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Preface

These lecture notes grew out of an M.Sc. course on differential
geometry which I gave at the University of Leeds 1992. Their main
purpose is to introduce the beautiful theory of Riemannian Geometry
a still very active area of mathematical research. This is a subject with
no lack of interesting examples. They are indeed the key to a good
understanding of it and will therefore play a major role throughout
this work. Of special interest are the classical Lie groups allowing
concrete calculations of many of the abstract notions on the menu.

The study of Riemannian geometry is rather meaningless without
some basic knowledge on Gaussian geometry that i.e. the geometry of
curves and surfaces in 3-dimensional space. For this I recommend the
excellent textbook: M. P. do Carmo, Differential geometry of curves
and surfaces, Prentice Hall (1976).

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some topology. The most
important results stated in the text are also proved there. Other are
left to the reader as exercises, which follow at the end of each chapter.
This format is aimed at students willing to put hard work into the
course.

For further reading I recommend the very interesting textbook: M.
P. do Carmo, Riemannian Geometry, Birkh&user (1992).

I am very grateful to my many enthusiastic students who through-
out the years have contributed to the text by finding numerous typing
errors and giving many useful comments on the presentation.

Norra Nobbelov, 17 February 2008

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

On the 10th of June 1854 Georg Friedrich Bernhard Riemann (1826-
1866) gave his famous ”Habilitationsvortrag” in the Colloquium of the
Philosophical Faculty at Gottingen. His talk ”Uber die Hypothesen,
welche der Geometrie zu Grunde liegen” is often said to be the most
important in the history of differential geometry. Johann Carl Friedrich
Gauss (1777-1855), at the age of 76, was in the audience and is said to
have been very impressed by his former student.

Riemann’s revolutionary ideas generalized the geometry of surfaces
which had been studied earlier by Gauss, Bolyai and Lobachevsky.
Later this lead to an exact definition of the modern concept of an
abstract Riemannian manifold.






CHAPTER 2

Differentiable Manifolds

In this chapter we introduce the important notion of a differen-
tiable manifold. This generalizes curves and surfaces in R? studied in
classical differential geometry. Our manifolds are modelled on the stan-
dard differentiable structure on the vector spaces R™ via compatible
local charts. We give many examples, study their submanifolds and
differentiable maps between manifolds.

For a natural number m let R™ be the m-dimensional real vector
space equipped with the topology induced by the standard Euclidean
metric d on R™ given by

d($, y) = \/(1‘1 - y1)2 +...+ (xm - ym)z'

For positive natural numbers n, 7 and an open subset U of R™ we shall
by C"(U,R") denote the r-times continuously differentiable maps
from U to R™. By smooth maps U — R" we mean the elements
of

C=(U,R") = () C"(U,R).
r=1
The set of real analytic maps from U to R™ will be denoted by
C¥(U,R™). For the theory of real analytic maps we recommend the
book: S. G. Krantz and H. R. Parks, A Primer of Real Analytic Func-
tions, Birkhauser (1992).

Definition 2.1. Let (M, 7) be a topological Hausdorff space with
a countable basis. Then M is said to be a topological manifold if
there exists a natural number m and for each point p € M an open
neighbourhood U of p and a continuous map z : U — R™ which is a
homeomorphism onto its image x(U) which is an open subset of R™.
The pair (U, x) is called a (local) chart (or local coordinates) on M.
The natural number m is called the dimension of M. To denote that
the dimension of M is m we write M™.

According to Definition 2.1 a topological manifold M is locally
homeomorphic to the standard R™ for some natural number m. We

7



8 2. DIFFERENTIABLE MANIFOLDS

shall now define a differentiable structure on M via local charts and
turn M into a differentiable manifold.

Definition 2.2. Let M be a topological manifold. Then a C"-atlas

on M is a collection
A={(Uy,za)| a €1}
of local charts on M such that A covers the whole of M i.e.
M= JU,
and for all o, 3 € I the corresponding transition maps
xg o x;1|xa(UamU5) 124Uy NUg) — R™

are r-times continuously differentiable.

A chart (U, x) on M is said to be compatible with a C"-atlas A on
M if the union AU{(U, z)} is a C"-atlas on M. A C"-atlas A is said to
be maximal if it contains all the charts that are compatible with it. A
maximal atlas A on M is also called a C"-structure on M. The pair
(M, A) is said to be a C"-manifold, or a differentiable manifold of
class C", if M is a topological manifold and A is a C"-structure on M.

A differentiable manifold is said to be smooth if its transition maps
are C*> and real analytic if they are C“.

It should be noted that a given C"-atlas A on a topological manifold
M determines a unique C"-structure A on M containing A. It simply
consists of all charts compatible with A.

Example 2.3. For the standard topological space (R™,7) we have
the trivial C“-atlas

A= {(Rm,JJH r:.p »—>p}
inducing the standard C“-structure A on R™.
Example 2.4. Let S™ denote the unit sphere in R™*! ie.
S ={peR™ pi+ - +p., =1}

equipped with the subset topology induced by the standard 7 on R™*!,
Let N be the north pole N = (1,0) € R x R™ and S be the south pole
S = (—=1,0) on S™, respectively. Put Uy = S™\ {N}, Us = S™\ {S}
and define x : Uy — R™, x5 : Us — R™ by

1
I—p

1
1+p

IN - (plv' .. 7pm+1) = (p27' . 7pm+1)7

xrs . (plw .- 7pm+1) — (p27 o 7pm+1)'
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Then the transition maps
rs oy ay 0 a5’ i R\ {0} — R\ {0)
are given by
s P
pl?
so A = {(Un,zn),(Us,xs)} is a C¥-atlas on S™. The C“-manifold
(S™, A) is called the standard m-dimensional sphere.

Another interesting example of a differentiable manifold is the m-
dimensional real projective space RP™.

Example 2.5. On the set R™™! \ {0} we define the equivalence
relation = by:

p = q if and only if there exists a A € R* such that p = \g.
Let RP™ be the quotient space (R™™!\ {0})/ = and
7 : R™1\ {0} — RP™
be the natural projection mapping a point p € R™™ \ {0} to the
equivalence class [p] € RP™ i.e. the line
p] = {}p e R™| X e R}

through the origin generated by p. Equip RP™ with the quotient topol-
ogy induced by 7 and 7 on R™"!. For k € {1,...,m + 1} define the
open subset

Ur = {lp] € RP™| p # 0}
of RP™ and the charts x : Uy — R™ by
&7”"pk—17ka—l—l,”"pm—i-l)'
Pk Dk Dk Pk
If [p] = [q] then p = Ag for some X € R* so p;/pr = q1/qx for all [. This
means that the map z; is well defined for all k. The corresponding
transition maps

¢ [p] = (

2 0 2 ey - (U N U) — R™

are given by
Y4 Pi—1 P+ Pm+1 P1 Pk—1 DPk+1 Pm+1
(B ey P Bty (B PRy Phet o Pl

Pl’ 7 b yzi b Pk Pk Pk Pk
so the collection

A:{<Uk,$k)| k‘zl,...,m+1}

is a C¥-atlas on RP™. The differentiable manifold (RP™, A) is called
the m-dimensional real projective space.
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Example 2.6. Let C be the extended complex plane given by
C=CuU{co}

and put C* = C\ {0}, Uy = C and U, = C\ {0}. Then define the
local coordinates zg : Uy — C and 2o : Uy — Con C by 2y : 2 — 2
and z, : w +— 1/w, respectively. The corresponding transition maps

Too 0 Tp , mgo ) : C* — C*
are both given by z +— 1/zs0 A = {(Up, x9), (Uso, Too) } is a C¥-atlas on
C. The real analytic manifold (C,.A) is called the Riemann sphere.

For the product of two differentiable manifolds we have the following
interesting result.

Proposition 2.7. Let (M, Ay) and (M,, Ay) be two differentiable
manifolds of class C". Let M = My X My be the product space with the
product topology. Then there exists an atlas A on M making (M, fl)
into a differentiable manifold of class C" and the dimension of M sat-
isfies

dim M = dim M; + dim Ms.

PROOF. See Exercise 2.1. O

The concept of a submanifold of a given differentiable manifold
will play an important role as we go along and we shall be especially
interested in the connection between the geometry of a submanifold
and that of its ambient space.

Definition 2.8. Let m,n € N be natural numbers such that 1 <
m < n and (N",B) be a C"-manifold. A subset M of N is said to
be a submanifold of N if for each point p € M there exists a chart
(U,,x,) € B such that p € U, and =z, : U, — R™ x R" "™ satisfies
2p(Up N M) = z,(Up) N (R™ x {0}).
The natural number (n — m) is called the codimension of M in N.

Proposition 2.9. Let m,n € N be natural numbers such that 1 <
m < n and (N”,B) be a C"-manifold. Let M be a submanifold of N
equipped with the subset topology and © : R™ x R*™™ — R™ be the
natural projection onto the first factor. Then

A= {(U, " M, (7 o x)|v,nm)| p € M}

is a C"-atlas for M. In particular, the pair (M, fl) 15 an m-dimensional
C"-manifold. The differentiable structure A on the submanifold M of
N s called the induced structure of B.
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PROOF. See Exercise 2.2. O

Our next step is to prove the implicit function theorem which is a
useful tool for constructing submanifolds of R™. For this we use the
classical inverse function theorem stated below. Note that if

F:U—=R™

is a differentiable map defined on an open subset U of R™ then its
differential dF), : R® — R™ at a point p € U is a linear map given by
the m x n matrix

OF/0x1(p) ... OF;1/0x,(p)

de — . .

OF,/0x1(p) ... OFy/0wn(p)

If v: R — Uis a curve in U such that 4(0) = p and 4(0) = v € R"
then the composition F o~ : R — R™ is a curve in R™ and according
to the chain rule we have

(£ 07(s))ls=0,

which is the tangent vector of the curve F o~y at F(p) € R™.

d
de'U:£

Hence the differential dF), can be seen as a linear map that
maps tangent vectors at p € U to tangent vectors at the image
F(p) € R™. This will later be generalized to the manifold
setting.

Fact 2.10 (The Inverse Function Theorem). Let U be an open sub-
set of R" and F': U — R™ be a C"-map. If p € U and the differential

dr, :R" — R"
of F' at p is invertible then there exist open neighbourhoods U, around p
and Uy around q = F(p) such that F' = F|y, : U, — Uy is bijective and
the inverse (F)~' : U, — U, is a C"-map. The differential (dF~"), of
F1atq satisfies
(dﬁil)q = (de)il
i.e. it is the inverse of the differential dF), of F' at p.

Before stating the implicit function theorem we remind the reader
of the definition of the following notions.
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Definition 2.11. Let m,n be positive natural numbers, U be an
open subset of R” and F' : U — R™ be a C"-map. A point p € U is
said to be critical for F' if the differential

dF, : R" — R™

is not of full rank, and regular if it is not critical. A point ¢ € F(U)
is said to be a regular value of F' if every point of the pre-image
F~1({q}) of ¢ is regular and a critical value otherwise.

Note that if n > m then p € U is a regular point of
F=(F,...,F,):U—R"

if and only if the gradients VF}, ..., VF,, of the coordinate functions
Fy, ... F, : U — R are linearly independent at p, or equivalently, the
differential dF, of ' at p satisfies the following condition

det(dF, - (dF,)") # 0.

Theorem 2.12 (The Implicit Function Theorem). Let m,n be nat-
ural numbers such that m < n and F : U — R™ be a C"-map from
an open subset U of R™. If ¢ € F(U) is a regular value of F' then the
pre-image F~*({q}) of q is an (n — m)-dimensional submanifold of R"
of class C".

PROOF. Let p be an element of F~*({¢}) and K, be the kernel of
the differential dF, i.e. the (n — m)-dimensional subspace of R" given
by K, = {v € R"| dF, - v = 0}. Let m, : R* — R"™™ be a linear map
such that m|x, : K, — R"™™ is bijective, p|x+ = 0 and define the
map G, : U — R™ x R"™™ by

Gy x> (F(z), mp(2)).

Then the differential (dG,), : R" — R" of G, with respect to the
decompositions R" = K pL ® K, and R" = R™ @ R"™™, is given by

— de|K; 0
(de>p _ ( 0 ﬂ-p) )

hence bijective. It now follows from the inverse function theorem that
there exist open neighbourhoods V), around p and W, around G,(p)
such that ép = Gy, : V, — W, is bijective, the inverse C;’;l W, =V,
is C", d(G V)6, = (dG,), " and d(G;1), is bijective for all y € W,
Now put U, = F~*({¢}) NV}, then

Uy =G, (({a} x R*™™) NW,)
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so if m: R™ x R"™™ — R™™™ is the natural projection onto the second
factor, then the map

Ip =m0 Ghlg, : Up— ({g} x R""™) N W, — R"™"

is a chart on the open neighbourhood Up of p. The point ¢ € F(U) is
a regular value so the set

B={(Up7) p e F'({a})}
is a C"-atlas for F~1({q}). O

Employing the implicit function theorem we yield the following in-
teresting examples of the m-dimensional sphere S™ and its tangent
bundle T'S™ as differentiable submanifolds of R™! and R?*™*2, respec-

tively.
Example 2.13. Let F': R™™! — R be the C“-map given by

m+1
F: (ph' .. 7pm+1) = pr
i=1

The differential dF}, of F' at p is given by dF, = 2p, so
dF, - (dF,)" = 4|p|* € R.
This means that 1 € R is a regular value of F' so the fibre
S™={p e R""| p]’ =1} = F'({1})

of F is an m-dimensional submanifold of R™*. It is the standard
m-~dimensional sphere introduced in Example 2.4.

Example 2.14. Let F : R™t! xR™! — R? be the C*-map defined
by F : (p,v) — ((Ip|* —1)/2, (p,v)). The differential dF{,,y of F at

(p,v) satisfies
p 0
dF(p,,U):(U p).

det(dF - (dF)") = [p]*(|p]* + [v[*) = 1+ |v[* > 0
on F~1({0}). This means that
F7({0}) = {(p.v) e R™™ x R™| |p|* =1 and (p,v) =0}

Hence

which we denote by T'S™ is a 2m-dimensional submanifold of R?™*+2,
We shall later see that 7T'S™ is what is called the tangent bundle of the
m-~dimensional sphere.
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We shall now apply the implicit function theorem to construct the
important orthogonal group O(m) as a submanifold of the set of the
real vector space of m x m matrices R"™*™,

Example 2.15. Let Sym(R™) be the linear subspace of R™*™ con-
sisting of all symmetric m x m-matrices

Sym(R™) = {A € R™™| A! = A}.

Then it is easily seen that the dimension of Sym(R™) is m(m + 1)/2.
Let F': R™™ — Sym(R™) be the map defined by

F:A— A'A.

If A: R — R™*™ is a curve in R™*™ then
d . .
E(F o A(s)) = A(s)'A(s) + A(s)" A(s),

so the differential dF'y of F' at A € R™*™ gatisfies
dFy: X — X'A+ A'X.
This means that for an arbitrary element A of
O(m) = F '({e}) = {A € R™™| A'A = ¢}

and Y € Sym(R™) we have dF4(AY/2) = Y. Hence the differential
dF 4 is surjective, so the identity matrix e € Sym(R™) is a regular value
of F. Following the implicit function theorem O(m) is a submanifold
of R™™ of dimension m(m — 1)/2. The set O(m) is the well known
orthogonal group.

The concept of a differentiable map U — R", defined on an open
subset of R™, can be generalized to mappings between manifolds. We
shall see that the most important properties of these objects in the
classical case are also valid in the manifold setting.

Definition 2.16. Let (M™, A;) and (N, A,) be two C"-manifolds.
A map ¢ : M — N is said to be differentiable of class C" if for all
charts (U,z) € Ay and (V,y) € Ay the map

Yy o gb o x_1|m(Uﬂ¢*1(V)) : [E(U N qb_l(V)) CR™ —=R"

is of class C". A differentiable map v : I — M defined on an open
interval of R is called a differentiable curve in M. A differentiable
map f : M — R with values in R is called a differentiable function on
M. The set of smooth functions defined on M is denoted by C*°(M).

It is an easy exercise, using Definition 2.16, to prove the follow-
ing result concerning the composition of differentiable maps between
manifolds.
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Proposition 2.17. Let (M, Ay), (My, Ay), (Ms, As) be C"-mani-
folds and ¢ : (M, Ay) — (My, Ay), ¥ : (My, Ay) — (Ms, As) be differ-
entiable maps of class C". Then the composition 1) o ¢ : (Ml,fll) —
(M, .,213) is a differentiable map of class C".

PROOF. See Exercise 2.5. O

Definition 2.18. Two manifolds (Mj, A;) and (M,, Ay) of class
C" are said to be diffeomorphic if there exists a bijective C"-map
¢ : My, — My, such that the inverse ¢=1 : My — M, is of class C". In
that case the map ¢ is said to be a diffeomorphism between (M, /11)
and (M,, Ay).

It can be shown that the 2-dimensional sphere S? in R? and the
Riemann sphere, introduced earlier, are diffeomorphic, see Exercise

2.7.

Definition 2.19. Two C"-structures /ll and AQ on the same topo-
logical manifold M are said to be different if the identity map id :
(M, Ay) — (M, Ay) is not a diffeomorphism.

It can be seen that even the real line R carries different differentiable
structures, see Exercise 2.6.

Deep Result 2.20. Let (M]", A,), (M3, Ay) be two differentiable
manifolds of class C" and of equal dimensions. If My and My are home-
omorphic as topological spaces and m < 3 then (M, ./le) and (MQ,AQ)
are diffeomorphic.

The following remarkable result was proved by John Milnor in his
famous paper: Differentiable structures on spheres, Amer. J. Math.
81 (1959), 962-972.

Deep Result 2.21. The 7-dimensional sphere S™ has exactly 28
different differentiable structures.

The next very useful proposition generalizes a classical result from
the real analysis of several variables.

Proposition 2.22. Let (Ny, A;) and (Ny, Ay) be two differentiable
manifolds of class C™ and My, My be submanifolds of N1 and N, re-
spectively. If ¢ : Ny — Ny is a differentiable map of class C" such
that (M) is contained in My, then the restriction ¢|py @ My — My is
differentiable of class C".

PROOF. See Exercise 2.8. O
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Example 2.23. The result of Proposition 2.22 can be used to show
that the following maps are all smooth.
i) ¢1: S2CR® — S3CRY, ¢y : (2,9, 2) — (2,9,2,0),
ii) ¢ : 5% CC*— S CCxR, ¢y : (21,22) — (2212, |12 —|22]?),
(iii) @3 : R — S* C C, ¢35 : t > €™,
) 61 R™I\{0) — 5™, 6y v v /o],
v) ¢5 : R™TN\ {0} — RP™, ¢5 : x> [z],

(vi) ¢ : S™ — RP™, ¢g : x — [x].

In differential geometry we are especially interested in differentiable
manifolds carrying a group structure compatible with their differen-
tiable structure. Such manifolds are named after the famous math-
ematician Sophus Lie (1842-1899) and will play an important role
throughout this work.

Definition 2.24. A Lie group is a smooth manifold G with a
group structure - such that the map p: G x G — G with

pi(pa)—=p-q
is smooth. For an element p in G the left translation by p is the map
L,:G — G defined by L, :q—p-q.

Note that the standard differentiable R™ equipped with the usual
addition + forms an abelian Lie group (R™, +) with p : R™ xR™ — R™
given by

p:(p,g) ~p—q

Corollary 2.25. Let G be a Lie group and p be an element of G.

Then the left translation L, : G — G is a smooth diffeomorphism.

PROOF. See Exercise 2.10 O

Proposition 2.26. Let (G,-) be a Lie group and K be a submani-
fold of G which is a subgroup. Then (K,-) is a Lie group.

PRrOOF. The statement is a direct consequence of Definition 2.24
and Proposition 2.22. ]

The set of non-zero complex numbers C* together with the standard
multiplication - forms a Lie group (C*,-). The unit circle (S!,-) is an
interesting compact Lie subgroup of (C*,-). Another subgroup is the
set of the non-zero real numbers (R*,-) containing the positive real
numbers (R",-) and the 0-dimensional sphere (S, ) as subgroups.

Example 2.27. Let H be the set of quaternions defined by
H = {z+wj| z,w € C}

equipped with the addition +, multiplication - and conjugation ~
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() G wj) = 2 — wj,

(i) (21 4+ wij) + (22 + w2j) = (21 + 22) + (w1 + w2)j,

(ili) (21 +w1g) - (22 + w2j) = (2122 — W1W2) + (z1w2 + W1 Z2)
extending the standard operations on R and C as subsets of H. Then
it is easily seen that the non-zero quaternions (H*, ) form a Lie group.
On H we define a scalar product

HxH — H, (p,g) —p-q

and a real valued norm given by |p|> = p - p. Then the 3-dimensional
unit sphere S? in H = R* with the restricted multiplication forms a
compact Lie subgroup (S3,-) of (H*,-). They are both non-abelian.

We shall now introduce some of the classical real and complex
matrix Lie groups. As a reference on this topic we recommend the
wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction,
Birkh&user (2002).

Example 2.28. Let Nil® be the subset of R3*3 given by

1 = =z
Nil’ ={{0 1 y| € R¥*?| x,y,2 € R}.
00 1

Then Nil® has a natural differentiable structure determined by the
global coordinate ¢ : Nil? — R? with

1 =z =z

¢ |10 1 y) = (2,y2)
00 1

It is easily seen that if x is the standard matrix multiplication, then
(Nil3, %) is a Lie group.

Example 2.29. Let Sol® be the subset of R3*3 given by

e 0 =z
Sol>={| 0 e* y| eR¥| xy,2eR}.
0 0 1

Then Sol® has a natural differentiable structure determined by the
global coordinate ¢ : Sol®> — R? with

e 0 =z
o: 10 7 y|—(x,y,2).
0 0 1

It is easily seen that if % is the standard matrix multiplication, then
(Sol3, %) is a Lie group.
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Example 2.30. The set of invertible real m x m matrices
GL,,(R) = {4 € R™™| det A # 0}

equipped with the standard matrix multiplication has the structure of
a Lie group. It is called the real general linear group and its neutral
element e is the identity matrix. The subset GL,,(R) of R™*™ is open
so dim GL,,(R) = m?.

As a subgroup of GL,,(R) we have the real special linear group
SL,,(R) given by

SL,,(R) = {A € R™™| det A =1}.

We will show in Example 3.13 that the dimension of the submanifold
SL,,(R) of R™™ is m? — 1.

Another subgroup of GL,,(R) is the orthogonal group

O(m) ={A e R™™| A'A =e}.
As we have already seen in Example 2.15 the dimension of O(m) is
m(m —1)/2.
As a subgroup of O(m) and SL,,(R) we have the special orthog-
onal group SO(m) which is defined as

SO(m) = O(m) N SLy,(R).

It can be shown that O(m) is diffeomorphic to SO(m) x O(1), see
Exercise 2.9. Note that O(1) = {1} so O(m) can be seen as two
copies of SO(m). This means that

dim SO(m) = dim O(m) = m(m — 1)/2.
Example 2.31. The set of invertible complex m x m matrices
GL,,(C) ={A € C™™| det A # 0}

equipped with the standard matrix multiplication has the structure of
a Lie group. It is called the complex general linear group and its
neutral element e is the identity matrix. The subset GL,,(C) of C"™*™
is open so dim(GL,,(C)) = 2m?.

As a subgroup of GL,,(C) we have the complex special linear
group SL,,(C) given by

SL,,(C) ={A e C™™| det A =1}.

The dimension of the submanifold SL,,(C) of C™*™ is 2(m? — 1).

Another subgroup of GL,,(C) is the unitary group U(m) given
by

U(m) = {A e C™™ A'A =e}.
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Calculations similar to those for the orthogonal group show that the
dimension of U(m) is m?.

As a subgroup of U(m) and SL,,(C) we have the special unitary
group SU(m) which is defined as

SU(m) = U(m) N SL,,(C).
It can be shown that U(1) is diffeomorphic to the circle S* and that

U(m) is diffeomorphic to SU(m) x U(1), see Exercise 2.9. This means
that dim SU(m) = m? — 1.

For the rest of this manuscript we shall assume, when not
stating otherwise, that our manifolds and maps are smooth
i.e. in the C'*-category.
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Exercises
Exercise 2.1. Find a proof for Proposition 2.7.
Exercise 2.2. Find a proof for Proposition 2.9.

Exercise 2.3. Let S' be the unit circle in the complex plane C
given by S = {z € C| |z|*> = 1}. Use the maps = : C\ {i} — C and
y:C\ {—i} — C with
1+ 2z 14z
1+iz V7T
to show that S is a 1-dimensional submanifold of C = R2.

Tzt

Exercise 2.4. Use the implicit function theorem to show that the
m-dimensional torus
T ={2€C"| |z| = = |zm| = 1}
is a differentiable submanifold of C™ = R?™.

Exercise 2.5. Find a proof of Proposition 2.17.

Exercise 2.6. Equip the real liqe R with the standard topology
and for each odd integer k € Z™ let A, be the C¥-structure defined on
R by the atlas

Prove that the differentiable structures .,[lk are all different but that the
differentiable manifolds (R, Ay) are all diffeomorphic.

Exercise 2.7. Prove that the 2-dimensional sphere S? as a djffer—
entiable submanifold of the standard R? and the Riemann sphere C are
diffeomorphic.

Exercise 2.8. Find a proof of Proposition 2.22.

Exercise 2.9. Let the spheres S, S3 and the Lie groups SO(n),
O(n), SU(n), U(n) be equipped with their standard differentiable
structures introduced above. Use Proposition 2.22 to prove the fol-
lowing diffeomorphisms

St~ S80(2), S*=~SU(2),
SO(n) x O(1) 2 O(n), SU(n) x U(1) = U(n).
Exercise 2.10. Find a proof of Corollary 2.25.

Exercise 2.11. Let (G, *) and (H, -) be two Lie groups. Prove that
the product manifold G x H has the structure of a Lie group.



CHAPTER 3

The Tangent Space

In this chapter we introduce the notion of the tangent space 7, M of
a differentiable manifold M at a point p € M. This is a vector space of
the same dimension as M. We start by studying the standard R™ and
show how a tangent vector v at a point p € R™ can be interpreted as
a first order linear differential operator, annihilating constants, when
acting on real valued functions locally defined around p.

Let R™ be the m-dimensional real vector space with the standard
differentiable structure. If p is a point in R™ and v : I — R™ is a
Cl-curve such that v(0) = p then the tangent vector

5(0) = iy 1070

t—0
of v at p is an element of R™. Conversely, for an arbitrary element v
of R™ we can easily find a curve v : I — R™ such that y(0) = p and
4(0) = v. One example is given by
y:it—p+t-v.
This shows that the tangent space, i.e. the space of tangent vectors,
at the point p € R™ can be identified with R™.

We shall now describe how first order differential operators annihi-
lating constants can be interpreted as tangent vectors. For a point p
in R™ we denote by £(p) the set of differentiable real-valued functions
defined locally around p. Then it is well known from multi-variable
analysis that if v € R™ and f € ¢(p) then the directional derivative
0,f of f at p in the direction of v is given by
flp+tv) — f(p)

; )
Furthermore the operator 0 has the following properties:

DA fHpu-g) = XN-0uf+p-0yg,
Ou(f-g) = Ouf -g(p)+ f(p)- Ouy,
Do f = A Ouf + - Duf
forall \, u € R, v,w € R™ and f, g € £(p).

onf = iy

21
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Definition 3.1. For a point p in R™ let T,R™ be the set of first
order linear differential operators at p annihilating constants i.e. the
set of mappings « : e(p) — R such that

() a(A-f+p-g)=A-a(f)+p-ag),
(i) a(f - g) = a(f) - g(p) + f(p) - a(g)
for all \, p € R and f,g € e(p).

The set of diffential operators 7,R™ carries the structure of a real
vector space. This is given by the addition + and the multiplication -
by real numbers satisfying

(a+0)(f) = a(f)+B(f),
(A-a)(f) = A-alf)
for all a, 5 € T,R™, f € e(p) and X\ € R.

The above mentioned properties of the operator 0 show that we
have a well defined linear map ® : R™ — T, R™ given by

D v 0,.

Theorem 3.2. For a point p in R™ the linear map ® : R™ — T,R™
defined by ® : v+ 0, is a vector space isomorphism.

PROOF. Let v,w € R™ such that v # w. Choose an element u €
R™ such that (u,v) # (u,w) and define f: R™ — R by f(z) = (u, z).
Then 0,f = (u,v) # (u,w) = Oy f so 0, # 0y. This proves that the
map P is injective.

Let a be an arbitrary element of T,R™. For k = 1,...,m let & :
R™ — R be the map given by

T (X1, ) — T

and put vx = (). For the constant function 1: (xq,...,2,,) — 1 we
have

al)=a(l-1)=1-a(l)+1-a(l)=2-a(1),

so a(l) = 0. By the linearity of « it follows that «a(c) = 0 for any
constant ¢ € R. Let f € ¢(p) and following Lemma 3.3 locally write

fl@) = F(p)+ Y (@) = pr) - v(2),
where 1y, € e(p) with
Ulo) = 50,
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We can now apply the differential operator o € T,R™ and yield

a(f) = olf(p)+ Zm — pr) - k)
k=
= +ZOZ (2 — pr) +Z a(yr)
=1 k=1
_ N, 9
= Zlﬂka—mk
= ava

where v = (vy,...,v,,) € R™. This means that ®(v) = 9, = « so the
map ¢ : R™ — T,R™ is surjective and hence a vector space isomor-
phism. U

Lemma 3.3. Let p be a point in R™ and f : U — R be a function
defined on an open ball around p. Then for each k = 1,2,...,m there
exist functions iy, : U — R such that

[0 = £6) + Yo =) - ale) and (0) = 220)

forallx € U.

PRrooFr. It follows from the fundamental theorem of calculus that

f@) ~ Fp) = /at (0 + 1 — )t

= +t(x — p))dt.
;m pk /kap $ P))

The statement then immediately follows by setting

Z/‘§L@+Nw—MMt
0o Ok
O

Let p be a point in R™, v € R™ be a tangent vector at p and
f : U — R be a C'-function defined on an open subset U of R™
containing p. Let v : I — U be a curve such that y(0) = p and
4(0) = v. The identification given by Theorem 3.2 tells us that v acts
on f by

v(f) = 2 (foy())li=o = dfp(7(0)) = {gradf,, 7(0)) = (gradfy, v).
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Note that the real number v(f) is independent of the choice of the
curve 7 as long as v(0) = p and §(0) = v. As a direct consequence of
Theorem 3.2 we have the following useful result.

Corollary 3.4. Let p be a point in R™ and {ex| k =1,...,m} be
a basis for R™. Then the set {0, | k = 1,...,m} is a basis for the
tangent space T,R™ at p.

We shall now use the ideas presented above to generalize to the
manifold setting. Let M be a differentiable manifold and for a point
p € M let e(p) denote the set of differentiable functions defined on an
open neighborhood of p.

Definition 3.5. Let M be a differentiable manifold and p be a
point on M. A tangent vector X, at p is a map X, : £(p) — R such
that

(i) XpO"f‘i‘,u'g):)"Xp(f)+M'Xp(g)7
(ii) Xp(f g) = Xp(f) ~g(p) + f(p) - Xp(Q)

forall A\, u € Rand f,g € (p). The set of tangent vectors at p is called
the tangent space at p and denoted by 7, M.

The tangent space T, M of M at p has the structure of a real vector
space. The addition + and the multiplication - by real numbers are
simply given by

(X, + %)) = X,(F) + Y(f),
(/\ ) Xp)(f) = A Xp(f)
for all X,,,Y, € T,M, f € e(p) and A € R.
Definition 3.6. Let ¢ : M — N be a differentiable map between

manifolds. Then the differential d¢, of ¢ at a point p in M is the
map doy, : T,M — T4,y N such that for all X, € T,M and f € e(¢(p))

(d¢p(Xp))(f) = Xp(f 0 Q).

We shall now give some motivations for the above definitions and
hopefully convince the reader that they are not only abstract nonsense.

Proposition 3.7. Let ¢ : M — N and ) : N — N be differentiable
maps between manifolds, then for each p € M we have
(i) the map doy, : T,M — Ty N is linear,
(ii) of idyr - M — M is the identity map, then d(idy), = idp,u,
(ili) d(v 0 ¢)p = diby(y) © depp.
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ProOOF. The only non-trivial statement is the relation (iii) which
is called the chain rule. If X, € T,M and f € (¢ o ¢(p)), then

(dbop) © dpp)(Xp)(f) = (Ao (ddp(Xp)))(f)
= (dop(Xp))(f o)
= Xp(fovog)
= d(¥ 0 9)(Xp)(f)-
0

Corollary 3.8. Let ¢ : M — N be a diffeomorphism with inverse
Y =¢ ' N — M. Then the differential d¢, : T,M — Ty, N at p is
bijective and (dg,) ™ = dipy(y).

PRrOOF. The statement is a direct consequence of the following re-
lations

dpg(p) © dop = d(p 0 @), = d(idm), = idm,m1,
dop © dipyp) = d(¢ 0 )y = d(idn)e(p) = idz,, N
0

We are now ready to prove the following interesting theorem. This
is of course a direct generalization of the corresponding result in the
classical theory for surfaces in R3.

Theorem 3.9. Let M™ be an m-dimensional differentable manifold
and p be a point in M. Then the tangent space T,M at p is an m-
dimensional real vector space.

PROOF. Let (U,z) be a chart on M. Then the linear map dz, :
TyM — T, R™ is a vector space isomorphism. The statement now
follows from Theorem 3.2 and Corollary 3.8. U

Let M be an m-dimensional manifold and (U, x) be a local chart
around p € M. Then the differential dz, : T,M — T,;,R™ is a
bijective linear map so for a given element X, € T,M there exists
a tangent vector v in R™ such that dz,(X,) = v. The image z(U)
is an open subset of R™ containing z(p) so we can find a curve c¢ :
(—e€,€) — z(U) with ¢(0) = z(p) and ¢(0) = v. Then the composition
vy=z"1loc: (—€¢€) — Uisacurve in M through p since v(0) = p.
The element d(x'),()(v) of the tangent space T,M denoted by +(0)
is called the tangent to the curve v at p. It follows from the relation

¥(0) = d(xA)w(p)(U) =X,
that the tangent space T, M can be thought of as the set of all tangents
to curves through the point p.
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If f:U — Ris a C'function defined locally on U then it follows
from Definition 3.6 that

Xp(f) = (dzp(X,))(fox™)

d
= S(foroelt))es
d
= LoDl
It should be noted that the value X,(f) is independent of the choice
of the chart (U, z) around p and the curve ¢ : I — z(U) as long as
7(0) = p and 4(0) = X,. This leads to the following construction.

Proposition 3.10. Let M™ be a differentiable manifold, (U, x) be
a local chart on M and {ex| k = 1,...,m} be the canonical basis for
R™. For an arbitrary point p in U we define (%)p in T,M by
O L0
8xk p 8xk
Then the set

(p) = O, (f oz ") (2(p)).

0
{(a—mk)p | k:—l,2,...,m}

is a basis for the tangent space T,M of M at p.

PROOF. The local chart x : U — x(U) is a diffeomorphism and the
differential (dz™1),() : ToR™ — T,M of the inverse 2! : 2(U) — U
satisfies

(A )o@ )(f) = e(fox™)(x(p))
= (i)pm

ox k
for all f € e(p). The statement is then a direct consequence of Corollary
3.4. O

We shall now determine the tangent spaces of some of the explicit
differentiable manifolds introduced in Chapter 2. We start with the
sphere.

Example 3.11. Let v : (—€,e) — S™ be a curve into the m-
dimensional unit sphere in R™*! with v(0) = p and §(0) = v. The
curve satisfies

(v(1),7(8) =1
and differentiation yields

(Y87 () + (1), 4(2)) = 0.
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This means that (v,p) = 0 so every tangent vector v € T,5™ must be
orthogonal to p. On the other hand if v # 0 satisfies (v,p) = 0 then
v: R — S™ with
v it cos(t|v|) - p+ sin(t|v|) - v/|v|
is a curve into S™ with 7(0) = p and 4(0) = v. This shows that the
tangent space 1,5™ is actually given by
T,8™ = {v € R™| (p,v) = 0}.

In order to determine the tangent spaces of the classical Lie groups
we need the differentiable exponential map Exp : C™*™ — C™*"™ for
matrices given by the following converging power series

Exp: X — Z o
k=0

For this map we have the following well-known result.

Proposition 3.12. Let Exp : C™*™ — C™*™ be the exponential

map for matrices. If X, Y € C™ ™ then
(i) det(Exp(X)) = exp(traceX),
(i) Exp(X?) = EXp(X)t, and
(iii) Exp(X +Y) = Exp(X)Exp(Y) whenever XY =Y X.

PROOF. See Exercise 3.2 O

The real general linear group GL,,(R) is an open subset of R™*™
so its tangent space 1,GL,,(R) at any point p is simply R™*™. The
tangent space T.SL,,(R) of the special linear group SL,,(R) at the
neutral element e can be determined as follows.

Example 3.13. If X is a matrix in R™*™ with traceX = 0 then
define a curve A : R — R™*"™ by

A:s— Exp(sX).
Then A(0) = e, A(0) = X and
det(A(s)) = det(Exp(sX)) = exp(trace(sX)) = exp(0) = 1.

This shows that A is a curve into the special linear group SL,,(R) and
that X is an element of the tangent space T.SL,,(R) of SL,,(R) at the
neutral element e. Hence the linear space

{X € R™™| traceX = 0}

of dimension m? — 1 is contained in the tangent space T,SL,,(R).
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The curve given by s — Exp(se) = exp(s)e is not contained in
SL,,(R) so the dimension of T,SL,,(R) is at most m* — 1. This shows
that

T.SL,,(R) = {X € R™™| traceX = 0}.

Example 3.14. Let A : (—¢,¢) — O(m) be a curve into the or-
thogonal group O(m) such that A(0) = e. Then A(s)"A(s) = e for all
s € (—e¢,€) and differentiation yields

{A(s)'A(s) + A(5) A(5) }s=0 = 0

or equivalently A(0)* + A(0) = 0. This means that each tangent vector
of O(m) at e is a skew-symmetric matrix.
On the other hand, for an arbitrary real skew-symmetric matrix X
define the curve B : R — R™*™ by B : s +— Exp(sX). Then
B(s)'B(s) = Exp(sX)'Exp(sX)
= Exp(sX")Exp(sX)
— Exp(s(X' + X))
= Exp(0)

o

This shows that B is a curve on the orthogonal group, B(0) = e and

B(0) = X so X is an element of 7,0(m). Hence
T.0(m) ={X e R™"| X'+ X = 0}.

The dimension of 7.0(m) is therefore m(m — 1)/2. This confirms
our calculations of the dimension of O(m) in Example 2.15 since we
know that dim(O(m)) = dim(7.0(m)). The orthogonal group O(m) is
diffeomorphic to SO(m) x {£1} so dim(SO(m)) = dim(O(m)) hence

T,S0(m) = T,0(m) = {X e R™*"™| X' + X = 0}.
We have proved the following result.

Proposition 3.15. Let e be the neutral element of the classical
real Lie groups GL,,(R), SL,,(R), O(m), SO(m). Then their tangent
spaces at e are given by

T.GL,,(R) = R™™
) = {X € R™™| traceX =0}
T.0(m) = {X e R™™| X+ X = 0}
(m) = T.0(m)NTSL,,(R)=T.0(m)
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For the classical complex Lie groups similar methods can be used
to prove the following.

Proposition 3.16. Let e be the neutral element of the classical
complez Lie groups GL,,(C), SL,,(C), U(m), and SU(m). Then their
tangent spaces at e are given by

T.GL,,(C) = C™™
T.SL,,(C) = {Z e C™™| traceZ =0}
T.U(m) = {ZeC™™ Z'+Z =0}
T.8U(m) = T.,U(m)N7TSL,,(C).

PROOF. See Exercise 3.4 O

The rest of this chapter is devoted to the introduction of special
types of differentiable maps, the so called immersions, embeddings and
submersions. If vy : (—€,€) — M is a curve on M such that v,,(0) = p
then a differentiable map ¢ : M — N takes ), to a curve

YN =¢oym:(—€¢€) = N
on N with y5(0) = ¢(p). The interpretation of the tangent spaces

given above shows that the differential d¢, : T,M — T4, N of ¢ at p
maps the tangent 4,,(0) at p to the tangent 45 (0) at ¢(p) i. e.

dep((0)) = 4w (0).

Definition 3.17. A differentiable map ¢ : M — N between man-
ifolds is said to be an immersion if for each p € M the differential
do, : T,M — T,u) N is injective. An embedding is an immersion
¢ : M — N which is a homeomorphism onto its image ¢(M).

For positive integers m,n with m < n we have the inclusion map
¢ : R™H — R given by

¢ (T, Tmr1) — (21, Tine1, 0, ..., 0).

The differential d¢, at x is injective since d¢,(v) = (v,0). The map
¢ is obviously a homeomorphism onto its image ¢(R™"!) hence an
embedding. It is easily seen that even the restriction ¢|gm : S™ — S™
of ¢ to the m-dimensional unit sphere S™ in R™*! is an embedding.

Definition 3.18. Let M be an m-dimensional differentiable man-
ifold and U be an open subset of R™. An immersion ¢ : U — M is
called a local parametrization of M.

If M is a differentiable manifold and (U, z) a chart on M then the
inverse ! : x(U) — U of z is a parametrization of the subset U of M.
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Example 3.19. Let S* be the unit circle in the complex plane C.
For a non-zero integer k € Z define ¢, : S' — C by ¢, : z +— z*. For a
point w € St let 7, : R — S be the curve with 7, : t + we. Then
Yw(0) = w and 4,,(0) = dw. For the differential of ¢ we have

(A1) (30(0) = L (01070 (D)lico = 5 (whe™) g = ki

This shows that the differential (d¢y)y : TwS' = R — T,xC = R? is
injective, so the map ¢y is an immersion. It is easily seen that ¢y is an
embedding if and only if £ = +1.

Example 3.20. Let ¢ € S? be a quaternion of unit length and
¢y : S' — S3 be the map defined by ¢, : z — qz. For w € S! let
Yo : R — ST be the curve given by 7, (t) = we®. Then 7,(0) = w,
Y (0) = iw and ¢y(7,(t)) = qwe™. By differentiating we yield

46,(30(0)) = (0, (D) ico = - (que) oo = gt

Then |d¢,(7,(0))| = |qwi| = |g||w| = 1 implies that the differential d¢,
is injective. It is easily checked that the immersion ¢, is an embedding.

In the next example we construct an interesting embedding of the
real projective space RP™ into the vector space Sym(R™*1) of the real
symmetric (m + 1) x (m + 1) matrices.

Example 3.21. Let m be a positive integer and S™ be the m-
dimensional unit sphere in R™*!. For a point p € S™ let

L, = {\p e R™"| X e R}

be the line through the origin generated by p and p, : R™*! — R™! be
the reflection about the line L,. Then p, is an element of End(R™*!)
i.e. the set of linear endomorphisms of R™! which can be identified
with Rm+)x(m+1) = Tt ig easily checked that the reflection about the
line L, is given by
Ppq— 2(¢,p)p —q.
It then follows from the equations
po(@) = 2(¢,p)p — q = 2p(p, @) — a = (2pp" — €)q

that the matrix in R(m+D*m+D corresponding to p, is just

(2pp’ —e).
We shall now show that the map ¢ : S™ — RTD)x(m+D) given by

¢:ppp
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is an immersion. Let p be an arbitrary point on S™ and o, 5 : [ — S™
be two curves meeting at p, that is a(0) = p = 4(0), with a = &(0)

and b = 3(0). For v € {«, 5} we have

poy it (q— 2(q,v(t)y(t) —q)
, d
(do)p(7(0)) = a(cb 0 y(t))]e=0
= (g 2(q,7(0))7(0) + 2(g,7(0))7(0)).

This means that

dey(a) = (¢ — 2{q,a)p + 2{q, p)a)
and

dey(b) = (g — 2{q,b)p + 2(q, p)b)-
If a # b then do,(a) # d¢,(b) so the differential d¢, is injective, hence
the map ¢ : 8™ — RMTDX(m+D) i an immersion.

If the points p,q € S™ are linearly independent, then the lines
L, and L, are different. But these are just the eigenspaces of p, and
pq with the eigenvalue +1, respectively. This shows that the linear
endomorphisms p,, p, of R™! are different in this case.

On the other hand, if p and ¢ are parallel then p = £q hence
pp = pq- This means that the image ¢(S™) can be identified with the
quotient space S™/ = where = is the equivalence relation defined by

r =1y if and only if x = +y.

This of course is the real projective space RP™ so the map ¢ induces
an embedding ¢ : RP™ — Sym(R™"1) with

¥ [p] = pp.
For each p € S™ the reflection p, : R™* — R™*! about the line L,
satisfies

Pp - ,0; =c.
This shows that the image ¥ (RP™) = ¢(S™) is not only contained in

the linear space Sym(R™*!) but also in the orthogonal group O(m+1)
which we know is a submanifold of R(m+1)x(m+1)

The following result was proved by Hassler Whitney in his famous
paper, Differentiable Manifolds, Ann. of Math. 37 (1936), 645-680.

Deep Result 3.22. For 1 < r < oo let M be an m-dimensional
C"-manifold. Then there exists a C"-embedding ¢ : M — R*™*1 into
the (2m + 1)-dimensional real vector space R*™+1,
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The classical inverse function theorem generalizes to the manifold
setting as follows.

Theorem 3.23 (The Inverse Function Theorem). Let ¢ : M — N
be a differentiable map between manifolds with dim M = dim N. If
p 1s a point i M such that the differential do, : TyM — Ty, N at
p 18 bijective then there exist open neighborhoods U, around p and U,
around q = ¢(p) such that ¢ = ¢ly, : U, — Uy is bijective and the
inverse ¢~ : U, — U, is differentiable.

PROOF. See Exercise 3.8 O

We shall now generalize the classical implicit function theorem to
manifolds. For this we need the following definition.

Definition 3.24. Let m,n be positive natural numbers and ¢ :
N"™ — M™ be a differentiable map between manifolds. A point p € N
is said to be critical for ¢ if the differential

d¢p . TpN — T¢(p)M

is not of full rank, and regular if it is not critical. A point ¢ € ¢(N) is
said to be a regular value of ¢ if every point of the pre-image ¢~'({q})
of {¢} is regular and a critical value otherwise.

Theorem 3.25 (The Implicit Function Theorem). Let ¢ : N* —
M™ be a differentiable map between manifolds such that n > m. If
q € ¢(N) is a reqular value, then the pre-image ¢~ ({q}) of q is an
(n—m)-dimensional submanifold of N". The tangent space T, ({q})
of 97*({q}) at p is the kernel of the differential do, i.e. T,0~*({q}) =
Ker dg,.

PrOOF. Let (V,,1,) be a chart on M with ¢ € V, and ,(q) = 0.
For a point p € ¢~'({q}) we choose a chart (U,,1,) on N such that
p € Uy, ¥,(p) =0 and ¢(U,) C V;. The differential of the map

6=ty d0v, u,w, : Up(U,) — R™
at the point 0 is given by
doy = (dibg)g 0 dey o (do, )o : TYR™ — TyR™.

The pairs (U, 1,) and (V,, 1,) are charts so the differentials (dv,), and

(dwp_ D)o are bijective. This means that the differential d$0 is surjective
since d¢, is. It then follows from the implicit function theorem 2.12
that v, (¢~ ({g})NU,) is an (n—m)-dimensional submanifold of v,(U,,).
Hence ¢~*({g})NU, is an (n —m)-dimensional submanifold of U,. This
is true for each point p € ¢~'({q}) so we have proven that ¢~ ({q}) is
an (n — m)-dimensional submanifold of N™.
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Let v : (—€,¢) — ¢ ({¢}) be a curve, such that v(0) = p. Then

(d9)p(3(0)) = (6 01 (B)limo = 1m0 = 0.

This implies that T,¢~'({q}) is contained in and has the same dimen-
sion as the kernel of d¢,, so T,¢~'({q}) = Ker dg,. O

Definition 3.26. For positive integers m,n with n > m a map
¢ : N* — M™ between two manifolds is said to be a submersion if
for each p € N the differential d¢, : T,N — Ty, M is surjective.

If m,n € N such that n > m then we have the projection map
m: R — R™ given by 7 : (z1,...,2,) — (21,...,2y). Its differential
dr, at a point x is surjective since

dm,(v1, ... 0,) = (U1, .., Up)-
This means that the projection is a submersion. An important sub-
mersion between spheres is given by the following.

Example 3.27. Let S% and S? be the unit spheres in C? and C x
R = R3, respectively. The Hopf map ¢ : S3 — S? is given by
¢ (x,y) = (227, x> — |y[?).
The map ¢ and its differential d¢, : T,5% — Ty, S? are surjective for
each p € S3. This implies that each point ¢ € S? is a regular value and

the fibres of ¢ are 1-dimensional submanifolds of S®. They are actually
the great circles given by

¢~ ({227, 2] — |y)}) = {”(2,y)| 0 € R}.
This means that the 3-dimensional sphere S? is a disjoint union of great

circles
= J o '{a}).

qes?
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Exercises

Exercise 3.1. Let p be an arbitrary point on the unit sphere S$?"+!
of C"*! = R?"*2 Determine the tangent space 7,5%" ™! and show that
it contains an n-dimensional complex subspace of C"*!.

Exercise 3.2. Find a proof for Proposition 3.12.

Exercise 3.3. Prove that the matrices

10 0 —1 01
a=(o ) = (1) w=(1)

form a basis for the tangent space T.SLs(R) of the real special linear
group SLy(R) at e. For each k = 1,2, 3 find an explicit formula for the
curve 7, : R — SLy(R) given by

e o s — Exp(sXy).
Exercise 3.4. Find a proof for Proposition 3.16.

Exercise 3.5. Prove that the matrices

0 —1 0 i i 0
A=V 0) a=(To) a=(o 5

form a basis for the tangent space T,SU(2) of the special unitary group
SU(2) at e. For each k = 1,2,3 find an explicit formula for the curve
v : R — SU(2) given by

Ve o s — Exp(sZg).

Exercise 3.6. For each k € Ny define ¢ : C — C and ¢, : C* —
C by ¢, r : 2z — 2F. For which k& € Ny are ¢y, immersions,
submersions or embeddings.

Exercise 3.7. Prove that the map ¢ : R™ — C™ given by
G (z1,. .. 2m) — (€7, .., e"m)
is a parametrization of the m-dimensional torus 7™ in C™.
Exercise 3.8. Find a proof for Theorem 3.23.

Exercise 3.9. Prove that the Hopf-map ¢ : S — S? with ¢ :
(z,y) — (227, |z|* — |y|?) is a submersion.



CHAPTER 4

The Tangent Bundle

In this chapter we introduce the tangent bundle T'M of a differ-
entiable manifold M. Intuitively, this is the object that we get by
glueing at each point p of M the corresponding tangent space T,M.
The differentiable structure on M induces a differentiable structure on
the tangent bundle T'M turning it into a differentiable manifold.

We have already seen that for a point p € R™ the tangent space
T,R™ can be identified with the m-dimensional vector space R™. This
means that if we at each point p € R™ glue T,R™ to R™ we yield the
so called tangent bundle of R™

TR™ = {(p,v)| p e R™, v € T,R™}.
For this we have the natural projection 7 : TR™ — R™ defined by

™ (p,v) = p
and for a point p € M the fibre 7=1({p}) over p is precisely the tangent
space T,R™ at p.
Classically, a vector field X on R™ is a smooth map X : R™ — R™

but we would like to view it as a map X : R™ — TR™ into the tangent
bundle and with abuse of notation write

X :p— (p, X(p)).
Following Proposition 3.10 two vector fields X,Y : R™ — TR™ can be

written as
" 0
X = — d Y= b
Zk_l W or, M Z kaxk

where ay, b, : R™ — R are smooth functlons defined on R™. If f :
R™ — R is another such function the commutator [ X, Y] acts on f as
follows:

XYI) = X)) - VX))
= 3 (g (i) — b () ()

—1 T 81’[ &r;k

-
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o b, H2
e a,k,——

aib
k=1 8.I'k ox X laxkaxl

da; O 0?
~big g~ g ) ()

= (gt~ g (G

ox
k=1 k

This shows that the commutator [X, Y] is a smooth vector field on R™.

We shall now generalize to the manifold setting. This leads us first
to the following notion of a topological vector bundle.

Definition 4.1. Let £ and M be topological manifolds and 7 :
E — M be a continuous surjective map. The triple (E, M, ) is called
an n-dimensional topological vector bundle over M if

(i) for each p € M the fibre E, = 7—!({p}) is an n-dimensional
vector space,

(i) for each p € M there exists a bundle chart (7~1(U), 1) con-
sisting of the pre-image 7~ (U) of an open neighbourhood U
of p and a homeomorphism ¢ : 7~ 1(U) — U x R" such that
for all ¢ € U the map ¢, = ¥|g, : B, — {q} x R is a vector
space isomorphism.

A continuous map o : M — FE is called a section of the bundle
(E,M,r) if moo(p) = p for each p € M.

Definition 4.2. A topological vector bundle (E, M, ) over M, of
dimension n, is said to be trivial if there exists a global bundle chart
v E— M xR™

If n is a positive integer and M is a topological manifold then we
have the n-dimensional vector bundle (M x R™, M, ) where
m:MxR"— M
is the projection map 7 : (p,v) — p. The identity map ¢ : M x R" —
M x R™ is a global bundle chart so the bundle is trivial.

Definition 4.3. Let (F, M, 7) be an n-dimensional topological vec-
tor bundle over M. A collection

B={(r"(Va),¥a)| @ € I}

of bundle charts is called a bundle atlas for (E, M, n) if M = U,U,
and for «, 3 € I there exists a map A, 3 : Uy N Uz — GL,(R) such
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that the corresponding continuous map
¢B O 1/}(;1|(UQOU@)><R7L . (Ua ﬂ UB) X Rn — (Ua ﬂ U/@) X Rn

is given by
(P, 0) = (p, (Aap(p)) (V).

The elements of {A, 3| o, 3 € I} are called the transition maps of
the bundle atlas B.

Definition 4.4. Let F and M be differentiable manifolds and 7 :
E — M be a differentiable map such that (E, M, ) is an n-dimensional
topological vector bundle. A bundle atlas B for (E, M, 7) is said to be
differentiable if the corresponding transition maps are differentiable. A
differentiable vector bundle is a topological vector bundle together
with a maximal differentiable bundle atlas. By C*°(FE) we denote the
set of all smooth sections of (E, M, ).

From now on we shall assume, when not stating otherwise,
that all our vector bundles are smooth.

Definition 4.5. Let (E, M, ) be a vector bundle over a manifold
M. Then we define the operations + and - on the set C°°(FE) of smooth
sections of (E, M, ) by

(i) (v+w), = v, + wy,

(i) (f-0)p = F(p) - vp
for all v,w € C*(E) and f € C>*°(M). If U is an open subset of M
then a set {vy,...,v,} of smooth sections vy,...,v, : U — E on U is
called a local frame for E if for each p € U the set {(v1)p, ..., (vn)p}
is a basis for the vector space E,.

With the above defined operations C*°(E) becomes a module over
C*(M) and in particular a vector space over the real numbers as the
constant functions in C*°(M).

Example 4.6. Let M™ be a differentiable manifold with maximal
atlas A. Define the set T'M by

TM ={(p,v)|pe M, veT,M}
and let m: T'M — M be the projection map satisfying
™ (p,v) = p.

Then the fibre 77({p}) over a point p € M is the m-dimensional tan-
gent space T,M. The triple (T'M, M, ) is called the tangent bundle
of M.
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We shall now equip T'M with the structure of a smooth manifold.
For every local chart x : U — R™ from the maximal atlas A of M we
define a local chart

r* 7Y (U) — R™ x R™
on the tangent bundle T'M by the formula

m

ﬁ;@iﬁ“%ﬁﬁH@@mew%»

k=1
Proposition 3.10 shows that the map x* is well-defined. The collection

{(z*) Y (W) c TM| (U,z) € A and W C z(U) x R™ open}

is a basis for a topology T7y; on TM and (7~'(U), z*) is a chart on the
2m-dimensional topological manifold (T'M, Zry).

If (U,z) and (V,y) are two charts in A such that p € U NV then
the transition map
(y)o(z*) ' a*(x (UNV)) = R™ x R™
is given by

oy, 8m_
(a,b) — (yoa~ Z&ZZ Ha)bg, - - Zaik Ha))br).

Since we are assuming that y o 7! is differentiable it follows that
(y*) o (x*)~! is also differentiable. This means that

A" = {(@'(U),a")| (U,x) € A}

is a C"-atlas on TM so (TM ,.,/4\*) is a differentiable manifold. It is
trivial that the surjective projection map 7 : TM — M is differentiable.

We shall now describe how the tangent bundle (T'M, M, ) can be
given the structure of a differentiable vector bundle. For each point
p € M the fibre 77({p}) is the tangent space T,M and hence an m-
dimensional vector space. For a local chart x : U — R™ in the maximal
atlas A of M we define z : 7 1(U) — U x R™ by

m

P50 Y 0n(),) e o)

k=1

The restriction Z, = Z|r,a : T,M — {p} x R™ to the tangent space
T,M is given by

= 0
j;p : ka(a_xk)[' — (Ul, e ,Um),
k=1
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so it is a vector space isomorphism. This implies that the map
10N U) - UxR™
is a local bundle chart. It is not difficult to see that
B={(n"'(U),7)| (U,z) € A}

is a bundle atlas turning (7'M, M, ) into an m-dimensional topological
vector bundle, see Exercise 4.1. It immediately follows from above that
(TM, M, ) together with the maximal bundle atlas B defined by B is
a differentiable vector bundle.

Definition 4.7. Let M be a differentiable manifold, then a section
X : M — TM of the tangent bundle is called a vector field. The set
of smooth vector fields X : M — TM is denoted by C>*(T'M).

Example 4.8. We have seen earlier that the 3-sphere S® in H = C?
carries a group structure - given by

(z,w) - (o, B) = (2 — wf, 2B + wa).

This makes (S3,-) into a Lie group with neutral element e = (1,0).
Put v; = (4,0), v = (0,1) and v3 = (0,) and for k = 1,2, 3 define the
curves 7 : R — S with

g ot cost - (1,0) +sint - vg.

Then 7, (0) = e and 4 (0) = vi so vy, ve, v3 are elements of the tangent
space T,S5%. They are linearily independent so they generate 7,53
The group structure on S® can be used to extend vectors in 7,53 to
vector fields on S? as follows. For p € S3 let L, : S* — S? be the left
translation on S® by p given by L, : ¢ — p- . Then define the vector
fields X1, Xo, X5 € C>(T'S?) by

(Xi)p = (@Ly)elvk) = 5 (Lpou(B) =0

It is left as an exercise for the reader to show that at a point p =
(z,w) € S? the values of X}, at p is given by

(Xl)p = (va) ’ (270) = (?:Z, —ZUJ),

(XQ)p = (sz) ) (O’ 1) = (_wv Z)»

(X3)p, = (z,w)-(0,7) = (iw,iz).

Our next aim is to introduce the Lie bracket on the set of vector
fields C>(TM) on M.
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Definition 4.9. Let M be a smooth manifold. For two vector fields
X,Y € C*°(T'M) we define the Lie bracket [X,Y], : C>*°(M) — R of
X and Y at p € M by

(X, Y],(f) = Xp(Y(f)) = Yo (X(f))-

The next result shows that the Lie bracket [X,Y], actually is an
element of the tangent space 7, M.

Proposition 4.10. Let M be a smooth manifold, X,Y € C*(T M)
be vector fields on M, f,g € C°(M,R) and A\, u € R. Then

() [X.Y],(A- f+1-9) = A- [X.YI,(F) + - [X, Y], (9)
(i) [X,Y],(f - 9) = [X,Y]p,(f) - 9(p) + f(p) - [X,Y]p(9).
PRrOOF.
(X, Y],(Af + png)
Xp(Y(Af + 1g)) — Yo(X(Af + pg))
= AX(Y(f) + X, (Y(g) = AY,(X(f)) — 1Y, (X(9))
= AX,Y(f) + ulX, Y],(9)-

[X7Y]p( ) )
= X(Y(f-9)) = Yp(X(f-9))
= X(f-Y(9) +9-Y(f) = Yp(f - X(9) +9- X(f))
= Xp(N)Y,(9) + F(p)Xp(Y(9)) + Xp(9)Yp(f) + 9(p) Xp(Y (/)
Yo (1) Xo(9) = F(0)Yp(X(9)) = Yo(9) X, (f) = 9(p)Yp(X(F))
= Jp{X(Y(y )) Yo(X(9)} + 9 X (Y(f) = Yo (X ()}
X )

Proposition 4.10 implies that if X, Y are smooth vector fields on M
then the map [X,Y] : M — TM given by [X,Y] : p— [X,Y], is a
section of the tangent bundle. In Proposition 4.12 we shall prove that
this section is smooth. For this we need the following technical lemma.

Lemma 4.11. Let M™ be a smooth manifold and X : M — TM
be a section of TM. Then the following conditions are equivalent

(i) the section X is smooth,
(i) iof (U,z) is a chart on M then the functions ay,...,ay, : U — R
given by

n 0
X|U = Z“’“a_xk’
k=1

are smooth,
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(iii) if f: V — R defined on an open subset V of M is smooth, then
the function X (f):V — R with X(f)(p) = X,(f) is smooth.

PROOF. (i) = (ii): The functions ay, = w02 0 Xy : U —
TM — xz(U) x R™ — R are restrictions of compositions of smooth
maps so therefore smooth.

(11) = (vit): Let (U,x) be a chart on M such that U is contained
in V. By assumption the map

X(flv) = ; @ia—xi
is smooth. This is true for each such chart (U, x) so the function X (f)
is smooth.

(17i) = (i): Note that the smoothness of the section X is equivalent
to z* o X|y : U — R being smooth for all charts (U,x) on M. On
the other hand, this is equivalent to z} = 7, 0o 2* o X|y : U — R being
smooth for all k =1,2,...,2m and all charts (U,z) on M. It is trivial
that the coordinates xj, = x;, for k =1, ..., m are smooth. But = ., =
ar = X(xy) for k =1,...,m hence also smooth by assumption. O

Proposition 4.12. Let M be a manifold and X,Y € C*(TM) be
vector fields on M. Then the section [X,Y]: M — TM of the tangent
bundle given by [X,Y]: p— [X,Y], is smooth.

PrOOF. Let f : M — R be an arbitrary smooth function on M
then [X,Y](f) = X(Y(f)) — Y(X(f)) is smooth so it follows from
Lemma 4.11 that the section [X, Y] is smooth. O

For later use we prove the following useful result.
Lemma 4.13. Let M be a smooth manifold and [,] be the Lie
bracket on the tangent bundle T'M. Then
() [X.f-Y]= X()-Y + [ [X.Y]
for all XY € C®°(TM) and f € C*(M).
PRrROOF. If g € C*(M), then

(X, f-Yl(g) = X(f-Y(9)—f Y(X(9)
X(f)-Y(g)+ f-X(Y(g)— [ Y(X(9))
= (X(f)-Y+/f-[X,Y])(9)

This proves the first statement and the second follows from the skew-
symmetry of the Lie bracket. O
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Definition 4.14. A real vector space (V,+,:) equipped with an
operation [,] : V. x V — V is said to be a real Lie algebra if the
following relations hold

(i) MNX 4+ Y, Z] = N\ X, Z] + ulY, 7],

(i) [X,Y] = —[Y. X]

(iil) [X,[Y, Z]] + [Z,[X, Y]+ [V, [Z, X]] = 0
forall X|Y,Z € V and A\, u € R. The equation (iii) is called the Jacobi
identity.

Theorem 4.15. Let M be a smooth manifold. The vector space
C>(TM) of smooth vector fields on M equipped with the Lie bracket
] : C®(TM) x C®(TM) — C>*(TM) is a real Lie algebra.

PROOF. See exercise 4.4. O

If : M — N is a surjective map between differentiable manifolds
then two vector fields X € C®(TM), X € C*®°(TN) are said to be
¢-related if dg,(X) = Xy for all p € M. In that case we write
X =do(X).

Proposition 4.16. Let ¢ : M — N be a map between differentiable
manifolds, X, Y € C*(TM), X,Y € C*(TN) such that X = dp(X)
andY =do(Y). Then

[X,Y] = do([X,Y]).
PRrROOF. Let f: N — R be a smooth function, then

(X Y)(f) = do(X)(do(Y)(f)) — do(Y)(do(X)(f))
= X(do(Y)(f) o ¢) = Y(do(X)(f) 0 ®)
= X(Y(fo9))-Y(X(fo9))
= [X,Y](feo9)
= do([X,Y])(f).
O
Proposition 4.17. Let ¢ : M — N be a smooth bijective map

between differentiable manifolds. If XY € C(TM) are vector fields
on M, then

(i) dp(X) € C=(TN),
(i) the map d¢ : C°(T'M) — C*(TN) is a Lie algebra homomor-
phism i.e. [dp(X), do(Y)] = do([X,Y]).

PROOF. The fact that the map ¢ is bijective implies that d¢(X)
is a section of the tangent bundle. That d¢(X) € C*(TN) follows



directly from the fact that
dp(X)(f)(o(p)) = X (f o ¢)(p).

The last statement is a direct consequence of Proposition 4.16. 0

Definition 4.18. Let M be a smooth manifold. Two vector fields
X,Y € C*°(T'M) are said to commute if [X,Y] = 0.

Let (U, z) be local coordinates on a manifold M and let
0
{5
Tk
be the induced local frame for the tangent bundle. For k =1,2,... m

the vector field 0/0xy is z-related to the constant coordinate vector
field e; in R™. This implies that

9 9
ka’ 8951

Hence the local frame fields commute.

| k=1,2,...,m}

da([ ]) = lex, e = 0.

Definition 4.19. Let GG be a Lie group with neutral element e. For
p € G let L, : G — G be the left translation by p with L, : ¢ — pg. A
vector field X € C*(TG) is said to be left invariant if dL,(X) = X
for all p € G, or equivalently, X,, = (dL,),(X,) for all p,¢q € G. The
set of all left invariant vector fields on G is called the Lie algebra of
G and is denoted by g.

The Lie algebras of the classical Lie groups introduced earlier are
denoted by gl,,(R), si,(R), o(m), so(m), gl,,(C), s,,(C), u(m) and
su(m), respectively.

Proposition 4.20. Let G be a Lie group and g be the Lie algebra
of G. Then g is a Lie subalgebra of C>*(TG) i.e. if X,Y € g then
(X, Y]eg,

PRroOF. If p € G then
dLy([X,Y]) = [dLy(X), dLy(Y)] = [X, Y]

for all X,Y € g. This proves that the Lie bracket [X,Y] of two left
invariant vector fields X, Y is left invariant and thereby that g is a Lie

subalgebra of C*(TG). O

Note that if X is a left invariant vector field on G then
Xp - (de)e(Xe)



44 4. THE TANGENT BUNDLE

so the value X, of X at p € G is completely determined by the value
X, of X at e. This means that the map * : T.G — g given by

x: X = (X" :p— (dLy)e(X))

is a vector space isomorphism and that we can define a Lie bracket
,]:T.G x T.G — T.G on the tangent space T,G by

(X, Y] =[X",Y"]..

Proposition 4.21. Let G be one of the classical Lie groups and
T.G be the tangent space of G at the neutral element e. Then the Lie
bracket on T.G

L]:T.G xT.G —T.G
s given by
[Xe7Y:2] :Xe')/e_}/e'Xe

where - 1s the usual matriz multiplication.

Proor. We shall prove the result for the case when G is the real
general linear group GL,,(R). For the other real classical Lie groups
the result follows from the fact that they are all subgroups of GL,,(R).
The same proof can be used for the complex cases.

Let X,Y € gl,,(R) be left invariant vector fields on GL,,(R), f :
U — R be a function defined locally around the identity element e €
GL,,(R) and p be an arbitrary point in U. Then the derivative X,,(f)
is given by

X,(f) = S Bxp(sX)loco = (o X,) = dfy(X,)

The real general linear group GL,,(R) is an open subset of R™*™ so
we can use well-known rules from calculus and the second derivative

Y.(X(f)) is obtained as follows:

d

LX) = 2 Koo ()l

d
= E(dexp(tYa(EXP(tYe) - Xe))li=o
= d2f€(}/;7 Xe) =+ dfe(Y;a : Xe)'

The Hessian d?f, of f is symmetric, hence
[X> Y]e(f) = Xe(Y(f)) - }/e(X<f)) = dfe(Xe Y. -Y.- Xe>‘
O

Theorem 4.22. Let G be a Lie group. Then the tangent bundle
TG of G s trivial.
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Proor. Let {Xi,...,X,,} be a basis for T,G. Then the map © :
TG — G x R™ given by
@Z) : (pa ka ) (Xl;k)p) = (p7 (Ula s ,Um))
k=1
is a global bundle chart so the tangent bundle T'G is trivial. U
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Exercises

~

Exercise 4.1. Let (M™, A) be a smooth manifold and (U, z), (V,y)
be two charts in A such that U NV # 0. Let

f=yoxrt:z(UNV)—R"
be the corresponding transition map. Show that the local frames
{8il‘ i=1,...,m} and {%Uzl,...,m}
for TM on U NV are related by

8.731' - = 81’1 8_3/]

Exercise 4.2. Let m be a positive integer an SO(m) be the corre-
sponding special orthogonal group.
(i) Find a basis for the tangent space 7,SO(m),
(ii) construct a non-vanishing vector field Z € C*(T'SO(m)),
(iii) determine all smooth vector fields on SO(2).

The Hairy Ball Theorem. Let m be a positive integer. Then there
does not exist a continuous non-vanishing vector field X € C°(T'S*™)
on the even dimensional sphere S?™.

Exercise 4.3. Let m be a positive integer. Use the Hairy Ball The-
orem to prove that the tangent bundles T'S*™ of the even-dimensional

spheres S?™ are not trivial. Construct a non-vanishing vector field
X € C=(TS?*"1) on the odd-dimensional sphere S?™*1.

Exercise 4.4. Find a proof for Theorem 4.15.



CHAPTER 5

Riemannian Manifolds

In this chapter we introduce the notion of a Riemannian manifold
(M, g). The metric g provides us with an inner product on each tangent
space and can be used to measure the length of curves in the manifold.
It defines a distance function and turns the manifold into a metric space
in a natural way. A Riemannian metric on a differentiable manifold is
an important example of what is called a tensor field.

Let M be a smooth manifold, C*° (M) denote the commutative ring
of smooth functions on M and C*°(T'M) be the set of smooth vector
fields on M forming a module over C*°(M). Define

CP(TM) =C*(M)
and for each positive integer r € ZT let
CrX(ITM)=C*(TM)® - C*(TM)
be the r-fold tensor product of C*°(T'M) over C*(M).

Definition 5.1. Let M be a differentiable manifold. A smooth
tensor field A on M of type (r,s) isamap A: C*(TM) — C*(TM)
which is multi-linear over C*(M) i.e. satisfying

AXi® X1 Q(f Y +g-2)03 X1 ®--®X,)
= [fAXi® X1 QY X1 ®---0X,)
+9 - AXi Q@ @X1Z@ X @+ @ X,)

for all Xy,...,X,.,Y,Z € C®(TM), f,g e C°(M) and k =1,...,r.
For the rest of this work we shall for A(X; ®---® X,) use the notation

AXL, . X)),

The next general result provides us with the most important prop-
erty of tensor fields. It shows that the value of A(Xj, ..., X,) at a point
p € M only depends on the values of the vector fields Xi,..., X, at p
and is independent of their values away from p.

Proposition 5.2. Let A : C*(TM) — C(TM) be a tensor field
of type (r,s) and p € M. Let Xy,...,X, and Yi,...,Y, be smooth

47



48 5. RIEMANNIAN MANIFOLDS

vector fields on M such that (Xy), = (Yi), for each k =1,...,r. Then

Proor. We shall prove the statement for » = 1, the rest follows by
induction. Put X = X; and Y =Y} and let (U, x) be local coordinates
on M. Choose a function f € C*°(M) such that f(p) =1,

support(f) = {p € M| f(p) # 0}
is contained in U and define the vector fields vy, ..., v, € C*(TM) on

M by
(8- i
(Uk)q — f<Q) (ag;k )q lf q € U
0 ifqgU
Then there exist functions py, o € C*°(M) such that

FoX = ipkvk and f-Y:Zm:akvk.
This implies that - -
AX)() = FRIAC)P) = A - X)) = 3 o) A() ()
and similarily -
AY)(p) = iak(p)fl(vk)(p)-

The fact that X, = Y, shows that py(p) = ox(p) for all k. As a direct
consequence we see that

O

For a tensor A we shall by A, denote the multi-linear restriction of
A to the r-fold tensor product

TLM®-- - ®T,M
of the vector space T, M over R given by
Ay (X1)ps ooy (X)) — A(XL, .-, X)) (D).

Definition 5.3. Let M be a smooth manifold. A Riemannian
metric g on M is a tensor field

g:C(TM) — Cg°(TM)
such that for each p € M the restriction
9p = 9lr,mem,m : TyM @ T,M — R
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with

9p  (Xp, Yp) — 9(X,Y)(p)
is an inner product on the tangent space T,M. The pair (M, g) is
called a Riemannian manifold. The study of Riemannian manifolds
is called Riemannian Geometry. Geometric properties of (M, g) which
only depend on the metric g are called intrinsic or metric properties.

The standard inner product on the vector space R™ given by

(X, Y)pm = X'V =) XYy
k=1
defines a Riemannian metric on R™. The Riemannian manifold
E™ = (R™,(,)gm)
is called the m-dimensional Euclidean space.

Definition 5.4. Let v : I — M be a C'-curve in M. Then the
length L() of «y is defined by

Liy) = / (03D

By multiplying the Euclidean metric on subsets of R™ by a factor
we obtain important examples of Riemannian manifolds.

Example 5.5. For a positive integer m equip the real vector space
R™ with the Riemannian metric g given by

4
—(X. Y )pm.
TENFEMEAMRES

The Riemannian manifold ¥™ = (R™, g) is called the m-dimensional
punctured round sphere. Let v : Rt — Y™ be the curve with
vt (t,0,...,0). Then the length L() of v can be determined as
follows

L(y) = 2/000 0. wdt = 2/000 i _ 2[arctan(t)|¢° = 7.

1+ 1412
Example 5.6. Let B{"(0) be the open unit ball in R™ given by
B*(0) = {z € R™"| |z|gm < 1}.

By the m-dimensional hyperbolic ball we mean B}*(0) equipped with
the Riemannian metric

g;r(Xv Y) =

4

9:(X,Y) = m<

X,V ) g
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Let v :(0,1) — B{*(0) be a curve given by v : ¢t +— (¢,0,...,0). Then
1 < 1
L(y) =2 dt=2 [ — =[log(— )]} =

As we shall now see a Riemannian manifold (M, g) has the structure
of a metric space (M, d) in a natural way.

Proposition 5.7. Let (M, g) be a Riemannian manifold. For two
points p,q € M let Cp, denote the set of C-curves v : [0,1] — M such
that v(0) = p and y(1) = q and define the function d : M x M — R
by

d(p,q) = inf{L(y)| v € Cpq}-
M,d) is a metric space i.e. for all p,q,v € M we have

q) =
q) —0 if and only if p = q,
(i q) = d(q,p),
(iv) d(p.q) < d(p.7) +d(r,q).
The topology on M induced by the metric d is identical to the one M
carries as a topological manifold (M, T), see Definition 2.1.

Then

(i

(M,
) d(p,
(ii) d(p,
) d(p,

PROOF. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). O

A Riemannian metric on a differentiable manifold induces a Rie-
mannian metric on any of its submanifolds as follows.

Definition 5.8. Let (N, h) be a Riemannian manifold and M be
a submanifold of N. Then the smooth tensor field g : C*(TM) —
Ce (M) given by
9(X,Y) 1 p = hy(Xp, ).
is a Riemannian metric on M called the induced metric on M in
(N, h).

The Euclidean metric (,) on R™ induces Riemannian metrics on the
following submanifolds.
(i) the m-dimensional sphere S™ C R™!,
(ii) the tangent bundle 7'S™ C R", where n = 2m + 2,
(iii) the m-dimensional torus 7™ C R", with n = 2m
(iv) the m-dimensional real projective space

RP™ C Sym(R™) c R,
where n = (m + 2)(m +1)/2.
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The vector space C™* ™, of complex m X m matrices, carries a
natural Euclidean metric g given by

g(Z, W) = Re(trace(Z" - W)).

This induces metrics on the submanifolds of C"*" such as R™*"™ and
the classical Lie groups GL,,(R), SL,,(R), O(m), SO(m), GL,,(C),
SL,,(C), U(m) and SU(m).

Our next important step is to prove that every differentiable mani-
fold M can be equipped with a Riemannian metric g. For this we need
the following fact from topology.

Fact 5.9. Fvery locally compact Hausdorff space with countable
basis is paracompact.

Corollary 5.10. Let (M,T) be a topological manifold. Let the
collection (Uy)aer be an open covering of M such that for each o € 1
the pair (Uy, ) is a chart on M. Then there exists

(i) a locally finite open refinement (W3)ges such that for all 5 € J,
W3 is an open neighbourhood for a chart (Wgs,v3), and
(i) a partition of unity (fs)ses such that support(fz) C Wp.

Theorem 5.11. Let (Mm,fl) be a differentiable manifold. Then
there exists a Riemannian metric g on M.

PROOF. For each point p € M let (U,, $,) € A be a chart such that
p € U,. Then (Up)pen is an open covering as in Corollary 5.10. Let
(W3)ges be a locally finite open refinement, (Wjs, x3) be charts on M
and (fs)pes be a partition of unity such that support(fs) is contained
in Ws. Let (,)rm be the Euclidean metric on R™. Then for 5 € J
define g5 : C5°(TM) — C°(T'M) by

i i)(p) _ fs(p) - (ex,en)rm ifpe Ws
dxy) Ozl 0 ifpé¢ Ws

Note that at each point only finitely many of gg are non-zero. This
means that the well-defined tensor g : C5°(T M) — C§°(T'M) given by

9= 9

BeJ

9s(

is a Riemannian metric on M. O

Definition 5.12. Let (M, g) and (N, h) be Riemannian manifolds.
A map ¢ : (M,g) — (N,h) is said to be conformal if there exists a
function A : M — R such that

e’\(p)gp (Xp, Yp) = oy (dp(Xp), ddp(Yr)),
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for all X,Y € C®(TM) and p € M. The function e* is called the
conformal factor of ¢. A conformal map with A\ = 0 is said to be
isometric. An isometric diffeomorphism is called an isometry.

Example 5.13. On the standard unit sphere S™ we have an action
O(m+1) x S™ — 8™ of the orthogonal group O(m + 1) given by

(Ajz) — A-x
where - is the standard matrix multiplication. The following shows
that the O(m + 1)-action on S™ is isometric
(AX,AY) = XTA'AY = XY = (X,Y).
Example 5.14. Equip the orthogonal group O(m) as a submani-
fold of R™*™ with the induced metric given by
(X,Y) = trace(X'Y).
For x € O(m) the left translation L, : O(m) — O(m) by x is given by
L, : y — zy. The tangent space T,0(m) of O(m) at y is
T,0(m) = {yX| X'+ X =0}
and the differential (dL,), : T,0(m) — T,,0(m) of L, is given by
(dLy)y : yX — zyX.
We then have
((dLy)y(yX), (dLy)y(yY ))ey = trace((zyX)‘zyY)
= trace(X'y'2'zyY)
= trace(yX) (yY).
= (yX,yY),.

This shows that the left translation L, : O(m) — O(m) is an isometry
for each x € O(m).

Definition 5.15. Let G be a Lie group. A Riemannian metric g
on G is said to be left invariant if for each x € G the left translation
L, : G — @ is an isometry.

As for the orthogonal group O(m) an inner product on the tangent
space at the neutral element of any Lie group can be transported via
the left translations to obtain a left invariant Riemannian metric on
the group.

Proposition 5.16. Let G be a Lie group and (,). be an inner
product on the tangent space T,G at the neutral element e. Then for
each x € G the bilinear map g.(,) : T,G x T,G — R with

9z (X:va Yx) = <dLa:*1 (Xz)a dL;t*l (Yx»e
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1s an inner product on the tangent space T,G. The smooth tensor field
g:CP(TG) — C°(G) given by
s a left invariant Riemannian metric on G.

PROOF. See Exercise 5.5. O

We shall now equip the real projective space RP™ with a Riemann-
ian metric.

Example 5.17. Let S™ be the unit sphere in R™*! and Sym(R™!)
be the linear space of symmetric real (m+1) x (m-+1) matrices equipped
with the metric g given by

1
g(A, B) = gtrace(AtB).
As in Example 3.21 we define a map ¢ : S™ — Sym(R™*!) by

¢:p— (pp:q—2(q,p)p—q).
Let o, 3 : R — 5" be two curves such that a(0) = p = 5(0) and put
a = &(0), b = [(0). Then for v € {«, 3} we have

dep(7(0)) = (¢ = 2(q,7(0))p + 2(q, p)7(0)).

If B is an orthonormal basis for R™*! then
9(dep(a), dpy(b)) = trace(dgp(a)’ - dop(b))/8
= > @ a)p+ (@ p)a, (g,b)p+ (g, p)b) /2

qEB

= Y {(p.p)a, q){(q.b) + (a,b)(p.q)(p.q)}/2
qEB
{(a,0) + (a,0)}/2
(a,b)
This proves that the immersion ¢ is isometric. In Example 3.21 we have
seen that the image ¢(S™) can be identified with the real projective
space RP™. This inherits the induced metric from RtD)x(m+1) anq

the map ¢ : S™ — RP™ is what is called an isometric double cover of
RP™.

Long before John Nash became famous in Hollywood he proved
the next remarkable result in his paper The embedding problem for
Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. It implies
that every Riemannian manifold can be realized as a submanifold of a
Euclidean space. The original proof of Nash was later simplified, see
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for example Matthias Gunther, On the perturbation problem associated
to isometric embeddings of Riemannian manifolds, Annals of Global
Analysis and Geometry 7 (1989), 69-77.

Deep Result 5.18. For 3 < r < oo let (M,g) be a Riemannian
C"-manifold. Then there exists an isometric C"-embedding of (M, g)
mnto a Fuclidean space R™.

We shall now see that parametrizations can be very useful tools for
studying the intrinsic geometry of a Riemannian manifold (M, g). Let
p be a point of M and zﬂ : U — M be a local parametrization of M
with ¢ € U and 1/}(q) = p. The differential d@/;q : T,R™ — T,M is
bijective so there exist neighbourhoods U, of ¢ and U, of p such that

the restriction ¢ = @Z;|Uq : Uy — U, is a diffeomorphism. On U, we
have the canonical frame {ey, ..., e, } for TU, so {di(e1),...,dy(en)}
is a local frame for T'M over U,. We then define the pull-back metric

g =1v*gon U, by

glex, er) = g(diy(exr), dv(er)).
Then ¢ : (U, §) — (Up, g) is an isometry so the intrinsic geometry of
(Uy, g) and that of (U, g) are exactly the same.

Example 5.19. Let G be one of the classical Lie groups and e
be the neutral element of G. Let {X1,..., X,,} be a basis for the Lie
algebra g of G. For x € G define ¢, : R™ — G by

Yot (f1 ) = Lo(] | Exp(teX0))
k=1

where L, : G — G is the left-translation given by L,(y) = zy. Then

(dipz)o(er) = Xi(x)
for all k. This means that the differential (di,)o : To\R™ — T,G is an
isomorphism so there exist open neighbourhoods Uy of 0 and U, of x
such that the restriction of ¥ to Uy is bijective onto its image U, and
hence a local parametrization of G around .

We shall now study the normal bundle of a submanifold of a given
Riemannian manifold. This is an important example of the notion of
a vector bundle over a manifold.

Definition 5.20. Let (N, h) be a Riemannian manifold and M be
a submanifold of N. For a point p € M we define the normal space
N,M of M at p by

N,M = {v € T,N| hy(v,w) =0 forall weT,M}.
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For all p € M we have the orthogonal decomposition
T,N =T,M @& N,M.
The normal bundle of M in N is defined by
NM ={(p,v)|pe M, ve N,M}.

Example 5.21. Let S™ be the unit sphere in R™*! equipped with
its standard Euclidean metric (,). If p € S™ then the tangent space
T,5™ of S™ at p is

1,5 = {v € R™| (u,p) = 0}
so the normal space N,S™ of S™ at p satisfies
N,S™ = {\p € R™"!| X € R}.
This shows that the normal bundle N.S™ of S™ in R™*! is given by
NS™ = {(p, \p) € R* 2| pc S™ X € R}.

Theorem 5.22. Let (N, h) be a Riemannian manifold and M™
be a smooth submanifold of N. Then the normal bundle (NM, M, )
is a smooth (n —m)-dimensional vector bundle over M.

PROOF. See Exercise 5.7. O

We shall now determine the normal bundle NO(m) of the orthog-
onal group O(m) as a submanifold of R"™*™.

Example 5.23. The orthogonal group O(m) is a subset of the
linear space R™*™ equipped with the Riemannian metric

(X,Y) = trace(X'Y)

inducing a left invariant metric on O(m). We have already seen that
the tangent space T,0(m) of O(m) at the neutral element e is

T.0(m) ={X e R™"™| X'+ X =0}
and that the tangent bundle T7O(m) of O(m) is given by
TO(m) ={(z,zX)| x € O(m), X € T.O(m)}.
The space R™*™ of real m x m matrices has a linear decomposition
R™™ = Sym(R™) & T.0(m)

and every element X € R™ ™ can be decomposed X = X + X+ in
its symmetric and skew-symmetric parts given by

X'=(X-X"/2 and X+ = (X +X")/2.
If X € T.0(m) and Y € Sym(R™) then
(X,Y) = trace(X'Y)
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= trace(Y'X)

= trace(XY")
trace(—X'Y)
(XY,

This means that the normal bundle NO(m) of O(m) in R™*™ is given
by
NO(m) = {(z,zY)| x € O(m), Y € Sym(R™)}.

A given Riemannian metric ¢ on M can be used to construct a
family of natural metrics on the tangent bundle T'M of M. The best
known such examples are the Sasaki and Cheeger-Gromoll metrics. For
a detailed survey on the geometry of tangent bundles equipped with
these metrics we recommend the paper S. Gudmundsson, E. Kappos,
On the geometry of tangent bundles, Expo. Math. 20 (2002), 1-41.
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Exercises

Exercise 5.1. Let m be a positive integer and ¢ : R™ — C™ be the
standard parametrization of the m-dimensional torus 7™ in C™ given
by ¢ : (z1,...,7m) — (71,...,e). Prove that ¢ is an isometric
parametrization.

Exercise 5.2. Let m be a positive integer and

m m 4
Tm, - (S - {(17 0,... 70)}7 <7 >1Rm+1> - (R ) (1 + |$‘2)2 <7 >Rm)
be the stereographic projection given by
1
T ¢ (Toy ooy Tn) ; _xo(xl,...,xm).

Prove that m,, is an isometry.

Exercise 5.3. Let BIQ(O) be the open unit disk in the complex plane
equipped with the hyperbolic metric
L
(1—z?)?
Equip the upper half plane {z € C| Im(z) > 0} with the Riemannian
metric

g(X,Y) = X, Y )ge.

g(X)Y) = m@fayﬁw

and prove that the holomorphic function
7 : B{(0) — {z € C| Im(z) > 0}

given by
1+ 2z
141z

Tz
is an isometry.

Exercise 5.4. Equip the unitary group U(m) as a submanifold of
C™m*™ with the induced metric given by

(Z,W) = Re(trace(Z'W)).

Show that for each z € U(m) the left translation L, : U(m) — U(m)
given by L, : w — zw is an isometry.

Exercise 5.5. Find a proof for Proposition 5.16.
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Exercise 5.6. Let m be a positive integer and GL,,(R) be the
corresponding real general linear group. Let g, h be two Riemannian
metrics on GL,,(R) defined by

go(xZ,2W) = trace((x2)'zW), hy(xZ, W) = trace(Z'W).
Further let g,iz be the induced metrics on the special linear group
SL,,(R) as a subset of GL,,(R).

(i) Which of the metrics g, h, g, h are left-invariant?
(ii) Determine the normal space N.SL,,(R) of SL,,(R) in GL,,(R)
with respect to ¢
(iii) Determine the normal bundle NSL,,(R) of SL,,,(R) in GL,,(R)

with respect to h.
Exercise 5.7. Find a proof for Theorem 5.22.



CHAPTER 6

The Levi-Civita Connection

In this chapter we introduce the Levi-Civita connection V of a
Riemannian manifold (M, g). This is the most important example of
the general notion of a connection in a smooth vector bundle. We
deduce an explicit formula for the Levi-Civita connection for Lie groups
equipped with left-invariant metrics. We also give an example of a
connection in the normal bundle of a submanifold of a Riemannian
manifold and study its properties.

On the m-dimensional real vector space R™ we have the well-known
differential operator
0: C®(TR™) x C*(TR™) — C*(TR™)

mapping a pair of vector fields X,Y on R™ to the directional deriv-
ative GXY of Y in the direction of X given by

L Y(r+tX(2)) - Y(x)
(3XY)(9C) = ll_{% ‘ :
The most fundamental properties of the operator 0 are expressed by
the following. If A\,u € R, f,g € C®°(R™) and X,Y,Z € C*(TR™)
then
(i) Ox(f-Y) =X(f)-Y + - O0xY,
(iii) a(f-Xng-Y)Z:f'aXZ—i_g'aYZ'
The next result shows that the differential operator 0 is compatible

with both the standard differentiable structure on R™ and its Euclidean
metric.

Proposition 6.1. Let the real vector space R™ be equipped with
the standard Euclidean metric (,) and X,Y,Z € C>®(TR™) be smooth
vector fields on R™. Then

(iv) OxY — Oy X = [X, Y],

(v) X({Y,2)) = (0xY, Z) + (Y, 0xZ).

59
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We shall now generalize the differential operator 0 on the Euclidean
space R™ to the so called Levi-Civita connection V on a Riemannian
manifold (M, g). First we introduce the concept of a connection in a
smooth vector bundle.

Definition 6.2. Let (E, M, ) be a smooth vector bundle over M.
A connection on (E, M, r)isamap V : C®°(TM)xC>®(E) — C>*(FE)
such that

(i) Vx(A-v+p-w) =X Vyv+ p- Vyw,

(i) Vy(f -v) = X(f) -v+ f - Vyo,
forall \p e R, X,Y € C®(TM), v,w € C®(F) and f,g € C*(M).
A section v € C*(FE) of the vector bundle F is said to be parallel
with respect to the connection V if

@X’U =0

for all vector fields X € C>(TM).

Definition 6.3. Let M be a smooth manifold and V be a connec-
tion on the tangent bundle (7'M, M, 7). Then we define the torsion

T : C(TM) — C°(TM) of V by
T(X,Y) = VyY — %X — [X,Y],

where [,] is the Lie bracket on C°°(T'M). The connection V is said to
be torsion-free if its torsion 7" vanishes i.e.

(X, Y] = VyY = X
for all X, Y € C*(T'M).

Definition 6.4. Let (M,g) be a Riemannian manifold. Then a

connection V on the tangent bundle (T"M, M, 7) is said to be metric
or compatible with the Riemannian metric g if

X(9(Y, 2)) = g(VY. Z) + g(Y, V' 2)
for all X|Y,Z € C>*(TM).

Let (M,g) be a Riemannian manifold and V be a metric and
torsion-free connection on its tangent bundle (7'M, M, 7). Then it is
easily seen that the following equations hold

g<VXY7 Z) = X(g(}f, Z)) - g(Y7 VXZ)u

g(VXY’ Z) = g([X,Y],Z) +g<v}/X7Z)
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0 = —Z(g(X,Y))+9(V,X,Y) +g(X,V,Y)
= —Z(gX,Y))+9(VWZ + [Z,X].Y) + 9(X, K2 — [V, Z]).
By adding these relations we yield
2-9(WY,Z) = {X(g(Y,2))+Y(9(Z X)) - Z(g9(X,Y))
+9(Z, [X,Y]) + 9V, [2, X]) —g(X, [V, Z])}-

If {Ey,...,E,} is a local orthonormal frame for the tangent bundle
then

k=1

As a direct consequence there exists at most one metric and torsion
free connection on the tangent bundle.

Definition 6.5. Let (M, g) be a Riemannian manifold then the
map V : C®°(TM) x C*(TM) — C>(T'M) given by
2-9(WY,Z) = {X(g(Y,2))+Y(9(X,2)) - Z(9(X,Y))
+9(12. X].Y) + 9([Z2,Y], X) + 9(Z, [ X, Y])}.
is called the Levi-Civita connection on M.

It should be noted that the Levi-Civita connection is an intrinsic
object on (M, g) only depending on the differentiable structure of the
manifold and its Riemannian metric.

Proposition 6.6. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection V is a connection on the tangent bundle T'M of

M.

PRrooF. It follows from Definition 3.5, Theorem 4.15 and the fact
that g is a tensor field that

9N Y1+ p-Y2), Z) = X g(VxY1, Z) + pu - g(Vy Y, Z)
and

for all \,p € R and X,Y7,Ys, Z € C°°(T'M). Furthermore we have for
all f e C>®(M)

2 g(Vy fY, Z)
= {X(f-9(Y.2)+ f-Y(9(X,2)) = Z(f - g(X.Y))
+f'g([ZvX]7Y)+g([Z7f'Y]>X)+g(Z’ [X,fY])}
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= {X()-9(Y.2)+ - X(alY, 2)) + [ - Y (9(X, 2)
~Z(f) - 9(X,Y) ~ [ Z((X,Y)) + - 9(1Z,X],Y)
Fg(Z(f) Y + £ [2Y]X) +g(Z X ()Y + f-[X,Y])
= 2 XU o2+ S a7, 2)

= 2 g(X(f)Y +[-VyY. 2)

and
2 9(Vp . XV, 2)
= {f- XY, 2)+Y(f 9(X,2)) = Z(f - 9(X,Y))
+9([Z, - XL.Y)+ [-9(2 Y], X) + ( - X YD)}
= {/- X, 2)+Y(f) - 9(X,2) + [ -Y(9(X, 2))
—Z(f) - 9(X.Y) = [ Z(9(X,Y))
+9(Z(f)- X.Y) + [-9([Z, X],Y)
+f-9([Z, Y], X) + [ 9(Z,[X,Y]) = 9(Z,Y(f) - X)}
= 2. f-g(WY,2).
This proves that V is a connection on the tangent bundle (T'"M, M, ).

O

The next result is called the Fundamental theorem of Riemannian
geometry.

Theorem 6.7. Let (M,g) be a Riemannian manifold. Then the
Levi-Civita connection is a unique metric and torsion free connection
on the tangent bundle (TM, M, ).

Proor. The difference g(VXY Z) VYX Z) equals twice the
skew-symmetric part (w.r.t the pair (X Y)) of the right hand side of
the equation in Definition 6.5. This is the same as

1
This proves that the Levi-Civita connection is torsion-free.
The sum g(VyY, Z) + g(VyZ,Y) equals twice the symmetric part
(w.r.t the pair (Y, Z)) on the right hand side of Definition 6.5. This is
exactly

= (XY, 2)) + X(a(Z,Y)} = X(9(V, 2)).

This shows that the Levi-Civita connection is compatible with the Rie-
mannian metric g on M. U
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A vector field X € C*(TM) on (M,g) induces the first order

covariant derivative
Vy C*(TM) — C>*(TM)
in the direction of X by
Vy 1Y — VY.

Definition 6.8. Let GG be a Lie group. For a left invariant vector

field Z € g we define the map ad(Z) : g — g by
ad(Z) : X — [Z, X].

Proposition 6.9. Let (G, g) be a Lie group equipped with a left

invariant metric. Then the Levi-Civita connection V satisfies

9(WxY,Z) = %{9([)@ Y], Z) + g(ad(2)(X),Y) + g(X, ad(Z)(Y))}

for all XY, Z € g. In particular, if for oll Z € g the map ad(Z) is
skew symmetric with respect to g then

1
2
PROOF. See Exercise 6.2. O

VY = S[X, Y.

Proposition 6.10. Let G be one of the classical compact Lie groups
O(m), SO(m), U(m) or SU(m) equipped with the left-invariant metric

g(Z,W) = Re (trace (Z'W)).
Then for each X € g the operator ad(X) : g — g is skew symmetric.
PROOF. See Exercise 6.3. 0

Example 6.11. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Further let (U, x) be local coordinates on M and
put X; = 9/0x; € C°(TU). Then {Xi,...,X,,} is a local frame of
TM on U. For (U,z) we define the Christoffel symbols '}, : U — R
of the connection V with respect to (U, z) by

k
> ThX = Vy X;.
k=1
On the subset z(U) of R™ we define the metric g by
gei, e;5) = gi5 = g(Xi, Xj).
The differential dx is bijective so Proposition 4.17 implies that
dz([X;, X;]) = [do(X;), du(X;)] = [ei, e5] = 0
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and hence [X;, X;] = 0. From the definition of the Levi-Civita connec-
tion we now yield

ZFZQM = (Z FZ-Xk,XO
k=1

=1
= <VXZX]7XZ>
1
= S1XuX5, X + X5, Xa) — Xi( X, X))
_ 1{8% n Ogii 09
2 8@ 8xj aZL’l
If g*" = (g7 )i then

39 il agli 09y
k ki j J
Iij 5 E { Dz, }

=1 8xj

Definition 6.12. Let N be a smooth manifold, M be a submanifold
of N and X € C®(TM) be a vector field on M. Let U be an open
subset of N such that U N M # (. A local extension of X to U is
a vector field X € C®°(TU) such that X, = X, for all p € U N M. If
U = N then X is called a global extension.

Fact 6.13. Let (N,h) be a Riemannian manifold and M be a sub-
manifold of N. Then vector fields X € C®°(TM) andY € C*(NM)
have global extensions X,Y € C*(TN).

Let (N,h) be a Riemannian manifold and M be a submanifold
equipped with the induced metric g. Let Z € C*°(T'N) be a vector
fieldon N and Z = Z|5; : M — TN be the restriction of Z to M. Note
that Z is not necessarily an element of C°(T'M) i.e. a vector field on
the submanifold M. For each p € M the tangent vector Zp € T,N can
be decomposed

Z,=2] +7Z;
in a unique way into its tangential part (Z )T € T,M and its normal
part (Z, )" € N,M. For this we write Z=27"+ ZL

Let X,Y € C"X’(TM) be vector fields on M and X,Y € C*°(TN)
be their extensions to N. If p € M then (VyY'), only depends on the
value X, = X, and the value of Y along some curve 7 : (—¢,€) — N
such that v(0) = p and 4(0) = X, = X,,. For this see Remark 7.3. Since
X, € T,M we may choose the curve v such that the image v((—¢,¢))
is contained in M. Then Yv(t) = Y, for t € (—¢,¢). This means
that (VXY) only depends on X and the value of Y along ~, hence
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independent of the way X and Y are extended. This shows that the
following maps V and B are well defined.

Definition 6.14. Let (N, h) be a Riemannian manifold and M be
a submanifold equipped with the induced metric g. Then we define
two operators

V : C®(TM) x C®(TM) — C®(TM)
and
B:C®(TM)xC®(TM)— C*(NM)
by o o
VgV = (VyY)" and B(X,Y) = (YXY)L,
where X, Y € C®°(T'N) are any extensions of X, Y.
The operator B is called the second fundamental form of M in

(N, h). It is symmetric and hence tensorial in both its arguments, see
Exercise 6.7.

Theorem 6.15. Let (N, h) be a Riemannian manifold and M be a
submanifold of N with the induced metric g. Then the operator V is
the Levi-Civita connection of the submanifold (M, g).

PROOF. See Exercise 6.8. O

~ The Levi-Civita connection on (N, h) induces a metric connection
V on the normal bundle NM of M in N as follows.

Proposition 6.16. Let (N,h) be a Riemannian manifold and M
be a submanifold with the induced metric g. Let XY € C*(TN) be
vector fields extending X € C(TM) and Y € C®°(NM). Then the
map V : C®°(TM) x C®*(NM) — C®°(NM) given by

15 a well-defined connection on the normal bundle N M satisfying
XY, 2)) =h(V5Y,Z) + (Y, V3Z)
for all X € C°(TM) and Y ,Z € C*(NM).

PROOF. See Exercise 6.9. O
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Exercises

Exercise 6.1. Let M be a smooth manifold and V be a con-
nection on the tangent bundle (7'M, M, 7). Prove that the torsion

T : C(TM) — C°(TM) of V is a tensor field of type (2,1).
Exercise 6.2. Find a proof for Proposition 6.9.
Exercise 6.3. Find a proof for Proposition 6.10.

Exercise 6.4. Let Sol® be the 3-dimensional subgroup of SL3(R)
given by

e 0 =z
Sol> ={| 0 e y|lp=(x,y,2) € R’}
0 0 1
Let X,Y,Z € g be left-invariant vector fields on Sol?® such that
0 0 0
Xe = _‘p:07 Ye = 8_y|p:0a Lo = &|p:0'

ox
Show that
(X,Y]=0, [Z,X]=X, [Z,Y]=-Y.

Let g be a left-invariant Riemannian metric on G such that {X,Y, Z} is
an orthonormal basis for the Lie algebra g. Calculate the vector fields

VY, WX, VwZ, VX, \yZ, VY.

Exercise 6.5. Let SO(m) be the special orthogonal group equipped
with the metric

1
(X,Y) = §trace(XtY).

Prove that (,) is left-invariant and that for any left-invariant vector
fields X,Y € so(m) we have

1
Let A, B, C be elements of the Lie algebra so(3) with
0 -1 0 00 -1 00 0
A=11 0 0),B.=(00 0 |,C=|00 -1
0 0 0 1 0 0 01 0

Prove that {A, B, C} is an orthonormal basis for so(3) and calculate
ViB. VO, VA
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Exercise 6.6. Let SLy(IR) be the real special linear group equipped
with the metric

1
(X,Y), = 5 trace((p” X)!(pY ).
Let A, B, C be elements of the Lie algebra sly(R) with
0 —1 01 1 0
(0 ) me(Ve) e= (6 %)
Prove that {A, B,C} is an orthonormal basis for sly(R) and calculate
VB, VgC, VA

Exercise 6.7. Let (N,h) be a Riemannian manifold with Levi-
Civita connection V and (M, g) be a submanifold with the induced
metric. Prove that the second fundamental form B of M in N is
symmetric and tensorial in both its arguments.

Exercise 6.8. Find a proof for Theorem 6.15.
Exercise 6.9. Find a proof for Proposition 6.16.






CHAPTER 7

Geodesics

In this chapter we introduce the notion of a geodesic on a Riemann-
ian manifold (M, g). This is a solution to a second order non-linear
system of ordinary differential equations. We show that geodesics are
solutions to two different variational problems. They are critical points
to the so called energy functional and furthermore locally shortest paths
between their endpoints.

Definition 7.1. Let M be a smooth manifold and (T'M, M, ) be
its tangent bundle. A vector field X along a curve v: [ — M is
a curve X : [ — TM such that 7o X = ~. By C*(T'M) we denote
the set of all smooth vector fields along 7. For X,Y € C*(T'M) and
f € C=(I) we define the operations + and - by

(i) (X +Y)(t) = X (1) + Y (1),

(i) (f - X)) = f(t) - X(2).

This turns (C5°(T'M), +, ) into a module over C*°(I) and a real vector
space over the constant functions in particular. For a given smooth
curve v : I — M in M the smooth vector field X : I — TM with
X it (y(t),%(t)) is called the tangent field along ~.

The next result gives a rule for differentiating a vector field along a
given curve and shows how this is related to the Levi-Civita connection.

Proposition 7.2. Let (M, g) be a smooth Riemannian manifold
and vy : I — M be a curve in M. Then there exists a unique operator

D
o CX(TM) — C(TM)
such that for all \,n € R and f € C*(I),
(i) DOV- X +p-Y)/dt =X-(DX/dt) + - (DY/dt),
(ii) D(f-Y)/dt =df/dt-Y + f- (DY /dt), and
(iii) for eachty € I there exists an open subinterval Jy of I such that
to € Jo and if X € C*(TM) is a vector field with X, =Y (t)
for all t € Jy then

(25)(t0) = (%X ).

69
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PROOF. Let us first prove the uniqueness, so for the moment we
assume that such an operator exists. For a point ¢y € I choose a chart
(U,z) on M and open interval Jy such that ¢ty € Jo, v(Jo) C U and put
X; = 0/0x; € C*(TU). Then a vector field Y along v can be written
in the form

Oék(t) Xk

m
k=1

for some functions ay, € C*°(.Jy). The second condition means that

M (D0 =Y an(%) +zak

Let x oy(t) = (71(¢), ..., ym(t)) then

and the third condition for D/dt imply that

(2 (290 = (B Xt = 30T o

=1

Together equations (1) and (2) give

(3) <%><t> = > {an(®) + Y THOE) (a0} (X))

ij=1
This shows that the operator D/dt is uniquely determined.
It is easily seen that if we use equation (3) for defining an operator

D/dt then it satisfies the necessary conditions of Proposition 7.2. This
proves the existence of the operator D/dt. O

Remark 7.3. It follows from the fact that the Levi-Civita connec-
tion is tensorial in its first argument i.e.

and the equation
DY
( va (to)
in Proposition 7.2 that the value (VZX )p of VX at p only depends
on the value of Z, of Z at p and the values of Y along some curve v

satisfying v(0) = p and 4(0) = Z,. This allows us to use the notation
V.Y for DY/dt.
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The Levi-Civita connection can now be used to define a parallel
vector field and a geodesic on a manifold as solutions to ordinary dif-
ferential equations

Definition 7.4. Let (M, g) be a Riemannian manifold and v : I —
M be a Cl-curve. A vector field X along + is said to be parallel if

V,-YX:().

A C?-curve v : I — M is said to be a geodesic if its tangent field ¥ is
parallel along 7 i.e.

The next result shows that for given initial values at a point p € M
we get a parallel vector field globally defined along any curve through
that point.

Theorem 7.5. Let (M, g) be a Riemannian manifold and I = (a,b)
be an open interval on the real line R. Further let v : I — M be a
smooth curve, to € I and Xy € Ty M. Then there erists a unique
parallel vector field Y along vy such that Xo =Y (o).

Proor. Without loss of generality we may assume that the image
of v lies in a chart (U, z). We put X; = 0/0x; so on the interval I the
tangent field 7 is represented in our local coordinates by

= sz‘(t)(X

with some functions p; € C*°(I). Similarly let Y be a vector field along
v represented by

Y(t) = Zaj(t)(X

Then

(V;YY)(Q = Z{UJ +UJ V,YX v(t)}

_ Z{dk(t)+z i (Dp TG (V) (X)), -
0

ij=1
This implies that the vector field Y is parallel i.e. V’VY = 0 if and

only if the following first order linear system of ordinary differential
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equations is satisfied:

or(t) + Y o ()p (T (v (1) =0

ij=1
forall k =1,...,m. It follows from Fact 7.6 that to each initial value
o(to) = (v1,...,v,) € R™ with

Yo = ka (Xk)’Y(to)
k=1

there exists a unique solution ¢ = (oy,...,0,,) to the above system.
This gives us the unique parallel vector field Y

Y(t) = Z o (t) (Xk)'y(t)

along I. 0
The following result is the well-known theorem of Picard-Lindelof.

Fact 7.6. Let f : U — R" be a continuous map defined on an open
subset U of R x R"® and L € R* such that

for all (t,z),(t,y) € U. If (to,xo) € U then there exists a unique local
solution x : I — R™ to the following initial value problem

Z'(t) = f(t,z(t)), x(to) = 0.

Lemma 7.7. Let (M,g) be a Riemannian manifold, v : I — M
be a smooth curve and X,Y be parallel vector fields along v. Then the
function g(X,Y) : I — R given by t — g,u)(Xyq), Yo)) is constant.
In particular, if v is a geodesic then g(7,7%) is constant along .

Proor. Using the fact that the Levi-Civita connection is metric
we obtain
d
This proves that the function g(X,Y’) is constant along ~. O

The following result on parallel vector fields is a useful tool in Rie-
mannian geometry. It will be employed in Chapter 9.

Proposition 7.8. Let (M, g) be a Riemannian manifold, p € M
and {vy,...,vm} be an orthonormal basis for the tangent space T, M.
Let~y : I — M be a smooth curve such that v(0) = p and X1, ..., X,, be
parallel vector fields along v such that X (0) = vy for k =1,2,...,m.
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Then the set {X1(t),..., X (t)} is a orthonormal basis for the tangent
space Ty M for allt € 1.

PRrooF. This is a direct consequence of Lemma 7.7. U

For the important geodesic equation we have the following local
existence result.

Theorem 7.9. Let (M,g) be a Riemannian manifold. If p € M
and v € T,M then there exists an open interval I = (—¢,€) and a
unique geodesic v : I — M such that v(0) = p and ¥(0) =

PRrOOF. Let (U,z) be a chart on M such that p € U and put
X; = 0/0z;. For an open interval J and a C%-curve v: J — U we put
v =x;07:J — R. The curve x oy : J — R™ is C? so we have

(d)y) (7 Z Filt
giving
= Ailt)(X
i=1

By differentiation we then obtain

Vi = Z%(%(t)(Xj)w(t))
= Z{% +Z’YJ Yi(t v)(‘X )7(15}

= Z{'Yk )+ Z 7] )it o(t )}<ch) NOX

i,j=1

Hence the curve v is a geodesic if and only if

4 Y (O30T ((1) =0

ij=1
for all £k = 1,...,m. It follows from Fact 7.10 that for initial values
qo = z(p) and wy = (dz),(v) there exists an open interval (—e¢, €) and
a unique solution (7, ...,7,) satisfying the initial conditions

(71(0)7 s 77771(0)) = 4o and (71(0)7 s >7m(0>> = Wop-
[

The following result is a second order consequence of the well-known
theorem of Picard-Lindelof.
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Fact 7.10. Let f : U — R™ be a continuous map defined on an
open subset U of R x R™ and L € R™ such that

for all (t,x),(t,y) € U. If (to,z0) € U and x; € R" then there exists a
unique local solution x : I — R™ to the following initial value problem

2'(t) = f(t,x(t)), xz(ty) =z, «'(to) = 1.

The Levi-Civita connection V on a given Riemannian manifold
(M, g) is an inner object completely determined by the metric g. Hence
the same applies for the condition

Vﬁﬁ =0
for a given curve v : I — M. This means that the image of a geodesic
under a local isometry is again a geodesic.

Let E™ = (R™, (, )gm) be the Euclidean space. For the trivial chart
idgm : R™ — R™ the metric is given by g;; = 9,5, so Ffj = 0 for all
1,7,k = 1,...,m. This means that v : [ — R is a geodesic if and
only if 4(t) = 0 or equivalently ~(t) = t-a+ b for some a,b € R™. This
proves that the geodesics are the straight lines.

Definition 7.11. A geodesic v : I — (M,g) in a Riemannian
manifold is said to be maximal if it cannot be extended to a geodesic
defined on an interval J strictly containing /. The manifold (M, g)
is said to be complete if for each point (p,v) € TM there exists a
geodesic v : R — M defined on the whole of R such that v(0) = p and

3(0) = v,
Proposition 7.12. Let (N, h) be a Riemannian manifold with Levi-

Civita connection V and M be a submanifold equipped with the induced
metric g. A curve v : I — M is a geodesic in M if and only if

(V{)’)T = 0.

PROOF. Following Theorem 6.15 the Levi-Civita connection V on
(M, g) satisfies
= . AT
O

Example 7.13. Let E™™! be the (m + 1)-dimensional Euclidean
space and S™ be the unit sphere in E™*! with the induced metric. At
a point p € S™ the normal space N,S™ of S™ in E™! is simply the
line generated by p. If v : I — S™ is a curve on the sphere, then

Vi =AT =5 =4 =4 - (1.
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This shows that v is a geodesic on the sphere S™ if and only if
(4) ¥ =1
For a point (p,v) € T'S™ define the curve v = () : R — S™ by

Cf i D ifv=20
v cos([v[t) - p+sin(|v|t) - v/|v] if v # 0.

Then one easily checks that v(0) = p, 4(0) = v and that v satisfies the
geodesic equation (4). This shows that the non-constant geodesics on
S™ are precisely the great circles and the sphere is complete.

Example 7.14. Let Sym(R™"!) be equipped with the metric
1
(A, B) = 3 trace(A'B).
Then we know that the map ¢ : S™ — Sym(R™!) with

¢:p— (2pp' —e)

is an isometric immersion and that the image ¢(S™) is isometric to
the m-dimensional real projective space RP™. This means that the
geodesics on RP™ are exactly the images of geodesics on S™. This
shows that the real projective spaces are complete.

Definition 7.15. Let (M, g) be a Riemannian manifold and ~ :
I — M be a C"-curve on M. A variation of v is a C"-map
O:(—ce) x> M

such that for all s € I, ®y(s) = P(0,s) = (s). If the interval is
compact i.e. of the form I = [a,b], then the variation @ is called
proper if for all t € (—e¢,€), ®,(a) = v(a) and D,(b) = v(b).

Definition 7.16. Let (M, g) be a Riemannian manifold and ~ :
I — M be a C?*-curve on M. For every compact interval [a,b] C I we
define the energy functional Ej, by

Eap(v) = % / g( (), 4(t))dt.

A C%curve v : I — M is called a critical point for the energy
functional if every proper variation ® of 7|, satisfies
d
-
dt
We shall now prove that geodesics can be characterized as the crit-
ical points of the energy functional.

Elo,57(P))]t=0 = 0.
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Theorem 7.17. A C?*-curve v : I = [a,b] — M is a critical point
for the energy functional if and only if it is a geodesic.

PROOF. For a C%map ® : (—e,¢) x [ — M, @ : (t,8) — P(t,s)
we define the vector fields X = d®(0/0s) and Y = d®(9/0t) along P.
The following shows that the vector fields X and Y commute.

VY - %X = [X,Y]
— [dD(9/Ds),dD(D/01)]
= d((9/ds,0/0t))
= 0,

since [0/0s,0/0t] = 0. We now assume that ® is a proper variation of
~. Then

b
G Ean(®) = 55([ olx. X0

2
- /abg(VYX,X)ds
= /abg(VXY,X)ds

— [ ey x) — v v

~ 5 | latx.xas

b
— ¥, X)L - / oY, Vi X)ds.

The variation is proper, so Y (a) = Y (b) = 0. Furthermore X (0,s) =
0P/0s(0,s) = ~(s), so

O Ban@heo =~ [ 907(0.5), (%))

The last integral vanishes for every proper variation ® of v if and only
if V{y =0. O

A geodesic v : I — (M,g) is a special case of what is called a
harmonic map ¢ : (M, g) — (N, h) between Riemannian manifolds.
Other examples are conformal immersions ¢ : (M2, g) — (N, h) which
parametrize the so called minimal surfaces in (N, h). For a reference on
harmonic maps see H. Urakawa, Calculus of Variations and Harmonic
Maps, Translations of Mathematical Monographs 132, AMS(1993).
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Let (M™,g) be an m-dimensional Riemannian manifold, p € M

and
S;,”_l ={v e T,M| g,(v,v) =1}

be the unit sphere in the tangent space T,M at p. Then every point
w € T,M \ {0} can be written as w = r,, - v,, where r,, = |w| and
vy = w/|w| € St For v € St let vy ¢ (—w,B) — M be
the maximal geodesic such that a,, 3, € Rt U {oc0}, 7,(0) = p and
4»(0) = v. It can be shown that the real number

e, = inf{a,, Bu| v € S;”’l}
is positive so the open ball
BZZ(O) ={veTl,M| g,(v,v) < 612,}

is non-empty. The exponential map exp, : BQ(O) — M at pis
defined by
exp, 1 W { P ifw=20
P Yoo (rw)  if w # 0.

Note that for v € S*~! the line segment A, : (—€p,€6,) — T,M
with A\, : t — ¢ - v is mapped onto the geodesic v, i.e. locally we have
Y = €xp,oA,. One can prove that the map exp, is smooth and it
follows from its definition that the differential

d(exp,)o : TyM — T,M

is the identity map for the tangent space 7,M. Then the inverse
mapping theorem tells us that there exists an r, € R* such that if
U, = B;"(0) and V), = exp, (U,) then exp,, [v, : U, — V}, is a diffeomor-
phism parametrizing the open subset V), of M.

The next result shows that the geodesics are locally the shortest
paths between their endpoints.

Theorem 7.18. Let (M, g) be a Riemannian manifold. Then the
geodesics are locally the shortest path between their end points.

PROOF. Let p € M, U = B*(0) in T,M and V' = exp,(U) be such
that the restriction
¢p=exp,lv:U—V

of the exponential map at p is a diffeomorphism. We define a metric g
on U such that for each X,Y € C*(TU) we have

9(X,Y) = g(do(X), do(Y)).

This turns ¢ : (U,g) — (V,g¢) into an isometry. It then follows from
the construction of the exponential map, that the geodesics in (U, g)
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through the point 0 = ¢~!(p) are exactly the lines \, : t — ¢ - v where
vel,M.

Now let ¢ € B*(0) \ {0} and A, : [0,1] — B*(0) be the curve
Ay ot — t-q. Further let ¢ : [0,1] — U be any curve such that
0(0) =0 and o(1) = g. Along the curve ¢ we define the vector field X
with X : t — o(t) and the tangent field 6 : t — (t) to 0. Then the
radial component ¢,,q of ¢ is the orthogonal projection of & onto the
line generated by X i.e.

Orad - T H—

g(a(t), X(1))

—— =X (1).
30X, x ()
Then it is easily checked that

‘drad (t)| =

and
% X(@)| = % GX(), X(1) = %'

Combining these two relations we yield

) d
[Graa(B)] 2 = 1X(1)].

This means that

L(o) = /O\d(t)\dt
Z /0|drad(t)|dt

d
> [ Xl
= [X(M)] = [X(0)]
=l
= L(\).
This proves that in fact v is the shortest path connecting p and ¢q. [
Definition 7.19. Let (N, h) be a Riemannian manifold and M be
a submanifold with the induced metric g. Then the mean curvature

vector field of M in N is the smooth section H : M — NM of the
normal bundle NM given by

1 1 —
race m Z (X Xk)

m
k=1
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Here B is the second fundamental form of M in N and {X3,..., X,,}
is any local orthonormal frame for the tangent bundle T'M of M. The
submanifold M is said to be minimal in N if H = 0 and totally
geodesic in N if B = 0.

Proposition 7.20. Let (N, h) be a Riemannian manifold and M be
a submanifold equipped with the induced metric g. Then the following
conditions are equivalent:

(i) M is totally geodesic in N

(i) if v : I — M is a curve, then the following conditions are
equivalent
(a) v: I — M is a geodesic in M,
(b) v: 1 — M is a geodesic in N.

PROOF. The result is a direct consequence of the following decom-
position formula
. AT L N. . .
U

Proposition 7.21. Let (N, h) be a Riemannian manifold and M be
a complete submanifold of N. For a point (p,v) of the tangent bundle
TM let ypuy : I — N be the maximal geodesic in N with v(0) = p
and 4(0) = v. Then M is totally geodesic in (N,h) if and only if
Ypo) (L) C M for all (p,v) € TM.

PROOF. See Exercise 7.3. O

Corollary 7.22. Let (N,h) be a Riemannian manifold, p € N
and V' be an m-dimensional linear subspace of the tangent space T,,N

of N at p. Then there exists (locally) at most one totally geodesic
submanifold M of (N,h) such that T,M = V.

PROOF. See Exercise 7.4. O

Proposition 7.23. Let (N, h) be a Riemannian manifold and M be
a submanifold of N which is the fixpoint set of an isometry ¢ : N — N.
Then M 1is totally geodesic in N .

PRrROOF. Let p € M, v € T,M and v : I — N be the maximal
geodesic with v(0) = p and 4(0) = v. The map ¢ : N — N is an
isometry so ¢ oy : I — N is a geodesic. The uniqueness result of
Theorem 7.9, ¢(7(0)) = ~(0) and dé(7(0)) = 4(0) then imply that
¢(v) = 7. Hence the image of the geodesic v : I — N is contained in
M, so following Proposition 7.21 the submanifold M is totally geodesic
in V. U
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Corollary 7.24. Let n < m be positive integers. Then the n-
dimensional sphere
S" = {(x,0) € R"™ x R™™"| |z]* = 1}
s a totally geodesic submanifold of
S™ ={(z,y) e R™ x R™™"| [2]* + [y|* = 1}.

PrRoOOF. The statement is a direct consequence of the fact that S™
is the fixpoint set of the isometry ¢ : S™ — S™ of S™ with (z,y) —
(@, —y). O

Corollary 7.25. Let H™ be the m-dimensional hyperbolic space

modelled on the upper half space RT x R™' equipped with the Rie-
mannian metric

1
g(X7 Y) = F(Xa Y>]Rm7
1
where x = (x1,...,%,) € H™. Then the n-dimensional hyperbolic
space

H" ={(z,0) € H"| z € R"}
1s totally geodesic in H™.

PROOF. See Exercise 7.6. O
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Exercises

Exercise 7.1. The result of Exercise 5.3 shows that the two di-
mensional hyperbolic disc H? introduced in Example 5.6 is isometric
to the upper half plane M = ({(z,y) € R?| y € R*} equipped with the
Riemannian metric

1
g(X,)Y) = E<X7 Y )ge.
Use your local library to find all geodesics in (M, g).

Exercise 7.2. Let n be a positive integer and O(n) be the orthog-
onal group equipped with the standard left-invariant metric

g(A, B) = trace(A'B).
Prove that a C?-curve 7 : (—¢,€) — O(n) is a geodesic if and only if
vy =4
Exercise 7.3. Find a proof for Proposition 7.21.
Exercise 7.4. Find a proof for Corollary 7.22.

Exercise 7.5. For the real parameter § € (0,7/2) define the 2-
dimensional torus Tj by

T7 = {(cos 0, sin Be®) € S| a, f € R}.

Determine for which 6 € (0, 7/2) the torus 7} is a minimal submanifold
of the 3-dimensional sphere

53 = {(21722) S (C2| |Zl‘2 + |ZQ|2 = 1}
Exercise 7.6. Find a proof for Corollary 7.25.

Exercise 7.7. Determine the totally geodesic submanifolds of the
m-~dimensional real projective space RP™.

Exercise 7.8. Let the orthogonal group O(n) be equipped with
the left-invariant metric

g(A, B) = trace(A'B)

and let K be a Lie subgroup of O(n). Prove that K is totally geodesic
in O(n).






CHAPTER 8

The Riemann Curvature Tensor

In this chapter we introduce the Riemann curvature tensor and
the notion of sectional curvature of a Riemannian manifold. These
generalize the Gaussian curvature playing a central role in classical
differential geometry.

We prove that the Euclidean spaces, the standard spheres and the
hyperbolic spaces all have constant sectional curvature. We determine
the Riemannian curvature tensor for manifolds of constant sectional
curvature and also for an important class of Lie groups. We then derive
the important Gauss equation comparing the sectional curvatures of a
submanifold and that of its ambient space.

Let (M,g) be a Riemannian manifold and V be its Levi-Civita
connection. Then to each vector field X € C*(T'M) we have the first
order covariant derivative

Vy : C*(TM) — C*(T'M)
in the direction of X satisfying

We shall now generalize this and introduce the covariant derivative of
tensor fields of type (r,0) or (r,1).

As motivation, let us assume that A is a tensor field of type (2, 1).
If we differentiate A(Y,Z) in the direction of X applying the naive
"product rule”

V (A(Y, Z)) = (VA (Y, 2) + A(VyY, Z) + A(Y, Vi Z)
we get
(VyA) (Y, Z) = Yy (A(Y, Z)) = A(VyY, Z) — A(Y, Vi Z),

where Vy-A is the ”covariant derivative” of the tensor field A in the
direction of X. This naive idea turns out to be very useful and leads
to the following formal definition.

Definition 8.1. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. For a tensor field A : C°(T'M) — C§°(TM) of

83
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type (r,0) we define its covariant derivative
VA:CX(TM)— C3*(TM)

by
VA: (X, Xl, c. 7Xr) — (VXA)(Xl, c. 7Xr) =

X(AXy, ., X)) = > AKX X, VX, X, -, X)),
k=1

A tensor field A of type (r,0) is said to be parallel if VA = 0.

The following result can be seen as, yet another, compatibility of
the Levi-Civita connection V of (M, g) with the Riemannian metric g.

Proposition 8.2. Let (M, g) be a Riemannian manifold. Then the
metric g is a parallel tensor field of type (2,0).

PROOF. See Exercise 8.1. O

Let (M, g) be a Riemannian manifold. Then its Levi-Civita con-
nection V is tensorial in its first argument i.e. if X, Y € C*°(T'M) and
fyg € C(M) then

Viix 4 gvZ = IV + g 2.

This means that a vector field Z € C*°(T'M) on M induces a natural
tensor field Z : C°(TM) — C(TM) of type (1,1) given by

Z: X = VyZ.
Definition 8.3. Let (M, g) be a Riemannian manifold with Levi-

Civita connection V. For a tensor field B : C*(TM) — C°(TM) of
type (r,1) we define its covariant derivative

VB:Cx, (TM) — C®(TM)

by
VB: (X, X1,...,X,) = (VyB)(Xy,..., X,) =

V(B(X1,..., X)) = Y B(Xy,..., Xpr, Vg Xp, Xpar, -, X)),
k=1

A tensor field B of type (7, 1) is said to be parallel if VB = 0.

Definition 8.4. Let X,Y € C*°(T'M) be two vector fields on the
Riemannian manifold (M, g) with Levi-Civita connection V. Then the
second order covariant derivative

V2 v O%(TM) — C=(TM)
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is defined by
V%X',Y: Z = (VyZ)(Y),
where Z is the natural (1, 1)-tensor field induced by Z € C*°(T'M).

As a direct consequence of Definitions 8.3 and 8.4 we see that if
X,Y,Z € C=(TM) then the second order covariant derivative V2 XY

satisfies
VQX’ YZ = VX(Z(Y)) — Z(VXY) = VXVYZ — VVXYZ'

Definition 8.5. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Then we define its Riemann curvature operator

R: C®(TM) x C(TM) x C*(TM) — C(TM)

as twice the skew-symmetric part of the second covariant derivative V2
i.e.

R(X,Y)Z = V% yZ - V3 yZ.

The next remarkable result shows that the curvature operator is a
tensor field.

Theorem 8.6. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Then the curvature R : C*(TM) — C(TM)

R(X,Y)Z = Vx\jZ — \j, Vi Z — V[X Y]Z
is a tensor field on M of type (3,1).
PROOF. See Exercise 8.2. U

The reader should note that the Riemann curvature tensor R is
an intrinsic object since it only depends on the intrinsic Levi-Civita
connection V. The following result shows that the curvature tensor
has many nice properties of symmetry.

Proposition 8.7. Let (M, g) be a Riemannian manifold. For vec-

tor fields X, Y, Z,W € C>*°(TM) on M we then have
() R(X,Y)Z = —R(Y, X)Z,
(i) g(R(X,Y)Z, W) = —g(R(X, Y)W, Z),
(ili) R(X,Y)Z + R(Z, X)Y +R(Y,Z)X =0,
(iv) g(R(X,Y)Z, W) = g(R(Z, W)X, Y),
(V) 6-RX,Y)Z=R(X,Y+2)Y+Z)-RX,)Y-2)Y - 2)
+RX+ZY)(X+2Z2)—RX-ZY)X—-2).

PROOF. See Exercise 8.3. ]
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Part (iii) of Proposition 8.7 is the so called first Bianchi identity.
The second Bianchi identity is a similar result concerning the covariant
derivative VR of the curvature tensor. This will not be treated here.

Let (M, g) be a Riemannian manifold and p € M. Then a section
V' at p is a 2-dimensional subspace of the tangent space T, M. The set

Go(T,M) ={V| V is a section of T,M}
of sections is called the Grassmannian of 2-planes at p.

Lemma 8.8. Let (M,g) be a Riemannian manifold, p € M and
XY, Z, W € T,M be tangent vectors at p such that the two sections
spang{ X, Y} and spang{Z, W} are identical. Then

gRIX,) Y)Y, X)  g(R(ZW)W,Z)
(XPY[2—g(X,)Y)?  |ZPW[]2—g(Z,W)?>
PROOF. See Exercise 8.4. O

This leads to the following natural definition of the sectional cur-
vature.

Definition 8.9. Let (M, g) be a Riemannian manifold and p € M
Then the function K, : G5(T,M) — R given by
g(R(X, Y)Y, X)
[XPY —g(X,Y)?
is called the sectional curvature at p. We often write K(X,Y) for
K (spang{X,Y}).

Definition 8.10. Let (M, g) be a Riemannian manifold, p € M
and K, : Go(T,M) — R be the sectional curvature at p. Then we
define the functions 6, A : M — R by

o i K d A: K .
P i »(V) an P, max »(V)

K, : spang{X,Y} —

The Riemannian manifold (M, g) is said to be

(i) of positive curvature if §(p) > 0 for all p,

(ii) of strictly positive curvature if 6(p) > 0 for all p,
(iii) of negative curvature if A(p) <0 for all p,

(iv) of strictly negative curvature if A(p) < 0 for all p,
(v) of constant curvature if § = A is constant,

(vi) flat if § = A = 0.

The next result shows how the curvature tensor can be expressed
in terms of local coordinates.
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Proposition 8.11. Let (M, g) be a Riemannian manifold and let
(U, x) be local coordinates on M. Fori,j k,l=1,...,m put
X; = %, 9i; = 9(Xi, X;) and Riju = g(R(X;, X;) Xy, X)).
Then
o aij

or m
zjkil ngl( :I;k + Z{ng ’ Ffr - F:k ) Fjr}) )
r=1

where Ffj are the Christoffel symbols of the Levi-Civita connection V
of (M, g) with respect to (U, x).

ProOOF. Using the fact that [X;, X;] = 0 we obtain
R(X;, X;) Xy, = VXiVXij — VXJ-VXZ-X’“

(% )~ Sy T X0

((‘3F§k X, + iFskaer I X, — er I X )
Ox; — 7

(arfk 3ka .

Z{F - F;Tkl“jr}) X,.

NERANGE

s=1

Ms

1

S

O

For the m-dimensional vector space R™ equipped with the Eu-
clidean metric (, )gm the set {0/0zy,...,0/0x,} is a global frame for
the tangent bundle TR™. In this situation we have g;; = ¢;5, so Ffj =0
by Example 6.11. This implies that R = 0 so E™ is flat.

Example 8.12. The standard sphere S™ has constant sectional
curvature +1 (see Exercises 8.7 and 8.8) and the hyperbolic space H™
has constant sectional curvature —1 (see Exercise 8.9).

Our next aim is a formula for the curvature tensor for manifolds of
constant sectional curvature. This we present in Corollary 8.16. First
we need some preparations.

Lemma 8.13. Let (M, g) be a Riemannian manifold, p € M and
Y e T,M. Then the map Y : T,M — T,M given by

Y:X— RX, Y)Y

is a symmetric endomorphism of the tangent space T),M .
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PROOF. For Z € TpM we have
9(Y(X),Z) = g(R(X,Y)Y,Z)=g(R(Y,Z)X,Y)

= g(R(Z, Y)Y, X) = g(X,Y(2)).
O

For a tangent vector Y € T,M with |Y| = 1let N(Y') be the normal
space to Y

N(Y) = {X € T,M| g(X,Y) = 0}.
The fact that Y(Y) = 0 and Lemma 8.13 ensure the existence of an
orthonormal basis of eigenvectors X, ..., X,,_1 for the restriction of

the symmetric endomorphism Y to A/(Y). Without loss of generality,
we can assume that the corresponding eigenvalues satisfy

M(p) < < Apa(p)
If X e N(Y), |X|=1and Y(X) = AX then
K,(X,Y) = g(R(X, Y)Y, X) = g(V(X), X) = A
This means that the eigenvalues satisfy
0(p) < Mi(p) < -+ < Apalp) < Alp).

Definition 8.14. Let (M, g) be a Riemannian manifold. Then
define the smooth tensor field Ry : C°(TM) — CP(T'M) of type
(3,1) by

RI(X,Y)Z = g(Y, 2)X — (X, Z)Y.

Proposition 8.15. Let (M, g) be a smooth Riemannian manifold
and X,Y, Z be vector fields on M. Then

() [R(X.Y)Y — B3R, (X, Y)Y| < 3(A - 8)|X|[Y ]
(i) |R(X,Y)Z ~ H2R(X,Y)Z] < 2(A - 6)|X[[Y 12|

PRroOOF. Without loss of generality we can assume that | X| = |Y| =
1Z] =1. If X = X+ + X7 with X+ 1L Y and X' is a multiple of Y
then R(X,Y)Z = R(X+,Y)Z and | X*| < |X| so we can also assume
that X LY. Then R;(X,Y)Y = (Y,Y)X — (X,Y)Y = X.

The first statement follows from the fact that the symmetric endo-
morphism of T, M with

X — {R(X,Y)Y — ? X}

I—A A—§
=55 55

restricted to A (Y') has eigenvalues in the interval |
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It is easily checked that the operator R; satisfies the conditions of
Proposition 8.7 and hence D = R — % - Ry as well. This implies that

6-DX,)Y)Z = DIX,)Y+2)Y+2)-DX,)Y—-2Z)(Y —-2)
+ DIX+ZY)X+2)—-DX—-ZY)X - 2).
The second statement then follows from
1
6|D(X,Y)Z| < ?A—ﬁﬂXMY+ﬂLHY—ﬂ%
HY (X + ZP + X - Z°)}
1
= ?A—QQWKWF+WW+ﬂYMXF+Wm}
= 4(A—-)9).
O

As a direct consequence of Proposition 8.15 we have the following
useful result.

Corollary 8.16. Let (M, g) be a Riemannian manifold of constant
curvature k. Then the curvature tensor R is given by

PROOF. The result follows directly from k = § = A. O

Proposition 8.17. Let (G, g) be a Lie group equipped with a left-
invariant metric such that for all X € g the endomorphism

ad(X):g— g
15 skew-symmetric with respect to g. Then for any left-invariant vector
fields X,Y, Z € g the curvature tensor R is given by
1
PROOF. See Exercise 8.6. O

We shall now prove the important Gauss equation comparing the
curvature tensors of a submanifold and its ambient space in terms of
the second fundamental form.

Theorem 8.18. Let (N, h) be a Riemannian manifold and M be a
submanifold of N equipped with the induced metric g. Let X, Y, Z, W €
C>®(T'N) be vector fields extending X,Y,Z, W € C*(TM). Then
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PROOF. Using the definitions of the curvature tensors R, R, the
Levi-Civita connection V and the second fundamental form of M in
M we obtain

g(R(X,Y)Z,W)
=9(Vg\%WZ = WVxZ - Vg 4 W)
= h((Vx(WZ = B(Y.2)))" = h(MAVxZ — B(X,Z)))", W)

= h(Vy %7 = %V Z =Ny y1Z. W)
—h(Vx(B(Y. 2)),W) + W/(B(X, Z)), W)

= W(R(X,Y)Z,W)
h(B(Y. Z)), VW) — h(B(X, Z)), ,, W)

= WR(X,Y)Z,W)
+h(B(Y, Z), B(X,W)) — h(B(X, Z), B(Y,W)).

0

We shall now apply the Gauss equation to the classical situation of
a regular surface ¥ as a submanifold of the 3-dimensional Euclidean
space R®. Let {X,Y} be a local orthonormal frame for the tangent
bundle TS around a point p € ¥ and N be the local Gauss map with
N =XxY. If X,Y,N are local extensions of X, Y, N then the second
fundamental form B of ¥ in R? satisfies

B(X,)Y) = <0yY,N>N
= — <Y, dN(X)>N
= <Y, S,(X)>N,
where S, : T, — T,X is the shape operator at p. If we now apply
the fact that ]1~%3 is flat, the Gauss equation tells us that the sectional
curvature K(X,Y) of ¥ at p satisfies
KX V) = <RE. 7Y,
— <B(Y,Y),B
= det S,.

X >
(X,X)>—- < B(X,Y),B(Y,X) >

In other word, the sectional curvature K (X,Y) is the determinant of
the shape operator S, at p i.e. the classical Gaussian curvature.
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As a direct consequence of the Gauss equation we have the following
useful result, see for example Exercises 8.8 and 8.9.

Corollary 8.19. Let (N, h) be a Riemannian manifold and (M, g)
be a totally geodesic submanifold of N. Let X,Y,Z,W € C*(TN) be
vector fields extending X,Y,Z, W € C*(TM). Then

9(R(X,Y)Z,W) = h(R(X,Y)Z,W).
We conclude this chapter by defining the Ricci and scalar curvatures

of a Riemannian manifold. These are obtained by taking traces over the
curvature tensor and play an important role in Riemannian geometry.

Definition 8.20. Let (M, g) be a Riemannian manifold, then
(i) the Ricci operator r : CY°(T'M) — C°(M) is defined by

r(X) = Z R(X, e;)e;,

(ii) the Ricci curvature Ric: CS°(TM) — Cg°(TM) by
Ric(X,Y) =) g(R(X,e)e;,Y), and
i=1
(iii) the scalar curvature s € C*°(M) by

5§ = Z Ric(ej, e;) = Z ZQ(R(% ej)e;j, €:).
j=1 j=1 i=1

Here {e1,...,en,} is any local orthonormal frame for the tangent bun-
dle.

Corollary 8.21. Let (M, g) be a Riemannian manifold of constant
sectional curvature k. Then the following holds

s=m-(m-—1)- k.

PROOF. Let {ey,...,e,} be an orthonormal basis, then Corollary
8.16 implies that
Ric(ej’ ej) = Z g(R(6j7 ei)ei> ej)
i=1

= K(Z gleiei)gles, ej) — Zg(eia ej)g(ei, e;))

=1 i=1
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= R<Z1—Zaij):(m—1).ﬁ.

To obtain the formula for the scalar curvature s we only have to mul-
tiply the constant Ricci curvature Ric(ej, e;) by m. O

For further reading on different notions of curvature we recommend
the interesting book, Wolfgang Kiihnel, Differential Geometry: Curves
- Surfaces - Manifolds, AMS (2002).
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Exercises

Exercise 8.1. Let (M, g) be a Riemannian manifold. Prove that
the tensor field g of type (2, 0) is parallel with respect to the Levi-Civita
connection.

Exercise 8.2. Let (M, g) be a Riemannian manifold. Prove that
the curvature R is a tensor field of type (3,1).

Exercise 8.3. Find a proof for Proposition 8.7.
Exercise 8.4. Find a proof for Lemma 8.8.

Exercise 8.5. Let R™ and C™ be equipped with their standard
Euclidean metric g given by
g(z,w) = Rez 2 W,
k=1
and let
T ={2e€C"| || =..=|zn| =1}
be the m-dimensional torus in C™ with the induced metric. Find an

isometric immersion ¢ : R™ — T determine all geodesics on 7™ and
prove that the torus is flat.

Exercise 8.6. Find a proof for Proposition 8.17.

Exercise 8.7. Let the Lie group S* = SU(2) be equipped with the
metric

g(Z, W) = % Re(trace(Z'W)).

(i) Find an orthonormal basis for T,SU(2).
(ii) Prove that (SU(2),g) has constant sectional curvature +1.

Exercise 8.8. Let S™ be the unit sphere in R™*! equipped with
the standard Euclidean metric (, )gm+1. Use the results of Corollaries
7.24, 8.19 and Exercise 8.7 to prove that (S™,(,)gm+1) has constant
sectional curvature +1.

Exercise 8.9. Let H™ be the m-dimensional hyperbolic space mod-
elled on the upper half space RT x R™~! equipped with the Riemannian
metric

1
g(Xv Y) = _2<X7 Y>]Rm7

Ty
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where x = (21,...,2,) € H™. For k = 1,...,m let the vector fields
Xy € C°(TH™) be given by

(Xi)e =21 a_xk

and define the operation * on H™ by
(OéVT) * (67y) - (Oéﬁ,Oéy‘i‘x)

Prove that
(i) (H™,x) is a Lie group,
(ii) the vector fields Xi, ..., X,, are left-invariant,
(ili) [Xg, Xi) =0 and [ Xy, Xi] = X}, for k, 1 =2,...,m,
(iv) the metric g is left-invariant,

(v) (H™,g) has constant curvature —1.
Compare with Exercises 6.4 and 7.1.



CHAPTER 9

Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of Rie-
mannian manifolds and how this is controlled by the curvature tensor.
For this we introduce the notion of a Jacobi field which is a useful
tool in differential geometry. With this at hand we yield a funda-
mental comparison result describing the curvature dependence of local
distances.

Let (M, g) be a Riemannian manifold. By a smooth 1-parameter
family of geodesics we mean a C'*°-map

O:(—ce)x I —M

such that the curve y; : I — M given by v, : s — ®(t, s) is a geodesic for
all t € (—e¢,€). The variable t € (—¢, €) is called the family parameter
of ®.

Proposition 9.1. Let (M, g) be a Riemannian manifold and ® :
(—e,€) x I — M be a 1-parameter family of geodesics. Then for each
t € (—€,€) the vector field J; : I — C*(TM) along ~y; given by

0P

Tls) = 5 (8

satisfies the second order ordinary differential equation

V"th%(]t + R(Jt, ’%)’.)/t - 0

Proor. Along ¢ we put X(t,s) = 0®/0s and J(t,s) = 0P/0t.
The fact that [0/0t,0/0s] = 0 implies that

[J, X] = [d®(/0t), dB(D/3s)] = d®([0/dt,D/Ds]) = 0.

Since @ is a family of geodesics we have Vi X = 0 and the definition
of the curvature tensor then gives

R(J, X)X = ViUX = VWVpX — Wy X
—Vy VX

95
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Hence for each t € (—¢, €) we have
V,ytV%Jt + R(Jt, ’%)")/t == 0
O

Definition 9.2. Let (M, g) be a Riemannian manifold, v : I — M
be a geodesic and X = 4. A C? vector field J along ~ is called a
Jacobi field if

(5) Vi Vxd + R(J, X)X =0
along . We denote the space of all Jacobi fields along v by J,(TM).

We shall now give an example of a 1-parameter family of geodesics
in the (m + 1)-dimensional Euclidean space E™*1.

Example 9.3. Let ¢,n : R — E™"! be smooth curves such that

the image n(R) of n is contained in the unit sphere S™. If we define a
map ® : R x R — E™*! by

O (t,s) —c(t) +s-n(t)

then for each t € R the curve v : s — ®(¢,s) is a straight line and
hence a geodesic in E™*!. By differentiating with respect to the family
parameter ¢ we yield the Jacobi field J € J,,(TE™"!) along v, with

J(s) = %@(t, $)|t=0 = ¢(0) + s - n(0).

The Jacobi equation (5) on a Riemannian manifold is linear in J.
This means that the space of Jacobi fields J,(T'M) along ~ is a vector
space. We are now interested in determining the dimension of this
space

Proposition 9.4. Let v : I — M be a geodesic, 0 € I, p = ~(0)
and X =+ along . If v,w € T,M are two tangent vectors at p then
there exists a unique Jacobi field J along vy, such that J, = v and

PROOF. Let {Xj,..., X,,} be an orthonormal frame of parallel vec-
tor fields along v, see Proposition 7.8. If J is a vector field along -,

then .
J = Z CLiXi
=1

where a; = g¢(J, X;) are smooth functions on I. The vector fields
Xq,...,X,, are parallel so

i=1 i=1
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For the curvature tensor we have

R(X;, X)X =) VX,
k=1

where b = g(R(X;, X)X, X}) are smooth functions on I depending on
the geometry of (M, g). This means that R(J, X)X is given by

R(JL,X)X =) aibfX.
ik=1
and that J is a Jacobi field if and only if

i=1 k=1

This is equivalent to the second order system

i+ apb, =0 foralli=12_. m
k=1
of linear ordinary differential equations in a = (ay,...,a,). A global
solution will always exist and is uniquely determined by a(0) and @(0).
This implies that J exists globally and is uniquely determined by the
initial conditions

J(0) =v and (VyJ)(0) = w.
O
Corollary 9.5. Let (M, g) be an m-dimensional Riemannian man-

ifold and ~y : I — M be a geodesic in M. Then the vector space J(T M)
of all Jacobi fields along v has the dimension 2m.

The following Lemma shows that when proving results about Ja-
cobi fields along a geodesic v we can always assume, without loss of
generality, that |§| = 1.

Lemma 9.6. Let (M, g) be a Riemannian manifold, v : 1 — M be
a geodesic and J be a Jacobi field along v. If A € R* and o : \[ — I
is given by o : t +— t/\, then yoo : \I — M is a geodesic and J o o is
a Jacobt field along v o o.

PROOF. See Exercise 9.1. O

Next we determine the Jacobi fields which are tangential to a given
geodesic.
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Proposition 9.7. Let (M, g) be a Riemannian manifold, v : I —
M be a geodesic with || =1 and J be a Jacobi field along y. Let J'
be the tangential part of J given by

J'=g(JA)Y and J-=J—-J"

be its normal part. Then J' and J* are Jacobi fields along v and there
exist a,b € R such that J'(s) = (as + b)5(s) for all s € I.

Proor. We now have
T+ RUTA)Y = G + RO
= —Q(R(J, 7)%7)7
= 0.

This shows that the tangential part J' of J is a Jacobi field. The
fact that J,(T'M) is a vector space implies that the normal part J* =
J — J' of J also is a Jacobi field.

By differentiating g(.J, ) twice along v we obtain

d? _ :
720(1) = 9(VNJ.5) = —g(R(J,9)7,7) =0
so g(J,5(s)) = (as + b) for some a,b € R. O

Corollary 9.8. Let (M, g) be a Riemannian manifold, v : 1 — M
be a geodesic and J be a Jacobi field along ~v. If

9(J(to),¥(to)) =0 and 9((V J)(to), ¥(to)) = 0
for some tg € I, then g(J(t),5(t)) =0 for allt € I.

ProoF. This is a direct consequence of the fact that the function
g(J,%) satisfies the second order ordinary dlfferentlal equation f = 0
and the initial conditions £(0) = 0 and f(0) = 0. O

Our next aim is to show that if the Riemannian manifold (M, g)
has constant sectional curvature then we can solve the Jacobi equation

along any given geodesic v : I — M. For this we introduce the follow-
ing notation. For a real number x € R we define the ¢.,s. : R = R

by
cosh(\/|kls) if Kk <0,
cu(s) =41 if Kk =0,
cos(\/kS) if K > 0.
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and

sinh(\/|k|s)/+/|k| if kK <O,

Se(s) =4's if k=0,
sin(v/ks) /K if kK > 0.

It is a well known fact that the unique solution to the initial value
problem

f+r-f=0, f(0) =a and f(O):b
is the function f : R — R satisfying f(s) = ack(s) + bs.(s).

Example 9.9. Let C be the complex plane with the standard Eu-
clidean metric (,)gz of constant sectional curvature xk = 0. The ro-
tations about the origin produce a 1-parameter family of geodesics
®, : s se'’. Along the geodesic 7y : s — s we get the Jacobi field

0P,

Jo($) W(O’S) =1s

with |Jo(s)| = |s| = |s.(s)].

Example 9.10. Let S? be the unit sphere in the standard Eu-
clidean 3-space C x R with the induced metric of constant sectional
curvature Kk = +1. Rotations about the R-axis produce a 1-parameter
family of geodesics ®; : s +— (sin(s)e, cos(s)). Along the geodesic
Yo : § — (sin(s), cos(s)) we get the Jacobi field

0P,

Jo(s) W(O’ s) = (isin(s),0)

with |Jo(s)|? = sin®(s) = |s.(s)[*

Example 9.11. Let B}(0) be the open unit disk in the complex
plane with the hyperbolic metric

GXY) = (e

(1= 1[2%)
of constant sectional curvature £ = —1. Rotations about the origin
produce a 1-parameter family of geodesics @, : s — tanh(s/2)e". Along
the geodesic 7 : s — tanh(s/2) we get the Jacobi field

Jo(s) = %(0, s) =1i-tanh(s/2)

with

= sinh*(s) = |s.(s)|*.
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Let (M, g) be a Riemannian manifold of constant sectional curva-
ture k and v : I — M be a geodesic with |X| = 1 where X = 4.
Further let Py, P, ..., P, _1 be parallel vector fields along v such that
g(P;, Pj) = 6;; and g(P;, X) = 0. Any vector field J along v may now
be written as

m—1
J(s) =D fils)Pis) + fu(5) X (s).
i=1

This means that J is a Jacobi field if and only if

" RGP+ Fale)X(s) = VWi

_ = —R(J, X)X
= —R(J:H, X)X
= —r(g(X, X)J* - g(J*, X)X)
= —krJ*

= Y AP

This is equivalent to the following system of ordinary differential equa-
tions

(6)  fm(s)=0 and fi(s)+kfi(s)=0 foralli=1,2,...,m—1.

It is clear that for the initial values

J(s0) = sz )+ vm X (50),

(Vx/)(s0) = sz (50) + wmX (50)

or equivalently
filso) =v; and fi(so) =w; forall i=1,2,....m

we have a unique and explicit solution to the system (6) on the whole
of I.

In the next example we give a complete description of the Jacobi
fields along a geodesic on the 2-dimensional sphere.

Example 9.12. Let S? be the unit sphere in the standard Eu-
clidean 3-space C x R with the induced metric of constant curvature
k= +1and v : R — S? be the geodesic given by 7 : s — (¢%,0). Then
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4(s) = (ie’, 0) so it follows from Proposition (9.7) that all Jacobi fields
tangential to v are given by

Jlan)(s) = (as +b)(ie”,0)  for some a,b € R.

The vector field P : R — T'S? given by s — ((€,0),(0,1)) satisfies
(P,%) = 0 and |P| = 1. The sphere S? is 2-dimensional and 7 is parallel
along v so P must be parallel. This implies that all the Jacobi fields
orthogonal to 7 are given by

J{X’b)(s) = (0,acos s + bsins) for some a,b € R.

In more general situations, where we do not have constant curvature
the exponential map can be used to produce Jacobi fields as follows. Let
(M, g) be a complete Riemannian manifold, p € M and v,w € T,M.
Then s — s(v+tw) defines a 1-parameter family of lines in the tangent
space T, M which all pass through the origin 0 € 7,M. Remember that
the exponential map

(exp)p]B;r;(O) : BX o) — exp(Bl )

maps lines in 7, M through the origin onto geodesics on M. Hence the
map

D¢ 5 (exp)y(s(v + tw))
is a 1-parameter family of geodesics through p € M, as long as s(v+tw)
is an element of BETZ(O). This means that

0P,
Py —(0,s)

is a Jacobi field along the geodesic v : s +— Pg(s) with v(0) = p and
4(0) = v. It is easily verified that .J satisfies the initial conditions
J(0)=0 and (VyJ)(0) = w.
The following technical result is needed for the proof of the main
Theorem 9.14 at the end of this chapter.

J(s) =

Lemma 9.13. Let (M, g) be a Riemannian manifold with sectional
curvature uniformly bounded above by A and v : [0,a] — M be a
geodesic on M with | X| =1 where X = 4. Further let J : [0,a] — TM
be a Jacobi field along v such that g(J, X) =0 and |J| # 0 on (0,a).
Then

(i) d*(|J])/ds* + A - |J| = 0,

(ii) of f:]0,a] — R is a C*-function such that
(a) f+A-f=0and f>0 on (0,a),
(b) f(0) = [J(0)], and
(c) £(0) = [V J(O)],
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then f(s) < |J(s)| on (0,a),
(iii) of J(0) = 0, then [VyJ(0)] - sa(s) < [|J(s)| for all s € (0, ).
PROOF. (i) Using the facts that | X| =1 and (X, J) = 0 we obtain

&2 &2 d 9(VxJ,J)
d2(| ) = 72 Q(JJ)—%(T

|| | J]?
- 9(Vx Vi, J)
- /]
_ (R(JX)X,J)
- /]
= —K(X,J)-|J]
> AL
(ii) Define the function h : [0,«) — R by
|J(z)| if s € (0, ),
hls) = {13;;0 6l — 1 if s = 0.
Then
. 1 .
h(s) = f2(3)( (UT(s)Df(s) = 1T ()] f ()
~ a5 | EGIIONIE) - 1)
= f%(s)/o (%(U(t)\)f(f)—|J(t)|f(f))dt

1 ? d?
= fQ—(S)/O FO) (@) + A - I ()])dt
0

v

This implies that h(s) > 0 so f(s) < |J(s)| for all s € (0,a).
(iii) The function f(s) = [(VyJ)(0)] - sa(s) satisfies the differential
equation

f(s) +Af(s) =
and the initial conditions f(0) = [.J(0)] = 0, f(0) =
fs) <

(V) (0)] so it
follows from (ii) that [(VyJ)(0)] - sa(s) = f(s) < [J(s)].

|
s) O

Let (M, g) be a Riemannian manifold of sectional curvature which is
uniformly bounded above, i.e. there exists a A € R such that K,(V) <
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A for all V. € Gy(T,M) and p € M. Let (Ma,ga) be another Rie-
mannian manifold which is complete and of constant sectional curva-
ture K = A. Let p € M, pa € Ma and identify T,M = R™ =T, Mn.

Let U be an open neighbourhood of R™ around 0 such that the
exponential maps (exp), and (exp),, are diffecomorphisms from U onto
their images (exp),(U) and (exp),, (U), respectively. Let (r,p,q) be
a geodesic triangle i.e. a triangle with sides which are shortest paths
between their endpoints. Furthermore let ¢ : [a,b] — M be the side
connecting r and ¢ and v : [a,b] — T,M be the curve defined by
c(t) = (exp),(v(t)). Put ca(t) = (exp),, (v(t)) for t € [a,b] and then
it directly follows that c¢(a) = r and ¢(b) = ¢. Finally put ra = ca(a)
and ga = ca(b).

Theorem 9.14. For the above situation the following inequality for
the distance function d is satisfied

d(QA, TA) < d(Q7 T)'

PROOF. Define a 1-parameter family s — s - v(t) of straight lines
in T,M through p. Then ®; : s — (exp),(s - v(t)) and &2 : s —
(exp)pn(s-v(t)) are 1-parameter families of geodesics through p € M,
and pa € Ma, respectively. Hence J; = 0®,/0t and J& = 9P2 /Ot are
Jacobi fields satisfying the initial conditions J;(0) = J~(0) = 0 and
(VxJ,)(0) = (VXJtA)(O) = 0(t). Using Lemma 9.13 we now obtain

ea@®] = 172 (1)]
= |(VxJ)(0)] - sa(1)
= [(VxJ)(0)] - sa(1)
< [JL(1)]

= [et)]
The curve c is the shortest path between r and ¢ so we have
d(ra,qa) < L(ca) < L(c) = d(r, ).
O

We now add the assumption that the sectional curvature of the
manifold (M, g) is uniformly bounded below i.e. there exists a § € R
such that § < K,(V) for all V' € Go(T,M) and p € M. Let (Ms, gs)
be a complete Riemannian manifold of constant sectional curvature 9.
Let p € M and ps € Ms and identify T,M = R™ = T, Ms. Then a
similar construction as above gives two pairs of points ¢, € M and
qs,rs € My and shows that

d(q,r) < d(gs, 7s)-
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Combining these two results we obtain locally
d(qa,ra) < d(g,7) < d(gs,7s).
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Exercises

Exercise 9.1. Find a proof for Lemma 9.6.

Exercise 9.2. Let (M, g) be a Riemannian manifold and vy : I — M
be a geodesic such that X = 4 # 0. Further let J be a non-vanishing
Jacobi field along v with ¢(X,J) = 0. Prove that if g(.J, J) is constant
along ~ then (M, g) does not have strictly negative curvature.



