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Preface

The term stochastic network has several meanings. Here it means a system in
which customers move among stations where they receive services; there may be
queueing for services, and customer routing and service times may be random.
Such a system is often called a queueing network.

Typical examples of stochastic networks are as follows:

Computer and Telecommunications Networks: Data packets, read/write transac-
tions, files, or telephone calls move among computers, buffers, operators, or
switching stations.

The Internet: Queries, e-mail, advertisements, purchase orders, news, and zillions
of other e-messages move among host computers, PCs, people, and mail-order
stores.

Manufacturing Networks: Parts, orders, or material move among work stations,
inspection points, automatically-guided vehicles, or storage areas.

Equipment Maintenance Networks: Parts or subsystems move among usage sites
and repair facilities.

Logistics and Supply-Chain Networks: Parts, material, personnel, trucks, or equip-
ment move among sources, storage depots, and production facilities.

Parallel Simulation and Distributed Processing Systems: Messages, data packets
and signals move among buffers and processors.

Stochastic networks also arise in many other areas such as in biology, physics, and
economics.

Issues concerning the operation of a stochastic network include the following:
Where are its bottlenecks or major delays? How does one network design com-
pare with another? What are good rules for operating the network (e.g., customer
priorities or routings)? What is a least-cost network (e.g., numbers of machines,
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tools, or workers). Examples of performance objectives of a network are as fol-
lows. The probability of a busy signal in a telecommunications network should be
less than one percent. The expected waiting times in a computer system should
be less than certain values. The probability of meeting manufacturing deadlines
should be above ninety percent.

To address such issues requires an understanding of the behavior of the network
in terms of the equilibrium (or stationary) probability distribution of the numbers
of units at the nodes. These distributions are used to evaluate a variety of perfor-
mance measures such as throughputs on arcs and at nodes, expected costs, and
percentage of time a node is overloaded. The equilibrium distribution is a basic
ingredient for constructing objective functions or constraints used in mathemati-
cal programming algorithms to select optimal network designs and protocols. The
quality of a network is also determined by the duration of travel and sojourn times
in it, such as the time for a unit to travel from one sector to another or the amount
of time it takes for a unit to visit a certain set of nodes. Equilibrium distributions
are used in describing the means or distributions of such travel times.

This book describes a number of stochastic network models that have been
developed over the last thirty years. The focus is on Markov process models, whose
equilibrium distributions and performance parameters are analytically tractable via
closed form expressions or computational algorithms. The network models can be
categorized as follows:

o Classical Jackson and multiclass BCMP and Kelly networks. The development
of these networks in Chapters 1 and 3 is under a unified framework of a Whittle
network.

e Reversible networks. A self-contained description of these networks and the
related theory of reversible Markov processes is in Chapter 2.

e Networks with string transitions. These are extensions of Whittle networks to
batch movements and more intricate transitions involving strings of events; see
Chapter 7.

o Networks with product form stationary distributions. Chapter 8 characterizes
these networks, which include quasi-reversible networks.

o Spatial queueing systems in which customers move in a general space where they
obtain services (e.g., mobile phones moving in a region). The space-time Poisson
models in Chapter 9 are generalizations of the classical M/G /oo infinite-server
system; they are characterized via random transformations of Poisson processes.
The models in Chapter 10 are spatial analogues of Whittle networks.

In addition to describing network models, a major aim of this book is to provide
introductions to Palm probabilities for stationary systems and to Little laws for
queues and utility processes. These topics are the subjects of Chapters 4-6, which
also address network issues concerning customer travel times, flows between nodes
and network sojourn times. To emphasize its simplicity and usefulness, the sub-
theory of Palm probabilities for stationary Markov processes comes before the
theory for general stationary processes. Palm probabilities for Markov processes
are simply ratios of rates of certain events, where the rates are obtained by an ex-
tended Lévy formula. The classical Lévy formula is for expectations of functionals
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of Markov process, and the extended formula in Chapter 4 applies to functionals
that may include information about the entire sample path of the Markov process.
Chapter 5 gives a rather complete development of Little laws that describe a va-
riety of sample path averages of waiting times and other performance parameters
of queues and general stochastic systems.

Many properties of networks are represented by point processes. Chapters 4 and
6 use point processes as a framework for counting events over time, and Chapters
9 and 10 use point processes to represent customer locations in a region. These
applications of point processes are self-contained and understandable without a
knowledge of the theory of point processes. Aside from the last chapter, most of the
point process material concerns Poisson processes. Chapter 4 presents necessary
and sufficient conditions for a point process functional of a Markov process to
be a Poisson process. These conditions establish, for instance, that the departure
times from a stationary Jackson network form a Poisson process. Another topic in
Chapter 9 concerns random transformations of Poisson processes (e.g., translations
and partitions) that result in new Poisson processes. These transformations are
useful for representing particle movements in space and time.

The book is intended for engineers, scientists, and system analysts who are
interested in stochastic network models and related fundamentals of queueing
theory. My aim was to write a monograph that would be useful as a reference and
for teaching as well. All or parts of Chapters 1-6 and sections 1-7 in Chapter9 could
be used in graduate courses related to network modeling or applied probability.
The more advanced models discussed in Chapters 7-10 would be suitable for
seminars. A prerequisite for the first eight chapters is an introduction to stochastic
processes (not using measure theory) covering Markov chains, Poisson processes,
and continuous-time Markov processes. Knowledge of measure theory is needed
for the spatial models discussed in the last two chapters.

Finally, I would like to express my appreciation to those who helped create and
perfect this book. First, I thank the taxpayers of this country who have supported the
NSF, which funded part of my research. I am grateful to Karl Hinderer for inviting
me to present my initial crude network notes in a short course in Karlsruhe. Many
thanks go to Bingyi Yang and Xiaotao Huang for doing their Ph.D. research with
me that resulted in Chapters 7 and 10, respectively. Chapter 8 is based on joint
work with Xiuli Chao, Masakiyo Miyazawa, and H. Takada. I thank them for the
insightful wrestling matches with notation we had via numerous e-mail exchanges.
My last thanks go to Bill Cooper, Christian Rau, and German Riano for their superb
proofreading, which eliminated many errors.
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1
Jackson and Whittle Networks

This chapter describes the equilibrium behavior of Jackson and Whittle networks.
In such a network, the numbers of discrete units or customers at the nodes are
modeled by multidimensional Markov processes. The main results characterize the
equilibrium distributions of the processes. These distributions yield several perfor-
mance parameters of the networks including throughput rates, expected customer
waiting times, and expected busy periods for servers.

1.1 Preliminaries on Networks and Markov Processes

In this section, we present the framework we will use for modeling a stochastic
network as a Markov process. Included is a review of some basics of Markov

processes.
We will consider a network that operates as follows. The network consists of
m nodes, labeled 1, 2, ..., m, where m is finite. Discrete units or customers move

among the nodes where they are processed or served. We will often use the word
“unit” instead of customer because it is shorter and has a broader connotation.
For example, in a computer or telecommunications network, a node might be a
computer, data file, or switching station; and a unit might be a data packet, message
(batch of packets), telephone call, or transaction. In a manufacturing network, a
node might be a work station, storage area, inspection point, source of demands,
or station for automatically-guided vehicles; and a unit might be a part, group of
parts, request for a product, or a message.

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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In our m-node network, randomness may be present in the servicing or rout-
ing of the units—it may emanate from the units’ characteristics or the nodes’
structures or a combination of both. The evolution of the network is represented
by a continuous-time stochastic process {X; : ¢ > 0} whose states are vectors
X =(xy, ..., xy) in a finite or infinite state space [E, where x; denotes the number
of units at node j. Chapters 3 and 8 discuss processes with more general states
that include information other than the quantities of units at the nodes.

The network is closed with v units in it if the total number of units |x| =
X1 + ...+ x, is always equal to v. Then E = {x : |x| = v}. Otherwise, the
network is open—it is open with finite capacity v if E = {x : 0 < |x| < v}, and it
is open with unlimited capacity if E = {x : 0 < |x| < oc}.

Assume that X is a continuous-time Markov jump process (or continuous-time
Markov chain). Then its probability distribution is determined by its transition
rates

q(x,y) = ltig)lt"P{X: =ylXo=2x}, y#ux,

and g(x, x) = 0. We adopt the standard convention that the process X is regular
in the sense that it cannot take an infinite number of jumps in a finite time interval.
Also, to avoid degeneracies, we assume the process does not have any absorbing
states. To model an actual network by this process, one must translate the opera-
tional features of the nodes and the rules of routing units into a specific transition
rate function gq. We will study several networks in this framework. We call X a
Markov network process that represents the numbers of units at the nodes of an
m-node network.

Since X is a Markov jump process, its sojourn time in any state is exponentially
distributed. Specifically, whenever X enters a state x, it remains there for a time
that is exponentially distributed with rate g(x) = ) _ ,q(x, y). Then it jumps to a
state y with probability p(x, y) = q(x, y)/q(x). These exponential sojourns and
transitions continue indefinitely. The resulting sequence of states X visits forms a
Markov chain with transition probabilities p(x, y).

A standard way of defining the transition rates g(x, y) is to specify the exponen-
tial sojourn rates g(x) and probabilities p(x, y) and then determine g by setting
q(x,y) = q(x)p(x, y). The following example illustrates how this is done for a
Markov process that may have transitions from a state back to itself. Such situ-
ations arise in networks where a unit exiting a node may be instantaneously fed
back to the same node for another service.

Example 1.1. Construction of a Markov Process. Suppose X is a stochastic pro-
cess on a countable state space E such that the sequence of states it visits is a
Markov chain with transition probabilities p(x, y), where the probability p(x, x)
of a transition from the state x back to itself may be positive. In addition, whenever
the process is in state x, the time to the next transition is exponentially distributed
with rate A(x). Now, the sequence of “distinct” states visited by X is clearly a
Markov chain with transition probabilities p(x, y) = p(x, y)/(1 — p(x, x)). Also,
if p(x, x) > 0, the “entire” sojourn time in a state x is the sum of successive expo-
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nential times with rate A(x) until a transition takes it to a new state with probability
1 — p(x, x). Consequently, the sojourn time is exponentially distributed with rate
q(x) = A(x)(1 — p(x, x)) (see Exercise 1). Then by the discussion above, X is a
Markov process with transition rates q(x, y) = g(x)p(x, y) = A(x)p(x, y). O

Much of our focus will be on the network process X with single-unit movements
described as follows. Envision the units as moving within the set of nodes M =
{1, ..., m} if the network is closed or M = {0, 1, ..., m} if the network is open.
Here node 0 denotes the outside of the network. This node O is only a source
or sink; the network state x does not record any population size for it. A typical
transition of X will be triggered by the movement of one unit from some node j
to some node & in M. Specifically, when X is in state x and a unit moves from j
to k, then the next state of the network is Tj,x, which is the vector x with one less
unit at node j and one more unit at node k. For example T5ox is the vector x with
x3 replaced by x3 — 1. We will sometimes write Tj,x = x —e; 4 ¢;, where eg = 0
and e; is the unit vector with 1 in component j and O elsewhere, for j =1, ..., m.

The exponential sojourn time in state x is usually formulated as follows. For
each pair j, k in M, one assumes that the time to the next “potential” movement of a
unit from j to k, or potential transition from x to Tj,x is exponentially distributed
with rate g(x, Tj«x), and these times are independent. The form of g(x, Tjx)
depends on the network being modeled. Then the sojourn time in state x, being
the minimum of these independent exponential times, is also exponential with rate
q(x) = Z,‘ >+ q(x, Tjix). Such sums are for all j and k in the node set M unless
specified otherwise. Moreover, g(x, Tjtx)/q(x) is the probability that the jump
is triggered by the j-to-k movement. This interpretation of the transition rates in
terms of exponential times to potential movements is often used as a guide for
formulating the rate function g for particular networks.

Later chapters cover networks with more general concurrent or multi-unit move-
ments in which a typical transition is from x to x +a —d, where a = (ay, ..., ap)
andd = (dy, ..., dy,) denote the numbers of arrivals to and departures from the
respective nodes. In these instances, the natural assumption is that, whenever the
network is in state x, the time to the next potential transition to state x —d + a is
exponentially distributed with rate g (x, x —d + a) and these times are independent
for the possible vectors d and a.

To describe the equilibrium behavior of Markov processes, we will use the fol-
lowing notation. Assume that {X, : ¢+ > 0} is a Markov jump process as described
above on a countable state space E with transition rates g(x, y). A positive measure
7 on E is an invariant measure for X (or for q) if it satisfies the balance equations

T(x) Y qx,y) =) 7()q0.x), xek (1.1
y y

The measure may be infinite and the process may be reducible or null recurrent. If
X is irreducible and positive recurrent, then there is a unique positive probability
measure 7 that satisfies the balance equations. In this case, X is called an ergodic
process, and 7 is called the stationary or equilibrium distribution of X. For sim-



4 1. Jackson and Whittle Networks

plicity, we will often present an invariant measure for an ergodic process and not
take the extra step to normalize the measure to be a stationary distribution.

When the process X is ergodic, its stationary distribution 7 is also the limiting
distribution in the sense that

tlim P{X, = x} = (x).

A stochastic process is stationary if its finite-dimensional distributions are invariant
under any shift in time. Because X is a Markov process, a necessary and sufficient
condition for it to be stationary (or in equilibrium) is that P{X, = x} = m(x) for
each x and ¢.

A variety of costs and performance parameters of Markov processes are ex-
pressible in terms of the following functionals. Suppose that a value (e.g., a cost
or utility) is incurred continuously at the rate of f(x) per unit time whenever the
process X is in state x. Then the total value incurred in the time interval (0, ] is

[ f(Xs)ds.
0

One may also be interested in values associated with the transitions of X. Suppose
h(x, y) is a value associated with each transition of X from x to y. Then the total
value for the transitions in (0, ¢] is

> h(Xe, ,, Xe)1(5, € 0, £]),

where 0 = 75 < 7; < 7;... are the transition times of X. Note that X, is the
value of X at the nth transition. Here, 1(statement) denotes the indicator function
that is 1 or 0 depending on whether the “statement” is true or false.

The ergodic theory for Markov processes justifies that the limiting averages of
the preceding functionals exist. Furthermore, these limits are expected values of
the functionals when the process X is stationary. These properties are summarized
in the following result. We say thata sum ) _, a, exists (or is absolutely convergent)
if Y, la,| < oo.

Theorem 1.2. (Law of Large Numbers) If the Markov process X is ergodic with
stationary distribution 1, then with probability one (w.p.1)

lim 1! fo fXyds = Y r@f ),

=00

fim £~ ) " A(Xq, s X )(5 € 0,01) = D 7(x) ) q(x, h(x, y),
n X y

provided the sums exist. These limit statements also hold when the random functions
are replaced with their expectations. Furthermore, if X is stationary, then the
preceding limits are the respective expected values

1
E / f(Xpds,  E) h(X._, X:)(x, € (0, 1]).
0 n
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This theorem yields the following properties. First, the average number of
transitions of X from a set A to a set B per unit time is

nq(A,B)= ) m(x))_q(x,)

x€A yeB

= lim t™' ) "1(X,, , € A, X,, € B, 7, € (0, 1]).
=00 "
This is also the expected number of such transitions in a unit time interval when
X is stationary. The quantity wg(A, B) is sometimes called the probability flux
between A and B. In particular, mg(x, y) is the average or equilibrium rate of
transitions from x to y (the g(x, y) is the “infinitesimal” transition rate). In light
of this, the total balance equations (1.1) are wq(x, E) = nq(E, x), x € E. That is,
in equilibrium, the average number of transitions per unit time from x to all the
other states equals the average number of transitions from the other states into x.
Or, loosely speaking, the rate of flow out of x equals the rate of flow into x.
More generally, summing the total balance equations on x € A yields

nq(A, E) = nq(E, A).
Also, subtracting mg(A, A) from this equation yields
nq(A, A°) = mq(A°, A), (1.2)

where A€ denotes the complement of A. This says the rate of flow out of A equals
the rate of flow into A, which is what one would anticipate for a stable system.
The rate of flow into A is related to the number of entrances of X into A in the
time interval (0, ¢], which is
Na() =) 1(X,,_, € A%, Xy, € A, 7, € (0, 1]).
n

The rate at which the process X enters A is defined by
AMA) = lim 1IN (1) wp.1.
1—>00
Then it follows that
MA) =mq(A%, A) =) m(x) ) q(x,).
XEAC yeA
This rate is also related to the time 7}, of the nth entrance of X into A. Namely, by

the law of large numbers for point processes (see Theorem 5.8),

lim n~'T, = A(A)™" wp.l. (1.3)

n—->o0

Another quantity of interest for the Markov process X is the average sojourn or
waiting time in A defined by

I H -1 g
W(A) = lim n ZW,(A) w.p.1,

i=1

where W;(A) is the time X spends in A on its ith visit.
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Theorem 1.3. Ifthe Markov process X is ergodic with stationary distribution
then the limit W(A) exists and

W(A) = MA)" ) w(x).
XEA
If in addition X is stationary, then W(A) is also the expected waiting time in A
with respect to the Palm probability that X enters A at time 0.

ProOF. The first assertion follows since applications of (1.3) and Theorem 1.2
yield

Tn+l
W(A) = lim n™'T,4; lim T,,;'lf 1(X; € A)dt
n—o00 n—o0 0

=MA)" ) w(x) wp.l.
x€A
The second assertion follows from Theorem 4.31 in Chapter 4, where Palm prob-
abilities are first introduced. The second assertion is also a special case of the
inversion formula for Palm probabilities in Corollary 6.16. O

The following notion of reversibility plays an important role in network
modeling.

Definition 1.4. The Markov process X is reversible if there is a positive measure
7 on E that satisfies the detailed balance equations

x(x)g(x, ) =n(y)q(y,x), x,yckE. 1.9

The v is an invariant measure since it also satisfies (1.1), which are the detailed
balance equations summed over y. We also say that g is reversible with respect to
7.

By the law of large numbers for Markov processes, the detailed balance equation
(1.4) says that, for an ergodic process, the average number of transitions of the
process from state x to state y is equal to the average number of transitions in the
reverse direction from y to x. And if the process is stationary, then the expected
number of transitions x to y is equal to the expected number of y to x transitions.

A distinguishing feature of reversible transition rates is that they have the
following simple, canonical form.

Theorem 1.5. The transition rate q is reversible if and only if it is of the form
q(x,y) =y, y)/n(x), x#y€ek, (1.5)

for some positive function w on E and some nonnegative function y on E x E such
that y(x, y) = y(y, x), x, y € E. In this case,  is an invariant measure for q.

ProoF. If g is reversible with respect to i, then (1.5) is satisfied with y (x, y) =
7 (x)qg(x, y). Conversely, any transition function of the form (1.5) satisfies the
detailed balance equations, and hence g is reversible. O
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The canonical representation (1.5) is useful as a quick check for determin-
ing whether a process is reversible: just find a symmetric function y such that
q(x, y)/y(x, y) is independent of y. The preceding representation is the only
property of reversibility needed in this chapter. We will resume the discussion
of reversible Markov processes and reversible networks in the next chapter.

1.2 Tandem Network

This section gives a glimpse of what lies ahead. It describes the equilibrium
behavior of a tandem network, which is an example of an open Jackson network.

Consider a network consisting of m nodes in series as shown in Figure 1.1 below.
Units enter node 1 according to a Poisson process with intensity A. Each unit is
served at nodes 1, ..., m in that order, and then it exits the system. Each node
is a single server that serves the units one at a time on a first-come, first-served
basis, and a unit’s service time at node j is exponentially distributed with rate u ;,
independent of the arrival process and other services. When a unit arrives to a node
and the server is busy, the unit joins the queue at that node to wait for its service.

The state of the network is represented by a vector x = (xi, ..., X,,) in the set
E = {x : |x] < oo}, where x; denotes the number of units at node j. Let X,
denote the state of the network at time . The process X = {X; : ¢ > 0} is an open,
unlimited-capacity network process that evolves as follows. Upon entering a state
x, itremains there until a new unit arrives to node 1, or there is a service completion
at one of the nodes. In other words, typical transitions of the process are from x to
Toix = x + e (an arrival into node 1), or from x to T ;11 x = x —e; + €41 (a
service completion at node j), provided x; > 1. Here m 4+ 1 = 0. The time until
such a transition is exponentially distributed, and so X is a Markov process. Its
transition rates are

q(x, Toix) = A, qx, Tj jpix) = pjl(x; = 1),

and otherwise the rates are 0.
The balance equations that an invariant measure 7 must satisfy are

m m+1
7)Y g, Tj %) = Y (T 1x)q(Tyjo1x, 0)1x; = 1), x € E.
j=0 j=1

Since each node j resembles an M/M /1 queueing process with input rate A and
service rate /1 ;, one might conjecture that the stationary distribution of the process

ey WG WG ) WG — e S
O O \J

FIGURE 1.1. Tandem Network
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is a product of stationary distributions of M/M/1 systems of the form
m
X,
n@) =[] - o},
j=!

where p; = A/ ;. We assume p; < 1 for each j.
To prove this conjecture, note that from the definition of g and m + 1 = 0, it
follows that 7 defined above satisfies

z(x)g(x, Toix) = w(xX)A = 7 (Tomx)q(Tomx, X),
m(x)qx, Tj jp1x) = m(x)p;l(x; > 1)
=T} j-1x)qTj j-1x, x)1(x; = 1), 1=<j<m.

Summing these equations, we see that 7 satisfies the balance equations above. The
preceding are partial balance equations that say the average number of movements
of units per unit time from node j to node j + 1 that takes the network out of state
x is equal to the average number of movements from j — 1 to j that takes the
network into state x.

For the rest of this section, suppose the tandem network process X is stationary.
Because its stationary distribution 7 has a product form, the numbers of units at the
nodes at any fixed time ¢ are independent, and the number of units at each node j has
a geometric distribution (1 — p; )p;’ , just as if it were an M /M /1 queueing system
operating in isolation. A typical item of interest is the probability distribution of
the total number of units in the network. This distribution is P{|X,| = n} =
> x|=n T (x). From a result we will prove later (Proposition 1.31), it follows that

P{X|=n} =[] =0 o []to: — 0",
i=1

j=1 (#i

when the p;’s are distinct. For nondistinct p;’s, Proposition 1.32 applies.

This distribution is useful for optimization problems such as the following.
Suppose there is a cost ¢; per unit time of having a service rate ut; at node j. Then
the problem is

s.t. P{|X,| > b} <p.

Here b is a desired upper bound on the total system quantity, and p is a probability
representing the quality of service.

A related quantity for the system is the average time W(A) the system spends
in the set A = {x : |x| > b}. The average rate at which X enters this set is

MA) =) w(Dq(x, Tox) = AP{|X:| = b).
|x|=b
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Then by Theorem 1.3,

P{|X,| > b}

AP{IX,| = b}

Next, consider the point process N;(¢) that denotes the number of units that

move between node j and node j + 1 in time ¢. The rate of flow between j and
J+1is

W(A) = n(A)/MA) =

EN;(1) = Zn(x)q(x, Tjj11%) = A.

By a result we prove later (Theorem 4.22), it follows that N; is a Poisson process
with intensity A. A key ingredient for this is that each unit can make at most one
visit to node j.

For a unit that enters the system in equilibrium at time 0, let W; denote the
time the unit spends in node j. We will show in Theorem 4.43 that W;, ..., W,
are independent exponential random variables and W; has a rate u; — A. These
exponential waiting times are with respect to the Palm probability that a unit enters
the system at time 0. We discuss Palm probabilities in Chapters 4 and 5. This result
is useful for addressing issues concerning the total time W, +- - -+ W,, aunit spends
in the network.

1.3 Definitions of Jackson and Whittle Processes

In this section, we define Jackson and Whittle processes. They are Markov pro-
cesses that represent networks in which units move among the nodes according to
independent Markovian routing and their service rates depend on the congestion.
In a Jackson network, the service rate at each node depends only on the number
of units at that node, whereas in a Whittle network, the service rate at each node
is a function of the numbers of units at all the nodes.

Throughout this section, we assume that {X, : ¢ > 0} is a stochastic process that
represents the numbers of units at the nodes in an m-node network with single-
unit movements. It is convenient to consider closed and open networks at the same
time. Accordingly, assume the network may be any one of the following types:

o Closed network with v units and state space E = {x : x| = v}.

e Open network with unlimited capacity and state space E = {x : |x| < o0o}.
e Open network with finite capacity v and state space E = {x : [x| < v}.
Think of the units moving in the node set

M= {1,...,m} if the network is closed
{0, 1,...,m) if the network is open.
In Chapter 3, we discuss how our results apply to networks with multiple types of
units.
The major assumption we make is that whenever the network is in state x, the
time to the next movement of a single unit from node j to node k (i.e., a transition



10 1. Jackson and Whittle Networks

from x to Tjxx = x — e; +e) is exponentially distributed with rate A jx¢;(x). The
Ajx are nonnegative with A;; = 0, and ¢;(x) is positive except that ¢;(x) = 0 if
x; = 0and j # 0. This assumption of exponential times to movements is satisfied
under the following conditions:

(i) Whenever the network is in state x, the time to the next departure from node j
is exponentially distributed with rate ¢;(x).

(ii) Each departure from j is routed to node k with probability A ;, independently
of everything else.

For our development, we follow the standard convention that A j; may either
be a routing probability or a nonnegative intensity of selecting the nodes j and k
(like intensities in birth—death processes) and call it the j-to-k routing intensity
or routing rate. Think of A as the transition rates of a continuous-time Markov
jump process that depicts the movement of one unit in the node set M—this is
an artificial routing process separate from the network process. With no loss in
generality, we assume the routing process does not have transient states and it need
not be irreducible (further comments on this are in the next section).

The ¢;(x) is the service rate or departure intensity at node j when the net-
work state is x. If the network is open, units enter it at node k according to a
system-dependent Poisson process with intensity Aox@o(x). The ¢g(x) is the “ar-
rival intensity” from the outside. When ¢(-) = 1, the arrivals from outside into the
respective nodes are independent Poisson processes with intensities Agy, . .., Aom
(a zero intensity for a node means it does not have arrivals from outside). With a
slight abuse of notation, we refer to A j; and ¢;(x) individually as rates or intensi-
ties, even though they are only parts of the compound rate A ;.9 ;(x). Also, we call
them “routing” and “service” rates, but they may have other interpretations.

Under the preceding assumptions, X is a Markov network process with single-
unit movements and its transition rates are

Ajedj(x) ify = Tyx e E forsome j # kin M

1.6
0 otherwise. (16)

q(xv )’) = [

We sometimes express these transition rates compactly as g(x, Tjx) = A j¢;(x),
where it is understood that T, x is in E.

In addition to the assumption on exponential times to movements, we assume
the service intensities are balanced as follows.

Definition 1.6. The service intensities ¢; are ®-balanced if ® is a positive function
on E such that, for each x € E and j, k € M with Tj;x € E,

D(x)p;(x) = O(Tj1x)Ppi(Tjix).

This is a natural condition on the service intensities under which the process has a
tractable stationary distribution. More insights on ®-balance are in Section 1.13.
Here is an important example.

Example 1.7. Independently Operating Nodes. Consider the case in which each
¢;(x) is a function ¢;(x;) of only x;—there are no additional restrictions on the
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form of these functions. We sometimes refer to these functions as being node-
dependent service rates. An easy check shows that these rates are balanced by

ow = [1[[esm.

jeM n=1
Here and below, we use the convention that [],_, a, = 1 if x = 0. o

This completes the description of the network processes we will study. We name
them as follows.

Definition 1.8. The Markov network process X with transition rates (1.6) and
d-balanced service intensities is a Whittle process. It is a Jackson process if the
service intensity ¢;(x) is a function ¢;(x;) only of x;, foreach j = 1,..., m, and
¢o(-) = 1 when the network is open.

Jackson and Whittle network processes are prominent because their stationary
distributions have closed-form expressions. It is convenient to study these pro-
cesses together since they have many features in common. Note that in a Jackson
process, the service intensities ¢;(x;) are “node-dependent” (a function of x;),
indicative of independently operating nodes. In a Whittle process, however, the ser-
vice intensities are “system-dependent” (a function of x), indicative of dependently
operating nodes. Jackson processes were named after Jackson who introduced
them in 1957. Special cases of Whittle processes have been studied, but not under
this name. We introduce the name Whittle processes to recognize his major con-
tributions to the understanding of networks with system-dependent transitions.

Throughout the rest of this chapter, we will assume that X is either a Jackson
process or a Whittle process as defined above. We will make it clear when results
apply specifically to a Jackson process.

The following are some observations about the sample paths, services and rout-
ings in the Whittle process X. Because it is a Markov process, each of its sojourn
times in state x is exponentially distributed with rate

Z ZQ(x, Tixx) = Z¢j(x)z)~jk-
j k i k

Also, when the network is in state x, the time until a “potential” departure from
node j (the minimum of the departures times to nodes k # j) is exponentially
distributed with rate ¢;(x) ", A jx. This follows because the minimum of inde-
pendent exponential variables is also exponential with rate being the sum of the
rates of the variables. Upon ending a sojourn in state x, the process jumps to state
T;x € E with probability

Pie =q(x, Tix)/ Y q(x, Tiex) =Ap/ Y Aje, jokeM.  (L7)
13 13

Note that this probability is independent of ¢;(x) and the state x. The {p;} is a
Markov chain matrix with p;; = 0. We refer to pj, as the routing probabilities of
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X. The pj is the conditional probability that a unit moves from j to k given that
it does move out of j. Since expression (1.7) is independent of x, one can view
the units departing from node j as being routed independently and identically
according to the probabilities pji, k € M.

The convention A ;; = 0 does not rule out the possibility that a unit exiting node
Jj may be fed back to j for another service. Such feedbacks are modeled as follows.

Example 1.9. Networks with Feedbacks at Nodes. Consider the Whittle process X
under the assumption that, whenever it is in state x, the time to the next departure
fromnode j is exponentially distributed with rate ¢ ; (x). But now, assume that a unit
departing node j enters node k with probability p ;;, independently of everything
else, where the probability p;; of a feedback may be positive. Then it follows, from
the construction of Markov processes with feedbacks described in the last section,
that the process X is a Whittle process with transitionrates g(x, Tjrx) = pr¢;(x).
In this case, a transition from x to Tjx occurs with probability p;, and the
exponential sojourn time in state x has the rate ) i @)1 = pjj. O

In a transition from x to Tj,x, we refer to a “single unit” moving from j to
k. However, more than one unit may actually move in the transition, as long as
the node populations before and after the transition are x and Tjx, respectively.
For instance, in a manufacturing network, a part exiting a certain node j may be
considered as a completed part that actually exits the network and triggers another
unit outside the network to take its place and enter node k.

1.4 Properties of Service and Routing Rates

This section gives more insight into service intensities. It also shows how the
routing rates determine the irreducibility of Jackson and Whittle processes.

The service intensities of a Jackson or Whittle network have various inter-
pretations. The following are standard examples of node-based intensities; more
intricate system-dependent intensities are discussed later. Viewing the node-
dependent ¢;(x;)’s as relative service intensities, we say that node j consists of s
exponential servers withrate u; if ¢;(x;) = p; min{x;, s}, x; > 1. This typically
represents the case in which there are s independent servers, | < s < oo, and
their service times (or the service times required by the units) are independent and
exponentially distributed with rate 1 ;. This node therefore operates independently
of the other nodes in that its rate does not depend on x;, for k # j. A number of
service disciplines are allowable since the units are indistinguishable (e.g., first-
come, first-served, service in random or arbitrary order, or last-come-last-served).
The case ¢;(x;) = pjx; (when s = oo) implies that node j is simply a delay
point for each unit, and each delay is independent of everything else. Such a delay
might be a time for a self-processing operation (e.g., a think time, maturation time,
storage period, or self-maintenance time).

Another interpretation of ¢; is that it represents a processor-sharing scheme
in which units are processed as follows. At any instant when x; units are present,
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the time to the next “potential” departure of the ith unit there is exponentially
distributed with rate u;(x;) > O such that ¥";” | u,;(x;) = ¢;(x;). That is, node j
works on the ith unit with intensity or rate u;(x;), and all the units receive service
simultaneously. This is egalitarian processor-sharing when p;(x;) = ¢;(x;)/x;:
each unit gets the same share of the ¢;(x ;). Regardless of the particular processing
rule, the total departure intensity is simply ¢;(x;). Keep in mind that a processor-
sharing intensity function ¢; can have any form. For example, ¢;(x;) = u; can
be a processor-sharing intensity even though it can also represent a single server
with a first-come, first-served discipline.

The following result is a criterion for the network process X to be irreducible.
Recall that the routing process of X is a Markov process with transition rates A j;.
The sequence of states this routing process visits forms a Markov chain, whose
transition probabilities are the routing probabilities pjx = Ajx/ Y, Aji-

Proposition 1.10. The Jackson or Whittle process X is irreducible if and only if
its routing process is irreducible.

Proor. First, assume X is irreducible. To prove the routing process is irreducible,

it suffices to show that, for any fixed j # k in M, there exist j, ..., j, in M such
that
Aijhji e kjex > 0. (1.8)
Choose x and x in E such that x; and X, are positive. The irreducibility of X
ensures that there exist ji, ..., j, in M such that the states
X, xl = Tjj,x, ‘e .,xe = Tjt_]jlxeﬁl, X = Tjthe, (19)

form a feasible path from x to X, and so
g(x, xHgx", x3 - q(x4, %) > 0. (1.10)

This selection of states first chooses j; and j, such that g(x, x') and g(x¢, %) are
positive, and then chooses x2, ..., x~ ! suchthatx!, ..., x¢ is a feasible path from
x" to x*. Since the ¢ ;’s implicit in (1.10) must be positive, then (1.10) yields (1.8).

Now, suppose the routing process is irreducible. Fix any x # x in E. Choose
J # ksuch that x; and X are positive, and then choose ji, ..., j, in M that satisfy
(1.8). Consider the states defined by (1.9). Then (1.8) and the positiveness of the
¢;’s yield (1.10). This shows that the process X can communicate between any x

and x, and hence it is irreducible. a

Remark 1.11. (Routing in Jackson Networks). Suppose the network is a Jackson
network and the routing rates A j; are reducible with n disjoint recurrent communi-
cation classes in M. Then one can view the network as consisting of n subnetworks.
The subnetworks would be independent, because the service intensity at each node
does not depend on units elsewhere. Consequently, one could analyze the subnet-
works as a collection of separate irreducible network processes. Therefore, with no
loss in generality, we will assume that the routing rates are irreducible for Jackson
networks.
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A Whittle network with reducible routing, however, would be a collection of
subnetworks that are independent in their routing, but dependent through their
service intensities. We discuss such interacting subnetworks and partially open
networks as well in Sections 1.13 and 3.1.

1.5 Equilibrium Behavior

We are now ready to characterize invariant measures for Jackson and Whittle
processes.

In addition to the notation above, let w;, j € M, denote a positive invariant
measure that satisfies the routing balance equations or traffic equations

w; Y A=Y wiky, Jj€M. (1.11)

keM keM

To simplify some expressions, we adopt the convention that wy = 1 when the
network is open. The existence of such an invariant measure is ensured, because
M is a finite set and the routing process does not have transient states. When the
network is closed, one may want to normalize w to be a probability distribution.
Then it would be an invariant distribution for the routing rates A j; and also for the
routing probabilities pjx = Aji/ D Aji.

When X is a Jackson process, we assume, as mentioned above, that A j; is
irreducible. Hence X is irreducible by Proposition 1.10. When X is a Whittle
process, we allow A jx to be reducible or irreducible—hence X may be reducible
or irreducible.

The following results describe the equilibrium behavior of Jackson processes.

Theorem 1.12. If X is a closed Jackson process with v units, then it is ergodic
and its stationary distribution is

n(x):cnwjfﬁ¢,(n)—‘, x €E={x:|x|=v}, (1.12)
j=1 n=1

where the w;’s satisfy (1.11). The c is the normalizing constant given by

' =S [Twr [[ow™.

xeE j=I n=1
Theorem 1.13. If X is an open Jackson process with finite capacity v, then the
assertions of Theorem 1.12 with E = {x : |x| < v} apply to this process.

Theorem 1.14. If X is an open Jackson process with unlimited capacity, then it
has an invariant measure of the form (1.12) with E = {x : |x| < oo}. Hence, the
process is positive recurrent if and only if

00 X
-1 _ X —1 s
¢ =E wj’”q),-(n) <00, j=1,...,m.
n=1

Xj=0
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In this case, its stationary distribution is
w(x) =mx) - Tu(xm), x €E, (1.13)

where
Xj
Xj —1
mi(xj) = cjw} l—[zpj(n) , n=0.
n=1

Recall that the node-dependent intensities ¢;(x;) of a Jackson network are bal-
anced by @(x) =[]}, [T, ¢;(n)"". Consequently, the preceding theorems for
Jackson networks are special cases of the following theorem for Whittle networks.

This result describes the equilibrium behavior of a Whittle process; the func-
tion & that balances its system-dependent service rates is characterized later in
Proposition 1.46.

Theorem 1.15. An invariant measure for the Whittle process X is
m
m(x)=ox)[[w}, xeE, (1.14)
j=1

where the w;’s satisfy (1.11). The measure 7 also satisfies the partial balance
equations

T(x) Y q(x, Tyx) = Y w(Tpx)q(Tpx, x), je€M,x €E.  (1.15)
keM keM

PrOOF. Because the process X has single-unit movements, the balance equations
an invariant measure ;r must satisfy are

m(x) Z Zq(x, Tyx)= Z Zn(Tjkx)q(Tjkx, x), xekE.
ik ik

Since these equations are the sum of (1.15) over j, it follows that any measure
satisfying (1.15) is an invariant measure. Therefore, it suffices to show that 7 given
by (1.14) satisfies (1.15).

To this end, fixa j € M and x € E. If x; = 0, then both sides of (1.15) are zero
since Tj,x ¢ E for each k. Now, assume x; > 0. By the definitions of ¢ and w;,
the left side of (1.15) is

m(x) Y q(x, Tix) = m(®B;(x) D A = m(x)p;(w;' Y wikyy.
k k k

Next, note that the definition of 7 and the ®-balance property yield the identity
() w; w = 7(Tpx)$e(Tiux), k€ M.
Using this in the preceding equation, we have

T(x) Y g, Tix) = Y w(Tpx)d(Tjex)he; = Y 7 (Tjx)q(Tjik, x).
k k

keM

Thus, 7 satisfies the partial balance equations (1.15). a

Here are some observations about the preceding results.
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Remark 1.16. (Partial Balance). From the law of large numbers for Markov
processes, condition (1.15) says that the average number of units departing from
node j perunit time when X is in state x equals the average number of units entering
node j per unit time that land X in state x. Or, loosely speaking, the equilibrium
flow of units out of node j, for any state x, equals the flow into j. Equations
(1.15) are called partial balance equations because they are only a part of the
total balance equations. They are also called station balance equations because
they say the flow into each station or node equals the flow out of the station. The
partial balance equations are also satisfied by Jackson processes described in the
theorems above.

Remark 1.17. (Traffic Equations). Although the traffic equations (1.11) precede
Theorem 1.15, they are also a consequence of the result. Namely, upon substituting
the measure 7 given by (1.14) in the partial balance equations (1.15), the service
rate functions cancel and the traffic equations are what is left. In other words, the
traffic equations are a necessary and sufficient condition for 7 to satisfy (1.15).

Remark 1.18. (Nonuniqueness of the w;’s). Note that the invariant measure 7 in
the results above is the same for any positive solution w to the traffic equations.
This follows since the normalization constant c¢ is a function of w. In particular,
the w;’s need not sum to one.

Remark 1.19. (Can Any Measure be an Invariant Measure?). Any measure on E
can be an invariant measure of a Whittle process. For instance, the process with
g(x, Tjxx) = W(x — e;)/m(x), where A jx = 1 and w; = 1, has invariant measure
. For Jackson processes, however, only product form measures can be invariant
measures, since ® is always a product form.

Remark 1.20. (Additional Modeling Capabilities). In Chapter 3, we discuss ap-
plications of the results in this chapter to the following types of networks.

e Jackson and Whittle networks with multiple types of units.

o Kelly networks in which units have deterministic routes depending on their type.
o BCMP networks with multiple types of units and processor sharing.

e Networks in which the service time distributions can be general rather than ex-
ponentially distributed.

o Networks with an infinite number of nodes and units.

Remark 1.21. (Other Types of State Spaces). One can define Jackson and Whittle
processes on state spaces other than the three standard spaces we are considering.
For instance, one may want to restrict the number of units at the nodes to be below
certain levels. Network processes on other spaces, however, may not have invariant
measures as those above. The reason is that there may be boundary effects in the
spaces that do not have the same balance properties. There are some networks with
reversible or locally reversible routing, however, that still have invariant measures
as above; see Sections 2.4, 2.5, 2.7, 2.9, 3.5, and 3.6.

Remark 1.22. (Weak Coupling of Services and Routing). The transition function
g of the Whittle process is a “weak coupling” of two transition functions in the
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sense that

q(x,y) =qi(x, y)q2(x,y), x#y¢€E, (1.16)

where q(x, Tjxx) = Ajx involves only the routing rates, and gz (x, Tjxx) = ¢;(x)
involves only the service rates. Theorem 1.15 with ¢; = 1 says that m;(x) =
[T/-, w}’ is an invariant measure for ¢;. Similarly, Theorem 1.15 with A = 1
says that m,(x) = ®(x) is an invariant measure for ¢,. In addition, Theorem 1.15
says that an invariant measure for ¢ is the product z (x) = m(x)m,(x). This prod-
uct form does not automatically follow by the coupling (1.16). It is due to these
additional properties:

(i) g, is reversible with respect to 7, (because the service intensities are -
balanced; see Section 1.13).

(i) m2(x)qa(x, Tjix) is independent of k for each j and x.

These are strong conditions, which are generally not satisfied for Markov processes.

The preceding remark raises the following question: Are there more general
routing and service rates that lead to tractable stationary distributions? Some insight
into this issue is given by the following result. Suppose the transition rates of the
process X are of the form

@i (XA jr(x) if y=Tjx forsome j # kin M

. (1.17)
0 otherwise,

q(x,y) =

where A jx(x) is a routing rate as a function of the state x.

Proposition 1.23. (State-dependent Routing) For the network process with tran-
sition rates (1.17), assume that the ¢ ; are ®-balanced and that there is a positive
Sfunction A on E such that

A@ Y Au() =Y ATp0)h(Tiwx),  j € M, x e Ewithx; > 1. (1.18)
k k

Then an invariant measure of the process is
T(x) = P(x)A(x), x ek (1.19)

ProoF. The proof is similar to that of Theorem 1.15. The approach is to show
that w (x) = $(x) A(x) satisfies the partial balance equations (1.15). The main step
is that, for each x € E withx; > 1,

7 (x) ijq(x, Tjkx) = O(x)¢; (X)AG) Y Aju(x)
k
=) O(Tx)u(Tjix) A(Tjx0)he (Tex)
k
= Z m(Tix)q(Tiex, x). a
Although this result provides a gel;leral framework for state-dependent routing, it

does not solve the problem of finding 7. This is because obtaining a A that satisfies
(1.18)—without any more information about A j;(x)—is essentially equivalent to
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finding 7. In other words, for general routing or service transition functions in the
coupled transition rate (1.16), the problem amounts to finding invariant measures
for general transition rates of the form q(x, T, x) = g (x).

1.6 Production—Maintenance Network

Before developing further properties of networks, we give an application in this
section of a closed Jackson network. This network is indicative of maintenance
networks that arise in industrial and military settings for maintaining expensive
equipment to produce goods or services or to perform a mission.

Consider a system shown in Figure 1.2 in which v machines (subsystems, trucks
or electronic equipment) are available for use at some facility or location called
node 1. At most s; machines can be in use at node 1 at any time for producing goods
or services. Therefore, if x; machines are present then min{xi, s,} of these will
be in use. After a machine is put into use, it operates continuously until it fails or
degrades to a point that it requires a repair. The total operating time is exponentially
distributed with rate ;. At the end of this time, the unit is transported to a repair
facility. The transportation system (which may involve initial processing and rail
or air travel) is called node 2, and the unit’s time at this node is exponentially
distributed with rate p,; there is no queueing for the transportation.

The repair facility consists of nodes 3, 4, 5, which are single-server nodes with
respective rates U3, (L4, 4s. Depending on the nature of the repair, the unit goes
to one of these nodes with respective probabilities py3, pa4, pas. After its repair,
the unit goes to another transportation system, called node 6, for an exponen-
tially distributed time with rate pg. And then it enters node 1 to begin another
production/repair cycle.

Let X denote the process representing the numbers of machines at the respective
nodes. Under the preceding assumptions, X is a closed Jackson process in which
each node j is an s;-server node, where s, = 5¢ = oo and s; = 1 for j = 3, 4, 5.
The rate of each server at node j is u;. The routing intensities are the routing
probabilities A1, = As¢ = et = 1 and Ay = py for k = 3, 4, 5; the other A ;s
are 0. The traffic equations (1.11) for these routing probabilities have a solution
w; = 1for j =1,2,6 and w; = py; for j =3, 4, 5. Then by Theorem 1.12, the

(3)
3)
N ne R\
——(O—®) &) (&)
(5

FIGURE 1.2. Production—-Maintenance Network
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stationary distribution of X is

X

1 i
) = x2'x6 l_[ mm{n S }H(w’/uj » *€E,

where c is the normalization constant.

The quality of this maintenance system is measured by the number of machines
in productive use at node 1. Suppose the aim is to find the number of machines v* to
provision for the network such that the probability of having less than x; machines
in use at node 1 is below B (for instance .10). From the stationary distribution
above, it follows that the equilibrium probability of having less than x, machines
at node 1 (as a function of v) is

pw) = Zn(x)l(x,- <x)

X]l

—CZ

Then the desired provisioning quantityis v* = min{v : p(v) < B}. Thisis obtained
by computing p(v) for v = x|, x; + 1... until it falls below 8.

1'[(w, [y

un'

.....

1.7 Networks with Special Structures

The structure of a network is determined by the communication graph of its Markov
routing process. The set of all communication graphs of Markov processes is vast.
When the finite node set M is not too large, one can use a standard numeri-
cal procedure for finding an invariant measure w; for the transition probabilities
Pjk = Ajk/ Y, Aje. In some cases, however, these measures have closed-form
expressions. This section describes several elementary examples that are relevant
for networks.

Example 1.24. Nearest Neighbor Travel. Suppose the routing of units in a closed
network is a simple random walk on the nodes 1, .. ., m in which a unit at node j
moves to j + 1 or j — 1 with respective probabilities p; and 1 — p;, where p; =1
and p,, = 0. In this case, it is well known that an invariant measure of the routing
rates is w; = 1 and
_ Po---Pj-1
w; = ,
(=pn---(1-p)

Example 1.25. Progress-or-Return-to-Origin Network. This type of closed net-
work with m = 5 nodes has a communication graph shown in Figure 1.3 below.
Here the routing rates A12, A, j+1 and A ;; are positive for 1 < j < m, and all other
rates are 0. Then the traffic equations are

ji=2,...,m. a

m
wiky =Y wikji, wikji+Aj ) =wiAjy, 2<j<m.
=2
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b

N 2 \Z/ ot
FIGURE 1.3. Progress-or-Return-to-Origin Network

A solution is w; = 1 and

j
w; = ]—[(Ai—l,i/(kil +Aiir1)), 2=<j<m O
i=1

When the routing rates A j; are reversible, then its invariant measure has a closed-
form expression given by Theorem 2.8. We will see later in Example 2.25 that
reversible routing is a necessary and sufficient condition for a Jackson or Whittle
network process to be reversible. For instance, Example 2.10 describes a circular
network with reversible routing. Another example is the following special case of

Example 2.25.

Example 1.26. Star-Shaped Network. The graph of a star-shaped or central-
processor network with m = 5 nodes is shown in Figure 1.4. Node 1 is the
center node and nodes 2, . .., m are points of the star such that the routing rates
A1j and Aj; are positive. All the other routing rates are 0.

In this case, the traffic equations (1.11) are w;A;; = w1A;,2 < j < m. Then
the routing rates are reversible with respect to the invariant measure w; = 1 and
U)jzllj/)\.jl,ZEjfm. (]

1.8 Properties of Jackson Equilibrium Distributions

In this section, we discuss how one can obtain the normalization constants and
marginal distributions for the equilibrium distribution of a Jackson network. For
this discussion, we assume that X is an ergodic Jackson process for a network that
may be open or closed.

FIGURE 1.4. Star-Shaped Network
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First, consider the case in which the network is open with unlimited capacity.
By Theorem 1.14, the stationary distribution of X is

@ =[]men =] [c,- [Tw} ﬁ¢,(n)“] , x| < oo
j=1 j=1 n=1

j=1
Recall that the w; s satisfy the traffic equations
U)jZ)\,jk-:Zwk)»kj, jGM.
keM keM
This distribution 7 is a product of its marginal distributions 7 ;. Consequently, if X
is stationary, then, for each fixed t, its m components X!, ..., X™ are independent.

Of course, X/ and X; / for s # t are dependent, and hence so are X and X,. Note
that each marginal distribution 7 is the equilibrium distribution of a birth-death
queueing process with transition rates
gn,n)=w;l(n' =n+ 1)+ ¢;m)l(n" =n—-1>0).

In other words, each node j in equilibrium appears to be like a single node in
isolation in which units arrive by a Poisson process with intensity w;, and when
n units are present, they are served at the rate ¢;(n). The actual arrival process of
units into node j in equilibrium, however, is generally not a Poisson process.

Next, consider the case in which the Jackson network is closed with v units. By
Theorem 1.12, the stationary distribution of the process X is

@) =c[[fitx)) xe€k, (1.20)
Jj=1

where f;(n) = w;? [T, qﬁj(r)‘l and the w;’s satisfy the traffic equations. Al-
though the distribution 7 is a product form, it is not a distribution of independent
random variables since |x| = v.

We now show that the normalization constant and marginal distributions are
expressible in terms of convolutions of functions. The convolution f g of two
functions f and g on the nonnegative integers is defined by

frgmy=)_ fl)gln—i), n>0.

For a sequence of such functions f;, f, ..., it follows by induction on m that

firooxfum)y= Y ]'[f,(x,) n>0m>1. (1.21)

x:lxl=n j=
This property yields the following computational procedure.

Remark 1.27. (Normalizing Constant for Closed Jackson Network). The normal-
izing constant ¢ has the representation

= ). r[f/(xj)—fn % (V). (1.22)

xilxl=v j=
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One can compute ¢ by the following procedure. For each £ = 1, ..., v, define
ge(n) = fix...x fy(n), for 0 < n < v. Then compute these convolutions by the
recursion

8e(n) = fyxge1(n), 0<n<y,

for £ = 2,...,m. The final iteration yields g,,, from which one obtains c~! =

&m(v). The number of computations for this procedure is of the order mv.

Remark 1.28. (Marginal Distributions of Closed Jackson Networks). Knowing
1, one can obtain the marginal equilibrium distribution of the number of units at a
single node or of the numbers in sets of nodes as follows. We call a subset of nodes
J C M a sector of the network. Associated with J, we define x(J) = 3, x;,
and let f; denote the convolution of the functions { f;, j € J}. Now consider any

disjoint sectors Jy, ..., J, whose union is M. The joint equilibrium distribution
of ny, ..., n; units in these sectors is
¢
Tty n) =c [ Y 1@y =nm) [] fitx)
i=1xj:jed; JjeJ;i

4
:Cl-_[f-li(ni)a nl+-..+ne=\).
i=1

The last equality follows by property (1.21) for convolutions. From these distri-
butions, one can obtain means, variances, covariances, and other items of interest
such as expected costs for the process. In particular, the marginal equilibrium
distribution of the number of units in the sector J is

() =cfy(n)fye(v—n), 0<n<v, (1.23)
where J¢ is the complement of J.

Next, suppose X is an open Jackson process with capacity v. Here, the normal-
ization constant for its stationary distribution (1.20) (where E = {jx| < v}) has
the representation

= Z Hfj(xj)ZZfl k... f(n).
n=0

x:|x|<v j=1
Also, the joint equilibrium probability of ny, .. ., n, units in the respective sectors
Ji, ..., Jg that partition M is

Keep in mind that w; implicit in the functions f; is the invariant measure of the
routing intensities for the “open” network; consequently, fi * ... x f,(n) is not
necessarily the inverse of the normalization constant for the related closed network
with n units (although it appears to be).
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Another useful observation is that one can interpret this finite-capacity open
network process X as a closed network process on {0, 1, ..., m} with the same
routing and service intensities as X, plus the intensity ¢o(-) = 1 for node 0.
Then clearly 7 (x|, ..., x,) = T(v — |x|, Xy, ..., Xn), where 7 is the stationary
distribution of the closed network.

Jackson networks with infinite-server nodes are useful for modeling storage
systems or service systems in which the units move independently and there is no
queueing. Expressions for their equilibrium distributions are as follows.

Example 1.29. Jackson Networks with Infinite-Server Nodes. Suppose X is a
Jackson network process, where each node j is an infinite-server node and each
server has rate u;. The departure intensity is therefore ¢;(x;) = x;u;. Then its
stationary distribution (1.20) is

rteeerm (1.24)

m?

n(x):x Lo !

I m-
where r; = w;/u;. In case X is an open network with unlimited capacity,

m
w(x) = neﬁ’fr;’/x,-!,
j=1
which is a product of Poisson distributions. In case X is a closed network, its
distribution (1.24) is the multinomial distribution

!

_ v: X1 X —_—
m(x) = APy P E=Y

where p; = r;/(ri+- - -+r,). This follows by applying the multinomial expansion

v!

xl... X
r Iy

it trn) = )

... !
xilxj=v X1: Xm!

to (1.24). In this closed network, each unit is moving independently as a Markov
chain whose stationary distribution is {p;}. One would therefore anticipate that,
in equilibrium, the numbers of units at the nodes have the preceding multinomial
distribution. Because of the multinomial form, the number of units in any sector
J has a binomial distribution with parameters v and ) jes Pj- Finally, when X is
an open network with finite capacity, then

|x|!
n(x) = —
PAREIS

LI

This is a conditional multinomial distribution given that there are |x| units in the
system. ]

Example 1.30. Jackson Networks with Single-Server Nodes. Suppose X is a Jack-
son process in which each node j is a single-server node with rate ;. Then its
stationary distribution (1.20) is

r(x)=cri'---ry, (1.25)
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where r; = w;/u;. In case X is an open network with unlimited capacity, then
m
wx)y=[Ja-rpry.
j=1
This is a product of equilibrium distributions of birth—death processes with birth
rates w; and death rates ;. If X is closed or open with finite capacity v, then the
distribution (1.25) has normalization constants given respectively by

= fixox fu(v), ¢! ZZfl*"'*fm(”)’

where f;(n) = r . These are very special convolutions that have closed form
expressions given m the next section. a

1.9 Convolutions for Single-Server Nodes

For closed or finite-capacity open Jackson networks with single-server nodes, the
preceding example showed that their equilibrium distributions have normalization
constants that are functions of the convolution fi - - - x f,,(v), where f;(n) = r}’.
Their marginal distributions involve similar convolutions. The following results
are closed form expressions for these convolutions.

Proposition 1.31. Ifr,...,ry are distinct, then
fihee x fu(v) = Zr““" e —ro™" (1.26)
k#j

Proor. Consider the generating function
o0
G@) =) fix * fu)c".
v=0

Then we can write
fi ke ox fu(v) = GPO)/v!, (1.27)

where G’ is the vth derivative of G. Since the generating function of a convolution
of functions is the product of the generating functions of the convolved functions,
and f;(n) = r , we have

G(z) = H Zf,(v)z = H(l —rig).

j=1v=0

Now, since ri, ..., rn are distinct, the standard partial fraction expansion of this
product is

m

Cj
G@ = Z A=r2)’
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wnere
¢j= lim (1-r;2)G@) =[] —rn/ry.
z=>1/r; Py
Then clearly G (0) = v! 27':] c;jrj. This and (1.27) yield (1.26). O

When the parameters r; are not distinct, fi * --- * f,(v) has the following
expression.

Proposition 1.32. Letri, ..., 7; be the distinctr;’s and let ny denote the number
of rj’s equal to v,. Then

froex fu@) =Y (=17 F) " " h(ng, m, ) (1.28)
=1

where

B, mm) =) (—1ye i

B etig=ne—1 lz'm'
F ,
(e +ie—-D! .
'—"—u_T'—(r“)’"/(rf —F)ttie
u=1,u#t llt-(nu - )
PROOF. Proceeding as in the proof above, we have (1.27), where

m

G =[]a-ra™" =]]a-ray™.
=1

j=l1

Clearly G is analytic in the complex plane, exceptat 1 /7|, ... 1/, which are poles
of G of orders ny, ..., n;, respectively. Then by the Cauchy integral formula for
derivatives,
v!
GV(0) = — f(2)dz, (1.29)
270 Jg|=e

where f(z) = G(z)/z""" and the integral is counterclockwise on the curve |z| = &,
for some ¢ < min{l/r;,...1/rz}.

For a fixed b > max{1/r,...1/rz}, the function f is analytic in the region
|z| < b, except at 0, 1/r,,...1/rs, which are poles of f. Then by the residue
theorem for complex integrals,

1 ’;l
— f@)dz =Resi—o)f + »_Resie—ijry f =0, (1.30)

2rwi Jzl=b =1
where Resy,—;) f denotes the residue of f at {. That this integral is zero is a
standard result for a function such as f that is a ratio of polynomials in which the
denominator has a degree that is at least two more than the numerator. Now,

1
Resg—o f = Il g bf(Z)dz,
zZ|=
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and since 1/7, is a pole of order n,,

1 d\"! - _
(ne — 1! <_J£) [z = 1/r)™ f (@ e=1/7 -

Consequently, (1.27), (1.29), and (1.30) yield

A1 £\ m
Jixoox fr(v) = — Z Le—/rL (—) (z7! H(l — 1k2) ") |z=1/7, -
- : ke

Res(—i/ry f =

This reduces to (1.28) by applying the multinomial derivative formula

4\ n!
(E) hi@)-- ha(z) = Z it

ivtig=n L1

d\" d\"
x(d_z) hl(Z)"'(‘—lz) hin(2).

This concludes the proof. a

For a closed or finite-capacity Jackson network, recall that the joint equilibrium
distribution of the numbers of units in sectors Ji, .. ., J; that partition the nodes is
functions f; for j € J;. These convolutions can be computed by the formulas in the
preceding results. The joint equilibrium distribution is also useful for computing
other quantities. For instance, for the closed network in equilibrium, the expected
number of units in the sector J is

Ly =c)_ nfim)fs(v—n).
n=1

The ¢ is the normalization constant that we have already discussed. For con-
venience, assume rq,...,r, are distinct. Then (1.26) and a little algebra
yield

Li=cY ) [r}{'r;+Mh DT
jeJ keJ¢
x [1=rjrj+v+ D]/ — rjk)z],
where |J| is the number of nodes in J and k;(J) = [[;c;z;(rj — )", An
analogous formula can be obtained from (1.28) for nondistinct r;’s.

1.10 'Throughputs and Expected Sojourn Times

The performance or quality of a network is typically measured by its expected
queue lengths, the speeds at which units move through it (throughput rates), ex-
pected sojourn times of the network, and expected sojourn times of units at the
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nodes. In this section, we will describe these quantities for Jackson and Whittle
networks.

Consider a Jackson or Whittle network that is represented by an ergodic process
X whose equilibrium distribution  is given in Theorems 1.12-1.15. The number
of units that move from a node j to a node k in the time interval (0, ¢] is

Nie) =) 1(Xy, = TpXe, ,, T € (0, ),

n

where 0 = 1y < 1] < 75... are the transition times of X. More generally, the
number of units that move from a sector J to a sector K during (0, ¢] is

Nyk(t) =YY Ni).

jeJ keK
The sets J and K may overlap. The average number of such movements per unit
time is
psk = lim 7' Nyx(@).
t—>00

Also, p;x = EN;x(1) when the process X is stationary. The p,x is called the
throughput from J to K. Another performance measure is the throughput of sector
J defined by A; = p,.;, which is the average number of units that enter J per

unit time. It also equals the average number of units p, ;- that exit J per unit time
since the process is ergodic. Note that

Pik = ZZij, and A; = Z ijk-

jeJ kekK JjeJc ked

By the law of large numbers for Markov processes, we have the general
expression

pjk = Y wx)q(e, Tpx) = Ay Y w()g;0)1(x; = 1), j ke M. (131)
xeE x€E

This expression simplifies in the following cases.

Proposition 1.33. Suppose that X is a Jackson process, or that X is a Whitile
process with service rates of the form

oi(x)=Px —e;)/P(x), x€ek, jeM.
If X is open with unlimited capacity, then
Pjix =Wjkjx, Jj.keM.
If X is closed with v units (or open with capacity v), then
Pk :cvc;_llekjk, j.keM.

Here c, is the normalizing constant for the equilibrium distribution of the closed
network with v units (or the open network with capacity v).
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PrROOF. Under the hypothesis, (1.31) is
Pk =wikje Y w(x —ep)l(x; = 1). (1.32)
x€E

Then the first assertion follows since the last sum is 1 for the unlimited capacity
network with |x| < o0o. Also, the second assertion follows from (1.32), since the
summation equals ¢, /c,_;, which is clear by the definition of c,. o

Another important feature of a network process is its sojourn or waiting times in
certain sets of its state space. The following expression for average waiting times
follows from Theorem 1.3.

Proposition 1.34. The average waiting time of X ina set A C E is
W(A) = m(A)/A(A),
where

MA) =) m@)q, Tux)(Tjex € A).

X€AS

The following is a typical example. Here we define x(J) = Y
denote the convolution of the functions {f; : j € J}.

jes Xj and let f;
Example 1.35. Busy Periods and High-Level Exceedances. Suppose X represents
a closed Jackson network with v units. Consider the length of time that the number
of units in a sector J exceeds a level b. This is the sojourn time of X in the set
A = {x : x(J) > b}. By the preceding proposition, the average sojourn time in A
is
Y1 f1@®) fic(v —n)

Ji®) f1e(v = b)Y ey D kese Mik

Indeed, the numerator is 7 (A)/c (recall the marginal distribution (1.23)), and the
denominator is A(A)/c. This formula for W(A) is especially nice because it does
not involve the normalization constant c.

For a high level b, the average high-level exceedance period W(A) might be
used as a guide in designing a network. For instance, one might select service
rates such that W(A) is below a certain value. One could use (1.33) to characterize
the set of service rates for which the constraint is satisfied. Another quantity of
interest is the average duration of a busy period for sector J. This quantity is given
by (1.33) with b = 0. The approach in this example can be used to obtain average
exceedance periods for other types of Markovian networks. a

W(A) = (1.33)

We now turn to expected queue lengths and sojourn times of units in a sector J
of the network. First note that the average number of units in J per unit time is

t
L, = lim z—‘f X(J)ds =) x(J)m(x) wpl,
=0 0 X

where X,(J) = x(J) = Zjej x; when X; = x. This follows by the law of large
numbers for Markov processes. For convenience, we assume L is finite.
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Next, consider the sojourn times (or waiting times) W1 (J), Wp(J), ... of units in
J, where W;(J) is the sojourn time of the ith unit to enter J. There is no restriction
on the nodes at which the units enter and leave J; a unit may have multiple visits to
the nodes in J before it exits, and units need not exit J in the same order in which
they entered. We only assume J # M when the network is closed (otherwise all
sojourns would be infinite). Then the average waiting time of units in the sector J
is

n
W, = lim n”' Z Wi(J) wp.l,
provided the limit exists.

The existence of these average waiting times is justified by the following Little
laws. These results follow immediately from Theorems 5.1 and 5.2 that hold for
Markovian systems that are recurrently empty. The emptiness condition is that the
network contains a state x with x(J) = 0. This is automatically true in this case
by the form of the state space.

Theorem 1.36. The average waiting time W exitsand L; = A ;W.

‘When the process X is stationary, W, is an expected waiting time as follows—its
expectation is with respect to a Palm probability of the process, which is defined
in Chapter 4.

Theorem 1.37. Suppose the process X is stationary and let W; denote the ex-
pected sojourn time in J with respect to the Palm probability of the stationary
process X conditioned that a unit enters J at time 0. Then the expectation W is
finite and L; = A;W;. Furthermore, L; = EX,(J) and A; = ENjc;(1).

When J is a single node j, we write the preceding Little law as L; = A;W;.
Since the number of units in J at any time is the sum of the units at the single
nodes in J, it follows that L; = Zjej L;. Similarly, A; = Zjej Aj. Although
this additivity is not generally true for waiting times, it is clear that W, = ) _ jes Wi
if and only if a unit’s waiting time in J involves exactly one visit to each node in
J.

In an open network, a quantity of interest is the average time a unit spends in
J (in possibly multiple visits to J) during its total stay in the network. This and
related quantities for closed networks are as follows. The average waiting time of
a unit in a sector J while it is in a larger sector K O J is defined by

n
K PR K
Wi = lim n ; Wi wp.l.
Here W;(J)X is the time the ith unit entering K spends in J before exiting K.
A unit may have several visits to J while in X, and so W;(J)¥X is the sum of all
these waits in J. Note that WJK # 0 since each unit entering K has a positive
probability of entering J (if the probability of moving from K\J to J is 0, then
the irreducibility of the process ensures that there is a positive probability that a
unit may enter J directly from K¢).
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The general Little laws that justify the preceding results also apply to yield
the following Little laws for WX. Let LX and AX denote the associated average
queue length and arrival rate. Note that LX = L; and AX = 1, since J C K.
An analogue of Theorem 1.36 is as follows. There is also an obvious analogue of
Theorem 1.37.

Theorem 1.38. The average waiting time WJK exists and L; = Ak WJK .
Furthermore, WJK = A,A;lW,.

1.11  Algorithms for Performance Parameters

This section contains recursive equations for computing the performance param-
eters for closed Jackson networks; namely, marginal equilibrium distributions,
average queue lengths, waiting times, and throughputs. Recall that an open Jack-
son network with finite capacity can be interpreted as a closed Jackson process with
node set {0, 1, ..., m} and service rate ¢o(-) = 1 for node 0. Therefore, the per-
formance parameters for this open network can also be computed by appropriate
modifications of the results below.

Throughout this section, we assume the network process X represents a closed
Jackson network. Let M be a collection of disjoint sectors whose union is M =
{1,...,m}. The aim is to obtain the performance parameters L;, W, A;, 7,
for each sector J € M. One’s choice of M would depend on the sectors of
interest, but M must be a partition of M for completeness in the computations.
For instance, if one were interested in the performance parameters of each node,
then M would be all singleton nodes. If one were interested in the single nodes
Jj» k, and £ along with sectors J, J not containing these nodes, then M would be
{7}, {k}, (€}, J, J', 7"}, where J” is the sector consisting of the remaining nodes.
If one were interested in sectors J, K that are not disjoint, then the procedure
below would have to be performed separately for the two partitions M = {J, J¢}
and M = {K, K¢}.

Due to the structure of the equilibrium distribution of the process X, the perfor-
mance parameters for this v-unit network process are expressible as functions of
the performance parameters of a (v — 1)-unit network process with the same routing
probabilities and service rate functions. This is the key idea in the following result,
which evaluates the performance parameters successively for the network with
n units in it, where n = 1,2, ..., v. Here we let L;(n), W;(n), A;(n), m;(i; n)
denote the parameters for the n-unit network and each J € M.

Let f; denote the convolution of the functions {f; : j € J}, where f;(i) =

wj. Hi:; ¢;(r)"". Define

0= YN wehg, i) =a; f1@f1G - D7

Lel< jeld
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Propeosition 1.39. Foreachn =1,2,...,vand J € M,

W;(n) = iih,(i)n,(i —Ln-1), (1.34)
i=l1
hy(n) = na,/ Z oy Wy(n), (1.35)
L;(n) = kl(n);VeJ/;dn), (1.36)
my(@;n)=rmh;On;@—1;n—1), 1<i<n, (1.37)
r;0;n)=1- Z":m(i; n), (1.38)
i=1

where L;(0) =0and n;(0;0) =1, for J € M.

Remark 1.40. To use these equations for computations, set » = 1 and compute
(1.34)—(1.38) for each J € M. Then repeat the computations forn = 2,3, ..., v.

PrROOF. Consider the equations (1.34)—(1.38) from last to first. Expression (1.38)
simply says the probabilities there must sum to 1. To verify (1.37), recall from the
preceding section that the marginal distribution for sector J is

(s n) = ¢ f1Q0) fye(n — i)

where ¢, is the normalizing constant for the n-unit network. This expression and
its analogue for the (n — 1)-unit network yield

wy(i;n) =aycufCarhy(@ns(i — 10— 1).

Also, we know that the throughput for J is A;(n) = a,c,/c,—;. Substituting this
in the preceding display proves (1.37).

Next observe that (1.36) is the Little law in Theorem 1.36. To prove (1.35), we
use the facts that the network is closed, M is a partition of M, and (1.36) to obtain

n= Y Lyn)= Y Apm)Wy(n). (1.39)
J'eM J'eM
From the throughput expression above, A;(n) = A;(n)a, /a;. Substituting this
in (1.39) yields (1.35).
Finally, by (1.36) and the definition of L ,(n), it follows that

Wi(n) = A,y Ly(n) = A, ()" Y imy(i; m).
i=1

Applying (1.37) to the last summation yields (1.34). a

Note that the evaluation of the performance parameters L, A;, and W; by the
preceding result requires the marginal distributions 7,. We now show that the
marginal distributions are not needed when the network has only single-server
or infinite-server nodes. Here we only consider the performance parameters for
single nodes and not sectors, since the sector parameters can be obtained from
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single node parameters via the relations
Ly=Y Lj, A;=Y_ %5 Wy=L/h,.
jed jed
Corollary 1.41. Suppose each node j in the closed network is a single-server
node with ¢ ;(n) = ; and first-in, first-out service, or an infinite-server node with

¢;(n) = nu; (each server has rate ;). Then, foreachn = 1,...,vand j € M,
[14Lijn~— DNy, ijk)'] if j is single-server
Wi(n) = k
’ (uj }:)\jk)_1 if j is infinite-server,
k

Aj(n) = na;/ Z a;Wj(n),
7

Lj(n) = x;(n)W;(n),
where Lj(0) =0andoj = w; ), Ajk.

ProOF. These equations are simply special cases of (1.34)—(1.36) with J repre-
senting the single node j. Namely, if node j is asingle-server node with¢; (i) = p;
and f;(i) = wip;", then (1.34) reduces to

Witn) = (u; ) A0 (Z(f ~ Dl — Lin—1+ 1)
k i=l
= Y AW (Lin—1)+1).
k

And if j is an infinite-server node with ¢;(i) = iu;, then f;(i) = w; M,-_i /i!and
h/(l) = U)j/((ljuji). Hence (134) reduces to W,(n) = wj/(ujaj). O

1.12 Monte Carlo Estimation of Network Parameters

We now discuss Monte Carlo procedures for estimating performance parameters
of Jackson and Whittle networks. This approach is an alternative to the computa-
tional algorithms above for Jackson networks, and it is especially useful for Whittle
networks that do not have such algorithms. We will give a brief overview of two pro-
cedures: random sampling and Metropolis Markov chain sampling. The latter has
been used in several areas including estimating parameters in Gibbs distributions
of Markov random fields and in optimization via simulated annealing.

Suppose that X is an ergodic Jackson or Whittle process that represents a closed
or finite-capacity open network. The procedures below are for finite state spaces,
but they can be extended to the unlimited capacity open network. We write the
stationary distribution of X as

w(x) =cnx), xce€kE,
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where 7(x) = ®(x) I—[';':l w;j and ¢ = 1/ ) n(x) is the normalization constant.
Assume that ®(x), w; and hence n(x) are known, but that ¢ is not known. Many
performance parameters of the process can be expressed as an expected value of
the form

p=>y gxmx),

xeE

for some function g. We will focus on describing estimators for .
A typical example of u is the throughput on the arc from node j to node k,
which according to (1.31) is

pik =Y w(x)q(x, Tjix).

xeE

Another family of examples is as follows. Suppose f(x) is a cost rate of being in
state x and h(x, y) is the cost or value of a transition from x to y. Then by the law
of large numbers for Markov processes, the average cost per unit time is

lim r‘[f f(X)ds + ) h(X,, X,)]
1—00 0 <t

=D U@+ »htx, NI wp.l.

xeE y

Note thatthemeanp = ), < &(x)m (x) depends on the unknown normalization
constant c¢ of the distribution 7. Also, note that ¢ is a special case of & with g(x) =
1/n(x). We will now show how to estimate p as well as ¢ from data generated
by a Markov chain. For this, we use an ergodic Markov chain Y = {Y, : n > 0}
on E with a stationary distribution p, which is specified. This is an artificially
constructed chain (separate from the network process X) that is to be simulated.
We consider two cases in which p is known and p = x. The latter may seem
surprising since the normalizing constant for 7 is unknown.

Upon observing the values Y, ..., ¥, of the chain for n steps, the procedure is
to use estimators c,, i, defined as follows for ¢, i. An estimator yu,, of w is said
to be consistent if u, — w w.p.1.

Proposition 1.42. Suppose Y is an ergodic Markov chain on E with stationary
distribution p. Then a consistent estimator for ¢~ is

&' =n"1Y n(¥)/p(xy).
i=1

Furthermore, a consistent estimator for p = Y g 8(x)7 (x) is

4 = Tiz W)/ p(1)
"L/

For the case p = 7, this estimator reduces to ji, = n=' Y :_, g(¥:).

(1.40)
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PROOF. The first assertion follows since, by the law of large numbers for Markov
chains,

&> Zr](x) =c' wp.l.
X

This and another application of the law of large numbers yields

= &n™" Y e(Xm(¥)/p(¥) > ¢ glom(x)=p wpl. O
i=1 x

To use the estimator fi,,, one would simulate the Markov chain Y, for a large
number of steps n and then take the resulting fi,, as the value of w. To complete the
description of this Monte Carlo procedure, it remains to select a probability law
for Y, that is easy to simulate. Two standard approaches for this are as follows.

Example 1.43. Random Sampling. Take Y, to be independent and identically
distributed with distribution p. The challenge is to choose an efficient distribution
p. It is natural to choose p such that the variance of n(Y;)/p(Y;) is small and its
shape is consistent with that of n. Typical choices to use in the estimator (1.40) are

p(x):bl—[r;", and p(x):bnr;’/xj!. O

jeM jeM
Example 1.44. Metropolis Method of Sampling. We now describe a method of
choosing Markov transition probabilities for the Markov chain Y, whose stationary

distribution is p = . Surprising, this is possible even though the normalization
constant ¢ for 7 is unkown. A general candidate for the transition probabilities is

Px,y) =y, y)/n(x), x,y€E, (1.41)

where y satisfies Zy y(x,y) = n(x) and y(x,y) = y(y, x) foreach x, y € E.
By Theorem 1.5, these transition probabilities are reversible and  is their station-
ary distribution. The reversibility property is not especially important. However,
reversible chains do have a fast geometric rate of convergence to their stationary
distribution.

The Metropolis Markov chain is a special case in which the transition
probabilities (1.41) have the following special form. Let

Ex)={yecE:y = Tyx, forsome j # kin M}, x¢ekE.

This is the set of all states that can be reached by subtracting one unit from some
coordinate j and adding one unit to some coordinate k # j (the j or k may be 0
if the network is open). For each x € E and y € E(x), define

1/1E(x)] if n(y) = n(x)
n()/[OIEX)]  if n(y) < n(x).
Also, let P(x,y) =0 for y ¢ E(x) U {x} and let

P(x,x)=1- Y P(@x,y).

y€E(x)

P(x,y)= [



1.13 Properties of Whittle Networks 35

Computations of these probabilities involve computing

n(y)/n(x) = wew;'$;(x)/¢e(Tjex), wheny = Tjex.

This expression follows because

m
m(x) = en(x) = cd(x) [ [w}'.
j=1
Clearly, the transition probabilities P(x, y) defined above are of the form (1.41),
and hence the resulting Markov chain has the stationary distribution 7. In this case,
fn =n~'Y"_, g(Y;) is the appropriate estimator for u.
To simulate a Markov chain with these transition probabilities, one generates a
transition from a state x to the next state y as follows:
(1)Randomly selecta y = Tj;x € E(x) with probability 1/|E(x)] to be a candidate
for the next state of the chain. (This amounts to selecting a pair j # k.)
(2) Accept y = Tjrx as the next state with probability min{1, n(y)/n(x)}. If y is
not accepted, then take the next state to be the current state x.
This procedure is easy to implement because each transition involves changing
only one or two coordinates of the state x. O

1.13  Properties of Whittle Networks

In a Whittle network, the service rates at a node may depend on the numbers of
units at the other nodes, while in a Jackson network, a node’s service rate depends
only on the number of units at that node. This section gives insight into the added
richness of routing and ®-balanced service rates in Whittle networks. We explain
the meaning of ®-balance and give a few examples of sector-dependent services.
Expanding on the ideas here, Section 3.1 shows how networks with multiclass
customers can be modeled by Whittle networks.

Throughout this section, assume that X is a Whittle process with routing rates A
and service rates ¢;, which are ®-balanced. We begin with some observations about
reducible routing and subnetworks. Suppose that M|, ..., M, denote subsets of M
such that each node j # 0 is in exactly one of the subsets and, when the network is
open, the outside node 0 may be in several of the sets. Assume the routing rates A j
are irreducible on each M;. Consider the network process X as the vector process
X, =(X!,...,X"YonE = E| x --- x E,, where X! = (X,(j): j € M;\{0})
is the restriction of X to the subnetwork M;\{0}, and its state space E; may be
closed or open.

The process X' is irreducible on E; since the routing rates are irreducible on M;;
this is justified by the argument used in proving Proposition 1.10. Then the network
process X is irreducible and invariant measures for it are given by Theorem 1.15.
The X is called a mixed process if some of the X’s operate like open networks
and the others operate like closed networks. Although the routings of the X*’s are
separate, these processes are dependent via the system-dependent service rates.
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In some cases, it is also natural that each ¢;(x) depends only on x restricted to
the nodes in the subnetwork M; that contains j. In this case, the X*’s may still be
dependent.

The preceding observations show that reducible routing is a viable option for
Whittle networks. In contrast, we saw that reducible routing is not of interest for
Jackson networks.

‘We now explain the meaning of ®-balance and give several characterizations of
this property. Recall that the service intensities ¢; are ®-balanced if ® is a positive
function on E such that, foreach x € E and j, k € M with Tjxx € E,

D(x)p;(x) = O(Tjx)pu(Tjrx).

To understand the motivation for this assumption, consider the transition rate
function

q(x, Tixx) = ¢j(x),

which is the same as g given by (1.6) with A j, = 1. By Definition 1.4 of reversibil-
ity, it follows that ¢; are ®-balanced if and only if g is reversible with respect
to ®. The importance of this reversibility was discussed in the remark on weak
coupling following Theorem 1.15.

The preceding observation and the canonical form of reversible transition rates
in Theorem 1.5 yield the following result.

Proposition 1.45. The ¢; are ®-balanced if and only if each ¢, is of the form
¢;(x) =V(x —e;)/P(x), x€k,
Sfor some nonnegative function ¥ definedon {x —e; : x € E, j € M}.

The preceding canonical form for ®-balanced service intensities ¢; is useful
when @ is known. How about when & is unknown? Can one construct ¢ as a
function of the ¢; ’s? The next result gives such a construction. It also characterizes
the ®-balance property directly in terms of the ¢;’s. Here we say that x®, ..., x" €
E is a direct path from x° to x" if x' = x'~! — ¢, + e for some j;, j/ in M such
thatn = |x° — x"|.

Proposition 1.46. The service intensities ¢; are ®-balanced if and only if, for
each j, k,£ € M and x € E with Tjex, Tyex € E,

& (X)P(Tjex)pe(Tex) = G ()@ (Tiex)Pe(Tex). (1.42)
In this case, ¢; are -balanced by

o(x) = [[#; """ )/8;(x), x€E, (1.43)
i=1
for any direct path x°, . .., x" from a fixed reference state x° to x" = x, where

xt =x""" —e; + ey for some j;, jl in M such that n = |x° — x|.

PROOF. We pointed out above that ¢; are ®-balanced if and only if the rates
g(x, Tjxx) = ¢;(x) are reversible with respect to ®. Then the assertions follow
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from Theorem 2.8 and Proposition 2.21 in the next chapter. Expression (1.42) is a
special case of the Kolmogorov reversibility criterion, and (1.43) is a special case
of the canonical distribution for reversible processes. a

Condition (1.42) is easy to verify for specific ¢;’s and, when it holds, one can
easily construct ® by (1.43). This condition, which involves three-step paths, has
asimpler version involving only two-step paths when the service intensities satisfy
another mild condition; see Exercise 13.

A useful class of service intensities are compound service intensities of the form
¢;(x) = [Ti-, ¢} (x), where ¢! are ®;-balanced for each i. In this case, ¢; are -
balanced, where ®(x) = []_, ®;(x). Such compound intensities are natural when
there are several sources contributing to the departure intensity. A large class of
compound service intensities is as follows.

Example 1.47. Sector-dependent Service Rates. Associated with the Whittle net-
work process X we are studying, let S denote the collection of all subsets (or
sectors) of {1, ..., m}. Let S; C S denote the family of sectors that contain node
Jj. For each sector J € § there is a nonnegative function ¢,(n) defined on the
nonnegative integers n that is 0 only if n = 0. Think of ¢, (x(J)) as a “departure
intensity,” which depends on the number of units x(J) = ) jes Xj in J. The ¢,
affects the departures at each node j in J. Specifically, we assume these sector
intensities are compounded such that the departure intensity at each node j # 0 is

¢;x) =[] 6:x(J), x€E. (1.44)

JGSj

Typically, there will be sectors J with ¢;(-) = 1; they do not affect any node and
hence are not relevant. In addition, if the network is open, we assume the intensity
¢ is a positive function of the form ¢o(|x|). We call these ¢;’s sector-dependent
departure intensities. a

Invariant measures of Whittle network processes with sector-dependent
departure intensities are as follows.

Theorem 1.48. The sector-dependent departure intensities described above are
balanced by the function

| x] x(J)
o(x)=[]e - D[][[6:7". x€E,
i=1 JeS§ n=1

where ¢o = 1 if the network is closed. Hence, the Whittle network process X with
these sector-dependent departure intensities has an invariant measure

m(x) = o [[w}, xeE. (1.45)
j=1

PrOOF. The first assertion follows by Proposition 1.45, since an easy check shows

that ¢;(x) = ¢o(|lx — €;|)P(x — ¢;)/ P(x). The second assertion of the theorem

follows by Theorem 1.15. ]
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There are many types of sector-dependent departure rates based on interacting
subpopulations. The trick is to identify relevant sectors J and their compounding
intensities ¢; to model the dependency at hand. Here are some illustrations.

Example 1.49. Treelike Networks with Load Balancing. Suppose the Whittle net-
work process X represents an open network, and the communication graph of the
routing intensities A j is a tree with one root node and each unit moves up some
branch beginning from the root node. Assume that its nonzero transition rates are

Aokgo(lx|) ifj=0
q(x, Tjxx) = e
Aidj(xj)p,(x(B;))  if j #0.

The ¢; is a “local service intensity” and ¢, (x(B;)) is a “load-balancing inten-
sity” that is a function of the number of units in the branch B; that contains node
Jj- The departure intensities are clearly sector dependent with the relevant sectors
being branches and single nodes. Then the invariant measure (1.45) for the process
is

| x(Bj)

n(x)—]'[w 1—[¢0(l— 1)]‘[¢,(n)-' [1¢s)", xeE.

n'=1

Another natural dependency would be that departures at a node depend on the
number of units “immediately above” the node on the branch, a special case being
route-to-the-shortest-queue. Unfortunately, these dependencies (which are well
known to be intractable) cannot be modeled by sector-dependent rates defined
here. |

Example 1.50. Manufacturing Networks with Work Centers. A manufacturing
facility commonly consists of work centers that contain several work stations
whose processing rates may depend on the congestion in the work center and the
overall congestion in the facility as well. As an elementary example, consider
the Whittle network process X where the m nodes represent work stations and
they are partitioned into work centers. Assume the arrival intensity from outside
into node k is Agi¢o(jx|), and assume the departure intensity at node j is the
compound intensity ¢;(x;)¢c;(x(C;))pum,(|x]). Here ¢;(x;) is the work-station
intensity, ¢c,(x(C;)) is the work-center intensity depending on the number of
units x(C;) in the work center C; containing station j, and ¢y, (}x|) is the network
intensity depending on the total number of units in My = {l1,...,m}. These
intensities are sector dependent, where the relevant sectors are single nodes, work
center node sets, and My. Then the process has an invariant measure given by
(1.45), where

x| x(C)) x|

®(x) = H¢0(l ~ 1)H¢,(n)—‘ H ¢c, )" [ omotn ™"
n"=1
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O

1.14 Exercises

1. Suppose X is a stochastic process on a countable state space E such that
the sequence of states it visits is a Markov chain with transition probabilities
p(x, y) and, whenever the process is in state x, the time to the next transition is
exponentially distributed with rate A(x). The probability p(x, x) of a transition
from state x back to itself may be positive. Show that X is a Markov process
with transition rates g(x, y) = A(x) p(x, y). To do this, note that each sojourn
time of X in a state x (including possible feedbacks) is equal in distribution
to W = Z,N: *{] W;, where W, W,, ... are independent and exponentially
distributed with rate A(x), and N is independent of these variables. The N
represents the number of feedbacks to x until another state is selected, and
N = 0 when p(x, x) = 0. Show that W is exponentially distributed with rate
q(x) = A(x)(1 — p(x, x)).

2. Consider a tandem network as in Section 1.2 that consists of only two nodes.
Assume the network process is stationary. Find the percentage of time that
node 2 contains more units than node 1. This is the percentage of time X is
in the set of states A = {x : x| < x}. Show that the average waiting time in
this set is W(A) = 1/(A(1 — py)).

3. Give an expression for an invariant measure w; for routing intensities A j,
whose communication graph determines the following types of networks.
(a) Closed cyclic network: the nodes form a circle that each unit traverses
clockwise. (b) A closed treelike network with one root node (node 1) and the
units move up the tree from the root to the leaves and a unit departing from
a leaf node returns to node 1. (c) An open treelike network with one root
node (node 1) and the units move up the tree from the root to the leaves and
a unit departing from a leaf node exits the network. (d) An open feedforward
network: The nodes can be labeled such that node 1 has no predecessors
(Aj1 = Ofor j # 0), node m has no successors (A,; = 0 for j # m), and
Ajx =0if j < k,foreachl < j < m.

4. An open in-tree network is a treelike network with one root node, where all
units move from the leaves to the root. The communication graph of such a
network is shown in Figure 1.5. Such networks arise when routes of customers
merge near the end of their network sojourns. Find a formula for an invariant
measure for the routing rates A j; of the in-tree as in Figure 1.5. Extend this
formula for a general in-tree network.

5. Give an expression for the equilibrium distribution of a Jackson process in
which each node j is an s;-server node (1 < s; < 00), where each server
works at the rate ;.

6. For an open ergodic Jackson network with unlimited capacity, show that if
w; < liminf,_, o, ¢;(n), then the average queue length L ; at node j is finite.
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FIGURE 1.5. In-Tree Network

Consider an ergodic Jackson or Whittle process, and let r = (r(,...,r¢)
denote distinct nodes that form a route in the network. Find conditions on the
routing and service intensities under which the average travel time of units on
this route is W,, +. ..+ W, , where W; is the average sojourn time in node j.
Suppose X is an ergodic open or closed Whittle process with service rates
of the form ¢;(x) = ®(x — e;)/P(x). Consider the event that a transition
consists of a unit moving on any one of the arcs 1 — 2,2 — 1,3 — 4, or
6 — 5 (j — k means the unit moves from node j to node k). Let N(¢) denote
the number of times in the time interval (0, ¢] that this transition event occurs.
Assuming X is stationary, give an expression for EN(1).

Open Jackson Networks with Population-dependent Entries. Suppose X is
an open Jackson network process with the added generality that, instead of
¢o(-) = 1, the rate ¢y is a positive function ¢,(|x|) of the total population |x|
in the network. This implies that the arrivals into node k from outside form a
system-dependent Poisson process with intensity Agr@o(|x|). Show that X is
a Whittle process and that an invariant measure for it is

Jx|—1 m

w(x) = n ¢o(l)nl_[¢,(n)_ x e E.

j=tn=1

For the unlimited-capacity case, give a necessary and sufficient condition for
the process to be positive recurrent and describe its normalization constant.
Consider the case in which X has a finite capacity v and ¢o(|x|) = ¥ (v — |x]),
where (r) is the intensity when there is room for r more units in the network.
Show that the stationary distribution for X is

v—|x| m Xj

w(x)=c H 1//(1)““4),(11)_ x e E.

j=ln=1

Prove the convolution formula (1.21).

Prove expression (1.26) using a direct induction argument.

Proposition 1.39 contains an algorithm for computing performance parameters
for a closed Jackson process. One might think this result automatically applies
to an open Jackson process with finite capacity. The proof, however, contains
a key equation that requires a closed network, and the equation is not valid for
an open network. Specify this key equation.



13.

14.

1.14 Exercises 41

Two-Step Criterion for ®-balance. Prove the following results for system-
dependent service intensities ¢;(x).

(a) Suppose the network is open and ¢ has the form ¢o(|x|). Then ¢; are &-
balanced if and only if, for each j, k € M\{0}and x € Ewithx —e;, x — ¢, €
E,

O (xX)Pi(x — e;) = G (x)P;(x — er).

In this case,
o(x) = [ doli — 1)/, (x'), x €E,
i=1

for any direct path x°, ..., x" from x = 0 to x" = x, where n = |x| and
' =x" 4 g

(b) Suppose the network is closed and there is a node £ such that ¢, has the
form ¢¢(x¢, |x|). Then ¢, are ®-balanced if and only if, foreach j, k € M\{¢}
and x € E with Tj,x, Tiex € E,

O (X)P(Tjex) = pp(x)P; (Tex).

In this case,

O(x) = [ detv —i+1,i = 1)/ (x'), x€E,
i=1

0

= ve, tox” = x, where x! = xi~! —

for any direct path x°, ..., x" from x
e + €g; -

These results can be proved directly by induction. Another approach is to
use the property that ®-balance is equivalent to g(x, Tjxx) = ¢;(x) being
reversible with respect to ®. Then show that the Kolmogorov criterion (in
the next chapter) for reversibility, for paths of any length, is implied by each
criterion above, which is a Kolmogorov criterion for paths of length two.
Networks with Single-Server and Infinite-Server Nodes. Suppose X is a closed
Jackson network process in which each node j in a certain sector J is a single-
server node with rate u ; and each node k € J¢ is an infinite-server node with
rate u; for each of its servers. Show that the stationary distribution of X is

w(x) = cHr;’ H ret xe,

jel  kele

where r; = w;/u; and the normalization constant is given by

et =Y F) () Y (r/F) . (1.46)
=1 n=0

Here |J| is the number of nodes in J and r = ), _,. rx. Also, as in Proposi-
tion 1.32, the ry, . .., Iz denote the distinct r;’s in J and H,(J) is the term in
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brackets in (1.28). In particular, if the r;’s in J are distinct, then

v

=Y eyt I =0T Y ey

jedJ ked k+j n=0

Hint: Use the expression

14

“-¥| ¥ 17 || X el

n=0 | x())=v—n jeJ 1 —p keJe

15. Networks with -/ M /s Nodes or Limited Queue Dependency. Suppose X is a
closed Jackson network process in which each node has limited queue depen-
dency in the sense that its departure rate function is constant when the queue
length is above a certain level. Let 71; be such that ¢;(n) = ¢;(n;), forn > n;.
An example is an s;-server node with departure rate ¢;(n) = p; min{n, s;},
which equals the constant u;s; for n > s;. Then the stationary distribution
of Xism(x) = cﬂj fi(x;), where f;(n) = ]’[i’=l wj¢j(n)“. By an obvious
evaluation, the generating function of the convolution f; * - - - % f,,, (which is
the product of their generating functions) is

m ;-1
¢ =[] [b,- +3 ;- ¢,(v)/wj)fj-‘(v)z"] /)~ 2),

j=1 v=0

where b; = w;/¢;(n;). Then proceeding as in Proposition 1.32, obtain a
closed form expression for c™! = G (0)/v!.
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Reversible Processes

An ergodic Markov process is reversible if, in equilibrium, the expected number of
transitions per unit time from one state to another is equal to the expected number
of the transitions in the reverse order. This is also equivalent to a time-reversibility
property that, at any instant, the future of the process is stochastically indistin-
guishable from viewing the process in reverse time. A remarkable feature of such
a process is that its equilibrium distribution is readily obtainable as a certain prod-
uct of ratios of its transition rates. A classic example is a birth-death queueing
process. This chapter describes a wide class of reversible Markov network pro-
cesses with batch or multiple-unit movements as well as single-unit movements.
Examples include multivariate birth—death processes with single and batch incre-
ments and reversible Jackson and Whittle processes. The last two sections cover
partition-reversible processes, which are generalizations of reversible processes.
Invariant measures for such processes are obtainable by solving balance equations
separately on subsets that partition the state space.

2.1 Reversibility

Reversible Markov processes are very tractable because their transition rates and
equilibrium distributions have canonical forms. We will describe these and other
fundamental properties of reversibility in the first four sections. The rest of the
chapter covers reversible network processes.

Unless specified otherwise, we assume that {X, : ¢t > 0} is a Markov jump
process on a countable state space E, and its transition rates are denoted by g(x, y).

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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Recall from Definition 1.4 that the process X is reversible if there is a positive
measure 7w on [E that satisfies the detailed balance equations

n(x)g(x,y) =n(¥)q(y,x), x,y €k (2.1

We also say that g is reversible with respect to m. The measure 7 is necessarily
an invariant measure of g (or of X) since it satisfies the total balance equations,
which equal the sum of (2.1) over y.

Equation (2.1) implies that, for an ergodic process, the average number of tran-
sitions of the process from state x to state y is equal to the average number of
transitions in the reverse direction from y to x. These average numbers of tran-
sitions are also expected numbers of transitions per unit time when the process
is stationary. Note that if g is reversible, then it has the two-way communication
property that, for each x # y € E, the g(x, y) and ¢g(y, x) are both positive or
both equal to 0. This yields the simple but useful criterion that a process is “not
reversible” if a transition from some x to y is possible, but a transition in the reverse
direction is not possible.

Recall from Theorem 1.5 that g is reversible if and only if it is of the form

q(x,y) =yx,y)/nx), x#yek, (2.2)

for some positive function 7 on [E and some nonnegative function y on E x [E such
that y (x, y) = v(y, x), x, y € E. In this case, g is reversible with respect to .

In addition to its use for verifying reversibility, the canonical representation
(2.2) is useful for constructing reversible processes or modifying processes to be
reversible—we will see examples shortly. Another observation is that any positive
distribution 7 on E is the stationary distribution of a reversible Markov process
with transition rates (2.2).

Note that the process X need not be stationary. Another approach to reversibility
is to define it in terms of time reversals (discussed in the next section) and then
show its equivalence to the preceding algebraic definition. This alternate approach
requires the Markov process to be stationary, which is not needed for many results.

The definition of reversibility also applies to discrete-time Markov chains, in
which case g(x, y) are its one-step transition probabilities. All the results below
hold for Markov chains with g(x, y) interpreted as transition probabilities and the
time parameter is discrete instead of continuous. Note that the definition applies
to any nonnegative rates or probabilities as an algebraic property, not necessarily
associated with a stochastic process. Recall that the sequence of states visited by
X is a Markov chain with transition probabilities p(x, y) = q(x, y)/q(x), where
qgx) = Zy q(x, y). Clearly, q is reversible with respect to 7 if and only if p is
reversible with respect to 7 (x)q(x).

A quintessential reversible process is the following classical birth—-death process.

Example2.1. Birth-Death Process. Suppose the process X represents the number
of units in a service system (or in any population) and its state space E is the set
of nonnegative integers. Assume that whenever there are x units in the system, the
time to the next arrival (birth) is exponentially distributed with rate A(x), and the
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time to the next departure (death) is exponentially distributed with rate p(x). Then
the transition rates for the process are

A(x) ify=x+1
qx,y)={ux) ify=x—-1>0
0 otherwise.
This process is the classical birth—death process. Its detailed balance equations for

y=x+1land y = x — 1 are respectively

TX)Ax) =rnx+ Dux+1), x>0,

a@)ux)=m(x—DAx—-1), x>1.
But these two equations are the same. The second one yields
ax)=nx— DA(x — )/ux), x>1.

By a backward iteration of this equation, it follows that it has a solution
X
n() = 1O [[re - D/pw), x=1. 23)
n=1

Thus, the process is reversible with invariant measure 7. Furthermore, 7 is its
stationary distribution and

70" =1+ [[ae - D/um),

x=1 n=1

provided this sum is finite. 0O

The next result is a sufficient condition for reversibility. The communication
graph of the rate function q is an undirected graph whose set of vertices is the state
space [ and there is an edge linking a pair x, y if either g(x, y) or g(y, x) is not
0. The graph is connected when X is irreducible (which we have assumed).

Theorem 2.2. Ifthe process X is ergodic and its communication graph is a tree,
then X is reversible.

PROOF. Let 7 denote the stationary distribution of X. Recall that
7q(A,B)=Y ) mw(x)q(x,y)

x€A yeB

is the average rate of flow from A to B, and we noted in (1.2) that wq(A, A°) =
mq(A¢, A) for any A.

Now, suppose x, y are vertices in the communication graph that are linked by
an edge. Let A, be the set of states in [E reachable from x if the edge were deleted.
Since the graph is a tree, it follows by the definition of A, and the observation
above that

w(x)q(x, y) = mq(Ax, AY) = mq(A}, Ay) = m(y)q(y, x).
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Thus, the detailed balance equations are satisfied and hence X is reversible. O

Note that the communication graph of the classical birth—death process in Exam-
ple 2.1 is a tree, but there are many reversible processes whose communication
graphs are not trees.

2.2 Time Reversal

Let us see how reversibility is related to the behavior of a process in reverse time.
For fixed r > 0, consider the process

X, =X,—, 0<t<rt.

This process X* on the time set [0, t] is the time reversal of X at 7. It represents
the evolution of X in reverse time beginning at r. If one thinks of a sample path
of X as a video tape, where X, is the picture at time ¢, then one would see the
corresponding sample path of X* by viewing the tape in reverse beginning at time
T.

Proposition 2.3. The process X is a Markov jump process with (time-dependent)
transition probabilities
_ P{X._ = y }

PX! =y| X! =x}=
{ ! yl ' x} P{Xr*s:x}

P{X, s =x|Xo=y}, O<s<t<t.

2.9
If X is stationary with distribution 1, then X" is also a stationary Markov process
with distribution 7, and its transition rates are

g:(x,y) =n(x)"'n(y)q(y,x), x#yek. (2.5)
PrROOF. Consider the probability
P{X. =y, X:s = x, A}
P{X,_; =x, A}
forany 0 < s <t < v and event A generated by {X' : 0 < r < s}. To prove the

first assertion, it suffices to show that this fraction equals the right side of (2.4).
But this equality follows since the denominator equals

’

P{X] =y|X; =x,A}=

P{Xz—s = x}P{Aer—s = x}
and the numerator equals
P{Xr—t = y}P{Xt—.v =x|Xt—t = y}P{Alxt—s :x},

because X is Markovian and A is generated by {X, : T <r < 7 + 5}.
Now, suppose X is stationary with distribution 7. By the first assertion, X* is a
Markov process, where the transition probabilities (2.4) now reduce to

n(x)" ' (P{X, = x| Xo = y}.
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Dividing this by ¢ and letting ¢ — 0 proves (2.5). Also, X7 is stationary and its
distribution is & since, for each ¢, the X7 has the same distribution as X,_,, which
ism. a

The evolution of X backward in time is equal in distribution to its evolution
forward in time if X and X are equal in distribution on [0, 7] for each ¢ > 0.
That is, foreacht; < ... < ¢, <,

D
(Xr—r,, ---,Xr—-r,,) = (Xrl, -'-7Xt,,)- (2-6)
This property is related to reversibility as follows.

Theorem 2.4. The Markov process X is stationary and reversible if and only if
(2.6) holds.

PROOF. Suppose X is stationary and reversible and its distribution is 7. Then

X; 2 X. Also, by Proposition 2.3, X is a stationary Markov process with tran-
sition function g, given by (2.5). This expression and the reversibility of g implies
g. = q. Since X" and X are Markov processes, they are equal in distribution on
[0, 7] for each T > 0, which is equivalent to (2.6).

Conversely, suppose (2.6) holds. Then, in particular, X, 2x ¢ for each 7, and
since X is Markovian, it is therefore stationary. Then by Proposition 2.3, X* is a
stationary Markov process with transition rates (2.5). Also, (2.6) implies X* 2x ,
and hence g, = q. This and (2.5) establish that g is reversible. O

Statement (2.6) is sometimes used to define reversibility of X. It says that the
distribution of X is invariant under the compound operation of reflecting the time
scale about 0 and then shifting it by any amount 7. Also, a sufficient, but not
necessary condition for X to be reversible is that

D
(Xt|7"'aXt,,):(Xt,,9~-'9Xt|)y tl <...<tn.

It is often natural to consider X as a process { X, : ¢ € R} whose time set is the entire
real line R. In this case, X7, for each t, is defined on the time interval (—oo, 7).
Furthermore, if X is stationary, then it is reversible if and only if its distribution

.. . . . . . D
is invariant under a reflection of the time axis about 0. That is, X° = X or,
equivalently,

D
(Xt|9""XI,,):(X—117"'X-t”)9 tl <...<tn.

We end this section with more insights into time-reversal processes. This ma-
terial does not involve the notion of reversibility. The following result relates the
balance equations for a Markov process to the time reversal of the process.

Theorem 2.5. Suppose the Markov process X is ergodic and there exists a positive
distribution  on E and a transition function q on E such that

G(x, ) =7x) 'w(q(»,x), x,yekE, Q.7
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Y oak,y =) qky, xek 238)

Then 1 is the stationary distribution of X. Also, q is the transition function of a
time reversal of X when X is stationary.

PrOOF. Under the assumptions,

(@)Y qx,y) =w(x)Y_q(x,y) =D w(»)q(y, x).
y y y

This proves the first assertion. The second assertion follows by Proposi-
tion 2.3. a

The preceding result may be used to verify that a conjectured distribution 7 satisfies
the balance equations for a Markov process X, and, at the same time, obtain the
time reversal transition rate g. Namely, define a transition function g by (2.7),
where 7 is a conjectured stationary distribution of X. Alternatively, one could
conjecture the form of g for a time reversal of a stationary version of X, and this
would define by (2.7). In either case, if g satisfies (2.8), then = is the stationary
distribution of X.

Remark 2.6. Note that verifying (2.8) is the same as verifying directly by
substitution that 7 satisfies the balance equations (Exercise 3 is an example).
Consequentially, the preceding result may not be as useful as it appears. However,
the act of conjecturing what g is for the time reversal of X and using (2.7) might
give insight into candidates for 7.

The time reversal of a process need not be the same type of process as the
original one. This property is easy to check, however, if one knows the stationary
distribution of the process.

Example 2.7. Time Reversal of Jackson and Whittle Processes. Suppose X is a
stationary Jackson or Whittle process. Then by Proposition 2.3, its time reversal
X, is an ergodic, stationary Markov process with the same stationary distribution
7 as X and its transition rates are

G(x, Tjxx) = m(Tjx)m (x) "' q(Tjxx, x)
= Ajed;(x),

where Aji = wy wj")» jk- The w;’s that satisfy the traffic equations for A j; also
satisfy the traffic equations for x jk» since the latter is the time reversal of the former.
Thus, X is the same type of network process as X; the service rates are the same,
but the routing rates are the reversal of the original routing rates. Note that this
result does not say anything about the reversibility of the process X. O
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2.3 Invariant Measures

‘We now present the canonical form of invariant measures for reversible Markov
processes. This is linked to Kolmogorov’s criterion for characterizing a reversible
transition function.

Recall that the Markov process X has the two-way communication property that
either g(x, y) and g(y, x) are both positive or both equal to 0, foreach x # y € E.
Throughout this section, we will assume (at no loss in generality) that X has
this property. We say that a sequence of states x°, x',...,x" in E is a path if

g(x*~',x') > 0,i =1,..., n. We also use the ratio of rates

px,y)=q(x,y)/q(y,x), forapathx,y.

The most remarkable feature of a reversible Markov process is that an invariant
measure for it is automatically given by expression (2.9) below, which is a product
of ratios of the transition rates. In proving this canonical form, we also establish
Kolmogorov’s criterion, which is a condition equivalent to reversibility, but which
only involves q. Statement (iii) is a “ratio form” of Kolmogorov’s criterion, which
is often easier to exploit.

Theorem 2.8. The following statements are equivalent.
(i) The transition function q is reversible.
(ii) (Kolmogorov Criterion) For each n and x°,x', ..., x" in E with x" = x°,

ﬁq(xi—l,xi) — ﬁq(xi,xi—l)_
i=l i=1

(iii) For each path x°, x', ..., x" in E, the product [];_, p(x'~!, x') depends on

x°, ..., x" and n only through x°, x".
If q is reversible, then an invariant measure for it is
n
r(x) =[] e, x), x e E\x%, .9
i=l
and w(x°) = 1, where x°, x', ..., x" = x is any path and x° is an arbitrary state

viewed as an origin.

Remark 2.9. One can construct the s in (2.9) by the following recursion. Set
Eo = {x°} and

E.i1 = {x € E\E, : g(y,x) > O for some y € E,}.
Then let 7(x°) = 1 and for each n > 1, define

w(x) = p(y, x)n(y), forx € E,;\E, and any y € E, withg(y, x) > 0.

1 n

PrOOF. (i) = (ii). If q is reversible with respect to 7z, then, for each x°, x
0 -
=x"inE,

seres X

[[7& e 5 = [[r(xHgex, 5.
i=l i=1
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Cancelling the 7’s yields (ii).
(i1) = (iii). To prove (iii), it suffices to show

n [
[T =" 2y =TT oG, 5, (2.10)
i=1 i=1
where x%, ..., x" and %0, ..., X% are two paths with ¥ = x° and ¢ = x”. Since
2, xn 7 L %Y, 70 s a path from x? to itself, (ii) implies

n £ {4 n
[T " s Ja, #7) = [a& ", #) ] [at', 5.
i=1 i=! i=1 i=l

These quantities are positive, by the definition of a path. Then, dividing both sides
of this equation by the second and fourth products yields (2.10).

(iii) = (i). Suppose (iii) holds, and let r be defined by (2.9). We will show that g
is reversible with respect to 7. For a fixed x, let X ...,x"=xbea path. Choose
any y such that g(x, y) > 0. Then using (2.9),

m(x)q(x, ) =[] o', x)q(x, )
i=l

n
=q(y, 0) [ [ o, x)q(x, )/q(y, x) = q(y, )T ().
i=1
These detailed balance equations also hold trivially for x, y with q(x,y) =
q(y, x) = 0. Thus g is reversible with respect to 7. ]

To verify the Kolmogorov criterion, or its ratio analogue (iii), one may not have to
consider all possible sequences or paths in E. In many instances, certain structural
properties of ¢ and E lead to simpler versions of the Kolmogorov criterion. In
particular, for some processes on vector state spaces such as network processes
discussed shortly, only a small family of paths generated by the basis vectors
need be considered. The following is another special case that is illustrated in the
example below.

Fact. The Kolmogorov criterion holds for all paths, if it holds for paths consisting
of distinct states, aside from the same beginning and end states.
This is because any path can be partitioned into subpaths of distinct states.

Example 2.10. Circular Birth-Death Process. Suppose the process X has state
space E = {0, 1, ..., n}, and it moves as follows: From any state j, it may move
toj+1lorj—1,wheren+1=0and —1 = n. Its transition rates are
Alx) ify=x+1<nor(x,y)=@,0)
gix,y)=qux) ify=x—-1=0o0r(x,y)=(0,n)
0 otherwise.
This circular birth-death process may not be reversible as its classical counterpart

is. Let us see the type of birth—death rates under which it is reversible. Note that its
communication graph is a circle. Consequently, a path of distinct states from any
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state back to itself consists of all the states. In this case, the Kolmogorov criterion
for reversibility is

A0)-- - An) = pu(0) - - - p(m). (2.11)

In other words, the process is reversible if and only if (2.11) holds. In this case,
the stationary distribution is

7() =@ [ [atk = D/ul), 1<x<n,
k=1

where 7 (0)~' = Y "¢ _o [Tie) Mk — 1)/ u(k).

This example readily extends to the context in which the communication graph
of the process X is a tree with leaf-to-root connections. Specifically, assume there is
asingle root node O for the branches, and there is two-way communication between
adjacent nodes that form the branches. In addition there is two-way communication
between the ends of the branches (the leaves of the tree) and node 0. This graph is
a collection of circular graphs connected at node 0, where the unique set of nodes
leading from a leaf to the root O forms a circular graph. Note that a path of distinct
states (or nodes) from a state back to itself consists of the circular graph that goes
through that state. Consequently, the Kolmogorov criterion for reversibility of X
is equivalent to the identity (2.11) for each circular graph of the tree (node n would
be a leaf of the branch). Some of these equations may be dependent since a node
may be on several circular graphs. |

The following is another example where the Kolmogorov ratio criterion
simplifies considerably.

Example 2.11. McCabe’s Library. Consider an infinite number of books or items
labeled 0, 1, ... that are placed in a row on an infinite (virtual) bookshelf. The
successive book selections by users are independent, and each user selects book
b with probability p,. When a book at location 0 is selected, it is returned to that
location. Otherwise, a book selected from location j > 1 is returned to location
Jj — 1, and the book there is placed in location j. This switching is done before
the next book is selected. The state of the library (called McCabe’s library) at any
selection is x = (xp, X1, ...), where x; denotes the book at location j. Whenever
the library is in state x and the book x; at location j is selected, then the new state
is the vector x with the entries x; and x;_; interchanged if j > 1, and the state
remains the same if j = 0. Without loss of generality, assume the initial state of
the library is in the set E of all permutations of the books (0, 1, . ..) obtained by a
finite number of book selections. Then the states of the library at successive book
selections is a Markov chain {X, : n > 0} on E. Its transition probabilities are
P(x,y) = py, if y is obtained from x after selecting the book at location j for
some j > 0 and P(x, y) = 0 otherwise.
We will show that the Markov chain X, is reversible and has an invariant measure
nx)
r@) =[]pd™. xeE, 2.12)

j=0
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where n(x) = min{n : x; = j, j > n}. This n(x) is finite since x is obtained from
(0, 1, ...) by a finite number of book selections. Note that if the book collection
were finite, then the resulting Markov chain would have the same invariant measure
as above (Exercise 4), where E is the finite set of all permutations of the books.
To establish reversibility, we use the Kolmogorov ratio criterion. For any path

x°, ..., x" of distinct states,

n n
l“[ PG, XY/ PG, 1) = npbi/pl;ﬂ
i=1 i=l

where b; is the book selection that yields x* from x'~! and b; is the book selection
that yields x'~' from x'. This product simplifies because of the following prop-
erties. To move from x° to x", each book x;.’ with (x;’ < x;’) has to be selected
at least (x] — x/) times. And after the (x9 — x7)th one, each subsequent b; book

selection has to be compensated by the associated book l;,». Similarly, to move in
reverse from x" to x°, each book x? with (x9 < x7) has to be selected at least

(] — x?) times. And after the (x} — x?)th one, each subsequent b; selection has
to be compensated by the associated b;. Consequently,

L . 4 o X w0
l—[P(xl—l,xl)/P(xl,xl—l):l_[pij;j Xj).
i=l !

j=0

This quantity does not depend on the interior states x', . .., x"~! of the path. Then
by Theorem 2.8, the Markov chain X, is reversible and an invariant measure for
it is the preceding product evaluated at x" = x, where x° is fixed. In other words,
for x® = (0, 1, .. .) this invariant measure is (2.12) as asserted.

Note that the state of the library can also be represented by the vector z =
(2o, 21, - . .), where z,, denotes the location of book b. The z is the inverse of the
corresponding state x in that z,, = j and x,, = b. Because of this one-to-one
correspondence between x’s and z’s, the successive values of this shelf variable
Z, also form a reversible Markov chain on the state space E. Since {Z, = z} =
{Xn;, = b, b > 0}, it follows that an invariant measure for Z, is

n(z)
mz@) =[P, z€E,
b=0
where n(z) = min{n : z, = b, b > n}. This measure is (2.12) with the variable
xj changed to b and j = z,, = 2. o

2.4 Construction of Reversible Processes

This section covers elementary results that are handy for identifying or constructing
reversible processes. The focus is on reversible processes restricted to subsets of
their state spaces, independent reversible processes, and compounding of reversible
transition rates.
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Our first observation is that a reversible process restricted to any subspace is also
reversible. Suppose that X is a Markov process on E with transition rates g(x, y).
Fix a subset E C E, and let X be a Markov /_process on E whose transition rates
are the rates g(x, y), with x, y restricted to . The process X is the restriction of
X to E. This restriction X can be viewed as the process X with its transitions from
states inside E to states outside of IE “blocked” or suppressed. The following result
is an immediate consequence of the definition of reversibility.

Proposition 2.12. If X is reversible with respect to 7, then its restriction Xwk
is also reversible with respect to 7 restricted to E. If in addition, X is ergodic and
X is irreducible, then X is ergodic and its stationary distribution is

a(x) = n(x)/ Zn(y), x eE.

yek

This is the conditional stationary distribution of X being in state x given that it is
inE.

Suppose one is considering a new Markov process and recognizes that it is a
restriction of a known reversible process whose stationary distribution is known.
Then by the preceding result, one automatically knows the stationary distribution
of the new process. Restrictions of reversible processes are also of interest when

studying the effect of changing the operation of a reversible process by blocking
certain transitions. Here is a typical example.

Example 2.13. Truncated Birth~Death Process. Suppose the process X represents
the classical birth—death process in Example 2.1 with birth and death rates A(x)
and p(x). Consider a truncated variation of this process in which the system can
only accomodate at most v units; arrivals are blocked or lost from the system when
V units are present. Also, assume the system does not serve customers whenever
the number of customers is below a prescribed lower limit vy < v. For instance,
the servers may be assigned to other duties such as maintenance when the queue is
below vj. For simplicity, assume the number of units in the system at time 0 is in the
set|E = {vo, vo +1, ..., v}. Otherwise, the queue length will eventually reach this
set and stay there. Under these assumptions, the number of units X, in the system
at time ¢ is a process that is a restriction of X to E. Thus, by Proposition 2.12, the
process X is reversible and its stationary distribution is

#() =) [] Mn—1/u@m), xek,

n=vy+1

where 7(vo) ™' = Y., _, [Tz, 41 A — 1/u(n). =

The next result says that a juxtaposition of independent reversible processes is
also reversible. This simple property follows immediately from the definition of
reversibility. There are several interesting dependencies that can be modeled by re-
stricting such multivariate independent processes to smaller subspaces. Examples
are in the next section.
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Proposition2.14. Suppose X, = (X/, ..., X™),t > O,where X', ..., X" arein-
dependent, irreducible, reversible Markov processes onEy, . .., E,, respectively,
and X/ has transition rate function q ; and invariant measure 7 ;. Then X is an
irreducible Markov process on E = E| x --- x E,, with transition rates

q,(x/,y,) if yo = xi for k # j for some j € {1,...,m}
otherwise,

q(x,y) =

which is reversible with respect to w(x) = (X)) - - Tp(xp), x € E.

The next observation is that a transition function is reversible if it is a
compounding of reversible transition functions.

Propeosition 2.15. Suppose q(x,y) = q:1(x, ¥)q2(x, y), x, y € E, where q, and
q> are irreducible transition functions on E. If q| and q, are reversible with respect
to my and 1;, respectively, then q is reversible with respect to w(x) = m(x)m(x).
Furthermore, if q and q| are reversible with respect to w and i\, respectively, then
q» is reversible with respect to my(x) = w(x)/m (x).

This result follows immediately from the definition of reversibility. It readily ex-
tends to multiple compounds g(x, y) = q;(x, y) - - - g.(x, y) as follows. If any n
of the transition functions ¢, q,, ..., g, are reversible, then the other one is also
reversible and their invariant measures are related by 7w (x) = m(x) - - - 7w, (x).

2.5 More Birth—Death Processes

Classical birth—death processes have natural extensions to multivariate processes,
including processes with multiple births and deaths. A few examples are as follows.

The first example is indicative of a wide class of multivariate birth-death pro-
cesses constructed by a coupling together of several one-dimensional birth—death
processes.

Example 2.16. Multiple Birth-Death Processes with Population Constraints.
Consider m populations that operate like independent irreducible birth-death pro-
cesses, but the vector of the respective population sizes x = (x1,...,X,) is
constrained to be in a subset E of E = {x:x; =0,1,...;1 < j < m}. For
instance, if the total number of units in the populations is constrained to not ex-
ceed v, then E= {x : 0 < |x| < v}. To model the m population sizes, consider
the process X; = (X}, ..., X™),t > 0, where X', ..., X™ are independent irre-
ducible birth—death processes on the nonnegative integers. An invariant measure
for X/ is wi(n) = nz L Ajtk— 1)/wi(k), n > 1, where A;(-) and p;(-) are the
birth and death rates. Now the sizes of the m populations can be represented by
the process X that is the restriction of X to the subset E. By Proposition 2.14, X is
reversible with respect to a measure that is the product of the invariant measures
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m;. Then by Proposition 2.12, X is reversible with respect to

m X

#@) = [[[ 1t = D/wjm), xeE.

j=1n=1

The process Xisa special multivariate birth-death process where the populations
operate independently subject to the constraint of the restricted subspace—hence
the populations are dependent. There are many applications of this model in which
[ is the set of population vectors x that satisfy linear constraints suchasa; < x; <
bj, Z;n:] rijxj <r,or

m
E r,-jijr,-, i=1,...1.
Jj=1

For instance, the last constraint applies when each unit of population j requires r;;
units of a resource i and there are only r; units of the resource available. Typical
resources are space, computer memory, manufacturing tools, and money. Other
common constraints are that f;(x) < 0,i = 1,...7, where f; are nonlinear
functions. a

The preceding example, which is a rich source of applications, could be covered
in an elementary course that introduces reversibility along with Propositions 2.12
and 2.14. A special case of this example is as follows.

Example 2.17. Communication Network with Capacity Constraints and Blocking.
Consider a communication network that services m types of units. The units arrive
to the network according to independent Poisson processes with respective rates
Al, ..., Ay. For its communication across the network, each type j unit requires
the simultaneous use of a;; channels on link i for each i in the set / of links of the
network. Some of the a;;’s may be 0. If these quantities of channels are available,
they are assigned to the unit, and the unit holds the channels for a time that is
exponentially distributed with rate p ;. At the end of this time, the unit releases
the channels and exits the network. The total number of channels available on link
i € Iisb,.If a unit arrives and its required channel quantities are not available,
then it cannot enter the network (it is blocked or lost).

Let X, = (X ,', ..., X"} denote the numbers of the m types of units in the
network at time ¢. Think of the m populations as nodes of a “virtual network,” not
to be confused with the underlying communication network. When X is in state
x, the number of channels in use on link i is ) jGijXj Then the state space of X
iSE={x:0< Zj a;;jx; < b;,i € I}. Note that if the state of the process is
x, then a type j unit can enter the network provided x € E; = {x : Zk Qi X <
b; — a;j, i € I}. Under these assumptions, X is a constrained multivariate birth—
death process as described in the preceding example. It has single-unit movements
and its transition rates are g(x, x +e;) = 1;,ifx € E; and q(x, x — ¢;) = u;, if
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x; > 1. Then its stationary distribution is

w()=c[]@/u)”, xeE,

j=I

where c is the normalization constant.

The quality of the network is usually assessed in terms of blocked or lost cus-
tomers. The probability that a type j arrival is blocked in equilibrium is 7 (ES).
Ideally, the channel capacities b; would be sized such that the blocking probability
Jr(IEji) would be less than some small amount such as .01. The & also provides
insight into which links cause the blocking. For instance, the probability that a type
Jj is blocked because of the load on link i is full is erE; r ()1, aixe > by).

What is the average number of type j units blocked per unit time? To determine
this, consider 7;(t) = f(; 1(X; € Ej) ds, which is the amount of time in [0, ¢] that
type j units are blocked. Now, the number of type j units blocked in [0, ¢] can
be expressed as N;(t;(¢)), where N;(t) is a Poisson process with rate A; and N;
is independent of X. Thus, by the strong law of large numbers for N;(¢) and for
7;(¢), the number of type j units blocked per unit time is

tligt—'zv,-(rj(t)) = lim T (0) ' Ni(z@)r;0)/t = 2w (E) wp.l.

A related process for assessing loads on the network links is ¥, = (Y : i € I)

where Y/ = )" jaiiX / iis the number of channels on link i that are in use at time ¢.
Although this process Y is not Markovian, its stationary distribution, as a function
of ,is

my(y) = Zﬂ(x)l(zaijxj =y, i e€l).

xel J

This distribution can be used to determine various performance parameters such
as the percent of time that link i is idle or the stationary probability that link i
has more channels in use than link k. Another parameter of interest is the average
number of channels in use on link i, whichis }°; a;; 3, g x;7 (x). o

Note that any Markov jump process on the nonnegative integers that has only
unit increments is a classical birth—death process, and hence it is reversible. What
about processes on the integers whose increments may be more than one unit? A
necessary and sufficient condition for such a process to be reversible is given in
the following example.

Example 2.18. Batch Birth-Death Process. Consider a generalization of the
classical birth—death queueing process in which there are batch arrivals and batch
departures, whose size a is in a set A of allowable increments. Let X, denote the
number of units in the system at time ¢. The state space E of X is the set spanned by
the elements of A. For simplicity, assume the least common divisor of the elements
in A is 1, and so E is the set of nonnegative integers. Assume the transition rates
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of this process are

Aa(x) ify=x+a,acA
gx,y) = {malx) ify=x—-a>0,acA
0 otherwise.

The A,(x) and u,(x) are the positive rates for births and deaths of size a when the
process is in state x. From a result we will prove shortly, Theorem 2.22, it follows
that the process X is reversible if and only if the birth and death rates satisfy

x+a—1
ra@/pax+a)= [] M@/mr+1), xeE, acA, (2.13)

n=x

Assuming this is true, then an invariant measure for X is
X
w(x) =) [ [Mn = D/min),
n=I1

which is the same as (2.3) for the classical birth—death process with unit increments.
This equality of invariant measures is somewhat surprising. However, we will
discuss shortly how it can be explained in terms of the Kolmogorov criteria for
reversibility. Another insight is that one can view the batch increment process as a
“random time transformation” of the unit increment case, where time is stopped at
each batch arrival or departure and the stopped batch process has the same ergodic
behavior as the unstopped unit-increment process. O

2.6 Reversible Network Processes

We now characterize invariant measures for reversible network processes. The
focus will be on a general network process whose increments are selected by
reversible intensities and whose departure-arrival intensities are also reversible.
Examples include reversible Jackson and Whittle processes and multi-dimensional
batch birth—death processes.

Assume that {X, : t > 0} is an m-node Markov network process whose state
x = (x,...,Xxy) represents the number of units at the respective nodes. The
network may be open or closed, and its state space E is any set of m-dimensional
vectors with nonnegative integer entries. Assume also that the process is irreducible
on E. We envision the units moving in batches or one at a time in the node set
M, where M = {0, 1, ..., m} if the network is open, and M = {1,...,m} if
the network is closed. A typical transition will be from x to x — d + a, where
a, d are vectors in a prescribed set A of allowable increments of X. We adopt the
convention that either a; or d; equals O for each j = 1, ..., m. This means that
a and d represent the net numbers of arrivals and departures from the respective
nodes. These batch arrivals and departures are sometimes called concurrent or
synchronous movements of several units. With no loss in generality, assume A
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contains ey = 0 and the unit vectors ey, .. ., e,,. This is not a restriction since one
can choose any basis that spans the sets A and E to represent their vectors; the
form of the basis is not important here.

We assume that whenever the network process X is in state x, the time to the
next transition to state x — d + a is exponentially distributed with rate A;,¢@4,(x).
In other words, the transition rates of X are

Ada®da(x) ify=x—-d+aekEforsomea,d € A
q(x,y) = .
0 otherwise.
These rates are analogous to those for Jackson or Whittle processes. Think of A4,
as the relative increment-selection or routing intensities. They are independent of
the state x and A4, = 0 if a;d; > O for some j. This ensures that d and a are
net increments. Also, think of ¢4, (x) as the relative departure—arrival intensity at
which the vector d is deleted from the network and the vector a is added to the
network. Assume these intensities are positive except that ¢y, (x) = 0if d; > x;
for some j. We write A, = Aejey and ¢jx = e, for j, k € M.

Our aim is to derive a Kolmogorov-type criterion for the process X to be re-
versible and to give an expression for its invariant measures. We will exploit the
fact that the transition rate function g is a compounding (or weak coupling) of
increment-selection and departure-arrival intensities. Specifically, we can write

Q(x, )’)=CIA(x’ }’)CI¢(X’ }’), X,y GE? (2'14)
where g, and g, are transition rate functions defined (excluding the zero entries)
by

G(x,x —d +a)=Aia, qo(x,x —d +a) = Pya(x).

These two rate functions define irreducible Markov jump processes on [E. The next
results give necessary and sufficient conditions for their reversibility.

Proposition 2.19. The g;. is reversible if and only if A ;. is reversible with respect
to some w;, j € M ; and Aqq is reversible with respect iow(a) = [[1—, w},a € 4,
where wo = 1 if the network is open. In this case, an invariant measure of q, is

m
n(x):nw;’, x € E.
j=1

PROOF. Suppose g, is reversible. Consider any distincta®, ..., a" in A that form
a path for the rates A4,. Fix x* € Eand definex’ = x'~' —a’~!+a',for1 <i <n.
Thenx?, ..., x" is a path in E for g,. Since g, is reversible, the Kolmogorov ratio

criterion says that
n n ) . )
[Tre-a /Awa—r =[] x)/ga(x', 51
i=1 i=1

dependsonly onx®and x" = x°+Y 7 (a' —a'~") = x®+a" —a®. In other words,
this product of A ratios does not depend on a', ..., a"~'. Hence A4, is reversible



60 2. Reversible Processes

on A. Now, A4, is also reversible on any subset of A, and so 1 j; is reversible with
respect to some w;, j € M. Since g, is reversible with respect to m, for each
a,d € A there is an x > d in E such that

W(dAga =T (X)Aga/T(x —d) = (X —d + @)haa/7T(x — d) = W(@)Aaq-

Consequently, A4, is reversible with respect to w(a).

Conversely, suppose A j; is reversible with respect to w; and A4, is reversible
with respect to w(a) = ]’]';':1 w;" . Then g, is reversible with respect to w(x) =
[_[;",__l w;’, since, for any x, a, and d such thatd < x,

T(Age =T(x —dA)w(dAge =1 (x —d)w(@lrhgg = t(x —d + a)ryy. O

To describe the reversibility of g4(x, y) = ¢4.(x), we will use the following
notion.

Definition 2.20. The intensities ¢, are ®-balanced departure—arrival intensities
if & is a positive function on E such that, forx € Eanda,d € Awithx—d+a € E,

P(X)Pua(x) = ®(x — d + a)paa(x — d +a).

This condition is the same as saying that g is reversible with respect to ¢. By
Theorem 1.5, the ¢, are ®-balanced if and only if, for any x € Eand d,a, € A
suchthatx —d +a € E,

Paa(x) = g(x, x — d + a)/ (x), (2.15)

for some function g that satisfies g(x, y) = g(y, x) foreach x, y € E.

A more useful characterization is the following special Kolmogorov criterion.
Here we say thatx°, ..., x" € Eisadirectpathfromx° tox" ifx' = x'~1—¢; +e¢,
for some j;, k; in M such that n = |x° — x"|.

Proposition 2.21. The ¢,, are ®-balanced departure—arrival intensities if and
only if for each j, k, £ € M, and x € E with Tjex, Tiex € E,

@je(X)Dij(Tjex)Pei(Tiex) = Pre(xX)Pjx(Tiex ) (T x), (2.16)

and, for each d, a € A with x — d + a € E, and any direct path x°, . .., x" from
X =xtox"=x—-d+a,

Paa(x)/baa(x —d +a) = ﬁmki &'/ (x). 2.17)
In this case, .
O(x) = ]i[qu,k,.(x"“)/r»h i), x €k, (2.18)
i=1
for any direct path x°, . .., x" from a fixed reference state x° to x" = x.

PrROOF. Since the ®-balance of the ¢,,’s is equivalent to the reversibility of g4, it
suffices to show that g, is reversible if and only if (2.16) and (2.17) hold. And if g4
is reversible, then (2.18) is an invariant measure for it. To prove these assertions,
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first note that transition rates under g are positive for any unit increment. Then it
follows by Theorem 2.8 that gy is reversible if and only if the Kolmogorov ratio
criterion holds for only direct paths. But this criterion for direct paths is clearly
equivalent to (2.16) and (2.17). This proves that g, is reversible if and only if (2.16)
and (2.17) hold. Theorem 2.8 also justifies that if g is reversible, then (2.18) is an
invariant measure for it. a

We are now ready to consider the reversibility and invariant measures of the
process X with transition rates q(x, x —d + a) = AgPaq(x).

Theorem 2.22. Suppose the following conditions hold:

(a) A jy is reversible with respect to w ;, where wy = 1 if the network is open; and
Ada is reversible with respect to w(a) = ]_[:"=1 w;j ,a € A.

(b) ¢qq are O-balanced departure—arrival intensities.

Then the network process X is reversible with respect to

r(x)=oW][[w), xek, 2.19)
i=1

where @ is given by (2.18). Conversely, if X is reversible, then (a) is equivalent to
(b).
Proor. Consider the compound transition rate

q(x,x —d + a) = AgaPaa(x) = gi(x, y)qgp(x, ¥).

From the definition of reversibility and Proposition 2.15, it follows that if any
two of the g, ¢,, and g, are reversible, then so is the third. In this case, invariant
measures for the three rates are related by w(x) = m,(x)7 (x). This observation
and Propositions 2.19 and 2.18 prove the assertions of the theorem. a

2.7 Examples of Reversible Networks

Let us explore some examples of the network process X discussed in the preceding
section. First note that an important subclass of departure—arrival intensities are
separable ones of the form

Pda(X) = Pa(X)Pa(x).

The ¢4, are ®W-balanced departure-arrival intensities if ¢, are d-balanced
departure intensities and 1, are W-balanced arrival intensities as follows.

Definition 2.23. The ¢, are ®-balanced departure intensities if ® is a positive
function on E such that, foreachx ¢ Eand a,d € A withx —d +a € E,

O()Pa(x) = D(x — d + a)pa(x — d + a). (2.20)

The ¥, are V-balanced arrival intensities if ¥ is a positive function on E such
that, foreachx e Eanda,d € A withx —d +a € E,

V()Ya(x) = ¥(x —d + a)Yalx —d +a).
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It is clear that ¢; are ®-balanced departure intensities if and only if
$a(x) = V(x —d)/P(x), jeM, xek,

for some nonnegative function W definedon {x —d : x € E, d € A}. This follows
by setting W(x —d) = ®(x —d + a)p,(x — d + a) for a fixed a. Similarly, ¥, are
W-balanced arrival intensities if and only if

GPo(x) =V(x+a)/P(x), jeM, xeck

for some nonnegative function W defined on {x +a : x € E,a € A}. These
representations are special cases of the canonical form of reversible transition
rates in Theorem 1.5.

The following are some illustrations of separable departure—arrival intensities.

Example 2.24. Networks with Single-Unit Movements and Independent Nodes.
Consider the special case in which the process X has unit increments and its
transition rates are

q(x,y) = AjdiGey(a)  ify =x —ej + e forsome j, k € M

0 otherwise.
In addition to the usual departure intensity ¢;(x;), there is a pull or attraction
intensity ¥ (x) at each node k that affects where the departure from j goes next.
The departure-arrival rates ¢;(x; )y (x) are clearly ®-balanced, where

ox) = [[[]wit - V/¢;), x€E.

j=1i=1
This follows by the criterion (2.15) since
@i (xYi(xe) = P(x — e + &)/ P(x).

Then by Theorem 2.22, the process X is reversible if and only if the rates A ;, on M
are reversible with respect to wo, . .., wy,, where wg = 1 if the network is open.
In this case, an invariant measure for X is 7 (x) = ®(x) [T, w;j ,x € E. O
Example 2.25. Reversible Jackson and Whittle Processes. Suppose X is a Jackson
or Whittle process. This is a special case of the process in the preceding example
with ¥;(-) = 1. Therefore, X is reversible if and only if A, is reversible. As an
illustration, suppose the network is a closed starlike network with the following
routing. The communication graph of A j; is a star whose center consists of the
single node 1, and M; is a collection of subsets of M, called points of the star,
whose union is M and whose intersection is the center node 1. This network is
a generalization of the one discussed in Example 1.26. Also, Aj; = 0 if j and k
are not in the same point set. This means that in order for a unit to travel from
one point of the star to another, it must go through the center node 1 (the central
processor). Assume that A j restricted to each M, is reversible with respect to some
wj., J € M;. Then clearly A; on M is reversible with respect to w; = wj., for
Jj € M;. Thus it follows that X is reversible. O
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If a network process is reversible, then we know that its restriction to any sub-
space is also reversible. The next two examples describe restrictions that arise
when (1) nodes have finite capacities resulting in blocked transitions; or (2) units
require resources for services, and transitions are blocked when the resources are
not available.

Example 2.26. Reversible Network Processes with Communication Blocking.
Consider areversible network process with single-unit movements that has a known
invariant measure (e.g., a Jackson or Whittle process). Now, suppose X is the
process with the added restriction that the number of units at each node j cannot
exceed a prescribed bound b;, which may be infinite. That is, the routing and
services are the same, but transitions from x to T, x are not allowed when x; = by.
This is called communication blocking. The standard interpretation is that when
x; = by, any unit at j that is potentially scheduled to enter k& cannot begin its
service at j until there is a departure at k. Another equivalent interpretation is
that services at j continue, but a departing unit from j scheduled to enter X must
return to j for another service as if it were a new arrival. These interpretations are
equivalent because the time to a departure is exponentially distributed. Another
type of blocking, called manufacturing blocking, assumes that when x; = by, the
services at the other nodes continue, but a job at j attempting to enter k£ will remain
at j until a space at k becomes available, at which time it immediately enters k.
Under the preceding communication-blocking assumption, the process X is the
original network process restricted to the state space E = {x € E : x < b}.
Hence X is also reversible, and its invariant measures are those of the original
process restricted to [E. Similar blockings can be defined for networks with batch
movements. O

Example 2.27. Reversible Networks with Resource Constraints. Consider a re-
versible network process with single-unit movements that has a known invariant
measure (e.g., a Jackson or Whittle process). Now, suppose X is the process with
the added restriction that the units require certain sets of resources for their pro-
cessing as follows. The network contains quantities b;, i € I, of resources that
the units may use. Each unit entering node j requires the prescribed quantities
a;j, i € I, of the resources for its processing at that node. If these quantities are
available, they are assigned instantaneously to the unit which holds the resources
throughout its stay at the node, without sharing them with other units. Upon leaving
J» the unit releases the resources so that they can be used again. If the resources are
not available for a unit attempting to enter node j, the unit is blocked from being
served and its service can begin when the resources become available. Whenever
the network is in state x, the quantities of resources held by the units is Ax, where A
is the matrix with entries a;;. Under these assumptions, a transition from x to Tx
is blocked if ATy x < b is violated. Then the process X is the original reversible
network process restricted to the state space]E = {x € E: Ax < b}. Consequently,
X is also reversible and its invariant measures are the original invariant measures
restricted to IE. Note that this example with A equal to the m-dimensional identity
matrix is the same as the communication blocking example above. a
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The next example, which is a generalization of the classical birth—death process,
describes a variety of population models including many service systems with
queueing.

Example 2.28. Multivariate Batch Birth-Death Processes. Consider the case in
which the process X has transition rates

Ya(x) ify=x+aforsomeac A
q(x,y) = { da(x) ify=x—aforsomed € A
0 otherwise.

Think of the process as representing the sizes of m populations or queues in which
a batch arrival @ = (ay, ..., a,) increases the population j by the amount q;,
1 < j < m, and a departure of a decreases the populations similarly. There
is no routing among the populations; a unit departing from a population exits
the system. The populations are dependent because the arrival and departure rate
functions ¥,(x) and ¢,(x) may depend on the system state x. We assume that ¢,
are ®-balanced departure intensities and that v, are W-balanced arrival intensities.
Note that the transition rates can be written as

gx,x —d+a) = ¢;x)¥,(x)1(a=00rd = 0).

Now, the routing intensity function (the indicator function) is automatically re-
versible with respect to w(a) = 1. Also, the departure-arrival intensities are
®W-balanced. Then by Theorem 2.22, the process X is reversible with respect to
w(x) = ®(x)¥(x), x € E. We call such a process a multivariate batch birth-death
process.

Consider the special case in which X represents the size of a single population
(m = 1) and there are no assumptions on the departure or arrival intensities. Then
it follows by Proposition 2.21 and Theorem 2.22 that X is reversible if and only if

x+a—1

S/ Vax+a)= [ dw)/vin+1), xeE acA  (221)
n=x
In this case, an invariant measure for X is
m(x) = ﬁlﬁn(ﬂ - 1)/¢1(n), x€E.
n=1
The key observation for this result is that, according to Proposition 2.21, the condi-
tion (2.21) is necessary and sufficient for ¢4, to be ®-balanced departure—arrival

intensities, where ® = . This one-dimensional batch birth-death process was
mentioned in Example 2.18. ]

2.8 Partition-Reversible Processes

In this and the next section we study a generalization of reversibility called
partition-reversibility. A Markov process is partition-reversible if its average flows
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rates are balanced in a certain way over sets that partition the state space. This prop-
erty is a “macro” version of the detailed balance property of reversible processes.
A key feature of a partition-reversible process is that its stationary distribution is
obtainable by solving the balance equation separately on the sets of the partition.

Throughout this section, we assume {X; : ¢ > 0} is an ergodic Markov jump
process with a countable state space E, transition rates g(x, y), and stationary
distribution . Here is an example of what lies ahead.

Example 2.29. Suppose X takes values in the set of integers. Assume that in order
for it to move between the positive and negative integers it must pass through 0
and, it can enter 0 only from states 1 or —1. The communication graph of the
process is therefore a star with center set Ey = {0} and point sets E; = {1,2,...}
and E, = {..., -2, —1}. Assume the restrictions of the process to the sets E;
and to Ey U E; are ergodic, and let 7r; and m; denote their respective stationary
distributions. Under these minimal assumptions, the stationary distribution of the
process has the form

w(x) = m(0) (70 (0)' — Dmi(x) = 7 (Omi(0) 'moi(x), x €Ki, i =1,2,

where 1(0)™! = m;(0)~! + mp(0)~! — 1. The first equality says that 7 is a
“collage” or pasting together of | and ;. Similarly, the second equality says that
7 is a collage of 7y and 7¢;. m]

‘We now develop this theme for the general ergodic Markov process X. Suppose
thereis a partition {[E; : i € I'} of the state space E such that g restricted to [E; defines
an ergodic Markov process on EE;, and let ; denote its stationary distribution. Let
L denote the set of pairs of indices (i, j) such that the process X can jump (in one
transition) from E; to E; or vice versa; L consists of the “links” in the partition.
For each such pair, assume that g restricted to I£; UE; defines an ergodic Markov
process, and let r;; denote its stationary distribution.

We say that the distribution 7 is a collage of {m; : i € I} if 7 is a multiple of m;
on [E;, for each i € I. The aim is to characterize this property in terms of how the
process moves between pairs of sets F; and E;.

Definition 2.30. The process X (or q) is reversible over the partition {E; : i € I}
if, for each (i, j) € L,

m(x) Y q(x,y) =Y 7w, x), xeE UE; (2.22)

yeE; yeE;

That is, the average number of jumps per unit time from x to E; equals the average
for the reverse jumps from E; to x. Being symmetric in i and j, this equation also
holds with E; replaced by E;.

The following is a characterization of partition-reversibility in terms of the
“local” distributions 7r; and 7r;;. The stationary distribution of a partition-reversible
process is the collage (2.24), or its relative (2.25). Condition (c) is a convenient
criterion for establishing partition-reversibility.
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Theorem 2.31. The following statements are equivalent.

(a) The process X is reversible over the partition {E; : i € I}.

(b) The distribution m is a collage of {m; : i € I}, and v on E; UE; is a multiple
of mij, for each (i, j) € L.

(c) For each (i, j) € L, the distribution m;; balances q on E;, and the matrix

;i (E;) ifi,j)eL

2.23
0 otherwise, ( )

r,-j =
is reversible.
(d) For each (i, j) € L, the distribution m;; balances q on E; and mn;;(E;) =
pi/(pi + pj) for some positive probability measure p;, i € 1.
If these statements hold, then

w(x)=pmi(x), xek;, iel, (2.24)
where p;, i € I is the stationary distribution of r;;; furthermore, p; = n(E;) and
m(x) = (pi + pj)mij(x), xe€eE UE;, (i,j)eL. (2.25)

ProoF. For convenience, let

nq(A, B) =) Y m(x)q(x,y).

x€A yeB

Then the balance equations that determine 7 are rq(x, E) = nq(E, x), x € E.
(a) & (b). Clearly (a) is equivalent to the conditions

rq(x,E) =mwqE;,x), xek,iel,
wq(x, E) +mqx,Ej) = nq(E:, x) + mqEj,x), xeE UE;, (i, j)eL.

The latter uses (2.22) with E; replaced by E;. Now, these equations say that &
balances g on E;, i € I, and  balances g on E; U E;, (i, j) € L. But this
statement is equivalent to (b) by the uniqueness property of invariant measures.
Thus statements (a) and (b) are equivalent.

(c) < (d). If (c) holds, then, by the definition of reversibility, there exists a
positive probability measure p; on I such that

pimij(E;) = pjmi;(Ey), (i, j)eL.

This and 7;;(E;) + m;;(E;) = 1 yield ;;(IE;) = pi/(p: + p;). Thus (c) implies
(d). Conversely, if (d) holds, then r;; = p;/(p: + p;) is reversible since this is the
canonical form of reversible rates; recall Theorem 1.5. Hence (d) implies (c).

(b) < (d). Note that in statement (d) the condition that r;; balances g on E; is
equivalent (since m;; is a multiple of ;) to

mij(x) = mij(E)mi(x), x € E;.

This relation also holds with E; replaced by E; since E; U E; is symmetric in i
and j. From these observations, it follows that (d) is equivalent to the following:
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(d') There is a probability measure p; on I such, for each (i, j) € L,
Di

mi(x) ifx e E;

myey =4 PP (2.26)
L _mi(x) ifxeE;.

We will complete the proof by showing that (b) and (d’) are equivalent. Suppose
(d') holds. Then (2.26) implies that 7r;; balances g on E;. Consider the distribution
7 on E defined by

n(x) = pimi(x) =(pi + pj)mij(x), x ek, iel .27

For any x € E and i such that x € [E;, the property that r; balances g on E; and
the assumption that ;; balances g on E; yield

nq(x, B) = pimi(x)q(x, E) + Y _(pi + pj)mij(x)q(x, ENL(G, j) € L)
J#i
=pi Ym0, )+ Y _(pi +p)) D mi(Ma(y, DIG, j) € L)
yeE; J#i yeE;
= nq(E, x).

Hence 7 defined by (2.27) is the stationary distribution of the process X, and its
structure implies statement (b).

Now suppose (b) holds. Then the stationary distribution 7z of X satisfies (2.27)
with p; = m(IE;). The second equality in (2.27) says that m;; is given by (2.25),
and so (d') is true.

The last sentence of the theorem was justified in proving that (b) is equivalent
to (d') and by the reversibility of r;;. m]

Note that when checking condition (c) for partition-reversibility, one can take
advantage of the theory of reversibility to determine whether the transition rates
rij defined by (2.23) are reversible. The obvious benefit for a partition-reversible
process is that the problem of obtaining its stationary distribution reduces to
finding several stationary distributions on smaller subspaces, either by analytical
means or simulations or by a combination of both. Partition-reversibility is also
a natural framework for analyzing Markov processes in random environments,
Markov-modulated processes, or controlled Markov processes. Here the environ-
ment or control parameters (possibly dependent on the parent process) determine
the appropriate partition of the state space. Examples are in the next section.

Theorem 2.31 and the other results here also apply to a discrete-time Markov
chain with transition probabilities P(x, y) by viewing these probabilities as transi-
tion rates for a continuous-time process. In this setting, 7;;(x) = 7;;(x)/P(x, E; U
E;), where 7;; is the stationary distribution of the Markov chain matrix P(x, y)
restricted to E; U E;, which is 13,-j(x, y) =P, y)/P(x,E UE)).

Since reversibility and partition-reversibility are defined in terms of average
numbers of transitions per unit time, these notions readily extend to non-Markovian
processes in continuous or discrete time. To see this, suppose X is a stochastic
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process that takes jumps in its countable state space E at the times0 = Ty < T} <
...,where T, — oo asn — oo w.p.1. The average number of jumps per unit time
that X makes from A to B is

n
MA,B)= lim T,”! Y 1(X7 € A, X1, € B).
i=1

The process X is reversible if A(x, y) = A(y, x) for each x, y in E. Similarly, X is
reversible over the partition {E; : i € 1} if

A(x,E;) = A(E;, x), foreachx e E; UE;, (i, j)e L. (2.28)

2.9 Examples of Partition-Reversible Processes

We now discuss special cases of partition-reversible processes whose com-
munication structure between sets of the partition form circles, trees, or
stars.

We will use the notation of the previous section. We say that {E,, ..., E,} is a
circular partition if whenever X is in E;, it can make a transition only into E; _; U
E; UE;;, where Ey; = E; and Ey = E,. The following is a characterization of
circular partition-reversible processes.

Corollary 2.32. If{E,,..., E,} is a circular partition, then X is reversible over
this partition if and only if each ; ;| balances q on E; and

a1y ...0 :(1 ——al)(l —Olz)--'(l -—ag), (229)
where a; = 1, ;41(Ei11). In this case, m1(x) = pimi(x), x e E;, i = 1,...,4,
where

i
pi=p o1/ —a), 2<i<y,
n=2

and p7t =14+ Y5 T, a1 /(1 — ap).

Proor. Consider the rates defined by (2.23). The communication graph of these
rates is circular because the partition is circular. Then the rates are reversible by
Example 2.10 if and only if (2.29) holds. This result and Theorem 2.31 (c) prove
the assertion. O

We now discuss treelike and starlike partition-reversible processes. We say the
partition {E; : i € I} of the process is a tree if it has a single root set Ey and,
whenever X is in some set E;, its one-step transitions can be back into E; or into
one of its neighboring sets (its single predecessor or its possibly multiple successors
in the tree). That is, X can move up and down each branch, and it can move from
branch to branch only via Eq. This partition is a star if each branch consists of Eg
and some E;; the ;s are points of the star with center [E,.
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When the partition for X is a tree, the communication graph of the rates r;;
defined by (2.23) is a tree. Then these rates are reversible by Proposition 2.2 and
their stationary distribution is

pj = poroi, - ri,j/rio-Tji,, Jj#0, (2.30)
where 0, i}, ..., i,, j is the unique subbranch from 0 to j in the tree.

Corollary 2.33. Suppose the partition of the process X is a tree. Then X is
partition-reversible if and only if, for each predecessor-successor pair E; and E;,
the distribution m;; balances q on E;. In this case, the stationary distribution m of
X has the form (2.24) or (2.25) with p; given by (2.30). If the partition is a star,
then X is partition-reversible if and only if each mo; balances q on Ey (which is
automatically true when the center set B is a singleton). In this case,

m(x) = pomo(x), x € Eo,
and, for x € E; and i # 0,
7(x) = po(oi(Bo) ™' — 1)mi(x) = porro; (o)~ moi (x),
where py = (E) = [1 + Z,-7é()(7501'(1[30)_1 )

PrROOF.  Since the rates r;; are reversible, the first assertion is a consequence of
Theorem 2.31 (part (c) and (2.25)). The other assertions follow immediately from
the first one and p; = poro; /rig, i # 0. O

Example 2.34. A Multiclass Service System with Blocking. Consider a service sys-
tem that operates as follows. The system serves m classes of customers that arrive
according to m independent Poisson processes with respective rates A, ..., Ap.
The system can serve only one class of customer at any time. While it is serving
customers of class i, any arrivals of other classes of customers cannot enter the
system and are turned away, but new type i arrivals are permissible. Also, the
number of these type i customers in the system behaves as an ergodic Markov
process with transition rates g;(x, y). Here ¢;(x, x + 1) = A;, but the transition
rates for departures are left unspecified. We assume the stationary distribution of
g; can be obtained either analytically or by a simulation. Assume the system starts
empty—thereafter it can contain, at most, one class of customer.

We represent the system as an m-dimensional queueing process X with states
of the form x = (x,, ..., x,), where x; is a nonnegative integer and, at most, one
of the x;’s is positive. The state space E is a star with center Ey = {0} and point
sets

E ={(xi,....xn):x; >0, x,=0,1#£i&}, i=1,...,m.

That is, the process X cannot transfer from a state in E; to a state in E;, j # i,
unless it passes through 0. Under the preceding assumptions, it follows that the
transition rates of X are

qi(x,y) ifx,ye EgUE;,,andy =¢; ifx=0; i=1,...,m

X, = .
9(x,) 0 otherwise.
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Since the state space of X is a star and E, is the single state 0, its stationary
distribution 7 is given by Corollary 2.33. In this case, 7¢;(x) = 7;(x;) where 7; is
the stationary distribution of g;. Therefore,

w(x) = poi(0) ' Ai(xi), x € Biyi #0,
where 7(0) = po = [1 + 3, (@, (0)™" = D]7". 0

Example 2.35. Service System with State-dependent Service Rates. Consider a
service system in which customers arrive at a single server according to a Poisson
process with rate L. The service times are independent exponentially distributed
with rate depending on the number of customers present. When there is one cus-
tomer present, the service rate is x4 and remains at this value until the number of
customers reaches the level M. At that instance, the service rate takes a higher value
1’ and remains there until a departure leaves m customers behind (m < M)—then
the rate returns to 1. Assume A < u’, which is necessary and sufficient for stability,
as the analysis below shows.

Under these assumptions, the system is described by a Markov process X with
states denoted by i (or i") when there are i customers in the system and u (or ©')
is in use. Then the state space is a star with center

Eo={i,i': m<i<M-1}U{M'},
and point sets
E={i:0<i<m}, E,={i":i> M}
Since q is a birth—death process on each of E; and E,, it follows that
m@)=>10-p)p'/1=p"), 0<i<m
@)y =1 - p)™™, i'>M,
where p = A/u, p' = A/u’. And solving the balance equations on Ey yields
mo() =ap (1 - pM /(1 —p), m<i<M
moi') = ap™ " p'(1 — P /(1= p)), m<i<M,
where a is the normalization constant.
We now establish that the stationary distribution of X is the collage of g, m,
and 7,. By Corollary 2.33, it suffices to show that each 7(; balances the transition

function on [Eq. Since the process X restricted to [E; U{m} is a truncated birth~death
process,

Amoi(m — 1) = pmo (m). (2.31)

And because Eg and E; communicate only via states m — 1 and m, the preceding
equation implies that 7y, balances g on Ey.
Now the balance equations for 7g; on Eg U [, are
Amoa(m) = prga(m + 1) + p'moa((m + 1))
A+ wmea(@ + 1) = Amoa (i) + pumo2(i +2), m<i<M-2
A + @M — 1) = Amga(M — 2)
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and
A + pwymoa((m + 1)) = p'ma((m +2))
A+ 1)) = Amoa(( + 1)) + WG + 1)), m+2<i<M
(A + umea (M) = (M — 1) + Amga(M — 1)) + p'moa (M + 1))
A+ 1) + 1)) = Amoa((G — 1)) + w'moa(@ + 1)), i > M.

Since Eq and E; communicate only via states M’ and M + 1, the 7y, balances g
on Eq and on E, if and only if

Amoa(M') = W'ma(M + 1)). (2.32)
To show this, note that balance equations above yield

ATtp(M —1) = [,Llﬂ'()z((m + 1)’),

A2 (M — 1Y) + p'moa((m + 1)) = p'moa(M').
These equations imply
wWra(M'y = Amp(M — 1) + Amo(M — 1)),

But this is equivalent, by the balance equation for the state M, to (2.32).
In summary, the stationary distribution & of X is a collage of my, 7|, and 7, as
in (2.24), where (2.26), (2.31), and (2.32) yield

p1 = pouno(m)/(Amwy(m — 1)), pa = poAmo(M')/ (1’72 (M + 1)),
and py is determined by po + p; + p2 = 1. m|

2.10 Exercises

1. Consider a Markov jump process whose transition rates are

q(x,y) =q(f(x), f(»), =x,y€E,

where g is an ergodic transition rate on E and f is a function from E to E. Show
that if g is reversible with respect to 7 on E, then q is reversible with respect
to 7 (x) = #(f(x))-

2. Networks with Environmental Influences. Suppose X is a Markov jump process
that represents the state of an m-node network that is subject to environmental
influences such as the status of machines or quantities of resources available
for services. The state of the process x is in a countable set [E of vectors, matri-
ces, or functions that contains all the pertinent information about the network
and environment. When the system is in state x, the numbers of units at the
respective nodes are given by the function n(x) = (n,(x), ..., ny(x)). Assume
the transition rates of the process are

q(x,y) = qi(n(x), n()gq2(x,y), x,y€E.
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This is a “compounding” of a population rate g, and an environment rate g,.
Suppose g, is the rate for a reversible, ergodic Whittle or Jackson process.
Prove that g is reversible if and only if g, is reversible. In this case, an invariant
measure of g is w(x) = m(n(x))m,(x), where 7; is an invariant measure for g;.

. Use Theorem 2.5 on time reversals to prove Theorem 1.15 that an invariant

measure for the Whittle process X is w(x) = ®(x) ]_[;7':l w;f . Is this approach
simpler than the direct-substitution proof of Theorem 1.15?

. Finite McCabe Library. Show that an invariant measure for a McCabe library

with n books is given by (2.12) where E is the finite set of all permutations of
the n books.

. MIM/1 Queue with Variable Waiting Space. Consider an M/M/1 queueing

system with arrival rate A and service rate y in which the allowable number in
the system varies randomly over time. Specifically, the number of customers in
the system at time ¢, denoted by X,, cannot exceed a value Y;. The Y operates
like an irreducible reversible Markov process with transition rates gy (y, y') and
stationary distribution 7y (y), but it is constrained by the inequality X, < Y.
That is, whenever X, = Y, the arrivals for X are turned away; also, transitions
of ¥, below X, are not allowed. More precisely, assume that (X, ¥;) is an
irreducible Markov process on the space E = {(x, y) : x < y} and its transition
rates are

gx(x, x') ify =yandx' <y
q((x, ), &,y =1qr(y,y) ifx'=xandy >=x
0 otherwise.

Here gx(x, x’) is the transition rate function for the unrestricted M/M/1 queue-
ing process on the nonnegative integers. Show that the process (X, Y) is
reversible with respect to w(x, y) = (A/u) wy(y).

. Networks with Variable Waiting Spaces. Consider an m-node open network

process X, = (X,‘, ..., X}") that represents the numbers of units at the
nodes at time ¢. Suppose the waiting spaces at the nodes vary such that
Y, = (¥/),...,Y™) is the maximum numbers of units allowed at the nodes

at time ¢. Suppose {(X,,Y;) : ¢ > 0} is an irreducible Markov process on
E={(x,y)eEx x Ey: x <y}, where Ex = {x : |x| < 0o} = Ey. Assume
that its transition rates are

Aikdj(x;) ifx' =Tux,y =y

and x; < y, forsome j,k € M

9((e. ), . y)) = qr(y, y) ifx’ =xandy > x'.

0 otherwise.

The X is an open Jackson process whose node populations are restricted by
the process Y with transition rates gy. Assume that the routing rates A ji
are reversible with respect to w; and that gy is reversible with respect to
my. Show that the process (X, Y) is reversible with respect to w(x,y) =
W [T= w, [T.Z, #n)~". Describe similar results for a Whittle process
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and any network process that is reversible when it is unrestricted. Take care
in defining the state spaces.

2.11 Bibliographical Notes

Kolmogorov (1936) was the founder of reversible Markov processes. A related
article is Hostinsky and Potocek (1935). Kingman (1969) was the first to model
reversible stochastic networks. Reversibility of Markov processes and networks
was developed further by Kelly (1979) and Whittle (1986b). The McCabe library
and related library models in computer science are discussed in Letac (1974) and
Suomela (1979). The material on batch movements in birth—death processes and
reversible networks is from Serfozo (1993), and partition-reversible processes are
introduced in Alexopoulos et al. (1999).
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Miscellaneous Networks

This chapter deals with several applications and variations of the network models
developed in the preceding chapters. We first show how to use Whittle processes
to model networks with multiple types of units, where the routings and services
may depend on a customer’s type. This includes Kelly networks with determin-
istic routes for units, and BCMP networks with Cox and general service times
depending on a unit’s type. We also discuss several forms of blocking in networks,
and bottlenecks in closed Jackson networks. The chapter ends with a discussion
of partial balance equations in modeling networks.

3.1 Networks with Multiple Types of Units

Chapter 1 covered Jackson and Whittle networks in which the routing and departure
intensities are the same for each unit. We will now show that the results for these
networks with homogeneous units also apply to networks with multiple types of
units, where the routing and services may depend on a unit’s type in a certain way.
The only difference is that we now keep track of the number of units of each type
at a node.

Consider an m-node network in which each unit carries an attribute or class label
from a finite set. A unit’s class is a distinguishing characteristic that determines
its routing or service rates. The class label may be permanent, or temporary and
subject to change as the unit moves. Examples of permanent labels are:

o The size of a unit when it is a batch of subunits such as data packets, orders to
be filled, or capacity of a circuit.

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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o The type of part or tool in a manufacturing network.

o The origin or destination of a unit.

o The general direction in which a unit moves through the network (e.g., north to
south).

Examples of temporary labels are:

o The status of a part as it is being produced.

o The number of nodes a unit has visited.

o The number of times a unit has been fed back to the node where it resides.

e The phase of service that a unit is undergoing, when it has a phase-type
distribution.

We make the following assumptions about the network, which are consistent
with those for Jackson and Whittle networks. The evolution of the network over
time is represented by a Markov process {X; : ¢t > 0} whose state is a vector
x = (xoj : ¢j € M, j # 0), where x,; is the number of a-units at node j. The
number of units at node j is x; = ), x,;. We now envision that each unit moves
in the set M of all pairs aj, where « is a class label and j is a node number, possibly
0, when the network is open. We denote the state space by E. The network may
be closed (3_, j Xaj = V), or open with finite or unlimited capacity. In addition,
the network may be a mixture of these three types: The network may consist of
several subprocesses that operate like closed or open networks.

Whenever the process is in a state x, a typical transition consists of an a-unit
departing from node j and moving instantaneously into a node k and entering
there as a B-unit. We denote the new state by 7,,; gx = x — e, + epy, where eq;
denotes the unit vector with a 1 in component ¢j and 0 elsewhere, and e,o = 0. It
is allowable that k = j or @ = B, provided «j # Bk.

We assume that the transition rates of the process X are of the form

A pk®aj(x) if y = Ty pxx € E for some aj # Bk in M
0 otherwise.

qx,y) = [
The ¢,;(-) are service rate functions or intensities and Ay; g are routing rates or
intensities. The service rates @,; are ®-balanced in that ® is a positive function
on E such that, for each «j and x with Bk # «j and T,,; gtx € E,

D (x)Poj(x) = O(Tyj prx)Ppi(Toj, i X).

The routing rates A;, g may be reducible, but they do not contain transient states.
We let w,; be positive numbers that satisfy the traffic equations

Wy Z A-otj,ﬂk = Z wﬂkkﬂk,aj, aj eEM. (31)
BkeM BkeM

And wyo = 1 when the network is open.

We call the process X with these properties a multiclass Whittle network process.
We call X a multiclass Jackson network process if each service intensity ¢,;(x) is
a function ¢, (x,;) only of x,; and ¢o(-) = 1 when the network is open. In this
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case, the service intensities are ®-balanced by

o = [ [[oun™.

ajeM n=1

The following result describes the equilibrium behavior of multiclass Whittle
and Jackson networks. This result is just a restatement of Theorem 1.15 with the
single subscripts j replaced by double subscripts «;j.

Theorem 3.1. For the multiclass Whittle network process X , an invariant measure
is

m(x)= o) [[ wy/, xek

ajeM

Itis clear that the basic theory of Whittle and Jackson networks for homogeneous
units in Chapter 1 also applies to their multiclass analogues—one just replaces all
the single-node subscripts j in Chapter 1 with a double subscript «j. We already
saw this in the traffic equation above. An important difference, however, is that
multiclass labels can be exploited for modeling additional features or dependencies
in networks.

To obtain an invariant measure for a multiclass network, one proceeds as in a
network with homogeneous units by evaluating the function ® and determining
the wy; s that satisfy the traffic equations. The characterizations of the function ¢
in Section 1.13 for homogeneous units readily extend to the present context with
multiclass units. One result is that the ¢,; are ®-balanced if and only if each ¢,
is of the form

Ooj(x) = W(x —e4j)/P(x), x €k, 3.2)

for some nonnegative function ¥ defined on {x — ey; : x € E, aj € M}.
The following examples give more insights on service rates; also see Exercise 1.

Example 3.2. Service Rates Proportional to Local Populations. A natural
processor-sharing service discipline is one with service intensities

Gai () = 2L (1, . ).
Xj

Think of ¢;(xy, . .., x,) as the total service capacity at node j, and the amount of
this allocated to a-units is the proportion x,;/x; of those units present. Another
interpretation is that x,;/x; is the probability of an c-unit departing when the
intensity is ¢;(xi, ..., x»). Suppose ¢; are &-balanced. Then the service rates ¢, i
are balanced (Exercise 2) by the function

O

m
z 1
®(x) = &xr, . xn) [ [ [] -
j=1 o Kej
Example3.3. Sector-dependent Service Rates. The sector-dependent service rates

in Example 1.47 also apply as follows to the multiclass network we are studying.
Let S denote the collection of all subsets (or sectors) of M. For each sector J € S,
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there is a “departure intensity” ¢, (x(J)), which is a function of the number of
units x(J) = ), jes Xaj in J. This intensity is 0 only if x(J) = 0. Assume these
sector intensities are compounded such that the departure intensity for oj # 0 is

¢ajx) = [] 6sx()), x€E,

.IES(,j

where S, ; is the collection of subsets that contain aj. Also, in case the network is
open, we assume the intensity ¢y is a positive function of the form ¢o(|x|).
These sector-dependent service rates are balanced (Exercise 2) by the function

lx|—1 x(J)
o) = [[ oo [[[[esm~". x€E, 3.3)
k=0 JeSn=1
where ¢y = 1 if the network is closed. |

We now turn to properties of the routing rates A,; g«. The structure of these
rates may be such that the multiclass network contains one or more families of
permanent and transient units. This is illustrated in the next three examples.

Example 3.4. Multichain Routing. Suppose the routing rates A,; g are reducible
(with no transient states), and let M;, i € I, denote the disjoint subsets of M upon
which the rates irreducible. Then the solution of the traffic equations has the natural
partition {wq;} = {{w};} : i € I}, where {w}} satisfies the traffic equations on
M;. Similarly, the network process is the partition X, = (X! : i € I}, where X’
is the subprocess on M;. Now, if M; contains a0 for some «, then the subprocess
X' on M; operates as an open network. Otherwise, X’ on M; operates as a closed
network with v; = }_ .. Xo; units permanently in M;. The number of units in
each open subprocess could be limited or unlimited.

Example 3.5. Permanent Class Labels. Suppose each unit in the network process
X carries a label that does not change. In this case, A4 g« = 0 if @ # B. Conse-
quently, each a-unit would be routed in the network via the rates Aq; 0. Then for
each a, the w,; would be a solution to the traffic equations

Wy j Z)‘-aj,ak = Z wakkak,aj: JEM.
keM keM

In this setting, there may be several classes of permanent and transient units. O

Example 3.6. Class Changes Separate from Routing. Suppose class changes of
units in the network process X are independent of their routing, and the routing
rates are of the form

Aajpk = haphji.

Interpret Xaﬁ as the intensity of an o-unit changing to a S-unit and A, as the
intensity of a unit at j moving into k. If W, and w; are respective solutions to
their “traffic equations,” then it is clear that w,; = W, w; is a solution to the traffic
equations for Aq; gk. O
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Chapter 1 showed how routing rates determine throughputs in networks. Analo-
gous results apply to multiclass networks as follows. Let p,; g« denote the average
number of units that move from «j to Bk per unit time; this is the throughput from
Jj to k of a to B class changes. We know by the law of large numbers for Markov
processes that

Pajpe = ) TG, Taj piX) = Aajpic ) T(X)Paj(®)1(x0; = 1), (3.4)
x€eE x€E

This expression has the following tractable forms. Here, we will assume that the
service rates of the multiclass network are of the form

boj(x) = B(x — €,;)/ D), x€E, jeM. (3.5)

This is true, in particular, for the Kelly and BCMP networks we discuss in the next
two sections.

Proposition 3.7. Suppose (3.5) holds, and let M’ denote an irreducible class in
M for the routing rates as described in Example 3.4. If the subnetwork on M’ is
open with unlimited capacity, then

Paj, pk = waj)wj,ﬂk, aj, ﬂk [S M’.

If the subnetwork on M’ is closed with v units (or open with capacity v), then
Puj pk = cvc;_]lwaj)n,,j,ﬂk, oj, Bk € M.

Here c,, is the normalizing constant for the equilibrium distribution of the closed
network with v units (or the open network with capacity v).

In the multiclass network we are studying, a sector J is a subset of an irreducible
routing subset M’ of M. The throughput from a sector J to a sector K in M’ is

PIK = Z Z Paj,Bk-

ajel pkeK
Also, the throughput of sector J is
Ay =pss = Z Z Paj k-
ajetc gkel

We now turn to expected sojourn times of units in the sector J. The average
sojourn time (or waiting time) of units in J is

n
— T -1 g
Wy = lim n Z:; Wi(J) wp.l,
provided the limit exists, where W;(J) is the waiting time of the ith unit to enter J.
We assume J # M’ when the subnetwork is closed (otherwise all sojourns would

be infinite). In addition, assume that the average number of units in J per unit time

given by
L; = Z Zx,,jn(x)

x ajel
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is finite. The following result is the analogue of Theorems 1.36 and 1.37.

Theorem 3.8. The average waiting time W, exits,and L ; = A; W. Ifthe process
X is stationary, then L; = A;W,, where these terms are expected values: L is
the expected number of units in J at any time instant, A; is the expected number
of units entering J per unit time, and W, is the expected sojourn time in J with
respect to the Palm probability of the stationary process X conditioned that a unit
enters J at time Q.

The procedures in Sections 1.11 and 1.12 for computing expected throughputs
and waiting times are also valid for multiclass networks.

3.2 Kelly Networks: Route-dependent Services

In this section, we discuss networks in which units are divided into classes depend-
ing on their routes through the network, and a unit’s service times at the nodes
depend on its route. These are multiclass networks introduced by Kelly in 1975.

Consider an open m-node network in which the routing of units is as follows.
A typical route of a unit is a finite sequence r = (ry, ..., r¢) of nodes inside the
network, where r; is the node the unit visits at stage s of its route, 1 < s < ¢;
the length £ = £(r) is route dependent. Upon leaving the last node r,, the unit
exits the network. A node may appear more than once on a route, and the set of all
relevant routes, for simplicity, is finite. Units that traverse a route r arrive to the
network according to a Poisson process with rate A(r), and these arrival processes
are independent for all the routes. Then the total arrival stream to the network is a
Poisson process with rate ), A(r).

The preceding description applies to several scenarios. One is that a deterministic
route r is an attribute of a unit and that all units that traverse a given route are in the
same class. A second scenario is that each unit carries a permanent class label that
determines its route. A third possibility is that deterministic routes are obtained
by random routes as follows. The units arrive to the network by a Poisson process
with rate A, and each unit independently selects or is assigned a route r with
probability p(r). In this case, A(r) = p(r)A. For instance, a route may be selected
by Markov probabilities p ;i such that po,, pr.y, - - - Pr,_,r, is the probability of the
route r = (ry,...,ry). Combinations of the preceding scenarios yield further
possibilities.

To formulate the network as a multiclass Whittle network, we assign a class
label to each unit to denote its routing status at any time in the network. Namely,
if a unit is traversing route r and is at stage s in this route, we call it a rs-unit. Let
M denote the set of all route-stage labels s, including the outside node 0 as well.

We represent the state of the network by the vector x = (x,; : rs € M\{0}),
where x,; denotes the number of rs-units in the network at node r,. The node at
which a unit resides is specified by the label rs, and so we need not specify the
unit’s location separately as we did above by the class-node label ;. Assume that
whenever the network is in state x, the time to the next departure of an rs-unit
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from its current node location r, is exponentially distributed with rate ¢,,(x). The
departing unit goes immediately to its next node r,; and becomes an r (s + 1)-unit.
In case s = £, the ry; = 0, which means that the route is complete and the unit
exits the network. Assume that ¢, are ®-balanced departure intensities.

Let {X; : ¢t > 0} denote the stochastic process representing the network. Under
the preceding assumptions, X is a Markov process with transition rates

A(r) ify =x + e, € E for some r
qg(x,y) = { ¢rs(x) ify=x—eys+eut1y € Eforsomers e M
0 otherwise.

Note that this is a multiclass Whittle network process, where the class label for a
unit describes the route it is taking and where it is on the route.

Using the notation in the preceding section, the routing rates for the units are
Aos1 = Ar) and Ay 541y = 1 for rs # 0. Then the traffic equations for these
rates are wy = 1 and, for each route r,

W = AMr), wy = Wrs—1)y § = 2,...,¢

A solution to these equations is w,; = A(r) for each rs # 0. Consequently,
Theorem 3.1 yields the following result.

Corollary 3.9. An invariant measure for the network process X with transition
rates described above is

w(x) = @(x)]'[x(r)Xr, x €k,

¢
where x, = ) _, Xys.

Since the network model we are discussing is a special case of that in the
preceding section, all the results there also apply. For instance, suppose the network
is such that each node is a processor-sharing node as discussed in Example 3.2
with service rates

Xrs
Ors(x) = ':i,u'j(xj)’
Xj
where j = r, and p;(x;) is the departure intensity for node j when it contains
Xj =) .o Xpy1(ri, = j) units. In this case, the ® in the preceding result is

d(x) = fo! l-i[pyj(n)_I l_[ ;1_'
j=1 n=1 rs TrS:

The network process we are discussing is for an open network with unlimited
capacity. The following extension covers the finite-capacity case.

Example3.10. System-dependent Arrival Rates. Suppose the arrivals from outside
are dependent on the network such that g(x, x + ¢,1) = A(r)@¢.o(|x|). This would
allow for a finite capacity network or subnetworks by assuming ¢,o(n) = 0 for
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n = v,. For this more general arrival rate, the invariant measure from Theorem 3.1
would be

x|

7@) = o) [ Ay [[trotn = 1), x €E. O
r n=lI

3.3 BCMP Networks: Class-Node Service
Dependencies

This section describes multiclass BCMP networks, which were introduced by
Baskett, Chandy, Muntz, and Palacios in 1975. The distinguishing feature of such
anetwork is that a unit’s service rate at anode is acompounding of two intensities—
one intensity is a function of the total number of units at the node, and the other
intensity is a function of the number of units in the same class as the one being
served.

We begin with a general framework for modeling networks with class-node
service dependencies. Consider a multiclass Whittle network as described in
Section 3.1. Assume that the service rates for each node j # 0 are of the form

G (x) = 8uj(Xj)haj(Xaj), (3.6)

where g,; and h,; are functions on the nonnegative integers. These are sector-
dependent service rates, where g,;(x;) is the node intensity and A,;(x,;) is the
class intensity. In case the network is open, assume, for each « and x, that

Pa0(x) = go(IxDhao(lxa]), 3.7

where |x,| = ) =1 Xaj is the number of «-units in the network.
By Example 3.3, these service rates are balanced by the function

o(x) =[] fit0),

j=0
where fy(x) = 1 if the network is closed,

lx[—1 leg |~ 1
Jfolx) = 1_[ go(n)l—[ l—[ hoo(n’), if the network is open, and
n=0 a n'=0
Xj Xaj
L@ =[]]Tei®™ [ ey, i #0.
a n=I1 n'=1
The routing rates Aqj g¢ are the same as those in Section 3.1, and w,; is a
solution to the traffic equations (3.1). Then the following result is an immediate
consequence of Theorem 3.1.
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Corollary 3.11. Under the preceding assumptions, an invariant measure for the
network process is

m(x)=o@) [] wyy, xeE.

ajeM
The main example of this result is as follows.

Example 3.12. BCMP Networks. The network described above is a BCMP net-

work if each of its nodes is one of the following four types.

o First-Come, First-Served node with service rates ¢,;(x) = p;(x;). Each unit (as

in a Jackson network) has exponential service time with the same load-dependent

service rate u ;(x;).

e Processor-Sharing node with service rates ¢,;(x) = x, ,-xj_'p,a j(x;). The

Iqj(xe) is a customer-load-dependent service rate, which is apportioned equally

among the x,; a-units at the node.

e Last-Come, First-Served with Preemption node with service rates as in the pre-

ceding PS case.

e Infinite-Server node with service rates ¢ (x) = Xqj leaj(Xqy;)-

Also, in case the network is open, the arrival rates from outside are Ayopo(|x|).
An invariant measure for this BCMP network is given by Corollary 3.11 with

fx}~1
folx) = H no(n), if the network is open,

and the other f;’s are as follows for the four types of nodes:

fix) =uxt H ]—[ wimy~", FCFS node
(1_] ne
— . _ (n)"!
=x;! H o H taj(m)~",  PS or LCFSPR node
Xoj
= H ﬂ taj(m) ™", IS node.
aj n—

This BCMP network can be extended to model service times with nonexponential
distributions. This is explained in the next section. O

3.4 Networks with Cox and General Service Times

Although the Markov network processes we have been studying have exponential
times between transitions, the processes can model general service times at the
nodes. We will show this for the BCMP networks discussed in the preceding
section.

We begin with a few comments on service times. An Erlang service time with
parameters n and y is the sum of n independent exponential random variables with
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rate u. Its density is

[l ny = puey' e /(n = 1)1, 1>0.

Think of this Erlang service as consisting of n independent identical exponential
phases performed in series. A generalization of this is a hypo-exponential service
time consisting of a series of n independent exponential phases with respective
rates i1, ..., in, which may be different.

A versatile generalization of Erlang and hypo-exponential random variables is a
Cox random variable defined as follows. Consider a series of n exponential phases
with rates u,, ..., i, as shown in Figure 3.1. In this system, a service begins by
performing phase 1 (an exponential phase with rate 1,). Upon completing phase
1, the service enters phase 2 with probability p; or the service terminates with
probability 1 — p,. If phase 2 is entered, then upon completing this exponential
phase, the service enters phase 3 with probability p; or terminates with probability
1 — ps. These phases are continued until the service terminates prior to or after
phase n. The probability that the service consists of exactly the first s phases (or
stages) is p; - - - ps—1(1 — ps), where po = p, = 1. The total time to complete the
service is a Cox random variable. Its distribution is

n
Fay=Y pi- poi(l = p)H(pr, ..., ), 120,  (38)
s=1
where H(t|u,,..., ;) is the hypo-exponential distribution of completing s

phases.

Cox distributions are a subclass of phase-type distributions (the distributions of
absorption times for Markov processes). Note that a Cox distribution is a mixture
of hypo-exponential distributions. This implies that a mixture of Cox distributions
is also a Cox distribution. Another useful property is that a sum of independent Cox
random variables is again a Cox random variable. Because of these properties, the
time to complete a complex job consisting of independent series-parallel subtasks
with Cox distributions can be modeled by a Cox distribution (a mixture models
parallel subtasks, and a sum models subtasks in series).

An important feature of Cox distributions is that they form a dense subset
within the set of all distributions of nonnegative random variables. This means
that any general service time distribution can be approximated by a Cox distribu-
tion. We will now describe how to use this property for modeling networks with
nonexponential service times.

—®
il Gkl AR B

FIGURE 3.1. Phases of a Cox Service Time
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Consider the multiclass Whittle network defined in Section 3.1 with the follow-
ing additional assumptions. Suppose that the service time requirement for each
a-unitatnode j has a Cox distribution with parameters i, s, pojs,fors =1, ..., n.
The number of phases n may depend on « and j. To incorporate these Cox services
into the network state, we assign the class label ojs to an a-unit that is in phase s
of its service at node j. We let x,;; denote the number of such units at node j, and
represent the state of the network by the vector x = (x4js : ajs € M, j # 0),
where M denotes the set of all class labels a;js.

_ Assume that each node j is one of the following types.
e A processor sharing node with service rates

-1
¢ajs(x) = XajsXj Hajs-

The rate p,/; is apportioned equally among the x4, oj-units at the node in phase
s of their service.
o Infinite-server node with service rates ¢y (x) = Xqjs thajs-
Also, in case the network is open, assume the arrival rates from outside are
Aaotto(|x]).

The routing rates Aq;, g must also be augmented to contain the phase parameter.
From the definition of a Cox distribution, it is clear that the new routing rates for
the network should be

Aajs,ajis+1) = 1- Pajs» 1<s<n,

Agjn, k1 = Aqj gk

with the rest of the rates being 0. An easy check shows that traffic equations for
these rates have a solution
s—1
Woajs = wajnpajla ajs €M,
=1
where w,; is a solution to the traffic equations for A g«.
Then from Corollary 3.11, it follows that an invariant measure for the network
is
[x]-1

- 1
7(x) = [] wom [ [v [ [ —wass/ptajs)™ (3.9)
n=0 j=1

.
o, xa]-"

where y; = x;! or 1 according to whether node j is a PS node or an IS node, and
uo(+) = 1 if the network is closed.

One can use this result for modeling networks with general service times. Specif-
ically, consider the network with the modification that the service times have
general distributions. Since these distributions can be approximated by Cox distri-
butions, the invariant measure above for the approximating Cox distributions can
be used as an approximation for the network with general service times. Unfortu-
nately, such approximations tend to be difficult for large numbers of phases and
customer types.
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3.5 Networks with Constraints

Sections 2.4 and 2.5 discussed reversible processes with constraints. The central
idea was that a reversible Markov process restricted to a subset of its state space
is also a reversible Markov process, and its stationary distribution is a truncation
of the original distribution to the subset. In this section, we expand on this theme
for Whittle networks that are locally reversible.

We begin with a general result concerning locally reversible Markov processes
with constraints. Consider a Markov process X on a countable space E with tran-
sition rates g(x, y). Without loss in generality, assume that X is ergodic, and let
7 denote its stationary distribution. Fix a subset E C E, and let X be a Markov
process on E whose transition rates, denoted by g(x, y), are the rates g(x, y) re-
stricted to I (transitions from states inside E to states outside of E are “blocked”
or suppressed). Assume that X is irreducible.

Definition 3.13. Suppose the restricted process X is ergodic and its stationary
distribution is

#x)=n(x)/) _ n(»), xek
yel

This is the conditional probability stationary distribution of X conditioned that it
is in IE. We say that X is a truncation of the process X to .

This truncation property is typically not true. It obviously holds if and only if 7
satisfies the balance equations for X, which is equivalent to 7 satisfying

mq(x, ]E) = Jrq(]E,x), X € ]E, (3.10)

where mg(A,B) = ) _,7(x) Zyegq(x,y). Another characterization is as
follows.

Proposition 3.14. The process X is a truncation of X to E if and only if
nq(x, E) = nq(E, x), x eE. (3.11)
In particular, if X is reversible on E or on B¢, then X is a truncation of X to E.

Proor. The balance equations that 7 satisfies, which are 7g(x, E) = mq(E, x),
can be written as

wq(x, ]E) + mq(x, ]E") = nq(]E, x)+ nq(fE", x), xe€kE.

From this it follows that (3.11) is equivalent to (3.10). This equivalence establishes
the first assertion. The second assertion of the theorem follows since X being
reversible on E or on E¢ would imply (3.10) or (3.11), respectively. |

We will now apply this result to networks. For the rest of this section, assume
the Markov process X represents an open or closed Jackson or Whittle network
process with service and routing intensities ¢;(-) and Aj, j,k € M (0 € M if
the network is open). We will consider a modification of this process in which the
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numbers of units in a sector J C M are restricted. Specifically, assume that the
state space of the network is

E={xeE:(x;:jeJ)e A, (3.12)

where A is the set of “allowable” values of the vector (x; : j € J).

The following are typical examples:
e Nodes with Finite Capacities. E= {x eE: x; <¢;, j € J}, where £; is the
capacity of node j. In this case, whenever some node k € J is such that x; = £,
then no additional units can enter that node until a unit departs from it. This is
called communication blocking.
e Sectors with Capacity or Load Constraints.

E={xeE:x +x <&px +x4<x;+ x5},

where J = {1, 2, 4, 5}. In this case, sector {1, 2} cannot contain more than £,
units and sector {1, 4} cannot contain more units than sector {2, 5}.
o Resource Constraints. E = {x e E: ¥ jes TijXj < ri, i € I}. Here each unit at
node j requires r;; units of a resource i, and there are only r; units of the resource
available. Typical resources are space, computer memory, manufacturing tools,
and money. Other common constraints can be formulated by functions of the state
x.

For the next result, assume that X is the resulting network process on the
restricted state space E as in (3.12). Define

J=JUlk & J: Ajcorhg > 0forsome j € J}.
Theorem 3.15. If the rates {) i} are reversible on J, then the network process

X is a truncation of X to E.

Proor. It suffices to verify the balance equations (3.10). But these will follow
upon showing that

Zm}(x, Tjx) = Zné(Tjkx,x), JEM, x € E. (3.13)
k k

To this end, first consider the case j € J. Then (3.13) is equivalent to

Zm}(x, Tjrx) + Z mq(x, Tix) = Z”é(Tjkx’ x)+ Z mq(Tix, x).
ked kelJ¢ ked keJe
(3.14)

The first and third sums are equal since an easy check shows that the kth term
in these sums are equal by the assumption that A j; is reversible on J. Also, this
assumption and Proposition 3.14 applied to A ;; ensure that

ij)\ijZwklkj, jeJe.
kede keJe

Using this, one can show that the second and fourth sums in (3.14) are equal. Thus
(3.14) holds for j € J.
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Next, consider the case j € J¢. Then Ajx =M =0fork € J,and so (3.13) is
equivalent to

Z mq(x, Tjkx) = Z nq(T,-kx, x).

keJ¢ kede
But this equation holds because Proposition 3.14 applied to the reversible rates
{Ajx} on J ensures that

ijAjk=Zwkkkj, jGJC.

keJ¢ keJ¢

This completes the proof of (3.13). |

3.6 Networks with Blocking and Rerouting

The last section discussed networks with blocking whose invariant measures agree
with those of the original network. We now discuss a variation of this theme in
which a Markov network process with blocking plus “rerouting” has invariant
measures that agree with the original network process.

We begin with a basic result for Markov chains, which underlies our results for
networks. Let {p;; : j, k € J} denote irreducible Markov transition probabilities
on a countable set J. Consider a Markov chain on a subset / of J that moves as
follows. Whenever it is in state j € I, a sequence of states is selected by the proba-
bilities p, until astate k € / is selected. That is, a sequence of states ki, ..., k¢, k
is selected with probability pj, pi, - - - Pik» Where k; & 1,0 = 1,...,¢, and
k € I. Then the chain moves from j to k. Let r;; denote the transition probability
of the chain moving from j to k. This Markov chain on I with transition proba-
bilities {rj;} can be interpreted as the Markov chain with transition probabilities
Djik restricted to the subset I by rerouting.

It follows, by conditioning on the first state selected, that

Tk =ij+ZPjt'hk, Jj.kel (3.15)
igl
Here n;; is the probability that, for a Markov chain on J with transition probabilities

{pj«}, the first entry into I starting from i ¢ I occurs in state k € I. These
absorption probabilities are the solution to the equations

ik =Pi+ Y i, J ¢ 1 kel (3.16)
igl
Proposition 3.16. If {n; : j € J} is an invariant measure for {pji}, then {r; :
J € I} is an invariant measure for {rj.}.

PROOF. Suppose that {7, : j € J} is a positive measure that satisfies

mp=Y mpi, JeEJ. (3.17)
keJ
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We will show that {r; : j € I} satisfies

mp=Y mrg, Jjel (3.18)
kel
By (3.17), we know that
ﬂj:ZTl’kpkj-i-ZJTkpkj, jel (3.19)
kel kgl

Now, from (3.16), (3.17), and (3.15), we have

zﬂkpkj = Z”k(nkj - Zpkinij)

kgl kgl igl
= Z Z Tk PkiMij — Z”k Z Pkilij
igl kel kgl i¢l
=Y n Y pun;
kel igl
=Y mlriy — Pij).
kel

For the second equality, k is changed to i and (3.17) is applied. Substituting the
preceding expression in (3.19) yields (3.18). a

‘We will now consider the notion of blocking and rerouting in networks. Suppose
that {X, : ¢ > 0} is the generalization of Jackson and Whittle processes discussed
in Proposition 1.23. Namely, X is a Markov process with transition rates

@ (X)X jr(x) if y = Tjxx for some j # k in M
0 otherwise,

q(x’ }’) = [

where A j,(x) is a routing rate as a function of the state x. For simplicity, assume
that A j¢(x) is the probability of a unit moving from node j to node k, and so
Y« Aji(x) = 1. Assume that the ¢; are ®-balanced, and that there is a positive
function A on E such that

A(x) =) ATpx)hj(Tix), j € M, x € Ewithx; > 1. (3.20)
k

These assumptions imply, by Proposition 1.23, that an invariant measure of the
process is

m(x) = Ax)®(x), x ek 3.21)

‘We will consider this network with the following blocking and rerouting proto-
col. Suppose the network is in state x € E, and a unit departs from node j. The
disposition of the rest of the units in the network is given by the vector x — e;. For
each such vector, there is a partition of the node set M such that only movements
of units under the probabilities {A ;¢(x)} between nodes in the same subset of the
partition are admissible. We let I(x — e;) denote a typical partition subset. The
partition may consist of the singleton M, but we disregard the degenerate case
where the partition is the singleton M for each x — e; (then there is no blocking).
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Now, we assume that the unit departing from node j in some partition subset / =
I(x — e;) selects a sequence of nodes according to the probabilities {A jx(x)} until
astate k € [ is selected. That is, the unit selects a sequence of states k, ..., kg, k
with the probability A jz, (x)Ag,(X) - - Agi(x), where k; & I,i = 1,...,¢, and
k € I. Then the unit moves from node j to node k. This selection process is done
instantaneously. Let rj,(x) denote the probability that the unit moves from j to k
according to this blocking-rerouting procedure.

As in the case of the Markov chain model above, it follows that

rie@) = Ap(x) + Y Ajimalx), kel (3.22)
igl
Here 7;(x) is the probability that, for a Markov chain on M with transition prob-
abilities {A ;x(x)}, the first entry into I starting from i ¢ I occurs in state k € I.
These absorption probabilities are the solution to the equations

@) = A+ Y Ai@ma@), JE1 kel (3.23)
igl
The resulting network process {X, : ¢ > 0} is a Markov process. Its transition
rates are

Gx, y) = ¢;(x)ri(x)

if y = Tjix for some j # k in M and j, k are in the same subset of nodes with
admissible transitions; and g (x, y) = 0 otherwise. Suppose that X is irreducible
on a space E c E. We interpret the network process X as a restriction of X under
blocking and rerouting.

Theorem 3.17. An invariant measure for XisA(x)= D(x)A(x), x € E.

ProoF. To prove the assertion, it suffices by Proposition 1.23 to show that
equation (3.20) holds for x € E. This equation can be written as

A +e)) =Y 1 € 1) Y A +ehij(x + e,
k

1(x)

where x + ¢; € E with x ; > land j € M. The first sum is over all subsets 7(x)
that partition M. To prove the preceding equation, it suffices to show that, for each
subset /(x),

mp= Y mrg, jel), (3.24)

kel(x)

where W= Alx + ej) and Tk = rjk(x + ej).

Now, setting pjx = Ak (x + ¢;), it follows that the relations (3.22) and (3.23)
are the same as (3.15) and (3.16), respectively. Consequently, the Markov chain
with transition probabilities {r;x : j, k € I(x)} is a restriction with rerouting of
the Markov chain with transition probabilities {p i : j, k € M}. Also, (3.20) with
the preceding notation implies that {x; : j € M} is an invariant measure for {p y :
J» k € M}. Then the desired expression (3.24) follows by Proposition 3.16. O
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3.7 Bottlenecks in Closed Jackson Networks

We now switch from blocking to bottlenecks. In this section, we address the ques-
tion: How does the stationary distribution of a closed Jackson network change as
the number of units in the network tends to infinity? We show that (a) the num-
ber of units in the nodes with the largest traffic intensity tends to infinity, and (b)
the distribution of the numbers of units in the remaining nodes converges to the
distribution of an open Jackson network.

Consider a closed Jackson network with v units and load-independent service
rates ¢;(x) = pu;, for j € M = {1, ..., m}. From Theorem 1.12, its stationary
distribution is

r@)=c, [[r}, IxI=v,
jeM

where r; = w;/u; is the traffic intensity, and the w;’s satisfy the traffic equations

ijA.ijZka.kj, jEM.
keM keM
We will consider the convergence of this stationary distribution as v — oo.

Let (X}, ..., X},) denote a random vector with the distribution  that represents
the numbers of units at the nodes in steady state. The superscript v highlights the
number of units v in the network, which we now treat as a variable. The nodes
with the largest traffic intensity would be the bottlenecks when v is large. In other
words, the heaviest traffic would be in the sector

J={jeM: :rj=r=max{r,...,ru}}.

The traffic in the complement K = M\ J would be lighter. Recall that x; = (x; :
j € J) denotes the state of the nodes in J and x(J) = ) jes X is the total number
of units in J. For each k € K, the ratio p, = ry/r is the traffic intensity at node
k relative to the traffic intensity r at the nodes in J. Assume K is not empty; an
empty K is not of interest.

The following result says that the distribution of X}, converges to the distribution
of an open Jackson network on K as v — oo. Also, the number of units X(J)"
in the bottleneck sector J converges to infinity. This implies that, for a closed
Jackson network with a large number of units and load-independent service rates,
the distribution of its nonbottleneck nodes can be approximated by a product-form
distribution as in an open network.

Theorem 3.18. Under the preceding assumptions, X(J)"' converges in distribution
to oo asv — 00, and

lim P{X} =xx)} =[] - p)oi*, xk = 0.

V—>00 kGK
Proor. It suffices to show that, for any vector xx > 0 and integer £ > x(KX),

lim P{X(J)" > € —x(K), Xy = x¢} = [ [(1 = p)o}". (3.25)
V—>00 ek
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From the distribution 7 above, it follows that
P{X(J)" = £—x(K), Xy = x}
=Y M) = £ - x(K), yk = xx)

y

=c, Z Zl(x(]):n)nr;j]_[rfk

n=¢—x(K) x4 jeJ kek
v
-V n X,
—er 3 e
n={—x(K) keK

Here |J| is the number of nodes in J. Using similar reasoning,

v

o' =r) 1l"ay

n=0
where
ai=Y 1K) =)]]n
XK keK
Combining the preceding displays, we have
wet—x(iy 1 I"
PX(J)" 2 £~ x(K), Xy = xx} = Lozt U1 [1e2. 326
Zn:() |J|nav—n keK
Now, supposing that the nodes are labeled such that K = {1, 2, ..., |K|}, then
i i-x (=X ==Xk |=1
RPN NI
x1=0 x,=0 )C“(|=0 keK
- n(l — o), asi— oo
kekK
In light of this, letting v — oo in equation (3.26) yields (3.25). a

3.8 Modeling Whittle Networks by Locations of the
Units

'We have been representing networks by the numbers of units at their nodes. Another
approach is to depict the evolution of a network by the locations of its units. In this
section, we describe this approach for closed and finite-capacity Whittle networks
with processor-sharing nodes, and comment on its applicability to other types of
networks.

Consider an m-node Whittle network that is closed with v units or open with
capacity v. As in Chapter 1, let A ;; denote the routing rates of the individual units
and let ¢;(x) denote the service rate when there are x = (x;, .. ., Xx,,) units at the
respective nodes. Assume the rates A j; are irreducible on the node set M, where
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M={1,...,m}or{0,1,...,m} according as the network is closed or open. Let
w; denote the stationary distribution of the routing process with rates A ;. Then by
Theorem 1.15, we know that the process {X, : ¢ > 0} that represents the numbers
of units at the nodes has the stationary distribution

X
w(x) = cd(x) l_[ wj’.
jeM

We will now analyze the network in terms of the locations of the units. In case
the network is closed, we label the units as 1, . . . , v. In case the network is open, we
assume that the indices 1, ..., v are labels or tokens that the units in the network
carry as follows. Whenever there are n < v units in the network, a unit entering
the network selects one of the v — n unused labels with equal probability. The unit
retains the label until it exits the network, and then the label becomes available for
another unit. The unit carrying the label i is called unit i.

We assume that the services at each node are under a processor sharing discipline
in which each unit at a node receives the same service treatment. Then the time
to a potential departure of a unit i from a node j has an exponential distribution
with rate ¢; ()c))cj_l . Here 1/x; is the probability that unit i is one selected to depart
from the x; units at node j.

We will represent the network by the stochastic process Y (t) = (Y1(¢), ...,
Y,(t)), where Y;(¢) denotes the node location of unit i at time ¢. A typical state
of the process Y is a vector y = (¥;,..., y») in M. Whenever Y is in state y,
a transition is triggered by some unit i moving from its current node y; to some
node k. Let 7}y denote the resulting state, which is y with y; replaced by k. Also,
let n(y) = (n;(y), ..., n,(y)), where

v

n =) 1i=j) JjeM, yeM,

i=1
which is the number of units in node j.

Under the preceding assumptions, Y is a Markov process and its transition rates
are

Ayk(D)y, YDy, ()™ if y' = Ty for some i and k

N
qr(y,y) = 0 otherwise.

The proof (Exercise 6) of the following result is similar to the proof of Theorem 1.15
for Whittle processes.

Theorem 3.19. The location process Y defined above is ergodic, and its stationary
distribution is

my(y) = @) [[wy " no),  ye M.
' jeM
This distribution satisfies the partial balance equations

T Y a0 Ty =Y m(TiyaTiy,y, 1=1,...,v.
keM keM
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The marginal distributions of my are also related to those of x. Indeed, the
stationary distribution of the location process of the ith unit is (Exercise 6)

m()=v'L;,, jeM, (3.27)

where L; denotes the expected number of units at node j (L; can be computed
from the jth marginal distribution of 7).

The location process Y does not have an exact analogue for an unlimited capacity
open Whittle network, since the convention of labeling a fixed number of units
does not apply to a varying and unlimited number of units. For such a network,
however, we can say the following. If the associated network process X is ergodic
and stationary, then conditional stationary probabilities for the unit locations are

P{the unit locations are y;, ..., y, | | Xo| = v} = 7y (y).

3.9 Partially Balanced Networks

We saw in Theorems 1.12-1.15 that Jackson and Whittle networks satisfy certain
partial balance equations. These balance equations are a coarser version of the de-
tailed balance equations that reversible Markov processes satisfy. Since reversible
Markov processes have canonical representations of their transition rates and in-
variant measures, a natural question is: Do analogous canonical representations
hold for partially balanced Markov processes and networks? The answer is no,
because this would be tantamount to asking for a canonical representation of in-
variant measures for any Markov process. However, there are some partial results
along these lines that we now present.

Throughout this section, we assume that {X, : ¢ > 0} is an irreducible Markov
jump process on a countable state space E with transition rates g(x, y) and an
invariant measure 7. For subsets A and B of E, we write

mq(A, B)=) Y m(x)q(x,y).
x€A yeB
When the process is ergodic, mq(A, B) is the probability flux between A and B,
or the average number of jumps that X makes from A to B per unit time.
Recall that g is reversible with respect to  if it satisfies the detailed balance
equations wq(x, y) = mwq(y, x), x,y € E. We will now consider the following
general partial balance condition.

Definition 3.20. For each x € E, let E, (x) and IE;, (x), y €T, be two partitions
of E. The q is partially balanced over {E,,, ]E;,} with respect to  if 7 is a positive
measure on E such that

rq(x,E,(x)) = nq(E'y(x), x), x€kE yel. (3.28)

A measure 7 satisfying this definition is an invariant measure since it satisfies the
total balance equations wq(x, E) = wq(E, x), which are the sum of (3.28) over
y. Note that partial balance partitions always exist: The degenerate case with the
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coarsest partitions E, (x) = IE;, (x) = E is always possible. The opposite extreme
is when the two partitions consist of single-point sets (the finest partitions), which
corresponds to detailed balance.

Partial balance equations (3.20) are potentially easier to solve for 7w than the
total balance equations, provided that one can find them. Partial balance also yields
insights into what subsets of transitions are balanced. There are generally many
partial balance partitions for a process and it is of interest to identify the finest
ones possible. Although the index set I' in the definition above is the same for both
partitions, some of the sets in a partition may be empty and the number of nonempty
sets in the two partitions may be different. In some cases, the two partitions are the
same. For instance, the partial balance equations in Theorem 1.15 for the Jackson
and Whittle network processes are based on the balance partitions

Ej()=E,(x)={TuxeE: ke M}, jeM.

A canonical representation of partial balance transition rates is as follows. It
is useful for checking whether certain partitions of a process are partial balance
partitions. Its proof (Exercise 3) is similar to that of Theorem 1.5.

Proposition 3.21. The transition rate function q is partially balanced over
{E,, E,} ifand only if it is of the form
q(x,y) =r(x,y)/n(x), x,ye€k,

where 7 is a positive measure on E and r is a nonnegative function on E? that

satisfies
Z r(x,y) = Z r(y,x), xe€E.

yeE, (x) yE]E’y(x)
In this case,  is an invariant measure for q.

The next result is a key tool for identifying or constructing partially balanced
processes. It is the basis of quasi-reversible network processes, which we discuss
in Chapter 8. Suppose the transition rates of the process X have the form

q(xv J’) = ql(h(x)v h(y))é(xv }’)’ X,y € Ev (3'29)

where A is a function from E to a countable set I, and g; and g are transition
rates for irreducible Markov jump processes on I and [E respectively. Let I, (i) and
I}’, (i),i € I and y € T', denote partial balance partitions for q; with respect to a
measure 7y on I. Associated with I, (i), define partitions on E by

E,ix)={y e E: h(y) =i € I,(h(x))},
Ey(x) = ViciEy;, xeE,iel,yerl.

Let ]E;, ;(x) and IE;, (x) be similar partitions associated with I]’, ).

Theorem 3.22. For the Markov process X with transition rates (3.29), suppose
q is partially balanced over {E,;, IE'V,. 1y € TI',i € I} with respect to 7, and
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7q(x, E,i(x)) is independent of i for each x and y. Then q is partially balanced
over {E,, E) } with respect to

m(x) = mh(x)r(x), x €k
ProoOF. The assertion follows since, for each x and y,

g B, = Y Y maihx), )FG(x, y)

iel, (h(x)) yeE,i(x)

Y mqihx), EG(x, Byi(x))

i€l (h(x))

Y mqil, BERGE,(x), x)

i€l (h(x))

Yo Y mat), hx)Eg(. x)

iel, (h(x)) yeIE’yi(x)
= 7q(E, (x), x).

The second and fourth equalities follow since A(y) = i when y € E,;(x). And the
third equality follows by the partial balance of ¢g; and g and the assumption that
7g(x, E,i(x)) is independent of i. a

The preceding result, loosely speaking, says the following. Suppose g is the
product of g, and ¢, and one knows or can obtain invariant measures 7; and 7 for
them separately. If in addition, 7 g(x, E,;(x)) is independent of i, then an invariant
measure of ¢ is the product of 7; and 7. This “divide and conquer” strategy is
predicated on obtaining 7, and 7.

The following is an immediate consequence of Theorem 3.22, where 4 is the
identity function.

Corollary 3.23. Suppose the transition rates of the Markov process X are

qx,y) =qi(x, y)q2(x,y), x,y€E,

where q, and q; are irreducible transition rates on E. Let {E,,E,} be partial
balance partitions for q, with respect to 1|. Suppose q; is reversible with respect
to my, and wyqo(x, y) is the same for each x, y and 'y € E, (x) U ]E’y (x). Then q is
partially balanced over {E,, ]E’y} with respect to

w(x) = mx)m(x), x €k
We end this section with a network example of the preceding result.

Example 3.24. Partially Balanced Network. Suppose that X is a slight extension
of a Whittle network process with transition rates

q(x, Tjx) = Akpj(x), x € E.

The departure intensities ¢ j;(x) are now allowed to depend on k. The network may
be closed or open with finite or unlimited capacity.
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Suppose that A j; are irreducible transition rates on the node set M. Let {I,,, I}’,}
be partial balance partitions for A ;; with respect to a positive measure w; on M,
where wy = 1 if the network is open. Associated with I,,(j), define partitions on

E by

E,j(x)={Tux eE:k e L,(j)}
]Ey(x):UjeM]E},j(x), xe]E,jeM,yel".

Let ]E;, ;j(x) and ]E;, (x) be similar partitions associated with 1,’, ().
Assume that ¢ ;; are ®-balanced departure—arrival intensities in the sense that
® is a positive function on E such that for x € E and j, k € M with Ty x € E,

D) (x) = P(Tjix) i (Tjrx).

In addition, assume that these quantities are the same for each k € I, (j) U 1,’, )

and any j, x and y. Then q is partially balanced over {E,, ]E;,} with respect to

n(x)= o) [[w], xek (3.30)
j=1

To see this, note that g, (x, Tjxx) = A j are transition rates for a Whittle network
process with departure rates ¢; = 1. Then it follows similarly to Theorem 1.15
that gy is partially balanced over {E, ;, E/,;} with respect to the measure [}_, w’'.
Also, the transition rate function g, = ¢, (x) is reversible with respect to ®. Thus
it follows by Corollary 3.23 that q is partially balanced over {E, , E } with respect
to the measure (3.30). O

3.10 Exercises

1. Suppose the multiclass network process X in Section 3.1 represents an open
network, and ¢o has the form ¢o(|x[), where |x| = 3, xoj. Show that the
service rates are balanced by the function

o(x) = [ [ doti — 1)/depi ('), x €E,
i=l

where x°, ..., x" is a direct path from x° = 0 to x* = x with n = |x| and
X =x""+ ey

2. Show that the service rates in Exercise 1 are a special case of the sector-
dependent service rates in Example 3.3. Show that the latter rates are balanced
by ® given by (3.3).

3. Prove Proposition 3.21.

4. Networks with infinite number of nodes or classes. Consider a Whittle network
with the modification that it has an infinite number of nodes labeled 1, 2, .. .,
where the number of units is still finite for the unlimited capacity open network
case. Assume that its routing rates A ; satisfy Y, Ajx < 0o and they do not
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have transient states. What additional assumption on the service rates is needed
(for the closed or open cases) in order for the network process to be a well-
defined Markov process? Under these assumptions, an invariant measure for the
network (as in Theorem 1.15) is w(x) = ®(x) ]—[?i, w;’ . In case the network
has unlimited capacity and the w; < 1 foreach j, is another assumption needed
in order for the infinite product in this distribution to be positive? If so, what is
it? Specify the comparable assumptions needed to model a multiclass Whittle
network with a “finite” number of nodes and an infinite number of classes.

5. Networks with infinite number of units. It is possible to define a Whittle process
with an infinite number of nodes and units, where each node contains a finite
number of units. Specify additional assumptions on the routing and service
rates that yield a well-defined Markov network process with invariant measure
w(x) = o) [[72, w;.

6. Prove Theorem 3.19 and expression (3.27). Hint: Use the properties n(y) =
n(yz,...,y)+e, and

D =) )1mk) = x).
x oy

v

7. Inthe setting of Theorem 3.19, consider the modification in which each uniti has
irreducible routing rates A;(j, k) on M that are a function of i. Let w;(j) denote
the stationary distribution of A;(j, k). Show that the stationary distribution of
the location process Y, under this modification, is

v

mr(y) = cdm) [ Jwi) [ sty e M.

i=1 jeM

3.11 Bibliographical Notes
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(1984), Dai and Harrison (1992), Dai (1995), Mandelbaum and Pats (1998), Bram-
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is to approximate their probability distributions via the Kolmogorov backward and
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forward difference-differential equations using singular perturbation techniques as
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and Proposition 3.16 is from Kemeny and Snell (1976). Other types of blocking
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not cover are in Kumar and Kumar (1994), Gross and Harris (1985), Stecke and
Solberg (1985), Buzacott and Yao (1986), Boucherie and van Dijk (1990), Kelly
and Williams (1995), and Glasserman et al. (1996).
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Network Flows and Travel Times

This chapter addresses the following questions about movements of units in sta-
tionary Jackson and Whittle processes. What flows of units between nodes are
Poisson processes? When a unit moves from one node to another, what is the
probability distribution of the locations of the other units in the network? What is
the distribution of the time it takes for a typical unit to traverse a series of nodes?

The answers to these questions require an understanding of Palm probabilities
for Markov processes at their transition times. The theory for these probabilities is
a self-contained, elementary part of the theory of Palm probabilities. We cover this
subtheory in Section 4.6, and give a more comprehensive study of Palm probabil-
ities in Chapter 5. Another key tool for our analysis is a generalization of Lévy’s
formula for expectations of functionals of a Markov process. This formula is the
topic of Section 4.2.

4.1 Point Process Notation

In this section, we introduce the notation and a few properties of point processes
that we use throughout the rest of the book. Additional material on point processes
isin Chapters 5 and 9. Point processes in time (i.e., on the real line R or halfline R ;)
describe such events as customer arrival times, or times at which customers move
from a node j to a node k. Point processes in a space are natural for modeling such
things as mobile customers in regions of the plane R2. We will also use “space—
time” point processes, where each point is a pair of numbers in time and a space
(e.g., the arrival time of a customer to a system and the location where it enters).

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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To describe point processes on general spaces, we will use the following no-
tation, which is now standard in applied probability. Let E denote a complete,
separable metric space (a Polish space), and let £ denote its family of Borel sets.
We will describe sets of points in E by counting measures. For most of our appli-
cations, E will be a Euclidean space. We refer to E simply as a space, and denote
other spaces of this type by E’. (With a slight abuse of notation, we will also con-
tinue using E as the state space for Markov processes; the nature of E should be
clear from the context.)

Suppose that x, ..., x; are locations of points (or unit masses) in E. There
may be more than one point at a location, and the order of the subscripts on
the locations is invariant under permutations. These points are described by the
counting measure v on E defined by

k
v(A) =) l(x, €4), A€k,
n=1
where v(A) denotes the number of point in A. Let M denote the set of all such
counting measures on E that are finite on compact sets. Endow M with the o -field
M on M generated by the sets {v € M : v(A) =n},forA e €andn € Z,.

Definition 4.1. A point process N on E is a measurable map from a probability
space (2, F, P) to the space (M, M). The quantity N(A) is the number of points
in the set A € £. We express N as

N(A) =) 1(X, € A), A€E, 4.1

N(E)

n=1 "2

where the X,,’s denote the locations of the points of N. The summation is
where N (E) may be finite or infinite.

The space of measures M and related measure theory technicalities are not used
explicitly in the following discussion. The results are understandable simply by
thinking of E as a Euclidean space and N as a counting process on it. When E = R
(or R,), we denote the point locations by 7, instead of X,,. Also, unless specified
otherwise, we assume the points are ordered such that

i< TH<T  <Ty)<0<Ti<Th<....

Note that these times are subscripted such that T, < 0 < 7. We also write
N(a,b] = N((a, b]) fora < b,and N(¢t) = N(O, t], fort > 0. We will frequently
refer to integrals with respect to such point processes in time. The integral of a
real-valued process {Y; : t € R} with respect to N is simply the summation

f Y,N(@dt) =) ¥,I(T, € B).
B n

The probability distribution of a point process N (i.e., P{N € -}) is determined
by its finite-dimensional distributions

P{N(Al):nl,...,N(Ak)an}, A],...,Akeg.
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It suffices to define these probabilities on sets A; that generate £. For instance,
when E = R, intervals of the form (a, b] generate £. The point process N is said to
be simple if P{N({x}) < 1for all x € E} = 1 (i.e., the point locations are distinct).
The mean measure of N is u(A) = EN(A), A € £, which may be infinite.

The most prominent point processes are Poisson processes defined as follows.

Definition 4.2. A point process N on E is a Poisson process with mean measure
w if it satisfies the following conditions.

(a) N has independent increments: The quantities N(A;), ..., N(A) are indepen-
dent for disjoint sets A}, ..., Ay in&.

(b) For each A € £, the quantity N(A) is a Poisson random variable with mean
1(A); and p is finite on compact sets.

In this definition, if u({x}) > 0, then the number of points N({x}) exactly at x has
a Poisson distribution with mean p({x}). On the other hand, if u({x}) = 0, then N
cannot have more than one point at the location x. This occurs, for instance, when
w(A) = f 4 T(x)dx, where r(x) is the intensity or rate of N at the location x, and
dx denotes the Lebesgue measure.

Some properties of networks involve point processes on product spaces. To
define a point process N on a product space [E x ', it suffices to specify its values
N(A x B) for product sets A x B € £ x €. An important case is as follows.

Definition 4.3. A point process N on R x E is a space—time point process. We
denote its points by the pairs (7},, X,,).

In this definition, it is possible for N({ x E) to be infinite for finite intervals 7, and
so it is not appropriate to assume the 7,,’s are ordered. We also sometimes use the
nonnegative time axis R, instead of R. A space-time process is a natural arrival
process for a service system or particle system, where 7,, is the arrival time of the
nth customer or particle, and X, is the location in a space E where it enters. The
preceding definition allows for an infinite number of particles to enter a system
at a specified time. For instance, an infinite number of points may be present at
time 0. Although the 7,,’s are not ordered, one can say that the nth particle with
space—time entry (7, X,) has ) _, An 1(Ty < T,) predecessors.

Suppose N is a space-time point process that is Poisson. Consider the special
case in which its mean measure has the form

EN((s,t] x By=a(t —s)F(B), s<t,

where a > 0 and F is a probability measure on E'. In this case, the points {7}, } form
a Poisson process on R with rate a, and the {X,,} are independent and independent
of {T,}, and each X, has the distribution F. We say that the space—time Poisson
process N has a rate a and space distribution F.
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4.2 Extended Lévy Formula for Markov Processes

Our study of movements in networks will involve functionals of Markov processes.
This section covers expressions for their expected values.

We will use the following notation throughout this chapter. We assume that
{X, : t € R} is a Markov jump process on a countable state space E with transition
rates g(x, y). The time axis is the entire real line R, because this is natural for
analyzing stationary systems. The results here automatically apply to processes
defined only on the nonnegative time axis. The process X has piecewise constant
sample paths, and we assume its sample paths {x, : ¢ € R} are in the set D of all
functions from R to [E that are right continuous and have limits from the left. The
left-hand limit of X at time ¢ is X,_ = lim,4, X,. Frequent reference will be made
to time shifts of the process X defined as follows.

Definition 4.4. For each t € R, the time-shift operator S, on D is a mapping
S, : D — D defined by S;z = {z(s +t) : s € R}, for z € D. The process X with
its time parameter shifted by the amount t is $,X = {X,4, : s € R}.

The time-shifted process S, X is what an observer of X would see at time ¢:
With ¢ as the time origin, the future would evolve as X, ., for u > 0 and the past
would be seen as X,_, for u > 0. The stochastic process X is stationary if the
distribution of the process S; X is independent of ¢.

We denote the transition times of X by

< Ta<t1<T7p<0<t<n3<....

For this section, we let N denote the point process of these times; that is

N(A) =) I(z, € A) = Y X #£X.), ACR.
n teA
Reference to a time set A C R means that A is a Borel subset of R (this avoids
introducing a symbol for the Borel sets). In later sections, we use N to denote other
point processes. Finally, we say that an expectation of the form E | 4 Ys ds exists
if [, E\Y;|ds is finite.

This section focuses on functionals of the Markov process X associated with
its transitions times t,. As a preliminary example, suppose that a(x, y) is a value
(cost or utility) of a transition of the process from state x to state y. Then the value
of the transitions in the time set A is

] h(Xi—, XIN(dD) = Y h(Xy,_,, X)Wz, € A).
A r

The expectation of this functional can be expressed as follows.

Example 4.5. Lévy’s Formula. For h : E*? - Rand A C R,

E f h(X,—, X;)N(dt) = E f > a(Xe, (X, y)dt, (4.2)
A A

y#X:
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provided the right side exists. This formula follows from the extended Lévy formula
in Theorem 4.6 below with g(z, S;X) = h(X;_, X,)1(t € A). Note that if the
process X is stationary with distribution 7, then (4.2) becomes

E / B XON@D = (b= 0) Y 7() Y 4, . )
(a.b] x y#x

In particular, the expected number of transitions of X from x to y per unit time is
E/ (X, = x, X, = y)N(d¢t) = n(x)q(x, y).
©,1]
An example of (4.2) is that, for f : E — R,

E / f(X)N@1) = E f Y aXe ) fydr,
A A.V?éxt
provided the right side exists. Another example is Dynkin’s formula; see
Exercise 1. a

We now consider the situation for the process X in which a transition at time
t is associated with a real-valued quantity g(z, S, X), which is a function of ¢ and
S; X. This quantity is a function of the future, as well as the past, of the process,
since the time-shifted process S; X is the entire sample path of X “centered” at ¢.
Such functionals are the basis of Palm probabilities for Markov processes, which
we discuss later in this chapter. Forg : Rx D —» R, 7 €e R,and x,y € E, we
define

G(t’x$ }’) = E[g(tn—f—l’ ST,,HX)‘.EII = t’ X'(,, = xv XT,,H = J’]-

We assume this expectation exists; it does not depend on n because of the
Markovian structure of X. The following is an extended Lévy formula.

Theorem 4.6. Forg: R x D —> Randu € R,
E/g(t,StX)N(dt)= Ef Zq(Xt,y)G(Tt,Xt,y)dt, (4.3)
R IRY#XI

provided the last expectation exists. Here T, = sup{s < t : X; # X;} is the time
of the last transition of X before or at time t.

PrROOF. It suffices to show that, for each n,
E f g(t, S X)N(dt) = E / Y a(X, )G(T;, X,, y)dt.
(T, Tut1] (T Tut1] y#X,

Clearly, N has exactly one point at z,,,; in the interval (z,, 7,41], and (T}, X;) =
(t, X,), for 1, <t < t1,41. Therefore, the preceding display is equal to

E[g(tus1, S X1 = EL Y q(Xe,, )G (Tn, Xy Y (Tasr — Tl (44)
y# X,
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We will use the properties that the sojourn times of the Markov process X in
the states it visits are exponentially distributed, and the sequence of states it visits
forms a Markov chain. In particular,

P{T’H-] — Ty > thr", ‘L'n} — e—q(xr,,)f
P{Xt,,+| =y| Xr,,, T,} = q(Xr", Y)(I(Xr")_l,

where g(x) =} q(x, y).
Conditioning the right side of (4.4) on X, 7, and using the expression E[z,;; —
T, | Xy, Tl = q(X ,")‘1 , it follows that the right side of (4.4) equals

E[ )" q(Xe,, )G(ty, Xr,r ¥)q(X1,) ']
y#Xq,
=E[ Y G(ta, Xr,, Y)P{Xy,,, = ¥ | Xr,, Tal]
y7éx'!n
= E[G(tn’ Xru’ XtuH)]

= E[g(tu+1, S5, X)].
This proves (4.4), which in turn completes the proof of (4.3). O

The extended Lévy formula obviously reduces as follows for stationary
processes and time-homogeneous functions.

Corollary 4.7. Suppose the Markov process X is stationary, and denote its
distribution by n(x) = P{X; = x}, x € E. Then, forg : D —> R,

E/ g(S: X)N(dt) (4.5)
(a,b]

=(b-a)) m(x)) 9, NERSX)| Xy = x, Xy, =]
x y#X

provided the right side of this equality exists.

The preceding results also apply when the state space of the Markov process X is
an uncountable Euclidean or Polish space. The only difference is that the transition
rate g(x, y) for countable states is replaced by a transition kernel g(x, B) for a
transition from x into a set B. Then sums involving g are replaced by integrals. For
instance, the right side of (4.2) becomes E[f, [ 4(X;, dy)h(X,, ) dt]. Otherwise,
the proofs are the same.

4.3 Poisson Functionals of Markov Processes

There are a variety of point processes associated with the transition times of a
Markov process. A typical example is the point process of times at which units
move from node j to node k in a Jackson process. In this section, we develop
general criteria for such a point process to be a Poisson process. We apply the
results in Section 4.5 to characterize Poisson flows in networks.
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As in the preceding section, assume that {X; : ¢ € R} is a Markov jump
process on a countable state space E with transition rates g(x, y). With no loss in
generality, assume that X is ergodic and let 7 denote its stationary distribution.
We will consider certain types of transitions of X as follows.

Definition 4.8. Suppose 7; is a subset of E? that does not contain pairs with equal
entries. A Ty-transition of X is a transition from a state x to another state y, for
some (x, y) € 7y. The point process N of times at which these transitions occur
is defined by

NA) =) (X, X;)€To, € A), ACR (4.6)

n

The N(A) is the number of 7y-transitions of X in the time set A.

The subscript 0 on the set 7y refers to a transition defined only by the values of the
process at the transition time viewed as a time origin. The second half of this chapter
deals with more general transitions called 7 -transitions that may involve more
information about the process. There are many examples of point processes of 7-
transitions since any subset 7y determines one. For instance, if IE is the nonnegative
integers and one is interested in the number of jumps whose size exceeds b, then
this point process is determined by 7y = {(x, y) € E2 : |x — y| > b}. Note that N
is the point process of all transition times 7, of X if Ty = E\{(x, x): x € E}.

Throughout the rest of this section, we assume that N is the point process of
Ty-transitions of X for a fixed transition set 7y. Although N is a function of the
transition set 7y, we suppress the 7y in its definition. Our interest is in criteria for
N to be a Poisson process.

First, we relate the independent increments property needed for N to be a Poisson
process to the following notion.

Definition 4.9. The future of N is independent of the past of X, denoted by
Ny L X_,if {N(A): A C (¢, c0)} is independent of { X, : s < t},foreacht € R.

In this definition, {X; : s < ¢} can be replaced simply by X, since X is Markovian.
Similarly, N_ L X denotes that the past of N is independent of the future of X.

Theorem 4.10. If N, 1| X_or N_ L X,, then N is a Poisson process (not
necessarily time homogeneous).

PROOF. By a characterization of Poisson processes, the N will be a Poisson
process if it is simple, has no fixed atoms, and has independent increments. It is
well known that the probability is 0 that the Markov process X has a jump at any
specified time. Thus, N is simple with no fixed atoms.

Itremains to show that N has independent increments. First, suppose N, L X_.
Then forany s < ¢t in R,

P{N(s,t]=n|N(A): A C (00, s]} = E[P{N(s,t] =n|X, : r <s}}
= P{N(s, t] = n}.
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Using this, one can show by induction that N has independent increments on any
number of disjoint time sets. Similarly, the independent increments property of N
also follows when N_ L X, since

P{N(s,t] =n|N(A): A C (t,00)} = E[P{N(s,t] =n|X, : u > t}]
= P{N(s,t] = n}. a
Our next step in analyzing the point process N of Ty-transitions is to obtain an

expression for its mean measure. Applying Lévy’s formula (4.2) to the definition
of N(A), we have

EN(A) = f Ea(X,)dt, (4.7)
A

where

a(x) = ) qx, UK, y) € T).
y

The a(X,) is the “conditional intensity” of N given X, in the sense that
E[N(t,t +dt]| X,] = a(X;)dt.

The function a(x) (which is also a function of the transition set 7;) plays a key
role in our analysis.
We are now ready to present our first criterion for N to be a Poisson process.

Theorem 4.11. The N is a Poisson process with rate a and N, L X_ if and only
if
a(x)=a, xelL. 4.8)

PrOOF. Suppose (4.8) holds. Fix an s € R. Then by (4.7), it follows that the
process

s+t
M; = N(s,s +t] ——/ a(X,)du, t=>0,

is an .F,X -martingale, where .7-',X is the o-field generated by {X, : s <u < s +¢}.
By Watanabe’s characterization of Poisson processes, the N is an .7-',X -Poisson
process, or a Markov-modulated Poisson process. This means that, conditioned
on X being in state x in a time interval (a, b], the N is a Poisson process on that
interval with rate a(x). The process A, = fs s+ a(X,)du is the “compensator”
of N(s, s + -]. Then under the assumption (4.8), it follows that N(s, s + -] is an
.F,X -Poisson process with rate a. In particular, N(s, s + ¢] is independent of fSX
for each ¢. Since these observations hold for each s, it follows that N is a Poisson
process withratea and N, 1L X_.

Conversely, assume the preceding conclusion is true. Then, for any x and ¢ > 0,
it follows by (4.7) that

at = EN(0,t] = E[NQ©, t]| Xo = x] = f E[a(X,)| X = x]ds.
0
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The integrand is continuous in s since X is a Markov process. Taking the derivative
of the preceding equation with respect to ¢ yields

a=Ela(X))|Xo=1x], t=>0.
Then, using the first jump time 7; = inf{t > 0: X, # Xo}, we can write
a=ax)P{t) > t|Xo = x} + E[a(X)1(1) < 1)|X( = x].
Letting ¢ | O yields (4.8). |

The preceding criterion for the point process N of Zy-transitions to be a Poisson
process is what one might anticipate, and it is often tacitly assumed when one de-
fines a particular Markov process. Another less intuitive and more useful criterion
for N to be Poisson is as follows.

Theorem 4.12. Suppose the Markov process X is ergodic and stationary. Let &
denote its stationary distribution, and define

a(x) =)™ Y w0, DI, x) € T), x€E.

Then N is a Poisson process with rate a and N_ | X if and only if
a(x)=a, xcekL. 4.9)

PrOOF. Consider the time reversal of X, which is X, = limgs_, X_, (this is
the process {X_; : t € R} modified to have right-continuous paths). Since X is
stationary, we know by Theorem 2.5 on time reversals that X is also a stationary
Markov process with transition rates

é(an’)zﬂ(x)_lﬂ(J’)Q(y,x)a xny]E,

and its stationary distribution is the same as the stationary distribution = for X.
Now, consider the point process

N(A) = Z (X, X,-)eTy), ACR.

teA

By Lévy’s formula and the definitions of 4 and &, we have

BN = E [ ¥ i ) e Tyt = £ [ ackar
A5 A

Note that N(A) = N(—A), for each A, and so N is the time reversal of N.
Consequently, N is a Poisson process with rate a if and only if N is. Furthermore,
since N s X are time reversals of N , X, it follows that N is a Poisson process
with rate @ and N_ 1 X, if and only if N is a Poisson process with rate a and
N, L X_. But the latter is equivalent to (4.9) by Theorem 4.11. This proves the
assertion. ]

Here is a classic application of the preceding theorem.
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Example 4.13. Birth-Death Process with Poisson Departures. Suppose the
Markov process X represents a birth-death process with birth rate A and death
rate p,, when there are x units in the system. This might represent a queueing
process with arrival rate A and departure rates p,. An example is an M/M/s
queueing system with s independent servers (1 < s < 0o) that have exponential
service times with rate u, and @, = p min{x, s}.

The transition rates of the process X are

qx, ) =A@y =x+D+ul(y=x-1).

Implicit in the description of the process, the point process of arrivals is Poisson
with rate A regardless of whether or not X is ergodic. This also follows formally
by the structure of g and Theorem 4.11 since

a(x)=) qex, Ny =x+1) =q(x,x + 1) = 1.
y

Next, consider the point process N of times of departures from the system,
which are 7y-transition times, where 7o = {(x + 1, x) : x > 0}. Its associated o
function is

a(x) =) g, NIy =x—1) = p1.
y

This depends on x, and so Theorem 4.11 does not ensure that N is Poisson. How-
ever, let us now assume that X is ergodic and stationary. Its stationary distribution
is

Tx) =cA /(U px), X =1,

rovided ¢c=! = 1 + o1 A /(e - - - iy 1s finite, which we assume is true. In
p x>1
this case,

a(x) =m(x)" Y T, DIy =x+1)
y

=a@x)'m(x+ g +1,x)=A.

Thus, Theorem 4.12 ensures that N is a Poisson process with rate A. In particular,
this result yields the Burke-Reich property that the departure processes for M /M/s
queues are Poisson. o

‘We now consider a queueing system with non-Poisson departures, but the times
at which certain batches depart form a Poisson process.

Example 4.14. A Batch Service System. Consider a Markovian queueing process
whose state is the number of customers in the system and whose transition rates
are

q(x,y) = Al(y = x + 1) + u1(y = max{0, x — K}).

Here A, u, and K are positive, and A < K u. This represents a system in which
customers arrive by a Poisson process with rate A and are served in batches as
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follows. Whenever there are x > K customers in the system, batches of K cus-
tomers depart at the rate u; and whenever x < K customers are present, all of the
customers depart at the rate u. The system is ergodic and its stationary distribution
is w(x) = r*(1 — r), x > 0, where r is the unique root in (0, 1) of the equation

wr¥t A+ wr +1=0.

This assertion follows by showing that this distribution satisfies the balance
equations.

Now, assume the process is stationary. Let N denote the point process of times
at which batches of size K depart from the system. Then N is a Poisson process
with rate i + A(1 — r~!). This follows by Theorem 4.12 since

a(x)=mx)"'n(x + K)gx + K, x)
=prf =pu+ a1 -r"). O

4.4 Multivariate Compound Poisson Processes

We have been studying the point process N that records times of 7Zy-transitions
of the Markov process X. This section addresses similar issues for multivariate
Poisson and compound Poisson processes associated with 7y-transitions of X.

We begin with a multivariate analogue of Theorem 4.12. This result is useful for
determining when several flows in a network are independent Poisson processes.
Suppose that N; is a point process of Ty -transitions of X, fori = 1, ...n. For
x € Eand u € {0, 1}", define

a(x,w) =770 Y 70, D1k » € ) =i, 1< <),
y

Also, let ¢; denote the n-dimensional unit vector with a 1 in position i.

Theorem 4.15. Suppose the Markov process X is ergodic and stationary, and its
stationary distribution is . Then Ny, ..., N, are independent Poisson processes
with respective rates ay, . . ., a, such that (N, ..., N,)_ L X if and only if, for
each x € Eandu € {0, 1}",

a; ifu=e¢; forsomel <i <n

alx,w) = [0 otherwise. (4.10)
This result is a special case of Theorem 4.19 below for compound point pro-
cesses. The criterion (4.10) is the multivariate analogue of the criterion (4.9) in
Theorem 4.12 for single point processes. A reader interested in seeing how the pre-
ceding result characterizes Poisson flows in networks can skip to the next section
and read the rest of this section later.
Our aim now is to study multivariate compound point processes associated with
To-transitions. Let N denote a point process of Zg-transitions of the Markov process
X. Assume that whenever X makes an 7-transition from x to y, a mark h(x, y)
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in a complete, separable metric space IE' is assigned to the transition. Then the
times at which the marks are recorded and the associated marks are modeled by
the space—time point process M on R x E’ defined, for A C R, B € &, by

M(A x B) = Z 1(h(X;-, X;) € B)I((X,-, X,) € Tp). (4.11)
teA
The M(A x B) is the number of 7y-transitions in the time set A at which a mark in
the set B isrecorded. Clearly N(A) = M(A xE'), which means that M contains the
point process N of Ty-transitions at which marks are recorded. Since the probability
is O that X takes a transition at any fixed time, M is a simple point process without
fixed atoms and M({t} x E') =0 or 1, for each ¢ € R.
Our interest is in criteria under which M is a space-time Poisson process with
rate a and space distribution F. That is, it is a Poisson process with mean of the
form

EM((s,t] x B) = a(t — s)F(B),

where a > 0 and F is a probability measure on E'. In this case, N is a Poisson
process with rate @, and the marks are independent of N and each one has the
distribution F'.

Let M, L X_ denote that the future of M is independent of the past of X; that
is, [M(A x B) : A C (t,00), B € £'} is independent of {X; : s < t}, for each
t € R. In addition, for x € E and B € £, define

a(x, B) = ) _q(x, )1(h(x, y) € B, y) € To),
y

1
ax, B) = Y 70y, )1(h(y, x) € B)1((y, x) € T).
y

The next three results are analogues of Theorems 4.10, 4.11, and 4.12. Their
proofs are left as exercises for the reader.

Theorem 4.16. IfM, | X orM_ 1 X, then M is a Poisson process.

Theorem 4.17. The M is a space—time Poisson process with rate a and space
distribution F such that M, | X_ if and only if

a(x,B)=aF(B), xckE, Be€.

Theorem 4.18. Suppose the Markov process X is ergodic and stationary with
stationary distribution 7. Then M is a space—time Poisson process with rate a and
space distribution F such that M_ 1 X if and only if

a(x,By=aF(B), xcE, Bef'.

'We now characterize multivariate compound Poisson processes associated with
To-transitions. Consider the n-dimensional random measure (M, ..., M,)) defined
by

Mi(A) =) hi(X X)U(Xi—, X) €T), ACR, 1<i<n, (412)

teA
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where h; is a real-valued function on E?. This is an n-dimensional compound
Poisson process with rate a and atom distribution F on R”" if it has independent
increments in time and, for any By, ..., B, and s < ¢ in R,

P{M[(S, t] € Bly ---aMn(sy t] € Bn}

=Y F**(B) x --- x B,)a"(t — 5)* exp(—a(t — 5))/k!.
k=0

The independent increments in time means that, for any disjoint time sets
Ay, ..., Ay, the vectors (M((A;), ..., M,(A})), 1 < j < n, are independent.

For such a process, it follows that each M; is a compound Poisson process with
rate a; = a[l — F;(0)] and atom distribution F;, where F; is the ith marginal
distribution of F. Also, the M;’s are independent if and only if F is a product of
its marginal distributions.

The following is an analogue of Theorem 4.18. A corresponding analogue of
Theorem 4.17 is in Exercise 6.

Theorem 4.19. Suppose the Markov process X is ergodic and stationary. Let w
denote and its stationary distribution and, for x, y € E and B C R", define

H(x’ }’) = (hl(x, )?), ey hn(x, }’)),
a(x, B) =7""(x) ) _ 7 (»q(, )1((y, x) € To)1(H(y, x) € B).

y
Then (My,...,M,) is a compound Poisson process with rate a and atom
distribution F such that (M,, ..., M,)_ L X, ifand only if
a(x,B)=aF(B), xekE, BCR". (4.13)

PROOF. Let M denote the space-time point process defined by (4.11) with E' =
R"” and A = H. We can also express M as

M(A x B)=) 1(Tc € A, (Y}, ..., ¥) € B),
k

where the 7;’s denote the times of 7y-transitions and Y,f = h;(X7,_, X7,). Using
this notation, we can write

Mi(A) =) Y I(T; € A).
k
Now, by the preceding expressions and Exercise 3, it follows that (M, ..., M,)
is a compound Poisson process with rate a and atom distribution F such that

My, ...,M,)_ L X, if and only if M is a Poisson process on R x R” such that
M_ 1 X, and

E[M((s,s +t] x B)] =atF(B), foreachs,t,and B.
But the latter is equivalent to (4.13) by Theorem 4.18. O

The preceding result also applies to one-dimensional compound Poisson
processes. Here is an application.
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Example 4.20. Busing System With Compound Poisson Departures. Consider a
Markovian queueing process whose state is the number of customers in the system,
and its nonzero transition rates are

q(0,1) = A(1 — p), gx,x+1)=Ax, x>1,
g, x —n)=pup"'(1-p), n=1,...,x—1,
qx,0)=pp*~', x>1.

Here A and u are positive and 0 < p < 1. This represents a system in which
customers arrive by a Poisson process with rate A and are served in batches as
follows. When there are customers in the system, “buses™ arrive at a rate u to
take them immediately from the system. Busing is common in computer systems
and material handling systems. The number of customers each bus can take is a
random variable with the geometric distribution p"~'(1— p),n > 1. When x units
are present, the actual number that departs in a batch has the truncated geometric
distribution p"~'(1 — p), for n < x, and p"~', for n = x. Also, when there are
no customers in the queue and a customer arrives, then with probability p there is
a bus available to take the customer without delay. The process is ergodic and its
stationary distribution is

m(x) =mO)(1 - pA*/(u+ pr), x=1, (4.14)

provided A < w@ + pA, which we assume is true. One can prove this 7 is the
stationary distribution by verifying that it satisfies the balance equations.
Assuming the process is stationary, consider the compound departure process

M(A) = Zmax{O, X, —X,._.}, ACR

teA

This describes the total number of departures in the time set A; it records both
the times at which batches of customers depart and the batch sizes. Then M is
a compound Poisson process with rate A(1 — p) and geometric atom distribution
r"'(1=r),n > 1, where r = pA/(iu+ pA). This follows by Theorem 4.19 since,
foreachx e Eandn > 1,

aGx,m)=7(x)"' Y w()Q, Ox =0,y =n) +1(x = 1,y =x +n)]

=1 —-pyr" ' —-r). ]

4.5 Poisson Flows in Jackson and Whittle Networks

For this section, we assume that X is an ergodic Jackson or Whittle process as in
Chapter 1 that represents an open m-node network with unlimited capacity. We
now apply the results in the preceding section to identify Poisson flows for this
process. Recall that its transition rates are q(x, Tjxx) = Ajx;(x), for j # k in
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= {0, 1,...,m}, and its stationary distribution is
m
w(x) = cP(x) I—[ w;’, x e E.
=1

For each j # k in M, we define the point process Nj; by
Nj(A) =) 1(X, =TuX,_), ACR.

teA
The Nji(A) records the number of times units move from node j to node & in the
time set A. We first consider the arrival and exit processes for the network.

Theorem 4.21. Suppose X is a stationary Whittle process. Then the following
statements are equivalent.

(1) The network’s arrival processes Ny, . .., Non, are independent Poisson pro-
cesses with respective rates Ayy, . . ., Aom, and (Noi, ..., Nom)+ L X_.

(2) The network’s exit processes N\, . . ., Nuo are independent Poisson processes
with respective rates wiAg, ..., Wyhno, and (N1g, ..., Nuo)— L X4

3 do() = 1.

These statements hold if X is a stationary Jackson process.

ProOF. Consider (2) in the setting of Theorem 4.15 applied to Nyg, ..., Nyo. In
this case,

1
G, w = o5 0D (10 =2 +e) =uj 1 < j <m).

Then by the structure of 7 and the ®-balance property, forx € Eand 1 < j < m,
a(x,e;) = )m(x + e))Ajop;(x + ;) = wjkjoo(x).

Also, since only one unit may move at a time in the network, it follows that
a(x,u) = 0 when u is not a unit vector. Thus, (2) is equivalent to (3) by The-
orem 4.15. Similarly, one can prove (1) is equivalent to (3), as we suggest in
Exercise 8, by verifying (4.40) in Exercise 7. Finally, if X is a Jackson process,
then (3) is true by assumption, and so (1) and (2) are true. O

The preceding result shows that Poisson arrival processes to the network beget
Poisson exit processes. We now see that some internal flows in the network may
also be Poisson processes. Suppose M is a sector of the network such that each
unit exiting M never returns to M. This holds if the routing process on M with
rates A j; has the propeny that whenever it exits M it must enter the outside node
0 before it can return to M again. We will consider the flows Ny, for j € M and
ke M= M\M.

Let X denote the process X restricted to the nodes in M ; that is, X ;= xif
X, =x,wherex = (x;: j € M) denotes the restriction of x to M. Then X is a
network process with node set M U {0} and state space E={%:xe€ E}.

In case X is a Whittle process, we will make the following additional assump-
tions on the service rates ¢ ;, which are automatically satisfied when X is a Jackson
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process. A .
e ¢; is a function ¢, (x) of only X if j € M.

o ¢y is a function ¢ (%) of only £¢ if 0 # k € M.

° ¢0(x) ¢0(x‘) for some function ¢0

) {¢ i j€ MU {0}} are ®-balanced (all these functions are defined on ]E), where
¢o(-) = 1. Similarly, {¢¢ : j € M¢ U {0}} are &-balanced.

These assumptions ensure that ¢; are ®-balanced, where ®(x) = dF)De(R).

Theorem 4.22. Suppose X is a stationary Jackson process or a stationary Whittle
process that satisfies the assumptions above. Then {Nj; : j € M,k € M} are

independent Poisson processes with respecnve rates {wjkjx : j € M,k € M‘}
Furthermore, (Nji : j € M, ke M‘)_ 1 X+.

ProoF.  Under the assumptions, X is an open stationary Whittle process on the
node set M. Indeed, its service rates ¢ ; are ®-balanced, and its routing rates are
clearly

ijo‘—‘ Z)»jk, and ijkzljk j,kEM.
keMe

Recall that, associated with the process X, there are w;’s that satisfy the traffic

equations
wjz)\jk:zwk}‘kj, jEM.
keM keM

Under the assumption that a unit exiting M cannot return to M, the preceding
equations are

Z ijkI Z wkikj, jEMU{O}.

keMU{0} keMU{0}

Consequently, the parameters w; associated with X are the same as those for the
larger process X. Thus, X is an ergodic Whittle process whose routing rates and
w;’s are as above.

Now, by Theorem 4.21 and the assumption 430(-) = 1, we know that the exit pro-
cesses N 0 = Y _resre Njk for X are independent Poisson processes with respective
rates w j): jo, J € J. Next, observe that, for each j € J, the N;;’s form a partition
of N jo in which each point of N jo is assigned to the process N j; with probability
A jk /i jo, for k € Me. Thus, by the basic theorem on such partitions of Poisson
processes (see Theorem 9.17), the N ;s are independent Poisson processes with
respective rates

Gie/hjoywirjo=wirj, jed ke M.

We also know by Theorem 4.21 that (Njo : j € M)_ L X,, and therefore
(Nje:jeMkeM)_ LX,. o
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e M
2)—¢

(35)
)
FIGURE 4.1. Open Acyclic Jackson Network

Example 4.23. Open Acyclic Jackson Network. Suppose X represents an open
Jackson network as shown in Figure 4.1. The flows in the network are acyclic as
shown by the arrows. Consequently, each unit can visit a node at most once.

Then for each node j, it follows from Theorem 4.22 with M= J that the
flows N j; for each £ are independent Poisson processes with rates w ;A j¢. In other
words, the flow between each pair of nodes in the network is a Poisson process. This
property is true for any network in which each unit can visit a node at most once.
While some of the flows are independent, some of them are dependent. For instance,
by Theorem 4.22, N3 and N4 are independent; and N4 and N are independent.
However, N,3 and N5 are not independent. In general, flows N, ..., Nj, are
independent if each unit appearing in one of these flows cannot appear in any of the
others. To compute the rates of these Poisson processes one must obtain the w;’s
from the traffic equations w; = ), wi pxj, where wo = land pjx = Aji/ Y, Aje.
An easy check shows that the solution for this example is

w) = po1, W2 = petwpr2, wW3= putwipi3, Ws=wypy, Ws=w;.
In particular, N3s has the rate
Asslhos + AoiAi3/ (M2 + Ai3)l/[Aor + Aoz + Ao3)]. d

4.6 Palm Probabilities for Markov Processes

In this section, we describe Palm probabilities of a stationary Markov process as-
sociated with certain point processes of its transition times. The following example
illustrates the need for Palm probabilities and the types of issues we will address
for networks.

Example 4.24. Palm Probabilities for an M /M /1 System. Suppose X, represents
the number of units in a stationary M /M /1 queueing system at time ¢. Consider
the probability that the system contains x + 1 units at some time ¢ “conditioned”
that there is an arrival at time ¢. This probability is not a conventional conditional
probability, since the probability of an arrival at any instant is 0. Therefore, it is
natural to express this probability as the limiting conditional probability

PN{X0=x+1}=1i?1P{X: =x+1|X, =X, +1}.
STt
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This is the Palm probability of the process given that there is an arrival at time O.
We define Palm probabilities by (4.17) below. The subscript N on Py stands for
the point process of arrival times. The stationarity of X ensures that the probability
on the right side is independent of ¢.

From the discussion below, it follows that the preceding limiting probability can
be expressed in terms of the stationary distribution of X, whichis 7 (x) = p*(1—p),
where p is the arrival rate divided by the service rate. Specifically, by expressions
(4.16) and (4.19) below, it follows that

Py{Xo=x+1} = n(x)q(x, x + 1)/Z7r(y)q(y, y+ 1) =nrx).

This says that the distribution of the number of units an arrival sees in the system in
equilibrium is the same as the stationary distribution of X. In other words, arrivals
see time averages.

Another quantity of interest is the time W that a typical arrival in equilibrium
spends in the system (waiting and in service). This sojourn time is naturally de-
scribed with respect to the Palm probability given that an arrival occurs at time 0.
That is,

Py{W <t} = li¥1 P{W<t|X; =X, +1}.
st

From Exercise 9, this distribution is an exponential distribution with rate @ — A.
Our aim is to develop similar results for networks. a

Throughout the rest of this section, we assume that the Markov process {X;, :
t € R} is stationary and ergodic, and we let = denote its stationary distribution.
We will consider Palm probabilities of this process associated with certain types of
transitions occurring at time 0. Such a transition may involve only the values of the
process at a transition time, which we have been calling a 7-transition (the arrival
event in the preceding example is a special case). More common are transitions
that involve information about the past or future of the process. An example is a
transition in a network process in which a unit arrives at a node j and no more
units enter node j until that arrival exits node j.

We will describe a transition of the process X in terms of a set of sample paths
or “trajectories” 7T as follows. Recall that a sample path of X is an element of the
set D, and 1,,’s denote the transition times of X. Also, S;X = {X;, : s € R} is
the process X with its time parameter shifted by the amount ¢.

Definition 4.25. Suppose 7 is a subset of D such that z(0) # z(0—),z € 7. A
T -transition of X occurs at time t if S;X € T. The point process N of times at
which 7 -transitions occur is defined by

N(A)=) K, €A, S5,XeT), ACR
We also write
N(A)=) I(T,€A), ACR,

n
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where
o< TH<T_ 1 <Th <0<T1 <T,...

denote the times of the T -transitions. Although N is a function of 7', we suppress
the 7 for simplicity.

Keep in mind that the 7 -transition times {7}, : n € Z} are contained in the set of
alltransitiontimes {t, : n € Z}of X. Also, atransition time 7, of X is a 7 -transition
if the sample path of X centered at that time, which is S; X, is in 7. Note that a 7y-
transition is a special case of a 7 -transition. For instance, the arrival transition in
the M/ M /1 example above is a 7y-transition, where 7g = {(x, x+1) : x > 0},and
this arrival transition is also a 7 -transition, where 7 = {z € D : z(0) = z(0—)+1}.
Another 7 -transition for the M /M /1 queue is a transition at which a unit exits the
system and there are no more arrivals during the next b time units. In this case,
T={zeD:z(0)=z(0-)—1,z() < z(t—),t € (0, b]}, and this 7 -transition
is not a 7Ty-transition.

Hereafter, we assume that 7 is a fixed subset of D and that N is the point process
of T -transitions of X. Since X is stationary, the distribution of the time-shifted
process S; X is independent of ¢. From this and the preceding definition of N, it
follows that N is a stationary point process; that is, the distribution of the time-
shifted process {N(A + ) : A C R} is independent of . This stationarity implies
that

EN(A) =|A|EN(, 1], (4.15)

where |A| is the Lebesgue measure of A. The expectation Ay = EN(0, 1] is
called the intensity of the T -transitions. By the extended Lévy formula (4.3), this
intensity is

AMr=EY 1z, e©1], S, XeT) (4.16)

=) w(x) ) q(x, y)P{S, X € T|Xy, = x, X, = y}.
x y#£x
We will only consider 7 -transitions whose intensity A is finite and positive.
Since 7 -transitions are contained in all transitions of X, it follows by Lévy’s
formula that

AM<EY 1@ e©1)=) 7(x)) qx, )
n x y#£x

The last quantity is the intensity of all transitions of X. Thus, the 7 -transitions
will have a finite intensity when the intensity of all transitions is finite, which is
true for most applications.

The type of Palm probability that we use in this chapter is as follows.

Definition 4.26. The Palm probability Py of the stationary Markov process X
given that a 7 -transition occurs at time O is defined by

PyiXeT)=ip/Ar, T CT. (4.17)
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We also call Py the Palm probability of X for the point process N.

Note that Py{X € T} = 1, which is consistent with saying that a 7 -transition
occurs at time 0. This justifies confining attention to events of the form X € 77,
where 7" is a subset of 7 rather than D. Equivalently, one could define Py by

Py{X € T'Y = Apnr/Ar, T CD.

Keep in mind that N is a special type of point process of X whose time points
are contained in the transition times of X. The intensities (4.16) of such point pro-
cesses are tractable, but the intensities of point processes whose time points are not
transition times of X are less tractable. Palm probabilities (4.17) for 7 -transitions
are adequate for the network analysis in this chapter. More involved applications,
however, require the use of general Palm probabilities for point processes asso-
ciated with stationary processes; see Chapter 5. In this general setting, the point
process times need not be 7 -transition times of a process as above.

Loosely speaking, the Palm probability (4.17) is the portion of 7 -transitions
that are also 7" -transitions. Another representation of the probability Py in terms
of the transition times T, is

EY 1S, XeT, 1t €01

= , T'cT.
EY 1S, XeT,1 € (01]) <

This is the expected number of times an observer sees X in 7" at transitions during
(0, 1] divided by the expected number of times the observer sees X in 7 at the
transitions. The time interval (0, 1] can be replaced by any time set A because the
stationarity of N ensures that EN(A) = |A|Ar.

Expression (4.16) for intensities of transitions yields the following formulas.
The probability that X has a transition from x to y at a 7 -transition is

Py{Xo- =x, Xo =y} = AF'm(x)q(x, y)P{S, X € T|X,, = x, Xy, = y}.
Also, when it exists,

Ex[fXO1 =47 Y m(x)q(x, NELF S X)Xy =x, X, =] (418)
>, y)ET

The following result shows that Palm probabilities are limits of conditional
probabilities as we stated in Example 4.24.

Proposition 4.27. Foranyt e RandT' C T,
PuiX T} = lim P{S,X € T18,X €T, X, # X,}. (4.19)
st
Proor. Since 7’ C T, itfollows that expression (4.19) can be written as Py {X €
T'} = ar /ar, where
or = li%n(t —5)'P(S,X € T, X, # X;}.
sTt

Therefore, to prove (4.19), it suffices to show @7 = Ar, for any 7 C D. But this
is true, since conditioning on X, X, and using the stationarity of X, the definition
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of g(x, y), and expression (4.16),

ar = 11m(t —5) Z P{X, =x} ) [P{X, = y|X, = x)
y#x
x P{S;X e T|X; =x,X, = y}]
= Zn(x)Zq(x NP{S, X eT|X;y=x,X, =y}
y#X
= AT. a

The representation (4.19) of a Palm probability as a limit is consistent with
the usual way of interpreting a probability conditioned on a continuous random
variable. Expression (4.19) gives insight into the meaning of a Palm probability
and it may be useful in theoretical studies. To evaluate Palm probabilities, however,
one typically uses (4.18) or the Campbell-Mecke formulas in Chapter S. The rest
of the results in this section are also useful in this regard.

In some instances, it is convenient to obtain Palm probabilities by appealing to
time reversals as follows.

Proposition 4.28. Suppose X is the time reversal of X; that is, X, = = limgy_,; X;.
Let PN denote the Palm probability of X, where N denotes the point process of
T -transitions of X and T = {z € D : {z(t)} € T}. Then

Py{XeT)=Py{XeT}), T cT.

ProoF. Let N7+ denote the point process of 7' -transitions of X. Then N7 also
equals the point process of 7’-transitions of X. Also, by their definitions, N = N.
Therefore,

Py{X € T'} = E[N;-(0, 11)/E[N©,1]] = Py{X €T}, T'c7T. O

We next consider Palm probabilities of events at the 7 -transition times Tj,.
Since the Markov process X is stationary in the time parameter ¢, intuition might
suggest that the sequence {X7, : n € Z} of X-values at 7 -transitions is stationary.
This sequence, however, is not stationary under P—but it is stationary under
the Palm probability Py. A generalization of this property is as follows. This
result is a special case of Theorem 6.9 for general Palm probabilities, and the
strong law of large numbers, Theorem 6.1, for stationary sequences. Recall that
ST"X = {XT"+, :t € R}

Theorem 4.29. For h : D — E, define
Y, = h(S1,X), neZ.

The sequence {Y, : n € Z} is stationary under Py, and it satisfies the strong law
of large numbers

n
lim n=' Y ¥, = Ex(Y\), wp.] under Py. (4.20)
n—>oo =1
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As an example of this result, the sequence {7,,..; — T, : n € Z} of times between
T -transitions of X is stationary under Py . This sequence, however, is not stationary
under P.

We now describe a large family of functionals of the process X at the times 7,
that are stationary processes under P. The following result is a direct consequence
of the Campbell-Mecke formula; see Theorem 6.13 and Example 6.15.

Theorem 4.30. For f : R x D — R, define
Y=Y ft—T,S,X), teR.

The process {Y; € R} is stationary under P and it satisfies the strong law of large
numbers

t
lim ¢~ / Y;ds = EYy, w.p.l under P. (4.21)
0

t—>00

Furthermore,

T
EYy=ArEy f(t, X)d:. (4.22)
0

4.7 Sojourn and Travel Times of Markov Processes

In this section, we use Palm probabilities to describe expected sojourn and travel
times of Markov processes.

Consider the stationary Markov process X that we have been studying in the
preceding sections. Sojourn times of X have the following properties.

Theorem 4.31. Let N denote the point process of entrance times {T,, : n € Z} of
X into a proper subset B of E. Let W,, denote the sojourn time of X in B starting
at time T,. The sequence {W,, : n € Z} is stationary under Py, and it satisfies the
strong law of large numbers (4.20). Furthermore,

Exn(Wp) = A~ P{X, € B}, (4.23)

where A = ng!B 7(x) Zyeg q(x, ).

PrOOF. The times 7, are 7 -transition times, where 7 = {z € D : z(0—) ¢
B, z(0) € B}. The intensity of these transitions equals the A as specified. Clearly,
W, = h(S7,X), where h(z) = inf{t > 0 : z(t) ¢ B} (the first entrance time to
B¢). Then the first assertion follows from Theorem 4.29.

To prove (4.23), consider the process

V=1XeB)=) I(T,<t<T,+W,), teR
n
Using the function f(t — 7,,57,X) = 1(0 <t — T, < W,), it is clear that Y
satisfies the hypotheses of Theorem 4.30. Consequently, Y is a stationary process
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and
T,
EYy = AEN/ 100 <t < Wy)dt = AE n(Wp).
0

Also, since Y is stationarity, EYy = P{Xy € B}. These observations yield
(4.23). a

‘We now consider an elementary travel time problem for the Markov process X.
Let B and B’ be nonempty, disjoint subsets of E whose union is not . Our interest
is in determining the expected time it takes the process X to travel from B to B’.
This problem is an example of general travel time problems for networks that we
consider later in Section 6.6.

We first consider some related passage-time probabilities. Let o(x) denote the
probability that conditioned on X, = x, the process enters B’ before it enters
B. Analogously, looking backward in time, let @(x) denote the probability that
conditioned on Xy = x, the process X exited B prior to time 0, more recently than
it exited B’. We will also use the probability p(x, y) = q(x, y)/ Zy, q(x,y’)ofa
transition of X from x to y.

Proposition 4.32. The probabilities «(x) are the solution to the following
equations: a(x) = 1 or 0 according to whether x is in B’ or in B, and

a(x) =Y px,y)+ Y p(x,ye(y), x¢BUB.

yep’ y¢B’

The probabilities a(x) are the solution to the preceding equations, where the roles
of B and B’ reversed and p(x, y) is replaced by

plx,y) = (M)~ p(y, x).

Proor. The first assertion follows by conditioning on the probability p(x, y) that
the first jump of X is from x to y (a standard argument for Markov processes).
To prove the second assertion, consider the time reversal of X, which is defined
by X, = limg4_, X;, ¢ € R. Clearly, a(x) is the probability that conditioned on
Xo = x, the process X enters B before it enters B’. Also, from Theorem 2.5 on
time reversals, we know that j(x, y) is the probability of a transition of X from x
to y. Then the second assertion follows from the first assertion appliedto X. O

We are now ready to determine the expected travel time from B to B’. Let N
denote the point process of times {7,, : n € Z} at which X exits B and subsequently
enters B’ before returning to B. Let W, denote the sojourn time of X in the set
E\B U B’ in the time interval [T}, T,,+). This W, is the nth travel time from B to
B’ beginning at time T,,.

Corollary 4.33. The sequence (W, : n € Z} of travel times from B to B’ is
stationary under Py, and it satisfies the strong law (4.20). Furthermore,

Ex(Wo)=1"" Y m®)ea(x), (4.24)
x¢BUB'
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where . = ), pm(x) va q(x, y)a(y) and a(x), a(x) are the probabilities
described in Proposition 4.32.

PrROOF. The point process N of times at which X begins traveling from B to B’
is given by

N(A)=) 1(t, € A, X;,_, € B, X;, ¢ B, np (1) < 15(ta)),
n
where ng(t) = inf{u > ¢t : X, € B} is the first time after ¢ that X enters B. By the
extended Lévy formula (4.3), the intensity of N is

A=EN@©,11=) 7(x) ) qx,»)P{ne(n) < ns(1)| Xq = x, X, = y}.
x€EB yeB®

Clearly, the last conditional probability is the probability a(y) of entering B’ before
B conditioned on starting in state y.

Now, the travel time can be expressed as W,, = np:(T},), which is the time it takes
for X to enter B’ starting at time 7},. This travel time is of the form W,, = h(S7, X),
and so the first assertion of the corollary follows by Theorem 4.29.

Next, proceeding as in the proof of Theorem 4.31, we consider the process
Y, =Y, (T, <t < T,+W,) and deduce by Theorem 4.30 that Y is a stationary
process and EYy = AEy(Wy). Now, another representation for Y, is

Y, = 1(X, ¢ BUB',ng (1) < na(1), 1z (1) < 75(1)),

where np(t) = sup{s <t : X; € B} is the last exit time of X from B prior to time
t. Then

EYy = P{Xo & BU B, 15(0) < 15(0), 7j(0) < iiz(0)}
= Y w(x)P{ne(0) < 15(0)|Xo = x}

x¢BUB’
x P{ijp(0) < 715(0)| Xo = x}.

The last equality used the Markovian property that conditioned on the present
state, the past and future of the process are independent. Clearly, the product of
the last two conditional probabilites equals o (x)a(x), where these probabilities are
described in Proposition 4.32. Thus, the preceding expression for E Yy combined
with EYy = AEyN(Wy) from above yield (4.24). O

4.8 Palm Probabilities of Jackson and Whittle Networks

The rest of this chapter discusses properties of Jackson and Whittle networks
that involve Palm probabilities. This section characterizes network transitions un-
der which a moving unit sees a time average. This property is applied to obtain
distributions of sojourn times at nodes.

For this discussion, we assume that X is an ergodic, stationary Jackson or Whittle
process that represents an open or closed network. As usual, we denote its transition
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rates by g(x, Tjxx) = A jx¢;(x), and then its stationary distribution is
m
n(x) = CCD(x)H w;’, x ek
j=1

In addition, in case X is a Whittle process, we assume its service rates are of the
form

Pi(x) = P(x —e;)/P(x), xe€k. (4.25)

This condition, which is automatically satisfied for Jackson processes, yields
simpler formulas for the Palm probabilities we now derive.

We first consider the disposition of the units at a 7 -transition of the network. In
any transition, exactly one unit moves from some node j to a node k and the other
units do not move. Such a transition can be expressed as a transition from x + ¢;
to x + e;, where x is the vector of unmoved units. Let IE’ denote the set of all such
vectors of unmoved units. The probability distribution 7 of the unmoved units at
a T -transition is defined by

mrx)= ) Pv{Xo-=x+e; Xo=x+e}, xck. (4.26)

j.keM
Here Py is the Palm probability of the point process N of 7 -transitions. We are
interested in finding conditions under which this probability simplifies as follows.

Definition 4.34. We say that a moving unit sees a time average (MUSTA) at a
T -transition if w7 = 7/, where 7’ is the distribution defined on E’ as follows.

o 7' = and B’ = E if the network is open with unlimited capacity.

e’ =m,_;and E' = {x : [x| = v — 1} if the network is closed with v units.
e’ =m,_;and E' = {x : [x| < v — 1} if the network is open with capacity v.
In the last two cases, m,_ is the stationary distribution of a closed network with
v — 1 units, or an open network with capacity v — 1, respectively.

The MUSTA property wr = n’ implies that 7 is independent of 7 since 7’ is.
In the first case where 7° = 7, MUSTA says that a moving unit sees the disposition
of the unmoved units as if they came from the same type of open network with
unlimited capacity. An example of this is that arrivals to an M/M/1 queue see
time averages; recall Example 4.24. Similarly, in the second and third cases where
' = m,_;, MUSTA says that a moving unit in a 7 -transition sees the unmoved
units distributed according to the equilibrium distribution of a network with one
less unit. In each of these three cases, we have

m
r'@)=cow[[w], xeE,
j=1

where ¢’ is the normalization constant. Thus, the moving unit sees an average (the
stationary distribution) of the same type of network as its parent process. Related
terms in the literature are ASTA (arrivals see time averages), ESTA (events see
time averages), and PASTA (Poisson arrivals see time averages).
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To characterize the MUSTA property, we will use the following representation
of the rate of 7 -transitions for the network process X.

Proposition 4.35. The rate of T -transitions is

A=) w'®yrx), (4.27)

xel

where

(%
yr(0) = = 3 wiAjP(S X € TIA (),
J.k

and Aj(x) ={X, =x+e;, X, =x+el forxelE, j ke M.
ProOF. Using the notation above on unmoved units at a transition,

Ar =YY m(0)q(x, Tux)P{Sy X € T| Xy, = x, Xy, = Tjyx}
xeE j.k

= Z Z[n(x +e;)q(x +e;, x + )]

xel jk
x P{S, X € T|Aj(x)). (4.28)

Using ®(x + ¢;)¢;(x + ;) = ®(x) from (4.25), and the expressions above for g,
7, and 7', it follows that the term in brackets in (4.28) equals

m c ,
cP(x +e,~)w,~ wa‘ljkq)j(x +ej)= ;w,-)»jkn (x).
=1

Then substituting the last expression back into (4.28) yields (4.27). O

The distribution of the process X under the Palm probability of the point process
N of T -transitions is as follows.

Corollary 4.36. The Palm probability Py of X is given by
PMX eT) =) n'Gwr@x)/ Y a'Oyry), T cT. (429

xeE’ yeE’
Proor. This follows from Proposition 4.35 since Py{X € 7'} = Ap/Ayr. O
The following is a characterization of the MUSTA property.

Theorem 4.37. The T -transition has the MUSTA property if and only if yr(x) is
independent of x. In this case,

PoX e T)=) ') ) p(.OPS X e TIAp@)},  (430)

xef j.keM

where

pG. kY =wiki/ Y wikjw, j.keM.
jkeM
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PrOOF. In light of (4.29), the distribution (4.26) of the unmoved units at a 7 -
transition is

r(x) = Z Py{Xo- =x+e;,Xo=x+¢e}
Jj.keM

= 7' @yr@)/ Y 7' Ovr(y).

yeE’

Then 7 = #’ (the 7 -transition has the MUSTA property) if and only if y7(x)
is independent of x. In this case, a little thought shows that (4.29) reduces to
(4.30). O

The probability p(j, k) above has an interpretation in terms of the Markov routing
process on M whose transition rates are A ;. Namely, p(j, k) is the Palm probability
of aroute transition from j to k given there is a transition. Loosely speaking, p(j, k)
is the stationary probability that the routing process goes from j to k at a transition.

Example 4.38. Simple Network Transitions. Consider a transition of the network
in which a unit moves from node j to node k for some (j, k) in a set x C M?2. We
call this a simple network transition in y. This is a T -transition, where

T ={{x;} € D : xo = Tyyxo—, for some (j, k) € x}.

No other sample path information aside from y is needed to describe this transition.
In this case,

c
yr(x) = - Z WAk,
€ (jbex
which is independent of x. Thus, there is MUSTA at any simple network
transition. O

Some elementary applications of Theorem 4.37 are as follows.

Example 4.39. Palm Probabilities for Action at a Node. Consider a fixed node
J # 0inthe network. Let P; denote the Palm probability of the network transition
at which a unit enters node j. This is a simple network transition in M x {j},
and so it has the MUSTA property as we saw in the preceding example. Let X/
denote the number of units at node j at time ¢. Then it follows by (4.30) that the
probability that an arrival to j sees n customers there is

Pi{X{=n+1}=) '), =n). (4.31)
xel’
Next, consider the sojourn time W; atnode j of a unit that arrives in equilibrium.
Then by (4.30), its distribution is
Pi{W; <t} =) 7'(x))_ pli, HP{W; <t|A;(x)}, teR.
xeE ieM

A more specific evaluation of this probability requires knowledge about how node
J processes units. Assume node j serves units on a first-come, first-served basis
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and that a unit’s sojourn time has a distribution F;(¢|n) that depends only on the
number of units n at the node at the beginning of the sojourn (independent of later
arrivals and the rest of the network). Then the preceding expression is

PiW; <t} =) w'(x)Fj(tlx; +1). (4.32)
xel

Now, let us consider these probabilities as seen by a unit departing from node
j.LetP ; denote the Palm probability of a network transition at which a unit exits
node j. In addition to the assumptions above on the services, suppose units exit
node j in the same order in which they arrive. For a unit exiting node j, consider
the time Wj it just spent at node j. We could use the formula (4.30) as we did
above to obtain a general expression for P,{Wj < t}, but it would be difficult to
evaluate (try it for an -/M /s node). Instead, we will take another approach and

prove

Pi{W; <t} = P;{{W; <1}. (4.33)

This says that the backward-looking sojourn time is equal in distribution to the
forward-looking sojourn time distribution.

Consider the process X, = lim4_, X, which is the time reversal of X. This is
an ergodic, stationary Markov process with the same stationary distribution 7 as
X. Furthermore, X is the same type of network process as X, since its transition
rates are

q(x, Tjex) = 7(0) ™' w (Tj)q(Tjax, x) = A (x),
where A jk = w;lwkkkj. The w;’s that satisfy the traffic equations for A j; also
satisfy the traffic equations for A jk» since the latter is the time reversal of the
former. In addition, the process X has the property that units exit node j in the
same order as they arrive.

Because of this structure of X, it is clear that W is the sojourn time of an arrival
into j for the process X. Also, P; is a Palm probability of X. By Proposition 4.28,
we know that P;{X € T} = P{{X € T}, where T = {{x,} € D : (%} € T}.
These observations prove the assertion (4.33) that the backward-looking sojourn
time in j is the same as the forward-looking sojourn time. A similar argument
shows that the probability that a departing unit sees » units at j is ﬁj{Xé =n}=
P I{X(j) =n}. O

Example 4.40. Sojourn Timesina -/ M /s Node. Suppose the process X represents
an open Jackson network with unlimited capacity. Assume node j is a-/M /s node,
where each of the s servers works at rate . Let W denote the length of time an
arrival to j must wait in the queue before its service. Since 7’ = 7 is a product
form and j is an s-server node, it follows by (4.31) that

Pi{X} = n} =m;(n),
where

mwj(n) = c(w;/w)"/n!, n<s,
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wj(n) =n(s)w;/sp)"*, n>s.

Then
s—1

Pi{W} =0} = P;j{X] <s}=) mn).
=0
Also, conditioning on X, we have

o o]
PiW} >t} =) mmP{W} > 1| Xo=n+1}.

n=s
Clearly, P{W;‘ > t|Xg = n+ 1} = P{N(t) < n — s}, where N is a Poisson
process with rate sy, and N(t) < n — s is the event that there are fewer thann — s
service completions in time ¢ (the arrival at time O is still in the queue at time ).
Substituting this Poisson probability in the preceding equation and using a little
algebra, it follows that

Pj(W? >t} = Pj(X} > s}P{E* > 1}, 120,

where £* is an exponential random variable with rate s;. — w; that represents the
waiting time given that a unit has to wait.

Next, consider the sojourn time W; atnode j of an arrival. From (4.32), it follows
that

Pi{W; <t} = Zﬂj(n)F,-(tln +1).
n=0

Then one can show, as described in Exercise 9, that
Pi{W; <t} = P{§ <t}P;{X] <s}+ Pi{X} > s)PlE +&* <1},

where £ is an exponential service time with rate u that is independent of the
exponential waiting time £*. Note that in case s = 1, it follows (Exercise 9)
that the distribution P;{W; < t} is exponential with rate u — w ;. This exponential
sojourn time is a Jackson network version of the exponential sojourn time ina single
M /M /1 queue as in Exercise 9. Also, from the preceding example, we know that
the backward-looking sojourn time distribution is the same as its forward-looking
sojourn time. In other words, a unit departing from node j looking backward
in time, and not knowing the past, can only surmise that its sojourn time was
exponentially distributed with rate © — w;. |

4.9 Travel Times on Overtake—Free Routes

In this section we continue our study of the stationary network process X, which

represents an open or closed Jackson or Whittle network. The previous section

described sojourn times at isolated nodes in the network. The focus now is on the

joint distribution of sojourn times at nodes on a certain type of route in the network.
We begin with a preliminary example of the main result below.
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Example 4.41. Sojourns in Tandem Jackson Networks with Single-Server Nodes.
Suppose the process X represents an open tandem network with unlimited capacity
in which all units enter at node 1 and proceed to nodes 2, ..., m in that order. As-
sume each node j is a single-server node with service rate 1 ; and it operates under
a first-in, first-out discipline. Let P; denote the Palm probability of the transition in
which a unit enters node 1 at time 0. For such an arrival intonode 1,let Wy, ..., W,,
denote its sojourn times at the respective nodes. From Theorem 4.22, it follows that
the flow of units between each pair of nodes j and j + 1 is a Poisson process, and
these flows are clearly dependent. Then each node j in equilibrium operates like
an M /M1 process. Consequently, the sojourn time of a unit at each node, as we
saw in Example 4.39, is exponentially distributed. Furthermore, by Theorem 4.43
below, the sojourn times W, ..., W, under P, are independent exponential ran-
dom variables with respective rates @; — wy, ..., iy — Wy. It is surprising that
these times are independent since the node populations are dependent and the flows
between the nodes are dependent. |

Our terminology for routes will be as follows. A simple route of the network is
avectorr = (ry,...,rg) of nodes in {1,...,m} such that A, - -+ &,,_,, > 0. A
unit traverses the route r if it enters node r and then proceeds to nodes 5, .. ., r¢
in that order in its next £ — 1 moves. We will consider a unit’s sojourn times at
nodes on the following type of overtake—free route in which units that traverse the
route finish it in the same order in which they start it. Furthermore, a unit’s sojourn
time at any node on the route is not affected, even indirectly, by the presence of
units that start the route later than it did.

Definition 4.42. A simple route r = (r1, ..., r¢) is overtake—free if it satisfies the
following conditions:
(a) Thenodesry, ..., r, are distinct, and each one serves units on a first-in, first-out

basis. The service times at node r; are independent exponentially distributed with
rate ¢, (x,,) = u,,, independent of x,,.

(b) For s < £, each feasible path from r; to any i € {ry, ..., r¢} must pass through
rs+1. That is, ifA-r:j]A-jljz .o 'A.j",' > 0,thenrsy € {ji,..., Jn, i}

(c) The service intensities of the nodes satisfy the following conditions, which
automatically hold for Jackson networks. Foreachs = 1, ..., £ — 1, let B; denote

the set of all nodes on a feasible path from r; to r,, | that contains r,, r; | only at
the beginning and end nodes, respectively, and B, contains r; but not r, ;. Think
of B; as the set of nodes “between r; and r;,”. For each j € By, the service rate
¢;(x) is independent of x;, for k ¢ B;. And foreachk ¢ B; U---U By_,, the rate
¢i(x) is independent of x;, for j € B U---U B,_;.

We are now ready for our main result on travel times. Consider an overtake—free
router = (ry, ..., r¢) of the stationary network process X. Let P,, denote the Palm
probability of a network transition in which a unit enters node r; at time 0 and
traverses the route r. Let W, , ..., W,, denote the sojourn times at the respective
nodes on the route for that unit. Finally, let F (¢|«, n) denote the Erlang distribution
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with parameters u and n. Its density is

dF(t|p,
(dI:L "yt =1L 120

Theorem 4.43. If the process X represents an open network with unlimited
capacity, then the sojourn times W,,, . . ., W,, under the Palm probability P, are in-
dependent exponential random variables with respective rates Ly — Wy, , . . ., fr, —
wy,. If X represents a closed network with v units (or a v-capacity open network),
then, fort, ..., t; in R,
¢
Po(Wy <ti,..., W, <tih =Y m @) [ [ Fltilun, x, + 1), (434)

xelE i=1
PrOOF. For simplicity, renumber the nodes such that (ry,...,r)) = (1,...,£).
Let F(t,...,t) = P{W; <1,..., W, < t,]. Now, the two assertions of the
theorem can be stated as the single assertion that
¢
F,...ot) =) o' [ [ Flulu, x +1). (435)
xel’ i=1

This is the second assertion with #’ = m,_1, and it is the first assertion withn’ = =
since that assertion is

4 [
F(ti,..t) = =@ = "m0 [ [ Feilmi, x: +1).
1 ]

i x€E i=l

The last equality follows as in Example 4.40 since each node i on the route is a
single-server with rate u;.

We will prove (4.35) by induction on the route length £ for all networks of the
type we are considering. Clearly (4.35) is true for £ = 1 by (4.32).

Now assume (4.35) is true forroutes of length 1, . . ., £ — 1, for some £. Consider
a route of length £ for the network process X. Let P, denote the Palm probability
of a network transition in which a unit traversing the route departs from node 1

and enters node 2 at time 0. Let W}, ... W; denote the sojourn times Wy, ..., W,
viewed by that unit. That is
F(ty,....te) =PoA{W] <t;,..., W) <t}

It follows by Theorem 4.37 that the transition of a unit moving from node 1 to node
2 has the MUSTA property, since it is a simple network transition as described in
Example 4.38. Then expressing the last probability as in (4.30), we have

F(t,...,t) =Y w'®P(W <t1,..., W} <t]Ap@)}
xel
Here Aj3(x) = {X;, = x + e}, X;, = x + ey} is the event that a unit moves from
node 1 to node 2 at time 7; and the disposition of the unmoved units is x. Let
J = B be the set of nodes between 1 and 2 (recall the definition of an overtake—
free route), and let K = {1, ..., m}\J. By the assumed structure of the service
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intensities ¢; on an overtake—free route, we can factor 7’ as

m /
’ ’ Xj c ! 7
n'(x) = o) [ [w) = 57 x)mkxg), (4.36)
=1 CiCk

where x; = (x; : j € J)and ) (x;) = ¢/, P, (x,) l_[jej w;’ forx; inE), = {x, :
x € E'}. The mg is defined similarly on the set E, (x,) of all xx such that x € E’
and, |xg| < v —|x;| — 1 if the network is closed with v units or open with capacity
v. Also, ®(x) = D, (x,)Dx(xk).

Then conditioned on the event A(,(x), the W} is independent of W, ..., W};
W} depends only on x;; and W3, ..., W/ depends only on x k. Using this and the
factored form of 77/, we can write

cl

F@t,...,t,) =

——GW)H (1, ..., 1), 4.37)
C;Ck
where

Gn) = Y m))PIW! < t]Ap()h,

x;€E),

H(ty,....t)= Y mp@)P{W; <n,..., W} < t]Ap@x)}.

xx€Ey(xs)

We now show that G and H have forms like (4.35). Let X; be an open Whittle
process on the nodes J with state space E; = {x, : x € E} and transition rates

q(xs, Tiexs) = A, (xy),
where
Me=Rji A=) wiki, Alo=Y Ap, jkel
igJ 77

A solution to the traffic equations for )‘,J'k is wf = w; (j € JU{0}), where
w; (j € M) is a solution to the equations for A ;. Consequently, the stationary
distribution of X7 is
my(x) =c;P,(xy) 1—[ w;j-
jeJ

Assume X" is stationary and let P; denote the Palm probability of a simple network
transition of X” at which a unit departs from node 1 at time 0. Let W, denote the
sojourn time of that unit at node 1. Then by the definition of G, expression (4.33)
for the time-reversal process, and the induction hypothesis for one node, we have

G(t) = P{W] <n}=P{W/ <1}
= Y w@E)F @I, 0+ 1), (4.38)

Xy EE’I

Next, define an open Whittle process XX on the node set K with state space
EX (x,) and capacity v — |x,|. Here x, is fixed. Assume XX is stationary and let P,
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be the Palm probability of the transition of XX in which a unit enters node 2 at time
0 and traverses the route 2, . . ., £, which is overtake—free. Let WX, ..., W[ denote
that unit’s sojourn times at the respective nodes 2, . . ., £. Then by the definition of
H and the induction hypothesis for overtake—free routes of length £ — 1, we have

H(ty,....t0) = P{WS <t5,..., WE <1}

¢
= ) m@o[[FGlk.xu+D. 439
XK E]EIK (x) i=2
Substituting (4.38) and (4.39) in (4.37) yields

/

Flty,....t)=5— Y m(x)F(tlm, x +1)
I~ K XjG]EIj

4
x Y wpGo) [ Flus, x4+ 1),
xx €Ey(xy) i=2

Finally, because of (4.36), we can bring these summations together as a sum on
x € E' to obtain (4.35). This completes the induction argument. a

4.10 Exercises

1. Dynkin’s Formula. Use Lévy’s formula (4.2) to prove that, for a function f :
E - R,

ELf(X)) — f(Xo)l = E{ f (Y a(Xo, (FO) — FXds),

Y#X;

provided the last expectation exists. This formula also holds when ¢ is replaced
by a stopping time of X.

2. In the context of Theorem 4.10, suppose N, L X_. Prove that N is a Poisson
process with rate a if and only if

EN(s,t]=a —s), s<t.

3. Characterization of Compound Poisson Processes. Suppose M is a point pro-
cess on R"*! with point locations (T, Yk‘, ..., Y), k > 1. Define random
measures M|, ..., M, on R by

M,-(A):ZY,{l(Tk €A), ACR,1<j<n.
k
Prove that (M|, ..., M,) is a compound Poisson process with rate a and atom
distribution F on R"*! if and only if M is a Poisson process with

EM((0,t] x B) =atF(B), foreacht and B.
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4. Queue with Compound Poisson Arrivals and Poisson Departures. Consider a
Markovian queueing process whose state is the number of customers in the
system and whose transition rates are

gx, ) =r0p"'A-ploy=x+n+uly=x—1>0).

Here A, and u, are positive and 0 < p < 1. This process represents a system
in which batches of customers arrive at the rate A, when there are x customers
present, and the number of customers in a batch has a geometric distribution
with parameter p. Also, customers depart at the rate u, when x are in the
system. Show that the stationary distribution of the process is

x—1
w(x)=mxOhop" - u [JOw + pe), x> 1,
k=1
provided the sum of these terms over x is finite, which we assume is true. Next,
assume the process is stationary and Ag = A, + pu, = a, for each x > 1.
Show that the times of customer departures form a Poisson process with rate a.

S. For the process in Example 4.20, show that its stationary distribution is given
by (4.14).

6. Consider the random measures M,,..., M, defined by (4.12). Show that
(M, ..., M,) is an n-dimensional compound Poisson process with rate a and
atom distribution F such that (M,, ..., M,), L X_ if and only if, for each
x€eEand B x-.--x B, e R,

Y @ I, y) € T)l(hi(x, y) € B, 1 <i <n)=aF(B x -+ x By).
y

7. Consider the point processes N; of Ty’ -transitions as in Theorem 4.15 and define

atr,w = Y q(x, y)l(l((x, NeT)=u, 1<i< n).

Show that Ny, ..., N, are independent Poisson processes with respective rates
ai,...,a, such that (Ny,..., N,); L X_ if and only if, for each x € E and
u e {0,1}",
a; ifu=¢; forsomel <i<n
a(x,u) = . (4.40)
0 otherwise.

8. In Corollary 4.21, show that (1) is equivalent to (3) by applying the result in
the preceding exercise. Does this equivalence of (1) and (3) require the process
to be stationary?

9. Sojourn Times in M/M/s Systems. Consider a stationary M/M /s queueing
system with arrival rate A and service rate w. Its stationary distribution is

7x)=c/u)/x!, x<s,and #x)=nw(E)A/sn) ", x>s.

Let Py denote the Palm probability of the system given that a unit arrives to
the system. Find the probability Py{X, < s} that an arrival does not have to
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wait in the queue for service. The Palm probability of the sojourn time in the
system in equilibrium is

PyiW <t} =) m(x)P{W <t|Xo_ = x, Xo=x + 1}.

This is (4.32) for a network with one node. Explain why
P{& <1} ifx <s

PW <t Xg_=x,Xo=x+1}= x—s+1
s 0 } PlE+ Y &<t} ifxzs

i=I
where £, £, &, .. . are independent exponentially distributed random variables
such that & has rate  and the others have rate su. Find the Laplace transform
of the distribution Py {W < t}. Use it to justify

Py{W <t} = P{§ <t}Py{Xo < s}+ Py{Xo > s}P{§ + W" <1},

where W* is an exponential random variable with rate s — A independent of
&. One can view & as the arrival’s service time and W* as its waiting time in
the queue given that it has to wait. Show that in case s = 1, the distribution
Py{W <t} is exponential with rate p — A.
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Little Laws

In a Markovian, regenerative, or stationary network, the average sojourn times
of customers in a sector of the network can often be obtained from a Little law.
Specifically, a Little law for a service system says that the average sojourn time
W of a customer in the system and the average queue length L of the system are
related by L = AW, where A is the average arrival rate of units to the system.
This fundamental relation is a law of averages or law of large numbers when the
quantities L, A, W are “limits” of averages. It is also a law of expectations when
the quantities are expected values. This chapter focuses on Little laws of averages,
which are based on sample path analysis. The next chapter covers Little laws of
expectations for stationary systems, which are based on Palm probability analysis.

In studying a system, one may want to use L = AW to obtain one of these values
from the other two. Typically, A and L are known or prescribed and one wants to
determine that W exists and equals A~!L. On the other hand, in a simulation, one
may want to estimate L in terms of A and W. The law L = AW holds when each
of the terms exists. In order to apply the law, it is therefore necessary to establish
the existence of these quantities.

This chapter addresses the question: If any two of the limits L, A, or W exist,
then what additional conditions guarantee the existence of the other limit? Little
laws for queues are special cases of more general laws for certain two-parameter
utility processes. Since utility processes cover a rich area of applications and are
not more complicated than queueing processes, we prove omnibus Little laws for
utility processes and then apply them to queueing systems. Examples for networks
are in several sections.

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999



136 5. Little Laws

5.1 Little Laws for Markovian Systems

We begin this section by introducing the basic notation for this chapter. Then we
present Little laws for Markovian systems. Their proofs are in Section 5.5.

We will consider a general service system or input—output system that processes
discrete units (or customers). Suppose units arrive at the system attimes 0 < T} <
T, < ..., where T, = oo w.p.1. We will often refer to the arrivals by the point
process

e

N@®) =) 1T, €0,1t]), >0,

n=I

which denotes the number of arrivals in the time interval (0, ¢]. Note that N(T},) >
n;and N(T,) =nif T, < T, < T,4,. The latter is true when customers arrive
one at a time.

Let W, denote the entire time the nth unitis in the system, including its service or
multiple service times and any waiting times for service or hiatus times. Following
tradition, we will often call the sojourn time W, the waiting time of the nth unit.
The nth unit departs from the system at time 7, + W, and never returns. The
number of units that arrive in the time interval (0, ¢] and are still in the system at
time ¢ is

X, =) WGst<T,+W,), 120 (5.1)

n

This queue length process X, has piecewise constant, right-continuous sample
paths, and the number of its jumps up to time ¢ is finite (it is bounded by 2N (¢)).

‘We make no specific assumptions on the processing of units or the dependencies
among the variables 7,,, W,, X,. We only assume these variables exist and are finite.
In this system, units may arrive or depart in groups, a unit may be fed back for
several services, the interarrival times may depend on the service times, etc. Also,
this system may represent a special subpopulation of units in a larger system, such
as the units in a sector of a network. The arrival process N is a function of the
queue length process X (the arrivals are observable from X). On the other hand,
the waiting times W, may not be a function of X. They are, however, when units
arrive and depart one at a time and units depart in the same order in which they
arrive. When the queue length process alone does not contain enough information
to determine W,,, one usually represents W, oreven N and X as functions of some
general stochastic process that encompasses all the system dynamics.

We will present conditions that ensure the existence of the limits

t
L = lim ¢! f X, ds average number in the system
t—>00 0
A = lim7'N@) average arrival rate
t—>00

n
W = limn™! Z Wi average waiting time.
n—->oo =1
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All the limit statements here are w.p. 1. For simplicity, we will often omit the phrase
w.p.1. We say that L exists if the limit L above exists and it is a positive, finite-
valued random variable w.p.1. Similarly, we will refer to the existence of A, W and
analogous limits below. Some of the results herein also hold for L, W that may be
zero or infinite, but we will not cover these degenerate cases.

To simplify notation, we will frequently write convergence statements like
lim,_, ay/cy = 1 w.p.1 for random variables a,, c, simply as a, ~ c,. This
definition of asymptotic equivalence ~ is consistent with the standard definition
for nonrandom a,, c,.

The key idea behind the Little law L = AW is that the integral of X, is simply
another way of recording waiting times. Specifically, if the system is empty at
times 0 and ¢ (X¢ = X, = 0), then the waiting time of the customers up to time ¢
is

t N@)
f X;ds =) W,
0 n=1

Even at nonempty times ¢, many systems satisfy

t N
! f Xeds =17y " W, +o(l), (5.2)

0 n=1
where o(1) — 0 ast — oo. In this case, if the limits A and W exist, then letting
t — oo in (5.2) yields L = AW. Indeed, the right side of (5.2) converges to AW
since ") W, ~ N(t)W and N(t) ~ rA. We will focus on the relation (5.2) and

justify the o(1) term in (5.2) for various settings.

Since the proofs of Little laws are long, we present several of them in this and
the next section and prove them later. The following are results for Markovian

systems.

Theorem 5.1. Suppose the queue length process is of the form X, = f(Y),
where Y is an ergodic Markov jump process on a countable state space and f is
a function on this space. Let q(y, y') denote the transition rates of Y and let
denote its equilibrium distribution. Then the average queue length L and arrival
rate A, which may be infinite, are given by

L= 70fO), A=) 7)) a0 UGN = fO)+1).
y y Y

If these quantities are finite and the process X may equal 0, then W exists and
L=AW.

Proor. The first assertion follows by the ergodic theorem for Markov processes.
The second assertion follows by Theorem 5.24 below, which describes Little laws
for regenerative processes. o

The preceding Little law is for limiting averages. The version of this law for ex-
pected values is as follows. This result is a special case of Theorem 6.22 in the next
chapter, which is for stationary systems that need not be Markovian, and arrivals
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may occur in batches. The type of Palm probability here for Markovian systems
was defined in Chapter 4; general Palm probabilities are covered in Section 6.1.

Theorem 5.2. In the context of Theorem 5.1, suppose the Markov process Y is
stationary and the queueing process X may equal 0. Assume that customers arrive
one at a time for service and that each sojourn time W, is a function of the queueing
process after its arrival time T, (i.e., W, = g({X, : t > T,}) for some g). If the
expectations E Xy and .. = EN(1) are finite, then

EXo = AEn(W)),

where Ey(W)) is the expected sojourn time of an arrival at time 0 under the Palm
probability Py that there is an arrival at time 0.

Here is our major application for networks.

Example 5.3. Sojourn Times in Markovian Networks. Suppose X is a Markov
network process that records the numbers of units in an m-node network. For
instance, X could be a Jackson or Whittle process. Assume X is ergodic and
denote its equilibrium distribution by 7 (x). Our interest is in sojourn times of
units in a sector J of the network. The average sojourn time of units in J is

n
S T -1 g
Wy = lim n Z] Wi(J),

where W;(J)is the sojourn time in J of the i th unit to enter J . There is no restriction
on the nodes at which the units enter and leave J, and a unit may have multiple
visits to the nodes in J before it exits. Also, the units generally do not exit J in
the same order in which they entered.

To evaluate W,, we consider the process {X,;(J) : ¢t > 0} that denotes the
number of units in J. Although X(J) is not a Markov process, it is a function
of the Markov process X. Namely, X,(J) = f(X,), where f(x) = };, x;. By
Theorem 5.1, the average number of units in J is

L, = Zijn(x).

x jel
And the average arrival rate of units to J from outside of J is

A=) wx)) g )G = f&) + 1),

where g(x, x’) are the transition rates of X. Assume A, is finite and there is a
state x of X such that f(x) = O (i.e., sector J is recurrently empty). Then by
Theorem 5.1, the average sojourn time W, exists and L; = A, W;.

Now, in addition to the assumptions above, suppose the Markov process X is
stationary. Assume that units enter J one at a time, which means that the point
process N of arrival times into J is simple. Also, assume that each W, is a function
of the queueing process after its arrival time 7,,. Then Theorem 5.2 yields

E[Xo(N)] = A; EN[W(J)],
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where Ey[W;(J)] is the expected sojourn time of a unit in J that enters J at time
0.

It is sometimes of interest to differentiate between customer sojourn times we
have been discussing and the customer “waiting times for service.” To do this,
one must know the service discipline at the nodes. For simplicity, assume that
customers are served at each node j on a first-come, first-served basis and an
arrival to node j does not wait for service when and only when there are less than
s; customers in the system (like an -/M/s; node). The average waiting time for
services that units endure in J is

n
* _ 13 -1 : *
Wi = lim n zl: Wi(J)*,
i=
where W;(J)* is the waiting time for services in J of the ith unit that enters J.
Then under all the preceding assumptions in this example, the limit W exists and
L% = A; W7, where 1, is as above and L7 is the average number of units waiting
for services in J, which is given by

LY = Zijn(x)l(xj > 5;).
x jeJ
In addition, E[Xo(J)*] = A; Ex[W,(J)*], where E[X¢(J)*] is the expected num-
ber of units waiting for services in J at time 0 and Ex[W;(J)*] is the expected
waiting time of a unit in J that enters J at time 0. a

5.2 Little Laws for General Queueing Systems

We now present basic Little laws for waiting times in general queueing systems,
including non-Markovian networks. The proofs are in Section 5.5.
In addition to the notation above, we will use the time

T, = max (T + Wo),
1<k<n

which is the time by which the first n units have departed. We call T, the thorough
departure time of the first n units. Let N(t) denote the number of T,’s in 0, ¢}
and let A = lim,, 00 t~'N (#). We call N the thorough departure process. Note that
more than n units might depart from the system by time T,,and so N(t) is generally
less than or equal to the actual number of departures up to time 7. However, if the
units depart in the same order in which they arrive, then Ty =T, + W,and N @)
is the actual number of departures up to time ¢.

The following result concerns the existence of the three limits L, A, and W when
two of them are known to exist.

Theorem 5.4. The following statements are equivalent.
() The limits L, A, and W exist,and L = AW.

(b) L exists, T, ~ T, and either A or X exists.

(¢) L and X exist,and n™'W,, — 0.
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@°L,a, and X exist, and A = A.
(e) A and W exist.

(f) L and W exit, and fOT" X, dt ~ Y 5 W

Note that the thorough departure process N plays a prominent role. Keying the
departures to N rather than the usual departure process simplifies the analysis and
leads to more precise equivalent statements.

The equivalence of (a) and (e) implies that L exists automatically when A and
W exist. Unfortunately, the existence of W, which is the limit in a law of large
numbers for the waiting time sequence, is usually difficult to verify because waiting
times are usually intractable. There are a few exceptions, including systems with
stationary waiting times as in Theorem 6.25. For cases in which L and A exist, one
can establish the existence of W and the relation L = AW by verifying any one of
the conditions (b), (c), or (d). Condition (c) is often the easiest to verify.

A consequence of Theorem 5.4 is that L = AW is “universal” in the sense
that it always holds when all three of the limits exist. In many systems, the three
limits exist when any two of them exist. This three-for-the-price-of-two property
is satisfied in systems with regular departures as we now describe.

Recall that the key relation (5.2) leading to L = AW is automatically true with
o(1) = 0 at any time ¢t when the system is empty and X, = 0. This suggests that
a system that empties out occasionally is more likely to satisfy the relation. To
formalize this idea, we will use the following notion.

Definition 5.5. The system is recurrently empty if there are strictly increasing
random times t, 4 oo such that 7, ~ 7, and X, = 0 for some ¢ in each interval

[tna 1-'n+1)-

The 7, will typically be times such as regeneration times that trigger special “cy-
cles” in the system. The condition 7,4, ~ t,, which is implied by 7,/n — ¢ > 0,
is all that is needed here. Assuming a system is recurrently empty may be too
strong in some cases. A weaker notion is as follows.

Definition 5.6. The departure times of the queueing system are regular with re-
spect to strictly increasing random times 7, 1 oo if 7,4 ~ 1, and {, ~ T,
where

G =max{Ty : 1, < Ti < Tl

The ¢, is the thorough departure time for all arrivals during the time interval
[Tn-—l ’ Tn)-

Note that if the system is recurrently empty with respect to t,, then its departure
times are regular with respect to 7,. Indeed, all waiting times beginning in the
interval [t,_{, T,) terminate before time 1,,, since the system empties during
[tn: Ta+1), and so

Tn ~ Tnl S8 Tt ™~ Tpe
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On the other hand, there are many systems that are not recurrently empty, or never
empty at all, but their departures are regular. Examples are easy to construct.
Clearly, the departures are regular with respect to t, if 7,4 ~ 1, and

' D Wil(tn < T < Tupt) > 0.
k

For systems with regular departures, Theorem 5.4 reduces to the following,
which is a special case of Theorem 5.17.

Theorem 5.7. Suppose the queueing system is recurrently empty or, more gener-
ally, its departure times are regular. If any two of the limits L, A, and W exist, then
the other limit exists and L = AW.

This result implies Theorem 5.1 since the Markovian system in Theorem 5.1 is
recurrently empty and L and A exist. This yields the existence of W and the relation
L = AW. Section 5.6 below shows that the assumption of regular departures is
automatically satisfied for certain systems, such as Markovian and regenerative
systems; also, see Exercise 4 in this chapter and Exercise 2 in Chapter 6.

The assumption that a system is recurrently empty or has regular departures is
rather natural and not restrictive. It simply ensures that customers do not remain
in the system for indefinitely long periods and that their waiting times are not
extremely irregular. For instance, a system might have a protocol under which
services are not performed when the queue length is below a specified level. Then
some customers may get trapped in the system for irregularly long periods, es-
pecially under a “forgetful” or “layed-back” protocol. In these cases, the limit W
may not exist and some W,’s may even be infinite.

5.3 Preliminary Laws of Large Numbers

This section contains several limit theorems that we will use to prove Little laws.

We begin by relating a law of large numbers for the point process N(¢) to a law
of large numbers for its point locations 7,,. As a preliminary, note that N(T},) is
the “right-hand inverse” of 7, in the sense that Ty(r,) = T,,. Consequently, the rate
at which N(¢) tends to infinity should be the inverse of the rate at which 7}, does.
This property is formalized as follows.

Theorem 5.8. For a positive A, the following statements are equivalent.

lim n~'T, = A7, (5.3)
n—>00
lim t~'N(@t) = A. (5.4
=00

PROOF.  Suppose that (5.3) holds. Using Ty() <t < Ty¢)+1, We have

T,;(i) AaN@ < t7'N@) < Tyy N@).
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The supposition (5.3) along with N(t) 1 oo and N(t)(N(t) + 1)~' — 1 ensure
that the first and last terms in this display converge to A. This proves (5.4).

Conversely, suppose (5.4) holds. Consider a fixed (random) t < T). Clearly
N(T, — 1) < n < N(T,), and so

N(T) 'T, <n 'T, < N(T, — )7'T,.
The supposition (5.4) along with T,, 4 oo and (T, — )~'T, — 1 ensure that the
first and last terms in this display converge to A~!. This proves (5.3). a

Note that the preceding result applies to any point process on R, since the
increments of N may be any positive integer. We will frequently use this result
without mention for N as well as for N.

We now consider laws of large numbers for more general processes. Assume
that {Z(¢) : ¢t > 0} is a nonnegative, nondecreasing real-valued stochastic process.

Lemma 5.9. If the limit Z = lim,o T, ' Z(T,) exists and T,_, ~ T,, then
lim;_, o t—]Z(t) =Z.

Proor. Since Z(¢) is nondecreasing and Ty <t < Ty()+1, we have

T Z(T
1201 < Vo ( N(t)+l).
Tviy+t Thg Tney T+

T Z(T,
vey Z(Tney) -

Under the hypotheses, the right and left sides of this inequality converge to Z as
t — 00, and hence so does t ~! Z(z). |

We use the following result several times to establish limiting averages of pro-
cesses. This result also establishes Little laws for one-parameter utility processes
and sojourn and travel times for stochastic processes; see Sections 6.5-6.7. Here
we refer to the limiting averages A = lim,_, o, "I N(2),

z=limi'Z@),  Z= lim a7 Z(T,).
Theorem 5.10. [fany two of the limits Z, A, and Z exist, then the other one exists
and Z = \Z.
ProoF. If Z and X exist, then by Theorem 5.8

n'Z(T) = (0 T Z(T) - A2
Thus, Zexistsand Z = AZ.If Z and Z exist, then

n'T, = (T Z@) 2T ) > 227,
and so Theorem 5.8 ensures that A exists and Z = AZ. If Z and Z exist, then

T 'Z(T,) = nT 'n" ' Z(T,) - AZ.

Thus, by Lemma 5.9, the limit Z exists and Z = AZ. O

The next result is useful for obtaining laws of large numbers for maxima of
discrete- or continuous-time processes.
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Lemma 5.11. Suppose that c and c, (n > 1) are positive real numbers such that
n~'c, > c. Then n™! max;<, ¢, = c.

Proor. Fix € > 0, and choose n; such that [n"'c, — ¢| < ¢, for each n > n;.
Since ¢, ~ nc — oo, thereisann; > n; suchthat c,, = maxy<,, ¢;. Next, choose
n3 > n, such that n“c,,2 < g, for each n > n3. Then, for each n > n3, we have

]

c—e<n ¢ < n”! max ¢y
k<n
= max{n_]c,,z, n! max ¢} <c+e.
ny<k<n
This proves the assertion. o

5.4 Utility Processes

Little laws for queueing systems are special cases of Little laws for certain two-
parameter utility processes. This section describes this relation, and then specifies
the utility processes that we will study.

Example 5.12. Waiting Times Modeled by a Utility Process. For the queueing
process X defined above, consider the two-parameter process

n t
U(n,t):Zf Ty <s<T,+W)ds, neZy teR,. 5.5
k=170

This represents the total sojourn time in the system during (0, ¢] for the first # units.
Since the queue length process is X, = Y 1(T, <t < T, + W,), the waiting
time of units during (0, ¢] of the N(¢) arrivals in that interval is

UN@),t) = f' X ds.
0

Also, the “total” waiting time for the first n arrivals is

n
Un,T,) = lim Un, 1) = Z We.
k=1

Then the average queue length and waiting times are given by the respective limits
L = lim " 'UWNG@),1), W= lim n"'U(n, T,).
t—->00 n—o00o
These are time averages and customer averages of the waiting times. |

This example shows that it is natural to study waiting times and queue lengths
in terms of two-parameter utility processes. Accordingly, we will consider Little
laws for general utility processes defined as follows.

Consider a stochastic system like the service system above in which there is a
nondecreasing sequence of times 7,, at which some special event occurs, such as an
order for a product. As above, assume 7, 1 0o and let N(¢) denote the number of
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T,,’s in the time interval (0, ¢]. Think of N(¢) as a general point process on R ; we
make no assumptions about its distribution or structure (the increments of N are
positive integer-valued random variables with arbitrary dependencies). Associated
with this point process is a utility process U (n, t) that measures some real-valued
quantity (e.g. cost, value, time, stress), forn € Z,, ¢t € R;. The quantity U(n, t)
is the cumulative utility up to time ¢ associated with the first n times Ty, ..., T,
(these times need not be in the interval (0, ¢]). The utility associated with 7}, is not
necessarily received at time 7,—it may be accumulated in bits or continuously,
anywhere over the time horizon. For now, we place no monotonicity assumptions
on the process U (n, t). We will sometimes assume, however, that it is nonnegative
and nondecreasing (U(n, t) < U(n’, t') whenever n < n’, t < t’). Each parameter
n or t may be continuous or discrete, but, for simplicity, we stick to the conventional
setting in which » is discrete and ¢ is continuous.

Now, the utility “associated” with the time interval (0, ¢], or with the N(¢) time
points, is defined by

U@)=UNN@), ).

This utility may be accumulated after time ¢ as well as before it. The infinite-horizon
or complete utility for the first n times 71, ..., T, is defined by

U(n) = lim U(n, 1),

which is assumed to be finite w.p.1. The time at which the utility associated with
Ty, ..., T, ceases to change is

T, = inf{t : U(n, t) = Un)}.

We call T, the nth thorough termination time. This terminology is consistent with
the notion of a thorough departure time for the queuelng system. We assume T,
is finite w.p.1. Then U n) = U(n, T, ). The case T = o0 involves technicalities
that we will not cover. We shall consider the “time average” and “unit average”
utilities
U = lim t~'U(@), U = lim n~'U(n), wp.l.
t—>00 n—>00

Our interest is in the relation U = AU , which is a generalization of L = AW . With
a slight abuse of notation, we use “U” in several ways (U(n, t), U(2), 0(n), U,
U) to emphasize that these quantities are associated with a single utility process.
Some cases of U = AU have been studied using the abstract notation H = AG,
which is also related to expression (6.18) below for marked point processes.

A large class of utility processes are functionals of stochastic processes as
follows.

Example 5.13. Additive Utility Processes. Suppose the system is described by a
stochastic process {Y; : ¢ > 0} and the times 7,,. A natural utility process U, (t)
associated with each time T, is

Un(t) :f f(sv T, {Yu tuz s})ds,
0
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where f is a real-valued function of the current time s, the time 7,,, and the future
of the process Y at time s (which is {Y, : # > s}). Then the utilities associated

with 71, ..., T, on the respective time intervals (0, ¢] and R are
n n
Un,0) =Y Uiy,  Um) =) ULT,). (5.6)
k=1 k=1

This is an additive utility process. Note that the utility process for waiting times
in the queueing system is an additive utility process. O

We will see in Sections 6.5 and 6.6 that sojourn and travel times for processes
can be formulated by one-parameter uility processes defined as follows.

Example 5.14. One-Parameter Ultilities. Suppose that U (n, t) is a utility process
in which T, = T,, for each n. We call this a one-parameter utility process based
only on time if U(n, t) = Z(t), independent of n, for some process Z(¢). In this
case, U(t) = Z(t) and U (n) = Z(T,). Then the Little law for this utility process,
which is Z = AZ, can often be established by Theorem 5.10.

Similarly, we say that U(n, t) is a one-parameter utility process based only on
cycles if it is of the form U (n, t) = Y, independent of ¢, for some sequence Y,,. In
this case, U(t) = Y and U (n) = Y,,. Then the Little law for this utility process
can often be established by the discrete analogue of Theorem 5.10 in Exercise 1.

O

5.5 Omnibus Little Laws

In this section, we present limit theorems for the utility processes defined above.
Then we apply these results to obtain the Little laws in Sections 5.1 and 5.2 for
queueing systems.

Using the notation in the preceding section, we consider the utilities

U@t)=UNG@),1), Umy=UnT,)

associated with the time interval (0, #] and the times T, ..., T,, respectively. The
first result concerns the existence of the limits U, A, and U, as well as the relation
U = AU, when only two of the limits exist.

Theorem 5.15. Suppose the process U(n, t) is nonnegative and nondecreasing
in(n,t), and T, ~ T,. Then the Jollowing statements are equivalent.

(a) The limits U, A, and U exist, and U = AU.

(b) The limits A and U exist.

(c) The limits )\ and U exist.

(d) The limits U and U exist, and U n)y~U (f’,,).

PrOOF. Clearly, (a) impliAes (b). We next show that (b) implies (c). To determine
the existence of the limit U, first note that

UT,-)<U®m,T,)<U@m,T,)=0m) < UNT), T,) <Ud). (6.7
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These inequalities follow by the monotonicity of the utility process and
N(T,-)<n < N(T), T,<T, N <NQ. (5.8)

We will prove that (b) implies U (n) ~ nA~'U. But this will follow by (5.7) upon
showing that

U(T,—) ~ nx~'U ~ U(T,). (5.9)

To this end, note that the existence of A ensures that n/f',, ~n/T, ~ X, and so
N(t) ~ At. Also, U(t) ~ tU implies that U(T,—) ~ T,U ~ nA~'U. Similarly,
U(T,-) ~ T,U ~ nA~'U. This proves (5.9) and hence (b) implies (c).

Next suppose that (c) is true. We will show that (d) holds. To obtain the existence
of the limit U, we will use the inequalities

OWN@) <Um, ) =U@) <UN® + 1, Tvpe) <UWNE@ +1). (5.10)

These relations are based on (5.8 ) and f’,g(,) <t < Tn¢y+1- Now, arguing as in
the last paragraph, we have N(¢) ~ Af and

UN(@) ~ N@)U ~ tAD.

Similarly, U (Nt)+ 1)~ 2. Applylng these observations to (5.10) shows that
u@e)~ 2. Furthermore, U(T,,) ~ T, AU ~ U(n) This proves (d).
Finally, if (d) holds, then (a) follows since

T, ~UT)U ' ~0U",
which ensures that A exists and A = UU . a

'We now consider systems that are recurrently empty or have regular termination
times. The utility termination times 7,, are said to be regular with respect to strictly
increasing random times 7, 1 00 if 7,4, ~ T, and 1, ~ {,, Where

& = max{Ty : Tt < T < T}

This notion is consistent with regular departure times in a queueing system.
We will show that Theorem 5.15 reduces considerably for systems with regular
termination times. The proof is based on the following result.

Lemma 5.16. The following statements are equivalent.
(a) A exists and the termination times are regular.

(b) A and X exist and A = A.

(c) Either A or X exists and f,, ~T,.

PrOOF. We first show that (b) is equivalent to (c). If (b) holds, then (c) follows
since
T, ~n/h=n/r~T,.

Now, suppose (c) holds. Then (b) follows since the existence of A 1mp}1es T, ~
T, ~ n/X, which ylelds A = A; and the existence of A implies T, ~ T, ~ n/A,
which yields A = A
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Next, we show that (a) is equivalent to (b). If (b) holds, then the termination
times are regular with respect to 7, = n since
T, ~n—1 fgn:max{fk:n——lng<n}
< Tvm ~ Nm/A ~ T,
Thus (b) implies (a).

Now, suppose () holds, where the termination times are regular with respect to
7,. To prove (b), it suffices to show 7, ~ n)~"'. The regularity assumption ¢, ~ T,
and Lemma 5.11 imply that max,<, ¢ ~ t,. Using this along with T, ~ n/A,
T, < T, and N(t) ~ At, we have

N(@)/A~ Tusy < Ty S maxge~ g, ~ N@)/A. (5.11)

This proves T(.,) ~ N(z,)A™". Also, N(t) ~ At implies
N(tut1)/N(T) ~ Tyt /T ~ 1.

Then T, ~ nA~! follows by an application of a discrete-time version of Lemma 5.9
with the pair Z(¢), T, equal to T,,, N(z,,). |

We are now ready for the main result for systems with regular termination times.

Theorem 5.17.  Suppose U (n, t) is nonnegative and nondecreasing in (n, t), and
the utility termination times are regular. If any two of the limits U, A, and U exist,
then the other limit exists and U = AU.

PrOOF. Under the assumption that A exists, the assertions follow by Theo-
rem 5.15, since Lemma 5.16 ensures that f",, ~ T,. Now, consider the remaining
case in which U and U exist. Let 7, denote the times with respect to which the
termination times are regular. To establish the existence of A, we first show that
U(tn) ~ U(N(tn)). R

Let n, = max;<, &. We saw in (5.11) that Ty, < 1, ~ 7,. Using these
relations along with

t < TN(!)+1’ Trl < fnv T < Mn+1, 0(") ~ nl},
and U(t) ~ tU, we have
U(ty) < UN(), Tigy+1) < UN @) + 1, Thy41)

= U(N(5,) + 1) ~ UN(5,)) < UNns1), )
<UMn41) ~ Mup1U ~ 11U ~ 7, U ~ U(1y).

Thus U(z,) ~ U(N(z)). )
This property and 7,4, ~ 7, imply U(t) ~ U(N(t)) by an application of
Lemma 5.9 with the pair Z(¢), T, equal to U(¢), t,,. Therefore,

N@t)~UWNO ' ~u)U~ ~ vl

In other words, A exists and U = 2. (]
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Remark 5.18. (Results for Nonmonotone Utility Processes). Consider a utility
process of the form U (n, t) = U (n, t) — U,(n, t), where U; (n, t) is nondecreasing
in (n, 1) for i = 1,2. Define U;(n) = Ui(n, T,), and let U; and U; denote limits
of the respective averages ¢~ 'U;(¢) and n~'U;(n). Then by obvious applications
of Theorems 5.15 and 5.17, it follows that their assertions also apply to this more
general utility process with the modifications that “U exists” is replaced throughout
by “U, and U, exist”, and “U exists” is replaced throughout by “U, and U, exist”.

We are now ready to apply the results above to prove the Little laws stated in
Section 5.2 for queueing systems. Recall that, for a queueing system with regular
departure times, Theorem 5.7 says that the existence of any two of the limits L, A,
and W ensures that the other limit exists and L = AW. This result is an immediate
corollary of the following result, which we stated previously as Theorem 5.4.

Theorem 5.19. The following statements are equivalent.
(a) The lzmlts L, A, and W exist, and L=2AW.

(b) L exists, T ~ T,, and either A or A exists.

(c) L and X exist, and n™'W,, — 0.

(d) L, A, and X exist, and ). = A.

(e) A and W exist.

(f) L and W exit, and foT" Xods ~ Y i_ Wk

PROOF. We observed in Section 5.4 that waiting times in the queueing system
under study are represented by the utility process

n t
Un,1) = Zfo I(Ti < s < T + W) ds.
k=1

Clearly U(n, t) is nonnegative and nondecreasing in (n, t), and
t n
U@ = / X, ds, Om)y="Y_ W..
0 k=1

First, note that statements (b), (c), and (d) are equivalent by Lemma 5.20 below.
The proof of the equivalence of (e) and (f) is left as Exercise 2.

The proof will be complete upon showing (b) = (e) = (a) = (c). Now, Theo-
rem 5.15 ensures that (b) = (e) = (a). Also, if (a) holds, then the existence of W
implies

n n—1
Wy ="' W= Y W) > 0.
k=1 k=1

Thus, (a) = (c). O

Lemma 5.20. For the setting of waiting times in a queueing system, where T, =
maxg<n(Ty + W), the followmg statements are equivalent:

(a) A and A exzst and A = A.

(b) Either A or X exists and T ~ T,.

(c) A exists and n"'W, — 0.
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PrROOF. The equivalence of (a) and (b) follows from Lemma 5.16.
We finish the proof by showing that (a) is equivalent to (c). If (a) holds, then (c)
follows since using T, ~ nA~" ~ T, we have

0<n'W,<n (T, -T,) - 0.

Now, suppose (c) holds. Then by T, ~ nA~!, n~'W, — 0 and Lemma 5.11, we
have

lim n~'T, = lim n~' max(Ty + W) = lim n~ (T, + W,) = A~
k<n n—00

n—>00 n—->oo
This proves that A exists and equals A. Thus (c) implies (a). ]

Remark 5.21. (Results for Nondiscrete Quantities). The preceding results also
apply to service systems that process nondiscrete quantities like fluids or other
infinitely divisible items, or a combination of discrete and continuous quantities.
In particular, a random measure M (¢) that represents the total mass that has arrived
in (0, t] replaces N (t). And T(x) = sup{t : M(t) < x} replaces T,,. Similarly, a
random measure M (t) representing the mass that has thoroughly departed in (0, ¢],
replaces N (¢); and T(x) defined in the obvious way, replaces T Then Uf(x, t)
denotes the utility (or waiting time) associated with the quantity x up to time ¢;
and U(t) = UM(),t) and U (x) = U(x, f"(x)) denote the utilities (or waiting
times) up time ¢ and for quantity x, respectively. All the results herein apply with
the same interpretations; the only difference is the minor change in notation that
the “quantity parameter” is now x instead of n.

5.6 Little Laws for Regenerative Systems

There are a number of queueing systems, such as the GI1/G /s system we discuss
shortly, whose dynamics are expressible by regenerative processes. In this section,
we apply the general results above to obtain Little laws for such systems.

We begin with a few comments on regenerative processes.

Definition 5.22. Let {¥, : ¢+ > 0} be a continuous-time stochastic process with
arbitrary state space, and let 0 = 73 < 7; < ... be random times associated with
Y such that 7, 1 co. The nth cycle of Y consists of the information

En = (Tn = Tn—-1, {Yt 1T S < rn})-

This represents the trajectory of Y in the random time interval [1,_;, 7,). The
process Y is regenerative over the 1,’s if &, &, ... are independent and identi-
cally distributed. For simplicity, the regenerations are assumed to start at time 0;
otherwise, £, might not have the same distribution as the other £, ’s.

Suppose Y is a regenerative process over t,. Note that the t,’s form a renewal
process. By the key renewal theorem, we know that if t, is not periodic and
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E1; < 00, then the limiting distribution of Y is
1 o
w(A) = lim P{Y, € A} = ——Ef 1(Y, € A)d:s. (5.12)
t—00 Et 0

There is an analogous limit when 7, is periodic. Many limit laws for functionals
of Y are special cases of the following result.

Proposition 5.23. If Z(¢) is a nonnegative, nondecreasing process on the same
probability space as Y such that Z(t,) — Z(t,—1), n > 1, are independent and
identically distributed, then t ' Z(t) - EZ(t))/Et) asn — oc.

PrOOF. The assertion follows by Theorem 5.10, since the classical law of large
numbers ensures that n='7, — E1; and n='Z(z,) = EZ(1)). o

We are now ready to describe the average waiting times in regenerative systems.

Theorem 5.24. Suppose the queue length process X is regenerative over t, and
Et; < o0. Let w denote the limiting distribution of X. Then the average queue
length L and the arrival rate A, which may be infinite, are

L=) xn(x), A=EN(®)/Emn. (5.13)

If, in addition, L and A are finite and 7(0) > 0, then W existsand L = AW.

PrOOF. Since X isregenerative, it follows by two applications of Proposition 5.23
with Z(t) = fot X;ds and Z(t) = N(t), that the averages L and A are as in (5.13).
To prove W exists and L = AW, it suffices by Theorem 5.7 to show that the system
is recurrently empty.

To this end, let v, denote the nth cycle in which the system is empty: vo = 0
and

Vv, =min{k > v,_; : X, =0forsomet € [t,_, )}, n>1.

Set 7, = t,,. Then by the regenerative property of X, the 7, — 7,_,, n > 1 are
independent and identically distributed with mean Et; = Ev, E1;. Furthermore,
vy is a geometric random variable with mean 1/ (0). Then by the classical strong
law of large numbers, 7, , , /7, ~ (n+1)/n ~ 1. Therefore the system is recurrently

empty with respect to ;. i

The preceding result for regenerative systems yields Theorem 5.1 for Markovian
systems. Note that the assumption 7 (0) > 0 in Theorem 5.24 is used in the proof
only to ensure that the system is recurrently empty. This assumption can clearly be
replaced by any condition that implies the departures are regular or n~' W, — 0.

In Theorem 5.24, the X is regenerative, but the W,’s do not have a standard
probabilistic structure. Consequently, the limits L and A also have interpretations
as expected values, but W does not. The next result concerns the reverse situation
in which the waiting times have a special structure, but the queue length process
does not.
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Consider a service system whose dynamics are represented by a process Y that
is regenerative over t,. When a unit arrives in the time interval {z,, 00), a natural
assumption is that its waiting time is a function of the system dynamics

M ={Yo4r 120 U T — T 1k 2 1) (5.14)

in the time interval [z,, 00). Formally, we say the sequence {W,} is a t,-shift of
Y if (W, : T, > t,} is a function of 5,, for each n. This definition also applies
when Y is not regenerative. For instance, such random time shifts arise naturally
in stationary systems that we discuss in the next chapter. The arrival process and
queue lengths may also have analogous links with the system dynamics ,,. We say
that N (or X) is a 7,-shift of Y if {N(z, +t) — N(z,) : t > 0} (or {X,4, : t = O})
is a function of 7, for each n.

The following result concerns two types of regenerative service systems. In part
(i), the waiting times are a time-shift of the dynamics. In part (ii), the queue length
process, and hence the arrival process, is a time-shift of the dynamics (this is a
generalization of the system in Theorem 5.24).

Theorem 5.25. Suppose Y is regenerative over t, and Et| < 00.
(i) If {(W,} is a T,-shift of Y and the limit A exists and is finite, then the limits L
and W exist and are
1 N(r)-1
W,, L =AW. (5.15)

W =
A.E‘L'l

(ii) If X is a ©,-shift of Y, then so is N and the limits L and X are

L

 AET
If, in addition, L and X are finite and either {W,} is a t,-shift of Y or

yl
E/ X, dt, A= EN(t))/ET,. (5.16)
0

P{X, =0 forsomet € [0, 1;)} > 0,

then the limit W is given by L = AW. The W is also given by (5.15) in case {W,)
is a T,-shift of Y.

ProOOF. (i) Since {W, } is a 1, -shift of Y, we can write

Y Wil(ty < Tie < Tap1) = h(na),
k

for some function A, where 1, is defined by (5.14). The regenerative property of ¥
implies that the sequence 7, is stationary and ergodic—these concepts are defined
in the next chapter. Furthermore, the sequence A(7,) is also stationary and ergodic.
Then by the strong law of large numbers in Theorem 6.1 for stationary ergodic
sequences,

N(t,)-1 n—1 N(t))—1

n! Z szn‘IZh(nk)—)E Z W;.
k=0

k=0 k=0
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Since t, is a renewal process, we know that 7, ~ nEt,. Also, the existence of
A implies that N(t,) ~ At, ~ AnErt,. From these observations and a discrete-
time version of Theorem 5.10 with Z(¢) = ;c_:{) Wi and T,, = N(z,) we obtain
expression (5.15) for W. Furthermore, since A and W exist, Theorem 5.7 yields
L =AW.

(ii) Assuming X is a t,-shift of ¥, it follows by the representation

N@t) =) max{0, X, — X,_}
s<t
that N is also a 7,-shift of Y. To prove (5.16), first argue as in part (i) with h(n,) =
N(ty41) — N(z,) and obtain

n—1

n"'N(m)=n""Y_ h(n) > EN(r)).
k=0
Inlightof 7, ~ nEt and 1,4, ~ t,, Theorem 5.10 with Z(¢) = N(t)and 7, = 1,
yields expression (5.16) for A. To prove expression (5.16) for L, argue as in the
preceding case with

T+t
/ X, dt = h(n,).
Ty

Finally, the last assertion in part (ii) follows by part (i) and an argument like the
proof of Theorem 5.24. |

Example 5.26. GI/G/s and Regn/G/s Systems. Consider a GI/G /s system
in which the arrival times form a renewal process and the service times of the s
servers are independent and identically distributed and independent of the arrivals.
We shall describe the system by the process Y, = (X;, W/, ..., W¥), where X, is
the number of customers in the system at time ¢ and W/ is the remaining service
time for the unit being served at server i at time ¢. Suppose the system parameters
and rule for assigning units to servers are such that the process Y is regenerative
over some T,,’s that are stopping times of Y. A typical rule is to route an arrival
to one of the idle servers arbitrarily, or to the lowest numbered idle server. If the
system empties out, it is natural to let 7, denote the nth time that an arrival finds the
system empty. Assume the waiting time of any arrival at time t, 4 ¢ is a function
of Y; 4. (e.g., there are no delays caused by other factors). Then clearly {W,} is a
7,-shift of Y. Note also that X is regenerative over z,,. Consequently, Theorems 5.1
and 5.24 apply to this system. Special cases of this system are the classical M/ G/s
and GI/M/s systems.

A similar argument justifies that Theorems 5.1 and 5.24 apply to Regn/G/s
systems defined analogously, where the arrival process is a regenerative process.
Special cases include the following systems:

e M*/G/s (compound Poisson arrivals).

e GI* /G /s (compound renewal arrival process).

e SM /G /s (semi-Markov arrival process).

Regn/G /s systems also arise naturally in tandem networks. For instance, in the
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two-station tandem network GI1/G/s — -/G/s, the first station is a regenerative
system, and so the second station is a Regn/G /s system. Similarly, for the more
general tandem system Regn/G/s — -/G/s — ...- /G/s, or an analogous tree-
like network with one-way flows, one can obtain average waiting times at each
station by Theorems 5.1 and 5.24. a

5.7 Exercises

1. Discrete Analogue of Theorem 5.10. Suppose that Y, is an increasing sequence
of random variables associated with a point process N on R,. Consider the
averages

Y = lim n”'Y,, Y = lim ™'Yy,

n—0o0 t—>00

Show that if any two of the limits ¥, A, and Y exist, then the other one exits
and ¥ = AY.
In Theorem 5.4 concerning a Little law, show that statement (e) is equivalent
to statement (f). Hint: Use Theorem 5.15 and Lemma 5.20.
3. In the context of Theorem 5.4, show that if the limits L and W exit and

fOT" Xsds ~ Y ;_; Wi, then L exists and L = AW.

4. In Theorem 5.1, the assumption that the queueing process may equal O can be
replaced by the weaker assumption that the departures are regular, which is
implied by any one of the following conditions:

(i) The {W,} are functions of Y and there exist stopping times t, of Y such that
Y is regenerative over 7, (e.g., the T, are entrance times to a fixed set) and, for
eachn > 1, the {W; : Ty > t,} are conditionally independent of {¥; : s < t,}
given Y.

(ii) There are stopping times 7, of ¥ such that Y is regenerative over t, and,
for eachn > 1, the {W, : T, > 1,,} is a function of {Y, 4, : t > 0}.

(iii) Y is regenerative over t, and {W; : T; > t,} is a function of Y in the time
interval [t,, oo) for each n.

Show that (i) implies (ii), and (ii) implies (iii).

N
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terial in Chapter 5 comes from Serfozo (1994), which is a distillation and extension
of ideas from earlier articles.



6
Stationary Systems

This chapter is an introduction to the basics of stationary processes and Palm
probabilities that are used in queueing theory. This includes Palm calculus and
Campbell-Mecke formulas for functionals of stationary systems. This material
is the foundation for modeling networks and queueing systems with stationary
dynamics, and for obtaining Little laws for such systems.

6.1 Preliminaries on Stationary Processes

This section reviews ergodic theorems for stationary processes and the heredity
property of stationarity.

We will use the following terminology. A stochastic process X = {X, : t € R}
with values in a space E is stationary if the distribution of the time-shifted process
S:X = {X;4: : s € R} is independent of ¢. A stationary process X is ergodic if
P{X € A} =0or 1 for each set A that satisfies {X € A} = {$;X € A},fort € R
(A is a time-shift-invariant set of X). Stationarity and ergodicity of sequences are
defined similarly—the parameter ¢ in these cases would simply be an integer.

The following are strong laws of large numbers (or ergodic statements) for
stationary processes. Assume the processes here are real valued and all the expected
values are finite.

Theorem 6.1. (i) If {X,, : n € Z} is a stationary, ergodic sequence, then
n
. -1 _
nll)nolon kz_l Xy =EXog wp.l.

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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(i) If {X, : t € R} a is stationary ergodic process, then

t
lim ¢! f X;ds =EXy wp.l.
t—00 0

(iii) If {Z, : t € R} is a nondecreasing process and 1, are increasing times such
that the sequence {(T,41 — Ty, Zr,,, — Z,) : n € Z,} is stationary and ergodic,
then

Tu+l

lim iz, = B =20

t—>00 E(t) — )
ProOF. Statement (i) is proved in standard texts that cover ergodic theory or
laws of large numbers. Statement (iii) is for processes with stationary increments
at special embedded times 1,,; it follows from (i) and Theorem 5.10. Statement (ii)
follows from (iii) with Z, = f; X, ds and t, = n, where EZ, = [, EX, dt =
E X, by Fubini’s theorem. ]

A distinctive feature of stationarity is that many functions of stationary processes
are also stationary. To discuss this heredity property, suppose that X is a stationary
process. If ¥, = f(X,), where f is a function on the state space of X, then Y is
stationary and also ergodic if X is. This assertion is an elementary example of the
following result, which follows immediately from the definitions of stationarity
and ergodicity.

Proposition 6.2. Suppose
Y= f(8X), teR, (6.1)

where f is a function on the (measurable) space of sample paths of X. Then
{Y; : t € R} and the joint process {(X,,Y,) : t € R} are stationary. These
processes are also ergodic when X is.

We will call the process Y defined by (6.1) a stationary functional of X. Note
that Y is a time-shift invariant function of X in that if X is shifted in time by some
value, then so is Y. The preceding proposition also applies to multiple processes.
For instance, if ¥ and Y are stationary functionals of X, then so are the multidimen-
sional processes (Y, ¥) and (X, Y, Y). This and the following transitivity property
are useful for establishing joint stationarity of multidimensional processes.

Proposition 6.3. If Y is a stationary functional of X, and Y is a stationary
Junctional of (X, Y), then Y is a stationary functional of X.

PrROOF. This follows since we can write ¥, = f(S,X, f(8:X)), where Y, =

£(8:X), and ¥, = f(S,X, SY). o

Analyses of networks and systems with stationary dynamics often involve sta-
tionary point processes on the real line. We will use the point process terminology
in the first section of Chapter 4. Suppose N is a point process on R with points at
the locations

ST L <T <D <0<T\<T,....
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That is,
N(A) = Z (T, € A), ACR.

n

The point process N is stationary if the time-shifted process {N(A+¢) : A C R}is
equal in distribution to N, for each ¢ € R. The stationarity implies that EN(A) =
A|A|, where |A| denotes the Lebesgue measure of A and A = EN(0, 1] is the
intensity of N. With no loss in generality, we assume the intensity is positive and
finite.

Ergodicity of a stationary point process is defined in the same way as it is
for a continuous-time stationary process. If the point process N is stationary and
ergodic, then it satisfies the two strong laws of large numbers

t7'N@E) —> A w.p.last — oo. 6.2)

n'T, > 27" wplast - oo 6.3)

The first strong law follows from (iii) in Theorem 6.1 just as (ii) in Theorem 6.1
does. The second law is equivalent to the first one by Theorem 5.8.

Stationary point processes arise naturally as shift-invariant functions of station-
ary processes. Namely, suppose X is a continous-time stationary process, and N
is a point process such that N(A + t) = f(S,X)(A), foreach A C R, where f is
a function from the space of sample paths of X to the counting measures. Then N
is stationary, and it is also ergodic if X is. We call N a stationary functional of X .
This terminology is consistent with that used for (6.1).

Example 6.4. Stationary Functionals of Networks. Suppose X is a stationary
process that represents the numbers of units in an m-node network. The process
that represents the number of units in the sector J is X,(J) = f(X,), where
fx)y =Y jes Xj- Clearly X, is a stationary functional of X. Now, the point
process N; of arrival times of units in J is given by

Ni(4) = ) max{0, X,(J) — X,-())}.
teA
This covers the possibility of batch arrivals, in which case N, is not a simple
point process. Clearly N(A +t) = )., max{0, X, — X(s41)-}, and so N, is
a stationary functional of X,. Furthermore, by the propositions above, N; and
(X, N,) are stationary functionals of X.

6.2 Palm Probabilities

In Chapter 4, we discussed special types of Palm probabilities for stationary
Markov processes. We now present a more comprehensive study of Palm proba-
bilities for general stationary systems. This section covers elementary properties,
and the next section covers a variety of formulas involving Palm probabilities.
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In modeling a stationary system, the standard approach is to start with primitive
information in terms of a stationary process that contains all the essential infor-
mation of the system, and then express properties of the system as functionals of
the primitive process. For our development, we will consider a system in which
the primitive information is the stationary process 6 defined as follows.

Definition 6.5. Let (2, F, P)denote a probability space. Foreacht € R, suppose
6, : Q — Qs a bijection such that the map (¢, w) — 6,(w) is measurable and

65(6,((1))) = 0s+r((l)), w € Q, s,t € R.

In particular, 6y(w) = w and 6_, = 6,‘1. Assume the probability measure P on 2
is invariant under 0 in the sense that

Pl6, e A}=P{A}, AeF,teR

Then 6 = {6, : t € R} is a measurable stationary process on (2, 7, P) with values
in £2. The process 8 is a stationary flow on (2, F, P).

Stationary functionals of 6 are sometimes called compatible with the flow 6.
Unless specified otherwise, we assume that all stationary processes introduced
below are stationary functionals of the flow 8, and hence they all reside on the single
probability space (2, F, P). Recall that any collection of stationary functionals
of @ is jointly stationary.

To model a system in this framework, one takes 6 as a stationary process that
contains all the system information. Without loss of generality, one may assume
that any stationary process {X, : t € R} is a stationary flow, since one can construct
a flow that is equal in distribution to X. For instance, 8 could be a stationary network
process X as in Example 6.4 above, where the stationary functionals of X are the
number of units in a sector of the network and the point process of arrival times to
the sector.

We now consider a point process N on R that is a stationary functional of 6.
Assume N is simple and its intensity A = EN(0, 1] is positive and finite. A typical
problem is to compute the probability of some event under the condition that N
has a point at time 0. This would be the conditional probability P{A|N({0}) = 1},
provided it is well defined. This conditional probability does not exist in the usual
sense, however, when the event N({0}) = 1 has zero probability. In general, the
desired “conditional probability” is represented by the Palm probability defined as
follows.

Definition 6.6. The Palm probability measure Py associated with N is defined on
the underlying probability space (2, F, P) by

Py{A} = )\—|IB;|E/; 1(6, € A)N(dt), AelF, 6.4)

where B C R is a set whose Lebesgue measure | B| is positive and finite. We let
Ey denote the expectation under Py .
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Since N is a stationary functional of 6, the right side of (6.4) does not depend
on the choice of the set B, and so Py is well defined. Note that (6.4) can also be
written as

Py{A} =

EN{t € B:6, € A}.
EN(B)

Another representation based on the times 7}, is
1
EN

Py{A} = (B)EZI(OT" € A, T, € B). (6.5)
n

Since 07, is what an observer “sees” of 6 on all of R viewing it at T,,, one can say,

loosely speaking, that Py/{A} is the portion of the times 7, that an observer sees 6

in A.

In the next result, (6.8) says that the Palm probability Py is concentrated on the
subspace {N({0}) = 1} C Q. Consequently, Py describes the probabilities of any
event in this subspace “given that N has a point at 0.” Accordingly, (6.6) below is
the distribution of the process X given that N has a point at 0.

Proposition 6.7. If X is a stationary functional of 6, then
Py{XeC}=1""'E f 1(S,X € C)N(dt), (6.6)
©.1]

where C is a set in the space of sample paths of X. In particular, this formula
applies to X = N, and hence

Py{N(B) =n} = A“‘E/ I(N(B +t) = n)N(dt), 6.7)
©,1]
Py{N({0}) =1} =1 = Py{To = 0}. (6.8)
PrOOF. By (6.4) with B = (0, 1], we have
Py{X € C} = A“‘E/ 1(6; € {X € C})N(dt). 6.9)
©,1]
Assuming X takes values in a space [, we can write X, = g(6,), for some g :
2 — E. Since 6 is a flow, it follows that, for any ¢ and C,
0,(w) € {{g(B;) : s € R} € C} if and only if {g(0;+,(w)) : s € R} € C.

That is, 1(6, € {X € C}) = 1(S, X € C). Applying this to (6.9) yields (6.6).
Next, note that (6.7) is a special case of (6.6). Finally, (6.8) follows since
{N({0}) = 1} = {To = 0} and, by (6.7),

Py{N({O}) =1} = l_‘Ef(O | I(N({th = DN(d)

=A"'EN(Q, 1] = 1. o
The next example shows that the Palm probabilities we discussed in Chapter 4

for T -transitions of Markov processes are special cases of the Palm probability
defined by (6.4).
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Example 6.8. Palm Probabilities of T -transitions. Let X be astationary functional
of 6. Suppose the sample paths of X are contained in the set of all functions from
R to E that are piecewise constant and right-continuous. Let 7 be a subset of
these functions. We say that a 7 -transition of X occurs at time ¢ if X, # X,_
and S, X € 7. Assume there a finite number of such transitions in any finite time
interval. Then the times of these transitions form a simple point process N that is
a functional of #. Assume N has a positive, finite intensity A. Then according to
(6.4),

PviX € T'} = A /A, (6.10)

where A = E f(O,ll 1(X; # X,_, S8 X € T')N(dt) is the rate of T"-transitions.
This example shows that Py can be defined by the ratio-of-rates formula (6.10) if
one is only interested in Palm probabilities for X under 7 -transitions. a

We will now show that certain sequences of events with respect to the times T,
are stationary under Py, even though they are not stationary under P. For example,
the sequence of interpoint distances {7,,;1 — T, : n € Z} is stationary under Py,
but it is not stationary under P. Also, if X is a stationary functional of 6, then the
embedded sequence { X1, : n € Z} is stationary under Py, but it is not stationary
under P. These properties are consequences of the following important result for
Palm probabilities.

Theorem 6.9. The sequence {01, : n € Z} is stationary under Px. Moreover, this
sequence is ergodic under Py if and only if 0 is ergodic under P.

ProoF. Consider the map = 67, on {Ty = 0} C . Since Py{Ty = 0} = 1 and
6 is a flow, we can write

6r, = 6" w.p.1 under Py, for each n € Z. 6.11)

For instance, 07, = 6r,_1,(0r,_7,(0r,_1,)) = 6° w.p.1 under Py. In light of (6.11),
the first assertion of the theorem is equivalent to saying that Py is invariant under
the map @ in the sense that

Py{67'(A)} = Py{A}, ACR. (6.12)
To see this, note that by (6.5) with B = (0, ¢t] and N(t) = N(0, t], we have

N(t) N(@)

Pyi07'(A)) = —EZI(@THeé"(A))———-EZl(OTM

— Py(A} + -;-t[P{eTM,H. € A} — P{6r, € A, N@) > 1]1.

The last term converges to 0 as t — 00, and so (6.12) is true. The second assertion
of the theorem follows by the definition of ergodicity. O

Theorem 6.9 applies as follows to sequences generated by stationary functionals
of 6. Examples of this were the lead-in to Theorem 6.9.
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Corollary 6.10. If X is a stationary functional of 0, then the sequence {St, X :
n € Z} of what one sees of X on the entire time axis at the times T, is stationary
under Py. This sequence is ergodic under Py if and only if 0 is ergodic under P.

PrROOF. It suffices to show that St X is a stationary functional of 67, under Py.
But this follows, since we can write X; = g(6,) for some g : 2 — [, and hence

81, X ={Xi41, 1 t € R} = {8(6:(07,)) : t € R} = h(6y,),
where h(w) = {{g(6;(w)) : t € R}. O

The next result says that laws of large numbers for a stationary process X are
valid under Py as well as under P. Similarly, laws of large numbers for {67, : n €
Z} are valid under P as well as under Py. We use these “cross” ergodic theorems
to link Little laws for expectations to those for limiting averages. For a proof, see
the references at the end of this chapter.

Theorem 6.11. If X is a stationary process and E X exists, then
t
t_I/ X;ds > EXy w.p.l under Py.
0

If (Y, : n € Z} is a stationary functional of {0r, : n € Z} and EY), exists, then

n
n~! Z Yy > EY, wp.l under P.
k=1

6.3 Campbell-Mecke Formulas for Palm Probabilities

This section covers further properties of the Palm probability Py defined by (6.4),
which is associated with the stationary point process N on R. Keep in mind that
N is simple and has a finite positive intensity A. The focus is on the Campbell-
Mecke formula, which is a framework for analysis involving Palm probabilities
(sometimes called Palm calculus). We present this formula and several ostensibly
different, but equivalent versions of it.

Many probabilities and expectations under P have natural representations in
terms of expectations or probabilities under Py. They can be obtained by the
following formula, which is an example of Fubini’s theorem. Here dt¢ denotes
Lebesgue measure.

Theorem 6.12. (Campbell-Mecke Formula) Forany f : R x Q — R,,
E/ f@,6,)N(dt) = AEN/ ft,6)dt. (6.13)
R R

ProoF. This can be proved first for indicator functions f by the definition of
Py, then for linear combinations of indicators, and finally for general functions by
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monotone convergence. Another approach is to apply Fubini’s theorem as follows.
We can write

/f(t,B,)N(dt):f ft, o YME(, o)), (6.14)
R RxQ

where M is the random measure defined by M(B x C) = fB 16, € C)N(dt).
The dummy variable «’ is different from the suppressed @ in # and N. By the
definition (6.4) of Py, we know that EM(B x C) = APN{C}fB dt. Then by
(6.14) and Fubini’s theorem, the left side of (6.13) equals

el feomac,oy=[ o oEMEE Y
RxQ JRXQ

=X f(t, 0)Py{dew'} dt,
RxQ

which equals the right side of (6.13). |

The Campbell-Mecke formula (6.13) is sometimes called Campbell’s formula
or Mecke’s formula, and so we combine the names. Some studies refer to (6.16)
below as Campbell’s formula.

In applications where one suppresses the formalism of the 6 process, the
Campbell-Mecke formula is as follows. Let {X, : t € R} denote a stochastic
process with state space E and assume its sample paths are in the set D of all
functions from R to E that are right continuous and have left-hand limits. Let
N be a point process on R such that X, N are jointly stationary. Then for any
g:Rx D> R,

Ef g(t, S, X)N(dt) = AENf g, X)dt, (6.15)
R R

provided the expectation exists. Note the resemblance of this formula to the
extended Levy formula (4.3).

We now present several formulas that are ostensibly different from the
Campbell-Mecke formula, but are actually equivalent to it (two formulas are
equivalent if each one implies the other). The first theme concerns functionals
of stationary marked point processes defined as follows.

Definition 6.13. Let {§, : n € Z} be random elements of some space E such that
&, = h(6r,), for some h : 2 — E. The space-time point process

M) =) (T &) € )
on R x E, or its point locations {(T}, &,) : n € Z}, is a stationary marked point
process. The &, are marks of N(-) = M(- x E).

In the preceding definition, the stationarity of N and 6 ensure that the space—
time process M is stationary in time: The distribution of {(T,, —¢,&,) : n € Z} is
independent of ¢. Also, we know from Theorem 6.9 that {§, : n € Z} is a stationary
sequence under Py, but it is not stationary under P.
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The following version of the Campbell-Mecke formula is useful for deriving
Little laws for queueing systems. This motivates the inclusion of Little in the name.

Theorem 6.14. (Campbell-Little-Mecke Formula) Suppose {(T,, §,) : n € Z}
is a stationary marked point process. Forany f : R x E — R,

EY f(Ty &) = AEy / £t &) dt, (6.16)
P R
provided the expectation exists. This formula is equivalent to the Campbell-Mecke
Jformula (6.13).
Proor. Itsuffices to prove (6.16) for nonnegative f. But this follows since (6.13)
implies

EY. fTt = [ £, ho0N@0 = B [ fe. e,

where &, = h(f7,). Next, note that formula (6.16) with &, = 6y, is (6.13). This
and the preceding sentence prove that (6.16) is equivalent to (6.13). m]

Example 6.15. Functionals of Marked Point Processes. Suppose {(T,,,&,) : n €
Z} is a stationary marked point process. Consider the process

X, =) ft-Tn&) t€R,

where f : R x E — R. The X is a stationary functional of 8, since by the change
of variableu = s — ¢

i = fRf (¢ =5, hE)N@s) = fR f-u, h@ONgE)du),  (6.17)

where &, = h(fr,) and N(A + t) = g(6;)(A). By the Campbell-Little-Mecke
formula (6.16), the mean of this process is

EXo =AEN/l;f(t, &) dt, (6.18)

provided the expectation exists (the integral also equals fR f(—t,&o)dt). This
formula is sometimes referred to in queueing applications as H = AG.
A common form of the process X is

X, =Y f@— T &)U(T +an <t < T, + By,
n
where (§,, o, Bn) are marks of N such that 8, > «,. In this case,

Bo _
EXo=AEyN [, &)dr. U (6.19)
0]
The Campbell-Mecke formula allows us to express the probability P in terms
of Py as follows.
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Corollary 6.16. (Inversion Formula) If X is a real-valued stationary functional
of 0, then

T
EXy = AENf X, dt, (6.20)
0
provided the last expectation exists. Hence,
T
P{A} = AENf 16, € A)dt, AelF. (6.21)
0

PrOOF. Expression (6.20) follows from (6.19) with 8, = T,; — T, since
X =Y XA <t < Ty =) Xer,@r)I(T, <t < T, + Bo).
n n

Expression (6.21) follows by applying (6.20) to X; = 1(6, € A) since P{A} =
EXy. O

Most of the material we have covered on stationary point processes automatically
extends to random measures. A random measure M on R is a mapping from a
probability space to the space of all measures on R that are finite on compact sets.
The M is a point process if it is an integer-valued measure. A Palm probability Py,
of arandom measure M on R is also defined by (6.4). From the preceding proofs, it
is clear that the Campbell-Mecke and inversion formulas above also apply to Palm
probabilities of random measures. The following are two more equivalent versions
of the Campbell-Mecke formula. We express these new formulas in terms of
random measures instead of point processes to avoid technical differences between
counting measures and general measures.

Theorem 6.17. (Integrals of Product Measures) Suppose M and M’ are random
measures on R that are stationary functionals of 0 and have respective intensities
A and X that are positive and finite. Then for any g : E2 x Q — R,

Ef g(t,s,0)M'(ds)M(dt) = AEMf glt,s +1t,00)M (ds)dt.  (6.22)
E? E2
This formula is equivalent to the Campbell-Mecke formula (6.13) for random

measures.

Proor. Expression (6.22) follows from (6.13) for random measures with
f@,6,) = / glt,s +1,0)M'(ds +1) = / g, s +1,0)h(6:)(ds).
E E

Here M'(- + t) = h(6,)(:). Conversely, (6.13) for random measures follows
from (6.22) with g(¢,s,w) = f({, w)l(s € (0,1]) and M’ as the Lebesgue
measure. a

One can view (6.22) as a “conditional” Campbell-Mecke formula for the bivariate
random measure M(ds xdt) = M’(ds)M(dt), where the right side of (6.22) is like
“conditioning” on the M part of M. The M and M’ may be dependent. Expression
(6.22) also extends to g that may be negative as well as nonnegative and the measure
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M' may be a signed random measure: M'(A) = M|(A) — M;(A), where M| and
M;, are nonnegative random measures. In this case, one applies (6.22) separately
to the integrals of the positive and negative parts of g under the measures M| and
Mj, provided the sum of the expectations is well defined (possibly infinite).

As an example of (6.22), consider the stationary random measure

M(B) = /B . g(t, s, 0)M'(ds)M(d?).
Its intensity, according to (6.22) is
EM(,1] = AEy /B . g(t, s +1,00)M'(ds)dt, (6.23)
where |B| = 1. This is called the Swiss Army formula.
Here is another useful formula.

Theorem 6.18. (Neveu’s Exchange Formula) Suppose M and M’ are random
measures on R that are stationary functionals of @ and have respective intensities
A and ) that are positive and finite. Then forany f : R x Q@ - R,

AEy f £(t,0)M'(dt) = NEy f £(t, Bo)M(dt). (6.24)
R R

This formula is equivalent to the Campbell-Mecke formula (6.13) for random
measures.

PrOOF. To see this, fix B C R such that | B{ = 1. Then applying (6.22) to M and
then to M’, we have

Left side of (6.24) = AEy f f(t,0)1(s +t € BYM'(dt)ds
R?
= E f ft —s5,0)1(s € BYM'(dt)M(ds)
]RZ

= )JEMr/ f(—s,6p)1(t € B)YM(ds)dt
R2
= Right side of (6.24).

This proof also justifies that the Campbell-Mecke formula (6.13) for random
measures implies (6.24), since (6.22) is equivalent to (6.13) by Theorem 6.17. Con-
versely, (6.13) for random measures follows from (6.24) when M is the Lebesgue
measure (in this case, Pyy = P and E = E). Thus, (6.24) is equivalent to (6.13)
for random measures. (|

We end this section with a rate conservation law that is implied by the Campbell-
Mecke formula but is not equivalent to it.

Example 6.19. Rate Conservation Law. Suppose {X, : t € R,} is a real-valued
stochastic process of the form
n
X =Xo+ ) / X' M;(ds), (6.25)
i=1 0.1]
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where X'’s are real-valued processes and M;’s are point processes or random
measures on R, .

Corollary 6.20. Suppose X, X, ..., X,, M, ..., M, are jointly stationary, and
let \; = EM;(1). Then

n
Y MEw[X)] =0,
i=1

provided the expectations exist.

This rate conservation law says that the expected rate of change of X under its n
types of changes is 0. This is what one would anticipate for a stationary process.

Proor. The assertion follows by taking the expectation of the terms in (6.25)
with ¢ = 1 and using the Campbell-Mecke formula (6.15) for each term in the
sum., O

The preceding result applies if the processes X and M = M, + --- + M,
are jointly stationary, the M;’s have disjoint supports, and each X’ is the Radon—
Nikodym derivative of X with respect to M;.

In particular, suppose X is a stationary process whose sample paths are of
bounded variation and the number of its discontinuities forms a point process N
on R,. Clearly N is a stationary functional of X. Since each sample path of X is
absolutely continuous except at its discontinuity points, it follows that

t

Xo=Xo+ [ Xids+ [0t - XN, (626)
0 ©.1]

where X is the Radon-Nikodym derivative of X with respect to the Lebesgue

measure ds. Then by Corollary 6.20 with M, as Lebesgue measure and M, = N,

we have

EX{ + AEN(Xo — Xo-) =0,

where A is the intensity of N. When X is not stationary, there is an analogous rate
conservation law in which the preceding expectations are limiting averages of the
increments; see Exercise 4. a

6.4 Little Laws for Stationary Systems

We are now ready to describe average waiting times and the law L = AW for
service systems with stationary characteristics.

Throughout this section, we assume the process {X; : ¢t € R} represents the
number of units in a service system over the entire time axis R. The point process
of arrivals N can be expressed as N(A) = )_,., max{0, X, — X,_} and batch
arrivals are allowed. We assume that the waiting times W,, are well defined on the
underlying probability space for X, but we do not assume any special functional
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relation between W, and X. Additional assumptions on the structure of these
processes are imposed in the theorem statements. Recall that L, A, and W denote the
average queue length, arrival rate, and waiting time, respectively. These limits may
be infinite, and the phrase w.p.1 will be with respect to the underlying probability
P, unless specified otherwise.

Our first result is for a system in which the process X is stationary.

Theorem 6.21. Suppose the queueing process X is stationary and ergodic. Then
the arrival process N is a stationary functional of X. Hence, the limits L and A exist
andare L = EXyand A = EN(1). If, in addition, X is finite and P{X, = 0} > O,
then the limit W exists and L = AW.

PROOF. We noted that the arrival process N(A) = ), ,max{0, X, — X,_}isa
stationary functional of X and hence it is stationary and ergodic. Now, the ergodic
theorems for X and N yield L = EXyand A = EN(1).

The rest of the theorem will follow by Theorem 5.7 upon showing that X is
recurrently empty with respect to the times t, at which X hits state 0. We first
show that these times exist. Let

No(A)=) 10=X, <X,.), ACR,
teA
which is the number of times that X hits O in the time set A. Clearly Ny is finite
on finite time intervals since X takes at most a finite number of jumps in such an
interval. Therefore, N is a point process on R. Also, it is clear by its definition
that Ny is a stationary functional of X. Consequently, Ny is stationary and ergodic,
and so Ny(t)/t = A9 = ENy(1). Note that Aq is finite since No(1) < 1+ N(1)
and A = EN(1) is finite. Also, note that Ao > 0, since

P{No(1) > 1} > P{N(-o00,1) > 1, X; = 0} = P{X, =0} > 0,

for any fixed t € [0, 1]. Here N(—o0, t) = oo w.p.1 since the rate X is positive.
Now Ao > 0 implies that Ny(¢) 1 oo, and so the nth time t, = min{t : Ny(t) = n}
at which X hits state 0 is well defined and is finite. Clearly X, = 0,and 7,4 ~ 7,
since t,/n — 1/A¢. Thus, the process X is recurrently empty with respect to ,,
which completes the proof. m]

In Theorem 6.21, the assumption P{X(, = 0} > O is needed only to imply that
X is recurrently empty. Note that the stationarity of X ensures that the limiting
averages L and A are also the expected queue length and expected arrival rate.
The stationarity of X, however, is not enough to guarantee that W is the expected
waiting time of a customer. Stronger assumptions are needed as we will now
describe.

Keep in mind that the arrival process N may have several arrivals at one time.
We will also refer to the point process of distinct arrival times or batch arrival
times given by

N(A) = ) UN((th) = 1).

teA
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Note that N = N when units arrive one at a time (i.e., N is simple). Suppose the
service system we are discussing has dynamics represented by the flow process
6. Then customer n, which arrives at time T}, sees the system dynamics as 67, . It
would therefore be logical that this customer’s waiting time W, is a function of
this information (i.e., a mark of N).

Theorem 6.22. Suppose the arrival process N is a stationary functional of 0 and
the waiting times W, are marks of N. Then N and X are stationary functionals
of 0. Suppose, in addition, that the intensity A of N is finite and positive. Then the
intensity of N is A = A/ EZIN({OD]) and

_ N(op-1
EXo=XEy Y W, 6.27)

n=0
For the particular case in which N is simple, the last formula reduces to
EXg = LEN(Wp).

Furthermore, if 0 is ergodic, then the limits L, A, and W exist and satisfy L = AW.
In this case,

L:EXO, X:EN(I),
1 N({oh—1
W=————Ej;
EgIN(OD] Y &=

PrOOF. The point process _1\7 is a stationary functional of 6 since N is. And
N(1) < N(1) ensures that A is finite. An application of the Campbell-Mecke
formula yields

W,. (6.28)

A= Ef N{tH1(0 < t < 1)N(dt)
R
= XEA—,f N{OPI(0 < —u < 1)du = AE3[N({O})].
R

Now, since the waiting times W,’s are marks of N, they are also marks of N.
Also, the batch sizes N({T,}) are marks of N. Then we can write

X, =) T <t<T,+ W)
n
N{TH-t _
=Y > AT <t < T+ £ilB7)
n k=0
The first indicator function is of the event that customer # is in the system at time ¢.
The second indicator function is of the event that the kth customer in the nth batch
is in the system at time ¢, where T, denotes the nth batch arrival time associated
with N and f(6,) denotes the waiting time of the kth unit in a batch that arrives
at time ¢. Then, by Example 6.15, we know that X is a stationary process and that
(6.27) follows from (6.19).
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We now show that the expected values A and E X, are also limiting averages
under the assumption that 6 is ergodic. Since X is a stationary functional of 8, the
limit L exists and it equals E X. Also, the ergodic theorem for N justifies that the
limit A equals EN(1). Next, note that since the batch sizes N ({T,,}) are marks of
N, by the cross ergodic theorem (Theorem 6.11), we have w.p.1 under P,

n”'N(T,)=n"" Y NAT}) > ERIN({OD].
k=1

By a similar argument, w.p.1 under P,

N{T,H n_ N({Tiph-1 N({op-1
nt ) We=nT'30 ) SO Ey ) W
k=1 k=1 i=0 i=0

By these observations and a discrete-time version of Theorem 5.10 with Z(¢) =
2;1) Wy and 7, = N(T,), it follows that the limit W is given by (6.28) as asserted.
Lastly, since A and W exist, it follows by Theorem 5.4 that L = AW. |

Theorem 6.22 applies to many types of systems including the G/G/m queue
and systems that are parts or functions of stationary, Markovian, or regenerative
phenomena. A typical example for a stationary network (as in Example 5.3 for
Markovian networks) applies to the number of units X, in a sector J (set of nodes)
of the network at time ¢ and the total sojourn time W, in sector J of the nth unit to
enter J. Another example is the slightly different situation in which X, denotes the
number of units in sector J “waiting in queues for service” and W, is the total time
the nth unit visiting J waits in queues for services during its sojourn in J. These
and many other examples follow, without further analysis, simply by defining the
process X and times W, appropriately. The following is another example.

Example 6.23. Customers within a Batch. Consider the system as described in
Theorem 6.22. For fixed j < k, consider the waiting time of a unit that is the jth
one in a batch of size k. The arrival times of these units are given by the point
process

Ni(A)= Y Iy € A, Thjor < Tuoj = ... = Ty < Tuskmjit)-
n
This point process is a stationary functional of 8 since N is. Let {T,,(j, k) : n € Z}
denote the times associated with Ny, and let W, (j, k) denote the waiting time of
the unit that arrives at time T,,(j, k). Assume these waiting times are marks of Njy.
Now, the number of the jth units in a batch of size k that are in the system at time
is
Xie®) = Y 1Tu(i, k) < t < Tu(j, k) + Wa(G, K)).

n

Then by Theorem 6.22,
E[X;jx(O)] = A jk En, [Wo(j, k).

where A j is the intensity of Nj. O
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Example 6.24. Workloads for Service Systems. Suppose the queueing system de-
scribed in Theorem 6.22 is work conserving in that it cannot be idle when customers
are present. Then the workload process representing the sum of the remaining
service times of the units in the system at time ¢ is given by

W(t) =Y [S1(Ty <t < T, + W)
n
+(Tn + Wn +Sn _t)l(Tn + Wn <t=< Tn + Wn +Sn)]s

where W, is the duration of time the nth unit waits in the queue before its service,
and S, is the unit’s service time. The first part of the sum is the workload of
those units still waiting in the queue at time ¢, and the other part of the sum is the
workload of those units that have already entered service. Assume that the process
0 contains enough information such that (W,,, S,,) are marks of the arrival process
N. Then applying (6.19) for marked point processes to the two parts of the sum,
we have

Wo+So

EW(0) = AEn[SoWo + / (Wo + So — s)ds]
Wo

= AEN[SoWo + S2/21. O

The preceding results are for systems that contain some underlying stationarity,
but the sequence of waiting times is not stationary. Here is a result for a system
with a stationary waiting time sequence.

Theorem 6.25. Suppose {(T,+, — T,, W,) : n € Z} is a stationary ergodic
sequence and E(T, — Ty) is finite. Then the limits L, A, and W existand L = AW.
In this case, W = EWg and A = 1 /E(T} — Ty).

ProOF. By the ergodic theorem for sequences, we have W = EW; and by
Theorem 5.8,

A =1/ lim T, = 1/E(Ty - To).

Then the existence of A and W imply by Theorem 5.17 that L exists and L =
AW, m|

In the preceding result, the process X is not stationary and L # E Xo. However,
one can construct a stationary queueing process X on a probability space (£2, F, P)
such that the limit L is equal to EX(0). Furthermore, the sequence {(T,,+| -
T,, W,) : n € Z} for this new process under the Palm probability PN is equal
in distribution to {(Z,,4.1 — T, W,) : n € Z} under P. This construction is a
correspondence between certain stationary processes and embedded sequences.
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6.5 Sojourn Times and Related Functionals

In this section, we present a Little law for determining the average of an integral
of a stochastic process. We use this result to describe the average sojourn time of
a stochastic process in a subset of its state space.

The following is a framework that encompasses a variety of examples. Let
{X; : t € R} be a stochastic process on a space E that is countable or is a complete
separable metric space. Assume, for convenience, that the sample paths of X are
in the space D of all functions from R to E that are right continuous and have
left-hand limits. Suppose that N is a simple point process on R, defined on the
same probability space as X, and N(R;) = oo. For f : E — R,, suppose that
the process

2() = / F(X)ds, 120,
0

exists. We will consider the existence of the time and interval averages
Z=1imt'zZ@), Z=1lmn'Z(T,) wpl,
1—>00 n—>00

and the average A = lim,_, », ¢ ' N(¢) of the time points. We use the term “a limit
exists” to also include that the limit is not zero or infinite.

Corollary 6.26. (a) If any two of the limits Z, A, Z exist, then the other one also
exists and Z = A Z.

(b) Suppose X, N are jointly stationary and ergodic with EN(1) < oc. Then the
limits Z, A, and Z existand Z = A Z , where

Z = Ef(Xo), A=EN(). (6.29)

Furthermore, the sequence { fTT,",, f(Xs)ds : n > 1} is stationary with respect to
the Palm probability Py, and

T
Ef(Xo) =AEy | F(X,)ds. (6.30)
0

PrROOF. Part (a) follows by Theorem 5.10. For part (b), the limits Z and A exist by
the ergodic theorems (recall Theorem 6.1) for the processes X and N. Then part
(a) ensures that the limit Z exists and Z = AZ. By Corollary 6.10, the sequence
{S, X} is stationary and ergodic with respect to the Palm probability Py, and hence
{ fTTq f(X;)ds : n > 1} also has this property since it is a stationary functional of
{Sr, X}. Finally, (6.30) follows by the inversion formula in Corollary 6.16. a

We will now consider sojourn times of the process X in a fixed subset B € £ of
its state space. Suppose that the point process N on R represents the times {7},} at
which the process X enters B, and assume N(R,) = oo. The average amount of
time that X spends in B is

t
JT(B)Etl_iglot_l/o. 1(X; € B)ds w.p.1.
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provided the limit exists (which also means that it is not 0 or 1). In many instances,
7(B) would also be the limiting probability lim,_,,, P{X,; € B}. Let W, denote
the duration of the nth visit or sojourn of X in B that begins at time 7. The next
result gives an expression for the average sojourn time

n—1
— T -l
W= nll)ngon Z W, wp.l.
Corollary 6.27. (a) If any two of the limits w(B), ., W exist, then the other one
also exists and w(B) = AW.

(b) Suppose that X is stationary and ergodic, and B € € is such that 0 < P{X, €
B} < 1. Then the limits w(B), A, W exist and n(B) = AW, where n(B) =
P{Xy € B} and . = EN(1). Furthermore, the sequence of sojourn times {W,}
in B is stationary and ergodic with respect to the Palm probability Py, and hence
W = Ey[Wy] and

P{X() € B} = A.EN[W()]

Proof. The assertions follow by Corollary 6.26. Part (b) also uses the fact that
N is a stationary functional of X. a

Note that a special case of assertion (b) for Markov processes is Theorem 1.3.

How do the preceding result apply to networks? Suppose that X is a process
that represents the numbers of customers in a network. Sojourn times of X that
may be of interest are time periods during which the following events occur.

e A node, sector or the entire network is idle.

e The maximum number of units in a certain sector exceeds a certain value.
o The total number of units in a certain sector exceeds a certain value.

o The number of units in a certain sector exceeds that of another sector.

By Corollary 6.26, we know that if X is stationary and ergodic, then the expected
value of such a sojourn time is Ey[Wy] = 7 (B)/A, where the expectation is with
respect to the Palm probability Py that such a sojourn is beginning. Assuming the
stationary distribution 7 is known, the expected sojourn time would be determined
by evaluating A. In some cases, A can be determined directly from 7 and the
dynamics of the network process.

6.6 Travel Times for Stochastic Processes

A travel time of a stochastic process, loosely speaking, refers to the time it takes
for the process to follow a certain trajectory or route in the state space. Similarly, a
travel time of a unit in a network is the time it takes for the unit to traverse a certain
route in the network. An example is the time it takes a unit in a network to travel n
times from one sector to another sector (recall Corollary 4.33). Another example
is the time it takes a unit in a network to visit each node in a certain sector at least
once. In this section, we describe general travel times for processes and networks
and give Little-type formulas for their limiting averages or expected values.
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How do travel times compare with sojourn times, which were the focus of the
last section? A sojourn time of a process in a certain subset of its state space is
characterized by an entrance and exit time of the set, which are stopping times of
the process. The beginning and end of a travel time, however, need not be stopping
times; they may depend on the future of the process as well as the past and present.
For instance, the travel time of a process from one set B to another set B’ begins
at an exit time from B with the additional property that the process in the future
enters B’ before it returns to B.

Although travel times are more complicated than sojourn times, the framework
for analyzing average sojourn times in the last section also applies to travel times.
The key idea is that one can analyze travel times by using stopping times for
“subsets of sample paths” in the same way that one uses stopping times for sets to
analyze sojourn times.

We will use the following notation throughout this section. As in the preceding
section, we assume that {X, : ¢ € R} is a stochastic process on a space E and its
sample paths are in the function space D. If an observer of X at time ¢ can see the
entire time-shifted process

X, =85X, tekR, (6.31)

then the observer should be able to tell if X is traveling on a special route at time
t. We will associate routes with subsets of D as follows.

Definition 6.28. The process X defined by (6.31) is the sample-path process of
X. A subset R C D of sample paths of X is a route of X if the times at which X
enters R is a point process on R. This point process N of entrance times {7,} is
defined by

NA) =) 1X_-¢R, X, eR)=) I(T,€A), ACR.
teA n
The process X enters the route at each time T,,, and then the travel time on the
route is
W, =inf{t > 0: X7 ., ¢ R}.
The process X exits the route at time T, + W,,.

Our interest is in the average travel time of X on the route R:
t

7(R) = lim ¢! / 1(5,X € R)du w.p.l.
t—>00 0

Since 7 (R) is the average sojourn time of the process X, = S, X in the subset R of
D, we have the following result, which is simply a restatement of Corollary 6.27
for this setting in which Xy = X.

Corollary 6.29. (a) If any two of the limits w(R), A, W exist, then the other one
also exists and 1 (R) = AW.

(b) Suppose that X is stationary and ergodic, and R C D is such that 0 <
P{X € R} < 1. Then the limits m(R), A, W exist and n(R) = AW, where
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7(R) = P{X € R} and A = EN(1). Furthermore, the sequence of travel times
{W,} on the route R is stationary and ergodic with respect to the Palm probability
Py, and hence W = En[Wy] and

P{X € R} = )»EN[W()].

The preceding result covers most travel times that one might imagine. Stopping
times of processes generate a vast family of travel times. To analyze a travel time,
the first steps are to formulate it in terms of a subset R of sample paths, and then
verify that the number of entrance times of X into that subset in any finite time
interval is finite. A fundamental example is as follows.

Example 6.30. Travel Time between Two Sets. Consider the travel time of the
process X from some set B € £ to another set B’ € £. For each sample path
x € D, the first time the path enters (or hits) the set B after time 0 is

Hg(x) = inf{t > 0: x(¢) € B},
and the last exit time of the path from B prior to time O is
Lg(x) =sup{t < 0: x(t) € B}.
Then the process X is on the route from B to B’ at time ¢ if S, X € R, where
R={xeD:x(0)g BUB’, Lp(x) < Lg(x), Hp(x) < Hg(x)}.

Now, suppose that X is stationary and ergodic. Assume that X, has a nonzero
probability of being in each of the sets B, B’ and BU B’. This implies that X enters
each of these sets infinitely often, which ensures that the times at which the process
X begins a traverse from B to B’ form a point process. Then by Corollary 6.29,
the average or expected travel time between B and B’ is

En[Wol = A7'P{Xo ¢ BUB’, Lp(X) < Lg(X), Hg(X) < Hp(X)}.

For the case in which X is a Markov process, this expression has the tractable form
shown in Corollary 4.33.

As a variation of this travel time, suppose one is interested in the travel time
of X in some subset C C B° N B’ during a traverse of X between B and B’.
This new travel time is defined by the route R’ = {x € R : x(0) € C}. Assume
that P{Xy € C} > 0, which implies that X visits C infinitely often. Then the
expectation of the new travel time is given as above with Xy ¢ B U B’ replaced
by X, € C. ad

6.7 Sojourn and Travel Times in Networks

The preceding two sections focused on characterizing the average of a sequence
{W, } of sojourn or travel times of a stochastic process. One distinguishing feature
of such times is that their associated time intervals (7,,, 7,, + W, ] do not overlap. In
this section, we characterize average sojourn and travel times of units in a network.
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Here a sequence {W,} of sojourn or travel times of units is associated with time
intervals (7,, T, + W, ] that typically overlap. Although the discussion will be be
in terms of networks, the results also apply to sojourn and travel times for general
multivariate processes.

We will first analyze travel times for networks that can be represented by the
locations of its units. Consider am-node network that is either closed with v units or
open with capacity v. In case the network is closed, we label the units as 1, .. ., v.
In case the network is open, we assume that the indices 1, ..., v are labels or
tokens that the units in the network carry as follows. Whenever there are n < v
units in the network, a unit entering the network selects one of the v — n unused
labels with equal probability. The unit retains the label until it exits the network,
and then the label becomes available for another unit. The unit carrying the label
i is called unit i.

We will represent the network by the stochastic process Y(t) = (Yi(2), ...,
Y,(t)), where Y;(¢) denotes the node location of unit i at time ¢. A typical state of
the process Y isa vector y = (y1,...,y,)in M*, where M =(1,... ., m}or M =
{0,1,..., m} according to whether the network is closed or open. Assume that
the location process Y is stationary and ergodic. For instance, this may represent
customer locations in a Whittle network.

We associate each unit { with a route R; C D that satisfies the property
O < P{Y; € R;} < 1. Then the time-shifted process S,Y;, which is a stationary
functional of Y, enters R; and R infinitely often. This ensures that the times at
which Y; enters the route R; form a stationary, ergodic point process N; on R.
Assume that N; has a finite intensity A;. Then by Corollary 6.29, the sequence of
travel times { W/ } on the route R; are stationary with respect to the Palm probability
Py, and their average is

En[Wgl = A7'P{Y: € Ri}.

Our focus will be on the average travel time of an arbitrary unit on its route. The
times {7} at which the units enter their routes are described by the point process
N = Ny +---+ N,. Clearly N is a stationary functional of Y and its intensity
is A = Ay + - - - + A,. For simplicity, assume that only one unit moves at a time.
Then the point process N is simple. Let y, denote the index i on the process Y; that
enters the route R; at time 7,; thatis, S7,_Y,, ¢ R,,,and S1,Y,, € R,,. Consider
the time

W, = inf{t > 0: S, 1Y, ¢ Ry},

which is the travel time of the process Y,, on the route R,,. We call W, a travel
time of an arbitrary unit on its route. Clearly y, and W, are marks of N.

Corollary 6.31. Under the preceding assumptions, the sequence of travel times
{W,.} is stationary under the Palm probability Py and

Ex[Wol =27 ) P{Y; e Ri} = 47" ) MiEn,[Wgl.

i=1 i=1
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In particular, if the distributions of Y1, . . ., Y, are identical and R; = R for each
i, then Ey[Wol = A[' P(Y, € R}.

PrROOF. The process

X, = Z 1(S,Y; € R), teR 6.32)

i=1

records the number of the processes Y; that are traversing their routes at time
t. Viewing X as a stationary queueing process, the first assertion follows by the
Little law for stationary systems given in Theorem 6.22. The second assertion is
an obvious special case of the first one. O

The preceding result is useful when one knows the stationary distributions of the
location processes. We now discuss another approach for modeling travel times in
terms of the quantities of units at the nodes rather than the locations of specific
units.

Consider an m-node network represented by a process {X; : t € R} with states
x = (x,...,Xm), where x; denotes the number of units at node j. The network
may be closed or open, with a finite or unlimited capacity. Assume that the process
X is stationary and ergodic. Suppose that the units in the network move one at
a time, and that the times at which units move from node j to node £ form a
point process N;, on R. Here j and ¢ are in the node set M = {1,...,m} or
M = {0, 1, ..., m} according as the network is closed or open. Assume that N e
is a stationary functional of X. Its intensity p;; = E[N;¢(1)] is the throughput
from j to €.

Since the process X does not include the entire information about the sample
paths of each of its units, it is natural to consider only special routes that can be
described by X and its routing process. Accordingly, we assume the routes of the
units are independent, and independent of the quantities at the nodes. This assump-
tion is satisfied by Jackson and Whittle networks when the service discipline at
each node is processor sharing and each unit is treated equally.

We will consider a route R that satisfies the following properties:

Traversing Assumptions. At any time ¢, the event that a unit at node j is traversing
the route is independent of the disposition of the other units in the network at
that time, and the probability of this event is y;, independent of ¢. The process
{X; : t € R} that denotes the number of units that are traversing the route R at
time ¢ is a stationary functional of X.

Entry Rate Assumptions. The times {7, } at which units begin traversing the route
R form a point process N on R, and N is a stationary functional of X. If a unit
moves from a node j to some node £ at time ¢, the event that the unit begins a
traverse of the route R is independent of the disposition of the other units in the
network at the transition, and the probability of this event is b ., independent of ¢.

Let W, denote the travel time on the route R that begins at time 7,,. An expression
for the average of these times is as follows. Here weuse L; = ) x;m(x), which
is the expected number of units at node ;.
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Corollary 6.32. Under the preceding assumptions, the sequence {W,} of travel
times on R is stationary under the Palm probability Py, and

Zj Ljy;
Zj,e pjfbj(’

provided that these sums are positive and finite.

En[Wo] = (6.33)

ProoF. Consider the stationary process X’ representing the number of units
traversing R as a queueing process. Then by the Little law for stationary systems
given in Theorem 6.22, the sequence {W, } is stationary under the Palm probability
Py, and

En[Wo] = E[Xo)/EIN(D)]. (6.34)

Now, under the traversing assumptions,

x{
E[Xgl =Y _E[) U]l
J n=I

where Xé is the number of units at node j at time 0, and U,,j is 1 or 0 according
to whether or not the nth unit at node j is traversing the route R. Furthermore,
U!,Uj, ... are independent random variables that are independent of X° and

E[U.] = y;. Therefore,
E[Xyl =) L;y;. (6.35)
j

Next, under the entry assumptions for the route,
Nj(1)
EINDI=E[)_ Y n(j, O,
Jj.& n=I1
where 1,(j, £) is 1 or O according to whether or not the nth unit moving from
node j to node £ begins a traverse of the route R at that transition. Furthermore,
m({J, £), m2(j, £), . . . are independent variables that are independent of N;,(1), and
E[n.(j, £)] = bj,. Therefore,

EINDI = pjebje. (6.36)
j.e
Then substituting (6.35) and (6.36) in (6.34) yields (6.33). m]

To use the average travel time expression (6.33), one only has to evaluate the
throughputs p;, of units moving from j to £, the probabilities y; that a unit at
node j in equilibrium is traversing the route, and the probabilites b;, that a unit
moving from j to £ in equilibrium begin traversing the route. The following is a
basic example.

Example 6.33. Travel Times in Whittle Networks. Suppose the network we are
discussing is a Whittle network in which the services at each node are under a
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processor-sharing discipline, where each unit at a node receives the same service
treatment. We will consider the average time it takes an arbitrary unit to travel
from one sector J to another sector K. The J and K may overlap, but assume their
union is not M.

A little thought justifies that all the assumptions above are satisfied for this route
from J to K. Hence Corollary 6.32 applies, and the average travel time from J to
K is

Zewux Leye
Zjel Zegu pjebje

Note that the throughput rates p;, and expected numbers of units L ; at the nodes
can be obtained as in Chapter 1 from the stationary distribution of a Whittle pro-
cess. The following discussion describes the other probabilities in the preceding
expression.

We will represent a typical unit’s path among the nodes by an ergodic Markov
chain {&, : n € Z} with transition probabilities p;,. Consider the hitting and last
exit times

Eyn[Wo] = (6.37)

H;)=inf(n >0:§, € J},

LyE)=sup{n<0:§&, e€J}.

Now, the probability that starting at node j, the routing chain & enters K before it
enters J is

oj = P{Hk(§) < H;(§)|& = j}.

These probabilities are solutions to the following equations: a; = 1 or 0 according
to whether j is in K orisin J, and

aj =Zij+ZPjeae, J¢JUK. (6.38)
kek tgK
Analogously, looking backward in time, the probability that conditioned on
being in state j, the routing chain exited J more recently than it exited K is

a; = P{Lg(§) < L;(6)160 =Jj}

These probabilities are the solution to the equations (6.38), where J and K are
interchanged and p, is replaced by the “time-reversed” routing probabilities
Pje = w,-_lwel’ej-

These observations, which are similar to those in Proposition 4.32, are well-known
properties of Markov chains.

We now complete our description of expression (6.37) for the average travel
time on the route from J to K. Clearly, the equilibrium probability that a unit
moving from j € J to £ ¢ J begins traversing the route is

bje = Qly.
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Finally  equilibrium probability that a unit at node £ ¢ J U KX is traversing the
route is

Ye = P{Hk(§) < H;(€), Lk(§) < Ly(§) 160 = £} = aey.

The last equality follows from the property that the past and future of a Markov
chain are conditionally independent given its present state. ]

6.8 Exercises

1. Marked Random Measures. Suppose M is a random measure on R that is a
stationary functional of 6. Assume each ¢ in the support of M has associated
with it a quantity & = h(6,), where h : Q@ — E'. We call & a mark of M at the
location ¢. Consider the process X, = f]E f@t —s, E)M(ds). Justify that this is
a stationary functional of 8, whose mean is EXy = LEy fm f(t, &) d:r.

2. Little Laws for Semi-Stationary Systems. According to Definition 5.22, the
process Y is regenerative if its cycle variables &, are i.i.d. More generally, if
the sequence {&,} is stationary, then we say that Y is a semi-stationary process
over 1, (sometimes called a synchronous process, or a process with stationary
cycles). Furthermore, we say that Y is ergodic if &, is. These notions also apply
when the process Y is defined on the entire time axis, which we assume here.
Proofs of the following statements are minor modifications of the referenced
theorems. Specify the needed modifications in the proofs that would justify the
statements.

(i) If the queue length process X is semi-stationary and ergodic over t,, then
the assertions of Theorem 5.24 are true.

(ii) Suppose the service system is as in Theorem 5.25, but the underlying process
Y, instead of being regenerative, is semi-stationary and ergodic over z,. Then
the assertions of Theorem 5.25 are true for this more general system.

3. Campbell-Mecke and Exchange Formulas for Random Kernels. Suppose the
function K : R x 2 x R — Ris such that K (¢, w, -) is a measure on R for each
t,w. The K is a random kernel from R to R. Show that the following formula
is equivalent to the Campbell-Mecke formula. For f : R x R x  — Ry,

E/[/ f(t,s,@,)K(t,G,,ds)] M(dt)
R L/R

:A.MEM/ |:/ f(t,S,eo)K(t,e(),dS):I dt.
R R

Next, suppose K and K’ are random kernels from R to R that are stationary
functionals of  and satisfy

M(dn)K(t,ds) = M'(d1)K'(t, ds)

(the omegas in the kernels are now suppressed), where M and M’ are random
measures that are stationary functionals of 6 with respective intensities A and A",
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Show that the following variation of the exchange formula (6.24) is equivalent
to the Campbell-Mecke formula. For f : R x R x Q —» R,

AEM/ f(s,09)K'(0,ds) = A/EMI./ f(s,6)K (0, ds).
R R

4. Rate Conservation Law for Averages. Consider the stochastic process X defined
by (6.26), where N is the point process of discontinuity points T, of X. Assume
that =X, ~ 0 and that the limit A = lim,_,o ¢ "' N(¢) exists and is positive.
Show that if either one of the following limits exists, then the other one does,
and they are related as indicated:

t n
’l_iglot”l /0 X.ds + Anlig’lo n! ;(er —Xr,-)=0.
This conservation law says the average derivative of X plus the rate of jumps
times the average jump size of X equals 0; one would expect this relation for a
stable process. This result is analogous to the conservation law in Corollary 6.20
for expected values. Hint: Write (6.26) as X; — Xo = U(t) — U (N()), where
U and U are defined in the obvious way. Then apply Theorem 5.15.

6.9 Bibliographical Notes

For more background on stationary processes, see for instance Cramér and Lead-
better (1967) and Rozanov (1967); and for ergodic theory and laws of large
numbers, see Krengel (1985) and Révész (1968). Monographs on stationary queue-
ing systems are Rolski (1981), Franken et al. (1981), Brandt et al. (1990), Baccelli
and Brémaud (1994), and Sigman (1995). The basic results on Palm probabilities
in this chapter can be found in these references, with some nuances on Campbell’s
formula coming from Schmidt and Serfozo (1995). Brandt et al. (1990) and Bac-
celli and Brémaud (1994) discuss many examples of stationary queueing systems.
The Little laws for stationary systems come from these references, with the exam-
ple on workloads coming from Brumelle (1971). The rate conservation laws are
due to Miyazawa (1994), and Exercise 4 is from Sigman (1991).
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Networks with String Transitions

Chapter 2 discussed network models with batch or concurrent movements of units
under reversibility assumptions. Are there comparable models of Whittle networks
with batch movements? More generally, are there tractable network models in
which a transition may involve a series of simultaneous single- or multiple-unit
changes? This chapter describes networks with such characteristics called net-
works with string transitions, or string-nets for short. In a string-net, a transition
consists of a string of instantaneous subtractions or additions of units at the nodes,
where the string is randomly selected from a family of variable-length strings.
Invariant measures for string-nets resemble those of Whittle networks, but now
key parameters in the measures are obtained as solutions to more complicated
nonlinear traffic equations.

7.1 Definition of a String-Net

Throughout this chapter, we will consider an m-node network that operates as
follows. As in Chapter 1, we will represent the network by a stochastic process
X = {X, : t = 0} that represents the numbers of units at the respective nodes.
The state space is a set I of m-dimensional vectors x = (x, ..., x), where x;
denotes the number of units at node j. We place no further assumptions on the
form of |E, and so our results apply to a variety of network types, including the
standard ones that are closed, or open with finite or unlimited capacity.
Whenever the process is in state x, a typical transition will be to some state of
the formx —(s' +---+s)+aorx —(s' +---+5°), 1 <i < £ where the

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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increment vectors a and s’ are in a set A, and the string s = (s',...,s")isina
set S. The A is a finite set of m-dimensional vectors with negative or nonnegative
integer entries and A contains the zero vector 0. The S is a countable set of strings
s =(s',..., 59, where s' € A\{0} and £ = £(s) denotes the string length. Let
L < oo denote the supremum of these string lengths. Assume that S contains the
empty or zero string, denoted by 0, whose length is zero.

Associated with each string s € S are its ith partial sum vectors

s@)y=s'"+...+s, 0<ic<e,

where s(0) = O for the zero string. Denote the set of all partial sums of the strings
by S ={s(@):1<i < {5 € S}. Think of A as the set of allowable increment
vectors and S as the set of feasible strings of vectors from A that can be subtracted
in a transition. Then § (which contains A) is the entire set of network increment
vectors. For each x € E and d, a € S, we define the vector Ty,x = x —d + a,
which may or may not be in E. A transition x — T,,x means that the vectors a
and d are added and subtracted from x.

In terms of this notation, the transitions of the process X are as follows. When-
ever the process X is in state x, a transition is determined by a pair sa in S x A
that results in one of the following £ possibilities:

o A complete sa-transition: x — TypaXx = x — s'+...+sY+a.

e Anithpartial sa-transition: x — Tygpx = x—(s'+...+s'),where0 < i < €.
Keep in mind that £, with s suppressed, is the length of the string s. Note that the
complete sa-transition uses a as well as the whole string s, but the ith partial
sa-transition uses only the part s, ..., s of s. Some of these transitions may be
infeasible as discussed below. Under the preceding assumptions, each state x € E
is a linear combination of vectors in A. Assume that the standard m-dimensional
unit vectors form a basis that generates the vectors in A and E. This is not a re-
striction since one can always represent these vectors by a basis and the form of
the basis is not important here.

We assume the rates of these string transitions are as follows:

Type of Transition Rate

Complete sa-transition x — Ty, x Asa®s(ey(x),

A ith partial sa-transition x — Tiiyox  Asa (¢x(,-)(x) — ¢‘g(,'+1)(JC)).

These transition rates can be viewed as the compounding of two rates as fol-
lows. The nonnegative X, is the rate (or probability) at which an sa-transition
occurs, where Agg = 0. A typical example is a product of probabilities A;, =
p(sHpGst, s2) -+ p(st!, s%) of Markovian selections of the vectors s'. Within an
sa-transition, ¢¢)(x) is the nonnegative rate of subtracting the complete vector
s(£) from x and adding a; and ¢;)(x) — @541y (x) is the rate of subtracting exactly
s5(i) (the ith partial of s) from x, where 0 < i < £. A compounding of these two
rates yields the transition rates above.
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We assume the ¢, ’s are ®-balanced as in earlier chapters, where @ is a positive
function on E such that, forany x € E,d € S,anda € A with ) A, > 0,

D)o (x) = O(Toax)Pu(Taax). (7.1)

For convenience, we extend the definition of ¢, to all integer-valued, m-
dimensional vectors by setting ¢4(x) = 0, for x ¢ E.

The preceding description says that whenever the Markov process X is in state
x, the times to the next complete sa-transition and ith partial sa-transition are
independent, exponentially distributed with rates shown in the table above. Then
the time to the next x — y transition is exponentially distributed, and its rate
q(x, y) is the sum of appropriate sa-transition rates. That is, the transition rates of
the process X are

9, ) =Y Aarwa(x,y), y#xinE, (7.2)
where
Fsa(x, ) = @sy(x)1(y = Ty(g)ax) (71.3)

-1
+ Z[¢s(i)(x) — G5+ (y = Tygpx), x,y € E.
i—0

All sums on s, a herein are for s € S and a € A, unless specified otherwise, and

,-_:10 = 0. Since a transition x — y is possible under several combinations of
subtractions and additions, its rate g(x, y) is a sum of rates, some of which may
be 0 due to the A,, ¢4 or the indicator functions being 0. The rate functions A,
and ¢, as well as the sets A and S can have a variety of forms depending on the
routing and service rules of the network. For instance, for a closed network, the
rate Ay, can be positive only if |s({/)| = |a —s()| =0,for1 <i < £.

Note that the rate of the exponential sojourn time in state x is

Y g, y) =Y Asaldbo(x) = reax, 1)), (7.4)
y#x s.a

This follows since

Y rsax, y) = do(x), (7.5)

yeE

which is due to the telescoping series in (7.3), and the fact that the sum of the
indicators over y is 1.

To complete the definition of the process, a few more technical assumptions are
in order. We assume that ) A;, < oo for eacha € A. This and the finiteness of
A ensure that the rate (7.4) is finite. Next, we assume the following condition.
Dominance of ¢g: If L > 2, then ¢o(x) > P, (x), foreachx € E and a € A.
Finally, we adopt the standard assumption that the process is irreducible on the
space E (otherwise, we could let E denote a closed communicating class).
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Definition 7.1. The process X defined above with rates (7.2) that satisfy the
preceding assumptions is a Markov Network process with string transitions or
a string-net.

The data for the string-net process X are E, A, S, L, {A;q : s € S,a € A},
and {¢,(-) : d € §}. To model an actual network with this process, one would
specify this data from the operational features of the network. Note that Jackson
and Whittle networks with single-unit movements are examples of string-nets.

The following are a few more observations about the definition. From the ®-
balance and ¢-dominance, it follows that

D(Toax)Para(Toax) = P(x)Pa(x)
< O(x)go(x) = ®(Toax)pa(Toax), d €S, acA.

Thus ¢,(x) > P4a(x). This ensures that the rates in the second sum in (7.2) are
not negative.

Note that (7.1) implies ¢,(x) = 0 when T,yx ¢ E for some d € S, because
¢4(x’) = 0 when x’ ¢ [E. This says that an sa-transition in state x is not feasible
or is blocked if any one of the possible new states resulting from a complete or
partial transition is not in [E. Recall that the ®-balance of the ¢,’s is equivalent to
their being of the form

ba(x) = W(x —d)/O(x), deS,xecE, (7.6)

for some function W that is nonnegativeon {x —d : d € S, x € Eandis 0 outside of
E. These ¢, s also satisfy the ¢p-dominance assumption when W is nonincreasing
and each vector a € A is nonnegative.

7.2 Invariant Measures of String-Nets

In this section, we characterize invariant measures of the process X under the
assumption that certain polynomial “traffic equations” have a solution. Conditions
for the existence of solutions are given in the next section.

In addition to the notation above, we denote the rate of all string transitions with
s as the initial segment by

Ay = ZA‘(SS’)H’ ses, .7
s'.a

where the string (ss’) denotes the concatenation of the strings s and s’. We some-
times use Ayq for sa € S, where A, = A,. The following is the main
result.

Theorem 7.2. Suppose there exist positive numbers W\, . . . , Wy, that satisfy

£ [
n@ Y [[n6Y860 =Y [[16)ha, a€Ao=A\OL  (78)
s i=1 s =l
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where n(x) = I—IT=1 w;" and the sums in (7.8) are finite. Then an invariant measure
for the string-net process X is

w(x) = dx)n(x), =x ek

Furthermore, a necessary and sufficient condition for the process to have an
invariant measure of this form is

)" D@)Igo(x) — ga(x)n(@)'1=0, x€E, (1.9)

acAgy

where D(a) denotes the right side of (7.8) minus its left side.

The invariant measure 7 (x) = P(x)n(x) resembles the invariant measure in
Theorem 1.15 for Whittle processes. In particular, 7 is a weak coupling of &
determined only by the ¢,’s, and 5 determined only by the A,,’s. The traffic equa-
tions (7.8) are what is left of the balance equations upon substituting the measure
7 into the equations and cancelling the ¢ functions. Consequently, the existence of
solutions for the traffic equations is a necessary condition for invariant measures
of the form as shown. The second statement in the theorem gives more precise
information in this regard.

From a key identity (7.11) in the proof below, it follows that the summation in
(7.9) times 7 (x) is the difference between the two sides of the balance equations
for the process X (this should be O for the balance equations to be satisfied). Note
that the summation is a weighted average of the differences D(a) of the two sides
of the traffic equations (7.8). The weights ¢o(x) — ¢4(x)n(a)~", which arise in
(7.11), don’t seem to have any special meaning.

PrOOF. The balance equations that an invariant measure 7 must satisfy are

T(x)) q(x,y) =Y 7(y)q(y.x), x €k (7.10)
yeE yeE
The usual convention is that g(x,x) = O, but here we define g(x,x) =

}:M Asalsa(x, x). This does not affect the equality, and it simplifies some
expressions.

Let L(x) and R(x) denote the left and right sides of (7.10), respectively, and
suppose w(x) = O(x)n(x). The proof will proceed as follows. A short calculation
yields L(x) = my(x)Ag, and a more complicated analysis of R(x) yields the
identity

L(x) = Rx) +7(x) Y D@)[pox) — g(On@ 'l (7.11)
a#0

From this it follows that if D(a) = 0, a € Ag, then L(x) = R(x), x € E, and
hence 7 is an invariant measure of the process. This proves the first assertion of
the theorem. Also, 7 is an invariant measure if and only if the last summation in
(7.11) is 0. This proves the second assertion of the theorem.

It remains to prove (7.11). Using the transition rate formulas (7.2), (7.3) and the
property x = Ty, y if and only if y = Ty 4x, it follows that the right side of (7.10)
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is

R(x) ZN()’) ZA arm(y1 x) - Zn(Tm(l)x)A' arm(Tm(l)x -x)

yeE

- Z 7r(Tax(l)x)ksa¢s(£)(Tas(l)x) + Z Z N(TOJ(I)x)Am

s.a i=0

X [@sy(Tosyx) — Psi+1y(Tsivrsi1)%)] (7.12)

Here we also use our convention that the functions 7 and ¢, are defined to be zero
outside of [E and that Tos)x = Tyi+t ;41)X. Now, the ®-balance assumption and
7 (x) = ®(x)n(x) and n(x + y) = n(x)n(y), ensure that, for x € E, a € A, and
des,

7 (TaaX)$a(Toax) = 7 (x)ga(x)n(d)n(a)~". (7.13)
Applying this to (7.12), we obtain
R(x) = 7(x) Z N(s@)n(@) " Asada(x)

+100) Y A Z nsENg(x) — pyn@].  (1.14)

s,a i=0

To proceed, we need a convenient expression for the last sum on s, a, i. Note
that s = 0 has no contribution to the sum, and hence we ignore it. Also, any s # 0
can be written as the concatenation s = (s’as”) for some s’, s” € S and a € Ag.
Now, make the change-of-variables s'*! = a and sa = (s’as”)a’ and reverse the
order of the summations and recall the definition of A;. Then the last sum in (7.14)
becomes

@) Y Mvasna [$o(x) — $a(x)]
s',a#0 s".a’
= Z N(s(0) D Apa)po(x) — ga(x)]. (7.15)
a#0

Substituting this in (7.14) and recalling that D(a) equals the right side of (7.8)
minus its left side, we arrive at

R@x)=m(x))_ ¢a(x)n(@)™" D(@) + 7 (x)o(x)

a#0

x Z n(s(e)) Z ns@)ho+Y Al (1.16)
a#0

Next, note that the left side of the balance equation (7.10), in light of (7.5), is
Lx) =m(x) Y Asa ) Fsal®, )

s.a yeE

= () ) Aao(x) = 7 (X)o(x) Ao (7.17)
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Now, using the fact that s’ # 0 can be expressed as s’ = (sas”) for some s, s” € §
and a € Ay, we have the identity

Zn(s(e»A = Ao+ Y (A, = Ao+ Y ns(n@Asa. (7.18)
5#0 s,a#0

Also, by its definition, A; = A0+ Y, 7ﬁo()\m + A(sq))- Substituting this in the left
side of (7.18) and using terms from its right side yields

Ao = g; D(a) + Z n(s(€)[Aso + ; Agal- (7.19)

Finally, substituting this in (7.17) and using (7.16) yields the identity (7.11). O

7.3 Traffic Equations, Partial Balance, and Throughputs

We begin this section with insights into the existence of solutions to the traffic
equations (7.8). Next, we show that the traffic equations are equalities of certain
average flows in the network (a partial balance property). We end the section with
an expression for throughputs at the nodes.

Note that the hypothesis (the first sentence) of Theorem 7.2 is actually two
hypotheses:
(i) There are positive y,, a € Ay, that satisfy the traffic equations

[4 {
Yo ) [ Tveteo =) [1ritas ac Ao, (7.20)
s i=1 s i=1

where yp = 1, and these sums are finite.
(ii) A solution to the preceding equations is of the form

m

.
va=]]w}, aea,
=1

for some positive numbers wy, ..., wy,.

Let’s first consider hypothesis (i). With a slight abuse of notation, interpret
Ag as an ordered set and view y = (y,,a € Ag) as a vector. Write (7.20) as
Va8a(¥Y) = ha(y), where g,(y) and h,(y) denote the summations on the left
and right sides of (7.20) as functions of y. In other words, (7.20) is the same as
y = f(y), where f(y) = {f.(y) : a € A} is the vector-valued function defined
by fu(y) = ha(y)/g.(y) for y in the region where the numerator is finite and the
denominator is not zero. Here a vector inequality y < ¥ means y, < ¥, for each
a € Ag, and 0 and 1 are the vectors of all zeros and all ones.

From the preceding observations, it follows that the set of solutions to (7.20) is
equal to the set of fixed points of f. Here is a general criterion for the existence
of a solution to (7.20) (i.e., a sufficient condition for hypothesis (i)).
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Theorem 7.3.  Suppose there there are vectors 0 < y <y suchthatQ < g,(y) <
00 and

Y 8(V) <ha(y), and hoy) <V,8(y), aé€ Ao (7.21)
Then there exists a vector y that satisfies (7.20)andy <y <.

Proor. LetC ={y:y <y <7¥}. Since g:(y) and h,(y) are increasing in y,
it follows that all the terms in (7.21) are finite and

¥, < ha¥)/8a(P) < fo?) < ha(P)/8a(y) <Var ¥ €C, a € Ao

Thus, f maps C into C. Also, f is clearly continuous. Then f has a fixed point
y € C by Brouwer’s fixed-point theorem. Furthermore, y < y < ¥, because of
the strict inequalities in the preceding display. O

Theorem 7.3 is a framework for obtaining specific conditions for a solution to
(7.20) in terms of the structure of the A;,’s. Examples are in the following sections.
The next result is a simpler version of Theorem 7.3. It assumes that y exists and
24(0) > 0. Assumption (a) is typically satisfied by open networks, and 7 = 1 is
often adequate for (b).

Corollary 7.4. There exists a positive solution to the traffic equations (7.20) if the
following conditions hold.

(a) The set A* = {a € Ag : Ao, > 0} is not empty and, for each a € Ag\A*, there
isans € S such that Ay, > Oand s’ € A*, for1 <i <.

(b) There is a positive vector ¥ such that g,(y) < 0o and h,(y¥) < ¥ ,84(0).

ProoF. Lety = {Za 1 a € Ap} be a vector in (0, ) such that Y, < roa/ 8 V),
fora € A* and

£
v, < 2 [ 7 hsals’ € A% 1 <i < 0)/8.(F), a € Ao\A™,
s =l

Assumptions (a) and (b) ensure that 0 < g,(y) < oo. Since g4(y) and h.(y)
are increasing in y, it follows that (7.21) holds. Thus, the assertion follows by
Theorem 7.3. a

Now, consider the hypothesis (ii) that a solution y to (7.20) has the geometric
form y, = l_[;f':l w;.'j ,a € Ay, for some positive wy, ..., w,. This hypothesis is
satisfied for the large class of networks discussed in the next sections on strings
composed of unit vectors. For the general case, we have the following observation.
The problem is to determine when there are positive wy, ..., w,, that satisfy the
linear equations

logy., = ajlogw;, a € Ay, (7.22)

m
j=1

for known y,,’s. From a standard property of linear algebra, we have the following
result.
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Remark 7.5. (Geometric Solutions). Let M denote the matrix, whose rows
are vectors in Ag, and let M’ denote the matrix M augmented by the column
(108 ¥2)aea, - Then there is a solution wy, . . ., wy, to (7.22) if and only if M and M’
have the same rank, which is at most m. If they have the same rank and it is less
than m, then there are an infinite number of solutions. Uniqueness is not important
for our purposes. However, the solution is unique if M and M’ have the same rank
m, which is true when A, consists of m linearly independent vectors.

We now justify why equations (7.8) are traffic equations. Throughout the rest
of this section, we assume that the network process X is ergodic with stationary
distribution 7 (x) = c®(x)n(x), where n(x) = []_, w;j and the w;’s satisfy
(7.8). We first note that the traffic equation (7.8) fora = 0 is

Y hoa =) nG@)ho+ Y Aol x €E. (7.23)
a#0 s#0 a#0
This follows from the identity (7.19) in which D(a) = 0 follows from (7.8), for

a#0.

Now, recall that by the ergodic theorem for Markov processes, the quan-
tity Z(x,y)% m(x)q(x,y) is the average number of x — y transitions of X
per unit time, where (x, y) is in some subset 7 of E2. This average number
of Ty-transitions, which is a limiting average, is also the expected number of
To-transitions in a unit time interval when the process is stationary.

We shall consider two types of transitions related to the traffic equations. For
a € Aand x € E, let A,(x) denote the average number of transitions of X per
unit time in which the vector a is added to the state x such that the transition leads
to the new state x + a. We call A,(x) the rate of exits from x via an a-addition.
Similarly, let A (x) denote the rate of entrances into x via an a-subtraction: the
average number of transitions of X per unit time in which the process enters state
x (during a transition) from a subtraction of the vector a. Here are expressions for
these rates.

Proposition 7.6. (Partial Balance) For each x € E,

7 (X)po(x) D_ 15 ()Asa ifa #0
Ao(x) = - 7.24
B =1 2000 Y 0@k + Y Al ifa=0 2P
570 a#0
T@go(In(@) Y n(sE)Aay  ifa#0
Aa(x) = ' 725
® T(@)Po(x) Y Aoa ifa =0. (7.25)
a#0

Hence, the traffic equations (7.8), (7.23) are equivalent to

ha(x) = A(x), a€A,x€eE. (7.26)
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Expression (7.26) says the average number of entrances into x via an a-
subtraction is equal to (or balanced with) the average number of exits out of x
via an a-addition. The equivalence between this balance (7.26) of traffic flows and
the equations (7.8), (7.23) is the reason why we call the latter traffic equations.
The equality (7.26) is a partial balance property for the process since it is the
balance equations (7.10) for only a part of the summation. Note that (7.26) also
implies that, for each fixed state x, the average number of entrances into x via
any a-subtraction equals the average number of exits from x via any a-addition
(namely )" ., Aa(x) = Y uea Aa(x)). A similar sum on x, for a fixed a, says the
average number of a-subtractions is equal to the average number of a-additions,
regardless of the state x.

PrOOF. First consider the case a # 0. A transition of X in which the vector a is
added to a state x such that the transition leads to the new state x + a is necessarily
a complete sa-transition that starts from x + s(€) and lands in x +a, for any s € S.
Then by the comment above on the ergodic theorem for Markov processes,

hax) =) w(x + s@O)hsadsio(x + ).

This reduces, in light of (7.13), to the first line in (7.24). Next, note that a transition
of X in which it enters state x (during a transition) due to a subtraction of the vector
a can only happen when the process is in state x + s(£) + a and an (sas’)a’-string
transition occurs, causing the process to enter state x at the stage in which a is
subtracted. Arguing as above,

M) =Y w(x +50) +a) Y AgasraPscorta(x +5(0) + a)

s'.a'

=Y 7@ +5(0) + @) Ao bso+alx + 58) +a),

and this reduces to the first line in (7.25).
Now, consider the case a = 0. Since 0-additions involve complete sO-transitions
and other partial transitions as well, we have

ho() =) m(x + s(O)upy(x + SENAso + Y Y Aasyarl,

5£0 a#0 §',a’

and this reduces to the second line in (7.24). Also, the second line in (7.25) clearly
follows since 0-subtractions only involve complete Oa-transitions. Finally, a glance
at (7.24), (7.25), and the traffic equations (7.8) and (7.23) verifies that the traffic
equations are equivalent to (7.26). a

A network’s performance is often measured by its throughputs Ay ...y Ap, where
A; denotes the average number of units per unit time that enter node j. Since the
process is ergodic, A j is also the average number of departures per unit time from

J-.
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Proposition 7.7. (Throughputs at Nodes) The throughput at node j is

£

-1 i
=) aahalal + D 6D+ A ) (@0 —a) ) ()T, (727)
s.a i=0 n=1

s.a i=1

<+

where og = Y m(x)Pa(x), ¢t = max{0, c}andc™ = ¢t —c.

PrOOF. By the ergodic theorem for Markov processes, it follows that A j =
Zx,y w(x)g(x, y)f(x,y), where f(x,y) describes the number of arrivals to j
ina x — y transition. That is,

4
=Y m@) ) Aats®)1(x —5(8) +a € E)af + le(s;i)—l

-1
+ T Y  hsa O[5y (X) — Baiir ()]
X s,a i=0

x 1 —s() e B) Y (s))™.
n=1

Now, by two uses of ®-balance and the structure of 7, we have

Y (s @)1x - s) +a € E)
= Y T (Tasi®)bsy Tasy¥)n(@)n(s @)™
=) 7 (x)a(x) = .

Similarly,

D @) @Ix — 5@ + 1) — s € E) = agen,

Then applying these equalities to the two sums on x in the preceding display yields
(7.27). o

7.4 String-Nets with Unit-Vector Transitions

This section describes the results above when the allowable increment vectors
a € A are unit vectors instead of general vectors.

Suppose the string-net process X represents an open network in which the
allowable increment vectors consist of the m-dimensional unit vectors e, ..., e,
and ¢y = 0. We say that the process has unit-vector string transitions. In this
case, the unit vectors are associated with the node numbers: It is convenient to let
A =1{0, 1,..., m} denote the node numbers instead of the vectors. Accordingly,
s = (s',...,s% is a string of node numbers, s(i) = Z'nzl es, and the rates are
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Asj, j € A. Then the results above are the same, aside from the change in notation
from vectors to node numbers. For instance, the traffic equations (7.8) are

14 4
w; Zl—[wsi Z)\(:js/)j/ = ans‘}-xj, 1< _] < m. (728)
s i=l s

s =l

The following is a combination of Theorems 7.2 and 7.3 for unit-vector string
transitions. Consider (7.28) written as w; g ;(w) = h;j(w), where g;(w) and & ; (w)
denote the summations on the left and right sides of (7.28) as functions of w =
(Wi, ..., wy).

Theorem 7.8. Suppose there are vectors 0 < w < W such that 0 < g;(w) < o©
and

w;gi(w) < hj(w), and h;W) <w;g;w), 1<j<m.

Then there is a vector w that satisfies (7.28) and w < w < w. Moreover, w(x) =
o) [T} w;", x € E, is an invariant measure for the network process X.

Note that this result is simpler than Theorems 7.2 and 7.3 because w; plays the
role of y, in Theorem 7.3, and hence there is no issue of verifying that y, is a
product.

For closed networks, unit-vector transitions make sense only for the case of one-
stage transitions (L = 1). One can also define analogous unit-vector transitions
when the set A of increment vectors consists of only the negative unit vectors, or
when it consists of a combination of negative and positive unit vectors.

We now derive expressions for throughputs and service rates. For the rest of this
section, assume that the network process X is ergodic and denote its stationary
distribution by 7 (x) = c®(x) [}, w;’ . Let fi; denote the average number of
departures per unit time from node j when the node is not empty. The A ; and
fi; are often called the effective arrival and service rates for node j and the ratio

A j/itj is the traffic intensity.
Proposition 7.9. For the network process X with unit-vector string transitions,

Xj = Zn(x)@(x)Z)»sj, and [ = X,/Z I(e; < x)m(x).

ProOF. The first expression is an obvious special case of (7.27). By the strong
law of large numbers for Markov processes, the effective departure rate is

A=) R/ Y1 <0m@),
X X
which is the average number of departures from j per unit time divided by the
portion of time j is nonempty. And ), A;(x) = A; by Proposition 7.6. a

Another important performance measure of the network is the average sojourn or
waiting time of a unit in a node j of the network. This average is defined by W; =
lim, 0o n~' Y_0_, W;(v), where W;(v) is the waiting time in j of the vth unit to
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enter j. We will use the average number of units in j, whichis L; = )" x;w(x).
The Little law for Markovian systems in Theorem 5.1 yields the following result.

Proposition 7.10. (Little Law for Waiting Times) If the network has unit-
vector string transitions and the state space contains a vector x with x; = 0,
then W; exists and L; = X;W;. Here X, is necessarily finite, but W; and L; may
both be finite or infinite. This assertion for averages also holds for expected values
when the system is stationary (or in equilibrium). In this case, L ; is the expected
number of units in j; the A j is the expected number of units that enter j in a unit
time interval; and W is the expected sojourn time for an arbitrary unit in j under
the Palm probability that a unit enters j at time 0.

Similar Little laws apply to batch arrivals into j, but more information is needed
on how the “order of units” in a batch affect their individual service times. In these
cases, one can state a law for all units labeled as the kth unit within a batch arriving
into j—the W; and L; would be the average waiting times and queue lengths for
these kth arrivals, and A j would be the arrival rate of batches into j of size k
or more. The expected waiting time in a sector (subset of nodes) in a Jackson
network is described in Chapter 1. To obtain similar results for vector-transitions,
one would need more information on where each unit in a batch actually moves;
the net number of movements is not adequate to describe waiting times as it is
under single-unit movements.

The computation of throughputs, average waiting times, and other performance
parameters—even for a Jackson network—is difficult for a moderate-size network.
However, since there is a closed-form expression for the stationary distribution of
the network, one can compute these parameters by Monte Carlo simulation as
discussed in Chapter 1.

7.5 Networks with One-Stage Batch Transitions

A Whittle-type network with batch movements is a string-net in which all tran-
sitions are of the form x — Ty,x, for d,a € A. The d and a are departure
and arrival vectors. Units represented by d may form part or all of the vector a,
in which case they are transferred within the network. In this string-net, all of
the strings are exactly of length 1 (i.e., each transition involves only one pair of
addition/subtraction vectors). This section describes the results above for these
batch-movement networks.

Consider the string-net process X with strings exactly of length 1 as described
in the preceding paragraph. The transition rates (7.2) for the network are

9x )= D Maa@a(®)1(y = Tyex), x#yinE. (7.29)

d,aeA

In other words, whenever the process is in state x, the time to its next potential
move to Ty,x via a da-transition is exponentially distributed with rate Ay, ¢4(x).
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The ®-balance assumption implies that ¢,(x) = 0, if Ty,x ¢ E for somea € A
with A4, > 0. Note that the ¢p-dominance assumption is not relevant since L = 1.

We call X a network process with one-stage batch transitions—the vectors in
A are the allowable batch increments in the process. Invariant measures for this
process are given by the following special case of Theorem 7.2.

Theorem 7.11. Suppose that y = (y, : a € A) is a positive vector, with yp = 1,
that satisfies

Yo ) Aad= Y Vahdar @€ Ao, (7.30)
deAy deAy
and y, = H7=1 w;’ , a € Ay, for some positive wy, ..., wy. Then an invariant

. X
measure for the process X is n(x) = O(x) ]_[;-"Z, w j’, x € E. Furthermore, a
necessary and sufficient condition for an invariant measure of this form is

Y D@ — ¢o(®) [ [w;“1=0, x€E,
j=1

aehy
where D(a) denotes the right side of (7.30) minus its left side.

In this case, the traffic equations (7.8) reduce to (7.30) because in A 54), the s must
be O since L = 1, and As) = ) c4 Aaa- Note that (7.30) is a balance equation
for a Markov process on the finite set Ay with transition rates A, and hence there
exists a positive solution y to the equation. The solution is a geometric product
form under the criterion in Remark 7.5.

According to Proposition 7.6, the measure 7 in Theorem 7.11 satisfies the partial
balance property

7)Y 40, Taax) = ) 7(Toax)q(Togx, )1(Toax € B), a € Ag,x € E.

deAy deAg
(7.31)
The following is an example in which the units in a batch movement are
independently transferred among nodes via Markovian routing probabilities.

Example 7.12. Independent Concurrent Movements of Units. Let X denote the
network process described above with rates (7.29), where A denotes a set of m-
dimensional vectors. For simplicity, assume the network is closed (the open case is
similar). In a da-transition in state x, think of ¢, (x) as the rate at which the batch
d is released from the network and A4, as the rate in which d is changed into the
addition batch a. To describe the units in these vectors by their node locations, we
define
i)
Id) = {i=(r,....0w): Y1 =j)=d;, 1 < j <m},

n=I

which is the set of node indices that “represent” d.
Assume the units in the batch d move concurrently such that rj; is the rate
(probability or propensity) for a single unit in the batch to move from j to k in



7.6 Networks with Compound-Rate String Transitions 195

the node set {1, ..., m}; and thatr;, 4, - - -7, x, is the rate that the released batch
J € Z(d) results in the batch addition k € Z(a), where |d| = |a|. This rate is a
compounding of the single-unit rates. Then the rate of a da-transition in state x is
Ada®q(x), where

Ma= Y. D FikTigka» dra€ A, with|d| =a].
jeT(d)keZ(a)
Note that the probability of d and a being generatedis Ayq/ Y, Aaq; and if the r ;s
are probabilities with Y, r;x = 1 for each j, then ), Ay = |d|!/d)! - - - dp!.
Assume the rates rj; are irreducible and let wy, ..., w, be positive numbers
that satisfy

m m
wjzrijZUJkrkj, 1S]Sm
k=1 k=1

Define n(x) = HT:I w;’ . Because the w;’s satisfy the preceding equations, we

have
"(“)Zkad = Z Z WjiTjik Wi Vi ki
deA jeT(a) ki ...k
= Z Z Wi Ty ji = Whig Piap i
jEI(a)k|...,k|,,|
= Z'l(d))»da, a € Ay.
deA
Therefore, by Theorem 7.11 it follows that m(x) = ®x)n(x), x € E, is an
invariant measure for the process. a

7.6 Networks with Compound-Rate String Transitions

A large class of string-nets are those in which the rate A;, of an sa-string is a product
or compounding of several rates representing micro features of the network. This
section illustrates this class with an example of a network in which a string is
generated by a Markov chain mechanism. The ideas here readily extend to a variety
of networks with compound-rate string transitions.

Consider the m-node network that operates as follows. The network is open,
and its state space consists of all m-dimensional vectors with nonnegative integer-
valued entries. Units enter the network at the nodes according to independent
Poisson processes with respective rates A, ..., A,; a zero rate for a node means
it has no external arrivals. The services at each node j are independent and ex-
ponentially distributed with rate p;. The results below also apply, with minor
modifications, to general ®-balanced service rates and closed or open networks
with other types of state spaces.

A transition of the network is triggered by the movement of a single unit. An
external arrival to a node just adds one unit to the node and no other units move.
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On the other hand, a service completion at a node may trigger a transition in which
single units are successively deleted from a string of nodes s, ..., s, and, at the
end, one unit might be added to some node k in A = {0, 1, ..., m}. All of this
occurs instantaneously and the number of deletions v < L is a stopping index that
may be random.

The procedure for such a transition triggered by a service completion is as
follows. Whenever a normal service completes at some node s; € A9 = A\{0}
(with rate ), then with probability Q;  one unit moves to some node k € A
and the procedure stops; or with probability P; ;,, one unit exits the network from
node s; and a signal goes to node s, € Ag to delete a unit there provided that
node is not empty (}_,(Pjx + Qjx) = 1 for each j). If node s, is empty or if
L =1, the procedure stops. Otherwise, the preceding events are repeated until
stopping. That is, for each i > 1, the departure from node s;, with probability
Q,.«, adds one unit to node k and stops the procedure; or with probability P, , it
triggers another departure from node s;., provided this node is nonempty and, if
node s; is empty or i = L, the procedure stops. Think of Pj; as probabilities of
“propagating new departures” and Q j; as probabilities of “quitting” (or stopping)
the string deletions.

In summary of the preceding description, typical transitions of the network are
as follows.

e An arrival into node k from outside the network: x — x + ¢;.
o String deletions stopped because node s; is empty or i = L:

X Xx—e — - —e€,.
o String deletions stopped by the quitting probability O :
X > X—e, — --—e; t+e.

As in the previous sections, we let X denote the stochastic process representing
the numbers of units at the nodes. The data for this process are the arrival rates
A= (A1, ..., Ay), servicerates u = (4, . . . , hm), Maximum string length L, and
propagating and quitting probabilities Pj¢, Q jx. Define P = (Pj) and Q = (Q )
for j, k € Ag. We also assume that the inverse of the matrix I — Q exists, where
I denotes the identity matrix. We will frequently use the vector

> -1
A=MI-0Q),
whose entries are effective arrival rates, as we will soon see.

We first justify that this network is a string-net.

Proposition 7.13. Under the preceding assumptions, X is a Markov network pro-
cess with unit-vector string transitions and its associated traffic equation (7.28) in
matrix form is

L—1 L1
wY (WPYW=A+un) (WPY'WQ, (7.32)
n=0 =0
where W is a diagonal matrix with diagonal entries wy, ..., Wy,.

PrOOF. Because of the Poisson arrivals and exponential service times, the net-
work process is clearly Markovian. The rates of its sj-transitions are Ag; = A;
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and, fors # 0,
hj=NM04 J#0, and Ao =AJlQuo+1(¢=L)) Pul,
k

where A; = u;, ﬂf;l‘ Py,;,.,. Now, consistent with its definition in the last section,
Ao = Zj(kj + ;) and, fors # 0, A; = ZS,J A¢ssj» Which is the rate of all
string transitions whose first part is s.

Next note that the departure rate functions must satisfy

Osi)(x) — Psiyy(x) = 100 <x —5(0), 0 £ x — 5(i + 1)).

Consequently, they have the special form ¢;(x) = 1(e; < x). Clearly, these ¢;’s
are ®-balanced with ®(-) = 1, and the ¢y-dominance assumption is satisfied.
Under these specifications, X is a Markov network process with unit-vector string
transitions.

In this setting, the traffic equations (7.28) reduce to (7.32) since

-1
w; Y @A) = Y b, [ [ ws Pusoywj1se = )

$#0 i=1
L-1
= (MZ(WP)"W) ) (7.33)
n=0 i
L-1
> n(s@h; = (A + Z(WP)"WQ) . O (39
5 n=0 j

The following characterization of solutions to the traffic equation is analogous to
Theorem 7.3. We willuse w; = A;/u;, 1 < j < m.Recall that A = A({ — o).

Theorem 7.14. (a) Suppose L = oo and Y o ((PW)" < 0o, where
wj=A;/(w+iP);, 1<j<m.

Then w, . .., wy, is the unique solution to the traffic equation (7.32).

(b) Suppose L < oo and Z:‘_’__O(PW)" < 00. Then there exists a solution w
to the traffic equation (7.32) in the open rectangle (0, w). Furthermore, let w,
denote a sequence of vectors defined by wg = 0 and w,, = h(w,), where
h(w) = (hi(w), ..., hy(w)) and

hj(w)= A +u(WP)“W);/(u+4P);, weC=[0,w], 1<j<m.
Then w, is a nondecreasing sequence whose limit is the minimal solution to the
traffic equation (7.32) (any other solution is greater than or equal to this limit).
ProOF. First note that by subtracting the right side of (7.32) from its left and
dividing by I — Q, this traffic equation can be written as

L—-1

MZ(WP)"W = i. (7.35)
n=0
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Now, assume the assumptions in part (a) hold. Multiplying both sides of (7.35) on
the right by the matrix (I — PW) yields u W = A—APW.Thatis, (u+AP)W = 1,
for w € C. This proves the assertion in part (a).

Next, assume L < oo. Note that equation (7.35) is the same as f(w) = w,
where f(w) = (fi(w), ..., fu(w)) is defined by

L—1
fiwy=%;/(w) (WPY);, weC, 1<j<m.
=0

Clearly f is positive, continuous, nonincreasing, and its range is contained in C
since 0 < f(w) < w. Then, by Brouwer’s fixed point theorem, f has a fixed point
in C and hence this point is a solution to the traffic equation (7.35). Furthermore,
this solution is in the open rectangle (0, w) since this set contains the range of f.
For the rest of the proof, we need another representation of the traffic equation
(7.35). Multiplying both sides of it on the right by the matrix (I — PW) yields

ull —(WP)'IW =1 — APW, weC. (7.36)

Writing this as (4 +AP)W = A + uw(W P)L W and recalling the definition of & in
part (b), it is clear that the traffic equation (7.35) is equivalent to w = h(w), for
w > 0. Hence the solutions to (7.35) are the same as the fixed points of 4. Since
h is nondecreasing, it follows by induction that w, is a nondecreasing sequence.
Then the limit w* = lim,_, o, W, exists. Now, as n — 00 in w,; = h(w,),
the continuity of ~ ensures that w* = A(w™). Thus w* is a solution to the traffic
equation (7.35). It remains to show that if w’ is any solution to the equation, then
w* < w'. To prove this, it suffices to show that w, < w’ for each n. But this
follows by induction, since wp = 0 < w’ and, assuming w, < w’ for some n, then
W1 = h(w,) < h(w') = w’ because & is nondecreasing. |

Obtaining a solution of the traffic equation by successively computing w,; =
h(w,) is very efficient: w,, converges to its limit very fast.

The next result describes invariant measures for the network process and says
the process is ergodic if the arrival rates to the nodes are less than the service
capacities of the nodes.

Theorem 7.15. Suppose the vector w is a solution to the traffic equation (7.32)
and 0 < w < W. Then nT=1 w;j , X > 0, is an invariant measure for the process
X. This process is ergodic if and only if 0 < w < 1. In particular, the process
is ergodic if . < w, and, in case L = oo, the process is ergodic if and only if
A < @+ AP. When the process is ergodic, its stationary distribution is

m

n@) =[]0 - wpw, x>0.

j=1
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In addition, X is the throughput vector and the vector of average numbers of units
that depart from the respective nodes per unit time when they are busy is

w+ AP ifL = o0

T L 7.37
# wY WPy ifL <oo. (7.37)
n=0

Also, wj = ) i/t j, which follows by the traffic equation, is the traffic intensity at
node j.

Proor. The first two assertions follow by Theorems 7.2 and 7.14 (recall that
®(-) = 1) and the fact that H?’:] w;j is finite if and only if w; < 1 for each j. If
A < u(ie., W < 1), then by Theorem 7.14 we know that there is a solution w to
the traffic equation that satisfies 0 < w < 1; hence the process X is ergodic. The
assertion for the case L = oo also follows by Theorem 7.14.

Now, assume that X is ergodic. By Proposition 7.6, we know that the effective
arrival rate to j is ) ., 7(s¢)As;. Then this rate equals ) ;» since the equality of (7.33)
and (7.34) along with (7.35) yield

L-1
Zn(sl))\xj = (IL Z(WP)nW)j = Xj.
s n=0

Next, observe that Proposition 7.9 says that the effective departure rate from j
is

X,/Z I(e; < x)m(x) = &;/w;.

Then this average equals fi; defined by (7.37) since ji; = wj"li ; by the traffic
equation (7.32). O

7.7 Networks with Multiple, Compound-Rate String
Transitions

In this section, we discuss string-nets with compound-rate string transitions for
multiple types of string initiations.

Consider the network process X in the previous section with the following
generalizations:
(1) There are multiple types of services or string initiations indexed by ¢ € 7, and
w() = (ui(), ..., um(t)) denotes the type ¢ service rates at the nodes.
(2) A type ¢ service completion generates a string of deletions and a possible
addition as before, but now the propagation and quitting probabilities depend on
the stage i and index t. Specifically, an ith departure from node s; may trigger a
departure from node s;| with probability P, , (¢, i) or, with probability Qy«(t, i),
it may add one unit to k and then quit. With no loss in generality, the maximum
string length L is independent of ¢.
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The following result is analogous to Theorem 7.15. The condition (7.40) for
ergodicity is that the arrival rates A(/) into the nodes are less than the service rates

().

Theorem 7.16. The process X described above is a string-net and its traffic
equation is W(WYW = A(W), where

L-1 n
AWy=r+) u@ ) [[[WPC WO n+1), (7.38)

€T n=0 i=I

L-1 n
awy =Y uw Y [[[wre . (7:39)
€T n=0 i=I
If AW) < pOW = Y ez HOW for some m x m diagonal matrix W with
positive diagonal entries, then there is a solution w to the traffic equation in
(0, w). In particular, if
A1) < ) ), (7.40)

el

then there exists a solution w to the traffic equation in (0, 1), and hence the process
X is ergodic. In this case, its stationary distribution is

m
T(x) = 1_[(1 — wj)w;j, x>0,
=

and X(W) and (W) are the effective arrival and service rate vectors.

PrOOF. The traffic equation (W)W = A(W) is the obvious analogue of (7.32).
The rest of the proof is similar to that of Theorems 7.14 and 7.15 because a solution
of the traffic equation is a fixed point of the vector-valued function

Fw) = QW) /EW)1, <., MW /A(W)),  w € [0, ). 0

The rest of this section is devoted to examples of the preceding theorem. We start
with a case that can be treated as in the last section.

Example 7.17. Homogeneous Propagation and Quitting Probabilities. Consider
the process described above in which all the propagating and quitting probabilities
are Pj; and Q j, respectively. Then the traffic equation is the same as that in Propo-
sition 7.13 with u = Y, u(t). Consequently, the assertions of Proposition 7.13
and Theorems 7.14 and 7.15 apply automatically. i

Another special situation of interest is when the propagating and quitting ma-
trices are homogeneous and equal to P and Q, respectively, after the first stage.
Then (7.38) and (7.39) reduce to

L-2
AW) =14 u@IWQE, 1)+ WP, 1)) (WPY'WQ],  (7.41)
€7 n=0
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L=-2
W)=Y pOU + WP, 1)) (WP (7.42)
n=0

14
The following are examples of this case.

Example 7.18. Regular and Negative Units with Two-Stage Strings. Consider the
process described above in which there are regular and negative units (types 1
and 2) with two-stage strings (L = 2) that evolve as follows. Whenever a regular
unit finishes a service at node j with rate pu(1);, it either enters a node k with
probability Q;k for another service, or becomes a negative unit and enters node
k with probability Pj;. If this negative unit encounters no units at k, nothing
more happens. Otherwise, one unit is deleted from k and one regular unit enters a
node &’ with probability Q. (entering &’ = 0 means the unit exits the network).
In addition, negative units from outside enter the nodes according to independent
Poisson processes withrates ;(2) = (1(2)y, .. . , #(2),,). If a negative unit entering
k encounters no units there, then nothing more happens; otherwise, one unit is
deleted from k and one regular unit enters a node k' with probability Q. In terms
of the notation above,

PA,D=P, 01, D=0Q, 001,2=0=0@20,

P(1,2)=P2,1)=P(2,2) = 0(2,2) =0.
Then Theorem 7.16 applies with (7.41), (7.42) reduced to
W) = A+ u()IWQ' + WPW Q] + uQWQ,
a(W) = u() + pu(2) + p(HWP.
The sufficient condition for ergodicity is
(A +uIQ' + POI+1(2)Q), < WD) +u2)), 1<j<m =

Example 7.19. Regular and Negative Units with Infinite Strings. Consider the
process related to (7.41), (7.42) in which L = oo and all the propagation and
quitting probability matrices are P, O except for those at the first stage. Clearly
Yo o(WPY = (I — WP) ! exists for W < I, provided that (I — P)~! exists. In
this case, Theorem 7.16 applies and the sufficient condition for ergodicity is

€T el

<X+Zu(t)[Q(t,1)+P(t,1)(1—P)"Q]> <> uw; 1<js<m
J

Although we know the traffic equations have a solution, we cannot obtain a closed-
form expression for it as we did in Example 7.17.

7.8 String-Nets with Two-Node Batch Transitions

In this section, we discuss string-nets in which a transition involves a batch deletion
at a single node and a batch addition at another single node.
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Assume that the string-net X is such that each element of A is of the form
a = ne; for some 0 < k < m and n > 1. Also, assume that each nonzero string s
in S consists of £ copies of of some ¢; (i.e., s = (e; ...e;)), where £ < 0o. This
means that for such a pair sa, the complete transition is x — x — £e; + ney, and
the ith partial transition is x — x — ie;. We express the rate of sa as A;q = Agj nk.
Under an sa-transition with s = ¢;e; ... and £ = o0, all units from node j are
cleared out, and we denote its rate simply by A ;. Such a “clearing” transition
might represent a dispatching or assembly of units (or a catastrophe) that clears
out all units at j. We say that X has two-node string transitions since exactly two
nodes are affected in a transition.

Here we let y,; denote positive real numbers, for 1 < j <mand n > 1, where
v; = 1. Also, the summations on £ are the conventional ones that do not include
a term for £ = oo.

Theorem 7.20. For the network process X with two-node batch transitions, the
traffic equations (7.8) are

00
Vai 3 Velrin+ 0+ hoojl = Vuhanyy 1<j<m n>1, (1.43)
=0 174 '

whereri(n) = Ze'zn Yo 7 M jw - If these equations have a solution of the form

.. X .
Ynj = w;f,for some positive wy, . .., Wy, then 7(x) = O(x) ]_[;Ll w,x €k, is
an invariant measure for the process.

ProoF. This follows by Theorem 7.2, where the traffic equations (7.8) reduce to
(7.43) since, for any sa = (£k, nj), the Ayq = rj(n + £)1(j = k) for £ < oo and
A(Sa):Aoojl(jzk)forC:oo. a

Here are a few examples.

Example 7.21. Open Whittle Process with Periodic Clearing. Suppose the process
X with two-node batch transitions has strings of only length 1 or oo, and A =

{e1, ..., en}. Then all transitions are of the form (x — x —e; +¢;), as ina Whittle
network, or there is a clearing (x — x — x;e;). The rates of these transitions are
glx,x —ej+e)=@;@)jx, qlx,x —xjej) =¢;j(x)A;. (7.44)

We call X a Whittle network process with periodic clearing. Without loss in
generality, assume that A ; ; is an irreducible matrix.

Theorem 7.22. Suppose the process X with transition rates (7.44) satisfies
Y, ®(x) < 0o. Then it is ergodic and its stationary distribution is

m
— Xj
w(x) = cCD(x)nwj , xekE,
j=I
where wo = 1 and w, . .., wy, in (0, 1) satisfy the traffic equations

o0
wil) Ak troo 3 W=D wikej, 1<j<m. (145
k v=0 k



7.8 String-Nets with Two-Node Batch Transitions 203

Furthermore, the effective arrival and service rates, A j and [ij, for node j are
given by the sums on the right and left sides of (7.45), respectively.

Proor. First note that equations (7.45) are clearly a special case of the traffic
equations (7.43). We will consider (7.45) written as w;g;(w) = h;(w) and apply
Theorem 7.3 to justify that it has a solution. To this end, let w be a vector in (0, 1)
that satisfies

ﬁ’—/'X:Aj,k = Zwk)\k,j, l1<j<m.
k k

Define A* = {j : A,; > 0}. This set is not empty because A ; is irreducible. Let
w be a vector in (0, w) such that

w; <Ag;/giW), je€A,

w; < Y wh/gi@), Jje{l,..., m\A".
ke A

From the definition of W and these inequalities, it follows that

w;gi(W) < hj(w),  h@=W; ) Ay <W;g;w), 1<j<m
- .

From these inequalities and Theorem 7.3, it follows that (7.45) has a solution
w € (0, 1). Then the first assertion of the theorem follows by Theorem 7.2. Also,
Proposition 7.9 justifies, as in the proof of Theorem 7.15, that (7.45) is the same
as w; m j= A Iz O

Example 7.23. Assembly Networks. Consider the string-net described in Theo-
rem 7.22 with the following features. Units arrive to the nodes by independent
Poisson processes with rates Ay, ..., A,. Services at node j are exponential with
rate u;. When a service at j completes, K; units, if available at j, are assembled
into one unit and sent to node k with probability Q ;. If there are less than K ; units
at j, then all the units at j are assembled into one defective unit and discarded
(sent to node 0). Then the process X that represents the numbers of units at the
nodes has two-node batch transitions. Its traffic equations (7.43) are

K- m
K, .
Wil Z wf :Aj+ZMkwkakj, l<j<m.
=0 k=1

Then Theorem 7.22 applies in this setting under the assumption that

m
Aj +le«kaj <Kjuj,
k=1

which says that the service capacity at node j is greater than the arrival rate. O
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7.9 Single Service Station With String Transitions

Further understanding of string transitions can be obtained by considering a single
node or service station, which we will now do. In addition to giving more insight
into string transitions, these processes for single nodes can be used as building
blocks for networks, comparable to quasi-reversible nodes that are coupled together
to form networks.

Consider a Markov process {X; : t > 0} with state space E = {0,1,2,...}.
Assume that it has the following type of string transitions, where a = 0 or 1 and
s is a nonnegative integer.

e A complete sa-transition: x - x — s +a.
e An ith partial sa-transition: x — x — .
Then the transition rates (7.2) of the process X are

q(x, x + 1) = Ao1¢po(x)
g x =) =Y Aipaal@ira(x) + 9 (x) — $ir1 ()

a=0,1
= Aio[20:(x) ~ i1 (O] + Ay 19i(x), 0 <i <x.

The following result is an immediate consequence of Theorem 7.2.

Corollary 7.24. An invariant measure for the process defined above is w(x) =
d(x)w*, x € E, where w > 0 satisfies

L—1 L
D wt A =) wih, (7.46)
s=0 s=0

and A; = ZSL/;; (Ayo + Ay1). The process is positive recurrent if and only if
O<w<1.

Clearly w is the unique positive solution to (7.46) since this equation is equiv-
alent to ZSL:, w[Aso + Asi1] = Aor, which has a unique solution. A special case
of this model is as follows.

Example 7.25. A Simple Production-Inventory System. Consider a production
system whose cumulative output over time is a Poisson process with rate A. As
the units are produced, they are put in inventory to satisfy random demands. Let
X, denote the quantity of units in inventory at time ¢. Whenever there are x units
in inventory, the time to the next demand has an exponential distribution with
rate 1 and the demand is for i units with probability p;, where i < L. Also,
the probability that the demand can be satisfied is P{Z < x —i|Z < x}, where
1 < i < min{x, L}. Think of Z as a nonnegative integer-valued random variable
that denotes a feasible inventory level. Then the process X is clearly a Markov
process, and its nonzero transition rates are g(x, x + 1) = A and

qx,x —i)=up;P{Z <x—i|Z <x}, 1<i<min{x, L}.
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An easy check shows that this process is a special case of the preceding example
in which

Ao=0, Aoy =A, Aipi=upi, ¢i(x)=P{Z <x}.

Therefore, 7 (x) = ®(x)w*, x > 0, is a stationary distribution, where w is the
unique solution to Zf:l w'(ps + ...+ pr-1) = A/u.

7.10 Bibliographical Notes

This chapter is based on Serfozo and Yang (1998), which built on earlier works.
Specifically, Gelenbe (1991, 1993) and Gelenbe and Schassberger (1992) intro-
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extended this model to more general services and deletion mechanisms described
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Other related articles are Henderson (1993) and Henderson et al. (1994a). A good
reference for Brower’s fixed point theorem is Horn and Johnson (1994).
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Quasi-Reversible Networks and Product
Form Distributions

This chapter addresses the following question for a Markov network process. Under
what conditions is the stationary distribution of the process a product of stationary
distributions associated with the nodes? We consider a network in which the state
of each node may contain more information than the number of units at the node,
and a network transition may be triggered by an internal node change as well as
by a unit moving from one node to another. The network process is viewed as a
linkage of certain artificial Markov “node processes” that mimic the operation of
the nodes as if they were operating in isolation. The main results are necessary
and sufficient conditions under which the stationary distribution of the network is
a product of the stationary distributions of the individual node processes.

An important example of a network with a product form distribution is a quasi-
reversible network. Loosely speaking, a single queueing system is quasi-reversible
if Poisson arrivals imply Poisson departures when the system is stationary. A
network is called quasi-reversible if each of its nodes viewed in isolation is quasi-
reversible. A major result of this chapter is that a network has a product form
stationary distribution and is “biased locally balanced” if and only if the network
is quasi-reversible and certain traffic equations are satisfied. We also characterize
product form distributions for queueing networks in which the routing is reversible,
but the entire process need not be reversible. The chapter ends with a discussion
of how the results extend to networks with multiclass transitions.
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© Springer-Verlag New York, Inc. 1999



8.1 Quasi-Reversibility 207

8.1 Quasi-Reversibility

An open, unlimited-capacity Jackson network process is a quintessential process
with a product form stationary distribution. The transition rates of the process are
consistent with viewing the nodes in isolation as birth—death queueing processes
linked together by customer routing rates. Then the stationary distribution of the
network is a product of the stationary distributions of the birth-death processes.
This approach of constructing or analyzing network processes is developed in the
following sections.

As anintroduction, this section describes such a construction of a classical quasi-
reversible network. We begin by defining quasi-reversibility for a single service
system, and then discuss a network of quasi-reversibile nodes.

Consider a service system with queueing whose state is represented by a Markov
jump process {X, : ¢t > 0} on a countable state space E. A typical state x € E
includes all the relevant information about the system including the number of
customers present, denoted by n(x). Assume the system evolves as follows. A
transition of the process is triggered by one of the three following events: arrival of
one customer; departure of one customer, or internal change without the customer
population changing. The transition rates of the process are defined as

qx,y) =q*(x, y) +q'x, ) +4'(x,y), x#yek.

The three parts are the transition rates associated with arrivals, departures, and
internal changes. At most, one of these rates may be nonzero for each pair x, y,
and so

g*(x,y)  ifn(y) =n@x)+1
qx,y)=1q¢'x,y)  ifn(y)=nx) -1
gy ifn)=n).
Assume the process X is ergodic, and let 7w (x) denote its stationary distribution.

Definition 8.1. The process X defined above is quasi-reversible if

o= an(x, y) is independent of x € [, and 8.1)
y#x
(x)”! Zn(y)qd(y, x)=a, foreachx €LE. (8.2)
y#x

This definition is a special case of Definition 8.12 below for more general
Markov processes. To see the meaning of the conditions above, let N(z) denote
the number of customer arrivals and D(¢) denote the number of departures in the
time interval [0, ¢]. These point processes are functionals of the Markov process
X, like the functionals discussed in Chapter 4. For instance,

Nt =) 1(Xs # Xooy n(X) = n(X,2)+1), 120
s<t
Now, by Theorem 4.11, it follows that condition (8.1) is equivalent to N being a
Poisson process with rate @ and N, L X_ (i.e., N on (¢, 00) is independent of X
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on [0, ¢] for each ¢). Similarly, by Theorem 4.12, we know that, when the process
X is stationary, then condition (8.2) is equivalent to D being a Poisson process
withratew and D_ L X .

Because of these observations, a quasi-reversible system is said to have Poisson
input and output processes, and the current state of the system is independent of
prior departures and subsequent arrivals.

We now show how quasi-reversible nodes can be connected to form a quasi-
reversible network with a product form distribution.

Example 8.2. Classical Quasi-Reversible Network. Consider a network consist-
ing of m quasi-reversible nodes as defined above. Specifically, each node j “in
isolation” operates as a quasi-reversible process on a countable state space I, and
its transition rates are

q;xj,y) = @&, ) + 45, y) + 4. y),  xj #yj € Ej.

The process is ergodic with stationary distribution 7 ;(x;), and its Poisson arrival
rate «; is given by (8.1). Condition (8.2) is also satisfied for each node j.

We will link the nodes together to form a network as follows. The network
may be closed or open or a mixed network with a combination of transient and
permanent customers. For the last two cases, assume the outside, denoted by node
0, also operates in isolation as a quasi-reversible process on a space I (the number
of units at node 0 can be taken to be infinite). Denote the node set M by {1, ..., m}
or{0, 1, ..., m}according to whether the network is closed or not closed. A typical
state of the network is a vector x = (x; : j € M) in a space E that is the cartesian
product of the sets {E; : j € M}, or a subspace of this product space. Let n;(x)
denote the number of customers at node j when the network is in state x.

A change in the network is triggered by one unit moving from one node to another
in M, or by an internal change at a node. Such transitions will be described by the
sets

Tux) = {(yeE:ye=xi, L# .k
nj(y) =nj(x) — 1, n(y) = n(x) + 1}
Tix) = {yeE: ye=x¢, £ £ j5 nj(y) = nj(x)}.
The set 7;;(x) consists of all states that can be reached in a transition from the
state x due to a unit moving from j to k. The set 7;(x) consists of all states that

can be reached in a transition from the state x due to an internal change at j.
We assume the transition rates of the network process X are

Mg (X, ¥)q5 X Yio) if y € Tjx(x)
q(x, y) = 145(x;, ) ify € T,(x) (8.3)
0 otherwise.

The A, as in preceding chapters, denotes a rate of routing units from j to k, or
the probability of such a movement. Without loss of generality, assume the routing
rates A j are irreducible. In addition, assume the process X is irreducible on E.
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The process X defined above is an example of a quasi-reversible network
process. A product form invariant measure for it is as follows.

Theorem 8.3. An invariant measure for the network process X is

z(x) = l—[ nj(xj)w;’(x), x€E,
jeM

where w; are positive values that satisfy the traffic equations

ijAjkajak:Zkakjakaj, jGM,
keM keM

and wg = 1 if the network is not closed.

One can prove this result by showing that the specified & satisfies the total
balance equations. This theorem is also a consequence of Theorem 8.14 below.

Note that the traffic equations in Theorem 8.3 have the following interpretation
(Exercise 3): The arrival rate into each node j is equal to the sum of the arrival
rates into node j from all other nodes. Keep in mind that although the input and
output processes for a node in isolation are Poisson, the input and output processes
for a node in the network may not be Poisson. Conditions for the latter can be
obtained by the results in Chapter 4. |

For the network described above with transition rates (8.3), there are several
definitions of the node transition rates g; that yield different distributions 7; and
traffic equations, but lead to the same invariant measure of the network. This idea
is illustrated in the next example.

Example 8.4. Alternative Formulation of Example 8.2. Consider the network
process X in Example 8.2 with g; defined slightly differently as

q;(xj, y) = Biai(x;, y) + Blal (. ) + 4i(xj, ), xj # y; € Ej.

Now there are coefficients on the first two terms. We assume that B} is a dummy
variable that will be determined. As above, we assume thata; = Zy,» P HET )

is independent of x ;. Motivated by Theorem 8.7 below, we set ﬂ;’ = D kpj Mjkk.
Assume g, is an ergodic transition rate and let 7 ; (x ;) denote an invariant measure
for it. Note that 7r; as well as g, is a function of B7. Finally, assume 7; is such that

o;(B)) = mi(x)™ E nj(yj)q;-i(yj,xj), is independent of x; € E;. (8.4)
Yi#X

This quantity is a function of 8] because 7; is. In this setting, node j need not be
quasi-reversible as in Example 8.2; it would be if &;(87) = a;.

Theorem 8.5. Suppose there exist positive B;’s that satisfy the traffic equations

Bl = @By, JjeEM. 8.5)
k#j
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Let these ,B;.’ s be the coefficients in the q;’s. If each q; has an invariant measure
7 ;, then an invariant measure for the network process X is

r@x)= [[7&x), xekE.
jeM

This result follows by showing that the specified 7 satisfies the total balance
equations. This theorem is also a consequence of Theorem 8.14 below.

Since the network in this example is the same as the one in the preceding
example, the invariant measures for it in Theorems 8.3 and 8.5 are essentially the
same. The only difference are the g;’s, 7;’s, and traffic equations. In comparing
these theorems, note that the assumption (8.4) in Theorem 8.5 is weaker than the
related assumption @;(B8;) = «; in Theorem 8.3. On the other hand, the traffic
equations in Theorem 8.3 are linear and known to have a solution, whereas in
Theorem 8.5, the traffic equations are more complex nonlinear equations that may
be difficult to solve.

One can show, as we suggest in Exercise 5, that o; (ﬂ;’) is the rate at which
customers depart from node j. Furthermore, the traffic equations (8.5) say that the
arrival rate into each node j is equal to the sum of the arrival rates into node j
from all other nodes. m)

Quasi-reversibility also applies to multiclass customers as follows.

Example 8.6. Multiclass Customers. Consider the queueing system described in
Definition 8.1, with the difference that it contains a countable number of customer
classes. Define the state x so that it includes the numbers of customers of each class
in the system. Let n(x, ¢) denote the number of class ¢ customers in the system
when it is in state x. Assume a transition of the system from a state x to a state
y is triggered by one of the following events: arrival of one of class-c customer
(n(y, ¢) = n(x, c)+1); departure of one of class-c customer (n(y, ¢) = n(x, c)—1);
or internal change (n(y, ¢) = n(x, ¢) for each c¢). Under these possibilities, the
transition rates of the process are

gx, ) =) [4*°(x, ) +4*°(x, ) +4"°(x, )], x#yek

Then the system is quasi-reversible if it satisfies the conditions

af = Zq“(x, y) is independent of x € E for each c,
y

m(x)™! Z?T(y)qd(y, x) =af foreach x and c. O
y

8.2 Network to be Studied

In this section, we define the network process that is the focus of the rest of this
chapter.
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We shall consider an open m-node stochastic network, where each node j in the
set M = {0, 1, ..., m} is represented by a state x; in a countable set [E;. Later we
comment on how the results apply to closed networks. The network is represented
by a stochastic process {X, : ¢ > 0} with values x = (x; : j € M) in the cartesian
product E of the spaces [E;, j € M. Note that this includes a value xg for node 0.
The network need not contain customers that move among the nodes—it may just
be a multidimensional system with interactions. Therefore, we do not refer to the
numbers of customers at the nodes. The changes in the network are triggered by
three types of transitions. To be more descriptive, however, we call these transitions
arrivals, departures, and internal node changes.

The major assumption is that X is a Markov jump process with transition rates

q(x,y) =) qu(x,y), x,y€E, 8.6)
J.k
where
440, YA YL e = X0, £ # j k) i j #k
qi(x, y) =

4 (xj Y e = xe, £ # J) if j = k.

Think of %, ¢¢ and g} as state-dependent rate components associated with “ar-
rival,” “departure,” and “internal” transitions, respectively, at node j. We call them
rate components because they are only parts of a compound transition rate. The
A jx is the rate component or tendency for a departure from node j to trigger an
arrival at node k; it is often assumed to be a probability, with 1 — Y, 2j Mk be-
ing the probability of an attempted internal change at node j. The q} (xj,y;) can
be augmented by multiplying it by a factor A;;, but we will assume that such a
coefficient is already included in g}.

The usual convention for a Markov process is to disregard bogus transitions
from a state back to itself. For our analysis, however, it is convenient to include
bogus jumps, and so we assume g(x, x) are well-defined rates (possibly 0). We
adopt this convention for all transition functions in this chapter.

For simplicity, we assume the network process X is irreducible and positive re-
current. The aim is to determine conditions under which the stationary distribution
of X is a product form 7(x) = [];4 7;(x;), where 7; is the jth marginal dis-
tribution. The results also apply to closed queueing networks and other networks,
where [E is a subset of a product space and 7, 7; are invariant measures instead
of normalized distributions. The approach is to relate the marginal distributions
of the network process X to stationary distributions of one-dimensional Markov
processes defined as follows.

For each j € M, consider a Markov jump process on [E; with transition rates

d d i :

q;j(xj, y;) = Bjq;(xj, y;)) + Bjq (xj, y)) + q;(xj, y;), - xj, y; € E;j. (8.7)
Think of this process as representing the state of node j as if it were operating in
isolation. The three terms in the summation are transition rates associated respec-

tively with an arrival into node j; a departure from node j; and an internal change.
For a fixed x; and y;, any combination of these three terms may be positive. For
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instance, if all are positive for some x;, y;, then a transition from x; to y; might
consist of a simultaneous occurrence of an arrival, a departure, and internal change.

Keep in mind that an arrival transition does not represent the arrival process at the
node in the network; it only specifies a fictitious arrival environment for the isolated
node. Similar statements apply to departure and internal-change transitions. The
coefficients B3, ,B;’ at this point are dummy variables. Our results determine the
form of these coefficients in order for the stationary distribution of g; to be the jth
marginal stationary distribution of the network process. There is no coefficient on
q}, which is consistent with it having no coefficient in (8.6). For simplicity, we
assume the transition function g; is irreducible and positive recurrent.

Throughout this chapter, each m; will denote an arbitrary positive probabil-
ity measure on ;. The role of m; will be specified in the theorem statements.
Associated with each transition rate component qj (xj,y;), fors = a,d,i, we
define

HCHED I HCI Y (8.8)
Yi
&) =m;0e) Y 7 ()a ), %)), (8.9)
Yi
&= mx)g ) ). (8.10)
Xio Vi

Assume each @, is finite. Keep in mind that &;(x;) and @' are functions of ;.
Also, note that

D omix)as(x)) = . (8.11)

8.3 Characterization of Product Form Distributions

We now present necessary and sufficient conditions on the one-dimensional node
processes defined by the g;’s above under which the network process X has a
product form stationary distribution.

We begin by showing that if the network process has a product form stationary
distribution, then the coefficients 82, ﬂ;’ of g; must be of the form (8.12) below.

Theorem8.7. Ifm(x) =[] jem Tj(x;)is the stationary distribution of the network
process X, then each 7 ; is the stationary distribution for q; with coefficients

Bi=) ahy,  Bi=) Ml (8.12)
k#j k#j

PrOOF. The balance equations for ¢ that 7 satisfies are

T(x) Y q(x,y) =) m(yq(y,x), xek. (8.13)
y y
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Since
m(y) = w@)m; (y)me () /(o (x ) (xe ),

for y such that x, = y, forall £ # j, k, it follows by the definition of q that (8.13)
is

() Y o)) + ad) ) Ajued(x)]
J k#j
=m(x) Y [@(x) + @) Y Aydf(x)], x €E.
J

k#j
8.14)
For a fixed j € M, we will consider the sum of these equations over all x; € E,,
for £ € M\ {j}. First, note that

) [Leftside of B.14)] = Y m(x)e(x;) + Y _ o)k 03(x))

o=y o=y, iy
+ad(x) ) Ajuof(x)
ey
+ Z[a},(xj/) +aj!,(xj«) Z Ajag (i)}
J'#i k#j.J'

= m;(x )l (x)) + Blad(x;) + Blad(x))] + A,
where
Aj = Z[Eij, +E‘}, Z Ajzkﬁ,i].
J'#j k#j.j'
A similar computation using (8.11) yields
)" [Right side of (8.14)] = 7, (x )@} (x)) + Ba3(x;) + Bad(x))] + A;.
xeib#j
Since (8.14) is an equality, the preceding sums are equal, and equating them yields
o (x))+ B (x))+Blad(x;) = &j(x))+ B (x))+Bal(x;), x; € E. (8.15)

These are the balance equations divided by 7 ;(x ;) for g ;. Hence m; is the stationary
distribution for g ;. O

The following result characterizes a product form distribution for the network
process. Here we use the function

Dje(xj, ) = @5 — o (X)) i@} — ep()) — @} — & (ne)hy @3 — & (x;)).
Theorem 8.8. The stationary distribution of the network process X is w(x) =
[1jes 7i(x;), x € E, if and only if each w; is the stationary distribution of q; for
some coefficients B3, ;1, and the 7;’s are such that (8.12) holds and
Djk(xj,xk)+ij(xk,xj)=0, j#keM, xjelEj, x; € Ey. (8.16)

The proof of this result uses the following lemma.



214 8. Quasi-Reversible Networks and Product Form Distributions

Lemma 8.9. Suppose each n; is the stationary distribution of q; for some coeffi-
cients ﬂ;‘, ﬂ;-l. Then mt(x) =[] jem Tj(x}) is a stationary distribution for X if and
only if

Y [k (x)) + Bladixy) — Brat(x)) — Blad(x))]
J

= 096 D Ajed(x) — &x;) Y Ayagx)l, x e E. (8.17)
i k#j k#j
If B, ﬂ;‘ are of the form (8.12), then (8.17) is equivalent to
> Duxjx) =0, xek. (8.18)
Jok#i

PrOOF. Recall that the balance equations for g and  are (8.14). Then to prove
the first assertion, it suffices to show that (8.14) is equivalent to (8.17). To this end,
recall that the balance equations for g; are (8.15) multiplied by 7 ;(x;). Summing
(8.15) on j and subtracting (8.14) divided by 7 (x) from the sum shows that (8.14)
is equivalent to (8.17). This proves the first assertion. The second assertion follows
since substituting (8.12) into (8.17) and rearranging terms yields (8.18). O

Proof of Theorem 8.8. First, assume the stationary distribution of X is 7 (x) =
[1,es j(x;). Then by Theorem 8.7, the 7; is the stationary distribution for g
with coefficients that satisfy (8.12). To prove (8.16), note that (8.18) holds by
Lemma 8.9. Also, for any k # ¢, (8.12) and (8.11) imply

Y me(xe)[Dealxe, xe) + Do, x)) = 0. (8.19)
Xe
Then multiplying (8.18) by [_[# j.k We(x¢), and summing it on x, for £ # j, k and
using (8.19) yields (8.16).

For the converse, assume each r; is the stationary distribution of ¢; and that
(8.12) and (8.16) are satisfied. Since (8.16) implies (8.18), it follows by Lemma 8.9
that 7 (x) = [ ] ;¢ 7;(x;) is the stationary distribution of X. m]

Theorem 8.8 yields the following procedure for establishing the existence of
a product form stationary distribution for the network process and obtaining the
distribution when it exists.

Procedure for Obtaining a Product Form Distribution

Step 1. For each node j, obtain the stationary distribution 7 ; of g; as a function of
the coefficients 8; = (87, ﬂ;.i) viewed as a dummy vector. Since n; is a function
of B;, so is &}, and we write it as aj(B)), fors =a,d.

Step 2. Find 3;’s that satisfy the traffic equations

B=> @By, B = > Aud@i(By), jeM. (8.20)
k#j k#j

Step 3. Let m; be the distribution associated with the 3;’s obtained from Step 2.
Verify (8.16) for these distributions and coefficients.
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If these steps are successful, then 7 (x) = [] T (x;) is the stationary distribution
of the network process.

Equations (8.20) are often called traffic equations, because for queueing net-
works, ﬂ;‘ and ,3;’ are the average number of arrivals and departures, respectively,
for node j. Finding 3, s that satisfy (8.20) is a fixed point problem, whose so-
lution is usually established by Brouwer’s fixed point theorem. For a particular
application, one may be able to construct an algorithm to compute a fixed point.
There may be more than one solution, but any solution will work.

Such a fixed point exists if the network has a product form stationary distribution.
This is due to the following observation.

Restatement of Theorem 8.8. The network process has a product form stationary
distribution if and only if there exist 3;’s that satisfy Steps 1-3 above.

The next result is a variation of Theorem 8.8. It follows immediately from
Theorem 8.7 and Lemma 8.9.

Theorem 8.10. The stationary distribution of X is w(x) =[] jem Ti(xj), x € E,
if and only if each 1 ; is the stationary distribution of q; for some coefficients 5,

ﬂ;i, and the t;’s are such that (8.17) holds.

Remark 8.11. (Results for Closed Networks). We have assumed that the state
space E is a product space and 7 and ;’s are probability distributions. However,
from their proofs, it is clear that the sufficient conditions in Theorems 8.8 and
8.10 for a product form distribution apply even when E is a subset of the product
space of the E;’s and the 7 and ;s are invariant measures instead of normalized
distributions. In particular, the results with these modifications apply to closed net-
works. On the other hand, the necessary conditions in these theorems are generally
not valid in these situations because, in the proof of Theorem 8.7, the summation
of H#j me(x¢) over x € E for each fixed x; € E; may depend on x;.

8.4 Quasi-Reversibility and Biased Local Balance

In this section, we characterize product form distributions for the network process
X when its nodes are quasi-reversible and its transition rates satisfy a biased local
balance condition.

We will use the following definition of quasi-reversibility, which is consistent
with the classical one in Section 8.1.

Definition 8.12. The transition rate g; is quasi-reversible with respect to m; if
is the stationary distribution of ¢; and &j(x;) and &?(x ;) are independent of x;.
That is,

o(x))=a% and ai(x;)=aj, foreachx;eE;.  (821)

To see the meaning of this definition, consider a transition rate ¢; in which
only one of the rate components g;(x;, y;), qj'(x j»¥), and g;(x;, y;) is positive
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for each x;, y;. Then (x;) = @ implies by Theorem 4.11 that the times of a-
transitions for g; form a Poisson process with rate &j. Also, &?(x j) = E‘} implies
by Theorem 4.12 that the times of d-transitions in equilibrium for g ; form a Poisson
process with rate 6‘}.

Note that in Theorem 8.8, the key condition (8.16) for the network process X to
have a product form stationary distribution is satisfied if each g; is quasi-reversible.

In addition to the usual balance equations for a process, we will use the following
notion.

Definition 8.13. The Markov transition rate g is biased locally balanced with
respect to a positive probability measure 7 on E and real numbers b = (b; : j €
M} satisfying 3. b; = 0 if

7 (x) (ZZq,-k(x,y) +b,-) =Y 7y, x), x€E, jeM.
kK y k oy
(8.22)

In this definition, 7 is necessarily the stationary distribution for X since the global
balance equations are the sum of these local balance equations over j. Also, we
say q is locally balanced with respect to w when the b;’s are 0.

For the next result, we consider the network process X under the added
assumption that each & (x;) is independent of x;, or, equivalently,

a;‘(xj) = Ix“}, foreach x; and j € M. (8.23)

This is the first part of the quasi-reversibility condition. Because of Theorem 8.7,
we make the natural assumption that the coefficient ,B;.’ of g; is given by

Bl =) ruay jeM. (8.24)
k#j
No restriction is placed on the other coefficient B;.
Theorem 8.14. Under the assumptions (8.23) and (8.24), the following statements
are equivalent.
(i) The q is biased locally balanced with respect to w(x) = [ ] jem T (xj) and b.

(ii) Each q; is quasi-reversible with respect to w; for some B%, and the 7;’s are
such that

Bl =) @k, JjeM. (8.25)
k#j

If these statements hold, then
b, =6} -} 826)
ProOF. Suppose (i) holds. By the definitions of g, = and assumptions (8.23),
(8.24), it follows like (8.14), that the biased local balance equation (8.22) divided

by m(x) is
o (x)) + Blad(x)) + by = &L (x)) + @3x) D (xe)hy. (8.27)
k#j
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Define ,3]@ by (8.25). Fix j € M. Multiplying (8.27) by 7 ;(x;), then summing over
x; and using (8.11), we have
T +b; =Y G xhy-
k#j
Fix £ # j. Multiplying this equation by ﬂk;é j.¢ Tk (x¢), then summing over xy, for
k # j, € and using (8.11) and (8.25), we obtain

@] +bj =T 67 + (@ (xe) — TDAe 1L # ). (8.28)
Summing this on j and using (8.25) yields

@ Ge) =@ Y ey =0.
J#t
This proves &@J(x;) = &;. Thus, (8.21) holds.

Next, note that (8.28) implies (8.26). Furthermore, applying (8.26) to (8.27)
yields (8.15), which is the balance equation divided by m;(x;) for g; and =;.
Hence 7; is the stationary distribution for g,. This proves that (i) implies (ii).

Now, assume (ii) holds. Then (8.15) holds, and using a;(x j) = E*J‘. and &?(x j) =
&‘}. in (8.15), we have

ol (x)) + B + Blaf(x)) = @j(x;) + Bia(x;) + Blaj, x; €E.

Define b; by (8.26). Applying (8.26) and then (8.24) and &‘} = &?(x i) to the
preceding display yields (8.27). Then substituting (8.23) and (8.24) into (8.27)
yields the biased local balance condition (8.22). This completes the proof that (ii)
implies (i). d

What is the difference between Theorems 8.8 and 8.14 ? In the former, both
of the coefficients B7, ,Bf of g; are unspecified dummy variables, while in the
latter, ,6;.1 is given by (8.24) and only ﬂ;? is a dummy variable. Consequently, in
Theorem 8.8 the conditions (8.12), (8.16) required for a product form distribution
for the network are more involved than the conditions (8.21), (8.25) required in
Theorem 8.14.

The following is a procedure for applying Theorem 8.14; compare this with the
procedure in the preceding section.

Quasi-Reversible Procedure for a Product Form Distribution
Step 1. For each node j, obtain the stationary distribution r; of g; as a function
of the coefficient ﬁ;‘ viewed as a dummy variable. Since 7 is a function of 8%, so
is @}, and we write it as @}(8?).
Step 2. Find B’s that satisfy the traffic equations

Bl =) (BN, JeM.

k#j

Step 3. Let mr; be the distribution associated with the 3;’s obtained in Step 2. For
these distributions, verify the quasi-reversibility condition

&(x;) =aj(B}), foreachx; € E;andje M. (8.29)
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If these steps are successful, then 7 (x) = []; 7;(x;) is the stationary distribution
of the network process.

Remark 8.15. There may be solutions to the traffic equations in Step 2 even
though (8.29) is not satisfied. In this case, one might be able to obtain a product
form stationary distribution by verifying condition (8.16).

Example 8.16. Network with Random Environments at Nodes. Suppose the net-
work process X has the following structure. Customers move among the nodes
where they are processed, and the state of each node j € M isapairx; = (n}, z;),
where n; is the number of customers at the node and z; is the “environment” of
the node. Whenever the network is in state x = (x; : j € M), two types of transi-
tions may occur. First, the environment at some node j may change from z; to z}.
The time until such a transition is exponentially distributed with rate 7,(z;, 2}).
Second, a single customer may move from some node j to some node k and the
environments at nodes j, k change from z;, z; to z’j, z;(, respectively. The time un-
til such a transition is exponentially distributed with rate 1 ;(n;, z;, z’j WA jihi ().
Then the network process has transition rates of the form (8.6), where

q;(xj’x;') = )"j(zlj)l(nlj =n; + 1)7
qxj, X)) = pjnj, 2j, 21 =n; — 12 0),
qi(xj, x}) = n;(z;, 21 = n).
Note that oﬁ; xj)=Y , A j(z'j) is independent of x ;. As above, we define
Bl = M,
k#j

and we consider the coefficient B as a dummy variable.
Now, suppose each ¢; has a stationary distribution 7 ;. Think of 7; as a function
of B;. Note that

&?(nj, zj) =m(n;, Zj)_l Zﬂj(ﬂj +1, Z/j),uj(nj +1, le, Zj).
zl

Assume 7; is such that &?(n j»2;) is independent of (r;, z;). Then it follows that

&f(n jr2j) = E‘}. Denote this quantity by E‘}(ﬂj’), since it, as well as 7}, is a

function of B7. Under these assumptions, g; is quasi-reversible with respect to ;.
Finally, assume there exist 8;’s that satisfy the traffic equations

B =) @(BDOM, jEM.
k#i

Let m; be the distributions associated with these B3’s. Then it follows by
Theorem 8.14 that the stationary distribution of g is w(x) = [] jem (X)) a
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8.5 Networks with Reversible Routing

In this section, we present corollaries of Theorem 8.8 when the routing rates of
the network are reversible.
Here, for simplicity, we assume that A j; is irreducible and A;; = 0. Let w;,
J € M, denote its stationary distribution. Recall that A ;; is reversible if
ijjk:kakj, j,kEM.
Corollary 8.17. If Aj; is reversible, then Theorem 8.8 holds with Dji(x;, x;)
replaced by
D% (xj, %) = @ — aS(x)@; — () — wj (@ — &)@ — & (x))).
PrROOF. The assertion follows from Theorem 8.8 by substituting A j = wiAy;/w;
in Dj(xj, xi). a
Corollary 8.18. Suppose Aji is reversible. Assume each n; is the stationary
distribution of q; for some coefficients 83, BY, and the ;’s are such that (8.12) is
satisfied and
&) =wi'efx), @) =welx). x; €k, (8.30)
Then(x) =[] jem Ti(x;) is the stationary distribution of q. In addition,
w; =ai/al =i/, jeM. (8.31)
ProOOF. First note that the last equality in (8.30) implies E‘} =w jix‘i. This and
(8.30) imply that each D;fk(x i»%) = 0. Then Corollary 8.17 yields the first
assertion. Furthermore, from E‘} =w ,E? and the reversibility of A j;, we have
ﬂ;-\ = Zafkkj = Zﬁiwkkkj = Z wjkj,ﬁi = w,-ﬁ;-i.
k#j k#j k#j
Thus (8.31) holds. O
Recall that Theorem 8.14 is for a network with quasi-reversible nodes, while
Corollary 8.18 is for a network whose nodes need not be quasi-reversible, but the

routing is restricted to be reversible. The next result is for networks with both types
of nodes.

Corollary 8.19. Suppose there is a subset J C M such that the assumptions of
Corollary 8.18 hold for the nodes in J, and assumptions (8.23), (8.24) and (ii) of
Theorem 8.14 hold for the nodes in

K={k:k¢gJ,orkeJandly+ hegx 0, for some £ ¢ J}.
Then w(x) =[] jem Tj(x}) is the stationary distribution of q.

PrROOF. The set K contains all the nodes in M \ J and those nodes in J that are
directly connected to set M \ J. Hence, the nodes that only satisfy the conditions of
Corollary 8.18 are not directly connected to the nodes that only satisfy conditions
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of Theorem 8.14. This implies that each D (x;, x¢) is O for all j, k, so the assertion
follows by Theorem 8.8. O

The following is an illustration of Corollary 8.18.

Example 8.20. Suppose the network process represents customers moving in a
network in which the state x;, denoted here by 7 ;, represents the number of cus-
tomers atnode j € {1,2, ..., m}. The network has an outside source, denoted by
node 0, which has a single state 0. Assume the transition rates for the network are
given by (8.6), where

430,00 =pno,  ¢2(0,0)=1
wj(n)gq;(£) W=n—-£>1,£>0)

g, )= ;M) q;® (' =0,n>1)
i=n

0 (otherwise) ,
gi(nj,n') =AMl =n+1),
for j =1,2,..., m. Assume the network does not have internal transitions.

According to these rates, eachnode j # 0 in isolation operates as a batch service
system. Whenever it contains n customers, arrivals enter at the rate A ;(n); also,
batches exit at the rate 4 ;, and the size of a batch is min{n, £}, where £ is selected
by the batch-size probability distribution g;(£). Assume ¢;(0) > 0 and that the
mean of g; exceeds 1. Note that in the network process, a batch departure at a node
triggers only a single customer arrival at some node. This is because each arrival
transition rate g only allows single-unit increments. Another feature is that a node
may have bogus departures when it is not empty. Namely, whenever nodes j and
k contain n; > 1 and n; customers, respectively, there is a null departure at node
J and an arrival at node k at the rate 1 ;(n;)q;(0)A jx i (ni).

We will derive the stationary distribution of the network by appealing to Corol-
lary 8.18. Assume the routing probabilities A ;; are reversible with stationary
distribution w;. Furthermore, for the node j transition rate g; given by (8.7),
we select its beta coefficients such that ,5;-‘ / ﬁ;’ = wj, which is consistent with
(8.31). We conjecture that g; has a stationary distribution 7; of the form

wj(n) = c;jpj/rj(n), n=0, (8.32)

for some p;, where c; is the normalizing constant. In addition, node 0 has the
degenerate distribution my(0) = 1.

Before verifying this conjecture, let us see what else is needed to satisfy the
assumptions of Corollary 8.18. First consider condition (8.30). Clearly,

~a (Y — =Ll ad
aj(n)—O—wj aj(O),

and, for n > 1, we have a?(n) = p;(n)and

1
&7(n) = %n'j(n = DAjn—1) = xr;(n)/pj.
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Consequently, the first part of (8.30) holds, namely & (n) = w; ad (n), if and only
if
A/ pi(n) = pjwy!, n> L. (8.33)

Hereafter, we assume this is true. Under this assumption, a similar calculation
as above shows that the second part of condition (8.30) is satisfied. Furthermore,
another easy check shows that the m;’s satisfy (8.12). Thus, the assumptions of
Corollary 8.18 are satisfied.

It remains to show that the stationary distribution 7; is given by (8.32). The
balance equations for g; are

OB 0) = B Y w00 Y g;m),
=1 m={

7, ()IBLA;(m) + Bl ()] = BiA;(n — )j(n — 1)

o0
B ) min+ Ouyn+0g;@), nz 1.
€=0
Substituting (8.32) into the first balance equation and using a little algebra and
(8.33), we obtain

Z ptq;(0) = p;. (8.34)

The same equation is obtained by substltutmg (8.32) into the balance equation for
n > 1 and dividing both sides by ,0

Equation (8.34) has a unique solutlon p; € (0, 1). Indeed, the left-hand side is
a strictly increasing convex function in p; that begins at g;(0) > 0 and ends at 1
with a tangent equal to the mean batch size, which we assumed exceeds 1. Then
7 given by (8.32) will be a valid distribution provided

o0
= Zp}’/)»j(n) < 00,
n=0

which we assume is true.

Thus by Corollary 8.18, the stationary distribution of the network is the product
of 7;’s given by (8.32). This is an example of a network with a product form
distribution, but each q; is neither reversible nor quasi-reversible. O

8.6 Queueing Networks

The results in the preceding sections were stated for a general network in which
state changes may be due to mutual interactions at the nodes. This section describes
how the results apply to the network under slightly simpler notation traditionally
used for queueing networks. As in the other chapters and the first section of this
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chapter, a queueing network refers to a system in which customers, items or in-
formation/commands move from one node to another and trigger the states of the
nodes to change. A state change, called a departure event, is initiated at one node,
and this event is then “routed” as an arrival event to another node that triggers a
state change at the arriving node.

For this section, we will consider the network process X defined above with the
following notational changes. Its transition rates g are still given by (8.6), but now
the rate component q;?(x s x;.) will be a probability denoted by pi(x;, x}), where
ZX} pj‘-(x s x;.) = 1. Also, the A j;’s are normalized to be probabilities such that
Y vem Ajk = 1. Feedback loops are natural in routing of units, and so we allow
Aj;j > 0. Under these conventions, we call X a queueing network process.

The dynamics of the queueing network are as follows:

o When the state of node j is x;, a departure there changes the state from x; to
y; with the rate q;’(xj, ¥i)-

e A departure from node j is transferred to node k as an arrival with probability
A jx (where node O represents the outside).

e An arrival at node k changes its state from x; to y, with probability pg(x,, yi).

e When the state of node j is x;, there may be an internal change to state y, with
rate q} (x;, y;), and this state change does not trigger changes at other nodes.
Such a transition could include feedbacks described by the rate

i * d
45 y) =4} ) + Y00, XA PR ),
5

where g is the rate of a pure internal transition at node j.

This queueing network is more general than the conventional ones, because
arrivals, departures, and internal changes may occur at the same time. Also, the
state changes need not be for actual departures or arrivals in the traditional sense.

Under the notational conventions above, we automatically have

a?(x,-):&?:l, XjG]Ej,jGM.
Also, each node j in isolation has transition rates
d .
qj(xj, yi) = Bipi(xj, ;) + (1 = Ajj)g(xjs y;)) +q(xj, y).  (8.35)
Here B is the average arrival rate and 1 — 4 ; takes the place of ﬁ?. If 7r;(x;) is the

stationary distribution of (8.35) with dummy parameter 82, then E‘} is the average
departure rate from node j, which is a function of g5.

Now, let us see how the results above simplify for the queueing network process.
First, note that Theorem 8.8 is as follows.

Theorem 8.21. The stationary distribution of the queueing network process is
a(x) =1 jem j(x;) if and only if each m; is the stationary distribution of q; in
(8.35) for some coefficient %, and the m;’s are such that

Bi=> alh, JjeM, (8.36)
k#j
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and, for j #k € M,x; e E;, x; € Ey,
@) (x)) = @DA (@) — 1) + @ () — M@ (x)) — D =0.  (8.37)

Here only the one equation (8.36) from (8.20) is needed since ﬂ;’ =1-Aj.
Equation (8.36) states that B;? is the total arrival rate at node j from all other nodes.
This is why (8.36) and (8.20) are called traffic equations. Keep in mind that (8.36)
are nonlinear equations in the g’s since E‘} is a function of ﬂ;?. Note that each one

of the following conditions is sufficient for (8.37).

e Both nodes j and k are quasi-reversible.

e Bothnodes j and & are noneffective for arrivals. Node j is said to be noneffective
Jor arrivals if &3(x;) = 1 forall x; € E;.

o Either node j or node k is quasi-reversible and noneffective for arrivals.

These sufficient conditions can be relaxed furtherif A j; = Oor A¢; = 0. Usually,
the outside source is noneffective for arrivals. If, in addition, it is quasi-reversible,
the outside is a Poisson source, which is the last case above. So, we do not need
to check (8.37) for nodes connected only to the Poisson source.

For the queueing network, we have the following result concerning quasi-
reversibility.

Theorem 8.22. (Quasi-Reversible Queueing Network) The assertions in The-
orem 8.14 apply to the queueing network process—the only simplification is that
equation (8.26) reduces to b; = ﬂ;‘ —(1=Aj )‘o?‘}.

Quasi-reversibility is not a necessary condition for a product form distribution of
the network, even though this property is part of a sufficient condition for a product
form. There are known examples of networks with product form distributions and
none of the nodes are quasi-reversible. In certain situations as follows, quasi-
reversibility is not far from being necessary.

Corollary 8.23. Suppose the queueing network process has the stationary
distribution t(x) = [| jem T (x;). Assume node j satisfies

Ajpr #0 and Ay =0, for some k* # j, and (8.38)

@ (xe) £ 1 for some xp € Eys. (8.39)
Then node j is quasi-reversible with respect to ;.

Proor. Theorem 8.21 ensures that 7r; is the stationary distribution for ¢; and
that (8.37) holds. Under the hypotheses, (8.37) reduces to
@30x)) — EA @) — 1) = 0.

Since this is true for each x; and each k* and x;+ that satisfy the hypotheses, it
follows that &7.(x i) = a*j., for each x;. Thus, node j is quasi-reversible with respect
tom;. O

Remark 8.24. Under the first assumption in Corollary 8.23, condition (8.39) is
satisfied if, for some k # j, the Markov transition probabilities p}(xi, yx) on E;
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are transient. To see this, first note that o (x;) = 1, for each xy, if and only if m;
is the positive stationary measure for the transition probabilities pi(x,, y¢). Thus,
if these probabilities are transient, then (8.39) is satisfied.

In a conventional queueing network, a customer entering a node always “in-
creases” the number of customers at the node. In such a network, p? is clearly
transient. Hence if the network has a product form distribution and (8.38) holds,
then node j is quasi-reversible.

We conclude this section by showing how quasi-reversibility can be used to
obtain a product form distribution for an unconventional queueing network.

Example 8.25. Consider a queueing network with exogenous Poisson arrivals,
Markovian routing probabilities A j¢, and constant departure rates i ; at the nodes.
Assume the network operates like a Jackson network with the following exception.
Whenever a customer is assigned by the probabilities A j; to enter node j, it either
enters with probability a; (thereby adding one unit to node j), or it does not enter
but it deletes one customer with probability a; = 1 — a;, provided a customer is
there. Then the transition rates for the network are given by (8.6), where

20,00 =1,  pj0,0=1,
i), y) = Ly =x;— 12 1),
p*}(x,-, yj) = ajl(y,- = Xj + 1) +&jl(yj = max{O, .Xj - 1)})
Clearly, g; defined by (8.35) is the transition rate function for an M /M/1 queue

with arrival rate Bia; and service rate u; + Bja,. Therefore, its stationary
distribution is

”j(xj):(l‘Pj)p;j’ j#0,
provided p; = Bla;/(u; + ﬂ;d ;) < 1, which we assume is true. Each node j is
quasi-reversible since, for each x;,
af(x;) = mj(x) " (e + Dgf(x; +1,x)) = pju;
In this case, the traffic equation (8.36) is
i By a

/ TS bt B

kj -
For $7’s that satisfy these equations, let 7; denote the stationary distribution above.
Then by Corollary 8.21, we conclude that the stationary distribution of the network
is the product of the m;’s. a

8.7 Time-Reversals and Departure—Arrival Reversals

In this section, we show that a product form network process in “reverse time”
has the same type of transition rate function as the original process. We also point
out that, by reversing the roles of arrival and departure transitions in the network,
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one obtains a dual network process whose structure is typically different from the
original process.

We first consider the network process in reverse time. Suppose the network
transition rate ¢ is ergodic and its stationary distribution is 7. The time-reversal
of q is the transition rate

Glx,y) = (x)"'w(yq(y,x), x,yek.

This § has the same stationary distribution as g. Now, assume 7 is the product of
stationary distributions m; of the node transition rates q; given by (8.7). The time
reversal of g; is

Gi(xj, ) =m;(x;)" ' (Mq; ), x;)
= B1q3(x;, y)) + BIG (ks y) + §ixj, vi) xj,y; € By,
where
g;(xj,yj) = ”j(xj)—lﬂj()’j)qjs'()’j, xj), s=a,d,i.
Now, an easy check shows that § has the same form (8.6) as ¢, with A j; and q;
replaced respectively by A jx and g; (s = a, d, i). This is consistent with 7 being
the product of the 7;’s, which are also the stationary distributions of the g;s.

Next, let us consider the idea of reversing the roles of arrivals and departures in

the network. The key part of the transition rate ¢ in (8.6) is the product
5 (xj, YA jedi (Xe, Vi)

Because of the symmetry in this product and the other network assumptions, it
is clear that all the results above apply to the process with the roles of a and d
reversed. One interpretation of this reversal is that the process is the same, but in
the results, @ and d are simply interchanged. For instance, in the new Theorem 8.14
the assumption (8.23) would apply to aj and (8.24), (8.25), and (8.26) would apply
with a and d interchanged.

A more interesting implication is that the new theorems would apply to any
network with routing and transition components 7 ;; and éj (xj,yj),fors =a,d,i,
that satisfy

é?(xj, Vi ik@i e, yi) = o (x, V)i (xj, y;)- (8.40)

Such a network, which has different system dynamics than the original one, could
be viewed as a dual of the original network.

8.8 Networks with Multiclass Transitions

In this section, we present extensions of the results of the previous sections to
networks with multiclass transitions. The extensions are straightforward, and so
the proofs are omitted.

Consider the network we have been discussing with the generalization that each
node j has several classes of arrival and departure transitions indexed by the set
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T;. For each u € T, let g3, (x;, x’) be the transition rate on E; of class u for

s = a, d. We assume that internal transitions are independent of the class and use

the same notation q} as in Section 8.2. The routing component A j; is now extended

to A j, «v. One may use different index sets for arrivals and departures, but a single

index set T; can cover these cases by introducing null transitions if necessary.
The transition rates for the Markov network process are defined as

q(x,y) =Y qi(x,y), xy€eE, (8.41)
J.k

where

i, y) = g4 (x;, Y1 = x¢, £ # §)

a0 =D ) @8 Y jukedl, i YOI(e = x¢, £ # j k), for j # k.

ueT; veT;

As in Section 8.2, for a distribution 7; on [E;, we define, for s = a, d and for
eachu € T},

a;u(-xj) - Zqﬁu(ij yj)s
Vi

&, 0) = 7)™ Y7045, %),
Yi

@, = ) w0 )

Xj Y
These three values for s = i are defined (without the subscript «) as in Section 8.2.

Assume that@’, < oofors = a, d, i. The transition function g,; of the local process
at node j is now changed to

qj(x1,y) =Y [BLa% (x5 v) + Bhah iy} + 4 (xju v x5, € Ej,

ueTj
where coefficients ﬁ;u (s = a, d) are determined by the traffic equations

DI IC I (8.42)

k£j veTy

Bl =" Musll, . (8.43)

k#j veTy
Finally, we redefine D as
Djy ko(xj, X)) = (&‘}u - a?u(xj))lju,kv(azv — ag, (%))
— @5, — @, () ko, ju (@, — &5, (x))).
Theorem 8.8 for the multiclass network is as follows.

Theorem 8.26. The following statements are equivalent.
(i) The stationary distribution of q is w(x) = [ jem Tj(x i)
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(ii) Each 7 ; is the stationary distribution for q; with coefficients (8.42) and (8.43),
and

Y > (D %) + Diyjule, x7)) =0, (8.44)

ueT; veTy
forj 71—'k € M,Xj EEj,xk G]Ek.

In case the network is the queueing network as in Section 8.6, we assume that,
foreach j e M

Z Y Muw=1, o(x)=1, ueT;x ek,
veTy
Under these conditions, ,Bd =1=Y 1. Ajujo-

Now, the transition rate functlon q; deﬁned above is said to be quasi-reversible
with respect to ir; if m; is the stationary distribution of ¢; and ]u(x j)and o ju(x i)
are independent of x; € E; for each j € M,u € T;. The biased local balance
condition for this multiclass network has the same form (8.22) with g j, now defined
as in (8.41).

Interestingly, in this multiclass setting the biased local balance condition plus
product form stationary distribution do not imply quasi-reversibility of the g;’s.
For example, it is easy to see that, if

Z [a]u(xj) ]A']M w=0, (845)
ueT;
then (8.44) is satisfied, thus the network is a product form. On the other hand,
one can show, using the same arguments as in the proof of Theorem 4.2, that
(8.45) implies biased local balance. However, (8.45) is clearly weaker than quasi-
reversibility. Thus, quasi-reversibility is sufficient but may not be necessary for a
product form and biased local balance when there are multiple class of transitions.
Our final result is the multiclass analogue of Corollary 8.18.

Corollary 8.27. Suppose X j, i, is reversibleon M’ = {ju : j € M, u € T;} with
stationary distribution w j,. Assume each q; has coefficients (8.42) and (8.43). If
7 ; is the stationary distribution of q; and

@i, (x;) = wlu ju(xj) &?u(xj) = wjaj,(x), x;€E;. (8.46)
then m(x) = [] jem j(x;) is the stationary distribution of q. If this is the case,

—=d y=a _ d
Wjn = Cu}‘u/c'!;l'Lt = ﬂ;u/ﬂju'

8.9 Exercises

1. For the network in Example 8.2, specify conditions under which the input
and output processes at a node are Poisson processes. (Quasi-reversibility of
a node implies the input and output processes are Poisson for the node in
isolation, but not when it is in the network.)
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. Prove Theorem 8.3.
. Show that the traffic equations in Theorem 8.3 say that the arrival rate into

each node j is equal to the sum of the arrival rates into node j from all other
nodes.

. Prove Theorem 8.5.

In the context of Theorem 8.5, show that & (ﬂ;’) is the rate at which customers
depart from node j. Also, show that the traffic equations (8.5) say that the
arrival rate into each node j is equal to the sum of the arrival rates into node
Jj from all other nodes.

. Consider the quasi-reversible process defined in Example 8.6, where each

customer carries a class label ¢ in a countable set C. Let N.(¢) and D_.(¢)
denote the numbers of class ¢ customer arrivals and departures, respectively,
in the time interval [0, #]. Assume the process is stationary. Show that N,
¢ € C, are independent Poisson processes and specify their rates. Do the same
for the departure processes D,, ¢ € C.

. Define a network like Example 8.2 for multiclass customers, using the no-

tation in Example 8.6. State and prove a theorem such as Theorem 8.3, that
characterizes an invariant measure for the network.

. Consider the network process X with transition rates (8.6). Prove that the

stationary distribution of X is w(x) = [];y 7;(x;), x € E, if and only if
each r; is the stationary distribution of g; for some coefficients y;‘, y}’, and
m; is such that (8.17) holds.

. Consider the network described in Corollary 8.19, where node 0O has a single

state (i.e., it is a Poisson source). For this network, justify the assertion in
Corollary 8.19 under the weaker supposition that the assumptions of Corol-
lary 8.18 hold for “the nodes in J \ {0},” instead of “the nodes in J.” Hint:
Consider the Dyo(xy, 0)’s.
For the queueing network described in Section 8.6, suppose node j is quasi-
reversible. Show that the stationary distribution z; of g; is also the stationary
distribution of the transition rate function q; given by

q4j(xj, ) = B pixs, y) + 4, y) + 45 (xjn ), xj,y; € Ej,
where g1 = 3",y @ij. Here, Bt =65+ Ajja] is the total arrival rate
including the feedback rate, and q; does not include feedback transitions as
internal transitions. The transition rate g is standard in the quasi-reversibility
literature, but it is not convenient to use for a non-quasi-reversible node.
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9

Space-Time Poisson Models

This chapter covers space-time Poisson models for queueing networks, spatial
service or storage systems, and particle systems. Such a model describes the col-
lective movement of units or customers in space and time, where the units enter the
system according to a Poisson space—time process and then move about indepen-
dently of each other. Because of these properties, the evolution of the system can
be formulated by certain “random transformations” of Poisson point processes in
space and time. We characterize these transformations and then use them in a va-
riety of models. An important example is a network with time-dependent Poisson
arrival process and infinite-server nodes with general service times.

We also consider models for systems in which the input process is not Poisson,
but the system is sparsely populated. The sparseness leads to Poisson space-time
models that are justified by convergence theorems. An example is a network of
infinite-server nodes with a non-Poisson arrival process and general service times.

9.1 Introductory Examples

The following are two classic examples of space-time Poisson models that give a
glimpse of what lies ahead.

Example 9.1. Treelike Network of M/ G /oo Service Stations. Consider an open
network of m service stations (or nodes), where the service times at node j are
independent and identically distributed with mean p,]Tl. There is no queueing for
service, since only a finite number of the servers are busy at any time. For simplic-
ity, assume the network forms a tree with a single root, and each customer enters

R. Serfozo, Introduction to Stochastic Networks
© Springer-Verlag New York, Inc. 1999
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the root node and moves up the tree on some branch determined by Markov prob-
abilities p i, where p is the probability that a departure from node j enters node
k next. Upon reaching the end of the branch, the customer exits the network. Each
branch is therefore a route through the network. The probability that a customer
visits node j is p; = p1j, - pj,j, where 1, ji, ..., j, j is the unique path from
the root node to j. Assume the customers enter the root node over time according
to a homogeneous Poisson process with intensity A. We will consider the system
in equilibrium and defined on the entire time axis R.

The following results, based on material in Section 9.6, describe customer flows
in this system. These results apply, in particular, to a single M /G /oo system and
to a tandem system of such nodes.

e Let Q;(¢) denote the number of customers at node j at time ¢. Then {Q;(¢) :
t € R} is a stationary process and Q;(¢) is a Poisson random variable with mean
pjrij.

e For each time ¢, the quantities Q1(¢), ..., O, () at the nodes are independent.
But at different times they are not independent.

e Let N;(I) and D;(I) denote the number of customer arrivals and departures at
node j in the time time set /. Then N; and D; are homogeneous Poisson processes
with intensity Ap;.

e For each fixed time ¢, the departure process at each node j up to time ¢ is
independent of its future traffic after time ¢. That is, {D;(I) : I € (—oc, ]} is
independent of {Q;(u) : u > ¢t and N;(I): I € (¢, 00)}.

e Suppose Jy, ..., J, are disjoint subsets of nodes such that a customer who
visits one subset cannot visit any of the others. Then the families of processes
{(Q;,N;, Dj): jeJ},1 <i <nareindependent.

These properties imply that each station in isolation behaves like a single
M /G /oo system, and that sectors of the network are independent if customers
cannot move among them, even though they come from one Poisson source.

What can we say about the quantities above when the input process is not
Poisson? Generally, they do not have tractable distributions. However, the results
above are good approximations when the input is not Poisson but the flows in the
network are sparse as described in Section 9.10. a

Example 9.2. Markovian Particle System. Consider a particle system on a finite
set [E, where N, (i) denotes the number of particles at the location i € [E at time
t > 0. Suppose the particles move independently in the space E, in continuous
time, according to an ergodic Markov transition rate function that has a stationary
distribution 7 (i), i € E. Assume the system begins at time 0 under the special
condition that each quantity Ny(i) is a Poisson random variable with mean 7 (i),
and the quantities Ny(i), i € E, are independent. That is, the particles form a
“spatial” Poisson process Ny on the finite set [, and its mean measure is . Then
by Theorem 9.14 below, it follows that, at each time ¢, the locations of particles
in the space represented by N, also form a spatial Poisson process with the same
mean measure . Related particle systems are the subject of Section 9.7. a
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The main theme of this chapter is that the results in the preceding examples
and in the sections to follow are properties of random transformations of Poisson
processes, including thinnings, partitionings, and translations. For instance, in
Example 9.1 above, the departure process D, at node 1 consists of times 7, + W,,
where 7, and W, are the arrival and waiting times of unit n. In other words, D, isa
“random translation” of the arrival process (each arrival time 7, is translated by the
time W,). Since the arrival process is Poisson, it follows that D, is also Poisson.
This result is a consequence of Theorem 9.12 below on Poisson invariance under
random transformations.

9.2 Laplace Functionals of Point Processes

A Laplace transform is a tool for characterizing the distribution and moments of
a nonnegative random variable. These transforms are also useful for establishing
convergence in distribution of random variables. The analogous tool for point pro-
cesses is a Laplace functional. This section reviews a few properties of the Laplace
functionals we need for identifying Poisson processes and studying convergence
of point processes to Poisson processes.

Using the terminology of Section 4.1, suppose that N is a point process on a
space [, and denote the locations of its points by the sequence {X,}. The Laplace
Junctional of N is defined, for f : E — R,, by

Ly(f)= E (exp{— f]E f(x)N(dx)]) .

Here f]E f(x)N@x) = ), f(X,). Laplace functionals play a similar role for
point processes that Laplace transforms (or moment generating functions) play for
nonnegative random variables.

The basic principle is that the Laplace functional of N uniquely determines
its distribution. Recall that the probability distribution of N, namely P{N € -},
is determined by its finite-dimensional distributions. For what follows, we let C
denote the set of all continuous functions f : £ — R, with compact support (i.e.,

{x : f(x) > O} is contained in a compact set). Recall that 2 denotes equality in
distribution.

Proposition 9.3. For point processes N and N’ on E, each one of the following

. . D
statements is equivalentto N = N'.

(a) [ FXON(dx) 2 [ f(x)N'(dx), for f €C.
(b) Ly(f) = LyA(f). for f €C.

Laplace functionals are often more convenient to use than finite-dimensional
distributions in deriving the distribution of a point process constructed as a function
of random variables or point processes. A standard approach for establishing a point
process is Poisson is to verify that its Laplace functional has the following form;
this also yields its mean measure.
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Example 9.4. If N is a Poisson process with mean measure u, then its Laplace
functional is

L (f) = exp[— fE (1 = e ()], ©.1)

This follows by proving it first for indicator functions f, then for linear combi-
nations of indicator functions, and finally for general nonnegative functions by
monotone convergence. a

A few places in our analysis involve the notions of weak and vague convergence,
which are defined as follows. Suppose that i, @1, 12, . .. are measures on E that
are finite on compact sets. The measures w, converge vaguely to i as n — 00,
denoted by lim,,_, oo 4y = W, if

lim @,(A) = u(A), foreach A € £ such that u(9A) =0,
n—>o0

where d A is the boundary of A. If these measures are all probability measures, this
vague convergence is weak convergence. A sequence of point processes N, on E
converges in distribution to N as n — oc, denoted by N, = N, if the distribution
P{N, € -} of N, converges weakly to the distribution P{N € -} of N.

Laplace functionals are also useful tools for proving convergence of point
processes based on the following result.

Theorem9.5. If N, are point processes on E suchthatlim,_,o Ly (f) = Ln(f),
foreach f,then N, = N asn — oo.

9.3 Transformations of Poisson Processes

This section discusses random transformations of Poisson processes that are the
basis of space—time Poisson models.

We begin by considering the following question for nonrandom transformations.
If the points of a Poisson process are mapped to some space by a nonrandom
transformation, then do these points also form a Poisson process? The answer is
yes, provided only that the mean measure for the new process is finite on compact
sets.

To see this, suppose N is a Poisson process on E with mean measure u(B) =
EN(B), B € £. Consider a map g from E to a space E’ (possibly E). Denote its
inverse by

g (B)={xeE:g(x)e B}, Bef.

Now, assume that each point X, of N is mapped to the location g(X,) € E'. We
represent this transformation of N by the point process M on E x [E’ defined by

M(A x B) = }: 1((X,,, g(X,)) € A x B) 9.2)

n

=N(ANg'(B), A€k Bek&.
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Keep in mind that ), = Z,',"g) The quantity M(A x B) denotes the number of
points of N in A € £ that are mapped into B € £'. Then the transformed points in
the space E’ are represented by the point process N’ defined by

N'(B)= M(E x B) = Z 1(g(X,) € B) 9.3)

n

=N '(B)), Bek&.

The N’ is a point process if it is finite on compact sets. To study N’, it is convenient
to use the larger process M rather than only N’. Note that because we allow multiple
points at a single location, we need not assume g is a one-to-one mapping.

Theorem 9.6. Under the preceding assumptions, the transformation process M
defined by (9.2) is a Poisson process with mean measure

E[M(Ax B)]=uANg '(B), Ac& Bef.

Hence, the process N’ defined by (9.3) is a Poisson process with mean measure
EN'(B) = u(g~'(B)), B € &, provided this measure is finite for each compact
B.

ProOF. We will show that M satisfies the two conditions in the definition of a
Poisson process. Since N is a Poisson process, M(A x B) = N(AN g‘1 (B))hasa
Poisson distribution with mean 1(A N g~'(B)). This mean is finite for any B when
A is compact. It remains to verify that M has independent increments. It suffices
to show that M(A; x B;) = N(A; Ng~'(By)),i = 1,..., k, are independent for
disjoint A4, ..., A in £ and disjoint By, ..., B in £'. This independence follows
since A, Ng~'(B;),i = 1,...,k, are disjoint and N has independent increments.
Thus, M has independent increments and hence is a Poisson process.

Next, note that the process N'(B) = M(E x B) has independent increments
since M does, and N’(B) has a Poisson distribution with EN’(B) = u(g~'(B)).
Thus, N is a Poisson process when p.(g~' (B)) is finite for each compact B. O

Example 9.7. Suppose that N is a Poisson process of points X, = (X), X?) in
the nonnegative quadrant ]REL of the plane. The projection of N on the x;-axis is
defined by N'(A) = Y_, 1(X) € A), for A C R,. In other words, the points of N
are mapped from IR2+ to R by the projection map g(x,, x) = x;. By Theorem 9.6,
the process M(A x B) = ), 1(X,, € A, X,', € B) is Poisson. Furthermore, N’ is a
Poisson process with mean measure EN’(B) = u(g~'(B)) = u(E x B), provided
this is finite for bounded sets B. Unfortunately, this mean is infinite when N is
a homogeneous process with (A x B) = A|A||B|. In this case, one can still
consider N'(B) = M({0, b] x B) as the projection of the points of N that lie in
the region [0, b] x R, and then N’ will be a Poisson process.

Next, consider the map g(x, x2) = /x? + x3, which records the distance from

the origin to the point (x|, x;). Let N’ denote the point process of these distances
associated with the points of N. Theorem 9.6 ensures that N’ is a Poisson process
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since

EN'([0,r]) = u(f ' ([0, r])) = u(f(x1, x2) 1 y/x? +x3 < r})
is finite for each r. O

We are now ready to consider random transformations of point processes. Sup-
pose that N is a point process on E. Assume that each of its points is mapped into
a space [E’ according to a probability kernel p(x, B) from E to E', where p(x, B)
is the probability that a point at x € E is mapped into the subset B € £’, indepen-
dently of the other points. We represent this random transformation by the point
process M on E x E’, where M(A x B) denotes the number of points of N in
A € £ that are mapped into B € £'. That is,

M(AxB)=) 1(Xs,Zs) € Ax B), A€&, Be€, 9.4)
n
where X,,’s are the point locations of N, and the point at X,, is mapped to Z,.
The assumption we made on the mapping means that the Z,’s are conditionally
independent given N, and

P{Z, € B|N} = p(X,,B), Be&, n<N(E).

Another way of writing this probability is P{Z, € B|N, n < N(E)}, where
n < N(E) is included only when N(E) can be finite. Note that M contains the
initial process N(-) = M(- x E’) as well as the process of transformed points
N'()= M(E x -).

Definition 9.8. The point process M on E x E’ defined by (9.4) is a marked point
process associated with N. The {Z,} are location-dependent marks of N, and N’
is the point process of the marks. We sometimes call M a p-transformation of N,
where {Z,} are the transformed points of N.

In some settings, such as the following one, the transformed points represent
auxiliary marks or information related to the original points.

Example 9.9. Suppose the point process N on the time axis R represents the times
T, at which customers enter a network. Assume the nth particle entering at time
T, has an associated mark Z, = ((S}, W)):i=1,...,L), where S, ..., SE are
the stations or nodes the unit visits in that order, W, ..., W are the respective
waiting times at the stations, and L is the length of the route, which may be
random. Assume the Z,’s are location-dependent marks of N. Then according
to the notation above, E' would denote the space of all possible vectors Z,, and
p(t, B) would denote the probability that a particle arriving at time ¢ selects a
vector in the set of vectors B € £’. O

The following remark points out some technicalities about marks.

Remark 9.10. (Construction of Marks). One can construct marks Z, for the points
X, as follows. Define (measurable) random functions {y,(:) : n > 1} from E to
E’ on the same underlying probability space as N (or an enlargement of that
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space). Define these random functions such that they are independent, identically
distributed, independent of N, and

P{y.(x) € B} =p(x,B), x€kE, Bef'

Then Z, = y,(X,,) are clearly location-dependent marks of N.

Another method for constructing marks is to define random elements Y, with
values in some space IE on the same probability space as N, and define a nonrandom
function g : ExE — E'such that the Y, s are independent, identically distributed,
independent of N, and

P{g(x,Y,) e B} =p(x,B), Bef.
Then Z, = g(X,, ¥,) are location-dependent marks of N.

The Laplace functional of the marked point process M is related to that of N as
follows. This relation is useful for deriving properties of M, when N has a tractable
Laplace functional.

Proposition 9.11. The Laplace functional of the marked point process M
associated with N is

Lu(f) = E{exp [ f log[ e—f<*=z>p(x,dz)]1v(dx)“. 9.5)
E E

That is, Ly (f) = Ly(h), where h(x) = — log[fE, e f*D p(x, d2)l.

Proor. Conditioning on N and using the property that the Z,’s are conditionally
independent given N, we have

Lu(f) = E [E[e /o2 N

=E [Hf e_f(x"‘Z)p(X,,,dz)]

—E lexp {Z log f e /XD p(X,, dz)]] .
P E

Using the property Y, g(X,) = fE g(x)N(dx), for g : E — R, the last
expectation equals the right side of (9.5), and hence (9.5) is true. a

The following is the major result that random transformations of Poisson
processes are also Poisson.

Theorem 9.12. If N is a Poisson process and M is a p-transformation of N, then
M is a Poisson process with mean measure

E[M(A x B)] = f p(x, B)u(dx), Aec& Bef. 9.6)
A

Hence, the point process N’ of mark values is a Poisson process on E' with mean
measure EN'() = fE p(x, yu(dx), provided this measure is finite on compact
sets.
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PrROOF. From Proposition 9.11, we know that Ly (f) = Ly(h), where Ly(h) is
a Poisson Laplace functional of the form (9.1). Then

Lyu(f) =exp [— / (I- e_h("))u(dX)]
E

= exp [—/ (1 - e 7*p(x, dz)p,(dx):l .
ExE

But this is the Laplace functional of a Poisson process with mean given by (9.6).
This proves the first assertion of the theorem. The second assertion that N'(-) =
M(E x -} is a Poisson process follows since it is the Poisson process M on a subset
of its space E x O

The following example is a generalization of Example 9.2 above.

Example 9.13. Markovian Particle Movements. Consider a system in which at
time O particles are located in the space E such that they form a Poisson process
N on E with mean measure x. The number of particles in the entire space is
infinite when p(E) = oo. Suppose the particles move independently in the space
E such that a particle initially located at x moves according to a time-homogeneous
Markov process with transition probability P(z, x, B) of being in the set B at time
t.Let N;(A x B) denote the number of particles that initially beganinthe set A € £
and are located in the set B € £ at time 7, and let N/(B) = N,(E x B), which is
the number of particles in B at time ¢ regardless of where they initially began. The
Markovian movements of the individual particles lead to the following Markovian
behavior of the entire system.

Theorem 9.14. (Markov/Poisson Location Processes) The family of point pro-
cesses {N, : t € R} is a time-homogeneous, measure-valued Markov process,
and each N, is a Poisson process on E? with mean measure

E[N;(A x B)] :/ P(t,x,B)u(dx), A,Beék. .7
A

Ifthe mean measure . of initial particles is an invariant measure of the probabilities
P(t, x, B), then the family of location point processes {N] : t € R.}is a stationary
Markov process. Furthermore, each N, is a Poisson process on E with mean
measure L.

ProOOF. Foreacht > 0, the process N, is a transformation of the Poisson process
N based on the probabilities p(x, B) = P(t, x, B). Then by Theorem 9.12, N, is a
Poisson process on E? with mean given by (9.7), and N/ is also a Poisson process
on E.

Next, note that, for each 0 < ¢t < u, the point process N, represents location-
dependent marks of N, based on the probabilities

p((xa )’), A x B) = P(u -5y, B)l(x € A)
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Then the conditional distribution of N, given {N; : s < ¢, N, = v} is equal to the
distribution of N,_, given Ny = v. Thus, {N, : ¢t € R} is a time-homogeneous
Markov process.

A similar argument shows that {N, : ¢ € R;} is a time-homogeneous Markov
process. Moreover, under the assumption that u is an invariant measure of
P(t, x, B), it follows that, for each ¢ and B,

EN/(B) = E[N,(E x B)] = / P(t, x, B)u(dx) = u(B) = ENy(B).
E

Then N, is equal in distribution to N, since they are Poisson processes with the
same mean measure . Because {N; : ¢t € R} is a Markov process and each N/
has the same distribution, it follows that the Markov process {N; : ¢t € R} is
stationary. a

We end this section with another insight into transformations. Theorem 9.12
says that a random transformation of a Poisson process is a Poisson process on a
product space. We now prove the converse that essentially any Poisson process on
a product space is a transformation of a Poisson process.

Theorem 9.15. If M is a Poisson process on E x &' such that the mean measure
w(-) = E[M(- x E")] on E is finite on compact sets, then M is a marked point
process associated with its marginal process N(-) = M(- x E'). The conditional
distribution p(x, B) of the marks is defined by

E[M(A x B)] = f p(x, B)u(dx), A& Bek. 9.8)
A

PrOOF. The mean measure of M can always be factored as in (9.8), where, for
each fixed B, the p(x, B) as a function of x is the Radon—Nikodym derivative of
E[M(- x B)] with respect to . Consequently, the mean measure of M has the same
form as that of the marked Poisson process in Theorem 9.12, and so M is equal in
distribution to that marked Poisson process. This proves the assertion. a

9.4 Translations, Partitions, and Clusters

This section describes several fundamental transformations of Poisson processes.
For this discussion, we assume that N is a Poisson process on E with mean measure
4 and point locations X,,.

We first consider translations of the points {X,} of N by location-dependent
marks {Z,} of N. Define point processes M and N’ by

M(AxB):Zl(X,,eA,X,,-{-Z,,eB), A, Beé&,

n

N'(B) = Z (X, +Z, € B), Bek.

n
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The process N’ is the translation of N by the Z,’s, and M represents the before
and after of the translations. For these processes to be well defined, we require that
the addition operation is defined on E (which it is, if E is a Euclidean space) and
that [E is large enough to include all the translated points. We also let

G(B|x) = P{Z, € B| X, = x}

and B — x = {b — x : b € B}. Note that this conditional distribution does not
depend on n.

Corollary 9.16. (Translation of a Poisson Process) Under the preceding as-
sumptions, the processes M and N' are Poisson processes with respective mean
measures

E[M(A x B)] = / G(B — x|x)u(dx), A,Bef, 9.9
A

and EN'(B) = EM(E x B), B € £, provided these measures are finite on compact
sets.

ProoF. Clearly X, + Z, are location-dependent marks of N with conditional
distribution p(x, B) = G(B—x|x). Also, N’ is the point process of these marks and
M is the p-transformation of N. Thus, the assertion follows by Theorem9.12. O

A basic property of Poisson processes is that a sum of independent Poisson
processes is also a Poisson process; see Exercise 1. We now describe a reverse op-
eration under which a process is partitioned into several subprocesses. Specifically,
consider a transformation of the Poisson process N that represents a partitioning
of it into m subprocesses Ny, ..., N,, by the following rule.

Partitioning Rule: If N has a point at the location x € E, then it is assigned to
subprocess i with probability p(x, i), where ) | p(x,i) = 1.

In other words, the point at location X, is assigned to the subprocess Z,, where

the Z,’s are location-dependent marks of the X,,’s with conditional distribution

px,iy=P{Z,=i|X,=x}, x€E,i=1,...,m, NE)>n.
The resulting subprocesses are

Ni(A) =) 1(X0, Z) e Ax (i), A€ i=1,....m.

n

Clearly Ny, ..., N, form a partition of N inthat N = N; +... + N,,.

Corollary 9.17. (Partition of a Poisson Process) Under the preceding assump-
tions, the partition Ny, . .., Ny, of the Poisson process N consists of independent
Poisson processes with mean measures

EN;(A) = / px,Duldx), Ae& i=1,...,m.
A

Proor. By Theorem 9.12, we know that M(-) = )", 1((X,, Z,) € -) is a Poisson
process. Then the assertion follows since the processes N;(-) = M (- x {i}) represent
M on the disjoint subsets E x {i},for1 <i < m. O
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A special case of the preceding result is as follows.

Example 9.18. Thinning of a Poisson Process. Suppose the points of the Poisson
process N are deleted according to the rule that a point of N at x is retained with
probability p(x), and the point is deleted with probability 1 — p(x). Let N; and N,
denote the resulting processes of retained and deleted points, respectively. Then
N, and N, are independent Poisson processes with respective mean measures

EN1(A)=fp(X)It(dX), ENz(A)=/A(1 - p)udx), Aef. U
A

Splitting and merging of flows in a network, as we now describe, are examples
of partitioning and summing of point processes.

Example 9.19. Routing in Acyclic Graphs. Consider the directed graph shown
in Figure 9.1 in which units are routed in the direction of the arrows. Let N ()
denote the number of units that are routed on the arc from node j to node & in
the time interval (0, ¢]. Assume that the input processes Ny;, j = 1,2, 3, from
outside are independent Poisson processes on R, with respective intensities Ao;,
J = 1,2, 3. Upon entering the graph, each arrival is routed independently through
the graph according to the probabilities on the arcs, and there are no delays at the
nodes (the travel through the graph is instantaneous). For instance, a unit entering
node 3 is routed to node 5 or node 6 with respective probabilities pss and pse,
where p3s + p3g = 1.

The results above on partitioning and merging of Poisson processes yield the
following properties. Each flow N, from j to k is a Poisson process with an
intensity A j¢, which is obtainable in the obvious manner. For instance,

A1z = pi3dor, A3 = p3slros + pizrail,
Aas = pas[hos + pi3ro1],  Aeo = Aze + PseAss.

Also, some of the flows are independent (denoted by L ). Examples are N2 L N3,
Nzg L Nsg, N3g L Naa, and N1z L Nys. On the other hand, many flows are not
independent (denoted by t). Examples are Nj; Y N, N3s L N, Ni3 £ Neo,
and Ny .,K N, 40+

In addition, the flow Ny = ), Nj; through each node k is a Poisson process
with intensity ; Ajk- Clearly all the Ni’s are dependent. If the arc between S and
4 did not exist, however, then N, would be independent of N3, Ns, and Ng. a

Aoz P2

'\:_;/ D36
FIGURE 9.1. Partitioning and Merging of Flows
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There are several relatives of Poisson processes that are defined via marks. Here
are some examples.

Example 9.20. Compound Poisson Process. Suppose that Z, are real-valued,
location-dependent marks of N. Then

M'(B) = ZZ,,I(X,, €B), Bec&,

is a compound Poisson process. This is also called a signed Poisson random
measure on E. The mass Z, (possibly negative) is located at the point X,
and EM'(B) = fB f]R zp(x, dz)u(dx). The distribution of M'(B) is the stan-
dard compound Poisson distribution when the marks Z, are independent of N.
Such compound Poisson processes can also be defined in contexts where the
marks Z, are random vectors or random elements of a group with the addition
operation. |

Example 9.21. Poisson Cluster Processes. Suppose the marks Z, of the Poisson
process N are point processes on a space E'. Then

N'(A x B)=)_1(X, € A)Z,(B),
n
is a Poisson cluster process on E x E', and N'(E x -) = ), Z,(") is the cluster
process on [E'. The Laplace functional of this cluster process is given in Exercise 4.
One can use this functional to obtain moments, but the distribution of N’ may be
intractable for complicated Z,’s. Clearly, N’ is not a Poisson process, even if each
Z, is one. 0

Recall that under a partitioning of N, each of its points is assigned to a “single”
category or is labeled by a “single” attribute. We fiow consider the situation in
which each point is split into several parts, or each point carries multiple attributes,
leading to multivariate phenomena.

Example 9.22. Multivariate Processes. Suppose that each point X, of the Poisson
process N is associated with one or more attributes from a countable set Z and
let Z,; = 1 or 0 if the point X, does or does not have attribute i. Assume that
Z, = (Z,; : i € T) are location-dependent marks of N. Define the point process
N! onE by

Nj(A)=) (X, €A, Zy=1), Ack iel
n
The collection {N; : i € T} is amultivariate Poisson process. Each N/ is a Poisson
process with EN/(-) = f(_) p(i, x)p(dx), where

pli,x)=P{Z,, =1|X, =x}

is the probability that a point at x has attribute i. These processes are “dependent”
Poisson processes. Several of them may have a point at the same location.

A natural generalization would be to assume the points X,, are associated with
location-dependent marks Z, = (Z,; : i € T), where Z,; is a point process on a
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space E;. Then the family of point processes

N/(AxB)=) 1(X, € A)Z,(B), AcE, i€l

n

is a multivariate Poisson cluster process on E x E!, i € 7. Multivariate compound
Poisson processes are defined similarly. All of these multivariate processes can be
viewed via the cluster process in the preceding example, where Z,, is defined on
T x U,'EIIE;. |

9.5 Service Systems with No Queueing

An important use of translations is for modeling the number of customers in a
service system with no queueing. This section contains several examples.

Example9.23. M /G /oc System: Energy and Communication Model. Companies
that provide natural gas, electricity, or computer/telephone service are interested
in predicting their service loads or demands over time. Consider such a system
in which customers request services at times 7, that form a Poisson process N
on R, with mean measure . Assume that a request at any time ¢ requires use of
the service for a duration that has a distribution G(-|¢). Let W,, denote the service
duration (sojourn or waiting time in the system) for an arrival at time 7,,. Then
the W, ’s are location-dependent marks of N. Consider the number of customers
Q, that are receiving services at time ¢. The process {Q; : t e R, }isa M/G /oo
system with time-dependent arrivals and services. Clearly,

0 = Z T, <t, T, + W, > t) = M((0, t] x (¢, 0)), (9.10)

n

where M(:) = )", 1((T,,, T, + W,) € -). Then by Corollary 9.16, M is a Poisson
process with mean given by (9.9). Therefore, O, has a Poisson distribution with
mean

EQ, = | [1-G( —sls)luds).
©.1)

Does the random variable Q, have a limiting distribution as ¢ tends to infinity?
It does if its mean has a limit. Here is an explanation. Using the change of variable
s =t — u in the preceding integral, we have

o =EQ = f [ - Gult - wln(dw).
0,¢]

Now, assume the limit G(u) = lim,_, o, G(u|t — u) exists at each u that is a
continuity point of G. Also, assume that @ = f(o, oo)[l — G(uw)u(du) is finite.
Then ¢, — « as t — oo. Consequently,

P{Q,=n}=ale™™/n! > "¢ */n! ast — oo.
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Next, consider the number of service terminations (or departures) in the time
interval (0, ¢], which is
DO, 1] =) UT, + Wy < 1) = M((, 1] x (0, 1]). ©.11)

n

According to Corollary 9.16, D is a Poisson process with
EDQO,t]=EN(@)—EQ, = / G(t — s|s)u(ds).
©.1]

Another consequence of M being a Poisson process is that the future of Q is
independent of the past of D, denoted by O L D_. This means, as in Defini-
tion 4.9, that {Q,, : u > t} is independent of { D(A) : A C (0, t]}, foreacht € R, .
To see this, note that, for each ¢, the process { D(A) : A C (0, t]} given by (9.11) is
a function of M on B, = (0, t]>. Also, {Q,, : u > t} given by (9.10) is a function
of M on the set U,,..,(0, u] x (#, 0o) C Bf. Since M is independent on the disjoint
sets B, and By, it follows that {Q, : u > ¢t} is independent of {D(A) : A C (0, t]}.
Hence Q; 1 D_. ]

Example 9.24. Spatial M /G /oo System. The preceding M /G /oo energy and
communication model for time-dependent service loads has the following space—
time analogue. As above, suppose customers request service according to a Poisson
process N with mean measure u. Assume that a customer request at time ¢ comes
from a subregion B of the service region E with probability r (¢, B), wherer (¢, E) =
1. Also, assume that a request at time ¢ from a location x € E requires service for
a time that has a distribution G(-|¢, x). Consider the number of customers N,(B)
that are receiving services in the subregion B at time . We call {N, : t e R, } a
spatial M / G /oo system. A tacit assumption is that customers are at fixed locations
while they receive service (e.g., receiving natural gas at houses). Possible models
of mobile customers are particle systems discussed in Sections 9.7 and 9.6.
Now, we can write

N(B) =) T, <1,Xy € B, T, + Wo > 1) = M((0, 7] x B x (1, 00)),
n
where (T, X,,, W,) denotes the nth customer’s respective arrival time, location,

and service duration; and M(-) = Y, 1((T, X, T, + W,,) € -). Clearly, the
(X, T, + W,)’s are location-dependent marks of N with conditional distribution

P{X,e B, T,+W,eC|T,=s}= / G(C — s|s, x)r(s, dx).
B

Then by Theorem 9.12, M is a Poisson process. Consequently, the point process
N, representing locations of customers in service at time ¢ is a spatial Poisson
process on E with mean measure

EN(B) =f

0,t]

/[1 — G(t — s|s, x)]r(s, dx)u(ds).
B

Properties of the departure process for this spatial system are the subject of
Exercise 6. ]
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We now describe an optimization problem for a production system that is
formulated as a M/ G /oc model.

Example 9.25. Production Scheduling. Consider a production system in which
units (parts, material, orders, etc.) of type i enter the system at times 0 < T;; <
T;» < ... that form a Poisson process N; on a finite horizon [0, 7] with mean
measure w;, where i € Z (a finite set). The N;’s are independent. Each unit spends
some time in the system and then exits as a certain type of output £ in a finite set
L. Each input unit yields one output unit, but several types of inputs may yield the
same type of output. For the nth type i unit that arrives at time 7;,, let W;,, denote
its sojourn or waiting time in the system and let L;, denote the type of output that
it produces. The system may consist of one or more stations where the units are
processed, possibly several times before they are finished and exit the system. The
output type L;, may be random. For instance, the type i might represent a node in
which the unit enters, and L;, might be its exit or last node.

We will not invoke further microlevel assumptions of the processing, but simply
view the production system as an M /G /oo input-output model. Accordingly, we
will assume that, for each i € Z, the (L;,, W;,) are marks of N; such that

P(Lyi=¢, Wy, <w|T, =1, Tin; k # n, iIEI}
=P(Ly =4, W, w|T, =t}.

We will write this probability as the product of the conditional probabilities

pi(£|t) = P{Lin =4 | Tin = t}, Gil(w|t) = P{Win < wlLin = e, I, = t}~

These probabilities are the input data. For instance, p;(£|t) may be determined by
a unit’s route in a network, and G;,(w|t) may be determined by its total service
times on the route.

For this production system, the cumulative output of type £ up to time ¢ is

D)= Y WLin=8Tn <t,Tu+ Wiy <1), 0<t=<T.
iel n

As in the preceding example, Dy is a Poisson process with

EDW =Y [ pils)Gate = slsyutds).

iel
Also, the quantity of i-units in the system at time ¢ is
Q=) T <t,Tu+Wy>1), 0<t<T, icl
n

As in the preceding example, Q;(¢) is a Poisson random variable with

Q=Y [ pis)l1 - Guate = silus(ds)

teL V0

We will consider a problem of optimizing the inputs to meet certain output
requirements at minimal cost. This is sometimes called a Material Requirements
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Planning problem. A standard approach is to consider the input times 7, as being
deterministic variables that are to be optimized. Ideally, this would be a Markov
decision process in which the system is dynamically observed and controlled over
time. This leads, however, to an intractable mathematical programming problem.
To get around this difficulty, we will consider the input times 0 < 7;; < T;; <...
as a Poisson process just as above, and consider the mean value functions u;(¢) =
EN;(0, t] as variables to be optimized. Furthermore, we will consider a “static”
optimization over a fixed time horizon rather than a “dynamic” optimization. We
will comment further on this approach after formulating the problem.

We will address the production scheduling problem of selecting the functions
(;(¢) that minimize the expected work in progress (WIP), which is

T
By, [ o= f (> w - Y ED@ld,

ieT V0 iel el
In addition, we want to ensure that the cumulative mean output of product £ at
time ¢ attains the level d,(¢). That is,
EDy(t)>de(t), 0<t<T, tLelL.

In other words, the preceding problem is the mathematical programming
problem

i, IEI

min / [pi(r) - / piL1s)Gie(t — s|s)ui(ds)] dt
el
subject to
f Pill1s)Gio(t — s|)ui(ds) > de(t), 0=<t=<T, LelL.
ieZ

This is an infinite-parameter linear programming problem. For practical pur-
poses, however, it can be formulated as a standard linear programming problem
as follows. Assume the functions p,(¢) are step functions that only change at inte-
gerpoints ¢t = 1,2,..., T, and make similar assumptions for the functions r;(¢),
Di(€|t), Gig(u — t|t). Let w; = w;(t) — p;(t — 1). Then the preceding problem
reduces to the linear program

min ) Z[Z > Z PiI)Gie(t ~ sls)uis]

i€l t=1 s= el s=

subject to u;; > 0 and

t
YN pi@Giele — sl 2 di(e), t=1,....T, LeL.
iel s=I
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