10 APPENDIX: Technical results

10.1 The inverse function theorem

Lemma 10.1 (Contraction mapping principle) Let M be a complete metric space and suppose $T: M \rightarrow M$ is a map such that

$$
d(T x, T y) \leq k d(x, y)
$$

where $k<1$. Then T has a unique fixed point.

Proof: Choose any point x_{0}, then

$$
\begin{aligned}
d\left(T^{m} x_{0}, T^{n} x_{0}\right) & \leq k^{m} d\left(x_{0}, T^{n-m} x_{0}\right) \quad \text { for } \quad n \geq m \\
& \leq k^{m}\left(d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)+\ldots+d\left(T^{n-m-1} x_{0}, T^{n-m} x_{0}\right)\right) \\
& \leq k^{m}\left(1+k+\ldots+k^{n-m-1}\right) d\left(x_{0}, T x_{0}\right) \\
& \leq \frac{k^{m}}{1-k} d\left(x_{0}, T x_{0}\right)
\end{aligned}
$$

This is a Cauchy sequence, so completeness of M implies that it converges to x. Thus $x=\lim T^{n} x_{0}$ and so by continuity of T,

$$
T x=\lim T^{n+1} x_{0}=x
$$

For uniqueness, if $T x=x$ and $T y=y$, then

$$
d(x, y)=d(T x, T y) \leq k d(x, y)
$$

and so $k<1$ implies $d(x, y)=0$.

Theorem 10.2 (Inverse function theorem) Let $U \subseteq \mathbf{R}^{n}$ be an open set and f : $U \rightarrow \mathbf{R}^{n}$ a C^{∞} function such that $D f_{a}$ is invertible at $a \in U$. Then there exist neighbourhoods V, W of a and $f(a)$ respectively such that $f(V)=W$ and f has a C^{∞} inverse on W.

Proof: By an affine transformation $x \mapsto A x+b$ we can assume that $a=0$ and $D f_{a}=I$. Now consider $g(x)=x-f(x)$. By construction $D g_{0}=0$ so by continuity there exists $r>0$ such that if $\|x\|<2 r$,

$$
\left\|D g_{x}\right\|<\frac{1}{2}
$$

It follows from the mean value theorem that

$$
\|g(x)\| \leq \frac{1}{2}\|x\|
$$

and so g maps the closed ball $\bar{B}(0, r)$ to $\bar{B}(0, r / 2)$. Now consider

$$
g_{y}(x)=y+x-f(x)
$$

(The choice of g_{y} is made so that a fixed point $g_{y}(x)=x$ solves $f(x)=y$).
If now $\|y\| \leq r / 2$ and $\|x\| \leq r$, then

$$
\left\|g_{y}(x)\right\| \leq \frac{1}{2} r+\|g(x)\| \leq \frac{1}{2} r+\frac{1}{2} r=r
$$

so g_{y} maps the complete metric space $M=\bar{B}(0, r)$ to itself. Moreover

$$
\left\|g_{y}\left(x_{1}\right)-g_{y}\left(x_{2}\right)\right\|=\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \leq \frac{1}{2}\left\|x_{1}-x_{2}\right\|
$$

if $x_{1}, x_{2} \in \bar{B}(0, r)$, and so g_{y} is a contraction mapping. Applying Lemma 1 we have a unique fixed point and hence an inverse $\varphi=f^{-1}$.

We need to show first that φ is continuous and secondly that it has derivatives of all orders. From the definition of g and the mean value theorem,

$$
\begin{aligned}
\left\|x_{1}-x_{2}\right\| & \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|+\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \\
& \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|+\frac{1}{2}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

so

$$
\left\|x_{1}-x_{2}\right\| \leq 2\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|
$$

which is continuity for φ. It follows also from this inequality that if $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ where $y_{1}, y_{2} \in B(0, r / 2)$ then $x_{1}, x_{2} \in \bar{B}(0, r)$, and so

$$
\begin{aligned}
\left\|\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)-\left(D f_{x_{2}}\right)^{-1}\left(y_{1}-y_{2}\right)\right\| & =\left\|x_{1}-x_{2}-\left(D f_{x_{2}}\right)^{-1}\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right\| \\
& \leq\left\|\left(D f_{x_{2}}\right)^{-1}\right\|\left\|D f_{x_{2}}\left(x_{1}-x_{2}\right)-f\left(x_{1}\right)+f\left(x_{2}\right)\right\| \\
& \leq A\left\|x_{1}-x_{2}\right\| R
\end{aligned}
$$

where A is a bound on $\left\|\left(D f_{x_{2}}\right)^{-1}\right\|$ and the function $\left\|x_{1}-x_{2}\right\| R$ is the remainder term in the definition of differentiability of f. But $\left\|x_{1}-x_{2}\right\| \leq 2\left\|y_{1}-y_{2}\right\|$ so as $y_{1} \rightarrow y_{2}, x_{1} \rightarrow x_{2}$ and hence $R \rightarrow 0$, so φ is differentiable and moreover its derivative is $(D f)^{-1}$.

Now we know the derivative of φ :

$$
D \varphi=(D f)^{-1}
$$

so we see that it is continuous and has as many derivatives as f itself, so φ is C^{∞}.

10.2 Existence of solutions of ordinary differential equations

Lemma 10.3 Let M be a complete metric space and $T: M \rightarrow M$ a map. If T^{n} is a contraction mapping, then T has a unique fixed point.

Proof: By the contraction mapping principle, T^{n} has a unique fixed point x. We also have

$$
T^{n}(T x)=T^{n+1} x=T\left(T^{n} x\right)=T x
$$

so $T x$ is also a fixed point of T^{n}. By uniqueness $T x=x$.

Theorem 10.4 Let $f(t, x)$ be a continuous function on $\left|t-t_{0}\right| \leq a,\left\|x-x_{0}\right\| \leq b$ and suppose f satisfies a Lipschitz condition

$$
\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq\left\|x_{1}-x_{2}\right\| .
$$

If $M=\sup |f(t, x)|$ and $h=\min (a, b / M)$, then the differential equation

$$
\frac{d x}{d t}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution for $\left|t-t_{0}\right| \leq h$.

Proof: Let

$$
(T x)(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
$$

Then $T x$ is differentiable since f and x are continuous and if $T x=x, x$ satisfies the differential equation (differentiate the definition). We use the metric space

$$
X=\left\{x \in C\left(\left[t_{0}-h, t_{0}+h\right], \mathbf{R}^{n}\right):\left\|x(t)-x_{0}\right\| \leq M h\right\}
$$

with the uniform metric

$$
d\left(x_{1}, x_{2}\right)=\sup _{\left|t-t_{0}\right| \leq h}\left\|x_{1}(t)-x_{2}(t)\right\|
$$

which makes it complete. If $x \in M$, then $T x \in M$ and we claim

$$
\left|T^{k} x_{1}(t)-T^{k} x_{2}(t)\right|\left|\leq \frac{c^{k}}{k!}\right| t-\left.t_{0}\right|^{k} d\left(x_{1}, x_{2}\right)
$$

For $k=0$ this is clear, and in general we use induction to establish:

$$
\begin{aligned}
\left\|T^{k} x_{1}(t)-T^{k} x_{2}(t)\right\| & \leq \int_{t_{0}}^{t} \| f\left(s, T^{k-1} x_{1}(s)-f\left(s, T^{k-1} x_{2}(s) \| d s\right.\right. \\
& \leq c \int_{t_{0}}^{t}\left\|T^{k-1} x_{1}(s)-T^{k-1} x_{2}(s)\right\| d s \\
& \leq\left(c^{k} /(k-1)!\right) \int_{t_{0}}^{t}\left|s-t_{0}\right|^{k-1} d s d\left(x_{1}, x_{2}\right) \\
& \leq\left(c^{k} / k!\right)\left|t-t_{0}\right|^{k} d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

So T^{n} is a contraction mapping for large enough N, and the result follows.
Theorem 10.5 The solution above depends continuously on the initial data x_{0}.
Proof: Take $h_{1} \leq h$ and $\delta>0$ such that $M h+\delta \leq b$, and let

$$
Y=\left\{y \in C\left(\left[t_{0}-h_{1}, t_{0}+h_{1}\right] \times \bar{B}\left(x_{0}, \delta\right) ; \mathbf{R}^{n}:\|y(t, x)-x\| \leq M h, y\left(t_{0}, x\right)=x\right\}\right.
$$

which is a complete metric space as before. Now set

$$
(T y)(t, x)=x+\int_{t_{0}}^{t} f(s, y(s, x)) d s
$$

Since $M h_{1}+\delta \leq b, T$ maps Y to Y and just as before T^{n} is a contraction mapping with a unique fixed point which satisfies

$$
\frac{\partial y}{\partial t}=f(t, y), \quad y\left(t_{0}, x\right)=x
$$

Since y is continuous in t and x this is what we need.

If $f(t, x)$ is smooth then we need more work to prove that the solution to the equation is smooth and smoothly dependent on parameters.

10.3 Smooth dependence

Lemma 10.6 Let $A(t, x), B(t, x)$ be continuous matrix-valued functions and take $M \geq \sup _{t, x}\|B\|$. The solutions of the linear differential equations

$$
\begin{array}{ll}
\frac{d \xi(t, x)}{d t}=A(t, x) \xi(t, x), & \xi\left(t_{0}, x\right)=a(x) \\
\frac{d \eta(t, x)}{d t}=B(t, x) \eta(t, x), & \eta\left(t_{0}, x\right)=b(x)
\end{array}
$$

satisfy

$$
\sup _{x}\|\xi(t, x)-\eta(t, x)\| \leq C\|A-B\| \frac{e^{M\left|t-t_{0}\right|}-1}{M}+\|a-b\| e^{M\left|t-t_{0}\right|}
$$

where C is a constant depending only on A and a.
Proof: By the existence theorem we know how to find solutions as limits of ξ_{n}, η_{n} where

$$
\begin{aligned}
& \xi_{k}=a+\int_{t_{0}}^{t} A \xi_{k-1} d s \\
& \eta_{k}=b+\int_{t_{0}}^{t} B \eta_{k-1} d s
\end{aligned}
$$

Let $g_{k}(t)=\sup _{x}\left\|\xi_{k}(t, x)-\eta_{k}(t, x)\right\|$ and $C=\sup _{k, x, t}\left\|\xi_{k}\right\|$. Then

$$
g_{n}(t) \leq\|a-b\|+C\|A-B\|\left|t-t_{0}\right|+M \int_{t_{0}}^{t} g_{n-1}(s) d s
$$

Now define f_{n} by $f_{0}(t)=\|a-b\|$ and then inductively by

$$
f_{n}(t)=\|a-b\|+C\|A-B\|\left|t-t_{0}\right|+M \int_{t_{0}}^{t} f_{n-1}(s) d s
$$

Comparing these two we see that $f_{n} \geq g_{n}$. This is a contraction mapping, so that $f_{n} \rightarrow f$ with

$$
f(t)=\|a-b\|+C\|A-B\|\left|t-t_{0}\right|+M \int_{t_{0}}^{t} f(s) d s
$$

and solving the corresponding differential equation we get

$$
f(t)=\|a-b\| e^{M\left|t-t_{0}\right|}+C\|A-B\| \frac{e^{M\left|t-t_{0}\right|}-1}{M}
$$

As $g_{n}(t) \leq f_{n}(t)$,

$$
\sup _{x}\left\|\xi_{n}(t, x)-\eta_{n}(t, x)\right\| \leq f_{n}(t)
$$

and the theorem follows by letting $n \rightarrow \infty$.
Theorem 10.7 If f is C^{k} and

$$
\frac{d}{d t} \alpha(t, x)=f(t, \alpha(t, x)), \quad \alpha(0, x)=x
$$

then α is also C^{k}.

Proof: The hardest bit is $k=1$. Assume f is C^{1} so that $\partial f / \partial t$ and $\partial f / \partial x_{i}$ exist and are continuous. We must show that α is C^{1} in all variables. If that were true, then the matrix valued function λ where $\left(\lambda_{i}=\partial \alpha / \partial x_{i}\right)$ would be the solution of the differential equation

$$
\begin{equation*}
\frac{d \lambda}{d t}=D_{x} f(t, \alpha) \lambda \tag{25}
\end{equation*}
$$

so we shall solve this equation by the existence theorem and prove that the solution is the derivative of α. Let $F(s)=f(t, a+s(b-a))$. Then

$$
\frac{d F}{d s}=D_{x} f(t, a+s(b-a))(b-a)
$$

so

$$
f(t, b)-f(t, a)=\int_{0}^{1} D_{x} f(t, a+s(b-a))(b-a) d s
$$

But then

$$
\begin{aligned}
\frac{d}{d t}(\alpha(t, x+y)-\alpha(t, x)) & =f(t, \alpha(t, x+y))-f(t, \alpha(t, x)) \\
& =\int_{0}^{1} D_{x} f(t, \alpha(t, x)+s(\alpha(t, x+y)-\alpha(t, x)))(\alpha(t, x+y)-\alpha(t, x)) d s
\end{aligned}
$$

Let $A(t, x)=D_{x} f(t, \alpha(t, x))$ and $\xi(t, x)=\lambda(t, x) y$ and
$B_{y}(t, x)=\int_{0}^{1} D_{x} f(t, \alpha(t, x)+s(\alpha(t, x+y)-\alpha(t, x))) d s, \quad \eta_{y}(t, x)=\alpha(t, x+y)-\alpha(t, x)$
Apply the previous lemma and we get

$$
\sup _{|t| \leq \epsilon}\|\lambda(t, x) y-(\alpha(t, x+y)-\alpha(x))\|=o(\| y \mid)
$$

and so $D_{x} \alpha=\lambda$, which is continuous in (t, x). Since also $d \alpha / d t=f(t, \alpha)$ this means that α is C^{1} in all variables.

To continue, suppose inductively that the theorem is true for $k-1$, and f is C^{k}. Then $A(t, x)=D_{x} f(t, \alpha(t, x))$ is C^{k-1} but since

$$
\frac{d \lambda}{d t}=A \lambda
$$

we have λ is C^{k-1}. Now $D_{x} \alpha=\lambda$ so the x_{i}-derivatives of α are C^{k-1}. But also $d \alpha / d t=f(t, \alpha)$ is C^{k-1} too, so α is C^{k}.

10.4 Partitions of unity on general manifolds

Definition 39 A partition of unity on M is a collection $\left\{\varphi_{i}\right\}_{i \in I}$ of smooth functions such that

- $\varphi_{i} \geq 0$
- $\left\{\operatorname{supp} \varphi_{i}: i \in I\right\}$ is locally finite
- $\sum_{i} \varphi_{i}=1$

Here locally finite means that for each $x \in M$ there is a neighbourhood U which intersects only finitely many supports $\operatorname{supp} \varphi_{i}$.

Theorem 10.8 Given any open covering $\left\{V_{\alpha}\right\}$ of M there exists a partition of unity $\left\{\varphi_{i}\right\}$ on M such that $\operatorname{supp} \varphi_{i} \subset V_{\alpha(i)}$ for some $\alpha(i)$.

Proof: (by exhaustion - !)

1. M is locally compact since each $x \in M$ has a neighbourhood homeomorphic to, say, the open unit ball in \mathbf{R}^{n}. So take U homeomorphic to a smaller ball, then \bar{U} is compact. Since M is Hausdorff, \bar{U} is closed (compact implies closed in Hausdorff spaces).
2. M has a countable basis of open sets $\left\{U_{j}\right\}_{j \in \mathbf{N}}$, so $x \in U_{j} \subset U$ and $\bar{U}_{j} \subset \bar{U}$ is compact so M has a countable basis of open sets with \bar{U}_{j} compact.
3. Put $G_{1}=U_{1}$. Then

$$
\bar{G}_{1} \subset \bigcup_{j=1}^{\infty} U_{j}
$$

so by compactness there is $k>1$ such that

$$
\bar{G}_{1} \subset \bigcup_{j=1}^{k} U_{j}=G_{2}
$$

Now take the closure of G_{2} and do the same. We get compact sets \bar{G}_{j} with

$$
\bar{G}_{j} \subset G_{j+1} \quad M=\bigcup_{j=1}^{\infty} U_{j}
$$

4. By construction we have

$$
\bar{G}_{j} \backslash G_{j-1} \subset G_{j+1} \backslash \bar{G}_{j-2}
$$

and the set on the left is compact and the one on the right open. Now take the given open covering $\left\{V_{\alpha}\right\}$. The sets $V_{\alpha} \cap\left(G_{j+1} \backslash \bar{G}_{j-2}\right)$ cover $\bar{G}_{j} \backslash G_{j-1}$. This latter set is compact so take a finite subcovering, and then proceed replacing j with $j+1$. This process gives a countable locally finite refinement of $\left\{V_{\alpha}\right\}$, i.e. each $V_{\alpha} \cap\left(G_{j+1} \backslash \bar{G}_{j-2}\right)$ is an open subset of V_{α}. It is locally finite because

$$
G_{j+1} \backslash \bar{G}_{j-2} \cap G_{j+4} \backslash \bar{G}_{j+1}=\emptyset
$$

5. For each $x \in M$ let j be the largest natural number such that $x \in M \backslash \bar{G}_{j}$. Then $x \in V_{\alpha} \cap\left(G_{j+2} \backslash \bar{G}_{j-1}\right)$. Take a coordinate system within this open set and a bump function f which is identically 1 in a neighbourhood W_{x} of x.
6. The W_{x} cover $\bar{G}_{j+1} \backslash G_{j}$ and so as x ranges over the points of $G_{j+2} \backslash \bar{G}_{j-1}$ we get an open covering and so by compactness can extract a finite subcovering. Do this for each j and we get a countable collection of smooth functions ψ_{i} such that $\psi_{i} \geq 0$ and, since the set of supports is locally finite,

$$
\psi=\sum \psi_{i}
$$

is well-defined as a smooth function on M. Moreover

$$
\operatorname{supp} \psi_{i} \subset V_{\alpha} \cap\left(G_{m} \backslash \bar{G}_{m-3}\right) \subset V_{\alpha}
$$

so each support is contained in a V_{α}. Finally define

$$
\varphi_{i}=\frac{\psi_{i}}{\psi}
$$

then this is the required partition of unity.

10.5 Sard's theorem (special case)

Theorem 10.9 Let M and N be differentiable manifolds of the same dimension n and suppose $F: M \rightarrow N$ is a smooth map. Then the set of critical values of F has measure zero in N. In particular, every smooth map F has at least one regular value.

Proof: Since a countable union of null sets (=sets of measure zero) is null, and M and N have a countable basis of open sets, it suffices to consider the local case of $F: U \rightarrow \mathbf{R}^{n}$. Moreover since U is a countable union of compact cubes we need only prove that the image of the set of critical points in the compact cube $K=\left\{x \in \mathbf{R}^{n}\right.$: $\left.\left|x_{i}\right| \leq 1\right\}$ is of measure zero.

Now suppose $a \in K$ is a critical point, so that the image of $D F_{a}$ is contained in a proper subspace of \mathbf{R}^{n}, and so is annihilated by a linear form f. Let $H \subset \mathbf{R}^{n}$ be the hyperplane $f(x-F(a))=0$. Then

$$
\begin{equation*}
d(F(x), H) \leq\left\|F(x)-\left(F(a)+D F_{a}(x-a)\right)\right\| \tag{26}
\end{equation*}
$$

On the other hand since F is C^{∞}, from Taylor's theorem we have a constant C such that

$$
\left\|F(x)-F(y)-D F_{y}(x-y)\right\| \leq C\|x-y\|^{2}
$$

for all $x, y \in K$, since K is compact. Substituting in (26) this yields

$$
d(F(x), H) \leq C\|x-a\|^{2}
$$

If $\|x-a\| \leq \eta$, then $d(F(x), H) \leq C \eta^{2}$. Let $M=\sup \left\{\left\|D F_{x}\right\|: x \in K\right\}$, then by the mean value theorem

$$
\|F(x)-F(a)\| \leq M\|x-a\|
$$

for $x, a \in K$ and so $d(F(x), F(a)) \leq M \eta$. Thus $F(x)$ lies in the intersection of a slab of thickness $2 C \eta^{2}$ around H and a ball of radius $M \eta$ centred on $F(a)$. Putting the ball in a cube of side $2 M \eta$, the volume of this intersection is less than

$$
2 C \eta^{2}(2 M \eta)^{n-1}=2^{n} C M^{n-1} \eta^{n+1}
$$

Now subdivide the cube into N^{n} cubes of side $1 / N$, and repeat the argument for each cube. Since now $\|x-y\| \leq \sqrt{n} / N$, critical points in this cube lie in a volume less than

$$
2^{n} C M^{n-1}\left(\frac{\sqrt{n}}{N}\right)^{n+1}
$$

Since there are at most N^{n} such volumes, the total is less than

$$
\left(2^{n} M^{n-1} C n^{(n+1) / 2}\right) N^{-1}
$$

which tends to zero as $N \rightarrow \infty$.
Thus the set of critical values is of measure zero.

