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Chapter 1

ARITHMETIC FUNCTIONS

1.1. Introduction

By an arithmetic function, we mean a function of the form f : N → C. We say that an arithmetic
function f : N → C is multiplicative if f(mn) = f(m)f(n) whenever m, n ∈ N and (m, n) = 1.

Example. The function U : N → C, defined by U(n) = 1 for every n ∈ N, is an arithmetic function.
Furthermore, it is multiplicative.

THEOREM 1A. Suppose that the function f : N → C is multiplicative. Then the function g : N → C,
defined by

g(n) =
∑
m|n

f(m)

for every n ∈ N, is multiplicative.

Here the summation
∑

m|n denotes a sum over all positive divisors m of n.

Proof of Theorem 1A. Suppose that a, b ∈ N and (a, b) = 1. If u is a positive divisor of a and v
is a positive divisor of b, then clearly uv is a positive divisor of ab. On the other hand, every positive
divisor m of ab can be expressed uniquely in the form m = uv, where u is a positive divisor of a and v
is a positive divisor of b. It follows that

g(ab) =
∑
m|ab

f(m) =
∑
u|a

∑
v|b

f(uv) =
∑
u|a

∑
v|b

f(u)f(v) =

∑
u|a

f(u)

 ∑
v|b

f(v)

 = g(a)g(b).

This completes the proof. ©
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1.2. The Divisor Function

We define the divisor function d : N → C by writing

(1) d(n) =
∑
m|n

1

for every n ∈ N. Here the sum is taken over all positive divisors m of n. In other words, the value
d(n) denotes the number of positive divisors of the natural number n. On the other hand, we define the
function σ : N → C by writing

(2) σ(n) =
∑
m|n

m

for every n ∈ N. Clearly, the value σ(n) denotes the sum of all the positive divisors of the natural
number n.

THEOREM 1B. Suppose that n ∈ N and that n = pu1
1 . . . pur

r is the canonical decomposition of n.
Then

d(n) = (1 + u1) . . . (1 + ur) and σ(n) =
pu1+1
1 − 1
p1 − 1

. . .
pur+1

r − 1
pr − 1

.

Proof. Every positive divisor m of n is of the form m = pv1
1 . . . pvr

r , where for every j = 1, . . . , r, the
integer vj satisfies 0 ≤ vj ≤ uj . It follows from (1) that d(n) is the number of choices for the r-tuple
(v1, . . . , vr). Hence

d(n) =
u1∑

v1=0

. . .

ur∑
vr=0

1 = (1 + u1) . . . (1 + ur).

On the other hand, it follows from (2) that

σ(n) =
u1∑

v1=0

. . .

ur∑
vr=0

pv1
1 . . . pvr

r =

(
u1∑

v1=0

pv1
1

)
. . .

(
ur∑

vr=0

pvr
r

)
.

Note now that for every j = 1, . . . , r, we have

uj∑
vj=0

p
vj

j = 1 + pj + p2
j + . . . + p

uj

j =
p

uj+1
j − 1
pj − 1

.

The second assertion follows. ©

The result below is a simple deduction from Theorem 1B.

THEOREM 1C. The arithmetic functions d : N → C and σ : N → C are both multiplicative.

Natural numbers n ∈ N where σ(n) = 2n are of particular interest, and are known as perfect
numbers. A perfect number is therefore a natural number which is equal to the sum of its own proper
divisors; in other words, the sum of all its positive divisors other than itself.

Examples. It is easy to see that 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect numbers.

It is not known whether any odd perfect number exists. However, we can classify the even perfect
numbers.
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THEOREM 1D. (EUCLID-EULER) Suppose that m ∈ N. If 2m − 1 is a prime, then the number
2m−1(2m − 1) is an even perfect number. Furthermore, there are no other even perfect numbers.

Proof. Suppose that n = 2m−1(2m − 1), and 2m − 1 is prime. Clearly

(2m−1, 2m − 1) = 1.

It follows from Theorems 1B and 1C that

σ(n) = σ(2m−1)σ(2m − 1) =
2m − 1
2 − 1

2m = 2n,

so that n is a perfect number, clearly even since m ≥ 2.

Suppose now that n ∈ N is an even perfect number. Then we can write n = 2m−1u, where m ∈ N
and m > 1, and where u ∈ N is odd. By Theorem 1B, we have

2mu = σ(n) = σ(2m−1)σ(u) = (2m − 1)σ(u),

so that

(3) σ(u) =
2mu

2m − 1
= u +

u

2m − 1
.

Note that σ(u) and u are integers and σ(u) > u. Hence u/(2m − 1) ∈ N and is a divisor of u. Since
m > 1, we have 2m − 1 > 1, and so u/(2m − 1) �= u. It now follows from (3) that σ(u) is equal to the
sum of two of its positive divisors. But σ(u) is equal to the sum of all its positive divisors. Hence u
must have exactly two positive divisors, so that u is prime. Furthermore, we must have u/(2m − 1) = 1,
so that u = 2m − 1. ©

We are interested in the behaviour of d(n) and σ(n) as n → ∞. If n ∈ N is a prime, then clearly
d(n) = 2. Also, the magnitude of d(n) is sometimes greater than that of any power of log n. More
precisely, we have the following result.

THEOREM 1E. For any fixed real number c > 0, the inequality d(n) � (log n)c as n → ∞ does not
hold.

Proof. The idea of the proof is to consider integers which are divisible by many different primes.
Suppose that c > 0 is given and fixed. Let � ∈ N ∪ {0} satisfy � ≤ c < � + 1. For every j = 1, 2, 3, . . . ,
let pj denote the j-th positive prime in increasing order of magnitude, and consider the integer

n = (p1 . . . p�+1)
m

.

Then in view of Theorem 1B, we have

(4) d(n) = (m + 1)�+1
>

(
log n

log(p1 . . . p�+1)

)�+1

> K(c)(log n)�+1
> K(c)(log n)c

,

where the positive constant

K(c) =
(

1
log(p1 . . . p�+1)

)�+1

depends only on c. The result follows on noting that the inequality (4) holds for every m ∈ N. ©

On the other hand, the order of magnitude of d(n) cannot be too large either.
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THEOREM 1F. For any fixed real number ε > 0, we have d(n) �ε nε as n → ∞.

Proof. For every natural number n > 1, let n = pu1
1 . . . pur

r be its canonical decomposition. It follows
from Theorem 1B that

d(n)
nε

=
(1 + u1)

pεu1
1

. . .
(1 + ur)

pεur
r

.

We may assume without loss of generality that ε < 1. If 2 ≤ pj < 21/ε, then

p
εuj

j ≥ 2εuj = eεuj log 2 > 1 + εuj log 2 > (1 + uj)ε log 2,

so that

(1 + uj)
p

εuj

j

<
1

ε log 2
.

On the other hand, if pj ≥ 21/ε, then pε
j ≥ 2, and so

(1 + uj)
p

εuj

j

≤ 1 + uj

2uj
≤ 1.

It follows that

d(n)
nε

<
∏

p<21/ε

1
ε log 2

,

a positive constant depending only on ε. ©

We see from Theorems 1E and 1F and the fact that d(n) = 2 infinitely often that the magnitude of
d(n) fluctuates a great deal as n → ∞. It may then be more fruitful to average the function d(n) over a
range of values n, and consider, for positive real numbers X ∈ R, the value of the average

1
X

∑
n≤X

d(n).

THEOREM 1G. (DIRICHLET) As X → ∞, we have∑
n≤X

d(n) = X log X + (2γ − 1)X + O(X1/2).

Here γ is Euler’s constant and is defined by

γ = lim
Y →∞

∑
n≤Y

1
n
− log Y

 = 0.5772156649 . . . .

Remark. It is an open problem in mathematics to determine whether Euler’s constant γ is rational
or irrational.

The proof of Theorem 1G depends on the following intermediate result.
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THEOREM 1H. As Y → ∞, we have

∑
n≤Y

1
n

= log Y + γ + O

(
1
Y

)
.

Proof. As Y → ∞, we have

∑
n≤Y

1
n

=
∑
n≤Y

(
1
Y

+
∫ Y

n

1
u2

du

)
=

[Y ]
Y

+
∑
n≤Y

∫ Y

n

1
u2

du =
[Y ]
Y

+
∫ Y

1

1
u2

∑
n≤u

1

 du

=
[Y ]
Y

+
∫ Y

1

[u]
u2

du =
[Y ]
Y

+
∫ Y

1

1
u

du −
∫ Y

1

u − [u]
u2

du

= log Y + 1 + O

(
1
Y

)
−

∫ ∞

1

u − [u]
u2

du +
∫ ∞

Y

u − [u]
u2

du

= log Y +
(

1 −
∫ ∞

1

u − [u]
u2

du

)
+ O

(
1
Y

)
.

It is a simple exercise to show that

1 −
∫ ∞

1

u − [u]
u2

du = γ.

and this completes the proof. ©

Proof of Theorem 1G. As X → ∞, we have∑
n≤X

d(n) =
∑
x,y

xy≤X

1 =
∑

x≤X1/2

∑
y≤X

x

1 +
∑

y≤X1/2

∑
x≤X

y

1 −
∑

x≤X1/2

∑
y≤X1/2

1

= 2
∑

x≤X1/2

[
X

x

]
− [X1/2]

2
= 2

∑
x≤X1/2

X

x
+ O(X1/2) − (X1/2 + O(1))

2

= 2X

(
log X1/2 + γ + O

(
1

X1/2

))
+ O(X1/2) − X

= X log X + (2γ − 1)X + O(X1/2).

This completes the proof. ©

We next turn our attention to the study of the behaviour of σ(n) as n → ∞. Every number n ∈ N
has divisors 1 and n, so we must have σ(1) = 1 and σ(n) > n if n > 1. On the other hand, it follows
from Theorem 1F that for any fixed real number ε > 0, we have

σ(n) ≤ nd(n) �ε n1+ε as n → ∞.

In fact, it is rather easy to prove a slightly stronger result.

THEOREM 1J. We have σ(n) � n log n as n → ∞.

Proof. As n → ∞, we have

σ(n) =
∑
m|n

n

m
≤ n

∑
m≤n

1
m

� n log n.

This completes the proof. ©
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As in the case of d(n), the magnitude of σ(n) fluctuates a great deal as n → ∞. As before, we shall
average the function σ(n) over a range of values n, and consider some average version of the function.
Corresponding to Theorem 1G, we have the following result.

THEOREM 1K. As X → ∞, we have

∑
n≤X

σ(n) =
π2

12
X2 + O(X log X).

Proof. As X → ∞, we have

∑
n≤X

σ(n) =
∑
n≤X

∑
m|n

n

m
=

∑
m≤X

∑
n≤X
m|n

n

m
=

∑
m≤X

∑
r≤X/m

r =
∑

m≤X

1
2

[
X

m

] (
1 +

[
X

m

])

=
1
2

∑
m≤X

(
X

m
+ O(1)

)2

=
X2

2

∑
m≤X

1
m2

+ O

X
∑

m≤X

1
m

 + O

 ∑
m≤X

1


=

X2

2

∞∑
m=1

1
m2

+ O

(
X2

∑
m>X

1
m2

)
+ O(X log X) =

π2

12
X2 + O(X log X).

This completes the proof. ©

1.3. The Möbius Function

We define the Möbius function µ : N → C by writing

µ(n) =

{ 1 if n = 1,
(−1)r if n = p1 . . . pr, a product of distinct primes,
0 otherwise.

Remarks. (i) A natural number which is not divisible by the square of any prime is called a squarefree
number. Note that 1 is both a square and a squarefree number. Furthermore, a number n ∈ N is
squarefree if and only if µ(n) = ±1.

(ii) The motivation for the definition of the Möbius function lies rather deep. To understand the
definition, one needs to study the Riemann zeta function, an important function in the study of the
distribution of primes. At this point, it suffices to remark that the Möbius function is defined so that if
we formally multiply the two series

∞∑
n=1

1
ns

and
∞∑

n=1

µ(n)
ns

,

where s ∈ C denotes a complex variable, then the product is identically equal to 1. Heuristically, note
that ( ∞∑

k=1

1
ks

) ( ∞∑
m=1

µ(m)
ms

)
=

∞∑
n=1

∞∑
k=1

∞∑
m=1

km=n

µ(m)
ns

=
∞∑

n=1

∑
m|n

µ(m)

 1
ns

.
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It follows that the product is identically equal to 1 if∑
m|n

µ(m) =
{ 1 if n = 1,

0 if n > 1.

We shall establish this last fact and study some of its consequences over the next four theorems.

THEOREM 1L. The Möbius function µ : N → C is multiplicative.

Proof. Suppose that a, b ∈ N and (a, b) = 1. If a or b is not squarefree, then neither is ab, and so
µ(ab) = 0 = µ(a)µ(b). On the other hand, if both a and b are squarefree, then since (a, b) = 1, ab must
also be squarefree. Furthermore, the number of prime factors of ab must be the sum of the numbers of
prime factors of a and of b. ©

THEOREM 1M. Suppose that n ∈ N. Then∑
m|n

µ(m) =
{

1 if n = 1,
0 if n > 1.

Proof. Consider the function f : N → C defined by writing

f(n) =
∑
m|n

µ(m)

for every n ∈ N. It follows from Theorems 1A and 1L that f is multiplicative. For n = 1, the result is
trivial. To complete the proof, it therefore suffices to show that f(pk) = 0 for every prime p and every
k ∈ N. Indeed,

f(pk) =
∑
m|pk

µ(m) = µ(1) + µ(p) + µ(p2) + . . . + µ(pk) = 1 − 1 + 0 + . . . + 0 = 0.

This completes the proof. ©

Theorem 1M plays the central role in the proof of the following two results which are similar in
nature.

THEOREM 1N. (MÖBIUS INVERSION FORMULA) For any function f : N → C, if the function
g : N → C is defined by writing

g(n) =
∑
m|n

f(m)

for every n ∈ N, then for every n ∈ N, we have

f(n) =
∑
m|n

µ(m) g
( n

m

)
=

∑
m|n

µ
( n

m

)
g(m).

Proof. The second equality is obvious. Also

∑
m|n

µ(m) g
( n

m

)
=

∑
m|n

µ(m)

∑
k| n

m

f(k)

 =
∑
k,m

km|n

µ(m)f(k) =
∑
k|n

f(k)

∑
m|n

k

µ(m)

 = f(n),

in view of Theorem 1M. ©
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THEOREM 1P. For any function g : N → C, if the function f : N → C is defined by writing

f(n) =
∑
m|n

µ
( n

m

)
g(m)

for every n ∈ N, then for every n ∈ N, we have

g(n) =
∑
m|n

f(m) =
∑
m|n

f
( n

m

)
.

Proof. The second equality is obvious. Also

∑
m|n

f
( n

m

)
=

∑
m|n

∑
k| n

m

µ
( n

mk

)
g(k)

 =
∑
k|n

g(k)

∑
m|n

k

µ

(
n/k

m

) =
∑
k|n

g(k)

∑
m|n

k

µ(m)

 = g(n),

in view of Theorem 1M. ©

Remark. In number theory, it occurs quite often that in the proof of a theorem, a change of order of
summation of the variables is required, as illustrated in the proofs of Theorems 1N and 1P. This process
of changing the order of summation does not depend on the summand in question. In both instances,
we are concerned with a sum of the form ∑

m|n

∑
k| n

m

A(k, m).

This means that for every positive divisor m of n, we first sum the function A over all positive divisors
k of n/m to obtain the sum ∑

k| n
m

A(k, m),

which is a function of m. We then sum this sum over all divisors m of n. Now observe that for every
natural number k satisfying k | n/m for some positive divisor m of n, we must have k | n. Consider
therefore a particular natural number k satisfying k | n. We must find all natural numbers m satisfying
the original summation conditions, namely m | n and k | n/m. These are precisely those natural numbers
m satisfying m | n/k. We therefore obtain, for every positive divisor k of n, the sum∑

m|n
k

A(k, m).

Summing over all positive divisors k of n, we obtain∑
k|n

∑
m|n

k

A(k, m).

Since we are summing the function A over the same collection of pairs (k, m), and have merely changed
the order of summation, we must have∑

m|n

∑
k| n

m

A(k, m) =
∑
k|n

∑
m|n

k

A(k, m).
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1.4. The Euler Function

We define the Euler function φ : N → C as follows. For every n ∈ N, we let φ(n) denote the number of
elements in the set {1, 2, . . . , n} which are coprime to n.

THEOREM 1Q. For every number n ∈ N, we have∑
m|n

φ(m) = n.

Proof. We shall partition the set {1, 2, . . . , n} into d(n) disjoint subsets Bm, where for every positive
divisor m of n,

Bm = {x : 1 ≤ x ≤ n and (x, n) = m}.

If x ∈ Bm, let x = mx′. Then (mx′, n) = m if and only if (x′, n/m) = 1. Also 1 ≤ x ≤ n if and only if
1 ≤ x′ ≤ n/m. Hence

B′
m = {x′ : 1 ≤ x′ ≤ n/m and (x′, n/m) = 1}

has the same number of elements as Bm. Note now that the number of elements of B′
m is exactly φ(n/m).

Since every element of the set {1, 2, . . . , n} falls into exactly one of the subsets Bm, we must have

n =
∑
m|n

φ
( n

m

)
=

∑
m|n

φ(m).

This completes the proof. ©

Applying the Möbius inversion formula to the conclusion of Theorem 1Q, we obtain immediately
the following result.

THEOREM 1R. For every number n ∈ N, we have

φ(n) =
∑
m|n

µ(m)
n

m
= n

∑
m|n

µ(m)
m

.

THEOREM 1S. The Euler function φ : N → C is multiplicative.

Proof. Since the Möbius function µ is multiplicative, it follows that the function f : N → C, defined
by f(n) = µ(n)/n for every n ∈ N, is multiplicative. The result now follows from Theorem 1A. ©

THEOREM 1T. Suppose that n ∈ N and n > 1, with canonical decomposition n = pu1
1 . . . pur

r . Then

φ(n) = n

r∏
j=1

(
1 − 1

pj

)
=

r∏
j=1

p
uj−1
j (pj − 1).

Proof. The second equality is trivial. On the other hand, for every prime p and every u ∈ N, we have
by Theorem 1R that

φ(pu)
pu

=
∑
m|pu

µ(m)
m

= 1 +
µ(p)
p

= 1 − 1
p

.

The result now follows since φ is multiplicative. ©
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We now study the magnitude of φ(n) as n → ∞. Clearly φ(1) = 1 and φ(n) < n if n > 1.

Suppose first of all that n has many different prime factors. Then n must have many different
divisors, and so σ(n) must be large relative to n. But then many of the numbers 1, . . . , n cannot be
coprime to n, and so φ(n) must be small relative to n. On the other hand, suppose that n has very few
prime factors. Then n must have very few divisors, and so σ(n) must be small relative to n. But then
many of the numbers 1, . . . , n are coprime to n, and so φ(n) must be large relative to n. It therefore
appears that if one of the two values σ(n) and φ(n) is large relative to n, then the other must be small
relative to n. Indeed, our heuristics are upheld by the following result.

THEOREM 1U. For every n ∈ N, we have

1
2

<
σ(n)φ(n)

n2
≤ 1.

Proof. The result is obvious if n = 1, so suppose that n > 1. Let n = pu1
1 . . . pur

r be the canonical
decomposition of n. Recall Theorems 1B and 1T. We have

σ(n) =
r∏

j=1

p
uj+1
j − 1
pj − 1

= n

r∏
j=1

1 − p
−uj−1
j

1 − p−1
j

and

φ(n) = n

r∏
j=1

(1 − p−1
j ).

Hence

σ(n)φ(n)
n2

=
r∏

j=1

(1 − p
−uj−1
j ).

The upper bound follows at once. On the other hand,

r∏
j=1

(1 − p
−uj−1
j ) ≥

∏
p|n

(1 − p−2) ≥
n∏

m=2

(
1 − 1

m2

)
=

n + 1
2n

>
1
2

as required. ©

Combining Theorems 1J and 1U, we have the following result.

THEOREM 1V. We have φ(n) 
 n/ log n as n → ∞.

We now consider some average version of the Euler function.

THEOREM 1W. (MERTENS) As X → ∞, we have

∑
n≤X

φ(n) =
3
π2

X2 + O(X log X).
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Proof. As X → ∞, we have, by Theorem 1R, that∑
n≤X

φ(n) =
∑
n≤X

∑
m|n

µ(m)
n

m
=

∑
m≤X

µ(m)
∑
n≤X
m|n

n

m
=

∑
m≤X

µ(m)
∑

r≤X/m

r

=
∑

m≤X

µ(m)
1
2

[
X

m

] (
1 +

[
X

m

])
=

1
2

∑
m≤X

µ(m)
(

X

m
+ O(1)

)2

=
X2

2

∑
m≤X

µ(m)
m2

+ O

X
∑

m≤X

1
m

 + O

 ∑
m≤X

1


=

X2

2

∞∑
m=1

µ(m)
m2

+ O

(
X2

∑
m>X

1
m2

)
+ O(X log X)

=
X2

2

∞∑
m=1

µ(m)
m2

+ O(X log X).

It remains to show that

∞∑
m=1

µ(m)
m2

=
6
π2

.

But

( ∞∑
n=1

1
n2

) ( ∞∑
m=1

µ(m)
m2

)
=

∞∑
k=1

1
k2

 ∑
n,m

nm=k

µ(m)

 =
∞∑

k=1

1
k2

∑
m|k

µ(m)

 = 1,

in view of Theorem 1M. ©

1.5. Dirichlet Convolution

We shall denote the class of all arithmetic functions by A, and the class of all multiplicative functions
by M.

Given arithmetic functions f, g ∈ A, we define the function f ∗ g : N → C by writing

(f ∗ g)(n) =
∑
m|n

f(m) g
( n

m

)
for every n ∈ N. This function is called the Dirichlet convolution of f and g.

It is not difficult to show that Dirichlet convolution of arithmetic functions is commutative and
associative. In other words, for every f, g, h ∈ A, we have

f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h).

Furthermore, the arithmetic function I : N → C, defined by I(1) = 1 and I(n) = 0 for every n ∈ N
satisfying n > 1, is an identity element for Dirichlet convolution. It is easy to check that I ∗f = f ∗I = f
for every f ∈ A.

On the other hand, an inverse may not exist under Dirichlet convolution. Consider, for example,
the function f ∈ A satisfying f(n) = 0 for every n ∈ N.
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THEOREM 1X. For any f ∈ A, the following two statements are equivalent:
(i) We have f(1) �= 0.
(ii) There exists a unique g ∈ A such that f ∗ g = g ∗ f = I.

Proof. Suppose that (ii) holds. Then f(1)g(1) = 1, so that f(1) �= 0. Conversely, suppose that
f(1) �= 0. We shall define g ∈ A iteratively by writing

(5) g(1) =
1

f(1)

and

(6) g(n) = − 1
f(1)

∑
d|n
d>1

f(d) g
(n

d

)

for every n ∈ N satisfying n > 1. It is easy to check that this gives an inverse. Moreover, every inverse
must satisfy (5) and (6), and so the inverse must be unique. ©

We now describe Theorem 1M and Möbius inversion in terms of Dirichlet convolution. Recall that
the function U ∈ A is defined by U(n) = 1 for all n ∈ N.

THEOREM 1Y.
(i) We have µ ∗ U = I.
(ii) If f ∈ A and g = f ∗ U , then f = g ∗ µ.
(iii) If g ∈ A and f = g ∗ µ, then g = f ∗ U .

Proof. (i) follows from Theorem 1M. To prove (ii), note that

g ∗ µ = (f ∗ U) ∗ µ = f ∗ (U ∗ µ) = f ∗ I = f.

To prove (iii), note that

f ∗ U = (g ∗ µ) ∗ U = g ∗ (µ ∗ U) = g ∗ I = g.

This completes the proof of Theorem 1Y. ©

We conclude this chapter by exhibiting some group structure within A and M.

THEOREM 1Z. The sets A′ = {f ∈ A : f(1) �= 0} and M′ = {f ∈ M : f(1) = 1} form abelian
groups under Dirichlet convolution.

Remark. Note that if f ∈ M is not identically zero, then f(n) �= 0 for some n ∈ N. Since f(n) =
f(1)f(n), we must have f(1) = 1.

Proof of Theorem 1Z. For A′, this is now trivial. We now consider M′. Clearly I ∈ M′. If
f, g ∈ M′ and (m, n) = 1, then

(f ∗ g)(mn) =
∑
d|mn

f(d) g
(mn

d

)
=

∑
d1|m

∑
d2|n

f(d1d2) g

(
mn

d1d2

)

=

∑
d1|m

f(d1) g

(
m

d1

) ∑
d2|n

f(d2) g

(
n

d2

) = (f ∗ g)(m)(f ∗ g)(n),
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so that f ∗ g ∈ M. Since (f ∗ g)(1) = f(1)g(1) �= 0, we have f ∗ g ∈ M′. It remains to show that if
f ∈ M′, then f has an inverse in M′. Clearly f has an inverse in A′ under Dirichlet convolution. Let
this inverse be h. We now define g ∈ A by writing g(1) = 1,

g(pk) = h(pk)

for every prime p and k ∈ N, and

g(n) =
∏

pk‖n

g(pk)

for every n > 1. Then g ∈ M′. Furthermore, for every integer n > 1, we have

(f ∗ g)(n) =
∏

pk‖n

(f ∗ g)(pk) =
∏

pk‖n

(f ∗ h)(pk) =
∏

pk‖n

I(pk) = I(n),

so that g is an inverse of f . ©

Problems for Chapter 1

1. Prove that d(n) ≤ d(2n − 1) for every n ∈ N.

2. Suppose that n ∈ N is composite. Prove that σ(n) > n +
√

n.

3. Prove that d(n) is odd if and only if n ∈ N is a square.

4. Prove that
∏
m|n

m = n
1
2 d(n) for every n ∈ N.

5. Suppose that n ∈ N. Show that the number N of solutions of the equation x2 − y2 = n in natural
numbers x and y satisfies

2N =

 d(n) − en if n is an odd number,
0 if n is twice an odd number,
d(n/4) − en if 4 | n,

where en = 1 if n is a perfect square, and en = 0 otherwise.

6. Prove that there are no squarefree perfect numbers apart from 6.

7. Prove that
∑
m|n

1
m

= 2 for every perfect number n ∈ N.

8. Prove that every odd perfect number must have at least two distinct prime factors, exactly one of
which has odd exponent.

9. Suppose that a ∈ N satisfy a > 1. Let d run over all the divisors of a that have no more than m
prime divisors. Prove that ∑

µ(d)
{
≥ 0 if m is even,
≤ 0 if m is odd.

[Hint: Write down first the canonical decomposition of a.]
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10. Suppose that k ∈ N is even, and the canonical decomposition of a ∈ N is of the form a = p1p2 . . . pk,
where p1, p2, . . . , pk are distinct primes. Let d run over all the divisors of a such that 0 < d <

√
a.

Prove that
∑

µ(d) = 0.

11. Prove that
∑
d2|n

µ(d) = µ2(n) for every n ∈ N.

[Hint: Distinguish between the cases when n is squarefree and when n is not squarefree.]

12. By first showing that the function f(n) = (−1)n−1 is multiplicative, evaluate the sum

h(n) =
∑
m|n

(−1)m−1µ
( n

m

)
for every n ∈ N.

13. Explain why
∑
m|n

µ(m) σ
( n

m

)
= n for every n ∈ N.

14. Prove that
n∑

m=1
(m,n)=1

m =
nφ(n)

2
for every n ∈ N.

15. Suppose that n ∈ N satisfies φ(n) | n. Prove that n = 2a3b for some non-negative integers a and b.

16. Suppose that p1, p2, . . . , pk ∈ N are distinct primes, and that there are no other primes.
(i) Let a = p1p2 . . . pk. Explain why we must have φ(a) = 1.
(ii) Obtain a contradiction.
[Remark: This is yet another proof that there are infinitely many primes.]

17. Prove that σ(n) + φ(n) = nd(n) if and only if n ∈ N is prime.

18. Suppose that n = pu1
1 . . . pur

r , where p1 < . . . < pr are primes and u1, . . . , ur ∈ N.
(i) Write

s(n) =
n∑

m=1
(m,n)=1

m2.

Prove that

n2
∑
d|n

s(d)
d2

=
n(n + 1)(2n + 1)

6
.

(ii) Apply the Möbius inversion formula to deduce that

n∑
m=1

(m,n)=1

m2 =
1
3
φ(n)n2 +

1
6
(−1)rφ(n)p1 . . . pr.

19. For every n ∈ N, let Q(n) denote the number of squarefree numbers not exceeding n.

(i) Prove that n − Q(n) ≤ n

4
+

∞∑
m=1

n

(2m + 1)2
, and deduce that Q(n) > n/2.

(ii) Hence show that every natural number is a sum of two squarefree numbers.
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20. An arithmetic function f : N → C is said to be completely multiplicative if f is not identically zero
and f(mn) = f(m)f(n) for all m, n ∈ N.
(i) Show that the Möbius function µ is not completely multiplicative.
(ii) Show that the Euler function φ is not completely multiplicative.
(iii) Suppose that f : N → C is multiplicative. Show that f is completely multiplicative if and only

if its Dirichlet inverse f−1 satisfies f−1(n) = µ(n)f(n) for all n ∈ N.
(iv) Prove that the Liouville function λ : N → C, defined by λ(1) = 1 and λ(n) = (−1)u1+...+ur if

n = pu1
1 . . . pur

r , is completely multiplicative. Prove also that for every n ∈ N,

∑
m|n

λ(m) =
{

1 if n is a square,
0 otherwise,

and λ−1(n) = |µ(n)|.

21. Suppose that F : R+ → C, where R+ denotes the set of all positive real numbers. For any real
number X ≥ 1, let

G(X) =
∑
n≤X

F

(
X

n

)
.

Prove that

F (X) =
∑
n≤X

µ(n) G

(
X

n

)
for every real number X ≥ 1.

22. Suppose that G : R+ → C. For any real number X ≥ 1, let

F (X) =
∑
n≤X

µ(n) G

(
X

n

)
.

Prove that

G(X) =
∑
n≤X

F

(
X

n

)
for every real number X ≥ 1.

23. Prove that each of the following identities is valid for every real number X ≥ 1:

(i)
∑
n≤X

µ(n)
[
X

n

]
= 1.

(ii)
∑
n≤X

φ(n) =
1
2

∑
n≤X

µ(n)
[
X

n

]2

+
1
2
.

(iii)
∑
n≤X

φ(n)
n

=
∑
n≤X

µ(n)
n

[
X

n

]
.

24. Suppose that the function F : R+ → C satisfies F (X) = 0 whenever 0 < X < 1. For any arithmetic
function α, we define the function α ◦ F : R+ → C by writing

(α ◦ F )(X) =
∑
n≤X

α(n) F

(
X

n

)
for every X ∈ R+.

(i) Prove that for any arithmetic functions α and β, we have α ◦ (β ◦ F ) = (α ∗ β) ◦ F .
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(ii) Suppose that the arithmetic function α has inverse α−1 under Dirichlet convolution. Prove
that if

G(X) =
∑
n≤X

α(n) F

(
X

n

)
for every real number X ∈ R+,

then

F (X) =
∑
n≤X

α−1(n) G

(
X

n

)
for every real number X ∈ R+.

[Hint: Note that the identity function I under Dirichlet convolution satisfies I ◦ F = F .]
[Remark: If α is completely multiplicative, then α−1(n) = µ(n)α(n) for every n ∈ N by
Problem 20(iii). Hence

G(X) =
∑
n≤X

α(n) F

(
X

n

)
if and only if F (X) =

∑
n≤X

µ(n)α(n)G

(
X

n

)
.

This is a generalization of Problems 21 and 22.]

25. For every n ∈ N, let f(n) =
∑
m|n

µ2(m)
φ(m)

.

(i) Prove that f(n) = n/φ(n) for every n ∈ N.

(ii) Deduce that for every real number X ≥ 1, we have
∑
n≤X

1
φ(n)

=
∑

m≤X

µ2(m)
mφ(m)

∑
t≤X/m

1
t
.

(iii) Show that the series
∞∑

m=1

µ2(m)
mφ(m)

and
∞∑

m=1

µ2(m) log m

mφ(m)
both converge.

(iv) Deduce that as X → ∞, we have
∑
n≤X

1
φ(n)

∼ C log X, where C =
∞∑

m=1

µ2(m)
mφ(m)

.

26. Consider a square lattice consisting of all points (a, b), where a, b ∈ Z. Two lattice points P and Q
are said to be mutually visible if the line segment which joins them contains no lattice points other
than the endpoints P and Q.
(i) Prove that (a, b) and (0, 0) are mutually visible if and only if a and b are relatively prime.
(ii) We shall prove that the set of lattice points visible from the origin has density 6/π2. Consider

a large square region on the xy-plane defined by the inequalities |x| ≤ r and |y| ≤ r. Let N(r)
denote the number of lattice points in this square, and let N ′(r) denote the number of these
which are visible from the origin. The eight lattice points nearest the origin are all visible from
the origin. By symmetry, N ′(r) is equal to 8 plus 8 times the number of visible points in the
region {(x, y) : 2 ≤ x ≤ r and 1 ≤ y ≤ x}. Prove that

N ′(r) = 8
r∑

n=1

φ(n).

Obtain an asymptotic formula for N(r), and show that

N ′(r)
N(r)

→ 6
π2

as r → ∞.
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Chapter 2

ELEMENTARY PRIME NUMBER THEORY

2.1. Euclid’s Theorem Revisited

We have already seen the elegant and simple proof of Euclid’s theorem, that there are infinitely many
primes. Here we shall begin by proving a slightly stronger result.

THEOREM 2A. The series ∑
p

1
p

is divergent.

Proof. For every real number X ≥ 2, write

PX =
∏

p≤X

(
1 − 1

p

)−1

.

Then

log PX = −
∑
p≤X

log
(

1 − 1
p

)
= S1 + S2,

where

S1 =
∑
p≤X

1
p

and S2 =
∑
p≤X

∞∑
h=2

1
hph

.
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Since

0 ≤
∞∑

h=2

1
hph

≤
∞∑

h=2

1
ph

=
1

p(p − 1)
,

we have

0 ≤ S2 ≤
∑

p

1
p(p − 1)

≤
∞∑

n=2

1
n(n − 1)

= 1,

so that 0 ≤ S2 ≤ 1. On the other hand, we have

PX =
∏

p≤X

( ∞∑
h=0

1
ph

)
≥

∑
n≤X

1
n
→ ∞ as X → ∞.

The result follows. ©

For every real number X ≥ 2, we write

π(X) =
∑
p≤X

1,

so that π(X) denotes the number of primes in the interval [2, X]. This function has been studied
extensively by number theorists, and attempts to study it in depth have led to major developments in
other important branches of mathematics.

As can be expected, many conjectures concerning the distribution of primes were made based purely
on numerical evidence, including the celebrated Prime number theorem, proved in 1896 by Hadamard
and de la Vallée Poussin, that

lim
X→∞

π(X) log X

X
= 1.

We shall prove this in Chapter 5, and give another proof in Chapter 6. Here we shall be concerned with
the weaker result of Tchebycheff, that there exist positive absolute constants c1 and c2 such that for
every real number X ≥ 2, we have

c1
X

log X
< π(X) < c2

X

log X
.

2.2. The Von Mangoldt Function

The study of the function π(X) usually involves, instead of the characteristic function of the primes, a
function which counts not only primes, but prime powers as well, and with weights. Accordingly, we
introduce the von Mangoldt function Λ : N → C, defined for every n ∈ N by writing

Λ(n) =
{ log p if n = pr, with p prime and r ∈ N,

0 otherwise.

THEOREM 2B. For every n ∈ N, we have∑
m|n

Λ(m) = log n.
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Proof. The result is clearly true for n = 1, so it remains to consider the case n ≥ 2. Suppose that
n = pu1

1 . . . pur
r is the canonical decomposition of n. Then the only non-zero contribution to the sum

on the left hand side comes from those natural numbers m of the form m = p
vj

j with j = 1, . . . , r and
1 ≤ vj ≤ uj . It follows that

∑
m|n

Λ(m) =
r∑

j=1

uj∑
vj=1

log pj =
r∑

j=1

log p
uj

j = log n.

This completes the proof. ©

THEOREM 2C. As X → ∞, we have

∑
m≤X

Λ(m)
[
X

m

]
= X log X − X + O(log X).

Proof. It follows from Theorem 2B that∑
n≤X

log n =
∑
n≤X

∑
m|n

Λ(m) =
∑

m≤X

Λ(m)
∑
n≤X
m|n

1 =
∑

m≤X

Λ(m)
[
X

m

]
.

It therefore suffices to prove that

(1)
∑
n≤X

log n = X log X − X + O(log X) as X → ∞.

To prove (1), note that log X is an increasing function of X. In particular, for every n ∈ N, we have

log n ≤
∫ n+1

n

log u du,

so that

∑
n≤X

log n − log(X + 1) ≤
∫ X

1

log u du.

On the other hand, for every n ∈ N, we have

log n ≥
∫ n

n−1

log u du,

so that

∑
n≤X

log n =
∑

2≤n≤X

log n ≥
∫ [X]

1

log u du =
∫ X

1

log u du −
∫ X

[X]

log u du ≥
∫ X

1

log u du − log X.

The inequality (1) now follows on noting that∫ X

1

log u du = X log X − X + 1.

This completes the proof. ©
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2.3. Tchebycheff’s Theorem

The crucial step in the proof of Tchebycheff’s theorem concerns obtaining bounds on sums involving the
von Mangoldt function. More precisely, we prove the following result.

THEOREM 2D. There exist positive absolute constants c3 and c4 such that

(2)
∑

m≤X

Λ(m) ≥ 1
2
X log 2 if X ≥ c3,

and

(3)
∑

X
2 <m≤X

Λ(m) ≤ c4X if X ≥ 0.

Proof. If m ∈ N satisfies X/2 < m ≤ X, then clearly [X/2m] = 0. It follows from this and Theorem
2C that as X → ∞, we have∑

m≤X

Λ(m)
([

X

m

]
− 2

[
X

2m

])
=

∑
m≤X

Λ(m)
[
X

m

]
− 2

∑
m≤X

2

Λ(m)
[

X

2m

]

= (X log X − X + O(log X)) − 2
(

X

2
log

X

2
− X

2
+ O(log X)

)
= X log 2 + O(log X).

Hence there exists a positive absolute constant c5 such that for all sufficiently large X, we have

1
2
X log 2 <

∑
m≤X

Λ(m)
([

X

m

]
− 2

[
X

2m

])
< c5X.

We now consider the function [α] − 2[α/2]. Clearly [α] − 2[α/2] < α − 2(α/2 − 1) = 2. Note that the
left hand side is an integer, so we must have [α]− 2[α/2] ≤ 1. It follows that for all sufficiently large X,
we have

1
2
X log 2 <

∑
m≤X

Λ(m).

The inequality (2) follows. On the other hand, if X/2 < m ≤ X, then [X/m] = 1 and [X/2m] = 0, so
that for all sufficiently large X, we have ∑

X
2 <m≤X

Λ(m) ≤ c5X.

The inequality (3) follows easily. ©

We now state and prove Tchebycheff’s theorem.

THEOREM 2E. (TCHEBYCHEFF) There exist positive absolute constants c1 and c2 such that for
every real number X ≥ 2, we have

c1
X

log X
< π(X) < c2

X

log X
.

Proof. To prove the lower bound, note that∑
m≤X

Λ(m) =
∑
p,n

pn≤X

log p =
∑
p≤X

(log p)
∑

1≤n≤[ log X
log p ]

1 =
∑
p≤X

(log p)
[
log X

log p

]
≤ π(X) log X.
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It follows from (2) that

π(X) ≥ X log 2
2 log X

if X ≥ c3.

Since π(2) = 1, we get the lower bound for a suitable choice of c1.

To prove the upper bound, note that in view of (3) and the definition of the von Mangoldt function,
the inequality ∑

X

2j+1 <p≤ X

2j

log p ≤ c4
X

2j

holds for every integer j ≥ 0 and every real number X ≥ 0. Suppose that X ≥ 2. Let the integer k ≥ 0
be defined such that 2k < X1/2 ≤ 2k+1. Then

∑
X1/2<p≤X

log p ≤
k∑

j=0

∑
X

2j+1 <p≤ X

2j

log p ≤ c4X

k∑
j=0

2−j < 2c4X,

so that ∑
X1/2<p≤X

1 ≤
∑

X1/2<p≤X

log p

log X1/2
<

4c4X

log X
,

whence

π(X) ≤ X1/2 +
4c4X

log X
<

c2X

log X

for a suitable c2. ©

2.4. Some Results of Mertens

We conclude this chapter by obtaining an improvement of Theorem 2A.

THEOREM 2F. (MERTENS) As X → ∞, we have

(4)
∑

m≤X

Λ(m)
m

= log X + O(1),

(5)
∑
p≤X

log p

p
= log X + O(1),

and

(6)
∑
p≤X

1
p

= log log X + O(1).

Proof. Recall Theorem 2C. As X → ∞, we have∑
m≤X

Λ(m)
[
X

m

]
= X log X − X + O(log X).
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Clearly [X/m] = X/m + O(1), so that as X → ∞, we have

∑
m≤X

Λ(m)
[
X

m

]
= X

∑
m≤X

Λ(m)
m

+ O

 ∑
m≤X

Λ(m)

 .

It follows from (3) that

∑
m≤X

Λ(m) ≤
∞∑

j=0

∑
X

2j+1 <m≤ X

2j

Λ(m) ≤ 2c4X,

so that as X → ∞, we have

X
∑

m≤X

Λ(m)
m

= X log X + O(X).

The inequality (4) follows. Next, note that

∑
m≤X

Λ(m)
m

=
∑
p,k

pk≤X

log p

pk
=

∑
p≤X

log p

p
+

∑
p≤X

(log p)
∑

2≤k≤ log X
log p

1
pk

.

As X → ∞, we have

∑
p≤X

(log p)
∑

2≤k≤ log X
log p

1
pk

≤
∑
p≤X

(log p)
∞∑

k=2

1
pk

=
∑
p≤X

log p

p(p − 1)
≤

∞∑
n=2

log n

n(n − 1)
= O(1).

The inequality (5) follows. Finally, for every real number X ≥ 2, let

T (X) =
∑
p≤X

log p

p
.

Then it follows from (5) that there exists a positive absolute constant c6 such that |T (X) − log X| < c6

whenever X ≥ 2. On the other hand,

∑
p≤X

1
p

=
∑
p≤X

log p

p

(
1

log X
+

∫ X

p

dy

y log2 y

)
=

T (X)
log X

+
∫ X

2

T (y) dy

y log2 y

=
T (X) − log X

log X
+

∫ X

2

(T (y) − log y) dy

y log2 y
+ 1 +

∫ X

2

dy

y log y
.

It follows that as X → ∞, we have∣∣∣∣∣∣
∑
p≤X

1
p
− log log X

∣∣∣∣∣∣ <
c6

log X
+

∫ X

2

c6 dy

y log2 y
+ 1 − log log 2 = O(1).

The inequality (6) follows. ©

Problems for Chapter 2

1. Prove that Λ(n) +
∑
m|n

µ(m) log m = 0 for every n ∈ N.
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2. For any arithmetic function f , we define f ′ to be the arithmetic function given by f ′(n) = f(n) log n
for every n ∈ N. Then for the arithmetic function U defined by U(n) = 1 for every n ∈ N, we have
U ′(n) = log n and U ′′(n) = log2 n for every n ∈ N.
(i) Suppose that f and g are arithmetic functions.

(I) Prove that (f + g)′ = f ′ + g′ and (f ∗ g)′ = (f ′ ∗ g) + (f ∗ g′).
(II) Suppose that f(1) �= 0. By noting that (f ∗ f−1)′(n) = 0 for every n ∈ N, prove that

(f−1)′ = −f ′ ∗ (f ∗ f)−1.
(ii) Explain why Λ ∗ U = U ′. Then establish Selberg’s identity Λ′ + (Λ ∗ Λ) = U ′′ ∗ µ.

3. Prove that for every real number X ≥ 2, we have
∏

p≤X

(
1 − 1

p

)−1

> log X.

4. Use the well-known inequality
t

1 + t
< log(1 + t) < t, where t > −1 and t �= 0,

to show that ∑
p≤X

1
p − 1

> log log X and
∑
p≤X

1
p

> log log X − 1.

5. Suppose that
• λn is an increasing sequence of real numbers with limit infinity;
• cn is an arbitrary sequence of real or complex numbers; and
• f has continuous derivative for X ≥ λ1.

For every X ≥ λ1, let

C(X) =
∑

λn≤X

cn.

Establish the partial summation formula, that for every X ≥ λ1, we have∑
λn≤X

cnf(λn) = C(X)f(X) −
∫ X

λ1

C(y)f ′(y) dy.

6. Use Theorem 2F and partial summation to show that as X → ∞, we have∫ X

2

π(y)
y2

dy =
∑
p≤X

1
p

+ o(1) ∼ log log X.

7. Derive the Prime number theorem, that

π(X) ∼ X

log X
as X → ∞,

from the hypothetical relation ∑
p≤X

log p ∼ X as X → ∞,

and the information ∫ X

2

dy

log y
=

X

log X
+ o

(
X

log X

)
as X → ∞.

8. Show that the series
∑
p≤X

1
p log p

converges as X → ∞.
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Chapter 3

DIRICHLET SERIES

3.1. Convergence Properties

A Dirichlet series is a series of the type

(1) F (s) =
∞∑

n=1

f(n)n−s,

where f : N → C is an arithmetic function and s ∈ C. We usually write s = σ + it, where σ, t ∈ R.

Our first task is to investigate the convergence properties of Dirichlet series.

THEOREM 3A. Suppose that the series (1) converges for some s ∈ C. Then there exist unique real
numbers σ0, σ1, σ2 satisfying −∞ ≤ σ0 ≤ σ1 ≤ σ2 < ∞ and such that the following statements hold:
(i) The series (1) converges for every s ∈ C with σ > σ0. Furthermore, for every ε > 0, the series (1)

diverges for some s ∈ C with σ0 − ε < σ ≤ σ0.
(ii) For every η > 0, the series (1) converges uniformly on the set {s ∈ C : σ > σ1 + η} and does not

converge uniformly on the set {s ∈ C : σ > σ1 − η}.
(iii) The series (1) converges absolutely for every s ∈ C with σ > σ2. Furthermore, for every ε > 0, the

series (1) does not converge absolutely for some s ∈ C with σ2 − ε < σ ≤ σ2.

Example. The Dirichlet series

ζ(s) =
∞∑

n=1

n−s

converges absolutely for every s ∈ C with σ > 1 and diverges for every real s < 1. It follows that
σ0 = σ1 = σ2 = 1 in this case.
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Proof of Theorem 3A. Suppose that the series (1) converges for s = s∗ = σ∗+it∗. Then f(n)n−s∗ →
0 as n → ∞, so that |f(n)n−s∗ | = O(1), and so |f(n)| = O(nσ∗

). It follows that for every s ∈ C with
σ > σ∗ + 1, we have

|f(n)n−s| = |f(n)n−σ| = O(nσ∗−σ),

so that the series (1) converges by the Comparison test. Now let

σ0 = inf{u ∈ R : the series (1) converges for all s ∈ C with σ > u}

and

σ2 = inf{u ∈ R : the series (1) converges absolutely for all s ∈ C with σ > u}.

Clearly (i) and (iii) follow, and σ0 ≤ σ2. To prove (ii), let δ > 0 and ε > 0 be chosen. Then there exists
N ∈ N such that

∞∑
n=N+1

|f(n)|n−σ2−δ < ε.

Hence

sup

{∣∣∣∣∣
N∑

n=1

f(n)n−s −
∞∑

n=1

f(n)n−s

∣∣∣∣∣ : σ ≥ σ2 + δ

}
≤

∞∑
n=N+1

|f(n)|n−σ2−δ < ε.

It follows that the series (1) converges uniformly on the set {s ∈ C : σ ≥ σ2 + δ}. Now let

σ1 = inf{u ∈ R : the series (1) converges uniformly on {z ∈ C : σ ≥ u}}.

Clearly σ0 ≤ σ1 ≤ σ2 + δ. Since δ > 0 is arbitrary, we must have σ0 ≤ σ1 ≤ σ2. ©

A simple consequence of uniform convergence is the following result concerning differentiation term
by term.

THEOREM 3B. For every s ∈ C with σ > σ1, the series (1) may be differentiated term by term. In
particular, F ′(s) exists and

F ′(s) = −
∞∑

n=1

f(n)(log n)n−s.

3.2. Uniqueness Properties

Our next task is to prove the uniqueness theorem of Dirichlet series, a result of great importance in view
of the applications we have in mind.

THEOREM 3C. Suppose that

F (s) =
∞∑

n=1

f(n)n−s and G(s) =
∞∑

n=1

g(n)n−s,

where f : N → C and g : N → C are arithmetic functions and s ∈ C. Suppose further that there exists
σ3 ∈ R such that for every s ∈ C satisfying σ ≥ σ3, we have F (s) = G(s). Then f(n) = g(n) for every
n ∈ N.
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It is clearly sufficient to prove the following special case.

THEOREM 3D. Suppose that

F (s) =
∞∑

n=1

f(n)n−s,

where f : N → C is an arithmetic function and s ∈ C. Suppose further that there exists σ3 ∈ R such
that for every s ∈ C satisfying σ ≥ σ3, we have F (s) = 0. Then f(n) = 0 for every n ∈ N.

Proof. Since the series converges for s = σ3, we must have |f(n)| = O(nσ3) for all n ∈ N. Now let
σ ≥ σ3 + 2. Then

(2)
∞∑

n=N

f(n)n−σ = O

( ∞∑
n=N

nσ3−σ

)
.

Note next that yσ3−σ is a decreasing function of y, so that

(3)
∞∑

n=N

nσ3−σ = Nσ3−σ +
∞∑

n=N+1

nσ3−σ ≤ Nσ3−σ +
∫ ∞

N

yσ3−σ dy = O(Nσ3−σ+1).

Combining (2) and (3), we see that for every N ∈ N, we have

(4)
∞∑

n=N

f(n)n−σ = O(Nσ3−σ+1).

Using (4) with N = 2, we obtain, for σ ≥ σ3 + 2,

0 = F (σ) = f(1) +
∞∑

n=2

f(n)n−σ = f(1) + O(2σ3−σ+1) → f(1) as σ → +∞.

Hence f(1) = 0. Suppose now that f(1) = f(2) = . . . = f(M − 1) = 0. Using (4) with N = M + 1, we
obtain, for σ ≥ σ3 + 2,

0 = F (σ) = f(M)M−σ +
∞∑

n=M+1

f(n)n−σ = f(M)M−σ + O((M + 1)σ3−σ+1),

so that

0 = f(M) + O

(
(M + 1)σ3+1

(
M

M + 1

)σ)
→ f(M) as σ → +∞.

Hence f(M) = 0. The result now follows from induction. ©

3.3. Multiplicative Properties

Dirichlet series are extremely useful in tackling problems in number theory as well as in other branches
of mathematics. The main properties that underpin most of these applications are the multiplicative
aspects of these series.

THEOREM 3E. Suppose that for every j = 1, 2, 3, we have

Fj(s) =
∞∑

n=1

fj(n)n−s,
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where fj : N → C is an arithmetic function and s ∈ C. Suppose further that for every n ∈ N, we have

f3(n) =
∑
x,y

xy=n

f1(x)f2(y) =
∑
x|n

f1(x)f2

(n

x

)
=

∑
y|n

f1

(
n

y

)
f2(y).

Then

F1(s)F2(s) = F3(s),

provided that σ > max{σ(1)
2 , σ

(2)
2 }, where, for every j = 1, 2, the series Fj(s) converges absolutely for

every s ∈ C with σ > σ
(j)
2 .

Proof. We have

N∑
n=1

f3(n)n−s =
∑

1≤x≤N
1≤y≤N
xy≤N

f1(x)x−sf2(y)y−s,

so that

N∑
n=1

f3(n)n−s −
∑

x≤
√

N

f1(x)x−s
∑

y≤
√

N

f2(y)y−s

=
∑

√
N<x≤N

f1(x)x−s
∑

y≤N/x

f2(y)y−s +
∑

x≤
√

N

f1(x)x−s
∑

√
N<y≤N/x

f2(y)y−s.

It follows that∣∣∣∣∣∣
N∑

n=1

f3(n)n−s −
∑

x≤
√

N

f1(x)x−s
∑

y≤
√

N

f2(y)y−s

∣∣∣∣∣∣(5)

<

 ∑
x>

√
N

|f1(x)|x−σ

 ( ∞∑
y=1

|f2(y)|y−σ

)
+

( ∞∑
x=1

|f1(x)|x−σ

) ∑
y>

√
N

|f2(y)|y−σ

 .

Suppose now that σ > max{σ(1)
2 , σ

(2)
2 }. Clearly∑

x>
√

N

|f1(x)|x−σ and
∑

y>
√

N

|f2(y)|y−σ

converge to 0 as N → ∞. Furthermore, the series

∞∑
x=1

|f1(x)|x−σ and
∞∑

y=1

|f2(y)|y−σ

are convergent. It follows that the right hand side of (5) converges to 0 as N → ∞. On the other hand,∑
x≤

√
N

f1(x)x−s and
∑

y≤
√

N

f2(y)y−s

converge to F1(s) and F2(s) respectively as N → ∞. The result follows. ©
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Remark. Theorem 3E generalizes to a product of k Dirichlet series F1(s), . . . , Fk(s), where the general
coefficient is ∑

x1,...,xk
x1...xk=n

f1(x1) . . . fk(xk).

In many applications, the coefficients f(n) of the Dirichlet series will be given by various important
arithmetic functions in number theory. We therefore study next some consequences when the function
f : N → C is multiplicative.

THEOREM 3F. Suppose that the function f : N → C is multiplicative. Then for every s ∈ C
satisfying σ > σ2, the series (1) satisfies

F (s) =
∏
p

( ∞∑
h=0

f(ph)p−hs

)
.

Proof. By the Remark, if pj is the j-th prime in increasing order, then

k∏
j=1

( ∞∑
h=0

f(ph
j )p−hs

j

)
=

∞∑
n=1

 ∑
h1,...,hk

p
h1
1

...p
hk
k

=n

f(ph1
1 ) . . . f(phk

k )

 n−s.

By the uniqueness of factorization, the inner sum on the right hand side contains at most one term.
Hence

k∏
j=1

( ∞∑
h=0

f(ph
j )p−hs

j

)
=

∞∑
n=1

θk(n)f(n)n−s,

where

θk(n) =
{ 1 if all the prime factors of n are among p1, . . . , pk,

0 otherwise.

It follows that

k∏
j=1

( ∞∑
h=0

f(ph
j )p−hs

j

)
−

∞∑
n=1

f(n)n−s =
∞∑

n=1

(θk(n) − 1)f(n)n−s

= O

( ∞∑
n=k+1

|f(n)|n−σ

)
→ 0 as k → ∞.

The result follows. ©

An arithmetic function f : N → C is said to be totally multiplicative or strongly multiplicative if
f(mn) = f(m)f(n) for every m, n ∈ N.

THEOREM 3G. Suppose that the function f : N → C is totally multiplicative. Then for every s ∈ C
satisfying σ > σ2, the series (1) satisfies

F (s) =
∏
p

(1 − f(p)p−s)−1.
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Proof. The absolute convergence of the series

(6)
∞∑

h=0

f(ph)p−hs

is immediate for σ > σ2 by comparison with the series

∞∑
n=1

|f(n)|n−σ.

Furthermore, if f is not identically zero, then it is easy to see that f(1) = 1, so that the series (6) is now
a convergent geometric series with sum (1 − f(p)p−s)−1. ©

Example. Consider again the Dirichlet series

ζ(s) =
∞∑

n=1

n−s.

For every s ∈ C satisfying σ > 1, we have

ζ(s) =
∏
p

(1 − p−s)−1.

This is called the Euler product of the Riemann zeta function ζ(s).

Problems for Chapter 3

1. Prove that for σ > 1, we have

(i)
1

ζ(s)
=

∞∑
n=1

µ(n)
ns

; (ii) ζ2(s) =
∞∑

n=1

d(n)
ns

; (iii)
ζ(s)
ζ(2s)

=
∞∑

n=1

|µ(n)|
ns

;

(iv)
ζ3(s)
ζ(2s)

=
∞∑

n=1

d(n2)
ns

; (v)
ζ4(s)
ζ(2s)

=
∞∑

n=1

d2(n)
ns

.

2. Prove that for σ > 2, we have

ζ(s − 1)
ζ(s)

=
∞∑

n=1

φ(n)
ns

.
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Chapter 4

PRIMES IN ARITHMETIC PROGRESSIONS

4.1. Dirichlet’s Theorem

The purpose of this chapter is to prove the following remarkable result of Dirichlet, widely regarded as
one of the greatest achievements in mathematics.

THEOREM 4A. (DIRICHLET) Suppose that q ∈ N and a ∈ Z satisfy (a, q) = 1. Then there are
infinitely many primes p ≡ a (mod q).

Note that the requirement (a, q) = 1 is crucial. If n ≡ a (mod q), then clearly (a, q) | n. It follows
that if (a, q) > 1, then the residue class n ≡ a (mod q) of natural numbers contains at most one prime.
In other words, Dirichlet’s theorem asserts that any residue class n ≡ a (mod q) of natural numbers
must contain infinitely many primes if there is no simple reason to support the contrary.

It is easy to prove Theorem 4A by elementary methods for some special values of a and q.

Examples. (i) There are infinitely many primes p ≡ −1 (mod 4). Suppose on the contrary that
p1, . . . , pr represent all such primes. Then 4p1 . . . pr − 1 must have a prime factor p ≡ −1 (mod 4). But
p cannot be any of p1, . . . , pr.

(ii) There are infinitely many primes p ≡ 1 (mod 4). Suppose on the contrary that p1, . . . , pr

represent all such primes. Consider the number 4(p1 . . . pr)2 + 1. Suppose that a prime p divides
4(p1 . . . pr)2 + 1. Then 4(p1 . . . pr)2 + 1 ≡ 0 (mod p). It follows that −1 is a quadratic residue modulo
p, so that we must have p ≡ 1 (mod 4). Clearly p cannot be any of p1, . . . , pr.
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4.2. A Special Case

The idea of Dirichlet is to show that if (a, q) = 1, then the series∑
p≡a (mod q)

1
p

is divergent. For technical reasons, it is easier to show that if (a, q) = 1, then∑
p≡a (mod q)

log p

pσ
→ +∞ as σ → 1+.

Let us illustrate the idea of Dirichlet by studying the case n ≡ 1 (mod 4).

First of all, we need a function that distinguishes between integers n ≡ 1 (mod 4) and the others.
Suppose that n is odd. Then it is easy to check that

1 + (−1)
n−1

2

2
=

{
1 if n ≡ 1 (mod 4),
0 if n ≡ −1 (mod 4);

so that ∑
p≡1 (mod 4)

log p

pσ
=

1
2

∑
p odd

log p

pσ

(
1 + (−1)

p−1
2

)
.

Now the series ∑
p odd

log p

pσ
→ +∞ as σ → 1+,

so it suffices to show that the series

∑
p odd

(−1)
p−1
2 log p

pσ

converges as σ → 1+.

The next idea is to show that if we consider the series

(1)
∞∑

n=1
n odd

(−1)
n−1

2 Λ(n)
nσ

instead, then the contribution from the terms corresponding to non-prime odd natural numbers n is
convergent. It therefore suffices to show that the series (1) converges as σ → 1+.

Note now that the function

χ(n) =
{

(−1)
n−1

2 if n is odd,
0 if n is even,

is totally multiplicative; in other words, χ(mn) = χ(m)χ(n) for every m, n ∈ N. Write

(2) L(σ) =
∞∑

n=1

χ(n)
nσ

,
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and note that for every n ∈ N, we have

χ(n) log n = χ(n)
∑
m|n

Λ(m) =
∑
m|n

χ(m)Λ(m)χ
( n

m

)
.

It follows from Theorems 3B and 3E that for σ > 1, we have

L′(σ) = −
∞∑

n=1

χ(n) log n

nσ
= −

( ∞∑
n=1

χ(n)Λ(n)
nσ

) ( ∞∑
n=1

χ(n)
nσ

)
.

Hence

∞∑
n=1

n odd

(−1)
n−1

2 Λ(n)
nσ

=
∞∑

n=1

χ(n)Λ(n)
nσ

= −L′(σ)
L(σ)

.

Now as σ → 1+, we expect

L(σ) → L(1) = 1 − 1
3

+
1
5
− 1

7
+ . . . > 0 and L′(σ) → log 3

3
− log 5

5
+

log 7
7

− . . .

which converges by the Alternating series test. We therefore expect the series (1) to converge to a finite
limit.

4.3. Dirichlet Characters

Dirichlet’s most crucial discovery is that for every q ∈ N, there is a family of φ(q) functions χ : N → C,
known nowadays as the Dirichlet characters modulo q, which generalize the function χ in the special
case and satisfy

1
φ(q)

∑
χ mod q

χ(n)
χ(a)

=
{

1 if n ≡ a (mod q),
0 if n �≡ a (mod q),

where the summation is over the φ(q) distinct Dirichlet characters modulo q.

To understand Dirichlet’s ideas, we shall first of all study group characters. Our treatment here is
slightly more general than is necessary, but easier to understand.

Let G be a finite abelian group of order h and with identity element e. A character on G is a
non-zero complex-valued function χ on G for which χ(uv) = χ(u)χ(v) for every u, v ∈ G. It is easy to
check the following simple results.

Remark. We have

(i) χ(e) = 1;

(ii) for every u ∈ G, χ(u) is an h-th root of unity;

(iii) the number c of characters is finite; and

(iv) the characters form an abelian group.

Slightly less trivial is the following.
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Remark. If u ∈ G and u �= e, then there exists a character χ on G such that χ(u) �= 1. To see
this, note that G can be expressed as a direct product of cyclic groups G1, . . . , Gs of orders h1, . . . , hs

respectively, where h = h1 . . . hs. Suppose that for each j = 1, . . . , s, the cyclic group Gj is generated by
vj . Then we can write u = vy1

1 . . . vys
s , where yj (mod hj) is uniquely determined for every j = 1, . . . , s.

Since u �= e, there exists k = 1, . . . , s such that yk �≡ 0 (mod hk). Let χ(vk) = e(1/hk), and let χ(vj) = 1
for every j = 1, . . . , s such that j �= k. Clearly χ(u) = e(yk/hk) �= 1.

We shall denote by χ0 the principal character on G. In other words, χ0(u) = 1 for every u ∈ G.
Also,

∑
χ denotes a summation over all the distinct characters on G.

THEOREM 4B. Suppose that G is a finite abelian group of order h and with identity element e.
Suppose further that χ0 is the principal character on G.
(i) For every character χ on G, we have

∑
u∈G

χ(u) =
{

h if χ = χ0,
0 if χ �= χ0.

(ii) For every u ∈ G, we have ∑
χ

χ(u) =
{

c if u = e,
0 if u �= e,

where c denotes the number of distinct characters on G.
(iii) We have c = h.
(iv) For every u, v ∈ G, we have

1
h

∑
χ

χ(u)
χ(v)

=
{

1 if u = v,
0 if u �= v.

Proof. (i) If χ = χ0, then the result is obvious. If χ �= χ0, then there exists v ∈ G such that χ(v) �= 1,
and so

χ(v)
∑
u∈G

χ(u) =
∑
u∈G

χ(u)χ(v) =
∑
u∈G

χ(uv) =
∑
u∈G

χ(u),

the last equality following from the fact that uv runs over all the elements of G as u runs over all the
elements of G. Hence

(1 − χ(v))
∑
u∈G

χ(u) = 0.

The result follows since χ(v) �= 1.

(ii) If u = e, then the result is obvious. If u �= e, then we have already shown that there exists a
character χ1 such that χ1(u) �= 1, and so

χ1(u)
∑

χ

χ(u) =
∑

χ

χ1(u)χ(u) =
∑

χ

(χ1χ)(u) =
∑

χ

χ(u),

the last equality following from noting that the characters on G form an abelian group so that χ1χ runs
through all the characters on G as χ runs through all the characters on G. Hence

(1 − χ1(u))
∑

χ

χ(u) = 0.
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The result follows since χ1(u) �= 1.

(iii) Note that

h =
∑

χ

∑
u∈G

χ(u) =
∑
u∈G

∑
χ

χ(u) = c.

(iv) Note that

1
h

∑
χ

χ(u)
χ(v)

=
1
h

∑
χ

χ(u)χ(v−1) =
1
h

∑
χ

χ(uv−1) =
{

c/h if uv−1 = e,
0 if uv−1 �= e.

The result follows since h = c. ©

We are now in a position to introduce Dirichlet characters. Let q ∈ N be given. Then there
are exactly φ(q) residue classes n ≡ a (mod q) satisfying (a, q) = 1. Under multiplication of residue
classes, they form an abelian group of order φ(q). Suppose that these residue classes are represented
by a1, . . . , aφ(q) modulo q. Let G = {a1, . . . , aφ(q)}. We can now define a character χ on the group G
as described earlier, interpreting the group elements as residue classes. Furthermore, we can extend the
definition to cover the remaining residue classes. Precisely, for every n ∈ N, let

(3) χ(n) =
{

χ(aj) if n ≡ aj (mod q) for some j = 1, . . . , φ(q),
0 if (n, q) > 1.

A function χ : N → C of the form (3) is called a Dirichlet character modulo q. Note that χ is totally
multiplicative. Also, clearly there are exactly φ(q) Dirichlet characters modulo q. Furthermore, the
principal Dirichlet character χ0 modulo q is defined by

χ0(n) =
{

1 if (n, q) = 1,
0 if (n, q) > 1.

The following theorem follows immediately from these observations and Theorem 4B.

THEOREM 4C. Suppose that q ∈ N. Suppose further that χ0 is the principal Dirichlet character
modulo q.
(i) For every Dirichlet character χ modulo q, we have

∑
n (mod q)

χ(n) =
{

φ(q) if χ = χ0,
0 if χ �= χ0.

(ii) For every n ∈ N, we have

∑
χ (mod q)

χ(n) =
{

φ(q) if n ≡ 1 (mod q),
0 if n �≡ 1 (mod q).

(iii) For every a ∈ Z satisfying (a, q) = 1 and for every n ∈ N, we have

1
φ(q)

∑
χ (mod q)

χ(n)
χ(a)

=
{

1 if n ≡ a (mod q),
0 if n �≡ a (mod q).
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4.4. Some Dirichlet Series

Our next task is to introduce the functions analogous to the function (2) earlier. Let s = σ + it ∈ C,
where σ, t ∈ R. For σ > 1, let

(4) ζ(s) =
∞∑

n=1

n−s;

furthermore, for any Dirichlet character χ modulo q, let

(5) L(s, χ) =
∞∑

n=1

χ(n)n−s.

The functions (4) and (5) are called the Riemann zeta function and Dirichlet L-functions respectively.
Note that the series are Dirichlet series and converge absolutely for σ > 1 and uniformly for σ > 1 + δ
for any δ > 0. Furthermore, the coefficients are totally multiplicative. It follows from Theorem 3G that
for σ > 1, the series (4) and (5) have the Euler product representations

ζ(s) =
∏
p

(1 − p−s)−1 and L(s, χ) =
∏
p

(1 − χ(p)p−s)−1

respectively. The following are some simple properties of these functions.

THEOREM 4D. Suppose that σ > 1. Then ζ(s) �= 0. Furthermore, L(s, χ) �= 0 for any Dirichlet
character χ modulo q.

Proof. Since σ > 1, we have

|ζ(s)| =

∣∣∣∣∣∏
p

(1 − p−s)−1

∣∣∣∣∣ ≥ ∏
p

(1 + p−σ)−1 =
∏
p

1 − p−σ

1 − p−2σ
=

ζ(2σ)
ζ(σ)

> 0

and

|L(s, χ)| =

∣∣∣∣∣∏
p

(1 − χ(p)p−s)−1

∣∣∣∣∣ ≥ ∏
p�q

(1 + p−σ)−1 ≥
∏
p

(1 + p−σ)−1 > 0.

This completes the proof. ©

THEOREM 4E. Suppose that χ0 is the principal Dirichlet character modulo q. Then for σ > 1, we
have

L(s, χ0) = ζ(s)
∏
p|q

(1 − p−s).

Proof. Since σ > 1, we have

L(s, χ0) =
∏
p

(1 − χ0(p)p−s)−1 =
∏
p�q

(1 − p−s)−1 =

∏
p

(1 − p−s)−1

∏
p|q

(1 − p−s)−1
= ζ(s)

∏
p|q

(1 − p−s).

This completes the proof. ©
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THEOREM 4F. Suppose that σ > 1. Then

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)n−s.

Furthermore, for every Dirichlet character χ modulo q, we have

−L′(s, χ)
L(s, χ)

=
∞∑

n=1

χ(n)Λ(n)n−s.

Proof. Since σ > 1, it follows from Theorem 3B that

−ζ ′(s) =
∞∑

n=1

(log n)n−s.

It now follows from Theorem 3E and

log n =
∑
m|n

Λ(m)

that

−ζ ′(s) =

( ∞∑
n=1

Λ(n)n−s

) ( ∞∑
n=1

n−s

)
.

The first assertion follows. On the other hand, it also follows from Theorem 3B that

−L′(s, χ) =
∞∑

n=1

χ(n)(log n)n−s.

It now follows from Theorem 3E and

χ(n) log n =
∑
m|n

χ(m)Λ(m)χ
( n

m

)
that

−L′(s, χ) =

( ∞∑
n=1

χ(n)Λ(n)n−s

) ( ∞∑
n=1

χ(n)n−s

)
.

The second assertion follows. ©

THEOREM 4G. If σ > 1, then for every Dirichlet character χ modulo q, we have

log L(s, χ) =
∑

p

∞∑
m=1

m−1χ(pm)p−ms.

Proof. Taking logarithms on the Euler product representation, we have

(6) log L(s, χ) = log
∏
p

(1 − χ(p)p−s)−1 =
∑

p

log(1 − χ(p)p−s)−1,
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so that

− log L(s, χ) =
∑

p

log(1 − χ(p)p−s).

The justification for (6) is that the series on the right hand side converges uniformly for σ > 1 + δ, as
can be deduced from the Weierstrass M -test on noting that

| log(1 − χ(p)p−s)| ≤ 2|χ(p)p−s| ≤ 2p−1−δ.

The proof is now completed by expanding log(1 − χ(p)p−s). ©

4.5. Analytic Continuation

Our next task is to extend the definition of ζ(s) and L(s, χ) to the half plane σ > 0. This is achieved
by analytic continuation.

An example of analytic continuation is the following: Consider the geometric series

f(s) =
∞∑

n=0

sn.

This series converges absolutely in the set {s ∈ C : |s| < 1} and uniformly in the set {s ∈ C : |s| < 1− δ}
for any δ > 0 to the sum 1/(1 − s). Now let

g(s) =
1

1 − s

in C. Then g is analytic in the set C \ {1}, g(s) = f(s) in the set {s ∈ C : |s| < 1}, and g has a pole at
s = 1. So g can be viewed as an analytic continuation of f to C with a pole at s = 1.

Returning to the functions ζ(s) and L(s, χ), we shall establish the following results on analytic
continuation.

THEOREM 4H. The function ζ(s) admits an analytic continuation to the half plane σ > 0, and is
analytic in this half plane except for a simple pole at s = 1 with residue 1.

THEOREM 4J. Suppose that q ∈ N and χ0 is the principal Dirichlet character modulo q. Then the
function L(s, χ0) admits an analytic continuation to the half plane σ > 0, and is analytic in this half
plane except for a simple pole at s = 1 with residue φ(q)/q.

THEOREM 4K. Suppose that q ∈ N and χ is a non-principal Dirichlet character modulo q. Then
the function L(s, χ) admits an analytic continuation to the half plane σ > 0, and is analytic in this half
plane.

The proofs of these three theorems depend on the following two simple technical results. The first
of these is basically a result on partial summation.
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THEOREM 4L. Suppose that a(n) = O(1) for every n ∈ N. For every x > 0, write

S(x) =
∑
n≤x

a(n).

Suppose further that for σ > 1, we have

F (s) =
∞∑

n=1

a(n)n−s.

Then for every X > 0 and σ > 1, we have

(7)
∑
n≤X

a(n)n−s = S(X)X−s + s

∫ X

1

S(x)x−s−1 dx.

Furthermore, for σ > 1, we have

(8) F (s) = s

∫ ∞

1

S(x)x−s−1 dx.

Proof. To prove (7), simply note that

∑
n≤X

a(n)n−s − S(X)X−s =
∑
n≤X

a(n)(n−s − X−s) =
∑
n≤X

a(n)
∫ X

n

sx−s−1 dx

= s

∫ X

1

∑
n≤x

a(n)

 x−s−1 dx = s

∫ X

1

S(x)x−s−1 dx.

Also, (8) follows from (7) on letting X → ∞. ©

The second technical result, standard in complex function theory, will be stated without proof.

THEOREM 4M. Suppose that the path Γ is defined by w(t) = u(t) + iv(t), where u(t), v(t) ∈ R for
every t ∈ [0, 1]. Suppose further that u′(t) and v′(t) are continuous on [0, 1]. Let D be a domain in C.
For every s ∈ D, let

F (s) =
∫

Γ

f(s, w) dw,

where
• f(s, w) is continuous for every s ∈ D and every w ∈ Γ; and
• for every w ∈ Γ, the function f(s, w) is analytic in D.

Then F (s) is analytic in D.

Proof of Theorem 4H. Let F (s) = ζ(s). In the notation of Theorem 4L, we have a(n) = 1 for
every n ∈ N, so that S(x) = [x] for every x > 0. It follows from (8) that

ζ(s) = s

∫ ∞

1

[x]x−s−1 dx = s

∫ ∞

1

x−s dx − s

∫ ∞

1

{x}x−s−1 dx = 1 +
1

s − 1
− s

∫ ∞

1

{x}x−s−1 dx.

We shall show that the last term on the right hand side represents an analytic function for σ > 0. We
can write ∫ ∞

1

{x}x−s−1 dx =
∞∑

n=1

Fn(s),
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where for every n ∈ N,

Fn(s) =
∫ n+1

n

{x}x−s−1 dx.

It remains to show that (i) for every n ∈ N, the function Fn(s) is analytic in C; and (ii) for every δ > 0,
the series

∑∞
n=1 Fn(s) converges uniformly for σ > δ. To show (i), note that by a change of variable,

Fn(s) =
∫ 1

0

t(n + t)−s−1 dt =
∫ 1

0

te−(s+1) log(n+t) dt,

and (i) follows from Theorem 4M. To show (ii), note that for σ > δ, we have

|Fn(s)| =
∣∣∣∣∫ n+1

n

{x}x−s−1 dx

∣∣∣∣ ≤ n−σ−1 < n−1−δ,

and (ii) follows from the Weierstrass M -test. ©

Proof of Theorem 4J. Suppose that σ > 1. Recall Theorem 4E, that

L(s, χ0) = ζ(s)
∏
p|q

(
1 − 1

ps

)
.

Clearly the right hand side is analytic for σ > 0 except for a simple pole at s = 1. Furthermore, at
s = 1, the function ζ(s) has a simple pole with residue 1, while

∏
p|q

(
1 − 1

p

)
=

φ(q)
q

.

The result follows. ©

The proof of Theorem 4K is left as an exercise.

4.6. Proof of Dirichlet’s Theorem

We now attempt to prove Theorem 4A. The result below will enable us to consider the analogue of (1).

THEOREM 4N. Suppose that σ > 1. Then∑
p≡a (mod q)

log p

pσ
=

∑
n≡a (mod q)

Λ(n)
nσ

+ O(1).

Proof. Note first of all that the sum on the left hand side does not exceed the first term on the right
hand side. On the other hand, we have

∑
n≡a (mod q)

Λ(n)
nσ

−
∑

p≡a (mod q)

log p

pσ
≤

∑
p

∞∑
m=2

log p

pmσ

≤
∑

p

∞∑
m=2

log p

pm
=

∑
p

log p

p(p − 1)
≤

∞∑
n=2

log n

n(n − 1)
= O(1).

The result follows. ©
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Combining Theorems 4N, 4C and 4F, we have

∑
p≡a (mod q)

log p

pσ
=

∑
n≡a (mod q)

Λ(n)
nσ

+ O(1) =
∞∑

n=1

 1
φ(q)

∑
χ (mod q)

χ(n)
χ(a)

 Λ(n)
nσ

+ O(1)(9)

=
1

φ(q)

∑
χ (mod q)

1
χ(a)

∞∑
n=1

χ(n)Λ(n)
nσ

+ O(1) = − 1
φ(q)

∑
χ (mod q)

1
χ(a)

L′(σ, χ)
L(σ, χ)

+ O(1).

Suppose now that

(10)
∑

χ (mod q)
χ�=χ0

1
χ(a)

L′(σ, χ)
L(σ, χ)

= O(1) as σ → 1+.

Then combining (9) and (10), we have

∑
p≡a (mod q)

log p

pσ
= − 1

φ(q)
L′(σ, χ0)
L(σ, χ0)

+ O(1) =
1

φ(q)
1

σ − 1
+ O(1) → ∞ as σ → 1+.

since the function L′(s, χ0)/L(s, χ0) has a simple pole at s = 1 with residue −1 by Theorem 4J. To
complete the proof of Dirichlet’s theorem, it remains to prove (10). Clearly (10) will follow if we can
show that for every non-principal Dirichlet character χ (mod q), we have L(1, χ) �= 0. Here we need to
distinguish two cases, represented by the next two theorems.

THEOREM 4P. Suppose that q ∈ N and χ is a non-real Dirichlet character modulo q. Then we have
L(1, χ) �= 0.

Proof. For σ > 1, we have, in view of Theorem 4G, that

∑
χ (mod q)

log L(σ, χ) =
∑

χ (mod q)

∑
p

∞∑
m=1

χ(pm)m−1p−mσ

=
∑

p

∞∑
m=1

 ∑
χ (mod q)

χ(pm)

 m−1p−mσ = φ(q)
∑

p

∞∑
m=1

pm≡1 (mod q)

m−1p−mσ > 0,

where the change of order of summation is justified since

∑
χ (mod q)

∑
p

∞∑
m=1

|χ(pm)m−1p−mσ|

is finite. It follows that

(11)

∣∣∣∣∣∣
∏

χ (mod q)

L(σ, χ)

∣∣∣∣∣∣ > 1.

Suppose that χ1 is a non-real Dirichlet character modulo q, and L(1, χ1) = 0. Then χ1 �= χ1, and
L(1, χ1) = L(1, χ1) = 0 also. It follows that these two zeros more than cancel the simple pole of L(σ, χ0)
at σ = 1, so that the product on the left hand side of (11) has a zero at σ = 1. This gives a contradiction.
©

Clearly this approach does not work when χ is real.
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THEOREM 4Q. Suppose that q ∈ N and χ is a real, non-principal Dirichlet character modulo q.
Then we have L(1, χ) �= 0.

Proof. Suppose that the result is false, so that there exists a real Dirichlet character χ modulo q such
that L(1, χ) = 0. Then the function F (s) = ζ(s)L(s, χ) is analytic for σ > 0. Note that for σ > 1, we
have

F (s) =
∞∑

n=1

f(n)n−s,

where for every n ∈ N,

f(n) =
∑
m|n

χ(m).

Let the function g : N → R be defined by

g(n) =
{ 1 if n is a perfect square,

0 otherwise.

We shall first of all show that for every n ∈ N, we have

(12) f(n) ≥ g(n).

Since χ is totally multiplicative, it suffices to prove (12) when n = pk, where p is a prime and k ∈ N.
Indeed, since χ assumes only the values ±1 and 0, we have

f(pk) = 1 + χ(p) + (χ(p))2 + . . . + (χ(p))k =


1 if χ(p) = 0,
k + 1 if χ(p) = 1,
1 if χ(p) = −1 and k is even,
0 if χ(p) = −1 and k is odd,

so that

f(pk) ≥ g(pk) =
{ 1 if k is even,

0 if k is odd.

Suppose now that 0 < r < 3/2. Since F (s) is analytic for σ > 0, we must have the Taylor expansion

F (2 − r) =
∞∑

ν=0

F (ν)(2)
ν!

(−r)ν .

Now by Theorem 3B, we have

F (ν)(2) =
∞∑

n=1

f(n)(− log n)νn−2.

It follows that for every ν ∈ N ∪ {0}, we have, in view of (12),

F (ν)(2)
ν!

(−r)ν =
rν

ν!

∞∑
n=1

f(n)(log n)νn−2 ≥ rν

ν!

∞∑
n=1

g(n)(log n)νn−2 =
rν

ν!

∞∑
k=1

(log k2)ν(k2)−2

=
(2r)ν

ν!

∞∑
k=1

(log k)νk−4 =
(−2r)ν

ν!

∞∑
k=1

(− log k)νk−4 =
(−2r)ν

ν!
ζ(ν)(4)

by Theorem 3B. It follows that for 0 < r < 3/2, we have

F (2 − r) ≥
∞∑

ν=0

(−2r)ν

ν!
ζ(ν)(4) = ζ(4 − 2r).
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Now as r → 3/2−, we must therefore have F (2− r) → +∞. This contradicts our assertion that F (s) is
analytic for σ > 0 and hence continuous at s = 1/2. ©

Problems for Chapter 4

1. Suppose that q ∈ N, and that χ is a non-principal character modulo q.
(i) Show that for every X > 0, we have ∣∣∣∣∣∣

∑
n≤X

χ(n)

∣∣∣∣∣∣ ≤ q.

(ii) Noting that the function

S(X) =
∑
n≤X

χ(n)

is constant between consecutive natural numbers, prove Theorem 4K.
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Chapter 5

THE PRIME NUMBER THEOREM

5.1. Some Preliminary Remarks

In this chapter, we give an analytic proof of the famous Prime number theorem, a result first obtained
in 1896 independently by Hadamard and de la Vallée Poussin.

THEOREM 5A. (PRIME NUMBER THEOREM) We have

π(X) ∼ X

log X
as X → ∞.

As in our earlier study of the distribution of primes, we use the von Mangoldt function Λ. For every
X > 0, let

ψ(X) =
∑
n≤X

Λ(n).

THEOREM 5B. As X → ∞, we have

ψ(X) ∼ X if and only if π(X) ∼ X

log X
.

Proof. Recall the proof of Theorem 2E due to Tchebycheff. We have

(1) ψ(X) =
∑
n≤X

Λ(n) =
∑
p,k

pk≤X

log p =
∑
p≤X

(log p)
∑

1≤k≤ log X
log p

1 =
∑
p≤X

(log p)
[
log X

log p

]
≤ π(X) log X.
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On the other hand, for any α ∈ (0, 1), we have

(2) ψ(X) ≥
∑
p≤X

log p ≥
∑

Xα<p≤X

log p ≥ (π(X) − π(Xα)) log(Xα) = α(π(X) − π(Xα)) log X.

Combining (1) and (2), we have

(3) α
π(X)

X/ log X
− α

π(Xα)
X/ log X

≤ ψ(X)
X

≤ π(X)
X/ log X

.

Since α < 1, it follows from Tchebycheff’s theorem that

π(Xα)
X/ log X

→ 0 as X → ∞.

Suppose that π(X) ∼ X/ log X as X → ∞. Then

α
π(X)

X/ log X
− α

π(Xα)
X/ log X

→ α as X → ∞.

It follows that for any ε > 0, the inequality

α − ε ≤ ψ(X)
X

≤ 1 + ε

holds for all large X. Since α < 1 is arbitrary, we must have

ψ(X)
X

→ 1 as X → ∞.

Note next that the inequalities (3) can be rewritten as

ψ(X)
X

≤ π(X)
X/ log X

≤ 1
α

ψ(X)
X

+
π(Xα)

X/ log X
.

Suppose that ψ(X) ∼ X as X → ∞. Then

1
α

ψ(X)
X

+
π(Xα)

X/ log X
→ 1

α
as X → ∞.

It follows that for every ε > 0, the inequality

1 − ε ≤ π(X)
X/ log X

≤ 1 + ε

α

holds for all large X. Since α < 1 is arbitrary, we must have

π(X)
X/ log X

→ 1 as X → ∞.

This completes the proof. ©
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5.2. A Smoothing Argument

To prove the Prime number theorem, it suffices to show that ψ(X) ∼ X as X → ∞. However, a direct
discussion of ψ(X) introduces various tricky convergence problems. We therefore consider a smooth
average of the function ψ. For X > 0, let

(4) ψ1(X) =
∫ X

0

ψ(x) dx.

THEOREM 5C. Suppose that ψ1(X) ∼ 1
2X2 as X → ∞. Then ψ(X) ∼ X as X → ∞.

Proof. Suppose that 0 < α < 1 < β. Since Λ(n) ≥ 0 for every n ∈ N, the function ψ is an increasing
function. Hence for every X > 0, we have

ψ(X) ≤ 1
βX − X

∫ βX

X

ψ(x) dx =
ψ1(βX) − ψ1(X)

(β − 1)X
,

so that

(5)
ψ(X)

X
≤ ψ1(βX) − ψ1(X)

(β − 1)X2
.

On the other hand, for every X > 0, we have

ψ(X) ≥ 1
X − αX

∫ X

αX

ψ(x) dx =
ψ1(X) − ψ1(αX)

(1 − α)X
,

so that

(6)
ψ(X)

X
≥ ψ1(X) − ψ1(αX)

(1 − α)X2
.

As X → ∞, we have

(7)
ψ1(βX) − ψ1(X)

(β − 1)X2
∼ 1

β − 1

(
1
2
β2 − 1

2

)
=

1
2
(β + 1)

and

(8)
ψ1(X) − ψ1(αX)

(1 − α)X2
∼ 1

1 − α

(
1
2
− 1

2
α2

)
=

1
2
(α + 1).

Since α and β are arbitrary, we conclude, on combining (5)–(8), that ψ(X)/X ∼ 1 as X → ∞. ©

The rest of this chapter is concerned with establishing the following crucial result.

THEOREM 5D. We have

ψ1(X) ∼ 1
2X2 as X → ∞.
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5.3. A Contour Integral

The following result brings the Riemann zeta function ζ(s) into the argument.

THEOREM 5E. Suppose that X > 0 and c > 1. Then

ψ1(X) = − 1
2πi

∫ c+i∞

c−i∞

Xs+1

s(s + 1)
ζ ′(s)
ζ(s)

ds,

where the path of integration is the straight line σ = c.

A crucial step in the proof of Theorem 5E is provided by the following auxiliary result.

THEOREM 5F. Suppose that Y > 0 and c > 1. Then

1
2πi

∫ c+i∞

c−i∞

Y s

s(s + 1)
ds =


0 if Y ≤ 1,

1 − 1
Y

if Y ≥ 1.

Proof. Note first of all that the integral is absolutely convergent, since∣∣∣∣ Y s

s(s + 1)

∣∣∣∣ ≤ Y c

|t|2

whenever σ = c. Let T > 1, and write

IT =
1

2πi

∫ c+iT

c−iT

Y s

s(s + 1)
ds.

Suppose first of all that Y ≥ 1. Consider the circular arc A−(c, T ) centred at s = 0 and passing
from c − iT to c + iT on the left of the line σ = c, and let

J−
T =

1
2πi

∫
A−(c,T )

Y s

s(s + 1)
ds.

Note that on A−(c, T ), we have |Y s| = Y σ ≤ Y c since Y ≥ 1; also we have |s| = R and |s + 1| ≥ R − 1,
where R = (c2 + T 2)1/2 is the radius of A−(c, T ). It follows that

|J−
T | ≤ 1

2π

Y c

R(R − 1)
2πR ≤ Y c

T − 1
→ 0 as T → ∞.

By Cauchy’s residue theorem, we have

IT = J−
T + res

(
Y s

s(s + 1)
, 0

)
+ res

(
Y s

s(s + 1)
,−1

)
= J−

T + 1 − 1
Y

.

The result for Y ≥ 1 follows on letting T → ∞.

Suppose now that Y ≤ 1. Consider the circular arc A+(c, T ) centred at s = 0 and passing from
c − iT to c + iT on the right of the line σ = c, and let

J+
T =

1
2πi

∫
A+(c,T )

Y s

s(s + 1)
ds.
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Note that on A+(c, T ), we have |Y s| = Y σ ≤ Y c since Y ≤ 1; also we have |s| = R and |s + 1| ≥ R,
where R = (c2 + T 2)1/2 is the radius of A+(c, T ). It follows that

|J+
T | ≤ 1

2π

Y c

R2
2πR ≤ Y c

T
→ 0 as T → ∞.

By Cauchy’s integral theorem, we have

IT = J+
T .

The result for Y ≤ 1 follows on letting T → ∞. ©

Proof of Theorem 5E. Note that for X ≥ 1, we have

ψ1(X) =
∫ X

0

ψ(x) dx =
∫ X

1

ψ(x) dx =
∫ X

1

∑
n≤x

Λ(n)

 dx =
∑
n≤X

(X − n)Λ(n),

the last equality following from interchanging the order of integration and summation. Note also that
the above conclusion holds trivially if 0 < X < 1. It therefore follows from Theorem 5F that for every
X > 0, we have

ψ1(X)
X

=
∑
n≤X

(
1 − n

X

)
Λ(n) =

∑
n≤X

(
1 − 1

X/n

)
Λ(n) =

∞∑
n=1

Λ(n)
2πi

∫ c+i∞

c−i∞

(X/n)s

s(s + 1)
ds,

where c > 1. Since c > 1, the order of summation and integration can be interchanged, as

∞∑
n=1

∫ c+i∞

c−i∞

∣∣∣∣Λ(n)(X/n)s

s(s + 1)

∣∣∣∣ |ds| ≤ Xc
∞∑

n=1

Λ(n)
nc

∫ ∞

−∞

dt

c2 + t2

is finite. It follows that

ψ1(X)
X

=
1

2πi

∫ c+i∞

c−i∞

Xs

s(s + 1)

∞∑
n=1

Λ(n)
ns

ds = − 1
2πi

∫ c+i∞

c−i∞

Xs

s(s + 1)
ζ ′(s)
ζ(s)

ds

as required. ©

5.4. The Riemann Zeta Function

Recall first of all Theorem 4L. In the case of the Riemann zeta function, equation (7) of Chapter 4
becomes ∑

n≤X

n−s = s

∫ X

1

[x]x−s−1 dx + [X]X−s(9)

= s

∫ X

1

x−s dx − s

∫ X

1

{x}x−s−1 dx + X−s+1 − {X}X−s

=
s

s − 1
− s

(s − 1)Xs−1
− s

∫ X

1

{x}
xs+1

dx +
1

Xs−1
− {X}

Xs
.

Letting X → ∞, we deduce that

(10) ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx
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if σ > 1. Recall also that (10) gives an analytic continuation of ζ(s) to σ > 0, with s simple pole at
s = 1. We shall use these formulae to deduce important information about the order of magnitude of
|ζ(s)| in the neighbourhood of the line σ = 1 and to the left of it. Note that ζ(σ + it) and ζ(σ − it) are
complex conjugates, so it suffices to study ζ(s) on the upper half plane.

THEOREM 5G. For every σ ≥ 1 and t ≥ 2, we have
(i) |ζ(s)| = O(log t); and
(ii) |ζ ′(s)| = O(log2 t).
Suppose further that 0 < δ < 1. Then for every σ ≥ δ and t ≥ 1, we have
(iii) |ζ(s)| = Oδ(t1−δ).

Proof. For σ > 0, t ≥ 1 and X ≥ 1, we have, by (9) and (10), that

ζ(s) −
∑
n≤X

1
ns

=
s

(s − 1)Xs−1
− 1

Xs−1
+

{X}
Xs

− s

∫ ∞

X

{x}
xs+1

dx(11)

=
1

(s − 1)Xs−1
+

{X}
Xs

− s

∫ ∞

X

{x}
xs+1

dx.

It follows that

(12) |ζ(s)| ≤
∑
n≤X

1
nσ

+
1

tXσ−1
+

1
Xσ

+ |s|
∫ ∞

X

dx

xσ+1
≤

∑
n≤X

1
nσ

+
1

tXσ−1
+

1
Xσ

+
(

1 +
t

σ

)
1

Xσ
.

If σ ≥ 1, t ≥ 1 and X ≥ 1, then

|ζ(s)| ≤
∑
n≤X

1
n

+
1
t

+
1
X

+
1 + t

X
≤ (log X + 1) + 3 +

t

X
.

Choosing X = t, we obtain

|ζ(s)| ≤ (log t + 1) + 4 = O(log t),

proving (i). On the other hand, if σ ≥ δ, t ≥ 1 and X ≥ 1, then it follows from (12) that

|ζ(s)| ≤
∑
n≤X

1
nδ

+
1

tXδ−1
+

(
2 +

t

δ

)
1

Xδ
≤

∫ [X]

0

dx

xδ
+

X1−δ

t
+

3t

δXδ
≤ X1−δ

1 − δ
+ X1−δ +

3t

δXδ
.

Again choosing X = t, we obtain

(13) |ζ(s)| ≤ t1−δ

(
1

1 − δ
+ 1 +

3
δ

)
,

proving (iii). To deduce (ii), we may differentiate (11) with respect to s and proceed in a similar way.
Alternatively, suppose that s0 = σ0 + it0 satisfies σ0 ≥ 1 and t0 ≥ 2. Let C be the circle with centre s0

and radius ρ < 1/2. Then Cauchy’s integral formula gives

|ζ ′(s0)| =
∣∣∣∣ 1
2πi

∫
C

ζ(s)
(s − s0)2

ds

∣∣∣∣ ≤ M

ρ
,

where M = sups∈C |ζ(s)|. Note next that for every s ∈ C, we clearly have σ ≥ σ0 − ρ ≥ 1 − ρ and
2t0 > t ≥ t0 − ρ > 1. It follows from (13), with δ = 1 − ρ, that for every s ∈ C, we must have

|ζ(s)| ≤ (2t0)ρ

(
1
ρ

+ 1 +
3

1 − ρ

)
≤ 10tρ0

ρ
,
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since ρ < 1/2 < 1 − ρ < 1. It follows that

|ζ ′(s0)| ≤
10tρ0
ρ2

.

We now take ρ = (log t0 + 2)−1. Then tρ0 = eρ log t0 < e, and so

|ζ ′(s0)| ≤ 10e(log t0 + 2)2.

(ii) now follows. ©

THEOREM 5H. The function ζ(s) has no zeros on the line σ = 1. Furthermore, there is a positive
constant A such that as t → ∞, we have, for σ ≥ 1, that

1
ζ(s)

= O
(
(log t)A

)
.

Proof. For every θ ∈ R, we clearly have

(14) 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

On the other hand, it is easy to check that for σ > 1, we have

log ζ(s) =
∑

p

∞∑
m=1

1
mpms

,

so that

(15) log |ζ(σ + it)| = Re

( ∞∑
n=2

cnn−σ−it

)
=

∞∑
n=2

cnn−σ cos(t log n),

where

(16) cn =
{

1/m if n = pm, where p is prime and m ∈ N,
0 otherwise.

Combining (14)–(16), we have

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| =
∞∑

n=2

cnn−σ(3 + 4 cos(t log n) + cos(2t log n)) ≥ 0.

It follows that for σ > 1, we have

(17) |(σ − 1)ζ(σ)|3
∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4 |ζ(σ + 2it)| ≥ 1
σ − 1

.

Suppose that the point s = 1 + it is a zero of ζ(s). Then since ζ(s) is analytic at the points s = 1 + it
and s = 1+2it and has a simple pole with residue 1 at s = 1, the left hand side of (17) must converge to
a finite limit as σ → 1+, contradicting the fact that the right hand side diverges to infinity as σ → 1+.
Hence s = 1 + it cannot be a zero of ζ(s). To prove the second assertion, we may assume without loss
of generality that 1 ≤ σ ≤ 2, since for σ ≥ 2, we have∣∣∣∣ 1

ζ(s)

∣∣∣∣ =

∣∣∣∣∣∏
p

(1 − p−s)

∣∣∣∣∣ ≤ ∏
p

(1 + p−σ) < ζ(σ) ≤ ζ(2).
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Suppose now that 1 < σ ≤ 2 and t ≥ 2. Then by (17), we have

(σ − 1)3 ≤ |(σ − 1)ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≤ A1|ζ(σ + it)|4 log(2t)

by Theorem 5G(i), where A1 is a positive absolute constant. Since log(2t) ≤ 2 log t, it follows that

(18) |ζ(σ + it)| ≥ (σ − 1)3/4

A2(log t)1/4
,

where A2 is a positive absolute constant. Note that (18) holds also when σ = 1. Suppose now that
1 < η < 2. If 1 ≤ σ ≤ η and t ≥ 2, then it follows from Theorem 5G(ii) that

|ζ(σ + it) − ζ(η + it)| =
∣∣∣∣∫ η

σ

ζ ′(x + it) dx

∣∣∣∣ ≤ A3(η − 1) log2 t,

where A3 is a positive absolute constant. Combining this with (18), we have

(19) |ζ(σ + it)| ≥ |ζ(η + it)| − A3(η − 1) log2 t ≥ (η − 1)3/4

A2(log t)1/4
− A3(η − 1) log2 t.

On the other hand, if η ≤ σ ≤ 2 and t ≥ 2, then in view of (18), the inequality (19) must also hold. It
follows that inequality (19) holds if 1 ≤ σ ≤ 2, t ≥ 2 and 1 < η < 2. We now choose η so that

(η − 1)3/4

A2(log t)1/4
= 2A3(η − 1) log2 t;

in other words, we choose

η = 1 + (2A2A3)−4(log t)−9,

where t > t0, so that η < 2. Then

|ζ(σ + it)| ≥ A3(η − 1) log2 t = A4(log t)−7

for 1 ≤ σ ≤ 2 and t > t0. ©

5.5. Completion of the Proof

We are now ready to complete the proof of Theorem 5D. By Theorem 5E, we have

(20)
ψ1(X)

X2
=

1
2πi

∫ c+i∞

c−i∞
G(s)Xs−1 ds,

where c > 1 and X > 0, and where

G(s) = − 1
s(s + 1)

ζ ′(s)
ζ(s)

= − 1
s(s + 1)

ζ ′(s)
1

ζ(s)
.

By Theorems 4H, 5G and 5H, we know that G(s) is analytic for σ ≥ 1, except at s = 1, and that for
some positive absolute constant A, we have

(21) G(s) = O
(
|t|−2(log |t|)2(log |t|)A

)
< |t|−3/2
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for all |t| > t0. Let ε > 0 be given. We now consider a contour made up of the straight line segments
L1 = [1 − iU, 1 − iT ],
L2 = [1 − iT, α − iT ],
L3 = [α − iT, α + iT ],
L4 = [α + iT, 1 + iT ],
L5 = [1 + iT, 1 + iU ],

where T = T (ε) > max{t0, 2}, α = α(T ) = α(ε) ∈ (0, 1) and U are chosen to satisfy the following three
conditions:

(i) We have ∫ ∞

T

|G(1 + it)|dt < ε.

(ii) The rectangle [α, 1] × [−T, T ] contains no zeros of ζ(s). Note that this is possible since ζ(s)
has no zeros on the line σ = 1 and, as an analytic function, has at most a finite number of zeros in the
region [1/2, 1) × [−T, T ].

(iii) We have U > T .

Furthermore, define the straight line segments{
M1 = [c − iU, 1 − iU ],
M2 = [1 + iU, c + iU ].

1 + iU c + iU

α + iT 1 + iT

α − iT 1 − iT

1 − iU c − iU

��

L5

M2

L3

��

OO

L4

OO

L2oo

L1OO

M1

oo

OO

By Cauchy’s residue theorem, we have

1
2πi

∫ c+iU

c−iU

G(s)Xs−1 ds =
1

2πi

2∑
j=1

∫
Mj

G(s)Xs−1 ds(22)

+
1

2πi

5∑
j=1

∫
Lj

G(s)Xs−1 ds + res(G(s)Xs−1, 1),
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where, for every X > 1, we have

(23) res(G(s)Xs−1, 1) = 1
2 .

Now

(24)
∣∣∣∣∫

L1

G(s)Xs−1 ds

∣∣∣∣ =
∣∣∣∣∫

L5

G(s)Xs−1 ds

∣∣∣∣ ≤ ∫ ∞

T

|G(1 + it)|dt < ε.

On the other hand,

(25)
∣∣∣∣∫

L2

G(s)Xs−1 ds

∣∣∣∣ =
∣∣∣∣∫

L4

G(s)Xs−1 ds

∣∣∣∣ ≤ M

∫ 1

α

Xσ−1 dσ ≤ M

log X

and

(26)
∣∣∣∣∫

L3

G(s)Xs−1 ds

∣∣∣∣ ≤ 2TMXα−1,

where

(27) M = M(α, T ) = M(ε) = sup
L2∪L3∪L4

|G(s)|.

Furthermore, by (21), we have, for j = 1, 2,

(28)

∣∣∣∣∣
∫

Mj

G(s)Xs−1 ds

∣∣∣∣∣ ≤
∫ c

1

|U |−3/2Xσ−1 dσ ≤ Xc−1

log X
|U |−3/2.

Combining (22)–(28), we have∣∣∣∣∣ 1
2πi

∫ c+iU

c−iU

G(s)Xs−1 ds − 1
2

∣∣∣∣∣ ≤ ε

π
+

M

π log X
+

TM

πX1−α
+

Xc−1|U |−3/2

π log X
.

On letting U → ∞, we have ∣∣∣∣ψ1(X)
X2

− 1
2

∣∣∣∣ ≤ ε

π
+

M

π log X
+

TM

πX1−α
.

It then follows that

lim
X→∞

∣∣∣∣ψ1(X)
X2

− 1
2

∣∣∣∣ ≤ ε

π
.

Note finally that ε > 0 is arbitrary, and the left hand side is independent of ε. It follows that

lim
X→∞

ψ1(X)
X2

=
1
2
.

This completes the proof of Theorem 5D.
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Chapter 6

THE RIEMANN ZETA FUNCTION

6.1. Riemann’s Memoir

In Riemann’s only paper on number theory, published in 1860, he proved the following result.

THEOREM 6A. (RIEMANN) The function ζ(s) can be continued analytically over the whole com-
plex plane C, and satisfies the functional equation

(1) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s),

where Γ denotes the gamma function. In particular, the function ζ(s) is analytic everywhere, except for
a simple pole at s = 1 with residue 1.

Note that the functional equation (1) enables properties of ζ(s) for σ < 0 to be inferred from
properties of ζ(s) for σ > 1.

Remarks. (i) As can be observed from the functional equation (1), the study of the Riemann zeta
function depends intimately on properties of the gamma function. The latter is usually defined by the
Euler integral

Γ(s) =
∫ ∞

0

e−tts−1 dt,

valid whenever Res > 0, and satisfies Γ(s + 1) = sΓ(s). The Weierstrass formula

1
sΓ(s)

= eγs
∞∏

n=1

(
1 +

s

n

)
e−s/n,
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where γ is Euler’s constant, extends the gamma function to the whole complex plane C. It is then easy
to see that Γ(s) has no zeros, but has simple poles at s = 0,−1,−2, . . . .

(ii) The formulas

Γ
(s

2

)
= π−1/2s1−sΓ(s)Γ

(
1 − s

2

)
cos

πs

2

and

Γ
(

1 − s

2

)
= π−1/22sΓ(1 − s)Γ

(s

2

)
cos

π(1 − s)
2

are particularly useful in the study of ζ(s), as we shall see later in the proof of Theorem 6V.

(iii) Stirling’s asymptotic formula

log Γ(s) =
(

s − 1
2

)
log s − s +

log 2π

2
+ O(|s|−1) as |s| → ∞

is valid in any angle −π + δ < arg s < π − δ for any fixed δ > 0. The same condition gives the estimate

Γ′(s)
Γ(s)

= log s + O(|s|−1) as |s| → ∞.

(iv) The interested reader may refer to Chapters 12 and 13 in the volume Modern Analysis by
Whittaker and Watson for detailed proofs of the above.

In view of Remark (i) above, the only zeros of ζ(s) for σ < 0 are at the poles of Γ(s/2); in other
words, at the points s = −2,−4,−6, . . . . These are called the trivial zeros of ζ(s).

The part of the plane with 0 ≤ σ ≤ 1 is called the critical strip.

Riemann’s paper is particularly remarkable for the conjectures it contains. While most of these
conjectures have been proved, the famous Riemann hypothesis has so far resisted all attempts to prove
or disprove it.

THEOREM 6B. (HADAMARD 1893) The function ζ(s) has infinitely many zeros in the critical
strip.

It is easy to see that the zeros of ζ(s) in the critical strip are placed symmetrically with respect to
the line t = 0 as well as with respect to the line σ = 1/2, the latter observation being a consequence of
the functional equation (1).

THEOREM 6C. (HADAMARD 1893) The entire function

(2) ξ(s) =
1
2
s(s − 1)π−s/2Γ

(s

2

)
ζ(s)

has the product representation

(3) ξ(s) = eA+Bs
∏
ρ

(
1 − s

ρ

)
es/ρ,

where A and B are constants and where ρ runs over all the zeros of the function ζ(s) in the critical
strip.
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We comment here that the product representation (3) plays an important role in the first proof of
the Prime number theorem.

THEOREM 6D. (VON MANGOLDT 1905) Let N(T ) denote the number of zeros ρ = β + iγ of
the function ζ(s) in the critical strip with 0 < γ ≤ T . Then

(4) N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

The most remarkable of Riemann’s conjectures is an explicit formula for the difference π(X)− li(X),
containing a term which is a sum over the zeros of ζ(s) in the critical strip. This shows that the zeros of
ζ(s) plays a crucial role in the study of the distribution of primes. Here we state a result closely related
to this formula.

THEOREM 6E. (VON MANGOLDT 1895) Let

ψ(X) =
∑
n≤X

Λ(n) and ψ0(X) =
ψ(X − 0) + ψ(X + 0)

2
.

Then

ψ0(X) − X = −
∑

ρ

Xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log

(
1 − 1

X2

)
,

where the terms in the sum arising from complex conjugates are taken together.

However, there remains one of Riemann’s conjectures which is still unsolved today. The open
question below is arguably the most famous unsolved problem in the whole of mathematics.

CONJECTURE. (RIEMANN HYPOTHESIS) The zeros of the function ζ(s) in the critical strip
all lie on the line σ = 1/2.

We shall nevertheless establish the following rather weak partial result which gives a zero-free region
for ζ(s). This will be sufficient to give another proof of the Prime number theorem, via the explicit
formula given in Theorem 6E.

THEOREM 6F. (DE LA VALLÉE-POUSSIN 1899) There exists an absolute constant c > 0 such
that the function ζ(s) has no zeros in the region

σ ≥ 1 − c

log t
and t ≥ 2.

6.2. Riemann’s Proof of the Functional Equation

Suppose that σ > 0. Writing t = n2πx, we have

Γ
(s

2

)
=

∫ ∞

0

ts/2−1e−t dt = (n2π)s/2

∫ ∞

0

xs/2−1e−n2πx dx,

so that

π−s/2Γ
(s

2

)
n−s =

∫ ∞

0

xs/2−1e−n2πx dx.
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It follows that for σ > 1, we have

π−s/2Γ
(s

2

)
ζ(s) =

∞∑
n=1

∫ ∞

0

xs/2−1e−n2πx dx =
∫ ∞

0

xs/2−1

( ∞∑
n=1

e−n2πx

)
dx,

where the change of order of summation and integration is justified by the convergence of

∞∑
n=1

∫ ∞

0

xσ/2−1e−n2πx dx.

Now write

ω(x) =
∞∑

n=1

e−n2πx.

Then for σ > 1, we have

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

1

xs/2−1ω(x) dx +
∫ 1

0

ys/2−1ω(y) dy(5)

=
∫ ∞

1

xs/2−1ω(x) dx +
∫ ∞

1

x−s/2−1ω(x−1) dx.

We shall show that for every x > 0, the function

θ(x) =
∞∑

n=−∞
e−n2πx = 1 + 2ω(x)

satisfies the functional equation θ(x−1) = x1/2θ(x) which can be written in the form

(6)
∞∑

n=−∞
e−n2π/x = x1/2

∞∑
n=−∞

e−n2πx.

It then follows that

2ω(x−1) = θ(x−1) − 1 = x1/2θ(x) − 1 = −1 + x1/2 + 2x1/2ω(x),

so that for σ > 1, we have∫ ∞

1

x−s/2−1ω(x−1) dx =
∫ ∞

1

x−s/2−1

(
−1

2
+

1
2
x1/2 + x1/2ω(x)

)
dx(7)

=
1

s(s − 1)
+

∫ ∞

1

x−s/2−1/2ω(x) dx.

It follows on combining (5) and (7) that for σ > 1, we have

(8) π−s/2Γ
(s

2

)
ζ(s) =

1
s(s − 1)

+
∫ ∞

1

(
xs/2−1 + x−s/2−1/2

)
ω(x) dx.

Note now that the integral on the right hand side of (8) converges absolutely for any s, and uniformly
in any bounded part of the plane, since ω(x) = O(e−πx) as x → +∞. Hence the integral represents an
entire function of s, and the formula gives the analytic continuation of ζ(s) over the whole plane. Note
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also that the right hand side of (8) remains unchanged when s is replaced by 1−s, so that the functional
equation (1) follows immediately. Finally, note that the function

ξ(s) =
1
2
s(s − 1)π−s/2Γ

(s

2

)
ζ(s)

is analytic everywhere. Since sΓ(s/2) has no zeros, the only possible pole of ζ(s) is at s = 1, and we
have already shown earlier that ζ(s) has a simple pole at s = 1 with residue 1.

It remains to establish the functional equation (6) for every x > 0. The starting point is the Poisson
summation formula, that under certain conditions on a function f(t), we have

(9)
∑′

A≤n≤B

f(n) =
∞∑

ν=−∞

∫ B

A

f(t)e2πiνt dt,

where
∑′ denotes that the terms in the sum corresponding to n = A and n = B are 1

2f(A) and 1
2f(B)

respectively. Using (9) with A = −N , B = N and f(t) = e−t2π/x, we have

N∑′

n=−N

e−n2π/x =
∞∑

ν=−∞

∫ N

−N

e−t2π/xe2πiνt dt.

Letting N → ∞, we obtain

(10)
∞∑

n=−∞
e−n2π/x =

∞∑
ν=−∞

∫ ∞

−∞
e−t2π/xe2πiνt dt.

This is justified by noting that(∫ −N

−∞
+

∫ ∞

N

)
e−t2π/xe2πiνt dt = 2

∫ ∞

N

e−t2π/x cos(2πνt) dt,

and that ∣∣∣∣∣∣
∑
ν �=0

∫ ∞

N

e−t2π/x cos(2πνt) dt

∣∣∣∣∣∣ → 0 as N → ∞.

Writing t = xu and using (10), we have

∞∑
n=−∞

e−n2π/x = x

∞∑
ν=−∞

∫ ∞

−∞
e−u2πxe2πiνxu du = x

∞∑
ν=−∞

∫ ∞

−∞
e−(u−iν)2πx−ν2πx du(11)

= x

∞∑
ν=−∞

e−ν2πx

∫ ∞

−∞
e−(u−iν)2πx du.

Note now that the function e−z2πx is an entire function of the complex variable z. It follows from
Cauchy’s integral theorem that

(12)
∫ ∞

−∞
e−(u−iν)2πx du =

∫ ∞

−∞
e−u2πx du = Ax−1/2,

where

(13) A =
∫ ∞

−∞
e−y2π dy = 1.
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The functional equation (6) now follows on combining (11)–(13), and the proof of Theorem 6A is now
complete.

6.3. Entire Functions

In this section, we shall prove some technical results on entire functions for use later in the proof of
Theorems 6B and 6C.

An entire function f(s) is said to be of order 1 if

(14) f(s) = Oα

(
e|s|

α
)

as |s| → ∞

holds for every α > 1 and fails for every α < 1.

Suppose that the entire function h(s) has no zeros on the plane. Then the function g(s) = log h(s)
can be defined as a single valued function and is also entire. Suppose that

(15) h(s) = Oα

(
e|s|

α
)

as |s| → ∞

holds for every α > 1. Then

Reg(Reiθ) = log |h(Reiθ)| = Oα(Rα) as R → ∞

holds for every α > 1. Without loss of generality, we may suppose that g(0) = 0. Then we can write

g(Reiθ) =
∞∑

k=1

(ak + ibk)Rkeikθ, where ak, bk ∈ R,

so that

Reg(Reiθ) =
∞∑

k=1

akRk cos kθ −
∞∑

k=1

bkRk sin kθ.

Note now that for every k, n ∈ N, we have∫ 2π

0

cos kθ cos nθ dθ =
{

π if k = n,
0 if k �= n,

and ∫ 2π

0

sin kθ cos nθ dθ = 0.

It follows that ∫ 2π

0

(
Reg(Reiθ)

)
cos nθ dθ = πanRn,

so that

π|an|Rn ≤
∫ 2π

0

∣∣Reg(Reiθ)
∣∣ dθ = Oα(Rα)
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holds for all sufficiently large R and every α > 1. On letting R → ∞, we see that an = 0 for every n > 1.
A similar argument using the function sinnθ instead of the function cosnθ gives bn = 0 for every n > 1.
We have therefore proved the following result.

THEOREM 6G. Suppose that the entire function h(s) has no zeros on the complex plane C, and that
(15) holds for every α > 1. Then h(s) = eA+Bs, where A and B are constants.

Remark. In the preceding argument, note that it is enough to assume that the estimates for h(s) hold
for a sequence of values R with limit infinity.

Our next task is to study the distribution of the zeros of an entire function. The first step in this
direction is summarized by the result below.

THEOREM 6H. (JENSEN’S FORMULA) Suppose that an entire function f(s) satisfies f(0) �= 0.
Suppose further that s1, . . . , sn are the zeros of f(s) in |s| < R, counted with multiplicities, and that
there are no zeros of f(s) on |s| = R. Then

(16)
1
2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)| = log
Rn

|s1 . . . sn|
.

Proof. We may clearly write

f(s) = (s − s1) . . . (s − sn)k(s),

where k(s) is analytic and has no zeros in |s| ≤ R, so that log k(s) is analytic in |s| ≤ R. It follows from
Gauss’s mean value theorem that

1
2π

∫ 2π

0

log k(Reiθ) dθ = log k(0).

Taking real parts, we obtain

(17)
1
2π

∫ 2π

0

log |k(Reiθ)|dθ = log |k(0)| = log |f(0)| − log |s1 . . . sn|.

Unfortunately, for every j = 1, . . . , n, we cannot apply a similar argument to log |s − sj |, since the
function s − sj has a zero at sj . Note, however, that the function

R2 − sjs

R

has no zeros in |s| ≤ R and satisfies ∣∣∣∣R2 − sjs

R

∣∣∣∣ = |s − sj |

on the circle |s| = R, so that

(18)
1
2π

∫ 2π

0

log |Reiθ − sj |dθ =
1
2π

∫ 2π

0

log
∣∣∣∣R2 − sjReiθ

R

∣∣∣∣ dθ.

Clearly the function

log
R2 − sjs

R
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is analytic in |s| ≤ R. Applying Gauss’s mean value theorem over the circle |s| = R on this function and
taking real parts, we conclude that the right hand side of (18) is equal to log R. Finally, note that

log |f(Reiθ)| =
n∑

j=1

log |Reiθ − sj | + log |k(Reiθ)|,

so that

1
2π

∫ 2π

0

log |f(Reiθ)|dθ = n log R + log |f(0)| − log |s1 . . . sn|.

This completes the proof. ©

Remarks. (i) It is important to point out that Jensen’s formula was in fact only discovered after
Hadamard’s work in connection with Theorems 6B and 6C.

(ii) Gauss’s mean value theorem states that the value of an analytic function at the centre of a circle
is equal to the arithmetic mean of its values on the circle. In particular, if the function F (s) is analytic
for |s| < R0, then for every R < R0, we have

F (0) =
1
2π

∫ 2π

0

F (Reiθ) dθ.

A simple consequence of Jensen’s formula is the following result on the zeros of entire functions.

THEOREM 6J. Suppose that f(s) is an entire function satisfying f(0) �= 0, and that (14) holds for
every α > 1. Suppose further that s1, s2, s3, . . . are the zeros of f(s), counted with multiplicities and
where |s1| ≤ |s2| ≤ |s3| ≤ . . . . Then for every α > 1, the series

∞∑
n=1

|sn|−α

is convergent.

Proof. Note that the right hand side of (16) is equal to∫ R

0

r−1n(r) dr,

where, for every non-negative r ≤ R, n(r) denotes the number of zeros of f(s) in |s| ≤ r. To see this,
note that ∫ R

0

r−1n(r) dr =
n−1∑
j=1

∫ |sj+1|

|sj |
r−1j dr +

∫ R

|sn|
r−1n dr

=
n−1∑
j=1

j(log |sj+1| − log |sj |) + n(log R − log |sn|)

= n log R − log |s1| − . . . − log |sn|.

For every α > 1, write α∗ = (α + 1)/2, so that 1 < α∗ < α. Then

log |f(Reiθ)| = Oα(Rα∗
) as R → ∞,
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so that by Jensen’s formula, we have∫ R

0

r−1n(r) dr = Oα(Rα∗
) − log |f(0)| = Oα(Rα∗

) as R → ∞.

On the other hand, note that∫ 2R

R

r−1n(r) dr ≥ n(R)
∫ 2R

R

r−1 dr = n(R) log 2.

It follows that

n(R) = Oα(Rα∗
) as R → ∞.

Hence

∞∑
n=1

|sn|−α =
∫ ∞

0

r−α dn(r) = α

∫ ∞

0

r−α−1n(r) dr < ∞.

This completes the proof. ©

Suppose now that f(s) is an entire function satisfying f(0) �= 0, and that (14) holds for every
α > 1. Suppose further that s1, s2, s3, . . . are the zeros of f(s), counted with multiplicities and where
|s1| ≤ |s2| ≤ |s3| ≤ . . . . Then for every ε > 0, the series

∞∑
n=1

|sn|−1−ε

converges, so that the series

∞∑
n=1

|sn|−2

converges, and so the product

(19) P (s) =
∞∏

n=1

(
1 − s

sn

)
es/sn

converges absolutely for every s ∈ C, and uniformly in any bounded domain not containing any zeros of
f(s). It follows that P (s) is an entire function, with zeros at s1, s2, s3, . . . . Now write

(20) f(s) = P (s)h(s),

where h(s) is an entire function without zeros. If (15) holds for every α > 1, then h(s) = eA+Bs, where
A and B are constants, and so

(21) f(s) = eA+Bs
∞∏

n=1

(
1 − s

sn

)
es/sn .

THEOREM 6K. Under the hypotheses of Theorem 6J, the inequality (15) holds for every α > 1,
where the function h(s) is defined by (19) and (20). In particular, the function f(s) can be expressed in
the form (21), where A and B are constants.
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Proof. To show that the inequality (15) holds for every α > 1, it clearly suffices, in view of (14) and
(20), to establish a suitable lower bound for |P (s)|. Since the series

∞∑
n=1

|sn|−2

is convergent, the set

S =
∞⋃

n=1

(|sn| − |sn|−2, |sn| + |sn|−2)

has finite total length. It follows that there exist arbitrarily large positive real numbers R such that
R �∈ S. It is easy to see that for any such real number R �∈ S, we have

(22) |R − |sn|| ≥ |sn|−2 for every n ∈ N.

The idea now is to split up the product P (s) into three products according to the size of n ∈ N relative
to R. More precisely, for any such R �∈ S, write

(23) P (s) = P1(s)P2(s)P3(s),

where for every j = 1, 2, 3, we have

Pj(s) =
∏

(24.j)

(
1 − s

sn

)
es/sn ,

where the products are taken over all n ∈ N satisfying

|sn| <
R

2
,(24.1)

R

2
≤|sn| < 2R,(24.2)

|sn| ≥ 2R,(24.3)

respectively. Let ε > 0 be chosen and fixed.

Suppose first of all that (24.1) holds. Then on |s| = R, we have∣∣∣∣(1 − s

sn

)
es/sn

∣∣∣∣ ≥ (∣∣∣∣ s

sn

∣∣∣∣ − 1
)

e−|s|/|sn| > e−R/|sn|,

and so it follows from

∑
(24.1)

|sn|−1 <

(
R

2

)ε ∞∑
n=1

|sn|−1−ε

that

(25) |P1(s)| �ε e−R1+2ε

as R → ∞.

Suppose next that (24.2) holds. Then on |s| = R, we have∣∣∣∣(1 − s

sn

)
es/sn

∣∣∣∣ ≥ ∣∣∣∣sn − s

sn

∣∣∣∣ e−|s|/|sn| >
||sn| − R|

2R
e−2 � R−3,
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in view of (22). Note that there are at most Oε(R1+ε) values of n for which (24.2) holds. Hence on
|s| = R, we have

(26) |P2(s)| �ε (R−3)R1+ε �ε e−R1+2ε

as R → ∞.

Suppose finally that (24.3) holds. Then on |s| = R, we have

(27)
∣∣∣∣(1 − s

sn

)
es/sn

∣∣∣∣ > e−c(R/|sn|)2

for some positive constant c (see the Remark below), and so it follows from

∑
(24.3)

|sn|−2 ≤ (2R)−1+ε
∞∑

n=1

|sn|−1−ε

that

(28) |P3(s)| �ε e−R1+2ε

as R → ∞.

It now follows from (23), (25), (26) and (28) that on |s| = R, we have

(29) |P (s)| �ε e−R1+3ε

as R → ∞.

The result then follows on combining (20) and (29), and noting that the inequality (14) holds for α = 1+ε.
©

Remark. Note that the inequality (27) is of the form

(30) |(1 − z)ez| > e−c|z|2 ,

where |z| ≤ 1/2. Write z = x + iy, where x, y ∈ R. Then (30) will follow if we show that

(1 − x)2e2x > e−2cx2

whenever |x| ≤ 1/2. This last inequality can easily be established by using the theory of real valued
functions of a real variable.

Finally, we make the following simple observation.

THEOREM 6L. Under the hypotheses of Theorem 6J, suppose further that the series

∞∑
n=1

|sn|−1

is convergent. Then there exists a positive constant c such that

f(s) = O(ec|s|) as |s| → ∞.

Proof. This follows from (21) and the inequality |(1 − z)ez| ≤ e2|z| which holds for every z ∈ C. ©
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6.4. Zeros of the Zeta Function

Recall that the function ξ(s), defined by (2), is an entire function, and that ξ(0) �= 0. Note also that the
zeros of ξ(s) are precisely the zeros of ζ(s) in the critical strip. In order to establish Theorem 6C, we
shall use Theorem 6K. We therefore first need to show that for every α > 1, we have

ξ(s) = Oα

(
e|s|

α
)

as |s| → ∞.

We shall in fact prove the following stronger result.

THEOREM 6M. There exists a positive constant c such that

(31) |ξ(s)| < ec|s| log |s| as |s| → ∞.

Furthermore, for any positive constant c, the inequality

(32) |ξ(s)| < ec|s| as |s| → ∞

does not hold.

Proof. Since ξ(s) = ξ(1− s) for every s ∈ C, it suffices to prove the inequality (31) for σ ≥ 1/2. First
of all, there exists a positive constant c1 such that∣∣∣∣12s(s − 1)π−s/2

∣∣∣∣ < ec1|s|.

Next, Stirling’s formula

log Γ
(s

2

)
=

(
s

2
− 1

2

)
log

s

2
− s

2
+

1
2

log 2π + O(|s|−1)

as |s| → ∞ is valid in the angle −π/2 < arg s < π/2, and so there exists a positive constant c2 such that∣∣∣Γ (s

2

)∣∣∣ < ec2|s| log |s|.

Finally, note that the formula

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}x−s−1 dx

is valid for σ > 0, and the integral is bounded for σ ≥ 1/2, so that there exists a positive constant c3

such that

|ζ(s)| < c3|s|.

This proves (31). On the other hand, note that as s → +∞ through real values, we have

log Γ
(s

2

)
∼ s

2
log

s

2
and ζ(s) → 1,

so that (32) does not hold. ©

To complete the proof of Theorems 6B and 6C, note that by Theorem 6L, the series∑
ρ

|ρ|−1
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is divergent, where ρ denotes the zeros of ξ(s) and so the zeros of ζ(s) in the critical strip. Theorem 6B
follows immediately. Theorem 6C now follows from Theorems 6K and 6M.

6.5. An Important Formula

It follows from (3) that

log ξ(s) = A + Bs +
∑

ρ

(
s

ρ
+ log

(
1 − s

ρ

))
.

Differentiating with respect to s, we obtain

(33)
ξ′(s)
ξ(s)

= B +
∑

ρ

(
1
ρ

+
1

s − ρ

)
.

On the other hand, it follows from (2) and sΓ(s) = Γ(s + 1) that

log ξ(s) = log(s − 1) − s

2
log π + log Γ

(s

2
+ 1

)
+ log ζ(s).

Differentiating with respect to s, we obtain

(34)
ξ′(s)
ξ(s)

=
1

s − 1
− 1

2
log π +

1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

+
ζ ′(s)
ζ(s)

.

Combining (33) and (34), we obtain the following result.

THEOREM 6N. We have

(35)
ζ ′(s)
ζ(s)

= B − 1
s − 1

+
1
2

log π − 1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

+
∑

ρ

(
1
ρ

+
1

s − ρ

)
,

where B is a constant and where ρ denotes the zeros of the function ζ(s) in the critical strip.

The formula (35) clearly exhibits the pole of ζ(s) at s = 1 and the zeros ρ in the critical strip. On
the other hand, the trivial zeros are exhibited by the term

−1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

.

To see this last point, we start from the Weierstrass formula

1
Γ(s + 1)

=
1

sΓ(s)
= eγs

∞∏
n=1

(
1 +

s

n

)
e−s/n,

where γ is Euler’s constant. This gives

1
Γ( s

2 + 1)
= eγs/2

∞∏
n=1

(
1 +

s

2n

)
e−s/2n.

Taking logarithms, we obtain

− log Γ
(s

2
+ 1

)
=

1
2
γs +

∞∑
n=1

(
log

(
1 +

s

2n

)
− s

2n

)
.
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Differentiating with respect to s, we obtain

−1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

=
1
2
γ +

∞∑
n=1

(
1

s + 2n
− 1

2n

)
.

6.6. A Zero-Free Region

Recall Theorem 5H, where we show that the function ζ(s) has no zeros on the line σ = 1 by using the
function log ζ(s) together with the observation that

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Here it is more convenient to work with the logarithmic derivative ζ ′(s)/ζ(s), since its only poles for
σ > 0 are at s = 1 and the zeros of ζ(s) in the critical strip. Starting from the Dirichlet series

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

,

valid for σ > 1, we immediately deduce that

Re

(
−ζ ′(s)

ζ(s)

)
=

∞∑
n=1

Λ(n)
nσ

cos(t log n).

It follows that for every σ > 1,

(36) 3
(
−ζ ′(σ)

ζ(σ)

)
+ 4Re

(
−ζ ′(σ + it)

ζ(σ + it)

)
+ Re

(
−ζ ′(σ + 2it)

ζ(σ + 2it)

)
≥ 0.

The simple pole of ζ(s) at s = 1 leads to a simple pole of −ζ ′(s)/ζ(s) there with residue 1. Hence
there exists a positive absolute constant A1 such that

(37) −ζ ′(σ)
ζ(σ)

<
1

σ − 1
+ A1 if 1 < σ ≤ 2.

On the other hand, it is well known that there exists a positive absolute constant A2 such that the
gamma function Γ(s) satisfies the inequality

1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

< A2 log t if 1 < σ ≤ 2 and t ≥ 2.

It follows from the identity (35) that there exists a positive absolute constant A3 such that

(38) Re

(
−ζ ′(s)

ζ(s)

)
< A3 log t −

∑
ρ

Re

(
1
ρ

+
1

s − ρ

)
if 1 < σ ≤ 2 and t ≥ 2.

Suppose that ρ = β + iγ, where β, γ ∈ R, is a zero of the function ζ(s) in the critical strip. Then
0 < β < 1, and since σ > 1, we have

Re
1
ρ

=
β

|ρ|2 > 0 and Re
1

s − ρ
=

σ − β

|s − ρ|2 > 0.
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This means that the inequality (38) remains valid if we omit any term from the sum on the right hand
side. In particular, when s = σ + 2it, we have the inequality

(39) Re

(
−ζ ′(σ + 2it)

ζ(σ + 2it)

)
< A3 log(2t) < A4 log t if 1 < σ ≤ 2 and t ≥ 2,

where A4 is a positive absolute constant.

Suppose now that t ≥ 2 is fixed and there exists a real number β such that ρ = β + it is a zero of
the function ζ(s) in the critical strip. Then removing all but one term from the sum on the right hand
side of (38), we have

(40) Re

(
−ζ ′(σ + it)

ζ(σ + it)

)
< A3 log t − Re

1
(σ + it) − (β + it)

= A3 log t − 1
σ − β

if 1 < σ ≤ 2.

Combining (36), (37), (39) and (40), we obtain

0 <
3

σ − 1
+ 3A1 + (4A3 + A4) log t − 4

σ − β
if 1 < σ ≤ 2.

In other words, there exists a positive absolute constant A5 such that
4

σ − β
<

3
σ − 1

+ A5 log t if 1 < σ ≤ 2.

Let σ = 1 + δ/ log t, where δ > 0 will be chosen later, sufficiently small to guarantee that 1 < σ ≤ 2.
Then elementary calculation gives the inequality

β < 1 − δ(1 − A5δ)
(3 + A5δ) log t

.

We now choose δ in terms of A5 to conclude that there exists a positive absolute constant c such that

(41) β < 1 − c

log t
.

In conclusion, we have shown that if t ≥ 2 and β + it is a zero of the function ζ(s) in the critical strip,
then the inequality (41) must hold. Theorem 6F follows immediately.

6.7. Counting Zeros in the Critical Strip

The starting point of our discussion is based on the Argument principle. Suppose that the function F (s)
is analytic, apart from a finite number of poles, in the closure of a domain D bounded by a simple closed
positively oriented Jordan curve C. Suppose further that F (s) has no zeros or poles on C. Then

1
2πi

∫
C

F ′(s)
F (s)

ds =
1
2π

∆C arg F (s)

represents the total number of zeros of F (s) in D minus the total number of poles of F (s) in D, counted
with multiplicities. Here ∆C arg F (s) denotes the change of argument of the function F (s) along C.

It is convenient to use the function ξ(s), since it is entire and its zeros are precisely the zeros of ζ(s)
in the critical strip. To calculate N(T ), it is convenient to take the domain (−1, 2) × (0, T ), so that C
is the rectangular path passing through the vertices

2, 2 + iT, −1 + iT, −1

in the anticlockwise direction. If no zeros of ζ(s) has imaginary part T , then

N(T ) =
1

2πi

∫
C

ξ′(s)
ξ(s)

ds =
1
2π

∆C arg ξ(s).

Let us now divide C into the following parts. First, let L1 denote the line segment from −1 to 2.
Next, let L2 denote the line segment from 2 to 2+iT , followed by the line segment from 2+iT to 1

2 +iT .
Finally, let L3 denote the line segment from 1

2 +iT to −1+iT , followed by the line segment from −1+iT
to −1.
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Since ξ(s) is real and non-zero on L1, clearly ∆L1 arg ξ(s) = 0. On the other hand,

ξ(σ + it) = ξ(1 − σ − it) = ξ(1 − σ + it),

so that ∆L2 arg ξ(s) = ∆L3 arg ξ(s). If we write L = L2, so that L denotes the line segment from 2 to
2 + iT , followed by the line segment from 2 + iT to 1

2 + iT , then

(42) πN(T ) = ∆L arg ξ(s).

Recall that

ξ(s) = (s − 1)π−s/2Γ
(s

2
+ 1

)
ζ(s).

It follows that

(43) ∆L arg ξ(s) = ∆L arg(s − 1) + ∆L arg π−s/2 + ∆L arg Γ
(s

2
+ 1

)
+ ∆L arg ζ(s).

Clearly

(44) ∆L arg(s − 1) = arg
(
−1

2
+ iT

)
=

1
2
π + O(T−1)

and

(45) ∆L arg π−s/2 = ∆L

(
−1

2
t log π

)
= −1

2
T log π.

On the other hand,

∆L arg Γ
(s

2
+ 1

)
= Im log Γ

(
5
4

+
1
2
iT

)
.

By Stirling’s formula,

log Γ
(

5
4

+
1
2
iT

)
=

(
3
4

+
1
2
iT

)
log

(
5
4

+
1
2
iT

)
− 5

4
− 1

2
iT +

1
2

log π + O(T−1),

so that

(46) ∆L arg Γ
(s

2
+ 1

)
=

T

2
log

T

2
+

3
8
π − T

2
+ O(T−1).

Combining (42)–(46), we have

N(T ) =
1
2
− T

2π
log π +

T

2π
log

T

2
+

3
8
− T

2π
+ S(T ) + O(T−1)

=
T

2π
log

T

2π
− T

2π
+

7
8

+ S(T ) + O(T−1),

where

πS(T ) = ∆L arg ζ(s).

To prove Theorem 6D, it suffices to prove the following result.

THEOREM 6P. We have S(T ) = O(log T ) as T → ∞.
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Note first of all that arg ζ(2) = 0. On the other hand,

arg ζ(s) = tan−1

(
Imζ(s)
Reζ(s)

)
and Reζ(s) �= 0 on the line σ = 2. It follows that

| arg ζ(2 + iT )| <
π

2
,

and so ∆[2,2+iT ] arg ζ(s) = O(1). Hence we may assume, without loss of generality, that L is the line
segment from 2 + iT to 1

2 + iT . We shall give two proofs, the first of which uses Jensen’s formula.

Suppose that Reζ(s) vanishes q times on the line segment from 2 + iT to 1
2 + iT . Then this line

segment can be divided into q + 1 parts, where in each subinterval, Reζ(s) may vanish only at one or
both of the endpoints and has constant sign strictly in between, so that the variation of arg ζ(s) in each
such subinterval does not exceed π. It follows that

(47) S(T ) 
 (q + 1)π +
1
2
π.

To prove our result, it remains to find a suitable bound for q. For s = σ + iT , we have

Reζ(s) =
1
2
(ζ(σ + iT ) + ζ(σ − iT )).

Let T be fixed, and consider the function

fT (s) =
1
2
(ζ(s + iT ) + ζ(s − iT ))

(note that we no longer insist that s = σ + iT ). Then q is the number of zeros of fT (s) on the line
segment from 1/2 to 2, and so is bounded above by the number of zeros of fT (s) in the disc |s−2| ≤ 3/2.
In other words,

(48) q ≤ n

(
3
2

)
,

where, for every r ≥ 0, n(r) denotes the number of zeros of fT (s) in the disc |s − 2| ≤ r. By Jensen’s
formula and noting that we may assume that ζ( 1

2 + iT ) �= 0, we have

(49)
∫ 7/4

0

n(r)
r

dr =
1
2π

∫ 2π

0

log
∣∣∣∣fT

(
2 +

7
4
eiθ

)∣∣∣∣ dθ − log |fT (2)|.

On the other hand,

(50)
∫ 7/4

0

n(r)
r

dr ≥
∫ 7/4

3/2

n(r)
r

dr ≥ n

(
3
2

) ∫ 7/4

3/2

1
r

dr = n

(
3
2

)
log

7
6
.

Observe that

|fT (2)| =
∣∣∣∣12(ζ(2 + iT ) + ζ(2 − iT ))

∣∣∣∣ = |Reζ(2 + iT )|

=

∣∣∣∣∣Re

( ∞∑
n=1

1
n2+iT

)∣∣∣∣∣ ≥ 1 −
∞∑

n=2

1
n2

= 2 − π2

6
> 0,

so that

(51) − log |fT (2)| = O(1).
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Finally, recall that |ζ(s)| 
 T 3/4 for every σ ≥ 1/4. It follows that for every θ ∈ [0, 2π], we have∣∣∣∣fT

(
2 +

7
4
eiθ

)∣∣∣∣ ≤ 1
2

(∣∣∣∣ζ (
2 +

7
4
eiθ + iT

)∣∣∣∣ +
∣∣∣∣ζ (

2 +
7
4
eiθ − iT

)∣∣∣∣) 
 T 3/4,

so that

(52) log
∣∣∣∣fT

(
2 +

7
4
eiθ

)∣∣∣∣ 
 log T.

Combining (49)–(52), we conclude that

(53) n

(
3
2

)

 log T.

Theorem 6P now follows on combining (47), (48) and (53).

The starting point of our second proof of Theorem 6P is the observation that

∆[ 12+iT,2+iT ] arg ζ(s) =
∫ 2+iT

1
2+iT

Im
ζ ′(s)
ζ(s)

ds,

since arg ζ(s) = Im log ζ(s). We therefore need to study the logarithmic derivative of ζ(s) on the line
segment between 1

2 + iT and 2 + iT , and show that∫ 2+iT

1
2+iT

Im
ζ ′(s)
ζ(s)

ds = O(log T ).

This approach has the added bonus of providing some intermediate results which are useful in the
deduction of the asymptotic formula given in Theorem 6E. Recall the inequality (38). If we write
s = 2 + iT , where T ≥ 2, then

Re

(
−ζ ′(2 + iT )

ζ(2 + iT )

)
< A3 log T −

∑
ρ

Re

(
1
ρ

+
1

2 + iT − ρ

)
,

where A3 is a positive absolute constant. Clearly

Re

(
−ζ ′(2 + iT )

ζ(2 + iT )

)
=

∞∑
n=1

Λ(n)
n2

cos(T log n) = O

( ∞∑
n=1

log n

n2

)
= O(1),

with the immediate consequence that∑
ρ

Re

(
1
ρ

+
1

2 + iT − ρ

)
= O(log T ).

Writing ρ = β + iγ, where β, γ ∈ R, we see that

Re
1
ρ

> 0 and Re
1

2 + iT − ρ
=

2 − β

(2 − β)2 + (T − γ)2
≥ 1

4 + (T − γ)2
.

We have proved the following result.

THEOREM 6Q. For all sufficiently large positive real numbers T , we have∑
ρ

1
1 + (T − γ)2

= O(log T ),

where ρ denotes the zeros of the function ζ(s) in the critical strip.
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This has two immediate consequences. Their proofs are left as exercises.

THEOREM 6R. For all sufficiently large positive real numbers T , the number of zeros of the function
ζ(s) in the critical strip with |γ − T | < 1 is O(log T ).

THEOREM 6S. For all sufficiently large positive real numbers T , we have∑
ρ

|γ−T |≥1

1
(T − γ)2

= O(log T ),

where ρ denotes the zeros of the function ζ(s) in the critical strip.

The crucial estimate is given by the following result. The range for σ is greater than for our present
need, but will be necessary for later use.

THEOREM 6T. For every s = σ+iT , where −1 ≤ σ ≤ 2 and where T is sufficiently large and T �= γ
for any zero ρ = β + iγ of the function ζ(s) in the critical strip, we have

(54)
ζ ′(s)
ζ(s)

=
∑

ρ
|γ−T |<1

1
s − ρ

+ O(log T ),

where ρ denotes the zeros of the function ζ(s) in the critical strip.

Proof. We start with the formula

(55)
ζ ′(s)
ζ(s)

= B − 1
s − 1

+
1
2

log π − 1
2

Γ′( s
2 + 1)

Γ( s
2 + 1)

+
∑

ρ

(
1
ρ

+
1

s − ρ

)
,

given in Theorem 6N. Writing s = 2 + iT , we have

(56)
ζ ′(2 + iT )
ζ(2 + iT )

= B − 1
1 + iT

+
1
2

log π − 1
2

Γ′(2 + 1
2 iT )

Γ(2 + 1
2 iT )

+
∑

ρ

(
1
ρ

+
1

2 + iT − ρ

)
.

Note now that ζ ′(2 + iT )/ζ(2 + iT ) = O(1) and Γ′(2 + 1
2 iT )/Γ(2 + 1

2 iT ) = O(log T ) for every T under
consideration, and Γ′( s

2+1)/Γ( s
2+1) = O(log T ) for every s under consideration. It follows on subtracting

(56) from (55) that

ζ ′(s)
ζ(s)

=
∑

ρ

(
1

s − ρ
− 1

2 + iT − ρ

)
+ O(log T )(57)

=
∑

ρ
|γ−T |<1

1
s − ρ

−
∑

ρ
|γ−T |<1

1
2 + iT − ρ

+
∑

ρ
|γ−T |≥1

(
1

s − ρ
− 1

2 + iT − ρ

)
+ O(log T ).

On the one hand, every zero ρ of the function ζ(s) in the critical strip satisfies |2 + iT − ρ| > 1. Hence

(58)
∑

ρ
|γ−T |<1

1
2 + iT − ρ

= O

 ∑
ρ

|γ−T |<1

1

 = O(log T ),

in view of Theorem 6R. On the other hand, if |γ − T | ≥ 1, then∣∣∣∣ 1
s − ρ

− 1
2 + iT − ρ

∣∣∣∣ =
2 − σ

|(s − ρ)(2 + iT − ρ)| ≤
3

(T − γ)2
,
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and so

(59)
∑

ρ
|γ−T |≥1

(
1

s − ρ
− 1

2 + iT − ρ

)
= O

 ∑
ρ

|γ−T |≥1

1
(T − γ)2

 = O(log T ),

in view of Theorem 6S. The inequality (54) now follows on combining (57)–(59). ©

Taking imaginary parts in the inequality (54) on the line segment between 1
2 +iT and 2+ iT , where

T is sufficiently large and T �= γ for any zero ρ = β + iγ of the function ζ(s) in the critical strip, gives

Im
ζ ′(s)
ζ(s)

=
∑

ρ
|γ−T |<1

Im
1

s − ρ
+ O(log T ).

Combining this with the simple observation that∣∣∣∣∣
∫ 2+iT

1
2+iT

Im
1

s − ρ
ds

∣∣∣∣∣ =
∣∣∣∆[ 12+iT,2+iT ] arg(s − ρ)

∣∣∣ < π

and Theorem 6R, we obtain

∫ 2+iT

1
2+iT

Im
ζ ′(s)
ζ(s)

ds = O

 ∑
ρ

|γ−T |<1

1

 + O(log T ) = O(log T ).

This completes the proof of Theorem 6P.

6.8. An Asymptotic Formula

In this section, we shall establish the asymptotic formula in Theorem 6E when X > e. Here the starting
point is the simple observation that

ψ0(X) =
∑′

n≤X

Λ(n),

where
∑′ denotes that the term in the sum corresponding to n = X is 1

2Λ(n). Analogous to the
discussion for ψ1(X) in Chapter 5, we want to write

(60) ψ0(X) =
∑′

n≤X

Λ(n) =
∞∑

n=1

Λ(n)I
(

X

n

)
,

where the function

(61) I(Y ) =

{ 0 if 0 < Y < 1,
1/2 if Y = 1,
1 if Y > 1,

brings the function ζ(s) into play.

The following is a suitable analogue of Theorem 5F. However, the proof is much more complicated
since we do not have absolute convergence.
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THEOREM 6U. Suppose that Y > 0 and c > 0. Let

I(Y ) =
1

2πi

∫ c+i∞

c−i∞

Y s

s
ds,

where the integral in the case Y = 1 is defined to be the limit of

I(Y, T ) =
1

2πi

∫ c+iT

c−iT

Y s

s
ds

as T → ∞. Then (60) and (61) hold. Furthermore, for every T > 0, we have

(62) |I(Y ) − I(Y, T )| ≤
{

Y c min{1, (πT | log Y |)−1} if Y �= 1,
c(πT )−1 if Y = 1.

Proof. For every T1, T2 > 0, write

I(Y, T1, T2) =
1

2πi

∫ c+iT2

c−iT1

Y s

s
ds.

We shall consider three cases, corresponding to Y > 1, 0 < Y < 1 and Y = 1.

Suppose first of all that Y > 1. We consider the rectangular path with vertices

c − iT1, c + iT2, −u + iT2, −u − iT1,

where u > 0, followed in the anticlockwise direction. Applying Cauchy’s residue theorem, we obtain

(63) I(Y, T1, T2) − 1 =
1

2πi

∫ −u+iT2

−u−iT1

Y s

s
ds +

1
2πi

∫ c+iT2

−u+iT2

Y s

s
ds − 1

2πi

∫ c−iT1

−u−iT1

Y s

s
ds.

On the vertical edge σ = −u, we have |Y s/s| ≤ Y −u/u, and so

(64)

∣∣∣∣∣ 1
2πi

∫ −u+iT2

−u−iT1

Y s

s
ds

∣∣∣∣∣ ≤ (T1 + T2)Y −u

2πu
.

On the horizontal edge t = T2, we have |Y s/s| ≤ Y σ/T2, and so

(65)

∣∣∣∣∣ 1
2πi

∫ c+iT2

−u+iT2

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

∫ c

−∞

Y σ

T2
dσ =

Y c

2πT2 log Y
.

On the horizontal edge t = −T1, we have |Y s/s| ≤ Y σ/T1, and so

(66)

∣∣∣∣∣ 1
2πi

∫ c−iT1

−u−iT1

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

∫ c

−∞

Y σ

T1
dσ =

Y c

2πT1 log Y
.

Combining (63)–(66), we obtain

|I(Y, T1, T2) − 1| ≤ (T1 + T2)Y −u

2πu
+

Y c

2πT1 log Y
+

Y c

2πT2 log Y
.

Since the left hand side is independent of u, it follows on letting u → ∞ that

|I(Y, T1, T2) − 1| ≤ Y c

2πT1 log Y
+

Y c

2πT2 log Y
.
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Letting T1, T2 → ∞ gives (61). Letting T = T1 = T2 gives one of the inequalities in (62). To deduce the
other inequality, we use the circular arc A−(c, T ) centred at s = 0 and passing from c − iT to c + iT on
the left of the line σ = c, as in the proof of Theorem 5F. Then Cauchy’s residue theorem gives

(67) I(Y, T ) − I(Y ) = I(Y, T ) − 1 =
1

2πi

∫
A−(c,T )

Y s

s
ds.

On the circular arc A−(c, T ), we have |Y s/s| ≤ Y c/R, where R = (c2 + T 2)1/2 is the radius of A−(c, T ).
It follows that

(68)

∣∣∣∣∣ 1
2πi

∫
A−(c,T )

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

Y c

R
2πR = Y c.

The inequality |I(Y ) − I(Y, T )| ≤ Y c now follows on combining (67) and (68).

Suppose next that 0 < Y < 1. We consider the rectangular path with vertices

c − iT1, c + iT2, u + iT2, u − iT1,

where u > 0, followed in the clockwise direction. Applying Cauchy’s integral theorem, we obtain

(69) I(Y, T1, T2) =
1

2πi

∫ u+iT2

u−iT1

Y s

s
ds +

1
2πi

∫ u−iT1

c−iT1

Y s

s
ds − 1

2πi

∫ u+iT2

c+iT2

Y s

s
ds.

On the vertical edge σ = u, we have |Y s/s| ≤ Y u/u, and so

(70)

∣∣∣∣∣ 1
2πi

∫ u+iT2

u−iT1

Y s

s
ds

∣∣∣∣∣ ≤ (T1 + T2)Y u

2πu
.

On the horizontal edge t = −T1, we have |Y s/s| ≤ Y σ/T1, and so

(71)

∣∣∣∣∣ 1
2πi

∫ u−iT1

c−iT1

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

∫ ∞

c

Y σ

T1
dσ = − Y c

2πT1 log Y
=

Y c

2πT1| log Y | .

On the horizontal edge t = T2, we have |Y s/s| ≤ Y σ/T2, and so

(72)

∣∣∣∣∣ 1
2πi

∫ u+iT2

c+iT2

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

∫ ∞

c

Y σ

T2
dσ = − Y c

2πT2 log Y
=

Y c

2πT2| log Y | .

Combining (69)–(72), we obtain

|I(Y, T1, T2)| ≤
(T1 + T2)Y u

2πu
+

Y c

2πT1| log Y | +
Y c

2πT2| log Y | .

Since the left hand side is independent of u, it follows on letting u → ∞ that

|I(Y, T1, T2)| ≤
Y c

2πT1| log Y | +
Y c

2πT2| log Y | .

Letting T1, T2 → ∞ gives (61). Letting T = T1 = T2 gives one of the inequalities in (62). To deduce the
other inequality, we use the circular arc A+(c, T ) centred at s = 0 and passing from c − iT to c + iT on
the right of the line σ = c, as in the proof of Theorem 5F. Then Cauchy’s integral theorem gives

(73) I(Y, T ) − I(Y ) = I(Y, T ) =
1

2πi

∫
A+(c,T )

Y s

s
ds.
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On the circular arc A+(c, T ), we have |Y s/s| ≤ Y c/R, where R = (c2 + T 2)1/2 is the radius of A+(c, T ).
It follows that

(74)

∣∣∣∣∣ 1
2πi

∫
A+(c,T )

Y s

s
ds

∣∣∣∣∣ ≤ 1
2π

Y c

R
2πR = Y c.

The inequality |I(Y ) − I(Y, T )| ≤ Y c now follows on combining (73) and (74).

Suppose finally that Y = 1. Then

I(1, T ) =
1

2πi

∫ c+iT

c−iT

ds

s
=

1
2π

∫ T

−T

dt

c + it
=

1
2π

∫ T

−T

c − it
c2 + t2

dt.

Note that the imaginary part of the integrand of the last integral is an odd function, while the real part
is an even function. It follows that

I(1, T ) =
1
π

∫ T

0

c

c2 + t2
dt → 1

2
as T → ∞.

On the other hand, we have

|I(1) − I(1, T )| =
∣∣∣∣12 − I(1, T )

∣∣∣∣ =
1
π

∫ ∞

T

c

c2 + t2
dt ≤ 1

π

∫ ∞

T

c

t2
dt = c(πT )−1.

This completes the proof. ©

In view of the identity (60), it is now reasonable to compare ψ0(X) with the sum

ψ(X, T ) =
∞∑

n=1

Λ(n)I
(

X

n
, T

)
=

1
2πi

∞∑
n=1

Λ(n)
∫ c+iT

c−iT

Xs

sns
ds

=
1

2πi

∫ c+iT

c−iT

( ∞∑
n=1

Λ(n)
ns

)
Xs

s
ds =

1
2πi

∫ c+iT

c−iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds.

Using Theorem 6U, we see that

|ψ0(X) − ψ(X, T )| ≤
∞∑

n=1

Λ(n)
∣∣∣∣I (

X

n

)
− I

(
X

n
, T

)∣∣∣∣(75)

≤
∞∑

n=1
n �=X

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

+ c(πT )−1Λ(X),

with the understanding that the last term is present only if X is a prime power.

Let X > e be given and fixed. We shall choose

(76) c = 1 + (log X)−1, so that Xc = eX.

Note that c < 2. We can write

(77)
∞∑

n=1
n �=X

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

=
∑

1
+

∑
2
+

∑
3
+

∑
4
,
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where

∑
1

=
∑

n≤3X/4

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

,

∑
2

=
∑

3X/4<n<X

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

,

∑
3

=
∑

X<n<4X/3

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

,

∑
4

=
∑

n≥4X/3

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}

.

Suppose first of all that n ≤ 3X/4 or n ≥ 4X/3. Then it is easy to see that | log(X/n)| ≥ log(4/3).
In view of (76) and (37), we have

(78)
∑

1
+

∑
4

 XT−1

∞∑
n=1

Λ(n)
nc

= XT−1

(
−ζ ′(c)

ζ(c)

)

 XT−1 log X.

Suppose next that 3X/4 < n < X. In this case, let X1 denote the largest prime power less than X.
We may assume, without loss of generality, that 3X/4 < X1 < X, for otherwise we have

∑
2 = 0. For

the term n = X1, we have

log
X

n
= − log

X1

X
= − log

(
1 − X − X1

X

)
≥ X − X1

X
.

It follows that the contribution of this term to the sum
∑

2 is


 Λ(X1) min
{

1,
X

T (X − X1)

}

 (log X) min

{
1,

X

T (X − X1)

}
.

The other terms form a subcollection of n = X1 − m, where 0 < m < X/4, and we have

log
X

n
≥ log

X1

n
= − log

n

X1
= − log

(
1 − m

X1

)
≥ m

X1
.

It follows that the contribution of these terms to the sum
∑

2 is



∑

0<m<X/4

Λ(X1 − m)
X1

Tm

 XT−1

∑
0<m<X/4

Λ(X1 − m)
m


 XT−1(log X)2.

Hence

(79)
∑

2

 XT−1(log X)2 + (log X) min

{
1,

X

T 〈X〉

}
,

where 〈X〉 denotes the distance of X to the nearest prime power.

Suppose finally that X < n < 4X/3. In this case, let X2 denote the smallest prime power greater
than X. We may assume, without loss of generality, that X < X2 < 4X/3, for otherwise we have∑

3 = 0. For the term n = X2, we have∣∣∣∣log
X

n

∣∣∣∣ = log
X2

X
= log

(
1 +

X2 − X

X

)
≥ X2 − X

X
.
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It follows that the contribution of this term to the sum
∑

3 is


 Λ(X2) min
{

1,
X

T (X2 − X)

}

 (log X) min

{
1,

X

T (X2 − X)

}
.

The other terms form a subcollection of n = X2 + m, where 0 < m < X/3, and we have∣∣∣∣log
X

n

∣∣∣∣ ≥ ∣∣∣∣log
X2

n

∣∣∣∣ = log
n

X2
= log

(
1 +

m

X2

)
≥ m

X2
.

It follows that the contribution of these terms to the sum
∑

3 is



∑

0<m<X/3

Λ(X2 + m)
X2

Tm

 XT−1

∑
0<m<X/3

Λ(X2 + m)
m


 XT−1(log X)2.

Hence

(80)
∑

3

 XT−1(log X)2 + (log X) min

{
1,

X

T 〈X〉

}
.

Combining (77)–(80), we conclude that

∞∑
n=1
n �=X

Λ(n)
(

X

n

)c

min

{
1,

(
πT

∣∣∣∣log
X

n

∣∣∣∣)−1
}


 XT−1(log X)2 + (log X) min
{

1,
X

T 〈X〉

}
,

and so it follows from (75) and (76) that

(81) |ψ0(X) − ψ(X, T )| 
 XT−1(log X)2 + (log X) min
{

1,
X

T 〈X〉

}
if c = 1 + (log X)−1.

We now need to study the term ψ(X, T ).

Consider a rectangular path with vertices

c − iT, c + iT, −U + iT, −U − iT,

followed in the anticlockwise direction and where U and T are chosen carefully to satisfy the following
two conditions:

(i) U is a large odd positive integer to ensure that the left edge of the rectangular path passes
halfway between two consecutive trivial zeros of ζ(s).

(ii) T is chosen so that |γ −T | � (log T )−1 for any zero ρ = β ± iγ of ζ(s) in the critical strip. This
is clearly possible by varying T by a bounded amount, in view of Theorem 6R.

Applying Cauchy’s residue theorem, we obtain

ψ(X, T ) =
1

2πi

∫ c+iT

−U+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds +

1
2πi

∫ −U+iT

−U−iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds(82)

− 1
2πi

∫ c−iT

−U−iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds + X − ζ ′(0)

ζ(0)
−

∑
ρ

|γ|<T

Xρ

ρ
+

[U/2]∑
m=1

X−2m

2m
.
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We study first the integral

(83)
1

2πi

∫ c+iT

−U+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds =

1
2πi

∫ −1+iT

−U+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds +

1
2πi

∫ c+iT

−1+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds.

For every s = σ + iT , where −1 ≤ σ ≤ 2, we have∣∣∣∣ 1
s − ρ

∣∣∣∣ ≤ 1
|T − γ| 
 log T,

in view of condition (ii). This, combined with Theorems 6R and 6T, gives the bound∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ 
 (log T )2.

It follows on recalling Xc = eX and c < 2 that

(84)
1

2πi

∫ c+iT

−1+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds 
 (log T )2

T

∫ c

−∞
Xσ dσ 
 X(log T )2

T log X
.

To study the first integral on the right hand side of (83), we need the following estimate.

THEOREM 6V. Suppose that Res ≤ −1 and |s + 2m| ≥ 1 for every m ∈ N. Then∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ 
 log(2|s|).

Proof. We start with the formula

Γ
(

1 − s

2

)
= π−1/22sΓ(1 − s)Γ

(s

2

)
cos

π(1 − s)
2

.

Combining this with the functional equation (1), we obtain the functional equation in unsymmetric form

ζ(s) = 2sπs−1Γ(1 − s)ζ(1 − s) cos
π(1 − s)

2
.

On taking logarithmic derivatives, we have

ζ ′(s)
ζ(s)

= C − Γ′(1 − s)
Γ(1 − s)

− ζ ′(1 − s)
ζ(1 − s)

+
π

2
tan

π(1 − s)
2

,

where C is a constant. Note next that if Res ≤ −1, then Re(1 − s) ≥ 2. Furthermore, if |s + 2m| ≥ 1,
then |(1 − s) − (2m + 1)| ≥ 1, so that tan 1

2π(1 − s) is bounded. The result now follows on noting that∣∣∣∣Γ′(1 − s)
Γ(1 − s)

∣∣∣∣ = O(log |1 − s|) = O(log 2|s|) and
∣∣∣∣ζ ′(1 − s)
ζ(1 − s)

∣∣∣∣ = O(1)

for Re(1 − s) ≥ 2. ©

It now follows from Theorem 6V that

(85)
1

2πi

∫ −1+iT

−U+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds 
 log 2T

T

∫ −1

−U

Xσ dσ 
 log T

TX log X
.
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Combining (83)–(85), we obtain

(86)
1

2πi

∫ c+iT

−U+iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds 
 X(log T )2

T log X
.

A similar consideration gives the analogous estimate

(87)
1

2πi

∫ c−iT

−U−iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds 
 X(log T )2

T log X
.

Note also that Theorem 6V also leads to the estimate

(88)
1

2πi

∫ −U+iT

−U−iT

(
−ζ ′(s)

ζ(s)

)
Xs

s
ds 
 log 2U

U

∫ T

−T

X−U dt 
 T log U

UXU
.

Combining (82) and (86)–(88), we obtain

ψ(X, T ) = X − ζ ′(0)
ζ(0)

−
∑

ρ
|γ|<T

Xρ

ρ
+

[U/2]∑
m=1

X−2m

2m
+ O

(
X(log T )2

T log X

)
+ O

(
T log U

UXU

)
,

valid for arbitrarily large values of U . Keeping T fixed and letting U → ∞, we deduce that

ψ(X, T ) = X − ζ ′(0)
ζ(0)

−
∑

ρ
|γ|<T

Xρ

ρ
+

∞∑
m=1

X−2m

2m
+ O

(
X(log T )2

T log X

)
.

Combining this with (81), we obtain

(89) ψ0(X) = X − ζ ′(0)
ζ(0)

−
∑

ρ
|γ|<T

Xρ

ρ
+

∞∑
m=1

X−2m

2m
+ R(X, T ),

where the error term R(X, T ) satisfies the bound

(90) R(X, T ) 
 X(log XT )2

T
+ (log X) min

{
1,

X

T 〈X〉

}
.

However, we have to recognize that (89) and (90) have been established under a restriction on the value
of T which has made it necessary for us to vary its value by a bounded amount. This has the effect of
changing the number of terms in the sum over ρ in (89) by O(log T ) terms, in view of Theorem 6R, and
each such term clearly contributes at most O(XT−1). It follows that the error incurred on relaxing the
restriction on T is at most O(XT−1 log T ) which is easily absorbed in the error estimate (90). Hence
(89) and (90) remain valid for all large values of T .

Note now that for fixed X, we have R(X, T ) → 0 as T → ∞. It follows that

ψ0(X) = X − ζ ′(0)
ζ(0)

−
∑

ρ

Xρ

ρ
+

∞∑
m=1

X−2m

2m
= X − ζ ′(0)

ζ(0)
−

∑
ρ

Xρ

ρ
− log

(
1 − 1

X2

)
.
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6.9. The Prime Number Theorem

The estimates (89) and (90) give us another opportunity to establish the Prime number theorem, in the
form ψ0(X) ∼ X as X → ∞. Clearly we need a good estimate for the sum

(91)
∑

ρ
|γ|<T

Xρ

ρ
,

as well as an appropriate estimate for the error term R(X, T ), by choosing suitably large values for the
parameter T .

To obtain a good estimate for the sum (91), the idea here is to make use of the zero-free region
given by Theorem 6F. A consequence of this zero-free region is that for every zero ρ = β + iγ of ζ(s) in
the critical strip with |γ| < T , where T > 2, we have

β ≤ 1 − c

log |γ| ≤ 1 − c

log T
,

where c is a positive absolute constant. It follows that for any such zero ρ, we have

|Xρ| = Xβ ≤ Xe−c(log X)/(log T ),

and so ∑
ρ

|γ|<T

Xρ

ρ

 Xe−c(log X)/(log T )

∑
ρ

0<γ<T

1
γ

.

Note next that

(92)
∑

ρ
0<γ<T

1
γ

=
∫ T

0

t−1 dN(t) =
N(T )

T
+

∫ T

0

t−2N(t) dt,

where N(T ) denotes the number of zeros ρ = β + iγ of ζ(s) in the critical strip with 0 < γ < T . But
N(T ) = O(T log T ) for large T by Theorem 6D, so the sum (92) is 
 (log T )2. Hence

(93)
∑

ρ
|γ|<T

Xρ

ρ

 X(log T )2e−c(log X)/(log T ).

Combining (89), (90) and (93), we now have

ψ0(X) − X 
 X(log XT )2

T
+ (log X) min

{
1,

X

T 〈X〉

}
+ X(log T )2e−c(log X)/(log T ).

We may assume, without loss of generality, that X is an integer, so that 〈X〉 ≥ 1. Then

ψ0(X) − X 
 X(log XT )2

T
+ X(log T )2e−c(log X)/(log T ).

We now choose T to satisfy (log T )2 = log X, so that T−1 = e−(log X)1/2
. Then

ψ0(X) − X 
 X(log X)2e−(log X)1/2
+ X(log X)e−c(log X)−1/2 
 Xe−c′(log X)−1/2

,

where c′ < min{1, c} is a positive absolute constant.
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Problems for Chapter 6

1. Prove Theorem 6R.

2. Prove Theorem 6S.


