ EXo w.p.} under PN. 

If{Yn : n E Z} is a stationary functional of{()T" : n E Z} and EY1 exists, then 

n 

n-I LYk ~ EY1 w.p.} under P. 
k=1 

6.3 Campbell-Mecke Formulas for Palm Probabilities 

This section covers further properties of the Palm probability PN defined by (6.4), 
which is associated with the stationary point process N on JR. Keep in mind that 
N is simple and has a finite positive intensity A. The focus is on the Campbell
Mecke formula, which is a framework for analysis involving Palm probabilities 
(sometimes called Palm calculus). We present this formula and several ostensibly 
different, but equivalent versions of it. 

Many probabilities and expectations under P have natural representations in 
terms of expectations or probabilities under PN • They can be obtained by the 
following formula, which is an example of Fubini's theorem. Here dt denotes 
Lebesgue measure. 

Theorem 6.12. (Campbell-Mecke Formula) For any f : JR x Q ~ JR+, 

E L f(t, ()t)N(dt) = AEN L f(t, ()o)dt. (6.13) 

PROOF. This can be proved first for indicator functions f by the definition of 
PN , then for linear combinations of indicators, and finally for general functions by 
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monotone convergence. Another approach is to apply Fubini's theorem as follows. 
We can write 

( I(t, Ot)N(dt) = { /(t, w')M(d(t, w'», (6.14) 
JR JRxQ 

where M is the random measure defined by M(B x C) = 18 I(Ot E C)N(dt). 
The dummy variable w' is different from the suppressed w in 0 and N. By the 
definition (6.4) of PN, we know that EM(B x C) = >"PN{C} 18 dt. Then by 
(6.14) and Fubini's theorem, the left side of (6.13) equals 

E { /(t, w')M(d(t, w'» = { /(t, w')EM(d(t, w'» 
JRxQ JRxQ 

= >.. { /(t, w')PN{dw'}dt, JRxQ 
which equals the right side of (6.13). o 

The Campbell-Mecke formula (6.13) is sometimes called Campbell's formula 
or Mecke's formula, and so we combine the names. Some studies refer to (6.16) 
below as Campbell's formula. 

In applications where one suppresses the formalism of the 0 process, the 
Campbell-Mecke formula is as follows. Let {Xt : t E lR} denote a stochastic 
process with state space lE and assume its sample paths are in the set D of all 
functions from lR to lE that are right continuous and have left-hand limits. Let 
N be a point process on lR such that X, N are jointly stationary. Then for any 
g:lRxD~lR, 

(6.15) 

provided the expectation exists. Note the resemblance of this formula to the 
extended Levy formula (4.3). 

We now present several formulas that are ostensibly different from the 
Campbell-Mecke formula, but are actually equivalent to it (two formulas are 
equivalent if each one implies the other). The first theme concerns functionals 
of stationary marked point processes defined as follows. 

Definition 6.13. Let {~n : nEil} be random elements of some space lE such that 
~n = h(OT,,), for some h : Q ~ lE. The space-time point process 

M(·) = L 1(Tn' ~n) E.) 
n 

on lR x lE, or its point locations {(Tn, ~n) : nEil}, is a stationary marked point 
process. The ~n are marks of NO = M(· x lE). 

In the preceding definition, the stationarity of Nand 0 ensure that the space
time process M is stationary in time: The distribution of {(Tn - t, ~n) : nEil} is 
independent of t. Also, we know from Theorem 6.9 that {~n : nEil} is a stationary 
sequence under PN , but it is not stationary under P. 
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The following version of the Campbell-Mecke formula is useful for deriving 
Little laws for queueing systems. This motivates the inclusion of Little in the name. 

Theorem 6.14. (Campbell-Littl~Mecke Formula) Suppose {(Tn' ~n) : n E Z} 
is a stationary marked point process. For any f : JR x IE ~ JR, 

(6.16) 

provided the expectation exists. Thisformula is equivalent to the Campbell-Mecke 
formula (6.13). 

PROOF. It suffices to prove (6.16) for nonnegative f. But this follows since (6.13) 
implies 

E L f(Tn, ~n) = E ( f(t, h«(),»N(dt) = EN ( f(t, ~o)dt, 
n J'R. J'R. 

where ~n = h«()T.). Next, note that formula (6.16) with ~n = ()T. is (6.13). This 
and the preceding sentence prove that (6.16) is equivalent to (6.13). 0 

Example 6.15. Functionals of Marked Point Processes. Suppose {(Tn' ~n) : n E 

Z} is a stationary marked point process. Consider the process 

X, = Lf(t - Tn,~n), t E JR, 
n 

where f : JR x IE ~ JR. The X is a stationary functional of (), since by the change 
of variable u = s - t 

X, = L f(t - s, h«().,»N(ds) = L f(-u, h«()u«(),)))g«(),)(du), (6.17) 

where ~n = h«()T,,) and N(A + t) = g«(),)(A). By the Campbell-Litt1e-Mecke 
formula (6.16), the mean of this process is 

EXo = 'AEN L f(t, ~o)dt, (6.18) 

provided the expectation exists (the integral also equals f'R. f(-t, ~o)dt). This 
formula is sometimes referred to in queueing applications as H = 'AG. 

A common form of the process X is 

X, = L j(t - Tn, ~n)1(Tn + an ~ t < Tn + fJn), 
n 

where (~n' an, fJn) are marks of N such that fJn :::: an. In this case, 

o (6.19) 

The Campbell-Mecke formula allows us to express the probability P in terms 
of PN as follows. 
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Corollary 6.16. (Inversion Formula) If X is a real-valued stationary functional 
of(), then 

EXo = AEN loTI X, dt, 

provided the last expectation exists. Hence, 

P{A} = AEN loTI 1«(), E A)dt, A E F. 

(6.20) 

(6.21) 

PROOF. Expression (6.20) follows from (6.19) with fJn = Tn+l - Tn, since 

X, = L X, 1 (Tn < t :::::: Tn+l) = L X r- Tn «()T.)I(Tn :::::: t < Tn + fJn). 
n n 

Expression (6.21) follows by applying (6.20) to X, = 1«(), E A) since P{A} = 
E~. 0 

Most of the material we have covered on stationary point processes automatically 
extends to random measures. A random measure M on R is a mapping from a 
probability space to the space of all measures on R that are finite on compact sets. 
The M is a point process if it is an integer-valued measure. A Palm probability PM 
of a random measure M on R is also defined by (6.4). From the preceding proofs, it 
is clear that the Campbell-Mecke and inversion formulas above also apply to Palm 
probabilities of random measures. The following are two more equivalent versions 
of the Campbell-Mecke formula. We express these new formulas in terms of 
random measures instead of point processes to avoid technical differences between 
counting measures and general measures. 

Theorem 6.17. (Integrals oCProduct Measures) Suppose M and M' are random 
measures on R that are stationary functionals of() and have respective intensities 
A and A' that are positive and finite. Thenfor any g : ]E2 x Q ~ R+, 

E ( g(t, s, ()r)M'(ds)M(dt) = AEM ( g(t, s + t, ()o)M'(ds)dt. (6.22) iF} iF} 
This formula is equivalent to the Campbell-Mecke formula (6.13) for random 
measures. 

PROOF. Expression (6.22) follows from (6.13) for random measures with 

f(t, ()r) = L g(t, s + t, ()/)M'(ds + t) = L g(t, s + t, (),)h«()r)(ds). 

Here M'(· + t) = h«(),)(·). Conversely, (6.13) for random measures follows 
from (6.22) with g(t, s, w) = f(t, w)l(s E (0,1]) and M' as the Lebesgue 
measure. 0 

One can view (6.22) as a "conditional" Campbell-Mecke formula for the bivariate 
random measure M(ds xdt) = M'(ds)M(dt), where the right side of (6.22) is like 
"conditioning" on the M part of M. The M and M' may be dependent. Expression 
(6.22) also extends to g that may be negative as well as nonnegative and the measure 
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M' may be a signed random measure: M'(A) = M; (A) - M~(A), where M; and 
M~ are nonnegative random measures. In this case, one applies (6.22) separately 
to the integrals of the positive and negative parts of g under the measures M; and 
M~, provided the sum of the expectations is well defined (possibly infinite). 

As an example of (6.22), consider the stationary random measure 

M(B) = r g(t, s, (}t)M'(ds)M(dt). 
JBxR 

Its intensity, according to (6.22) is 

EM(O, 1] = AEM r g(t, s + t, {}o)M'(ds)dt, (6.23) 
JBxR 

where I B I = 1. This is called the Swiss Army formula. 
Here is another useful formula. 

Theorem 6.18. (Neveu's Exchange Formula) Suppose M and M' are random 
measures on IR that are stationary functionals of{} and have respective intensities 
A and A' that are positive and finite. Thenfor any f : IR x Q ~ 1R+. 

AEM L f(t, (}t)M'(dt) = A' EM' L f(t, (}o)M(dt). (6.24) 

This formula is equivalent to the Campbell-Mecke formula (6.13) for random 
measures. 

PROOF. To see this, fix Be IR such that IBI = 1. Then applying (6.22) to M and 
then to M', we have 

Left side of (6.24) = AEM r f(t,{}t)l(s +t E B)M'(dt)ds JR2 
= E r f(t - s, (}t)l(s E B)M'(dt)M(ds) JR2 
= A'EM, r f(-s, {}o)l(t E B)M(ds)dt JR2 
= Right side of (6.24). 

This proof also justifies that the Campbell-Mecke formula (6.13) for random 
measures implies (6.24), since (6.22) is equivalentto (6.13) by Theorem 6.17. Con
versely, (6.13) for random measures follows from (6.24) when M is the Lebesgue 
measure (in this case, PM = P and EM = IE). Thus, (6.24) is equivalent to (6.13) 
for random measures. 0 

We end this section with a rate conservation law that is implied by the Campbell
Mecke formula but is not equivalent to it. 

Example 6.19. Rate Conservation Law. Suppose {Xt : t E 1R+} is a real-valued 
stochastic process of the form 

X t = Xo + t r X.~Mi(ds), (6.25) 
i=1 J(O,t) 
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where Xi'S are real-valued processes and Mi'S are point processes or random 
measures on JR+. 

Corollary 6.20. Suppose X, XI,"" Xn, MI, ... , Mn are jointly stationary, and 
let Ai = EMi(l). Then 

n 

LAiEMj[Xb1 = 0, 
i=1 

provided the expectations exist. 

This rate conservation law says that the expected rate of change of X under its n 
types of changes is O. This is what one would anticipate for a stationary process. 

PROOF. The assertion follows by taking the expectation of the terms in (6.25) 
with t = 1 and using the Campbell-Mecke formula (6.15) for each term in the 
sum. D 

The preceding result applies if the processes X and M = MI + ... + Mn 
are jointly stationary, the Mi'S have disjoint supports, and each Xi is the Radon
Nikodym derivative of X with respect to Mi. 

In particular, suppose X is a stationary process whose sample paths are of 
bounded variation and the number of its discontinuities forms a point process N 
on JR+. Clearly N is a stationary functional of X. Since each sample path of X is 
absolutely continuous except at its discontinuity points, it follows that 

X t = Xo + t X~ ds + 1 (Xs - Xs_)N(ds), 10 (O,t] 
(6.26) 

where X~ is the Radon-Nikodym derivative of X with respect to the Lebesgue 
measure ds. Then by Corollary 6.20 with MI as Lebesgue measure and M2 = N, 
we have 

EX~ + AEN(Xo - Xo-) = 0, 

where A is the intensity of N. When X is not stationary, there is an analogous rate 
conservation law in which the preceding expectations are limiting averages of the 
increments; see Exercise 4. D 

6.4 Little Laws for Stationary Systems 

We are now ready to describe average waiting times and the law L = A W for 
service systems with stationary characteristics. 

Throughout this section, we assume the process {Xt : t E JR} represents the 
number of units in a service system over the entire time axis JR. The point process 
of arrivals N can be expressed as N(A) = LteA max{O, X t - X t -} and batch 
arrivals are allowed. We assume that the waiting times Wn are well defined on the 
underlying probability space for X, but we do not assume any special functional 
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relation between Wn and X. Additional assumptions on the structure of these 
processes are imposed in the theorem statements. Recall that L, A, and W denote the 
average queue length, arrival rate, and waiting time, respectively. These limits may 
be infinite, and the phrase w.p.I will be with respect to the underlying probability 
P, unless specified otherwise. 

Our first result is for a system in which the process X is stationary. 

Theorem 6.21. Suppose the queueing process X is stationary and ergodic. Then 
the arrival process N is a stationary functional of X. Hence, the limits L and A exist 
and are L = EXo and A = EN(1). If, in addition, A is finite and P{Xo = O} > 0, 
then the limit W exists and L = A W. 

PROOF. We noted that the arrival process N(A) = LtEA max{O, Xt - Xt-} is a 
stationary functional of X and hence it is stationary and ergodic. Now, the ergodic 
theorems for X and N yield L = EXo and A = EN(1). 

The rest of the theorem will follow by Theorem 5.7 upon showing that X is 
recurrently empty with respect to the times "l"n at which X hits state O. We first 
show that these times exist. Let 

No(A) = L 1(0 = Xt < Xt-), A C JR, 
tEA 

which is the number of times that X hits 0 in the time set A. Clearly No is finite 
on finite time intervals since X takes at most a finite number of jumps in such an 
interval. Therefore, No is a point process on JR. Also, it is clear by its definition 
that No is a stationary functional of X. Consequently, No is stationary and ergodic, 
and so No(t)/t ~ AO == ENo(I). Note that AO is finite since No(I) ::: 1 + N(I) 
and A = EN(I) is finite. Also, note that AO > 0, since 

P{No(1) ~ I} ~ P{N(-oo, t) ~ 1, Xt = O} = P{Xt = O} > 0, 

for any fixed t E [0, 1]. Here N( -00, t) = 00 w.p.l since the rate A is positive. 
Now AO > 0 implies that No(t) t 00, and so the nth time "l"n = min{t : No(t) = n} 
at which X hits state 0 is well defined and is finite. Clearly Xr" = 0, and "l"n+l '" "l"n 
since "l"n/n ~ I/Ao. Thus, the process X is recurrently empty with respect to "l"n, 
which completes the proof. D 

In Theorem 6.21, the assumption P{Xo = O} > 0 is needed only to imply that 
X is recurrently empty. Note that the stationarity of X ensures that the limiting 
averages L and A are also the expected queue length and expected arrival rate. 
The stationarity of X, however, is not enough to guarantee that W is the expected 
waiting time of a customer. Stronger assumptions are needed as we will now 
describe. 

Keep in mind that the arrival process N may have several arrivals at one time. 
We will also refer to the point process of distinct arrival times or batch arrival 
times given by 

N(A) = L I(N({t}) ~ 1). 
tEA 
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Note that N = N when units arrive one at a time (Le., N is simple). Suppose the 
service system we are discussing has dynamics represented by the flow process 
(). Then customer n, which arrives at time Tn, sees the system dynamics as ()r •. It 
would therefore be logical that this customer's waiting time Wn is a function of 
this information (i.e., a mark of N). 

Theorem 6.22. Suppose the arrival process N is a stationary functional of() and 
the waiting times Wn are marks of N. Then N and X are stationary functionals 
of (). Suppose, in addition, that the intensity A of N is finite and positive. Then the 
intensity of N is i = AI EN [N({O})] and 

N«(O})-\ 

EXo = iEN L Wn• 
n=O 

For the particular case in which N is simple, the last formula reduces to 

EXo = AEN(Wo). 

(6.27) 

Furthermore, i/() is ergodic, then the limits L, A, and W exist and satisfy L = A W. 
In this case, 

L = EXo, A = EN(l), 

I N«(O})-\ 

W = EN [N({O})] EN ~ Wn• 
(6.28) 

PROOF. The point process N is a stationary functional of () since N is. And 
N(I) ~ N(I) ensures that i is finite. An application of the Campbell-Mecke 
formula yields 

A = E L N({t})l(O < t ~ I)N(dt) 

= iEN L N({O})I(O ~ -u < l)du = iEN[N({O})]. 

Now, since the waiting times Wn's are marks of N, they are also marks of N. 
Also, the batch sizes N ({ Tn}) are marks of N. Then we can write 

XI = L l(Tn ~ t < Tn + Wn ) 

n 

N«(i;,})-1 

= L L l(Tn ~ t < Tn + fk«()i;»' 
n k=O 

The first indicator function is of the event that customer n is in the system at time t. 
The second indicator function is of the event that the kth customer in the nth batch 
is in the system at time t, where Tn denotes the nth batch arrival time associated 
with N and fk«()I) denotes the waiting time of the kth unit in a batch that arrives 
at time t. Then, by Example 6.15, we know that X is a stationary process and that 
(6.27) follows from (6.19). 
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We now show that the expected values A and E Xo are also limiting averages 
under the assumption that f) is ergodic. Since X is a stationary functional of f), the 
limit L exists and it equals EXo. Also, the ergodic theorem for N justifies that the 
limit A equals EN(1). Next, note that since the batch sizes N({TnD are marks of 
N, by the cross ergodic theorem (Theorem 6.11), we have w.p.l under P, 

n 

n- J N(Tn) = n- J L N({Td) ~ EN[N({O})]. 
k=J 

By a similar argument, w.p.l under P, 

By these observations and a discrete-time version of Theorem 5.10 with Z(t) = 
L~~~ Wk and Tn = N(Tn), it follows that the limit W is given by (6.28) as asserted. 
Lastly, since A and W exist, it follows by Theorem 5.4 that L = A W. 0 

Theorem 6.22 applies to many types of systems including the G / G / m queue 
and systems that are parts or functions of stationary, Markovian, or regenerative 
phenomena. A typical example for a stationary network (as in Example 5.3 for 
Markovian networks) applies to the number of units X I in a sector J (set of nodes) 
of the network at time t and the total sojourn time Wn in sector J of the nth unit to 
enter J. Another example is the slightly different situation in which XI denotes the 
number of units in sector J "waiting in queues for service" and Wn is the total time 
the nth unit visiting J waits in queues for services during its sojourn in J. These 
and many other examples follow, without further analysis, simply by defining the 
process X and times Wn appropriately. The following is another example. 

Example 6.23. Customers within a Batch. Consider the system as described in 
Theorem 6.22. For fixed j ::::: k, consider the waiting time of a unit that is the jth 
one in a batch of size k. The arrival times of these units are given by the point 
process 

Njk(A) = L l(Tn E A, Tn-j-J < Tn- j = ... = Tn+k-j < Tn+k-j+J). 
n 

This point process is a stationary functional off) since N is. Let {Tn(j, k) : n E IE} 
denote the times associated with Njb and let Wn(j, k) denote the waiting time of 
the unit that arrives at time Tn(j, k). Assume these waiting times are marks of Njk. 
Now, the number of the jth units in a batch of size k that are in the system at time 
is 

Xjk(t) = L I(Tn(j, k) ::::: t ::::: Tn(j, k) + Wn(j, k». 
n 

Then by Theorem 6.22, 

E[Xjk(O)] = AjkENjk [Wo(j, k)]. 

where Ajk is the intensity of Njk. o 
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Example 6.24. Workloads/or Service Systems. Suppose the queueing system de
scribed in Theorem 6.22 is work conserving in that it cannot be idle when customers 
are present. Then the workload process representing the sum of the remaining 
service times of the units in the system at time t is given by 

W(t) = L [Sn 1(Tn ~ t ~ Tn + Wn) 
n 

where Wn is the duration of time the nth unit waits in the queue before its service, 
and Sn is the unit's service time. The first part of the sum is the workload of 
those units still waiting in the queue at time t, and the other part of the sum is the 
workload of those units that have already entered service. Assume that the process 
() contains enough information such that (Wn, Sn) are marks of the arrival process 
N. Then applying (6.19) for marked point processes to the two parts of the sum, 
we have 

l wo+so 
EW(O) = AEN[SoWo + (Wo + So - s)ds] 

Wo 

= AEN[SO Wo + SJ/2]. o 

The preceding results are for systems that contain some underlying stationarity, 
but the sequence of waiting times is not stationary. Here is a result for a system 
with a stationary waiting time sequence. 

Theorem 6.25. Suppose {(Tn+l - Tn, Wn) : nEil} is a stationary ergodic 
sequence and E(TI - To) is finite. Then the limits L, A, and W exist and L = A W. 
In this case, W = EWo and A = 1/ E(TI - To). 

PROOF. By the ergodic theorem for sequences, we have W 
Theorem 5.8, 

A = 1/ lim Tn = 1/ E(TI - To). 
n-+oo 

EWo and by 

Then the existence of A and W imply by Theorem 5.17 that L exists and L = 
AW. 0 

In the preceding result, the process X is not stationary and L =I- E Xo. However, 
one can construct a stationary queueing process X on a probability space (Q, p, P) 
such that the limit L is equal to iX(O). Furthermore, the sequence {(Tn+! -
Tn, Wn) : nEil} for this new process under the Palm probability PN is equal 
in distribution to {(Tn+1 - Tn, Wn ) : nEil} under P. This construction is a 
correspondence between certain stationary processes and embedded sequences. 
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6.5 Sojourn Times and Related Functionals 

In this section, we present a Little law for determining the average of an integral 
of a stochastic process. We use this result to describe the average sojourn time of 
a stochastic process in a subset of its state space. 

The following is a framework that encompasses a variety of examples. Let 
{Xt : t E JR} be a stochastic process on a space lE that is countable or is a complete 
separable metric space. Assume, for convenience, that the sample paths of X are 
in the space D of all functions from JR to lE that are right continuous and have 
left-hand limits. Suppose that N is a simple point process on JR, defined on the 
same probability space as X, and N(JR+) = 00. For f : lE ~ JR+, suppose that 
the process 

Z(t) == 10t 
f(Xs)ds, t ~ 0, 

exists. We will consider the existence of the time and interval averages 

Z == lim rl Z(t), Z == lim n-1 Z(Tn) w.p.1, 
t .... oo n .... oo 

and the average A == limHoo rl N(t) of the time points. We use the term "a limit 
exists" to also include that the limit is not zero or infinite. 

Corollary 6.26. (a) If any two of the limits Z, A, Z exist, then the other one also 
exists and Z = AZ. 
(b) Suppose X, N are jointly stationary and ergodic with EN (1) < 00. Then the 
limits Z, A, and Z exist and Z = AZ, where 

Z = Ef(Xo), A = EN(l). (6.29) 

Furthermore, the sequence {j::~1 f(X.,)ds : n ~ 1} is stationary with respect to 
the Palm probability PN, and 

rTI 
Ef(Xo) = AEN 10 f(Xs)ds. (6.30) 

PROOF. Part (a) follows by Theorem 5.10. For part (b), the limits Z and A exist by 
the ergodic theorems (recall Theorem 6.1) for the processes X and N. Then part 
(a) ensures that the limit Z exists and Z = AZ. By Corollary 6.10, the sequence 
{ST" X} is stationary and ergodic with respect to the Palm probability PN , and hence 

{j::~1 f(Xs) ds : n ~ I} also has this property since it is a stationary functional of 
{ST. X}. Finally, (6.30) follows by the inversion formula in Corollary 6.16. 0 

We will now consider sojourn times of the process X in a fixed subset BEe of 
its state space. Suppose that the point process N on JR represents the times {Tn} at 
which the process X enters B, and assume N(JR+) = 00. The average amount of 
time that X spends in B is 

H(B) == lim rl r l(Xs E B)ds w.p.I. 
1 .... 00 10 
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provided the limit exists (which also means that it is not 0 or 1). In many instances, 
rr(B) would also be the limiting probability limHoo PIX, E B}. Let Wn denote 
the duration of the nth visit or sojourn of X in B that begins at time Tn. The next 
result gives an expression for the average sojourn time 

n-I 

W == lim n- I '" Wk w.p.I. n~oo ~ 
k=O 

Corollary 6.27. (a) lfany two of the limits rr(B), A, W exist, then the other one 
also exists and rr(B) = AW. 
(b) Suppose that X is stationary and ergodic, and BEe is such that 0 < P{Xo E 

B} < 1. Then the limits rr(B), A, W exist and rr(B) = AW, where rr(B) = 
P{Xo E B} and A = EN(1). Furthermore, the sequence of sojourn times {Wn } 

in B is stationary and ergodic with respect to the Palm probability PN, and hence 
W = EN[WO] and 

P{Xo E B} = AEN[Wo]. 

PROOF. The assertions follow by Corollary 6.26. Part (b) also uses the fact that 
N is a stationary functional of X. 0 

Note that a special case of assertion (b) for Markov processes is Theorem 1.3. 
How do the preceding result apply to networks? Suppose that X is a process 

that represents the numbers of customers in a network. Sojourn times of X that 
may be of interest are time periods during which the following events occur. 
• A node, sector or the entire network is idle. 
• The maximum number of units in a certain sector exceeds a certain value. 
• The total number of units in a certain sector exceeds a certain value. 
• The number of units in a certain sector exceeds that of another sector. 

By Corollary 6.26, we know that if X is stationary and ergodic, then the expected 
value of such a sojourn time is EN[Wo] = rr(B)/A, where the expectation is with 
respect to the Palm probability PN that such a sojourn is beginning. Assuming the 
stationary distribution rr is known, the expected sojourn time would be determined 
by evaluating A. In some cases, A. can be determined directly from rr and the 
dynamics of the network process. 

6.6 Travel Times for Stochastic Processes 

A travel time of a stochastic process, loosely speaking, refers to the time it takes 
for the process to follow a certain trajectory or route in the state space. Similarly, a 
travel time of a unit in a network is the time it takes for the unit to traverse a certain 
route in the network. An example is the time it takes a unit in a network to travel n 
times from one sector to another sector (recall Corollary 4.33). Another example 
is the time it takes a unit in a network to visit each node in a certain sector at least 
once. In this section, we describe general travel times for processes and networks 
and give Little-type formulas for their limiting averages or expected values. 
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How do travel times compare with sojourn times, which were the focus of the 
last section? A sojourn time of a process in a certain subset of its state space is 
characterized by an entrance and exit time of the set, which are stopping times of 
the process. The beginning and end of a travel time, however, need not be stopping 
times; they may depend on the future of the process as well as the past and present. 
For instance, the travel time of a process from one set B to another set B' begins 
at an exit time from B with the additional property that the process in the future 
enters B' before it returns to B. 

Although travel times are more complicated than sojourn times, the framework 
for analyzing average sojourn times in the last section also applies to travel times. 
The key idea is that one can analyze travel times by using stopping times for 
"subsets of sample paths" in the same way that one uses stopping times for sets to 
analyze sojourn times. 

We will use the following notation throughout this section. As in the preceding 
section, we assume that {XI: t E JR.} is a stochastic process on a space lE and its 
sample paths are in the function space D. If an observer of X at time t can see the 
entire time-shifted process 

XI == SIX, t E JR., (6.31) 

then the observer should be able to tell if X is traveling on a special route at time 
t. We will associate routes with subsets of D as follows. 

Definition 6.28. The process X defined by (6.31) is the sample-path process of 
X. A subset 'R C D of sample paths of X is a route of X if the times at which X 
enters 'R is a point process on JR.. This point process N of entrance times {Tn} is 
defined by 

N(A) == L I(XI_ fj'R, XI E 'R) = L I(Tn E A), A c R 
tEA n 

The process X enters the route at each time Tn, and then the travel time on the 
route is 

Wn == inf{t > 0: X7;,+1 fj'R}. 

The process X exits the route at time Tn + Wn. 

Our interest is in the average travel time of X on the route 'R: 

7r('R) == lim t- 1 t I(SuX E'R)du w.p.I. 
1-+00 10 

Since 7r('R) is the average sojourn time of the process XI = SIX in the subset 'R of 
D, we have the following result, which is simply a restatement of Corollary 6.27 
for this setting in which Xo = X. 

Corollary 6.29. (a) If any two of the limits 7r('R), A, W exist, then the other one 
also exists and 7r('R) = A W. 
(b) Suppose that X is stationary and ergodic, and'R C D is such that 0 < 
PIX E 'R} < 1. Then the limits 7r('R), A, W exist and 7r('R) = AW, where 
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rr(n) = P{X E n} and A = EN(l). Furthermore, the sequence of travel times 
{Wn } on the route n is stationary and ergodic with respect to the Palm probability 
PN, and hence W = EN[Wo] and 

The preceding result covers most travel times that one might imagine. Stopping 
times of processes generate a vast family of travel times. To analyze a travel time, 
the first steps are to formulate it in terms of a subset n of sample paths, and then 
verify that the number of entrance times of X into that subset in any finite time 
interval is finite. A fundamental example is as follows. 

Example 6.30. Travel Time between Two Sets. Consider the travel time of the 
process X from some set B E £ to another set B' E £. For each sample path 
xED, the first time the path enters (or hits) the set B after time 0 is 

H 8(x) == inf{t > 0 : x(t) E B}, 

and the last exit time of the path from B prior to time 0 is 

L8(X) == sup{t < 0: x(t) E B}. 

Then the process X is on the route from B to B' at time t if St X E n, where 

n == {x ED: x(O) ¢ BUB', L81(X) < L 8(x), H81(X) < H8(X)}. 

Now, suppose that X is stationary and ergodic. Assume that Xo has a nonzero 
probability of being in each of the sets B, B' and BUB'. This implies that X enters 
each of these sets infinitely often, which ensures that the times at which the process 
X begins a traverse from B to B' form a point process. Then by Corollary 6.29, 
the average or expected travel time between B and B' is 

EN[WO] = A -\ P{Xo ¢ BUB', L8I (X) < L8(X), H8I (X) < H8(X)}. 

For the case in which X is a Markov process, this expression has the tractable form 
shown in Corollary 4.33. 

As a variation of this travel time, suppose one is interested in the travel time 
of X in some subset C C Be n B'c during a traverse of X between B and B'. 
This new travel time is defined by the route n' == {x En: x(O) E C}. Assume 
that P{Xo E C} > 0, which implies that X visits C infinitely often. Then the 
expectation of the new travel time is given as above with Xo ¢ BUB' replaced 
by Xo E C. 0 

6.7 Sojourn and Travel Times in Networks 

The preceding two sections focused on characterizing the average of a sequence 
{ Wn } of sojourn or travel times of a stochastic process. One distinguishing feature 
of such times is that their associated time intervals (Tn' Tn + Wn] do not overlap. In 
this section, we characterize average sojourn and travel times of units in a network. 



6.7 Sojourn and Travel Times in Networks 175 

Here a sequence {Wn } of sojourn or travel times of units is associated with time 
intervals (Tn, Tn + Wn] that typically overlap. Although the discussion will be be 
in terms of networks, the results also apply to sojourn and travel times for general 
multivariate processes. 

We will first analyze travel times for networks that can be represented by the 
locations of its units. Consider a m-node network that is either closed with v units or 
open with capacity v. In case the network is closed, we label the units as 1, ... , v. 
In case the network is open, we assume that the indices 1, ... , v are labels or 
tokens that the units in the network carry as follows. Whenever there are n < v 
units in the network, a unit entering the network selects one of the v - n unused 
labels with equal probability. The unit retains the label until it exits the network, 
and then the label becomes available for another unit. The unit carrying the label 
i is called unit i. 

We will represent the network by the stochastic process Y(t) == (Y,(t), ... , 
Yv(t», where Yj(t) denotes the node location of unit i at time t. A typical state of 
the process Y is a vector y = (y" ... , yv) in M V , where M == {l, ... , m} or M == 
{O, 1, ... , m} according to whether the network is closed or open. Assume that 
the location process Y is stationary and ergodic. For instance, this may represent 
customer locations in a Whittle network. 

We associate each unit i with a route 'Rj C D that satisfies the property 
o < P {Yj E 'Rj } < 1. Then the time-shifted process S, Yj, which is a stationary 
functional of Y, enters 'Rj and 'Rj' infinitely often. This ensures that the times at 
which Yj enters the route 'Rj form a stationary, ergodic point process Nj on R. 
Assume that Nj has a finite intensity Aj. Then by Corollary 6.29, the sequence of 
travel times {W~ } on the route 'Rj are stationary with respect to the Palm probability 
PN;, and their average is 

EN,[W6] = Ai' P{Yj E'Rd. 

Our focus will be on the average travel time of an arbitrary unit on its route. The 
times {Tn} at which the units enter their routes are described by the point process 
N == N, + ... + Nv• Clearly N is a stationary functional of Y and its intensity 
is A = A, + ... + Av. For simplicity, assume that only one unit moves at a time. 
Then the point process N is simple. Let Yn denote the index i on the process Yj that 
enters the route 'Rj at time Tn; that is, Sr.,- Yy. ¢ 'Ry., and ST., Yy. E 'Ry •. Consider 
the time 

Wn = inf{t > 0: ST.+,Yy• ¢ 'Ry.}, 

which is the travel time of the process Yy. on the route 'Ry •. We call Wn a travel 
time of an arbitrary unit on its route. Clearly Yn and Wn are marks of N. 

Corollary 6.31. Under the preceding assumptions, the sequence of travel times 
{Wn} is stationary under the Palm probability PN and 

v v 

EN[WO] = A -, L P{Yj E 'Rd = A-I LAjEN,[W6]. 
j=1 j=, 
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In particular, if the distributions oIYI , ••• , Yv are identical and 'R,i = 'R,lor each 
i, then EN[Wo] = All P{YI E'R,}. 

PROOF. The process 

v 

X t == L l(St Yi E'R,i), t E JR (6.32) 
i=1 

records the number of the processes Yi that are traversing their routes at time 
t. Viewing X as a stationary queueing process, the first assertion follows by the 
Little law for stationary systems given in Theorem 6.22. The second assertion is 
an obvious special case of the first one. 0 

The preceding result is useful when one knows the stationary distributions of the 
location processes. We now discuss another approach for modeling travel times in 
terms of the quantities of units at the nodes rather than the locations of specific 
units. 

Consider an m-node network represented by a process {Xt : t E 'R,} with states 
x == (XI, ••• , xm), where X j denotes the number of units at node j. The network 
may be closed or open, with a finite or unlimited capacity. Assume that the process 
X is stationary and ergodic. Suppose that the units in the network move one at 
a time, and that the times at which units move from node j to node l form a 
point process Njl on JR. Here j and l are in the node set M == {I, ... , m} or 
M == {a, 1, ... , m} according as the network is closed or open. Assume that Njl 

is a stationary functional of X. Its intensity Pjt == E[Njt(l)] is the throughput 
from j to t. 

Since the process X does not include the entire information about the sample 
paths of each of its units, it is natural to consider only special routes that can be 
described by X and its routing process. Accordingly, we assume the routes of the 
units are independent, and independent of the quantities at the nodes. This assump
tion is satisfied by Jackson and Whittle networks when the service discipline at 
each node is processor sharing and each unit is treated equally. 

We will consider a route 'R, that satisfies the following properties: 
Traversing Assumptions. At any time t, the event that a unit at node j is traversing 
the route is independent of the disposition of the other units in the network at 
that time, and the probability of this event is Yj, independent of t. The process 
{X; : t E JR} that denotes the number of units that are traversing the route 'R, at 
time t is a stationary functional of X. 
Entry Rate Assumptions. The times {Tn} at which units begin traversing the route 
'R, form a point process N on R, and N is a stationary functional of X. If a unit 
moves from a node j to some node l at time t, the event that the unit begins a 
traverse of the route 'R, is independent of the disposition of the other units in the 
network at the transition, and the probability of this event is b jt, independent of t. 

Let Wn denote the travel time on the route 'R, that begins at time Tn. An expression 
for the average of these times is as follows. Here we use L j == Lx x j rr (X), which 
is the expected number of units at node j. 



6.7 Sojourn and Travel Times in Networks 177 

Corollary 6.32. Under the preceding assumptions, the sequence {Wn } of travel 
times on R is stationary under the Palm probability PN , and 

EN[Wo] = Lj LjYj , 
Lj,i Pjibji 

provided that these sums are positive and finite. 

(6.33) 

PROOF. Consider the stationary process X' representing the number of units 
traversing R as a queueing process. Then by the Little law for stationary systems 
given in Theorem 6.22, the sequence {Wn } is stationary under the Palm probability 
PN, and 

EN[Wo] = E[X~]J E[N(I)]. 

Now, under the traversing assumptions, 

x~ 

E[X~] = L E[L Ui], 
j n=1 

(6.34) 

where Xb is the number of units at node j at time 0, and ui is I or 0 according 
to whether or not the nth unit at node j is traversing the route R. Furthermore, 
U (, U 1, . .. are independent random variables that are independent of X~ and 

E[Ui] = Yj. Therefore, 

E[X~] = LLjYj. 
j 

Next, under the entry assumptions for the route, 

Njt(l) 

E[N(l)] = E[L L TJn(j, i)], 
j,t n=1 

(6.35) 

where TJn(j, i) is I or 0 according to whether or not the nth unit moving from 
node j to node i begins a traverse of the route R at that transition. Furthermore, 
711 (j, i), TJ2(j, i), ... are independent variables that are independent of Njt(l), and 
E[T/n(j,l)] = bjt. Therefore, 

E[N(l)] = L Pjibji. (6.36) 
j,t 

Then substituting (6.35) and (6.36) in (6.34) yields (6.33). o 

To use the average travel time expression (6.33), one only has to evaluate the 
throughputs Pjt of units moving from j to i, the probabilities Yj that a unit at 
node j in equilibrium is traversing the route, and the probabilites b jt that a unit 
moving from j to i in equilibrium begin traversing the route. The following is a 
basic example. 

Example 6.33. Travel Times in Whittle Networks. Suppose the network we are 
discussing is a Whittle network in which the services at each node are under a 
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processor-sharing discipline, where each unit at a node receives the same service 
treatment. We will consider the average time it takes an arbitrary unit to travel 
from one sector J to another sector K. The J and K may overlap, but assume their 
union is not M. 

A little thought justifies that all the assumptions above are satisfied for this route 
from J to K. Hence Corollary 6.32 applies, and the average travel time from J to 
K is 

EN[Wo] = Lt¢JUK Ltre 

LjEJ Lt¢J Pjtbjt 
(6.37) 

Note that the throughput rates P jt and expected numbers of units L j at the nodes 
can be obtained as in Chapter 1 from the stationary distribution of a Whittle pro
cess. The following discussion describes the other probabilities in the preceding 
expression. 

We will represent a typical unit's path among the nodes by an ergodic Markov 
chain {~n : nEil} with transition probabilities Pjt. Consider the hitting and last 
exit times 

HJ(~) == inf{n > 0 : ~n E J}, 

LJ(~) == sup{n < 0 : ~n E J}. 

Now, the probability that starting at node j, the routing chain ~ enters K before it 
enters J is 

CXj == P{HK(~) < HJ(~) I ~o = j}. 

These probabilities are solutions to the following equations: cx j = 1 or 0 according 
to whether j is in K or is in J, and 

CXj=LPjk+LPjtCXt, jfj.JUK. (6.38) 
kEK t¢K 

Analogously, looking backward in time, the probability that conditioned on 
being in state j, the routing chain exited J more recently than it exited K is 

ii j == P{LK(~) < LJ(~) I ~o = n· 
These probabilities are the solution to the equations (6.38), where J and K are 
interchanged and P ji is replaced by the "time-reversed" routing probabilities 

- -I 
Pjt == Wj WtPtj' 

These observations, which are similar to those in Proposition 4.32, are well-known 
properties of Markov chains. 

We now complete our description of expression (6.37) for the average travel 
time on the route from J to K. Clearly, the equilibrium probability that a unit 
moving from j E J to t fj. J begins traversing the route is 
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route is 
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equilibrium probability that a unit at node l ~ J U K is traversing the 

Ye = P{HK(~) < HJ(~), LK(~) < LJ(~) I ~o = l} = aeiie· 

The last equality follows from the property that the past and future of a Markov 
chain are conditionally independent given its present state. 0 

6.8 Exercises 

1. Marked Random Measures. Suppose M is a random measure on IR that is a 
stationary functional of O. Assume each t in the support of M has associated 
with it a quantity ~t = h(Ot), where h : Q -+ IE'. We call ~t a mark of M at the 
location t. Consider the process Xt = fIE f(t - s, ~s)M(ds). Justify that this is 
a stationary functional of 0, whose mean is EXo = AEN fIR f(t, ~o)dt. 

2. Little Laws for Semi-Stationary Systems. According to Definition 5.22, the 
process Y is regenerative if its cycle variables ~n are LLd. More generally, if 
the sequence {~n} is stationary, then we say that Y is a semi-stationary process 
over Tn (sometimes called a synchronous process, or a process with stationary 
cycles). Furthermore, we say that Y is ergodic if ~n is. These notions also apply 
when the process Y is defined on the entire time axis, which we assume here. 
Proofs of the following statements are minor modifications of the referenced 
theorems. Specify the needed modifications in the proofs that would justify the 
statements. 
(i) If the queue length process X is semi-stationary and ergodic over Tn, then 
the assertions of Theorem 5.24 are true. 
(ii) Suppose the service system is as in Theorem 5.25, but the underlying process 
Y, instead of being regenerative, is semi-stationary and ergodic over -en. Then 
the assertions of Theorem 5.25 are true for this more general system. 

3. Campbell-Mecke and Exchange Formulas for Random Kernels. Suppose the 
function K : IR x Q x IR -+ IR is such that K (t, w, .) is a measure on IR for each 
t, w. The K is a random kernel from IR to lR. Show that the following formula 
is equivalent to the Campbell-Mecke formula. For f : IR x IR x Q -+ 1R+, 

E L [L f(t, s, Ot)K(t, Ot, dS)] M(dt) 

= AMEM L [L f(t, s, Oo)K(t, 00, dS)] dt. 

Next, suppose K and K' are random kernels from IR to IR that are stationary 
functionals of () and satisfy 

M(dt)K(t, ds) = M'(dt)K'(t, ds) 

(the omegas in the kernels are now suppressed), where M and M' are random 
measures that are stationary functionals of 0 with respective intensities A and A'. 
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Show that the following variation of the exchange formula (6.24) is equivalent 
to the Campbell-Mecke formula. For I: IR x IR x Q ~ 1R+, 

)"EM L I(s, (} .. )K'(O, ds) = )..' EM' L I(s, (}o)K(O, ds). 

4. Rate Conservation Law lor Averages. Consider the stochastic process X defined 
by (6.26), where N is the point process of discontinuity points Tn of X. Assume 
that t- I XI "" 0 and that the limit).. = limHOO rl N(t) exists and is positive. 
Show that if either one of the following limits exists, then the other one does, 
and they are related as indicated: 

This conservation law says the average derivative of X plus the rate of jumps 
times the average jump size of X equals 0; one would expect this relation for a 
stable process. This result is analogous to the conservation law in Corollary 6.20 
for expected values. Hint: Write (6.26) as XI - Xo = U(t) - U(N(t)), where 
U and U are defined in the obvious way. Then apply Theorem 5.15. 
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7 
Networks with String Transitions 

Chapter 2 discussed network models with batch or concurrent movements of units 
under reversibility assumptions. Are there comparable models of Whittle networks 
with batch movements? More generally, are there tractable network models in 
which a transition may involve a series of simultaneous single- or multiple-unit 
changes? This chapter describes networks with such characteristics called net
works with string transitions, or string-nets for short. In a string-net, a transition 
consists of a string of instantaneous subtractions or additions of units at the nodes, 
where the string is randomly selected from a family of variable-length strings. 
Invariant measures for string-nets resemble those of Whittle networks, but now 
key parameters in the measures are obtained as solutions to more complicated 
nonlinear traffic equations. 

7.1 Definition of a String-Net 

Throughout this chapter, we will consider an m-node network that operates as 
follows. As in Chapter 1, we will represent the network by a stochastic process 
X = {Xt : t ::: O} that represents the numbers of units at the respective nodes. 
The state space is a set IE of m-dimensional vectors x = (XI, ••• , xm), where Xj 

denotes the number of units at node j. We place no further assumptions on the 
form of IE, and so our results apply to a variety of network types, including the 
standard ones that are closed, or open with finite or unlimited capacity. 

Whenever the process is in state x, a typical transition will be to some state of 
the form x - (Sl + ... + sf) + a or x - (Sl + ... + si), I ~ i < t, where the 
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increment vectors a and si are in a set A, and the string s = (Sl, ... ,sf) is in a 
set S. The A is a finite set of m-dimensional vectors with negative or nonnegative 
integer entries and A contains the zero vector O. The S is a countable set of strings 

s = (Sl, ... ,sl), where si E A \{O} and t == t(s) denotes the string length. Let 
L ::: 00 denote the supremum of these string lengths. Assume that S contains the 
empty or zero string, denoted by 0, whose length is zero. 

Associated with each string s E S are its ith partial sum vectors 

where s(O) = 0 for the zero string. Denote the set of all partial sums of the strings 
by S = {s(i) : 1 ::: i ::: t, s E S}. Think of A as the set of allowable increment 
vectors and S as the set of feasible strings of vectors from A that can be subtracted 
in a transition. Then S (which contains A) is the entire set of network increment 
vectors. For each x E E and d, a E S, we define the vector TdaX = X - d + a, 

which mayor may not be in E. A transition x ~ TdaX means that the vectors a 

and d are added and subtracted from x. 
In terms of this notation, the transitions of the process X are as follows. When

ever the process X is in state x, a transition is determined by a pair sa in S x A 
that results in one of the following t possibilities: 
e A complete sa-transition: x ~ Ts(l)ax = x - (sl + ... + sl) + a. 

eAnithpartialsa-transition: x ~ r'(i)OX = X_(sl+ ... +Si), where 0 ::: i < t. 
Keep in mind that t, with s suppressed, is the length of the string s. Note that the 
complete sa-transition uses a as well as the whole string s, but the ith partial 
sa-transition uses only the part s I, ... , Si of s. Some of these transitions may be 
infeasible as discussed below. Under the preceding assumptions, each state x E E 
is a linear combination of vectors in A. Assume that the standard m-dimensional 
unit vectors form a basis that generates the vectors in A and E. This is not a re
striction since one can always represent these vectors by a basis and the form of 
the basis is not important here. 

We assume the rates of these string transitions are as follows: 

Type of Transition 

Complete sa-transition x ~ r,(l)aX 

Rate 

Asarps(l)(X), 

A ith partial sa-transition x ~ Ts(i)OX Asa(rps(i)(X) - rps(i+I)(X». 

These transition rates can be viewed as the compounding of two rates as fol
lows. The nonnegative Asa is the rate (or probability) at which an sa-transition 

occurs, where AOO = O. A typical example is a product of probabilities Asa = 
p(SI )p(SI, s2) . .. p(si-I, sl) of Markovian selections of the vectors Si. Within an 
sa-transition, rps(l)(x) is the nonnegative rate of subtracting the complete vector 
s(t) from x and adding a; and rps(i)(x) - rps(i+I)(X) is the rate of subtracting exactly 
s(i) (the ith partial of s) from x, where 0::: i < t. A compounding of these two 
rates yields the transition rates above. 
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We assume the ¢d'S are <I>-balanced as in earlier chapters, where <I> is a positive 
function on IE such that, for any x E IE, dES, and a E A with L" A,w > 0, 

(7.1) 

For convenience, we extend the definition of ¢d to all integer-valued, m
dimensional vectors by setting ¢d(X) = 0, for x fj.1E. 

The preceding description says that whenever the Markov process X is in state 
x, the times to the next complete sa-transition and ith partial sa-transition are 
independent, exponentially distributed with rates shown in the table above. Then 
the time to the next x ~ y transition is exponentially distributed, and its rate 
q(x, y) is the sum of appropriate sa-transition rates. That is, the transition rates of 
the process X are 

q(x, y) = I>,wr,w(x, y), y of. x in IE, (7.2) 
s,a 

where 

rsa(x, y) = ¢"(i)(x)I(y = T'(i)aX) (7.3) 
i-I 

+ ~)¢S(i)(x) - ¢s(i+I)(X)]I(y = T'(i)OX), x, y E IE. 
i=O 

All sums on s, a herein are for s E S and a E A, unless specified otherwise, and 
L~o = O. Since a transition x ~ y is possible under several combinations of 
subtractions and additions, its rate q(x, y) is a sum of rates, some of which may 
be 0 due to the A,w, ¢d or the indicator functions being O. The rate functions Asa 
and ¢d as well as the sets A and S can have a variety of forms depending on the 
routing and service rules of the network. For instance, for a closed network, the 
rate Asa can be positive only if IsCi)1 = la - s(f)1 = 0, for 1 :::: i < e. 

Note that the rate of the exponential sojourn time in state x is 

Lq(x, y) = LAsa[¢o(x) - rsa(x,x)], (7.4) 
yf.x s,a 

This follows since 

Lr,w(X, y) = ¢o(x), (7.5) 
YEE 

which is due to the telescoping series in (7.3), and the fact that the sum of the 
indicators over y is 1. 

To complete the definition of the process, a few more technical assumptions are 
in order. We assume that Ls A,w < 00 for each a E A. This and the finiteness of 
A ensure that the rate (7.4) is finite. Next, we assume the following condition. 
Dominance of ¢o: If L ::: 2, then ¢o(x) ::: ¢a(x), for each x E IE and a E A. 
Finally, we adopt the standard assumption that the process is irreducible on the 
space IE (otherwise, we could let IE denote a closed communicating class). 
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Definition 7.1. The process X defined above with rates (7.2) that satisfy the 
preceding assumptions is a Markov Network process with string transitions or 
a string-net. 

The data for the string-net process X are lE, A, S, L, {Asa : s E S, a E A}, 
and {tPdO : dES}. To model an actual network with this process, one would 
specify this data from the operational features of the network. Note that Jackson 
and Whittle networks with single-unit movements are examples of string-nets. 

The following are a few more observations about the definition. From the <1>
balance and cf>o-dominance, it follows that 

<I>(TOdX)tPd+a(TodX) = <I>(x)tPa(x) 

~ <I>(x)tPo(x) = <I>(TOdX)tPd(TodX), dES, a E A. 

Thus tPd(X) 2: tPd+a(X), This ensures that the rates in the second sum in (7.2) are 
not negative. 

Note that (7.1) implies tPa(x) = 0 when TadX ¢ lE for some dES, because 
tPd(X') = 0 when x' ¢ lE. This says that an sa-transition in state x is not feasible 
or is blocked if anyone of the possible new states resulting from a complete or 
partial transition is not in 1E. Recall that the <I>-balance of the tPd'S is equivalent to 
their being of the form 

tPd(X) = \I1(x - d)/<I>(x), dES, X E lE, (7.6) 

for some function \11 that is nonnegative on {x - d : dES, X E lE and is 0 outside of 
1E. These tPd'S also satisfy the cf>o-dominance assumption when \11 is nonincreasing 
and each vector a E A is nonnegative. 

7.2 Invariant Measures of String-Nets 

In this section, we characterize invariant measures of the process X under the 
assumption that certain polynomial "traffic equations" have a solution. Conditions 
for the existence of solutions are given in the next section. 

In addition to the notation above, we denote the rate of all string transitions with 
s as the initial segment by 

As = LA(ss')a, s E S, (7.7) 
s',a 

where the string (s s') denotes the concatenation of the strings s and s'. We some
times use A(sa) for sa E S, where A(Oa) == Aa. The following is the main 
result. 

Theorem 7.2. Suppose there exist positive numbers WI, ••• , Wm that satisfy 

l l 

l1(a) LO l1(Si)A(sa) = LO l1(Si)Asa, a E Ao == A\{O}, (7.8) 
s i=1 s i=1 
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whereTJ(x) = nj=1 w? and the sums in (7.8) are finite. Then an invariant measure 
for the string-net process X is 

rr(x) = $(x)TJ(x), x E IE. 

Furthermore, a necessary and sufficient condition for the process to have an 
invariant measure of this form is 

L D(a)[rfJo(x) - ~a(x)TJ(a)-I] = 0, X E IE, (7.9) 
aEAo 

where D(a) denotes the right side of(7.8) minus its left side. 

The invariant measure rr(x) = $(x)TJ(x) resembles the invariant measure in 
Theorem 1.15 for Whittle processes. In particular, rr is a weak coupling of $ 

determined only by the ~a 's, and TJ determined only by the Asa'S. The traffic equa
tions (7.8) are what is left of the balance equations upon substituting the measure 
rr into the equations and cancelling the ~ functions. Consequently, the existence of 
solutions for the traffic equations is a necessary condition for invariant measures 
of the form as shown. The second statement in the theorem gives more precise 
information in this regard. 

From a key identity (7.11) in the proof below, it follows that the summation in 
(7.9) times rr(x) is the difference between the two sides ofthe balance equations 
for the process X (this should be 0 for the balance equations to be satisfied). Note 
that the summation is a weighted average of the differences D(a) of the two sides 
of the traffic equations (7.8). The weights rfJo(x) - ~a(x)TJ(a)-I, which arise in 
(7.11), don't seem to have any special meaning. 

PROOF. The balance equations that an invariant measure rr must satisfy are 

rr(x) L q(x, y) = L rr(y)q(y, x), x E IE. (7.10) 
yEE YEE 

The usual convention is that q(x, x) = 0, but here we define q(x, x) = 
Ls,a Asarsa(x, x). This does not affect the equality, and it simplifies some 
expressions. 

Let L(x) and R(x) denote the left and right sides of (7.10), respectively, and 
suppose rr(x) = $(x )TJ(x). The proof will proceed as follows. A short calculation 
yields L(x) = rro(x)Ao, and a more complicated analysis of R(x) yields the 
identity 

L(x) = R(x) + rr(x) L D(a)[~o(x) - ~a(x)TJ(a)-I]. 
alO 

(7.11) 

From this it follows that if D(a) = 0, a E Ao, then L(x) = R(x), x E IE, and 
hence rr is an invariant measure of the process. This proves the first assertion of 
the theorem. Also, rr is an invariant measure if and only if the last summation in 
(7.11) is O. This proves the second assertion of the theorem. 

It remains to prove (7.11). Using the transition rate formulas (7.2), (7.3) and the 
property x = Tdd'y if and only if y = Td'dX, it follows that the right side of (7.10) 
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is 

R(x) = L rr(y) L A.wrsa(y, x) = L rr(Tas(l)X)Asar.w(Tas(l)X, x) 
YEIE s,a s,a 

i-I 

= L rr(Tas(t)X)AsarPs(l)(Tas(i)X) + L L rr(TOs(i)X)A.w 
s,a s,a i=O 

x [rPs(i)(TOs(i)X) - rPs(i+I)(T,i+l s(i+l)X)], (7.12) 

Here we also use our convention that the functions rr and rPd are defined to be zero 
outside of IE and that TOs(i)X = Tsi+l,s(i+I)X, Now, the <I>-balance assumption and 
rr(x) = <I>(X)l1(X) and l1(X + y) = l1(X)l1(Y), ensure that, for x E IE, a E A, and 
dES, 

rr(TadX)rPd(TadX) = rr(x)rPa(X)l1(d)l1(a)-I. (7.13) 

Applying this to (7.12), we obtain 

R(x) = rr(x) L l1(s(l»l1(a)-IAsarPa(x) 
s,a 

l-I 

+ rr(x) LAsa L l1(s(i»[rf>o(x) - rPsi+I(X)]. (7.14) 
s,a i=O 

To proceed, we need a convenient expression for the last sum on s, a, i. Note 
that s = 0 has no contribution to the sum, and hence we ignore it. Also, any s =f. 0 
can be written as the concatenation s = (s' as") for some s', s" E S and a E Ao. 
Now, make the change-of-variables Si+1 = a and sa = (s'as")a' and reverse the 
order of the summations and recall the definition of As. Then the last sum in (7.14) 
becomes 

L l1(S'(.e'» L A(s'as"la' [rf>o(x) - rPa(x)] 
s' ,0#0 s" ,a' 

= L l1(s(l» L A(sa)[rf>o(x) - rPa(X)]. (7.15) 
al'O 

Substituting this in (7.14) and recalling that D(a) equals the right side of (7.8) 
minus its left side, we arrive at 

R(x) = rr(x) L rPa(x)l1(a)-1 D(a) + rr(x)rf>o(x) 
al'O 

x L l1(s(l» L l1(s(l»[Aso + L A(sa)]' (7.16) 
a 1'0 

Next, note that the left side of the balance equation (7.10), in light of (7.5), is 

L(x) = rr(x) LA.w Lrsa(x, y) 
s,a yEIE 

= rr(x) LAsarPO(X) = rr(x)rf>o(x)Ao. (7.17) 
s,a 
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Now, using the fact that Sf =I- 0 can be expressed as Sf = (sas") for some s, S" E S 
and a E Ao, we have the identity 

L'1(s(l»As = Ao + L'1(s(l»As = Ao + L '1(s(l»'1(a)A(sa)' (7.18) 
#0 s,a#O 

Also, by its definition, As = AsO + La#O(Asa + A(sa»' Substituting this in the left 
side of (7.18) and using terms from its right side yields 

Ao = L D(a) + L '1(S(l»[AsO + L A(sa)]' (7.19) 
a#O a#O 

Finally, substituting this in (7.17) and using (7.16) yields the identity (7.11). 0 

7.3 Traffic Equations, Partial Balance, and Throughputs 

We begin this section with insights into the existence of solutions to the traffic 
equations (7.8). Next, we show that the traffic equations are equalities of certain 
average flows in the network (a partial balance property). We end the section with 
an expression for throughputs at the nodes. 

Note that the hypothesis (the first sentence) of Theorem 7.2 is actually two 
hypotheses: 
(i) There are positive Ya, a E Ao, that satisfy the traffic equations 

i i 

Ya L n Ys; A(sa) = L n Ys; Asa , a E Ao, (7.20) 
s i=1 s i=1 

where Yo = 1, and these sums are finite. 
(ii) A solution to the preceding equations is of the form 

m n a· 
Ya = w/' 

j=1 

for some positive numbers WI, ••• , W m • 

a E Ao, 

Let's first consider hypothesis (i). With a slight abuse of notation, interpret 
Ao as an ordered set and view Y == (Ya, a E Ao) as a vector. Write (7.20) as 
Yaga(Y) = ha(y), where ga(Y) and ha(y) denote the summations on the left 
and right sides of (7.20) as functions of y. In other words, (7.20) is the same as 
Y = f(y), where f(y) = {fa(Y) : a E Ao} is the vector-valued function defined 
by fa(Y) = ha(y)/ga(Y) for Y in the region where the numerator is finite and the 
denominator is not zero. Here a vector inequality Y :::: Y means Ya :::: Ya' for each 
a E Ao, and 0 and 1 are the vectors of all zeros and all ones. 

From the preceding observations, it follows that the set of solutions to (7.20) is 
equal to the set of fixed points of f. Here is a general criterion for the existence 
of a solution to (7.20) (i.e., a sufficient condition for hypothesis (i». 
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Theorem 7.3. Suppose there there are vectors 0 ~ Y < Y such that 0 < ga (y) < 
ooaoo --

r"ga(Y) < ha(r), and ha(Y) < Yaga(r), a E Ao. (7.21) 

Then there exists a vector Y that satisfies (7.20) and r < Y < y. 

PROOF. Let C == {y : Y ~ Y ~ V}. Since ga(Y) and ha(y) are increasing in Y, 
it follows that all the tems in (7.21) are finite and 

r" < ha(r)/ga(Y) ~ fa(Y) ~ haW)/ga(r) < Va' Y E C, a E Ao. 

Thus, f maps C into C. Also, f is clearly continuous. Then f has a fixed point 
Y E C by Brouwer's fixed-point theorem. Furthermore, Y < Y < y, because of 
the strict inequalities in the preceding display. - 0 

Theorem 7.3 is a framework for obtaining specific conditions for a solution to 
(7.20) in terms ofthe structure of the A.w 'so Examples are in the following sections. 
The next result is a simpler version of Theorem 7.3. It assumes that Y exists and 
ga(O) > o. Assumption (a) is typically satisfied by open networks, aDd Y = 1 is 
often adequate for (b). 

Corollary 7.4. There exists a positive solution to the traffic equations (7.20) if the 
following conditions hold. 
(a) The set A * = {a E Ao : ADa > O} is not empty and,for each a E Ao \A *, there 
is an s E S such that Asa > 0 and si E A * ,for 1 ~ i ~ i. 
(b) There is a positive vector Y such that gaW) < 00 and ha(y) < Yaga(O). 

PROOF. Let y = {y : a E Ao} be a vector in (0, Y) such that y < ADa/ga(Y), - ~ ~ 

fora E A* and 

e 
r" < L:Ot,;Asa l(si E A*, 1 ~ i ~ i)jgaW), a E Ao\A*. 

s i=1 

Assumptions (a) and (b) ensure that 0 < ga(Y) < 00. Since ga(Y) and ha(Y) 
are increasing in y, it follows that (7.21) holds. Thus, the assertion follows by 
Theorem 7.3. 0 

Now, consider the hypothesis (ii) that a solution Y to (7.20) has the geometric 
form Ya = OJ=1 w?, a E Ao, for some positive WI. ••. , W m• This hypothesis is 
satisfied for the large class of networks discussed in the next sections on strings 
composed of unit vectors. For the general case, we have the following observation. 
The problem is to determine when there are positive WI, ••• , Wm that satisfy the 
linear equations 

m 

10gYa = L:ajlogwj, a E Ao, 
j=1 

(7.22) 

for known Ya's. From a standard property of linear algebra, we have the following 
result. 
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Remark 7.5. (Geometric Solutions). Let M denote the matrix, whose rows 
are vectors in Ao, and let M' denote the matrix M augmented by the column 
(log Ya)aeAo' Then there is a solution WI, ••. , Wm to (7.22) if and only if M and M' 
have the same rank, which is at most m. If they have the same rank and it is less 
than m, then there are an infinite number of solutions. Uniqueness is not important 
for our purposes. However, the solution is unique if M and M' have the same rank 
m, which is true when Ao consists of m linearly independent vectors. 

We now justify why equations (7.8) are traffic equations. Throughout the rest 
of this section, we assume that the network process X is ergodic with stationary 
distribution 7r(x) = c<l>(x)l1(x), where l1(X) = OJ=1 w? and the wj's satisfy 
(7.8). We first note that the traffic equation (7.8) for a = 0 is 

L AOa = L l1(s(i))[Aso + L A(sa)], x E IE. (7.23) 
a#O s#O a#O 

This follows from the identity (7.19) in which D(a) = 0 follows from (7.8), for 
a #0. 

Now, recall that by the ergodic theorem for Markov processes, the quan
tity L(x,y)eTo 7r(x)q(x, y) is the average number of x ~ y transitions of X 

per unit time, where (x, y) is in some subset To of 1E2. This average number 
of To-transitions, which is a limiting average, is also the expected number of 
To-transitions in a unit time interval when the process is stationary. 

We shall consider two types of transitions related to the traffic equations. For 
a E A and x E IE, let ia (x) denote the average number of transitions of X per 
unit time in which the vector a is added to the state x such that the transition leads 
to the new state x + a. We call ia(x) the rate of exits from x via an a-addition. 
Similarly, let Ia(x) denote the rate of entrances into x via an a-subtraction: the 
average number of transitions of X per unit time in which the process enters state 
x (during a transition) from a subtraction of the vector a. Here are expressions for 
these rates. 

Proposition 7.6. (Partial Balance) For each x E IE, 

j7r(X)Q>O(X) L l1(s(i»Asa 

~~)= ~ ~ 
7r(x)4>o(x) ~ l1(s(i))[Aso + ~ A(sa)] 

s#O a#O 

if a #0 

ifa = 0 

ifa # 0 

ifa = o. 

Hence, the traffic equations (7.8), (7.23) are equivalent to 

Ia(x) = ia(x), a E A, x E IE. 

(7.24) 

(7.25) 

(7.26) 
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Expression (7.26) says the average number of entrances into x via an a
subtraction is equal to (or balanced with) the average number of exits out of x 
via an a-addition. The equivalence between this balance (7.26) of traffic flows and 
the equations (7.8), (7.23) is the reason why we call the latter traffic equations. 
The equality (7.26) is a partial balance property for the process since it is the 
balance equations (7.10) for only a part of the summation. Note that (7.26) also 
implies that, for each fixed state x, the average number of entrances into x via 
any a-subtraction equals the average number of exits from x via any a-addition 
(namely LaeA Ia(x) = LaeA ia(x)). A similar sum on x, for a fixed a, says the 
average number of a-subtractions is equal to the average number of a-additions, 
regardless of the state x. 

PROOF. First consider the case a "I O. A transition of X in which the vector a is 
added to a state x such that the transition leads to the new state x + a is necessarily 
a complete sa-transition that starts from x +s(l) and lands in x +a, for any s E S. 
Then by the comment above on the ergodic theorem for Markov processes, 

ia(x) = L 1l'(x + s(l))AsatPs(l)(x + s(l)). 
s 

This reduces, in light of (7.13), to the first line in (7.24). Next, note that a transition 
of X in which it enters state x (during a transition) due to a subtraction of the vector 
a can only happen when the process is in state x + s(l) + a and an (sas')a' -string 
transition occurs, causing the process to enter state x at the stage in which a is 
subtracted. Arguing as above, 

Ia(x) = L 1l'(x + s(l) + a) L A(sas')a'tPs(ll+a(X + s(l) + a) 
s s',a' 

= L 1l'(x + s(l) + a)A(sa)tPs(l)+a(X + s(l) + a), 
s 

and this reduces to the first line in (7.25). 
Now, consider the case a = O. Since O-additions involve complete sO-transitions 

and other partial transitions as well, we have 

io(x) = L1l'(x +s(l))tPs(l)(x +s(l))[Aso + LLA(sas')a']' 
s#o a#O s' ,a' 

and this reduces to the second line in (7.24). Also, the second line in (7.25) clearly 
follows since O-subtractions only involve complete Oa-transitions. Finally, a glance 
at (7.24), (7.25), and the traffic equations (7.8) and (7.23) verifies that the traffic 
equations are equivalent to (7.26). 0 

A network's performance is often measured by its throughputs it, ... , i m , where 
i j denotes the average number of units per unit time that enter node j. Since the 
process is ergodic, i j is also the average number of departures per unit time from 
j. 
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Proposition 7.7. (Throughputs at Nodes) The throughput at node j is 

i i-I ; 

). j = L aaAsa(at + L(s~)-) + L A.w L(ao - asi+l) L(sj)-, (7.27) 
s,a ;=1 s,a ;=0 n=1 

where aa == Lx 1l'(x)tPa(X), c+ == max.{O, c} and c- == c+ - c. 

PROOF. By the ergodic theorem for Markov processes, it follows that). j 
Lx,y 1l'(x)q(x, y)f(x, y), where f(x, y) describes the number of arrivals to j 
in a x ~ y transition. That is, 

i 

).j = L 1l'(x) L A.wtPs(t)(x)l(x - s(i) + a E ]E)[at + L(sj)-] 
x .'I ,a ;=1 

i-I 

+ L1l'(x) LAsa L[tPs(i)(x) - tPs(;+I)(X)] 
x s,a ;=0 

; 

x I(x - s(i) E ]E) L(sj)-. 

Now, by two uses of CI>-balance and the structure of 1l' , we have 

L 1l'(x)tPsO)(x)l(x - s(i) + a E ]E) 
x 

= L 1l'(Tas(;)x)tPs(;)(Tas(;)x)l1(a)l1(s(i»-1 
x 

= L1l'(X)tPa(X) = aa· 
x 

Similarly, 

n=1 

L 1l'(x)tPs(HI)(x)l(x - s(i + 1) - s;+1 E ]E) = asHI. 
x 

Then applying these equalities to the two sums on x in the preceding display yields 
02n. 0 

7.4 String-Nets with Unit-Vector Transitions 

This section describes the results above when the allowable increment vectors 
a E A are unit vectors instead of general vectors. 

Suppose the string-net process X represents an open network in which the 
allowable increment vectors consist of the m-dimensional unit vectors el, ... , em 
and eo = 0. We say that the process has unit-vector string transitions. In this 
case, the unit vectors are associated with the node numbers: It is convenient to let 
A = to, I, ... , m} denote the node numbers instead of the vectors. Accordingly, 
s = (Sl, ... , si) is a string of node numbers, s(i) = L~=I esn, and the rates are 
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ASj, j EA. Then the results above are the same, aside from the change in notation 
from vectors to node numbers. For instance, the traffic equations (7.8) are 

e t 

Wj Ln Wsi LA(SjS')j' = Ln WSiAsj, 1 ~ j ~ m. (7.28) 
s i=1 s'.j' s i=1 

The following is a combination of Theorems 7.2 and 7.3 for unit-vector string 
transitions. Consider (7.28) written as Wjgj(w) = h j(w), where gj(w) and h j(w) 
denote the summations on the left and right sides of (7.28) as functions of W = 
(WI, ... , wm )· 

Theorem 7.S. Suppose there are vectors 0 ~ W < W such that 0 < g/Jll) < 00 

and 

wjglw) < h/.lQ), and hj(w) < Wjgj(lQ), 1 ~ j ~ m. 

Then there is a vector W that satisfies (7.28) and.!Q < W < W. Moreover, Jl"(x) = 
ct>(x) nj=1 w?, x E lE, is an invariant measure for the network process X. 

Note that this result is simpler than Theorems 7.2 and 7.3 because W j plays the 
role of Ya in Theorem 7.3, and hence there is nO issue of verifying that Ya is a 
product. 

For closed networks, unit-vector transitions make sense only for the case of one
stage transiti,ons (L = 1). One can also define analogous unit-vector transitions 
when the set A of increment vectors consists of only the negative unit vectors, or 
when it consists of a combination of negative and positive unit vectors. 

We now derive expressions for throughputs and service rates. For the rest of this 
section, assume that the network process X is ergodic and denote its stationary 
distribution by Jl"(x) = cct>(x) Hi=1 w? Let iij denote the average number of 

departures per unit time from node j when the node is not empty. The I j and 
ii j are often called the effective arrival and service rates for node j and the ratio 

I j / ii j is the traffic intensity. 

Proposition 7.9. For the network process X with unit-vector string transitions, 

I j = LJl"(x)cf>j(x) LASj, and iij = Ij/L l(ej ~ x)Jl"(x). 
x x 

PROOF. The first expression is an obvious special case of (7.27). By the strong 
law of large numbers for Markov processes, the effective departure rate is 

iij = LIj(x)/ L l(ej ~ x)Jl"(x), 
x x 

which is the average number of departures from j per unit time divided by the 
portion of time j is nonempty. And Lx I j (x) = I j by Proposition 7.6. D 

Another important performance measure of the network is the average sojourn or 
waiting time of a unit in a node j of the network. This average is defined by Wj == 
limn - Hxl n- I L~=I Wj(v), where Wj(v) is the waiting time in j of the vth unit to 
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enter j. We will use the average number of units in j, which is L j == Lx x j 1f (x). 
The Little law for Markovian systems in Theorem 5.1 yields the following result. 

Proposition 7.10. (Little Law for Waiting Times) If the network has unit
vector string transitions and the state space contains a vector x with x j = 0, 
then Wj exists and L j = 'i j Wj . Here 'i j is necessarily finite, but Wj and L j may 
both be finite or infinite. This assertion for averages also holds for expected values 
when the system is stationary (or in equilibrium). In this case, L j is the expected 

number of units in j .. the 'i j is the expected number of units that enter j in a unit 
time interval,' and Wj is the expected sojourn time for an arbitrary unit in j under 
the Palm probability that a unit enters j at time O. 

Similar Little laws apply to batch arrivals into j, but more information is needed 
on how the "order of units" in a batch affect their individual service times. In these 
cases, one can state a law for all units labeled as the kth unit within a batch arriving 
into j-the Wj and L j would be the average waiting times and queue lengths for 

these kth arrivals, and 'i j would be the arrival rate of batches into j of size k 
or more. The expected waiting time in a sector (subset of nodes) in a Jackson 
network is described in Chapter 1. To obtain similar results for vector-transitions, 
one would need more information on where each unit in a batch actually moves; 
the net number of movements is not adequate to describe waiting times as it is 
under single-unit movements. 

The computation of throughputs, average waiting times, and other performance 
parameters--even for a Jackson network-is difficult for a moderate-size network. 
However, since there is a closed-form expression for the stationary distribution of 
the network, one can compute these parameters by Monte Carlo simulation as 
discussed in Chapter 1. 

7.5 Networks with One-Stage Batch Transitions 

A Whittle-type network with batch movements is a string-net in which all tran
sitions are of the form x ~ TdaX, for d, a E A. The d and a are departure 
and arrival vectors. Units represented by d may form part or all of the vector a, 
in which case they are transferred within the network. In this string-net, all of 
the strings are exactly of length 1 (Le., each transition involves only one pair of 
addition/subtraction vectors). This section describes the results above for these 
batch-movement networks. 

Consider the string-net process X with strings exactly of length 1 as described 
in the preceding paragraph. The transition rates (7.2) for the network are 

q(x, y) = L AdatPd(x)l(y = Tda X), X =f. yin lE. (7.29) 
d.aEA 

In other words, whenever the process is in state x, the time to its next potential 
move to TdaX via a da-transition is exponentially distributed with rate AdatPd(X). 
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The <I>-balance assumption implies that <Pd(X) = 0, if TdaX ¢ lE for some a E A 
with Ada > O. Note that the tfJo-dominance assumption is not relevant since L = 1. 

We call X a network process with one-stage batch transitions-the vectors in 
A are the allowable batch increments in the process. Invariant measures for this 
process are given by the following special case of Theorem 7.2. 

Theorem 7.11. Suppose that Y = (Ya : a E A) is a positive vector, with Yo = 1, 
that satisfies 

Ya L Aad = L YdAda, a E Ao, (7.30) 
deAo deAo 

and Ya = n7=1 w? a E Ao. for some positive WJ, .•. , W m• Then an invariant 
nm x· 

measure for the process X is 1f(x) = <I>(x) j=1 w/' x E lEo Furthermore, a 
necessary and sufficient condition for an invariant measure of this form is 

m 

L D(a)[tfJo(x) - <Pa(x) n w"/j] = 0, x E lE, 
aeAo j=1 

where D(a) denotes the right side of(7.30) minus its left side. 

In this case, the traffic equations (7.8) reduce to (7.30) because in A(sa), the s must 
be 0 since L = 1, and A{Oa) = LdeA Aad. Note that (7.30) is a balance equation 
for a Markov process on the finite set Ao with transition rates Aad and hence there 
exists a positive solution Y to the equation. The solution is a geometric product 
form under the criterion in Remark 7.5. 

According to Proposition 7.6, the measure 7r in Theorem 7.11 satisfies the partial 
balance property 

1f(x) L q(x, TadX) = L 1f(TadX)q(TadX, x)l(Tadx E lE), a E Ao, x E lE. 
deAo deAo 

(7.31) 
The following is an example in which the units in a batch movement are 

independently transferred among nodes via Markovian routing probabilities. 

Example 7.12. Independent Concurrf!nt Movements of Units. Let X denote the 
network process described above with rates (7.29), where A denotes a set of m
dimensional vectors. For simplicity, assume the network is closed (the open case is 
similar). In a da-transition in state x, think of <Pd(X) as the rate at which the batch 
d is released from the network and Ada as the rate in which d is changed into the 
addition batch a. To describe the units in these vectors by their node locations, we 
define 

Idl 
I(d) = {i = (iJ, ... , ildl): L I(in = j) = dj , 1 :'S j :'S m}, 

n=1 

which is the set of node indices that "represent" d. 
Assume the units in the batch d move concurrently such that rjk is the rate 

(probability or propensity) for a single unit in the batch to move from j to k in 
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the node set {I, ... , m}; and that Tjl,kl ••• Tjldl,k1dl is the rate that the released batch 
j E I(d) results in the batch addition k E I(a), where Idl = lal. This rate is a 
compounding of the single-unit rates. Then the rate of a da-transition in state x is 
AdatPd(X), where 

Ada = L L Tjl,k l •.• Tjldl,k1dl , d, a E A, with Idl = lal· 
jeI(d) keI(a) 

Note that the probability of d and a being generated is Ada I La Ada; and if the T jk'S 

are probabilities with L~=' Tjk = I for each j, then La Ada = Idl !/d,! ... dm !. 
Assume the rates Tjk are irreducible and let w" ... , Wm be positive numbers 

that satisfy 

m m 

Wj LTjk = LWkTkj, I ~ j ~ m. 
k=' k=l 

Define 1/(x) = Dj=l ¥'? Because the wi's satisfy the preceding equations, we 
have 

1/(a) L Aad = L L WjITjl,k l '" WjlalTjlal,klal 
deA jeI(a) kl ... ,k1al 

= L L WkITkl,jl'" WklalTklal,jlal 
jeI(a) kl ... ,k1al 

= L 1/(d)Ada, a E Ao. 
deA 

Therefore, by Theorem 7.11 it follows that Jl'(x) = eII(x)1/(x), x E lE, is an 
invariant measure for the process. 0 

7.6 Networks with Compound-Rate String Transitions 

A large class of string-nets are those in which the rate Asa of an sa-string is a product 
or compounding of several rates representing micro features of the network. This 
section illustrates this class with an example of a network in which a string is 
generated by a Markov chain mechanism. The ideas here readily extend to a variety 
of networks with compound-rate string transitions. 

Consider the m-node network that operates as follows. The network is open, 
and its state space consists of all m-dimensional vectors with nonnegative integer
valued entries. Units enter the network at the nodes according to independent 
Poisson processes with respective rates A" ... , Am; a zero rate for a node means 
it has no external arrivals. The services at each node j are independent and ex
ponentially distributed with rate f.L j. The results below also apply, with minor 
modifications, to general ell-balanced service rates and closed or open networks 
with other types of state spaces. 

A transition of the network is triggered by the movement of a single unit. An 
external arrival to a node just adds one unit to the node and no other units move. 



196 7. Networks with String Transitions 

On the other hand, a service completion at a node may trigger a transition in which 
single units are successively deleted from a string of nodes Sl, .•• , Sv and, at the 
end, one unit might be added to some node k in A = {O, 1, ... , m}. All of this 
occurs instantaneously and the number of deletions v ~ L is a stopping index that 
may be random. 

The procedure for such a transition triggered by a service completion is as 
follows. Whenever a normal service completes at some node Sl E Ao = A\{O} 
(with rate ILs ,), then with probability Qslk one unit moves to some node k E A 
and the procedure stops; or with probability PSI "2' one unit exits the network from 
node Sl and a signal goes to node S2 E Ao to delete a unit there provided that 
node is not empty (Lk(Pjk + Qjk) = I for each j). If node S2 is empty or if 
L = 1, the procedure stops. Otherwise, the preceding events are repeated until 
stopping. That is, for each i ~ 1, the departure from node s;, with probability 
QSjko adds one unit to node k and stops the procedure; or with probability PSj Si+ I , it 
triggers another departure from node S;+I provided this node is nonempty and, if 
node s;+! is empty or i = L, the procedure stops. Think OfPjk as probabilities of 
"propagating new departures" and Qjk as probabilities of "quitting" (or stopping) 
the string deletions. 

In summary of the preceding description, typical transitions of the network are 
as follows. 
• An arrival into node k from outside the network: x ~ x + ek. 
• String deletions stopped because node S;+I is empty or i = L: 

x ~ x - eSI - ••• - eSj ' 

• String deletions stopped by the quitting probability QSjk: 

x ~ x - eSI - ••• - eSj + ek. 
As in the previous sections, we let X denote the stochastic process representing 

the numbers of units at the nodes. The data for this process are the arrival rates 
A = (AI, ... , Am), service rates IL = (ILl, ... , ILm), maximum string length L, and 
propagating and quitting probabilities Pjko Qjk. Define P = (Pjk) and Q = (Qjk) 
for j, k E Ao. We also assume that the inverse of the matrix I - Q exists, where 
I denotes the identity matrix. We will frequently use the vector 

i. = A(/ _ Q)-I, 

whose entries are effective arrival rates, as we will soon see. 
We first justify that this network is a string-net. 

Proposition 7.13. Under the preceding assumptions, X is a Markov network pro
cess with unit-vector string transitions and its associated traffic equation (7.28) in 
matrix form is 

L-I L-I 

IL L(WPtw = A + IL L(WPtWQ, (7.32) 
n=O n=O 

where W is a diagonal matrix with diagonal entries WI, ••• , W m • 

PROOF. Because of the Poisson arrivals and exponential service times, the net
work process is clearly Markovian. The rates of its sj-transitions are AOj = Aj 
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and, for s =I- 0, 

Asj = AsQslj, j =I- 0, and AsO = As[Qs,o + l(l = L) L f~,k]' 
k 

where As = /LSI n:,:: f~iSi+I' Now, consistent with its definition in the last section, 
Ao = E/Aj + /Lj) and, for s =I- 0, As = ES'.j A(.vs')j, which is the rate of all 
string transitions whose first part is s. 

Next note that the departure rate functions must satisfy 

lPs(i)(X) -lPs(i+I)(X) = 1(0 ::: x - s(i), ° 1:. x - s(i + 1». 

Consequently, they have the special form lPj(x) = l(ej ::: x). Clearly, these lPj'S 
are cI>-balanced with cI>(.) = 1, and the l/Jo-dominance assumption is satisfied. 
Under these specifications, X is a Markov network process with unit-vector string 
transitions. 

In this setting, the traffic equations (7.28) reduce to (7.32) since 

i-I 

W j L'1(s(l»A(sj) = L /LsI n wS; PS;S;+I W j l(s£ = j) 
S ~o ~I 

~ (,. ~(WP)'W) j' (7.33) 

~ ~('(l»l.,j ~ (l. + ,. ~(W P)' W Q t o (7.34) 

The following characterization of solutions to the traffic equation is analogous to 
Theorem 7.3. We will use Wj = ).,j//Lj, 1 ::: j ::: m. Recall that)., = A(I - Q)-I. 

Theorem 7.14. (a) Suppose L = 00 and 2::'o(Pw)n < 00, where 

Wj = 'i.j/(/L + 'i.P)j' 1::: j ::: m. 

Then WI, •.• , Wm is the unique solution to the traffic equation (7.32). 
(b) Suppose L < 00 and E:o(Pw)n < 00. Then there exists a solution W 
to the traffic equation (7.32) in the open rectangle (0, W). Furthermore, let Wn 

denote a sequence of vectors defined by Wo = ° and Wn+1 = h(wn ), where 
h(w) = (hl(w), ... , hm(w» and 

hj(w) = ()., + /L(W plW)j/(/L + )"P)j, WEe == [0, W], 1 ::: j ::: m. 

Then Wn is a nondecreasing sequence whose limit is the minimal solution to the 
traffic equation (7.32) (any other solution is greater than or equal to this limit). 

PROOF. First note that by subtracting the right side of (7.32) from its left and 
dividing by I - Q, this traffic equation can be written as 

L-I 

/L ~)W Ptw = >... (7.35) 
n=O 
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Now, assume the assumptions in part (a) hold. Multiplying both sides of (7.35) on 
the right by the matrix (I - PW) yields IL W = X- XPW. That is, (IL+XP)W = X, 
for w E C. This proves the assertion in part (a). 

Next, assume L < 00. Note that equation (7.35) is the same as I(w) = w, 
where I(w) = (fl(W), ... , 1m (w» is defined by 

L-l 

h(w) = Xj/(IL ~)W pnj, WE C, 1 ~ j ~ m. 
n=O 

Clearly I is positive, continuous, nonincreasing, and its range is contained in C 
since 0 < I(w) < w. Then, by Brouwer's fixed point theorem, I has a fixed point 
in C and hence this point is a solution to the traffic equation (7.35). Furthermore, 
this solution is in the open rectangle (0, W) since this set contains the range of I. 

For the rest of the proof, we need another representation of the traffic equation 
(7.35). Multiplying both sides of it on the right by the matrix (I - P W) yields 

IL[I - (W p)L]W = X - XPW, w E C. (7.36) 

Writing this as (IL + XP) W = X + IL(W p)L W and recalling the definition of h in 
part (b), it is clear that the traffic equation (7.35) is equivalent to w = h(w), for 
w ~ O. Hence the solutions to (7.35) are the same as the fixed points of h. Since 
h is nondecreasing, it follows by induction that Wn is a nondecreasing sequence. 
Then the limit w* = limn->oo Wn exists. Now, as n ~ 00 in Wn+l = h(wn), 

the continuity of h ensures that w* = h(w*). Thus w* is a solution to the traffic 
equation (7.35). It remains to show that if w' is any solution to the equation, then 
w* ~ w'. To prove this, it suffices to show that Wn ~ w' for each n. But this 
follows by induction, since Wo = 0 ~ w' and, assuming Wn ~ w' for some n, then 
Wn+l = h(wn ) ~ h(w/) = w' because h is nondecreasing. 0 

Obtaining a solution of the traffic equation by successively computing Wn+l 
h(wn) is very efficient: wn converges to its limit very fast. 

The next result describes invariant measures for the network process and says 
the process is ergodic if the arrival rates to the nodes are less than the service 
capacities of the nodes. 

Theorem 7.15. Suppose the vector w is a solution to the traffic equation (7.32) 
and 0 < w < w. Then nj=l w?, x ~ 0, is an invariant measure lor the process 
X. This process is ergodic if and only if 0 < w < 1. In particular, the process 
is ergodic if X < IL, and, in case L = 00, the process is ergodic if and only if 
X < IL + XP. When the process is ergodic, its stationary distribution is 

m 

rr(x) = n(1 -Wj)w?, x ~ O. 
j=l 
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In addition, I is the throughput vector and the vector of average numbers of units 
that depart from the respective nodes per unit time when they are busy is 

{
J.L + Ip 

ii = J.L ~(W p)n 

ifL=oo 

ifL < 00. 
(7.37) 

Also, W j = I j / ii j' which follows by the traffic equation, is the traffic intensity at 
node j. 

PROOF. The first two assertions follow by Theorems 7.2 and 7.14 (recall that 
cpO = 1) and thefact that OJ=l w? is finite if and only if W j < 1 for each j. If 

I < J.L (i.e., W < 1), then by Theorem 7.14 we know that there is a solution W to 
the traffic equation that satisfies 0 < W < 1; hence the process X is ergodic. The 
assertion for the case L = 00 also follows by Theorem 7.14. 

Now, assume that X is ergodic. By Proposition 7.6, we know that the effective 
arrival rate to j is Ls 1/(SdASj. Then this rate equals I j, since the equality of (7.33) 
and (7.34) along with (7.35) yield 

L-l 

L 1/(sdAsj = (J.L L(W p)nW) j = I j . 

s n=O 

Next, observe that Proposition 7.9 says that the effective departure rate from j 
is 

x 

Then this average equals ii j defined by (7.37) since ii j = W j I I j by the traffic 
equation (7.32). 0 

7.7 Networks with Multiple, Compound-Rate String 
Transitions 

In this section, we discuss string-nets with compound-rate string transitions for 
multiple types of string initiations. 

Consider the network process X in the previous section with the following 
generalizations: 
(1) There are multiple types of services or string initiations indexed by t E I, and 
J.L(t) = (J.Ll (t), .•. , J.Lm(t)) denotes the type t service rates at the nodes. 
(2) A type t service completion generates a string of deletions and a possible 
addition as before, but now the propagation and quitting probabilities depend on 
the stage i and index t. Specifically, an ith departure from node Si may trigger a 
departure from node Si+l with probability P.'iSi+l (t, i) or, with probability QSik(t, i), 
it may add one unit to k and then quit. With no loss in generality, the maximum 
string length L is independent of t. 
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The following result is analogous to Theorem 7.15. The condition (7.40) for 
ergodicity is that the arrival rates lU) into the nodes are less than the service rates 
ji,(0). 

Theorem 7.16. The process X described above is a string-net and its traffic 
equation is ji,(W) W = leW), where 

L-\ n 

lew) = A + LJL(t) ~)n W pet, i))WQ(t, n + 1), (7.38) 
tEI n=O i=\ 

L-\ n 

ji,(W) = L JL(t) L[n W pet, i)). (7.39) 
tEI n=O i=\ 

If leW) < ji,(O)W = LtEI JL(t)W for some m x m diagonal matrix W with 
positive diagonal entries, then there is a solution w to the traffic equation in 
(0, W). In particular, if 

lU) < L JL(t), (7.40) 
tEI 

then there exists a solution w to the traffic equation in (0, 1), and hence the process 
X is ergodic. In this case, its stationary distribution is 

m 

H(X) = n(1 -Wj)w?, x ~ 0, 
j=\ 

and leW) and ji,(W) are the effective arrival and service rate vectors. 

PROOF. The traffic equation ji,(W) W = leW) is the obvious analogue of (7.32). 
The rest of the proof is similar to that of Theorems 7.14 and 7.15 because a solution 
of the traffic equation is a fixed point of the vector-valued function 

few) = (l(w)J/ji,(W)\, ... , l(w)m/ji,(W)m), WE [0, w). D 

The rest of this section is devoted to examples of the preceding theorem. We start 
with a case that can be treated as in the last section. 

Example 7.17. Homogeneous Propagation and Quitting Probabilities. Consider 
the process described above in which all the propagating and quitting probabilities 
are Pj k and Q j k, respectively. Then the traffic equation is the same as that in Propo
sition 7.13 with JL = Lt JL(t). Consequently, the assertions of Proposition 7.13 
and Theorems 7.14 and 7.15 apply automatically. D 

Another special situation of interest is when the propagating and quitting ma
trices are homogeneous and equal to P and Q, respectively, after the first stage. 
Then (7.38) and (7.39) reduce to 

L-2 

leW) = A + L JL(t)[W Q(t, 1) + W pet, 1) L(W Pt W Q), (7.41) 
tEI n=O 
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L-2 

jL(W) = L lL(t)[I + W P(t, 1) L(W pt]. (7.42) 
lEI n=O 

The following are examples of this case. 

Example 7.1S. Regular and Negative Units with Two-Stage Strings. Consider the 
process described above in which there are regular and negative units (types 1 
and 2) with two-stage strings (L = 2) that evolve as follows. Whenever a regular 
unit finishes a service at node j with rate 1L(1) j' it either enters a node k with 
probability Qjk for another service, or becomes a negative unit and enters node 
k with probability Pjk. If this negative unit encounters no units at k, nothing 
more happens. Otherwise, one unit is deleted from k and one regular unit enters a 
node k' with probability Qkk' (entering k' = 0 means the unit exits the network). 
In addition, negative units from outside enter the nodes according to independent 
Poisson processes with rates 1L(2) = (1L(2)1, ... , 1L(2)m). Ifanegative unit entering 
k encounters no units there, then nothing more happens; otherwise, one unit is 
deleted from k and one regular unit enters a node k' with probability Qkk" In terms 
of the notation above, 

P(I, 1) = P, Q(1, 1) = Q', Q(1,2) = Q = Q(2, 1), 

P(1,2) = P(2, 1) = P(2, 2) = Q(2, 2) = O. 

Then Theorem 7.16 applies with (7.41), (7.42) reduced to 

>:(W) = A + 1L(1)[WQ' + W PWQ] + 1L(2)WQ, 

jL(W) = 1L(1) + 1L(2) + 1L(1)W P. 

The sufficient condition for ergodicity is 

(A + 1L(1)[Q' + PQ] + 1L(2)Q) j < (1L(1) + 1L(2»j, 1 ~ j ~ m. o 

Example 7.19. Regular and Negative Units with Infinite Strings. Consider the 
process related to (7.41), (7.42) in which L = 00 and all the propagation and 
quitting probability matrices are P, Q except for those at the first stage. Clearly 
E:'o(W p)n = (1- W p)-I exists for W ~ I, provided that (1- p)-I exists. In 
this case, Theorem 7.16 applies and the sufficient condition for ergodicity is 

(1 + ~ "(,)[Q(,, 1)+ P(" 1)(/ - P)-' QJ)} < ~ ,,(,)} , 1 '" j '" m. 

Although we know the traffic equations have a solution, we cannot obtain a c1osed
form expression for it as we did in Example 7.17. 

7.8 String-Nets with Two-Node Batch Transitions 

In this section, we discuss string-nets in which a transition involves a batch deletion 
at a single node and a batch addition at another single node. 
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Assume that the string-net X is such that each element of A is of the form 
a = nek for some 0 ~ k ~ m and n ~ 1. Also, assume that each nonzero string s 
in S consists of i. copies of of some e j (Le., s = (e j ••. e j », where i. ~ 00. This 
means that for such a pair sa, the complete transition is x ~ x - i.e j + nek, and 
the ith partial transition is x ~ x - iej. We express the rate of sa as Asa = Aij,nk' 
Under an sa-transition with s = ejej ... and i. = 00, all units from node j are 
cleared out, and we denote its rate simply by AOOj. Such a "clearing" transition 
might represent a dispatching or assembly of units (or a catastrophe) that clears 
out all units at j. We say that X has two-node string transitions since exactly two 
nodes are affected in a transition. 

Here we let Ynj denote positive real numbers, for 1 ~ j ~ m and n ~ 1, where 
YOj = 1. Also, the summations on i. are the conventional ones that do not include 
a term for i. = 00. 

Theorem 7.20. For the network process X with two-node batch transitions, the 
traffic equations (7.8) are 

00 

Ynj LYij[rAn + i.) + AOOj] = LYikAik,nj, 1 ~ j ~ m, n ~ 1, (7.43) 
i=O ik 

where rj(n) == Li/~n Lnljl Ai'j,n'j,.lfthese equations have a solution oftheform 

Ynj = wj, for some positive WI, .•. , Wm, then Jl'(x) = cI>(x) 07=1 w?, x E IE, is 
an invariant measure for the process. 

PROOF. This follows by Theorem 7.2, where the traffic equations (7.8) reduce to 
(7.43) since, for any sa = (i.k, nj), the A(sa) = rj(n + i.)I{j = k) for i. < 00 and 
A(sa) = Aooj 1(j = k) for i. = 00. 0 

Here are a few examples. 

Example 7.21. Open Whittle Process with Periodic Clearing. Suppose the process 
X with two-node batch transitions has strings of only length 1 or 00, and A = 
{el' ... , em}. Then all transitions are of the form (x ~ x - ej +ek), as in a Whittle 
network, or there is a clearing (x ~ x - x je j). The rates of these transitions are 

(7.44) 

We call X a Whittle network process with periodic clearing. Without loss in 
generality, assume that Aj,k is an irreducible matrix. 

Theorem 7.22. Suppose the process X with transition rates (7.44) satisfies 
Lx cI>(x) < 00. Then it is ergodic and its stationary distribution is 

m 

Jl'(x) = ccl>(x) n w?, x E IE, 
j=1 

where Wo = 1 and WI, ••• , Wm in (0, 1) satisfy the traffic equations 

00 

Wj[LAj,k + Aooj L wj] = L WkAk,j, 1 ~ j ~ m. 
k v=O k 

(7.45) 
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Furthermore, the effective arrival and service rates, J.. j and [Lj, for node j are 
given by the sums on the right and left sides of (7.45), respectively. 

PROOF. First note that equations (7.45) are clearly a special case of the traffic 
equations (7.43). We will consider (7.45) written as W jgj(w) = h jew) and apply 
Theorem 7.3 to justify that it has a solution. To this end, let W be a vector in (0, 1) 
that satisfies 

Wj I).j,k = LWkAk,j, 1:::: j :::: m. 
k k 

Define A* = {j : AO,j > OJ. This set is not empty because Aj,k is irreducible. Let 
!Q be a vector in (0, w) such that 

!Qj < L !QkAkj/gj(w), j E {I, ... , m}\A*. 
kEA* 

From the definition of W and these inequalities, it follows that 

hj(w) = Wj LAj,k < Wjgj{!Q), 1:::: j :::: m. 
k 

From these inequalities and Theorem 7.3, it follows that (7.45) has a solution 
W E (0, 1). Then the first assertion of the theorem follows by Theorem 7.2. Also, 
Proposition 7.9 justifies, as in the proof of Theorem 7.15, that (7.45) is the same 
as Wj[Lj = Aj. 0 

Example 7.23. Assembly Networks. Consider the string-net described in Theo
rem 7.22 with the following features. Units arrive to the nodes by independent 
Poisson processes with rates A I, ... , Am. Services at node j are exponential with 
rate JLi. When a service at j completes, K j units, if available at j, are assembled 
into one unit and sent to node k with probability Qjk. If there are less than Kj units 
at j, then all the units at j are assembled into one defective unit and discarded 
(sent to node 0). Then the process X that represents the numbers of units at the 
nodes has two-node batch transitions. Its traffic equations (7.43) are 

Kj-I m 

WjJLj L w~ = Aj + LJLkW[*Qkj, 1:::: j :::: m. 
£=0 k=1 

Then Theorem 7.22 applies in this setting under the assumption that 

m 

Aj + LJLkQkj < KjJLj, 
k=1 

which says that the service capacity at node j is greater than the arrival rate. 0 
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7.9 Single Service Station With String Transitions 

Further understanding of string transitions can be obtained by considering a single 
node or service station, which we will now do. In addition to giving more insight 
into string transitions, these processes for single nodes can be used as building 
blocks for networks, comparable to quasi-reversible nodes that are coupled together 
to form networks. 

Consider a Markov process {XI: t ~ O} with state space IE = {O, 1,2, ... }. 
Assume that it has the following type of string transitions, where a = 0 or 1 and 
s is a nonnegative integer . 
• A complete sa-transition: x ~ x - s + a . 
• An ith partial sa-transition: x ~ x - i. 
Then the transition rates (7.2) of the process X are 

q(x, x + 1) = AOlcfJo(X) 

q(x, x - i) = L Ai+a,a[cf>i+a(X) + cf>i(X) - cf>i+l(X» 
a=O,1 

= Ai,O[2cf>i(X) - cf>i+l(X)) + Ai+l,lcf>i(X), 0 < i < x, 

The following result is an immediate consequence of Theorem 7.2. 

Corollary 7.24. An invariant measure for the process defined above is 7l'(x) = 
ct>(x)WX, X E IE, where w > 0 satisfies 

L-l L 

L w s+1 As+1 = L wS)"s(' (7.46) 
s=O s=o 

and As = E;'=s(As10 + As/l)' The process is positive recurrent if and only if 
O<w<1. 

Clearly w is the unique positive solution to (7.46) since this equation is equiv
alent to E;=1 WS[A.,o + As+I1 = AOl, which has a unique solution. A special case 
of this model is as follows. 

Example 7.25. A Simple Production-Inventory System. Consider a production 
system whose cumulative output over time is a Poisson process with rate A. As 
the units are produced, they are put in inventory to satisfy random demands. Let 
XI denote the quantity of units in inventory at time t. Whenever there are x units 
in inventory, the time to the next demand has an exponential distribution with 
rate IL and the demand is for i units with probability Pi, where i ~ L. Also, 
the probability that the demand can be satisfied is P {Z ~ x - i I Z ~ x}, where 
1 ~ i :::: min{x, L}. Think of Z as a nonnegative integer-valued random variable 
that denotes a feasible inventory level. Then the process X is clearly a Markov 
process, and its nonzero transition rates are q(x, x + 1) = A and 

q(x, x - i) = ILPiP{Z:::: x - ilZ ~ x}, 1 ~ i ~ min{x, L}. 
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An easy check shows that this process is a special case of the preceding example 
in which 

AsO = 0, AOl = A, Ai+I,1 = /LPi, (/Ji(x) = P{Z :::: x}. 

Therefore, Jl'(x) = cI>(x )WX, x ~ 0, is a stationary distribution, where w is the 
unique solution to L.;=I w"(Ps + ... + PL-I) = A//L. 
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8 
Quasi-Reversible Networks and Product 
Form Distributions 

This chapter addresses the following question for a Markov network process. Under 
what conditions is the stationary distribution of the process a product of stationary 
distributions associated with the nodes? We consider a network in which the state 
of each node may contain more infonnation than the number of units at the node, 
and a network transition may be triggered by an internal node change as well as 
by a unit moving from one node to another. The network process is viewed as a 
linkage of certain artificial Markov "node processes" that mimic the operation of 
the nodes as if they were operating in isolation. The main results are necessary 
and sufficient conditions under which the stationary distribution of the network is 
a product of the stationary distributions of the individual node processes. 

An important example of a network with a product fonn distribution is a quasi
reversible network. Loosely speaking, a single queueing system is quasi-reversible 
if Poisson arrivals imply Poisson departures when the system is stationary. A 
network is called quasi-reversible if each of its nodes viewed in isolation is quasi
reversible. A major result of this chapter is that a network has a product form 
stationary distribution and is "biased locally balanced" if and only if the network 
is quasi-reversible and certain traffic equations are satisfied. We also characterize 
product fonn distributions for queueing networks in which the routing is reversible, 
but the entire process need not be reversible. The chapter ends with a discussion 
of how the results extend to networks with multiclass transitions. 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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8.1 Quasi-Reversibility 

An open, unlimited-capacity Jackson network process is a quintessential process 
with a product form stationary distribution. The transition rates of the process are 
consistent with viewing the nodes in isolation as birth-death queueing processes 
linked together by customer routing rates. Then the stationary distribution of the 
network is a product of the stationary distributions of the birth-death processes. 
This approach of constructing or analyzing network processes is developed in the 
following sections. 

As an introduction, this section describes such a construction of a classical quasi
reversible network. We begin by defining quasi-reversibility for a single service 
system, and then discuss a network of quasi-reversibile nodes. 

Consider a service system with queueing whose state is represented by a Markov 
jump process {XI: t ~ O} on a countable state space lEo A typical state x E lE 
includes all the relevant information about the system including the number of 
customers present, denoted by n(x). Assume the system evolves as follows. A 
transition of the process is triggered by one of the three following events: arrival of 
one customer; departure of one customer, or internal change without the customer 
population changing. The transition rates of the process are defined as 

q(x, y) = qa(x, y) + qd(x, y) + qi(x, y), xi- y E lE. 

The three parts are the transition rates associated with arrivals, departures, and 
internal changes. At most, one of these rates may be nonzero for each pair x, y, 
and so 

if n(y) = n(x) + 1 

if n(y) = n(x) - 1 

ifn(y) = n(x). 

Assume the process X is ergodic, and let 1l'(x) denote its stationary distribution. 

Definition 8.1. The process X defined above is quasi-reversible if 

a == L qa(x, y) is independent of x E lE, and (8.1) 
YoFx 

1l'(X)-1 L 1l'(y)qd(y, x) = a, for each x E lE. (8.2) 
y#x 

This definition is a special case of Definition 8.12 below for more general 
Markov processes. To see the meaning of the conditions above, let N(t) denote 
the number of customer arrivals and D(t) denote the number of departures in the 
time interval [0, t]. These point processes are functionals of the Markov process 
X, like the functionals discussed in Chapter 4. For instance, 

N(t) = L l(Xs -I X s-, n(Xs) = n(Xs-) + 1), t ~ O. 
s~t 

Now, by Theorem 4.11, it follows that condition (8.1) is equivalent to N being a 
Poisson process with rate a and N+ 1. X_ (Le., N on (t, 00) is independent of X 
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on [0, t] for each t). Similarly, by Theorem 4.12, we know that, when the process 
X is stationary, then condition (8.2) is equivalent to D being a Poisson process 
with rate a and D_ -1 X+. 

Because of these observations, a quasi-reversible system is said to have Poisson 
input and output processes, and the current state of the system is independent of 
prior departures and subsequent arrivals. 

We now show how quasi-reversible nodes can be connected to form a quasi
reversible network with a product form distribution. 

Example 8.2. Classical Quasi-Reversible Network. Consider a network consist
ing of m quasi-reversible nodes as defined above. Specifically, each node j "in 
isolation" operates as a quasi-reversible process on a countable state space IE j, and 
its transition rates are 

qj(Xj, Yj) = qj(Xj, Yj) + q1(Xj' Yj) + q~(Xj, Yj), Xj i- Yj E IE j . 

The process is ergodic with stationary distribution 7Tj(Xj), and its Poisson arrival 
rate a j is given by (8.1). Condition (8.2) is also satisfied for each node j. 

We will link the nodes together to form a network as follows. The network 
may be closed or open or a mixed network with a combination of transient and 
permanent customers. For the last two cases, assume the outside, denoted by node 
0, also operates in isolation as a quasi-reversible process on a space lEo (the number 
of units at node ° can be taken to be infinite). Denote the node set M by {I, ... , m} 
or {O, 1, ... , m} according to whether the network is closed or not closed. A typical 
state of the network is a vector x = (x j : j E M) in a space IE that is the cartesian 
product of the sets {lEj : j EM}, or a subspace of this product space. Let n j(x) 

denote the number of customers at node j when the network is in state x. 
A change in the network is triggered by one unit moving from one node to another 

in M, or by an internal change at a node. Such transitions will be described by the 
sets 

~k(X) == {y E IE : Yi = Xi, .e i- j, k; 

nj(Y) = nj(x) - 1, nk(Y) = nk(x) + I} 

~(x) == {y E IE: Yi = Xi, l i- j; nj(Y) = nj(x)}. 

The set ~k(X) consists of all states that can be reached in a transition from the 
state x due to a unit moving from j to k. The set ~(x) consists of all states that 
can be reached in a transition from the state x due to an internal change at j. 

We assume the transition rates of the network process X are 

{
Ajkq1(Xj, Yj)qt(Xb Yk) 

q(x, y) = q1(Xj' Yj) 

° 

if Y E 7}k(X) 

if Y E 7}(x) 

otherwise. 

(8.3) 

The Ajb as in preceding chapters, denotes a rate of routing units from j to k, or 
the probability of such a movement. Without loss of generality, assume the routing 
rates Ajk are irreducible. In addition, assume the process X is irreducible on IE. 
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The process X defined above is an example of a quasi-reversible network 
process. A product form invariant measure for it is as follows. 

Theorem 8.3. An invariant measure for the network process X is 

X E lE, 

where W j are positive values that satisfy the traffic equations 

Wj L AjkOljOlk = L WkAkjOlkOlj, j E M, 
keM keM 

and Wo = 1 if the network is not closed. 

One can prove this result by showing that the specified 7r satisfies the total 
balance equations. This theorem is also a consequence of Theorem 8.14 below. 

Note that the traffic equations in Theorem 8.3 have the following interpretation 
(Exercise 3): The arrival rate into each node j is equal to the sum of the arrival 
rates into node j from all other nodes. Keep in mind that although the input and 
output processes for a node in isolation are Poisson, the input and output processes 
for a node in the network may not be Poisson. Conditions for the latter can be 
obtained by the results in Chapter 4. 0 

For the network described above with transition rates (8.3), there are several 
definitions of the node transition rates q j that yield different distributions 7r j and 
traffic equations, but lead to the same invariant measure of the network. This idea 
is illustrated in the next example. 

Example 8.4. Alternative Formulation of Example 8.2. Consider the network 
process X in Example 8.2 with qj defined slightly differently as 

qj(Xj, Yj) = /3jqj(Xj, Yj) + /31q1(Xj' Yj) + q}(Xj, Yj), Xj =1= Yj E lEj' 

Now there are coefficients on the first two terms. We assume that /3j is a dummy 
variable that will be determined. As above, we assume that Ol j == LYj7{,xj qj(x j, Y j) 

is independent of Xj' Motivated by Theorem 8.7 below, we set /31 = Lk~j AjkOlk. 
Assume q j is an ergodic transition rate and let 7r j (x j ) denote an invariant measure 

for it. Note that 7rj as well as qj is a function of /3j. Finally, assume 7rj is such that 

Cij(/3j) == 7rj(Xj)-1 2: 7rj(Yj)q1(Yj, Xj), is independent of Xj E lEj. (8.4) 
YdXj 

This quantity is a function of /3j because 7r j is. In this setting, node j need not be 
quasi-reversible as in Example 8.2; it would be if Cij(/3j) = Olj. 

Theorem 8.5. Suppose there exist positive /3j' s that satisfy the traffic equations 

/3j = LUk(/3Z)Akj, j EM. 
k#j 

(8.5) 
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Let these firs be the coefficients in the q/s.lf each qj has an invariant measure 
1'( j, then an invariant measure for the network process X is 

1'(x) = n 1'(j(Xj), x E E. 
jEM 

This result follows by showing that the specified 1'( satisfies the total balance 
equations. This theorem is also a consequence of Theorem 8.14 below. 

Since the network in this example is the same as the one in the preceding 
example, the invariant measures for it in Theorems 8.3 and 8.5 are essentially the 
same. The only difference are the qj'S, 1'(j'S, and traffic equations. In comparing 
these theorems, note that the assumption (8.4) in Theorem 8.5 is weaker than the 
related assumption 'iij(fiJ) = aj in Theorem 8.3. On the other hand, the traffic 
equations in Theorem 8.3 are linear and known to have a solution, whereas in 
Theorem 8.5, the traffic equations are more complex nonlinear equations that may 
be difficult to solve. 

One can show, as we suggest in Exercise 5, that 'iij(fiJ) is the rate at which 
customers depart from node j. Furthermore, the traffic equations (8.5) say that the 
arrival rate into each node j is equal to the sum of the arrival rates into node j 
from all other nodes. 0 

Quasi-reversibility also applies to multiclass customers as follows. 

Example 8.6. Multiclass Customers. Consider the queueing system described in 
Definition 8.1, with the difference that it contains a countable number of customer 
classes. Define the state x so that it includes the numbers of customers of each class 
in the system. Let n(x, c) denote the number of class c customers in the system 
when it is in state x. Assume a transition of the system from a state x to a state 
y is triggered by one of the following events: arrival of one of class-c customer 
(n(y, c) = n(x, c)+I);departureofoneofclass-ccustomer(n(y, c) = n(x, c)-I); 
or internal change (n(y, c) = n(x, c) for each c). Under these possibilities, the 
transition rates of the process are 

q(x, y) = ~)qa.c(x, y) + qd,c(x, y) + qi,c(X, y)], x =/:. y E IE. 
C 

Then the system is quasi-reversible if it satisfies the conditions 

a C == L qa,c(x, y) is independent of x E IE for each c, 
y 

1'(X)-1 L 1'(y)qd(y, x) = aC , for each x and c. 
y 

8.2 Network to be Studied 

o 

In this section, we define the network process that is the focus of the rest of this 
chapter. 
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We shall consider an open m-node stochastic network, where each node j in the 
set M == to, 1, ... , m} is represented by a state x j in a countable set lE j. Later we 
comment on how the results apply to closed networks. The network is represented 
by a stochastic process {XI: t ~ O} with values x = (Xj : j E M) in the cartesian 
product lE of the spaces lE j, j EM. Note that this includes a value Xo for node O. 
The network need not contain customers that move among the nodes-it may just 
be a multidimensional system with interactions. Therefore, we do not refer to the 
numbers of customers at the nodes. The changes in the network are triggered by 
three types of transitions. To be more descriptive, however, we call these transitions 
arrivals, departures, and internal node changes. 

The major assumption is that X is a Markov jump process with transition rates 

q(x, y) = Lqjk(X, Y), x, Y E lE, (8.6) 
j,k 

where ( ) I qj(Xj , Yj)Ajkq:(Xt, ydl(Yl = Xi, i =I- j, k) 
qjk X, Y = i . 

q/Xj, Yj)l(Yl = Xi, i =I- J) 

if j =I- k 

if j = k. 

Think of qj, qj and q~ as state-dependent rate components associated with "ar
rival," "departure," and "internal" transitions, respectively, at node j. We call them 
rate components because they are only parts of a compound transition rate. The 
Ajk is the rate component or tendency for a departure from node j to trigger an 
arrival at node k; it is often assumed to be a probability, with 1 - Lk#j Ajk be

ing the probability of an attempted internal change at node j. The q~(Xj, Yi) can 
be augmented by mUltiplying it by a factor A jj' but we will assume that such a 
coefficient is already included in q~. 

The usual convention for a Markov process is to disregard bogus transitions 
from a state back to itself. For our analysis, however, it is convenient to include 
bogus jumps, and so we assume q(x, x) are well-defined rates (possibly 0). We 
adopt this convention for all transition functions in this chapter. 

For simplicity, we assume the network process X is irreducible and positive re
current. The aim is to determine conditions under which the stationary distribution 
of X is a product form Jl'(x) = njEM Jl'j(Xj), where Jl'j is the jth marginal dis
tribution. The results also apply to closed queueing networks and other networks, 
where lE is a subset of a product space and Jl', Jl'j are invariant measures instead 
of normalized distributions. The approach is to relate the marginal distributions 
of the network process X to stationary distributions of one-dimensional Markov 
processes defined as follows. 

For each j EM, consider a Markov jump process on lE j with transition rates 

qj(Xj, Yj) = fJjqj(Xj' Yj) + fJjqj(Xj' Yj) + q}(Xj, Yj),· Xj, Yj E lEj. (8.7) 

Think of this process as representing the state of node j as if it were operating in 
isolation. The three terms in the summation are transition rates associated respec
tively with an arrival into node j; a departure from node j; and an internal change. 
For a fixed Xj and Yj, any combination of these three terms may be positive. For 
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instance, if all are positive for some x j, y j, then a transition from x j to Y j might 
consist of a simultaneous occurrence of an arrival, a departure, and internal change. 

Keep in mind that an arrival transition does not represent the arrival process at the 
node in the network; it only specifies a fictitious arrival environment for the isolated 
node. Similar statements apply to departure and internal-change transitions. The 
coefficients fJj, fJ1 at this point are dummy variables. Our results determine the 
form of these coefficients in order for the stationary distribution of qj to be the jth 
marginal stationary distribution of the network process. There is no coefficient on 
q}, which is consistent with it having no coefficient in (8.6). For simplicity, we 
assume the transition function q j is irreducible and positive recurrent. 

Throughout this chapter, each rrj will denote an arbitrary positive probabil
ity measure on IE j. The role of rr j will be specified in the theorem statements. 
Associated with each transition rate component qj(Xj' Yj), for s = a, d, i, we 
define 

(8.8) 
Yj 

(8.9) 
Yj 

aj = L Lrrj(xj)qj(Xj, Yj)· (8.10) 
Xj Yj 

Assume each aj is finite. Keep in mind that aj(xj) and aj are functions of rrj. 
Also, note that 

Lrrj(Xj)aj(Xj) = aj. (8.11) 
Xj 

8.3 Characterization of Product Form Distributions 

We now present necessary and sufficient conditions on the one-dimensional node 
processes defined by the qj's above under which the network process X has a 
product form stationary distribution. 

We begin by showing that if the network process has a product form stationary 
distribution, then the coefficients fJj, fJ1 of qj must be of the form (8.12) below. 

Theorem 8.7. If rr (x) = n j eM rr j (x j ) is the stationary distribution of the network 
process X, then each rr j is the stationary distribution for q j with coefficients 

(8.12) 

PROOF. The balance equations for q that rr satisfies are 

rr(x) Lq(x, y) = Lrr(y)q(y, x), x E IE. (8.13) 
Y Y 
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Since 

1l'(y) = 1l'(X)1l' j(Yj )1l'k(Yk)/(1l'j(X j )1l'k(Xk»' 

for Y such thatxe = Ye for all e #- j, k, it follows by the definition of q that (8.13) 
is 

1l'(X) ~)a}(xj) + a1(xj) L Ajka:(Xk)] 
j ki-j 

= 1l'(x) L[a} (Xj) + aj(xj) L Akja2(Xk)] , x E lE. 
j k#j 

(8.14) 
For a fixed j EM, we will consider the sum of these equations over all Xe E lEt, 
for e E M\{j}. First, note that 

L [Left side of (8.14)] = L 1l'(x){a}(xj) + L a1,(xj')Aj'jaj(Xj) 
Xt:li-j Xe:l#j j/i-j 

where 

+ a1(xj) LAjka:(Xk) 
k#j 

+ L[a}/(xj') + a1/(xj') L Aj'ka:(xdn 
j/i-j k#j' 

= 1l'j(xj)[a}(xj) + fJjaj(xj) + fJ1a1(Xj)] + A j , 

Aj = L[a~, +a1/ L Aj'kan 
j/#j k#j' 

A similar computation using (8.11) yields 

L [Right side of (8.14)] = 1l'j(xj)[a)(xj) + fJjaj(xj) + fJ1a1(Xj)] + A j . 
x,:i#j 

Since (8.14) is an equality, the preceding sums are equal, and equating them yields 

a}(xj)+fJjaj(xj)+fJ1a1(Xj) = a}(xj)+fJjaj(xj)+fJ1a1(Xj), Xj E IE. (8.15) 

These are the balance equations divided by 1l' j (x j ) for q j • Hence 1l' j is the stationary 
distribution for qj. 0 

The following result characterizes a product form distribution for the network 
process. Here we use the function 

Djk(Xj, xd = <a1- a1(Xj»Ajk(a: - a:(xd) - ra2 - a2(xd)Akj(aj - aj(xj». 

Theorem 8.8. The stationary distribution of the network process X is 1l'(x) = 
TIjEM 1l'j(Xj), X E IE, ifand only if each 1l'j is the stationary distribution of qj for 

some coefficients fJj, 131, and the 1l' j' s are such that (8.12) holds and 

Djk(xj, Xk) + Dkj(xt, Xj) = 0, j #- k E M, Xj E IEj, Xk E IEk. (8.16) 

The proof of this result uses the following lemma. 



214 8. Quasi-Reversible Networks and Product Form Distributions 

Lemma 8.9. Suppose each 1r j is the stationary distribution of qj for some coeffi
cients fJj, fJJ. Then 1r(x) = njEM 1rj(Xj) is a stationary distributionfor X ifand 
only if 

~)fJjaj(x j) + fJ1a1(x j) - fJjiij(x j) - fJ1ii1(x j)] 
j 

= ~)a1(xj) I>jka:(Xk) - iij(xj) I>kjiif(Xk)], x E lE. (8.17) 
j ki'j k#j 

If fJj, fJ1 are of the form (8.12), then (8.17) is equivalent to 

L L Djk(Xj, Xk) = 0, x E lE. 
j ki'j 

(8.18) 

PROOF. Recall that the balance equations for q and 1r are (8.14). Then to prove 
the first assertion, it suffices to show that (8.14) is equivalent to (8.17). To this end, 
recall that the balance equations for qj are (8.15) multiplied by 1rj(Xj). Summing 
(8.15) on j and subtracting (8.14) divided by 1r(x) from the sum shows that (8.14) 
is equivalent to (8.17). This proves the first assertion. The second assertion follows 
since substituting (8.12) into (8.17) and rearranging terms yields (8.18). 0 

Proof of Theorem 8.8. First, assume the stationary distribution of X is 1r(x) = 
njEM1rj(Xj). Then by Theorem 8.7, the 1rj is the stationary distribution for qj 
with coefficients that satisfy (8.12). To prove (8.16), note that (8.18) holds by 
Lemma 8.9. Also, for any k =I l, (8.12) and (8.11) imply 

(8.19) 
Xl 

Then multiplying (8.18) by ni#k 1ri(Xi), and summing it on Xi for l =I j, k and 
using (8.19) yields (8.16). 

For the converse, assume each 1rj is the stationary distribution of qj and that 
(8.12) and (8.16) are satisfied. Since (8.16) implies (8.18), it follows by Lemma 8.9 
that 1r(x) = njEM 1rAXj) is the stationary distribution of X. 0 

Theorem 8.8 yields the following procedure for establishing the existence of 
a product form stationary distribution for the network process and obtaining the 
distribution when it exists. 

Procedure for Obtaining a Product Form Distribution 
Step 1. For each node j, obtain the stationary distribution 1r j of q j as a function of 
the coefficients {3 j = (fJj, fJ1) viewed as a dummy vector. Since 1r j is a function 
of (3j' so is aj, and we write it as aj({3j)' for s = a, d. 
Step 2. Find (3 j 's that satisfy the traffic equations 

fJj = L~({3k)}'kj, fJ1 = LAjka H.8k)' j EM. (8.20) 
k#j k#j 

Step 3. Let 1r j be the distribution associated with the {3 j 's obtained from Step 2. 
Verify (8.16) for these distributions and coefficients. 
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If these steps are successful, then Jl'(x) = Dj Jl'j(Xj) is the stationary distribution 
of the network process. 

Equations (8.20) are often called traffic equations, because for queueing net
works, fJj and fJ1 are the average number of arrivals and departures, respectively, 
for node j. Finding {j j 's that satisfy (8.20) is a fixed point problem, whose so
lution is usually established by Brouwer's fixed point theorem. For a particular 
application, one may be able to construct an algorithm to compute a fixed point. 
There may be more than one solution, but any solution will work. 

Such a fixed point exists if the network has a product form stationary distribution. 
This is due to the following observation. 

Restatement of Theorem 8.8. The network process has a product form stationary 
distribution if and only if there exist (j j 's that satisfy Steps 1-3 above. 

The next result is a variation of Theorem 8.8. It follows immediately from 
Theorem 8.7 and Lemma 8.9. 

Theorem 8.10. The stationary distribution of X is Jl'(x) = DjEM Jl'j(Xj), x E IE, 
if and only if each Jl' j is the stationary distribution of q j for some coefficients fJj, 

fJ1, and the Jl'/s are such that (8.17) holds. 

Remark 8.11. (Results for Closed Networks). We have assumed that the state 
space IE is a product space and Jl' and Jl' j'S are probability distributions. However, 
from their proofs, it is clear that the sufficient conditions in Theorems 8.8 and 
8.10 for a product form distribution apply even when IE is a subset of the product 
space of the IE j 's and the Jl' and Jl' j'S are invariant measures instead of normalized 
distributions. In particular, the results with these modifications apply to closed net
works. On the other hand, the necessary conditions in these theorems are generally 
not valid in these situations because, in the proof of Theorem 8.7, the summation 
of Dt#j Jl't(Xt) over x E IE for each fixed Xj E IEj may depend on Xj. 

8.4 Quasi-Reversibility and Biased Local Balance 

In this section, we characterize product form distributions for the network process 
X when its nodes are quasi-reversible and its transition rates satisfy a biased local 
balance condition. 

We will use the following definition of quasi-reversibility, which is consistent 
with the classical one in Section 8.1. 

Definition 8.12. The transition rate qj is quasi-reversible with respect to Jl'j if Jl'j 

is the stationary distribution of qj and aj(xj) and ii1(Xj) are independent of Xj' 
That is, 

a( ) -a a j Xj = aj' (8.21) 

To see the meaning of this definition, consider a transition rate qj in which 
only one of the rate components qj(Xj' Yj), q1(Xj' Yj), and q}(Xj, Yj) is positive 
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for each Xj, yj. Then aj(xj) = aj implies by Theorem 4.11 that the times of a

transitions for qj form a Poisson process with rate aj. Also, ii1(Xj) = trJ implies 
by Theorem 4.12 that the times of d-transitions in equilibrium for qj form a Poisson 
process with rate trJ. 

Note that in Theorem 8.8, the key condition (8.16) for the network process X to 
have a product form stationary distribution is satisfied if each q j is quasi-reversible. 

In addition to the usual balance equations for a process, we will use the following 
notion. 

Definition 8.13. The Markov transition rate q is biased locally balanced with 
respect to a positive probability measure rr on IE and real numbers b = {b j : j E 

M} satisfying Lj bj = 0 if 

rr(x) (L Lqjk(X, y) + bj ) = L Lrr(y)qkj(y, x), x E IE, j EM. 
k Y k Y 

(8.22) 

In this definition, rr is necessarily the stationary distribution for X since the global 
balance equations are the sum of these local balance equations over j. Also, we 
say q is locally balanced with respect to rr when the b j 's are O. 

For the next result, we consider the network process X under the added 
assumption that each aj(x j) is independent of x j, or, equivalently, 

aj(x j) = iij, for each x j and j EM. (8.23) 

This is the first part of the quasi-reversibility condition. Because of Theorem 8.7, 
we make the natural assumption that the coefficient fJ1 of qj is given by 

fJ1 = LAjka~, j EM. (8.24) 
ki-j 

No restriction is placed on the other coefficient f3j. 

Theorem 8.14. Under the assumptions (8.23) and (8.24), thefollowing statements 
are equivalent. 
(i) The q is biased locally balanced with respect to rr(x) = TIjEM rrj(xj) and b. 
(ii) Each qj is quasi-reversible with respect to rrj for some f3j, and the rrj's are 
such that 

f3j = LatAkj, j EM. 
ki-j 

If these statements hold, then 

(8.25) 

~=iijM-trJ~· ~~ 
PROOF. Suppose (i) holds. By the definitions of q, rr and assumptions (8.23), 
(8.24), it follows like (8.14), that the biased local balance equation (8.22) divided 
by rr(x) is 

aj(Xj) + f31a1(Xj) + bj = iij(xj) + iij(xj) Lii2(Xk)Akj. 
ki-j 

(8.27) 
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Define f3j by (8.25). Fix j E M. Multiplying (8.27) by 1Cj(Xj), then summing over 
Xj and using (8.11), we have 

ex<)f31 + bj = aj L a2(Xk)).kj. 
ki-j 

Fix l =f. j. Multiplying this equation by Oki-j,l1Ck(xd, then summing over Xko for 
k =f. j, l and using (8.11) and (8.25), we obtain 

ex<)f31 + bj = ajf3j + (at(xi) - at)Alj l(l =f. j). (8.28) 

Summing this on j and using (8.25) yields 

(at(xl) - at) L Alj = O. 
Ni 

This proves at(xi) = at. Thus, (8.21) holds. 
Next, note that (8.28) implies (8.26). Furthermore, applying (8.26) to (8.27) 

yields (8.15), which is the balance equation divided by 1Cj(Xj) for qj and 1Cj. 
Hence 1Cj is the stationary distribution for qj. This proves that (i) implies (ii). 

Now, assume (ii) holds. Then (8.15) holds, and usingaj(xj) = aj anda1(xj) = 

ex<) in (8.15), we have 

i ( ) f3a-a f3d d() -i ( ) f3a-a( ) f3d=ll lE a j Xj + ja j + ja j Xj = a j Xj + jaj Xj + ja j , Xj E . 

Define b j by (8.26). Applying (8.26) and then (8.24) and ex<) = a1(x j) to the 
preceding display yields (8.27). Then substituting (8.23) and (8.24) into (8.27) 
yields the biased local balance condition (8.22). This completes the proof that (ii) 
implies (i). 0 

What is the difference between Theorems 8.8 and 8.14 ? In the former, both 
of the coefficients f3j, f31 of qj are unspecified dummy variables, while in the 

latter, fJ1 is given by (8.24) and only fJj is a dummy variable. Consequently, in 
Theorem 8.8 the conditions (8.12), (8.16) required for a product form distribution 
for the network are more involved than the conditions (8.21), (8.25) required in 
Theorem 8.14. 

The following is a procedure for applying Theorem 8.14; compare this with the 
procedure in the preceding section. 
Quasi-Reversible Procedure for a Product Form Distribution 
Step 1. For each node j, obtain the stationary distribution 1Cj of qj as a function 
of the coefficient f3j viewed as a dummy variable. Since 1C j is a function of f3j, so 
. =II d .. =<I (f3 a) IS a j' an we wnte It as a j j' 

Step 2. Find f3j's that satisfy the traffic equations 

f3j = L at (f3DAkj , j EM. 
ki-j 

Step 3. Let 1Cj be the distribution associated with the (3j 's obtained in Step 2. For 
these distributions, verify the quasi-reversibility condition 

a1(x j) = ex<)(f3j), for each x j E lE j and j EM. (8.29) 
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If these steps are successful, then 7f (x) = D j 7f j (x j) is the stationary distribution 
of the network process. 

Remark 8.1S. There may be solutions to the traffic equations in Step 2 even 
though (8.29) is not satisfied. In this case, one might be able to obtain a product 
form stationary distribution by verifying condition (8.16). 

Example 8.16. Network with Random Environments at Nodes. Suppose the net
work process X has the following structure. Customers move among the nodes 
where they are processed, and the state of each node j E M is a pair x j = (n j, Z j), 
where nj is the number of customers at the node and Zj is the "environment" of 
the node. Whenever the network is in state x = (x j : j EM), two types of transi
tions may occur. First, the environment at some node j may change from Z j to zj . 
The time until such a transition is exponentially distributed with rate T/j (z j, zj). 
Second, a single customer may move from some node j to some node k and the 
environments at nodes j, k change from Z j, Zk to zj, z~, respectively. The time un
til such a transition is exponentially distributed with rate JL j(n j, Zj, Zj}A jkAk(zD. 
Then the network process has transition rates of the form (8.6), where 

qj(Xj' xj) = Aj(zj)l(nj = nj + 1), 

q1(Xj' xj} = JLj(nj, Zj, zj}l(nj = nj - 1 ~ O}, 

q}(Xj, xj} = T/j(Zj, zj}l(nj = nj}. 

Note that aj(x j} = LZI. A j (zj) is independent of x j. As above, we define 
J 

fJ1 = LAjk~' 
ki-j 

and we consider the coefficient fJi as a dummy variable. 
Now, suppose each q j has a stationary distribution 7f j. Think of 7f j as a function 

of fJj. Note that 

a1(nj, Zj) = 7fj(nj, Zj)-I L7fj(nj + 1, zj)JLAnj + 1, zj, Zj}. 
zj 

Assume 7f j is such that a1(n j, Z j} is independent of (n j, Z j). Then it follows that 

a1(nj, Zj} = ii]. Denote this quantity by ii](fJi}, since it, as well as 7fj, is a 
function of fJi. Under these assumptions, q j is quasi-reversible with respect to 7f j. 

Finally, assume there exist fJj's that satisfy the traffic equations 

fJj = L at (fJt)Akj , j EM. 
kf.j 

Let 7f j be the distributions associated with these fJj's. Then it follows by 
Theorem 8.14 that the stationary distribution of q is 7f(x} = DjeM 7fj(Xj}. 0 
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8.5 Networks with Reversible Routing 

In this section, we present corollaries of Theorem 8.8 when the routing rates of 
the network are reversible. 

Here, for simplicity, we assume that Ajk is irreducible and Ajj = O. Let Wj, 
j E M, denote its stationary distribution. Recall that Ajk is reversible if 

WjAjk = WkAkj, j, k E M. 

Corollary 8.17. If Ajk is reversible, ,then Theorem 8.8 holds with Djk(Xj, Xk) 
replaced by 

Djk(Xj, Xk) = Wk(a<] - u1(Xj»((ik - U:(Xk» - Wj<a'i - af(xd)((ij - aj(Xj». 

PROOF. The assertion follows from Theorem 8.8 by substituting Ajk = WkAkj /w j 
in Djk(xj, xd. D 

Corollary 8.18. Suppose Ajk is reversible. Assume each 7rj is the stationary 
distribution ofqj for some coefficients 13j, 131, and the 7r/s are such that (8.12) is 
satisfied and 

aj(xj) = wj'u1(Xj), a1(xj) = Wjuj(Xj). Xj E lEj , (8.30) 

Then 7r(x) = njEM 7rj(Xj) is the stationary distribution ofq. In addition, 

=<I/-a Ra/Rd Wj = u j u j = f'j f'j' j EM. (8.31) 

PROOF. First note that the last equality in (8.30) implies a<] = W jaj. This and 
(8.30) imply that each Djk(Xj, Xk) = o. Then Corollary 8.17 yields the first 

assertion. Furthermore, from a<] = W jaj and the reversibility of A jko we have 

Pj = LatAkj = LCi:WkAkj = L WjAjka : = WjPJ. 
k#j k#j k#j 

Thus (8.31) holds. D 

Recall that Theorem 8.14 is for a network with quasi-reversible nodes, while 
Corollary 8.18 is for a network whose nodes need not be quasi-reversible, but the 
routing is restricted to be reversible. The next result is for networks with both types 
of nodes. 

Corollary 8.19. Suppose there is a subset J c M such that the assumptions of 
Corollary 8.18 holdfor the nodes in J, and assumptions (8.23), (8.24) and (ii) of 
Theorem 8.14 hold for the nodes in 

K = {k : k ¢ J, or k E J and AU + Alk f:. O,for some t ¢ J}. 

Then 7r(x) = njEM 7rj(Xj) is the stationary distribution ofq. 

PROOF. The set K contains all the nodes in M \ J and those nodes in J that are 
directly connected to set M \ J. Hence, the nodes that only satisfy the conditions of 
Corollary 8.18 are not directly connected to the nodes that only satisfy conditions 
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of Theorem 8.14. This implies that each Djk(Xj, Xk) is 0 for all j, k, so the assertion 
follows by Theorem 8.8. 0 

The following is an illustration of Corollary 8.18. 

Example 8.20. Suppose the network process represents customers moving in a 
network in which the state x j, denoted here by n j, represents the number of cus
tomers at node j E {I, 2, ... , m}. The network has an outside source, denoted by 
node 0, which has a single state O. Assume the transition rates for the network are 
given by (8.6), where 

q8(O, O) = /Lo, q~(O, 0) = 1 

(n' = n -l ~ l,l ~ 0) 

(n' = 0, n ~ 1) 

(otherwise) , 

qj(nj' n') = Aj(n)l(n' = n + 1), 

for j = I, 2, ... , m. Assume the network does not have internal transitions. 
According to these rates, each node j i=- 0 in isolation operates as a batch service 

system. Whenever it contains n customers, arrivals enter at the rate Aj(n); also, 
batches exit at the rate /Lj, and the size of a batch is min{n,l}, where l is selected 
by the batch-size probability distribution qj(l). Assume qj(O) > 0 and that the 
mean of q j exceeds 1. Note that in the network process, a batch departure at a node 
triggers only a single customer arrival at some node. This is because each arrival 
transition rate qj only allows single-unit increments. Another feature is that a node 
may have bogus departures when it is not empty. Namely, whenever nodes j and 
k contain n j ~ 1 and nk customers, respectively, there is a null departure at node 
j and an arrival at node k at the rate /Lj(nj)qj(O)AjkAk(nk). 

We will derive the stationary distribution of the network by appealing to Corol
lary 8.18. Assume the routing probabilities A jk are reversible with stationary 
distribution Wj. Furthermore, for the node j transition rate qj given by (8.7), 
we select its beta coefficients such that fJj / fJ1 = W j, which is consistent with 
(8.31). We conjecture that qj has a stationary distribution 7rj of the form 

7rj(n) = Cjpj/Aj(n), n ~ 0, (8.32) 

for some Pj, where Cj is the normalizing constant. In addition, node 0 has the 
degenerate distribution 7ro(O) = 1. 

Before verifying this conjecture, let us see what else is needed to satisfy the 
assumptions of Corollary 8.18. First consider condition (8.30). Clearly, 

iij(n) = 0 = wjiaj(O), 

and, for n ~ I, we have aj(n) = /Lj(n) and 

iij(n) = _1_7rj(n - I)Aj(n - 1) = Aj(n)/pj. 
7rj(n) 
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Consequently, the first part of (8.30) holds, namely iij (n) = w j I a1 (n), if and only 
if 

(8.33) 

Hereafter, we assume this is true. Under this assumption, a similar calculation 
as above shows that the second part of condition (8.30) is satisfied. Furthermore, 
another easy check shows that the :n:/s satisfy (8.12). Thus, the assumptions of 
Corollary 8.18 are satisfied. 

It remains to show that the stationary distribution :n: j is given by (8.32). The 
balance equations for q j are 

00 00 

1l'j(O)fJjAj(O) = fJ1 L:n:j(l)JLj(l) Lqj(m), 
l=1 m=l 

00 

+ fJ1 L:n:j(n +l)JLj(n +l)qj(l), n ~ 1. 
l=O 

Substituting (8.32) into the first balance equation and using a little algebra and 
(8.33), we obtain 

00 

L pJqj(l) = Pj· (8.34) 
l=O 

The same equation is obtained by substituting (8.32) into the balance equation for 
n ~ 1 and dividing both sides by pj. 

Equation (8.34) has a unique solution Pj E (0, 1). Indeed, the left-hand side is 
a strictly increasing convex function in Pj that begins at qj(O) > 0 and ends at 1 
with a tangent equal to the mean batch size, which we assumed exceeds 1. Then 
:n: j given by (8.32) will be a valid distribution provided 

00 

cjl = LPj/Aj(n) < 00, 

n=O 

which we assume is true. 
Thus by Corollary 8.18, the stationary distribution of the network is the product 

of :n:/s given by (8.32). This is an example of a network with a product form 
distribution, but each qj is neither reversible nor quasi-reversible. 0 

8.6 Queueing Networks 

The results in the preceding sections were stated for a general network in which 
state changes may be due to mutual interactions at the nodes. This section describes 
how the results apply to the network under slightly simpler notation traditionally 
used for queueing networks. As in the other chapters and the first section of this 
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chapter, a queueing network refers to a system in which customers, items or in
formation/commands move from one node to another and trigger the states of the 
nodes to change. A state change, called a departure event, is initiated at one node, 
and this event is then "routed" as an arrival event to another node that triggers a 
state change at the arriving node. 

For this section, we will consider the network process X defined above with the 
following notational changes. Its transition rates q are still given by (8.6), but now 
the rate component qj(x j, xi) will be a probability denoted by Pj(x j' xi), where 
Lx} Pj(x j, xi) = 1. Also, the A jk 's are normalized to be probabilities such that 

LkEM A jk = 1. Feedback loops are natural in routing of units, and so we allow 
A jj > O. Under these conventions, we call X a queueing network process. 

The dynamics of the queueing network are as follows: 

• When the state of node j is x j' a departure there changes the state from x j to 
Yj with the rate q1(Xj, Yj)· 

• A departure from node j is transferred to node k as an arrival with probability 
Ajk (where node 0 represents the outside). 

• An arrival at node k changes its state from Xk to Yk with probability pHXko Yk). 
• When the state of node j is x j, there may be an internal change to state Yy with 

rate q;(Xj, Yj), and this state change does not trigger changes at other nodes. 
Such a transition could include feedbacks described by the rate 

q)(Xj, Yj) = qj(Xj, Yj) + L,q1(Xj, Xj)Ajjpj(Xj, Yj), 

xi 
where qj is the rate of a pure internal transition at node j. 

This queueing network is more general than the conventional ones, because 
arrivals, departures, and internal changes may occur at the same time. Also, the 
state changes need not be for actual departures or arrivals in the traditional sense. 

Under the notational conventions above, we automatically have 

aj(xj) = aj = I, Xj E lEj, j EM. 

Also, each node j in isolation has transition rates 

qj(Xj, Yj) = fJjPj(Xj' Yj) + (1- Ajj)q1(Xj, Yj) + q}(Xj, Yj). (8.35) 

Here fJj is the average arrival rate and 1 - A jj takes the place of fJ1. If 7r j (x j) is the 

stationary distribution of (8.35) with dummy parameter fJj, then a'J is the average 
departure rate from node j, which is a function of fJj. 

Now, let us see how the results above simplify for the queueing network process. 
First, note that Theorem 8.8 is as follows. 

Theorem 8.21. The stationary distribution of the queueing network process is 
7r(x) = OjEM 7rj(Xj) if and only if each 7rj is the stationary distribution of qj in 
(8.35) for some coefficient fJj, and the 7r j 's are such that 

fJj = L,afAkj, j EM, 
ki-j 

(8.36) 
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and,for j =f. k E M, Xj E IEj, Xk E IEb 

(ii1(Xj) - ~)Ajk(ii:(Xk) - 1) + (iiZ(Xk) - at)Akj(iij(Xj) - 1) = O. (8.37) 

Here only the one equation (8.36) from (8.20) is needed since fJ1 = 1 - Ajj. 
Equation (8.36) states that fJj is the total arrival rate at node j from all other nodes. 
This is why (8.36) and (8.20) are called traffic equations. Keep in mind that (8.36) 
are nonlinear equations in the fJj's since a') is a function of fJj. Note that each one 
of the following conditions is sufficient for (8.37). 

• Both nodes j and k are quasi-reversible. 
• Both nodes j and k are noneffective for arrivals. Node j is said to be noneffective 

for arrivals if iij(x j) = 1 for all x j E IE j. 
• Either node j or node k is quasi-reversible and noneffective for arrivals. 

These sufficient conditions can be relaxed further if Ajk = 0 or Akj = O. Usually, 
the outside source is noneffective for arrivals. If, in addition, it is quasi-reversible, 
the outside is a Poisson source, which is the last case above. So, we do not need 
to check (8.37) for nodes connected only to the Poisson source. 

For the queueing network, we have the following result concerning quasi
reversibility. 

Theorem 8.22. (Quasi-Reversible Queueing Network) The assertions in The
orem 8.14 apply to the queueing network proces~he only simplification is that 
equation (8.26) reduces to bj = fJj - (1 - Ajj)a'). 

Quasi-reversibility is not a necessary condition for a product form distribution of 
the network, even though this property is part of a sufficient condition for a product 
form. There are known examples of networks with product form distributions and 
none of the nodes are quasi-reversible. In certain situations as follows, quasi
reversibility is not far from being necessary. 

Corollary 8.23. Suppose the queueing network process has the stationary 
distribution 1l'(x) = njEM 1l'AXj). Assume node j satisfies 

A jk- =f. 0 and Ak- j = 0, for some k* =f. j, and (8.38) 

ii:_ (Xk-) =f. 1 for some Xk- E IEk-. (8.39) 

Then node j is quasi-reversible with respect to 1l'j. 

PROOF. Theorem 8.21 ensures that 1l'j is the stationary distribution for qj and 
that (8.37) holds. Under the hypotheses, (8.37) reduces to 

(ii1(Xj) - ~)Ajk(ii:(Xk) - 1) = O. 

Since this is true for each x j and each k* and Xk- that satisfy the hypotheses, it 
follows that ii1(x j) = a') , for each x j. Thus, node j is quasi-reversible with respect 
to 1l'j. 0 

Remark 8.24. Under the first assumption in Corollary 8.23, condition (8.39) is 
satisfied if, for some k =f. j, the Markov transition probabilities P:(Xb Yk) on lEk 
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are transient. To see this, first note that iiZ(Xk) = 1, for each Xt, if and only if 1fk 
is the positive stationary measure for the transition probabilities pZ(Xk, Yk). Thus, 
if these probabilities are transient, then (8.39) is satisfied. 

In a conventional queueing network, a customer entering a node always "in
creases" the number of customers at the node. In such a network, pZ is clearly 
transient. Hence if the network has a product form distribution and (8.38) holds, 
then node j is quasi-reversible. 

We conclude this section by showing how quasi-reversibility can be used to 
obtain a product form distribution for an unconventional queueing network. 

Example 8.2S. Consider a queueing network with exogenous Poisson arrivals, 
Markovian routing probabilities A j k, and constant departure rates JL j at the nodes. 
Assume the network operates like a Jackson network with the following exception. 
Whenever a customer is assigned by the probabilities A jk to enter node j, it either 
enters with probability aj (thereby adding one unit to node j), or it does not enter 
but it deletes one customer with probability a j = 1 - a j' provided a customer is 
there. Then the transition rates for the network are given by (8.6), where 

qg(O, 0) = A, p~(O, 0) = 1, 

q1(Xj' Yj) = JLj I(Yj = Xj - 1 ~ 1), 

Pj(Xj' Yj) = aj I(Yj = Xj + 1) + aj I(Yj = max{O, Xj - I)}). 

Clearly, qj defined by (8.35) is the transition rate function for an M / M /1 queue 
with arrival rate fJjaj and service rate JLj + fJjiij. Therefore, its stationary 
distribution is 

j=j:O, 

provided Pj == fJjaj/(JLj + fJjiij) < 1, which we assume is true. Each node j is 
quasi-reversible since, for each x j, 

ii1(Xj) = 1fAXj)-I1fj (Xj + l)q1(Xj + 1, Xj) = PjJLj 

In this case, the traffic equation (8.36) is 

a '" JLkfJtak 
fJ j = AO.j + ~ + fJa Akj. 

koh.O JLk kak 

For fJj 's that satisfy these equations, let 1f j denote the stationary distribution above. 
Then by Corollary 8.21, we conclude that the stationary distribution of the network 
is the product of the 1f / s. 0 

8.7 Time-Reversals and Departure-Arrival Reversals 

In this section, we show that a product form network process in "reverse time" 
has the same type of transition rate function as the original process. We also point 
out that, by reversing the roles of arrival and departure transitions in the network, 
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one obtains a dual network process whose structure is typically different from the 
original process. 

We first consider the network process in reverse time. Suppose the network 
transition rate q is ergodic and its stationary distribution is rr. The time-reversal 
of q is the transition rate 

q(x, y) = rr(x)-Irr(y)q(y, x), x, y E IE. 

This q has the same stationary distribution as q. Now, assume rr is the product of 
stationary distributions rr j of the node transition rates qj given by (8.7). The time 
reversal of q j is 

qj(Xj, Yj) = rrj(Xj)-1rrj (y)qj(Yj , Xj) 

= f3Nj(Xj' Yj) + f3N1(Xj, Yj) + q;(Xj, Yj), Xj, Yj E lEj' 

where 

qj(Xj' Yj) = rrj (Xj)-I rrj (Yj)qj(Yj , Xj), s = a, d, i. 

Now, an easy check shows that q has the same form (8.6) as q, with 'Ajk and qj 
replaced respectively by 'A jk and qj (s = a, d, i). This is consistent with rr being 
the product of the rr j 's, which are also the stationary distributions of the qj 'so 

Next, let us consider the idea of reversing the roles of arrivals and departures in 
the network. The key part of the transition rate q in (8.6) is the product 

q1(Xj' Yj)'Ajkqf(xk, Yk). 

Because of the symmetry in this product and the other network assumptions, it 
is clear that all the results above apply to the process with the roles of a and d 
reversed. One interpretation of this reversal is that the process is the same, but in 
the results, a and d are simply interchanged. For instance, in the new Theorem 8.14 
the assumption (8.23) would apply to a1 and (8.24), (8.25), and (8.26) would apply 
with a and d interchanged. 

A more interesting implication is that the new theorems would apply to any 
network with routing and transition components rjk and qj(Xj' Yj), for s = a, d, i, 
that satisfy 

(8.40) 

Such a network, which has different system dynamics than the original one, could 
be viewed as a dual of the original network. 

8.8 Networks with Multiclass Transitions 

In this section, we present extensions of the results of the previous sections to 
networks with multiclass transitions. The extensions are straightforward, and so 
the proofs are omitted. 

Consider the network we have been discussing with the generalization that each 
node j has several classes of arrival and departure transitions indexed by the set 
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T j . For each u E T j , let qju(Xj, xi) be the transition rate on lEj of class u for 
s = a, d. We assume that internal transitions are independent of the class and use 
the same notation q) as in Section 8.2. The routing component A jk is now extended 
to Aju,kv' One may use different index sets for arrivals and departures, but a single 
index set T j can cover these cases by introducing null transitions if necessary. 

The transition rates for the Markov network process are defined as 

where 

q(X, y) = Lqjk(X, y), x, Y E lE, 
j,k 

(8.41) 

qjk(X, y) = L L q1u(Xj, Yj»l.ju,kvqkv(xt, ydl(Yl = Xl, e =f. j, k), for j =f. k. 
ueTj veTk 

As in Section 8.2, for a distribution Jr j on lE j, we define, for s = a, d and for 
each u E T j , 

aju(Xj) = Lqju(Xj, Yj), 
Yj 

iiju(xj) = Jrj(Xj)-1 L Jrj(Yj)qju(Yj, Xj), 
Yj 

aju = LLJrj(Xj)qju(Xj, Yj)· 
Xj Yj 

These three values for s = i are defined (without the subscript u) as in Section 8.2. 
AssumethataJu < 00 fors = a, d, i. The transition functionqj of the local process 
at node j is now changed to 

qj(Xj, Yj) = L [Pjuqju(Xj' Yj) + p1 .. q1u(Xj, Yj)] + q}(Xj, Yj), Xj, Yj E lEj , 
ueTj 

where coefficients Pju (s = a, d) are determined by the traffic equations 

fJju = L L atvAkv,ju , 
ki-j veTk 

fJ1u = L L Aju,kvCX:v . 
ki-j veTk 

Finally, we redefine Djk as 

Dju,kv(Xj, Xk) = ra'] .. - a1u(Xj»AjU,kv(a~v - akv(xd) 

- ratv - iitv(Xk»AkV,julaju - iiju(xj». 

Theorem 8.8 for the multiclass network is as follows. 

Theorem 8.26. The following statements are equivalent. 
(i) The stationary distribution of q is Jr (x) = OJ eM Jr j (x j). 

(8.42) 

(8.43) 



8.9 Exercises 227 

(ii) Each Hj is the stationary distribution for qj with coefficients (8.42) and (8.43), 
and 

L L (DjU,kv(Xj, Xk) + Dkv.ju(Xb Xj») = 0, (8.44) 
ueTj veTk 

for j =f:. k E M, Xj E lEj, Xk E lEk. 

In case the network is the queueing network as in Section 8.6, we assume that, 
for each j E M 

L L Aju,kv = 1, aju(xj) = 1, u E Tj , Xj E Ej . 
k veTk 

Under these conditions, fJ1u = 1 - LveT. Aju.jv. 
Now, the transition rate function qj defined above is said to be quasi-reversible 

with respect to Hj if Hj is the stationary distribution of qj and aju(xj) and ii1u(Xj) 
are independent of x j E lE j for each j EM, u E T j. The biased local balance 
condition for this multiclass network has the same form (8.22) with qjk now defined 
as in (8,41). 

Interestingly, in this multiclass setting the biased local balance condition plus 
product form stationary distribution do not imply quasi-reversibility of the qj's. 
For example, it is easy to see that, if 

L [ii1u(Xj) - a1u] Aju,kv = 0, (8,45) 
ueTj 

then (8.44) is satisfied, thus the network is a product form. On the other hand, 
one can show, using the same arguments as in the proof of Theorem 4.2, that 
(8,45) implies biased local balance. However, (8,45) is clearly weaker than quasi
reversibility. Thus, quasi-reversibility is sufficient but may not be necessary for a 
product form and biased local balance when there are multiple class of transitions. 

Our final result is the multiclass analogue of Corollary 8.18. 

Corollary 8.27. Suppose Aju,kv is reversible on M' == {ju : j E M, u E T j } with 
stationary distribution Wju. Assume each qj has coefficients (8.42) and (8.43). If 
H j is the stationary distribution of q j and 

iiju(xj) = wj}a1u(xj), ii1u(Xj) = Wjuaju(Xj), Xj E E j . (8.46) 

then H (x) = n j eM H j (x j) is the stationary distribution of q. If this is the case, 
_ =d I-a _ Ra I Rd 

Wju - a ju a ju - Pju Pju' 

8.9 Exercises 

1. For the network in Example 8.2, specify conditions under which the input 
and output processes at a node are Poisson processes. (Quasi-reversibility of 
a node implies the input and output processes are Poisson for the node in 
isolation, but not when it is in the network.) 
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2. Prove Theorem 8.3. 
3. Show that the traffic equations in Theorem 8.3 say that the arrival rate into 

each node j is equal to the sum of the arrival rates into node j from all other 
nodes. 

4. Prove Theorem 8.5. 
5. In the context of Theorem 8.5, show that aj (fJ'J) is the rate at which customers 

depart from node j. Also, show that the traffic equations (8.5) say that the 
arrival rate into each node j is equal to the sum of the arrival rates into node 
j from all other nodes. 

6. Consider the quasi-reversible process defined in Example 8.6, where each 
customer carries a class label c in a countable set C. Let Nc(t) and De(t) 
denote the numbers of class c customer arrivals and departures, respectively, 
in the time interval [0, t]. Assume the process is stationary. Show that Nco 
c E C, are independent Poisson processes and specify their rates. Do the same 
for the departure processes Dc, c E C. 

7. Define a network like Example 8.2 for multiclass customers, using the no
tation in Example 8.6. State and prove a theorem such as Theorem 8.3, that 
characterizes an invariant measure for the network. 

S. Consider the network process X with transition rates (8.6). Prove that the 
stationary distribution of X is x(x) = fljEM Xj(Xj), x E E, if and only if 

each Xj is the stationary distribution of qj for some coefficients rl, rJ, and 
x j is such that (8.17) holds. 

9. Consider the network described in Corollary 8.19, where node 0 has a single 
state (i.e., it is a Poisson source). For this network, justify the assertion in 
Corollary 8.19 under the weaker supposition that the assumptions of Corol
lary 8.18 hold for "the nodes in J \ {O}," instead of "the nodes in J." Hint: 
Consider the Dko(xko O)'s. 

10. For the queueing network described in Section 8.6, suppose node j is quasi
reversible. Show that the stationary distribution Xj of qj is also the stationary 
distribution of the transition rate function qj given by 

qj(Xj' Yj) = fJt Pj(Xj' Yj) + q1(Xj' Yj) + q'j(Xj, Yj), Xj, Yj E IEj, 

where fJt = LkEM atAkj' Here, fJt = fJj + A jjii'J is the total arrival rate 
including the feedback rate, and qj does not include feedback transitions as 
internal transitions. The transition rate qj is standard in the quasi-reversibility 
literature, but it is not convenient to use for a non-quasi-reversible node. 

8.10 Bibliographical Notes 

The classical quasi-reversible network models in the first section were discussed 
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9 
Space-Time Poisson Models 

This chapter covers space-time Poisson models for queueing networks, spatial 
service or storage systems, and particle systems. Such a model describes the col
lective movement of units or customers in space and time, where the units enter the 
system according to a Poisson space-time process and then move about indepen
dently of each other. Because of these properties, the evolution of the system can 
be formulated by certain "random transformations" of Poisson point processes in 
space and time. We characterize these transformations and then use them in a va
riety of models. An important example is a network with time-dependent Poisson 
arrival process and infinite-server nodes with general service times. 

We also consider models for systems in which the input process is not Poisson, 
but the system is sparsely populated. The sparseness leads to Poisson space-time 
models that are justified by convergence theorems. An example is a network of 
infinite-server nodes with a non-Poisson arrival process and general service times. 

9.1 Introductory Examples 

The following are two classic examples of space-time Poisson models that give a 
glimpse of what lies ahead. 

Example 9.1. Treelike Network of M/G/co Service Stations. Consider an open 
network of m service stations (or nodes), where the service times at node j are 
independent and identically distributed with mean JL j I . There is no queueing for 
service, since only a finite number of the servers are busy at any time. For simplic
ity, assume the network forms a tree with a single root, and each customer enters 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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the root node and moves up the tree on some branch determined by Markov prob
abilities Pjt. where Pjk is the probability that a departure from node j enters node 
k next. Upon reaching the end of the branch, the customer exits the network. Each 
branch is therefore a route through the network. The probability that a customer 
visits node j is Pj == Pljl ... Pj"j, where 1, jt. ... , jn, j is the unique path from 
the root node to j. Assume the customers enter the root node over time according 
to a homogeneous Poisson process with intensity A. We will consider the system 
in equilibrium and defined on the entire time axis JR. 

The following results, based on material in Section 9.6, describe customer flows 
in this system. These results apply, in particular, to a single M/G/oo system and 
to a tandem system of such nodes. 
• Let Qj(t) denote the number of customers at node j at time t. Then (Qj(t) : 
t E JR} is a stationary process and Qj(t) is a Poisson random variable with mean 

PjA//Lj. 
• For each time t, the quantities QI (t), ... , Qm(t) at the nodes are independent. 
But at different times they are not independent. 
• Let Nj(l) and Dj(l) denote the number of customer arrivals and departures at 
node j in the time time set I. Then N j and D j are homogeneous Poisson processes 
with intensity AP j . 
• For each fixed time t, the departure process at each node j up to time t is 
independent of its future traffic after time t. That is, (D j(J) : I E (-00, tn is 
independent of (Qj(u) : U > t and Nj(l) : I E (t, oo)}. 
• Suppose JI, ... ,In are disjoint subsets of nodes such that a customer who 
visits one subset cannot visit any of the others. Then the families of processes 
{(Qj, N j , D j ): j E J;}, 1 :::: i :::: n are independent. 

These properties imply that each station in isolation behaves like a single 
M / G / 00 system, and that sectors of the network are independent if customers 
cannot move among them, even though they come from one Poisson source. 

What can we say about the quantities above when the input process is not 
Poisson? Generally, they do not have tractable distributions. However, the results 
above are good approximations when the input is not Poisson but the flows in the 
network are sparse as described in Section 9.10. 0 

Example 9.2. Markovian Particle System. Consider a particle system on a finite 
set IE, where Nt(i) denotes the number of particles at the location i E IE at time 
t ~ O. Suppose the particles move independently in the space IE, in continuous 
time, according to an ergodic Markov transition rate function that has a stationary 
distribution 1f(i), i E IE. Assume the system begins at time 0 under the special 
condition that each quantity No(i) is a Poisson random variable with mean 1f(i), 

and the quantities No(i), i E IE, are independent. That is, the particles form a 
"spatial" Poisson process No on the finite set IE, and its mean measure is 1f. Then 
by Theorem 9.14 below, it follows that, at each time t, the locations of particles 
in the space represented by Nt also form a spatial Poisson process with the same 
mean measure 1f. Related particle systems are the subject of Section 9.7. 0 
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The main theme of this chapter is that the results in the preceding examples 
and in the sections to follow are properties of random transformations of Poisson 
processes, including thinnings, partitionings, and translations. For instance, in 
Example 9.1 above, the departure process D 1 at node 1 consists of times Tn + Wn, 
where Tn and Wn are the arrival and waiting times of unit n. In other words, Dl is a 
"random translation" of the arrival process (each arrival time Tn is translated by the 
time Wn ). Since the arrival process is Poisson, it follows that Dl is also Poisson. 
This result is a consequence of Theorem 9.12 below on Poisson invariance under 
random transformations. 

9.2 Laplace Functionals of Point Processes 

A Laplace transform is a tool for characterizing the distribution and moments of 
a nonnegative random variable. These transforms are also useful for establishing 
convergence in distribution of random variables. The analogous tool for point pro
cesses is a Laplace functional. This section reviews a few properties of the Laplace 
functionals we need for identifying Poisson processes and studying convergence 
of point processes to Poisson processes. 

Using the terminology of Section 4.1, suppose that N is a point process on a 
space IE, and denote the locations of its points by the sequence {X n }. The Laplace 
functional of N is defined, for f : IE --+ ~+, by 

LN(f) = E (exP[ - L f(X)N(dX)]) . 

Here JE f(x)N(dx) = Ln f(Xn). Laplace functionals playa similar role for 
point processes that Laplace transforms (or moment generating functions) play for 
nonnegative random variables. 

The basic principle is that the Laplace functional of N uniquely determines 
its distribution. Recall that the probability distribution of N, namely P{N E'}, 
is determined by its finite-dimensional distributions. For what follows, we let C 
denote the set of all continuous functions f : IE --+ ~+ with compact support (i.e., 

{x : f(x) > O} is contained in a compact set). Recall that g denotes equality in 
distribution. 

Proposition 9.3. For point processes Nand N' on IE, each one of the following 

statements is equivalent to N g N'. 

(a) JrE f(x)N(dx) g IrE f(x)N'(dx),for f E C. 
(b) LN(f) = LN'(f),for f E C. 

Laplace functionals are often more convenient to use than finite-dimensional 
distributions in deriving the distribution of a point process constructed as a function 
of random variables or point processes. A standard approach for establishing a point 
process is Poisson is to verify that its Laplace functional has the following form; 
this also yields its mean measure. 
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Example 9.4. If N is a Poisson process with mean measure IL, then its Laplace 
functional is 

(9.1) 

This follows by proving it first for indicator functions f, then for linear combi
nations of indicator functions, and finally for general nonnegative functions by 
monotone convergence. D 

A few places in our analysis involve the notions of weak and vague convergence, 
which are defined as follows. Suppose that IL, ILl, IL2, ... are measures on IE that 
are finite on compact sets. The measures ILn converge vaguely to IL as n ~ 00, 

denoted by limn~oo ILn = IL, if 

lim ILn(A) = IL(A), for each A E £ such that IL(aA) = 0, 
n~oo 

where aA is the boundary of A. If these measures are all probability measures, this 
vague convergence is weak convergence. A sequence of point processes Nn on IE 
converges in distribution to N as n ~ 00, denoted by Nn => N, if the distribution 
P{Nn E .} of Nn converges weakly to the distribution PIN E·} of N. 

Laplace functionals are also useful tools for proving convergence of point 
processes based on the following result. 

Theorem 9.S. If Nn are point processes on IE such that limn~oo L N" (f) = L N (f), 
for each f, then Nn => N as n ~ 00. 

9.3 Transformations of Poisson Processes 

This section discusses random transformations of Poisson processes that are the 
basis of space-time Poisson models. 

We begin by considering the following question for nonrandom transformations. 
If the points of a Poisson process are mapped to some space by a nonrandom 
transformation, then do these points also form a Poisson process? The answer is 
yes, provided only that the mean measure for the new process is finite on compact 
sets. 

To see this, suppose N is a Poisson process on IE with mean measure IL(B) = 
EN(B), B E £. Consider a map g from IE to a space IE' (possibly IE). Denote its 
inverse by 

g-I(B) == (x E IE: g(x) E B}, BE £'. 

Now, assume that each point Xn of N is mapped to the location g(Xn) E IE'. We 
represent this transformation of N by the point process M on IE x IE' defined by 

M(A x B) == L 1 «Xn , g(Xn» E A x B) (9.2) 
n 

= N(A n g-I(B», A E £, BE £'. 
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Keep in mind that Ln = L:~~)' The quantity M(A x B) denotes the number of 
points of N in A E £ that are mapped into B E £'. Then the transformed points in 
the space lE' are represented by the point process N' defined by 

N'(B) == M(lE x B) = L l(g(Xn) E B) (9.3) 
n 

= N(g-I(B», BE £'. 

The N' is a point process if it is finite on compact sets. To study N', it is convenient 
to use the larger process M rather than only N'. Note that because we allow multiple 
points at a single location, we need not assume g is a one-to-one mapping. 

Theorem 9.6. Under the preceding assumptions, the transformation process M 
defined by (9.2) is a Poisson process with mean measure 

E[M(A x B)] = JL(A n g-I(B», A E £, BE £'. 

Hence, the process N' defined by (9.3) is a Poisson process with mean measure 
EN'(B) = JL(g-I(B», B E £',provided this measure is finite for each compact 
B. 

PROOF. We will show that M satisfies the two conditions in the definition of a 
Poisson process. Since N is a Poisson process, M(A x B) = N(A ng-I(B» has a 
Poisson distribution with mean JL(A n g-I (B». This mean is finite for any B when 
A is compact. It remains to verify that M has independent increments. It suffices 
to show that M(Ai x Bi) = N(Ai n g-I(Bi», i = 1, ... , k, are independent for 
disjoint A I, ... , Ak in £ and disjoint BI, ... , Bk in £'. This independence follows 
since Ai n g-I (Bi)' i = 1, ... , k, are disjoint and N has independent increments. 
Thus, M has independent increments and hence is a Poisson process. 

Next, note that the process N'(B) = M(lE x B) has independent increments 
since M does, and N'(B) has a Poisson distribution with EN'(B) = JL(g-I(B». 
Thus, N' is a Poisson process when JL(g-1 (B» is finite for each compact B. 0 

Example 9.7. Suppose that N is a Poisson process of points Xn = (X~, X~) in 
the nonnegative quadrant R~ of the plane. The projection of N on the XI-axis is 
defined by N'(A) = Ln l(X~ E A), for A C R+. In other words, the points of N 
are mapped from R~ to R+ by the projection map g(XI, X2) = XI. By Theorem 9.6, 
the process M(A x B) = Ln l(Xn E A, X~ E B) is Poisson. Furthermore, N' is a 
Poisson process with mean measure EN'(B) = JL(g-I(B» = JL(lE x B), provided 
this is finite for bounded sets B. Unfortunately, this mean is infinite when N is 
a homogeneous process with JL(A x B) = J..IAIIBI. In this case, one can still 
consider N'(B) == M([O, b] x B) as the projection of the points of N that lie in 
the region [0, b] x R+, and then N' will be a Poisson process. 

Next, consider the map g(XI, X2) = J xf + x~, which records the distance from 

the origin to the point (XI, X2). Let N' denote the point process of these distances 
associated with the points of N. Theorem 9.6 ensures that N' is a Poisson process 
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since 

EN'([O, r]) = JLU-' ([0, r])) = JL({(x" X2) : J xl + xi ::: r}) 

is finite for each r. o 

We are now ready to consider random transformations of point processes. Sup
pose that N is a point process on IE. Assume that each of its points is mapped into 
a space lE' according to a probability kernel p(x, B) from lE to lE', where p(x, B) 
is the probability that a point at x E lE is mapped into the subset B E £', indepen
dently of the other points. We represent this random transformation by the point 
process M on lE x lE', where M(A x B) denotes the number of points of N in 
A E £ that are mapped into B E £'. That is, 

M(A x B) = L I«Xn' Zn) E A x B), A E £, BE £', (9.4) 
n 

where Xn's are the point locations of N, and the point at Xn is mapped to Zn. 
The assumption we made on the mapping means that the Zn's are conditionally 
independent given N, and 

P{Zn E BIN} = p(Xn, B), B E £', n ::: N(lE). 

Another way of writing this probability is P{Zn E BIN, n ::: N(lE)}, where 
n ::: N(lE) is included only when N(lE) can be finite. Note that M contains the 
initial process NO = M(· X lE') as well as the process of transformed points 
N'O = M(lE x·). 

Definition 9.S. The point process M on lE x lE' defined by (9.4) is a marked point 
process associated with N. The {Zn} are location-dependent marks of N, and N' 
is the point process of the marks. We sometimes call Map-transformation of N, 
where {Zn} are the transformed points of N. 

In some settings, such as the following one, the transformed points represent 
auxiliary marks or information related to the original points. 

Example 9.9. Suppose the point process N on the time axis R represents the times 
Tn at which customers enter a network. Assume the nth particle entering at time 
Tn has an associated mark Zn == «s~, W~) : i = 1, ... , L), where s~, ... , sf; are 
the stations or nodes the unit visits in that order, W ~ , ... , W':' are the respective 
waiting times at the stations, and L is the length of the route, which may be 
random. Assume the Zn's are location-dependent marks of N. Then according 
to the notation above, lE' would denote the space of all possible vectors Zn, and 
p(t, B) would denote the probability that a particle arriving at time t selects a 
vector in the set of vectors B E £'. 0 

The following remark points out some technicalities about marks. 

Remark 9.10. (Construction of Marks). One can construct marks Zn for the points 
Xn as follows. Define (measurable) random functions {YnO : n ~ I} from lE to 
lE' on the same underlying probability space as N (or an enlargement of that 
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space). Define these random functions such that they are independent, identically 
distributed, independent of N, and 

P{Yn(x) E B} = p(x, B), x E lE, BEe'. 

Then Zn == Yn(Xn) are clearly location-dependent marks of N. 
Another method for constructing marks is to define random elements Yn with 

values in some space lit on the same probability space as N, and define a nonrandom 
function g : lE x lit ~ lE' such that the Yn 's are independent, identically distributed, 
independent of N, and 

P{g(x, Yn) E B} = p(x, B), BEe'. 

Then Zn == g(Xn, Yn) are location-dependent marks of N. 

The Laplace functional of the marked point process M is related to that of N as 
follows. This relation is useful for deriving properties of M, when N has a tractable 
Laplace functional. 

Proposition 9.11. The Laplace functional of the marked point process M 
associated with N is 

LM(f) = E {exp [L 10g[L, e-f(x.z) p(x, dZ)]N(dX)]} . (9.5) 

That is, LM(f) = LN(h), where h(x) = -log[j1E' e- f(x.z) p(x, dz)]. 

PROOF. Conditioning on N and using the property that the Zn's are conditionally 
independent given N, we have 

LM(f) = E {E [e- En f(X".Z,,) IN]} 

= E I I) if e-f(X".z)p(Xn, dz) 1 
= E I exp [ ~ log L e-f(X .. ,) p(X., dZ)] I· 

Using the property Ln g(Xn) = IE g(x)N(dx), for g : lE ~ R, the last 
expectation equals the right side of (9.5), and hence (9.5) is true. 0 

The following is the major result that random transformations of Poisson 
processes are also Poisson. 

Theorem 9.12. If N is a Poisson process and M is a p-transformation of N, then 
M is a Poisson process with mean measure 

E[M(A x B)] = i p(x, B)J.L(dx), A E e, BEe'. (9.6) 

Hence, the point process N' of mark values is a Poisson process on lE' with mean 
measure EN'O = IE p(x, ·)J.L(dx), provided this measure is finite on compact 
sets. 
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PROOF. From Proposition 9.11, we know that LM(f) = LN(h), where LN(h) is 
a Poisson Laplace functional of the form (9.1). Then 

LM(f) = exp [ - [(1 -e-h(X»IL(dX)] 

= exp [- { (1 - e-!(x,z»p(x, dZ)IL(dX)] . 
IJExE' 

But this is the Laplace functional of a Poisson process with mean given by (9.6). 
This proves the first assertion of the theorem. The second assertion that N'O = 
M (IE x .) is a Poisson process follows since it is the Poisson process M on a subset 
of its space IE x IE'. 0 

The following example is a generalization of Example 9.2 above. 

Example 9.13. Markovian Particle Movements. Consider a system in which at 
time 0 particles are located in the space IE such that they form a Poisson process 
N on IE with mean measure /L. The number of particles in the entire space is 
infinite when IL(IE) = 00. Suppose the particles move independently in the space 
IE such that a particle initially located at x moves according to a time-homogeneous 
Markov process with transition probability P(t, x, B) of being in the set B at time 
t. Let Nt (A x B) denote the number of particles that initially began in the set A E e 
and are located in the set BEe at time t, and let N:(B) = Nt(IE x B), which is 
the number of particles in B at time t regardless of where they initially began. The 
Markovian movements of the individual particles lead to the following Markovian 
behavior of the entire system. 

Theorem 9.14. (MarkovlPoisson Location Processes) Thefamily of point pro
cesses {Nt: t E lR+} is a time-homogeneous, measure-valued Markov process, 
and each Nt is a Poisson process on 1E2 with mean measure 

E[Nt(A x B)] = i P(t, x, B)IL(dx), A, BEe. (9.7) 

If the mean measure IL of initial particles is an invariant measure of the probabilities 
P(t, x, B), then thefamily of location point processes {N: : t E~} is a stationary 
Markov process. Furthermore, each N: is a Poisson process on IE with mean 
measure IL. 

PROOF. For each t ~ 0, the process Nt is a transformation of the Poisson process 
N based on the probabilities p(x, B) == P(t, x, B). Then by Theorem 9.12, Nt is a 
Poisson process on 1E2 with mean given by (9.7), and N: is also a Poisson process 
on IE. 

Next, note that, for each 0 :::: t < u, the point process Nu represents location
dependent marks of Nt based on the probabilities 

p«X, y), A x B) == P(u - t, y, B)I(x E A). 
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Then the conditional distribution of Nu given {Ns : s ::: t, Nt = v} is equal to the 
distribution of Nu- t given No = v. Thus, {Nt: t E 1R+} is a time-homogeneous 
Markov process. 

A similar argument shows that {N: : t E 1R+} is a time-homogeneous Markov 
process. Moreover, under the assumption that IL is an invariant measure of 
P(t, x, B), it follows that, for each t and B, 

EN:(B) = E[Nt{lE x B)] = L P(t, x, B)IL(dx) = IL(B) = EN~(B). 

Then N: is equal in distribution to N~, since they are Poisson processes with the 
same mean measure IL. Because {N: : t E 1R+} is a Markov process and each N: 
has the same distribution, it follows that the Markov process {N: : t E 1R+} is 
stationary. 0 

We end this section with another insight into transformations. Theorem 9.12 
says that a random transformation of a Poisson process is a Poisson process on a 
product space. We now prove the converse that essentially any Poisson process on 
a product space is a transformation of a Poisson process. 

Theorem 9.15. If M is a Poisson process on lE x lE' such that the mean measure 
ILO == E[M(· x lE')] on lE is finite on compact sets, then M is a marked point 
process associated with its marginal process N (.) == M (. x lE'). The conditional 
distribution p(x, B) of the marks is defined by 

E[M(A x B)] = i p(x, B)IL(dx), A E C, B E c'. (9.8) 

PROOF. The mean measure of M can always be factored as in (9.8), where, for 
each fixed B, the p(x, B) as a function of x is the Radon-Nikodym derivative of 
E [M (. x B)] with respect to IL. Consequently, the mean measure of M has the same 
form as that of the marked Poisson process in Theorem 9.12, and so M is equal in 
distribution to that marked Poisson process. This proves the assertion. 0 

9.4 Translations, Partitions, and Clusters 

This section describes several fundamental transformations of Poisson processes. 
For this discussion, we assume that N is a Poisson process on lE with mean measure 
IL and point locations Xn • 

We first consider translations of the points {Xn} of N by location-dependent 
marks {Zn} of N. Define point processes M and N' by 

M(A x B) = L l(Xn E A, Xn + Zn E B), A, BE C, 
n 

N'(B) = L l(Xn + Zn E B), B E c. 
n 
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The process N' is the translation of N by the Zn's, and M represents the before 
and after of the translations. For these processes to be well defined, we require that 
the addition operation is defined on lE (which it is, if lE is a Euclidean space) and 
that lE is large enough to include all the translated points. We also let 

G(Blx) == P{Zn E B I Xn = x} 

and B - x == {b - x : b E B}. Note that this conditional distribution does not 
dependonn. 

Corollary 9.16. (Translation of a Poisson Process) Under the preceding as
sumptions, the processes M and N' are Poisson processes with respective mean 
measures 

E[M(A x B)] = i G(B - xlx)JL(dx), A, BEe, (9.9) 

and EN'(B) = EM(lE x B), B E e,provided these measures are finite on compact 
sets. 

PROOF. Clearly Xn + Zn are location-dependent marks of N with conditional 
distribution p(x, B) = G(B-xlx). Also, N' is the point process of these marks and 
M is the p-transformation of N. Thus, the assertion follows by Theorem 9.12. 0 

A basic property of Poisson processes is that a sum of independent Poisson 
processes is also a Poisson process; see Exercise 1. We now describe a reverse op
eration under which a process is partitioned into several subprocesses. Specifically, 
consider a transformation of the Poisson process N that represents a partitioning 
of it into m subprocesses N1, ••• , Nm by the following rule. 
Partitioning Rule: If N has a point at the location x E lE, then it is assigned to 
subprocess i with probability p(x, i), where L::I p(x, i) = 1. 

In other words, the point at location Xn is assigned to the subprocess Zn, where 
the Zn's are location-dependent marks of the Xn 's with conditional distribution 

p(x, i) = P{Zn = i I Xn = x}, X E lE, i = 1, ... , m, N(lE) ~ n. 

The resulting subprocesses are 

Ni(A) = L 1 «Xn , Zn) E A x (i}), A E e, i = I, ... , m. 
n 

Clearly N 1, ••• , Nm form a partition of N in that N = NI + ... + Nm• 

Corollary 9.17. (Partition ora Poisson Process) Under the preceding assump
tions, the partition NI, ... , Nm of the Poisson process N consists of independent 
Poisson processes with mean measures 

ENi(A) = i p(x, i)JL(dx), A E e, i = 1, ... , m. 

PROOF. By Theorem 9.12, we know that M(·) = Ln I«Xn, Zn) E .) is a Poisson 
process. Then the assertion follows since the processes Ni ( .) = M ( . x (i }) represent 
M on the disjoint subsets lE x Ii}, for 1 ~ i ~ m. 0 
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A special case of the preceding result is as follows. 

Example 9.18. Thinning of a Poisson Process. Suppose the points of the Poisson 
process N are deleted according to the rule that a point of N at x is retained with 
probability p(x), and the point is deleted with probability 1- p(x). Let NI and N2 
denote the resulting processes of retained and deleted points, respectively. Then 
N1 and N2 are independent Poisson processes with respective mean measures 

EN1(A) = i p(x)/.L(dx), EN2(A) = i (1 - p(x»/.L(dx), A E c. D 

Splitting and merging of flows in a network, as we now describe, are examples 
of partitioning and summing of point processes. 

Example 9.19. Routing in Acyclic Graphs. Consider the directed graph shown 
in Figure 9.1 in which units are routed in the direction of the arrows. Let Njk(t) 
denote the number of units that are routed on the arc from node j to node k in 
the time interval (0, t]. Assume that the input processes Noj , j = 1,2,3, from 
outside are independent Poisson processes on lR+ with respective intensities AOj, 

j = 1,2,3. Upon entering the graph, each arrival is routed independently through 
the graph according to the probabilities on the arcs, and there are no delays at the 
nodes (the travel through the graph is instantaneous). For instance, a unit entering 
node 3 is routed to node 5 or node 6 with respective probabilities P35 and P36, 
where P35 + P36 = 1. 

The results above on partitioning and merging of Poisson processes yield the 
following properties. Each flow Njk from j to k is a Poisson process with an 
intensity Ajk' which is obtainable in the obvious manner. For instance, 

AI3 = P13AOI, A36 = P36[A03 + PI3Aod, 
A35 = P35[A03 + PI3AOd, A60 = A36 + P56A35. 

Also, some of the flows are independent (denoted by 1-). Examples are NI2 1- N13, 
N36 1- N56, N36 1- N24, and N13 1- N24. On the other hand, many flows are not 
independent (denoted by 1-). Examples are NI2 I- N24, N35 I- N40, NI3 I- N60, 
and N23 I- N40. 

In addition, the flow Nk = Li Njk through each node k is a Poisson process 
with intensity Lj Ajk. Clearly all the Nk'S are dependent. If the arc between 5 and 
4 did not exist, however, then N4 would be independent of N3, N5, and N6. D 

PS4 

PS6 

FIGURE 9.1. Partitioning and Merging of Flows 
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There are several relatives of Poisson processes that are defined via marks. Here 
are some examples. 

Example 9.20. Compound Poisson Process. Suppose that Zn are real-valued, 
location-dependent marks of N. Then 

M'(B) = LZn1(Xn E B), BEe, 
n 

is a compound Poisson process. This is also called a signed Poisson random 
measure on lE. The mass Zn (possibly negative) is located at the point Xn , 

and EM'(B) = fB fIR zp(x, dZ)JL(dx). The distribution of M'(B) is the stan
dard compound Poisson distribution when the marks Zn are independent of N. 
Such compound Poisson processes can also be defined in contexts where the 
marks Zn are random vectors or random elements of a group with the addition 
operation. 0 

Example 9.21. Poisson Cluster Processes. Suppose the marks Zn of the Poisson 
process N are point processes on a space IE'. Then 

N'(A x B) = L l(Xn E A)Zn(B), 
n 

is a Poisson cluster process on IE x IE', and N'(IE x .) = Ln ZnO is the cluster 
process on IE'. The Laplace functional of this cluster process is given in Exercise 4. 
One can use this functional to obtain moments, but the distribution of N' may be 
intractable for complicated Zn 'so Clearly, N' is not a Poisson process, even if each 
Zn is one. 0 

Recall that under a partitioning of N, each of its points is assigned to a "single" 
category or is labeled by a "single" attribute. We Jtow consider the situation in 
which each point is split into several parts, or each point carries multiple attributes, 
leading to multivariate phenomena. 

Example 9.22. Multivariate Processes. Suppose that each point Xn of the Poisson 
process N is associated with one or more attributes from a countable set I and 
let Zni = 1 or 0 if the point Xn does or does not have attribute i. Assume that 
Zn = (Zni : i E 'I) are location-dependent marks of N. Define the point process 
Nf on IE by 

Nf(A) = L l(Xn E A, Zni = 1), A E e, i E I. 
n 

The collection {N! : i E I} is a multivariate Poisson process. Each Nf is a Poisson 
process with EN!O = fo p(i, x)JL(dx), where 

p(i,x) = P{Zni = 11 Xn = x} 

is the probability that a point at x has attribute i. These processes are "dependent" 
Poisson processes. Several of them may have a point at the same location. 

A natural generalization would be to assume the points Xn are associated with 
location-dependent marks Zn = (Zni : i E 'I), where Zni is a point process on a 
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space lEi. Then the family of point processes 

N[(A x B) = L l(Xn E A)Zni(B), A E e[, i E I, 
n 

is a multivariate Poisson cluster process on lE x lE:, i E I. Multivariate compound 
Poisson processes are defined similarly. All of these multivariate processes can be 
viewed via the cluster process in the preceding example, where Zn is defined on 
Ix~~~. 0 

9.5 Service Systems with No Queueing 

An important use of translations is for modeling the number of customers in a 
service system with no queueing. This section contains several examples. 

Example 9.23. MIG I 00 System: Energy and Communication Model. Companies 
that provide natural gas, electricity, or computer/telephone service are interested 
in predicting their service loads or demands over time. Consider such a system 
in which customers request services at times Tn that form a Poisson process N 
on 1R+ with mean measure /.L. Assume that a request at any time t requires use of 
the service for a duration that has a distribution G(·lt). Let Wn denote the service 
duration (sojourn or waiting time in the system) for an arrival at time Tn. Then 
the Wn's are location-dependent marks of N. Consider the number of customers 
Qt that are receiving services at time t. The process {Qt : t E 1R+} is aMI G I 00 

system with time-dependent arrivals and services. Clearly, 

Qt = L l(Tn ::: t, Tn + Wn > t) = M«O, t] x (t, (0», (9.10) 
n 

where M(·) == En l«Tn, Tn + Wn) E')' Then by Corollary 9.l6, M is a Poisson 
process with mean given by (9.9). Therefore, Qt has a Poisson distribution with 
mean 

EQt = 1 [1 - G(t - sls)]/.L(ds). 
(O.tl 

Does the random variable Qt have a limiting distribution as t tends to infinity? 
It does if its mean has a limit. Here is an explanation. Using the change of variable 
s = t - u in the preceding integral, we have 

at == EQt = 1 [1 - G(ult - u)]/.L(du). 
(O.t) 

Now, assume the limit G(u) == limHoo G(ult - u) exists at each u that is a 
continuity point of G. Also, assume that a == ~o.ooP - G(u)]/.L(du) is finite. 
Then at ~ a as t ~ 00. Consequently, 

P{Qt = n} = a~e-a, In! ~ ane-a In! as t ~ 00. 
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Next, consider the number of service terminations (or departures) in the time 
interval (0, t], which is 

D(O, t] = L I(Tn + Wn ~ t) = M«O, t] x (0, tD. (9.11) 
n 

According to Corollary 9.16, D is a Poisson process with 

ED(O, t] = EN(t) - EQt = ( G(t - sls)/L(ds). 
)(O,t] 

Another consequence of M being a Poisson process is that the future of Q is 
independent of the past of D, denoted by Q+ J.. D_. This means, as in Defini
tion4.9, that{Qu : u > t} is independent of {D(A) : A C (0, t]), foreacht E][4. 
To see this, note that,foreacht, the process {D(A): A C (0, t]) given by (9.11) is 
a function of M on Bt == (0, tf. Also, {Qu : u > t} given by (9.10) is a function 
of M on the set Uu>t(O, u] X (u, 00) C B~. Since M is independent on the disjoint 
sets Bt and B~, it follows that {Qu : u > t} is independent of {D(A) : A C (0, t]). 
Hence Q+ J.. D_. D 

Example 9.24. Spatial M/G/oo System. The preceding M/G/oo energy and 
communication model for time-dependent service loads has the following space
time analogue. As above, suppose customers request service according to a Poisson 
process N with mean measure /L. Assume that a customer request at time t comes 
from a subregion B of the service region JE with probability r(t, B), where r(t, JE) = 
1. Also, assume that a request at time t from a location x E JE requires service for 
a time that has a distribution G('lt, x). Consider the number of customers Nt (B) 
that are receiving services in the subregion B at time t. We call {Nt : t E 1R+} a 
spatial M / G / 00 system. A tacit assumption is that customers are at fixed locations 
while they receive service (e.g., receiving natural gas at houses). Possible models 
of mobile customers are particle systems discussed in Sections 9.7 and 9.6. 

Now, we can write 

Nt (B) = L I(Tn ~ t, Xn E B, Tn + Wn > t) = M«O, t] x B x (t, 00», 
n 

where (Tn, Xn, Wn) denotes the nth customer's respective arrival time, location, 
and service duration; and M(·) = Ln l«Tn, Xn, Tn + Wn) E')' Clearly, the 
(Xn' Tn + Wn)'s are location-dependent marks of N with conditional distribution 

P{Xn E B, Tn + Wn E CITn = s} = fa G(C - sis, x)r(s, dx). 

Then by Theorem 9.12, M is a Poisson process. Consequently, the point process 
Nt representing locations of customers in service at time t is a spatial Poisson 
process on JE with mean measure 

ENt(B) = { ( [1 - G(t - sis, x)]r(s, dX)/L(ds). 
)(O,t] )B 

Properties of the departure process for this spatial system are the subject of 
Exercise 6. D 
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We now describe an optimization problem for a production system that is 
formulated as a M / G / 00 model. 

Example 9.25. Production Scheduling. Consider a production system in which 
units (parts, material, orders, etc.) of type i enter the system at times 0 ::: T; I ::: 
T;2 ::: ... that form a Poisson process Ni on a finite horizon [0, T] with mean 
measure f.Li, where i E I (a finite set). The Ni 's are independent. Each unit spends 
some time in the system and then exits as a certain type of output e in a finite set 
C. Each input unit yields one output unit, but several types of inputs may yield the 
same type of output. For the nth type i unit that arrives at time T;n, let Win denote 
its sojourn or waiting time in the system and let Lin denote the type of output that 
it produces. The system may consist of one or more stations where the units are 
processed, possibly several times before they are finished and exit the system. The 
output type Lin may be random. For instance, the type i might represent a node in 
which the unit enters, and Lin might be its exit or last node. 

We will not invoke further microlevel assumptions of the processing, but simply 
view the production system as an M / G / 00 input-output model. Accordingly, we 
will assume that, for each i E I, the (Lin' Win) are marks of Ni such that 

P{Lni = e, Win::: wi T;n = t, T;'k; k f:. n, i' E I} 

= P{Lni = e, Win::: wi T;n = t}. 

We will write this probability as the product of the conditional probabilities 

pMlt) == P{Lin = el T;n = t}, Gu(wlt) == P{Win ::: wlLin = e, T;n = t}. 

These probabilities are the input data. For instance, pi(llt) may be determined by 
a unit's route in a network, and Gu(wlt) may be determined by its total service 
times on the route. 

For this production system, the cumulative output of type l up to time t is 

Di(t) = L L l(Lin = e, T;n ::: t, T;n + Win::: t), 0::: t ::: T. 
iEI n 

As in the preceding example, Di is a Poisson process with 

EDi(t) = L r pi(lls)Gil(t - sls)f.Li(ds). 
iEI10 

Also, the quantity of i-units in the system at time t is 

Qi(t) = L l(T;n ::: t, T;n + Win> t), 0::: t ::: T, i E I. 
n 

As in the preceding example, Qi(t) is a Poisson random variable with 

EQi(t) = L r Pi(els)[1 - Gu(t - sls)]f.Li(ds). 
lEe 10 

We will consider a problem of optimizing the inputs to meet certain output 
requirements at minimal cost. This is sometimes called a Material Requirements 
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Planning problem. A standard approach is to consider the input times Tin as being 
deterministic variables that are to be optimized. Ideally, this would be a Markov 
decision process in which the system is dynamically observed and controlled over 
time. This leads, however, to an intractable mathematical programming problem. 
To get around this difficulty, we will consider the input times 0 ::: Til ::: Ti2 ::: ... 
as a Poisson process just as above, and consider the mean value functions J.Li(t) == 
ENi(O, t] as variables to be optimized. Furthermore, we will consider a "static" 
optimization over a fixed time horizon rather than a "dynamic" optimization. We 
will comment further on this approach after formulating the problem. 

We will address the production scheduling problem of selecting the functions 
J.Li(t) that minimize the expected work in progress (WIP), which is 

E[L r Qi(t)dt] = r[LJ.Li(t)-LEDe(t)]dt. 
iEI 10 10 iEI eEL 

In addition, we want to ensure that the cumulative mean output of product l at 
time t attains the level de (t). That is, 

EDe(t) ::: de(t), 0::: t ::: T, l E C. 

In other words, the preceding problem is the mathematical programming 
problem 

m~n L r [J.Li(t) - L r pi(lls)G;e(t - SIS)J.Li(ds)] dt 
/l-j"EI iEI 10 eEL 10 

subject to 

L r pi(lls)Gu(t - SIS)J.Li(ds) ::: dt(t), 0::: t ::: T, l E C. 
iEI10 

This is an infinite-parameter linear programming problem. For practical pur
poses, however, it can be formulated as a standard linear programming problem 
as follows. Assume the functions J.Lt(t) are step functions that only change at inte
ger points t = 1,2, ... , T, and make similar assumptions for the functions ri(t), 
Pi(llt), G;e(u - tit). Let J.Lil = J.Li(t) - J.Li(t - 1). Then the preceding problem 
reduces to the linear program 

TIl 

min L L[L J.Lis - L L pi(lls)Gu(t - SIS)J.Lis] 
/l-II iEI 1=1 <=1 tEL s=1 

subject to J.Lil ::: 0 and 

1 

L L Pi (lls)G;e(t - SIS)J.Lis ::: dt(t), t = 1, ... , T, l E C. 
iEI s=1 

One would use this model as follows. Upon optimizing the means J.Lit, the actual 
input times can be generated by simulating the associated Poisson process. The 
production schedule would be implemented for an initial part of the time horizon, 
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say the first week of a ten week horizon. At the end of the first week, the problem 
would be resolved for the next ten week horizon with updated requirements etc. 
Again, the schedule would be implemented for one week. This rolling horizon 
model is a natural approximation for a Markov decision process. The beauty of 
this approach is that it is tractable for actual computations. 

In addition to determining production quantities, this model also provides Pois
son distributions of the quantities in the system and the outputs. For instance, 
upon determining an optimal schedule, one might be interested in the probabilities 
P{Dt(t) ~ dt(t)} that the cumulative outputs up to certain times t for the schedule 
attain the required levels. If these probabilities were too low, one might consider 
adjusting the input rates. 

9.6 Network of M/G/oo Service Stations 

In this section, we discuss the movements of customers in a network of M / G / 00 

service stations. The properties of this network we present here follow from the 
results in the next section on particle systems. We view the movements of customers 
in a network of M / G / 00 stations as particles moving in a space (the set ofstations), 
and a particle's "location process" is determined by a stochastic routing mechanism 
and the service times at the stations. Special cases of this network are the treelike 
network discussed in Example 9.1 and the single M/G/oo system discussed in 
Example 9.23. 

Consider a network of m service stations (called nodes) that operate as follows. 
Customers enter the network according to a Poisson process N on the time axis lR 
with mean measure f.L and arrival times 

Let IE = {O, 1, ... , m} denote the space of nodes, where 0 denotes outside of the 
network. The nth customer entering the network at time Tn selects, or is assigned, 
a random route Sn = (Sn I, ... , Sn L .. ) through the network, where Sni E IE denotes 
the ith service station or node the customer visits, and the length 1 ::: Ln ::: 00 may 
be random and depend on Sn . Multiple visits to node 0 are allowed and after visiting 
node SnLn , the customer enters 0 and stays there forever. In addition, the customer 
selects, or is assigned, a vector of nonnegative "waiting" times (service, delay, 
or sojourn times) Wn = (Wnt. ... , WnL.), where Wni is the customer's waiting 
time at node Sni. We assume that the route and waiting time vectors {(Sn, W n)} 
associated with the arrival times {Tn} are marks of N. This implies that there are 
no interactions among the customers (e.g., queueing for service) that determine 
their waiting times. 

This network is an example of a particle system on the discrete space IE, where 
the location processes are determined by the routes and waiting times. Under the 
preceding assumptions, the probability that a customer entering at time s is in the 
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sector B C IE at time t is 

i-I i 

Pt(s, B) = L P{i ~ Ln , Sni E B, L Wnk ~ t - s < L Wnk I Tn = s} 
k=1 k=1 

Ln 

+ 1(0 E B)P{L Wnk ~ t - s I Tn = s}. (9.12) 
k=1 

Note that these probabilities do not depend on n because {(Sn, Wn)} are marks. 
These probabilities and the arrival-intensity measure /L are the basic input data for 
the network. 

For a typical application, the routing of units in the network would depend on the 
structure of the network and the nature of the customers and services. A standard 
assumption is that the customer routes are independent and Markovian, where P j k 

denotes the probability of a customer moving to node k upon departing from node 
j. Thentheprobabilityofaroute (SI' ..• , St) of nom and om length l is POSt •.• Ps,o. 
Another convention is that there are several types of customers and all customers 
of the same type take the same route. In this case, the probability of a route is the 
probability that the customer entering the network is the type that takes that route. 
The simplest service times at a node are those that are independent and identically 
distributed, depending on the node and independent of everything else. Then the 
sums of service times are characterized by convolutions of the distributions. The 
next level of generality is that the service times are independent at the nodes, but 
their distributions may depend on the route as well as the node. An example of 
dependent service times is that a customer entering a certain subset of routes is 
initially assigned a service time according to some distribution and then that time 
is its service time at "each" node on its route. 

We will now describe the customer movements in the network using the results 
of the last section. 

Where are the Customers at Time t? Let N,(I x B) denote the number of 
customers who enter during the time set t - I and are located in the sector B E £ 
at time t E R By Theorem 9.27 below, this N, is a Poisson process on IR+ x IE, 
with 

E[N,(I x B)] = [ P,(s, B)/L(ds), 

where Pt(s, B) is the probability given by (9.12) that a customer entering at time 
s is in B at time t. In particular, the numbers of customers N,(I x {j}), j E IE, 
who enter during t - I and are at the respective nodes at time t are independent 
Poisson random variables. 

Arrivals, Departures, and Node Changes Let N(I x I' x B x C) denote 
the number of customers that initially enter the network during the time set I 
and afterward during the time set I' move from sector B to sector C. Note that 
the process N does not depend on time t because it does not record information 
dynamically with respect to time. Depending on the routing, a customer may move 
from B to C several times. This N is a Poisson cluster process such as those in 
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Example 9.32. Special cases of this process represent the flow of departures from 
B, and the flow of arrivals to C. For one-time occurrences, these cluster processes 
may simply be Poisson processes. For instance, suppose that each customer enters 
the network only once and eventually leaves it. Let N (l x I' x B) denote the number 
of customers that enter the network during the time set I and depart during I' from 
the sector B. Then as in Example 9.33, it follows that N is a Poisson process with 

1 L" 

E[N(l x I' x B)] = P{SnL" E B, S + L Wnk E I'I Tn = s}JL(ds). 
I k=1 

In particular, the departure processes DjO == Nt(l~ X (-) xU)), 1 ::: j ::: m, from 
all the nodes are independent Poisson processes. 

As another example, suppose customers move from sector B to sector C at most 
once, and N (I x I ') denotes the number of customers that enter the network during 
I and move from B to C during 1'. Then N is a Poisson process on JR2 with 

E[N(l x I')] = 1 L P{i ::: Ln, Sni E B, Sn(i+I) E C, 
I i 

i 

S + L Wnk E I'I Tn = s}JL(ds). 
k=l 

There are several independence properties such as those in Corollary 9.34 for this 
network. For instance, in the last example, for each fixed t, the movements of 
customers from B to C during the past ( - 00, t] is independent of the populations 
in B during the future (t, (0). 

Flows on the Routes The preceding results for population sizes, arrivals, de
partures, node changes, etc. for "nodes" have obvious analogues for "routes." For 
instance, let Nt(l x B) denote the number of customers who enter during the time 
set t - I and are located in the set of routes B at time t E JR. Then Nt is a Poisson 
process on JR+ x (routes), with 

1 L" 

E[Nt(l x B)] = t-I P{Sn E B, s + b Wnk > t I Tn = s)JL(ds). 

As another example, let N(l x I' x B) denote the number of customers who enter 
during I and during I' depart from a route in B. Then N is a Poisson process with 

1 L" 

E[N(l x I' x B)] = P{Sn E B, s + L Wnk E I'I Tn = s}JL(ds). 
I k=1 

The preceding are just a few properties of the network that follow by space-time 
Poisson reasoning. There are many other properties that can be obtained by similar 
arguments. 
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9.7 Particle Systems 

This section discusses particle systems in which particles enter a space according 
to a space-time Poisson process, and their subsequent movements in the space 
may depend only on their initial entry times and entry locations. Because the 
particles do not interact as they move, various events concerning their evolution 
are described by events associated with marked Poisson processes. The network 
in the preceding section is a classic example. 

We will consider a system in which particles enter a space 18: over the doubly
infinite time axis IR such that the pairs of entry times and locations, denoted by 
(Tn, Xn), form a space-time Poisson process N on IR x IE:. The pair (Tn, Xn) is the 
space-time entry point of the nth particle. The total number of arrivals N (/ x 18:) in 
a finite time interval I may be infinite; this is equivalent to its mean being infinite, 
which is allowed. We assume that a particle entering at time t E IR at the location 
x E 18: moves in 18: according to a stochastic location process that may depend 
on (t, x) but nothing else. This model also covers systems in which particles may 
leave the space 18: of interest and possibly reenter and exit many times; one simply 
enlarges 18: to contain a location 0 that represents the "outside" state. Because of 
this convention, we need not define exit times of the particles explicitly, other than 
through their location processes. 

To describe the locations of the particles or some of their attributes over time, 
we will use system attribute processes defined as follows. 

Definition 9.26. Suppose Zn == {Zn(t) : t E IR} are location-dependent marks 
of N, where Zn is a stochastic process with state space 18:' such that Zn (t) is an 
"attribute" or set of attributes associated with the nth particle at time t. For each 
t E JR., define a point process Nt on JR.+ x 18: X 18:' by 

Nt (/ x A x B) = L 1(7;, E t - I, Xn E A, Zn(t) E B). 
n 

This quantity denotes the number of particles that enter somewhere in the set A E £ 
during the time interval t - I and, at time t, their attributes are in the set B E £'. 
The point process Nt is the system attribute process at time t associated with the 
particle attribute processes Zn. 

An attribute of a particle may be an extra label, or classification designating its 
"type" as it moves in the space IE:. The type may change over time independently of 
the other particles, but possibly dependent on its location process in 18:. An attribute 
process may also be a multivariate process that keeps track of several attributes, 
including a particle's location. The preceding definition refers to particle entries 
during time sets of the form t - I, since they are more appropriate for bookkeeping 
than time sets I. The quantity Nt (/ x A x B) is finite for compact sets I, A, B. 
However, the "total number" of particles Nt(IR+ xEx B) with attributes in B at 
time t may be infinite when the number of arrivals up to time t is infinite. For 
simplicity, Zn(t) is assumed to be defined for all t E JR.; it can be set to any value 
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for t < Tn if it is not relevant before the particle entry time Tn. The process N, 
does not count attributes of particles that enter after time t. 

An attribute process Zn is called the location process for the nth particle in lE 
when Zn(t) is its location at any time t, where, in particular, Zn(Tn) = X n. In this 
case, N,(l x A x B) records the number of particles that enter in (t - I) x A and 
are located in B E £ at time t. Batch entries and batch movements of particles 
are also allowed. Suppose that at each space-time entry point (Tn' Xn) a batch of 
particles enters and they move thereafter in lE possibly depending on others in the 
batch, but independently of the other particles. Then the location process would be 
Zn == {Z~(t) : t E JR, i = 1, ... fin}, where Z~(Tn) = Xn and fin is the (possibly 
random) batch size. 

Many attributes are functionals of location processes. Examples of such an 
attribute Zn(t) for the nth particle are as follows: 
• Amount of time it spends in a set B prior to time t. 
• Longest time it has stayed in a state without moving prior to time t. 
• Length of time it will ever spend in a set B. 
• Time to its next movement after time t. 
• Subspace it visits in the time interval [t - s, t + u] for positive, fixed s, u. 
• The last state it visits in B before exiting this set for the final time. 
• Number of distinct states it visits after time t. 

For the rest of this section, we consider the particle system described above 
with space-time Poisson input process N. We will characterize the system at
tribute processes N" t E JR, associated with particle attribute processes Zn. The 
attribute Zn (t) may represent a single parameter or a complicated family of random 
elements. 

Without any further assumptions on the particle system, we have the following 
basic result for system attributes. Here 

p,(s, x, B) == P{Zn(t) E B I Tn = s, Xn = x}, N(JR x lE) ~ n. (9.13) 

Theorem 9.27. (General Attributes) For each t E JR, the system attribute process 
Nt is a Poisson process on R+ x lE X lE' with 

E[Nt(l x A x B)] = ( p,(s, x, B)JL(ds dx). 
J(t-I)XA 

(9.14) 

If Pt(t - s, x,·) converges vaguely to some kernel p(s, x,·) as t ~ oo,for each 
s, x, then 

lim E[N,(l x A x B)] = 1 p(s,X, B)JL(dsdx). 
n-+oo IxA 

(9.15) 

In this case, Nt converges in distribution as t ~ 00 to a Poisson process, whose 
mean measure is given by the preceding limit. 

PROOF. For fixed t E JR, the points (Tn, Xn, Zn(t» form a marked point pro
cess M, on JR x lE X lE', and M t is a Poisson process with mean measure 
Pt(s, x, dZ)JL(ds dx) by Theorem 9.12. Clearly, Nt is the transformation of M, 
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under the mapping g(s, x, z) = (t - s, x, z). Then it follows by Theorem 9.6 that 
Nt is a Poisson process with mean measure (9.14). 

The second assertion of the theorem follows by applying the dominated con
vergence theorem to (9.14), which equals flxA Pt(t - u, x, B)J.L(du dx) under the 
change of variable u = t - s. The third assertion follows by the result in Exercise 2 
that says a sequence of Poisson processes converge to a Poisson process if their 
associated mean measures converge. 0 

An immediate consequence of the preceding result is that the "total-system" 
attribute process N:(B) == Nt(lR+ x IE x B) at time t is a Poisson process on 
IE', provided its mean measure (expression (9.14) with A = IE) is finite for each 
compact B. For real-valued attributes such as costs, one may be interested in the 
cumulative attribute process Zt == Ln Zn(t)I(Tn E (a, tJ), for t ~ a, where a is 
fixed. This is a compound Poisson process provided the sum exists. 

We now consider Markovian attributes for the particle system. The Zn's are 
Markov attribute processes if, for any particle arrival point (Tn' Xn) = (s, x) E 

IR x IE, its attribute process {Zn(t) : t ~ s} is a Markov process, possibly depending 
on (s, x), but not necessarily time homogeneous. The gist of the next result is that 
the system attribute processes Nt inherit the Markovian property of the particle 
attribute processes. 

Theorem 9.28. (Markovian Attributes) If the particle attribute processes Zn are 
Markovian, then thefamity of system attributes {Nt: t E 1R} is a measure-valued 
Markov process, which is not necessarily time homogeneous. Each Nt is a Poisson 
process on 1R+ x IE X IE' as described in Theorem 9.27. 

PROOF. We will use the fact that the distribution of a point process is determined 
by its Laplace functional. Consider fixed t < u and f : 1R+ x IE X IE' ~ ~. 
Note that Nu is the number of attributes for arrivals up to time t plus the number 
of attributes for arrivals in the interval (t, u]. Then 

E(eXp[- ( f(s,x,z)Nu(dsdxdz)] 
llR+ xlExlE' 

I N.s : s < t, Nt (·) = ~ l((tn, xn, Zn) E'») 
= n ( e-f(u-tn.xn.z) P{Zn(u) E dz I Tn = tn, Xn = xn, Zn(t) = Zn} 

n lIE' 

X E (exP[ - ~ f(u - 7;" X" Z.(u»I(T. E (t, uJ)). 
Now, the right side of this equality, and hence the distribution of Nu, is a function 
of t, u, Nt and is independent of N.so s < t. This proves that {Nt: t E 1R} is a 
Markov process. 0 

Next, we consider Markovian location processes. We will assume the entry 
process N for the particle system is stationary in time. That is, the distribution of 
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N«/I +t) x B I ), ... , N«h +t) x Bd is independent oft for any time and space 
sets II, Bt. ... , h, Bk. A necessary and sufficient condition for this stationarity 
is that EN(l x A) = AI/I11(A), for some A > 0 and measure 11 on IE that is 
finite on compact sets; see Exercise 8. Consider attributes Zn that are the location 
processes for the particles, and let Nt denote the associated system location process 
at time t. Assume that Zn is a time-homogeneous Markov process with transition 
probabilities 

P(t, x, B) == P{Zn(s + t) E B I Tn = s, Xn = x}, 

that are independent of s. Keep in mind that Zn(Tn) = X n. Also, consider the point 
process 

N;(l x B) == Nt(l x IE x B), I c ~+, B E £. 

This records the entry times and locations of particles at time t, regardless of where 
they entered. 

Theorem 9.29. (MarkovianIPoisson Location Processes) Consider the particle 
system under the assumptions above that the Poisson entry process N is station
ary in time with EN(l x A) = AI/I11(A), and the particle location processes are 
Markovian. Then the family {Nt: t E ~} of system location processes is a sta
tionary, measure-valued Markov process. Also, each Nt is a Poisson process with 
mean measure 

E[Nt(l x A x B)] = J P(s, x, B)Ads 11(dx), I c ~+, A, BE £. 
lxA 

If in addition, T/ is an invariant measure for the Markovian location processes, 
then the family {N: : t E ~} of entry-location processes is a stationary, measure
valued Markov process, where each N: is a Poisson process with E[N:(l x A)] = 
AI/I11(A). 

PROOF. The first assertion follows by Theorem 9.28. The second assertion follows 
from the first assertion and the fact that IE P(u, x, B)T/(dx) = T/(B), since 11 is a 
stationary distribution for P(u, x, B). 0 

Example 9.30. Brownian/Poisson Particle System. Consider the particle system 
described above, where the particles move in the space IE = ~d. Suppose the 
Poisson entry process N is homogeneous with intensity A: It is stationary in space 
as well as time, and EN(I x A) = AI/IIAI. Assume each particle that enters at 
a location x E ~d moves according to ad-dimensional Brownian motion process 
{Wt : t E ~+} with mean vector x. This process has continuous sample paths such 
that Wo = x w.p.t, and, for each t < u, the increment Wu - Wt is independent of 
{Ws : s ~ t} and its distribution (denoted by P(t, x, B» is ad-dimensional normal 
distribution with mean vector x and covariance matrix t times the identity matrix. 
It is well known (and easy to check) that an invariant measure for this Brownian 
motion is the Lebesgue measure on ~d. Therefore, by Theorem 9.29, the family 
{N: : t E ~} is a stationary, measure-valued Markov process, where each location 
process N: is a homogeneous Poisson process on ~+ x ~d with intensity A. 0 
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We now consider stationary attributes of the particle system. For the next result, 
assume the entry and attribute processes Nand Zn are jointly stationary in time. 
11hatis, the process 

Yt == {Tn + t, X n, {Zn(t + u) : u E JR.}, n E Z}, t E JR., (9.16) 

is stationary. Let A > 0 and " be a measure on lE that is finite on compact sets such 
that N{I x A) = AIII,,(A). In addition, assume that 

p(x, B) == P{Zn(t) E B I Tn = s, Xn = X}, X E lE, BE £', 

is independent of sand t. Here N (JR. x lE) = 00 since its mean is infinite. The 
following is a stationary/Poisson analogue of the preceding Markovian/Poisson 
results. 

Theorem 9.31. (Stationary Systems) Under the preceding assumptions, the sys
temattributelamily {Nt: t E JR.} is a measure-valued stationary process, and each 
Nt is a Poisson process with 

E[Nt{I x A x B)] = AlII i p(x, B)'f/(dx). 

PROOF. It suffices to show, for each 1 : JR.+ x lE X lE' ~ JR.+, that the distribution 
of Ut == Ln I(t - Tn, X n, Zn(t» is independent of t. But this follows from the 
fact that Ut is a function of the stationary process Y defined by (9.16). In the 
terminology of Chapter 5, U is a stationary functional of Y. The mean measure of 
Nt is a special case of (9.14). D 

Example 9.32. Point Process Attributes. For the particle system we are discussing, 
an item of interest is the number of times that a particle enters a certain set B. This 
type of point process attribute can be expressed as follows. Suppose the attribute 
Zn for the nth particle is a space-time point process on JR. x lE' such that Zn (I x B) is 
the number of occurrences in the time interval I of a certain event or "B -attribute" 
for the particle. It is natural to define the system attribute point process at time t 
by 

NtU x A x I' x B) = L I(Tn E t -I, Xn E A)Zn«I' + t) x B), (9.17) 
n 

where I, I' C JR.+, A E £, B E £'. This records the number of particles that 
enter A in the time set t - I and have a certain B -attribute in the time set I' + t. 

The following are examples of point process attributes that are functionals of 
the particle location processes: 
• Times of departures from a certain set B. 
• Times of transitions (instantaneous movements) from a set B to a set C. 
• Distinct states the particle visits. 
• Times at which sojourns in a set are longer than w time units. 
• 11he number of traverses of a certain "route" in lE (e.g., from B to C). 

Since the entry process N is Poisson and the Zn's are marks of it, the system 
attribute processes Nt have several nice properties. First, each Nt is a Poisson 
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cluster process. The proof of this and the specification of its mean are the aim of 
Exercise 9. 

Another property is that {Nt: t E JR} is a stationary process if the entry and 
attribute processes N and Zn are jointly stationary in time, and the conditional 
distribution of Zn given Tn = S, Xn = X is independent of s. The proof of this is 
similar to that of Theorem 9.31. 

The system attribute processes Nt use the time t as a reference point. Point 
process attributes without such a time reference can be modeled by the point 
process N defined by 

N(l x A x I' x B) = L I(Tn E I, Xn E A)Zn(l' x B), 
n 

where I, I' C JR, A E £, B E £'. This records the number of particles that enter 
A in the time set I and have a certain B -attribute in the time set I'. 0 

Example 9.33. One-Time-Occurrence Attributes. Generally, the Poisson cluster 
process Nt of point process attributes given by (9.17) is not a Poisson process. It 
is, however, for attributes that occur only once as follows. Suppose the attribute 
for the nth particle is a point (T:, Y:) in JR x lE' signifying the time at which some 
special event occurs and the value of something at the event. For instance, if B 
is a set that is visited exactly once by each particle, then T: could denote the nth 
particle's exit time and Y: E B denote its exit location from B. The one-time
occurrence attribute is represented by the point process ZnO = I«T:, Y:) E .) 

that contains only one point. Then the attribute point process Nt(l x A X I' x B) 
records the number of special events in the time interval t + ]' that take values in 
B for the system. In this case, the Poisson cluster process Nt reduces to being a 
Poisson process. 0 

Let us return to the particle system we have been studying with space-time 
Poisson entry process N and particle location processes {Zn} that are location
dependent marks of N. There are a variety of independent events and processes 
associated with the system due to the independent increment property of a Poisson 
process. For instance, let N:(l) denote the number of particles that entered in the 
time interval I and have visited all points of a fixed set B at least once prior to time t. 
Then by Theorem 9.12, N: is a Poisson process on JR, provided its mean measure is 
nonzero and finite. Consequently, the numbers ofsuch particles N:(ll), ... , N:(h) 
associated with disjoint entry-time intervals II, ... , Ik are independent Poisson 
random variables. There are more subtle examples of independence such as the 
following one. A special case of this is in Example 9.23. 

Corollary 9.34. (Populations Independent of Past Departures) Suppose the set 
B E £ is such that each particle enters it at most once. Let Qt denote the number 
of particles in B at time t, and let D(l) denote the number of departures from 
B during the time interval I. Suppose these processes are finite valued. Then for 
any fixed time t, the departures from B during (-00, t] are independent of the 
population in B after time t (i.e., Q+ -1 D_). 
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PROOF. Let M denote the point process with points at (Tn, Xn, Zn), where the 
Zn's are location processes. This M is a Poisson process by Theorem 9.12. Now, 
we can write 

Qr = M(1R x lE x Vr(B», 

where Vr(B) = {z : z(t) E B} is the set of location sample paths that are in B at 
time t. Similarly, the number of departures from B at some time S E I that are not 
in B thereafter, is 

D(l) = M(1R x lE x USEI Vs(B) nu~., Vu(lE\B». 

By the preceding expressions, it follows that {Qu : u > I} is determined by the 
process M on the setlRxlEx Uu>er Vu(B), and {D(l) : I C (-00, In is determined 
by M on a "subset" oflR x lE x nu~r Vu(lE\B). Since these two sets are disjoint and 
the Poisson process M has independent increments, it follows that the departures 
from B during (-00, I] are independent of the population in B after time I. 0 

9.8 Poisson Convergence of Space-Time Processes 

In the rest of this chapter, we address the following issue. Suppose N is a point 
process on lE that need not be Poisson, and let M be a p-transformation or marked 
point process associated with N. Suppose the space of marks lE' is a "large space" 
in the sense that the probability p(x, C) of a point assignment to any compact 
set C is very small regardless of the structure of the initial points in the space lE. 
Then the points in the large space lE' would be sparse, and hence M might form a 
Poisson process on lE x lE'. Our aim is to express this idea more precisely in terms 
of limit theorems for sequences of transformed point processes. 

This section begins with an example of the limit theorems that lie ahead. Follow
ing this example is a limit theorem describing a sequence of space-time processes 
that converge to a space-time Poisson process. The material in this section is a 
precursor of the convergence theorems for general random transformations in the 
next two sections. 

Example 9.35. Routing in a Large Network. Consider a network whose point 
process of arrivals N on the time axis 1R+ is stationary and ergodic with intensity 
). = EN(1). Each arrival to the network is independently assigned to a route 
j E {I, ... , n}withprobability Pn{j), where Ej=1 Pn{j) = 1. We do not make any 
assumptions on the nature of the route or waiting times on the routes. For instance, 
this network could simply be a flow of customers arrivals that are partitioned into 
n substreams that are routed to n service stations. 

We will consider the flows arriving to the routes when the network is large in 
the sense that the number of routes n is large and the probabilities Pn (j) are very 
small. To make the idea of a large network more precise, we consider a sequence of 
networks that is growing such that the number of routes n tends to infinity. Assume 
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there are constants an --+ 00 such that, for each j, the limit 

exists (it may be 0 for some j 's). Let Nnj(t) denote the number of arrivals to route 
j up to time ant in the n-route network. Now, consider the Pn-transformation of 
N(an·) defined by Mn(A x B) == LjEB Nnj(A). Then it follows by Theorem 9.36 
below that Mn converges in distribution to a Poisson process. This is equivalent to 
the convergence 

(Nnl' ... , Nnn ) => (NI' N2 .. . ), as n --+ 00, (9.18) 

where N I, N2 ... are independent Poisson processes with respective intensities 
Arl, Ar2, .... 

The convergence statement (9.l8) justifies that, for a network with a large 
number of routes n and uniformly small routing probabilities Pn (j), the point 
processes Nnl , ... , Nnn can be approximated by independent Poisson processes 
N:I, ... , N:n with intensities Aan Pn I, ... , Aan Pnn, respectively. A natural measure 
for the quality of this approximation is the total variation distance. This distance 
for random elements X and Y is defined by 

d(X, Y) = sup IP{X E B} - P{Y E B}I. 
B 

In this case, it follows by a property of Poisson random variables that, for each 
k::: n andt, 

k 

d«Nnl(t), ... , Nnk(t», (N:I(t), ... , N:k(t))) ::: tAan(L Pnji. 0 
j=1 

We now present a limit theorem underlying the preceding example and other 
space-time systems as well. Consider a system in which items (or customers) arrive 
over time according to a point process N on IR+. An arrival at time t generates 
a mark (or point) in a Borel subset B in a space E with probability p(t, B). Let 
M denote the p-transformation of N that represents the arrival times and marks. 
That is, M(A x B) is the number of arrivals during the time set A that generate 
marks in the set B. For instance, this system might represent truck deliveries, fires, 
emergency telephone calls, computer packet destinations, defects in a pipeline, 
asteroid landings, sunk ships, bugs in computer code, etc. in appropriate spaces 
overtime. 

Our interest is in this system when the space E is large or, equivalently, that the 
marks are sparse in E. Accordingly, we will consider a sequence of such systems 
{Mn : n ~ I}, where each Mn on IR+ x En is a Pn-transformation of N. Typically, 
En are increasing subsets of some space. Without loss of generality, we assume 
En == E. To express that E is large, we make the sparseness assumption that the 
mark probabilities Pn(t, C) converge to 0 uniformly in t as n --+ 00, for any 
compact set C. This property is implicit in assumption (9.19) below. It implies, 
however, that the point processes Mn converge in distribution to 0 as n --+ 00. We 
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therefore model the sequence of systems by the normalized point processes 

Mn(A x B) == Mn(anA x B), A C lR.+, B E £, 

where an are normalizing constants that tend to infinity and anA == {ant: tEA}. 
The Mn is the process Mn with an as its new time unit. This rescaling of time is 
comparable to a traditional normalization like a;1 L~=I Xb which is a rescaling 
of the space of values. Note that Mn is a Pn-transformation of N(an·). 

Under this formulation, a limit of the sequence Mn would be an appropriate 
model for the large space lEo The following result describes when such a limit is a 
Poisson process. 

Theorem 9.36. Suppose t- I N(t) => A as t ~ oo,for some positive constant 
A, and there are constants an ~ 00 and a kernel r(x, B) such that the vague
convergence limit 

(9.19) 

exists uniformly in t. Then Mn => Mas n ~ 00, where M is a Poisson process 
with E[M(A x B)] = fA r(s, B)Ads. 

This result is a special case of Theorem 9.37 in the next section. Note that 
the limiting process M depends on the random structure of N only through its 
intensity A. This is due to the fact that Mn is asymptotically independent of N, 
which means P{Mn E . IN} => P{M E'}' This convergence is implicit in the 
proof of Theorem 9.37. 

9.9 Transfonnations into Large Spaces 

This section describes transformations of point processes that converge to Poisson 
processes as the space becomes large. 

Consider a sequence of point processes {M n : n 2: 1} on lE x lE' such that each 
Mn is a Pn -transformation of Nn • We assume the space lE' is large in the sense that, 
for any compact sets C E £ and C' E £', 

sup Pn(x, C') ~ 0, as n ~ 00. 
XEC 

(9.20) 

This says that the probability of a point of Nn in C being mapped into C' tends to 0 
as n ~ 00. In the preceding section, the analogous assumption is Pn (an t , C') ~ 0, 
which is implied by (9.19). That model normalized the space lE by the constants 
an, but this is not done here. Instead, such a normalization is implicit in Nn , which 
now carries the subscript n. 

We will refer to the mean measure of Mn conditional on Nil, which is the 
"random" measure 

(9.21) 
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where {Xni : i ::: I} are the point locations of Nn. The following result says that 
Mn converges in distribution to a Poisson process if its random mean measure 
Nn(dx)Pn(x, dx') converges in distribution. 

Theorem 9.37. Let Mn be a Pn-transformation of Nn. Suppose (9.20) holds, and 
the random measure Nn (dx) Pn (x, dx') on IE x IE' converges in distribution to some 
nonrandom measure IL on IE x IE'. Then Mn =} Mas n ---* 00, where M is a Poisson 
process on IE x IE' with mean measure IL. 

Remark 9.38. The assumptions (9.20) and Nn (dx) Pn (x, dx') =} lL(dx dx') imply 
that Nn(A) =} 00 when 1L(A'x IE') > O. This was apparent in Theorem 9.36, where 
N(ant) =} 00. 

PROOF. It suffices, by Theorem 9.5, to show that the Laplace functional of Mn 
converges to that of M. By Proposition 9.11, the Laplace functional of Mn is 

LM,,(f) = E[exp{- ( f(x,x')Mn(dxdx')}] 
llExlE' 

= E[exP{L 10g[1 - gn(x)]Nn(dx)}], (9.22) 

where f is a bounded nonnegative function on IE x IE' with compact support and 

gn(x) == ( [1- e-f(x.x')]Pn(x, dx'), x E IE. 
lIE' 

Using the series expansion for 10g[1 - gn(x)] in (9.22), we have 

(9.23) 

where 

i 00 gn(xi- 1 
Zn = L gn (x)Nn (dx). 

E k=2 k 

Now, under the hypotheses of the theorem, it follows that 

( gn(x)Nn(dx) =} { (1 - e- f{x.x'»)IL(dx dx'), as n ---* 00. (9.24) 
~ ~x~ 

Next, let C E £ and C' E £' be compact sets such that f(x, x') = 0 for (x, x') not 
in C x C'. Then it follows by assumption (9.20) that 

gn(x) ~ en == sup Pn(x, C') ---* 0, as n ---* 00. 
xeC 

Using this and (9.24), we have 

as n ---* 00. (9.25) 
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Applying (9.24) and (9.25) to (9.23) and using dominated convergence, it follows 
that 

LMJf) --+ exp[ - r (1 - e-f(x.x'»JL(dx dx')], as n --+ 00. 
JExE' 

But this limit is the Laplace functional of a Poisson process on IE x IE' with mean 
measure JL; recall (9.1). Thus LM,,(f) --+ LM(f), which proves Mn => M. 0 

9.10 Particle Flows in Large Spaces 

This section describes two models of particle flows in large spaces. The first one 
has a spatial normalization, and the second one has a time normalization. Using 
Theorem 9.37, we show how the flows are described by Poisson processes. 

The following example is an extension of the Markovian particle system in Theo
rem 9.29; here the initial particle locations need not be Poisson and the movements 
need not be Markovian, but the space is large. 

Example 9.39. Particle System with Spatial Normalization. Consider a system that 
contains a finite or infinite number of particles that move about in the Euclidean 
space Rd. At time 0, the particles are located in Rd according to a point process 
N. The particles move by some random mechanism such that, conditioned on N, 
the particles move independently, and Pt(x, B) is the probability that a particle 
located at x at time 0 is located in a set B at time t. The system may be closed, 
or it may be open, meaning that particles may eventually leave the system, and 
1 - Pt (x, Rd) is the probability that a particle starting at x exits the system by time 
t. 

We assume the particles become widely dispersed over time in the sense that the 
probabilities Pt(x, C) converge to 0 as t --+ 00 for any compact C. For instance, 
the particles may all eventually exit the system. More specifically, we assume there 
are constants at --+ 00 such that, for each x and B, the limit 

r(x, B) == lim atpt(x, atB), 
t ..... oo 

(9.26) 

exists uniformly in x for each B with r(x, ~B) = 0, and the limit is finite when 
B is compact. The scaling atB is possible because the set B is in Rd. In addition, 
assume 

a;1 N(at·) => JLO, as t --+ 00, (9.27) 

where JL is a nonrandom measure on Rd. This holds, for instance, if N is a stationary 
ergodic point process. 

Let M t (A x B) denote the number of particles initially in A that are in the rescaled 
set at B at time t. The point process Mt on Rd x Rd is clearly a Pt -transformation 
of N(at·). Note that (9.26) and (9.27) imply 

N(at dx)pt(x, at dx') => JL(dx)r(x, dx'), as t --+ 00. 
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Then it follows by Theorem 9.37 that 

Mt =? M, ast ~ 00, 

where M is a Poisson process on lRd x lRd with 

E[M(A x B)] = i J-L(dx)r(x, B). o 

The next example is an extension of the network of M / G / 00 service systems 
discussed in Section 9.6. 

Example 9.40. Particle System with Time Normalization. Consider a system in 
which particles enter the space IE over time according to a point process N on 
lR+ x IE, where a point (s, x) of N is an "entry point" of a particle denoting its 
entry time s and entry location x. The number of particle arrivals N ([0, t] x IE) in 
the finite time interval [0, t] may be infinite. 

Upon entering the space IE, each particle moves in it according to some stochas
tic mechanism and eventually exits the system. For convenience, assume that IE 
contains the state 0 that denotes the outside of the system. Conditioned that a par
ticle enters at (s, x), the probability that it is in a set B E £ at time t is Pt (s, x, B). 
Our interest is in the locations of the particles over time when the space is large. 

To this end, consider a sequence of systems we just described, where the prob
abilities for the nth system are Pn.t (s, x, B). Assume there are constants an ~ 00 

such that, for each t, s, x, and B, the vague-convergence limit 

(9.28) 

exists uniformly in s, x. In addition, assume that 

-IN an n =? J-L, asn ~ 00, (9.29) 

where Nn(/ x A) == N(anl x A) and J-L is a nonrandom measure on lR+ x lEo For 
each nand t, let M n•t be a point process on lR+ x 1E2 such that M n•t (/ x A x B) 
denotes the number of particles that enter in the time and space set an I x A and 
are in B at time ant. In other words, Mn.t is a Pn.an,-transformation of Nn. The 
assumptions (9.28) and (9.29) ensure that 

Nn(ds dX)Pn.ant(ans, x, dx') =? J-L(ds dx)rt(s, x, dx'), as t ~ 00 

Then by Theorem 9.37 it follows that, for each t, 

Mn.t =? Mt , as n ~ 00, 

where Mt is a Poisson process with 

E[MtU x A x B)] = 1 J-L(ds dx)rt(s, x, B). 
lxA 

Note that this convergence statement is for each fixed time t. To describe the 
joint convergence of the processes Mn.t" ••• Mn•tk for times II, ... , tb one would 
have to know more about the dependencies in the movements of the particles. 
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However, here is one elementary observation we can make about Mr. Suppose the 
vague convergence limit 

r(s, x, .) == lim rr(s, x, .) 
t ..... oo 

exists. Then since each Mt is a Poisson process, it follows by Exercise 2 that 
Mt => M, where M is Poisson with mean measure JL(ds dx)r(s, x, B). 

Next, note that point process M~ describing the particles that exit the system 
(enter the outside state 0) is defined by 

M'(I x A x [0, tD == Mn,r(I x A x {O}). 

This is the number of particles that enter in an I x A and exit by time an t . Define 

p~(s, x, [0, ID == Pn,a"r(s, x, {O}). 

Clearly M~ is a P~ -transformation of Nn• Now, the assumptions above ensure that 
M~ satisfies the conditions of Theorem 9.37. Consequently, 

M~ => M', asn ~ 00, 

where M' is a Poisson process with 

E[M'(I x A x [0, tm = 1 rr(S, x, {O})JL(ds dx). 
IxA 

The results in this example extend to a normalization of the space, as well as 
the time, provided that IE = Rd. The key assumption would be that there exist 
constants an, bn, and Cn that tend to infinity such that, for each t, s, x, and B, the 
vague-convergence limit 

rt(s, x, .) == lim cnPn,a"r(ans, bnx, bnO), 
n ..... oo 

exists uniformly in s, x. Then one would consider Mn,r(/ x A x B) as the number 
of particles that enter in an I x bn A and are in bn B at time an t . D 

9.11 Exercises 

1. Let N), ... , N m denote a finite collection of independent Poisson processes on 
a space IE with mean measures JL), ... , JLm. Consider their sum or superposition 
N = NI + ... + Nm• Show that N is a Poisson process with mean measure 
JL = JL I + ... + JLm. Give one proof using only the definition of a Poisson 
process, and give a second proof by using Laplace functionals. Is this result 
meaningful for m = oo? 

2. For each n ~ 1, let Nn denote a Poisson process on a space IE with mean 
measure JLn. Show that if JLn converges vaguely to a measure JL as n ~ 00, 

then Nn converges in distribution to a Poisson process with mean measure JL. 
3. In the context of Proposition 9.11, find the Laplace functional of the process 

N' of marks in M. 
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4. Consider the cluster process N'(A x B) = Ln Zn(B)l(Xn E A) in 
Example 9.21. Show that its Laplace functional is 

LN,(f) = exp[- L (1 - H(x»f.L(dx)], 

where 

H(x) == E (exp[- L f(x,x')Zn(dx')] I Xn = x, N(IE) ~ n). 
5. The moments of a point process N on IE are given by 

where f(x) = L~=I Ii l(x E Ai). Use this fact to find expressions for the mean 
and variance of the cluster process quantity N'(A) in Exercise 4. 

6. Consider the spatial M / G / 00 system in Example 9.24. Let D(B x (0, I]) denote 
the number of service terminations from B in the time interval (0, I]. Show that 
D is a Poisson process on IE x JR+ and determine its mean. Show that, for 
each t, the process D on IE x (0, t] is independent of the point processes Nu of 
customers in service for u > I. 

7. Consider a production system in which parts enter according to a Poisson pro
cess on the time axis JR+ with intensity)... A part that enters at time I undergoes 
a service operation whose duration is exponentially distributed with rate f.L(t). 
Following this operation, there is a nonrandom delay of d time units before the 
part can exit the system. Let Q, denote the number of parts in the system that 
are undergoing a service operation at time t, and let Q; denote the number of 
parts in the system that are undergoing a delay at time t. Find the distributions 
of these quantities. Let D denote the point process of times at which parts com
plete the service operation and begin their delay period. Is D a Poisson process? 
Assume the service rate f.L(t) is a constant independent of time t. Determine the 
limits 

lim P{QI = n}, lim P{D«a + t, b + t]) = n}. 
1--+00 1--+00 

8. Consider a space-time Poisson process N on JR x IE with point locations 
(Tn' Xn). Show that the following statements are equivalent. 
(a) N is stationary in time (its distribution is invariant under shifts in the time 
axis). 
(b) The times Tn form a homogeneous Poisson process on JR independent of 
the Xn's. 
(c) EN(/ x A) = )..IIll1(A), for some).. > ° and measure 11 on IE that is finite 
on compact sets. 
Use the fact that a measure f.L on JR that satisfies f.L(/ + t) = f.L(/), for any 
interval I and t E JR, is a multiple of the Lebesgue measure. 
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9. Show that the attribute process Nt in Example 9.32 is a Poisson cluster process. 
Find its mean measure. 

9.12 Bibliographical Notes 

General references on point processes are given in Chapter 4. Results on M / G / 00 

queues as manifestations of translations of Poisson processes are reviewed for in
stance in Foley (1982), Daley and Vere-Jones (1988), Cinlar (1995), and Serfozo 
(1999). Extensions to networks are reviewed in Massey and Whitt (1993) and Keil
son and Servi (1994); similar results for spatial systems are in Massey and Whitt 
(1993) and Leung et al. (1994). Closely related are the results on particle systems 
beginning with Derman (1955) and later in Brown (1970). More intricate parti
cle systems such as those studied in Zirbel and <;inlar (1996) and Liggett (1997) 
require different analysis. Most of the material on Poisson processes is a distilla
tion and extension of well-known results. The results on Poisson convergence of 
space-time processes is an extension of partitions of point processes discussed in 
Serfozo (1985). 



10 
Spatial Queueing Systems 

This chapter describes a spatial queueing model for stochastic service systems 
in which customers or units move about and receive services in a region or a 
general space. The state of such a system is a point process on a space that evolves 
over time as a "measure-valued" Markov jump process. Each unit moves in the 
space according to a Markovian routing mechanism and it receives services at the 
locations it visits. The service times are exponentially distributed and the rates, 
as in a queueing system, depend on the congestion or configuration of the points 
in the system. The types of dependencies are extensions of those in Jackson and 
Whittle queueing networks. 

Spatial systems are beginning to receive attention from researchers in wire
less communications for analyzing the performance of cellular or mobile phone 
systems. Other areas of possible applications are logistics (trucks moving in a 
country), computer systems (messages moving in a virtual network considered 
as a region), warehouses (movements of pallets or containers), biology (move
ments of animals, fish, or diseases), and economics (movements of labor, capital, 
or businesses). Furthermore, spatial problems arise in certain stochastic networks. 
For instance, when a network is very large and the portion of customers at each 
node is small, it may be convenient to consider the network as a spatial system in 
the plane. Another example is a network in which customers are associated with 
nondiscrete quantities (e.g., oil, travel times, resources for services, chemicals, 
gas, temperature, stress) that change over time and affect the customers' routings 
and services. When these quantities or marks are countable, the network can often 
be modeled by an extended network, but when the marks are uncountable, a spatial 
system model is more appropriate. 

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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The word "spatial" is sometimes associated with polling and related service 
systems in which servers travel to the customers. Our focus, however, is on the 
reverse situation in which customers travel to server locations, or are served as 
they move by fixed regional servers. 

10.1 Preliminaries 

The spatial queueing process we will discuss in this chapter is defined as follows. 
We will consider a system in which discrete units move in a space IE where they 

are processed. Typically, IE would be a subset of the plane or ]Rn • We will assume 
that IE is a complete, separable metric space (a Polish space), and let c denote its 
family of Borel sets. In case IE is a finite set of points, the system is a network. We 
represent the state of the system by a finite counting measure I.L on IE, where I.L(A) 
denotes the number of units in a set A E C. We also write this state as 

n 

I.L(A) = L c5Xk (A), A E C, 
k=l 

where Xl, ••• , Xn are the locations of the units in IE, and c5AA) = l(x E A) is the 
Dirac measure with unit mass at x. The order of the subscripts on the locations 
Xk is invariant under permutations. Keep in mind that there may be more than one 
point at a location. 

The system is said to be closed if the number of units in it is always the same. 
Otherwise, the system is open, and the outside is represented by a point 0 in IE such 
that {OJ E c. The state measure I.L does not record points in O. In this case, units 
enter IE\ {O} from 0 and move around for services and eventually exit by reentering 
O. For each n ~ 0, we let Mn denote the set of all counting measures I.L on (IE, c) 
such that I.L(IE\{O}) = n and I.L({O}) = O. The set M:o consists only of the zero 
measure, which we denote by O. 

The theory of closed and open systems is closely related, and so we discuss them 
together. Accordingly, we will assume the system may be anyone of the following 
types with state space M. 
• Closed with v units and M = Mv. 
• Open with capacity v and M = U~=oMn' 
• Open with unlimited capacity and M = U~oMn' 

We will represent the evolution of the system by a continuous-time stochastic 
process X = tXt : t ~ O} with state space (M, M). Here M denotes the smallest 
a-field on M under which the map I.L ~ I.L(A) is measurable for each A E c. 
In other words, X is a measurable map from a probability space (Q, F, P) to 
(M, M), and Xt(A) is the number of units in A E c at time t. The M is endowed 
with the vague topology and M denotes the associated Borel sets. Since IE is a 
Polish space, M is also a Polish space. 
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The measure-valued stochastic process X is a Markov jump process, and hence 
it will be defined by its transition kernel 

q(JL, C) = limrl P{Xt E CIXo = JL}, C E M. 
t,j.O 

Think of the set C as a collection of measures in M. The form of the kernel q is 
determined by the dynamics of the system, which we now describe. 

We assume that X represents a system whose evolution is such that whenever 
it is in state JL, the time to the next movement of one unit from a location x E IE 
into a set A E e is exponentially distributed with rate t/JAJL» ... (x, A). This key 
assumption is analogous to the standard one used in defining queueing networks. 
Think of t/Jx (JL) as the service rate or departure rate of a unit located at x. Assume it 
is positive except that t/Jx(JL) = 0 if JL({x}) = 0 and x =f. O. Also, think of )...(x, A) 
as a routing kernel, which is the rate at which a unit departing from x enters a 
set A (or the probability of such a movement). Assume that )...(x, IE) is finite for 
each x, and that )",(0, IE) = 0 when the system is closed. With a slight abuse of 
terminology, we refer to t/Jx and )... as rates even though they are only parts of the 
compound rate t/JAJL» ... (x, A). 

Whenever X is in state JL and a unit moves from x to y, we say that X jumps 
from JL to the state 

TxyJL == JL -8x + 8y. 

This transition is feasible provided TxyJL E M. We also define 

TABJL == {TxyJL EM: x E A, y E B}, JL E M, A, BEe. 

This is the collection of states in M that X may enter from JL when a unit moves 
from A to B. 

Under the assumption above on exponential times to movements of units, it 
follows that X is indeed a Markov process and its transition rates are 

q(JL, C) = L t/JAJL) ( )...(x, dy)l(Txy JL E C), JL E M, C E M. (10.1) 
xelE lIE 

This sum is finite, since no more than JL(lE) terms in the sum are not 0 (recall that 
t/JAJL) = 0 when JL({x}) = 0 and x =f. 0). A tacit assumption in these rates is that 
if there are JL( {x}) > 1 units at a location x, then each one is equally likely to be 
the departing unit. Consequently, (10.1) implies that, for JL E M and A, BEe, 

Jl(E) 

q(JL, TABJL) = L t/Jxk(JL)JL({Xk})-1 )...(Xb B)l(xk E A) 
k=1 

+ t/Jo(JL» ... (O, B)l(O E A), 

where JL == L:~) 8Xk and Xo = O. The last term in the preceding display is 
automatically 0 when the system is closed. This form of the transition rates is 
sometimes more convenient than (10.1). 
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Since X is a Markov jump process, it evolves as follows. Whenever it is in state 
f.L, it remains there for a time that is exponentially distributed with rate 

/L(E) 

q(f.L, M) = L tPxk(f.L)f.L({xd)-1 A(Xko E) + l/Jo(f.L)A(O, E). (10.2) 
k=1 

Then it jumps into some set C E M with probability q(f.L, C)/q(f.L, M). In 
particular, the probability that a unit of f.L at location x jumps into the set A is 

p(X, A) == q(f.L, TxAf.L)/q(f.L, TxEf.L) = A(X, A)/A(X, E). 

This is the conditional probability that a unit moves from x into A given that it 
does move. Since p(x, A) is independent of the state f.L, it follows that the routes 
of the units in E are independent, and the successive locations of a unit on its route 
is a Markov chain determined by the probability kernel p(x, A). 

Consider a Markov process ~t on E with transition kernel A(X, A). We call ~t the 
routing process of Xt. Without loss of generality, we assume this routing process 
has a finite invariant measure w, whose support is E, that satisfies the balance 
equations (or traffic equations) 

i W(dX)A(X, E) = 1 W(dY)A(Y, A), A E c. (10.3) 

When the system is open, we assume 0 is an atom of wand, for simplicity, we 
set w({O}) = 1. Note that the sequence of states visited by ~t is a discrete-time 
Markov chain with transition probabilities p(x, A), and this chain has an invariant 
measure W(dX)A(X, E). 

To obtain a tractable stationary distribution for X, we will assume the service 
rates satisfy the following balance property, which is similar to that for Whittle 
networks. 

Definition 10.1. The service rates tPx are <I>-balanced if <I> is a positive function 
on M such that, for each f.L E M and x, Y E E with Txyf.L E M, 

<I>(f.L)tP..{f.L) = <I>(Txyf.L)tPy(Txyf.L). (lOA) 

Also, <1>(0) = 1 when the system is open. 

To see what this condition means, consider the transition kernel 

q(f.L, C) = L tP..{f.L)1(TxEf.L E C), f.L E M, C E M. 
xeE 

This is (10.1) with A(X, .) == 1. Let ir(df.L) = <I>(f.L)H(df.L), where H is a Haar 
measure on M (i.e., H(C + f.L) = H(C) for each C E M and f.L). Then (1004) is 
equivalent to 

ir(df.L)q(f.L, dTJ) = ir(dTJ)q(TJ, df.L). 

But this is the definition of q being reversible with respect to ir. Thus, tPx are 
<I>-balanced if and only if q is reversible with respect to <I>(f.L)H(df.L). 
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An easy check shows that tPx are cI>-balanced if and only if each tPx is of the 
form 

for some function \11 on {IL - 8x : IL E M, x E IE}. This expression is a special case 
of the canonical form of a reversible transition function in Theorem 1.5. Examples 
of cI>-balanced service rates are in Section 10.3. 

We will use the following terminology. 

Definition 10.2. The measure-valued Markov process X is a spatial queueing 
process if its transition rates are of the form (10.1), where the routing kernel has 
an invariant measure and the service rates are cI>-balanced. 

Queueing network models are special spatial queueing models as the following 
example shows. 

Example 10.3. Jackson and Whittle Networks. Suppose the spatial queueing pro
cess X has a finite state space IE = {O, 1, ... , mI. Then X is a Markov network 
process. Using notation close to that in Chapter I, we call n j = lL({j}) the num
ber of units at node j and consider XI as a process with vector-valued states 
n = (nJ, ... ,nm)' Its transition rates (10.1) are 

( ') I)..,(j, j')tPi(n) 
q n,n = 0 

ifn' = Tjj,n 

otherwise. 

Here Tjj,n is the vector n with n j, n j' replaced by n j - I, n j' + 1. This covers 
closed networks (Inl == Lj n j = v) and open networks (Inl :::: vor Inl < 00). 

The routing rates )..,(j, j') are assumed to be such that there are positive Wj that 
satisfy the traffic equations 

Wj I)(j, j') = L Wk)..,(j', j), j E IE, 
j' j' 

where Wo = 1 if the network is open. As in Chapter I, we assume that tP j is 
cI>-balanced by a positive function cI>(n) in the sense that, for each nand j, j' E IE, 

The assumption is consistent with the cI>-balance assumption above on the tPAIL) 's. 
Under these assumptions, X is a Whittle network process. It is a Jackson network 

process if, in addition, each tPj(n) depends only on nj, and t/JoO = 1 when the 
network is open. In either case, we saw in Chapter 1 that an invariant measure for 
X is 

Jr(n) = cI>(n) n w? . 
jeE 

We will soon see that spatial queueing systems have analogous invariant 
measures. 0 



lO.2 Stationary Distributions and Ergodicity 269 

10.2 Stationary Distributions and Ergodicity 

In this section, we present a closed form expression for an invariant measure of a 
spatial queueing process. We also give sufficient conditions for the process to be 
ergodic. 

Consider the spatial queueing process X defined above. Recall that w is a fi
nite measure on IE that satisfies the traffic equations (10.3). The following result 
describes an invariant measure for X in terms of measures 7rn on M defined by 

7rn(C) = ( w(dx])··· w(dxn)I(lLx E C)CI>(lLx) n ILx({z})!, C E M, 
JJF.!' ZEIE 

for n ~ I, where ILx == I:~=] 8xk' and 7roO == 1(0 E .) (the last 0 is the zero 
measure). We assume that wand CI> are such that each measure 7rn is finite, and 
I::'o 7rn is a finite measure in case the system is open with unlimited capacity. 
These conditions are needed to ensure that the integrals below with respect to these 
measures are finite. 

Theorem 10.4. An invariant measure for the spatial queueing process X is 

if the system is closed with v units 

if the system is open with capacity v ~ 00 . 
(10.5) 

Furthermore, 7r satisfies the property that,for each A E E and C E M, 

fc 7r(dlL)q(IL, TAIEIL) = L 7r(dr,) fc q(T/, dlL)l(T/ E TAIEIL)· (10.6) 

Equation (10.6) is a partial balance property that says, for an ergodic and sta
tionary process X, the average number of movements of units out of the set A that 
takes X out of C is equal to the average number of movements into A that take X 
intoC. 

PROOF. First note that the total balance equation that 7r must satisfy to be an 
invariant measure is equation (10.6) with A = IE. Thus, to prove the theorem, it 
suffices to show that 7r given by (10.5) satisfies (10.6). Note that (10.6) is equivalent 
to the two statements 

7r({O})q(O, TAIEO) = L 7r(dT/)q(T/, {0})1(T/ E TAIEO), A E E, (10.7) 

( 7r(dlL)f(lL)q(IL, TAIEIL) = ( 7r(dT/) ( q(T/, dlL)f(lL)l(T/ E TAIEIL), 
~\~ ~ ~~ 

(10.8) 
for A E E and fO ~ O. Statement (10.7) is relevant only for an open system. 

Clearly (10.7) holds since bY7r({O}) = w({O}) = CI>(O) = 1, the traffic equations 
(10.3), and CI>-balance with x = 0, we have 

7r({O})q(O, TAIEO) = w({O})CI>(O)A(O,IE)l/>o(O)l(O E A) 
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= L w(dy)l(y, {O})<I>(~y)<py(~y)I(O E A) 

= L 1r(d,,)q('q, {0})1(11 E TAEO). 

The last equality follows because 

and 11 E TAEO if and only if 0 E A and 11 has the form ~v. 
To prove (10.8), observe that we can write 1r = L::01rn' which covers both 

the closed and open systems. Then by the definitions of 1r and q, 

Left side of (10.8) = f ( w(dxl)··· w(dxn)<I>(lLx) n ILx({Z})! 
n=1 lEn zeE 

n 

X f(lLx) L l(xk E A)<PXk(lLx)lLx({Xk})-1 l(Xb JE) 
k=1 

= t t L"-I w(dxl)··· W(dXk_I)W(dXk+I)· .. w(dxn) 

X i W(dXk)l(Xk,JE)h(Xk, Ji), (10.9) 

where Ii = L::=I ~Xi l(i =f. k) and 

h(xt, Ji) = <I>(Ji + ~x,)<Px,@ + ~x.)f@ + ~x.) n Jl{{z})!. 
ZEE 

Note that the preceding sums on n do not include n = 0 since the zero measure 
does not appear in (10.8). 

Now, by <I>-balance, we can write, for any Yb 

h(Xb Ii) = <I>@ + ~Yk)<PYk(Ji + ~Yk)f(Ji + ~Xk) n Ii({z})!. 
ZEE 

Also, by the traffic equations (10.3) in the form 

L w(dx)g(x)l.(x, JE) = L w(dy) L l(y, dx)g(x), 

for nonnegative g, it follows that the last integral in (10.9) equals 

L w(dyd i l.(Yk, dXk)h(Xb Ji). 

(10.10) 

Using this and (10.10) in (10.9), changing the dummy variables in the integrals to 
y's, and letting l1y = L:k ~Yk' we have 

Left side of (10.8) = f ( w(dYI)··· w(dYn)<I>(l1y) n l1y({z})! 
n= 1 lEn zeJE 



10.2 Stationary Distributions and Ergodicity 271 

x [t q,Yk (1]y)1]y({ykl)-1 1 J...(yk. dXk)f(TYkxk 1]y)] 
k=l A 

= ( 7r(d1]) ( q(1], dJL)f(JL)I(1] E TAEJL). 
JM JMI\(O} 

The last equality follows by the definitions of 7r and q. This proves (10.8). 0 

Knowing that the process X has an invariant measure, the next question is: 
When is the process ergodic? By definition, it is ergodic if its invariant measure in 
Theorem 10.4 is finite and the associated normalized probability measure 7r is its 
limiting distribution in the sense that 

lim sup IP{Xt E C} - 7r(C)1 = o. 
t-+ooCEM 

This is convergence in total variation distance between the probability measures. 
Sufficient conditions for ergodicity of X are as follows. 

Theorem 10.5. Consider the transition kernel 

where 

i(x, A) == bxJ...(x, A), x E lE, A E e, 

bx == inf q,AJL) > 0, x E lE. 
wlO 

In case the system is open with unlimited capacity, define bo differently as bo == 
sUPJt IPo(JL), and assume that bo is finite and that 

bo ( b;lw(dx) < 1. 
JE\(O} 

(10.11) 

If the kernel i(x, A) defines a Markov process on lE that is ergodic, then the spatial 
queueing process X is ergodic. 

PROOF. We will establish the ergodicity of X by comparing it with a spatial 
queueing process {Xt : t ~ o} that has routing rates i(x, A) and service rates 
~xO == 1. The stationary distribution of the routing rates i(x, A) is clearly 

w(dx) = b;IW(dx) 
- fEby1w(dy)' 

where w satisfies the traffic equations for J.... In case the system is open, we have 
w({o}) = 1 and 

w({O}) = [1 +bo { b;lw(dx)r1. 
JJE\(O} 

(10.12) 

Then by Theorem 10.4, we know that the process X has an invariant measure (10.5), 
where 4>(-) = 1, and w = w in case the system is closed, or w = W({O})-lw in 
case the system is open. 
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First, consider the case in which the system is closed with v units. The invariant 
measure of X is clearly finite since w is. Note that the processes X and X have the 
same communication structure, since the sequence of states visited by X is equal 
in distribution to the sequence of states visited by X. Also, note that X moves 
"slower" than X. This follows since the exponential sojourn time of X in each 
state /L has the rate 

JL(IE) 

q(/L, M) = L bxk/L({xd)-I >"(xt, IE), 
k=O 

which is smaller than the corresponding rate (10.2) for X. Consequently, to prove 
X is ergodic, it suffices to show X is ergodic. 

For this case in which the system is closed, we can write Xt = L~=l 8z~' where 

Zi, ... , Z~ denote the locations of the units at time t. Since ~xO = 1, it follows 
that Zi, ... , Z~ are independent ergodic Markov processes and each one has the 

transition kernel i(x, A). Therefore, the vector-valued process (Zi, ... , Zn is 

ergodic. Clearly, X is a time-shift-invariant function, or a stationary functional, of 
this vector-valued process (recall Proposition 6.1). This proves the desired property 
that X is ergodic, and hence so is X. 

Next, consider the case in which the system is open with capacity v. The ergod
icity for this case follows by the preceding argument, since one can view this open 
system as a closed system that contains node 0, and Xt({OD = v - Xt(IE\{O}). 

Finally, consider the case in which the system is open with unlimited capacity. 
Note that the rate i(O, IE) at which units enter the X system is faster than the 
corresponding rate ),,(0, JE) for X, and units in the X system move slower than 
those in the X system. Then to prove X is ergodic, it suffices to show that X is 
ergodic. 

By Theorem 10.4, X has an invariant measure rr that satisfies rr({O}) > 0, and 
so the measure 0 is an atom of X (or rr). Let i denote the time between successive 
visits of the process X to the state O. Then to prove X is ergodic, it suffices by 
Kac's theorem to show that i has a finite expectation. 

To this end, first note that in the X system, units enter IE according to a Poisson 
process with rate i(O, IE). Each arrival moves independently in IE\ {OJ according 
to the Markov routing process with kernel i(x, A) for a time S, and then it exits 
the system. The stationary distribution of this routing process is w. It follows by 
a standard property of stationary distributions that the expected time between two 
successive entries to state 0 in the routing process is 

1 1 
A = ES+ -A--' 

w({OD>"(O, IE) >"(0, IE) 
(10.13) 

The last term is the expected time the system is empty. 
Now, a little thought shows that the time i between successive visits of X to 0 

is also the duration of a busy period in an MjGjoo service system with Poisson 
arrivals at the rate i(O, IE) and independent service times distributed as S. For such 
a system, it is known that i has a finite expectation if i(O, IE)ES < 1. But this 
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inequality is equal to assumption (10.11), because of (10.13) and (10.12). Thus, i 
has a finite expectation, which is what we needed to prove that X and hence X is 
ergodic. D 

The sufficient conditions above for ergodicity are quite natural and, in some 
cases, they are also necessary conditions. For instance, consider a closed system 
with v = 1 unit and rPx (.) = a, for each x. If the system is ergodic, then the routing 
process defined by the kernel ~(x, A) is ergodic because it is the same as the spatial 
queueing system. The condition (10.11) is also sometimes a necessary condition 
for ergodicity. Indeed, consider the infinite-capacity open spatial system X as in the 
preceding proof. Then condition (10.11), which is equivalent to ~(O, IE)ES < 1, 
is necessary as well as sufficient for X to be ergodic. 

10.3 Properties of Stationary Distributions and 
Examples 

This section describes some elementary properties of stationary distributions for 
spatial queueing systems and gives a few examples. 

For this discussion, assume that X is a spatial queueing system that is station
ary and ergodic. Its stationary distribution is given by Theorem lOA. Now, the 
distribution of Xt can be expressed via probabilities of the form 

P{Xt(Ai ) = ni; 1 :::: i :::: m} = CJl'nVL : JL(Ai) = ni; 1 :::: i :::: m} 

= nl! . ~. nm ! i,;, x ... xA~:" g(x)w(dxd' .. w(dxn), (10.14) 

where g(x) == <J>(JLx) nzel& JLx({z})!, n = Er=l ni, the AI. ... , Am is a partition 
of lE, and C is the normalization constant. For instance, 

P{Xt(lE) = n} =.:..- r g(X)W(dXl)'" w(dxn). 
n! 11&" 

Also, when there are n units in the system, the probability distribution of their 
locations is given by 

P{Xt(A1) = 1, ... , Xt(An) = lIXt(lE) = n} 

= P{Xt(lE) = n}-lc r <l>(JLx)W(dXl)'" w(dxn), 
lA , x",xA" 

for disjoint sets A I, ... , An. 
Next, we observe that there is a zero probability that the system has a unit at a 

specific location x if this location is not an atom of w. In addition, there may be 
more than one unit at a location that is an atom of w. 

PropositionlO.6. For each x E IE, P{Xt({x}) > O} = Oifandonlyifw({xD = O. 
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PROOF. It follows from (10.14) that 

00 

P{Xt({X}) = O} = L P{Xt({x}) = 0, Xt{lE) = n} 
n=O 

By the definition of c, the preceding summation term is c- I if and only if w({x}) = 
O. Thus, P{Xt({x}) = O} = 1 if and only if w({x}) = 0, and this proves the 
assertion. D 

The stationary probabilities sometimes simplify for routing and service rates 
that have closed-form expressions for wand <1>. Here is a class of service rates that 
are analogous to those in Jackson networks. 

Example 10.7. Locally-dependent Service Rates and Product Forms. The service 
rates are said to be locally dependent if they are of the form 

where Yx (n) is the service rate at location x whenever there are n units at that 
location, and YoO = 1 in case the system is open. An easy check shows that these 
service rates are balanced by 

JL({X}) 

<I>(JL) = n n yAn)-I. 
XEIE n=l 

Then the probability (10.14) for the partition AI."" Am of IE has the product 
form 

m 

P{Xt(A 1) = nl,···, X,(Am) = nm} = c n J'l'Ai(ni), (10.15) 
i=l 

where 

(10.16) 

For the infinite-capacity open system, this product form implies that X has in
dependent increments: Xt(A\), ... , Xt(Am) are independent for any disjoint sets 
A I, ... , Am and "fixed" t. This is not true, of course, for a closed or finite-capacity 
open system since these random variables must sum to certain values. 

In case the system is closed with v units, it follows by (10.15) and the definition 
of the convolution operator (denoted by *) that the normalization constant c is 
given by 

m 

c- 1 = L n J'l'Ai(ni) = J'l'A j * ... * J'l'Am(V). 
nj+·+nm=v i=l 
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To evaluate this, one would choose the partition Ai to consist of sets for which the 
1C A; 's and their convolutions would be easy to compute. Similarly, the normalization 
constant for an open system with capacity v is obtained by 

v 

c- I = L1CA] *"·*1CA",(n). 
n=O 

For the infinite-capacity open system, the normalization constant is c = CI ... Cm, 

where Ci is the normalization constant of 1CA;. 
By Proposition 10.6, we know that X may have clusters of units at locations in 

E that are atoms of the measure w. To see this effect, let lE c E denote the set of 
atoms of w. In particular, from (10.16), we know that, for any x E lE, 

n 

1C(xj(n) = w({x}t n yAm)-'. 
m=1 

From this and (10.15), it follows that the probability that there are n units in lEe 
and nx units at each atom x is 

P{Xt(lEe ) = n, Xt({x}) = nx ; x E lE} 

= C k, fI YXk(1)-l w(dx l)'" w(dxn ) n w({x})n x fI yAk)-'. 
k=1 XEIE k=1 

Note that this model with a finite state space is the Whittle network model in 
Example to.3. D 

Here is an example of an open system whose arrival rate depends dynamically 
on the number of units in the system. 

Example 10.S. System-dependent Arrivals and Locally-dependent Service Rates. 
For systems with locally-dependent service rates as above, a realistic variation is 
that the arrival rate into the system is dependent on the current system load in that 

This means that yo(n »),,(0, E) is the arrival rate of units into the system whenever 
it contains n units. In this case, the service rates are balanced by 

Jl(IE) Jl((X}) 

<I>(/L) = n yo(m - 1) n n yAn)-'. D 
m=1 O#XEIE n=1 

In some systems the service rates at a location may depend only on the numbers 
of units in certain subsets of the state space instead of depending on the specific 
locations of the units. The next example describes a large class of such service 
rates that are useful for modeling congestion-dependent services. 

Example 10.9. Sector-dependent Service Rates. Suppose S c £ is a collection 
of subsets (or sectors) of E\ {O} whose population sizes (or loads) at any instant 
determine service rates as follows. Associated with each S E S is a "service
intensity" ys(n) that is a function of the number of units n in S. Whenever the 
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system is in state /-L, the service rate at a location x is influenced by each set S 
that contains x in the sense that the intensities of these sets are compounded (or 
multiplied) to yield the compound service rate 

rPA/-L) = n Ys(/-L(S». 
SeS:xeS 

The sets S not containing x have no influence. 
In addition, assume as in the preceding example that rPo(/-L) = Yo(/-L(lE». Then 

an easy check shows that these service rates are balanced by 

JL(IE) JL(S) 

<Il(p,) = n Yo(m - 1) n n Ys(n)-I . 
m=1 SeS n=1 

In using these sector-dependent service rates, one would typically choose the sector 
family S that adequately models the dependencies at hand. One could also let S 
denote all possible subsets of E\ to} and define YsO == 1 for all sets S that do not 
influence the services. 0 

Example 10.10. Local-Regional Service Rates. Suppose the space lE is partitioned 
into service regions, and the service rate at x is influenced by the number of units in 
the region R containing x as well as the number of units exactly at x. Specifically, 
using the notation in the preceding example, assume the service rate at location x 
in a region R is the local-regional compound rate 

Also, assume rPoO == 1. These rates are a special case of the preceding example 
in which S consists of all the singleton sets {x} and all the service regions R. In 
this case, the rates are balanced by 

JL«(X}} JL(R) 

<Il(/-L) = n n yAn)-1 n n YR(n,)-I. o 
xelE n=1 R n'=1 

A little thought should convince one that any example of a Jackson or Whittle 
network has a corresponding analogue as a spatial queueing system. One just 
translates the discrete structure of the routing anS service rates into nondiscrete 
rates. Here are two illustrations. 

Example 10.11. Closed Circular System. Consider a closed spatial queueing pro
cess X in which v units move indefinitely on a circle lE of circumference 1. Think 
of the circle as the interval [0, 1] with the Borel a-field. The circle is partitioned 
into regions R 1, •.• , Rm; a region need not be connected. The service time of a 
unit at a location x E Rj is exponential with rate rPA/-L) = YRj(/-L(Rj ». Upon 
finishing its service at a location x, a unit moves into a set A with probability 
).(x, A) = F(A - x), where F is a distribution on lE whose support is lE. The 
transition kernel of the spatial process X is 

q(/-L, C) = ~ ~ L F(dy - x)YRj(/-L(Rj »I(Txy /-L E C). 
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Now the Lebesgue measure on [0, 1], denoted by dx, is the stationary probability 
measure of the routing kernel since 

1 A(X, lE)dx = 1 dx = {F(dZ)l dx 
A A h A~ 

= ( dx 1 F(dz) = ( dXA(X, A). iE A-x iE 
Also, the service rates are clearly balanced by 

m Il-(R;) 

cJ>(/L) = n n YR;(n)-I. 
i=1 n=1 

Therefore, by Theorems 10.4 and 10.5, it follows that X is ergodic with stationary 
distribution 

1 m Il-.(R;) 

1l'(C) = C E' dXI·· ·dxvl(/Lx E C) 0 D YR;(n)-I. o 

Example 10.12. Treelike System. Consider an infinite-capacity open system 
shown in Figure 10.1 in which the space lE is shaped like a tree. The routing 
of units is such that each unit enters the system somewhere in the root set lEI and 
then proceeds up the tree to one of the leaf sets lE9, ••• , lEI4 and then exits the 
system. Whenever the system is in state /L, the time to the next arrival into lEI 
is exponentially distributed with rate Yo(/L(lE» and the probability that it enters 
some A C lEI is A(O, A). Therefore, lPo(/L) = Yo(/L(lE»A(O, lE). Upon receiving its 
service at a location x E lEI, a unit moves up one level in the tree into lE2 U lE3 at 
a location selected by the probability kernel A(X, .). Thereafter, the unit is routed 
up the tree one level at a time, receiving a single service in each set, until it exits 
the system from a leaf set. 

The service time of a unit at any x E lEi is influenced by the number of units in 
the subtree Si that contains x, where Si is the union of all branches that go through 
lEi. For instance, 

SI = lE, 

We assume that, whenever the system is in state /L, the service time of a unit at 
x E lEi is exponentially distributed with rate lPA/L) = Yx({x})YS;(/L(Si». This is 
a compounding of service intensities of the location x and its subtree Si. Then 
the service rates are balanced by the cJ> in Example 10.9, where S consists of all 
singleton sets {x} and all subtree sets Si. 

The routing kernel is assumed to be irreducible on lE and its associated routing 
process has a finite number of jumps between visits to state O. Therefore, it is 
ergodic. Because the communication graph of the routing process is a tree, an 
invariant measure for it is obtainable by considering the traffic equations on each 
branch separately just as one does for a discrete-time Markov chain with a treelike 
communication graph. That is, if BI, ... , Bn is a branch (e.g., lEI, lE2, lE4' ~), 
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FIGURE 10.1. Treelike System 

then an invariant measure w satisfies 

W(dXk))'(Xk, B k+l ) = 1 W(dXk-I)).(Xk-l, dXk), Xk E Bk, 1 :::: k :::: n, 
Bk- I 

with Bo = 0 = Bn+1 and w({O}) = 1. Consequently, 

In addition, we assume the service and routing rates are such that 

sup¢o(/-t) [ . 1 w(dx) < 1. 
I-' llE\{o} mfwlO ¢A/-t) 

Then it follows by Theorems 10.4 and 10.5 that the spatial process X is ergodic 
and its stationary distribution is given by 7r = C L:o 7rn , where 7rn is as in 
Theorem 10.4 with wand <I> described above. D 

10.4 Throughputs and Expected Sojourn Times 

As in a network, important performance measures of a spatial queueing system 
are the speeds at which units move through it (throughput rates between sectors) 
and expected sojourn times of units in a sector. We now describe these quantities 
for an ergodic spatial queueing process X whose equilibrium distribution is given 
in Theorem 10.4. 

To describe the movements of units between subsets of E at transitions of X, 
we will use the space-time point process N on lR.+ x E x E defined, for I C lR.+, 
A, BE £, by 

N(I x A x B) == L l(XI i- XI-, Xl = TABXI-). 
lEI 
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This is the number of times that units move from A to B in the time set I (the A 
and B may overlap). Then the average number of movements from A to B per unit 
time, called the throughput from A to B, is 

p(A, B) == lim t- I N([O, t] x A x B). 
1-+00 

Also, p(A, B) = EN([O, 1] x A x B) when the process X is stationary. The 
throughput of the set A is defined by A(A) = p(AC , A), which is the average 
number of units that enter A per unit time (A C is the complement of A). It also 
equals the average number of units p(A, AC) that exit A per unit time since the 
process is ergodic. 

By the ergodic theorem for Markov processes, we know that 

p(A, B) = L 'If (d/l-)q(/l-, TAB/l-), (10.17) 

where 'If is the stationary distribution for X. This throughput from A to B simplifies 
in some cases as follows. Here a is a positive constant. 

Proposition 10.13. Assume t/JoO = a when X is open and, when X is closed, 
assume its service rates are of the form 

If X is open with unlimited capacity, then 

p(A, B) = a i w(dx)A(x, B), A, BEe. 

If X is closed with v units, then 

p(A, B) = aCvc~~1 i w(dx)>..(x, B) A, BEe, 

where Cv is the normalizing constant for the equilibrium distribution of a closed 
system with v units. This expression also applies when X is open with capacity v, 
and the normalizing constant Cv is for an open system with capacity v. 

PROOF. As in the proof of Theorem 10.4, we write the stationary distribution of 
X as 'If = c L~o 'lfn, where c is the normalization constant. Using this 'If and the 
definition of the transition rates of X, it follows from (10.17) and the hypothesis 
that 

n 

xL l(xk E A)>..(Xko B)t/JXk(/LX)//l-x({xd) 
k=O 

= a r w(dx)>..(x, B)c f: r w(dYI)'" w(dYn-d 
JA n=1 JJFr l 
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x <I>(lLy) n lLy({Z})! 
zelE 

(10.18) 

Now, the first assertion of the proposition follows since the last sum in (10.18) 
is 1 for the open infinite-capacity system. The second assertion follows since the 
last sum in (10.18) for the closed system with v units is simply 

Cv1l'v-I(Mv- l ) = Cv/Cv-I. 

Herec = Cv andcv-l1l'v-I(Mv- l ) = 1. Similarly, for the open system with capacity 
v, the last sum in (10.18) is 

v 

Cv L1l'n-I(Mn- l ) = Cv/Cv-h 
n=1 

since Cv-l L~=I1l'n-I(Mn-l) = 1. Applying this to (10.18) proves the third 
assertion. D 

We now tum to expected queue lengths and sojourn times in a sector A E e. 
First note that the average number of units in A per unit time is 

L(A) = lim t-I r Xs(A)ds = (1L(A)1l'(dlL), w.p.1. 
HOO 10 1M 

This follows by the ergodic theorem for Markov processes. 
Hereafter, we assume that w(A) and w(AC ) are notO. Consider the waiting times 

WI(A), W2(A), ... of units in A, where Wj(A) is the waiting (or sojourn) time in 
A of the ith unit to enter A. There is no restriction on the locations at which units 
enter or leave A; a unit may reside in several locations in A due to several jumps 
before it exits, and units need not exit A in the same order in which they entered. 
Then the average sojourn or waiting time of units in their visit to A is 

n 

W(A) = lim n-I "Wj(A), w.p.I, 
n-+oo ~ 

;=1 

provided the limit exists. 
The existence of these average waiting times is justified by the following Little 

laws that follow from Theorems 5.1 and 5.2, which are for ergodic Markovian 
systems that are recurrently empty. In this case, recurrently empty means that 
P{Xl(A) = O} > 0 when X is stationary. But this condition is satisfied because 
of the assumption w(AC) > 0 and 

P{Xt(A) = O} = C f f w(dxd· .. w(dxn)<I>(lLx) n ILx({Z})!. 
n=O (AC)" zeE 

Recall that )"(A) is the rate at which units enter A. This is finite, and it is positive 
since w(A) is. For simplicity, we assume L(A) is finite. Note that LO and ).,(.) are 
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measures on MI, but W(·) is not. The first result below is for limiting averages and 
the second result is for expected values. 

Theorem 10.14. The average waiting time W(A) exists and L(A) = J..(A)W(A). 

Theorem 10.15. Suppose the process X is stationary. Let W(A) denote the ex
pected sojourn time in A with respect to the Palm probability of the stationary 
process X conditioned that a unit enters A at time 0. Then W(A) exists and 
L(A) = J..(A)W(A). Furthermore, the L(A) and J..(A) defined above as limiting 
averages are also the expectations 

L(A) = EXI(A), J..(A) = EN([O, 1] x AC x A). 

For an open system, one might be interested in the total time a unit spends in A 
in all of its visits there before it exits the system. This multiple-visit waiting time 
is different from the single-visit waiting time discussed above. To analyze such 
waiting times, we will consider the average waiting time of a unit in a set A while 
it is in a larger set B :J A. This is defined by 

n 

W(AIB) = lim n- I "W;(AIB), w.p.l, 
n-+oo ~ 

;=1 

where W;(AIB) is the time the ith unit entering B spends in A before exiting B. 
A unit may have several visits to A while in B, and so W;(AIB) is the sum of all 
these waits in A. Note that W(AIB) may be positive since each unit entering B has 
a positive probability of entering A (if the probability of moving from B\A to A 
is 0, then the ergodicity of the process ensures that there is a positive probability 
that a unit may enter A directly from BC). 

The general Little laws that justify the preceding results also apply to yield the 
following Little law for W8(AIB). This result is an analogue of Theorem 10.14; 
there is also an obvious analogue of Theorem 10.15. 

Theorem 10.16. The average waiting time W(AIB) exists and 

L(A) = J..(B)W(AIB). 

Furthermore, W(AIB) = J..(A)J..(B)-I W(AIB). 

10.5 Poisson Flows in Open Systems 

For an open, infinite-capacity stationary Jackson network process, the flows of 
departures and some other flows between nodes are Poisson processes. We now 
present analogous results for spatial queueing systems. 

Throughout this section, we assume that {XI : t E JR} is an open, infinite
capacity spatial queueing process defined on the entire time axis R Assume the 
process is ergodic and stationary. As in the previous section, let N(I x A x B) 
denote the number of units that move from A into B at transitions of X in the time 
set Ie R 
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We begin by characterizing the flow of arrivals into the system. This flow is 
described by the space-time point process No defined on JR x IE by 

NoU x B) == NU x to} x B), I E 'R-, BEe. 

This is the number of arrivals into the set B from the outside location 0 during the 
time period I. Our interest is in determining when No is a Poisson process. This 
means that the arrival flow into a fixed BEe is a Poisson process No(· x B) on 
the time axis JR with rate ),,(0, B) and, these Poisson flows into disjoint sets in e 
are independent. 

We say that the future of No is independent of the past of X, denoted by (No)+ ..1 
X _, if for each t E JR, the family of random variables 

{NoU x B) : I C [t, 00), BEe} 

is independent of {Xs : s ::: t}. This property is necessary for No to have 
independent increments. In the following results, a is a positive constant. 

Theorem 10.17. The arrival process No is a Poisson process such that (No)+ ..1 
X_ and 

ENoU x B) = al/l)..(O, B), I E 'R-, BEe (10.19) 

ifand only ififJo(-) = a. 

The proof of this result is similar to the proof of Theorem 4.21. The equivalence 
follows basically since conditioned on X, the No is a Poisson process with 

E[No(/ x B)IX] = 1 ifJo(XI)"'(O, B)dt. 

Next, we consider the flow of units exiting the system that is depicted by the 
space-time point process NE defined by 

NEU x A) == NU x A x {O}), I E 'R-, A E e. 
This is the number of units that exit the system from the set A during the time set 
I. The result above for arrivals has the following analogue for departures. 

Theorem 10.lS. The following statements are equivalent. 
(i) The exit process NE is a Poisson process such that (NE)- ..1 X+ and 

ENoU x A) = cl/l i w(dx» .. (x, {O}). 

(ii) ifJo(-) = a. 
(iii) For each /L E M and A E e, 

- 1 q(17, d/L) 1 a(/L, A) == :n:(d17) 1(/L E TAo17) = a w(dx» .. (x, {O}). 
M :n:(d/L) A 

PROOF. The equivalence of (i) and (iii) follows by a slight variation of Theo
rem 4.12 (here NE in reverse time has a compensator with rate a(XI' A), where 
XI is the time reversal of X). 
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To prove (ii) is equivalent to (iii), consider the function a. Note that 1(J.L E 

TA011) = 1 if and only if 11 = J.L + /)x for some x E A. Using this observation 
and the definitions of q, 7r (recall (10.1), (10.5», and then applying <1>-balance, we 
have - 1 <1>(J.L+/)x) a(J.L, A) = w(dx)J...(x, {O}) l/JAIL + /)x) 

A <1>(J.L) 

= l/Jo(J.L) i w(dx)J...(x, {O}). 

In light of this observation, (ii) is equivalent to (iii). o 

From the preceding results, it follows that the exit process N'F" is Poisson provided 
the arrival process No is Poisson. We now show that some flows inside the space 
lE may also be Poisson processes. Suppose the subset S C lE is such that each unit 
exiting S never returns to S (a set with "single" visits by units). This holds if the 
routing process ~t on lE with rates J...(x, B) has the property that whenever it exits 
S it must enter the outside node 0 before it can return to S again. Let Ns be the 
point process N restricted to JR x S x SC. Then N s(/ x A x B) is the number of 
units that move from A C S to B C SC at transitions of X in the time set I. The 
next result gives sufficient conditions under which Ns is a Poisson process. This 
means that, for any fixed A C S and B C SC, the number of movements of units 
from any A to B over time is a Poisson process, and such Poisson processes are 
independent for disjoint pairs of sets. 

We will assume that the service rates on S and SC are independent in the following 
sense (here J.LB(-) = J.L(B n .), the restriction of IL to B): 

- l/Jo (-) = 1. 
-lh(J.L) = 1/IAlLs), for XES, for some function 1/Ix. 
-l/Jy(J.L) = 1/1; (J.Lsc ), for 0 =/:. Y ESc, for some function 1/1;. 
- {1/Ix : XES U {O}} are \II-balanced, where 1/100 = 1. 
_ {1/1; : Y E SC} are \II' -balanced. 

These assumptions imply that all the l/Jx's are balanced by 

<1>(IL) = \II(lLs)\II'(J.Lsc). 

Finally, let {Yt : t ~ O} denote the process X restricted to the space S; that is, 
Yt = J.Ls if X t = IL. 

Theorem 10.19. Under the preceding assumptions, Ns is a Poisson process such 
that (Ns)- ..1 Y+ and,for Ie JR, A C S, and Be SC, 

ENs(/ x A x B) = III i w(dx)J...(x, B). (10.20) 

PROOF. Clearly Y is an open spatial process on S, and its routing rates are 
J...y(x, {O}) == J...(x, SC) and 

J...y(x, B) == J...(x, B), XES, B C S. 

Recall that the process X has a measure w that satisfies the traffic equations (10.3). 
Under the assumption that a unit exiting S cannot return to S, the equations (10.3) 
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are 

[ w(dx» .. y(x, S U {O}) = f w(dy» .. y(y, A), A E S U {OJ. 
lA SU(O) 

But these are the traffic equations for Y, which are therefore satisfied by the trun
cation Ws of w. Thus, Y is an ergodic spatial queueing process, and its traffic 
equations have a solution Ws. 

Now, by Theorem 10.19 and the assumption 1/100 == 1, we know that the exit 
process M s for Y is a Poisson process with 

EMsU x A) = i w(dx» .. y(x, {O}). 

Also, (Ms)- -.L Y+. 
Next, recall that the routing of units is independent, and the probability that a 

unit moves from XES to B eSe, given that it moves into SC, is )..(x, B)/)"(x, S''). 
Let (Tn' Yn) (n E Z) denote the point locations of Ms, and let Urr (n E Z) be 
random elements of SC that are conditionally independent given Ms and 

P{Un E BIMs} = )..(Yn , B)/)..(Yn , S''). 

Then it follows that 

NsU x A x B) = L I(Tn E /, Yn E A, Un E B). 
n 

In other words, Ns is a marked point process of Ms with the location-dependent 
marks {Un}. Since Ms is Poisson, it follows by a basic property of marked Poisson 
processes (see Theorem 9.12) that Ns is also Poisson with mean given by (10.20). 
Furthermore, (Ns)- -.L Y + is a consequence of (Ms)- -.L Y+. 0 

10.6 Systems with Multic1ass Units 

Although the results above are presented for systems with homogeneous units, 
they also apply to the following types of systems with multiclass units. 

Consider the system we have been studying in this chapter with the modification 
that each unit is labeled by a "mark" (sometimes called a customer type or class) 
from a set of marks. A mark represents auxiliary information about the unit that 
goes into determining its routing and service rates. Then each unit is identified 
by a pair x = (z, a), where z is its location in the space where it resides and 
a is its mark. Let IE denote the measurable space of all such pairs. Using the 
notation in Section 10.1, we represent the state of the system by a counting measure 
JL(') = L~=I 8Xk (-), where the "point" Xk = (Zk, ak) is now the location and mark 
of unit k. 

As before, we assume that the units move in the space IE according to a routing 
kernel )..(x, A). A movement of a unit from x = (z, a) to x' = (z', a') means that 
the unit's location changes from z to z' and its mark changes from a to a'; the 
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new location or mark may be the same as the previous one. Also, the service rate 
lfJAJL) is a function of the mark as well as the location, but we assume it is still 
ell-balanced. Under these conventions, this measure valued process X is a spatial 
queueing process on the set lE of pairs (z, a). Hence all the results above apply to 
it. 

A large family of spatial systems are multiclass Jackson and Whittle networks 
we discussed in Section 3.1. When the class labels are discrete, then these systems 
can still be modeled as networks, but nondiscrete labels require a spatial model. 
Here is an example. 

Example 10.20. Multiclass Whittle Network. Consider a closed Whittle network 
as in Example 10.3 with the additional feature that each unit carries a real-valued 
mark or class label. Then each unit is identified by a pair x = (j, a) in lE == 
{I, ... , m} x ~. Suppose the routing kernel has the form 

').«j, a), {k} x A) = pjkPj(a, A), 

where Pjk is the probability that a unit moves from node j to node k and pj(a, A) 
is the probability that a unit moving from j changes its mark from a to some value 
in A. Assume this kernel'). has an invariant measure w({j} x A). 

For instance, suppose P jk is irreducible with stationary distribution P j. Also, for 
each j, assume P j (a, A) is an ergodic, reversible kernel with stationary distribution 
1l'j(A) and T(j (da)pj (a, da) is independent of j. Then w({j} x A) = pjT(j(A) is 
an invariant measure of the kernel ').. 

Next, assume the service rates at x = (j, a) are 

lfJAJL) = 1/IAJL)JL({(j, a)})/JL({j} x ~), 

where 1/Ix(JL) is the total service rate and JL({(j, a)})/ JL({j} x ~) is the portion of 
units at node j with mark a. Assume the rates 1/1 x are \II -balanced. Then the service 
rates are balanced by 

m 1 
eII(JL) = \II(JL) n JL({j} x ~)! n ({(' a)})!' 

J=l aelR JL j, 

The results in this chapter apply to this spatial model. o 

In some spatial systems, there may be periods of time during which customers 
do not receive services, possibly due to customer preferences or auxiliary travel 
time between service locations. These dead periods can often be incorporated by 
using marks as follows. 

Example 10.21. Customer Dead Periods and Auxiliary Travel Times. We will 
consider the spatial queueing system with the variation that whenever a unit com
pletes a service, it may incur a dead period before it proceeds to its next service 
location. To model this, let Zo denote an auxiliary location at which a unit resides 
during a dead period. We assign a mark a = y to a unit if it is in location Zo and 
its previous location was y, and we assign a mark a = 1 to a unit if it is not at Zo 

(it is therefore at a usual service location). Each unit is therefore identified by a 
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pair x = (z, a), where z is the unit's location and a is its mark. Let IE denote the 
set of all such pairs. 

We assume the routing rates are 

).«z, 1), {zo} x {z}) = p(z, {zo}), 

).«z, 1), A x {I}) = p(z, A), 

).«zo, y), A x {I}) = Po(y, A). 

Here p(z, {zo}) is the probability that a unit departing from a service location z 
goes to Zo to incur a dead period; p(z, A) is the usual routing probability kernel; 
and Po(y, A) is the routing probability kernel when exiting from node Zo and y is 
the previous location. Here Po(y, {zo}) = O. The Po(y, A) need not be related to 
p(y, A), but a natural choice is to set 

po(y, A) = p(y, A)/(l - p(y, {zo})). 

Under these assumptions, whenever a unit finishes a service at z, it either goes 
to another service location in A with probability p(z, A), or, with probability 
p(z, {zo}), it goes to zo; and after its sojourn there, it goes to another location 
according to the probability Po(z, A). We assume that a unit's sojourn time in 
location Zo (its dead period) is exponentially distributed with rate Yz, where z is its 
previous service location. 

The service rates of the system are 

if x = (zo, y) 

if x = (z, 1), 

where 1/fz(f.L) is the usual service rate at z. Assume that 1/fz(f.L) are 'II-balanced. 
Then cfJAf.L) are balanced by CI>(f.L) = 'II(f.L) Dy yy-J1(IYJ). 

The traffic equations for the routing kernel are 

W({Zo} x dy) = w(dy x {I})p(y, {zo}) 

w(dz x {Il) = f w(dy x {l})p(y, dz) + f w({zo} x dy)po(y, dz). 

The primary unknown in these equations is the measure WIO = w(· x {I}). Then 
substituting the first equation in the second one, we have 

WI (dz) = f WI (dy)[p(y, dz) + p(y, {zo})Po(y, dz)]. 

Solving this equation for WI determines w. 
This completes the formulation of a spatial process that incorporates ex

ponentially-distributed customer dead periods. Dead periods with phase-type 
distributions, or with other dependencies, can be formulated similarly using 
additional customer locations and more complex marks. 0 
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10.7 Bibliographical Notes 

This chapter is based on the Doctoral dissertation of Huang (1996). Spatial queue
ing models combine certain features of Jackson and Whittle models in Chapter 1 
and the space-time models in Chapter 9. The term "spatial queueing" is also as
sociated with other models in which the servers are mobile; examples are polling 
systems and the model described in (:inlar (1995). References on point processes 
are in Chapter 4, and the theory of Markov processes on general state spaces is 
reviewed in Meyn and Tweedie (1993). 
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H = AG, see Little law 
L = A W, see Little law 
<I>-balance, 10, 17, 36, 41 

arrival-departure, 96 
departure-arrival, 60, 64 
multiclass, 75, 76 
spatial, 267, 285 
strings, 183, 184 

T -transition, 116-120 
p-transformation, 235, 236, 255-257, 

261 
To-transition, 105, 107, 111, 117, 189 

multivariate marks, 109, 110 

ASTA, see MUSTA 

Balance equations, 3, 5, 7 
biased locally, 216 
detailed,6 
partial, 8, 15, 16,98 

Biased local balance, 216, 227 
Birth-death process, 73 

batch,57 
circular, 51 
classical, 10,24,45,47,70, 108,207 
constrained, 55 
multivariate, 55 

multivariate batch, 64 
truncated, 54, 70 

Blocking, 54, 56, 57, 63, 69, 72, 85, 87, 
98, 184 

Bottleneck, 90, 98 
Brouwer's fixed point theorem, 188, 

198,205,215 

Campbell-Mecke formula, 120, 
161-166 

Communication blocking, 63, 86 
Compound rate, 10,37,38,61,211, 

266,276 
Convergence 

in distribution, 90, 256, 258 
in total variation, 271 
w.p.l,4, 137 

Convolution, 21, 22, 24, 26, 30, 40, 42, 
247,274 

Counting measure, 100, 157, 164,265, 
284 

Cox distribution, 83, 84, 97 
Cross ergodic theorem, 161, 169 

Departure intensity, 10, 13,23,37,62, 
77,80 

Distribution 
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Distribution (continued) 
Cox, 83, 84 
Erlang, 83, 129 
hypo-exponential, 83 
mixtures, 83 
Phase type, 83, 97 

Dynkin formula, 131 

Equilibrium distribution, see Invariant 
measure 

Ergodic 
Markov process, 3 

ESTA, see MUSTA 
Exponential sojourn time, 2, 3, 7, 

10-12,39,59,80,183,266 

Fixed point, 187, 188, 198,200,215 

Indicator function, 4 
Intensity measure, 157 
Invariant measure, 3, 6, 14-16,50,267, 

269 

Jackson process, 9-11 
equilibrium distribution, 14 
Palm probability, 122 
Poisson flows, 112 
routing rates, 13 
service rates, 12 

Kac's theorem, 272 

Uvyformula 
classical, 102, 106, 107, 131, 133 
extended, 103, 117, 122 

Laplace functional, 232 
convergence, 233,258 
marked point process, 236 
moments, 262 
of sums, 261 
Poisson, 233, 237, 259 

Law oflarge numbers, 141 
Library models, 52, 73 
Limiting average, 4,137,142,161,172, 

189,281 
Limiting distribution, 4,150,172,242, 

271 
Little law, 135-154, 180 

general queue, 139, 148 

Markovian network, 138 
Markovian queue, 137 
omnibus, 145 
regenerative queue, 137, 149 
semi-stationary queue, 179 
sojourn time, 172 
spatial queue, 280 
stationary queue, 166 
stationary system, 163, 171 
string-net, 193 
travel time, 172 
utility process, 145 
Whittle network, 29 

Location process 
M / G / 00 network, 247 
Brownian/Poisson, 252 
deterministic routing, 80 
Markov/Poisson, 231, 237, 251, 252 
multiclass routing, 97 
particle, 249, 250 
sojourn times, 175 
spatial queueing, 273 
stationary/Poisson, 253 
travel times, 175 
Whittle network, 92 

Manufacturing blocking, 63 
Marked point process, 235 
Markov network process, 2 
Markov process, 2 

balance equations, 3, 5 
communication graph, 19,38,39,46, 

51,62,65,68,69,277 
construction,2 
ergodic, 271 
functionals, 4 
invariant measure, 3, 6, 267 
law of large numbers, 4 
probability flux, 5, 93 
transition rates, 2 

Markov process 
regular, 2 

Marks 
as point processes, 241 
construction, 235 
location-dependent, 235-238, 242, 

244,246 
partition, 239 
stationary, 162, 168, 169, 175 



translations, 238 
McCabe library, see Library models 
Metropolis Markov chain, 34 
MUSTA, 123-126 

Neveu's exchange formula, 165, 179 
Node:processor-sharing, 12 
Nodes 

with feedbacks, 12 

Palm probability, 6, 99, 157-161, 180 
T-transition, 117 
integral formulas, 161-166 
inversion formula, 6, 163 
Jackson/Whittle network, 122-127 
Markov process, 115-120, 138 
random measure, 164 
spatial queue, 281 
string-net, 193 
travel time, 129, 134, 174, 175 

Particle attribute process, 249-255 
Partition-reversible process, 64-71, 73 
PASTA, see MUSTA 
Performance parameters 

estimation via simulation, 32 
Jackson network, 30 
multiclass network, 78 
spatial queue, 278 
string-net, 187 

Point process 
average rate, 141 
cluster process, 262 
simple, 105 
sums of, 261 

Poisson cluster process, 241, 248, 254, 
263 

multivariate, 242 
Poisson process, 101 

compensator, 106 
convergence to, 256, 257 
functionals, 104-107 
Laplace functional, 233 
Markov-modulated,106 
multivariate compound, 109 
space-time, 101, 110 
splitting and merging, 240 
Watanabe's characterization, 106 

Processor-sharing, 12,76,80,82,91, 
178 
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Quasi-reversible process, 207, 215 
Queue 

MIMll,8 
Queueing network, see Stochastic 

network 

Random measure, 110, 131, 132, 149, 
162, 164, 166, 179 

Rate conservation law, 165, 180 
Recurrently empty, 29, 138, 140, 141, 

150,280 
Regular departures, 140, 141, 148 
Regular termination times, 146, 147 
Rerouting, 87 
Reversible process, 6, 44-73 

canonical transition rates, 6 
constrained, 63, 72, 85 
construction, 53 
invariant measure, 50 
Kolmogorov criterion, 37, 50, 51, 60, 

73 
time reversal, 47 
truncated space, 54, 56, 57, 63 

Sector-dependent service, 37, 38, 43, 96 
multiclass, 76, 81 

Sojourn time 
backward-looking, 126 
in M 1M II queue, 127 
in MIMls system, 132 
in network, 172 
in node, 40, 125, 246 
in sector, 29, 78, 281 
in set, 5, 28, 120, 171 
spatial queue, 278 
tandem network, 128 

Sparce network, 255 
Stationary point process, 117 
Stationary process, 102 
Stochastic network 

MIG/co nodes, 246 
single-unit movements, 3 
HCMP, 81-84, 97 
closed,2 
infinite nodes or classes, 96 
Jackson, 9-11 
Kelly, 79-81,97 
large, 255 
locally reversible, 85 
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Stochastic network (continued) 
McCabe's Library, 52 
multi-unit movements, 3 
multic1ass, 74-79, 97 
multic1ass string-net, 225 
open finite capacity, 2 
open unlimited capacity, 2 
partially balanced, 93-96 
product form, 210-229 
quasi-reversible, 208 
queueing network, 221-224 
reversible, 58, 73 
string transitions, 181-205 
tandem, 7 
treelike, 230 
treelike regenerative, 153 
Whittle, 9-11 

Stochastic network process, see 
Stochastic network 

Swiss army formula, 165 
System attribute process, 249-255 

Throughput, see Performance 
parameters 

Time reversal, 47 
Traffic equations, 14, 16, 18,49,75, 

77,80,185,187,189,202,209, 
210,214,217,223,267 

Transformed points, 235 
Travel time, 9, 40, 121, 128, 172-179 

overtake-free route, 129, 133 

Utility process, 143-145 

Vague convergence, 233 

W.p.l, 4,137 
Waiting time, see Sojourn time 
Weak convergence, 233 
Weak coupling, 16,59,185 
Whittle process, 9-11 

invariant measure, 15 
Palm probability, 122 
Poisson flows, 112 
routing rates, 13 
service rates, 12 
stationary distribution, 15 


