
PRIMER FOR MANIFOLD THEORY
After imposing rectilinear coordinates on a Euclidean space En (such as the

plane E2) we identify Euclidean space with Rn, the vector space of n−tuples of
numbers. In fact, since a Euclidean space, in this sense, is an object of intuition
(at least in 2d and 3d) some readers may insist that to be sure such a space of
points really exists, we should start with Rn and then “forget” the origin and all
the vector space structure while retaining the notion of point and distance. The
coordinatization of Euclidean space is then just a “remembering” of this forgot-
ten structure. Thus our coordinates arise from a map x : En → Rn which is
just the identity map. This approach has much to recommend it but there is at
least one regrettable aspect to this approach and that is the psychological effect
that occurs when we impose other coordinates on our space and then introduce
differentiable manifolds as abstract geometric objects that support coordinate
systems. It might then seem that this is a big and new abstraction. When the
definitions of charts and atlases and so on appear, a certain notational fastidi-
ousness sets in that somehow creates a psychological gap between open sets in
Rn and the abstract spaces that we coordinatize. But what is now lost from sight
is that we have already been dealing with an abstract manifold! Namely, E3

which support many coordinate systems such as spherical coordinates. Putting
coordinates on space, even the rectangular coordinates which allows
us to identify E3 with R3 is already the basic idea involved in the
notion of a differentiable manifold. The idea of a differentiable manifold
is a natural idea that becomes overly complicated when we are forced to make
exact definitions. As a result of the nature of these definition the student is
faced with a pedagogy that teaches notation and trains one to examine each
expression for logical set theoretic self consistency, but fails to teach geometric
intuition. Having made this complaint, the author must confess that he too will
use the modern notation and will not stray far from standard practice. These
remarks are meant to encourage the student to stop and seek the simplest most
intuitive viewpoint whenever feeling overwhelmed by notation. The student is
encouraged to experiment with abbreviated personal notation when checking
calculations and to draw diagrams and schematics that encode the geometric
ideas whenever possible. “The picture writes the equations”.

So, as we said, after imposing rectilinear coordinates on a Euclidean space
En (such as the plane E2 space E3) we identify Euclidean space with Rn, the
vector space of n−tuples of numbers.

We will envision there to be a copy of Rn at each of its points p ∈ Rn which
is denoted Rn

p . The elements of Rn
p are to be thought of as vectors based

at p, that is, the “tangent vectors” at p. These tangent spaces are related to
each other by the obvious notion of vectors being parallel (this is exactly what
is not generally possible for tangents spaces of a general manifold). For the
standard basis vectors ej (relative to the coordinates xi) taken as being based

at p we often write ∂
∂xi

∣∣∣
p

and this has the convenient second interpretation as a
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differential operator acting on smooth functions defined near p ∈ Rn. Namely,

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi
(p).

An n-tuple of smooth functions X1, ..., Xn defines a smooth vector field X =∑
Xi ∂

∂xi
whose value at p is

∑
Xi(p) ∂

∂xi

∣∣∣
p
. Thus a vector field assigns to each

p in its domain, an open set U , a vector
∑

Xi(p) ∂
∂xi

∣∣∣
p

at p. We may also think

of vector field as a differential operator via

f 7→ Xf ∈ C∞(U)

(Xf)(p) :=
∑

Xi(p)
∂f

∂xi
(p)

Example 1 X = y ∂
∂x − x ∂

∂y is a vector field defined on U = R2 − {0} and
(Xf)(x, y) = y ∂f

∂x (x, y)− x∂f
∂y (x, y).

Notice that we may certainly add vector fields defined over the same open
set as well as multiply by functions defined there:

(fX + gY )(p) = f(p)X(p) + g(p)X(p)

The familiar expression df = ∂f
∂x1

dx1 + · · ·+ ∂f
∂xn

dxn has the intuitive inter-
pretation expressing how small changes in the variables of a function give rise
to small changes in the value of the function. Two questions should come to
mind. First, “what does ‘small’ mean and how small is small enough?” Second,
“which direction are we moving in the coordinate” space? The answer to these
questions lead to the more sophisticated interpretation of df as being a linear
functional on each tangent space. Thus we must choose a direction vp at p ∈ Rn

and then df(vp) is a number depending linearly on our choice of vector vp. The
definition is determined by dxi(ej) = δij . In fact, this shall be the basis of our
definition of df at p. We want

Df |p (
∂

∂xi

∣∣∣∣
p

) :=
∂f

∂xi
(p).

Now any vector at p may be written vp =
∑n

i=1 vi ∂
∂xi

∣∣∣
p

which invites us to

use vp as a differential operator (at p):

vpf :=
n∑

i=1

vi ∂f

∂xi
(p) ∈ R

This consistent with our previous statement about a vector field being a differ-
ential operator simply because X(p) = Xp is a vector at p for every p ∈ U . This

2



is just the directional derivative. In fact we also see that

Df |p (vp) =
∑

j

∂f

∂xj
(p)dxj

(
n∑

i=1

vi ∂

∂xi

∣∣∣∣
p

)

=
n∑

i=1

vi ∂f

∂xi
(p) = vpf

so that our choices lead to the following definition:

Definition 2 Let f be a smooth function on an open subset U of Rn. By the
symbol df we mean a family of maps Df |p with p varying over the domain U
of f and where each such map is a linear functional of tangent vectors based at
p given by Df |p (vp) = vpf =

∑n
i=1 vi ∂f

∂xi
(p).

Definition 3 More generally, a smooth 1-form α on U is a family of linear
functionals αp : TpRn → R with p ∈ U that is smooth is the sense that αp( ∂

∂xi

∣∣∣
p
)

is a smooth function of p for all i.

¿From this last definition it follows that if X = Xi ∂
∂xi

is a smooth vector field
then α(X)(p) := αp(Xp) defines a smooth function of p. Thus an alternative
way to view a 1−form is as a map α : X 7→ α(X) that is defined on vector fields
and linear over the algebra of smooth functions C∞(U) :

α(fX + gY ) = fα(X) + gα(Y ).

0.1 Fixing a problem

Now it is at this point that we want to destroy the privilege of the rectangular
coordinates and express our objects in an arbitrary coordinate system smoothly
related to the existing coordinates. This means that for any two such coordinate
systems, say u1, ..., un and y1, ...., yn we want to have the ability to express fields
and forms in either system and have for instance

Xi
(y)

∂

∂yi
= X = Xi

(u)

∂

∂ui

for appropriate functions Xi
(y), Xi

(u). This equation only makes sense on the
overlap of the domains of the coordinate systems. To be consistent with the
chain rule we must have

∂

∂yi
=

∂uj

∂yi

∂

∂uj

which then forces the familiar transformation law:

∑ ∂uj

∂yi
Xi

(y) = Xi
(u)
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We think of Xi
(y) and Xi

(u) as referring to or representing the same geometric
reality from two different coordinate systems. No big deal right? OK, how about
the fact that there is this underlying abstract space that we are coordinatizing?
That too is no big deal. We were always doing it in calculus anyway. What about
the fact that the coordinate systems aren’t defined as a 1-1 correspondence with
the points of the space unless we leave out some points in some coordinates. For
example, when using polar coordinates we leave out the origin and the axis we
are measuring from to avoid ambiguity in θ and in order to have a nice open
domain. Well if this is all fine then we may as well imagine other abstract spaces
that support coordinates in this way. In fact, we don’t have to look far for an
example. Any surface such as the sphere will do. We can talk about 1-forms like
say α = θdφ+φ sin(θ)dθ, or a vector field tangent to the sphere θ sin(φ) ∂

∂θ +θ2 ∂
∂φ

and so on (just pulling things out of a hat). We just have to be clear about
how these arise and most of all how to change to a new coordinate expression
for the same object in a different coordinate system. This is the approach of
tensor analysis. An object called a 2-tensor T is represented in two different
coordinate systems as for instance

T =
∑

T ij
(y)

∂

∂yi
⊗ ∂

∂yj

T =
∑

T ij
(u)

∂

∂ui
⊗ ∂

∂uj

where all we really need to know for many purposes is the transformation law
for coordinate changes:

T ij
(y) =

∑
r,s

T rs
(u)

∂yi

∂ur

∂yi

∂us
.

Then either expression is referring to the same abstract tensor T . This is just
a preview but it highlights the approach wherein a transformation laws play a
defining role. Eventually, this leads to the abstract notion of a G-bundle.
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