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Like fire in a piece of flint, knowledge exists in the mind.
Suggestion is the friction which brings it out.

Vivekananda





Preface to the Second Edition

This expanded and corrected second edition has a new chapter on
the important topic of equidistribution. Undoubtedly, one cannot
give an exhaustive treatment of the subject in a short chapter. How-
ever, we hope that the problems presented here are enticing that the
student will pursue further and learn from other sources.

A problem style presentation of the fundamental topics of ana-
lytic number theory has its virtues, as I have heard from those who
benefited from the first edition. Mere theoretical knowledge in any
field is insufficient for a full appreciation of the subject and one of-
ten needs to grapple with concrete questions in which these ideas
are used in a vital way. Knowledge and the various layers of “know-
ing” are difficult to define or describe. However, one learns much
and gains insight only through practice. Making mistakes is an in-
tegral part of learning. Indeed, “it is practice first and knowledge
afterwards.”

Kingston, Ontario, Canada, September 2007 M. Ram Murty
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Preface to the First Edition

“In order to become proficient in mathematics, or in any subject,”
writes André Weil, “the student must realize that most topics in-
volve only a small number of basic ideas.” After learning these basic
concepts and theorems, the student should “drill in routine exer-
cises, by which the necessary reflexes in handling such concepts
may be acquired. . . . There can be no real understanding of the basic
concepts of a mathematical theory without an ability to use them in-
telligently and apply them to specific problems.” Weil’s insightful
observation becomes especially important at the graduate and re-
search level. It is the viewpoint of this book. Our goal is to acquaint
the student with the methods of analytic number theory as rapidly
as possible through examples and exercises.

Any landmark theorem opens up a method of attacking other
problems. Unless the student is able to sift out from the mass of the-
ory the underlying techniques, his or her understanding will only
be academic and not that of a participant in research. The prime
number theorem has given rise to the rich Tauberian theory and a
general method of Dirichlet series with which one can study the as-
ymptotics of sequences. It has also motivated the development of
sieve methods. We focus on this theme in the book. We also touch
upon the emerging Selberg theory (in Chapter 8) and p-adic analytic
number theory (in Chapter 10).



xii Preface

This book is a collection of about five hundred problems in ana-
lytic number theory with the singular purpose of training the begin-
ning graduate student in some of its significant techniques. As such,
it is expected that the student has had at least a semester course in
each of real and complex analysis. The problems have been orga-
nized with the purpose of self-instruction. Those who exercise their
mental muscles by grappling with these problems on a daily basis
will develop not only a knowledge of analytic number theory but
also the discipline needed for self-instruction, which is indispens-
able at the research level.

The book is ideal for a first course in analytic number theory ei-
ther at the senior undergraduate level or the graduate level. There
are several ways to give such a course. An introductory course at
the senior undergraduate level can focus on chapters 1, 2, 3, 9, and
10. A beginning graduate course can in addition cover chapters 4,
5, and 8. An intense graduate course can easily cover the entire text
in one semester, relegating some of the routine chapters such as
chapters 6, 7, and 10 to student presentations. Or one can take up a
chapter a week during a semester course with the instructor focus-
ing on the main theorems and illustrating them with a few worked
examples.

In the course of training students for graduate research, I found
it tedious to keep repeating the cyclic pattern of courses in ana-
lytic and algebraic number theory. This book, along with my other
book “Problems in Algebraic Number Theory” (written jointly with
J. Esmonde), which appears as Graduate Texts in Mathematics, Vol.
190, are intended to enable the student gain a quick initiation into
the beautiful subject of number theory. No doubt, many important
topics have been left out. Nevertheless, the material included here
is a “basic tool kit” for the number theorist and some of the harder
exercises reveal the subtle “tricks of the trade.”

Unless the mind is challenged, it does not perform. The student
is therefore advised to work through the questions with some at-
tention to the time factor. “Work expands to fill the time allotted
to it” and so if no upper limit is assigned, the mind does not get fo-
cused. There is no universal rule on how long one should work on a
problem. However, it is a well-known fact that self-discipline, what-
ever shape it may take, opens the door for inspiration. If the mental
muscles are exercised in this fashion, the nuances of the solution



Preface xiii

become clearer and significant. In this way, it is hoped that many,
who do not have access to an “external teacher” will benefit by the
approach of this text and awaken their “internal teacher.”

Princeton, November 1999 M. Ram Murty
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1.1 The Möbius Inversion Formula and Applications . . 4
1.2 Formal Dirichlet Series . . . . . . . . . . . . . . . . . 7
1.3 Orders of Some Arithmetical Functions . . . . . . . 9
1.4 Average Orders of Arithmetical Functions . . . . . . 10
1.5 Supplementary Problems . . . . . . . . . . . . . . . 11

2 Primes in Arithmetic Progressions 17
2.1 Summation Techniques . . . . . . . . . . . . . . . . . 17
2.2 Characters mod q . . . . . . . . . . . . . . . . . . . . 22
2.3 Dirichlet’s Theorem . . . . . . . . . . . . . . . . . . . 24



xviii Contents

2.4 Dirichlet’s Hyperbola Method . . . . . . . . . . . . . 27
2.5 Supplementary Problems . . . . . . . . . . . . . . . 29

3 The Prime Number Theorem 35
3.1 Chebyshev’s Theorem . . . . . . . . . . . . . . . . . 36
3.2 Nonvanishing of Dirichlet Series on Re(s) = 1 . . . 39
3.3 The Ikehara - Wiener Theorem . . . . . . . . . . . . 42
3.4 Supplementary Problems . . . . . . . . . . . . . . . 48

4 The Method of Contour Integration 53
4.1 Some Basic Integrals . . . . . . . . . . . . . . . . . . 53
4.2 The Prime Number Theorem . . . . . . . . . . . . . 57
4.3 Further Examples . . . . . . . . . . . . . . . . . . . . 62
4.4 Supplementary Problems . . . . . . . . . . . . . . . 65

5 Functional Equations 69
5.1 Poisson’s Summation Formula . . . . . . . . . . . . 69
5.2 The Riemann Zeta Function . . . . . . . . . . . . . . 72
5.3 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Dirichlet L-functions . . . . . . . . . . . . . . . . . . 76
5.5 Supplementary Problems . . . . . . . . . . . . . . . 79

6 Hadamard Products 85
6.1 Jensen’s Theorem . . . . . . . . . . . . . . . . . . . . 85
6.2 Entire Functions of Order 1 . . . . . . . . . . . . . . 88
6.3 The Gamma Function . . . . . . . . . . . . . . . . . . 91
6.4 Infinite Products for ξ(s) and ξ(s, χ) . . . . . . . . . 93
6.5 Zero-Free Regions for ζ(s) and L(s, χ) . . . . . . . . 94
6.6 Supplementary Problems . . . . . . . . . . . . . . . 99

7 Explicit Formulas 101
7.1 Counting Zeros . . . . . . . . . . . . . . . . . . . . . 101
7.2 Explicit Formula for ψ(x) . . . . . . . . . . . . . . . 104
7.3 Weil’s Explicit Formula . . . . . . . . . . . . . . . . . 107
7.4 Supplementary Problems . . . . . . . . . . . . . . . 110

8 The Selberg Class 115
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I Problems





1
Arithmetic Functions

N will denote the natural numbers. An arithmetic function f is a
complex-valued function defined on the natural numbers N. Such
an f is called an additive function if

f(mn) = f(m) + f(n) (1.1)

whenever m and n are coprime. If (1.1) holds for all m, n, then f is
called completely additive. A multiplicative function is an arith-
metic function f satisfying f(1) = 1 and

f(mn) = f(m)f(n) (1.2)

whenever m and n are coprime. If (1.2) holds for all m, n, then f
is called completely multiplicative. The notation (m, n) will be fre-
quently used to denote the greatest common divisor of m and n.
Thus, (m, n) = 1 if and only if m and n are coprime.

Let ν(n) denote the number of distinct prime divisors of n. Let
Ω(n) be the number of prime divisors of n counted with multiplic-
ity. Then ν and Ω are examples of additive functions. Moreover, Ω
is completely additive, whereas ν is not.

Let s ∈ C and consider the divisor functions
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σs(n) =
∑

d|n
ds,

where the summation is over the sth powers of the positive divi-
sors of n. The special case s = 0 gives the number of divisors of n,
usually denoted by d(n). It is not difficult to see that for each s ∈ C,
σs(n) is a multiplicative function that is not completely multiplica-
tive. We also have a tendency to use the letter p to denote a prime
number.

An important multiplicative function is the Möbius function, de-
fined by

µ(n) =
{

(−1)ν(n) if n is square-free,
0 otherwise.

We set µ(1) = 1.
The Euler totient function given by

ϕ(n) = n ·
∏

p|n

(
1 − 1

p

)

is another well-known multiplicative function which enumerates
the number of coprime residue classes (mod n).

The von Mangoldt function, defined by Λ(1) = 0 and

Λ(n) =
{

log p if n = pα for some α ≥ 1, and p prime
0 otherwise,

is neither additive nor multiplicative. Still, it plays a central role in
the study of the distribution of prime numbers.

1.1 The Möbius Inversion Formula
and Applications

Exercise 1.1.1 Prove that

∑

d|n
µ(d) =

⎧
⎨

⎩

1 if n = 1,

0 otherwise.
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Exercise 1.1.2 (The Möbius inversion formula) Show that

f(n) =
∑

d|n
g(d) ∀n ∈ N

if and only if
g(n) =

∑

d|n
µ(d)f(n/d) ∀n ∈ N.

Exercise 1.1.3 Show that
∑

d|n
ϕ(d) = n.

Exercise 1.1.4 Show that

ϕ(n)
n

=
∑

d|n

µ(d)
d

.

Exercise 1.1.5 Let f be multiplicative. Suppose that

n =
∏

pα‖n
pα

is the unique factorization of n into powers of distinct primes. Show that

∑

d|n
f(d) =

∏

pα‖n
(1 + f(p) + f(p2) + · · · + f(pα)).

Deduce that the function g(n) =
∑

d|n f(d) is also multiplicative. The
notation pα‖n means that pα is the exact power of p dividing n.

Exercise 1.1.6 Show that

∑

d|n
Λ(d) = log n.

Deduce that

Λ(n) = −
∑

d|n
µ(d) log d.
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Exercise 1.1.7 Show that

∑

d2|n
µ(d) =

⎧
⎨

⎩

1 if n is square-free,

0 otherwise.

Exercise 1.1.8 Show that for any natural number k,

∑

dk|n
µ(d) =

⎧
⎨

⎩

1 if n is kth power-free,

0 otherwise.

Exercise 1.1.9 If for all positive x,

G(x) =
∑

n≤x

F
(x

n

)
,

show that
F (x) =

∑

n≤x

µ(n)G
(x

n

)

and conversely.

Exercise 1.1.10 Suppose that

∞∑

k=1

d3(k)|f(kx)| < ∞,

where d3(k) denotes the number of factorizations of k as a product three
numbers. Show that if

g(x) =
∞∑

m=1

f(mx),

then

f(x) =
∞∑

n=1

µ(n)g(nx)

and conversely.

Exercise 1.1.11 Let λ(n) denote Liouville’s function given by λ(n) =
(−1)Ω(n), where Ω(n) is the total number (counting multiplicity) of prime
factors of n. Show that
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∑

d|n
λ(d) =

⎧
⎨

⎩

1 if n is a square,

0 otherwise.

Exercise 1.1.12 (Ramanujan sums) The Ramanujan sum cn(m) is de-
fined as

cn(m) =
∑

1≤h≤n
(h,n)=1

e
(hm

n

)
,

where e(t) = e2πit. Show that

cn(m) =
∑

d|(m,n)

dµ(n/d).

Exercise 1.1.13 Show that

µ(n) =
∑

1≤h≤n
(h,n)=1

e
(h

n

)
.

Exercise 1.1.14 Let δ = (n,m). Show that

cn(m) = µ(n/δ)ϕ(n)/ϕ(n/δ).

1.2 Formal Dirichlet Series

If f is an arithmetic function, the formal Dirichlet series attached to
f is given by

D(f, s) =
∞∑

n=1

f(n)n−s.

We define the sum and product of two such series in the obvious
way:

D(f, s) + D(g, s) =
∞∑

n=1

(f(n) + g(n))n−s

and

D(f, s)D(g, s) =
∞∑

n=1

h(n)n−s,
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where
h(n) =

∑

de=n

f(d)g(e).

We sometimes write h = f ∗ g to denote this equality. It is also
useful to introduce δ(n) = 1 if n = 1, δ(n) = 0 for n �= 1. Thus
D(δ, s) = 1.

Exercise 1.2.1 Let f be a multiplicative function. Show that

D(f, s) =
∏

p

( ∞∑

ν=0

f(pν)p−νs

)
.

Exercise 1.2.2 If

ζ(s) = D(1, s) =
∞∑

n=1

1
ns

,

show that
D(µ, s) = 1/ζ(s).

Exercise 1.2.3 Show that

D(Λ, s) =
∞∑

n=1

Λ(n)
ns

= −ζ ′

ζ
(s),

where −ζ ′(s) =
∑∞

n=1(log n)n−s.

Exercise 1.2.4 Suppose that

f(n) =
∑

d|n
g(d).

Show that D(f, s) = D(g, s)ζ(s).

Exercise 1.2.5 Let λ(n) be the Liouville function defined by λ(n) =
(−1)Ω(n), where Ω(n) is the total number of prime factors of n. Show
that

D(λ, s) =
ζ(2s)
ζ(s)

.

Exercise 1.2.6 Prove that
∞∑

n=1

2ν(n)

ns
=

ζ2(s)
ζ(2s)

.
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Exercise 1.2.7 Show that

∞∑

n=1

|µ(n)|
ns

=
ζ(s)
ζ(2s)

.

Exercise 1.2.8 Let d(n) denote the number of divisors of n. Prove that

∞∑

n=1

d2(n)
ns

=
ζ4(s)
ζ(2s)

,

(This example is due to Ramanujan.)

Exercise 1.2.9 For any complex numbers a, b, show that

∞∑

n=1

σa(n)σb(n)
ns

=
ζ(s)ζ(s − a)ζ(s − b)ζ(s − a − b)

ζ(2s − a − b)
.

Exercise 1.2.10 Let qk(n) be 1 if n is kth power-free and 0 otherwise.
Show that ∞∑

n=1

qk(n)
ns

=
ζ(s)
ζ(ks)

.

1.3 Orders of Some Arithmetical Functions

The order of an arithmetic function refers to its rate of growth. There
are various ways of measuring this rate of growth. The most com-
mon way is to find some nice continuous function that serves as a
universal upper bound. For example, d(n) ≤ n, but this is not the
best possible bound, as the exercises below illustrate.

We will also use freely the “big O” notation. We will write f(n) =
O(g(n)) if there is a constant K such that |f(n)| ≤ Kg(n) for all val-
ues of n. Sometimes we use the notation 
 and write g(n) 
 f(n) to
indicate the same thing. We may also indicate this by f(n) � g(n).
This is just for notational convenience. Thus d(n) = O(n). However,
d(n) = O(

√
n), and in fact is O(nε) for any ε > 0 as the exercises

below show. We also have ϕ(n) = O(n).
It is also useful to introduce the “little o” notation. We will write

f(x) = o(g(x)) to mean

f(x)/g(x) → 0
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as x → ∞. Thus d(n) = o(n2), and in fact, d(n) = o(nε) for any
ε > 0 by Exercise 1.3.3 below. We also write pα‖n to mean pα|n and
pα+1

� n.

Exercise 1.3.1 Show that d(n) ≤ 2
√

n, where d(n) is the number of di-
visors of n.

Exercise 1.3.2 For any ε > 0, there is a constant C(ε) such that d(n) ≤
C(ε)nε.

Exercise 1.3.3 For any η > 0, show that

d(n) < 2(1+η) log n/ log log n

for all n sufficiently large.

Exercise 1.3.4 Prove that σ1(n) ≤ n(log n + 1).

Exercise 1.3.5 Prove that

c1n
2 ≤ φ(n)σ1(n) ≤ c2n

2

for certain positive constants c1 and c2.

Exercise 1.3.6 Let ν(n) denote the number of distinct prime factors of n.
Show that

ν(n) ≤ log n

log 2
.

1.4 Average Orders of Arithmetical Functions

Let f(n) be an arithmetical function and g(x) a monotonic increas-
ing function of x. Suppose

∑

n≤x

f(n) = xg(x) + o(xg(x))

as x → ∞. We say that g(n) is the average order of f(n).

Exercise 1.4.1 Show that the average order of d(n) is log n.

Exercise 1.4.2 Show that the average order of φ(n) is cn for some con-
stant c.
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Exercise 1.4.3 Show that the average order of σ1(n) is c1n for some con-
stant c1.

Exercise 1.4.4 Let qk(n) = 1 if n is kth power-free and zero otherwise.
Show that ∑

n≤x

qk(n) = ckx + O
(
x1/k

)
,

where

ck =
∞∑

n=1

µ(n)
nk

.

1.5 Supplementary Problems

Exercise 1.5.1 Prove that
∑

n≤x
(n,k)=1

1
n
∼ φ(k)

k
log x

as x → ∞.

Exercise 1.5.2 Let Jr(n) be the number of r-tuples of integers
(a1, a2, . . . , ar) satisfying 1 ≤ ai ≤ n and gcd(a1, . . . , ar, n) = 1. Show
that

Jr(n) = nr
∏

p|n

(
1 − 1

pr

)

(Jr(n) is called Jordan’s totient function. For r = 1, this is, of course,
Euler’s φ-function.)

Exercise 1.5.3 For r ≥ 2, show that there are positive constants c1 and
c2 such that

c1n
r ≤ Jr(n) ≤ c2n

r.

Exercise 1.5.4 Show that the average order of Jr(n) is cnr for some con-
stant c > 0.

Exercise 1.5.5 Let dk(n) be the number of ways of writing n as a product
of k positive numbers. Show that

∞∑

n=1

dk(n)
ns

= ζk(s).
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Exercise 1.5.6 If d∗k(n) denotes the number of factorizations of n as a
product of k positive numbers each greater than 1, show that

∞∑

n=1

d∗k(n)
ns

= (ζ(s) − 1)k.

Exercise 1.5.7 Let ∆(n) be the number of nontrivial factorizations of n.
Show that ∞∑

n=1

∆(n)
ns

= (2 − ζ(s))−1

as a formal Dirichlet series.

Exercise 1.5.8 Show that
∑

n≤x
(n,k)=1

n =
φ(k)
2k

x2 + O(d(k)x),

where d(k) denotes the number of divisors of k.

Exercise 1.5.9 Prove that
∑

d|n
ν(d)≤r

µ(d) = (−1)r

(
ν(n) − 1

r

)
,

where ν(n) denotes the number of distinct prime factors of n.

Exercise 1.5.10 Let π(x, z) denote the number of n ≤ x coprime to all
the prime numbers p ≤ z. Show that

π(x, z) = x
∏

p≤z

(
1 − 1

p

)
+ O(2z).

Exercise 1.5.11 Prove that
∑

p≤x

1
p
≥ log log x + c

for some constant c.

Exercise 1.5.12 Let π(x) be the number of primes less than or equal to x.
Choosing z = log x in Exercise 1.5.10, deduce that

π(x) = O
( x

log log x

)
.
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Exercise 1.5.13 Let M(x) =
∑

n≤x µ(n). Show that

∑

n≤x

M
(x

n

)
= 1.

Exercise 1.5.14 Let Fp[x] denote the polynomial ring over the finite field
of p elements. Let Nd be the number of monic irreducible polynomials of
degree d in Fp[x]. Using the fact that every monic polynomial in Fp[x] can
be factored uniquely as a product of monic irreducible polynomials, show
that

pn =
∑

d|n
dNd.

Exercise 1.5.15 With the notation as in the previous exercise, show that

Nn =
1
n

∑

d|n
µ(d)pn/d

and that Nn ≥ 1. Deduce that there is always an irreducible polynomial
of degree n in Fp[x].

Exercise 1.5.16 (Dual Möbius inversion formula) Suppose f(d) =∑
d|n g(n), where the summation is over all multiples of d. Show that

g(d) =
∑

d|n
µ
(n

d

)
f(n)

and conversely (assuming that all the series are absolutely convergent).

Exercise 1.5.17 Prove that

∑

n≤x

ϕ(n)
n

= cx + O(log x)

for some constant c > 0.

Exercise 1.5.18 For Re(s) > 2, prove that

∞∑

n=1

ϕ(n)
ns

=
ζ(s − 1)

ζ(s)
.
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Exercise 1.5.19 Let k be a fixed natural number. Show that if

f(n) =
∑

dk|n
g(n/dk),

then
g(n) =

∑

dk|n
µ(d)f(n/dk),

and conversely.

Exercise 1.5.20 The mth cyclotomic polynomial is defined as

φm(x) =
∏

1≤i≤m
(i,m)=1

(x − ζi
m),

where ζm denotes a primitive mth root of unity. Show that

xm − 1 =
∏

d|m
φd(x).

Exercise 1.5.21 With the notation as in the previous exercise, show that
the coefficient of

xϕ(m)−1

in φm(x) is −µ(m).

Exercise 1.5.22 Prove that

φm(x) =
∏

d|m
(xd − 1)µ(m/d).

Exercise 1.5.23 If φm(x) is the mth cyclotomic polynomial, prove that

φm(1) =

⎧
⎨

⎩

p if m = pα

1 otherwise,

where p is a prime number.

Exercise 1.5.24 Prove that φm(x) has integer coefficients.

Exercise 1.5.25 Let q be a prime number. Show that any prime divisor p
of aq − 1 satisfies p ≡ 1 (mod q) or p|(a − 1).
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Exercise 1.5.26 Let q be a prime number. Show that any prime divisor p
of 1 + a + a2 + · · ·+ aq−1 satisfies p ≡ 1 (mod q) or p = q. Deduce that
there are infinitely many primes p ≡ 1 (mod q).

Exercise 1.5.27 Let q be a prime number. Show that any prime divisor p
of

1 + b + b2 + · · · + bq−1

with b = aqk−1 satisfies p ≡ 1 (mod qk) or p = q.

Exercise 1.5.28 Using the previous exercise, deduce that there are infi-
nitely many primes p ≡ 1 (mod qk), for any positive integer k.

Exercise 1.5.29 Let p be a prime not dividing m. Show that p|φm(a) if
and only if the order of a (mod p) is m. (Here φm(x) is the mth cyclo-
tomic polynomial.)

Exercise 1.5.30 Using the previous exercise, deduce the infinitude of
primes p ≡ 1 (mod m).





2
Primes in Arithmetic Progressions

In 1837 Dirichlet proved by an ingenious analytic method that there
are infinitely many primes in the arithmetic progression

a, a + q, a + 2q, a + 3q, . . .

in which a and q have no common factor and q is prime. The general
case, for arbitrary q, was completed only later by him, in 1840, when
he had finished proving his celebrated class number formula. In
fact, many are of the view that the subject of analytic number theory
begins with these two papers. It is also accurate to say that character
theory of finite abelian groups begins here.

In this chapter we will derive Dirichlet’s theorem, not exactly fol-
lowing his approach, but at least initially tracing his inspiration.

2.1 Summation Techniques

A very useful result is the following.

Theorem 2.1.1 Suppose {an}∞n=1 is a sequence of complex numbers and
f(t) is a continuously differentiable function on [1, x]. Set

A(t) =
∑

n≤t

an.
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Then ∑

n≤x

anf(n) = A(x)f(x) −
∫ x

1
A(t)f ′(t)dt.

Proof. First, suppose x is a natural number. We write the left-hand
side as

∑

n≤x

anf(n) =
∑

n≤x

{A(n) − A(n − 1)}f(n)

=
∑

n≤x

A(n)f(n) −
∑

n≤x−1

A(n)f(n + 1)

= A(x)f(x) −
∑

n≤x−1

A(n)
∫ n+1

n
f ′(t)dt

= A(x)f(x) −
∑

n≤x−1

∫ n+1

n
A(t)f ′(t)dt,

since A(t) is a step function. Also,

∑

n≤x−1

∫ n+1

n
A(t)f ′(t)dt =

∫ x

1
A(t)f ′(t)dt,

and we have proved the result if x is an integer. If x is not an integer,
write [x] for the greatest integer less than or equal to x, and observe
that

A(x){f(x) − f([x])} −
∫ x

[x]
A(t)f ′(t)dt = 0,

which completes the proof.

Remark. Theorem 2.1.1 is often referred to as “partial summation.”

Exercise 2.1.2 Show that
∑

n≤x

log n = x log x − x + O(log x).

Exercise 2.1.3 Show that

∑

n≤x

1
n

= log x + O(1).
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In fact, show that

lim
x→∞

(∑

n≤x

1
n
− log x

)

exists. (The limit is denoted by γ and called Euler’s constant.)

Exercise 2.1.4 Let d(n) denote the number of divisors of a natural num-
ber n. Show that

∑

n≤x

d(n) = x log x + O(x).

Exercise 2.1.5 Suppose A(x) = O(xδ). Show that for s > δ,

∞∑

n=1

an

ns
= s

∫ ∞

1

A(t)
ts+1

dt.

Hence the Dirichlet series converges for s > δ.

Exercise 2.1.6 Show that for s > 1,

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx,

where {x} = x − [x]. Deduce that lims→1+(s − 1)ζ(s) = 1.

Consider the sequence {br(x)}∞r=0 of polynomials defined recur-
sively as follows:

b0(x) = 1,
b
′
r(x) = rbr−1(x) (r ≥ 1),∫ 1

0
br(x)dx = 0 (r ≥ 1).

Thus, from the penultimate equation, br(x) is obtained by integrat-
ing rbr−1(x), and the constant of integration is determined from the
last condition.

Exercise 2.1.7 Prove that

F (x, t) =
∞∑

r=0

br(x)
tr

r!
=

text

et − 1
.
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It is easy to see that

b0(x) = 1,

b1(x) = x − 1
2 ,

b2(x) = x2 − x − 1
6 ,

b3(x) = x3 − 3
2x2 + 1

2x,

b4(x) = x4 − 2x3 + x2 − 1
30 ,

b5(x) = x5 − 5
2x4 + 5

3x3 − 1
6x.

These are called the Bernoulli polynomials. One defines the
rth Bernoulli function Br(x) as the periodic function that coin-
cides with br(x) on [0, 1). The number Br := Br(0) is called the
rth Bernoulli number. Note that if we denote by {x} the quantity
x − [x], Br(x) = br({x}).

Exercise 2.1.8 Show that B2r+1 = 0 for r ≥ 1.

The Bernoulli polynomials are useful in deriving the Euler -
Maclaurin summation formula (Theorem 2.1.9 below).

Let a, b ∈ Z. We will use the Stieltjes integral with respect to the
measure d[t]. Then

∑

a<n≤b

f(n) =
∫ b

a
f(t)d[t].

Notice that the interval of summation is a < n ≤ b, so that

∑

a<n≤b

f(n) =
∫ b

a
f(t)dt −

∫ b

a
f(t)dB1(t)

because d[t] = dt − d{t} and B1(t) = {t} − 1
2 , by the theory of the

Stieltjes integral. We can evaluate the last integral by parts:

∫ b

a
f(t)dB1(t) = (f(b) − f(a))B1 −

∫ b

a
B1(t)f

′
(t)dt,
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since B1(b) = B1(a) = B1(0). From B
′
2(t) = 2B1(t), we can write

∫ b

a
f(t)dB1(t) = (f(b) − f(a))B1 −

1
2!

∫ b

a
f

′
(t)dB2(t),

provided that f is differentiable on [a, b]. We can iterate this proce-
dure to deduce he following theorem:

Theorem 2.1.9 (Euler-Maclaurin summation formula) Let k be a
nonnegative integer and f be (k + 1) times differentiable on [a, b] with
a, b ∈ Z. Then

∑

a<n≤b

f(n) =
∫ b

a
f(t)dt +

k∑

r=0

(−1)r+1

(r + 1)!
(f (r)(b) − f (r)(a))Br+1

+
(−1)k

(k + 1)!

∫ b

a
Bk+1(t)f (k+1)(t)dt.

Example 2.1.10 For integers x ≥ 1,
∑

n≤x

1
n

= log x + γ +
1
2x

+
1

12x2
+ O

(
1
x3

)
.

Solution. Put f(t) = 1/t in Theorem 2.1.9, a = 1, b = x, and k = 2.
Then

∑

2≤n≤x

1
n

= log x +
1
2

(1
x
− 1
)

+
1
12

( 1
x2

− 1
)
−
∫ x

1

B3(t)
t4

dt,

so that
∑

n≤x

1
n

= log x +
1
2
− 1

12
−
∫ x

1

B3(t)
t4

dt +
1
2x

− 1
12x2

.

Since

−γ = lim
x→∞

⎛

⎝log x −
∑

n≤x

1
n

⎞

⎠ ,

we must have

γ =
1
2
− 1

12
−
∫ ∞

1

B3(t)dt

t4
.

Also, ∫ ∞

x

B3(t)dt

t4
= O

( 1
x3

)
,

so that the result is now immediate.
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Exercise 2.1.11 Show that for some constant B,

∑

n≤x

1√
n

= 2
√

x + B + O
( 1√

x

)
.

Exercise 2.1.12 For z ∈ C, and | arg z| ≤ π − δ, where δ > 0, show that

n∑

j=0

log(z + j) =
(
z + n +

1
2

)
log(z + n)

−n −
(
z − 1

2

)
log z +

∫ n

0

B1(x)dx

z + x
.

2.2 Characters mod q

Consider the group (Z/qZ)∗ of coprime residue classes mod q. A
homomorphism

χ : (Z/qZ)∗ → C
∗

into the multiplicative group of complex numbers is called a charac-
ter (mod q). Since (Z/qZ)∗ has order ϕ(q), then by Euler’s theorem
we have

aϕ(q) ≡ 1 (mod q),

and so we must have χϕ(q)(a) = 1 for all a ∈ (Z/qZ)∗. Thus χ(a)
must be a ϕ(q)th root of unity.

We extend the definition of χ to all natural numbers by setting

χ(n) =
{

χ(n (mod q)) if (n, q) = 1,
0 otherwise.

Exercise 2.2.1 Prove that χ is a completely multiplicative function.

We now define the L-series,

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

Since |χ(n)| ≤ 1, the series is absolutely convergent for Re(s) > 1.
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Exercise 2.2.2 Prove that for Re(s) > 1,

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

,

where the product is over prime numbers p.

The character
χ0 : (Z/qZ)∗ → C

∗

satisfying χ0(a) = 1 for all (a, q) = 1 is called the trivial character.
Moreover, if χ and ψ are characters, so is χψ, as well as χ defined by

χ(a) = χ(a),

which is clearly a homomorphism of (Z/qZ)∗. Thus, the set of char-
acters forms a group. This is a finite group, as the value of χ(a) is a
ϕ(q)th root of unity for (a, q) = 1.

But more can be said. If we write

q = pα1
1 · · · pαk

k

as the unique factorization of q as a product of prime powers, then
by the Chinese remainder theorem,

Z/qZ � ⊕iZ/pαi
i Z

is an isomorphism of rings. Thus,

(Z/qZ)∗ � ⊕i(Z/pαi
i Z)∗.

Exercise 2.2.3 Show that (Z/pZ)∗ is cyclic if p is a prime.

An element g that generates (Z/pZ)∗ is called a primitive root
(mod p).

Exercise 2.2.4 Let p be an odd prime. Show that (Z/pa
Z)∗ is cyclic for

any a ≥ 1.

In the previous exercise it is crucial that p is odd. For instance,
(Z/8Z)∗ is not cyclic but rather isomorphic to the Klein four-group
Z/2Z × Z/2Z. However, one can show that (Z/2α

Z)∗ is isomorphic
to a direct product of a cyclic group and a group of order 2 for α ≥ 3.
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Exercise 2.2.5 Let a ≥ 3. Show that 5 (mod 2a) has order 2a−2.

Exercise 2.2.6 Show that (Z/2a
Z)∗ is isomorphic to (Z/2Z) ×

(Z/2a−2
Z), for a ≥ 3.

Exercise 2.2.7 Show that the group of characters (mod q) has order ϕ(q).

Exercise 2.2.8 If χ �= χ0, show that
∑

a(mod q)

χ(a) = 0.

Exercise 2.2.9 Show that

∑

χ(mod q)

χ(n) =
{

ϕ(q) if n ≡ 1 (mod q),
0 otherwise.

2.3 Dirichlet’s Theorem

The central idea of Dirichlet’s argument is to show that

lim
s→1+

∑

p≡a(mod q)

1
ps

= +∞,

where the summation is over primes p ≡ a (mod q).
If q = 1, this is clear, because

ζ(s) =
∏

p

(
1 − 1

ps

)−1

and
log ζ(s) = −

∑

p

log
(
1 − 1

ps

)

=
∑

p

( ∞∑

n=1

1
npns

)

upon using the expression

− log(1 − x) =
∞∑

n=1

xn

n
.
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Observing that
lim

s→1+
ζ(s) = +∞

by virtue of the divergence of the harmonic series, we get

lim
s→1+

log ζ(s) = +∞.

Consequently,

lim
s→1+

(∑

p

1
ps

+
∑

p

∑

n≥2

1
npns

)
= +∞.

In view of the fact for s ≥ 1,

∑

p

∑

n≥2

1
npns

≤
∑

p

∑

n≥2

1
npn

≤
∑

p

1
p(p − 1)

< ∞,

we deduce
lim

s→1+

∑

p

1
ps

= +∞.

Exercise 2.3.1 Let χ = χ0 be the trivial character (mod q). Show that

lim
s→1+

log L(s, χ0) = +∞.

Exercise 2.3.2 Show that for s > 1,

∑

χ(mod q)

log L(s, χ) = ϕ(q)
∑

n≥1

∑

pn≡1(mod q)

1
npns

.

Exercise 2.3.3 Show that for s > 1 the Dirichlet series

∞∑

n=1

an

ns
:=

∏

χ(mod q)

L(s, χ)

has the property that a1 = 1 and an ≥ 0 for n ≥ 2.

Exercise 2.3.4 For χ �= χ0, a Dirichlet character (mod q), show that
|
∑

n≤x χ(n)| ≤ q. Deduce that

L(s, χ) =
∞∑

n=1

χ(n)
ns

converges for s > 0.
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Exercise 2.3.5 If L(1, χ) �= 0, show that L(1, χ) �= 0, for any character
χ �= χ0 mod q.

Exercise 2.3.6 Show that

lim
s→1+

(s − 1)L(s, χ0) = ϕ(q)/q.

Exercise 2.3.7 If L(1, χ) �= 0 for every χ �= χ0, deduce that

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ) �= 0

and hence ∑

p≡1(mod q)

1
p

= +∞.

Conclude that there are infinitely many primes p ≡ 1(mod q).

This exercise shows that the essential step in establishing the in-
finitude of primes congruent to 1 (mod q) is the nonvanishing of
L(1, χ). The exercise below establishes the same for other progres-
sions (mod q).

Exercise 2.3.8 Fix (a, q) = 1. Show that

∑

χ(mod q)

χ(a)χ(n) =
{

ϕ(q) if n ≡ a (mod q),
0 otherwise.

Exercise 2.3.9 Fix (a, q) = 1. If L(1, χ) �= 0, show that

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ)χ(a) �= 0.

Deduce that

∑

p≡a(mod q)

1
p

= +∞.

The essential thing now is to show that L(1, χ) �= 0 for χ �= χ0.
Historically, this was a difficult step to surmount. Now, there are
many ways to establish this. We will take the most expedient route.
We will exploit the fact that

F (s) :=
∏

χ(mod q)

L(s, χ)
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is a Dirichlet series
∑∞

n=1 ann−s with a1 = 1 and an ≥ 0. If for some
χ1, L(1, χ1) = 0, we want to establish a contradiction.

Exercise 2.3.10 Suppose χ1 �= χ1 (that is, χ1 is not real-valued). Show
that L(1, χ1) �= 0 by considering F (s).

It remains to show that L(1, χ) �= 0 when χ is real and not equal
to χ0.

We will establish this in the next section by developing an inter-
esting technique discovered by Dirichlet that was first developed by
him not to tackle this question, but rather another problem, namely
the Dirichlet divisor problem.

2.4 Dirichlet’s Hyperbola Method

Suppose we have an arithmetical function f = g ∗ h. That is,

f(n) =
∑

d|n
g(d)h(n/d)

for two arithmetical functions g and h. Define

G(x) =
∑

n≤x

g(n),

H(x) =
∑

n≤x

h(n).

Theorem 2.4.1 For any y > 0,
∑

n≤x

f(n) =
∑

d≤y

g(d)H
(x

d

)
+
∑

d≤ x
y

h(d)G
(x

d

)
− G(y)H

(x

y

)
.

Proof. We have
∑

n≤x

f(n) =
∑

de≤x

g(d)h(e)

=
∑

de≤x
d≤y

g(d)h(e) +
∑

de≤x
d>y

g(d)h(e)

=
∑

d≤y

g(d)H
(x

d

)
+
∑

e≤x
y

h(e)
{

G
(x

e

)
− G(y)

}

=
∑

d≤y

g(d)H
(x

d

)
+
∑

e≤x
y

h(e)G
(x

e

)
− G(y)H

(x

y

)
. �
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The method derives its name from the fact that the inequality
de ≤ x is the area underneath a hyperbola. Historically, this method
was first applied to the problem of estimating the error term E(x)
defined as

E(x) =
∑

n≤x

σ0(n) − {x(log x) + (2γ − 1)x},

where σ0(n) is the number of divisors of n and γ is Euler’s constant.

Exercise 2.4.2 Prove that

∑

n≤x

σ0(n) = x log x + (2γ − 1)x + O(
√

x).

Exercise 2.4.3 Let χ be a real character (mod q). Define

f(n) =
∑

d|n
χ(d).

Show that f(1) = 1 and f(n) ≥ 0. In addition, show that f(n) ≥ 1
whenever n is a perfect square.

Exercise 2.4.4 Using Dirichlet’s hyperbola method, show that

∑

n≤x

f(n)√
n

= 2L(1, χ)
√

x + O(1),

where f(n) =
∑

d|n χ(d) and χ �= χ0.

Exercise 2.4.5 If χ �= χ0 is a real character, deduce from the previous
exercise that L(1, χ) �= 0.

Exercise 2.4.6 Prove that

∑

n>x

χ(n)
n

= O
(1

x

)

whenever χ is a nontrivial character (mod q).
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Exercise 2.4.7 Let
an =

∑

d|n
χ(d)

where χ is a nonprincipal character (mod q). Show that
∑

n≤x

an = xL(1, χ) + O(
√

x).

Exercise 2.4.8 Deduce from the previous exercise that L(1, χ) �= 0 for χ
real.

Thus, we have proved the following Theorem:

Theorem 2.4.9 (Dirichlet) For any natural number q, and a coprime
residue class a (mod q), there are infinitely many primes p ≡ a (mod q).

2.5 Supplementary Problems

Exercise 2.5.1 Let dk(n) be the number of ways of writing n as a product
of k numbers. Show that

∑

n≤x

dk(n) =
x(log x)k−1

(k − 1)!
+ O(x(log x)k−2)

for every natural number k ≥ 2.

Exercise 2.5.2 Show that
∑

n≤x

log
x

n
= x + O(log x).

Exercise 2.5.3 Let A(x) =
∑

n≤x an. Show that for x a positive integer,

∑

n≤x

an log
x

n
=
∫ x

1

A(t)dt

t
.

Exercise 2.5.4 Let {x} denote the fractional part of x. Show that
∑

n≤x

{x

n

}
= (1 − γ)x + O(x1/2),

where γ is Euler’s constant.
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Exercise 2.5.5 Prove that
∑

n≤x

logk x

n
= O(x)

for any k > 0.

Exercise 2.5.6 Show that for x ≥ 3,

∑

3≤n≤x

1
n log n

= log log x + B + O
( 1

x log x

)
.

Exercise 2.5.7 Let χ be a nonprincipal character (mod q). Show that

∑

n≥x

χ(n)√
n

= O
( 1√

x

)
.

Exercise 2.5.8 For any integer k ≥ 0, show that

∑

n≤x

logk n

n
=

logk+1 x

k + 1
+ O(1).

Exercise 2.5.9 Let d(n) be the number of divisors of n. Show that for some
constant c,

∑

n≤x

d(n)
n

=
1
2

log2 x + 2γ log x + c + O
( 1√

x

)

for x ≥ 1.

Exercise 2.5.10 Let α ≥ 0 and suppose an = O(nα) and

A(x) :=
∑

n≤x

an = O(xδ)

for some fixed δ < 1. Define

bn =
∑

d|n
ad.

Prove that ∑

n≤x

bn = cx + O
(
x(1−δ)(1+α)/(2−δ)

)
,

for some constant c.
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Exercise 2.5.11 Let χ be a nontrivial character (mod q) and set

f(n) =
∑

d|n
χ(d).

Show that ∑

n≤x

f(n) = xL(1, χ) + O(q
√

x),

where the constant implied is independent of q.

Exercise 2.5.12 Suppose that an ≥ 0 and that for some δ > 0, we have

∑

n≤x

an � x

(log x)δ
.

Let bn be defined by the formal Dirichlet series

∞∑

n=1

bn

ns
=
( ∞∑

n=1

an

ns

)2
.

Show that ∑

n≤x

bn � x(log x)1−2δ.

Exercise 2.5.13 Let {an} be a sequence of nonnegative numbers. Show
that there exists σ0 ∈ R (possibly infinite) such that

f(s) =
∞∑

n=1

an

ns

converges for Re(s) > σ0 and diverges for Re(s) < σ0. Moreover, show
that the series converges uniformly in Re(s) ≥ σ0 + δ for any δ > 0 and
that

f (k)(s) = (−1)k
∞∑

n=1

an(log n)k

ns

for Re(s) > σ0 (σ0 is called the abscissa of convergence of the
Dirichlet series

∑∞
n=1 an/ns).
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Exercise 2.5.14 (Landau’s theorem) Let an ≥ 0 be a sequence of non-
negative numbers. Let σ0 be the abscissa of convergence of

f(s) =
∞∑

n=1

an

ns
.

Show that s = σ0 is a singular point of f(s) (that is, f(s) cannot be
extended to define an analytic function at s = s0).

Exercise 2.5.15 Let χ be a nontrivial character (mod q) and define

σa,χ =
∑

d|n
χ(d)da.

If χ1, χ2 are two characters (mod q), prove that for a, b ∈ C,

∞∑

n=1

σa,χ1(n)σb,χ2(n)n−s

=
ζ(s)L(s − a, χ1)L(s − b, χ2)L(s − a − b, χ1χ2)

L(2s − a − b, χ1χ2)
.

as formal Dirichlet series.

Exercise 2.5.16 Let χ be a nontrivial character (mod q). Set a = b, χ1 =
χ and χ2 = χ in the previous exercise to deduce that

∞∑

n=1

|σa,χ(n)|2n−s =
ζ(s)L(s − a, χ)L(s − a, χ)L(s − a − a, χ0)

L(2s − a − a, χ0)

Exercise 2.5.17 Using Landau’s theorem and the previous exercise, show
that L(1, χ) �= 0 for any non-trivial real character (mod q).

Exercise 2.5.18 Show that ζ(s) �= 0 for Re(s) > 1.

Exercise 2.5.19 (Landau’s theorem for integrals) Let A(x) be right
continuous for x ≥ 1 and of bounded finite variation on each finite in-
terval. Suppose that

f(s) =
∫ ∞

1

A(x)
xs+1

dx,

with A(x) ≥ 0. Let σ0 be the infimum of all real s for which the integral
converges. Show that f(s) has a singularity at s = σ0.
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Exercise 2.5.20 Let λ denote Liouville’s function and set

S(x) =
∑

n≤x

λ(n).

Show that if S(x) is of constant sign for all x sufficiently large, then
ζ(s) �= 0 for Re(s) > 1

2 . (The hypothesis is an old conjecture of
Pólya. It was shown by Haselgrove in 1958 that S(x) changes sign
infinitely often.)

Exercise 2.5.21 Prove that

bn(x) =
n∑

k=0

(
n

k

)
Bn−kx

k,

where bn(x) is the nth Bernoulli polynomial and Bn denotes the nth
Bernoulli number.

Exercise 2.5.22 Prove that

bn(1 − x) = (−1)nbn(x),

where bn(x) denotes the nth Bernoulli polynomial.

Exercise 2.5.23 Let

sk(n) = 1k + 2k + 3k + · · · + (n − 1)k.

Prove that for k ≥ 1,

(k + 1)sk(n) =
k∑

i=0

(
k + 1

i

)
Bin

k+i−i.





3
The Prime Number Theorem

Let π(x) denote the number of primes p ≤ x. The prime number
theorem is the assertion that

lim
x→∞

π(x)
x/ log x

= 1.

It was proved independently by Hadamard and de la Vallée Poussin
in 1896. It is the goal of this chapter to prove this theorem follow-
ing a method evolved by Wiener and Ikehara in the early twentieth
century.

As far as we know, it was Legendre who first conjectured that for
large x, π(x) is approximately

x

log x − 1.08
.

This suggests the truth of the prime number theorem. In a letter of
1849, Gauss related that as a boy he had thought about this question
and felt that a good approximation to π(x) is given by the logarith-
mic integral

li x :=
∫ x

2

dt

log t
.

This is closer to the truth. Indeed, one can prove
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π(x) = li x + O
(
xe−c

√
log x

)

for some constant c. Integrating the logarithmic integral by parts,
we see that

li x =
x

log x
+

x

(log x)2
+ · · · + n!x

(log x)n+1
+ (n + 1)!

∫ x

2

dt

(log t)n+1
,

from which it is easily deduced that if we interpret Legendre’s state-
ment as

π(x) =
x

log x − A(x)
,

where A(x) → 1.08, then the above analysis shows that it is false,
since A(x) → 1.

Chebyshev in 1851 obtained by very elementary methods upper
and lower bounds for π(x). He proved that

lim inf
π(x)

x/ log x
≤ 1 ≤ lim sup

π(x)
x/ log x

,

so that if the limit exists, then it must be 1.

3.1 Chebyshev’s Theorem

The elementary method of Chebyshev begins by observing that the
binomial coefficient (

2n

n

)

is divisible by every prime between n and 2n.

Exercise 3.1.1 Let
θ(n) =

∑

p≤n

log p,

where the summation is over primes. Prove that

θ(n) ≤ 4n log 2.

Exercise 3.1.2 Prove that θ(2m + 1) − θ(m) ≤ 2m log 2. Deduce that

θ(n) ≤ 2n log 2.
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Exercise 3.1.3 Let

ψ(x) =
∑

pα≤x

log p =
∑

n≤x

Λ(n),

where Λ is the von Mangoldt function. Show that

lcm[1, 2, · · · , n] = eψ(n).

Exercise 3.1.4 Show that

eψ(2n+1)

∫ 1

0
xn(1 − x)ndx

is a positive integer. Deduce that ψ(2n + 1) ≥ 2n log 2. (The method of
deriving this is due to M. Nair.)

Exercise 3.1.5 Prove that there are positive constants A and B such that

Ax

log x
≤ π(x) ≤ Bx

log x

for all x sufficiently large. This result was first proved by Chebyshev.

Exercise 3.1.6 Prove that

T (x) :=
∑

n≤x

log n = x log x − x +
1
2

log x + c + O(1/x)

for some constant c (this improves Exercise 2.1.2).

Exercise 3.1.7 Using the fact

log n =
∑

d|n
Λ(d),

prove that
∑

n≤x

Λ(n)
n

= log x + O(1).

Exercise 3.1.8 Prove that
∑

p≤x

1
p

= log log x + O(1).
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Theorem 3.1.9 (Bertrand’s postulate) For n sufficiently large, there is
a prime between n and 2n.

Proof: (S. Ramanujan) Observe that if

a0 ≥ a1 ≥ a2 ≥ · · ·

is a decreasing sequence of real numbers tending to zero, then

a0 − a1 ≤
∞∑

n=0

(−1)nan ≤ a0 − a1 + a2.

This is the starting point of Ramanujan’s proof. We can write

T (x) =
∑

n≤x

log n =
∑

de≤x

Λ(d) =
∑

e≤x

ψ
(x

e

)
.

We know that T (x) = x log x−x+O(log x) by Exercise 2.1.2. On the
other hand,

T (x) − 2T
(x

2

)
=
∑

n≤x

(−1)n−1ψ
(x

n

)
≤ ψ(x) − ψ

(x

2

)
+ ψ

(x

3

)

by the observation above. Hence

ψ(x) − ψ
(x

2

)
+ ψ

(x

3

)
≥ (log 2)x + O(log x).

On the other hand,

ψ(x) − ψ
(x

2

)
≤ (log 2)x + O(log x),

from which we deduce inductively

ψ(x) ≤ 2(log 2)x + O
(
log2 x

)
.

Thus, ψ(x) − ψ
(

x
2

)
≥ 1

3(log 2)x + O(log2 x). Now, ψ(x) = θ(x) +

O
(√

x log2 x
)
. Hence

θ(x) − θ
(x

2

)
≥ 1

3
(log 2)x + O

(√
x log2 x

)
.

Therefore, for x sufficiently large, there is a prime between
x/2 and x.

Remark. This theorem was first proved by Chebyshev by a similar,
but more elaborate, method.
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Exercise 3.1.10 Suppose that {an}∞n=1 is a sequence of complex numbers
and set

S(x) =
∑

n≤x

an.

If

lim
x→∞

S(x)
x

= α,

show that ∑

n≤x

an

n
= α log x + o(log x)

as x → ∞.

Exercise 3.1.11 Show that

lim
x→∞

ψ(x)
x

= 1

if and only if

lim
x→∞

π(x)
x/ log x

= 1.

Exercise 3.1.12 If

lim
x→∞

π(x)
x/ log x

= α,

then show that
∑

p≤x

1
p

= α log log x + o(log log x).

Deduce that if the limit exists, it must be 1.

3.2 Nonvanishing of Dirichlet Series on Re(s) = 1

The proof of the prime number theorem, as given by Hadamard
and de la Vallée Poussin, has two ingredients: (a) the analytic con-
tinuation of ζ(s) to Re(s) = 1 and (b) the nonvanishing of ζ(s) on
Re(s) = 1.

It was believed that any proof of the prime number theorem must
use the theory of complex variables until Erdös and Selberg inde-
pendently discovered an “elementary proof” in 1949.

In this section we will discuss nonvanishing results of various
Dirichlet series.
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Exercise 3.2.1 Show that

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx

for Re(s) > 1. Since the right-hand side of the equation is analytic for
Re(s) > 0, s �= 1, we obtain an analytic continuation of (s − 1)ζ(s).

Exercise 3.2.2 Show that ζ(s) �= 0 for Re(s) > 1.

Exercise 3.2.3 Prove that for σ > 1, t ∈ R,

Re log ζ(σ + it) =
∞∑

n=2

Λ(n)
nσ log n

cos(t log n).

Exercise 3.2.4 Prove that

Re(3 log ζ(σ) + 4 log ζ(σ + it) + log ζ(σ + 2it)) ≥ 0,

for σ > 1, t ∈ R.

Exercise 3.2.5 Prove that for σ > 1, t ∈ R,

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1.

Deduce that ζ(1 + it) �= 0 for any t ∈ R, t �= 0. Deduce in a similar way,
by considering

ζ(σ)3L(σ, χ)4L(σ, χ2),

that L(1, χ) �= 0 for χ not real.

Exercise 3.2.6 Show that − ζ′

ζ (s) has an analytic continuation to Re(s) =
1, with only a simple pole at s = 1, with residue 1.

In the exercises below we will attempt to unravel the essential
trigonometric idea underlying the proof of the nonvanishing of ζ(s)
on Re(s) = 1. We begin with a few trigonometric identities.

Exercise 3.2.7 Prove that

1
2

+ cos θ + cos 2θ + · · · + cos nθ =
sin(n + 1

2)θ

2 sin θ
2

.

Exercise 3.2.8 Prove that

cos θ + cos 3θ + · · · + cos(2n − 1)θ =
sin 2nθ

2 sin θ
.
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Exercise 3.2.9 Prove that

1 +
sin 3θ

sin θ
+

sin 5θ

sin θ
+ · · · + sin(2n − 1)θ

sin θ
=
(sinnθ

sin θ

)2
.

Exercise 3.2.10 Prove that

(2m + 1) + 2
2m−1∑

j=0

(j + 1) cos(2m − j)θ =

(
sin(m + 1

2)θ

sin θ
2

)2

,

for all integers m ≥ 0.

Remark. Notice that the case m = 1 gives

3 + 4 cos θ + 2 cos 2θ ≥ 0,

which would have worked equally well in Exercises 3.2.4 and 3.2.5.

The following exercise gives us a general theorem of nonvanish-
ing of Dirichlet series on Re(s) = 1.

Exercise 3.2.11 Let f(s) be a complex-valued function satisfying:

1. f is holomorphic in Re(s) > 1 and non-zero there;

2. log f(s) can be written as a Dirichlet series

∞∑

n=1

bn

ns

with bn ≥ 0 for Re(s) > 1;

3. on the line Re(s) = 1, f is holomorphic except for a pole of order
e ≥ 0 at s = 1.

If f has a zero on the line Re(s) = 1, then prove that the order of the zero
is bounded by e/2. (This result is due to Kumar Murty [MM, p.10].)

Exercise 3.2.12 Let f(s) =
∏

χ L(s, χ), where the product is over
Dirichlet characters (mod q). Show that f(s) is a Dirichlet series with
nonnegative coefficients. Deduce that L(s, χ) �= 0 for Re(s) = 1.
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3.3 The Ikehara - Wiener Theorem

We begin by reviewing certain facts from Fourier analysis. Let

S =
{

f ∈ C∞(R) : lim
|x|→∞

xn dmf

dxm
= 0 for all n,m ∈ Z

+

}
.

This space is called the Schwartz space of rapidly decreasing func-
tions. For f ∈ S, we have the Fourier transform

f̂(x) =
1√
2π

∫ ∞

−∞
f(t)e−itxdt.

The Fourier inversion formula gives

f(x) =
1√
2π

∫ ∞

−∞
f̂(t)eitxdt.

Hence
f̂(x − y) =

1√
2π

∫ ∞

−∞
f(t)eitye−itxdt,

so that f̂(x − y) and f(t)eity are Fourier transforms of each other.
Parseval’s formula is

∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f̂(t)ĝ(t)dt.

Though these formulas are first established for f, g ∈ S, they are
easily extended to all f, g ∈ L2(R). We will employ these facts for
such functions.

The Riemann - Lebesgue lemma states that

lim
λ→∞

∫ ∞

−∞
f(t)eiλtdt = 0

for absolutely integrable functions. The Fejér kernel

Kλ(x) =
sin2 λx

λx2

has Fourier transform

K̂λ(x) =
{ √

π/2(1 − |x|
2λ ) if |x| ≤ 2λ,

0 otherwise.

We begin with the following theorem due to Ikehara and Wiener
(see for example, [MM, p.7]).
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Theorem 3.3.1 Let F (s) =
∑∞

n=1 bn/ns be a Dirichlet series with non-
negative coefficients and absolutely convergent for Re(s) > 1. Suppose
that F (s) can be extended to a meromorphic function in the region Re(s) ≥
1 having no poles except for a simple pole at s = 1 with residue R ≥ 0.
Then

B(x) :=
∑

n≤x

bn = Rx + o(x)

as x → ∞.

Remark. Without loss of generality, we may suppose R > 0, for if
R = 0, we can consider F (s) + ζ(s). If F (s) is analytic at s = 1, we
obtain

∑
n≤x bn = o(x) as x → ∞.

Proof. Replacing bn by bn/R, we may suppose without loss of gen-
erality that R = 1. Then

F (s) = s

∫ ∞

1

B(x)
xs+1

dx.

Set x = eu. Then

F (s)
s

=
∫ ∞

0
B(eu)e−usdu.

Note that ∫ ∞

0
e−u(s−1)du =

1
s − 1

.

Setting s = 1 + δ + it, δ > 0, we get

F (1 + δ + it)
1 + δ + it

− 1
s − 1

=
∫ ∞

0
(B(eu)e−u − 1)e−uδe−iutdu. (3.1)

Set

g(u) = B(eu)e−u,

hδ(t) =
F (1 + δ + it)

1 + δ + it
− 1

s − 1
,

and

h(t) =
F (1 + it)

1 + it
− 1

s − 1
(s = 1 + it),

which extends to a continuous function for all t ∈ R. We also put

φδ(t) =
{

(g(u) − 1)e−uδ if u ≥ 0
0 if u < 0.
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Our goal is to prove g(u) → 1 as u → ∞. The formula (3.1) says
that the Fourier transform of

√
2πφδ is hδ(t). Observe that for δ > 0,

both of these functions are square-integrable, since

B(x) =
∑

n≤x

bn �
∞∑

n=1

|bn|(x/n)c � xc,

for every c > 1. Applying Parseval’s formula gives, for each real v
and real λ > 0,
∫∞
0 (g(u) − 1)e−uδKλ(u − v)du =

∫∞
−∞ φδ(u)Kλ(u − v)du

= 1√
2π

∫∞
−∞ hδ(t)K̂λ(t)eitvdt.

Since K̂λ has compact support, the limit as δ → 0 of the right-hand
side exists. The limit of the left side as δ → 0 is

∫ ∞

0
(g(u) − 1)Kλ(u − v)du

by the monotone convergence theorem. Hence,
∫ ∞

0
(g(u) − 1)Kλ(u − v)du =

1√
2π

∫ ∞

−∞
h(t)K̂λ(t)eitvdt.

By the Riemann - Lebesgue lemma, the limit of the integral on the
right-hand side as v → ∞ is 0. Thus,

lim
v→∞

∫ ∞

0
(g(u) − 1)Kλ(u − v)du = 0.

Since (by Exercise 3.4.13)
∫ ∞

−∞

sin2 λx

λx2
dx = π,

we obtain
lim

v→∞

∫ ∞

0
g(u)Kλ(u − v)du = π.

Making the substitution u = v + α/λ and noting that g(u) = 0 for
u < 0 gives
∫ ∞

0
g(u)Kλ(u− v)du=

∫ ∞

−∞
g(u)Kλ(u− v)du=

∫ ∞

−∞
g(v +α/λ)

sin2 α

α2
dα.
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Thus,

lim
v→∞

∫ ∞

−∞
g(v + α/λ)

sin2 α

α2
dα = π,

for each λ > 0. Since B(x) is monotone increasing, we see that

g(u2) ≥ g(u1)eu1−u2 , u1 ≤ u2.

Thus, for |α| ≤
√

λ, we have

g
(
v +

α

λ

)
≥ g
(
v − 1√

λ

)
e
− 1√

λ
−α

λ ≥ g
(
v − 1√

λ

)
e
− 2√

λ .

Hence

g(v − 1/
√

λ)e−2/
√

λ

∫ √
λ

−
√

λ

sin2 α

α2
dα ≤

∫ √
λ

−
√

λ
g(v + α/λ)

sin2 α

α2
dα

≤
∫ ∞

−∞
g(v + α/λ)

sin2 α

α2
dα.

Consequently

lim sup
v→∞

g(v) = lim sup
v→∞

g(v − 1/
√

λ) ≤ πe2/
√

λ

∫ √
λ

−
√

λ
sin2 α

α2 dα
.

Letting λ → ∞, we get

lim sup
v→∞

g(v) ≤ 1.

In particular, we conclude that g is bounded. Let A = supv g(v).
Then,

∫ ∞

−∞
g(v + α/λ)

sin2 α

α2
dα −

∫ √
λ

−
√

λ
g(v + α/λ)

sin2 α

α2
dα

=
∫ ∞

√
λ
[g(v + α/λ) − g(v − α/λ)]

sin2 α

α2
dα ≤ 2A

∫ ∞

√
λ

dα

α2
� 1√

λ
.

Hence

lim inf
v→∞

∫ √
λ

−
√

λ
g(v + α/λ)

sin2 α

α2
dα = π + O(1/

√
λ).



46 3. The Prime Number Theorem

For |α| ≤
√

λ, we have

g(v + α/λ) ≤ g(v + 1/
√

λ)e1/
√

λ−α/
√

λ ≤ g(v + 1/
√

λ)e2/
√

λ

so that

g(v + 1/
√

λ)e2/
√

λ

∫ √
λ

−
√

λ

sin2 α

α2
dα ≥

∫ √
λ

−
√

λ
g(v + α/λ)

sin2 α

α2
dα,

and so

lim inf
v→∞

g(v) = lim inf
v→∞

g(v + 1/
√

λ) ≥ π + O(1/
√

λ)

e2/
√

λ
∫ √

λ

−
√

λ
sin2 α

α2 dα
.

Letting λ → ∞, it follows that

lim inf
v→∞

g(v) ≥ 1.

We therefore conclude that limv→∞ g(v) = 1. This implies that

lim
x→∞

B(x)
x

= 1,

or equivalently
B(x) = x + o(x).

�
We apply this theorem to the Dirichlet series

−ζ ′

ζ
(s) =

∞∑

n=1

Λ(n)
ns

,

which has nonnegative coefficients and is absolutely convergent for
Re(s) > 1. By virtue of ζ(s) �= 0 on Re(s) = 1, we see that − ζ′

ζ (s)
extends to a meromorphic function that has a simple pole at s = 1
with residue 1. Indeed, we know that

h(s) := (s − 1)ζ(s)

is analytic at s = 1 and h(1) = 1. Moreover, as ζ(s) �= 0 on Re(s) ≥ 1,
we get by logarithmic differentiation:

h′(s)
h(s)

=
1

s − 1
+

ζ ′

ζ
(s),

for which our assertion is obvious. Applying the Ikehara - Wiener
theorem, we obtain the prime number theorem:
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Theorem 3.3.2 (The Prime Number Theorem) Let

ψ(x) =
∑

n≤x

Λ(n).

Then
lim

n→∞
ψ(x)

x
= 1.

Exercise 3.3.3 Suppose

f(s) =
∞∑

n=1

an/ns

is a Dirichlet series with real coefficients that is absolutely convergent
for Re(s) > 1. If f(s) extends to a meromorphic function in the re-
gion Re(s) ≥ 1, with only a simple pole at s = 1 with residue r, and
|an| ≤ bn where F (s) =

∑∞
n=1 bn/ns satisfies the hypotheses of Theorem

3.3.1, show that ∑

n≤x

an = rx + o(x)

as x → ∞.

Exercise 3.3.4 Show that the conclusion of the previous exercise is still
valid if an ∈ C.

Exercise 3.3.5 Let q be a natural number. Suppose (a, q) = 1. Show that

ψ(x; q, a) :=
∑

n≤x
n≡a (mod q)

Λ(n)

satisfies

lim
x→∞

ψ(x)
x/ϕ(q)

= 1.

Exercise 3.3.6 Suppose F (s) =
∑∞

n=1 bn/ns is a Dirichlet series with
non-negative coefficients and is convergent for Re(s) > c > 0. If F (s)
extends to a meromorphic function in the region Re(s) ≥ c with only a
simple pole at s = c with residue R, show that

∑

n≤x

bn =
Rxc

c
+ o(xc)

as x → ∞.
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Exercise 3.3.7 Suppose f(s) =
∑∞

n=1 an/ns is a Dirichlet series with
complex coefficients that is absolutely convergent for Re(s) > c. If f(s)
extends to a meromorphic function in the region Re(s) ≥ c with only
a simple pole at s = c and residue r, and |an| ≤ bn where f(s) =∑∞

n=1 bn/ns satisfies the hypothesis of Exercise 3.3.6, show that

∑

n≤x

an =
rxc

c
+ o(xc)

as x → ∞.

Exercise 3.3.8 Let a(n) be a multiplicative function defined by a(1) = 1
and

a(pα) =
{

p + cp if α = 1,
0 otherwise,

where |cp| ≤ pθ with θ < 1. Show that as x → ∞,

∑

n≤x

a(n) =
rx2

2
+ o(x2)

for some non-zero constant r.

Exercise 3.3.9 Suppose cn ≥ 0 and that

∑

n≤x

cn = Ax + o(x).

Show that ∑

n≤x

cn

n
= A log x + o(log x)

as x → ∞.

3.4 Supplementary Problems

Exercise 3.4.1 Show that
∑

n≤x

Λ(n) log n = ψ(x) log x + O(x).
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Exercise 3.4.2 Show that
∑

d|n
Λ(d)Λ

(n

d

)
= Λ(n) log n +

∑

d|n
µ(d) log2 d.

Exercise 3.4.3 Show that
∑

d|n
µ(d) log2 x

d
=

{
log2 x if n = 1,
2Λ(n) log x − Λ(n) log n +

∑
hk=n Λ(h)h(k) if n > 1.

Exercise 3.4.4 Let

S(x) =
∑

n≤x

(∑

d|n
µ(d) log2 x

d

)
.

Show that

S(x) = ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)
+ O(x).

Exercise 3.4.5 Show that

S(x) − γ2 =
∑

d≤x

µ(d)
[x
d

]{
log2 x

d
− γ2

}
,

where γ is Euler’s constant.

Exercise 3.4.6 Show that

S(x) = x
∑

d≤x

µ(d)
d

{
log2 x

d
− γ2

}
+ O(x).

Exercise 3.4.7 Using the fact

∑

n≤x

1
n

= log x + γ + O
(1

x

)
,

deduce that

S(x)
x

=
∑

de≤x

µ(d)
de

(
log

x

d
− γ
)

+ O(1).
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Exercise 3.4.8 Prove that

S(x)
x

= 2 log x + O(1).

Exercise 3.4.9 (Selberg’s identity) Prove that

ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)
= 2x log x + O(x).

Exercise 3.4.10 Show that

ν(n) = O
( log n

log log n

)
,

where ν(n) denotes the number of distinct prime factors of n.

Exercise 3.4.11 Let ν(n) be as in the previous exercise. Show that
∑

n≤x

ν(n) = x log log x + O(x).

Exercise 3.4.12 Let ν(n) be as in the previous exercise. Show that
∑

n≤x

ν2(n) = x(log log x)2 + O(x log log x).

Exercise 3.4.13 Prove that
∫ ∞

−∞

sin2 λx

λx2
dx = π.

Exercise 3.4.14 Let
T (x) :=

∑

n≤x

log n.

Show that for x > 1,

|T (x) − (x log x − x)| ≤ 4 + log(x + 1).

Exercise 3.4.15 Show that

ψ(x) − ψ
(x

2

)
≤ (log 2)x + 12 + 3 log(x + 1).

Deduce that

ψ(x) ≤ 2(log 2)x +
12 log x

log 2
+

3 log(x + 1) log x

log 2
.
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Exercise 3.4.16 Show that

ψ(x) − ψ
(x

2

)
+ ψ

(x

3

)
≥ (log 2)x − 2 log(x + 1) − 7.

Exercise 3.4.17 Prove that for x ≥ e12,

ψ(x) − ψ
(x

2

)
≥ 1

3
(log 2)x − 5(log x) log(x + 1)

log 2
− 7.

Exercise 3.4.18 Find an explicit constant c0 such that for x ≥ c0,

ψ(x) − ψ
(x

2

)
>

(log 2)x
6

− 7.

Exercise 3.4.19 With c0 as in the previous exercise, show that for x ≥ c0,

θ(x) − θ
(x

2

)
>

(log 2)x
6

−
√

x(log x)2

log 2
− 7.

Exercise 3.4.20 Find an explicit constant c1 such that for x ≥ c1,

θ(x) − θ
(x

2

)
>

(log 2)x
12

− 7.

Exercise 3.4.21 Find an explicit constant c3 such that for x ≥ c3, θ(x)−
θ(x/2) ≥ 1. Deduce that for x ≥ c3, there is always a prime between x/2
and x.

Exercise 3.4.22 Let
F (x) =

∑

n≤x

f
(x

n

)

be a function of bounded variation in every finite interval [1, x]. Suppose
that as x → ∞,

F (x) = x log x + Cx + O(xβ)

with C, β constant and 0 ≤ β < 1. Show that if M(x) :=
∑

n≤x µ(n) =
o(x) as x → ∞, then

f(x) = x + o(x).

Exercise 3.4.23 Assuming M(x) = o(x) as in the previous exercise, de-
duce that

lim
x→∞

ψ(x)
x

= 1.





4
The Method of Contour Integration

Given a sequence of complex numbers {an}∞n=1, one would like to
study the asymptotic behavior of

A(x) :=
∑

n≤x

an

as x → ∞. A standard method of analytic number theory is to study
instead the associated Dirichlet series

f(s) :=
∞∑

n=1

an

ns
,

derive an analytic continuation to a region containing the line
Re(s) = 1, and then apply methods of contour integration to deduce
an asymptotic formula for A(x).

4.1 Some Basic Integrals

We shall adopt the following notation:

1
2πi

∫ c+i∞

c−i∞
f(s)ds
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will be abbreviated to

1
2πi

∫

(c)
f(s)ds.

This integral must be interpreted in the principal value sense. That
is, we first integrate from c − iR to c + iR and take the limit as R
goes to infinity.

Exercise 4.1.1 If x > 1, show that

1
2πi

∫

(c)

xs

s
ds = 1

for any c > 0.

Exercise 4.1.2 If 0 < x < 1, show that

1
2πi

∫

(c)

xs

s
ds = 0, c > 0.

Exercise 4.1.3 Show that

1
2πi

∫

(c)

ds

s
=

1
2
, c > 0.

We summarize the previous examples and exercises in the follow-
ing. If

δ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 < x < 1,

1
2 if x = 1,

1 if x > 1,

then

δ(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s
ds.

Theorem 4.1.4 Let δ(x) be defined as above. Let

I(x, R) =
1

2πi

∫ c+iR

c−iR

xs

s
ds.
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Then, for x > 0, c > 0, R > 0, we have

|I(x, R) − δ(x)| <

⎧
⎪⎨

⎪⎩

xc min(1, R−1| log x|−1) if x �= 1,

c

R
if x = 1.

Proof. Suppose first 0 < x < 1. Consider the rectangular contour
KU oriented counterclockwise with vertices c − iR, c + iR, U + iR,
U − iR, U > 0. By Cauchy’s theorem

1
2πi

∫

KU

xs

s
ds = 0 = δ(x).

To prove the theorem, we must estimate the three integrals

1
2πi

∫ U+iR

c+iR

xs

s
ds,

1
2πi

∫ U−iR

c−iR

xs

s
ds,

1
2πi

∫ U+iR

U−iR

xs

s
ds.

Now, ∣∣∣∣
∫ U+iR

c+iR

xs

s
ds

∣∣∣∣ ≤
1
R

∫ U

c
xδdδ.

As U → ∞, this integral is bounded by

xc

R| log x| .

A similar estimate holds for the other integral. Now,
∣∣∣∣

1
2πi

∫ U+iR

U−iR

xsds

s

∣∣∣∣ ≤
xUR

U
,

which goes to zero as U → ∞, since 0 < x < 1. This proves one
of the two stated inequalities in the case 0 < x < 1. For the other
inequality, consider the circle of radius (c2 + R2)1/2 centered at the
origin. This circle passes through c−iR and c+iR. We can therefore
replace the vertical line integral under consideration by a circular
path on the right side of the line segment joining c − iR to c + iR.
The integral is easily estimated:

|I(x, R)| ≤ 1
2π

πR · xc

R
< xc,
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since |xs| ≤ xc on the circular path.
The proof when x > 1 is similar but uses a rectangle or a circular

arc to the left. The contour then includes the pole at s = 0, where
the residue is 1 = δ(x). We leave the details as an exercise to the
reader.

Finally, the case x = 1 is handled directly as in Exercise 4.1.3. We
have

1
2πi

∫ c+iR

c−iR

ds

s
=

c

π

∫ R

0

dt

c2 + t2
,

which equals

1
π

∫ R/c

0

du

1 + u2
=

1
2
− 1

π

∫ ∞

R/c

du

1 + u2
.

The last integral is less than c/R, and this proves the theorem. �

Exercise 4.1.5 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. Show that if
x is not an integer, then

∑

n<x

an =
1

2πi

∫

(c)
f(s)

xs

s
ds.

(The integral is taken in the sense of Cauchy’s principal value.)

Exercise 4.1.6 Prove that for c > 0,

1
2πi

∫

(c)

xs

sk+1
ds =

{
1
k!(log x)k if x ≥ 1,
0 if x ≤ 1,

for every integer k ≥ 1.

Exercise 4.1.7 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. For k ≥ 1,
show that
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1
k!

∑

n≤x

an

(
log

x

n

)k
=

1
2πi

∫

(c)
f(s)

xs

sk+1
ds.

Exercise 4.1.8 If k is any positive integer, c > 0, show that

1
2πi

∫

(c)

xsds

s(s + 1) · · · (s + k)
=

{
1
k!

(
1 − 1

x

)k
if x ≥ 1,

0 if 0 ≤ x ≤ 1.

Exercise 4.1.9 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. Show that

1
xk

∑

n≤x

an(x − n)k =
k!
2πi

∫ c+i∞

c−i∞

f(s)xsds

s(s + 1) · · · (s + k)

for any k ≥ 1.

4.2 The Prime Number Theorem

We will use the ideas of the previous section to give another proof of
the prime number theorem. Our derivation is illustrative of a gen-
eral method of contour integration to derive such formulas. Thus, it
can be applied in other contexts. The method also has the advantage
of giving an explicit error term.

Our strategy is to begin with the formula

ψ(x) :=
∑

n≤x

Λ(n) =
1

2πi

∫

(2)
−ζ ′

ζ
(s)

xs

s
ds,

which is valid when x is not an integer. We will then move the line
of integration to the left and pick up the residue at s = 1 coming
from the simple pole of −ζ ′(s)/ζ(s). This residue is x, which is the
main term in the formula for ψ(x). Our contour will not include
s = 0 nor any of the zeros of −ζ ′(s)/ζ(s), and so the error term
comes from estimating the horizontal and vertical integrals of the
contour.
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Exercise 4.2.1 Using the Euler - Maclaurin summation formula (Theo-
rem 2.1.9), prove that for σ = Re(s) > 0,

ζ(s) =
n−1∑

m=1

1
ms

+
n−s

2
+

n1−s

s − 1
− s

∫ ∞

n

x − [x] − 1
2

xs+1
dx,

where [x] denotes the greatest integer function.

We will now study ζ(s) in the region RT described by the rectan-
gle joining 2 − iT, 2 + iT, σ0 + iT, σ0 − iT , where σ0 = 1 − 1/ log T,
T ≥ e2.

Exercise 4.2.2 Using the previous exercise, show that

ζ(s) − 1
s − 1

= O(log T )

for s ∈ RT .

Exercise 4.2.3 Show that

ζ(s) = O(log T )

for s on the boundary of RT .

Exercise 4.2.4 Show that for σ ≥ 1
2 , ζ(s) = O(T 1/2), where T =

| Im(s)| → ∞.

Exercise 4.2.5 For s ∈ RT , show that

ζ ′(s) +
1

(s − 1)2
= O(log2 T ).

Exercise 4.2.6 Show that

ζ ′(s) = O(log2 T ),

where T = | Im(s)| and s is on the boundary of RT .

The method used to show that ζ(s) �= 0 for Re(s) = 1 can be
sharpened to yield a region in which ζ(s) �= 0.

Theorem 4.2.7 Let s = σ + it. There are positive constants c1 and c2

such that
1 − c1

(log T )9
≤ σ ≤ 2

|ζ(s)| > c2
(log T )7

where 1 ≤ | Im(s)| ≤ T.
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Proof. In Exercise 3.2.5, we proved

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1

for σ > 1. Thus,

|ζ(σ + it)|4 ≥ |ζ(σ + 2it)|−1|ζ(σ)|−3.

Now, ζ(σ)(σ−1) remains bounded as σ → 1+ and being continuous
for 1 ≤ σ ≤ 2 has an upper bound in that region. By Exercise 4.2.3,
for some constant K,

|ζ(σ + 2it)|−1 ≥ K(log T )−1.

Thus we get

|ζ(σ + it)|4 ≥ K1(log T )−1(σ − 1)3.

If
1 +

c1

(log T )9
≤ σ ≤ 2,

then we obtain
|ζ(s)| 
 1

(log T )7

in this region. We can extend this result to the region

1 − c1

(log T )9
≤ σ ≤ 1 +

c1

(log T )9

and 1 ≤ | Im(s)| ≤ T, by using the mean value theorem. Indeed,
choose s′ such that s′ = σ′ + it, with

σ′ = 1 +
c1

(log T )9
.

Then
ζ(σ′ + it) − ζ(σ + it) = O((σ − σ′) log2 T )

by an application of the mean value theorem and Exercise 4.2.5.
Thus, if c1 is chosen sufficiently small, we obtain

|ζ(s)| 
 (log T )−7.

�
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Exercise 4.2.8 Let s = σ + it, with 1 ≤ |t| ≤ T. There is a constant
c > 0 such that

ζ ′(s)
ζ(s)

= O(log9 T )

for
1 − c

(log T )9
≤ σ ≤ 2.

We can now prove the prime number theorem in the following
form:

Theorem 4.2.9 Let
ψ(x) =

∑

n≤x

Λ(n).

Then
ψ(x) = x + O

(
x exp

(
−c(log x)1/10

))

for some positive constant c.

Proof. We have for x which is 1/2 more than a natural number,

ψ(x) =
1

2πi

∫

(a)
−ζ ′

ζ
(s)

xs

s
ds

for any a > 1. We choose a = 1 + c/ log9 T, with T ≥ 1 to be
determined later. By Theorem 4.1.4, we can replace the infinite line
integral by the finite line integral:

ψ(x) =
1

2πi

∫ a+iT

a−iT
−ζ ′

ζ
(s)

xs

s
ds

+O
( ∞∑

n=1

(
x

n

)a
Λ(n) min

(
1, T−1

∣∣∣log
x

n

∣∣∣
−1
))

.

The O-term is estimated as follows:
if n < x

2 or n > 3x
2 , then | log x

n | > log 3
2 , and the summation

corresponding to such n is bounded by

O
(xa

T
(a − 1)−1

)
= O

(xa log9 T

T

)
,

since ∞∑

n=1

Λ(n)
na

� (a − 1)−1
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for any fixed a > 1. For x
2 < n < 3x

2 , we put z = 1 − n
x and observe

that |z| ≤ 1/2. Also,

log
x

n
= − log(1 − z) = z +

z2

2
+ · · · ,

so that for |z| ≤ 1/2, ∣∣∣log
x

n

∣∣∣ ≥ 3
4
|z|.

Thus, for the summation corresponding to this range, we get the
estimate

(log x)
∑

x/2≤n≤3x/2

2a x

T |x − n| �
x

T
(log x)2

since |x − n| ranges over 1
2 , 3

2 , · · · , 1
2 + [x]

2 . Therefore, the O-term is

O
(
xa log9 T

T
+

x log2 x

T

)
.

Now, −ζ ′(s)/ζ(s) has a simple pole at s = 1 with residue 1. By
Cauchy’s theorem,

1
2πi

∫ a+iT

a−iT
−ζ ′

ζ
(s)

xs

s
ds

= x − 1
2πi

{(∫ b+iT
a+iT +

∫ b−iT
b+iT +

∫ a−iT
b−iT

)
− ζ′

ζ (s)xs

s ds
}

,

where b = 1 − c
log9 T

. The integrals in the above formula are easily
estimated using Exercise 4.2.8. Indeed,

∣∣∣∣
1

2πi

∫ b+iT

a+iT
−ζ ′

ζ
(s)

xs

s
ds

∣∣∣∣�
xa log9 T

T

with a similar estimate for

1
2πi

∫ a+iT

b−iT

−ζ ′

ζ
(s)

xs

s
ds.

Also, ∣∣∣∣
∫ b−iT

b+iT
−ζ ′

ζ
(s)

xs

s
ds

∣∣∣∣� xb log10 T.
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Therefore,

ψ(x) = x + O

(
xa log9 T

T
+ xb log10 T +

x(log x)2

T

)
.

We choose T such that

2c log x = log10 T.

The error term becomes

O(x exp(−c1(log x)1/10))

for some constant c1 > 0. This completes the proof. �

In a later chapter we will see that this error term can be improved
to

O
(
x exp

(
−c2(log x)1/2

))

for some constant c2 > 0. This can be further improved but not
substantially. The Riemann hypothesis would give an estimate of

O(x1/2 log2 x).

4.3 Further Examples

The technique introduced in the last two sections can be used to
treat other questions. We illustrate this through some examples.

Example 4.3.1 Prove that
∑

n≤x

d2(n) log3 x

n
= xP3(log x) + O

(
x1/2

)
,

where P3(t) is a polynomial of degree 3 and d(n) denotes the number of
divisors of n.

Solution. By Exercise 1.2.8, we have

ζ4(s)
ζ(2s)

=
∞∑

n=1

d2(n)
ns

.
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Thus, by Exercise 4.1.6 (with k = 3), we have

1
3!

∑

n≤x

d2(n) log3 x

n
=

1
2πi

∫

(a)

ζ4(s)
ζ(2s)

xs

s4
ds,

where a > 1. We first truncate the infinite line integral at R and
estimate the portion of the integral from −∞ to −R and from R to
∞. By Exercise 4.2.4, we have ζ4(s) = O(|t|2), so that

1
2πi

∫

(a)

ζ4(s)
ζ(2s)

xs

s4
ds =

1
2πi

∫ a+iR

a−iR

ζ4(s)
ζ(2s)

xs

s4
ds + O

(xa

R

)
.

Now let C be the rectangular contour joining a− iR, a + iR, 1
2 + iR,

and 1
2 − iR. By Cauchy’s theorem,

1
2πi

∫

C

ζ4(s)
ζ(2s)

xs

s4
ds = Ress=1

ζ4(s)xs

ζ(2s)s4
.

Since
ζ(s) =

1
s − 1

+ c0 + c1(s − 1) + · · ·

it is easily seen that

Ress=1
ζ4(s)xs

ζ(2s)s4
= xP3(log x)

for some polynomial P3(t) of degree 3. Now we can write

1
2πi

∫

C

ζ4(s)
ζ(2s)

xs

s4
ds = Va + H+ − H− − V1/2,

where

H± =
1

2πi

∫ 1/2±iR

a±iR

ζ4(s)
ζ(2s)

xs

s4
ds

and

Vσ =
1

2πi

∫ σ+iR

σ−iR

ζ4(s)
ζ(2s)

xs

s4
ds.

The horizontal integrals H± can be bounded using Exercise 4.2.4
and Theorem 4.2.7 to give

O

(
xa log7 R

R2 log x

)
.
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For the vertical integral V1/2, we have

V1/2 � x1/2.

Choosing a = 1 + 1/ log x, we obtain that the sum in question is

xP3(log x) + O

(
x log7 R

R2 log x

)
+ O

(
x1/2

)
.

Choosing R = x gives an error term of O
(
x1/2

)
as stated. �

Exercise 4.3.2 Suppose that for any ε ≥ 0, we have an = O(nε). Prove
that for any c > 1 and x not an integer,

∑

n≤x

an =
1

2πi

∫ c+iR

c−iR

f(s)xs

s
ds + O

(xc+ε

R

)
+ O

(xε log x

R

)
,

where

f(s) =
∞∑

n=1

an

ns
.

The Lindelöf hypothesis is the assertion that for every ε > 0,
ζ(s) = O(tε) for Re(s) ≥ 1

2 . One can show that it follows from the
Riemann hypothesis. It is, however, a substantially weaker conjec-
ture, which still remains unproved.

Exercise 4.3.3 Assuming the Lindelöf hypothesis, prove that for any ε>0,
∑

n≤x

dk(n) = xPk−1(log x) + O(x1/2+ε),

where dk(n) denotes the number of ways of writing n as a product of k
natural numbers.

Exercise 4.3.4 Show that

M(x) :=
∑

n≤x

µ(n) = O
(
x exp

(
−c(log x)1/10

))

for some positive constant c.

Exercise 4.3.5 Let E(x) be the number of square-free n ≤ x with an even
number of prime factors. Prove that

E(x) =
3
π2

x + O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.
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4.4 Supplementary Problems

Exercise 4.4.1 Let λ(n) be the Liouville function defined by λ(n) =
(−1)Ω(n) where Ω(n) is the total number of prime factors of n, counted
with multiplicity. Show that

∑

n≤x

λ(n) = O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.

Exercise 4.4.2 Show that
∞∑

n=1

µ(n)
ns

converges for every s with Re(s) = 1.

Exercise 4.4.3 Show that

∑

n≤x

Λ(n)
n

= log x + B + O
(
exp

(
−c(log x)1/10

))

for some constants B and c, with c > 0. [This improves upon Exercise
3.1.7.]

Exercise 4.4.4 Let f(s) =
∑∞

n=1 An/ns be a Dirichlet series absolutely
convergent for Re(s) > 1. Show that for any c > 1,

∑

n≤x

An = O(xc).

Exercise 4.4.5 Define an for n ≥ 1 by

∞∑

n=1

an

ns
=

1
ζ2(s)

.

Prove that ∑

n≤x

an = O
(
x exp

(
−c(log x)1/10

))

for some positive constant c.
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Exercise 4.4.6 Prove that
∑

n≤x

µ(n)d(n) = O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.

Exercise 4.4.7 If f(s) =
∑∞

n=1 an/ns is a Dirichlet series converging
absolutely for σ = Re(s) = σa, show that

lim
T→∞

1
2T

∫ T

−T
f(σ + it)mσ+itdt = am.

Exercise 4.4.8 Suppose

f(s) :=
∞∑

n=1

an/ns,

g(s) :=
∞∑

n=1

bn/ns,

and f(s) = g(s) in a half-plane of absolute convergence. Then prove that
an = bn for all n.

Exercise 4.4.9 If

f(s) =
∞∑

n=1

an/ns

converges absolutely for σ = Re(s) > σa, show that

lim
T→∞

1
2T

∫ T

−T
|f(σ + it)|2dt =

∞∑

n=1

|an|2
n2σ

.

Exercise 4.4.10 Let Q(x) be the number of square-free numbers less than
or equal to x. Show that

Q(x) =
x

ζ(2)
+ O

(
x1/2 exp

(
−c(log x)1/10

))

for some positive constant c.

Exercise 4.4.11 Let γ(n) =
∏

p|n p. Show that

∑

n≤x

1
nγ(n)

< ∞.
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Exercise 4.4.12 Show that
∑

n≤x

n

φ(n)
� x.

Exercise 4.4.13 Deduce by partial summation from the previous exercise
that ∑

n≤x

1
φ(n)

� log x.

Exercise 4.4.14 Prove that
∑

n≤x

1
φ(n)

∼ c log x

for some positive constant c.

Exercise 4.4.15 (Perron’s formula) Let f(s) =
∑∞

n=1 an/ns be a
Dirichlet series absolutely convergent for Re(s) > 1. Show that for x
not an integer and σ > 1,
∑

n≤x

an

=
1

2πi

∫ σ+iT

σ−iT
f(s)

xs

s
ds + O

( ∞∑

n=1

(x

n

)σ
|an|min

(
1,

1
T | log x

n |

))
.

Exercise 4.4.16 Suppose an = O(nε) for any ε > 0 in the previous exer-
cise. Show that for x not an integer,

∑

n≤x

an =
1

2πi

∫ σ+iT

σ−iT
f(s)

xs

s
ds + O

(
xσ+ε

T

)
.

Exercise 4.4.17 Let f(s) =
∑∞

n=1 an/ns, with an = O(nε). Suppose
that

f(s) = ζ(s)kg(s),

where k is a natural number and g(s) is a Dirichlet series absolutely con-
vergent in Re(s) > 1 − δ for some 0 < δ < 1. Show that

∑

n≤x

an ∼ g(1)x(log x)k−1/(k − 1)!

as x → ∞.
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Exercise 4.4.18 Let ν(n) denote the number of distinct prime factors of
n. Show that ∑

n≤x

2ν(n) ∼ x log x

ζ(2)

as x → ∞.



5
Functional Equations

In this chapter we will derive the functional equations of ζ(s) and
Dirichlet’s L(s, χ). Our main tools will be the Poisson summation
formula and the theory of Fourier transforms.

5.1 Poisson’s Summation Formula

Let us recall Fejér’s fundamental theorem concerning Fourier series.
Let f(x) be a function of a real variable that is bounded, measur-
able, and periodic with period 1. The Fourier coefficients of f are,
by definition, given by

cn =
∫ 1

0
f(x)e−2πinxdx,

for each n ∈ Z. The partial sums of the Fourier series of f are de-
fined as

SN (x) =
∑

|n|≤N

cne2πinx.

Let x0 ∈ R be such that the function f(x) admits left and right limits:

f(x0 ± 0) = lim
h→0+

f(x0 ± h).
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Then Fejér proved

f(x0 + 0) + f(x0 − 0)
2

= lim
N→∞

S0(x0) + · · · + SN (x0)
N + 1

.

If f(x) is continuous at x0, and the partial sums SN (x0) converge,
then

f(x0) = c0 +
∞∑

n=1

(
cne2πinx0 + c−ne−2πinx0

)
.

When f(x) is continuous and
∑∞

−∞ |cn| < ∞, then the function is
represented by the absolutely convergent Fourier series

f(x) =
∞∑

−∞
cne2πinx.

If F (x) is continuous such that
∫ ∞

−∞
|F (x)|dx < ∞,

then we define its Fourier transform by

F̂ (u) =
∫ ∞

−∞
F (x)e−2πixudx.

It is also a continuous function of u. If
∫ ∞

−∞
|F̂ (u)|du < ∞,

then we have the Fourier inversion formula

F (x) =
∫ ∞

−∞
F̂ (u)e2πixudu.

Thus, the Fourier transform of F̂ (u) is F (−x).

Exercise 5.1.1 For Re(c) > 0, let F (x) = e−c|x|. Show that

F̂ (u) =
2c

c2 + 4π2u2
.

Exercise 5.1.2 For F (x) = e−πx2
, show that F̂ (u) = e−πu2

.
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Theorem 5.1.3 (Poisson summation formula) Let F ∈ L1(R). Sup-
pose that the series ∑

n∈Z

F (n + v)

converges absolutely and uniformly in v, and that
∑

m∈Z

|F̂ (m)| < ∞.

Then ∑

n∈Z

F (n + v) =
∑

n∈Z

F̂ (n)e2πinv.

Proof. The function

G(v) =
∑

n∈Z

F (n + v)

is a continuous function of v of period 1. The Fourier coefficients of
G are given by

cm =
∫ 1

0
G(v)e−2πimvdv

=
∑

n∈Z

∫ 1

0
F (n + v)e−2πimvdv

=
∑

n∈Z

∫ n+1

n
F (x)e−2πimxdx

=
∫ ∞

−∞
F (x)e−2πimxdx = F̂ (m).

Since
∑

m∈Z
|F̂ (m)| < ∞, we can represent G by its Fourier series

∑

n∈Z

F (n + v) =
∑

n∈Z

F̂ (n)e2πinv,

as desired. �
Corollary 5.1.4 With F as above,

∑

n∈Z

F (n) =
∑

n∈Z

F̂ (n).
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Proof. Set v = 0 in the theorem. �

Exercise 5.1.5 With F as in Theorem 5.1.3, show that
∑

n∈Z

F
(v + n

t

)
=
∑

n∈Z

|t|F̂ (nt)e2πintv.

Exercise 5.1.6 Show that

ec + 1
ec − 1

=
∞∑

−∞

2c

c2 + 4π2n2
.

Exercise 5.1.7 Show that
∑

n∈Z

e−(n+α)2π/x = x1/2
∑

n∈Z

e−n2πx+2πinα

for any α ∈ R, and x > 0.

Setting α = 0 in the previous exercise gives the following theo-
rem.

Theorem 5.1.8
∑

n∈Z

e−n2π/x = x1/2
∑

n∈Z

e−n2πx.

5.2 The Riemann Zeta Function

We will now derive the functional equation of the Riemann zeta
function and its analytic continuation to the entire complex plane.
To this end, we introduce the θ-function

θ(z) =
∑

n∈Z

eπin2z

for z ∈ C, with Im(z) > 0. If we put z = iy and set ω(y) = θ(iy),
Theorem 5.1.8 gives us the functional equation:

ω(1/x) = x1/2ω(x).

Riemann derives his functional equation from this fact. Recall
that the Γ-function is given by the integral

Γ(s) =
∫ ∞

0
e−tts−1dt,

valid for Re(s) > 0.
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Exercise 5.2.1 Show that

Γ(s + 1) = sΓ(s)

for Re(s) > 0 and that this functional equation can be used to extend
Γ(s) as a meromorphic function for all s ∈ C with only simple poles at
s = 0,−1,−2, . . . .

Noting that

Γ
(s

2

)
=
∫ ∞

0
e−tt

s
2
−1dt,

and putting t = n2πx, we get

π−s/2Γ
(s

2

)
n−s =

∫ ∞

0
x

s
2
−1e−n2πxdx.

Hence, for σ > 1, we can sum both sides of the above equation over
all positive integers n, to obtain

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

0
x

s
2
−1
( ∞∑

n=1

e−n2πx
)
dx,

the inversion being justified by the absolute convergence of the
right-hand side. Indeed, notice that

∞∑

n=1

e−n2πx � e−πx.

Observing that
∞∑

n=1

e−n2πx =
ω(x) − 1

2
,

we get

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

0
x

s
2
−1

(
ω(x) − 1

2

)
dx.

Let us put

W (x) =
ω(x) − 1

2
,

and write the right-hand side as
∫ ∞

0
x

s
2
−1W (x)dx.
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We decompose this as
∫ ∞

1

x
s
2
−1W (x)dx +

∫ 1

0

x
s
2
−1W (x)dx

and make the change of variables x �→ 1/x in the second integral to
get ∫ ∞

1
x

s
2 W (x)

dx

x
+
∫ ∞

1
W
(1

x

)
x− s

2
dx

x
.

Now,

W
(1

x

)
=

ω(1/x) − 1
2

=
x1/2ω(x) − 1

2
= −1

2
+

1
2
x1/2 + x1/2W (x)

by Theorem 5.1.8. Therefore,
∫ ∞

1
W
(1

x

)
x− s

2
dx

x
=

∫ ∞

1

(
− 1

2
+

1
2
x1/2 + x1/2W (x)

)
x− s

2
dx

x

= −1
s

+
1

s − 1
+
∫ ∞

1
x

1−s
2 W (x)

dx

x
.

Putting this together proves that

π−s/2Γ
(s

2

)
ζ(s) =

1
s(s − 1)

+
∫ ∞

1
W (x)

(
x

s
2 + x

1−s
2

) dx

x

for Re(s) > 1. However, the integral on the right-hand side con-
verges absolutely for all s ∈ C, since W (x) = O(e−πx) as x→∞. This
gives the analytic continuation and functional equation for ζ(s):

Theorem 5.2.2 We have

π−s/2Γ
(s

2

)
ζ(s) =

1
s(s − 1)

+
∫ ∞

1

W (x)
(
x

s
2 + x

1−s
2

) dx

x

for all s ∈ C. Moreover, if we define

ξ(s) := s(s − 1)π−s/2Γ
(s

2

)
ζ(s),

then ξ(s) is entire and ξ(1 − s) = ξ(s).
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Exercise 5.2.3 Show that ζ(s) has simple zeros at s = −2n, for n a posi-
tive integer.

Exercise 5.2.4 Prove that ζ(0) = −1/2.

Exercise 5.2.5 Show that ζ(s) �= 0 for any real s satisfying 0 < s < 1.

5.3 Gauss Sums

For any character χ (mod q), the Gauss sum τ(χ) is defined by

τ(χ) =
q∑

m=1

χ(m)e
(m

q

)
,

where e(t) = e2πit. The Gauss sum plays a significant role in the
functional equation of Dirichlet L-functions.

Before we proceed, we classify Dirichlet characters (mod q) into
two types: primitive and imprimitive. Let χ0 denote the trivial char-
acter (mod q). If d|q and ψ is a character (mod d), then χ0ψ is a
character (mod q). If d is a proper divisor of q characters (mod q) ob-
tained in this way will be called imprimitive. Otherwise, we shall
say the character is primitive.

Example 5.3.1 If (n, q) = 1, then

χ(n)τ(χ) =
q∑

m=1

χ(m)e
(mn

q

)
.

Solution. We have

χ(n)τ(χ) =
q∑

m=1

χ(m)χ(n)e
(m

q

)

=
q∑

h=1

χ(h)e
(nh

q

)

on putting h ≡ mn−1 (mod q), which we can do, since (n, q) = 1. �
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Exercise 5.3.2 If χ is a primitive, nonprincipal character (mod q), show
that

χ(n)τ(χ) =
q∑

m=1

χ(m)e
(mn

q

)

if (n, q) > 1.

Theorem 5.3.3 If χ is a primitive character (mod q), then |τ(χ)| = q1/2.

Proof. By Exercise 5.3.2,

χ(n)τ(χ) =
q∑

m=1

χ(m)e
(mn

q

)
.

Thus

|χ(n)|2|τ(χ)|2 =
q∑

m1=1

q∑

m2=1

χ(m1)χ(m2)e
(n(m1 − m2)

q

)
.

Summing over n for 1 ≤ n ≤ q gives

φ(q)|τ(χ)|2 = qφ(q),

so that |τ(χ)|2 = q, as required. �

5.4 Dirichlet L-functions

The functional equation for a Dirichlet L-function L(s, χ) can be
derived easily by means of the Poisson summation formula. The
discussion splits according as χ is an even or odd character, that is,
according as χ(−1) = 1 or −1, respectively.

We discuss the even case first and relegate the odd case to the
exercises. Thus, suppose χ(−1) = 1. We have

π−s/2qs/2Γ
(s

2

)
n−s =

∫ ∞

0
e−n2πx/qx

s
2
dx

x
.

We multiply this equation by χ(n) and sum over n to get

π−s/2qs/2Γ
(s

2

)
L(s, χ) =

∫ ∞

0
x

s
2

( ∞∑

n=1

χ(n)e−n2πx/q
)dx

x
,
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for Re(s) > 1. Since χ(−1) = 1 and χ(0) = 0, we rewrite this as

1
2

∫ ∞

0
xs/2θ(x, χ)

dx

x
,

where

θ(x, χ) =
∞∑

n=−∞
χ(n)e−n2πx/q.

We can derive a functional equation for θ(x, χ) by noting that upon
multiplication of the Gauss sum τ(χ), we get

τ(χ)θ(x, χ) =
q∑

m=1

χ(m)
∞∑

n=−∞
e−n2πx/q+2πimn/q.

By Exercise 5.1.7, the inner sum is equal to

(q/x)1/2
∞∑

n=−∞
e−(n+m/q)2πq/x,

so that

τ(χ)θ(x, χ) = (q/x)1/2
q∑

m=1

χ(m)
∞∑

n=−∞
e−(nq+m)2π/xq

= (q/x)1/2
∞∑

l=−∞
χ(l)e−l2π/xq

= (q/x)1/2θ(x−1, χ).

Thus, as before, we write the integral for L(s, χ) as

1
2

∫ ∞

1
x

s
2 θ(x, χ)

dx

x
+

1
2

∫ ∞

1
x− s

2 θ(x−1, χ)
dx

x

=
1
2

∫ ∞

1
x

s
2 θ(x, χ)

dx

x
+

q1/2

2τ(χ)

∫ ∞

1
x

1−s
2 θ(x, χ)

dx

x
.

The right-hand side is regular for all s ∈ C, since θ(x, χ) = O(e−πx).
Also, if we replace s by 1 − s and χ by χ, the expression becomes

q1/2

2τ(χ)

∫ ∞

1
x

s
2 θ(x, χ)

dx

x
+

1
2

∫ ∞

1
x

1−s
2 θ(x, χ)

dx

x
,
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which is the previous expression multiplied by q1/2/τ(χ), since
|τ(χ)|2 = q. This proves the following theorem.

Theorem 5.4.1 Suppose χ(−1) = 1. Set

ξ(s, χ) = π−s/2qs/2Γ
(s

2

)
L(s, χ).

Then ξ(s, χ) in entire and

ξ(s, χ) = wχξ(1 − s, χ),

where wχ = τ(χ)/
√

q.

Exercise 5.4.2 Suppose χ(−1) = 1. Show that L(s, χ) has simple zeros
at s = −2,−4,−6, . . ..

Below, we will derive the functional equation in the case χ(−1) =
−1. Note that the above argument fails because for now, θ(x, χ) is
identically zero.

Exercise 5.4.3 Prove that

π−(s+1)/2q(s+1)/2Γ
(s + 1

2

)
n−s =

∫ ∞

0
ne−πn2x/qx

s+1
2

dx

x

and hence deduce that

π−( s+1
2

)q( s+1
2

)Γ
(s + 1

2

)
L(s, χ) =

1
2

∫ ∞

0
θ1(x, χ)x

s+1
2

dx

x
,

where

θ1(x, χ) =
∞∑

n=−∞
nχ(n)e−n2πx/q.

Exercise 5.4.4 Prove that
∞∑

n=−∞
ne−n2πx/q+2πimn/q = i (q/x)3/2

∞∑

n=−∞

(
n +

m

q

)
e−π(n+m/q)2q/x.

Exercise 5.4.5 Prove that for χ(−1) = −1, if we set

ξ(s, χ) = π−s/2qs/2Γ
(s + 1

2

)
L(s, χ),

then ξ(s, χ) is entire and

ξ(s, χ) = wχξ(1 − s, χ),

where wχ = τ(χ)/iq1/2.
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5.5 Supplementary Problems

Exercise 5.5.1 Let

f(y) =
∞∑

n=1

ane−2πny

converge for y > 0. Suppose that for some w ∈ Z,

f(1/y) = (−1)wyrf(y),

and that an = O(nc) for some constant c > 0. Let

Lf (s) =
∞∑

n=1

ann−s.

Show that (2π)−sΓ(s)Lf (s) extends to an entire function and satisfies the
functional equation

(2π)−sΓ(s)Lf (s) = (−1)w(2π)−(r−s)Γ(r − s)Lf (r − s).

Exercise 5.5.2 Let

g(y) =
∞∑

n=0

ane−2πny

converge for y > 0. Suppose that for some w ∈ Z,

g(1/y) = (−1)wyrg(y)

and that an = O(nc) for some constant c > 0. Let Lg(s) =
∑∞

n=1 ann−s.
Show that (2π)−sΓ(s)Lg(s) extends to a meromorphic function with at
most simple poles at s = 0 and s = r and satisfies the functional equation

(2π)−sΓ(s)Lg(s) = (−1)w(2π)r−sΓ(r − s)Lg(r − s).

Exercise 5.5.3 Let

Ψ(x) =
{

x − [x] − 1
2 if x �∈ Z,

0 if x ∈ Z.

Show that ∣∣∣∣∣∣
Ψ(x) +

∑

0<|m|≤M

e(mx)
2πim

∣∣∣∣∣∣
≤ 1

2πM‖x‖ ,

where e(t) = e2πit and ‖x‖ denotes the distance from x to the nearest
integer.
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Exercise 5.5.4 Let f(x) be a differentiable function on [0, 1] satisfying
|f ′(x)| ≤ K. Show that

∣∣∣∣∣∣

∑

|m|≤M

∫ 1

0
f(x)e(mx)dx − f(0) + f(1)

2

∣∣∣∣∣∣
� K log M

M
.

Deduce that ∞∑

−∞

∫ 1

0
f(x)e(mx)dx =

f(0) + f(1)
2

.

Exercise 5.5.5 By using the previous exercise with f(x) = x2, deduce
that ∞∑

m=1

1
m2

=
π2

6
.

Exercise 5.5.6 (Pólya - Vinogradov inequality) Let χ be a primitive
character mod q. Show that for q > 1,

∣∣∣∣∣∣

∑

n≤x

χ(n)

∣∣∣∣∣∣
� q1/2 log q.

Exercise 5.5.7 Show that if χ is a primitive character (mod q), then

L(1, χ) =
∑

n≤x

χ(n)
n

+ O

(
q1/2 log q

x

)

for any x ≥ 1 and q > 1.

Exercise 5.5.8 Prove that
∑

χ�=χ0

L(1, χ) = ϕ(q) + O(q1/2 log q),

where the summation is over all nontrivial characters (mod q).

Exercise 5.5.9 For any s ∈ C with Re(s) > 0, show that for any x ≥ 1,

L(s, χ) =
∑

n≤x

χ(n)
ns

+ O

(
|s|q1/2 log q

σxσ

)
,

where χ is a nontrivial character mod q and σ = Re(s).
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Exercise 5.5.10 Prove that for any σ > 1/2,

∑

χ�=χ0

L(σ, χ) = ϕ(q) + O(q3/2−σ),

where the sum is over all nontrivial characters (mod q).

Exercise 5.5.11 Let Bn(x) denote the nth Bernoulli polynomial intro-
duced in Chapter 2. For n ≥ 2, show that

Bn(x)
n!

=
∑

m�=0

e(mx)
(2πim)n

.

Exercise 5.5.12 Let f(x) be differentiable on [A, B] and satisfy for some
constant K, |f ′(x)| ≤ K for all x ∈ [A, B]. Show that

B∑

n=A

′f(n) =
∞∑

m=−∞

∫ B

A
f(x)e(mx)dx,

where the dash on the summation means that the end-terms are replaced
by f(A)/2 and f(B)/2. (Hint: Use Exercise 5.5.4.)

Exercise 5.5.13 Apply the previous exercise to each of the functions
f(x) = cos(2πx2/N) and f(x) = sin(2πx2/N) to deduce that

S =
N−1∑

n=0

e
(n2

N

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(1 + i)N1/2 if N ≡ 0 (mod 4),
N1/2 if N ≡ 1 (mod 4),
0 if N ≡ 2 (mod 4),
iN1/2 if N ≡ 3 (mod 4).

Exercise 5.5.14 Let χ be a nontrivial quadratic character mod p with p
prime. Show that

τ(χ) =
p−1∑

m=1

χ(m)e
(m

p

)
=
{ √

p if p ≡ 1 (mod 4),
i
√

p if p ≡ 3 (mod 4).

From this result we can deduce the law of quadratic reciprocity
as follows.

Let p and q be distinct odd primes. Let τ(χ) be the Gauss sum for
χ the quadratic character modulo p. Using the above formula and
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(a/q) ≡ a(q−1)/2 (mod q) we get

τ(χ)q+1 = (−1)(p−1)/2p(τ(χ)2)(q−1)/2

= (−1)(p−1)/2p(−1)(p−1)(q−1)/4p(q−1)/2

≡ (−1)(p−1)/2+(p−1)(q−1)/4p

(
p

q

)
(mod q).

On the other hand, using the multinomial theorem, we obtain

τ(χ)q+1 = τ(χ)τ(χ)q = τ(χ)

(
∑

n

(
n

p

)
e(nq/p) + f(e(1/p))

)
,

where f(x) is a polynomial with integer coefficients divisible by q.
Using Exercise 5.3.2 we get

∑

n

(
n

p

)
e(nq/p) =

(
q

p

)
τ(χ).

So

τ(χ)q+1 =
(

q

p

)
(−1)(p−1)/2p + h(e(1/p))

for another polynomial h(x) with integer coefficients divisible by q.
Collecting same powers of e(1/p) and using the fact that 1, e(1/p),
e(2/p), . . . , e((p− 2)/p) are linearly independent, since 1 + x + x2 +
· · ·+xp−1 is irreducible (see, for example, [EM, p. 37 and p. 183]) we
get

(
q

p

)
p(−1)(p−1)/2 ≡ (−1)(p−1)/2+(p−1)(q−1)/4p

(
p

q

)
(mod q),

from which it follows easily that
(

q

p

)
=
(

p

q

)
(−1)(p−1)(q−1)/4.

Exercise 5.5.15 Let φ(s) = (2π)−sΓ(s)ζ(s)ζ(s+1). Show that φ(−s) =
φ(s).

Exercise 5.5.16 Show that φ(s) in Exercise 5.5.15 has a double pole at
s = 0 and simple poles at s = ±1. Show further that Ress=1φ(s) = π/12
and Ress=−1φ(s) = −π/12.
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Exercise 5.5.17 Show that if σ(n) =
∑

d|n d, then
∞∑

n=1

σ(n)
ns+1

= ζ(s)ζ(s + 1),

and that
∞∑

n=1

σ(n)
n

e−nx =
1

2πi

∫ 2+i∞

2−i∞
x−sΓ(s)ζ(s)ζ(s + 1)ds.

Exercise 5.5.18 Show that
∞∑

n=1

σ(n)
n

e−2πnx =
π

12x
− πx

12
+

1
2

log x +
∞∑

n=1

σ(n)
n

e−2πn/x.

Exercise 5.5.19 For a and b coprime integers and b > 0, define

C
(a

b

)
=

b−1∑

j=0

e2πij2a/b.

Let q be prime and (p, q) = 1. Show that

lim
t→0

√
tθ
(
t +

2pi

q

)
=

1
q
C
(
− p

q

)
.

Exercise 5.5.20 Let r = p/q. Show that

lim
t→0

√
t

t + 2ir
θ
( 1

t + 2ir

)
=

(1 − i)
4
√

pq
C
( q

4p

)
,

with notation as in the previous exercise.

Exercise 5.5.21 Deduce from the previous exercise the law of quad-
ratic reciprocity (p

q

)(q

p

)
= (−1)

p−1
2

· q−1
2

for odd primes p and q, and where
(

a
b

)
denotes the Legendre symbol.

Exercise 5.5.22 Suppose that f(s) is an entire function satisfying the
functional equation

AsΓ(s)f(s) = A1−sΓ(1 − s)f(1 − s).

Show that if f(1/2) �= 0, then

f ′
(1

2

)
= −f(1/2)

(
log A +

Γ′(1/2)
Γ(1/2)

)
.





6
Hadamard Products

An entire function f(z) is said to be of finite order if for some α ≥ 0,
we have

f(z) = O
(
e|z|

α
)

as |z| → ∞. If α = 0, then f(z) is constant by Liouville’s theorem.
The infimum of the numbers α such that the above estimate holds
is called the order of f(z).

In the 1890s, Hadamard developed the theory of entire functions
of finite order. He showed that, very much like polynomials, they
can be factored into an infinite product over the zeros of f(z).

In this chapter we will derive this factorization theorem of
Hadamard for entire functions of order 1 and then apply it to de-
rive a wider zero free region for ζ(s).

6.1 Jensen’s Theorem

Let f(z) be an entire function of finite order β. Jensen’s theorem
relates β to the distribution of the zeros of f(z).

Example 6.1.1 Show that an entire function f(z) of finite order β with-
out any zeros must be of the form f(z) = eg(z), where g(z) is a polynomial
and β = deg g.
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Solution.
Let h(z) = log f(z) − log f(0). Then h(z) is entire, since f(z) has

no zeros. Also, for any ε > 0,

Re h(z) = log |f(z)| � Rβ+ε.

Writing

h(z) =
∞∑

n=0

(an + ibn)zn

with an, bn ∈ R, we see that for z = Reiθ,

Re(h(z)) =
∞∑

n=0

anRn cos nθ −
∞∑

n=0

bnRn sinnθ.

By Fourier analysis, we get

|an|Rn �
∫ 2π

0

∣∣∣Re
(
h
(
Reiθ

))∣∣∣ dθ.

Since h(0) = 0, we have a0 = 0, and therefore
∫ 2π

0
Re
(
h
(
Reiθ

))
dθ = 0.

Observe that for x ∈ R, we have

|x| + x =

⎧
⎨

⎩

2x if x ≥ 0,

0 if x < 0.

Hence

|an|Rn �
∫ 2π

0

{
|Re(h(Reiθ))| + Re h(Reiθ)

}
dθ

� Rβ+ε.

Letting R → ∞ yields an = 0 if n > β. �
Notice that in this example the same result holds if the estimate

|f(z)| � eRβ+ε
i

holds for |z| = Ri and Ri is a sequence tending to infinity.
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Theorem 6.1.2 (Jensen’s theorem) Let f(z) be an entire function of
order β such that f(0) �= 0. If z1, z2, . . . , zn are the zeros of f(z) in
|z| < R, counted with multiplicity, then

1
2π

∫ 2π

0
log |f(Reiθ)|dθ = log |f(0)| + log

( Rn

|z1| · · · |zn|
)
.

Proof. We may assume, without loss of generality, that f(0) = 1.
Also, it is clear that if the theorem is true for functions g and h, that
it is also true for the product gh. Thus, it suffices to prove it for
functions with either no zero or one zero in |z| < R. Indeed, if f has
no zeros in |z| < R, the right-hand side is zero. The left-hand side is

1
2πi

∫

|z|=R
(log f(z))

dz

z
,

which by Cauchy’s theorem is zero. Taking real parts gives the de-
sired result.

If f has one zero z = z1 in |z| < R, we consider the contour
|z| = R taken in the counterclockwise direction and cut it from z1

to the boundary. We deform the contour so that we go around z1

in a clockwise direction along a circle of radius ε (say). Then, by
Cauchy’s theorem with g(z) = log f(z),

0 =
1

2πi

∫

C
g(z)

dz

z

where C is the contour given above.
Since the argument changes by −2πi when g(z) goes around the

zero z = z1, we see that as ε → 0, we deduce

1
2π

∫ 2π

0
log |f(Reiθ)|dθ = log

R

|z1|
,

as desired. This completes the proof. �
An alternative proof of Jensen’s theorem can be given that avoids

the use of cutting the plane. One considers

f(z) =
R(z − z1)
R2 − z1z

.

Then f(z) is regular for |z| ≤ R. Moreover, |f(z)| = 1 on |z| = R,
and |f(0)| = |z1|/R, as a simple calculation shows. Jensen’s theorem
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is easily verified for this choice of f . But any holomorphic function
on |z| ≤ R can be written as a function with no zeros in |z| ≤ R and
a product of functions of the form

R(z − zi)
R2 − ziz

.

Now Jensen’s theorem easily follows.

Corollary 6.1.3 Let f be as in Theorem 6.1.2. Then

log
(

Rn

|z1| · · · |zn|

)
≤ max

|z|=R
log |f(z)| − log |f(0)|.

Proof. This is clear from Jensen’s theorem. �

Now define nf (r) := n(r) to be the number of zeros of f in |z| ≤ r.

Exercise 6.1.4 Show that
∫ R

0

n(r)dr

r
≤ max

|z|=R
log |f(z)| − log |f(0)|,

with f as in Jensen’s theorem.

Exercise 6.1.5 If f(z) is of order β, show that nf (r) = O(rβ+ε), for any
ε > 0.

Exercise 6.1.6 Let f(z) be an entire function of order β. Show that

∞∑

n=1

|zn|−β−ε

converges for any ε > 0 (Here, we have indexed the zeros zi so that
|z1| ≤ |z2| ≤ · · · ).

6.2 Entire Functions of Order 1

We will now derive a factorization theorem for entire functions of
order 1. A similar result holds for entire functions of higher order,
and we relegate their study to the supplementary problems.
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Theorem 6.2.1 Let f(z) be an entire function of order 1 with zeros
z1, z2, . . . arranged so that |z1| ≤ |z2| ≤ · · · and repeated with appro-
priate multiplicity. Then f can be written as

f(z) = eA+Bz
∞∏

n=1

(
1 − z

zn

)
ez/zn ,

where A and B are constants.

Proof. The product

P (z) =
∞∏

n=1

(
1 − z

zn

)
ez/zn

converges absolutely for all z, since

(1 − z)ez = 1 − z2 + · · ·

and by Exercise 6.1.6. Thus, P (z) represents an entire function. If
we write

f(z) = P (z)F (z),

then F (z) is an entire function without zeros. If F were of finite
order, we could conclude by Example 6.1.1 that F (z) = eg(z), where
g(z) is a polynomial.

By the remark after Example 6.1.1, it suffices to show that

|F (z)| � eR1+ε
i

to deduce that F (z) = eg(z) where g(z) is of the form A + Bz for
certain constants A and B.

To this end, we will choose Ri satisfying
∣∣∣Ri − |zn|

∣∣∣ > |zn|−2

for all n. This can be done, since the total measure of the intervals
(|zn| − |zn|−2, |zn| + |zn|−2) is bounded by

2
∞∑

n=1

|zn|−2 < ∞,

since f(z) has order 1.
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We write
P (z) = P1(z)P2(z)P3(z),

where in P1, |zn| < 1
2Ri, in P2,

1
2Ri ≤ |zn| ≤ 2Ri, and in P3, |zn| >

2Ri. For the factors of P1 we have for |z| = Ri,

∣∣∣∣

(
1 − z

zn

)
ez/zn

∣∣∣∣ ≥
(∣∣∣

z

zn

∣∣∣− 1
)
e−|z|/|zn| > e−Ri/|zn|.

Since
∑

|zn|< 1
2
R

|zn|−1 ≤
(1

2
R
)ε

∞∑

n=1

|zn|−1−ε,

we get
|P1(z)| > exp(−R1+ε

i ).

For P2(z),
∣∣∣∣

(
1 − z

zn

)
ez/zn

∣∣∣∣ ≥ e−2|z − zn|/2Ri 
 R−3
i

by the way we have chosen Ri.
Since n(Ri) = O(R1+ε

i ), we get

|P2(z)| 
 (R−3
i )R

1+ε
i ≥ exp(−c1R

1+2ε
i ).

Finally, for P3(z), we have |z/zn| < 1/2 so that
∣∣∣∣

(
1 − z

zn

)
ez/zn

∣∣∣∣ ≥ e−c2R2
i /|zn|2

and
∑

|zn|>2R

|zn|−2 < (2R)−1+ε
∞∑

n=1

|zn|−1−ε.

Thus, on |z| = Ri we have

|P (z)| > exp(−R1+3ε),

so that
|F (z)| < exp(R1+4ε).

Hence, F (z) = eg(z), where g(z) is a polynomial of degree at
most 1. �
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6.3 The Gamma Function

We will prove that 1/Γ(z) is an entire function of order 1 and derive
its Hadamard factorization.

Exercise 6.3.1 Show that
∫ ∞

0

vx−1dv

1 + v
=

π

sinπx

for 0 < x < 1.

Exercise 6.3.2 Show that

Γ(x)Γ(y) = 2Γ(x + y)
∫ π/2

0
(cos θ)2x−1(sin θ)2y−1dθ

for x, y > 0.

Exercise 6.3.3 Show that

Γ(x)Γ(y) = Γ(x + y)
∫ 1

0
λx−1(1 − λ)y−1dλ.

(The integral is denoted B(x, y) and called the beta function.)

Exercise 6.3.4 Prove that

Γ(x)Γ(1 − x) =
π

sinπx

for 0 < x < 1.

Exercise 6.3.5 Prove that

Γ
(

1
2

)
=

√
π.

Exercise 6.3.6 (Legendre’s duplication formula) Show that

Γ(2x)Γ
(1

2

)
= 22x−1Γ(x)Γ

(
x +

1
2

)

for x > 0.
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Exercise 6.3.7 Let c be a positive constant. Show that as x → ∞,

Γ(x + c) ∼ xcΓ(x).

Exercise 6.3.8 (Stirling’s formula) Show that

Γ(x) ∼ e−xxx−1/2
√

2π

as x → ∞.

Exercise 6.3.9 Show that 1/Γ(z) is an entire function with simple zeros
at z = 0,−1,−2, . . . .

Exercise 6.3.10 Show that for some constant K,

Γ′(z)
Γ(z)

=
∫ 1

0

{
1 − (1 − t)z−1

}dt

t
− K.

Exercise 6.3.11 Show that for z not a negative integer,

Γ′(z)
Γ(z)

=
∞∑

n=0

( 1
n + 1

− 1
n + z

)
− K

for some constant K.

Exercise 6.3.12 Derive the Hadamard factorization of 1/Γ(z):

1
Γ(z)

= eγzz
∞∏

n=1

(
1 +

z

n

)
e−z/n,

where γ denotes Euler’s constant.

Exercise 6.3.13 Show that

log Γ(z) =
(
z − 1

2

)
log z − z +

1
2

log 2π +
∫ ∞

0

[u] − u + 1
2

u + z
du.

Exercise 6.3.14 For any δ > 0, show that

log Γ(z) =
(
z − 1

2

)
log z − z +

1
2

log 2π + O
( 1
|z|
)

uniformly for −π + δ ≤ arg z ≤ π − δ.
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Exercise 6.3.15 If σ is fixed, and |t| → ∞, show that

|Γ(σ + it)| ∼ e−
1
2
π|t||t|σ− 1

2

√
2π.

Exercise 6.3.16 Show that 1/Γ(z) is of order 1.

Exercise 6.3.17 Show that

Γ′(z)
Γ(z)

= log z + O
( 1
|z|
)

for |z| → ∞ in the sector −π + δ < arg z < π − δ for any fixed δ > 0.

6.4 Infinite Products for ξ(s) and ξ(s, χ)

In this section we will establish that ξ(s) and ξ(s, χ) are entire func-
tions of order 1. Then we will derive their Hadamard factorizations.

Recall that

ξ(s) =
1
2
s(s − 1)π−s/2Γ

(s

2

)
ζ(s)

and that when χ is a primitive character (mod q),

ξ(s, χ) = (q/π)
s+a
2 Γ
(s + a

2

)
L(s, χ),

where a = 0 or 1 according as χ(−1) = 1 or −1.

Exercise 6.4.1 Show that for some constant c,

|ξ(s)| < exp(c|s| log |s|)

as |s| → ∞. Conclude that ξ(s) has order 1.

Exercise 6.4.2 Prove that ζ(s) has infinitely many zeros in 0≤Re(s)≤ 1.

Exercise 6.4.3 Show that

ξ(s) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ,

where the product is over the nontrivial zeroes of ζ(s) in the region 0 ≤
Re(s) ≤ 1 and A = − log 2, B = −γ/2−1+ 1

2 log 4π, where γ is Euler’s
constant.
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Exercise 6.4.4 Let χ be a primitive character (mod q). Show that ξ(s, χ)
is an entire function of order 1.

Exercise 6.4.5 Show that L(s, χ) has infinitely many zeros in 0 ≤ Re(s)
≤1 and that

ξ(s, χ) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ,

where the product is over the nontrivial zeros of L(s, χ).

Exercise 6.4.6 For A and B occurring in the previous exercise, show that

eA = ξ(0, χ)

and that

Re(B) = −
∑

ρ

Re
(1

ρ

)
,

where the sum is over the nontrivial zeros ρ of L(s, χ).

6.5 Zero-Free Regions for ζ(s) and L(s, χ)

In Exercise 3.2.5 we proved the nonvanishing of ζ(s) for Re(s) = 1.
A similar deduction was made for L(s, χ) in Exercise 3.2.12. Using
the Hadamard factorization for ξ(s) and ξ(s, χ), we will derive a
wider zero-free region.

The starting point is

−Re
(ζ ′(s)

ζ(s)

)
=

∞∑

n=1

Λ(n) cos(t log n)
nσ

,

where, following custom, we write s = σ + it.

Exercise 6.5.1 Show that

−3
ζ ′(σ)
ζ(σ)

− 4 Re
(ζ ′(σ + it)

ζ(σ + it)

)
− Re

(ζ ′(σ + 2it)
ζ(σ + 2it)

)
≥ 0

for t ∈ R and σ > 1.
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Exercise 6.5.2 For 1 < σ < 2, show that

−ζ ′(σ)
ζ(σ)

<
1

σ − 1
+ A

for some constant A.

Exercise 6.5.3 Prove that

−Re
(ζ ′(s)

ζ(s)

)
< A log |t| −

∑

ρ

Re
( 1

s − ρ
+

1
ρ

)

for 1 ≤ σ ≤ 2 and |t| ≥ 2.

Exercise 6.5.4 Show that

Re
( 1

s − ρ
+

1
ρ

)
≥ 0.

Deduce that
−Re

(ζ ′(s)
ζ(s)

)
< A log |t|

for 1 ≤ σ ≤ 2, |t| ≥ 2.

Exercise 6.5.5 Let ρ = β + iγ be any nontrivial zero of ζ(s). Show that
for |t| ≥ 2,

−Re
(ζ′(σ + it)

ζ(σ + it)

)
< A log |t| − 1

σ − β
.

Theorem 6.5.6 There exists a constant c > 0 such that ζ(s) has no zero
in the region

σ ≥ 1 − c

log |t| , |t| ≥ 2.

Proof. By Exercise 6.5.5,

−Re
(ζ ′(σ + it)

ζ(σ + it)

)
< A1 log |t| − 1

σ − β
.

We also know, by Exercises 6.5.2 and 6.5.4, that

−ζ ′(σ)
ζ(σ)

<
1

σ − 1
+ A2

and

−Re
(ζ ′(σ + 2it)

ζ(σ + 2it)

)
< A3 log |t|.
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Inserting these inequalities into

−3
ζ ′(σ)
ζ(σ)

− 4 Re
(ζ ′(σ + it)

ζ(σ + it)

)
− Re

(ζ ′(σ + 2it)
ζ(σ + 2it)

)
≥ 0

(Exercise 6.5.1), we obtain

4
σ − β

<
3

σ − 1
+ A log |t|

for some constant A. Taking σ = 1 + δ/ log |t| gives

β < 1 +
σ

log |t| −
4σ

(3 + Aδ) log |t| ,

so that if δ is sufficiently small, we get

β < 1 − c

log |t|

for some suitable positive constant c. �

Corollary 6.5.7 There exists a constant c > 0 such that ζ(s) has no zero
in the region

σ ≥ 1 − c

log(|t| + 2)
.

Proof. The region σ ≥ 1, |t| ≤ 2 contains no zeros of ζ(s). Thus,
there must be a constant c1 > 0 such that ζ(s) has no zeros in σ ≥
1−c1 and |t| ≤ 2. Combining such a region with the zero-free region
provided by the theorem gives the result. �

Exercise 6.5.8 Show that

−Re
(ζ ′(s)

ζ(s)

)
< Re

( 1
s − 1

)
+ c1 log(|t| + 2)

for some constant c1 > 0 and σ > 1.

In the following exercises we will derive analogous results for the
Dirichlet L-functions L(s, χ).

Exercise 6.5.9 Suppose that χ is a primitive character (mod q) satisfying
χ2 �= χ0. Show that there is a constant c > 0 such that L(s, χ) has no
zero in the region

σ > 1 − c

log(q|t| + 2)
.
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Exercise 6.5.10 Show that the previous result remains valid when χ is a
nonreal imprimitive character.

We now proceed to extend the previous results for χ2 = χ0. Let
us first observe that

∣∣∣
L′(s, χ0)
L(s, χ0)

− ζ ′(s)
ζ(s)

∣∣∣ ≤ log q

for σ > 1. By Exercise 6.5.8,

−Re
(ζ ′(s)

ζ(s)

)
< Re

( 1
s − 1

)
+ c1 log(|t| + 2).

Hence, if χ2 = χ0,

−Re
(L′(σ + 2it, χ2)

L(σ + 2it, χ2)

)
< Re

( 1
σ − 1 + 2it

)
+ c2 log(q(|t| + 2)).

When we insert this estimate into our previous calculations, we
obtain

4
σ − β

<
3

σ − 1
+ Re

( 1
σ − 1 + 2iγ

)
+ c3 log(q(|γ| + 2)).

Let us write L for log(q(|t| + 2)). Taking σ = 1 + δ/L and assuming
γ > δ/L gives

4
σ − β

<
3L
δ

+
L
5δ

+ c3L,

so that
β < 1 − 4 − c3δ

16 + 5c3δ

δ

L .

Hence if δ is sufficiently small in relation to c3, we get the following:

Theorem 6.5.11 There exists an absolute constant c > 0 such that if
0 < δ < c and χ is a real, nonprincipal character (mod q), L(s, χ) has no
zeros in the region

σ > 1 − δ

4L
and

|t| >
δ

log q
,

where L = log(q(|t| + 2)).
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The case where |t| < δ/ log q still needs to be considered. We will
show that for suitable δ (independent of q) there is at most one zero
in the region and this zero is simple and real. Such a zero, if it exists,
is called a Siegel zero in the literature.

Theorem 6.5.12 There exists a positive absolute constant c such that if
0 < δ < c, then L(s, χ) has no zeros in the region

δ > 1 − c

log q(|t| + 2)

except possibly if χ is real and nonprincipal, in which case there is at most
one simple, real zero in the region.

Proof. We need only consider the case where χ is real and nonprin-
cipal and |γ| < δ/ log q. First suppose there are two complex zeros
in the region. We have

−L′(σ, χ)
L(σ, χ)

< c1 log q −
∑

ρ

1
σ − ρ

,

the sum over the zeros being real, since they occur in complex con-
jugate pairs. If β ± iγ are zeros of L(s, χ), with γ �= 0, then

−L′(σ, χ)
L(σ, χ)

< c1 log q − 2(σ − β)
(σ − β)2 + γ2

.

Also,

−L′(σ, χ)
L(σ, χ)

=
∞∑

n=1

χ(n)Λ(n)
nσ

≥ −
∞∑

n=1

Λ(n)
nσ

=
ζ ′(σ)
ζ(σ)

> − 1
σ − 1

− c0

for some constant c0. Thus

− 1
σ − 1

< c2 log q − 2(σ − β)
(σ − β)2 + γ2

,

and taking σ = 1 + 2δ/ log q gives

− 1
σ − 1

< c2 log q − 8
5(σ − β)

because
|γ| <

δ

log q
=

1
2
(σ − 1) <

1
2
(σ − β).
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Therefore,

β < 1 − δ

log q

for a sufficiently small δ. The argument for two real zeros or a dou-
ble real zero is the same. This completes the proof. �

6.6 Supplementary Problems

Exercise 6.6.1 Prove that Γ(s) has poles only at s = 0,−1,−2, . . . , and
that these are simple, with

Ress=−kΓ(s) = (−1)k/k!.

Exercise 6.6.2 Show that

e−1/x =
1

2πi

∫

(σ)
xsΓ(s)ds,

for any σ > 1 and x ≥ 1.

Exercise 6.6.3 Let f(s) =
∑∞

n=1 an/ns be an absolutely convergent
Dirichlet series in the half-plane Re(s) > 1. Show that

∞∑

n=1

ane−n/x =
1

2πi

∫

(σ)
f(s)xsΓ(s)ds

for any σ > 1.

Exercise 6.6.4 Prove that

sin z = z
∞∏

n=1

(
1 − z2

n2π2

)
.

Exercise 6.6.5 Using the previous exercise, deduce that

∞∑

n=1

1
n2

=
π2

6
.





7
Explicit Formulas

In this chapter our goal is to derive the explicit formula

ψ(x) = x −
∑

ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log
(
1 − x−2

)
,

where the sum is over the nontrivial zeros ρ of ζ(s). The method
will then be used to derive the result

ψ(x) = x + O
(
x1/2 log2 x

)

assuming the Riemann hypothesis. A similar result can be obtained
for primes in arithmetic progressions.

7.1 Counting Zeros

If f(z) is analytic in C and non-vanishing on C, then the integral

1
2πi

∫

C

f ′

f
(z)dz

is equal to the number of zeros of f inside C, counted with multi-
plicity. This is easily seen by Cauchy’s theorem.
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Since
d

dz
log f(z) =

f ′(z)
f(z)

,

we have ∫

C

f ′

f
(z)dz = ∆C log f(z),

where ∆C denotes the variation of log f(z) around the contour C.
Also,

log f(z) = log |f(z)| + iargf(z),

and log |f | is single-valued. Thus, the formula can be rewritten as

1
2π

∆Cargf(z).

Exercise 7.1.1 Let L be the two line segments formed by the line joining
2 to 2 + iT and then 1

2 + iT. Show that

∆L arg(s − 1) =
π

2
+ O

( 1
T

)
.

Exercise 7.1.2 With L as in the previous exercise, show that

∆L arg π−s/2 = −T

2
log π.

Exercise 7.1.3 With L as in the previous exercise, show that

∆L arg Γ
(s

2
+ 1
)

=
T

2
log

T

2
− T

2
+

3
8
π + O

( 1
T

)
.

Exercise 7.1.4 Show that

∑

ρ

1
1 + (T − γ)2

= O(log T ),

where the sum is over the nontrivial zeros ρ = β + iγ of ζ(s).

Exercise 7.1.5 Let N(T ) be the number of zeros of ζ(s) with 0< Im(s)≤
T. Show that

N(T + 1) − N(T ) = O(log T ).
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Exercise 7.1.6 Let s = σ + it with t unequal to an ordinate of a zero.
Show that for large |t| and −1 ≤ σ ≤ 2,

ζ ′(s)
ζ(s)

=
∑

ρ

′ 1
s − ρ

+ O(log |t|),

where the dash on the summation indicates that it is limited to those ρ for
which |t − γ| < 1.

Theorem 7.1.7 Let N(T ) be the number of zeros of ζ(s) in the rectangle
0 < σ < 1, 0 < t < T. Then

N(T ) =
T

2π
log

T

2π
− T

2π
+

7
8

+ S(T ) + O
( 1

T

)
,

where
πS(T ) = ∆L arg ζ(s)

and L denotes the path of line segments joining 2 to 2 + iT and then to
1
2 + iT. We also have

S(T ) = O(log T ).

Proof. Let R be the rectangle with vertices 2, 2 + iT , −1 + iT , and
−1, traversed in the counterclockwise direction. Then

2πN(T ) = ∆R arg ξ(s).

There is no change in the argument as s goes from −1 to 2. Also,
the change when s moves from 1

2 + iT to −1 + iT and then to −1 is
equal to the change as s moves from 2 to 2 + iT and then to 1

2 + iT ,
since

ξ(σ + it) = ξ(1 − σ − it) = ξ(1 − σ + it).

Hence πN(T ) = ∆L arg ξ(s), where L denotes the path of line seg-
ments joining 2 to 2 + iT and then to 1

2 + iT. By Exercises 7.1.1 and
7.1.3, we deduce

N(T ) =
T

2π
log

T

2π
− T

2π
+

7
8

+ S(T ) + O
( 1

T

)
,

where
πS(T ) = ∆L arg ζ(s).

Now, the variation of ζ(s) along σ = 2 is bounded, since log ζ(s) is
bounded there. Thus,
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πS(T ) = O(1) −
∫ 2+iT

1
2
+iT

Im
(

ζ ′(s)
ζ(s)

)
ds.

We now apply Exercise 7.1.6, which says that

ζ ′(s)
ζ(s)

=
∑

ρ

′ 1
s − ρ

+ O(log t),

where the dash on the summation means | Im(s−ρ)| < 1. Observing
that ∫ 2+iT

1
2
+iT

Im
( 1

s − ρ

)
ds = ∆ arg(s − ρ)

is at most π and noting that the number of terms in the sum above
is O(log |t|) by Exercise 7.1.5 gives us

S(T ) = O(log T ).

This completes the proof. �

7.2 Explicit Formula for ψ(x)

Our main tool in deriving the explicit formula for ψ(x) will be The-
orem 4.1.4. Recall that this theorem says that

I(x, R) =
1

2πi

∫ c+iR

c−iR

xs

s
ds

satisfies

|I(x, R) − δ(x)| <

⎧
⎪⎨

⎪⎩

xc min(1, R−1| log x|−1) if x �= 1,

c

R
if x = 1,

where

δ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 < x < 1,

1/2 if x = 1,

1 if x > 1.
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Exercise 7.2.1 Show that if x is not a prime power and x > 1, then

ψ(x) =
1

2πi

∫ c+iR

c−iR
−ζ ′(s)

ζ(s)
xs

s
ds

+ O

( ∞∑

n=1

Λ(n)
(x

n

)c
min

(
1, R−1

∣∣∣log
x

n

∣∣∣
−1
))

.

Exercise 7.2.2 Prove that if x is not an integer, then

∑

1
2
x<n<2x

∣∣∣log
x

n

∣∣∣
−1

= O

(
x

‖x‖ log x

)
,

where ‖x‖ denotes the distance of x to the nearest integer.

Exercise 7.2.3 By choosing c = 1 + 1
log x in the penultimate exercise,

deduce that

ψ(x) =
1

2πi

∫ c+iR

c−iR
−ζ ′(s)

ζ(s)
xs

s
ds + O

(
x log2 x

R

)

if x − 1
2 is a positive integer.

Exercise 7.2.4 Let C be the rectangle with vertices c−iR, c+iR, −U+iR,
−U − iR, where c = 1 + 1/ log x, and U is an odd positive integer. Show
that

1
2πi

∫

C
−ζ ′(s)

ζ(s)
xs

s
ds = x −

∑

|γ|<R

xρ

ρ
− ζ ′(0)

ζ(0)
+

∑

0<2m<U

x−2m

2m
,

where we are writing the nontrivial zeros of ζ(s) as ρ = β + iγ. (R is
chosen so that it is not the ordinate of any zero of ζ(s).)

Exercise 7.2.5 Recall that the number of zeros ρ = β + iγ satisfying
|γ − R| < 1 is O(log R). Show that we can ensure |γ − R| 
 (log R)−1

by varying R by a bounded amount.

Exercise 7.2.6 Let U be a positive odd number. Prove that

|ζ ′(s)/ζ(s)| � (log 2|s|)

for −U ≤ σ ≤ −1, provided that we exclude circles of a fixed positive
radius around the trivial zeros s = −2,−4, . . . of ζ(s).
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Exercise 7.2.7 In Exercise 7.2.4, letting U → ∞ along the odd numbers
and R → ∞ appropriately (that is, as in Exercise 7.2.5) prove that

ψ(x) = x −
∑

ρ

xρ

ρ
− ζ ′(0)

ζ(0)
+

1
2

log(1 − x−2),

whenever x is half more than an integer.

We use these ideas to prove the following result:

Theorem 7.2.8 For some constant c1 > 0,

ψ(x) = x + O
(
x exp

(
−c1

√
log x

))

Proof. By the solution to Exercise 7.2.7, we know that

ψ(x)=x−
∑

|ρ|<R

xρ

ρ
−ζ ′(0)

ζ(0)
+

1
2

log
(
1 − x−2

)
+O

(
x log2 x

R
+

x log2 R

R log x

)
.

By Theorem 6.5.6, we have Re(ρ) = β < 1 − c
log R , so that the sum

over the zeros is

x exp
(
− c log x

log R

) ∑

|γ|<R

1
|ρ| .

By partial summation and Theorem 7.1.7 we have
∑

|γ|<R

1
|ρ| �

∫ R

1

log t

t
dt � log2 R.

The optimal choice for R satisfies

log R = c2(log x)1/2

for some appropriate constant c2. It is now easily verified that this
gives the desired result. �

Exercise 7.2.9 Assuming the Riemann hypothesis, show that

ψ(x) = x + O
(
x1/2 log2 x

)

as x → ∞.

Exercise 7.2.10 Show that if

ψ(x) = x + O
(
x1/2 log2 x

)

then ζ(s) has no zeros for Re(s) > 1/2.
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7.3 Weil’s Explicit Formula

The general philosophy of explicit formulas is to relate the sum of a
suitable function over prime powers to the sum of the Fourier trans-
form of that function over the zeros of the zeta function. The same
philosophy applies to any function of the Selberg class (see Chapter
8). Here, we develop it only for the zeta function. In many applica-
tions, such formulas are useful in establishing subtle information on
the distribution of prime numbers by exploiting information about
the zeros of ζ(s) or vice versa.

Lemma 7.3.1 Let ε > 0 and let h(s) be holomorphic in the strip −1
2−ε ≤

Re(s) ≤ 1
2 +ε and satisfy h(s) = h(−s), h(s) = O(|s|−1−ε) as |s| → ∞.

Then
1

2πi

∫

( 1
2
+ε)

ξ′(1
2 + s)

ξ(1
2 + s)

h(s)ds =
∑

γ

h(iγ),

where ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s), and the summation is over all γ
such that 1

2 + iγ is a zero of ζ(s) with Im(iγ) > 0.

Proof. Recall that ξ(s) is an entire function of order 1 and has the
factorization

1
2
eBs

∏

ρ

(
1 − s

ρ

)
es/ρ,

where the product is over the nontrivial zeros ρ = 1
2 + iγ of ζ(s) in

0 ≤ Re(s) ≤ 1 (Exercise 6.4.3).
Thus

ξ′(s)
ξ(s)

= B +
∑

ρ

( 1
s − ρ

+
1
ρ

)

= B +
∑

ρ

s

ρ(s − ρ)
.

By the argument in Exercise 7.1.6, we see that

ξ′(s)
ξ(s)

=
∑

ρ

′ s

ρ(s − ρ)
+ O(log(|t| + 1)),

where the dash on the summation means | Im(s − ρ)| < 1 and t =
Im(s). For any given T we can vary T by a bounded amount to
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ensure that |γ − t| ≥ (log T )−1 by the argument in Exercise 7.2.5.
Thus the summation is O(|s| log |s|) for Im(s) = T.

Thus, by the hypothesis on h(s), we can always find arbitrarily
large T > 0 such that

ξ′(1
2 + s)

ξ(1
2 + s)

h(s) = O(|s|−ε)

for s = σ + iT and −1 − ε ≤ σ ≤ 1 + ε. Now let RT be the closed
rectangular contour described by traversing the vertices 1

2 + ε− iT,
1
2 + ε+ iT, −1

2 − ε+ iT , and −1
2 − ε− iT. Since the zeros of ζ(s) occur

in pairs 1/2 ± iγ, it follows by Cauchy’s theorem that

1
2πi

∫

RT

ξ′(1
2 + s)

ξ(1
2 + s)

h(s)ds = 2
∑

0 <Im(iγ) < T

h(iγ).

Since

lim
T→∞

ξ′(σ + iT )
ξ(σ + iT )

h(σ + iT ) = lim
T→∞

O(T−ε) = 0

for −1
2 − ε ≤ σ ≤ 1

2 + ε, it follows that the horizontal integrals tend
to 0 as T → ∞. By the functional equation ξ(s) = ξ(1 − s), we have

ξ′(1
2 + s)

ξ(1
2 + s)

= −
ξ′(1

2 − s)
ξ(1

2 − s)
,

so that the vertical line integrals are equal to

1
2πi

∫ 1
2
+ε+iT

1
2
+ε−iT

ξ′(1
2 + s)

ξ(1
2 + s)

h(s)ds.

Now

ξ′(1
2 + s)

ξ(1
2 + s)

=
1

s − 1/2
− 1

2
log π +

Γ′(s/2 + 3/4)
2Γ(s/2 + 3/4)

+
ζ ′(s + 1/2)
ζ(s + 1/2)

.

On the vertical line Re(s) = 1
2 + ε, the quantity

1
s − 1/2

+
1
2

log π +
ζ ′(s + 1/2)
ζ(s + 1/2)

is bounded by

1/ε +
1
2

log π +
ζ ′(1 + ε)
ζ(1 + ε)

.
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Also,
Γ′(s/2 + 3/4)
Γ(s/2 + 3/4)

is bounded according to Exercise 6.3.17 by O(log(|s| + 1)). Since
h(s) = O(|s|−1−ε), the above integral converges absolutely. Letting
T → ∞ establishes the lemma. �

Theorem 7.3.2 (Weil’s explicit formula) Assume that h(s) satisfies
the conditions of Lemma 7.3.1. In addition, assume that h(it) = h0(t/2π)
is a real-valued function for t ∈ R whose Fourier transform

ĥ0(y) =
∫ ∞

−∞
h0(t)e−2πitydt

satisfies the bound

ĥ0(y) = O(e−( 1
2
+ε)y)

for fixed ε > 0 as y → ∞. Then we have

∑

γ

h(iγ) +
∞∑

n=1

Λ(n)√
n

ĥ0(log n)

= h
(1

2

)
− 1

2
(log π)ĥ0(0) +

∫ ∞

−∞

Γ′(1/4 + iπt)
Γ(1/4 + iπt)

h0(t)dt,

where the first sum is over all zeros 1/2 + iγ satisfying Im(iγ) > 0, and
Λ(n) is the von Mangoldt function, so that the second sum is over all
prime powers.

Remark. The growth conditions on h and ĥ0 ensure that the inte-
grals and sums in the formula converge absolutely.

Proof. Recall that

ξ′(1
2 + s)

ξ( 1
2 + s)

=
1

s + 1/2
+

1
s − 1/2

− 1
2

log π +
Γ′(1/4 + s/2)
Γ(1/4 + s/2)

−
∞∑

n=1

Λ(n)
ns+1/2

,
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so that inserting this into Lemma 7.3.1 we see that

1
2πi

∫

( 1
2
+ε)

{
1

s + 1/2
+

1
s − 1/2

− 1
2

log π

+
Γ′(1/4 + s/2)
Γ(1/4 + s/2)

−
∞∑

n=1

Λ(n)
ns+1/2

}
h(s)ds =

∑

γ

h(iγ).

Observe that by the growth condition on h,

1
2πi

∫

( 1
2
+ε)

h(s)n−sds =
1

2πi

∫

(0)
h(s)n−sds

by moving the line of integration to the purely imaginary axis. Thus

1
2πi

∫

( 1
2
+ε)

h(s)n−sds =
1
2π

∫ ∞

−∞
h(it)e−it log ndt

=
1
2π

∫ ∞

−∞
h0(t/2π)e−it log ndt

=
1
2π

∫ ∞

−∞
h0(t)e−2πit log ndt

= ĥ0(log n).

Similarly, we can also move the other integrals to Re(s) = 0, which
gives rise to the other terms of the formula. This completes the
proof. �

7.4 Supplementary Problems

Exercise 7.4.1 Using the method of Exercise 6.5.3, prove that for 1 ≤
σ ≤ 2, |t| ≥ 2,

−Re
(L′(s, χ)

L(s, χ)

)
< A1 log q(|t| + 2) −

∑

ρ

Re
( 1

s − ρ

)
,

where A1 is an absolute constant, and the summation is over all zeros ρ
of L(s, χ), and χ is a primitive Dirichlet character (mod q). (Of course,
s = σ + it, as usual.)
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Exercise 7.4.2 Let χ be a primitive Dirichlet character (mod q). If ρ =
β + iγ runs through the nontrivial zeros of L(s, χ), then show that for
any real t,

∑

ρ

1
1 + (t − γ)2

= O(log q(|t| + 2)).

Exercise 7.4.3 With χ a primitive character (mod q) and t not coinciding
with the ordinate of a zero, show that for −3/2 ≤ σ ≤ 5/2, |t| ≥ 2,

L′

L
(s, χ) =

∑

ρ

′ 1
s − ρ

+ O(log q(|t| + 2)),

where the dash on the sum means we sum over ρ = β + iγ for which
|t − γ| < 1.

Exercise 7.4.4 Let χ be a primitive Dirichlet character (mod q). Let
N(T, χ) be the number of zeros of L(s, χ) in the rectangle 0 < σ < 1,
|t| < T . Show that

N(T, χ) =
T

π
log

qT

2π
− T

2π
+ O(log qT )

for T ≥ 2.

Exercise 7.4.5 Let χ be a primitive Dirichlet character (mod q). If x is
not a prime power and χ(−1) = −1, derive the explicit formula

ψ(x, χ) :=
∑

n≤x

χ(n)Λ(n)

= −
∑

ρ

xρ

ρ
− L′(0, χ)

L(0, χ)
+

∞∑

m=1

x1−2m

2m − 1
,

where the first sum on the right-hand side is over the nontrivial zeros of
L(s, χ).

Exercise 7.4.6 Let χ be a primitive Dirichlet character (mod q). If x is
not a prime power and χ(−1) = 1, derive the explicit formula

ψ(x, χ) = −
∑

ρ

xρ

ρ
− log x − b(χ) − 1

2
log(1 − x−2),

where b(χ) = lims→0

(
L′(s,χ)
L(s,χ) − 1

s

)
, and the sum on the right-hand side

is over the nontrivial zeros of L(s, χ).
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Exercise 7.4.7 Let χ be a primitive Dirichlet character (mod q) and set
a = 0 or 1 according as χ(−1) = 1 or −1. If x− 1/2 is a positive integer,
show that

ψ(x, χ) = −
∑

|γ|<R

xρ

ρ
− (1 − a)(log x + b(χ))

+
∞∑

m=1

xa−2m

2m − a
+ O

(x log2 qxR

R

)
,

where the first summation is over zeros ρ = β+iγ and R is chosen greater
than or equal to 2 so as not to coincide with the ordinate of any zero of
L(s, χ).

Exercise 7.4.8 If we assume that all the nontrivial zeros of L(s, χ) lie on
Re(s) = 1/2 (the generalized Riemann hypothesis), prove that

ψ(x, χ) = O(x1/2 log2 qx).

Exercise 7.4.9 Let

ψ(x, q, a) =
∑

n≤x
n≡a(mod q)

Λ(n).

Show that the generalized Riemann hypothesis implies

ψ(x, q, a) =
x

φ(q)
+ O

(
x1/2 log2 qx

)

when (a, q) = 1.

Exercise 7.4.10 Assuming the generalized Riemann hypothesis, show
that there is always a prime p � q2 log4 q satisfying p ≡ a (mod q) when-
ever (a, q) = 1.

Exercise 7.4.11 Show that if q is prime, then

ϕ(q − 1)
q − 1

∑

d|q−1

µ(d)
ϕ(d)

∑

o(χ)=d

χ(a) =

⎧
⎨

⎩

1 if a has order q − 1

0 otherwise,

where the inner sum is over characters χ mod q whose order is d.
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Exercise 7.4.12 Let q be prime and assume the generalized Riemann
hypothesis. For q sufficiently large, show that there is always a prime p < q
such that p is a primitive root (mod q),

Exercise 7.4.13 Let q be a prime. Show that the smallest primitive root
mod q is O

(
2ν(q−1)q1/2 log q

)
, where ν(q − 1) is the number of distinct

prime factors of q − 1.

Exercise 7.4.14 Let q be a prime and assume the generalized Riemann
hypothesis. Show that there is always a prime-power primitive root satis-
fying the bound O

(
4ν(q−1) log4 q

)
.

Exercise 7.4.15 Let q be prime and assume the generalized Riemann hy-
pothesis. Show that the least quadratic nonresidue (mod q) is O(log4 q).

Exercise 7.4.16 Let q be prime and assume the generalized Riemann hy-
pothesis. Show that the least prime quadratic residue (mod q) is O(log4 q).

Exercise 7.4.17 Prove that for n > 1,

lim
T→∞

1
T

∑

|γ|≤T

nρ = −Λ(n)
π

,

where the summation is over zeros ρ = β + iγ, β ∈ R, of the Riemann
zeta function.





8
The Selberg Class

The Selberg class S consists of functions F (s) of a complex variable
s satisfying the following properties:

1. (Dirichlet series): For Re(s) > 1,

F (s) =
∞∑

n=1

an

ns

where a1 = 1. (We will write an(F ) = an for the coefficients of
the Dirichlet series of F .)

2. (Analytic continuation): For some integer m ≥ 0, (s−1)mF (s)
extends to an entire function of finite order.

3. (Functional equation): There are numbers Q > 0, αi > 0, ri ∈
C with Re(ri) ≥ 0 such that

Φ(s) = Qs
d∏

i=1

Γ(αis + ri)F (s)

satisfies the functional equation

Φ(s) = wΦ(1 − s),

where w is a complex number with |w| = 1 and Φ(s) = Φ(s).
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4. (Euler product): For Re(s) > 1,

F (s) =
∏

p

Fp(s),

where

Fp(s) = exp
( ∞∑

k=1

bpk

pks

)

and bpk = O(pkθ) for some θ < 1/2, and p denotes a prime
number here. We shall write bp(F ) = bp.

5. (Ramanujan hypothesis): For any fixed ε > 0,

an = O(nε),

where the implied constant may depend upon ε.

A prototypical example of an element of S is, of course, the Rie-
mann zeta function. But more exemplary is the Ramanujan zeta
function

L∆(s) =
∞∑

n=1

τn

ns
,

where τn = τ(n)/n11/2 and τ is defined by the infinite product

∞∑

n=1

τ(n)qn = q
∞∏

n=1

(1 − qn)24.

Ramanujan established properties (1), (2), and (3) and conjectured
(4) and (5). Property (4) was proved by Mordell and (5) by Deligne.

8.1 The Phragmén - Lindelöf Theorem

We discuss an important theorem that allows us to estimate the
growth of a function in the region a ≤ Re(s) ≤ b from its behaviour
on Re(s) = a and Re(s) = b. We first recall the maximum modulus
principle.

Exercise 8.1.1 Let f(z) be an analytic function, regular in a region R
and on the boundary ∂R, which we assume to be a simple closed contour.
If |f(z)| ≤ M on ∂R, show that |f(z)| ≤ M for all z ∈ R.
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Exercise 8.1.2 (The maximum modulus principle) If f is as in the
previous exercise, show that |f(z)| < M for all interior points z ∈ R,
unless f is constant.

Theorem 8.1.3 (Phragmén - Lindelöf) Suppose that f(s) is entire in
the region

S(a, b) = {s ∈ C : a ≤ Re(s) ≤ b}
and that as |t| → ∞,

|f(s)| = O
(
e|t|

α
)

for some α ≥ 1. If f(s) is bounded on the two vertical lines Re(s) = a
and Re(s) = b, then f(s) is bounded in S(a, b).

Proof. We first select an integer m > α, m ≡ 2 (mod 4). Since arg s →
π/2 as t → ∞, we can choose T1 sufficiently large so that

| arg s − π/2| < π/4m.

Then for | Im(s)| ≥ T1, we find that arg s = π/2−δ = θ (say) satisfies

cos mθ = − cos mδ < −1/
√

2.

Therefore, if we consider

gε(s) = eεsm
f(s),

then
|gε(s)| ≤ Ke|t|

α
e−ε|s|m/

√
2.

Thus, |gε(s)| → 0 as |t| → ∞. Let B be the maximum of f(s) in the
region

a ≤ Re(s) ≤ b, 0 ≤ | Im(s)| ≤ T1.

Let T2 be chosen such that

|gε(s)| ≤ B

for | Im(s)| ≥ T2. Thus,

|f(s)| ≤ Be−ε|s|m cos(m arg s) ≤ Beε|s|m

for | Im(s)| ≥ T2. Applying the maximum modulus principle to the
region

a ≤ Re(s) ≤ b, 0 ≤ | Im(s)| ≤ T2,

we find that |f(s)| ≤ Beε|s|m . This estimate holds for all s in S(a, b).
Letting ε → 0 yields the result. �
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Corollary 8.1.4 Suppose that f(s) is entire in S(a, b) and that |f(s)|
= O(e|t|

α
) for some α ≥ 1 as |t| → ∞. If f(s) is O(|t|A) on the two

vertical lines Re(s) = a and Re(s) = b, then f(s) = O(|t|A) in S(a, b).

Proof. We apply the theorem to the function g(s) = f(s)/(s − u)A,
where u > b. Then g is bounded on the two vertical strips, and the
result follows. �

Exercise 8.1.5 Show that for any entire function F ∈ S, we have

F (s) = O
(
|t|A
)
,

for some A > 0, in the region 0 ≤ Re(s) ≤ 1.

8.2 Basic Properties

We begin by stating the following theorem of Selberg:

Theorem 8.2.1 (Selberg) For any F ∈ S, let NF (T ) be the number of
zeros ρ of F (s) satisfying 0 ≤ Im(ρ) ≤ T, counted with multiplicity.
Then

NF (T ) ∼
(

2
d∑

i=1

αi

)
T log T

2π

as T → ∞.

Proof. This is easily derived by the method used to count zeros of
ζ(s) and L(s, χ) as in Theorem 7.1.7 and Exercise 7.4.4.

�
Clearly, the functional equation for F ∈ S is not unique, by virtue

of Legendre’s duplication formula. However, the above theorem
shows that the sum of the αi’s is well-defined. Accordingly, we
define the degree of F by

deg F := 2
d∑

i=1

αi.

Lemma 8.2.2 (Conrey and Ghosh) If F ∈ S and deg F = 0, then
F = 1.
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Proof. We follow [CG]. A Dirichlet series can be viewed as a power
series in the infinitely many variables p−s as we range over primes
p. Thus, if deg F = 0, we can write our functional equation as

∞∑

n=1

an

(Q2

n

)s
= wQ

∞∑

n=1

an

n
ns,

where |w| = 1.
Thus, if an �= 0 for some n, then Q2/n is an integer. Hence Q2

is an integer. Moreover, an �= 0 implies n|Q2, so that our Dirichlet
series is really a Dirichlet polynomial. Therefore, if Q2 = 1, then
F = 1, and we are done. So, let us suppose q := Q2 > 1. Since a1 =
1, comparing the Q2s term in the functional equation above gives
|aq| = Q. Since an is multiplicative, we must have for some prime
power pr||q that |apr | ≥ pr/2. Now consider the p-Euler factor

Fp(s) =
r∑

j=0

apj

pjs

with logarithm

log Fp(s) =
∞∑

j=0

bpj

pjs
.

Viewing these as power series in x = p−s, we write

P (x) =
∑r

j=0 Ajx
j,

log P (x) =
∑∞

j=0 Bjx
j ,

where Aj = apj , Bj = bpj . Since a1 = 1, we can factor

P (x) =
r∏

j=1

(1 − Rix),

so that

Bj = −
r∑

i=1

Rj
i

j
.

We also know that
r∏

i=1

|Ri| ≥ pr/2,
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so that
max
1≤i≤r

|Ri| ≥ p1/2.

But

|bpj |1/j = |Bj |1/j =
∣∣∣

r∑

i=1

Rj
i

j

∣∣∣
1/j

tends to max1≤i≤r |Ri| as j → ∞, which is greater than or equal to
p1/2. This contradicts the condition that bn = O(nθ) with θ < 1/2.
Therefore, Q = 1 and hence F = 1. �

We can now prove the following basic result:

Theorem 8.2.3 (Selberg) If F ∈ S and F is of positive degree, then
deg F ≥ 1.

Proof. We follow [CG]. Consider the identity
∞∑

n=1

ane−nx =
1

2πi

∫

(2)
F (s)x−sΓ(s)ds.

Because of the Phragmen - Lindelöf principle and the functional
equation, we find that F (s) has polynomial growth in | Im(s)| in
any vertical strip. Thus, moving the line of integration to the left,
and taking into account the possible pole at s = 1 of F (s) as well as
the poles of Γ(s) at s = 0,−1,−2, . . ., we obtain

∞∑

n=1

ane−nx =
P (log x)

x
+

∞∑

n=0

F (−n)(−1)nxn

n!
,

where P is a polynomial. The functional equation relates F (−n) to
F (n + 1) with a product of gamma functions. If 0 < deg F < 1,
we find by Stirling’s formula that the sum on the right-hand side
converges for all x. Moreover, P (log x) is analytic in C\{x ≤ 0 : x ∈
R}. Hence the left-hand side is analytic in C\{x ≤ 0 : x ∈ R}. But
since the left-hand side is periodic with period 2πi, we find that

f(z) =
∞∑

n=1

ane−nz

is entire. Thus, for any x,

ane−nx =
∫ 2π

0
f(x + iy)einydy � n−2
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by integrating by parts. Choosing x = 1/n gives an = O(1/n2).
Hence the Dirichlet series

F (s) =
∞∑

n=1

an

ns

converges absolutely for Re s > −1. However, relating F (−1/2+ it)
to F (3/2 − it) by the functional equation and using Stirling’s for-
mula, we find that F (−1/2 + it) is not bounded. This contradiction
forces deg F ≥ 1. �

An element F ∈ S will be called primitive if F �= 1 and F = F1F2

with F1, F2 ∈ S implies F1 = 1 or F2 = 1. Thus, a primitive function
cannot be factored nontrivially in S.

Exercise 8.2.4 Show that

deg F1F2 = deg F1 + deg F2.

Exercise 8.2.5 If F ∈ S has degree 1, show that it is primitive.

Exercise 8.2.6 Show that any F ∈ S, F �= 1, can be written as a product
of primitive functions.

Exercise 8.2.7 Show that the Riemann zeta function is a primitive func-
tion.

Exercise 8.2.8 If χ is a primitive character (mod q), show that L(s, χ) is
a primitive function of S.

Exercise 8.2.9 If F ∈ S and ε > 0 is fixed, show that |an| ≤ c(ε)nε

implies that
|bpk | ≤ c(ε)(2k − 1)pkε/k.

Exercise 8.2.10 Prove the asymmetric form of the functional equation for
ζ(s):

ζ(1 − s) = 21−sπ−s
(

cos
sπ

2

)
Γ(s)ζ(s).

Exercise 8.2.11 Show that for k ∈ N,

|ζ(−k)| ≤ Ck!/(2π)k

for some absolute constant C.
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Exercise 8.2.12 Show that

∞∑

n=1

e−nx = x−1 +
∞∑

k=0

ζ(−k)(−x)k

k!
.

Deduce that for k = 2, 3, . . .

ζ(1 − k) = −Bk/k

and ζ(0) = −1/2, where Bk denotes the kth Bernoulli number.

Exercise 8.2.13 Let χ be a primitive Dirichlet character (mod q) satisfy-
ing χ(−1) = 1. Prove that

L(1 − s, χ) =

√
2
π

q1/2

τ(χ)

(2π

q

)1/2−s(
cos

πs

2

)
Γ(s)L(s, χ),

where τ(χ) denotes the Gauss sum.

Exercise 8.2.14 Let χ be a primitive character (mod q), satisfying
χ(−1) = 1. Show that for k ∈ N,

|L(−k, χ)| ≤ Ck!(q/2π)k

for some constant C = O(
√

q).

Exercise 8.2.15 Let χ be a primitive character (mod q), satisfying
χ(−1) = 1. Show that

L(1 − s, χ) = −(2π)−1/2 iq1/2

τ(χ)

(2π

q

)1/2−s(
sin

πs

2

)
Γ(s + 1)L(s, χ).

Exercise 8.2.16 Let χ be a primitive Dirichlet character (mod q) satisfy-
ing χ(−1) = −1. Show that for k ∈ N,

|L(−k, χ)| ≤ C(k + 1)!(q/2π)k

for some constant C = O(
√

q).
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Exercise 8.2.17 Prove that

∞∑

n=1

χ(n)e−nx =
∞∑

k=0

L(−k, χ)(−x)k

k!
.

Deduce that for n ≥ 1,

L(1 − n, χ) = −Bn,χ/n,

where

Bn,χ = qn−1
q∑

a=1

χ(a)bn

(a

q

)
,

with bn(x) denoting the nth Bernoulli polynomial.

8.3 Selberg’s Conjectures

We have seen in the previous section that ζ(s) and Dirichlet’s L-
functions L(s, χ) are primitive since they are of degree 1. Selberg
[S] conjectures that as x → ∞:
(a) for any primitive function F ,

∑

p≤x

|ap(F )|2
p

= log log x + O(1);

(b) for two distinct primitive functions F and G,

∑

p≤x

ap(F )ap(G)
p

= O(1).

We have also seen that any function of S can be factored into
primitive functions. Two of the important consequences of conjec-
tures (a) and (b) are contained in the following exercises.

Exercise 8.3.1 Assuming (a) and (b), prove that any function F ∈ S can
be factored uniquely as a product of primitive functions.

Exercise 8.3.2 Suppose F, G ∈ S and ap(F ) = ap(G) for all but finitely
many primes p. Assuming (a) and (b), prove that F = G.
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This exercise shows that a form of “strong multiplicity one” holds
for the Selberg class. It is possible to prove a slightly stronger ver-
sion of this fact without assuming (a) and (b). This is the goal of the
exercises below.

Exercise 8.3.3 If F (s) =
∑∞

n=1 ann−s and σ = Re(s) > σa(F ), the
abscissa of absolute convergence of F , then prove that

lim
T→∞

1
2T

∫ T

−T
F (σ + it)yσ+itdt =

⎧
⎨

⎩

an(F ) if n = y,

0 otherwise,

for any real y.

Exercise 8.3.4 Prove that

1
2πi

∫

(c)

ysds

(αs + β)2
=

⎧
⎨

⎩

α−2y−β/α log y if y > 1,

0 if 0 ≤ y ≤ 1,

for c > 0 and α, β > 0.

Exercise 8.3.5 Let f(s) be a meromorphic function on C, analytic for
Re(s) ≥ 1

2 , and nonvanishing there. Suppose that log f(s) is a Dirich-
let series and that f(s) satisfies the functional equation

H(s) = wH(1 − s),

where w is a complex number of absolute value 1, and

H(s) = As

∏d1
i=1 Γ(αis + βi)∏d2
i=1 Γ(γis + δi)

f(s)

with certain A, αi, γi > 0 and Re(βi), Re(δi) ≥ 0. Show that f(s) is
constant.

Exercise 8.3.6 Let F, G ∈ S. Suppose ap(F ) = ap(G), ap2(F ) = ap2(G)
for all but finitely many primes p. Show that F = G.

Exercise 8.3.7 Assume Selberg’s conjectures (a) and (b). If F ∈ S has a
pole of order m at s = 1, show that F (s)/ζ(s)m is entire.

Exercise 8.3.8 Assume Selberg’s conjectures (a) and (b). Show that for
any F ∈ S, there are no zeros on Re(s) = 1.
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8.4 Supplementary Problems

Exercise 8.4.1 Verify that the primitive functions ζ(s) and L(s, χ), where
χ is a primitive character (mod q), satisfy Selberg’s conjectures (a) and (b).

Exercise 8.4.2 For each F , G in S, define

(F ⊗ G)(s) =
∏

p

Hp(s),

where

Hp(s) = exp
( ∞∑

k=1

kbpk(F )bpk(G)p−ks
)
.

If Fp(s) = det(1−App
−s)−1 and Gp(s) = det(1−Bpp

−s)−1 for certain
nonsingular matrices Ap and Bp, show that

Hp(s) = det(1 − (Ap ⊗ Bp)p−s)−1.

Exercise 8.4.3 With notation as in the previous exercise, show that if
F, G ∈ S, then F ⊗ G converges absolutely for Re(s) > 1.

Exercise 8.4.4 If F ∈ S and F ⊗ F extends to an analytic function for
Re(s) ≥ 1/2, except for a simple pole at s = 1, we will say that F is ⊗-
simple. Prove that a ⊗-simple function has at most a simple pole at s = 1.

Exercise 8.4.5 If F ∈ S and

F = F e1
1 F e2

2 · · ·F ek
k

is a factorization of F into distinct primitive functions, show that

∑

p≤x

|ap(F )|2
p

= (e2
1 + e2

2 + · · · + e2
k) log log x + O(1),

assuming Selberg’s conjectures (a) and (b).

Exercise 8.4.6 If F ∈ S and F ⊗ F̄ ∈ S show that F is ⊗-simple if and
only if F is primitive, assuming Selberg’s conjectures (a) and (b).

Exercise 8.4.7 If F ∈ S is ⊗-simple and entire, prove that F (1+ it) �= 0
for all t ∈ R.
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Exercise 8.4.8 Let F ∈ S and write

−F
′

F
(s) =

∞∑

n=1

ΛF (n)n−s.

For T > 1 and n ∈ N, n > 1, show that

∑

|γ|≤T

nρ = −T

π
ΛF (n) + O

(
n3/2 log2 T

)
,

where ρ = β + iγ, β > 0, runs over the nontrivial zeros of F (s).

Exercise 8.4.9 Suppose F, G ∈ S. Let

ZF (T ) = {ρ = β + iγ, β > 0, F (ρ) = 0 and |γ| ≤ T}.

Suppose that as T → ∞,

|ZF (T )∆ZG(T )| = o(T ),

where ∆ denotes the symmetric difference A∆B = (A \ B) ∪ (B \ A).
Show that F = G.



9
Sieve Methods

9.1 The Sieve of Eratosthenes

The basic principle of a sieve method is the following: Given a finite
set of natural numbers, estimate its size (from above and below)
given information about the image of the set mod p for a given set
of primes p. For example, let S be the set of primes in the interval
[
√

x, x]. We know that for each prime p ≤ √
x, the image of S mod p

fails to contain the zero residue class. Given this information, the
estimation of S from above and below gives us estimates for π(x)−
π(
√

x).
The oldest method to attack this question is the sieve of Eratos-

thenes (300 B.C.). It was formally written in the following form by
Legendre in the eighteenth century.

Example 9.1.1 (Eratosthenes-Legendre) Let Pz be the product of the
primes p ≤ z, and π(x, z) the number of n ≤ x that are not divisible by
any prime p ≤ z. Then

π(x, z) =
∑

d|Pz

µ(d)
[x
d

]
.
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Solution. Clearly,

π(x, z) =
∑

n≤x

∑

d|(n,Pz)

µ(d)

=
∑

d|Pz

µ(d)
∑

n≤x
d|n

1 =
∑

d|Pz

µ(d)
[x
d

]

as required. �

We saw in Exercise 1.5.10 that

π(x, z) = x
∏

p≤z

(
1 − 1

p

)
+ O(2z),

and in Exercise 1.5.11 that
∏

p≤z

(
1 − 1

p

)−1

 log z.

This gives the estimate (Exercise 1.5.12)

π(x, z) � x

log z
+ O(2z).

Choosing z = log x, we obtain

π(x) = O
( x

log log x

)
.

Exercise 9.1.2 Prove that there is a constant c such that
∏

p≤z

(
1 − 1

p

)
=

e−c

log z

(
1 + O

( 1
log z

))
.

There is a famous theorem of Mertens that shows that the con-
stant c in the previous exercise is Euler’s constant γ, given by

γ = lim
t→∞

(∑

n≤t

1
n
− log t

)
.

This is proved in the following way. For σ > 0, we have

ζ(1 + σ) =
∞∑

n=1

1
n1+σ

.
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Now consider

f(σ) = log ζ(1 + σ) −
∑

p

1
p1+σ

= −
∑

p

{
log
(
1 − 1

p1+σ

)
+

1
p1+σ

}
.

In Exercise 9.1.2 it was proved that c = c0 + c1, where

c0 = −
∑

p

{
log
(
1 − 1

p

)
+

1
p

}

and
c1 = lim

z→∞

(∑

p≤z

1
p
− log log z

)
.

Hence c0 = limσ→0 f(σ). It is clear that as σ → 0+, log ζ(1 + σ) =
log 1

σ + O(σ). Now, as σ → 0+, log(1 − e−σ) = log σ + O(σ), so that
as σ → 0+,

log ζ(1 + σ) = − log(1 − e−σ) + O(σ)

=
∞∑

n=1

e−σn

n
+ O(σ).

Put H(t) =
∑

n≤t
1
n and P (t) =

∑
p≤t

1
p . By partial summation,

∑

p

1
p1+σ

= σ

∫ ∞

1

P (u)
u1+σ

du

= σ

∫ ∞

0
P (et)e−σtdt.

Similarly,

log ζ(1 + σ) = σ

∫ ∞

0
e−σtH(t)dt + O(σ)

as σ → 0+. Hence,

f(σ) = σ

∫ ∞

0
e−σt

(
H(t) − P (et)

)
dt + O(σ).
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Since H(t) = log t + γ + O(1/t) by Example 2.1.10, and P (et) =
log t + c1 + O(1/t), we deduce

f(σ) = σ

∫ ∞

0
e−σt

(
γ − c1 + O

( 1
t + 1

))
dt + O(σ)

= (γ − c1) + σ

∫ ∞

0
e−σtO

( 1
t + 1

)
dt + O(σ).

An easy integration by parts shows that the integrand is O(σ), so
that f(0) = c0 = γ − c1. This proves the following theorem:

Theorem 9.1.3 (Mertens)

V (z) :=
∏

p≤z

(
1 − 1

p

)
=

e−γ

log z

(
1 + O

( 1
log z

))
.

Exercise 9.1.4 For z ≤ log x, prove that

π(x, z) = (1 + o(1))
xe−γ

log z

whenever z = z(x) → ∞ as x → ∞.

We now define Φ(x, z) to be the number of n ≤ x all of whose
prime factors are less than or equal to z. This function, along with
π(x, z), plays an important role in sieve problems.

Exercise 9.1.5 (Rankin’s trick) Prove that

Φ(x, z) ≤ xδ
∏

p≤z

(
1 − 1

pδ

)−1

for any δ > 0.

Exercise 9.1.6 Choose δ = 1 − 1
log z in the previous exercise to deduce

that
Φ(x, z) � x(log z) exp

(
− log x

log z

)
.

Exercise 9.1.7 Prove that

π(x, z) = x
∑

d|Pz

d≤x

µ(d)
d

+ O
(
x(log z) exp

(
− log x

log z

))

for z = z(x) → ∞ as x → ∞.
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Exercise 9.1.8 Prove that
∑

d|Pz

d≤x

µ(d)
d

=
∏

p≤z

(
1 − 1

p

)
+ O

(
(log z)2 exp

(
− log x

log z

))
,

with z = z(x) → ∞ as x → ∞.

Exercise 9.1.9 Prove that

π(x, z) = xV (z) + O
(
x(log z)2 exp

(
− log x

log z

))
,

where
V (z) =

∏

p≤z

(
1 − 1

p

)

and z = z(x) → ∞ as x → ∞.

Exercise 9.1.10 Prove that

π(x) � x

log x
log log x

by setting log z = ε log x/ log log x, for some sufficiently small ε, in the
previous exercise.

Exercise 9.1.11 For any A > 0, show that

π(x, (log x)A) ∼ xe−γ

A log log x

as x → ∞.

The estimate of Exercise 9.1.9 for π(x) will be seen to be as good
as the one obtained by the elementary Brun sieve of the next section.
Let A be any set of natural numbers and let P be a set of primes. To
each prime p ∈ P , let there be ω(p) distinguished residue classes
mod p. Let Ap denote the set of elements of A belonging to at least
one of these distinguished classes mod p. For any square-free num-
ber d composed of primes p ∈ P , let

Ad = ∩p|dAp.

We denote by S(A,P, z) the number of elements of

A \ ∪p∈P,p≤zAp.

Let ω(d) =
∏

p|d ω(p), and P (z) =
∏

p≤z,p∈P p.
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Exercise 9.1.12 Suppose that

∑

p≤z
p∈P

ω(p) log p

p
≤ κ log z + O(1).

Show that
Fω(t, z) :=

∑

d≤t
d|P (z)

ω(d)

is bounded by O
(
t(log z)κ exp

(
− log t

log z

))
.

Exercise 9.1.13 Let C be a constant. With the same hypothesis as in the
previous exercise, show that

∑

d|P (z)
d>Cx

ω(d)
d

= O
(
(log z)κ+1 exp

(
− log x

log z

))
.

We are now ready to prove our version of the sieve of Eratos-
thenes. We follow [MS]. We suppose there is an X such that

|Ad| =
Xω(d)

d
+ Rd

with Rd = O(ω(d)). We also assume

∑

p≤z
p∈P

ω(p) log p

p
≤ κ log z + O(1)

and set

W (z) =
∏

p≤z
p∈P

(
1 − ω(p)

p

)
.

Exercise 9.1.14 (Sieve of Eratosthenes) Suppose there is a constant
C > 0 such that |Ad| = 0 for d > Cx. Then

S(A,P, z) = XW (z) + O
(
x(log z)κ+1 exp

(
− log x

log z

))
.
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9.2 Brun’s Elementary Sieve

By comparing coeffients of xr on both sides of the identity

(1 − x)−1(1 − x)ν = (1 − x)ν−1

we deduce ∑

k≤r

(−1)k

(
ν

k

)
= (−1)r

(
ν − 1

r

)
.

This implies that

∑

d|n
ν(d)≤r

µ(d) = (−1)r

(
ν(n) − 1

r

)
,

where ν(n) is the number of prime factors of n. This observation is
the basis of Brun’s elementary sieve. Namely, let

µr(d) =

⎧
⎨

⎩

µ(d) if ν(d) ≤ r

0 if ν(d) > r.

Then setting
ψr(n) =

∑

d|n
µr(d),

we find that if r is even,
∑

d|n µ(d) ≤ ψr(n) and if r is odd,
∑

d|n µ(d)
≥ ψr(n). Thus

∑

d|n
µ(d) = ψr(n) + O

( ∑

d|n
ν(d)=r+1

|µ(d)|
)
.

Exercise 9.2.1 Show that for r even,

π(x, z) ≤ x
∑

d|Pz

µr(d)
d

+ O(zr).

We now turn our attention to

∑

d|Pz

µr(d)
d

.
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By Möbius inversion,

µr(d) =
∑

δ|d
µ(d/δ)ψr(δ),

so that
∑

d|Pz

µr(d)
d

=
∑

d|Pz

1
d

∑

δ|d
µ(d/δ)ψr(δ)

=
∑

δ|Pz

ψr(δ)
δ

∑

d|Pz/δ

µ(d)
d

= V (z)
∑

δ|Pz

ψr(δ)
φ(δ)

,

where V (z) is as in the previous section and φ denotes Euler’s func-
tion. Let us note that

∑

d|Pz

µr(d)
d

= V (z) + V (z)
∑

δ|Pz
δ>1

ψr(δ)
φ(δ)

.

We now want to estimate the last sum. Observe that

ψr(δ) ≤
(

ν(δ) − 1
r

)
,

so that the sum under consideration is bounded by

∑

δ|Pz
δ>1

(
ν(δ) − 1

r

)
1

φ(δ)
≤

∑

r≤m≤π(z)

(
m

r

)
1
m!

(∑

p≤z

1
p − 1

)m

≤ 1
r!

(log log z + c1)r exp(log log z + c1),

where we have utilized the elementary estimate

∑

p≤z

1
p

< log log z + c1

for some constant c1. Since er ≥ rr

r! , we can write 1/r! ≤ (e/r)r, and
thus

V (z)
∑

δ|Pz
δ>1

ψr(δ)
φ(δ)

≤ c2 exp(r − r log r + r log Λ),
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where Λ = log log z + c1, and we have used the estimate

V (z) � 1
log z

.

The idea is to choose r so that the r log r term dominates. This will
minimize the error term. Indeed, choosing r to be the nearest even
integer to α log x/ log z, with α < 1, gives an error term of

O
(
x exp

(
− c3

log x

log z

))

for some constant c3, and we impose

α log x

log z
> 2(log log z + c1)

to ensure that the error term is sufficiently small. This proves the
following theorem:

Theorem 9.2.2 There is a constant c4 > 0 such that for

log z < c4 log x/ log log x,

we have
π(x, z) ≤ xV (z) + O

(
x exp

(
− c3

log x

log z

))
.

Remark. Observe that this is comparable to the estimate obtained
earlier by using the sieve of Eratosthenes combined with the careful
application of Rankin’s trick (Exercises 9.1.8 and 9.1.9).

Also note that Theorem 9.2.2 gives us the upper bound

π(x) � x

log x
(log log x),

which is comparable to the estimate we obtained in Exercise 9.1.10.
Brun used his method described above to deduce that the number

of primes p ≤ x such that p + 2 is also prime is bounded by

� x

(log x)2
(log log x)2.

From this, it is easy to deduce by partial summation that

∑ ′ 1
p

< ∞,
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where p is such that p + 2 is prime, a result that created a sensation
at the time it was proved by Brun.

Let A be a finite set of natural numbers, P a set of primes. For
square-free d composed of primes from P , let Ad be the set of ele-
ments of A divisible by d. For some ω(d) multiplicative, suppose

|Ad| =
ω(d)

d
|A| + Rd.

Let S(A,P, z) denote the number of elements of A coprime to

P (z) =
∏

p≤z
p∈P

p.

As above

S(A,P, z) =
∑

n∈A

∑

d|(n,P (z))

µ(d)

=
∑

n∈A

(
ψr(n, P (z)) + O

( ∑

d|(n,P (z))
ν(d)=r+1

1
))

=
∑

d|P (z)

µr(d)
(

ω(d)
d

|A| + Rd

)
+ O

(
|A|zr

r!

)
.

We make the hypothesis |Rd| ≤ ω(d). Then

S(A,P, z) = |A|
∑

d|P (z)

µr(d)ω(d)
d

+ O

(
|A|zr

r!

)

+ O
(
1 +

∑

p<z

ω(p)
)r

.

Exercise 9.2.3 Show that

∑

d|P (z)

µr(d)ω(d)
d

=
∏

p≤z
p∈P

(
1 − ω(p)

p

) ∑

δ|P (z)

ψr(δ)ω(δ)
Ω(δ)

,

where Ω(δ) =
∏

p|δ(p − ω(p)).
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Exercise 9.2.4 Suppose that ω(p) ≤ c, and that

∑

p≤z
p∈P

ω(p)
p

≤ c1 log log z + c2

for some constants c, c1, and c2. Show that there are constants c3, c4, and
c5 such that

∑

δ|P (z)
δ>1

ψr(δ)ω(δ)
Ω(δ)

� 1
r!

(c3 log log z + c4)r(log z)c5 .

We can put these inequalities together in the following form:

Theorem 9.2.5 (Brun’s elementary sieve) Suppose that ω(p) ≤ c and
that ∑

p≤z
p∈P

ω(p)
p

≤ c1 log log z + c2

for some constants c, c1, and c2. Suppose further that Rd = O(ω(d)).
Then there are constants c3 and c4 such that

S(A,P, z) = |A|
∏

p≤z
p∈P

(
1 − ω(p)

p

)
+ O

(
|A|zr

r!

)
+ O(zr)

+ O

(
|A| · (c1 log log z + c4)r

r!
(log z)c3

)

for any even number r.

To make this amenable for applications, we use the inequality

1
r!

≤
(e

r

)r

to obtain

S(A,P, z) = |A|(W (z) + O(exp(−r log r + r log z + r))) + O(zr).

Our intention now is to make the r log r term dominate so that we
can get a small error term in the above result. Suppose that |A| � x.
We choose r to be the nearest even integer to

η log log z
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for some η = η(x, z) soon to be specified. With this choice of r the
error term becomes

� x exp(−η(log η) log log z+η(log z) log log z+η log log z)+zη log log z.

If we choose
η =

α log x

(log z)(log log z)
,

for some α < 1, the error term is

� x exp
(
−c3

log x

log z

)
,

for some positive constant c3. In particular, there is a constant c > 0
such that for

log z <
c log x

log log x
,

we have

S(A,P, z) = |A|W (z) + O

(
x exp

(
−c3

log x

log log x

))
. (9.1)

Exercise 9.2.6 Show that the number of primes p ≤ x such that p + 2 is
also prime is � x(log log x)2/(log x)2.

Exercise 9.2.7 (Brun, 1915) Show that

∑ ′ 1
p

< ∞,

where the dash on the sum means we sum over primes p such that p + 2 is
also prime.

9.3 Selberg’s Sieve

The key idea of Selberg is to replace the use of the Möbius function
that appears in Brun’s sieve as well as the sieve of Eratosthenes by
another sequence optimally chosen so as to minimize the resulting
estimates. The method is best illustrated by the example below.

Let λ1 = 1, and let us set λd = 0 for d > z. Let us now consider
the problem of estimating π(x, z).
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Exercise 9.3.1 Let Pz =
∏

p≤z p be the product of the primes p ≤ z.
Show that

π(x, z) ≤
∑

n≤x

( ∑

d|(n,Pz)

λd

)2
,

for any sequence λd of real numbers satisfying λ1 = 1.

Exercise 9.3.2 Show that if |λd| ≤ 1, then

π(x, z) ≤
∑

d1,d2≤z

λd1λd2

[d1, d2]
x + O(z2),

where [d1, d2] is the least common multiple of d1 and d2.

The main idea is to notice that we have a quadratic form on the
right-hand side, given by

∑

d1,d2≤z

λd1λd2

[d1, d2]
,

and we seek to minimize it. We will show that there is a choice of
λd’s such that |λd| ≤ 1, as required in Exercise 9.3.2. It should also
be noted that the error term here is O(z2) in contrast to O(2z), which
we obtained in the simplest form of the sieve of Eratosthenes.

Exercise 9.3.3 Prove that

[d1, d2](d1, d2) = d1d2,

where (d1, d2) is the greatest common divisor of d1 and d2.

Exercise 9.3.4 Show that
∑

d1,d2≤z

λd1λd2

[d1, d2]
=
∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

λd

d

)2
.

We now use the method of Lagrange multipliers to minimize the
quadratic form of the previous exercise.

Exercise 9.3.5 If

uδ =
∑

δ|d
d≤z

λd

d
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show that
λδ

δ
=
∑

δ|d
µ(d/δ)ud.

(Note that uδ = 0 for δ > z, since λd = 0 for d > z.)

Exercise 9.3.6 Show that if λ1 = 1, then

∑

d1,d2≤z

λd1λd2

[d1, d2]

attains the minimum value 1/V (z), where

V (z) =
∑

d≤z

µ2(d)
φ(d)

.

By Exercise 9.3.4, we must minimize

∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

λd

d

)2

subject to the constraint λ1 = 1.

Exercise 9.3.7 Show that for the choice of

uδ = µ(δ)/(φ(δ)V (z)),

we have |λd| ≤ 1.

This leads to the following problem:

Exercise 9.3.8 Show that

π(x, z) ≤ x

V (z)
+ O(z2).

Deduce that π(x) = O (x/log x) by setting z = x1/2−ε.

Exercise 9.3.9 Let f be a multiplicative function. Show that

f([d1, d2])f((d1, d2)) = f(d1)f(d2).
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Let P be a set of primes. Suppose that we are given a sequence
of integers A = {an}∞n=1 and we would like to count the number
N(x, z) of n ≤ x such that (an, P (z)) = 1 where P (z) is the product
of the primes p ≤ z, p ∈ P . We now derive a more formal version of
Selberg’s sieve. For convenience, we write N(d) for the number of
n ≤ x such that d|an, and assume

N(d) =
X

f(d)
+ Rd

for some multiplicative function f and some X .

Theorem 9.3.10 (Selberg’s sieve, 1947)

N(x, z) ≤ X

U(z)
+ O

( ∑

d1,d2≤z

|R[d1,d2]|
)
,

where

U(z) =
∑

d≤z

µ2(d)
f1(d)

and
f(n) =

∑

d|n
f1(d).

Proof. We have

N(x, z) ≤
∑

n≤x
an∈A

( ∑

d|(an,P (z))

λd

)2
,

where λ1 = 1 and λd are real numbers to be chosen. We will set λd =
0 for d > z. Expanding the right-hand side of the above inequality,
we get

N(x, z) ≤
∑

d1,d2≤z

λd1λd2

( ∑

d1,d2|an
n≤x

1
)

≤ X
∑

d1,d2≤z

λd1λd2

f([d1, d2])
+ O

( ∑

d1,d2≤z

|λd1 ||λd2 ||R[d1,d2]|
)
.

By Exercise 9.3.8, we have

f([d1, d2]) = f(d1)f(d2)/f((d1, d2)).
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Hence, the first sum can be rewritten as

∑

d1,d2≤z

λd1λd2

f(d1)f(d2)
f((d1, d2)) =

∑

d1,d2≤z

λd1λd2

f(d1)f(d2)

∑

δ|d1,d2

f1(δ).

Rearranging, we get

∑

δ≤z

f1(δ)
(∑

δ|d
d≤z

λd

f(d)

)2
,

which we seek to minimize subject to the condition λ1 = 1. As
before, we set

uδ =
∑

δ|d
d≤z

λd

f(d)
.

By Möbius inversion (Exercise 1.5.16),

λδ

f(δ)
=
∑

δ|d
µ(d/δ)ud.

Thus, we must minimize
∑

δ≤z

f1(δ)u2
δ

subject to the condition

1 =
∑

d

µ(d)ud.

By the Lagrange multiplier method,

2f1(δ)uδ = λµ(δ)

for some scalar λ. Thus,

uδ =
λµ(δ)
2f1(δ)

,

so that
λ

2

∑

δ≤z

µ2(δ)
f1(δ)

= 1.
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Therefore, the minimum is
∑

δ≤z

f1(δ)
λ2µ2(δ)
4f2

1 (δ)
=

1
U(z)

.

In addition, we have

λd

f(d)
=

∑

t

µ(t)udt

=
µ(d)
f1(d)

∑

(d,t)=1
t≤z/d

µ2(t)
f1(t)U(z)

.

Hence,

U(z)λd = µ(d)
f(d)
f1(d)

∑

(d,t)=1
t≤z/d

µ2(t)
f1(t)

.

Now, for d square-free,

f(d)
f1(d)

=
∏

p|d

f(p)
f1(p)

=
∏

p|d

f(p)
f(p) − 1

=
∏

p|d

(
1 +

1
f(p) − 1

)
.

Therefore,

U(z)λd = µ(d)

⎛

⎝
∑

δ|d

µ2(δ)
f1(δ)

⎞

⎠

⎛

⎜⎜⎝
∑

(d,t)=1
t≤z/d

µ2(t)
f1(t)

⎞

⎟⎟⎠ ,

from which we see that |λd| ≤ 1. Hence, the error term is

O

⎛

⎝
∑

[d1,d2]≤z

∣∣R[d1,d2]

∣∣

⎞

⎠ .

We have therefore proved

N(x, z) ≤ X

U(z)
+ O

( ∑

[d1,d2]≤z

|R[d1,d2]|
)
,

as desired. �
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Exercise 9.3.11 Show that

U(z) ≥
∑

δ≤z

1
f̃(δ)

,

where f̃(n) is the completely multiplicative function defined by f̃(p) =
f(p).

Exercise 9.3.12 Let π2(x) denote the number of twin primes p ≤ x.
Using Selberg’s sieve, show that

π2(x) = O
( x

log2 x

)
.

Exercise 9.3.13 (The Brun - Titchmarsh theorem) For (a, k) = 1, and
k ≤ x, show that

π(x, k, a) ≤ (2 + ε)x
ϕ(k) log(2x/k)

for x > x0(ε), where π(x, k, a) denotes the number of primes less than x
which are congruent to a (mod k).

Exercise 9.3.14 (Titchmarsh divisor problem) Show that
∑

p≤x

d(p − 1) = O(x),

where the sum is over primes and d(n) denotes the divisor function.

9.4 Supplementary Problems

Exercise 9.4.1 Show that
∑

p≤x
p≡1 (mod k)

1
p
� log log x + log k

ϕ(k)
,

where the implied constant is absolute.

Exercise 9.4.2 Suppose that P is a set of primes such that
∑

p∈P

1
p

= +∞.

Show that the number of n ≤ x not divisible by any prime p ∈ P is o(x)
as x → ∞.
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Exercise 9.4.3 Show that the number of solutions of [d1, d2] ≤ z is
O(z(log z)3).

Exercise 9.4.4 Prove that
∑

p≤x/2

1
p log(x/p)

= O

(
log log x

log x

)
,

where the summation is over prime numbers.

Exercise 9.4.5 Let πk(x) denote the number of n ≤ x with k prime fac-
tors (not necessarily distinct). Using the sieve of Eratosthenes, show that

πk(x) ≤ x(A log log x + B)k

k! log x

for some constants A and B.

Exercise 9.4.6 Let a be an even integer. Show that the number of primes
p ≤ x such that p + a is also prime is

� x

(log x)2
∏

p|a

(
1 +

1
p

)
,

where the implied constant is absolute.

Exercise 9.4.7 Let k be a positive even integer greater than 1. Show that
the number of primes p ≤ x such that kp + 1 is also prime is

� x

(log x)2
∏

p|k

(
1 +

1
p

)
.

Exercise 9.4.8 Let k be even and satisfy 2 ≤ k < x. The number of
primes p ≤ x such that p − 1 = kq with q prime is

� x

ϕ(k) log2(x/k)
.

Exercise 9.4.9 Let n be a natural number. Show that the number of so-
lutions of the equation [a, b] = n is d(n2), where d(n) is the number of
divisors of n.

Exercise 9.4.10 Show that the error term in Theorem 9.3.10 can be re-
placed by

O
( ∑

a<z2

d(a2)|Ra|
)
.
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Exercise 9.4.11 Show that
∑

p≤x

p − 1
ϕ(p − 1)

= O
( x

log x

)
,

where the summation is over prime numbers.

Exercise 9.4.12 Prove that
∏

r<p≤x

(
1 − r

p

)
� 1

(log x)r
.

Exercise 9.4.13 Prove that for some constant c > 0, we have

∑

n≤x

d(n2)
ϕ(n)

= c(log x)3 + O(log2 x).

Exercise 9.4.14 Let d(n) denote the number of divisors of n. Show that
∑

p≤x

d2(p − 1) = O(x log2 x log log x),

where the summation is over prime numbers.

Exercise 9.4.15 Show that the result in the previous exercise can be im-
proved to O(x log2 x) by noting that d2(n) ≤ d4(n), where d4(n) is the
number of ways of writing n as a product of four natural numbers.



10
p-adic Methods

10.1 Ostrowski’s Theorem

Recall that a metric on a set X is a map d : X × X → R+ such that

1. d(x, y) = 0 ⇔ x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y) ∀z ∈ X.

Property (3) is called the triangle inequality. The pair (X, d) is
then called a metric space, with metric d.

A norm on a field F is a map || · || : F → R+ such that
(1) ||x|| = 0 ⇔ x = 0;
(2) ||xy|| = ||x||||y||;
(3) ||x + y|| ≤ ||x|| + ||y|| (triangle inequality).

Exercise 10.1.1 If F is a field with norm ||·||, show that d(x, y) = ||x−y||
defines a metric on F.

The well-known norm on the field of rational numbers is, of
course, the usual absolute value | · |. The induced metric |x− y| is the
usual distance function on the real line. But there are other norms that
we can define on Q that give rise to other metrics and “new” notions
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of distance. For each prime p and any rational number x �= 0, we can
write x = pνp(x)x1 where x1 is a rational number coprime to p (that
is, when x1 is written in lowest terms, neither the numerator nor the
denominator is divisible by p). Define a norm | · |p by

|x|p = p−νp(x)

for x �= 0 and for x = 0, |0|p = 0.

Exercise 10.1.2 Show that | · |p is a norm on Q.

A norm satisfying

||x + y|| ≤ max(||x||, ||y||)

is called a nonarchimedean norm (or a finite valuation). The solu-
tion of Exercise 10.1.2 shows that the p-adic metric | · |p is nonar-
chimedean. A metric that is not nonarchimedean is called
Archimedean (or an infinite valuation).

Exercise 10.1.3 Show that the usual absolute value on Q is archi-
medean.

The celebrated theorem of Ostrowski states that essentially the
only norms we can define on Q are the p-adic norms and the usual
absolute value. To make this precise, we need the notion of equiva-
lence of two norms.

Given a metric space X , we can discuss the notion of a Cauchy
sequence. This is any sequence {an}∞n=1 of elements of X such that
given any ε > 0, there exists an N (depending only on ε) such that
d(am, an) < ε for m, n > N.

Two metrics d1, d2 on X are said to be equivalent if every se-
quence that is Cauchy with respect to d1 is also Cauchy with respect
to d2. Two norms on a field are said to be equivalent if they induce
equivalent metrics.

Exercise 10.1.4 If 0 < c < 1 and p is prime, define

||x|| =

⎧
⎨

⎩

cνp(x) if x �= 0,

0 if x = 0

for all rational numbers x. Show that || · || is equivalent to | · |p on Q.



10.1 Ostrowski’s Theorem 149

The usual absolute value on Q we will denote by | · |∞ to distin-
guish it from the p-adic metrics. Note that we can always define a
“trivial” norm by setting ||0|| = 0, and ||x|| = 1 for x �= 0. We also
note that || − x|| = ||x|| follows from the axioms.

Theorem 10.1.5 (Ostrowski) Every nontrivial norm ||·|| on Q is equiv-
alent to | · |p for some prime p or | · |∞.

Proof. Case (i): Suppose there is a natural number n such that ||n|| >
1. Let n0 be the least such n. We know that n0 > 1, so we can write
||n0|| = nα

0 for some positive α. Write any natural number n in base
n0:

n = a0 + a1n0 + · · · + asn
s
0, 0 ≤ ai < n0,

and as �= 0. Then, by the triangle inequality,

||n|| ≤ ||a0|| + ||a1n0|| + · · · + ||asn
s
0||

≤ ||a0|| + ||a1||nα
0 + · · · + ||as||nαs

0 .

Since all the ai are less than n0, we have ||ai|| ≤ 1. Hence,

||n|| ≤ 1 + nα
0 + · · · + nαs

0

≤ nαs
0

(
1 +

1
nα

0

+ · · ·
)
.

Since n > ns
0, we deduce ||n|| ≤ Cnα for some constant C and for

all natural numbers n. Thus, ||nN || ≤ CnNα, so that ||n|| ≤ C1/Nnα.
Letting N → ∞ gives ||n|| ≤ nα for all natural numbers n. We can
also get the reverse inequality as follows: since ns+1

0 > n ≥ ns
0, we

have

||ns+1
0 || = ||n + ns+1

0 − n||
≤ ||n|| + ||ns+1

0 − n||,

so that

||n|| ≥ ||ns+1
0 || − ||ns+1

0 − n||
≥ n

(s+1)α
0 − (ns+1

0 − n)α.

Thus,
||n|| ≥ n

(s+1)α
0 − (ns+1

0 − ns
0)

α,
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since n ≥ ns
0, so that

||n|| ≥ n
(s+1)α
0

(
1 −

(
1 − 1

n0

)α)

≥ C1n
α

for some constant C1. Repeating the previous argument gives ||n|| ≥
nα and therefore ||n|| = nα for all natural numbers n. Thus, || · || is
equivalent to | · |∞.

Case (ii): Suppose that ||n|| ≤ 1 for all natural numbers. Since the
norm is nontrivial, there is an n such that ||n|| < 1. Let n0 be the
least such n. Then n0 must be prime, for if n0 = ab, then ||n0|| =
||a||||b|| < 1 implies ||a|| < 1 and ||b|| < 1, contrary to the choice
of n0. Say n0 = p. If q is a prime not equal to p, then we claim
||q|| = 1. Indeed, if not, then ||q|| < 1, and for sufficiently large
N , ||qN || < 1/2. Similarly, for sufficiently large M , ||pM || < 1/2.
Since pM , qN are coprime, we can find integers a and b such that
apM + bqN = 1. Hence

1 = ||apM + bqN || ≤ ||a||||pM || + ||b||||qN ||
< 1/2 + 1/2 = 1,

a contradiction. Therefore, ||q|| = 1. Now write C = ||p||. Since
any natural number can be written uniquely as a product of prime
powers, we get

||n|| = Cνp(n).

By Exercise 10.1.4, this metric is equivalent to | · |p, which com-
pletes the proof. �

Exercise 10.1.6 Let F be a field with norm || · || satisfying

||x + y|| ≤ max(||x||, ||y||).

If a ∈ F , and r > 0, let B(a, r) be the open disk, {x ∈ F : ||x−a|| < r}.
Show that B(a, r) = B(b, r) for any b ∈ B(a, r). (This result says that
every point of the disk is a “center” of the disc.)

Exercise 10.1.7 Let F be a field with || · ||. Let R be the set of all Cauchy
sequences {an}∞n=1. Define addition and multiplication of sequences point-
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wise: that is,

{an}∞n=1 + {bn}∞n=1 = {an + bn}∞n=1,

{an}∞n=1 × {bn}∞n=1 = {anbn}∞n=1.

Show that (R, +,×) is a commutative ring. Show further that the subset
R consisting of null Cauchy sequences (namely those satisfying ||an|| → 0
as n → ∞) forms a maximal ideal m.

We can embed our field F in R by the map a �→ (a, a, . . .), which
is clearly a Cauchy sequence. Since m is a maximal ideal, R/m is a
field. R/m is called the completion of F with respect to || · ||. In the
case of F = Q with norm | · |p, the completion is called the field of
p-adic numbers, and denoted by Qp.

We can extend the concept of norm to Qp by setting

|a|p = lim
n→∞

|an|p

for any Cauchy sequence a = {an}∞n=1. It is easily seen that this is
well-defined.

Theorem 10.1.8 Qp is complete with respect to | · |p.

Proof. Let {a(j)}∞j=1 be a Cauchy sequence of equivalence classes
in Qp. We must show that there is a Cauchy sequence to which it
converges. We write a(j) = {a(j)

n }∞n=1 and set s = {a(j)
j }∞j=1, the

“diagonal” sequence. First, observe that s is a Cauchy sequence,
since {a(j)}∞j=1 is Cauchy, so that given ε > 0, there is an N(ε) such
that for j, k ≥ N(ε), we have |a(j) − a(k)|p < ε. This means that for
j, k, n ≥ N1(ε) for some N1(ε), we have

∣∣∣a(j)
n − a(k)

n

∣∣∣
p

< ε.

In particular,
∣∣∣a(j)

j − a
(k)
k

∣∣∣
p
≤ max

(∣∣∣a(j)
j − a

(j)
k

∣∣∣
p
,
∣∣∣a(j)

k − a
(k)
k

∣∣∣
p

)

for j, k ≥ N1(ε). Therefore, s is a Cauchy sequence. We now show
that limj→∞ a(j) = s. That is, given ε > 0, we must show that there
is an N2(ε) such that for j ≥ N2(ε), we have

|a(j) − s|p < ε.
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This means that we must show that for some N3(ε) and j, n ≥ N3(ε),
we have |a(j)

n −a
(n)
n |p < ε. But this is clear from the above for N3(ε) =

N1(ε). �
When we complete Q with respect to the usual absolute value

| · |∞, we get the real number field R, which is complete. When we
complete Q with respect to | · |p we get Qp, which we just proved to
be complete. It is this point of view that motivates p-adic analysis.
Real analysis is seen to be the special case of only one completion
of Q. As we shall see, it is fruitful to develop p-adic analysis on an
equal footing. When applied to the context of number theory, we
get an important theme of p-adic analytic number theory, which is
playing a central role in the modern perspective.

Exercise 10.1.9 Show that

Zp = {x ∈ Qp : |x|p ≤ 1}

is a ring. (This ring is called the ring of p-adic integers.)

Exercise 10.1.10 Given x ∈ Q satisfying |x|p ≤ 1, and any natural
number i, show that |x−ai|p ≤ p−i. Moreover, we can choose ai satisfying
0 ≤ ai < pi.

Just as it is impractical to think of real numbers as Cauchy
sequences, it is impractical to think of elements of Qp as Cauchy
sequences. It is better to think of them as formal series

∞∑

n=−N

bnpn, 0 ≤ bn ≤ p − 1,

as the following theorem shows.

Theorem 10.1.11 Every equivalence class s in Qp for which
|s|p ≤ 1 has exactly one representative Cauchy sequence {ai}∞i=1 satis-
fying 0 ≤ ai < pi and ai ≡ ai+1(mod pi) for i = 1, 2, 3, . . ..

Proof. The uniqueness is clear, for if {a′i}∞i=1 is another such se-
quence, we have ai ≡ a′i(mod pi), which forces ai = a′i. Now let
{ci}∞i=1 be a Cauchy sequence of Qp in s. Then for each j, there is an
N(j) such that

|ci − ck|p ≤ p−j
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for i, k ≥ N(j). Without loss of generality, we may take N(j) ≥ j.
Since |s|p ≤ 1, we have |ci|p ≤ 1 for i ≥ N(1) because

|ci|p ≤ max(|ck|p, |ci − ck|p)
≤ max(|ck|p, 1/p),

so that by choosing a sufficiently large k we are ensured that
|ck|p ≤ 1, since |s|p = limk→∞ |ck|p ≤ 1. By Exercise 10.1.10, we
can find a sequence of integers aj such that

|aj − cN(j)|p ≤ p−j,

with 0 ≤ aj < pj . The claim is that {aj}∞j=1 is the required sequence.
First observe that by the triangle inequality,

|aj+1 − aj |p ≤ max(
∣∣aj+1 − cN(j+1)

∣∣
p
,
∣∣cN(j+1) − cN(j)

∣∣
p
,

∣∣cN(j) − aj

∣∣
p
)

≤ max
(
p−j−1, p−j , p−j

)
= p−j,

so that
aj ≡ aj+1(mod pj),

for i = 1, 2, . . .. Second, for any j, and i ≥ N(j), we have

|ai − ci|p ≤ max(|ai − aj |p, |aj − cN(j)|p, |cN(j) − cj|p)
≤ max(p−j , p−j , p−j) = p−j

so that limi→∞ |ai − ci|p = 0. �

The above theorem says that Z is dense in Zp, the ring of p-adic
integers. Now writing each ai of Theorem 10.1.11 in base p, we see
that

ai = b0 + b1p + · · · + bi−1p
i−1,

where 0 ≤ bi < p. The condition ai ≡ ai+1 (mod pi) means that

ai+1 = b0 + b1p + · · · + bi−1p
i−1 + bip

i

in base p. Therefore, every element of Zp can be written as
∑∞

n=0 bnpn,
0 ≤ bn < p. If x ∈ Qp, we can always multiply x by an appropriate
power of p (say pN ) so that |pNx|p ≤ 1. Then, we can expand pNx as



154 10. p-adic Methods

above to deduce that every p-adic number has a unique expansion
as
∑∞

n=−N bnpn, 0 ≤ bn ≤ p − 1.
It is useful to observe the analogy with Laurent series and the

field of meromorphic functions of a complex variable. At each point
z ∈ C, the meromorphic function has a Laurent expansion, which is
unique. Thus, if a rational number has denominator divisible by p,
we can think of it as having a “pole” at p. This analogy has been a
guiding force for much of the development in p-adic theory.

Exercise 10.1.12 Show that the p-adic series

∞∑

n=1

cn, cn ∈ Qp,

converges if and only if |cn|p → 0.

Thus convergence of infinite series is easily verified. Note, how-
ever, that the analogue of Exercise 10.1.12 is not true for the real
numbers, as the example of the harmonic series shows.

Exercise 10.1.13 Show that

∞∑

n=1

n!

converges in Qp.

Exercise 10.1.14 Show that

∞∑

n=1

n · n! = −1

in Qp.

Exercise 10.1.15 Show that the power series

∞∑

n=0

xn

n!

converges in the disk |x|p < p−
1

p−1 .
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Exercise 10.1.16 (Product formula) Prove that for x ∈ Q, x �= 0,
∏

p

|x|p = 1

where the product is taken over all primes p including ∞.

Exercise 10.1.17 Prove that for any natural number n and a finite prime
p,

|n|p ≥ 1
|n|∞

.

10.2 Hensel’s Lemma

In many ways Qp is analogous to R. For example, R is not algebrai-
cally closed. The exercises below show that Qp is not algebraically
closed. However, by adjoining i =

√
−1 to R, we get the field of

complex numbers, which is algebraically closed. In contrast, the
algebraic closure Qp of Qp is not of finite degree over Q. Moreover,
C is complete with respect to the extension of the usual norm of
R. Unfortunately, Qp is not complete with respect to the extension
of the p-adic norm. So after completing it (via the usual method of
Cauchy sequences) we get a still larger field, usually denoted by Cp,
and it turns out to be both algebraically closed and complete. It is
this field Cp that is the p-adic analogue of the field of complex num-
bers. Very little is known about it. The topic of rigid analytic spaces
in the literature refers to its study, which we will not cover in this
chapter. We confine much of our study to Qp.

Exercise 10.2.1 Show that x2 = 7 has no solution in Q5.

Example 10.2.2 Show that x2 = 6 has a solution in Q5.

Solution. The equation x2 ≡ 6 (mod 5) has a solution (namely x ≡
1 (mod 5)). We will show inductively that x2 ≡ 6 (mod 5n) has a
solution for every n ≥ 1. Suppose

x2
n ≡ 6 (mod 5n).

We want to find x2
n+1 ≡ 6 (mod 5n+1). Write xn+1 = 5nt + xn. So we

must have
(5nt + xn)2 ≡ 6 (mod 5n+1),
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which means that 2 · 5ntxn + x2
n ≡ 6(mod 5n+1). This reduces to

2txn +
x2

n − 6
5n

≡ 0 (mod 5),

so that we can clearly solve for t. The method produces a sequence
of integers {xn}∞n=1 such that x2

n≡6 (mod 5n) and xn+1≡xn(mod 5n).
The sequence is therefore Cauchy and its limit x (which exists in Qp

by completeness) satisfies x2 = 6. �

The method suggested by the previous example is quite general.
It is the main idea behind Hensel’s lemma which is the following
theorem.

Theorem 10.2.3 Let f(x) ∈ Zp[x] be a polynomial with coefficients in
Zp. Write f ′(x) for its formal derivative. If f(x) ≡ 0 (mod p) has a
solution a0 satisfying f ′(a0) �≡ 0 (mod p), then there is a unique p-adic
integer a such that f(a) = 0 and a ≡ a0 (mod p).

Proof. We imitate the construction suggested by the example. Sup-
pose

f(x) ≡ 0 (mod pn)

has a solution an. We claim that there is a unique solution

an+1

(
mod pn+1

)

such that
f(an+1) ≡ 0

(
mod pn+1

)

and an+1 ≡ an(mod pn). Indeed, writing an+1 = pnt+an, we require
f(pnt + an) ≡ 0 (mod pn+1). We write f(x) =

∑
i cix

i, so that

f(pnt + an) =
∑

i

ci(an + pnt)i

≡
∑

i

ci(ai
n + iai−1

n pnt) (mod pn+1)

≡ f(an) + pntf ′(an) (mod pn+1).

We need to solve for t in the congruence

pntf ′(an) + f(an) ≡ 0 (mod pn+1).
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Since f(an) ≡ 0 (mod pn), this reduces to

tf ′(an) ≡ −(f(an)/pn) (mod p),

which has a unique solution (mod p), since f ′(an) �≡ 0 (mod p), be-
cause an ≡ a0(mod p). This proves the claim. As before, {an}∞n=1 is
a Cauchy sequence, whose limit is the required solution. Since an+1

is a unique lifting (mod pn+1) of an (mod pn), the uniqueness of the
solution is now clear. �

Exercise 10.2.4 Let f(x) ∈ Zp[x]. Suppose for some N and a0 ∈ Zp

we have f(a0) ≡ 0 (mod p2N+1), f ′(a0) ≡ 0 (mod pN ) but f ′(a0) �≡
0 (mod pN+1). Show that there is a unique a ∈ Zp such that f(a) = 0
and a ≡ a0 (mod pN+1).

Exercise 10.2.5 For any prime p, and any positive integer m coprime to
p, show that there exists a primitive mth root of unity in Qp if and only if
m|(p − 1).

Exercise 10.2.6 Show that the set of (p − 1)st roots of unity in Qp is a
cyclic group of order (p − 1).

Remark. The previous exercise shows the existence of p-adic num-
bers ω0, ω1, . . . , ωp−1 that are roots of the polynomial xp − x = 0
such that ωi ≡ i (mod p). These roots are called the “Teichmüller
representatives.”

Exercise 10.2.7 (Polynomial form of Hensel’s Lemma) Suppose
f(x) ∈ Zp[x] and that there exist g1, h1 ∈ (Z/pZ)[x] such that

f(x) ≡ g1(x)h1(x) (mod p),

with (g1, h1) = 1, g1(x) monic. Then there exist polynomials g(x), h(x) ∈
Zp[x] such that g(x) is monic, f(x) = g(x)h(x), and g(x) ≡ g1(x)
(mod p), h(x) ≡ h1(x) (mod p).

We now consider Qp, the algebraic closure of Qp. The p-adic norm
extends uniquely to Qp in the obvious way, which we will also
denote by | · |p. Indeed, if K/Qp is a finite extension of degree n,
we have for x ∈ K,

|x|p = (|NK/Qp
(x)|p)1/n.

Theorem 10.2.8 | · |p is a nonarchimedean norm on K.
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Proof. It is clear that |x|p = 0 if and only if x = 0. It is also clear that
|xy|p = |x|p|y|p, since the norm is multiplicative. To prove that

|x + y|p ≤ max(|x|p, |y|p)

we see (upon dividing by y) that it suffices to prove for α ∈ K,

|α + 1|p ≤ max(|α|p, 1).

It is easily seen that this follows if we can show

|α|p ≤ 1 ⇒ |α − 1|p ≤ 1.

That is, we must show

|NK/Qp
(α)|p ≤ 1 ⇒ |NK/Qp

(α − 1)|p ≤ 1.

This reduces to showing

NK/Qp
(α) ∈ Zp ⇒ NK/Qp

(α − 1) ∈ Zp.

It is now necessary to use a little bit of commutative algebra. Clearly,
Qp(α) = Qp(α − 1). Now let

f(x) = xn + an−1x
n−1 + · · · + a1x + a0

be the minimal polynomial for α. The minimal polynomial for α−1
is clearly

f(x + 1) = xn + (an−1 + n)xn−1 + · · · + (1 + an−1 + · · · + a1 + a0).

Now NK/Qp
(α) = (−1)na0 and

NK/Qp
(α − 1) = (−1)n(1 + an−1 + · · · + a1 + a0).

We now use the polynomial form of Hensel’s lemma. If all the coef-
ficients of f(x) are in Zp, we are done. So, assume that

f(x) = xn + an−1x
n−1 + · · · + a1x + a0

is such that a0 ∈ Zp but some ai �∈ Zp. Choose m to be the smallest
exponent such that pmai ∈ Zp for all i and now “clear denomina-
tors”:

g(x) = pmf(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0
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with bi = pmai. Since f(x) is monic, bn = pm, and b0 = pma0. By
assumption, at least one bi is not divisible by p. Thus

g(x) ≡ (bnxn−k + · · · + bk)xk (mod p),

where k is the smallest index such that bk is not divisible by p. By Ex-
ercise 10.2.7 (the polynomial form of Hensel’s lemma) this lifts to a
factorization in Zp[x], which means that g(x) = pmf(x) is reducible,
a contradiction, since f(x) is the minimal polynomial of α. This
completes the proof. �

Exercise 10.2.9 Show that for p � =2, the only solution to x2≡1 (mod pn)
is x = ±1, for every n ≥ 1.

10.3 p-adic Interpolation

The notion of p-adic continuity is evident. We say that a function
f : Qp → Qp is continuous if f(xn) → f(x) whenever xn → x.

The problem of interpolation is this: Given a sequence a1, a2,
a3, . . . of elements in Qp, does there exist a continuous function
f : Zp → Qp such that f(n) = an? Since the set of natural num-
bers is dense in Zp, there can exist at most one such function.

The classic example of interpolation is given by the Γ-function:

Γ(n + 1) =
∫ ∞

0
e−xxndx = n!.

Hence

Γ(s + 1) =
∫ ∞

0
e−xxsdx

interpolates the sequence of factorials.

Exercise 10.3.1 Show that there is no continuous function f : Zp → Qp

such that f(n) = n!

The difficulty in interpolation stems from n! being highly divisi-
ble by p. Thus, a natural idea is to consider the sequence

∏

1≤j≤n
(j,p)=1

j
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instead of the factorials and hope that this works.
A continuous function f : Zp → Qp is in fact determined by its

restriction to natural numbers. Thus given a sequence of integers
{ak}∞k=0, we need only verify that for any natural number m, there
is an integer N = N(m) such that

k ≡ k′ (mod pN ) ⇒ ak ≡ ak′ (mod pm). (10.1)

That is, whenever k and k′ are close p-adically, then ak and ak′ are
close p-adically.

We first begin by showing that the sequence defined by

ak =
∏

j≤k
(j,p)=1

j

has almost the property (10.1). As we shall see, this is essentially
Wilson’s theorem of elementary number theory.

Exercise 10.3.2 Let p �= 2, be prime. Prove that for any natural numbers
n, s we have

ps−1∏

j=1
(n+j,p)=1

(n + j) ≡ −1 (mod ps).

Exercise 10.3.3 Show that if p �= 2,

ak =
∏

j≤k
(j,p)=1

j,

then ak+ps ≡ −ak (mod ps).

The previous exercise almost satisfies (10.1) apart from the sign.
This motivates the definition of the p-adic gamma function:

Γp(n) := (−1)n
∏

j<n
(j,p)=1

j.

Exercise 10.3.4 Prove that for p �= 2,

Γp(k + ps) ≡ Γp(k) (mod ps).
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We now prove Mahler’s interpolation theorem. As will be seen,
the essential idea is combinatorial analysis based on a simplification
due to Bojanic.

Exercise 10.3.5 Let n, k be natural numbers and write

n = a0 + a1p + a2p
2 + · · · ,

k = b0 + b1p + b2p
2 + · · · ,

for the p-adic expansions of n and k, respectively. Show that
(

n

k

)
≡
(

a0

b0

)(
a1

b1

)(
a2

b2

)
· · · (mod p).

Exercise 10.3.6 If p is prime, show that
(

pn

k

)
≡ 0(mod p)

for 1 ≤ k ≤ pn − 1 and all n.

Exercise 10.3.7 (Binomial inversion formula) Suppose for all n,

bn =
n∑

k=0

(
n

k

)
ak.

Show that

an =
n∑

k=0

(
n

k

)
(−1)n−kbk,

and conversely.

Exercise 10.3.8 Prove that

n∑

k=0

(
n

k

)
(−1)k

(
k

m

)
=

⎧
⎨

⎩

(−1)m if n = m,

0 otherwise.

Exercise 10.3.7 suggests the following. If f : Zp → Qp is continu-
ous, then let

an(f) =
n∑

k=0

(
n

k

)
(−1)n−kf(k),
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so that

f(n) =
n∑

k=0

(
n

k

)
ak(f).

If we can show that the function
∞∑

k=0

(
x

k

)
ak(f)

is p-adically continuous, then this solves the interpolation problem.
That is, if we can show that the series converges, we are done. This is
the key idea of Mahler’s theorem, namely, to show that |ak(f)|p → 0
if the sequence {f(k)}∞k=1 satisfies condition (10.1).

Exercise 10.3.9 Define

∆nf(x) =
n∑

k=0

(
n

k

)
(−1)n−kf(x + k).

Show that

∆nf(x) =
m∑

j=0

(
m

j

)
∆n+jf(x − m).

Exercise 10.3.10 Prove that
m∑

j=0

(
m

j

)
an+j(f) =

n∑

k=0

(−1)n−k

(
n

k

)
f(k + m)

with an(f) defined by

an(f) =
n∑

k=0

(−1)n−k

(
n

k

)
f(k).

Exercise 10.3.11 Show that the polynomial

(
x

n

)
=

⎧
⎨

⎩

x(x−1)···(x−n+1)
n! if n ≥ 1,

1 if n = 0,

takes integer values for x ∈ Z. Deduce that
∣∣∣∣

(
x

n

)∣∣∣∣
p

≤ 1

for all x ∈ Zp.
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Theorem 10.3.12 (Mahler, 1961) Suppose f : Zp → Qp is continuous.
Let

an(f) =
n∑

k=0

(−1)n−k

(
n

k

)
f(k).

Then the series ∞∑

k=0

(
x

k

)
ak(f)

converges uniformly in Zp and

f(x) =
∞∑

k=0

(
x

k

)
ak(f).

Proof. We know that given any positive integer s, there exists a pos-
itive integer t such that for x, y ∈ Zp,

|x − y|p ≤ p−t ⇒ |f(x) − f(y)|p ≤ p−s.

In particular,
|f(k + pt) − f(k)|p ≤ p−s

for k = 0, 1, 2, . . . .
Since f is continuous on Zp, it is bounded there (recall that Zp is

compact), and so we may suppose without loss of generality that
|f(x)|p ≤ 1 for all x ∈ Zp. Hence,

|an(f)|p ≤ 1 for n = 0, 1, 2, . . . .

Now by Exercise 10.3.10,

an+pt(f) = −
pt−1∑

j=1

(
pt

j

)
an+j(f)+

n∑

k=0

(−1)n−k

(
n

k

){
f(k+pt)−f(k)

}
.

By Exercise 10.3.6, p|
(
pt

j

)
for 1 ≤ j ≤ pt − 1, so that

|an+pt(f)|p ≤ max
1≤j<pt

{p−1|an+j(f)|p, p−s}.

Since |an(f)|p ≤ 1, we obtain

|an(f)|p ≤ p−1 for n ≥ pt.
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Replacing n by n + pt in the penultimate inequality and using the
above inequality, we obtain

|an(f)|p ≤ p−2 for n ≥ 2pt.

Repeating the argument (s − 1) times gives

|an(f)|p ≤ p−s for n ≥ spt.

This proves an(f) → 0 as n → ∞. By Exercise 10.3.11, we have
∣∣∣
(

x

n

)∣∣∣
p
≤ 1

for x ∈ Zp. Therefore, the series

∞∑

k=0

(
x

k

)
ak(f)

converges uniformly on Zp and thus defines a continuous function.
Since this function agrees with f(n) on the natural numbers and N

is dense in Zp, we deduce the result. �

Exercise 10.3.13 If f(x) ∈ C[x] is a polynomial taking integral values at
integral arguments, show that

f(x) =
∑

k

ck

(
x

k

)

for certain integers ck.

Exercise 10.3.14 If n ≡ 1 (mod p), prove that npm ≡ 1 (mod pm+1).
Deduce that the sequence ak = nk can be p-adically interpolated.

The previous exercise shows that if n ≡ 1 (mod p), then f(s) = ns

is a continuous function of a p-adic variables s. The next exercises
show how this can be extended for other values of n.

Exercise 10.3.15 Let (n, p) = 1. If k ≡ k′ (mod (p − 1)pN ), then show
that

nk ≡ nk′
(mod pN+1).

Exercise 10.3.16 Fix s0 ∈ {0, 1, 2, . . . , p − 2} and let As0 be the set of
integers congruent to s0 (mod p − 1). Show that As0 is a dense subset of
Zp.
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Exercise 10.3.17 If (n, p) = 1, show that f(k) = nk can be extended to
a continuous function on As0 .

Remark. By Exercise 10.3.16, we see that f(s) = ns is a continuous
function fs0 : Zp → Zp that interpolates ns, for s ≡ s0(mod p − 1).

10.4 The p-adic Zeta-Function

We begin with a brief description of p-adic integration theory. For
further details we refer the reader to Koblitz [K]. A p-adic distrib-
ution µ on Zp is a Qp-valued additive map from the set of compact
open subsets in Zp. It is called a measure if there is a constant B ∈ R

such that
|µ(U)|p ≤ B

for all compact open U ⊆ Zp.
To define a distribution or measure on Zp, it suffices to define it

on subsets of the form

I =
{
a + pN

Zp, 0 ≤ a ≤ pN − 1, N = 1, 2, . . .
}

,

since any open subset of Qp is a union of subsets of this type.
It is not difficult to verify that a map µ : I → Qp satisfying

µ(a + pn
Zp) =

p−1∑

b=0

µ(a + bpn + pn+1
Zp)

extends uniquely to a p-adic distribution on Zp.
We define the Bernoulli distributions. Let

b0(x) = 1, b1(x) = x − 1
2
, b2(x) = x2 − x +

1
6
, · · ·

be the sequence of Bernoulli polynomials. Define

µk(a + pn
Zp) = pn(k−1)bk

( a

pn

)
.

Exercise 10.4.1 Verify that µk extends to a distribution on Zp.

If µ is a p-adic measure, one can define a good theory of integra-
tion:
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Theorem 10.4.2 Let µ be a p-adic measure on Zp, and let f : Zp → Qp

be a continuous function. Then the “Riemann sums”

SN :=
∑

a≤a≤pN−1

f(xa,N )µ(a + pN
Zp),

where xa,N is any element in the “interval” a + pn
Z, converge to a limit

in Qp as N → ∞, and this limit is independent of the choices {xa,N}.

Proof. We first show that the sequence of SN is Cauchy. By the conti-
nuity of f , we assume that N is large enough so that
|f(x) − f(y)| < ε whenever x ≡ y(mod pN ). Now let M > N . By
the additivity of µ, we can rewrite

SN =
∑

0≤a≤pM−1

f(xa,N )µ
(
a + pM

Zp

)
,

where a denotes the least nonnegative residue of a
(
mod pN

)
. Since

xa,N ≡ xa,M

(
mod pN

)
,

|SN − SM |p =

∣∣∣∣∣∣

∑

0≤a≤pM−1

(f(xa,N ) − f(xa,M ))µ
(
a + pM

Zp

)
∣∣∣∣∣∣
p

≤ Bε,

where |µ(U)|p ≤ B for all compact open U . Since Qp is complete,
the sequence of SN ’s converges to a limit. This limit is easily seen to
be independent of the choice of the xa,N ’s. �

If µ is a measure on Zp and f : Zp → Qp is a continuous func-
tion, we denote by

∫
Zp

f(x)dµ(x) the limit of the “Riemann sums”
of Theorem 10.4.2.

We now introduce the Mazur measure. Let α ∈ Zp. We let (α)N

be the rational integer between 0 and pN − 1 that is congruent to
α (mod pN ). If µ is a distribution and α ∈ Qp, it is clear that αµ is
again a distribution. If α ∈ Z

∗
p, then µ′ defined by µ′(U) = µ(αU) is

again a distribution. Now let α be any rational integer coprime to p
and unequal to 1. We define the “regularized” Bernoulli distribution
by setting

µk,α(U) = µk(U) − α−kµk(αU)

for any compact open set U . It can be shown that µk,α is a measure.
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Exercise 10.4.3 Show that µ1,α is a measure.

The measure µ1,α is called the Mazur measure. Its significance is
disclosed by Theorem 10.4.7.

Exercise 10.4.4 Let dk be the least common multiple of the denominators
of coefficients of bk(x). Show that

dkµk,α(a + pN
Zp) ≡ dkkak−1µ1,α(a + pN

Zp) (mod pN ).

Exercise 10.4.5 Show that
∫

Zp

dµk,α = k

∫

Zp

xk−1dµ1,α.

For any compact open set U and a continuous function f : X →
Qp, we define ∫

U
fdµ =

∫

Zp

f(x)χU (x)dµ.

Exercise 10.4.6 If Z
∗
p is the group of units of Zp, show that

µk,α(Z∗
p) = (1 − α−k)(1 − pk−1)Bk,

where Bk is the kth Bernoulli number.

Putting these two exercises together gives the following impor-
tant theorem:

Theorem 10.4.7 (Mazur, 1972)

−(1 − pk−1)Bk/k =
1

α−k − 1

∫

Z∗
p

xk−1dµ1,α.

By Exercise 8.2.12, we can interpret the left hand side of the equa-
tion in Theorem 10.4.7 as

(
1 − pk−1

)
ζ(1 − k).

The theorem allows us to show that these values can be p-adically
interpolated, provided that k lies in a fixed residue class (mod p−1).

Exercise 10.4.8 (Kummer congruences) If (p−1)� i and i≡j (mod pn),
show that

(1 − pi−1)Bi/i ≡ (1 − pj−1)Bj/j (mod pn+1).
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Exercise 10.4.9 (Kummer) If (p − 1) � i, show that |Bi/i|p ≤ 1.

Exercise 10.4.10 (Clausen and von Staudt) If (p − 1)|i and i is even,
then

pBi ≡ −1 (mod p).

Theorem 10.4.7 and the Kummer congruences motivate the de-
finition of the p-adic ζ-function. If k is in a fixed residue class s0

(mod p − 1), then the Kummer congruences imply that the numbers
(
1 − pk−1

)
ζ(1 − k)

can be p-adically interpolated. By Theorem 10.4.7 we see that this
function must be

1
α−(s0+(p−1)s) − 1

∫

Z∗
p

xs0+(p−1)s−1dµ1,α,

and we designate it as ζp,s0(s), and call it the p-adic zeta function.
One can show that ζp,s0(s) does not depend on the choice of α.

This observation of Kubota and Leopoldt in 1964 initiated a rich
theory of p-adic zeta and L-functions. We refer the reader to Koblitz
[K] and Washington [W] for further details.

10.5 Supplementary Problems

Exercise 10.5.1 Let 1 ≤ a ≤ p − 1, and set φ(a) = (ap−1 − 1)/p. Prove
that φ(ab) ≡ φ(a) + φ(b) (mod p).

Exercise 10.5.2 With φ as in the previous exercise, show that

φ(a + pt) ≡ φ(a) − at (mod p),

where aa ≡ 1 (mod p).

Exercise 10.5.3 Let [x] denote the greatest integer less than or equal to x.
For 1 ≤ a ≤ p − 1, show that

ap − a

p
≡

p−1∑

j=1

1
j

[aj

p

]
(mod p).
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Exercise 10.5.4 Prove the following generalization of Wilson’s theorem:

(p − k)!(k − 1)! ≡ (−1)k (mod p)

for 1 ≤ k ≤ p − 1.

Exercise 10.5.5 Prove that for an odd prime p,

2p−1 − 1
p

≡
p−1∑

j=1

(−1)j+1

2j
(mod p).

Deduce that 2p−1 ≡ 1 (mod p2) if and only if the numerator of

1 − 1
2

+
1
3
− · · · − 1

p − 1

is divisible by p.

Exercise 10.5.6 Let p be an odd prime. Show that for all x ∈ Zp, Γp(x +
1) = hp(x)Γp(x), where

hp(x) =

⎧
⎨

⎩

−x if |x|p = 1,

−1 if |x|p < 1.

Exercise 10.5.7 For s≥2, show that the only solutions of x2≡1 (mod 2s)
are x ≡ 1,−1, 2s−1 − 1, and 2s−1 + 1.

Exercise 10.5.8 (The 2-adic Γ-function) Show that the sequence defined
by

Γ2(n) = (−1)n
∏

1≤j<n
(j,2)=1

j

can be extended to a continuous function on Z2.

Exercise 10.5.9 Prove that for all natural numbers n,

Γp(−n)Γp(n + 1) = (−1)[n/p]+n+1.

Exercise 10.5.10 If p is an odd prime, prove that for x ∈ Zp,

Γp(x)Γp(1 − x) = (−1)�(x),

where �(x) is defined as the element of {1, 2, . . . , p} satisfying �(x) ≡
x (mod p). (This is the p-adic analogue of Exercise 6.3.4.)
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Exercise 10.5.11 Show that

Γp(1/2)2 =

⎧
⎨

⎩

1 if p ≡ 3 (mod 4),

−1 if p ≡ 1 (mod 4).
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Equidistribution

11.1 Uniform distribution modulo 1

The theory of uniform distribution of sequences is vast and varied.
A good reference book is [KN]. Here, we give the most basic intro-
duction to this important chapter of analytic number theory.

A sequence of real numbers {xn}∞n=1 is said to be uniformly dis-
tributed modulo 1 (abbreviated u.d.) if for every pair of real num-
bers a, b with 0 ≤ a < b ≤ 1, we have

lim
N→∞

#{n ≤ N : (xn) ∈ [a, b]}
N

= b − a,

where (xn) := xn − [xn] denotes the fractional part of xn.
Usually, it is convenient to take a sequence {xn}∞n=1 satisfying 0 ≤

xn < 1 in discussing uniform distribution and we assume this is the
case in the discussion below. It is clear from the definition that if a
sequence {xn}∞n=1 is u.d. then it is also dense in the unit interval.

Exercise 11.1.1 Let us write the sequence of non-zero rational numbers
in [0, 1] as follows:

1,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5
,
1
6
,
5
6
, ...
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where we successively write all the fractions with denominator b for b =
1, 2, 3, .... Show that this sequence is u.d. mod 1.

Exercise 11.1.2 If a sequence of real numbers {xn}∞n=1 is u.d., show that
for any a with 0 ≤ a < 1, we have

#{n ≤ N : xn = a} = o(N).

Exercise 11.1.3 If the sequence {xn}∞n=1 is u.d. and f : [0, 1] → C is a
continuous function, show that

lim
N→∞

1
N

N∑

n=1

f(xn) →
∫ 1

0
f(x)dx,

and conversely.

Exercise 11.1.4 If {xn}∞n=1 is u.d. then

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dx,

for any piecewise C1-function f : [0, 1] → C.

In particular, if {xn}∞n=1 is u.d. then for the functions fm(x) =
e2πimx, we have

lim
N→∞

1
N

∑

n≤N

e2πimxn = 0,

for all non-zero integers m. Weyl’s criterion (to be proved below) is
that the converse is true.

Theorem 11.1.5 [Weyl, 1916] A sequence {xn}∞n=1 is u.d. if and only if

N∑

n=1

e2πimxn = o(N), m = ±1,±2, ... (11.1)

Proof. As observed earlier, the necessity is clear. For sufficiency, let
ε > 0 and f a continuous function f : [0, 1] → C. By the Weierstrass
approximation theorem, there is a trigonometric polynomial φ(x)
such that deg φ ≤ M , with M depending on ε such that

sup
0≤x≤1

|f(x) − φ(x)| ≤ ε. (11.2)
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Then, ∣∣∣∣∣

∫ 1

0
f(x)dx − 1

N

N∑

n=1

f(xn)

∣∣∣∣∣

≤
∣∣∣∣
∫ 1

0
(f(x) − φ(x)dx

∣∣∣∣+

∣∣∣∣∣

∫ 1

0
φ(x)dx − 1

N

N∑

n=1

f(xn)

∣∣∣∣∣ .

By (11.2), the first term is ≤ ε. The second term is

≤
∣∣∣∣∣

∫ 1

0
φ(x)dx − 1

N

N∑

n=1

φ(xn)

∣∣∣∣∣+

∣∣∣∣∣
1
N

N∑

n=1

(φ(xn) − f(xn))

∣∣∣∣∣ .

Again by (11.2), the last term is ≤ ε. Writing

φ(x) =
∑

|m|≤M

ame2πimx,

we see that ∫ 1

0
φ(x)dx = a0,

and
1
N

N∑

n=1

φ(xn) = a0 +
∑

1≤|m|≤M

am

(
N∑

n=1

e2πimxn

)
,

so that
∣∣∣∣∣

∫ 1

0

φ(x)dx − 1
N

N∑

n=1

φ(xn)

∣∣∣∣∣ ≤
∑

1≤|m|≤M

|am|
∣∣∣∣∣
1
N

N∑

n=1

e2πimxn

∣∣∣∣∣ .

Let T =
∑

1≤|m|≤M |am|. We may choose N (which depends on M )
sufficiently large so that all of the inner terms above are ≤ ε/T by
virtue of (11.1). Thus, this term is also ≤ ε. Hence,

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dx.

This completes the proof. �

Exercise 11.1.6 Show that Weyl’s criterion need only be checked for pos-
itive integers m.
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Exercise 11.1.7 Show that the sequence {xn}∞n=1 is u.d. mod 1 if and only
if

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dx,

for any family of functions f which is dense in C[0, 1]. Here, C[0, 1] is the
metric space of continuous functions on [0, 1] with the sup norm.

Exercise 11.1.8 Let θ be an irrational number. Show that the sequence
xn = nθ is u.d.

Exercise 11.1.9 If θ is rational, show that the sequence xn = nθ is not
u.d.

Exercise 11.1.10 Show that the sequence xn = log n is not u.d. but is
dense mod 1.

Exercise 11.1.11 Let 0 ≤ xn < 1. Show that the sequence {xn}∞n=1 is
u.d. mod 1 if and only if

lim
N→∞

1
N

N∑

n=1

xr
n =

1
r + 1

,

for every natural number r.

Exercise 11.1.12 If {xn}∞n=1 is u.d. mod 1, then show that {mxn}∞n=1 is
u.d. mod 1 for m a non-zero integer.

Exercise 11.1.13 If {xn}∞n=1 is u.d. mod 1, and c is a constant, show that
{xn + c}∞n=1 is u.d. mod 1.

Exercise 11.1.14 If {xn}∞n=1 is u.d. mod 1 and yn → c as n → ∞, show
that {xn + yn}∞n=1 is u.d. mod 1.

Exercise 11.1.15 Let Fn denote the nth Fibonacci number defined by the
recursion F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1. Show that log Fn is u.d.
mod 1.

To study the equidistribution of various sequences, an important
technique was introduced by Weyl and van der Corput. The tech-
nique is based on the following simple inequality.
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Theorem 11.1.16 (van der Corput, 1931) Let y1, ..., yN be complex
numbers. Let H be an integer with 1 ≤ H ≤ N . Then

∣∣∣∣∣

N∑

n=1

yn

∣∣∣∣∣

2

≤

N + H

H + 1

N∑

n=1

|yn|2 +
2(N + H)

H + 1

H∑

r=1

(
1 − r

H + 1

) ∣∣∣∣∣

N−r∑

n=1

yn+ryn

∣∣∣∣∣ .

Proof. It is convenient to set yn = 0 for n ≤ 0 and n > N . Clearly,

(H + 1)2
∣∣∣∣∣
∑

n

yn

∣∣∣∣∣

2

=

∣∣∣∣∣

H∑

h=0

∑

n

yn+h

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

n

H∑

h=0

yn+h

∣∣∣∣∣

2

.

We note that the inner sum is zero if n ≥ N +1 or n ≤ −H . Thus, in
the outer sum, n is restricted to the interval [−H + 1, N ]. Applying
the Cauchy-Schwarz inequality, we get that this is

≤ (N + H)
∑

n

∣∣∣∣∣

H∑

h=0

yn+h

∣∣∣∣∣

2

.

Expanding the sum, we obtain

∑

n

H∑

h=0

H∑

k=0

yn+hyn+k = (H + 1)
∑

n

|yn|2 +
∑

n

∑

h�=k

yn+hyn+k.

In the second sum, we combine the terms corresponding to (h, k)
and (k, h) to get that it is

2 Re

(
∑

n

H∑

h=0

∑

k<h

yn+hyn+k

)
.

We write m = n + k and re-write this as

2 Re

(
∑

m

H∑

h=0

∑

k<h

ym−k+hym

)
=2 Re

⎛

⎝
∑

m

H∑

r=1

ym+rym

∑

k<h;h−k=r

1

⎞

⎠ .

The innermost sum is easily seen to be H + 1 − r. Therefore,
∣∣∣∣∣

N∑

n=1

yn

∣∣∣∣∣

2

≤
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N + H

H + 1

N∑

n=1

|yn|2 +
2(N + H)

H + 1

H∑

r=1

(
1 − r

H + 1

) ∣∣∣∣∣

N−r∑

n=1

yn+ryn

∣∣∣∣∣ .

This completes the proof. �

Corollary 11.1.17 (van der Corput, 1931) If for each positive integer r,
the sequence xn+r − xn is u.d. mod 1, then the sequence xn is u.d. mod 1.

Proof. We apply Theorem 11.1.16 with yn = e2πimxn to get

∣∣∣∣∣
1
N

N∑

n=1

e2πimxn

∣∣∣∣∣

2

≤ 1 + H/N

H + 1
+

2(N + H)
N2(H + 1)

H∑

r=1

(
1 − r

H + 1

) ∣∣∣∣∣

N−r∑

n=1

e2πim(xn+r−xn)

∣∣∣∣∣ .

Taking the limit as N → ∞ and using the fact that xn+r − xn is u.d.
mod 1 for every r ≥ 1, we see that

lim
N→∞

∣∣∣∣∣
1
N

N∑

n=1

e2πimxn

∣∣∣∣∣

2

� 1
H

,

for any H . Choosing H arbitrarily large gives the result. �

Exercise 11.1.18 Let y1, ..., yN be complex numbers. Let H be a subset of
[0, H] with 1 ≤ H ≤ N . Show that
∣∣∣∣∣

N∑

n=1

yn

∣∣∣∣∣

2

≤ N + H

|H|

N∑

n=1

|yn|2 +
2(N + H)

|H|2
H∑

r=1

Nr

∣∣∣∣∣

N−r∑

n=1

yn+ryn

∣∣∣∣∣ ,

where Nr is the number of solutions of h−k = r with h > k and h, k ∈ H.

Exercise 11.1.19 Let θ be an irrational number. Show that the sequence
{n2θ}∞n=1 is u.d. mod 1.

Exercise 11.1.20 Show that the sequence {an2 + bn}∞n=1 is u.d. provided
that one of a or b is irrational.

Exercise 11.1.21 Let P (n) = adn
d + ad−1n

d−1 + · · · + a1 + a0 be a
polynomial with real coefficients with at least one coefficient ai with i ≥
1 irrational. Show that the sequence of fractional parts of P (n) is u.d.
mod 1.
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11.2 Normal numbers

Let x be a real number and b ≥ 2 a positive integer. Then, x has a
b-adic expansion

x = [x] +
∞∑

n=1

an

bn
,

with 0 ≤ an < b. This expansion is essentially unique. x is said to be
simply normal to the base b if for each 0 ≤ a < b,

lim
N→∞

#{n ≤ N : an = a}
N

=
1
b
.

In other words, each digit occurs with equal frequency in the b-adic
expansion of x. More generally, we may consider a block of digits of
length k and inquire how frequently this block appears in the b-adic
expansion. To be precise, let Bk be a natural number whose b-adic
expansion is of the form b1b2 · · · bk. A number x is called normal to
the base b if

lim
N→∞

1
N

#{n ≤ N − k + 1 : an+j−1 = bj for 1 ≤ j ≤ k} =
1
bk

.

For instance, the number

0.010101 · · · =
∞∑

n=1

1
22n

,

is simply normal to the base 2 but not normal to the base 2 since the
block 11 does not occur at all in the expression.

Exercise 11.2.1 Show that a normal number is irrational.

Theorem 11.2.2 The number x is normal to the base b if and only if the
sequence (xbn) is u.d. mod 1.

Proof. Let Bk = b1b2 · · · bk be a block of k digits. The block

amam+1 · · · am+k−1

in the b-adic expansion of x is identical with Bk if and only if

Bk

bk
≤ (xbm−1) <

Bk + 1
bk

.
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Let Ik denote this interval of length 1/bk. If the sequence {xbn}∞n=1

is u.d. then

#{m ≤ N − k + 1 : xbm−1 ∈ Ik} ∼ N/bk

as N tends to infinity. Thus, x is normal to the base b. Conversely, if
x is normal to the base b, then for any rational number of the form
y = a/bk, we have

#{n≤N : (xbn)<a/bk}=#{m ≤ N − k + 1 : (xbm−1)<a/bk}+ O(k).

This is easily seen to be equal to
∑

Bk<a

#{m ≤ N − k + 1 : (xbm−1) ∈ Ik} + O(k)

=
∑

Bk<a

(
N/bk + o(N)

)
+ O(k)

which is aN/bk + o(N) since x is normal to the base b. Since the
numbers of the form a/bk are dense in [0, 1], the asymptotic above
extends to all y with 0 ≤ y < 1. This completes the proof. �

Exercise 11.2.3 If x is normal to the base b, show that mx is normal to
the base b for any non-zero integer m.

We will now show that almost all numbers are normal (in the
sense of Lebesgue measure).

Exercise 11.2.4 Let {vn}∞n=1 be a sequence of distinct integers and set for
a non-zero integer h,

S(N, x) =
1
N

N∑

n=1

e2πivnxh.

Show that ∫ 1

0
|S(N, x)|2dx =

1
N

,

and
∞∑

N=1

∫ 1

0
|S(N2, x)|2dx < ∞.
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From the previous exercise and Fatou’s lemma, we deduce

∫ 1

0

∞∑

N=1

|S(N2, x)|2dx < ∞,

so that
∞∑

N=1

|S(N2, x)|2 < ∞,

for almost all x. Therefore,

lim
N→∞

S(N2, x) = 0

for almost all x. Now, given any N ≥ 1, we can find an m such that

m2 ≤ N < (m + 1)2.

Thus,

|S(N, x)| ≤ |S(m2, x)| + 2m

N
≤ |S(m2, x)| + 2√

N
.

Thus,
lim

N→∞
S(N, x) = 0,

for all x /∈ Vh, with Vh a set of measure zero. Since a countable union
of sets of measure zero is still measure zero, we have proved:

Theorem 11.2.5 Let vn be a distinct sequence of natural numbers. For
almost all x, the sequence {vnx}∞n=1 is u.d. mod 1.

Applying the above theorem with vn = bn and using Theorem
11.2.2, we deduce that almost all numbers are normal to every base
b.

Exercise 11.2.6 Show that the sequence n!e is not u.d. mod 1.

The determination of which numbers are normal is not an easy
one. For instance, it is known that the number

0.12345678910111213...
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called Champerowne’s number, obtained by writing all the
numbers in sequence is a normal number to the base 10. In 1946,
Copeland and Erdös showed that

0.23571113171923...

obtained writing the sequence of prime numbers is normal to the
base 10. It is unknown at present if numbers such as

√
2, log 2, e

or π are normal numbers to any base b. In fact, there are no con-
crete examples of numbers which are normal to any base b, although
almost all numbers are normal to any base b.

Exercise 11.2.7 If x is normal to the base b, show that it is simply normal
to the base bm for every natural number m.

11.3 Asymptotic distribution functions mod 1

Let {xn}∞n=1 be a sequence of real numbers and let S(x;N) = #{n ≤
N : 0 ≤ (xn) ≤ x}. A sequence {xn}∞n=1 is said to have the asymp-
totic distribution function (abbreviated a.d.f. mod 1 or simply
a.d.f.) g(x) if

lim
N→∞

S(x;N)
N

= g(x)

for all 0 ≤ x ≤ 1. Clearly, g is non-decreasing and we have g(0) =
0 and g(1) = 1. A sequence which is u.d. mod 1 has asymptotic
distribution function g(x) = x. Thus, this is a generalization of the
concept discussed in the first section. As stated earlier, we assume
we have a sequence {xn}∞n=1 with 0 ≤ xn < 1.

Exercise 11.3.1 A sequence {xn}∞n=1 has a.d.f. g(x) if and only if for
every piecewise continuous function f on [0, 1], we have

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dg(x).

Exercise 11.3.2 A sequence {xn}∞n=1 has a.d.f. g(x) if and only if

lim
N→∞

1
N

N∑

n=1

e2πimxn =
∫ 1

0
e2πimxdg(x),

for all integers m.
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Theorem 11.3.3 [Wiener - Schoenberg, 1928] The sequence {xn}∞n=1

has a continuous a.d.f. if and only if for every integer m, the limit

am := lim
N→∞

1
N

N∑

n=1

e2πimxn

exists and
N∑

m=1

|am|2 = o(N). (11.3)

Proof. Suppose the sequence has a continuous a.d.f. g(x). The exis-
tence of the limits is clear. Now, by Exercise 11.3.2, we have

am =
∫ 1

0
e2πimxdg(x).

Thus,

lim
N→∞

1
N

N∑

m=1

|am|2 = lim
N→∞

1
N

N∑

m=1

∫ 1

0

∫ 1

0
e2πim(x−y)dg(x)dg(y).

This is equal to

lim
N→∞

∫ 1

0

∫ 1

0

(
1
N

N∑

m=1

e2πim(x−y)

)
dg(x)dg(y).

By the Lebesgue dominated convergence theorem this is equal to

∫ 1

0

∫ 1

0

(
lim

n→∞
1
N

N∑

m=1

e2πim(x−y)

)
dg(x)dg(y).

The integrand is zero unless x − y ∈ Z, in which case it is 1. The
set of such (x, y) ∈ [0, 1]2 is a set of measure zero. Therefore the
limit is zero. Conversely, suppose that the limit is zero. By the Riesz
representation theorem, there is a measurable function g(x) such
that

am =
∫ 1

0

e2πimxdg(x).



182 11. Equidistribution

Consequently,
∫ 1

0

∫ 1

0
f(x − y)dg(x)dg(y) = 0,

where f(x − y) = 0 unless x − y ∈ Z, in which case it is 1. We want
to show that this implies that g is continuous. Indeed, if g has a
jump discontinuity at c (say), the double integral is at least [g(c+)−
g(c−)]2 > 0. This completes the proof. �

Exercise 11.3.4 Suppose that {xn}∞n=1 is a sequence such that for all in-
tegers m, the limits

am := lim
N→∞

1
N

N∑

n=1

e2πimxn ,

exist and ∞∑

m=−∞
|am|2 < ∞.

Put

g1(x) =
∞∑

m=−∞
ame2πimx.

Show that

lim
N→∞

#{n ≤ N : xn ∈ [α, β]}
N

=
∫ β

α
g1(x)dx,

for any interval [α, β] contained in [0, 1].

11.4 Discrepancy

Given a sequence {xn}∞n=1, we define the sequence DN by setting

DN := sup
0≤a<b≤1

∣∣∣∣
#{n ≤ N : a ≤ (xn) ≤ b}

N
− (b − a)

∣∣∣∣

and call this the discrepancy of the sequence.

Exercise 11.4.1 Show that the sequence {xn}∞n=1 is u.d. mod 1 if and only
if DN → 0 as N → ∞.
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Exercise 11.4.2 Show that
(

sinπz

π

)2 ∞∑

n=−∞

1
(z − n)2

= 1, z /∈ Z

The proof of Weyl’s criterion relied on the existence of finite
trigonometric polynomials which approximate the characteristic
function of an interval. It will be useful to have a quantitative ver-
sion of these approximations. There are several ways of obtaining
such a version. A most expedient route was discovered by Mont-
gomery [Mo] using functions that had earlier been discovered by
Beurling and Selberg and utilised by the latter to obtain sharp con-
stants in the large sieve inequality. This is the route we shall follow.

For z ∈ C, we define sgn z = 1 if Re(z) ≥ 0 and sgn z = −1 if
Re(z) < 0.

Theorem 11.4.3 (Beurling, 1938) Let

B(z) =
(

sinπz

π

)2
( ∞∑

n=0

1
(z − n)2

−
∞∑

n=1

1
(z + n)2

+
2
z

)
.

Then

1. B(z) is entire;

2. B(x) ≥ sgn x for real x;

3. B(z) = sgn z + O(e2π| Im z|/|z|) ;

4. ∫ ∞

−∞
(B(x) − sgnx)dx = 1.

Proof. The first assertion is clear since sinπz has simple zeros for
z ∈ Z. To prove the second assertion, we observe that

(
sinπz

π

)2 ∞∑

n=−∞

1
(z − n)2

= 1. (11.4)

which is the content of Exercise 11.4.2. For x > 0, we also have

∞∑

n=1

1
(x + n)2
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≤
∞∑

n=1

∫ x+n

x+n−1

du

u2
=
∫ ∞

x

du

u2
=

1
x

=
∞∑

n=0

∫ x+n+1

x+n

du

u2
≤

∞∑

n=0

1
(x + n)2

,

(11.5)
by the method used to prove the integral test. From (11.4), we have

B(z) − sgn z =
(

sinπz

π

)2
(

2
z
− 2

∞∑

n=1

1
(z + n)2

)

for Re(z) > 0 and

B(z) − sgn z =
(

sinπz

π

)2
(

2
z

+ 2
∞∑

n=0

1
(z − n)2

)

for Re(z) < 0. The second assertion follows immediately from these
identities and (11.5). For the third assertion, we note that

sin2 πz = O(e2π| Im(z)|).

In addition, for x, y > 0, we have

∞∑

n=0

1
(x + n)2 + y2

≤ 1
x2 + y2

+ min
(∫ ∞

0

dt

(x + t)2
,

∫ ∞

0

dt

t2 + y2

)

=
1

x2 + y2
+ min

(
1
x

,
π

2y

)
.

Therefore,

∞∑

n=1

1
|z + n|2 = O(1/|z|), for Re(z) ≥ 0,

and ∞∑

n=0

1
|z − n|2 = O(1/|z|), for Re(z) < 0.

The third assertion is now immediate from these observations.
Finally, for the last assertion, we note from the second assertion that
the integrand is non-negative. Also,

∫ A

−A
(B(x)−sgn x)dx=

∫ A

0
(B(x)+B(−x))dx=

∫ A

0

(
sin πx

π

)2 2
x2

dx,
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after a short computation. The last integral tends to 1 as A tends to
infinity. This completes the proof. �

Following Selberg, we now use this theorem to majorize and mi-
norize the characteristic function of an interval via finite trigono-
metric polynomials.

Theorem 11.4.4 (Selberg, 1970) Let I = [a, b] be an interval and χI its
characteristic function. Then, there are continuous functions S+(x) and
S−(x) in L1(R) such that

S−(x) ≤ χI(x) ≤ S+(x),

with
Ŝ±(t) = 0, for |t| ≥ 1.

In addition, ∫ ∞

−∞
(χI(x) − S−(x))dx = 1

and ∫ ∞

−∞
(S+(x) − χI(x))dx = 1.

Proof. With B as in Theorem 11.4.3, let

S+(x) =
1
2
(B(x − a) + B(b − x)).

Then,

S+(x) ≥ 1
2
(sgn (x − a) + sgn (b − x)) = χI(x),

and ∫ ∞

−∞
(S+(x) − χI(x))dx = 1

by the last assertion of Theorem 11.4.3. Hence, S+ ∈ L1(R). More-
over, the function S+ is continuous, being the restriction of an entire
function. Now we will show that for t > 1,

Ŝ+(t) =
∫ ∞

−∞
S+(x)e(−tx)dx = 0, e(u) = e2πiu.

To this end, we begin by showing

J(A, B) =
∫ B

−A
S+(x)e(−tx)dx = O

(
1
A

+
1
B

)
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as A, B tend to infinity. By contour integration, J(A, B) can be writ-
ten as the sum of three line integrals, two of them being along the
vertical line segments [−A,−A− iT ] and [B − iT, B] and one being
along the horizontal segment [−A− iT, B − iT ]. This last integral is
easily estimated using Theorem 11.4.3. It is bounded by

∫ B′

−A′
|B(x − iT )|e−2πtT dx �

∫ B′

−A′
e2πT e−2πtT dx,

where A′ = A + max(|a|, |b|) and B′ = B + max(|a|, |b|). This inte-
gral tends to zero as T tends to infinity. The other two integrals are
similarly estimated. For z = −A + iy, we have

B(z − a) = −1 + O

(
e−2πy

A

)
, for A > |a|,

B(b − z) = 1 + O

(
e−2πy

A

)
, for A > |b|,

so that

S+(z) � e−2πy

A
and the integral over the left vertical line is

� 1
A

∫ 0

−∞
e−2πye2πtydy � 1

A
.

The other vertical line integral is similarly estimated so that letting
A, B tend to infinity, we deduce that Ŝ+(t) = 0 for t > 1. For t < −1,
we use Ŝ+(−t) = Ŝ+(t) and deduce the desired result from this. For
t = ±1, the result follows by continuity of S+. Finally, we set

S−(x) = −1
2
(B(x − a) + B(x − b)),

and proceed analogously to complete the proof of the theorem. �

Exercise 11.4.5 For any δ > 0, and any interval I = [a, b], show that
there are continuous functions H+(x), H−(x) ∈ L1(R) such that

H−(x) ≤ χI(x) ≤ H+(x),

with Ĥ±(t) = 0 for |t| ≥ δ and
∫ ∞

−∞
(χI(x) − H−(x))dx =

∫ ∞

−∞
(H+(x) − χI(x))dx =

1
δ
.
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Exercise 11.4.6 Let f ∈ L1(R). Show that the series

F (x) =
∑

n∈Z

f(n + x),

is absolutely convergent for almost all x, has period 1 and satisfies F̂ (k) =
f̂(k).

Theorem 11.4.7 Let M be a natural number. For any interval I = [a, b]
with length b − a < 1, write

ΞI(x) =
∑

n∈Z

χI(n + x).

Then, there are trigonometric polynomials

S±
M (x) =

∑

|m|≤M

Ŝ±
M (m)e(mx),

such that for all x
S−

M (x) ≤ ΞI(x) ≤ S+
M (x),

and

Ŝ−
M (0) = b − a − 1

M + 1
, Ŝ+

M (0) = b − a +
1

M + 1
.

Proof. Take δ = M +1 in Exercise 11.4.5 and let H± be the functions
obtained by that exercise. Put

V±(x) =
∑

n∈Z

H±(n + x).

By Exercise 11.4.6, V±(x) ∈ L1(0, 1) and V̂±(t) = 0 for |t| ≥ M + 1.
Thus,

V±(x) =
∑

|m|≤M

V̂±(m)e(mx),

almost everywhere. Now set

S±
M =

∑

|m|≤M

V̂±(m)e(mx).

Since χI(x) ≥ H−(x), we get

Ξ(x) =
∑

n∈Z

χI(n + x) ≥
∑

n∈Z

H−(n + x) = V−(x)
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for almost all x. By continuity, we deduce that ΞI(x) ≥ S−
M (x) for

all x. Similary, we deduce ΞI(x) ≤ S+
M (x) for all x. In addition, we

have
Ŝ±

M (0) = b − a ± 1
M + 1

.

�
We now prove the following theorem due to Erdös and Turán.

The proof given below is due to Montgomery [Mo].

Theorem 11.4.8 (Erdös-Turán, 1948) For any integer M ≥ 1,

DN ≤ 1
M + 1

+ 3
M∑

m=1

1
Nm

∣∣∣∣∣

N∑

n=1

e2πimxn

∣∣∣∣∣ .

Proof. Let χI be the characteristic function of the interval I = [a, b].
Using Theorem 11.4.7, we have

N∑

n=1

ΞI(xn) ≤
N∑

n=1

S+
M (xn)

≤ N(b − a) +
N

M + 1
+

∑

0<|m|≤M

|Ŝ+
M (m)|

∣∣∣∣∣

N∑

n=1

e2πimxn

∣∣∣∣∣ .

To estimate Ŝ+
M (m), we use

Ŝ+
M (m) =

∫ 1

0
ΞI(t)e(−mt)dt +

∫ 1

0
(S+

M (t) − ΞI(t))e(−mt)dt,

to deduce

|Ŝ+
M (m)| ≤

∫ 1

0
(S+

M (x) − ΞI(x))dx + |Ξ̂I(m)|.

The integral is 1/(M + 1) and

Ξ̂I(m) = e(−1
2
m(a + b))

sin π(b − a)m
πm

,

from which we get

|Ŝ+
M (m)| ≤ 1

M + 1
+
∣∣∣∣
sin π(b − a)m

πm

∣∣∣∣ ≤
3

2|m| .
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Thus,

N∑

n=1

ΞI(xn) ≤ N(b − a) +
N

M + 1
+ 3

M∑

m=1

1
m

∣∣∣∣∣

N∑

n=1

e2πimxn

∣∣∣∣∣ .

Similarly, we obtain

N∑

n=1

ΞI(xn) ≥ N(b − a) − N

M + 1
− 3

M∑

m=1

1
m

∣∣∣∣∣

N∑

n=1

e2πimxn

∣∣∣∣∣ ,

from which the theorem follows. �

Exercise 11.4.9 Let x1, ..., xN be N points in [0, 1]. For 0 ≤ x ≤ 1, let

RN (x) = #{m ≤ N : 0 ≤ xm ≤ x} − Nx.

Show that

∫ 1

0
R2

N (x)dx =

(
N∑

n=1

(xn − 1/2)

)2

+
1

2π2

∞∑

h=1

1
h2

∣∣∣∣∣

N∑

n=1

e2πihxn

∣∣∣∣∣

2

.

Exercise 11.4.10 Let α be irrational. Let ||x|| denote the distance of x
from the nearest integer. Show that the discrepancy DN of the sequence
nα satisfies

DN � 1
M

+
1
N

M∑

m=1

1
m||mα|| ,

for any natural number M .

11.5 Equidistribution and L-functions

We will discuss a general formalism to study equidistribution due
to Serre [Se]. Let G be a compact group with Haar measure µ nor-
malized so that µ(G) = 1. The space X of conjugacy classes of G
inherits a natural topology from that of G as well as the measure.
Let K be a number field and for each place v of K, let Nv denote its
norm and let us suppose we have a map

v �→ xv ∈ X.
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For each representation,

ρ : G → GL(V ),

we set
L(s, ρ) =

∏

v

det(1 − ρ(xv)Nv−s)−1.

Exercise 11.5.1 Show that L(s, ρ) defines an analytic function in the
region Re(s) > 1.

The sequence xv is said to be µ-equidistributed in X if for any
continuous function f on X we have

lim
x→∞

1
πK(x)

∑

Nv≤x

f(xv) =
∫

G
f(x)dµ(x),

where πK(x) denotes the number of places v with Nv ≤ x.
By the celebrated Peter-Weyl theorem, every continuous function

f can be approximated by a finite linear combination of irreducible
characters χ. Thus, it suffices to verify the existence of the limit
when f is restricted to an irreducible character. The orthogonality
relations now give us:

Theorem 11.5.2 (Weyl criterion for compact groups) Let G be a com-
pact group with normalized Haar measure µ. Let X be the space of con-
jugacy classes of G as above. A sequence xv is is µ-equidistributed if and
only if for every irreducible character χ �= 1 of G, we have

lim
x→∞

1
πK(x)

∑

Nv≤x

χ(xv) = 0.

Exercise 11.5.3 (Serre) Suppose that for each irreducible representation
ρ �= 1, we have that L(s, ρ) extends to an analytic function for Re(s) ≥ 1
and does not vanish there. Prove that the sequence xv is µ-equidistributed
in the space of conjugacy classes, with respect to the image of the normal-
ized Haar measure µ of G.

This formalism includes many of the classical prime number the-
orems. Indeed, if G = (Z/mZ)∗ is the group of coprime residue
classes mod m, and K is the rational number field, then we can as-
sociate to each prime p coprime with m, the residue class it belongs
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to mod m. The associated L-functions are the Dirichlet L-functions.
Their analytic continuation and non-vanishing on Re(s) = 1 is the
content of Chapter 3. In this way, we deduce Dirichlet’s theorem
concerning the distribution of primes in a given arithmetic progres-
sion. More generally, if K/Q is a Galois extension with group G and
we associate to each unramified prime p of Q the conjugacy class
of the Frobenius automorphism of the prime ideal p lying above p,
then, the corresponding equidistribution theorem is the Chebotarev
density theorem.

A conjectural example is given by the Ramanujan τ function. Re-
call that this function is defined by the product expansion

∞∑

n=1

τ(n)qn = q
∞∏

n=1

(1 − qn)24.

In 1916, Ramanujan conjectured that τ(n) is a multiplicative func-
tion and this was proved a year later by Mordell. He also conjec-
tured that for every prime p, we have

|τ(p)| ≤ 2p11/2.

Thus, we may write

τ(p) = 2p11/2 cos θp,

for some unique θp ∈ [0, π]. Inspired by the Sato-Tate conjecture in
the theory of elliptic curves, Serre [Se] made the following conjec-
ture. Let G = SU(2) be the special unitary group of 2 × 2 matrices
over the complex numbers. The conjugacy classes of G are para-
metrized by elements of the interval [0, π]. More precisely, for each
θ ∈ [0, π] the corresponding conjugacy class X(θ) has the element

(
eiθ 0
0 e−iθ

)
.

In Serre’s formalism, we can construct a family of L-functions at-
tached to the irreducible representations of SU(2) via the mapping

p �→ X(θp).

SU(2) has a standard 2-dimensional representation given by the
natural map ρ into GL(2). It is known that all the irreducible repre-
sentations of G are the m-th symmetric powers Symm(ρ). The Sato-
Tate conjecture (as formulated by Serre in this context) is the as-
sertion that the elements X(θp) are equidistributed in the space of



192 11. Equidistribution

conjugacy classes of SU(2) with respect to the Haar measure, which
one can show is

2
π

sin2 θdθ.

To prove this conjecture, it suffices to show that each of the L-series
attached to these representations extends to Re(s) ≥ 1 and does not
vanish there. This conjecture fits neatly into a larger package of con-
jectures in the Langlands program. In fact, the example given above
with the Ramanujan τ function is a special case of a larger family of
conjectures, one for each Hecke eigenform, and more generally, for
automorphic representations on GL(2). At present, it is known that
for m ≤ 9, the m-th symmetric power L-series has the predicted
analytic continuation and non-vanishing property. Recently, Taylor
has announced a proof of the Sato-Tate conjecture for elliptic curves
(which is the original context in which such equidistribution con-
jectures were made).

Exercise 11.5.4 Let G be the additive group of residue classes mod k.
Show that a sequence of natural numbers {xn}∞n=1 is equidistributed in
G if and only if

N∑

n=1

e2πiaxn/k = o(N),

for a = 1, 2, ..., k − 1.

Exercise 11.5.5 Let pn denote the n-th prime. Show that the sequence
{log pn}∞n=1 is not u.d. mod 1.

Exercise 11.5.6 Let v1, v2, ... be a sequence of vectors in R
k/Z

k. Show
that the sequence is equidistributed in R

k/Z
k if and only if

N∑

n=1

e2πib·vn = o(N),

for every b ∈ Z
k with b unequal to the zero vector.

Exercise 11.5.7 Let 1, α1, α2, ..., αk be linearly independent over Q.
Show that the vectors vn = (nα1, ..., nαk) are equidistributed in R

k/Z
k.

Exercise 11.5.8 Let a be a squarefree number and for primes p coprime to
a, consider the map

p �→ xp :=
(

a

p

)
,
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where (a/p) denotes the Legendre symbol. Show that the sequence of xp’s
is equidistributed in the group of order 2 consisting of {±1}.

11.6 Supplementary Problems

Exercise 11.6.1 Show that Exercise 1.1.2 cannot be extended to Lebesgue
integrable functions f .

Exercise 11.6.2 (Féjer) Let f be a real valued differentiable function, with
f ′(x) > 0 and monotonic. If f(x) = o(x) and xf ′(x) → ∞ when x →
∞, show that the sequence {f(n)}∞n=1 is u.d. mod 1.

Exercise 11.6.3 For any c ∈ (0, 1), and α �= 0, show that the sequence
αnc is u.d. mod 1.

Exercise 11.6.4 For any c > 1, show that the sequence (log n)c is u.d.
mod 1.

Exercise 11.6.5 Let f be real valued and have a monotone derivative f ′

in [a, b] with f ′(x) ≥ λ > 0. Show that
∣∣∣∣
∫ b

a
e2πif(x)dx

∣∣∣∣ ≤
2

πλ
.

Exercise 11.6.6 Let f be as in the previous exercise but now assume that
f ′(x) ≤ −λ < 0. Show that the integral estimate is still valid.

Exercise 11.6.7 Let f be real-valued and twice differentiable on [a, b] with
f ′′(x) ≥ δ > 0. Prove that

∣∣∣∣
∫ b

a
e2πif(x)dx

∣∣∣∣ ≤
4√
δ
.

Exercise 11.6.8 Let b−a ≥ 1. Let f(x) be a real-valued function on [a, b]
with f ′′(x) ≥ δ > 0 on [a, b]. Show that

∣∣∣∣∣
∑

a<n<b

e2πif(n)

∣∣∣∣∣�
f ′(b) − f ′(a) + 1√

δ
.

Exercise 11.6.9 Show that the estimate in the previous exercise is still
valid if f ′′(x) ≤ −δ < 0.
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Exercise 11.6.10 Show that the sequence {log n!}∞n=1 is u.d mod 1.

Exercise 11.6.11 Let ζ(s) denote the Riemann zeta function and assume
the Riemann hypothesis. Let 1/2 + iγ1, 1/2 + iγ2, ... denote the zeros of
ζ(s) with positive imaginary part, arranged so that γ1 ≤ γ2 ≤ γ3 · · · .
Show that the sequence {γn} is uniformly distributed mod 1.

Exercise 11.6.12 Let An be a sequence of sets of real numbers with #An→
∞. We will say that this sequence is set equidistributed mod 1 (s.e.d.
for short) if for any [a, b] ⊆ [0, 1] we have

lim
n→∞

#{t ∈ An : a ≤ (t) ≤ b}
#An

= b − a.

The usual notion of u.d. mod 1 is obtained as a special case of this by taking
An = {x1, ..., xn}. Show that the sequence of sets An is s.e.d. mod 1 if and
only if for any continuous function f : [0, 1] → C, we have

lim
n→∞

1
#An

∑

t∈An

f(t) =
∫ 1

0
f(x)dx.

Exercise 11.6.13 Show that the sequence of sets An is s.e.d mod 1 if and
only if for every non-zero integer m, we have

lim
n→∞

1
#An

∑

t∈An

e2πimt = 0.

Exercise 11.6.14 Let An be the finite set of rational numbers with denom-
inator n. Show the sequence An is set equidistributed mod 1.

Exercise 11.6.15 A sequence of sets An with An ⊆ [0, 1] and #An → ∞
is said to have set asymptotic distribution function (s.a.d.f. for short)
g(x) if

lim
n→∞

#{t ∈ An : 0 ≤ t ≤ x}
#An

= g(x).

Show that the sequence has s.a.d.f. g(x) if and only if for every continuous
function f , we have

lim
n→∞

1
#An

∑

t∈An

f(t) =
∫ 1

0
f(x)dg(x).
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Exercise 11.6.16 (Generalized Wiener-Schoenberg criterion) Show
that the sequence of sets {An}∞n=1 with An ⊆ [0, 1] and #An → ∞
has a continuous s.a.d.f. if and only if for all m ∈ Z the limit

am := lim
n→∞

1
#An

∑

t∈An

e2πimt

exists and
N∑

m=1

|am|2 = o(N).
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1
Arithmetic Functions

1.1 The Möbius Inversion Formula
and Applications

1.1.1 Prove that

∑

d|n
µ(d) =

⎧
⎨

⎩

1 if n = 1,

0 otherwise.

Let n = pα1
1 · · · pαk

k be the unique factorization of n as a product
of powers of primes. Let N = p1 · · · pk. Then

∑

d|n
µ(d) =

∑

d|N
µ(d),

since the Möbius function vanishes on numbers that are not square-
free. Any divisor of N corresponds to a subset of {p1, . . . , pk}. Thus,
for n > 1,

∑

d|n
µ(d) =

k∑

r=0

(
k

r

)
(−1)r = (1 − 1)k = 0.

The result is clear if n = 1. �
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1.1.2 (The Möbius inversion formula)Show that

f(n) =
∑

d|n
g(d) ∀n ∈ N

if and only if
g(n) =

∑

d|n
µ(d)f(n/d) ∀n ∈ N.

We have
∑

d|n
µ(d)f

(n

d

)
=

∑

d|n
µ(d)

∑

e|n
d

g(e)

=
∑

des=n

µ(d)g(e)

=
∑

e|n
g(e)

∑

d|n
e

µ(d)

= g(n),

since the inner sum in the penultimate step is zero unless n/e = 1.
The converse is also easily established as follows. Suppose

g(n) =
∑

d|n
µ(d)f(n/d).

Then ∑

d|n
g(d) =

∑

d|n

∑

e|d
µ(e)f(d/e)

=
∑

est=n

µ(e)f(s)

=
∑

s|n
f(s)

∑

e|n
s

µ(e)

= f(n),

since the inner sum is again by (1.1.1) equal to zero unless
n/s = 1. �
1.1.3 Show that ∑

d|n
ϕ(d) = n.
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We shall count the residue classes (mod n) in two different ways.
On the one hand, there are n residue classes. Each residue class
representative u can be written as dn0, where d = (u, n). Thus
(n0, n/d) = 1. Thus, we can partition the residue classes u(mod n)
according to the value of gcd(u, n). The number of classes corre-
sponding to a given d|n is precisely ϕ(n/d). Thus

n =
∑

d|n
ϕ(n/d) =

∑

d|n
ϕ(d),

as desired. �
1.1.4 Show that

ϕ(n)
n

=
∑

d|n

µ(d)
d

.

This is immediate from the Möbius inversion formula and Exer-
cise 1.1.3.

1.1.5 Let f be multiplicative. Suppose that

n =
∏

pα||n
pα

is the unique factorization of n into powers of distinct primes. Show that
∑

d|n
f(d) =

∏

pα||n
(1 + f(p) + f(p2) + · · · + f(pα)).

Deduce that the function g(n) =
∑

d|n f(d) is also multiplicative. The
notation pα||n means that pα is the exact power dividing n.

A typical divisor d of n is of the form d =
∏

p|n pβ(p), where β(p) ≤
α and pα||n. Thus f(d) =

∏
p|n f

(
pβ(p)

)
, which is a typical term

appearing in the expansion of the product on the right-hand side.
Clearly, if n1 and n2 are coprime, then

g(n1n2) =
∏

pα||n1n2

(1 + f(p) + · · · + f(pα))

= g(n1)g(n2),

since we can decompose the product into two parts, namely those
primes dividing n1 and those dividing n2. (This result can be used
to give an alternative solution of Exercise 1.1.4.) �
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1.1.6 Show that
∑

d|n
Λ(d) = log n.

Deduce that

Λ(n) = −
∑

d|n
µ(d) log d.

This is immediate from the unique factorization theorem:

n = pα1
1 · · · pαk

k ,

where the pi are distinct primes. Then

log n =
k∑

i=1

αi log pi =
∑

d|n
Λ(d).

The equality
Λ(n) =

∑

d|n
µ(d) log

n

d

follows from Möbius inversion. Therefore,

Λ(n) = −
∑

d|n
µ(d) log d,

since
∑

d|n µ(d) = 0 unless n = 1 (by Exercise 1.1.1).

1.1.7 Show that

∑

d2|n
µ(d) =

⎧
⎨

⎩

1 if n is square-free

0 otherwise.

Clearly, the sum on the left-hand side is a multiplicative function.
It therefore suffices to evaluate it when n is a prime power. If n = pα,
we see that

∑

d2|pα

µ(d) =

⎧
⎨

⎩

1 if α ≤ 1,

0 otherwise.
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The result is now clear from this fact. �

1.1.8 Show that for any natural number k,

∑

dk|n
µ(d) =

⎧
⎨

⎩

1 if n is kth power-free,

0 otherwise.

Since the left-hand side is a multiplicative function of n, it suffices
to evaluate it when n is a prime power. Thus

∑

dk|pα

µ(d) =

⎧
⎨

⎩

1 if α ≤ k − 1,

0 otherwise,

from which the result follows. �

1.1.9 If for all positive x,

G(x) =
∑

n≤x

F
(x

n

)
,

show that
F (x) =

∑

n≤x

µ(n)G
(x

n

)

and conversely.

We have

∑

n≤x

µ(n)G
(x

n

)
=

∑

n≤x

µ(n)
∑

m≤ x
n

F
( x

mn

)

=
∑

mn≤x

µ(n)F
( x

mn

)

=
∑

r≤x

F
(x

r

)∑

n|r
µ(n)

= F (x)
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by an application of Exercise 1.1.1. For the converse,

∑

n≤x

F
(x

n

)
=

∑

n≤x

∑

m≤x/n

µ(m)G
( x

mn

)

=
∑

r≤x

G
(x

r

)∑

m|r
µ(m)

= G(x),

as required. �

1.1.10 Suppose that
∞∑

k=1

d3(k)|f(kx)| < ∞,

where d3(k) denotes the number of factorizations of k as a product of three
numbers. Show that if

g(x) =
∞∑

m=1

f(mx),

then

f(x) =
∞∑

n=1

µ(n)g(nx)

and conversely. We have, by absolute convergence of the series in-
volved,

∞∑

n=1

µ(n)g(nx) =
∞∑

n=1

µ(n)
∞∑

m=1

f(mnx)

=
∞∑

r=1

f(rx)
∑

n|r
µ(n)

= f(x)
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by Exercise 1.1.1. For the converse,
∞∑

m=1

f(mx) =
∞∑

m=1

∞∑

n=1

µ(n)g(mnx)

=
∞∑

r=1

g(rx)
∑

n|r
µ(n)

= g(x),

as required. In the first case, the rearrangement of the series is justi-
fied by the absolute convergence of

∑

m,n

f(mnx) =
∞∑

k=1

d(k)f(kx),

where d(k) is the number of divisors of k. In the second case, the
absolute convergence of

∑

m,n

g(mnx)

follows from the convergence of
∑

k

d3(k)|f(kx)|.

�
1.1.11 Let λ(n) denote Liouville’s function given by λ(n) = (−1)Ω(n),
where Ω(n) is the total number (counting multiplicity) of prime factors of
n. Show that

∑

d|n
λ(d) =

⎧
⎨

⎩

1 if n is a square,

0 otherwise.

The left-hand side is multiplicative and therefore it suffices to
compute it for prime powers. We have

∑

d|pα

λ(d) =

⎧
⎨

⎩

1 if α is even,

0 if α is odd,
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from which the result follows immediately. �

1.1.12 The Ramanujan sum cn(m) is defined as

cn(m) =
∑

1≤h≤n
(h,n)=1

e
(hm

n

)
,

where e(t) = e2πit. Show that

cn(m) =
∑

d|(m,n)

dµ(n/d).

Let

g(n) =
∑

1≤h≤n

e
(hm

n

)
.

Since this is the sum of a geometric progression, we find that

g(n) =

⎧
⎨

⎩

n if n|m,

0 otherwise.

But we can write

g(n) =
∑

d|n

∑

1≤h≤n
(h,n)=d

e
(hm

n

)

=
∑

d|n

∑

1≤h1≤n1
(h1,n1)=1

e
(h1m

n1

)
,

where we have written h = dh1, n = dn1 with (h1, n1) = 1 in the
last sum. Thus,

g(n) =
∑

d|n
cn/d(m),

which by Möbius inversion (Exercise 1.1.2) gives

cn(m) =
∑

d|n
µ(d)g(n/d).
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But g(d) = d if d|m and vanishes otherwise. Therefore,

cn(m) =
∑

d|(n,m)

dµ(n/d)

as required. �
1.1.13 Show that

µ(n) =
∑

1≤h≤n
(h,n)=1

e
(h

n

)
.

Set m = 1 in the previous exercise. �
1.1.14 Let δ = (n,m). Show that

cn(m) = µ(n/δ)ϕ(n)/ϕ(n/δ).

We have (by Exercise 1.1.12)

cn(m) =
∑

d|δ
dµ(n/d)

=
∑

de=δ

dµ(ne/δ)

=
∑

de=δ

dµ(n1e),

where n = δn1. Now, µ(n1e) = µ(n1)µ(e) if (n1, e) = 1 and 0 other-
wise. Thus,

cn(m) =
∑

de=δ
(n1,e)=1

dµ(n1)µ(e)

= µ(n1)δ
∑

e|δ
(n1,e)=1

µ(e)
e

= µ(n1)δ
∏

p|δ
p�n1

(
1 − 1

p

)
.
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By Exercise 1.1.4,

ϕ(n)
ϕ(n/δ)

=
n

n/δ

∏

p|n
p�n1

(
1 − 1

p

)
= δ

∏

p|δ
p�n1

(
1 − 1

p

)
,

from which the result follows. �

1.2 Formal Dirichlet Series

1.2.1 Let f be a multiplicative function. Show that

D(f, s) =
∏

p

( ∞∑

ν=0

f(pν)p−νs

)
.

This is more or less an extension of Exercise 1.1.5 and is imme-
diate upon expansion of the infinite product on the right-hand side
and the unique factorization theorem. �

1.2.2 If

ζ(s) = D(1, s) =
∞∑

n=1

1
ns

,

show that
D(µ, s) = 1/ζ(s).

By Exercise 1.2.1,

ζ(s) =
∏

p

(
1 +

1
ps

+
1

p2s
+ · · ·

)
=
∏

p

(
1 − 1

ps

)−1

.

Again by Exercise 1.2.1,

D(µ, s) =
∏

p

(1 − 1
ps

).

The result is now immediate. �

1.2.3 Show that
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D(Λ, s) =
∞∑

n=1

Λ(n)
ns

= −ζ ′

ζ
(s),

where −ζ ′(s) =
∑∞

n=1(log n)n−s. Since

−ζ ′(s) =
∞∑

n=1

(log n)n−s

and
1

ζ(s)
=

∞∑

n=1

µ(n)n−s

by the previous exercise, we obtain upon multiplying the two series,

D(µ ∗ (− log), s),

which by Exercise 1.1.6 is the formal series attached to Λ. �
1.2.4 Suppose that

f(n) =
∑

d|n
g(d).

Show that D(f, s) = D(g, s)ζ(s).

This is immediate from the formula for the multiplication of for-
mal series. �
1.2.5 Let λ(n) be the Liouville function defined by λ(n) = (−1)Ω(n),
where Ω(n) is the total number of prime factors of n. Show that

D(λ, s) =
ζ(2s)
ζ(s)

.

Since λ is multiplicative, by Exercise 1.2.1 we have

D(λ, s) =
∏

p

(
1 − 1

ps
+

1
p2s

− 1
p3s

+ · · ·
)

=
∏

p

(
1 +

1
ps

)−1

=
∏

p

(
1 − 1

p2s

)−1(
1 − 1

ps

)

=
ζ(2s)
ζ(s)

by an application of Exercise 1.2.2.
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1.2.6 Prove that

∞∑

n=1

2ν(n)

ns
=

ζ2(s)
ζ(2s)

.

Since 2ν(n) is multiplicative,

∞∑

n=1

2ν(n)

ns
=

∏

p

(
1 +

2
ps

+
2

p2s
+ · · ·

)

=
∏

p

(
1 +

2
ps

(
1 − 1

ps

)−1
)

=
∏

p

(
1 − 1

ps

)−1( 2
ps

+
(

1 − 1
ps

))

=
∏

p

(
1 − 1

ps

)−1(
1 +

1
ps

)

= ζ(s)
∏

p

(
1 +

1
ps

)
.

The latter product is ζ(s)/ζ(2s) by Exercise 1.2.5, so that the result
is now immediate. �
1.2.7 Show that

∞∑

n=1

|µ(n)|
ns

=
ζ(s)
ζ(2s)

.

Since |µ| is a multiplicative function, we obtain

∞∑

n=1

|µ(n)|
ns

=
∏

p

(
1 +

1
ps

)
=

ζ(s)
ζ(2s)

.

by Exercise 1.2.5. �
1.2.8 Let d(n) denote the number of divisors of n. Prove that

∞∑

n=1

d2(n)
ns

=
ζ4(s)
ζ(2s)

(This example is due to Ramanujan.)
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We observe the following identity due to Ramanujan:

∞∑

n=0

(
αn+1 − βn+1

α − β
)(

γn+1 − δn+1

γ − δ
)Tn

=
1 − αβγδT 2

(1 − αγT )(1 − αδT )(1 − βγT )(1 − βδT )
,

which is proved easily using the formula for the sum of a geometric
series. This identity is useful in other contexts, and so we record it
here for future use.

If we write

αn+1 − βn+1

α − β
= αn + αn−1β + · · · + αβn−1 + βn,

we see that the special case α = β = γ = δ = 1 gives the identity

∞∑

n=1

(n + 1)2Tn =
1 − T 2

(1 − T )4
.

Thus,

∞∑

n=1

d2(n)
ns

=
∏

p

( ∞∑

α=0

(α + 1)2

pαs

)

=
∏

p

(
1 − 1

p2s

)(
1 − 1

ps

)−4

=
ζ4(s)
ζ(2s)

,

as desired. �
1.2.9 For any complex numbers a, b, show that

∞∑

n=1

σa(n)σb(n)
ns

=
ζ(s)ζ(s − a)ζ(s − b)ζ(s − a − b)

ζ(2s − a − b)
.

We have

∞∑

n=1

σa(n)σb(n)
ns

=
∏

p

( ∞∑

α=0

σa(pα)σb(pα)
pαs

)
.
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Now,

σa(pα) = 1 + pa + p2a + · · · + pαa =
pa(α+1) − 1

pa − 1
.

We apply Ramanujan’s identity (see Exercise 1.2.8) to deduce

∞∑

α=0

(pa(α+1) − 1
pa − 1

)(pb(α+1) − 1
pb − 1

)
Tα

=
1 − pa+bT 2

(1 − pa+bT )(1 − paT )(1 − pbT )(1 − T )
.

Putting T = p−s in this identity, we deduce the stated result. �

1.2.10 Let qk(n) be 1 if n is kth power-free and 0 otherwise. Show that

∞∑

n=1

qk(n)
ns

=
ζ(s)
ζ(ks)

.

If we multiply out the series on the right-hand side, we obtain

∑

d,e

µ(d)
dkses

=
∞∑

n=1

1
ns

( ∑

dke=n

µ(d)
)
.

The inner sum is qk(n) by Exercise 1.1.8. �

1.3 Orders of Some Arithmetical Functions

1.3.1 Show that d(n) ≤ 2
√

n, where d(n) is the number of divisors of n.
Each divisor α of n corresponds to a factorization αβ = n. One

of α or β must be less than or equal to
√

n. Thus, the number of
divisors of n is less than or equal to 2

√
n. �

1.3.2 For any ε > 0, there is a constant C(ε) such that d(n) ≤ C(ε)nε.
Observe that

d(n)
nε

=
∏

pα||n

α + 1
pαε

.
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We decompose the product into two parts: those p < 21/ε and those
p ≥ 21/ε.

In the second part, pε ≥ 2, so that pαε ≥ 2α and
α + 1
pαε

≤ α + 1
2α

≤ 1.

Thus, we must estimate the first part. Notice that
α + 1
pαε

≤ 1 +
α

pαε
≤ 1 +

1
ε log 2

,

since
αε log 2 ≤ eαε log 2 = 2αε ≤ pαε.

Hence ∏

p<21/ε

(
1 +

1
ε log 2

)
= C(ε)

is the desired constant. �
1.3.3 For any η > 0, show that

d(n) < 2(1+η) log n/ log log n

for all n sufficiently large.

We refine the argument of Exercise 1.3.2, where we now set

ε =
(1 + η

2 ) log 2
log log n

in the proof. The estimate for the second part of the product remains
valid. We must estimate (by applying 1 + x ≤ ex)

∏

p<21/ε

(
1 +

1
ε log 2

)
≤ exp

{
1

ε log 2
21/ε

}
.

Now,
21/ε = (log n)1/(1+ η

2
),

so that

C(ε) ≤ exp

{
log log n

(1 + η
2 ) log2 2

(log n)1/(1+η
2
)

}

≤ exp
{

η

2
(log 2) log n

log log n

}

for n ≥ n0(η). �
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1.3.4 Prove that σ1(n) ≤ n(log n + 1).

We have
σ1(n) =

∑

d|n
d =

∑

d|n

n

d
≤ n

∑

d≤n

1
d
.

Now, ∑

2≤d≤n

1
d
≤
∫ n

1

dt

t
= log n.

1.3.5 Prove that
c1n

2 ≤ φ(n)σ1(n) ≤ c2n
2

for certain positive constants c1 and c2.
We have

φ(n)
n

=
∏

p|n

(
1 − 1

p

)

and

σ1(n) =
∏

pα||n

pα+1 − 1
p − 1

.

Now,
σ1(n)

n
=
∏

pα||n

(
1 +

1
p

+
1
p2

+ · · · + 1
pα

,
)

so that
φ(n)σ1(n)

n2
=
∏

pα||n

(
1 − 1

pα+1

)
.

Since each factor in the product is less than or equal to 1, we have

φ(n)σ1(n)
n2

≤ 1.

Also,

∏

pα||n

(
1 − 1

pα+1

)
≥

∏

p|n

(
1 − 1

p2

)

≥
∏

i≤ν(n)

(
1 − 1

p2
i

,
)
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where ν(n) denotes the number of distinct prime factors of n, and
pi is the ith prime.

Recall that an infinite product

∞∏

n=1

(1 + an)

converges if and only if
∑∞

n=1 |an| < ∞. Therefore

1
ζ(2)

=
∏

p

(
1 − 1

p2

)
< ∞.

In addition, ζ(2) �= 0. Since the product converges to a nonzero
limit, it is clear that there is a c1 > 0 such that

∏

i≤ν(n)

(
1 − 1

p2
i

)
≥ c1.

�
1.3.6 Let ν(n) denote the number of distinct prime factors of n. Show that

ν(n) ≤ log n

log 2
.

Writing n = pα
1 · · · pαk

k , where the pi are distinct primes, we obtain
∑

i

αi log pi ≤ log n.

Since each pi ≥ 2, we deduce the stronger result

(log 2)Ω(n) ≤ log n,

where Ω(n) =
∑k

i=1 αi. �

1.4 Average Orders of Arithmetical Functions

1.4.1 Show that the average order of d(n) is log n.

We have ∑

n≤x

d(n) =
∑

ab≤x

1 =
∑

a≤x

[x
a

]
.
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Now, [x
a

]
=

x

a
+ O(1).

Thus,

∑

a≤x

[x
a

]
= x

∑

a≤x

1
a

+ O(x).

We can compare

∑

a≤x

1
a

with the integral ∫ x

1

dt

t
= log x,

and we easily obtain

∑

a≤x

1
a

= log x + O(1).

Thus,

∑

n≤x

d(n) = x log x + O(x).

�
1.4.2 Show that the average order of φ(n) is cn for some constant c.

By Exercise 1.1.4, we obtain
∑

n≤x

ϕ(n) =
∑

ab≤x

µ(a)b

=
∑

a≤x

µ(a)
∑

b≤x
a

b.

The inner sum is
1
2

[x
a

]([x
a

]
+ 1
)
,

which is equal to

1
2

(x

a
+ O(1)

)2
=

x2

2a2
+ O

(x

a

)
.
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Inserting this into the penultimate sum, we obtain

∑

n≤x

ϕ(n) =
∑

a≤x

µ(a)
(

x2

2a2
+ O(

x

a
)
)

=
x2

2

∑

a≤x

µ(a)
a2

+ O(x log x).

Now,
∑

a≤x

µ(a)
a2

=
∞∑

a=1

µ(a)
a2

+ O

(
1
x

)

by an easy application of the integral test.
The series ∞∑

a=1

µ(a)
a2

converges by the comparison test. This completes the proof. (Later,
we shall see that the value of the series is 6/π2. ) �
1.4.3 Show that the average order of σ1(n) is c1n for some constant c1.

We have ∑

n≤x

σ1(n) =
∑

n≤x

∑

d|n
d =

∑

de≤x

d.

Now,
∑

de≤x

d =
∑

e≤x

∑

d≤x/e

d

=
∑

e≤x

1
2

[x
e

]([x
e

]
+ 1
)

=
1
2

∑

e≤x

[x
e

](x

e
+ O(1)

)

=
x

2

∑

e≤x

[x
e

]1
e

+ O(x log x).

Also, ∑

e≤x

[x
e

]1
e

=
∑

e≤x

x

e2
+ O(log x),
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so that
∑

n≤x

σ1(n) =
x2

2

∑

e≤x

1
e2

+ O(x log x).

Since
∑

1/e2 < ∞, we deduce
∑

n≤x

σ1(n) ∼ c1x
2

for some constant c1. �
1.4.4 Let qk(n) = 1 if n is kth power-free and zero otherwise. Show that

∑

n≤x

qk(n) = ckx + O
(
x1/k

)
,

where

ck =
∞∑

n=1

µ(n)
nk

.

By Exercise 1.1.8,
qk(n) =

∑

dk|n
µ(d),

so that
∑

n≤x

qk(n) =
∑

dke≤x

µ(d)

=
∑

dk≤x

µ(d)
[ x

dk

]

=
∑

dk≤x

µ(d)
x

dk
+ O(x1/k).

By the integral test,

∑

d>x1/k

µ(d)
dk

�
∫ ∞

x1/k

dt

tk
� x−1+ 1

k ,

so that the desired result follows immediately. �
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1.5.1 Prove that ∑

n≤x
(n,k)=1

1
n
∼ φ(k)

k
log x

as x → ∞.
By Exercise 1.1.1, the left-hand side can be written as

∑

n≤x

1
n

∑

d|(n,k)

µ(d) =
∑

d|k
µ(d)

∑

n≤x
d|n

1
n

=
∑

d|k

µ(d)
d

∑

t≤x/d

1
t

=
∑

d|k

µ(d)
d

(
log

x

d
+ O(1)

)

by the solution of Exercise 1.4.1. Therefore,
∑

n≤x
(n,k)=1

1
n

=
(∑

d|k

µ(d)
d

)
log x + O(1),

where the O-constant now may depend on k. But, by Exercise 1.1.4,
∑

d|k

µ(d)
d

=
φ(k)

k
,

which completes the proof. �
1.5.2 Let Jr(n) be the number of r-tuples (a1, a2, . . . , ar) satisfying ai ≤
n and gcd(a1, . . . , ar, n) = 1. Show that

Jr(n) = nr
∏

p|n

(
1 − 1

pr

)
.

(Jr(n) is called Jordan’s totient function. For r = 1, this is, of course,
Euler’s φ-function.)

We partition the total number of r-tuples (a1, a2, . . . , ar) accord-
ing to d = gcd(a1, . . . , ar, n). Thus, 1 = gcd(a1/d, . . . , ar/d, n/d) and
each ai ≤ n, so that we have

nr =
∑

d|n
Jr(n/d).
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By Möbius inversion, the result is now immediate. �

1.5 Supplementary Problems

1.5.3 For r ≥ 2, show that there are positive constant c1 and c2 such that

c1n
r ≤ Jr(n) ≤ c2n

r.

Since each factor of

∏

p|n

(
1 − 1

pr

)

is less than 1, we can take c2 = 1. For the lower bound, we have

∏

p|d

(
1 − 1

pr

)
≥
∏

i≤ν(n)

(
1 − 1

pr
i

)
,

which converges to a nonzero limit as ν(n) → ∞. Thus, there is a
constant c1 such that

Jr(n) ≥ c1n
r.

�

1.5.4 Show that the average order of Jr(n) is cnr for some constant c > 0.
We have (by Exercise 1.5.2)

∑

n≤x

Jr(n) =
∑

n≤x

nr
∑

d|n

µ(d)
dr

=
∑

d≤x

µ(d)
dr

∑

n≤x
d|n

nr

=
∑

d≤x

µ(d)
∑

t≤x/d

tr,
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where we have written n = dt in the inner sum of the penultimate
step. Now,

N∑

k=1

∫ k

k−1
vrdr ≤

∑

1≤t≤N

tr ≤
N∑

k=1

∫ k+1

k
vrdv

by a comparison of areas. Thus

∑

1≤t≤N

tr =
∫ N

1
vrdv + O(N r)

=
N r+1

r + 1
+ O(N r).

Thus,
∑

n≤x

Jr(n) =
∑

d≤x

µ(d)
{

xr+1

dr+1
+ O

((x

d

)r)}

from which we deduce
∑

n≤x

Jr(n) = crx
r+1 + O(xr),

where

cr =
1

r + 1

∞∑

d=1

µ(d)
dr+1

�= 0,

since it can be written as

1
r + 1

∏

p

(
1 − 1

pr+1

)
. �

1.5.5 Let dk(n) be the number of ways of writing n as a product of k
positive numbers. Show that

∞∑

n=1

dk(n)
ns

= ζk(s).

Clearly,
dk(n) =

∑

δ|n
dk−1(δ),
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since for each factorization n = δe we can count the number of ways
of writing δ as a product of k − 1 numbers to enumerate dk(n). This
shows that

∞∑

n=1

dk(n)
ns

= ζ(s)
∞∑

n=1

dk−1(n)
ns

.

Since d2(n) = d(n) satisfies

∞∑

n=1

d(n)
ns

= ζ2(s),

the desired result follows by induction. �
1.5.6 If d∗k(n) denotes the number of factorizations of n as a product of k
positive numbers each greater than 1, show that

∞∑

n=1

d∗k(n)
ns

= (ζ(s) − 1)k.

Expanding the right-hand side as a Dirichlet series and collecting
terms we get the desired result. �
1.5.7Let ∆(n) be the number of nontrivial factorization of n. Show that

∞∑

n=1

∆(n)
ns

= (2 − ζ(s))−1,

as a formal Dirichlet series. We can write

∆(n) = 1 +
∞∑

k=2

d∗k(n),

so that
∞∑

n=1

∆(n)
ns

= 1 + (ζ(s) − 1) +
∞∑

k=2

(ζ(s) − 1)k,

which is equal to
1

2 − ζ(s)

as required. �
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1.5.8 Show that
∑

n≤x
(n,k)=1

n =
φ(k)
2k

x2 + O(d(k)x),

where d(k) denotes the number of divisors of k.

We have

∑

n≤x
(n,k)=1

n =
∑

n≤x

n
∑

d|n
d|k

µ(d)

=
∑

d|k
µ(d)

∑

n≤x
d|n

n

=
∑

d|k
µ(d)d

∑

t≤x/d

t

=
∑

d|k
µ(d)d

{
1
2

[x
d

]([x
d

]
+ 1
)}

=
∑

d|k
µ(d)d

{
x2

2d2
+ O

(x

d

)}

which is equal to
x2φ(k)

2k
+ O(xd(k)),

as required. �
1.5.9 Prove that

∑

d|n
ν(d)≤r

µ(d) = (−1)r

(
ν(n) − 1

r

)
,

where ν(n) denotes the number of distinct prime factors of n.
By comparing the coefficient of xr on both sides of the identity,

(1 − x)−1(1 − x)ν = (1 − x)ν−1,
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we deduce ∑

k≤r

(−1)k

(
ν

k

)
= (−1)r

(
ν − 1

r

)
.

Now, if N is the product of the distinct prime divisors of n, then

∑

d|n
ν(d)≤r

µ(d) =
∑

d|N
ν(d)≤r

µ(d),

and the latter sum is

∑

k≤r

(−1)k

(
ν(n)

k

)
= (−1)r

(
ν(n) − 1

r

)

by our initial observation. �

1.5.10 Let π(x, z) denote the number of n ≤ x coprime to all the prime
numbers p ≤ z. Show that

π(x, z) = x
∏

p≤z

(
1 − 1

p

)
+ O(2z).

Let Pz denote the product of the primes less than or equal to z.
Then

π(x, z) =
∑

n≤x
d|(n,Pz)

µ(d)

=
∑

d|Pz

µ(d)]
[x
d

]

= x
∑

d|Pz

µ(d)
d

+ O(2z)

= x
∏

p≤z

(
1 − 1

p

)
+ O(2z)

by Exercise 1.1.4, as required. �
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1.5.11 Prove that ∑

p≤x

1
p
≥ log log x + c

for some constant c.
Since every natural number can be written as a product of prime

numbers, we have

∑

n≤x

1
n
≤
∏

p≤x

(
1 − 1

p

)−1
.

Taking logarithms and using the fact that

∑

n≤x

1
n

= log x + O(1),

we deduce

−
∑

p≤x

log
(
1 − 1

p

)
≥ log log x + O(1).

Now,

− log
(
1 − 1

p

)
=

1
p

+ O
( 1

p2

)
,

so that ∑

p≤x

1
p
≥ log log x + O(1),

since
∑

p 1/p2 < ∞. This completes the proof. �
1.5.12 Let π(x) be the number of primes less than or equal to x. Choosing
z = log x in Exercise 1.5.10, deduce that

π(x) = O
( x

log log x

)
.

Clearly,

π(x) ≤ π(x, z) + z.

Now,

π(x, z) = x
∏

p≤z

(
1 − 1

p

)
+ O(2z)



226 1. Arithmetic Functions

by Exercise 1.5.10. Choosing z = log x and observing that

−
∑

p≤z

log
(
1 − 1

p

)
=
∑

p≤z

1
p

+ O(1),

we deduce

π(x, z) = x exp
(
−
∑

p≤z

1
p

+ O(1)
)

+ O(xlog 2)

= O
( x

log log x

)

by the previous exercise. This completes the proof. �

1.5.13 Let M(x) =
∑

n≤x µ(n). Show that

∑

n≤x

M
(x

n

)
= 1.

We have
∑

n≤x

M
(x

n

)
=
∑

n≤x

∑

d≤x/n

µ(d) =
∑

dn≤x

µ(d) =
∑

r≤x

(∑

d|r
µ(d)

)
.

The inner sum is 1 if r = 1, and 0 otherwise by Exercise 1.1.1. The
result is now immediate. �

1.5.14 Let Fp[x] denote the polynomial ring over the finite field of p ele-
ments. Let Nd be the number of monic irreducible polynomials of degree d
in Fp[x]. Using the fact that every monic polynomial in Fp[x] can be fac-
tored uniquely as a product of monic irreducible polynomials, show that

pn =
∑

d|n
dNd.

Consider the formal power series

∑

f

T deg f ,
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where the summation is over monic polynomials f in Fp[x]. Since
every f can be written uniquely as a product of monic irreducible
polynomials and deg f1f2 = deg f1 + deg f2, we obtain

∑

f

T deg f =
∏

v

(
1 + T deg v + T 2 deg v + · · · ),

where the product is over monic irreducible polynomials v of Fp[x].
Thus,

∑

f

T deg f =
∏

v

(
1 − T deg v

)−1

=
∞∏

d=1

(
1 − T d

)−Nd

.

But the left-hand side is
∞∑

n=1

pnTn = (1 − pT )−1,

since the number of monic polynomials of degree n in pn. Therefore,

− log(1 − pT ) = −
∞∑

d=1

Nd log
(
1 − T d

)

so that
∞∑

n=1

pnTn

n
=

∞∑

d=1

Nd

∞∑

e=1

T de

e

=
∞∑

n=1

Tn

n

( ∑

de=n

dNd

)
.

Comparing coefficients of Tn gives us the result. �
1.5.15 With the notation as in the previous exercise, show that

Nn =
1
n

∑

d|n
µ(d)pn/d
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and that Nn ≥ 1. Deduce that there is always an irreducible polynomial
of degree n in Fp[x].

The formula for Nn is immediate upon Möbius inversion of the
result derived in the previous exercise. Notice that

nNn =
∑

d|n
µ(d)pn/d.

The right hand side can be viewed as the difference of two num-
bers in base p with the larger number having (n + 1) digits and the
smaller one at most n/2 + 1 digits. Thus, the righthand side is not
zero, so that nNn ≥ 1, which implies Nn ≥ 1/n. Since Nn is an
integer, we get Nn ≥ 1. (This fact is used to establish the existence
of finite fields Fpn for every n.)

1.5.16 Suppose f(d) =
∑

d|n g(n), where the summation is over all mul-
tiples of d. Show that

g(d) =
∑

d|n
µ
(n

d

)
f(n)

and conversely (assuming that all the series are absolutely convergent).
We have

∑

d|n
µ
(n

d

)
f(n) =

∑

t

µ(t)f(dt)

=
∑

t

µ(t)
∑

r

g(dtr)

=
∑

m

g(dm)
( ∑

tr=m

µ(t)
)

= g(m),
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since the inner sum is 1 if m = 1, and zero otherwise. Similarly, for
the converse,

∑

d|n
g(n) =

∑

t

g(dt)

=
∑

t

∑

r

µ(r)f(dtr)

=
∑

m

f(dm)
( ∑

tr=m

µ(r)
)

= f(d),

since the inner sum is again 1 if m = 1, and zero otherwise. �
1.5.17 Prove that ∑

n≤x

ϕ(n)
n

= cx + O(log x)

for some constant c > 0. We have

ϕ(n)
n

=
∑

d|n

µ(d)
d

,

so that ∑

n≤x

ϕ(n)
n

=
∑

d≤x

µ(d)
d

[x
d

]
.

Hence,
∑

d≤x

µ(d)
d

[x
d

]
= x

∑

d≤x

µ(d)
d2

+ O(log x).

Now,
∑

d≤x

µ(d)
d2

=
∞∑

d=1

µ(d)
d2

−
∑

d>x

µ(d)
d2

,

and the latter sum is O(1/x). Thus,

∑

n≤x

ϕ(n)
n

= cx + O(log x)

with c =
∑∞

d=1 µ(d)/d2 =
∏

p(1 − 1/p2) �= 0. �



230 1. Arithmetic Functions

1.5.18 For Re(s) > 2, prove that
∞∑

n=1

ϕ(n)
ns

=
ζ(s − 1)

ζ(s)
.

Since
ϕ(n) =

∑

d|n
µ(d)(n/d),

we have
∞∑

n=1

ϕ(n)
ns

=
( ∞∑

n=1

µ(n)
ns

)( ∞∑

n=1

n

ns

)

=
ζ(s − 1)

ζ(s)
,

as required. �
1.5.19 Let k be a fixed natural number. Show that if

f(n) =
∑

dk|n
g(n/dk),

then
g(n) =

∑

dk|n
µ(d)f(n/dk)

and conversely.
We have

∑

dke=n

µ(d)f(e) =
∑

dke=n

µ(d)
∑

δk|e
g(e/δk)

=
∑

dkδkt=n

µ(d)g(t)

=
∑

rk|n
g(n/rk)

( ∑

dδ=r

µ(d)
)
,

and the inner sum is 1 if r = 1, and 0 otherwise. Therefore,

g(n) =
∑

dk|n
µ(d)f(n/dk).
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For the converse,
∑

dke=n

g(n/dk) =
∑

dke=n

∑

δk|e
µ(δ)f(e/δk)

=
∑

dkδkt=n

µ(δ)f(t)

=
∑

rk|n
f(n/rk)

( ∑

dδ=r

µ(δ)
)

= f(n),

as required. �
1.5.20 The mth cyclotomic polynomial is defined as

φm(x) =
∏

1≤i≤m
(i,m)=1

(x − ζi
m),

where ζm denotes a primitive mth root of unity. Show that

xm − 1 =
∏

d|m
φd(x).

We have
xm − 1 =

∏

1≤i≤m

(x − ζi
m).

We can partition the right-hand side according to d = gcd(i, m).
Then, (i/d, m/d) = 1, and

ζi
m = ζ

i/d
m/d

is a primitive (m/d)th root of unity. Also, every primitive (m/d)th
root of unity is a root of xm − 1. Thus,

xm − 1 =
∏

d|m
φm/d(x) =

∏

d|m
φd(x),

as required. �
1.5.21 With the notation as in the previous exercise, show that the coeffi-
cient of

xϕ(m)−1
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in φm(x) is −µ(m).
The coefficient of xφ(m)−1 in φm(x) is clearly

−
∑

1≤i≤m
(i,m)=1

ζi
m,

which is the Ramanujan sum −cm(1) = −µ(m) by Exercise 1.1.13.
�
1.5.22 Prove that

φm(x) =
∏

d|m
(xd − 1)µ(m/d).

By Exercise 1.5.20,

xm − 1 =
∏

d|m
φd(x),

so that
log(xm − 1) =

∑

d|m
log φd(x),

as formal series. By Möbius inversion,

log φm(x) =
∑

d|m
µ(d) log(xm/d − 1).

Hence
φm(x) =

∏

d|m
(xd − 1)µ(m/d),

as required. �
1.5.23 If φm(x) is the mth cyclotomic polynomial, prove that

φm(1) =

⎧
⎨

⎩

p if m = pα,

1 otherwise,

where p is a prime number.
We have

xm − 1
x − 1

=
∏

d|m
d �=1

φd(x).
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The left-hand side is 1 + x + x2 + · · ·+ xm−1. Evaluating both sides
of the equation at x = 1 gives

log m =
∑

d|m
d �=1

log φd(1).

Set g(d) = log φd(1), if d �= 1 and g(1) = 0 otherwise. Thus,

log m =
∑

d|m
g(d),

and by Möbius inversion, we have

g(m) =
∑

d|m
µ(d) log m/d

= −
∑

d|m
µ(d) log d

for m �= 1. By Exercise 1.1.6, g(m) = Λ(m) as required. �
1.5.24 Prove that φm(x) has integer coefficients. We proceed by induc-

tion on m. For m = 1, this is clear. Writing

xm − 1 =
∏

d|m
φd(x) = φm(x)

( ∏

d|m
d<m

φd(x)
)

= φm(x)v(x) (say),

we find that v(x) has integer coefficients by induction. Also note
that v(x) is monic. Thus, by long division, we can write

xm − 1 = q(x)v(x) + r(x),

where q(x), r(x) have integer coefficients and either r = 0 or degree
of r < degree of v. For every complex root α of v(x), we have αm −
1 = 0 so that r(α) = 0. This forces r = 0 for otherwise it will have
more complex roots than its degree. Hence q(x) = φm(x) has integer
coefficients. �
1.5.25 Let q be a prime number. Show that any prime divisor p of aq − 1
satisfies p ≡ 1 (mod q) or p|(a − 1). We have
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aq ≡ 1(mod p).

Thus, the order of a (mod p) divides q. Since q is not a prime, it
must be either 1 or q. If it is 1, then a ≡ 1 (mod p), so that p|(a − 1).
If the order is q, then q|p − 1, since the group of coprime residue
classes (mod p) has order p − 1. �
1.5.26 Let q be a prime number. Show that any prime divisor p of 1 + a +
a2 + · · · + aq−1 satisfies p ≡ 1 (mod q) or p = q. Deduce that there are
infinitely many primes p ≡ 1 (mod q).

Notice that

1 + a + a2 + · · · + aq−1 =
aq − 1
a − 1

if a �= 1. Hence if

1 + a + a2 + · · · + aq−1 ≡ 0 (mod p),

then either aq ≡ 1 (mod p) and a �≡ 1 (mod p) or a ≡ 1 (mod p). In
the former case q|p − 1, since a has order q. Notice that any prime
divisor of 2q−1 is congruent to 1 (mod q), by the previous exercise.
Thus, there is at least one prime congruent to 1 (mod q). If there are
only finitely many such primes, let us list them as

p1, p2, p3, . . . , pk.

Then, putting a = qp1p2 · · · pk, we find that any prime divisor p of

1 + a + a2 + · · · aq−1

is first, coprime to a = qp1 · · · pk, and second, must be congruent to
1 (mod q) or equal to q, which is a contradiction. �
1.5.27 Let q be a prime number. Show that any prime divisor p of

1 + b + b2 + · · · + bq−1

with b = aqk−1
satisfies p ≡ 1 (mod qk) or p = q.

If b �≡ 1 (mod p), then

1 + b + · · · + bq−1 =
bq − 1
b − 1

≡ 0 (mod p)

implies that a has order qk, so p ≡ 1 (mod qk). If b ≡ 1 (mod p),
then p = q, as required. �
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1.5.28 Using the previous exercise, deduce that there are infinitely many
primes p ≡ 1 (mod qk), for any positive integer k. In the previous

exercise, we set b = aqk−1
to deduce that

1 + b + b2 + · · · + bq−1

has a prime divisor congruent to 1 (mod qk). Thus, there is at least
one prime congruent to 1 (mod qk). Now suppose there are only
finitely many such primes, p1, p2, . . . , pr (say). Then, with

b = (qp1 · · · pr)q
k−1

we deduce 1 + b + · · · + bq−1 has a prime divisor congruent to 1
(mod qk) different from p1, . . . , pr, a contradiction. �
1.5.29 Let p be a prime not dividing m. Show that p|φm(a) if and only if
the order of a mod p is m. (Here φm(x) is the mth cyclotomic polynomial.)

Since
xm − 1 =

∏

d|m
φd(x),

we deduce am ≡ 1 (mod p). If k is the order of a (mod p), then

ak − 1 =
∏

d|k
φd(a) ≡ 0 (mod p),

so that φd(a) ≡ 0 (mod p) for some d|k. If k < m, then

am − 1 = φm(a)φd(a) (other factors) ≡ 0 (mod p2).

Since φm(a + p) ≡ φm(a)(mod p) we deduce

(a + p)m ≡ 1 (mod p2),

on the one hand, and

(a + p)m ≡ am + mam−1p (mod p2),

on the other. Thus, mam−1p ≡ 0 (mod p2), so that p|m (because
(a, p) = 1). This is a contradiction. Hence k = m. For the converse,
if a has order m, then am ≡ 1 (mod p). From

am − 1 =
∏

d|m
φd(a)
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we deduce φd(a) ≡ 0 (mod p) for some d ≤ m. If d < m, then

ad − 1 =
∏

δ|d
φδ(a)

is divisible by p, implying ad ≡ 1 (mod p). This contradicts the fact
that a has order m. �
1.5.30 Using the previous exercise, deduce the infinitude of primes p ≡ 1
(mod m).

Observe that from

xm − 1 =
∏

d|m
φd(x)

we deduce that φd(0) = ±1 for any d. Thus, φm(mr) is coprime to
m. As r varies over positive integers, only a finite number of them
can be equal to ±1 since φm(x) has degree φ(m). Thus, for some r,

|φm(mr)| > 1,

and so there is a prime divisor p of φm(mr). The order of mr (mod p)
is m. Hence, there is a prime p ≡ 1 (mod m). If there are only
finitely many such primes p1, p2, . . . , pt (say), then

φm(mp1p2 · · · pt)

must have a prime divisor p ≡ 1 (mod p) different from p1, . . . , pt.
This is a contradiction. �



2
Primes in Arithmetic Progressions

2.1 Characters mod q

2.1.2 Show that
∑

n≤x

log n = x log x − x + O(log x).

Put f(t) = log t, an = 1 in Theorem 2.1.1. We obtain
∑

n≤x

log n = [x] log x −
∫ x

1
[t]

dt

t

= x log x − x + O(log x)

upon writing [t] = t − {t}, where {t} denotes the fractional part of
t, in the integral. �
2.1.3 Show that ∑

n≤x

1
n

= log x + O(1).

In fact, show that

lim
x→∞

(∑

n≤x

1
n
− log x

)

exists.
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Put an = 1, f(t) = 1/t in Theorem 2.1.1. Notice that for x a posi-
tive integer, we have

∑

2≤n≤x

1
n
− log x =

∑

2≤n≤x

1
n
−
∫ x

1

dt

t

=
∑

2≤n≤x

( 1
n
−
∫ n

n−1

dt

t

)

=
∑

2≤n≤x

( 1
n

+ log
(
1 − 1

n

))
.

Since

− log
(
1 − 1

n

)
=

1
n

+
1
2

( 1
n

)2
+ · · · =

1
n

+ O
( 1

n2

)
,

we deduce that ∑

2≤n≤x

1
n
− log x

converges to a limit as x → ∞.

2.1.4 Let d(n) denote the number of divisors of a natural number n. Show
that

∑

n≤x

d(n) = x log x + O(x).

Since d(n) =
∑

δ|n 1, we have

∑

n≤x

d(n) =
∑

δ≤x

[x
δ

]
= x

∑

δ≤x

1
δ

+ O(x),

and by Exercise 2.1.3, we are done. �
2.1.5 Suppose A(x) = O(xδ). Show that for s > δ,

∞∑

n=1

an

ns
= s

∫ ∞

1

A(t)
ts+1

dt.

Hence the Dirichlet series converges for s > δ.
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By Theorem 2.1.1, with f(n) = n−s,

∑

n≤x

ann−s =
A(x)
xs

+ s

∫ x

1

A(t)
ts+1

dt.

For s fixed, s > δ, we know that A(x) = O(xδ), so that

lim
x→∞

A(x)
xs

= 0.

Thus
∞∑

n=1

an

ns
= s

∫ ∞

1

A(t)
ts+1

dt,

for any s > δ.

2.1.6 Show that for s > 1,

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx,

where {x} = x − [x]. Deduce that lims→1+(s − 1)ζ(s) = 1.

By Exercise 2.1.5, we get

ζ(s) = s

∫ ∞

1

[x]
xs+1

dx

= s

∫ ∞

1

x − {x}
xs+1

dx

=
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx.

Also,

(s − 1)ζ(s) = s − s(s − 1)
∫ ∞

1

{x}
xs+1

dx,

so that
lim

s→1+
(s − 1)ζ(s) = 1,

since the integral converges for s > 0. �
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2.1.7 Prove that

F (x, t) =
∞∑

r=0

br(x)
tr

r!
=

text

ex − 1
.

By the recursion for br(x), we have

d

dx
F (x, t) =

∞∑

r=1

b
′
r(x)

tr

r!

=
∞∑

r=1

rbr−1(x)
tr

r!

= t · F (x, t).

Thus,
log F (x, t) = tx + c(t).

Exponentiating, we get

F (x, t) = etx+c(t).

On the other hand,

∫ 1

0
F (x, t)dx =

∫ 1

0

( ∞∑

r=0

br(x)
tr

r!

)
dx = 1.

Thus,

1 =
∫ 1
0 (etx+c(t))dx = ec(t) ·

[etx

t

]x=1

x=0

= ec(t) e
t − 1
t

,

so that

F (x, t) =
text

et − 1
,

as desired. �
2.1.8 Show that B2r+1 = 0 for r ≥ 1.

Since
t

2
+

∞∑

r=0

br(0)
tr

r!
=

t

et − 1
+

t

2
=

t(et + 1)
2(et − 1)
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and the right-hand side is an even function, it follows that br(0) = 0
for r odd, r ≥ 3. �
2.1.11 Show that for some constant B,

∑

n≤x

1√
n

= 2
√

x + B + O
( 1√

x

)
.

Suppose first that x is a natural number. Put f(t) = 1/
√

t in The-
orem 2.1.9, a = 1 and b = x. Take k = 0. Then,

∑

1<n≤x

1√
n

= 2
(√

x − 1
)
+

1
2

(
1√
x
− 1
)

+
1
2

∫ t

1

(
− 1

2

)
t−3/2B2(t)dt.

The integral
∫ ∞

1

B2(t)
t3/2

dt

converges, and we may write for some constant B′,

∫ x

1

B2(t)
t3/2

dt = B
′ −
∫ ∞

x

B2(t)
t3/2

dt.

The latter integral is O(1/
√

x), whence

∑

n≤x

1√
n

= 2
√

x + B + O

(
1√
x

)

for some constant B. If x is not a natural number, notice that
(√

x −
√

[x]
)(√

x +
√

[x]
)

= x − [x] ≤ 1.

From this inequality, the result is clear for all x. �
2.1.12 For z ∈ C, and | arg z| ≤ π − δ, where δ > 0, show that

n∑

j=0

log(z + j) =
(

z + n +
1
2

)
log(z + n)

−n −
(

z − 1
2

)
log z +

∫ n

0

B1(x)dx

z + x
.
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We apply Theorem 2.1.9 for k = 1:

∑

a<j≤b

f(j) =
∫ b

a
f(t)dt +

1
2
(f(b) − f(a))

−
∫ b

a
B1(t)f ′(t)dt.

Now set f(j) = log(z + j) which is analytic in |arg z| ≤ π− δ. The
result is now immediate.

2.2.1 Prove that χ is a completely multiplicative function.

We must show that χ(mn) = χ(m)χ(n) for all natural numbers
m, n. If m or n is not coprime to q, then both sides of the equation
are zero, and the result is clear. If m and n are coprime to q, then
since χ is a homomorphism, the result is immediate. �
2.2.2 Prove that for Re(s) > 1,

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

,

where the product is over prime numbers p.

Since χ is multiplicative, so is χ(n)/ns, and so

L(s, χ) =
∏

p

(
1 +

χ(p)
ps

+
χ(p2)
p2s

+ · · ·
)

.

Now, χ(pm) = χ(p)m so that

∞∑

m=0

χ(pm)
pms

=
(

1 − χ(p)
ps

)−1

,

and the result is now clear. �
2.2.3 Show that (Z/pZ)∗ is cyclic if p is a prime.

We first list all the possible orders of elements of (Z/pZ)∗:

d1, d2, . . . , dr (say).
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Let e be the least common multiple of d1, d2, . . . , dr and factor

e = pa1
1 pa2

2 · · · pak
k

as a product of distinct prime powers. For each pai
i there is some dj

divisible by it. Thus
dj = pai

i t

for some t coprime to pi. Since the dj ’s are orders of elements of
(Z/pZ)∗, there is an element xi whose order is pai

i t. Therefore, the
element yi = xt

i has order pai
i . Hence, the element y1y2 · · · yk has

order e. Thus, we have found an element of order e. Therefore, e|p−
1. But the polynomial

xe − 1

has (p − 1) roots (mod p), since every nonzero element of Z/pZ is a
root. Since Z/pZ is a field, any polynomial of degree e cannot have
more than e roots. Thus, (p − 1) ≤ e. Since e|p − 1, we deduce e =
p − 1. Thus, we have found an element of order p − 1. �
2.2.4 Let p be an odd prime. Show that (Z/pa

Z)∗ is cyclic for any a ≥ 1.

For a = 1, we are done by Exercise 2.2.3. Let g be a primitive root
(mod p). We first find a t such that

(g + pt)p−1 �≡ 1 (mod p2).

Indeed, if gp−1 �≡ 1 (mod p2), then we can take t = 0. Otherwise,

(g + pt)p−1 ≡ gp−1 + p(p − 1)tgp−2 (mod p2)

≡ 1 + p(p − 1)tgp−2 (mod p2),

so that t = 1 works. Let g + pt have order d (mod pa). Then d|ϕ(pa)
by Euler’s theorem. Thus, d|pa−1(p − 1). Since g is a primitive root
mod p, (p − 1)|d, and so d = pr−1(p − 1) for some r ≤ a. We also
know that

(g + pt)p−1 = 1 + pu1,

where u1 is not divisible by p. Thus

(g + pt)p(p−1) = (1 + pu1)p

= 1 + p(pu1) +
(
p
2

)
(pu1)2 + · · · .
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Because p is odd,
(
p
2

)
= p(p−1)

2 ≡ 0 (mod p). Thus

(g + pt)p(p−1) ≡ 1 + p2u1

(
mod p3

)
.

By induction,

(g + pt)pb−1(p−1) ≡ 1 + pbu1 (mod pb+1).

Now, g + pt has order d = pr−1(p − 1) (mod pa) implies

(g + pt)pr−1(p−1) ≡ 1 (mod pa).

But then 1 + pru1 ≡ 1 (mod pr+1) if r ≤ a− 1, which implies p|u1, a
contradiction. Thus, r = a, and we are done. �
2.2.5 Let a ≥ 3. Show that 5 (mod 2a) has order 2a−2.

We will prove by induction that

52n−3 ≡ 1 + 2n−1 (mod 2n)

for n ≥ 3. For n = 3, this is clear, since 5 ≡ 1 + 4 (mod 8). Suppose
we know

52n−3 ≡ 1 + 2n−1 + 2nu.

Then squaring both sides, we obtain

52n−2
= (1 + 2n−1 + 2nu)2

= 1 + 22n−2 + 22nu2 + 2n + 2n+1u + 22nu

= 1 + 2n + 2n+1
{
u + 2n−1u + 2n−1u2 + 2n−3

}
,

from which the result is immediate.
It is also clear that

52n−2 ≡ (1 + 2n−1)2 (mod 2n)

≡ 1 (mod 2n).

Thus, 5 has order 2n−2 (mod 2n). �
2.2.6 Show that (Z/2a

Z)∗ is isomorphic to (Z/2Z) × (Z/2a−2
Z), for

a ≥ 3.
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By Exercise 2.2.5, we see that 5 has order 2a−2 (mod 2a). Observe
that if 5j ≡ −1 (mod 2a), then 1 ≡ −1 (mod 4), a contradiction.
Thus −1 is not in the subgroup generated by 5 (mod 2a). Hence,
every coprime residue class can be written as ±5j . �
2.2.7 Show that the group of characters (mod q) has order ϕ(q).

Since

(Z/qZ)∗ � (Z/pa1
1 Z)∗ × · · · × (Z/pak

k Z)∗,

where q = pa1
1 · · · pak

k is the unique factorization of q into prime pow-
ers, we see that any character χ (mod q) decomposes uniquely as

χ1χ2 · · ·χk,

where χi is a character of (Z/pai
i Z)∗. If pi is odd, the latter group is

cyclic of order ϕ(pai
i ), so that the number of choices for χi is ϕ(pai

i ).
If pi = 2, then χi is a character of Z/2Z × Z/2ai−2

Z, and again the
number of such characters is ϕ(2ai). Thus, the total number of char-
acters is ϕ(pa1

1 ) · · ·ϕ(pak
k ) = ϕ(q). �

2.2.8 If χ �= χ0, show that
∑

a(mod q)

χ(a) = 0.

Since χ �= χ0, there is a b (mod q) such that (b, q) = 1 and χ(b) �= 1.
Then

s =
∑

a(mod q)

χ(a) =
∑

a(mod q)

χ(ab) = χ(b)s,

since ab runs through coprime residue classes as a does. Hence

(1 − χ(b))s = 0.

Therefore, s = 0, since χ(b) �= 1. �
2.2.9 Show that

∑

χ(mod q)

χ(n) =

⎧
⎨

⎩

ϕ(q) if n ≡ 1 (mod q)

0 otherwise.
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If n ≡ 1 (mod q), the result is clear. If n �≡ 1 (mod q) and (n, q) = 1,
then there is a character ψ such that ψ(n) �= 1. Thus

T =
∑

χ(mod q)

χ(n) =
∑

χ(mod q)

(ψχ)(n) = ψ(n)
∑

χ(mod q)

χ(n)

because ψχ ranges over all the characters (mod q) as χ does. But
then

(1 − ψ(n))
∑

χ(mod q)

χ(n) = 0,

so that
∑

χ(mod q) χ(n) = 0, since ψ �= 1. �

2.2 Dirichlet’s Theorem

2.3.1 Let χ = χ0 be the trivial character (mod q). Show that

lim
s→1+

log L(s, χ0) = +∞.

Since L(s, χ0) = ζ(s)
∏

p|q(1 − 1
ps ), the result is clear. �

2.3.2 Show that for s > 1,

∑

χ(mod q)

log L(s, χ) = ϕ(q)
∑

n≥1

∑

pn≡1(mod q)

1
npns

.

Since L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1
, we have

∑

χ(mod q)

log L(s, χ) =
∑

χ(mod q)

∑

p

(∑

n≥1

χ(pn)
npns

)

=
∑

p,n

1
npns

( ∑

χ(mod q)

χ(pn)
)
,

the interchange of summation being justified because the series con-
verge absolutely for s > 1. By Exercise 2.2.9, we find that the inner
sum is 0 unless pn ≡ 1 mod q in which case it is ϕ(q). The result is
now immediate. �
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2.3.3 Show that for s > 1 the Dirichlet series

∞∑

n=1

an

ns
:=

∏

χ(mod q)

L(s, χ)

has the property that a1 = 1 and an ≥ 0 for n ≥ 2.

If we exponentiate the identity of Exercise 2.3.2 and use the series

ex = 1 + x +
x2

2!
+ · · · ,

the result is clear. �
2.3.4 For χ �= χ0, a Dirichlet character (mod q), show that

∣∣∣∣∣∣

∑

n≤x

χ(n)

∣∣∣∣∣∣
≤ q.

Deduce that

L(s, χ) =
∞∑

n=1

χ(n)
ns

converges for s > 0.

By Exercise 2.1.5

L(s, χ) = s

∫ ∞

1

S(t)
ts+1

dt,

where S(t)=
∑

n≤t χ(n). By Exercise 2.3.8, we know that
∑

n≤qχ(n)=
0. Since χ is periodic with period q,

∑
n≤kq χ(n) = 0 for any k. Let k

satisfy kq ≤ t ≤ (k + 1)q. Then

S(t) =
∑

n≤kq

χ(n) +
∑

kq<n≤t

χ(n).

The first sum is zero, and the latter sum cannot exceed q. Thus, the
series converges for s > 0. �
2.3.5 If L(1, χ) �= 0, show that L(1, χ) �= 0, for any character χ �= χ0

(mod q).

We know that
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L(1, χ) = lim
x→∞

∑

n≤x

χ(n)
n

,

since the series converges by Exercise 2.3.4. Now,

L(1, χ) = lim
x→∞

∑

n≤x

χ(n)
n

= L(1, χ),

from which the result follows. �
2.3.6 Show that

lim
s→1+

(s − 1)L(s, χ0) = ϕ(q)/q.

Since
L(s, χ0) = ζ(s)

∏

p|q

(
1 − 1

ps

)
,

we obtain

lim
s→1+

(s − 1)L(s, χ0) = lim
s→1+

[
(s − 1)ζ(s)

]∏

p|q

(
1 − 1

ps

)
=

ϕ(q)
q

by Exercise 2.1.6. �
2.3.7 If L(1, χ) �= 0 for every χ �= χ0, deduce that

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ) �= 0

and hence ∑

p≡1(mod q)

1
p

= +∞.

(That is, there are infinitely many primes congruent to 1 (mod q).)

We have

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ) = lim
s→1+

(s − 1)L(s, χ0)
∏

χ�=χ0

L(s, χ)

=
ϕ(q)

q

∏

χ�=χ0

L(1, χ) �= 0.
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On the other hand, by Exercise 2.3.2,

∏

χ(mod q)

L(s, χ) = exp
(
ϕ(q)

∑

n,p
pn≡1(mod q)

1
npns

)
.

Observe that we can write the exponential as

ϕ(q)
( ∑

p
p≡1(mod q)

1
ps

+
∑

p,n≥2
pn≡1(mod q)

1
npns

)
,

and we clearly see that

lim
s→1+

∑

p,n≥2

1
npns

≤
∑

p,n≥2

1
npn

≤
∑

p

1
p(p − 1)

< ∞.

Thus,

lim
s→1+

(s − 1) exp
(
ϕ(q)

∑

p≡1(mod q)

1
ps

)
�= 0.

It is now immediate that
∑

p≡1(mod q)
1
p = +∞. �

2.3.8 Fix (a, q) = 1. Show that

∑

χ(mod q)

χ(a)χ(n) =

⎧
⎨

⎩

ϕ(q) if n ≡ a (mod q)

0 otherwise.

Note that χ(a)χ(a) = 1. Also, χ(a)χ(a−1) = 1. Hence χ(a) =
χ(a−1), where a−1 is the inverse of a in (Z/qZ)∗. Therefore,

∑

χ(mod q)

χ(a)χ(n) =
∑

χ(mod q)

χ(a−1n),

which by Exercise 2.2.9 is ϕ(q) if a−1n ≡ 1 (mod q), and 0 other-
wise. Thus,

∑

χ(mod q)

χ(a)χ(n) =

⎧
⎨

⎩

ϕ(q) if n ≡ a (mod q),

0 otherwise.
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2.3.9 Fix (a, q) = 1. If L(1, χ) �= 0, show that

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ)χ(a) �= 0.

Deduce that

∑

p≡a (mod q)

1
p

= +∞.

We see that for s > 1,

∑

χ(mod q)

χ(a) log L(s, χ) =
∑

χ(mod q)

χ(a)
∑ χ(pn)

npns

=
∑

p,n

1
npns

( ∑

χ(mod q)

χ(a)χ(pn)
)

as in Exercise 2.3.2. The inner sum, by Exercise 2.3.8, is ϕ(q) if pn ≡ a
(mod q) and zero otherwise. Thus

∏

χ(mod q)

L(s, χ)χ(a) = exp
(
ϕ(q)

∑

n,p
pn≡a(mod q)

1
npns

)
.

As before

lim
s→1+

(s − 1)
∏

χ(mod q)

L(s, χ)χ(a)

= lim
s→1+

(s − 1)L(s, χ0)
∏

χ�=χ0

L(s, χ)χ(a) �= 0,

since L(1, χ) �= 0. The result now follows as in Exercise 2.3.7. �
2.3.10 Suppose χ1 �= χ1 (that is, χ1 is not real-valued). Show that
L(1, χ1) �= 0 by considering F (s).

By Exercise 2.3.4, L(s, χ) converges for s > 0. If L(1, χ1) = 0 then
set

L(s, χ1) = (s − 1)g(s, χ1) (say),

where g(s, χ) is continuous for s > 0, s �= 1. Observe also that since

L(s, χ) = s

∫ ∞

1

S(t)
ts+1

dt,
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where |S(t)| ≤ q, the integral is absolutely convergent for s > 0.
We also see that L(s, χ) is differentiable. Thus if we set g(1, χ) =
L′(1, χ1) above, then g(s, χ) is continuous for all s > 0. By Exercise
2.3.5, L(1, χ1) �= 0, and we can also write L(s, χ1) = (s − 1)g(s, χ1).
Therefore,
∏

χ

L(s, χ) = L(s, χ0)(s − 1)2g(s, χ1)g(s, χ1)
∏

χ�=χ1,χ1,χ0

L(s, χ)

and we see that

lim
s→1+

∏

χ

L(s, χ)

= lim
s→1+

(s − 1)L(s, χ0)(s − 1)g(s, χ1)g(s, χ1)
∏

χ�=χ1,χ1,χ0

L(s, χ)

=
ϕ(q)

q
lim

s→1+
(s − 1)g(s, χ1)g(s, χ1)

∏

χ�=χ1,χ1,χ0

L(s, χ) = 0.

However, writing

∞∑

n=1

an

ns
=

∏

χ(mod q)

L(s, χ)

= 1 +
∞∑

n=2

an

ns
,

we proved an ≥ 0 in Exercise 2.3.3, so that

lim
s→1+

∏

χ(mod q)

L(s, χ) ≥ 1.

This contradiction implies L(1, χ1) �= 0. �

2.3 Dirichlet’s Hyperbola Method

2.4.2 Prove that
∑

n≤x

σ0(n) = x log x + (2γ − 1)x + O
(√

x
)
.
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We have
σ0(n) =

∑

d|n
1.

We can apply Theorem 2.4.2 with f(n) = σ0(n), g = h = 1, and
y =

√
x.

∑

n≤x

σ0(n) = 2
∑

d≤√
x

[x
d

]
− [

√
x]2

= 2
∑

d≤√
x

x

d
− [

√
x]2 + O(

√
x).

By Exercise 2.1.10, we have
∑

d≤√
x

1
d

=
1
2

log x + γ + O
( 1√

x

)
,

so inserting this above leads to
∑

n≤x

σ0(n) = x log x + 2γx − [
√

x]2 + O(
√

x).

Now,
[
√

x]2 = (
√

x − {
√

x})2 = x + O(
√

x)

from which we deduce the final result. �
2.4.3 Let χ be a real character (mod q). Define

f(n) =
∑

d|n
χ(d).

Show that f(1) = 1 and f(n) ≥ 0. In addition, show that f(n) ≥ 1
whenever n is a perfect square.

Since χ is multiplicative, so is f . If we write

n = pα1
1 · · · pαk

k

as the unique factorization of n as a product of prime powers, then

f(n) = f(pα1
1 ) · · · f(pαk

k )

=
∏

pα||n

(
1 + χ(p) + χ(p2) + · · · + χ(pα)

)
.
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Since χ is real, χ(p) = ±1 whenever p is coprime to q. If χ(p) = 1,
then

1 + χ(p) + · · · + χ(pα) = α + 1 ≥ 0.

If χ(p) = −1, the sum is either 0 or 1 according as α is odd or even.
If p|q, the sum is 1. In every case we have f(n) ≥ 0. Clearly, f(1) = 1
and when n is a perfect square, each αi is even. Thus, each sum in
the product is greater than or equal to 1. Hence f(n) ≥ 1 whenever
n is a perfect square. �

2.4.4 Using Dirichlet’s hyperbola method, show that

∑

n≤x

f(n)√
n

= 2L(1, χ)
√

x + O(1),

where f(n) =
∑

d|n χ(d) and χ �= χ0.

We let g(d) = χ(d)/
√

d, h(e) = 1/
√

e in Theorem 2.4.1. We choose
y =

√
x. Therefore,

∑

n≤x

f(n)√
n

=
∑

d≤√
x

χ(d)√
d

H
(x

d

)
+
∑

d≤√
x

1√
d
G
(x

d

)
− G(

√
x)H(

√
x)

with notation as in Theorem 2.4.1. Now,

H(x) =
∑

n≤x

1√
n

= 2
√

x + B + O
( 1√

x

)

by Exercise 2.1.11. Also,

G(x) =
∑

n≤x

χ(n)√
n

= L

(
1
2
, χ

)
+ O

(
1√
x

)
,

since
∞∑

n=1

χ(n)√
n

= L

(
1
2
, χ

)
,

and by partial summation,

∑

n≥x

χ(n)√
n

�
∫ ∞

x

S(t)
t3/2

dt � 1√
x

,
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where S(t) =
∑

n≤t χ(n). Therefore,

G(x) = L

(
1
2
, χ

)
+ O

(
1√
x

)
.

We will write

∑

n≤x

f(n)√
n

=
∑

d≤√
x

χ(d)√
d

H
(x

d

)
+
∑

d≤√
x

1√
d

(
G
(x

d

)
− G(

√
x)
)
,

so that

G
(x

d

)
− G(

√
x) = O

(√
d√
x

)
+ O

(
x−1/4

)
.

Observe that

∑

d≤√
x

1√
d

(
G
(x

d

)
− G(

√
x)
)

= O(1).

Hence,

∑

n≤x

f(n)√
n

=
∑

d≤x

χ(d)√
d

{
2
√

x

d
+ B + O

(√
d√
x

)}
+ O(1)

= 2
√

xL(1, χ) + O(1),

where we have used

∑

n≤x

χ(n)
n

= L(1, χ) + O
(1

x

)
,

which is easily deduced by partial summation. This completes the
proof. �

2.4.5 If χ �= χ0 is a real character, deduce from the previous exercise that
L(1, χ) �= 0.

Suppose L(1, χ) = 0. Then

∑

n≤x

f(n)√
n

= O(1).
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On the other hand, by Exercise 2.4.3, f(n) ≥ 0, and f(n) ≥ 1 when
n is a perfect square, so that

∑

n≤x

f(n)√
n

≥
∑

m≤√
x

1
m


 log x,

a contradiction. �
2.4.6 Prove that ∑

n>x

χ(n)
n

= O
(1

x

)

whenever χ is a nontrivial character (mod q).

By partial summation, we have

∑

n>x

χ(n)
n

�
∫ ∞

x

s(t)dt

t2
,

where s(t) =
∑

n≤t χ(n). But |s(t)| ≤ q, so that the estimate is now
immediate. �
2.4.7 Let

an =
∑

d|n
χ(d),

where χ is a nonprincipal character (mod q). Show that
∑

n≤x

an = xL(1, χ) + O(
√

x).

We apply Dirichlet’s hyperbola method:
∑

n≤x

an =
∑

d≤y

χ(d)
[x
d

]
+
∑

d≤ x
y

s
(x

d

)
− s(y)

[x
y

]
,

where s(y) =
∑

n≤y χ(n). Since |s(y)| ≤ q, we get

∑

n≤x

an = x
∑

d≤y

χ(d)
d

+ O(y) + O
(x

y

)
.

Choosing y =
√

x, we obtain

∑

n≤x

an = x
∑

d≤√
x

χ(d)
d

+ O(
√

x).
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Finally, by the previous exercise,
∑

d≤√
x

χ(d)
d

= L(1, χ) −
∑

d>
√

x

χ(d)
d

= L(1, χ) + O
( 1√

x

)
,

which implies the required result. �
2.4.8 Deduce from the previous exercise that L(1, χ) �= 0 for χ real.

Consider the Dirichlet series
∞∑

n=1

an

ns

with an =
∑

d|n χ(d) ≥ 0, as in Exercise 2.4.3. Then, if L(1, χ) = 0,
by Exercise 2.4.7

F (x) =
∑

n≤x

an = O
(√

x
)
.

A summation by parts, as in Exercise 2.1.5 gives
∞∑

n=1

an

ns
= s

∫ ∞

1

F (t)
ts+1

dt

for s > 1/2 and the Dirichlet series converges for Re s > 1/2. By
Exercise 1.2.4

∞∑

n=1

an

ns
= L(s, χ)ζ(s), Re s > 1. (2.1)

Since L(s, χ) converges and is analytic for Re s > 0 by Exercise 2.3.4
and ζ(s) has analytic continuation to Re s > 0 by Exercise 2.1.6 we
can set s = 1/2 + ε in (2.1). The product on the right of (2.1) con-
verges to L(1/2, χ)ζ(1/2) as ε → 0, since ζ(s) has only a pole at
s = 1 by Exercise 2.1.6. On the other side of (2.1)

∞∑

n=1

an

n1/2+ε
≥

∞∑

m=1

am2

m1+2ε
≥

∞∑

m=1

1
m1+2ε

= ζ(1 + 2ε)

by 2.4.3. However, as ε → 0, ζ(1 + 2ε) → ∞, since 1 is a pole of ζ(s).
This gives a contradiction. �
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2.4 Supplementary Problems

2.5.1 Let dk(n) be the number of ways of writing n as a product of k
numbers. Show that

∑

n≤x

dk(n) =
x(log x)k−1

(k − 1)!
+ O(x(log x)k−2)

for every natural number k ≥ 2.

For k = 2, this is Exercise 2.1.4. We will prove the result by induc-
tion on k. Recall that

dk(n) =
∑

δ|n
dk−1(δ),

so that
∑

n≤x

dk(n) =
∑

n≤x

∑

δ|n
dk−1(δ)

=
∑

δ≤x

dk−1(δ)
[x
δ

]

= x
∑

δ≤x

dk−1(δ)
δ

+ O(x(log x)k−2)

by the induction hypothesis. Also by the same, and by Theorem
2.1.1,

(k−2)!
∑

δ≤x

dk−1(δ)
δ

=
∫ x

1

(log t)k−2 + O((log t)k−3)
t

dt+O((log x)k−2),

which easily gives

∑

δ≤x

dk−1(δ)
δ

=
(log x)k−1

(k − 1)!
+ O((log x)k−2).

Inserting this in the above calculation gives the desired result. �
2.5.2 Show that ∑

n≤x

log
x

n
= x + O(log x).
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By Exercise 2.1.2,

∑

n≤x

log n = x log x − x + O(log x).

Thus,

∑

n≤x

log x = [x] log x = x log x + O(log x).

Subtracting gives the result. �

2.5.3 Let A(x) =
∑

n≤x an. Show that for x a positive integer,

∑

n≤x

an log
x

n
=
∫ x

1

A(t)dt

t
.

We write the left-hand side as
∑

n≤x

{A(n) − A(n − 1)} log
x

n
=

∑

n≤x

A(n) log
x

n

−
∑

n≤x−1

A(n) log
x

n + 1

=
∑

n≤x−1

A(n) log
n + 1

n

=
∑

n≤x−1

A(n)
∫ n+1

n

dt

t

=
∫ x

1

A(t)dt

t
,

since A(t) is a step function. �
2.5.4 Let {x} denote the fractional part of x. Show that

∑

n≤x

{x

n

}
= (1 − γ)x + O(x1/2),
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where γ is Euler’s constant.
We have

∑

n≤x

{x

n

}
=

∑

n≤x

(x

n
−
[x
n

])

= x
∑

n≤x

1
n
−
∑

n≤x

σ0(n).

By Example 2.1.10 and Exercise 2.4.2, we find that this is

x

(
log x + γ + O

(1
x

))
−
(
x log x + (2γ − 1)x + O(

√
x)
)
,

which simplifies to
(1 − γ)x + O

(√
x
)
,

as required. �
2.5.5 Prove that ∑

n≤x

logk x

n
= O(x)

for any k > 0.
Since log t is an increasing function of t, we have for n ≥ 2,

logk x

n
≤
∫ n

n−1

(
logk x

t

)
dt.

Hence, ∑

n≤x

logk x

n
≤
∫ x

1

(
logk x

t

)
dt.

Set u = x/t in the integral to deduce

∑

n≤x

logk x

n
≤ x

∫ x

1

logk u

u2
du = O(x),

since the latter integral converges for any k > 0. (This also gives
another proof of Exercise 2.5.2 in the case k = 1.) �
2.5.6 Show that for x ≥ 3,

∑

3≤n≤x

1
n log n

= log log x + B = O
( 1

x log x

)
.
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We apply Theorem 2.1.9 with f(t) = 1/(t log t), a = 3, b = x, and
k = 0. Then,

∑

2≤n≤x

1
n log n

=
∫ x

3

dt

t log t
+
( 1

2x log x
− 1

6 log 3

)

+
∫ x

3

({x} − 1
2)(1 + log t)

(t log t)2
dt.

the first integral is
log log x − log log 3.

For the second integral, observe that the integrand is

O
( 1

t2 log t

)
,

so that ∫ ∞

3

({t} − 1
2)(1 + log t)dt

(t log t)2
= c < ∞.

Thus, the second integral can be written as

c − O
(∫ ∞

x

dt

t2 log t

)
= c + O

( 1
x log x

)
.

This completes the proof. �
2.5.7 Let χ be a nonprincipal character (mod q). Show that

∑

n≥x

χ(n)√
n

= O
( 1√

x

)
.

By Exercise 2.3.4, we know that
∑

n≤x

χ(n) = O(1).

Thus, by partial summation,

∑

n≥x

χ(n)√
n

= O
(∫ ∞

x

dt

t3/2

)
= O

( 1√
x

)
,
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as required. �

2.5.8 For any integer k ≥ 0, show that

∑

n≤x

logk n

n
=

logk+1 x

k + 1
+ O(1).

We apply Theorem 2.1.1 with an = 1/n and f(n) = logk n. Using
Example 2.1.10, we have

∑

n≤x

logk n

n
= (logk x)

(
log x + γ + O

(
1
x

))

−
∫ x

1

(
log t + γ + O

(
1
t

))
k(logk−1 t)

dt

t
.

The main term is now evident. The terms involving γ as a coefficient
cancel. The remaining error terms are easily seen to be O(1). In fact,
this argument can easily be modified to show that

∑

n≤x

logk n

n
=

logk+1 x

k + 1
+ c + O

( logk x

x

)
.

2.5.9 Let d(n) be the number of divisors of n. Show that for some constant
c,

∑

n≤x

d(n)
n

=
1
2

log2 x + 2γ log x + c + O
( 1√

x

)

for positive integers x ≥ 1.

We apply Theorem 2.1.1 with an = d(n) and f(n) = 1/n. Using
Exercise 2.4.2, we get

∑

n≤x

d(n)
n

=
∫ x

1

(t log t + (2γ − 1)t + O(
√

t))dt

t2

+
(x log x + (2γ − 1)x + O(

√
x))

x
.
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The integral is

1
2

log2 x + (2γ − 1) log x + O
(∫ x

1

dt

t3/2

)
.

Since the integral in the error term converges, we can write it as

c1 − O
(∫ ∞

x

dt

t3/2

)
= c1 + O

( 1√
x

)

for some constant c1. Combining these estimates gives the final re-
sult. �
2.5.10 Let α ≥ 0 and suppose an = O(nα) and

A(x) :=
∑

n≤x

an = O(xδ)

for some fixed δ < 1. Define

bn =
∑

d|n
ad.

Prove that ∑

n≤x

bn = cx + O

(
x

(1−δ)(1+α)
2−δ

)
,

for some constant c. By Dirichlet’s hyperbola method,

∑

n≤x

bn =
∑

d≤y

ad

[x
d

]
+
∑

d≤y

A
(x

d

)
− A(y)

[x
y

]

=
∑

d≤y

ad

[x
d

]
+
∑

d≤y

O
(xδ

dδ

)
+ O(xyδ−1).

The sum
∑

d≤y d−δ is O(y1−δ), so that
∑

n≤x

bn =
∑

d≤y

ad

[x
d

]
+ O(xδy1−δ + xyδ−1).

We choose y = x
1−δ
2−δ to minimize the error terms (which is the case

when the two terms are equal). Thus

∑

n≤x

bn =
∑

d≤y

ad

[x
d

]
+ O

(
x

1−δ−δ2

2−δ

)
.
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Also, ∑

d≤y

ad

[x
d

]
= x

∑

d≤y

ad

d
+ O(y1+α)

and
∑

d≤y

ad

d
=

∞∑

d=1

ad

d
−
∑

d>y

ad

d
.

We have

c =
∞∑

d=1

ad

d
< ∞

(by Exercise 2.1.5). By partial summation,

∑

d>y

ad

d
�
∫ ∞

y

A(t)
t2

dt � yδ−1.

Thus, ∑

d≤y

ad

[x
d

]
= cx + O(xyδ−1 + y1+α).

With the choice of y given above, we get

∑

n≤x

bn = cx + O
(
x

(1−δ)(1+α)
2−δ + x

1−δ−δ2

2−δ

)
.

Since (1 − δ)(1 + α) ≥ 1 − δ − δ2, we get

∑

n≤x

bn = cx + O
(
x

(1−δ)(1+α)
2−δ

)

as required. �
2.5.11 Let χ be a nontrivial character (mod q) and set

f(n) =
∑

d|n
χ(d).

Show that ∑

n≤x

f(n) = xL(1, χ) + O(q
√

x),

where the constant implied is independent of q.
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We apply Dirichlet’s hyperbola method with y =
√

x. Let S(x) =∑
n≤x χ(n). Then

∑

n≤x

f(n) =
∑

d≤√
x

χ(d)
[x
d

]
+
∑

d≤√
x

S
(x

d

)
− S

(√
x
) [√

x
]
.

Since |S(x)| ≤ q, we have
∑

n≤x

f(n) =
∑

d≤√
x

χ(d)
[x
d

]
+ O(q

√
x).

Now,
∑

d≤√
x

χ(d)
[x
d

]
= x

∑

d≤√
x

χ(d)
d

+ O(
√

x)

and ∑

d≤√
x

χ(d)
d

= L(1, χ) + O
( q√

x

)
,

by partial summation. Putting this all together gives the desired
result. If we use Exercise 5.5.6, we can replace q by q1/2 log q. �
2.5.12 Suppose that an ≥ 0 and that for some δ > 0, we have

∑

n≤x

an � x

(log x)δ
.

Let bn be defined by the formal Dirichlet series

∞∑

n=1

bn

ns
=
( ∞∑

n=1

an

ns

)2
.

Show that ∑

n≤x

bn � x(log x)1−2δ.

We have
bn =

∑

d|n
adan/d,

and so we can apply Dirichlet’s hyperbola method with

A(x) =
∑

n≤x

an,
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to get

∑

n≤x

bn = 2
∑

d≤√
x

adA
(x

d

)
− A

(√
x
)2

.

The last term is O(x/(log x)2δ). The summation on the right hand
side is bounded by

� x

(log x)δ

∑

d≤√
x

ad

d
.

By partial summation,

∑

2≤d≤√
x

ad

d
� A(

√
x)√

x
+
∫ √

x

1

A(t)
t2

dt,

which is easily seen to be O
(
log1−δ x

)
, and this gives the stated re-

sult. �

2.5.13 Let {an} be a sequence of nonnegative numbers. Show that there
exists σ0 ∈ R (possibly infinite) such that

f(s) =
∞∑

n=1

an

ns

converges for Re(s) > σ0 and diverges for Re(s) < σ0. Moreover, show
that the series converges uniformly in Re(s) ≥ σ0 + δ for any δ > 0 and
that

f (k)(s) = (−1)k
∞∑

n=1

an(log n)k

ns

for Re(s) > σ0. (σ0 is called the abscissa of convergence of the Dirich-
let series

∑∞
n=1 an/ns.)

If there is no real value of s for which the series converges, we
take σ0 = ∞, and there is nothing to prove in this case. Now sup-
pose there is some real s0 for which the series converges. By the
comparison test, the series converges for all Re(s) > s0, since the
coefficients are real and nonnegative. Now let σ0 be the infimum
of all real s0 for which the series converges. This establishes the
existence of σ0. The uniform convergence in Re(s) > σ0 + δ for any
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δ > 0 is immediate. Thus, in this region, we can differentiate the
series term by term to derive the formula

fk(s) = (−1)k
∞∑

n=1

an(log n)k

ns
.

�
2.5.14 Let an ≥ 0 be a sequence of nonnegative numbers. Let σ0 be the
abscissa of convergence of

f(s) =
∞∑

n=1

an

ns
.

Show that s = σ0 is a singular point of f(s). (That is, f(s) cannot be
extended to define an analytic function at s = s0.)

By the previous exercise, f(s) is holomorphic in Re(s) > σ0. If f
is not singular at s = σ0, then there is a disk

D = {s : |s − σ1| < δ}

where σ1 > σ0 such that |σ0 − σ1| < δ and a holomorphic function
g in D such that g(s) = f(s) for Re(s) > s0, s ∈ D. By Taylor’s
formula,

g(s) =
∞∑

k=0

g(k)(σ1)
k!

(s − σ1)k

=
∞∑

k=0

f (k)(σ1)
k!

(s − σ1)k,

since g(s) = f(s) for s in a neighborhood of σ1. Thus, the series

∞∑

k=0

(−1)kf (k)(σ1)
k!

(σ1 − s)k

converges absolutely for any s ∈ D. By the previous exercise, we
can write this as a double series

∞∑

k=0

(σ1 − s)k

k!

∞∑

n=1

an(log n)k

nσ1
.
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If σ1− δ < s < σ1, this convergent double series consists of nonneg-
ative terms and we may interchange the summation to find

∞∑

n=1

an

nσ1

∞∑

k=0

(σ1 − s)k(log n)k

k!
=

∞∑

n=1

an

ns
< ∞.

Since σ1 − δ < σ0 < σ1, this is a contradiction for s = σ0. Thus, the
abscissa of convergence is a singular point of f(s). �
2.5.15 Let χ be a nontrivial character (mod q) and define

σa,χ =
∑

d|n
χ(d)da.

If χ1, χ2 are two characters (mod q), prove that for a, b ∈ C,
∞∑

n=1

σa,χ1(n)σb,χ2(n)n−s =

ζ(s)L(s − a, χ1)L(s − b, χ2)L(s − a − b, χ1χ2)
L(2s − a − b, χ1χ2)

as formal Dirichlet series.

We apply Ramanujan’s identity (see Exercise 1.2.8)
∞∑

n=1

(αn+1 − βn+1

α − β

)(γn+1 − δn+1

γ − δ

)
Tn

=
1 − αβγδT 2

(1 − αγT )(1 − αδT )(1 − βγT )(1 − βδT )

to deduce that
∞∑

n=0

σa,χ1(p
n)σb,χ2(p

n)Tn

=
∞∑

n=0

(χ1(p)n+1pa(n+1) − 1
χ1(p)p − 1

)(χ2(p)n+1pb(n+1) − 1
χ2(p)p − 1

)
Tn

=
1 − χ1(p)χ2(p)pa+bT 2

(1 − χ1(p)paχ2(p)pbT )(1 − χ1(p)paT )(1 − χ2(p)pbT )(1 − T )
.

Putting T = p−s and multiplying over the primes p gives

ζ(s)L(s − a, χ1)(L(s − b, χ2)L(s − a − b, χ1χ2)
L(2s − a − b, χ1χ2)

. �
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2.5.16 Let χ be a nontrivial character (mod q). Set a = b, χ1 = χ, and
χ2 = χ in the previous exercise to deduce that

∞∑

n=1

|σa,χ(n)|2n−s =
ζ(s)L(s − a, χ)L(s − a, χ)L(s − a − a, χ0)

L(2s − a − a, χ0)
.

Observe that
σa,χ(n)σa,χ(n) = |σa,χ(n)|2

and χχ = χ0, so that the result is now immediate. �
2.5.17 Using Landau’s theorem and the previous exercise, show that
L(1, χ) �= 0 for any nontrivial real character (mod q).

Set a = 0 in Exercise 2.5.16. Then
∞∑

n=1

|σ0,χ(n)|2
ns

=
ζ(s)L(s, χ)L(s, χ)L(s, χ0)

L(2s, χ0)
.

The right hand side is regular for Re(s) > 1/2, except possibly s = 1.
However, if L(1, χ) = 0, then the right-hand side is regular at s = 1.
Therefore, the Dirichlet series

∞∑

n=1

|σ0,χ(n)|2
ns

represents an analytic function for Re(s) > σ0, where σ0 is the
abscissa of convergence. We must have σ0 < 1. However, for χ real
and n = m2,

σ0,χ(m2) ≥ 1,

so that the Dirichlet series diverges for s = 1/2. Hence 1/2 ≤ σ0 < 1.
Since L(2s, χ0)−1 is regular for s ≥ 1/2, we have a contradiction
because

ζ(s)L(s, χ)L(s, χ)L(s, χ0)
L(2s, χ0)

is regular for any real s ≥ 1/2. �
2.5.18 Show that ζ(s) �= 0 for Re(s) > 1. We have for σ = Re(s),

ζ(s) =
∏

p

(
1 +

1
ps

+
1

p2s
+ · · ·

)
,
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so that
|ζ(s)| ≥

∏

p

(
1 − 1

pσ
− 1

p2σ
− · · ·

)
,

so that
|ζ(s)| ≥

∏

p

(
1 − 1

pσ − 1

)
�= 0,

and the infinite product converges because σ > 1. �
2.5.19 (Landau’s theorem for integrals)Let A(x) be right continuous
for x ≥ 1 and of bounded finite variation on each finite interval. Suppose
that

f(s) =
∫ ∞

1

A(x)
xs+1

dx,

with A(x) ≥ 0. Let σ0 be the infimum of all real s for which the integral
converges. Show that f(s) has a singularity at s = σ0. This is simi-

lar to Exercise 2.5.14, and so we merely indicate the modifications
needed in the solution of that problem to obtain the required result.
As before, we can differentiate under the integral sign to get

f (k)(s) = (−1)k
∫ ∞

1

A(x)(log x)k

xs+1
dx.

If σ0 is not a singularity, we deduce that

∞∑

k=0

(σ1 − k)k

k!

∫ ∞

1

A(x)(log x)k

xσ1+1
dx,

using the notation in the solution to Exercise 2.5.14. Interchanging
the summation and integration gives

∫ ∞

1

A(x)
xs+1

dx < ∞

for s satisfying σ1− δ < s < σ1. For s = σ0, this is a contradiction. �
2.5.20 Let λ denote Liouville’s function and set

S(x) =
∑

n≤x

λ(n).

Show that if S(x) is of constant sign for all x sufficiently large, then
ζ(s) �= 0 for Re(s) > 1/2. (The hypothesis is an old conjecture of Pólya. It
was shown by Haselgrove in 1958 that S(x) changes sign infinitely often.)
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We have by Exercise 1.2.5 and partial summation that

ζ(2s)
ζ(s)

= s

∫ ∞

1

S(x)dx

xs+1
.

If S(x) ≥ 0 for all x, then the integral represents an analytic function
for Re(s) > σ0, where σ0 is the abscissa of convergence. However,
by Exercise 2.1.6,

(s − 1)ζ(s) = s − s(s − 1)
∫ ∞

1

{x}
xs+1

dx,

so if ζ(s) = 0 for some s satisfying 1/2 < s < 1, we get

1 = (s − 1)
∫ ∞

1

{x}
xs+1

dx,

a contradiction because the right-hand side is negative. Thus ζ(s) �=
0 for 1/2 < s < 1. We find that ζ(2s)/ζ(s) has its first real singularity
at s = 1/2. Therefore, σ0 = 1/2. Therefore, ζ(2s)/ζ(s) is regular for
Re(s) > 1/2, which means that ζ(s) �= 0 for Re(s) > 1/2. (This is
the celebrated Riemann hypothesis, which still remains unproved,
as of the year 2000.) �
2.5.21 Prove that

bn(x) =
n∑

k=0

(
n

k

)
Bn−kx

k,

where bn(x) is the nth Bernoulli polynomial and Bn denotes the nth
Bernoulli number.

We have from Exercise 2.1.7 that

F (x, t) = extF (0, t).

As power series, this equation is

∞∑

r=0

br(x)tr

r!
=
( ∞∑

r=0

xrtr

r!

)( ∞∑

r=0

Brt
r

r!

)
,

so that comparing the coefficients of tn on both sides gives the
result. �
2.5.22 Prove that

bn(1 − x) = (−1)nbn(x),
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where bn(x) denotes the nth Bernoulli polynomial.

We have from Exercise 2.1.7 that

F (1 − x, t) =
∞∑

r=0

br(1 − x)
tr

r!
=

te(1−x)t

et − 1

=
(−t)ex(−t)

e−t − 1
=

∞∑

r=0

br(x)(−1)rtr

r!
,

from which the result follows. �
2.5.23 Let

sk(n) = 1k + 2k + 3k + · · · + (n − 1)k.

Prove that for k ≥ 1,

(k + 1)sk(n) =
k∑

i=0

(
k + 1

i

)
Bin

k+i−i.

We consider the power series

∞∑

k=0

sk(n)tk

k!
=

∞∑

k=0

tk

k!

( n−1∑

j=0

jk
)

=
n−1∑

j=0

etj =
ent − 1
et − 1

.

Writing

ent − 1
et − 1

=
ent − 1

t
· t

et − 1

=
( ∞∑

k=1

nktk−1

k!

)( ∞∑

j=0

Bjt
j

j!

)

and comparing coefficients of both sides gives the result. �





3
The Prime Number Theorem

3.1 Chebyshev’s Theorem

3.1.1 Let
θ(n) =

∑

p≤n

log p,

where the summation is over primes. Prove that

θ(n) ≤ 4n log 2.

Since every prime between n and 2n divides
(

2n

n

)
≤ 22n,

because it is one of the binomial coefficients occurring in the bino-
mial expansion of (1 + 1)2n, we see that

θ(2n) − θ(n) ≤ 2n log 2.

If n = 2r, we obtain θ(2r+1) − θ(2r) ≤ 2r+1 log 2, valid for r =
0, 1, 2, . . . , m (say). Adding up these inequalities, we obtain

θ(2m+1) ≤ (2m+1 + 2m + · · · + 2 + 1) log 2

≤ (2m+2 − 1) log 2 ≤ 2m+2 log 2.
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If n satisfies 2m ≤ n < 2m+1, then

θ(n) = θ(2m) + (θ(n) − θ(2m))

≤ 2m+1 log 2 + (θ(2m+1) − θ(2m))

≤ 2m+1 log 2 + 2m+1 log 2 ≤ 4n log 2.

�
3.1.2 Prove that

θ(n) ≤ 2n log 2.

We induct on n. If n is not prime, then

θ(n) = θ(n − 1) ≤ 2(n − 1) log 2

by the induction hypothesis. If n is odd, write n = 2m + 1, then
notice that (

2m + 1
m

)

is divisible by all the primes between m + 1 and 2m + 1. Notice that
(

2m + 1
m

)
+
(

2m + 1
m + 1

)
≤ 22m+1,

so that

2
(

2m + 1
m

)
≤ 22m+1.

Hence
θ(2m + 1) − θ(m) ≤ 2m log 2

and induction gives θ(m) ≤ 2m log 2, so that

θ(2m + 1) ≤ 4m log 2 ≤ 2(2m + 1) log 2

as desired. �
3.1.3 Let

ψ(x) =
∑

pα≤x

log p =
∑

n≤x

Λ(n),
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where Λ is the von Mangoldt function. Show that

lcm[1, 2, . . . , n] = eψ(n).

Clearly, we can write

lcm[1, 2, . . . , n] =
∏

p≤n

pep ,

where ep is the largest power of p ≤ n. Thus

ep =
[ log n

log p

]
=
∑

pα≤n

1,

from which the result follows.

3.1.4 Show that

eψ(2n+1)

∫ 1

0

xn(1 − x)ndx

is a positive integer. Deduce that ψ(2n + 1) ≥ 2n log 2. (The method of
deriving this is due to M. Nair.)

The integral

I =
∫ 1

0
xn(1 − x)ndx =

n∑

k=0

(
n

k

)
(−1)k

∫ 1

0
xn+kdx

=
n∑

k=0

(
n

k

)
(−1)k

n + k + 1

is a rational number. It is clear that lcm[1, 2, . . . , 2n+1]I is a positive
integer. Since

x(1 − x) ≤ 1
4

for 0 ≤ x ≤ 1, we obtain
I ≤ 2−2n.

Hence, by Exercise 3.1.3, we obtain

eψ(2n+1)I ≥ 1,

so that eψ(2n+1) ≥ 22n, as required. �
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3.1.5 Prove that there are positive constants A and B such that

Ax

log x
≤ π(x) ≤ Bx

log x

for all x sufficiently large. (This result was first proved by
Chebycheff.)

By the previous exercises, we have

θ(x) ≤ 2x log 2,

ψ(2n + 1) ≥ 2n log 2.

Hence, ∑
√

x<p≤x

log p ≤ 2x log 2,

which implies

(
π(x) − π

(√
x
)) 1

2
log x ≤ 2x log 2.

This yields

π(x) ≤ 4x log 2
log x

+ π
(√

x
)
.

Since π (
√

x) ≤ √
x, we get

π(x) ≤ 4x log 2
log x

+ O
(√

x
)

= O
( x

log x

)
.

For the lower bound, notice that

ψ(x) 
 x,

and that
ψ(x) − θ(x) =

∑

pα≤x
α≥2

log p = O
(√

x log2 x
)
.

Hence
θ(x) 
 x,

and as before,
∑

√
x≤p≤x

log p + O(
√

x log x) 
 x,
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so that π(x) log x 
 x for x sufficiently large. Thus, π(x) 
 x
log x . �

3.1.6 Prove that

T (x) :=
∑

n≤x

log n = x log x − x + c + O(1/x)

for some constant c. (This improves Exercise 2.1.2.)

We apply Theorem 2.1.9 with f(n) = log n, a = 1, b = x, and
k = 1 to get

∑

n≤x

log n =
∫ x

1

log tdt +
1
2

log x +
1
2

∫ x

1

B2(t)
t2

dt + O(1).

We have ∫ x

1

B2(t)dt

t2
=
∫ ∞

1

B2(t)dt

t2
+ O

(1
x

)
,

and the integral on the right-hand side converges because B2(t) is
bounded. Since

∫ x

1
log t dt = x log x − x + 1,

this completes the proof. �
3.1.7 Using the fact

log n =
∑

d|n
Λ(d),

prove that
∑

n≤x

Λ(n)
n

= log x + O(1).

We have

T (x) =
∑

d≤x

Λ(d)
[x
d

]
= x

∑

d≤x

Λ(d)
d

+ O(ψ(x)).

Since T (x) = x log x+O(x) and ψ(x) = O(x), we obtain the required
result upon dividing by x. �
3.1.8 Prove that ∑

p≤x

1
p

= log log x + O(1).
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From Exercise 3.1.7, we deduce

∑

p≤x

log p

p
= log x + O(1),

since the contribution from higher prime powers is bounded by a
convergent sum. Thus, by partial summation,

∑

p≤x

log p

p
· 1
log p

= O(1) +
∫ x

2

{log t + O(1)}
(log t)2

dt

t
.

Now, ∫ x

2

dt

t log t
= log log x + O(1)

and ∫ x

2

dt

t(log t)2
= O(1).

The result is now immediate. �
3.1.10 Suppose that {an}∞n=1 is a sequence of complex numbers and set

S(x) =
∑

n≤x

an.

If

lim
x→∞

S(x)
x

= α,

show that ∑

n≤x

an

n
= α log x + o(log x)

as x → ∞.

By partial summation

∑

n≤x

an

n
=

S(x)
x

+
∫ x

1

S(t)
t2

dt = α log x + o(log x).

The integral is divided into two parts:
∫ x

1

S(t)dt

t2
=
∫ y

1

S(t)dt

t2
+
∫ x

y

S(t)dt

t2
.
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We may use S(t) = αt + o(t) in the second integral if we choose
y = y(x) → ∞. The first integral is O(log y). Thus, choosing y such
that log y = o(log x) justifies the last step. �
3.1.11 Show that

lim
x→∞

ψ(x)
x

= 1

if and only if

lim
x→∞

π(x)
x/ log x

= 1.

We have

∑

2≤n≤x

Λ(n)
log n

=
ψ(x)
log x

+
∫ x

2

ψ(t)
(log t)2

dt

t

=
x

log x
+ o
( x

log x

)
+ O

(∫ x

2

dt

log2 t

)
.

Now,
∑

n≤x

Λ(n)
log n

= π(x) + O
(
x1/2 log x

)
.

We have
∫ x

2

dt

log2 t
= O

(√
x
)

+
∫ x

√
x

dt

log2 t
= O

( x

log2 x

)
.

Thus, ψ(x) = x + o(x) implies π(x) = x/ log x + o(x/ log x). The
converse is similarly deduced. Let f(n) = 1 if n is prime, and zero
otherwise. Then

θ(x) =
∑

n≤x

f(n) log n = π(x) log x −
∫ x

2

π(t)
t

dt

= x + o(x) + O
( x

log x

)
.

Therefore, θ(x) = x + o(x). Since ψ(x) = θ(x) + O
(
x1/2 log2 x

)
,

we deduce ψ(x) = x + o(x) as required.
�
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3.2 Nonvanishing of Dirichlet Series on Re(s) = 1

3.1.12 If

lim
x→∞

π(x)
x/ log x

= α,

then show that

∑

p≤x

1
p

= α log log x + o(log log x).

Deduce that if the limit exists, it must be 1.

By partial summation,

∑

p≤x

1
p

=
π(x)

x
+
∫ x

2

π(t)
t2

dt

= α log log x + o(log log x).

By Exercise 3.1.8, we know that α must be 1. �

3.2.1 Show that

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx

for Re(s) > 1. Since the right-hand side of the equation is analytic for
Re(s) > 0, s �= 1, we obtain an analytic continuation of (s−1)ζ(s). This

was already derived in Exercise 2.1.6. It remains only to observe
that the integral on the right-hand side converges for Re(s) > 0.
Observe that ζ(s) has a simple pole at s = 1 with residue 1. �

3.2.2 Show that ζ(s) �= 0 for Re(s) > 1.

We have
ζ(s) =

∏

p

(
1 − 1

ps

)−1

for σ = Re(s) > 1. Since

∣∣∣
(
1 − 1

ps

)−1∣∣∣ =
∣∣∣1 +

1
ps

+
1

p2s
+ · · ·

∣∣∣ ≥
∣∣∣1 − 1

pσ
− 1

p2σ
− · · ·

∣∣∣
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and
1 − 1

pσ
− 1

p2σ
− · · · = 1 − 1

pσ − 1
≥ 1 − 1

2σ − 1
> 0

for σ > 1, we are done. �
3.2.3 Prove that for σ > 1, t ∈ R,

Re log ζ(σ + it) =
∞∑

n=2

Λ(n)
nσ log n

cos(t log n).

We have

log ζ(s) = −
∑

p

log
(
1 − 1

ps

)

=
∑

p

∞∑

k=1

1
kpks

=
∞∑

n=1

Λ(n)
nσ log n

{cos(t log n) − i sin(t log n)} ,

from which the result follows. �
3.2.4 Prove that

Re(3 log ζ(σ) + 4 log ζ(σ + it) + log ζ(σ + 2it)) ≥ 0,

for σ > 1, t ∈ R.

By Exercise 3.2.3, we see that the left-hand side of the inequality
is ∞∑

n=1

Λ(n)
nσ log n

{3 + 4 cos(t log n) + cos(2t log n)} .

Since 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0, the result is now
immediate. �
3.2.5 Prove that for σ > 1, t ∈ R,

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1.

Deduce that ζ(1 + it) �= 0 for any t ∈ R, t �= 0. Deduce in a similar way,
by considering

ζ(σ)3L(σ, χ)4L(σ, χ2),

that L(1, χ) �= 0 for χ not real.
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By Exercises 3.2.3 and 3.2.4 we obtain
∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)

∣∣ ≥ 1.

Now, we know that

lim
σ→1+

(σ − 1)ζ(σ) = 1.

Suppose ζ(s) has zero of order m at s = 1 + it, t �= 0. Then

lim
σ→1+

ζ(σ + it)
(σ − 1)m

= c �= 0.

Hence,
∣∣(σ − 1)3ζ(σ)3(σ − 1)−4mζ(σ + it)4ζ(σ + 2it)

∣∣ ≥ (σ − 1)3−4m.

Letting σ → 1+ gives us a finite limit on the left-hand side and
infinity on the right-hand side if m ≥ 1. Therefore, ζ(1 + it) �= 0
for t ∈ R, t �= 0. If χ2 �= χ0, where χ0 is the principal character
(mod q), then

log L(σ, χ) =
∑

p

∞∑

ν=1

χ(p)ν

pσνν
, σ > 1,

and similarly for χ2. Notice that if χ(p) = e2πiθp , then χ2(p) = e4πiθp .
Using the inequality 3+4 cos θ+cos(2θ) ≥ 0 and Exercise 3.2.3 with
t = 0, we get by taking real parts that

3 log ζ(σ) + 4 Re log L(σ, χ) + Re log L(σ, χ2) ≥ 0.

This gives
|ζ(σ)3L(σ, χ)4L(σ, χ2)| ≥ 1,

similarly to the above. If L(1, χ) = 0 we get a fourth-order zero
for L(σ, χ)4, while ζ(σ)3 gives a third-order pole. However, L(σ, χ2)
does not have a pole at s = 1, since χ2 is not the principal character.
�

3.2.6 Show that − ζ′

ζ (s) has an analytic continuation to Re(s) = 1, with
only a simple pole at s = 1, with residue 1.
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Since ζ(s) �= 0 for Re(s) ≥ 1, s �= 1, − ζ′

ζ (s) is analytic for
Re(s) ≥ 1, s �= 1. Now,

(s − 1)ζ(s) = s − s(s − 1)
∫ ∞

1

{x}
xs+1

dx

by Exercise 3.2.1. Thus, we can write

(s − 1)ζ(s) = sf(s),

where f(s) is analytic for Re(s) > 0. Therefore, differentiating the
equation, we get ζ(s) + (s − 1)ζ ′(s) = sf ′(s) + f(s), so that

1 + (s − 1)
ζ ′(s)
ζ(s)

=
f(s)
ζ(s)

+ s
f ′(s)
ζ(s)

.

Since lims→1+ ζ(s) = +∞, we get lims→1+(s − 1) ζ′

ζ (s) = −1. �
3.2.7 Prove that

1
2

+ cos θ + cos 2θ + · · · + cos nθ =
sin(n + 1

2)θ
2 sin θ

2

.

The left-hand side is the real part of

−1
2

+
(
1 + eiθ + e2iθ + · · · + eniθ

)
.

The term in the parentheses is the sum of a geometric progression
and equals

ei(n+1)θ − 1
eiθ − 1

=

(
ei(n+1)θ − 1

)
e−iθ/2

2i sin(θ/2)
.

The real part is
sin(n + 1

2)θ

2 sin θ
2

+
1
2
,

and the result is now immediate. �
3.2.8 Prove that

cos θ + cos 3θ + · · · + cos(2n − 1)θ =
sin 2nθ

2 sin θ
.

By Exercise 3.2.7,
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1
2

+ cos θ + cos 2θ + · · · + cos 2nθ =
sin(2n + 1

2)θ

2 sin θ
2

and

1
2

+ cos 2θ + cos 4θ + · · · + cos 2nθ =
sin(2n + 1)θ

2 sin θ
,

putting first 2n instead of n and 2θ instead of θ, respectively. Sub-
tracting gives

cos θ + cos 3θ + · · · + cos(2n − 1)θ =

=
sin(2n + 1

2)θ

2 sin θ
2

− sin(2n + 1)θ
2 sin θ

.

Now, sin θ = 2 sin θ
2 cos θ

2 , so that the above is equal to

2 cos θ
2 · sin(2n + 1

2)θ − sin(2n + 1)θ

4 sin θ
2 cos θ

2

.

Since

sin(2n + 1)θ = sin
(

2n +
1
2

)
θ cos

θ

2
+ sin

θ

2
cos
(

2n +
1
2

)
θ,

we deduce that the expression in question is

cos θ
2 sin(2n + 1

2)θ − sin θ
2 cos(2n + 1

2)θ
2 sin θ

=
sin 2nθ

2 sin θ
,

as desired. �
3.2.9 Prove that

1 +
sin 3θ

sin θ
+

sin 5θ

sin θ
+ · · · + sin(2n − 1)θ

sin θ
=
(sinnθ

sin θ

)2
.

We prove this by induction on n. For n = 1, it is clear. Assuming
that it is true for n ≤ m, we must show it for n = m + 1. After a
simple calculation, we are led to prove that

sin2(n + 1)θ = sin2 nθ + (sin(2n + 1)θ) sin θ,

or equivalently,
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(sin(n + 1)θ − sinnθ)(sin(n + 1)θ + sin nθ) = (sin(2n + 1)θ) sin θ.

Using

sinA + sinB = 2 sin
A + B

2
cos

A − B

2
and

sinA − sinB = 2 cos
A + B

2
sin

A − B

2
we find that we must prove that

4 cos
(

n +
1
2

)
θ sin

θ

2
sin
(

n +
1
2

)
θ cos

θ

2
= (sin(2n + 1)θ) sin θ.

But the left-hand side is

sin 2
(

n +
1
2

)
θ · sin θ,

as desired. �
3.2.10 Prove that

(2m + 1) + 2
2m−1∑

j=0

(j + 1) cos(2m − j)θ =

(
sin(m + 1

2)θ
sin θ

2

)2

,

for all integers m ≥ 0.

We must prove

2m + 1 + 2
2m∑

j=1

(2m − j + 1) cos jθ =

(
sin(m + 1

2)θ
sin θ

2

)2

.

Changing θ to 2ϕ, we must prove that

2m + 1 + 2
2m∑

j=1

(2m − j + 1) cos 2jϕ =
(

sin(2m + 1)ϕ
sinϕ

)2

.

By Exercise 3.2.7, we know that

1
2

+ cos 2θ + cos 4θ + · · · + cos 2nθ =
sin(2n + 1)θ

2 sin θ
.
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That is,

1 + 2
n∑

j=1

cos 2jϕ =
sin(2n + 1)ϕ

sin ϕ
.

Summing both sides over 0 ≤ n ≤ 2m, we obtain

(2m + 1) + 2
2m∑

n=0

n∑

j=1

cos 2jϕ =
2m∑

n=0

sin(2n + 1)ϕ
sinϕ

.

The left-hand side is

(2m+1)+2
2m∑

j=1

cos 2jϕ
∑

j≤n≤2m

1 = (2m+1)+2
2m∑

j=1

(2m−j+1) cos 2jϕ,

and the right hand side is
(

sin(2m + 1)ϕ
sinϕ

)2

by Exercise 3.2.9, as desired. �
3.2.11 Let f(s) be a complex-valued function satisfying

1. f is holomorphic in Re(s) > 1 and non-zero there;

2. log f(s) can be written as a Dirichlet series
∞∑

n=1

bn

ns

with bn ≥ 0 for Re(s) > 1;

3. on the line Re(s) = 1, f is holomorphic except for a pole of order
e ≥ 0 at s = 1.

If f has a zero on the line Re(s) = 1, then the order of the zero is
bounded by e/2. (This result is due to Kumar Murty.)

Suppose f has a zero at 1 + it0 of order k > e
2 . Then e ≤ 2k − 1.

Consider the function

g(s) = f(s)2k+1
2k∏

j=1

f(s + ijt0)2(2k+1−j)

= f(s)2k+1f(s + it0)4kf(s + 2it0)4k−2 · · · f(s + 2kit0)2.



3.2 Nonvanishing of Dirichlet Series on Re(s) = 1 287

Then g is holomorphic for Re(s) > 1 and vanishing to at least first
order at s = 1, since

4k2 − (2k + 1)e ≥ 4k2 − (2k + 1)(2k − 1) = 1.

However, for Re(s) > 1,

log g(s) =
∞∑

n=1

bn

ns

(
2k + 1 + 2

2k∑

j=1

2(2k + 1 − j)n−ijt0
)
.

Let θ = t0 log n. Then for s = σ > 1,

Re log g(σ) = log |g(σ)| =
∞∑

n=1

bn

nσ

(
2k+1+2

2k∑

j=1

2(2k+1− j) cos jθ
)
.

By Exercise 3.2.10, the quantity in the parentheses is greater than or
equal to 0. Thus,

|g(σ)| ≥ 1.

Letting σ → 1+ we get a contradiction, since g(1) = 0. �

3.2.12 Let f(s) =
∏

χ L(s, χ), where the product is over Dirichlet char-
acters (mod q). Show that f(s) is a Dirichlet series with nonnegative
coefficients. Deduce that L(s, χ) �= 0 for Re(s) = 1.

By the Euler product for each L(s, χ), we know that it does not
vanish for Re(s) > 1. Also, for Re(s) > 1,

log f(s) =
∑

χ

log L(s, χ) =
∑

n,p

1
npns

∑

χ

χ(pn)

which by the orthogonality relations (see Exercise 2.3.8) is equal to

ϕ(q)
∑

n,p
pn≡1 (mod q)

1
npns

.

This is patently a Dirichlet series with nonnegative coefficients.
L(s, χ) is regular for Re(s) > 0 (by Exercise 2.3.4) for χ �= χ0.
L(s, χ0) has a simple pole at s = 1. Applying Exercise 3.2.11 gives
the desired result. �
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3.3 The Ikehara - Wiener Theorem

3.3.3 Suppose

f(s) =
∞∑

n=1

an/ns

is a Dirichlet series with real coefficients absolutely convergent for Re(s) >
1. If f(s) extends to a meromorphic function in the region Re(s) ≥ 1,
with only a simple pole at s = 1 with residue r, and |an| ≤ bn, where
F (s) =

∑∞
n=1 bn/ns satisfies the hypotheses of Theorem 3.3.1, show that

∑

n≤x

an = rx + o(x)

as x → ∞.

The series G(s) = F (s) − f(s) is a Dirichlet series satisfying the
hypotheses of Theorem 3.3.1, and therefore

∑

n≤x

(bn − an) = (R − r)x + o(x)

as x → ∞. On the other hand,

∑

n≤x

bn = Rx + o(x),

so that ∑

n≤x

an = rx + o(x),

as required. �

3.3.4 Show that the conclusion of the previous exercise is still valid if
an ∈ C.

Define

f∗(s) =
∞∑

n=1

an/ns

and observe that

f =
1
2
(f + f∗) + i

(
f − f∗

2i

)
.
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Furthermore, (f +f∗)/2 and (f−f∗)/2i are represented by Dirichlet
series with real coefficients, absolutely convergent in Re(s) > 1.
Since

f∗(s) = f(s),

we have f∗(s) = f(s).
We leave it to the reader to show that f∗(s) satisfies the Cauchy

- Riemann equations and thus both (f + f∗)/2 and (f − f∗)/2i
satisfy the condition of the previous exercise. The result is now
immediate. �

3.3.5 Let q be a natural number. Suppose (a, q) = 1. Show that

ψ(x; q, a) :=
∑

n≤x
n≡a (mod q)

Λ(n)

satisfies

lim
x→∞

ψ(x)
x/ϕ(q)

= 1.

We apply the previous exercise to the function

f(s) =
1

ϕ(q)

∑

χ (mod q)

χ(a)
(
− L′

L
(s, χ)

)

which is

∑

n≡a (mod q)

Λ(n)
ns

.

Since L(s, χ) �= 0 on Re(s) = 1, and the only character contributing
a pole to the sum is the principal character, we see that

Ress=1f(s) =
1

ϕ(q)
,

from which the result is immediate. �

3.3.6 Suppose F (s) =
∑∞

n=1 bn/ns is a Dirichlet series with non-negative
coefficients and is convergent for Re(s) > c > 0. If F (s) extends to a
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meromorphic function in the region Re(s) ≥ c with only a simple pole at
s = c with residue R, show that

∑

n≤x

bn =
Rxc

c
+ o(xc)

as x → ∞.

The Dirichlet series G(s) = F (s+ c− 1) satisfies the conditions of
Theorem 3.3.1. Therefore,

A(x) :=
∑

n≤x

bn

nc−1
= Rx + o(x)

as x → ∞. Now, by partial summation,

∑

n≤x

bn = A(x)xc−1 −
∫ x

1
A(t)(c − 1)tc−2dt

= Rxc − (c − 1)
Rxc

c
+ o(xc)

=
Rxc

c
+ o(xc),

as required. �
3.3.7 Suppose f(s) =

∑∞
n=1 an/ns is a Dirichlet series with complex

coefficients absolutely convergent for Re(s) > c. If f(s) extends to a mero-
morphic function in the region Re(s) ≥ c with only a simple pole at s = c
and residue r, and |an| ≤ bn, where f(s) =

∑∞
n=1 bn/ns satisfies the

hypothesis of Exercise 3.3.6, show that

∑

n≤x

an =
rxc

c
+ o(xc)

as x → ∞.

If we write g(s) = f(s + c − 1), then g(s) satisfies the conditions
of Exercises 3.3.3 and 3.3.4. Thus,

∑

n≤x

an

nc−1
= rx + o(x)
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as x → ∞. By partial summation (as in the previous exercise), the
result is now immediate. �
3.3.8 Let a(n) be a multiplicative function defined by a(1) = 1 and

a(pα) =

⎧
⎨

⎩

p + cp if α = 1,

0 otherwise,

where |cp| ≤ pθ with θ < 1. Show that as x → ∞,

∑

n≤x

a(n) =
rx2

2
+ o(x2)

for some nonzero constant r.

The Dirichlet series f(s) =
∑∞

n=1 a(n)/ns is

∏

p

(
1 +

p + cp

ps

)
=
∏

p

(
1 +

1
ps−1

+
cp

ps

)
.

We can factor
(
1 +

1
ps−1

+
cp

ps

)
=

(
1 +

1
ps−1

)(
1 +

cp

ps

(
1 +

1
ps−1

)−1)

=
(
1 +

1
ps−1

)(
1 +

cp

ps
− cp

p2s−1
+ · · ·

)
.

It is easy to see that

h(s) :=
∏

p

(
1 +

cp

ps

(
1 +

1
ps−1

)−1)

converges absolutely for Re(s) > 1 + θ. Moreover, h(s) does not
vanish in this half-plane. Also,

g(s) :=
∏

p

(
1 +

1
ps−1

)
=

ζ(s − 1)
ζ(2s − 2)

by Exercise 1.2.7. Thus,

f(s) =
ζ(s − 1)
ζ(2s − 2)

h(s)
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can be continued analytically to Re(s) ≥ 2 with only a simple pole
at s = 2 and residue r = h(2)/ζ(2) �= 0. We can now apply the
previous exercise with c = 2 to deduce the result. �
3.3.9 Suppose cn ≥ 0 and that

∑

n≤x

cn = Ax + o(x).

Show that ∑

n≤x

cn

n
= A log x + o(log x)

as x → ∞.
Let s(x) =

∑
n≤x cn. By partial summation, we get

∑

n≤x

cn

n
=

s(x)
x

+
∫ x

1

s(t)
t2

dt

= A log x + o(log x)

as required. �

3.4 Supplementary Problems

3.4.1 Show that
∑

n≤x

Λ(n) log n = ψ(x) log x + O(x).

By partial summation,

∑

n≤x

Λ(n) log n = ψ(x) log x −
∫ x

1

ψ(t)dt

t
.

Using Chebyshev’s estimate that ψ(x) = O(x) in the integral gives
the result. �
3.4.2 Show that

∑

d|n
Λ(d)Λ

(n

d

)
= Λ(n) log n +

∑

d|n
µ(d) log2 d.
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By Exercise 1.1.6, we have

Λ(n) = −
∑

d|n
µ(d) log d,

so that

∑

d|n
Λ(d)Λ

(n

d

)
=

∑

de=n

Λ(d)Λ(e)

= −
∑

de=n

Λ(d)
∑

tδ=e

µ(δ) log δ

= −
∑

δtd=n

µ(δ) log δΛ(d).

Since ∑

td=n/δ

Λ(d) = log
n

δ
,

we have
∑

d|n
Λ(d)Λ

(n

d

)
= −

∑

d|n
µ(d) log d log

n

d

= Λ(n) log n +
∑

d|n
µ(d) log2 d

as required. �

3.4.3 Show that
∑

d|n
µ(d) log2 x

d

=

⎧
⎨

⎩

log2 x if n = 1,

2Λ(n) log x − Λ(n) log n +
∑

hk=n Λ(h)h(k) if n > 1.
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If n = 1, the result is clear. For n > 1, recall that
∑

d|n µ(d) = 0
(Exercise 1.1.1) and that −

∑
d|n µ(d) log d = Λ(n) (Exercise 1.1.6), so

that
∑

d|n
µ(d) log2 x

d
=

∑

d|n
µ(d)(log2 d − 2 log x log d)

= 2Λ(n) log x +
∑

d|n
µ(d) log2 d.

By the previous exercise, we have
∑

d|n
µ(d) log2 d =

∑

hk=n

Λ(h)Λ(k) − Λ(n) log n,

which completes the proof. �
3.4.4 Let

S(x) =
∑

n≤x

(∑

d|n
µ(d) log2 x

d

)
.

Show that

S(x) = ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)
+ O(x).

We sum the result of Exercise 3.4.3 to get

S(x) = log2 x + 2ψ(x) log x −
∑

n≤x

Λ(n) log n +
∑

mn≤x

Λ(m)Λ(n).

The first sum, by Exercise 3.4.1, is ψ(x) log x+O(x). The second sum
is ∑

n≤x

Λ(n)ψ
(x

n

)
.

Putting all this together gives the desired result. �
3.4.5 Show that

S(x) − γ2 =
∑

d≤x

µ(d)
[x
d

]{
log2 x

d
− γ2

}
,

where γ is Euler’s constant.
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We have

S(x) − γ2 =
∑

n≤x

∑

d|n
µ(d)

{
log2 x

d
− γ2

}

since
∑

d|n µ(d) = 1 if n = 1, and 0 otherwise. Interchanging the
sums now gives the required result. �
3.4.6 Show that

S(x) = x
∑

d≤x

µ(d)
d

{
log2 x

d
− γ2

}
+ O(x).

Recall that (Exercise 2.5.5 )
∑

d≤x

log2 x

d
= O(x),

so that when we remove the square brackets in [x/d] in Exercise
3.4.5, the error term is O(x). �
3.4.7 Using the fact

∑

n≤x

1
n

= log x + γ + O
(1

x

)
,

deduce that

S(x)
x

=
∑

de≤x

µ(d)
de

(
log

x

d
− γ
)

+ O(1).

By the previous exercise, we can write

S(x)
x

=
∑

d≤x

µ(d)
d

{
log2 x

d
− γ2

}
+ O(1)

=
∑

d≤x

µ(d)
d

{
log

x

d
− γ
}{

log
x

d
+ γ
}

+ O(1).

Writing

log
x

d
+ γ =

∑

e≤x/d

1
e

+ O
(d

x

)
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gives

S(x)
x

=
∑

d≤x

µ(d)
d

(
log

x

d
− γ
) ∑

e≤x/d

1
e

+ O
(1

x

∑

d≤x

log
x

d

)
,

and the error term is O(1) by Exercise 2.5.5, which proves the result.
�
3.4.8 Prove that

S(x)
x

= 2 log x + O(1).

By the previous exercise,

S(x)
x

=
∑

n≤x

1
n

∑

d|n
µ(d)

(
log

x

d
− γ
)

=
∑

n≤x

Λ(n)
n

+ log x − γ

= 2 log x + O(1)

by Exercise 3.1.7.

3.4.9 (Selberg’s identity) Prove that

ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)
= 2x log x + O(x).

By Exercise 3.4.4,

S(x) = ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)
+ O(x).

By the previous exercise,

S(x) = 2x log x + O(x).

Putting these facts together gives the result. �
3.4.10 Show that

ν(n) = O
( log n

log log n

)
,



3.4 Supplementary Problems 297

where ν(n) denotes the number of distinct prime factors of n.

In the interval [1, n], the number with the largest number of prime
factors is

N =
∏

p≤t

p,

where t is chosen as large as possible so that N ≤ n. Hence

ν(n) ≤ π(t),

and by Chebyshev’s theorem (Exercise 3.1.4) we have log N 
 t. By
Exercise 3.1.5,

π(t) � t

log t
,

so that ν(n) � (log N)/ log t. Also, n ≤
∏

p≤t+1 p, by our choice of t.
Again by Chebyshev’s theorem,

log n � t,

so that
ν(n) � log n/ log log n

as required. �

3.4.11 Let ν(n) be as in the previous exercise. Show that

∑

n≤x

ν(n) = x log log x + O(x).

We have
ν(n) =

∑

p|n
1,

so that

∑

n≤x

ν(n) =
∑

p≤x

[x
p

]
= x

∑

p≤x

1
p

+ O(x)

= x log log x + O(x)

by Exercise 3.1.8.
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3.4.12 Let ν(n) be as in the previous exercise. Show that
∑

n≤x

ν2(n) = x(log log x)2 + O(x log log x).

We have

∑

n≤x

ν2(n) =
∑

n≤x

∑

p,q|n
1 =

∑

pq≤x
p �=q

[ x

pq

]
+
∑

p≤x

[x
p

]
.

The second sum is O(x log log x) by the previous exercise. The first
sum is

∑

pq≤x
p �=q

x

pq
+ O(x) =

∑

pq≤x

x

pq
−
∑

p2≤x

x

p2
+ O(x)

=
∑

pq≤x

x

pq
+ O(x).

Now, ∑

pq≤x

1
pq

=
(∑

p≤x

1
p

)2
−
∑

p,q≤x
pq>x

1
pq

,

and the first sum on the right-hand side is

(log log x + O(1))2

by Exercise 3.1.8. The second sum is bounded by

∑
√

x<p<x

∑

q≤x

1
pq

+
∑

√
x<q<x

∑

p≤x

1
pq

,

since p, q ≤ x and pq > x imply either p >
√

x or q >
√

x. But

∑
√

x<p<x

1
p
�
∫ x

√
x

π(t)dt

t2
� 1

by partial summation and Chebyshev’s estimate for π(t). Thus, the
second sum in question is

O(log log x),
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which completes the proof. �
3.4.13 Prove that ∫ ∞

−∞

sin2 λx

λx2
dx = π.

Let

f(t) =

⎧
⎨

⎩

1 if |t| ≤ λ,

0 otherwise.

Then
f̂(x) =

2 sin λx√
2πx

.

By Parseval’s theorem

2
π

∫ ∞

∞

sin2 λx

x2
dx = 2λ,

as desired. �
3.4.14 Let

T (x) :=
∑

n≤x

log n.

Show that for x > 1,

|T (x) − (x log x − x)| ≤ 4 + log(x + 1).

By the inequalities of the integral test, we have

T (x) ≥
∫ x

1
log t dt = x log x − x + 1.

Also,

T (x) ≤
∫ x+1

1
log t dt = (x + 1) log(x + 1) − (x + 1) − 2 log 2 + 2.

Hence

T (x) − (x log x − x) ≤ x log
(x + 1

x

)
+ log(x + 1) + 3 − 2 log 2.
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Since log(1 + t) ≤ t, for |t| < 1 we deduce

|T (x) − (x log x − x)| ≤ 4 + log(x + 1)

as required. �
3.4.15 Show that

ψ(x) − ψ
(x

2

)
≤ (log 2)x + 12 + 3 log(x + 1).

Deduce that

ψ(x) ≤ 2(log 2)x +
12 log x

log 2
+

3 log(x + 1) log x

log 2
.

We have (by the proof of Theorem 3.1.9)

ψ(x) − ψ
(x

2

)
≤ T (x) − 2T

(x

2

)
.

By Exercise 3.4.14, we have

T (x) − 2T
(x

2

)
≤ (log 2)x + 12 + 3 log(x + 1).

By iteration we obtain

ψ
(x

2

)
− ψ

(x

4

)
≤ (log 2)

x

2
+ 12 + 3 log(x + 1)

and so on. Adding these up gives the stated inequality. �
3.4.16 Show that

ψ(x) − ψ
(x

2

)
+ ψ

(x

3

)
≥ (log 2)x − 2 log(x + 1) − 7.

We have (as in the previous exercise or by the proof of Theorem
3.1.9)

ψ(x) − ψ
(x

2

)
+ ψ

(x

3

)
≥ T (x) − 2T

(x

2

)
.

Using Exercise 3.4.14 now gives the result. �
3.4.17 Prove that for x ≥ e12,

ψ(x) − ψ
(x

2

)
≥ 1

3
(log 2)x − 5(log x) log(x + 1)

log 2
− 7.
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By the previous two exercises

ψ(x) − ψ
(x

2

)
≥ 1

3
(log 2)x − 2(log(x + 1)) − 7

−12 log(x + 1)
log 2

− 3(log x) log(x + 1)
log 2

.

If x ≥ e12, we can replace 2 log(x + 1) and 2 log(x + 1)/ log 2 by
(log x)(log(x + 1))/ log 2. �
3.4.18 Find an explicit constant c0 such that for x ≥ c0,

ψ(x) − ψ
(x

2

)
>

(log 2)x
6

− 7.

Since log x < log(x + 1), we may write by the previous exercise

ψ(x) − ψ
(x

2

)
≥ 1

3
(log 2)x − 5(log(x + 1))2

log 2
− 7.

Now let c = (log 2)2/30, so that we have (log(x+1))2 < cx, provided
that

1 + x < 1 +
(cx)3/2

6

or, equivalently, x ≥ 36/c3. This yields

ψ(x) − ψ
(x

2

)
≥ 1

6
(log 2)x − 7,

provided that x ≥ c0 = 36/c3. �
3.4.19 With c0 as in the previous exercise, show that for x ≥ c0,

θ(x) − θ
(x

2

)
>

(log 2)x
6

−
√

x(log x)2

log 2
− 7.

Let
θ∗(x) =

∑

pα≤x
α≥2

log p.
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Then, by the previous exercise,

θ(x) − θ
(x

2

)
+ θ∗(x) >

(log 2)x
6

− 7

for x > c0. Also,
θ∗(x) ≤

√
x(log x)2/ log 2,

from which the result follows. �
3.4.20 Find an explicit constant c1 such that for x ≥ c1,

θ(x) − θ
(x

2

)
>

(log 2)x
12

− 7.

We have √
x(log x)2

log 2
<

(log 2)x
12

iff x < exp
(
(log 2)x1/4/

√
12
)
. This is certainly the case if

x <
1
8!

(
log 2√

12
x1/4

)8

,

or in other words, if x ≥ c2 = 124 · 8!/(log 2)8. Therefore,

θ(x) − θ
(x

2

)
>

(log 2)x
12

− 7

if x≥max(c0, c2), with c0 as in Exercise 3.4.18. We set c1= max(c0, c2)
to deduce the stated inequality. �.

3.4.21 Find an explicit constant c3 such that for x ≥ c3, θ(x)− θ(x/2) ≥
1. Deduce that for x ≥ c3, there is always a prime between x/2 and x.

By the previous exercise, we may set c3 = max(c1, 96/ log 2) to
deduce that θ(x) − θ(x/2) ≥ 1 for x ≥ c3. �
3.4.22 Let

F (x) =
∑

n≤x

f
(x

n

)

be a function of bounded variation in every finite interval [1, x]. Suppose
that as x → ∞,

F (x) = x log x + Cx + O(xβ)
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with C, β constant and 0 ≤ β < 1. Show that if M(x) :=
∑

n≤x µ(n) =
o(x) as x → ∞, then

f(x) = x + o(x).

By replacing f(x) by

f0(x) = f(x) − x − (C − γ),

we find that
F0(x) :=

∑

n≤x

f0

(x

n

)

satisfies F0(x) = O(xβ). It suffices to show that f0(x) = o(x). By
Möbius inversion,

f0(x) =
∑

n≤x

µ(n)F0

(x

n

)
.

It is clear that F0 is also of bounded variation. We write

f0(x) =
∑

n≤εx

µ(n)F0

(x

n

)
+

∑

εx<n≤x

µ(n)F0

(x

n

)

=
∑

1 +
∑

2 (say).

We estimate
∑

1 trivially:

∣∣∣
∑

1

∣∣∣�
∑

n≤εx

(x

n

)β
� xβ

∫ εx

1
t−βdt,

which is O(ε1−βx).
For

∑
2, we may write F0(x) = P (x)−Q(x) with P and Q positive

monotonic increasing functions, since F0 is of bounded variation.
Thus

∑
2 =

∑

εx≤n≤x

µ(n)F0

(x

n

)

=
∑

εx≤n≤x

µ(n)P
(x

n

)
−

∑

εx≤n≤x

µ(n)Q
(x

n

)
.
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We estimate
∑

εx≤n≤x µ(n)P
(

x
n

)
as follows. By partial summation,

for x a positive integer,

∑

εx≤nx

µ(n)P
(x

n

)
=

∑

εx≤n≤x

{M(n) − M(n − 1)}P
(x

n

)

= M(x)P (1) +
∑

εx≤n≤x−1

M(n)
(
P
(x

n

)
− P

( x

n + 1

))
.

Thus, ∣∣∣
∑

εx<n≤x

µ(n)P
(x

n

)∣∣∣ ≤ 2P
(1

ε

)
max

εx<n≤x
|M(n)|,

and a similar estimate holds for the Q-term. For any fixed ε > 0,

lim
x→∞

max
εx≤n≤x

|M(n)|
x

≤ lim
x→∞

max
εx≤n≤x

|M(n)|
n

= 0,

so that for x sufficiently large,

f0(x) = o(x)

as required. �
3.4.23 Assuming M(x) = o(x) as in the previous exercise, deduce that

lim
x→∞

ψ(x)
x

= 1.

We know that

T (x) :=
∑

n≤x

log n = x log x − x + O(log x)

and
T (x) =

∑

n≤x

ψ
(x

n

)
.

We may apply the previous exercise with c = −1 and any 0 < β <
1. We deduce that ψ(x) = x + o(x), which is the prime number
theorem. �



4
The Method of Contour Integration

4.1 Some Basic Integrals

4.1.1 If x > 1, show that

1
2πi

∫

(c)

xs

s
ds = 1

for any c > 0.

Consider the integral

1
2πi

∫ c+iR

c−iR

xs

s
ds,

with R > c, and the contour ζR described by the line segment join-
ing c − iR to c + iR and the semicircle SR of radius R centered at c
and enclosing the origin. By Cauchy’s theorem,

1
2πi

∫

ζR

xs

s
ds = Ress=0

xs

s
= 1.

Thus
1

2πi

∫ c+iR

c−iR

xs

s
ds +

1
2πi

∫

SR

xs

s
ds = 1.
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The second integral satisfies
∣∣∣

1
2πi

∫

SR

xs

s
ds
∣∣∣� xc

2π

∫ 3π/2

π/2
xR cos ϕdϕ.

Since x>1 and cos φ is negative in [π/2/3π/2], we see that |xr cos φ| ≤
1. We split the integral by writing

∫ 3π/2

π/2
xR cos φdφ ≤

∫ π/2+δ

π/2
xR cos φdφ +

∫ 3π/2−δ

π/2+δ
xR cos φdφ

+
∫ 3π/2

3π/2−δ
xR cos φdφ,

for some arbitrarily small δ > 0. The first and last integrals are
bounded by δ. The middle integral is bounded by

πx−R sin δ.

As R tends to infinity, the middle integral tends to zero. The other
two integrals are bounded by δ and since δ can chosen to be arbi-
trarily small, the integral in question tends to zero as R tends to
infinity. �
4.1.2 If 0 < x < 1, show that

1
2πi

∫

(c)

xs

s
ds = 0, c > 0.

We proceed as in Exercise 4.1.1 and consider

1
2πi

∫ c+iR

c−iR

xs

s
ds.

However, the contour we choose will be DR described as the line
segment joining c − iR to c + iR and the semicircle sR to the right
of the line segment, of radius R, centered at c and not enclosing the
origin.

By Cauchy’s theorem,

1
2πi

∫

DR

xs

s
ds = 0.

Thus
1

2πi

∫ c+iR

c−iR

xs

s
ds +

1
2πi

∫

sR

xsds

s
= 0.
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The second integral can be estimated as before by

∣∣∣
1

2πi

∫

sR

xs

s
ds
∣∣∣� xc

2π

∫ −π/2

π/2
xR cos ϕdϕ.

The integral is easily estimated as in the previous exercise and so
the integralgoes to zero as R → ∞. �

4.1.3 Show that

1
2πi

∫

(c)

ds

s
=

1
2
, c > 0.

We have

1
2πi

∫ c+iR

c−iR

ds

s
=

1
2πi

∫ R

−R

i dt

c + it

=
1
2π

∫ R

−R

c − it

c2 + t2
dt.

The imaginary part of the integral vanishes, since the range of inte-
gration varies from −R to R. Thus, the integral is

c

π

∫ R

0

dt

c2 + t2
=

1
π

∫ R/c

0

du

1 + u2
.

The latter integral tends to arctan∞ = π/2, so that the final result
is 1/2. �

4.1.5 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. Show that if
x is not an integer,

∑

n<x

an =
1

2πi

∫

(c)
f(s)

xs

s
ds.

(The integral is taken in the sense of Cauchy’s principal value.)
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We can integrate term by term in the expression

1
2πi

∫

(c)
f(s)

xs

s
ds =

1
2πi

∫

(c)

∞∑

n=1

an

(x

n

)s ds

s
,

since the function f(s) is uniformly convergent in this half-plane.
By Theorem 4.1.4, we get, letting T → ∞,

∞∑

n=1

anδ
(x

n

)
=
∑

n<x

an.

�
4.1.6 Prove that for c > 0,

1
2πi

∫

(c)

xs

sk+1
ds =

⎧
⎨

⎩

1
k!(log x)k if x ≥ 1,

0 if x ≤ 1,

for every integer k ≥ 1.

When x ≥ 1, we choose our contour ζR as in Exercise 4.1.1. By
Cauchy’s theorem,

1
2πi

∫

ζR

xs

sk+1
ds = Ress=0

xs

sk+1
=

1
k!

(log x)k.

Thus

1
2πi

∫ c+iR

c−iR

xs

sk+1
ds +

1
2πi

∫

SR

xs

sk+1
ds =

1
k!

(log x)k.

The second integral is bounded by

xc

2Rk+1
,

which goes to zero as R → ∞.
If x < 1, we choose our contour DR as in Exercise 4.1.2. By

Cauchy’s theorem,
1

2πi

∫

DR

xs

sk+1
ds = 0.

Thus
1

2πi

∫ c+iR

c−iR

xs

sk+1
ds +

1
2πi

∫

SR

xs

sk+1
ds = 0.
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The second integral is easily estimated by

xc

2Rk+1
,

which goes to zero as R → ∞. �
4.1.7 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. For k ≥ 1,
show that

1
k!

∑

n≤x

an

(
log

x

n

)k
=

1
2πi

∫

(c)
f(s)

xs

sk+1
ds.

This is straightforward from the previous exercise. The proof is
analogous to that of Exercise 4.1.5. �
4.1.8 If k is any positive integer, c > 0, show that

1
2πi

∫

(c)

xsds

s(s + 1) · · · (s + k)
=

⎧
⎪⎨

⎪⎩

1
k!

(
1 − 1

x

)k
if x ≥ 1,

0 if 0 ≤ x ≤ 1

The method is identical to that of the previous exercises. If x ≥ 1,
we choose our contour as in Exercise 4.1.1. We choose R > 2k such
that by Cauchy’s theorem,

1
2πi

∫ c+iR

c−iR

xsds

s(s + 1) · · · (s + k)
+

1
2πi

∫

SR

xsds

s(s + 1) · · · (s + k)

=
k∑

j=0

Ress=−j
xs

s(s + 1) · · · (s + k)
.

The residues are easily calculated:

Ress=−j
xs

s(s + 1) · · · (s + k)
=

x−j

(−j)(−j + 1) · · · (−1)(1)(2) · · · (k − j)
,
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which is
(−1)jx−j

j!(k − j)!
,

and the sum of these residues is

1
k!

k∑

j=0

(
k

j

)(
− 1

x

)j
=

1
k!

(
1 − 1

x

)k
.

On SR we obtain

|s + j| ≥ R − k ≥ R

2
,

and hence
1

2πi

∫

SR

xsds

s(s + 1) · · · (s + k)
= O

( xc

Rk

)
,

which goes to zero as R → ∞. In the case 0 ≤ x ≤ 1, we use
the contour as in Exercise 4.1.2, and since the integrand is analytic
inside this contour, Cauchy’s theorem gives

1
2πi

∫ c+iR

c−iR

xsds

s(s + 1) · · · (s + k)
= − 1

2πi

∫

SR

xsds

s(s + 1) · · · (s + k)

with R > 2k, as before. The integral on the right is

O
( xc

Rk

)
,

which tends to zero as R → ∞. �
4.1.9 Let

f(s) =
∞∑

n=1

an

ns

be a Dirichlet series absolutely convergent in Re(s) > c − ε. Show that

1
xk

∑

n≤x

an(x − n)k =
k!
2πi

∫ c+i∞

c−i∞

f(s)xsds

s(s + 1) · · · (s + k)

for any k ≥ 1.

Substituting the Dirichlet series for f(s) in the expression

1
2πi

∫

(c)

f(s)xsds

s(s + 1) · · · (s + k)

and integrating term by term using the previous exercises, we ob-
tain the result. �
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4.2 The Prime Number Theorem

4.2.1 Using the Euler - Maclaurin summation formula (Theorem 2.1.9),
prove that for σ = Re(s) > 0,

ζ(s) =
n−1∑

m=1

1
ms

+
n−s

2
+

n1−s

s − 1
− s

∫ ∞

n

x − [x] − 1
2

xs+1
dx

where [x] denotes the greatest integer function.

In Theorem 2.1.9, we take f(t) = 1/ts and k = 1 to get

B∑

m=n

1
ms

=
∫ B

n

dt

ts
+

1
2

( 1
ns

+
1

Bs

)
− s

∫ B

n

x − [x] − 1/2
xs+1

dx.

Let B → ∞. Then,
∞∑

m=n

1
ms

=
1

2ns
− n1−s

1 − s
− s

∫ ∞

n
(x − [x] − 1

2
)

dx

xs+1
.

Thus,

ζ(s) =
n−1∑

m=1

1
ms

+
1

2ns
− n1−s

1 − s
− s

∫ ∞

n

x − [x] − 1
2

xs+1
dx

as desired. �
4.2.2 Using the previous exercise, show that

ζ(s) − 1
s − 1

= O(log T )

for s ∈ RT .

We have

ζ(s)− 1
s − 1

=
n−1∑

m=1

1
ms

+
1

2ns
+

n1−s − 1
s − 1

− s

∫ ∞

n

(x − [x] − 1/2)dx

xs+1
,

and we observe that writing s = σ + it,

∣∣∣∣ζ(s) − 1
s − 1

∣∣∣∣ ≤
n−1∑

m=1

1
mσ

+
1

2nσ
+
∫ n

1
x−σdx +

|s|
2

∫ ∞

n

dx

xσ+1
,
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since
n1−s − 1

s − 1
= −

∫ n

1

dx

xs

and |x − [x] − 1
2 | ≤

1
2 . Also, by the integral test,

n−1∑

m=1

1
mσ

< 1 +
∫ n

1

dx

xσ
,

which gives an estimate of

1 + 2
∫ n

1

dx

xσ
+

|s|
2

∫ ∞

n

dx

xσ+1
≤ 1 +

2(n1−σ − 1)
1 − σ

+
|s|n−σ

2σ

≤ 2n1−σ

1 − σ
+

|s|n−σ

2σ
.

We are free to choose n optimally to minimize this quantity. Let
n = [T ]. In RT , |s| < 2 + T and for σ > 1/2,

|s|
2σ

<
2 + T

2σ
< 2 + T,

which leads to a final estimate of

T 1−σ

(
2

1 − σ
+

2 + T

T

)
.

Since
σ ≥ σ0 = 1 − 1

log T
,

we have 1 − σ ≤ 1/ log T , from which we get from above

∣∣∣ζ(s) − 1
s − 1

∣∣∣ ≤ 1 + 2
∫ T

1

dt

tσ
+

|s|
2

∫ ∞

T

dt

tσ+1
.

By monotonicity, we get

∣∣∣ζ(s) − 1
s − 1

∣∣∣ ≤ 1 + 2
∫ T

1

dt

tσ0
+ |s|

∫ ∞

T

dt

tσ0+1

� log T,

for s ∈ RT , as required. �
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4.2.3 Show that
ζ(s) = O(log T )

for s on the boundary of RT .

Since
∣∣∣

1
s − 1

∣∣∣ =
∣∣∣

1
σ − 1 + iT

∣∣∣ ≤ min
( 1

σ − 1
,

1
T

)

and σ ≥ 1−1/ log T for s on the boundary of RT , we get the desired
result. �
4.2.4 Show that for σ ≥ 1/2, ζ(s) = O(T 1/2), where T = | Im(s)| → ∞.

By Exercise 4.2.1, we get with n = [T ],

|ζ(s)| ≤ O
(
T 1/2

)

by an easy estimation of the quantities in that formula. �
4.2.5 For s ∈ RT , show that

ζ ′(s) +
1

(s − 1)2
= O(log2 T ).

We use Exercise 4.2.1 again and differentiate the formula there
with respect to s. Thus

ζ ′(s) +
1

(s − 1)2
= −

n−1∑

m=1

log m

ms
− log n

2ns
+
∫ n

1

(log x)dx

xs

−
∫ ∞

n

x − [x] − 1/2
xs+1

dx

+s

∫ ∞

n

x − [x] − 1/2
xs+1

(log x)dx.

Estimating all of the terms on the right-hand side as in Exercise
4.2.2, we get with n = [T ] the desired estimate. �
4.2.6 Show that

ζ ′(s) = O(log2 T ),
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where T = | Im(s)| and s is on the boundary of RT .

We proceed as before:

σ ≥ 1 − 1
log T

,

which implies (1−σ)−2 ≤ log2 T , and this gives us the stated result.
�
4.2.8 Let s = σ + it, with 1 ≤ |t| ≤ T. There is a constant c > 0 such
that

ζ ′(s)
ζ(s)

= O(log9 T )

for
1 − c

(log T )9
≤ σ ≤ 2.

Combining Theorem 4.2.7 and Exercise 4.2.5 gives the result. �

4.3 Further Examples

4.3.2 Suppose that for any ε ≥ 0, we have an = O(nε). Prove that for any
c > 1, and x not an integer,

∑

n≤x

an =
1

2πi

∫ c+iR

c−iR

f(s)xs

s
ds + O

(xc+ε

R

)
+ O

(xε log x

R

)
,

where

f(s) =
∞∑

n=1

an

ns
.

By Theorem 4.1.4, we have

1
2πi

∫ c+iR

c−iR

f(s)xs

s
ds=

∑

n≤x

an+O
( ∞∑

n=1
n�=x

|an|
(x

n

)c
min

(
1,

1
R
∣∣ log x

n

∣∣
))

.

The analysis of the error term is handled as in the proof of Theorem
4.2.9. We split the sum into three parts: n < x/2, x/2 < n < 2x, and
n > 2x. For the first and last parts | log x/n| ≥ log 2, so that

∑

n≤x/2

|an|
(x

n

)c
� xc+ε.
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Also, ∑

n≥2x

|an|
(x

n

)c
� xc

∑

n≥2x

1
nc−ε

� x1+ε.

Finally, for the middle part (x/n) is bounded so that

∑

x/2≤n≤2x

|an|min
(
1,

1
R
∣∣ log x

n

∣∣
)
� xε

R
log x.

Putting all this together gives the desired result. �
4.3.3 Assuming the Lindelöf hypothesis, prove that for any ε > 0,

∑

n≤x

dk(n) = xPk−1(log x) + O(x1/2+ε),

where dk(n) denotes the number of ways of writing n as a product of k
natural numbers.

By Exercise 1.5.5, we know that

ζk(s) =
∞∑

n=1

dk(n)
ns

.

By Exercise 1.3.2 and the fact that dk(n) ≤ d(n)k, we see that dk(n) =
O(nε) for any ε > 0. Applying the previous exercise, we obtain

∑

n≤x

dk(n) =
1

2πi

∫ c+iR

c−iR

ζk(s)xs

s
ds + O

(xc+ε

R

)

for any c > 1. If C is the rectangular contour joining c − iR, c + iR,
1
2 + iR, 1

2 − iR, we have by Cauchy’s theorem

1
2πi

∫

C

ζk(s)
s

xsds = Ress=1
ζk(s)xs

s
= xPk−1(log x)

for some polynomial Pk−1 of degree k − 1. Also

1
2πi

∫

C

ζk(s)xs

s
ds =

1
2πi

∫ c+iR

c−iR

ζk(s)xs

s
ds + O

( xc

R1−ε log x

)
+ O

(
x1/2Rε

)
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where the horizontal and vertical integrals in the contour have been
estimated using ζ(s) = O(tε). Choosing R = x and c = 1 + 1/ log x
gives the desired result. �
4.3.4 Show that

M(x) :=
∑

n≤x

µ(n) = O(x exp(−c(log x)1/10))

for some positive constant c.

By Exercise 4.3.2 with ε = 0,

∑

n≤x

µ(n) =
1

2πi

∫ c+iR

c−iR

xsds

sζ(s)
+ O

(xc+ε

R

)
.

By Theorem 4.2.7, |1/ζ(s)| = O(log7 R) for 1 ≤ | Im(s)| ≤ R and

δ = 1 − c1

log9 R
≤ σ ≤ 2.

We choose C to be the rectangular contour joining c − iR, c + iR,
δ + iR and δ − iR. Then, by Cauchy’s theorem,

1
2πi

∫

C

xsds

sζ(s)
= 0.

Therefore,

1
2πi

∫ c+iR

c−iR

xsds

sζ(s)
= − 1

2πi

(∫ δ+iR

c+iR
+
∫ δ−iR

δ+iR
+
∫ c−iR

δ−iR

)(
xsds

sζ(s)

)
.

We use the estimate provided by Theorem 4.2.7 to estimate these
integrals:

1
2πi

(∫ δ+iR

c+iR
+
∫ c−iR

δ−iR

)(
xsds

sζ(s)

)
� xc log7 R

R log x
,

if R ≥ 1. For the vertical integral, we can use the same technique to
bound the integrand, observing that 1/ζ(s) is regular at s = 1 and
thus is bounded in 0 ≤ | Im(s)| ≤ 1, δ ≤ Re(s) ≤ 2. Therefore, the
vertical integral is

� xδ log8 R.
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Putting this all together gives

∑

n≤x

µ(n) � xc+ε

R
+

xc log7 R

R log x
+ xδ log8 R.

Put c = 1 + 1/ log x. The optimal choice of R is obtained hy equat-
ing error terms. We choose R = exp(c1(log x)1/10) to get for some
constant c > 0,

M(x) � x exp
(
−c(log x)1/10

)

as required. �
4.3.5 Let E(x) be the number of square-free n ≤ x with an even number
of prime factors. Prove that

E(x) =
3
π2

x + O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.

The function an = µ2(n)(1+µ(n))/2 is 1 if n is squarefree and has
an even number of prime factors, and 0 otherwise. Thus,

E(x) =
∑

n≤x

an = Q(x)/2 + O(M(x)),

where Q(x) is the number of square-free numbers less than or equal
to x. Now apply Exercise 1.4.4 to deduce the behavior of the main
term. By the previous exercise, M(x) = O

(
x exp

(
−c(log x)1/10

))
, so

that the result is now immediate. �

4.4 Supplementary Problems

4.4.1 Let λ(n) be the Liouville function defined by λ(n) = (−1)Ω(n),
where Ω(n) is the total number of prime factors of n, counted with multi-
plicity. Show that

∑

n≤x

λ(n) = O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.
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Recall that (see Exercise 1.2.5)

∞∑

n=1

λ(n)
ns

=
ζ(2s)
ζ(s)

.

One can apply the method of contour integration as in Exercise 4.3.4
and derive the result. An alternative approach is to make use of Ex-
ercise 4.3.4 in the following way. We have from the above Dirichlet
series

λ(n) =
∑

d2e=n

µ(e),

so that ∑

n≤x

λ(n) =
∑

d2e≤x

µ(e) =
∑

d2≤x

M(x/d2)

in the notation of Exercise 4.3.4. By that exercise, we have

M(x) = O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0. Inserting this estimate above gives

∑

n≤x

λ(n) =
∑

d≤√
x

O

(
x

d2
exp

(
−c
(
log

x

d2

)1/10
))

=
∑

d≤x1/4

+
∑

x1/4<d≤x1/2

(say).

The first sum is easily seen to be

O
(
x exp

(
−c1(log x)1/10

))

for some constant c1 > 0. The second sum is bounded by
∑

d>x1/4

x

d2
� x3/4,

and this completes the proof. �
4.4.2 Show that ∞∑

n=1

µ(n)
ns

converges for every s with Re(s) = 1.
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Let s = 1 + it. By partial summation
∑

n≤N

µ(n)n−1−it =
M(N)
N1+it

+ (1 + it)
∫ N

1
M(w)w−2−itdw.

The first term on the right-hand side is, by Exercise 4.3.4,

O
(
exp

(
−c(log N)1/10

))
.

The second term can be written as

(1 + it)
∫ ∞

1
M(w)w−2−itdw − (1 + it)

∫ ∞

N
M(w)w−2−itdw.

Since M(w) = O(w/ log2 w), the first integral above converges to a
limit L (say). The second integral is bounded by

�
∫ ∞

N
exp(−c(log w)1/10)dw/w

� exp(− c

2
(log N)1/10)

∫ ∞

N
exp

(
− c

2
(log w)1/10

) dw

w
,

which is
O
(
exp

(
− c

2
(log N)1/10

))
,

since the integral converges. Letting N → ∞ shows that the series
converges to L. �
4.4.3 Show that

∑

n≤x

Λ(n)
n

= log x + B + O
(
exp

(
−c(log x)1/10

))

for some constants B and c, with c > 0. The summation is over prime
numbers. (This improves upon Exercise 3.1.7.)

We have

∑

n≤x

Λ(n)
n

=
ψ(x)

x
+
∫ x

1

ψ(t)dt

t2

= 1 + O(exp(−c(log x)1/10)) + log x

+
∫ x

1
O(t−1 exp(−c(log t)1/10))dt
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The integral is easily seen to converge. Accordingly, we split the
integral into two parts as

∫ ∞

1
−
∫ ∞

x

and estimate the second integral as in the previous exercise. This
shows that

∑

n≤x

Λ(n)
n

= log x + B1 + O
(
exp

(
−c1(log x)1/10

))

for some constants B1, c1 with c1 > 0, as desired. �
4.4.4 Let f(s) =

∑∞
n=1 An/ns be a Dirichlet series absolutely convergent

for Re(s) > 1. Show that for any c > 1,
∑

n≤x

An = O(xc).

We have
∣∣∣
∑

n≤x

An

∣∣∣ ≤
∑

n≤x

|An| ≤
∑

n≤x

|An|
(x

n

)c
� xc,

as required. �
4.4.5 Define an for n ≥ 1 by

∞∑

n=1

an

ns
=

1
ζ2(s)

.

Prove that ∑

n≤x

an = O
(
x exp

(
−c(log x)1/10

))

for some positive constant c.

We have
an =

∑

de=n

µ(d)µ(e).

Applying Dirichlet’s hyperbola method (Theorem 2.4.1), we have
∑

n≤x

an =
∑

d≤y

µ(d)M
(x

d

)
+
∑

d≤x/y

µ(d)M
(x

d

)
− M(y)M

(x

y

)
.
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We choose y =
√

x and apply Exercise 4.3.4 to get

∑

n≤x

an = O

⎛

⎝
∑

d≤√
x

x

d
exp

(
−c
(
log

x

d

)1/10
)⎞

⎠

= O
(
x exp

(
−c1(log x)1/10

))

for some positive constant c1 as required. �
4.4.6 Prove that

∑

n≤x

µ(n)d(n) = O
(
x exp

(
−c(log x)1/10

))

for some constant c > 0.

We have

f(s) :=
∞∑

n=1

µ(n)d(n)
ns

=
∏

p

(
1 − 2

ps

)
.

We may write

(
1 − 2

ps

)
=
(
1 − 1

ps

)2(
1 − 1

p2s

(
1 − 1

ps

)−2)
,

so that

f(s) =
g(s)
ζ2(s)

,

where g(s) is a Dirichlet series absolutely convergent for Re(s) >
1/2. Writing

g(s) =
∞∑

n=1

bn

ns
,

let us note that
µ(n)d(n) =

∑

de=n

adbe,

where an is as in the previous exercise. Applying Dirichlet’s hyper-
bola method with

A(x) :=
∑

n≤x

an,
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B(x) :=
∑

n≤x

bn,

we get
∑

n≤x

µ(n)d(n) =
∑

d≤y

bdA
(x

d

)
+
∑

d≤x/y

adB
(x

d

)
− A(y)B

(x

y

)
.

We choose y =
√

x and note that for some positive constants c,

A(x) = O
(
x exp

(
−c(log x)1/10

))

(by Exercise 4.4.5). Also, by Exercise 4.4.4, B(x) = O
(
x1/2+ε

)
. Thus

∑

n≤x

µ(n)d(n)

� x
∑

d≤√
x

|bd|
d

exp(−c(log x)1/10) +
∑

d≤√
x

|ad|
d1/2+ε

x1/2+ε + O(x3/4+ε).

The series ∑

d

|bd|
d

is finite, and an = O(nε), and the second sum is

O
(
x3/4+ε

)
.

The final contribution is

O
(
x exp

(
−c(log x)1/10

))

as required. �
4.4.7 If f(s) =

∑∞
n=1 an/ns is a Dirichlet series converging absolutely

for σ = Re(s) = σa, show that

lim
T→∞

1
2T

∫ T

−T
f(σ + it)mσ+itdt = am.

We have

1
2T

∫ T

−T

( ∞∑

n=1

an

nσ+it

)
mσ+itdt =

mσ

2T

∞∑

n=1

an

nσ

∫ T

−T

(m

n

)it
dt.
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Now,
∫ T

−T

(m

n

)it
dt =

⎧
⎪⎨

⎪⎩

2T if m = n,

2 sin(T log m/n)
log m/n otherwise.

The sum ∑

n=1
n�=m

|an|
nσ| log m/n|

converges. Indeed, if n < m/2 or n > 2m, this is clear, since | log m/n|
is then bounded. If m/2 < n < 2m, then the finite sum is clearly
bounded. The result is now immediate. �

4.4.8 Suppose

f(s) :=
∞∑

n=1

an/ns,

g(s) :=
∞∑

n=1

bn/ns,

and f(s) = g(s) in a half-plane of absolute convergence. Then an = bn

for all n.

We apply the previous exercise:

am = lim
T→∞

1
2T

∫ T

−T
f(σ + it)mσ+itdt

= lim
T→∞

1
2T

∫ T

−T
g(σ + it)mσ+itdt = bm.

�

4.4.9 If

f(s) =
∞∑

n=1

an/ns

converges absolutely for σ = Re(s) > σa, show that

lim
T→∞

1
2T

∫ T

−T
|f(σ + it)|2dt =

∞∑

n=1

|an|2
n2σ

.
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We have

|f(σ + it)|2 =
∑

m,n

aman

mσ+itnσ−it

=
∞∑

n=1

|an|2
n2σ

+
∑

m�=n

aman

mσnσ

( n

m

)it
,

so that

1
2T

∫ T

−T
|f(σ + it)|2dt =

∞∑

n=1

|an|2
n2σ

+
∑

m�=n

aman

mσnσ

2 sin(T log n/m)
2T (log n/m)

.

The double series is analyzed as before. For fixed m, the ranges n <
m/2 and n > 2m are easily handled, and the remaining range is
finite. Thus, for fixed m, the summation over n is bounded. The
summation over m is also bounded, since σ > σa. Thus the double
sum is O(1/T ) and the result follows. �
4.4.10 Let Q(x) be the number of squarefree numbers less than or equal to
x. Show that

Q(x) =
x

ζ(2)
+ O

(
x1/2 exp

(
−c(log x)1/10

))

for some positive constant c.

We have
Q(x) =

∑

d2e≤x

µ(d) =
∑

d2≤x

µ(d)
[ x

d2

]

as in Exercise 1.1.9. Writing [x/d2] = x/d2+E(x, d), we observe that
|E(x, d)| ≤ 1. Now,

Q(x) =
∑

d≤√
x

µ(d)
x

d2
+
∑

d≤√
x

µ(d)E(x, d).

Let us analyze the first term. We have

∑

d≤√
x

µ(d)
d2

=
∞∑

d=1

µ(d)
d2

−
∑

d>
√

x

µ(d)
d2

=
1

ζ(2)
+ O

(∫ ∞

√
x

M(t)
t3

dt

)
.
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By Exercise 4.3.4,

M(x) = O
(
x exp

(
−c(log x)1/10

))
,

so that ∫ ∞

√
x

M(t)dt

t3
� x−1/2 exp

(
−c(log x)1/10

)
.

For the second term, we write
∑

d≤√
x

µ(d)E(x, d) =
∑

d≤√
x

(M(d) − M(d − 1))E(x, d)

= M([
√

x])E(x, [
√

x]) +
∑

d≤√
x−1

M(d)
{
E(x, d) − E(x, d + 1)

}
.

Using the estimate for M(x) and the fact |E(x, d)| ≤ 1 gives the
result. �
4.4.11 Let γ(n) =

∏
p|n p. Show that

∑

n≤x

1
nγ(n)

< ∞.

Clearly, γ(n) is multiplicative. Also,

∑

n≤x

1
nγ(n)

�
∏

p≤x

(
1 +

1
p2

+
1
p3

+ · · ·
)

,

from which the result follows. �
4.4.12 Show that ∑

n≤x

n

φ(n)
� x.

We have

∑

n≤x

n

φ(n)
=

∑

n≤x

∏

p|n

(
1 − 1

p

)−1
=
∑

n≤x

∑

γ(d)|n

1
d

≤
∑

γ(d)≤x

1
d
· x

γ(d)
≤
∑

d

x

dγ(d)
� x,
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by the previous exercise. �
4.4.13 Deduce by partial summation from the previous exercise that

∑

n≤x

1
φ(n)

� log x.

By partial summation,

∑

n≤x

n

φ(n)
· 1
n
�
∫ x

1

dt

t
� log x

as desired. �
4.4.14 Prove that ∑

n≤x

1
φ(n)

∼ c log x

for some positive constant c.

We consider the Dirichlet series

f(s) =
∑

n≤x

1
φ(n)

· 1
ns

=
∏

p

(
1 +

1
ps(p − 1)

+
1

p2s+1(p − 1)
+ · · ·

)

=
∏

p

(
1 +

p

(p − 1)(ps+1 − 1)

)
.

The quotient f(s)/ζ(s+1) is easily seen to be regular for Re s > −1,
simply by long division of the Euler factors. We may write

f(s) = ζ(s + 1)h(s),

so that

f(s − 1) =
∞∑

n=1

n

φ(n)
· 1
ns

is ζ(s)h(s− 1), with h(s− 1) regular for Res > 0. We therefore have
by contour integration (or by an application of a Tauberian theorem)
that ∑

n≤x

n

φ(n)
∼ c1x.

By partial summaton, we can deduce the desired result. �
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4.4.15 (Perron’s formula) Let f(s) =
∑∞

n=1 an/ns be a Dirichlet series
absolutely convergent for Re(s) > 1. Show that for x not an integer and
σ > 1,

∑

n≤x

an=
1

2πi

∫ σ+iT

σ−iT
f(s)

xs

s
ds+O

( ∞∑

n=1

(x

n

)σ
|an|min

(
1,

1
T | log x

n |
))

.

This is just a straightforward application of Theorem 4.1.4. �
4.4.16 Suppose an = O(nε) for any ε > 0 in the previous exercise. Show
that for x not an integer,

∑

n≤x

an =
1

2πi

∫ σ+iT

σ−iT
f(s)

xs

s
ds + O

(xσ+ε

T

)
.

We estimate the error term in the previous exercise as in Theorem
4.2.9 for n < x/2 or n > 3x/2. In these cases, the log term is bounded
absolutely from below. The series

∞∑

n=1

|an|
nσ

converges. For x/2 < n < 3x/2, we have |an| = O(xε), and we use
this in the estimate. The log term for this range of n is handled as in
the proof of Theorem 4.2.9. �
4.4.17 Let f(s) =

∑∞
n=1 an/ns, with an = O(nε). Suppose that

f(s) = ζ(s)kg(s),

where k is a natural number and g(s) is a Dirichlet series absolutely con-
vergent in Re(s) > 1 − δ for some 0 < δ < 1.

Show that ∑

n≤x

an ∼ g(1)x(log x)k−1/(k − 1)!

as x → ∞.

By the previous exercise,

∑

n≤x

an =
1

2πi

∫ σ+iT

σ−iT
ζk(s)g(s)

xs

s
ds + O

(xσ+ε

T

)
.
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We move the line of integration to Re(s) = a > 1 − δ. The pole at
s = 1 of ζ(s) contributes

xg(1)(log x)k−1

(k − 1)!
.

By Exercise 4.2.4, ζ(s) = O(T 1/2) for T → ∞. Thus, the horizontal
integral contributes

O

(
xδT

k
2
−1

log x

)
,

and the vertical integral contributes

O
(
xaT k/2

)

on the line Re(s) = a. We choose T = x2σ/k, and this gives an error
term of

O
(
xa+σ + xσ(1− 2

k
)+ε
)
.

We can choose σ such that a + σ < 1 and σ(1 − 2/k) + ε < 1. This
completes the proof. �
4.4.18 Let ν(n) denote the number of distinct prime factors of n. Show that

∑

n≤x

2ν(n) ∼ x log x

ζ(2)

as x → ∞.

We have

f(s) =
∞∑

n=1

2ν(n)

ns
=

ζ2(s)
ζ(2s)

by Exercise 1.2.6. Also, f(s) satisfies the hypotheses of the previous
exercise. Hence ∑

n≤x

2ν(n) ∼ x log x

ζ(2)

as x → ∞. �



5
Functional Equations

5.1 Poisson’s Summation Formula

5.1.1 For Re(c) > 0, let F (x) = e−c|x|. Show that

F̂ (u) =
2c

c2 + 4π2u2
.

We have

F̂ (u) =
∫ ∞

−∞
e−c|x|e−2πiuxdx

=
∫ ∞

0
e−(c+2πiu)xdx +

∫ −∞

0
e−(c−2πiu)xdx.

Since ∫ ∞

0

e−vxdx =
1
v

for Re(v) > 0, we get

F̂ (u) =
1

c + 2πiu
+

1
c − 2πiu

=
2c

c2 + 4π2u2
.
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�

5.1.2 For F (x) = e−πx2
, show that F̂ (u) = e−πu2

.

We must show that

∫ ∞

−∞
e−πx2

e−2πixudx = e−πu2
,

which is the same as

∫ ∞

−∞
e−π(x+iu)2dx = 1.

But this is essentially the famous probability integral

I =
∫ ∞

−∞
e−πx2

dx = 1.

To see this, observe that for u = 0, we have

I2 =
∫ ∞

−∞
e−πx2

dx

∫ ∞

−∞
e−πy2

dy

=
∫ ∞

−∞

∫ ∞

−∞
e−π(x2+y2)dx dy

=
∫ ∞

0
rdr

∫ 2π

0
e−πr2

dθ,

where we have made the polar substitution x = r cos θ, y = r sin θ.
Thus

I2 =
∫ ∞

0
e−πr2

(2πr)dr = 1.
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Since I > 0, we conclude that I = 1. For the general case, notice
that

∂

∂u

∫ ∞

−∞
e−π(x+iu)2dx =

∫ ∞

−∞

( ∂

∂u
e−π(x+iu)2

)
dx

= 2πi

∫ ∞

−∞
(x + iu)e−π(x+iu)2dx

= i

∫ ∞

−∞

( ∂

∂x
e−π(x+iu)2

)
dx

=
[
ie−π(x+iu)2

]x=+∞

x=−∞
= 0.

Thus, the value of the integral is independent of u. But for u = 0,
the value is 1. Hence

∫ ∞

−∞
e−π(x+iu)2dx = 1.

�
5.1.5 With F as in Theorem 5.1.3, show that

∑

n∈Z

F
(v + n

t

)
=
∑

n∈Z

|t|F̂ (nt)e2πintv.

Observe that the Fourier transform of F (x/t) is |t|F̂ (tu), so that
the result is now immediate from Theorem 5.1.3. �
5.1.6 Show that

ec + 1
ec − 1

=
∞∑

−∞

2c

c2 + 4π2n2
.

By Exercise 5.1.1 and Corollary 5.1.4, this result is immediate. �
5.1.7 Show that

∑

n∈Z

e−(n+α)2π/x = x1/2
∑

n∈Z

e−n2πx+2πinα

for any α ∈ R, and x > 0.
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We have the pair of Fourier transforms

F (t) = e−πt2 and F̂ (t) = e−πt2 .

Thus, the function e−π(t+a)2 has transform e2πiate−πt2 . Also,
e−π(a+t/

√
x)2 has transform

x1/2e2πiat
√

xe−πt2x.

Applying the Poisson summation formula gives
∑

n∈Z

e−π(a+n/
√

x)2 = x1/2
∑

n∈Z

e−πn2x+2πian
√

x.

Setting α = a
√

x gives

∑

n∈Z

e−π(n+α)2/x = x1/2
∑

n∈Z

e−πn2x+2πinα

as desired. �

5.2 The Riemann Zeta Function

5.2.1 Show that
Γ(s + 1) = sΓ(s)

for Re(s) > 0 and that this functional equation can be used to extend
Γ(s) as a meromorphic function for all s ∈ C with only simple poles at
s = 0,−1,−2, . . . .

The equation
Γ(s + 1) = sΓ(s)

is easily deduced by an integration by parts. Thus, for Re(s) > −1,
we can define

Γ(s) =
Γ(s + 1)

s

from which we see that Γ(s) has a simple pole at s = 0. Continuing
in this way, we see that

Γ(s) =
Γ(s + 2)
s(s + 1)

,
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which gives a meromorphic continuation to Re(s) > −2 with again
a simple pole at s = −1. The result is now clear. �
5.2.3 Show that ζ(s) has simple zeros at s = −2n, for n a positive integer.

The integral on the right-hand side in Theorem 5.2.2 converges
for all s ∈ C. Thus π−s/2Γ(s/2)ζ(s) is analytic for any s = −2n,
with n a positive integer. Note that

1 + 2n(2n + 1)
∫ ∞

1
W (x)

(
x−n + xn+1/2

) dx

x
> 0.

Since the Γ-function has a simple pole there, ζ(s) must have a sim-
ple zero at that point. �
5.2.4 Prove that ζ(0) = −1/2.

Since Γ(s/2) ∼ (s/2)−1 as s → 0, multiplying the equation in
Theorem 5.2.2 by s/2 and taking limits as s → 0 gives the result. �
5.2.5 Show that ζ(s) �= 0 for any real s satisfying 0 < s < 1.

Since

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx,

we see that ∣∣∣∣ζ(s) − s

s − 1

∣∣∣∣ < s

∫ ∞

1

dx

xs+1
= 1.

Hence

1
s − 1

= −1 +
s

s − 1
< ζ(s) < 1 +

s

s − 1
=

2s − 1
s − 1

.

Thus, for 1/2 < s < 1, we have (2s − 1)/(s − 1) < 0, which shows
that ζ(s) �= 0 for 1/2 < s < 1. By the functional equation, we have
it for the whole range 0 < s < 1.

5.3 Gauss Sums

5.3.2 If χ is a primitive nonprincipal character (mod q), show that

χ(n)τ(χ) =
q∑

m=1

χ(m)e
(mn

q

)
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if (n, q) > 1.
Let us put

n

q
=

n1

q1
,

where (n1, q1) = 1 and q1|q, q1 < q. If n is a multiple of q, the left-
hand side is zero, and so is the right-hand side, since

q∑

m=1

χ(m) = 0.

So, we may suppose 1 < q1 < q. We have to prove that
q∑

m=1

χ(m)e
(mn1

q1

)
= 0.

Write q = q1q2 and put m = aq1 + b, where 0 ≤ a < q2, 1 ≤ b ≤ q1.
Then, the above sum can be rewritten

∑

1≤b≤q1

e

(
bn1

q1

) ∑

0≤a<q2

χ(aq1 + b),

and it suffices to prove that the inner sum is zero. Let us write

S(b) =
∑

0≤a<q2

χ(aq1 + b).

Observe that S(b + q1) = S(b). If c is any integer satisfying

(c, q) = 1, c ≡ 1 (mod q1),

then

χ(c)S(b) =
∑

0≤a<q2

χ(caq1 + cb)

=
∑

0≤a<q2

χ(aq1 + b) = S(b),

since S(b + q1) = S(b). Since χ is a primitive character (mod q), it
is not periodic to any modulus q1 that is a proper factor of q. Thus,
there are integers c1, c2 such that

(c1, q) = (c2, q) = 1, c1 ≡ c2 (mod q1),

and χ(c1) �= χ(c2). Hence, there exists c ≡ c1c
−1
2 (mod q1), (c, q) = 1,

such that χ(c) �= 1. Thus S(b) = 0, as desired. �
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5.4 Dirichlet L-functions

5.4.2 Suppose χ(−1) = 1. Show that L(s, χ) has simple zeros at s =
−2,−4,−6, . . ..

Since L(1 − s, χ) has no zeros for Re(1 − s) > 1 and Γ((1 − s)/2)
has no zeros at all, the only zeros of L(s, χ) for Re(s) < 0 are at
s = −2,−4,−6, . . . corresponding to the poles of Γ(s/2). This is so
because by the above, their product is entire. �

5.4.3 Prove that

π−(s+1)/2q(s+1)/2Γ
(

s + 1
2

)
n−s =

∫ ∞

0
ne−πn2x/qx

s+1
2

dx

x
,

and hence deduce that

π−( s+1
2

)q( s+1
2

)Γ
(s + 1

2

)
L(s, χ) =

1
2

∫ ∞

0
θ1(x, χ)x

s+1
2

dx

x

where

θ1(x, χ) =
∞∑

n=−∞
nχ(n)e−n2πx/q.

Changing s to s + 1 in the formula

π−s/2qs/2Γ(s/2)n−s =
∫ ∞

0
e−n2πx/qx

s
2
dx

x

gives the first result. Then summing over n gives the second equa-
tion upon noting that since χ(−1) = −1,

θ1(x, χ) =
∞∑

n=−∞
nχ(n)e−n2πx/q = 2

∞∑

n=1

nχ(n)e−n2πx/q.

�

5.4.4 Prove that

∞∑

n=−∞
ne−n2πx/q+2πimn/q = i(q/x)3/2

∞∑

n=−∞

(
n +

m

q

)
e−π(n+m/q)2q/x.
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This is immediate from Poisson’s summation formula. Indeed, by
Exercise 5.1.7, we have

∞∑

n=−∞
e−n2πy+2πinα = y−1/2

∞∑

n=−∞
e−π(n+α)2/y.

Differentiating with respect to α gives

2πi
∞∑

n=−∞
ne−n2πy+2πinα = −2πy−

3
2

∞∑

n=−∞
(n + α)e−(n+α)2π/y,

and substituting x/q for y and m/q for α gives the stated equation.
�
5.4.5 Prove that for χ(−1) = −1, if we set

ξ(s, χ) = π−s/2qs/2Γ((s + 1)/2)L(s, χ),

then ξ(s, χ) is entire and

ξ(s, χ) = wχξ(1 − s, χ),

where wχ = τ(χ)/(iq1/2).

By Exercises 5.4.3 and 5.4.4, we obtain

π−( s+1
2

)q
s+1
2 Γ
(s + 1

2

)
L(s, χ

)

=
1
2

∫ ∞

1
θ1(x, χ)x

s+1
2

dx

x
+

1
2

∫ ∞

1
θ1(x−1, χ)x− s+1

2
dx

x

=
1
2

∫ ∞

1
θ1(x, χ)x

s
2

dx√
x

+
iq1/2

2τ(χ)

∫ ∞

1
θ1(x, χ)x

1−s
2

dx√
x

.

This gives the analytic continuation for L(s, χ) and establishes the
functional equation, since the change of the right-hand side when s
is replaced by 1 − s is as stated. �
5.5.1 Let

f(y) =
∞∑

n=1

ane−2πny
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converge for y > 0. Suppose that for some w ∈ Z,

f(1/y) = (−1)wyrf(y),

and that an = O(nc) for some constant c > 0. Let

Lf (s) =
∞∑

n=1

ann−s.

Show that (2π)−sΓ(s)Lf (s) extends to an entire function and satisfies the
functional equation

(2π)−sΓ(s)Lf (s) = (−1)w(2π)−(r−s)Γ(r − s)Lf (r − s).

We have

∫ ∞

0
f(y)ys−1 =

∫ ∞

0

∞∑

n=1

ane−2πnyys−1dy

=
∞∑

n=1

an

∫ ∞

0
e−2πnyys−1dy,

the interchange being justified by the estimate an = O(nc) which
implies the absolute convergence of the integral. Changing vari-
ables in the integral gives

(2π)−sΓ(s)Lf (s) =
∫ ∞

0
f(y)ys−1dy,

which converges absolutely for Re(s) > 0. Now write the integral
as ∫ 1

0
f(y)ys−1dy +

∫ ∞

1
f(y)ys−1dy.

We make a change of variable y = 1/t in the first integral:

∫ 1

0
f(y)ys−1dy =

∫ ∞

1
f(1/t)t−s−1dt.



338 5. Functional Equations

Using the fact that f(1/t) = (−1)wtrf(t), we obtain

∫ 1

0
f(y)ys−1dy = (−1)w

∫ ∞

1
f(t)tr−s−1dt.

Hence

(2π)−sΓ(s)Lf (s) =
∫ ∞

1
f(y){ys + (−1)wyr−s}dy

y

= (−1)w(2π)−(r−s)Γ(r − s)Lf (r − s),

which establishes the functional equation. Note that the integral
converges for all s ∈ C. This gives the result. �

5.5 Supplementary Problems

5.5.2 Let

g(y) =
∞∑

n=0

ane−2πny

converge for y > 0. Suppose that for some w ∈ Z,

g(1/y) = (−1)wyrg(y)

and that an = O(nc) for some constant c > 0. Let

Lg(s) =
∞∑

n=1

ann−s.

Show that (2π)−sΓ(s)Lg(s) extends to a meromorphic function with at
most simple poles at s = 0 and s = r and satisfies the functional equation

(2π)−sΓ(s)Lg(s) = (−1)w(2π)r−sΓ(r − s)Lg(r − s).

Set

h(y) =
∞∑

n=1

ane−2πny = g(y) − a0.
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Note that the Dirichlet series
∑∞

n=1 ann−s converges absolutely for
Re(s) > 1 + c. Thus, in this half-plane,

(2π)−sΓ(s)Lf (s) =
∫ ∞

0
h(y)ys−1dy

=
∫ ∞

0
(g(y) − a0)ys−1dy,

which converges for Re(s) > 0. Now,

h(1/y) = g(1/y) − a0

= (−1)wyrg(y) − a0

= (−1)wyrh(y) − a0(−1)wyr − a0.

We write the integral

∫ 1

0
h(y)ys−1dy +

∫ ∞

1
h(y)ys−1dy

and change variables in the first integral by setting y = 1/t to obtain

∫ 1

0
h(y)ys−1dy =

∫ ∞

1
h(1/t)t−s−1dt

=
∫ 1

0
{(−1)wyrh(y) − a0(−1)wyr − a0} y−s−1dy

by the functional equation for h. Thus

(2π)−sΓ(s)Lf (s)

=
∫ ∞

1

h(y)(ys−1 + (−1)wyr−s−1)dy

−a0

∫ ∞

1
(−1)wyr−s−1dy − a0

∫ ∞

1
y−s−1dy,
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and the two integrals are easily evaluated:

∫ ∞

1
y−s−1dy =

[
− y−s

s

]∞
1

=
1
s
,

∫ ∞

1
yr−s−1dy =

[
− yr−s

r − s

]∞
1

=
1

r − s

so that

(2π)−sΓ(s)Lf (s) = −a0

(
(−1)w

r − s
+

1
s

)

+
∫ ∞

1
h(y)(ys−1 + (−1)wyr−s−1)dy,

and the right-hand side gives the meromorphic continuation with
only simple poles at s = 0, r. Also, the functional equation is imme-
diate, since

(2π)−(r−s)Γ(r − s)Lf (r − s) = −a0

(
(−1)w

s
+

1
r − s

)

+
∫ ∞

1
h(y)(yr−s−1 + (−1)wys−1)dy

= (−1)w(2π)−sΓ(s)Lf (s),

as required. �

5.5.3 Let

Ψ(x) =

⎧
⎨

⎩

x − [x] − 1
2 if x �∈ Z

0 if x ∈ Z

Show that ∣∣∣∣∣∣
Ψ(x) +

∑

0<|m|≤M

e(mx)
2πim

∣∣∣∣∣∣
≤ 1

2πM ||x||

where e(t) = e2πit and ||x|| denotes the distance from x to the nearest
integer.
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The function Ψ(x) is periodic with period 1. If x ∈ Z, the result is
clear, since in the sum we can pair m and −m to get 0. Suppose first
0 < x ≤ 1/2. Then

∫ x

1/2
e(mt)dt =

e(mx)
2πim

− (−1)m

2πim
,

so that summing both sides of this equation for 0 < |m| ≤ M gives
∫ x

1/2

( ∑

0<|m|≤M

e(mt)
)
dt =

∑

0<|m|≤M

e(mx)
2πim

,

since ∑

0<|m|≤M

(−1)m

2πim
= 0.

Thus
∫ x

1/2

( ∑

0≤|m|≤M

e(mt)
)
dt =

∑

0<|m|≤M

e(mx)
2πim

+
(

x − 1
2

)
.

The integrand is a geometric progression, which is easily summed
to

e(−Mt)
(

e((2M + 1)t) − 1
e(t) − 1

)
=

e((M + 1
2)t) − e(−(M + 1

2)t)
e(t/2) − e(−t/2)

=
sin((2M + 1)πt)

sinπt
.

Recall the following mean value theorem for integrals: Let f(x) be
bounded, monotonic decreasing, nonnegative, and differentiable in
[a, b] and let g(x) be a bounded integrable function. Then

∫ b

a
f(x)g(x)dx = f(a)

∫ ξ

a
g(x)dx

for some a ≤ ξ ≤ b. Indeed, letting

G(t) =
∫ x

a
g(x)dx
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we have by integration by parts,
∫ b

a
f(x)g(x)dx = G(b)f(b) −

∫ b

a
f ′(x)G(x)dx,

and the last integral is, by the familiar mean value theorem for
integrals,

= G(η)
∫ b

a
f ′(x)dx = G(η)(f(b) − f(a)),

for some a ≤ η ≤ b. Suppose now, without loss of generality, that
G(η) ≤ G(b). Then, since f(a) ≥ f(b), we deduce that

G(η)f(a) ≤ G(b)f(b) + G(η)(f(a) − f(b)) ≤ G(b)f(a).

Since G is continuous, we must have

G(b)f(b) + G(η)(f(a) − f(b)) = G(ξ)f(a)

for some ξ satisfying a ≤ ξ ≤ b. Note that we apply this with f(x) =
1/ sinπx, g(x) = sin(2m + 1)πx, and [a, b] = [x, 1/2]. Then f(x) is
monotone decreasing, and we have

∫ 1/2

x

sin(2m + 1)πt

sinπt
dt =

1
sinπx

∫ ξ

x
sin(2m + 1)πtdt

=
1

sinπx

[
− cos(2m + 1)πt

(2m + 1)π

]ξ
x
.

Thus, ∣∣∣∣∣

∫ x

1/2

sin(2m + 1)πt

sin πt
dt

∣∣∣∣∣ ≤
1

(2m + 1)πx

by the elementary inequality sinπx ≥ 2x, valid for 0 ≤ x ≤ 1/2.
The result is proved for 0 < x ≤ 1/2. We still need to treat the range
1/2 < x < 1. Observe that Ψ(1−x) = Ψ(−x) (because Ψ has period
1) and Ψ(−x) = −Ψ(x) because for x > 0, [−x] = −[x] − 1. Thus by
the above,

∣∣∣∣∣∣
Ψ(1 − x) +

∑

0<|m|≤M

e(m(1 − x))
2πim

∣∣∣∣∣∣
≤ 1

(2M + 1)π(1 − x)
.
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Now, 1 − x = ||x|| for 1/2 < x < 1. Hence
∣∣∣∣∣∣
−Ψ(x) +

∑

0<|m|≤M

e(−mx)
2πim

∣∣∣∣∣∣
≤ 1

(2M + 1)π||x|| .

which gives
∣∣∣∣∣∣
Ψ(x) +

∑

0<|m|≤M

e(mx)
2πim

∣∣∣∣∣∣
≤ 1

(2M + 1)π||x||

for 1
2 ≤ x < 1. This completes the proof. �.

5.5.4 Let f(x) be a differentiable function on [0, 1] satisfying |f ′(x)| ≤ K.
Show that

∣∣∣∣∣∣

∑

|m|≤M

∫ 1

0
f(x)e(mx)dx − f(0) + f(1)

2

∣∣∣∣∣∣
� K log M

M
.

Deduce that ∞∑

−∞

∫ 1

0
f(x)e(mx)dx =

f(0) + f(1)
2

.

By integrating by parts, we have for m �= 0,

∫ 1

0
f(x)e(mx)dx =

[
f(x)e(mx)

2πim

]1

0

−
∫ 1

0

f ′(x)e(mx)dx

2πim
.

Summing both sides over 0 < |m| ≤ M gives

∑

0<|m|≤M

∫ 1

0
f(x)e(mx)dx = −

∫ 1

0
f ′(x)

∑

0<|m|≤M

e(mx)
2πim

dx,

since [
f(x)

∑

0<|m|≤M

e(mx)
2πim

]1

0

= 0,

as is easily seen by pairing m and −m in the summation.
By the previous exercise,

−
∑

0<|m|≤M

e(mx)
2πim

= Ψ(x) + O
( 1

M ||x||
)
.
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Before inserting this fact into the integral, let us note that
∣∣∣∣∣∣

∫ 1/M

0
f ′(x)

∑

0<|m|≤M

e(mx)
2πim

dx

∣∣∣∣∣∣
≤ K log M

M
.

Similarly,
∣∣∣∣∣∣

∫ 1

1− 1
M

f ′(x)
∑

0<|m|≤M

e(mx)
2πim

dx

∣∣∣∣∣∣
≤ K log M

M
.

Thus,

−
∫ 1−1/M

1/M
f ′(x)

∑

0<|m|≤M

e(mx)
2πim

dx

=
∫ 1−1/M

1/M
f ′(x)Ψ(x)dx + O

(∫ 1−1/M

1/M

f ′(x)dx

M ||x||

)
.

The error term is easily estimated by breaking the interval into two
parts: [1/M, 1/2] and [1/2, 1 − 1/M ]. The error is O(K log M/M).

Therefore,

∑

0<|m|≤M

∫ 1

0
f(x)e(mx)dx =

∫ 1

0
f ′(x)Ψ(x)dx + O

(
K log M

M

)
.

The integral on the right-hand side is

∫ 1

0
f ′(x)

(
x − 1

2

)
dx =

[
f(x)

(
x − 1

2

)]1

0

−
∫ 1

0
f(x)dx

=
f(1) + f(0)

2
−
∫ 1

0
f(x)dx,

which completes the proof. �
5.5.5 By using the previous exercise with f(x) = x2, deduce that

∞∑

m=1

1
m2

=
π2

6
.
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We have for m �= 0,

∫ 1

0
f(x)e(mx)dx =

[
x2e(mx)

2πim

]1

0

− 2
∫ 1

0

xe(mx)dx

2πim

=
1

2πim
+

1
2π2m2

,

by an easy integration by parts.
For m = 0, ∫ 1

0
f(x)dx =

1
3
.

By Exercise 5.5.4,

1
3

+
∑

0<|m|≤M

( 1
2πim

+
1

2π2m2

)
=

1
2

+ O
( log M

M

)
.

Since ∑

0<|m|≤M

1
2πim

= 0,

the result is now immediate upon letting M → ∞. �

5.5.6 (Pólya - Vinogradov inequality) Let χ be a primitive character
(mod q). Show that for q > 1,

∣∣∣
∑

n≤x

χ(n)
∣∣∣� q1/2 log q.

We use Gauss sums. By Example 5.3.1 and Exercise 5.3.2, we can
write

τ(χ)χ(n) =
q∑

m=1

χ(m)e
(mn

q

)
.

Since the summation is over any complete set of residues (mod q),
we can replace the range of summation by −q/2 < m < q/2. Thus,

τ(χ)
∑

n≤x

χ(n) =
∑

0<|m|≤q/2

χ(m)
∑

n≤x

e
(mn

q

)
.
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The inner sum is bounded by 2/|e(m/q) − 1|. Writing e(m/q) − 1 =
e(m/2q)(e(m/2q) − e(−m/2q)) we obtain

|τ(χ)|

∣∣∣∣∣∣

∑

n≤x

χ(n)

∣∣∣∣∣∣
≤

∑

0<|m|<q/2

1
| sinπm/q| .

Using the inequality | sinπx| ≥ 2x for 0 ≤ x ≤ 1/2, we get

|τ(χ)|
∑

n≤x

χ(n)| � q log q.

Finally, by Theorem 5.3.3, |τ(χ)| = q1/2, so that the result is now
immediate. �
5.5.7 Show that if χ is a primitive character (mod q), then

L(1, χ) =
∑

n≤x

χ(n)
n

+ O

(
q1/2 log q

x

)

for any x ≥ 1 and q > 1.

We have

L(1, χ) =
∞∑

n=1

χ(n)
n

=
∑

n≤x

χ(n)
n

+
∑

n>x

χ(n)
n

.

By partial summation and the Pólya - Vinogradov inequality
(Exercise 5.5.6), the second sum is

� q1/2 log q

x

as required. �
5.5.8 Prove that

∑

χ�=χ0

L(1, χ) = ϕ(q) + O(q1/2 log q),

where the summation is over all nontrivial characters (mod q).

By Exercise 5.5.7,

L(1, χ) =
∑

n≤x

χ(n)
n

+ O
(q1/2 log q

x

)
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for any nontrivial character χ because the conductor of χ is bounded
by q. Summing this over χ �= χ0 (mod q), we get

∑

χ�=χ0

L(1, χ) =
∑

n≤x

1
n

( ∑

χ�=χ0

χ(n)
)

+ O

(
q3/2 log q

x

)
.

We choose x = q. Also,

∑

χ�=χ0

χ(n) =

⎧
⎨

⎩

ϕ(q) − 1 if n ≡ 1 (mod q),

−1 otherwise.

Thus, ∑

χ�=χ0

L(1, χ) = ϕ(q) + O
(
q1/2 log q

)
,

as desired. �
5.5.9 For any s ∈ C with Re(s) > 0, show that for any x ≥ 1,

L(s, χ) =
∑

n≤x

χ(n)
ns

+ O

(
|s|q1/2 log q

σxσ

)
,

where χ is a nontrivial character (mod q) and σ = Re(s).

By partial summation and the Pólya - Vinogradov inequality, we
have

∑

n>x

χ(n)
ns

� |s|
∫ ∞

x

O(q1/2 log q)
tσ+1

dt,

from which the result is now immediate. �
5.5.10 Prove that for any σ > 1/2,

∑

χ�=χ0

L(σ, χ) = ϕ(q) + O
(
q3/2−σ

)

where the sum is over all nontrivial characters (mod q).

By the previous exercise,

L(σ, χ) =
∑

n≤x

χ(n)
nσ

+ O

(
q1/2 log q

xσ

)
.
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Summing both sides over χ �= χ0, we get

∑

χ�=χ0

L(σ, χ) =
∑

n≤x

1
nσ

⎛

⎝
∑

χ�=χ0

χ(n)

⎞

⎠+ O

(
q3/2 log q

xσ

)
.

We treat the inner sum as in Exercise 5.5.8 and choose x = q, to
obtain

∑

χ�=χ0

L(σ, χ) = ϕ(q) + O
(
q1−σ + q3/2−σ

)

= ϕ(q) + O
(
q3/2−σ

)
,

as required. �
5.5.11 Let Bn(x) denote the nth Bernoulli polynomial introduced in Chap-
ter 2. For n ≥ 2, show that

Bn(x)
n!

=
∑

m�=0

e(mx)
(2πim)n

.

For n ≥ 2, the function defined by the series is uniformly contin-
uous. Let us denote it by B̃n(x)/n!. Then B̃′

n/n! = B̃n−1(x)/(n− 1)!,
so that B̃′

n(x) = nB̃n−1(x). Also,

∫ 1

0
B̃n(x)dx = 0 for n ≥ 2.

Exercise 5.5.3 shows that the formula stated in the exercise holds for
n = 1. These must therefore coincide with the Bernoulli polynomi-
als. This completes the proof. �
5.5.12 Let f(x) be differentiable on [A, B] satisfying |f ′(x)| ≤ K for all
x ∈ [A, B]. Show that

B∑

n=A

′f(n) =
∞∑

m=−∞

∫ B

A
f(x)e(mx)dx,

where the dash on the summation means that the end-terms are replaced
by f(A)/2 and f(B)/2.
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By Exercise 5.5.4, we have
∣∣∣∣∣∣
f(n) + f(n + 1)

2
−
∑

|m|≤M

∫ n+1

n
f(x)e(mx)dx

∣∣∣∣∣∣
≤ K log M

M
.

Adding this result over n ∈ [A, B] gives
∣∣∣∣∣∣

B∑

n=A

′
f(n) −

∑

|m|≤M

∫ B

A
f(x)e(mx)dx

∣∣∣∣∣∣
≤ (B − A)K log M

M
.

Now let M → ∞ to deduce the result. �
5.5.13 Apply the previous exercise to each of the functions f(x) =
cos(2πx2/N) and f(x) = sin(2πx2/N) to deduce that

S =
N−1∑

n=0

e
(n2

N

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(1 + i)N1/2 if N ≡ 0 (mod 4),
N1/2 if N ≡ 1 (mod 4),
0 if N ≡ 2 (mod 4),
iN1/2 if N ≡ 3 (mod 4).

By Exercise 5.5.12, we have to evaluate

N∑

n=0

′
e(n2/N) =

∞∑

m=−∞

∫ N

0
e

(
x2

N
+ mx

)
dx.

We change variables in the integrand: put x = Nt so that the
integral is

N

∫ 1

0
e(Nt2 + mNt)dt = Ne

(
−Nm2

4

)∫ 1

0
e
(
N(t + m/2)2

)
dt.

We must therefore evaluate
∫ 1

0
e(N(t + m/2)2)dt =

∫ m/2+1

m/2
e(Ny2)dy.

Thus, we have

N∑

n=0

′
e(n2/N) = N

∞∑

m=−∞
e

(
−Nm2

4

)∫ m/2+1

m/2
e(Ny2)dy.
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Now e(−Nm2/4) is 1 if m is even, and i−N if m is odd. This suggests
we divide the infinite sum into two parts, m even and m odd:

N∑

n=0

′
e(n2/N)= N

∞∑

j=−∞

∫ j+1

j
e(Ny2)dy+Ni−N

∞∑

j=−∞

∫ j+1/2

j−1/2
e(Ny2)dy

= N(1 + i−N )
∫ ∞

−∞
e(Ny2)dy.

If we put y = N−1/2u, then the integral becomes

N−1/2

∫ ∞

−∞
e(u2)du = N−1/2c

for some constant c. This constant is easily evaluated upon setting
N = 1. Then

N∑

n=0

′
e(n2/N) = 1,

so that c = (1 + i−1)−1 = (1 − i)−1. Therefore,

N∑

n=0

′
e(n2/N) =

(
1 + i−N

1 − i

)
N1/2.

Notice that the left-hand side is equal to S and the right-hand side
takes the four values stated according as N belongs to the various
classes (mod 4).

5.5.14 Let χ be a nontrivial quadratic character (mod p) with p prime.
Show that

τ(χ) =
p−1∑

m=1

χ(m)e
(m

p

)
=
{ √

p if p ≡ 1 (mod 4),
i
√

p if p ≡ 3 (mod 4).

Clearly,

τ(χ) − 1 =
p−1∑

m=1

(1 + χ(m))e
(m

p

)
,

since
∑p−1

m=1 e(m/p) = −1.
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Now, 1 + χ(m) = 2 or 0 according as m is a square (mod p) or not
for (m, p) = 1. Thus,

τ(χ) =
p−1∑

m=1

e
(m2

p

)
+ 1

=
p−1∑

m=0

e
(m2

p

)
.

By the previous exercise, the sum is p1/2 if p ≡ 1 (mod 4) and ip1/2

if p ≡ 3 (mod 4), and this completes the proof.

5.5.15 Let φ(s) = (2π)−sΓ(s)ζ(s)ζ(s + 1). Show that φ(−s) = φ(s).

By Legendre’s duplication formula (see Exercise 6.3.6) we have

Γ(s)Γ
(1

2

)
= 2s−1Γ

(s

2

)
Γ
(s + 1

2

)
.

Also, by Exercise 6.3.5, Γ(1/2) =
√

π. Therefore,

φ(s) = (2π)−sπ−1/22s−1Γ
(s

2

)
Γ
(s + 1

2

)
ζ(s)ζ(s + 1)

= 2−1(π−s/2Γ(s/2)ζ(s))π−(s+1)/2Γ
(s + 1

2

)
ζ(s + 1).

By the functional equation of the ζ-function, we see that

φ(s) = 2−1(π−(1−s)/2Γ
(1 − s

2

)
ζ(1 − s))πs/2Γ

(−s

2

)
ζ(−s)

= φ(−s)

by another application of the duplication formula.

5.5.16 Show that φ(s) in Exercise 5.5.15 has a double pole at s = 0 and
simple poles at s = ±1. Show further that Ress=1φ(s) = π/12 and
Ress=−1φ(s) = −π/12.

Since Γ(s) has a simple pole at s = 0 and ζ(s + 1) has a simple
pole at s = 0, it is clear that φ(s) has a double pole at s = 0. It is also
clear that φ(s) has simple poles at s = 1 and s = −1, the latter pole
arising from the Γ-function. We have

Ress=1φ(s) = lim
s→1

(s − 1)φ(s) = (2π)−1ζ(2).
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By Exercise 5.5.5, this is equal to π/12. Also,

Ress=−1φ(s) = lim
s→−1

(s + 1)φ(s)

= lim
s→−1

(2π)−s Γ(s + 2)
s

ζ(s)ζ(s + 1)

= −(2π)ζ(−1)ζ(0).

By Exercise 5.2.4, ζ(0) = −1/2. Also, by the functional equation for
the Riemann zeta function, we have

π1/2Γ
(
− 1

2

)
ζ(−1) = π−1ζ(2) = π/6.

Now (−1/2)Γ(−1/2) = Γ(1/2), since sΓ(s) = Γ(s + 1). By Exercise
6.3.5, Γ(1/2) =

√
π. Therefore

ζ(−1) = −1/12.

Therefore,

Ress=−1φ(s) = −(2π)(−1/12)(−1/2) = π/12.

�
5.5.17 Show that if σ(n) =

∑
d|n d, then

∞∑

n=1

σ(n)
ns+1

= ζ(s)ζ(s + 1),

and that
∞∑

n=1

σ(n)
n

e−nx =
1

2πi

∫ 2+i∞

2−i∞
x−sΓ(s)ζ(s)ζ(s + 1)ds.

The first part is clear. The second part follows from Exercise
6.6.3. �
5.5.18 Show that

∞∑

n=1

σ(n)
n

e−2πnx =
π

12x
− πx

12
+

1
2

log x +
∞∑

n=1

σ(n)
n

e−2πn/x.
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By Exercise 5.5.17, we can move the line of integration to Re(s) =
−2 to deduce

∞∑

n=1

σ(n)
n

e−2πnx =
π

12x
− πx

12
+

1
2

log x

+
1

2πi

∫ −2+i∞

−2−i∞
(2πx)−sΓ(s)ζ(s)ζ(s + 1)ds

by an application of Exercise 5.5.16. By Exercise 5.5.15, the inte-
grand becomes

xsφ(−s) = xsφ(s)

upon changing s to −s. Moreover,

1
2πi

∫ 2+i∞

2−i∞
xs(2π)−sΓ(s)ζ(s)ζ(s + 1)ds =

∞∑

n=1

σ(n)
n

e−2πn/x,

as desired. �
5.5.19 For a and b coprime integers and b > 0, define

C
(a

b

)
=

b−1∑

j=0

e2πij2a/b.

Let q be prime and (p, q) = 1. Show that

lim
t→0

√
tθ

(
t +

2pi

q

)
=

1
q
C

(
−p

q

)
.

Observe that

θ

(
t +

2pi

q

)
=

∞∑

n=−∞
e−πn2te−2πin2p/q

=
q−1∑

b=0

e−2πib2p/q
( ∑

n≡b (mod q)

e−πn2t
)
.

We now write n = qm + b in the inner sum:

∑

n≡b(mod q)

e−πn2t =
∞∑

m=−∞
e−πt(qm+b)2 .
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Let θ(t, a) =
∑∞

n=−∞ e2πina−n2πt. Then, by Exercise 5.1.7, we have

∞∑

m=−∞
e−πtq2(m+b/q)2 =

(
tq2
)−1/2

θ

(
1

tq2
,
b

q

)
.

Hence,

lim
t→0

√
tθ

(
t +

2pi

q

)
= lim

t→0

√
t

q−1∑

b=0

e−2πib2p/q(tq2)−1/2θ

(
1

tq2
,
b

q

)
.

As t → 0, 1/tq2 → ∞, and the θ-term goes to 1. The result now
follows. �
5.5.20 Let r = p/q. Show that

lim
t→0

√
t

t + 2ir
θ

(
1

t + 2ir

)
=

(1 − i)
4
√

pq
C

(
q

4p

)
,

with notation as in the previous exercise.
Write

1
t + 2ir

= τ − i

2r
,

where

τ =
it2 + 2rt

2r(t2 + 4r2)
.

Then the limit in question is

lim
t→0

√
t

t + 2ir

∞∑

n=−∞
e−πn2(τ−i/2r)

= lim
t→0

√
t

t + 2ir

4p−1∑

b=0

e2πib2q/4p
∑

n≡b (mod 4p)

e−πn2τ ,

which is treated as in the previous exercise. The limit is easily eval-
uated to be √

2p

qi

1
4p

C
( q

4p

)
.

Since

Θ(z) =
∞∑

−∞
eπin2z
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is analytic for Im(z) > 0, the functional equation of the θ-function
extends to Θ:

Θ(−1/z) =
√

z

i
Θ(z).

Now,
√

z is well-defined on the cut plane C \ (−∞, 0]. This means
that i = eiπ/2 and

1√
i

=
√

2
2

(1 − i)

in the above limit that was evaluated. This completes the proof. �

5.5.21 Deduce from the previous exercise the law of quadratic reciprocity:
(

p

q

)(
q

p

)
= (−1)

p−1
2

· q−1
2

for odd primes p and q, and (a/b) denotes the Legendre symbol.

The limits in the two previous exercises are equal by the func-
tional equation of the θ-function. Therefore,

1
q
C
(
− p

q

)
=

1 − i

4
√

pq
C
( q

4p

)
.

We have

C
(
− p

q

)
= (−1)(q−1)/2

(p

q

)
C
(1

q

)

and it is easily checked that

C
( q

4p

)
= C

(pq

4

)
C
(4q

p

)
.

Also
C
(pq

4

)
= 2(1 + ipq).

We use Exercise 5.5.13 (or put p = 1 in the above identity relating
C(−p/q) with C(q/4p)) to deduce

C(1/q) =

⎧
⎨

⎩

√
q if q ≡ 1 (mod 4),

i
√

q if q ≡ 3 (mod 4).
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Moreover, C(4q/p) = (q/p)C(1/p), so that

(−1)
q−1
2

q

(
p

q

)
C

(
1
q

)
=

(1 − i)(1 + ipq)
2
√

pq

(
q

p

)
C

(
1
p

)

from which the result easily follows. �
5.5.22 Suppose that f(s) is an entire function satisfying the functional
equation

AsΓ(s)f(s) = A1−sΓ(1 − s)f(1 − s).

Show that if f(1/2) �= 0, then

f ′
(1

2

)
= −f(1/2)

(
log A +

Γ′(1/2)
Γ(1/2)

)
.

We logarithmically differentiate the functional equation and set
s = 1/2 to get the desired result. �



6
Hadamard Products

6.1 Jensen’s theorem

6.1.4 Show that
∫ R

0

n(r)dr

r
≤ max

|z|=R
log |f(z)| − log |f(0)|,

with f as in Jensen’s theorem.

Let us order the zi so that

0 = |z0| < |z1| ≤ |z2| ≤ · · · ≤ |zn| < |zn+1| = R.

Then

∫ R

0

n(r)
r

dr =
n∑

i=0

∫ |zi+1|

|zi|

n(r)
r

dr

= log
|z2|
|z1|

+ 2 log
|z3|
|z2|

+ · · · + n log
R

|zn|

= log
(

Rn

|z1||z2| · · · |zn|

)
.



358 6. Hadamard Products

The result is now clear from Jensen’s theorem. �

6.1.5 If f(z) is of order β, show that nf (r) = O(rβ+ε), for any ε > 0.

Since

max
|z|=R

|f(z)| � exp
(
Rβ+ε

)
,

we get by Exercise 6.1.4 that

∫ 2R

0

n(r)
r

dr � Rβ+ε.

But then ∫ 2R

R

n(r)
r

dr � Rβ+ε,

so that n(R) log 2 � Rβ+ε, as desired. �

6.1.6 Let f(z) be an entire function of order β. Show that

∞∑

n=1

|zn|−β−ε

converges for any ε > 0 (Here, we have indexed the zeros zi so that
|z1| ≤ |z2| ≤ · · · ).

By partial summation,

∞∑

n=1

|zn|−β−ε �
∫ ∞

1

n(r)dr

rβ+1+ε
.

By Exercise 6.1.5, n(r) � rβ+ε/2, and therefore the integral con-
verges.

6.2 The Gamma Function

6.3.1 Show that ∫ ∞

0

vx−1dv

1 + v
=

π

sinπx

for 0 < x < 1.
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Consider the integral
∫

Cε

zx−1dz

1 + z
,

where Cε is the contour taken along the real axis from ε to R, then in
the positive direction along the circle c1 of radius R centered at the
origin, and then back along the real axis to z = ε and finally around
the circle c2 of radius ε centered at the origin, taken in the negative
direction.

The function
zx−1

1 + z

is regular except at z = −1, where it has a simple pole with residue

eπi(x−1).

We will take ε < 1 < R so that integrating the function along the
contour indicated above shows by Cauchy’s theorem
∫ R

ε

ux−1du

1 + u
+
∫

c1

zx−1dz

1 + z
+
∫ ε

R

(ue2πi)x−1du

1 + u
+
∫

c2

zx−1dz

1 + z

= (2πi)eπi(x−1).

The two integrals along the real axis together give

(1 − e2πi(x−1))
∫ R

ε

ux−1du

1 + u
= −2ieπix(sinπx)

∫ R

ε

ux−1du

1 + u
.

The other two integrals tend to 0 as R → ∞ because on c1,
∣∣∣∣
zx−1

1 + z

∣∣∣∣ ≤
Rx−1

R − 1
,

so that ∣∣∣∣
∫

c1

zx−1dz

1 + z

∣∣∣∣ ≤
Rx−1

R − 1
2πR =

2πRx

R − 1
,

which tends to 0, since x < 1.
Similarly, ∣∣∣∣

∫

c2

zx−1dz

1 + z

∣∣∣∣ ≤
2πεx

1 − ε
,
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which tends to 0, as ε → 0 since x > 0. Therefore,

−2ieπix(sin πx)
∫ ∞

0

ux−1du

1 + u
= −2πieπix,

which gives ∫ ∞

0

ux−1

1 + u
=

π

sin πx
.

�
6.3.2 Show that

Γ(x)Γ(y) = 2Γ(x + y)
∫ π/2

0

(cos θ)2x−1(sin θ)2y−1dθ

for x, y > 0.

For x, y > 0, we have

Γ(x)Γ(y) =
(∫ ∞

0
e−ttx−1dt

)(∫ ∞

0
e−uuy−1du

)
.

Putting u = tv and inverting the order of integration, we obtain

Γ(x)Γ(y) =
∫ ∞

0
e−ttx−1dt

∫ ∞

0
tyvye−tv dv

v

=
∫ ∞

0
vy−1dv

∫ ∞

0
e−t(1+v)tx+y−1dt

= Γ(x + y)
∫ ∞

0

vy−1dv

(1 + v)x+y
.

The interchanging of integrals is easily justified by Fubini’s theo-
rem. This last integral is

2
∫ π/2

0
(cos θ)2x−1(sin θ)2y−1dθ,

where we have put v = tan2 θ.
Again, making a substitution of λ = cos2 θ transforms the integral

to ∫ 1

0
λx−1(1 − λ)y−1dλ,
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which is the familiar beta function B(x, y).
For 0 < x < 1, we obtain

Γ(x)Γ(1 − x) =
∫ 1

0
λx−1(1 − λ)−xdλ,

Putting

v =
λ

1 − λ

in the integral gives

Γ(x)Γ(1 − x) =
∫ ∞

0

vx−1dv

1 + v
,

which by Exercise 6.3.1 is
π

sinπx
,

which gives the desired result. �
6.3.3 Show that

Γ(x)Γ(y) = Γ(x + y)
∫ 1

0

λx−1(1 − λ)y−1dy.

(The integral is denoted by B(x, y) and called the beta function.)

Making the substitution of λ = cos2 θ in the integral of Exercise
6.3.2 gives ∫ 1

0
λx−1(1 − λ)y−1dλ,

which is the familiar beta function B(x, y). �
6.3.4 Prove that

Γ(x)Γ(1 − x) =
π

sinπx

for 0 < x < 1.

This is clear from the solution to Exercise 6.3.2. �
6.3.5 Prove that

Γ
(

1
2

)
=

√
π.

In Exercise 6.3.4, put x = y = 1
2 to obtain

Γ
(1

2

)2
= 2Γ(1)

∫ π/2

0
dθ = π.
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Since Γ(1/2) is positive, we obtain Γ(1/2) =
√

π. �

6.3.6 Show that

Γ(2x)Γ
(1

2

)
= 22x−1Γ(x)Γ

(
x +

1
2

)

for x > 0.

In Exercise 6.3.3, put x = y to obtain

Γ(x)2 = Γ(2x)
∫ 1

0
λx−1(1 − λ)x−1dλ

= 2Γ(2x)
∫ 1/2

0
λx−1(1 − λ)x−1dλ.

Since λ(1−λ) ≤ 1
4 , we may write λ(1−λ) = 1

4 −
t
4 , so that λ = 1−

√
t

2 .
This substitution gives

Γ(x)2 =
Γ(2x)

2

∫ 1

0

(1 − t

4

)x−1 dt√
t

= 21−2xΓ(2x)
∫ 1

0
(1 − t)x−1t−1/2dt.

The latter integral is, by Exercise 6.3.3,

Γ(x)Γ
(

1
2

)

Γ
(
x + 1

2

) .

Inserting this in the penultimate step gives the desired result. �

6.3.7 Let c be a positive constant. Show that as x → ∞,

Γ(x + c) ∼ xcΓ(x).
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Suppose first that c > 1. Then, by Exercise 6.3.3,

Γ(x)Γ(c)
Γ(x + c)

=
∫ 1

0
(1 − λ)c−1λx−1dλ

=
∫ ∞

0

(1 − e−t)c−1e−xtdt

=
∫ ∞

0
tc−1e−xtdt −

∫ ∞

0

{
tc−1 − (1 − e−t)c−1

}
e−xtdt.

The first integral is Γ(c)x−c. The second integral is easily estimated
as follows. Notice that 1 − e−t < t for t > 0, and that

1 − e−t > t − 1
2
t2

for 0 < t < 1. Thus, the second integral is positive and less than

∫ 1

0

{
1 − (1 − t/2)c−1

}
tc−1e−xtdt +

∫ ∞

1
tc−1e−xtdt.

For 0 < x < 1, we have for c > 1,

1 −
(
1 − t

2

)c−1
≤ t,

as is easily checked by elementary calculus. Thus, the second inte-
gral is less than

∫ 1

0
tce−xtdt +

∫ ∞

1
tce−xtdt =

Γ(c + 1)
xc+1

.

This proves the result for c > 1. For 0 < c < 1, we can use the
formula

Γ(x + 1) = xΓ(x)

to deduce the result. �

6.3.8 Show that
Γ(x) ∼ e−xxx−1/2

√
2π

as x → ∞.
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By Exercise 2.1.12 we know that for a natural number n,

log Γ(n) = log(n − 1)! =
(
n − 1

2

)
log n − n + c1 + o(1)

as n → ∞ (and with c1 an absolute constant). If x is not an integer,
let us write x = n+ c for some 0 < c < 1. By Exercise 6.3.7, we have

Γ(n + c) ∼ ncΓ(n),

so that

log Γ(x) = log Γ(n) + c log n + o(1)

=
(
x − 1

2

)
log n − n + c1 + o(1).

Also,

log
(n + c

n

)
= log

(
1 +

c

n

)
=

c

n
+ O

( 1
n2

)
,

so that
log x = log n +

c

n
+ O

( 1
x2

)
.

Inserting this observation above gives

log Γ(x) =
(
x − 1

2

)
log x − x + c1 + o(1).

We can use the duplication formula to evaluate c1. Indeed, on the
one hand we have from above

log Γ(2x) =
(
2x − 1

2

)
log 2x − 2x + c1 + o(1).

On the other hand, by the duplication formula (Exercise 6.3.6) we
have

log Γ(2x) = (2x − 1) log 2 + log Γ(x) + log Γ
(
x +

1
2

)
− 1

2
log π,

which is equal to
(
2x − 1

2

)
log 2x − 2x − 1

2
log 2 + 2c1 −

1
2

log π + o(1),

so that
c1 = 2c1 −

1
2

log π − log 2
2

.
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Thus, as required

c1 = log
√

2π. �

6.3.9 Show that 1/Γ(z) is an entire function with simple zeros at z =
0,−1,−2, . . . .

From the functional equation

Γ(z)Γ(1 − z) =
π

sinπz
,

we see that Γ(z)Γ(1 − z) is regular except when z is an integer, in
which case it has a simple pole.

We also see from this functional equation that since Γ(z) is regular
in Re(z) > 0, Γ(1 − z) has simple poles at z = 1, 2, 3, . . . . Therefore,

1/Γ(z) = Γ(1 − z)(sin πz)/π

is regular in Re(1 − z) ≥ 0. If Re(z) ≤ 0, then Re(1 − z) ≥ 1 and the
right-hand side of the above equation is regular. This completes the
proof. �
6.3.10 Show that for some constant K,

Γ′(z)
Γ(z)

=
∫ 1

0

{
1 − (1 − t)z−1

}dt

t
− K.

By Exercise 6.3.3, we have

Γ(z − h)Γ(h)
Γ(z)

=
∫ 1

0
th−1(1 − t)z−h−1dt

=
1
h

+
∫ 1

0

{
(1 − t)z−h−1 − 1

}
th−1dt.

The Taylor expansion of the left-hand side with respect to h is

1
Γ(z)

{
Γ(z) − Γ′(z)h + · · ·

}{1
h

+ K + · · ·
}

=
1
h
− Γ′(z)

Γ(z)
+ K + O(h).
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The Taylor expansion of the right-hand side is

=
1
h

+
∫ 1

0

{
(1 − t)z−1 − 1

}dt

t
+ O(h),

so that by equating the constant terms we get the desired result. �

6.3.11 Show that for z not equal to a negative integer,

Γ′(z)
Γ(z)

=
∞∑

n=0

( 1
n + 1

− 1
n + z

)
− K

for some constant K.

First, for z > 1, we use Exercise 6.3.10 and expand

1
t

=
∞∑

n=0

(1 − t)n

in the integrand and integrate term by term to obtain the result. The
step is valid for z > 1 and by analytic continuation for all z unequal
to a negative integer. �

6.3.12 Derive the Hadamard factorization of 1/Γ(z) :

1/Γ(z) = eγzz
∞∏

n=1

(
1 +

z

n

)
e−z/n,

where γ denotes Euler’s constant.

We integrate the formula

Γ′(z)
Γ(z)

=
∞∑

n=0

( 1
n + 1

− 1
n + z

)
− K

from z = 1 to z = w and take exponentials, to obtain

1
Γ(z)

= eBz
∞∏

n=1

(
1 +

z

n

)
e−z/n

for some constant B. Putting z = 1 gives
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0 = B +
∞∑

n=1

{
log
(
1 +

1
n

)
− 1

n

}

= B + lim
N→∞

N∑

n=1

{
log
(
1 +

1
n

)
− 1

n

}

= B − γ. �

6.3.13 Show that

log Γ(z) =
(

z − 1
2

)
log z − z +

1
2

log 2π +
∫ ∞

0

[u] − u + 1
2

u + z
du.

By Exercise 6.3.12,

log Γ(z) =
∞∑

n=1

{ z

n
− log

(
1 +

z

n

)}
− γz − log z

with each logarithm having its principal value.
By Exercise 2.1.12, we see that

N−1∑

n=1

{ z

n
− log

(
1 +

z

n

)}
= log(N − 1)! + z

(
1 +

1
2

+ · · · + 1
N − 1

)

−
(
z +

1
2

)
log z

−
(
N − 1

2
+ z
)

log(N + z) − N

+
∫ N

0

B1(u)du

u + z
.

Letting N → ∞, and using

1 +
1
2

+ · · · + 1
N − 1

= log N + γ + o(1)
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as well as
log(N + z) = log N +

z

N
+ O

( 1
N2

)
,

we obtain the desired result by an application of Stirling’s formula.
This completes the proof. �
6.3.14 For any δ > 0, show that

log Γ(z) =
(
z − 1

2

)
log z − z +

1
2

log 2π + O

(
1
|z|

)

uniformly for −π + δ ≤ arg z ≤ π − δ.

By the previous exercise, it suffices to estimate
∫ ∞

0

B1(u)du

u + z
.

Let us write f(v) =
∫ v
0

(
[u] − u + 1

2

)
du. Then f is bounded, since

f(v + 1) = f(v) for any integer v. Thus,
∫ ∞

0

f ′(u)
u + z

du =
∫ ∞

0

f(u)du

(u + z)2
.

Writing z = reiϕ, we see that

|u + z|2 = (u + reiϕ)(u + re−iϕ)

= (u + r cos ϕ)2 + r2 sin2 ϕ

= u2 + 2ur cos ϕ + r2.

We break the integral into three parts,

∫ r/2

0
+
∫ 2r

r/2
+
∫ ∞

2r
.

Since f is bounded, each of these integrals is O
(

1
r

)
as required. �

6.3.15 If σ is fixed and |t| → ∞, show that

|Γ(σ + it)| ∼ e−
1
2
π|t||t|σ− 1

2

√
2π.
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This is immediate from Exercise 6.3.14.

6.3.16 Show that 1/Γ(z) is of order 1.

This is a consequence of Stirling’s formula.

6.3.17 Show that

Γ′(z)
Γ(z)

= log z + O
( 1
|z|
)

for |z| → ∞ in the angle −π + δ < arg z < π − δ for any fixed δ > 0.

By Exercise 6.3.13, we can differentiate the expression

log Γ(z) =
(

z − 1
2

)
log z − z +

1
2

log 2π +
∫ ∞

0

[u] − u + 1
2

u + z
du

to obtain

Γ′(z)
Γ(z)

= log z − 1
2z

−
∫ ∞

0

[u] − u + 1
2

(u + z)2
du.

The integral is easily seen to be O(1/|z|). �

6.3 Infinite Products for ξ(s) and ξ(s, χ)

6.4.1 Show that for some constant c,

|ξ(s)| < exp(c|s| log |s|)

as |s| → ∞. Conclude that ξ(s) has order 1.
By the functional equation,

ξ(s) = ξ(1 − s),

so that it suffices to prove the result for σ = Re(s) ≥ 1/2.
Clearly,

∣∣∣
1
2
s(s − 1)π−s/2

∣∣∣ < exp(c|s|),

and by Stirling’s formula

|Γ(s/2)| < exp(c|s| log |s|),
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which is valid in the range under consideration. We also have

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx,

valid for σ > 0. (Here {x} denotes the fractional part of x.) The
integral is bounded for σ ≥ 1/2. Since

lim
|s|→∞

s

s − 1
= 1,

we see that for some constant c,

|ζ(s)| < c|s|

as |s| → ∞. Putting all this together shows that ξ(s) satisfies the
stated inequality. Observe also that ζ(s) → 1 as s → ∞ through real
values, and since log Γ(s) ∼ s log s, we see that

|ξ(s)| > exp(c1s log s)

for such values of s. Therefore, ξ(s) has order 1. �
6.4.2 Prove that ζ(s) has infinitely many zeros in 0 ≤ Re(s) ≤ 1.

The zeros of ζ(s) in the stated region are precisely those of ξ(s). If
there were only finitely many zeros, ξ(s)e−cs would be a polynomial
for some constant c. In particular,

|ξ(s)| � eA|s|,

for some constant A. This contradicts the observation(deduced from
the solution to the previous exercise) that for a positive constant c1,

|ξ(s)| > exp(c1s log s)

for real s tending to infinity. �
6.4.3 Show that

ξ(s) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ,

where the product is over the nontrivial zeros of ζ(s) in the region 0 ≤
Re(s) ≤ 1 and A = − log 2, B = −γ/2 − 1 + 1

2 log 4π, where γ is
Euler’s constant.
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The existence of the factorization is clear since ξ(s) has order 1.
Since the trivial zeros of ζ(s) are canceled by the simple poles of
Γ(s/2), we see that the product must be over nontrivial zeros of
ζ(s). Notice that

ξ(1) = lim
s→1

1
2
s(s − 1)π−s/2Γ

(s

2

)
ζ(s)

=
1
2
π−1/2Γ

(1
2

)
lim
s→1

(s − 1)ζ(s)

=
1
2
π−1/2Γ

(1
2

)
=

1
2

by Exercise 6.3.5. Therefore, ξ(0) = 1
2 , and consequently, eA = 1/2,

as required. To evaluate B, we logarithmically differentiate ξ(s):

ξ′(s)
ξ(s)

=
ζ ′(s)
ζ(s)

+
1

s − 1
− 1

2
log π +

Γ′
(

s
2 + 1

)

2Γ
(

s
2 + 1

)

on the one hand,

ξ′(s)
ξ(s)

= B +
∑

ρ

( 1
s − ρ

+
1
ρ

)
,

so that

B =
ξ′(0)
ξ(0)

= −ξ′(1)
ξ(1)

from the functional equation. We therefore need to evaluate ξ′(1)
ξ(1) .

For the Hadamard product for 1/Γ(s), we see that

Γ′
(

s
2 + 1

)

2Γ
(

s
2 + 1

) =
γ

2
+

∞∑

n=1

( 1
s + 2n

− 1
2n

)
,

so that

− Γ′(3/2)
2Γ(3/2)

=
γ

2
− 1 + log 2,

since ∞∑

n=1

(−1)n

n
= − log 2.



372 6. Hadamard Products

Thus,

ξ′(1)
ξ(1)

= lim
s→1

{
ζ ′(s)
ζ(s)

+
1

s − 1

}
− 1

2
log 4π − γ

2
+ 1.

Now,
ζ(s) =

s

s − 1
− sI(s),

where

I(s) =
∫ ∞

1

{x}dx

xs+1
,

so that

lim
s→1

{ζ ′(s)
ζ(s)

+
1

s − 1

}
= 1 − I(1).

Now,

I(1) =
∫ ∞

1

{x}
x2

dx = lim
N→∞

∫ N

1

{x}
x2

dx,

and the latter integral is

∫ N

1

x − [x]
x2

dx = log N −
N−1∑

n=1

n

∫ n+1

n

dx

x2

= log N −
N−1∑

n=1

n
( 1

n
− 1

n + 1

)

= log N −
N∑

n=1

1
n

+ 1

= 1 − γ.

Therefore,

ξ′(1)
ξ(1)

=
γ

2
+ 1 − 1

2
log 4π

and
B = −γ

2
− 1 +

1
2

log 4π,

as required. �
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6.4.4 Let χ be a primitive character (mod q). Show that ξ(s, χ) is an entire
function of order 1.

Recall that

L(s, χ) = s

∫ ∞

1

S(x)
xs+1

dx,

where S(x) =
∑

n≤x χ(n). Since |S(x)| ≤ q, the integral converges
for Re(s) > 0. Also, by the functional equation for ξ(s, χ), it suffices
to estimate it for Re(s) ≥ 1

2 . Thus, for σ = Re(s) ≥ 1/2,

|L(s, χ)| ≤ 2q|s|,

so that

|ξ(s, χ)| ≤ 2q
σ+3

2 |s|
∣∣∣∣Γ
(s + a

2

)∣∣∣∣

≤ q
σ+3

2 exp(C|s| log |s|)

for some suitable constant C. This inequality is best possible, since
for s → ∞ through real values, L(s, χ) → 1, and Stirling’s formula
implies that the above inequality cannot be improved. �
6.4.5 Show that L(s, χ) has infinitely many zeros in 0 ≤ Re(s) ≤ 1 and
that

ξ(s, χ) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ,

where the product is over the nontrivial zeros of L(s, χ).

The trivial zeros of L(s, χ) are cancelled by the Γ((s + a)/2) fac-
tor. If L(s, χ) had only finitely many zeros in the critical strip (0 ≤
σ ≤ 1), then it would be a polynomial and hence of order zero,
which is not the case. The final product follows from the Hadamard
factorization theorem. �
6.4.6 For A and B occurring in the previous exercise, show that

eA = ξ(0, χ)

and that
Re(B) = −

∑

ρ

Re
(1

ρ

)
,

where the sum is over nontrivial zeros ρ of L(s, χ).
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Setting s = 0 in the Hadamard factorization of ξ(s, χ) gives eA =
ξ(0, χ). (By the functional equation, we can therefore express A
in terms of L(1, χ).) Logarithmic differentiation of the Hadamard
product and setting s = 0 gives

B =
ξ′(0, χ)
ξ(0, χ)

= −ξ′(1, χ)
ξ(1, χ)

by the functional equation. Writing Bχ for B (since it depends on
χ), we find upon logarithmic differentiation of the expression for
ξ(s, χ) and setting s = 1 that

ξ′(1, χ)
ξ(1, χ)

= Bχ +
∑

ρ

(
1

1 − ρ
+

1
ρ

)
,

where the sum is over nontrivial zeros ρ of L(s, χ). Thus,

Bχ = −Bχ −
∑

ρ

( 1
1 − ρ

+
1
ρ

)
.

Since Bχ = Bχ, we get

−2 Re(Bχ) =
∑

ρ

Re
( 1

1 − ρ

)
+ Re

(1
ρ

)
.

The terms in the sum are nonnegative, and we can replace 1 − ρ
by ρ, since by the functional equation 1 − ρ is also a zero of L(s, χ)
whenever ρ is. Thus,

2 Re(Bχ) = −
∑

ρ

Re
(1

ρ
+

1
ρ

)
,

so that
Re(B) = −

∑

ρ

Re
(1

ρ

)

as required. �

6.4 Zero-Free Regions for ζ(s) and L(s, χ)

6.5.1 Show that

−3
ζ ′(σ)
ζ(σ)

− 4 Re
(

ζ ′(σ + it)
ζ(σ + it)

)
− Re

(
ζ ′(σ + 2it)
ζ(σ + 2it)

)
≥ 0
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for t ∈ R and σ > 1.
Since

3 + 4 cos θ + cos 2θ ≥ 0,

the result is clear (See Exercise 3.2.4). �
6.5.2 For 1 < σ < 2, show that

−ζ ′(σ)
ζ(σ)

<
1

σ − 1
+ A

for some constant A.

The function f(s) = (s − 1)ζ(s) is regular, and nonvanishing for
Re(s) ≥ 1. Hence,

f ′(s)
f(s)

=
1

s − 1
+

ζ ′(s)
ζ(s)

.

Since the left hand side is regular in Re(s) ≥ 1,

f ′(σ)
f(σ)

is bounded by a constant for 1 ≤ σ ≤ 2. This proves the result. �
6.5.3 Prove that

−Re
(

ζ ′(s)
ζ(s)

)
< A log |t| −

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)

for 1 ≤ σ ≤ 2 and |t| ≥ 2.

By Exercise 6.4.3, we know that

ξ′(s)
ξ(s)

= B +
∑

ρ

(
1

s − ρ
+

1
ρ

)

and

ξ′(s)
ξ(s)

=
ζ ′(s)
ζ(s)

+
1

s − 1
− 1

2
log π +

Γ′
(

s
2 + 1

)

2Γ
(

s
2 + 1

) ,

so that

−ζ ′(s)
ζ(s)

=
1

s − 1
− B − 1

2
log π +

Γ′( s
2 + 1

)

2Γ
(

s
2 + 1

) −
∑

ρ

(
1

s − ρ
+

1
ρ

)
.



376 6. Hadamard Products

By Exercise 6.3.17, the Γ-term is O(log t) for |t| ≥ 2 and 1 ≤ σ ≤ 2.
Thus, in this region,

−Re
(

ζ ′(s)
ζ(s)

)
< A log |t| −

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)
,

since

Re
( 1

s − 1

)
= Re

(
1

(σ − 1) + it

)
=

σ + 1
(σ − 1)2 + t2

= O
( 1

t2

)
.

�
6.5.4 Show that

Re
( 1

s − ρ
+

1
ρ

)
≥ 0.

Deduce that
−Re

(ζ ′(s)
ζ(s)

)
< A log |t|

for 1 ≤ σ ≤ 2, |t| ≥ 2.

Let us write ρ = β + iγ. Then,

Re
( 1

s − ρ

)
=

σ − β

|s − ρ|2

and
Re
(1

ρ

)
=

β

|ρ|2 .

Thus, by Exercise 6.5.3, we get the required estimate. �
6.5.5 Let ρ = β + iγ be any nontrivial zero of ζ(s). Show that

−Re
(

ζ ′(σ + it)
ζ(σ + it)

)
< A log |t| − 1

σ − β
.

In the sum in Exercise 6.5.3, by taking one term involving β we
obtain the result. �
6.5.8 Show that

−Re
(ζ ′(s)

ζ(s)

)
< Re

( 1
s − 1

)
+ c1 log(|t| + 2)

for some constant c1 > 0 and σ > 1.
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We proceed as in Exercise 6.5.3:

−ζ ′(s)
ζ(s)

=
1

s − 1
− B − 1

2
log π +

Γ′( s
2 + 1)

2Γ( s
2 + 1)

−
∑

ρ

( 1
s − ρ

+
1
ρ

)
.

The sum over the zeros is positive. The Γ-term is O(log(|t| + 2)).
Thus

−Re
(ζ ′(s)

ζ(s)

)
< Re

( 1
s − 1

)
+ c1 log(|t| + 2).

�

6.5.9 Suppose that χ is a primitive character (mod q) satisfying χ2 �= χ0.
Show that there is a constant c > 0 such that L(s, χ) has no zero in the
region

σ > 1 − c

log(q|t| + 2)
.

We proceed as in the case of the ζ-function. We first observe that

−3
L′(σ, χ0)
L(σ, χ0)

− 4 Re
(

L′(σ + it, χ)
L(σ + it, χ)

)
− Re

(
L′(σ + it, χ2)
L(σ + it, χ2)

)
≥ 0

for t ∈ R and σ > 1. (Here we are using χ2 �= χ0, for otherwise, the
χ2 term above will present difficulties.)

Observe that

−L′(σ, χ0)
L(σ, χ0)

=
∞∑

n=1

χ0(n)Λ(n)
nσ

≤ −ζ ′(σ)
ζ(σ)

<
1

σ − 1
+ c1

for 1 < σ < 2 and some constant c1 > 0. Also (with the notation of
Exercise 6.4.5),

Re
(

ξ′(s, χ)
ξ(s, χ)

)
= Re(B) +

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)
,

and for a = 0 or 1,

Re
(

ξ′(s, χ)
ξ(s, χ)

)
=

1
2

log
q

π
+ Re

(
Γ′(s+a

2 )
2Γ( s+a

2 )

)
+ Re

(
L′(s, χ)
L(s, χ)

)
.
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Thus,

−Re
(L′(s, χ)

L(s, χ)

)

=
1
2

log
q

π
+ Re

(
Γ′(s+a

2 )
2Γ( s+a

2 )

)
− Re(B) −

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)
.

By Exercise 6.4.6,

Re(B) =
∑

ρ

Re
(

1
ρ

)
,

and the Γ-term is O(log(|t| + 2)) by Exercise 6.3.17. Thus,

−Re
(

L′(s, χ)
L(s, χ)

)
< c2 log(q|t| + 2) −

∑

ρ

Re
(

1
s − ρ

)
.

This estimate holds for any primitive character χ (mod q), real or
complex. Since

Re
( 1

s − ρ

)
≥ 0,

we can omit the series or any part of it in our estimations. Thus,

−Re
(

L′(s, χ2)
L(s, χ2)

)
< c2 log(q|t| + 2),

provided that χ2 is a primitive character (mod q). If χ2 is not primi-
tive, let χ1 be the primitive character inducing χ2. Then

∣∣∣∣
L′(s, χ2)
L(s, χ2)

− L′(s, χ1)
L(s, χ1)

∣∣∣∣ ≤
∑

p|q

p−σ log p

1 − p−σ
≤
∑

p|q
log p ≤ log q.

Thus, the penultimate estimate remains valid whether χ2 is primi-
tive or not. Hence, as before, we get (by choosing t = γ)

−Re
(L′(σ + it, χ)

L(σ + it, χ)

)
< c2 log q(|t| + 2) − 1

σ − β
,

so that
4

σ − β
<

3
σ − 1

+ c3 log q(|t| + 2).
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Taking σ = 1 + δ/ log q(|t| + 2) with δ sufficiently small gives

β < 1 − c4/ log q(|t| + 2)

as required. �
6.5.10 Show that the previous result remains valid when χ is a nonreal
imprimitive character.

If χ1 induces χ, then the zeros of L(s, χ) are the zeros of L(s, χ1)
and the zeros of a finite number of factors of the form 1− χ1(p)p−s.
But the additional zeros are on the line σ = 0. Thus, the result of Ex-
ercise 6.5.9 holds for all characters χ (mod q) satisfying
χ2 �= χ0. �

6.5 Supplementary Problems

6.6.1 Prove that Γ(s) has poles only at s = 0,−1, . . . , and that these are
simple, with

Ress=−kΓ(s) = (−1)k/k!.

By Exercise 6.3.9, we know that 1/Γ(s) is entire and has simple
zeros at s = 0,−1,−2, . . .. By the Hadamard factorization of 1/Γ(s)
(Exercise 6.3.12), these are the only zeros. Thus, the first part of the
question is established. For the second part, we need to calculate

lim
s→−k

(s + k)Γ(s).

But sΓ(s) = Γ(s + 1), so that

Γ(s) =
Γ(s + 1)

s
=

Γ(s + 2)
s(s + 1)

= · · · =
Γ(s + k)

s(s + 1) · · · (s + k − 1)

by integration. Hence

lim
s→−k

(s + k)Γ(s) = lim
s→−k

(s + k)Γ(s + k)
s(s + 1) · · · (s + k − 1)

= lim
s→−k

Γ(s + k + 1)
s(s + 1) · · · (s + k − 1)

= (−1)k/k!.
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�
6.6.2 Show that

e−1/x =
1

2πi

∫

(σ)
xsΓ(s)ds,

for any σ > 1, and x ≥ 1.

We first truncate the infinite line integral at R and use Stirling’s
formula (Exercise 6.3.15) to estimate it. Thus

∣∣∣∣
1

2πi

∫ σ+i∞

σ+iR
xsΓ(s)ds

∣∣∣∣� xσ

∫ ∞

R
e−

π
2

ttσ−
1
2 dt,

and the latter integrand is clearly e−cR for some constant c > 0.
A similar analysis applies to the range from σ− iR to σ− i∞. Thus,

1
2πi

∫

(σ)
xsΓ(s)ds =

1
2πi

∫ σ+iR

σ−iR
xsΓ(s)ds + O

(
xσe−cR

)
.

As usual, we move the line of integration to Re(s) = −N − 1
2 , N a

positive integer. We pick up the residue at the poles of Γ(s), namely

N∑

k=0

(−1)kx−k/k!.

The horizontal and vertical integrals are estimated easily using Stir-
ling’s formula. Indeed, the horizontal integral

1
2πi

∫ −(N+ 1
2
)+iR

σ+iR
xsΓ(s)ds

is bounded by O
(
xσNe−

π
2

R
)
. A similar estimate holds for the other

horizontal integral. The vertical integral

1
2πi

∫ −(N+ 1
2
)+iR

−(N+ 1
2
)−iR

xsΓ(s)ds

is bounded by

� x−N− 1
2

∫ R

−R

∣∣∣∣Γ(−N − 1
2

+ it)
∣∣∣∣ dt.
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Using the functional equation sΓ(s) = Γ(s + 1), we find that on
repeated application of this

Γ(−N − 1/2 + it) =
Γ(1

2 + it)
(−N − 1

2 + it) · · · (−1
2 + it)

,

so that

|Γ(−N − 1/2 + it)| ≤
|Γ(1

2 + it)|
N !

.

By Stirling’s formula, |Γ(1
2 + it)| = O

(
e−

π
2
|t|
)

and we deduce

∣∣∣∣
1

2πi

∫ −(N+ 1
2
)+iR

−(N+ 1
2
)−iR

xsΓ(s)ds

∣∣∣∣ = O

(
1

N !xN+ 1
2

)
.

We now choose R = N and let N → ∞ through the integers to
deduce

1
2πi

∫

(σ)
xsΓ(s)ds =

∞∑

k=0

(−1)kx−k

k!
= e−1/x

as required. This could also be derived by Mellin inversion. �
6.6.3 Let f(s) =

∑∞
n=1 an/ns be an absolutely convergent Dirichlet series

in the half-plane Re(s) > 1. Show that

∞∑

n=1

ane−n/x =
1

2πi

∫

(σ)
f(s)xsΓ(s)ds

for any σ > 1.

We have

1
2πi

∫

(σ)

( ∞∑

n=1

an

ns

)
xsΓ(s)ds =

∞∑

n=1

an
1

2πi

∫

(σ)

(x

n

)s
Γ(s)ds,

the interchange being justified by absolute convergence of the term
on the left-hand side. By Exercise 6.6.2, the integral on the right-
hand side is e−n/x, which completes the proof. �
6.6.4 Prove that

sin z = z

∞∏

n=1

(
1 − z2

n2π2

)
.
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We have

sin z =
eiz − e−iz

2i
,

so that
| sin z| � e|z|.

Since sin z is entire, the above estimate shows it has order 1. By
Hadamard’s factorization theorem,

sin z

z
= eA+Bz

∏

n∈Z

n�=0

(
1 − z

πn

)
e−z/πn,

for some constants A, B. Combining the terms corresponding to ±n
in the product gives

sin z

z
= eA+Bz

∞∏

n=1

(
1 − z2

π2n2

)
.

Letting z → ∞ gives
1 = eA,

so that A = 0. Also, sin(−z) = − sin z yields

eBz = e−Bz,

so that e2Bz = 0, forcing B = 0. Thus,

sin z = z

∞∏

n=1

(
1 − z2

π2n2

)
,

as desired. �
6.6.5 Using the previous exercise, deduce that

∞∑

n=1

1
n2

=
π2

6
.

We have

sin z

z
= 1 − z2

6
+

z4

120
− · · · =

∞∏

n=1

(
1 − z2

π2n2

)
.
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Expanding the product on the right-hand side and comparing the
coefficient of z2 on both sides gives

−1
6

= −
∞∑

n=1

1
π2n2

as desired. �.





7
Explicit Formulas

7.1 Counting Zeros

7.1.1 Let L be the line joining 2 to 2 + iT and then 1
2 + iT. Show that

∆L arg(s − 1) =
π

2
+ O

( 1
T

)
.

We have

∆L arg(s − 1) = arg(iT − 1
2
) =

π

2
+ arcsin

(
1√

1 + 4T 2

)
.

Since
lim
x→0

sin x

x
= 1,

we have
lim
x→0

arcsinx

x
= 1.

Thus,

arcsin
(

1√
1 + 4T 2

)
= O

(
1
T

)
,

which proves the assertion. �
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7.1.2 With L as in the previous exercise, show that

∆L arg π−s/2 = −T

2
log π.

We have

∆L arg π−s/2 = ∆L(−1
2
t log π) = −1

2
T log π.

�
7.1.3 With L as in the previous exercise, show that

∆L arg Γ
(s

2
+ 1
)

=
T

2
log

T

2
− T

2
+

3
8
π + O

( 1
T

)
.

By Stirling’s formula,

∆L arg Γ
(s

2
+ 1
)

= Im log Γ
(5

4
+

iT

2

)

= Im
{(3

4
+

iT

2

)
log
(5

4
+

iT

2

)
− 5

4
− iT

2
+

1
2

log 2π + O
( 1

T

)}
.

This is easily calculated to be

T

2
log

T

2
− T

2
+

3
8
π + O

(
1
T

)
,

as required. �
7.1.4 Show that ∑

ρ

1
1 + (T − γ)2

= O(log T ),

where the sum is over the nontrivial zeros ρ = β + iγ of ζ(s).

By Exercise 6.5.3 we know that

−Re
(

ζ ′(s)
ζ(s)

)
< A log |t| −

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)

for 1 ≤ σ ≤ 2 and |t| ≥ 2 with A an absolute constant. If we take
s = 2 + iT in this formula, we deduce

∑

ρ

Re
(

1
s − ρ

+
1
ρ

)
< A1 log T
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for some constant A1, since |ζ ′/ζ| is bounded for Re(s) = 2. But

Re
(

1
s − ρ

)
=

2 − β

(2 − β)2 + (T − γ)2
≥ 1

4 + (T − γ)2

and

Re
(

1
ρ

)
=

β

|ρ|2 .

Since ∑

ρ

1
|ρ|2 < ∞,

we deduce ∑

ρ

1
4 + (T − γ)2

< A2 log T

for some constant A2. Since

4 + (T − γ)2 ≤ 4
(
1 + (T − γ)2

)
,

the required result is now immediate. �
7.1.5 Let N(T ) be the number of zeros of ζ(s) with 0 < Im(s) ≤ T. Show
that

N(T + 1) − N(T ) = O(log T ).

We must count zeros ρ = β + iγ satisfying T ≤ γ ≤ T + 1. Thus,
0 ≤ γ − T ≤ 1. From the previous exercise, the contribution of such
zeros to the sum is greater than or equal to 1/2. Hence, the estimate
now follows from the previous exercise. �
7.1.6 Let s = σ + it with t unequal to an ordinate of a zero. Show that for
large |t| and −1 ≤ σ ≤ 2,

ζ ′(s)
ζ(s)

=
∑

ρ

′ 1
s − ρ

+ O(log |t|),

where the dash on the summation is limited to those ρ for which |t−γ| < 1.

From the formula

−ζ ′(s)
ζ(s)

=
1

s − 1
− B − 1

2
log π +

Γ′(s/2 + 1)
2Γ(s/2 + 1)

−
∑

ρ

(
1

s − ρ
+

1
ρ

)



388 7. Explicit Formulas

evaluated first at s = δ + it and then at 2 + it and subtracting gives

ζ ′(s)
ζ(s)

=
∑

ρ

(
1

s − ρ
− 1

2 + it − ρ

)
+ O(log |t|)

because of the estimate for the growth of the Γ-term (see Exercise
6.3.17). Note that

∣∣∣∣
1

s − ρ
− 1

2 + it − ρ

∣∣∣∣ =
2 − σ

|(s − ρ)(2 + it − ρ)| ≤
3

|t − γ|2 ,

so that the contribution of the zeros satisfying |t − γ| ≥ 1 is

∑

|t−γ|≥1

3
|t − γ|2 ≤

∑

ρ

6
1 + |t − γ|2 ,

and the latter sum is O(log |t|) by Exercise 7.1.4. Finally, in the re-
maining terms, |γ − t| < 1, and we have

|2 + it − ρ| ≥ 1

for such zeros. The number of such zeros is O(log |t|) by the previ-
ous exercise. Putting this all together gives the desired result. �

7.2 Explicit Formula for ψ(x)

7.2.1 Show that if x is not a prime power and x > 1, then

ψ(x) =
1

2πi

∫ c+iR

c−iR
−ζ ′(s)

ζ(s)
xs

s
ds

+ O
( ∞∑

n=1

Λ(n)
(x

n

)c
min(1, R−1| log

x

n
|−1)

)
.

Since x is not a prime power,

ψ(x) =
∞∑

n=1

Λ(n)δ
(x

n

)
.

By Theorem 4.1.4, the result is now immediate. �
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7.2.2 Prove that if x is not an integer, then

∑

1
2
x<n<2x

∣∣∣ log
x

n

∣∣∣
−1

= O
( x

||x|| log x
)
,

where ||x|| denotes the distance of x to the nearest integer.

Let x1 be the largest integer less than x. Split the sum into two
parts: 1

2x < n < x and x < n < 2x. Writing n = x1 − v, we have

log
x

n
≥ log

x1

n
= − log

(
1 − v

x1

)
>

v

x1
.

Thus,
∑

1
2
x<n<x1

∣∣∣log
x

n

∣∣∣
−1

≤
x∑

v=1

x1

v
= O(x log x).

For n = x1, we have

log
x

x1
= − log

x − {x}
x

≥ {x}
x

.

The analysis for the range x < n < 2x is similar. Putting this all
together gives the stated result. �
7.2.3 By choosing c = 1 + 1

log x in the penultimate exercise, deduce that

ψ(x) =
1

2πi

∫ c+iR

c−iR
−ζ ′(s)

ζ(s)
xs

s
ds + O

(
x log2 x

R

)

if x − 1
2 is a positive integer.

By Exercise 7.2.1, we must estimate

∞∑

n=1

Λ(n)
(x

n

)c
min

(
1, R−1| log

x

n
|−1
)

with c = 1 + 1/log x. Indeed, if n < 1
2x, or n > 2x, | log x

n |−1 is
bounded, and the contribution of such terms is

� x

R

∞∑

n=1

Λ(n)
nc

.
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By partial summation
∞∑

n=1

Λ(n)
nc

� c

∫ ∞

1

ψ(t)dt

tc+1
� log x

by an application of Chebyshev’s estimate for ψ(x). Thus, the con-
tribution from the terms n < 1

2x or n > 2x is

O
(x log x

R

)
.

For x
2 < n < 2x, we apply Exercise 7.2.2 and observe that in this

range x/n is bounded. Since ||x|| = 1
2 , we find that the contribution

from n in this range is

O

(
x log2 x

R

)
,

where we have used Λ(n) ≤ log 2x for n ≤ 2x. �
7.2.4 Let C be the rectangle with vertices c−iR, c+iR, −U+iR, −U−iR,
where c = 1 + 1/ log x and U is an odd positive integer. Show that

1
2πi

∫

C
−ζ ′(s)

ζ(s)
xs

s
ds = x −

∑

|γ|<R

xρ

ρ
− ζ ′(0)

ζ(0)
+

∑

0<2m<U

x−2m

2m
,

where we are writing the nontrivial zeros of ζ(s) as ρ = β + iγ. (R is
chosen so that it is not the ordinate of any zero of ζ(s).)

By Cauchy’s theorem, we need to compute the residue of the in-
tegrand whenever a pole occurs. Since ζ(s) has zeros at s = −2m
with m > 0, in addition to its nontrivial zeros, we must compute
the residue of the integrand there. By Exercise 6.5.3 and the partial
fraction expansion for

−
Γ′
(

s
2 + 1

)

2Γ
(

s
2 + 1

) ,

we see that −ζ ′(s)/ζ(s) has a simple pole at s = −2m with residue
−1. Thus, the residue of the integrand above is x−2m/2m when s =
−2m. The contribution of the remaining singularities is clear. �
7.2.5 Recall that the number of zeros ρ = β + iγ satisfying |γ − R| < 1
is O(log R). Show that we can ensure |γ −R| 
 (log R)−1 by varying R
by a bounded amount.



7.2 Explicit Formula for ψ(x) 391

Consider the zeros ρ = β + iγ satisfying R − 1 < γ < R + 1.
The number of such zeros is O(log R). We subdivide the interval
[R − 1, R + 1] into equal parts of length c/ log R for some constant
c. The number of parts is O(log R), and we now choose c such that
the number of parts exceeds the number of zeros. By the pigeonhole
principle, there is a part that contains no zero. Thus for Ri lying in
such a part, we must have |Ri−γ| 
 (log Ri)−1. Since Ri−R = O(1),
we have proved the desired result. �
7.2.6 Let U be a positive odd number. Prove that

|ζ′(s)/ζ(s)| � (log 2|s|)

for −U ≤ σ ≤ −1, provided that we exclude circles of a fixed positive
radius around the trivial zeros s = −2,−4, . . . of ζ(s).

The functional equation in its asymmetric form is

ζ(1 − s) = 21−sπ−s
(

cos
πs

2

)
Γ(s)ζ(s).

The logarithmic derivative of the right-hand side is

− log 2π − 1
2
π tan

πs

2
+

Γ′(s)
Γ(s)

+
ζ ′(s)
ζ(s)

.

We need to estimate this for σ ≥ 2. The tangent term is bounded if
|s − (2m + 1)| ≥ r for some fixed r. The second term is O(log |s|)
by Stirling’s formula and therefore O(log 2|1 − s|) if σ ≥ 2. The last
term is bounded in the region. This completes the proof. �
7.2.7 In Exercise 7.2.4, letting U → ∞ along the odd numbers and R→∞
appropriately (that is, as in Exercise 7.2.5) prove that

ψ(x) = x −
∑

ρ

xρ

ρ
− ζ ′(0)

ζ(0)
+

1
2

log
(
1 − x−2

)
,

whenever x is half more than an integer.
By Exercise 7.2.3,

ψ(x) =
1

2πi

∫ c+iR

c−iR
−ζ ′(s)

ζ(s)
xs

s
ds + O

(
x log2 x

R

)
.

We replace the vertical line segment by the contour C and take into
account the contribution of the residues:
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ψ(x) =
∑

|γ|<R

xρ

ρ
− ζ ′(0)

ζ(0)
+

∑

0<2m<U

x−2m

2m
− IR − IU + O

(
x log2 x

R

)
,

where IR denotes the two horizontal integrals in the contour C and
IU denotes the vertical integral along Re(s) = −U. By Exercise 7.1.6
we have

ζ ′(s)
ζ(s)

=
∑

ρ

′ 1
s − ρ

+ O(log R),

where the dash on the summation means |R−γ| < 1 and −1≤σ≤ 2.
With R chosen as in the previous exercise, we can arrange

|γ − R| 
 (log R)−1.

The number of zeros in the summation is O(log R). Thus,

ζ ′(s)
ζ(s)

= O(log2 R)

for −1 ≤ σ ≤ 2. Thus the contribution to the horizontal integral IR

for this range of σ is

� (log2 R)
∫ c

−1

∣∣∣∣
xs

s
ds

∣∣∣∣�
x log2 R

R log x
.

In the range σ ≤ −1, we use Exercise 7.2.6 to get

IR � x log2 R

R log x
+

log 2R

R

∫ −1

−U
xσdσ,

which is

O

(
x log2 R

R log x

)
.

The vertical integral is

IU � log 2U

U

∫ R

−R
x−Udt � R log U

UxR
.

We first let U → ∞ along odd positive integers to obtain

ψ(x) = x −
∑

|γ|<R

xρ

ρ
− ζ ′(0)

ζ(0)
+

1
2

log(1 − x−2)

+ O

(
x log2 x

R
+

x log2 R

R log x

)
.
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Now let R → ∞ appropriately (as in Exercise 7.2.5) to deduce the
result. �
7.2.9 Assuming the Riemann hypothesis, show that

ψ(x) = x + O
(
x1/2 log2 x

)

as x → ∞.

Again, by Exercise 7.2.7, we have

ψ(x) = x −
∑

|γ|<R

xρ

ρ
+ O

(
x log2 x

R
+

x log2 R

R log x

)
.

The Riemann hypothesis says that ρ = 1
2 + iγ. Thus, the sum over

the zeros is
O
(
x1/2 log2 R

)
.

Choosing R =
√

x gives the desired result. �
7.2.10 Show that if

ψ(x) = x + O
(
x1/2 log2 x

)

then ζ(s) has no zeros for Re(s) > 1/2.
By partial summation

−ζ ′(s)
ζ(s)

= s

∫ ∞

1

ψ(x)dx

xs+1
.

Inserting the estimate for ψ(x) into the integral gives an analytic
continuation of −ζ ′(s)/ζ(s) for Re(s) > 1/2 apart from a simple
pole at s = 1. This means that ζ(s) has no zeros for Re(s) > 1/2, as
required. (The same deduction can be made from the weaker esti-
mate of O(x1/2+ε) for any ε > 0, for the error term.) �

7.3 Supplementary Problems

7.4.1 Using the method of Exercise 6.5.3, prove that for 1 ≤ σ ≤ 2, |t| ≥ 2,

−Re
(

L′(s, χ)
L(s, χ)

)
< A1 log q(|t| + 2) −

∑

ρ

Re
(

1
s − ρ

)
,
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where A1 is an absolute constant, and the summation is over all zeros ρ
of L(s, χ), and χ is a primitive Dirichlet character (mod q). (Of course,
s = σ + it, as usual.)

This is essentially contained in the solution to Exercise 6.5.9.

7.4.2 Let χ be a primitive Dirichlet character (mod q). If ρ = β + iγ runs
through the nontrivial zeros of L(s, χ), then show that for any real t,

∑

ρ

1
1 + (t − γ)2

= O(log q(|t| + 2)).

We take s = 2+it in the previous exercise. Since |L′/L| is bounded
for such s, we obtain

∑

ρ

Re
( 1

s − ρ

)
< A2 log q(|t| + 2).

Now,

Re
(

1
s − ρ

)
=

2 − β

(2 − β)2 + (t − γ)2
≥ 1

4 + (t − γ)2
,

and this last quantity is greater than or equal to 1
4(1 + (t − γ)2)−1

from which the result follows. �.

7.4.3 With χ a primitive character (mod q) and t not coinciding with the
ordinate of a zero, show that for −3/2 ≤ σ ≤ 5/2, |t| ≥ 2,

L′

L
(s, χ) =

∑

ρ

′ 1
s − ρ

+ O(log q(|t| + 2)),

where the dash on the sum is over ρ = β + iγ for which |t − γ| < 1.

The method is essentially the same as Exercise 7.1.6. �

7.4.4 Let χ be a primitive Dirichlet character (mod q). Let N(T, χ) be the
number of zeros of L(s, χ) in the rectangle 0 < σ < 1, |t| < T . Show that

N(T, χ) =
T

π
log

qT

2π
− T

2π
+ O(log qT )

for T ≥ 2.
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We follow the method of Theorem 7.1.7. Let R be the rectangle
with vertices

5
2
− iT,

5
2

+ iT, −3
2

+ iT, −3
2
− iT.

(This rectangle is slightly larger than the one used for ζ(s) so as to
include a possible zero at s = −1.)

This rectangle contains at most one trivial zero of L(s, χ), either
at s = 0 or s = −1. Therefore,

2π(N(T, χ) + 1) = ∆R arg ξ(s, χ).

By the functional equation (Theorem 5.4.1),

arg ξ(σ + it, χ) = arg ξ(1 − σ − it, χ) + c

for some constant independent of s. Therefore, the contribution of
the left half of the contour is equal to that of the right half. Clearly,

∆ arg Γ
(s + a

2

)
= T log

T

2
− T + O(1),

where a = 0 or 1 according as χ(−1) is 1 or −1, and ∆ is the half
contour from 1

2 − iT to 5
2 − iT , then to 5

2 + iT , and then to 1
2 + iT.

We add these two variations and then double the result. It remains
to consider

2πS(t, χ) = ∆L(s, χ).

Since log L(s, χ) is bounded on Res = 5/2, it suffices to consider the
variation along the horizontal segments from 1/2 − iT to 5/2 − iT ,
and from 5/2 + iT to 1/2 + iT . By Exercise 7.4.3, this reduces to
calculating ∆ arg(s − ρ) along the line segments. But this variation
is at most π, and we get

S(t, χ) = O(log q(|t| + 2)).

This gives the desired formula for N(T, χ). �
7.4.5 Let χ be a primitive Dirichlet character (mod q). If x is not a prime
power and χ(−1) = −1, derive the explicit formula

ψ(x, χ) :=
∑

n≤x

χ(n)Λ(n)

= −
∑

ρ

xρ

ρ
− L′(0, χ)

L(0, χ)
+

∞∑

m=1

x1−2m

2m − 1
,
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where the first sum on the right hand side is over the nontrivial zeros of
L(s, χ).

This follows easily by the method used in Exercise 7.2.7 where
we replace ζ ′(s)/ζ(s) by L′(s, χ)/L(s, χ). �
7.4.6 Let χ be a primitive Dirichlet character (mod q). If x is not a prime
power and χ(−1) = 1, derive the explicit formula

ψ(x, χ) = −
∑

ρ

xρ

ρ
− log x − b(χ) − 1

2
log(1 − x−2),

where b(χ) = lims→0

(
L′(s,χ)
L(s,χ) − 1

s

)
, and the sum on the right-hand side

is over the nontrivial zeros of L(s, χ).

This again follows mutatis mutandis from the method of Exercise
7.2.7. However, the only difference is that now L(s, χ) has a simple
zero at s = 0, and so

L′(s, χ)
L(s, χ)

=
1
s

+ b(χ) + · · · .

Since
xs

s
=

1
s

+ log x + · · · ,

the residue of −L′(s, χ)xs/sL(s, χ) at s = 0 is −(log x + b(χ)). The
trivial zeros contribute

∞∑

m=1

x−2m

2m
= −1

2
log(1 − x−2).

�
7.4.7 Let χ be a primitive Dirichlet character (mod q) and set a = 0 or 1
according as χ(−1) = 1 or −1. If x − 1/2 is a positive integer, show that

ψ(x, χ) = −
∑

|γ|<R

xρ

ρ
− (1 − a)(log x + b(χ))

+
∞∑

m=1

xa−2m

2m − a
+ O

(
x log2 qxR

R

)
,

where the first summation is over zeros ρ = β+iγ and R is chosen greater
than or equal to 2 so as not to coincide with the ordinate of any zero of
L(s, χ).
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We follow the method of Exercises 7.2.3, 7.2.4 and 7.2.7. The only
difference is that we must use the estimate

L′(σ + iR, χ)
L(σ + iR, χ)

= O(log2 qR),

valid for −1 ≤ σ ≤ 2, which is easily deduced from Exercises 7.4.2
and 7.4.3. For σ ≤ 1, we must use the estimate

L′(s, χ)
L(s, χ)

= O(log q|s|),

provided that we exclude circles of radius 1/2 around the trivial
zeros. The latter estimate comes from logarithmic differentiation of
the functional equation in its asymmetric form:

L(1 − s, χ) = w(χ)21−sπ−sqs−1/2

(
cos

1
2
π(s − a)

)
Γ(s)L(s, χ̄)

(see Exercises 8.2.13 and 8.2.15), where |w(χ)| = 1. The result is now
derived as in Exercise 7.2.4. �
7.4.8 If we assume that all the nontrivial zeros of L(s, χ) lie on Re(s) =
1/2 (the generalized Riemann hypothesis), prove that

ψ(x, χ) = O
(
x1/2 log2 qx

)
.

We choose R = x1/2 in the previous exercise. We need to estimate

∑

|γ|<x1/2

1
|ρ|

as well as b(χ). By partial summation and Exercise 7.4.4, we obtain

∑

|γ|<x1/2

1
|ρ| = O(log2 qx).

As for b(χ), this appears only if χ(−1) = −1. In that case, we have
from Exercise 6.4.5 that

L′(s, χ)
L(s, χ)

= −1
2

log
q

π
− Γ′(s/2)

2Γ(s/2)
+ B(χ) +

∑

ρ

(
1

s − ρ
+

1
ρ

)
.
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Replacing s by 2 and subtracting gives us

L′(s, χ)
L(s, χ)

= − Γ′(s/2)
2Γ(s/2)

+
∑

ρ

( 1
s − ρ

− 1
2 − ρ

)
+ O(1),

so that
b(χ) = −

∑

ρ

(1
ρ

+
1

2 − ρ

)
+ O(1).

In this sum, the terms with |γ| ≥ 1 are easily handled:

∑

|γ|≥1

∣∣∣∣
1
ρ

+
1

2 − ρ

∣∣∣∣�
∑

|γ|≥1

1
|γ|2 = O(log q)

by Exercise 7.4.2. For |γ| < 1, we observe that |2 − ρ| 
 |2 − ρ|2, so
that

b(χ) = O(log q) −
∑

|γ|<1

1
ρ
.

The number of zeros in the sum is O(log q) by Exercise 7.4.4, and for
each ρ we have |ρ| ≥ 1

2 , from which the result follows. �
7.4.9 Let

ψ(x, q, a) =
∑

n≤x
n≡a(mod q)

Λ(n).

Show that the generalized Riemann hypothesis implies

ψ(x, q, a) =
x

φ(q)
+ O

(
x1/2 log2 qx

)

when (a, q) = 1.

We have

ψ(x, q, a) =
1

φ(q)

∑

χ(mod q)

χ(a)ψ(x, χ).

For χ = χ0, the trivial character, we have

ψ(x, χ0) = x + O(x1/2 log2 x)

by Exercise 7.2.9. For χ �= χ0, we have ψ(x, χ) = O
(
x1/2 log2 qx

)
by

the previous exercise, from which the desired result follows. �
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7.4.10 Assuming the generalized Riemann hypothesis, show that there is
always a primep� q2 log4 q satisfyingp ≡ a (mod q)whenever (a, q) = 1.

By Exercise 7.4.9, we have

ψ(x, q, a) =
x

φ(q)
+ O

(
x1/2 log2 qx

)
.

Putting x = Aq2 log4 q for an appropriate constant A gives us the
required result. �

7.4.11 Show that if q is prime, then

ϕ(q − 1)
q − 1

∑

d|q−1

µ(d)
ϕ(d)

∑

o(χ)=d

χ(a) =
{

1 if a has order q − 1
0 otherwise.

where the inner sum is over characters χ (mod q) whose order is d.
Let f(a) = 1 if a is a primitive root and 0 otherwise. Let g be a

primitive root (mod q) and set

T (gj) = e2πij/q−1, 1 ≤ j ≤ q − 1.

Then T is a multiplicative character (mod q) and all multiplicative
characters mod q can be written as T k for some k, 1 ≤ k ≤ q − 1.

Now write
f(a) =

∑

χ

f̂(χ)χ(a).

By orthogonality, we see that

f̂(T k) =
1

q − 1

∑

(j,q−1)=1

e2πijk/q−1.

The right hand side is a Ramanujan sum and by Exercise 1.1.14 is
easily evaluated as

ϕ(q − 1)µ
(

q−1
(q−1,k)

)

(q − 1)ϕ
(

q−1
(q−1,k)

) .

If we write d = (q − 1, k), then d|q − 1. Moreover, T k has order
(q − 1)/d. As d ranges over the divisors of q − 1, so does (q − 1)/d,
and the result is now clear. �
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7.4.12 Let q be prime and assume the generalized Riemann hypothesis. For
q sufficiently large, show that there is always a prime p < q such that p is
a primitive root (mod q).

By the previous exercise, we have that

ϕ(q − 1)
q − 1

∑

d|q−1

µ(d)
ϕ(d)

∑

o(χ)=d

ψ(x, χ)

is the number of prime powers pj weighted by log p such that pj is
a primitive root (mod q). The leading term (corresponding to d = 1)
gives

ϕ(q − 1)
q − 1

ψ(x).

For χ �= χ0, we use Exercise 7.4.8 to deduce that the contribution is

O

(
ϕ(q − 1)

q − 1
d(q − 1)x1/2 log2 qx

)
,

where d(q − 1) is the number of divisors of q − 1, since the number
of characters of order d is ϕ(d).

Since ψ(x) = x + O
(
x1/2 log2 x

)
, we see that for x = q, the main

term is larger than the error term, for q sufficiently large. Moreover,
if pj < q is a primitive root, so is p < q. �
7.4.13 Let q be a prime. Show that the smallest primitive root (mod q)
is O(2ν(q−1)q1/2 log q), where ν(q − 1) is the number of distinct prime
factors of q − 1.

By Exercise 7.4.11, the number of primitive roots (mod q) that are
less than x is

ϕ(q − 1)
q − 1

x +
ϕ(q − 1)

q − 1

∑

d|q−1
d>1

µ(d)
ϕ(d)

∑

o(χ)=d

(∑

a<x

χ(a)
)
.

By the Pólya - Vinogradov inequality (Exercise 5.5.6) we find that
the innermost sum is O

(
q1/2 log q

)
. Thus, the number of primitive

roots less than x is

ϕ(q − 1)
q − 1

(
x + O(2ν(q−1)q1/2 log q)

)
,

which is positive if x 
 2ν(q−1)q1/2 log q. This completes the proof.
�
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7.4.14 Let q be a prime and assume the generalized Riemann hypothe-
sis. Show that there is always a prime-power primitive root satisfying the
bound O

(
4ν(q−1) log4 q

)
.

We examine the solution of Exercise 7.4.12, where we showed
that the number of prime-power primitive roots is

ϕ(q − 1)
q − 1

(
x + O(2ν(q−1)q1/2 log q)

)
.

A little reflection shows that d(q − 1) can be replaced by 2ν(q−1).
Setting x = C4ν(q−1) log4 q for a sufficiently large constant gives us
the desired result. �

7.4.15 Let q be prime and assume the generalized Riemann hypothesis.
Show that the least quadratic nonresidue (mod q) is O

(
log4 q

)
.

Since

1 −
(a

q

)
=

⎧
⎨

⎩

2 if a is a nonresidue,

0 otherwise,

we see that
1
2

∑

pj<x

(
1 −

(
pj

q

))
log p

equals
ψ(x)

2
+ O(x1/2 log2 qx)

under the stated hypothesis. If x = C log4 q for a sufficiently large q,
the result is now clear. �

7.4.16 Let q be prime and assume the generalized Riemann hypothesis.
Show that the least prime quadratic residue (mod q) is O(log4 q).

This is clear from the method of the previous exercise. �

7.4.17 Prove that for n > 1,

lim
T→∞

1
T

∑

|γ|≤T

nρ = −Λ(n)
π

,

where the summation is over zeros ρ = β + iγ, β ∈ R, of the Riemann
zeta function.
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Let R denote the rectangle oriented counterclockwise with ver-
tices 3/2 − iT , 3/2 + iT , −1/2 + iT , −1/2 − iT . Clearly,

1
2πi

∫

R

ζ
′
(s)

ζ(s)
nsds =

∑

ρ

nρ − n

where ρ runs over zeros of ζ(s) inside the rectangle. Let I1, . . . , I4

be the four parts of the integral relative to the sides of R starting
with the vertical one in the half-plane Re(s) > 1 and proceeding
counterclockwise. Moreover, we have chosen T such that

−ζ
′

ζ
(σ + it) = O(log2 t)

uniformly in −2 ≤ σ ≤ 3, which we can do as in the solution of
Exercise 7.2.7. Thus,

I1 =
1
2π

∫ T

−T

∞∑

m=1

Λ(m)
( n

m

)3/2+it
dt

= −T

π
Λ(n) + O

( ∑

m=1
m�=n

Λ(m)
( n

m

)3/2 1
| log n/m|

)
.

Splitting the summation into the ranges

m ≤ n/2, n/2 < m < 2n, m ≥ 2n

and handling these sums as in Exercises 7.2.2 and 7.2.3 gives an
estimate of O

(
n3/2

)
for the error term above. By using the estimate

of O
(
log2 T

)
for the integrand, we deduce that

I2, I4 � n3/2 log2 T.

Finally, for I3, we use the functional equation to relate ζ
′
/ζ(−1/2 +

it) to ζ
′
/ζ(3/2 − it). The Γ-factor gives rise to a term of the form

O(log T )

by Stirling’s formula, and after integrating we get that

I3 � n3/2 log2 T.

Thus, the result is now clear. �



8
The Selberg Class

8.1 The Phragmén - Lindelöf Theorem

8.1.1 Let f(z) be an analytic function, regular in a region R and on the
boundary ∂R, which we assume to be a simple closed contour. If |f(z)| ≤
M on ∂R, show that |f(z)| ≤ M for all z ∈ R.

If z ∈ R, then by Cauchy’s theorem,

fn(z) =
1

2πi

∫

∂R

fn(w)dw

w − z
,

so that

|fn(z)| ≤ KMn,

where

K =
1
2π

∫

∂R

∣∣∣
dw

w − z

∣∣∣.

Taking nth roots and letting n → ∞ gives the result. �

8.1.2 (The maximum modulus principle) If f is as in the previous ex-
ercise, show that |f(z)| < M for all interior points z ∈ R, unless f is
constant.
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If z0 is an integer point, consider the Laurent expansion of f about
z0:

f
(
z0 + reiθ

)
=

∞∑

n=0

anrneinθ.

Parseval’s formula yields that

1
2π

∫ 2π

0

∣∣∣f
(
z0 + reiθ

)∣∣∣
2
dθ =

∞∑

n=0

|an|2r2n.

If z0 is an interior point where the maximum is attained, we have
|a0| = M and

M = |a0|2 ≤ |a0|2 + |a1|2r2 + · · · ≤ |f(z0)|2 = 1,

so that we are forced to have a1 = a2 = · · · = 0 and f is constant. �
8.1.5 Show that for any entire function F ∈ S, we have

F (s) = O
(
|t|A
)

for some A > 0, in the region 0 ≤ Re(s) ≤ 1.

This is an immediate consequence of the functional equation and
Stirling’s formula. Indeed, F (s) is bounded on Re(s)=2. By the func-
tional equation and Stirling’s formula, it has polynomial growth on
Re(s) = −1. By the Phragmén - Lindelöf theorem, it has polynomial
growth in the region −1 ≤ Re(s) ≤ 2. �

8.2 Basic Properties

8.2.4 Show that
deg F1F2 = deg F1 + deg F2.

Since
NF1F2(T ) = NF1(T ) + NF2(T ),

the result is immediate from Theorem 8.2.1.
�

8.2.5 If F ∈ S has degree 1, show that it is primitive.
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If F is not primitive, we can write F = F1F2 with F1 �= 1, F2 �= 1.
But then, deg F = deg F1+deg F2, and by Theorem 8.2.3 and Lemma
8.2.2, deg F1 ≥ 1 and deg F2 ≥ 1 so that deg F ≥ 2, a contradiction.
[Observe that the proof shows that any F ∈ S of degree less than 2
is primitive.]

�
8.2.6 Show that any F ∈ S, F �= 1, can be written as a product of primi-
tive functions.

We first show that every F ∈ S is divisible by a primitive func-
tion. If F is not primitive, we write F = F1G1 with F1 �= 1 and
G1 �= 1. Since deg F1 < deg F , we either have F1 primitive or not.
If not, factor F1 = F2G2 and in this way we get deg F2 < deg F1. In
fact, we have

0 < deg F1 ≤ deg F − 1,

0 < deg F2 ≤ deg F1 − 1 ≤ deg F − 2,

and so on. This cannot go on ad infinitum. Thus, any function F ∈ S
has a primitive factor, F1 (say). Write F = F1G1 and now proceed
to decompose G1. Since the degree of each factor is strictly less than
deg F, the process terminates. �
8.2.7 Show that the Riemann zeta function is a primitive function.

ζ(s) has degree 1 by Theorem 5.2.2. Now apply Exercise 8.2.5. �
8.2.8 If χ is a primitive character (mod q) show that L(s, χ) is a primitive
function of S.

By Theorem 5.4.1 and Exercise 5.4.5 we see that L(s, χ) extends
to an entire function and has degree 1. �
8.2.9 If F ∈ S, show that |an| ≤ c(ε)nε implies that

|bpk | ≤ c(ε)(2k − 1)pkε/k.

We have

F (s) =
∞∑

n=1

an

ns
=
∏

p

exp
( ∞∑

k=1

bpk

pks

)
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so that

−F ′(s)
F (s)

=
∑

p,k

kbpk log p

pks
.

We deduce that

an log n =
∑

pj |n
jbpj (log p)an/pj .

Setting n = pk yields

kbpk log p = kapk log p −
k−1∑

j=1

jbpj (log p)apk−j .

We now induct on k. For k = 1, we have ap = bp, and the result is
clear.

Assume that the inequality has been proved for exponents less
than or equal to k − 1. Then

k|bpk | ≤ c(ε)kpkε +
k−1∑

j=1

j|bpj |c(ε)p(k−j)ε

≤ c(ε)pkε

⎧
⎨

⎩k +
k−1∑

j=1

(2j − 1)

⎫
⎬

⎭

≤ c(ε)pkε
(
2k − 1

)
,

as desired. �
8.2.10 Prove the asymmetric form of the functional equation for ζ(s):

ζ(1 − s) = 21−sπ−s
(
cos

sπ

2

)
Γ(s)ζ(s).

We recall that Γ(s) satisfies

Γ(s)Γ(1 − s) = π/ sin πs,

by Exercise 6.3.9 and the Legendre duplication formula (Exercise
6.3.6):

Γ(2s)
√

π = 22s−1Γ(s)Γ
(
s +

1
2

)
.
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Combining these two facts gives

Γ
(

s
2

)

Γ
(

1−s
2

) = π−1/221−s
(

cos
πs

2

)
Γ(s).

By the functional equation for ζ(s), we may write

ζ(1 − s) = π1/2−s Γ(s/2)
Γ((1 − s)/2)

ζ(s)

by Theorem 5.2.2. Putting these together gives the result. �
8.2.11 Show that for k ∈ N,

|ζ(−k)| ≤ Ck!/(2π)k

for some absolute constant C.

By the previous exercise,

|ζ(−k)| =
∣∣∣∣2

−kπ−k−1 cos
(

(k + 1)π)
2

)
Γ(k + 1)ζ(k + 1)

∣∣∣∣ .

Since limk→∞ ζ(k + 1) = 1, we get

|ζ(−k)| ≤ Ck!/(2π)k

as required. �
8.2.12 Show that

∞∑

n=1

e−nx = x−1 +
∞∑

k=0

ζ(−k)(−x)k

k!
.

Deduce that for k = 2, 3, . . .

ζ(1 − k) = −Bk/k

and ζ(0) = −1/2, where Bk denotes the kth Bernoulli number. med-
skip We specialize the proof of Theorem 8.2.3 to the case of the ζ-
function: ∞∑

n=1

e−nx = x−1 +
∞∑

k=0

ζ(−k)(−x)k

k!
.
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By Exercise 8.2.11, the power series on the right-hand side con-
verges for |x| < 2π. The left-hand side is a geometric series that
is easily summed to be

e−x

1 − e−x
=

1
ex − 1

.

By Exercise 2.1.7,

x

ex − 1
=

∞∑

k=0

Bk
xk

k!
,

so that
1

ex − 1
=

1
x

+
∞∑

k=1

Bkx
k−1

k!
.

We may compare coefficients of the two power series to deduce that

(−1)k−1ζ(1 − k) = Bk/k.

For k odd, k ≥ 3, Bk = 0 by Exercise 2.1.8. Hence the formula is
clear for k odd ≥ 3. For k even, we obtain

ζ(1 − k) = −Bk/k.

For k = 1, we have ζ(0) = B1 = 1/2, and we recover the result of
Exercise 5.2.4. �

8.2.13 LetχbeaprimitiveDirichletcharacter(mod q)satisfyingχ(−1)= 1.
Prove that

L(1 − s, χ) =

√
2
π

q1/2

τ(χ)

(2π

q

)1/2−s(
cos

πs

2

)
Γ(s)L(s, χ),

where τ(χ) denotes the Gauss sum.

By the functional equation (Theorem 5.4.1), we have

L(1 − s, χ) =
q1/2

τ(χ)

(π

q

)1/2−s Γ
(

s
2

)

Γ
(

1−s
2

)L(s, χ).
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As in the solution to Exercise 8.2.10, we have

Γ
(

s
2

)

Γ
(

1−s
2

) = π−1/221−s
(

cos
πs

2

)
Γ(s),

from which the result is easily deduced. �
8.2.14 Let χ be a primitive character (mod q) satisfying χ(−1) = 1. Show
that for k ∈ N,

|L(−k, χ)| ≤ Ck!(q/2π)k

for some constant C = O(
√

q).

We proceed as in Exercise 8.2.11, except that we use the previous
exercise instead of Exercise 8.2.10. �
8.2.15 Let χ be a primitive Dirichlet character (mod q) satisfying χ(−1)=
− 1. Show that

L(1 − s, χ) = −(2π)−1/2 iq1/2

τ(χ)

(2π

q

)1/2−s(
sin

πs

2

)
Γ(s + 1)L(s, χ).

This again uses the method of Exercise 8.2.10. By Exercise 5.4.5,
we have

L(1 − s, χ) =
iq1/2

τ(χ)

(π

q

)1/2−s Γ
(

s+1
2

)

Γ
(
− s

2

)L(s, χ).

By the formula

Γ
(

s
2

)

Γ
(

1−s
2

) = π−1/221−s
(

cos
πs

2

)
Γ(s)

(derived in the solution to Exercise 8.2.10) we obtain the desired
result. �
8.2.16 Let χ be a primitive Dirichlet character (mod q) satisfying χ(−1)=
− 1. Show that for k ∈ N,

|L(−k, χ)| ≤ C(k + 1)!(q/2π)k

for some constant C = O(
√

q).



410 8. The Selberg Class

We proceed as in Exercises 8.2.14 and 8.2.11, except that we use
the previous exercise to derive the estimate. �
8.2.17 Prove that

∞∑

n=1

χ(n)e−nx =
∞∑

k=0

L(−k, χ)(−x)k

k!
.

Deduce that for n ≥ 1,

L(1 − n, χ) = −Bn,χ/n,

where

Bn,χ = qn−1
q∑

a=1

χ(a)Bn

(a

q

)
,

with Bn(x) denoting the nth Bernoulli polynomial.

From the proof of Theorem 8.2.3, the derivation of the formula

∞∑

n=1

χ(n)e−nx =
∞∑

k=0

L(−k, χ)(−x)k

k!

is clear. The left-hand side can be simplified as follows.

∞∑

n=1

χ(n)e−nx =
∑

b(mod q)

χ(b)
∑

n≡b(mod q)

e−nx

=
q∑

b=1

χ(b)
( ∞∑

r=0

e−(qr+b)x
)

=
q∑

b=1

χ(b)
e−bx

1 − e−qx

=
q∑

b=1

χ(b)
e(q−b)x

eqx − 1
.

Now, by Exercise 2.1.7,

∞∑

r=0

br(x)tr

r!
=

text

et − 1
.

Thus,
e(q−b)x

eqx − 1
=

e(1−b/q)qx

eqx − 1
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can be expanded as

∞∑

r=0

br

(
1 − b

q

)qr−1xr−1

r!
.

When we insert this in the above formula, we obtain

∞∑

n=1

χ(n)e−nx =
∞∑

r=0

( q∑

b=1

χ(b)br

(
1 − b

q

))(qx)r−1

r!

(notice that for r = 0, b0(x) = 1), and since

q∑

b=1

χ(b) = 0,

the polar term disappears. We deduce

L(1 − n, χ) =
(−q)n−1

n

q∑

b=1

χ(b)bn

(
1 − b

q

)
.

Recall that Bn(x) = bn({x}) and that

Bn(1 − x) = (−1)nBn(x)

(see Exercise 2.5.22), from which the stated result follows. �

8.3 Selberg’s Conjectures

8.3.1 Assuming (a) and (b), prove that any function F ∈ S can be factored
uniquely as a product of primitive functions.

Suppose
F = F e1

1 · · ·F er
r

is a factorization of F into distinct primitive functions Fi and

F = Gf1
1 · · ·Gft

t

is another factorization of F into distinct primitive functions Gi.
Then

F e1
1 · · ·F er

r = Gf1
1 · · ·Gft

t
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and we may suppose, without loss of generality, that no Fi is a Gj .
Comparing the pth coefficient of both sides of the above equation,
we deduce

r∑

i=1

eiap(Fi) =
t∑

j=1

fjap(Gj).

Multiplying both sides of the equation by ap(F1), dividing by p, and
then summing over p ≤ x gives us

e1 log log x + O(1) = O(1),

assuming (a) and (b). Thus, e1 = 0, a contradiction. This proves the
unique factorization. �
8.3.2 Suppose F, G ∈ S and ap(F ) = ap(G) for all but finitely many
primes p. Assuming (a) and (b), prove that F = G.

Let us write

F = F e1
1 · · ·F er

r

G = F f1
1 · · ·F fr

r

where F1, . . . , Fr are distinct primitive functions and ei, fi are non-
negative integers. We want to show that ei = fi for all i. Without
loss of generality, suppose e1 �= f1. Then, since

ap(F ) = ap(G),

we have ∑

i

eiap(Fi) =
∑

i

fiap(Fi)

for all but finitely many primes p. Multiplying both sides of the
equation by ap(F1), dividing by p, and then summing over p ≤ x
gives

e1

∑

p≤x

|ap(F1)|2
p

+
∑

i≥2

ei

⎛

⎝
∑

p≤x

ap(Fi)ap(F1)
p

⎞

⎠

= f1

∑

p≤x

|ap(F1)|2
p

+
∑

i≥2

fi

⎛

⎝
∑

p≤x

ap(Fi)ap(F1)
p

⎞

⎠
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Assuming (a) and (b) gives

e1 log log x + O(1) = f1 log log x + O(1),

whence e1 = f1, a contradiction. Thus, ei = fi, for all i and we have
F = G. �
8.3.3 If F (s) =

∑∞
n=1 ann−s and σ = Re(s) > σa(F ), the abscissa of

absolute convergence of F , then prove that

lim
T→∞

1
2T

∫ T

−T
F (σ + it)yσ+itdt =

⎧
⎨

⎩

an(F ) if n = y,

0 otherwise,

for any real y.

We have

1
2T

∫ T

−T
F (σ + it)yσ+itdt =

yσ

2T

∫ T

−T

( ∞∑

n=1

an

nσ

(y

n

)it)
dt.

Interchanging the summation and integration, which is justified
by absolute convergence of the Dirichlet series, we obtain that the
above is

= ay + yσ
∑

n�=y

an

nσ

(
sin T log(y/n)

T log(y/n)

)

with the ay term occurring only if y is a natural number. The series

∑

n�=y

an

nσ
· 1∣∣log y

n

∣∣

is easily seen to converge absolutely if n > 2y or n < y/2. The
intermediate range is a finite sum, and so as T → ∞, the summation
in the penultimate step goes to zero as required. This completes the
proof. �
8.3.4 Prove that

1
2πi

∫

(c)

ysds

(αs + β)2
=

⎧
⎨

⎩

α−2y−β/α log y if y > 1,

0 if 0 ≤ y ≤ 1,

for c > 0 and α, β > 0.
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First, suppose y > 1. We apply contour integration as in Exercise
4.1.6. Let ζR be the contour described by the line segment joining
c − iR to c + iR and the semicircle SR of radius R centered at c
enclosing −β/α. Then, by Cauchy’s theorem

1
2πi

∫

ζR

ysds

(αs + β)2
= Ress=−β/α

ys

(αs + β)2
= α−2y−β/α log y.

Thus,

1
2πi

∫ c+iR

c−iR

ysds

(αs + β)2
+

1
2πi

∫

SR

ysds

(αs + β)2
= α−2y−β/α log y.

The second integral satisfies
∣∣∣∣

1
2πi

∫

SR

ysds

(αs + β)2

∣∣∣∣�
yc

R

∫ 3π/2

π/2
yR cos ϕdϕ,

and the latter integral is easily seen to be bounded (see Exercise
4.1.1). Thus, as R → ∞, the integral goes to zero.

If now 0 ≤ y ≤ 1, then we choose the contour DR (as in Exercise
4.1.2) described by the line segment joining c− iR to c + iR and the
semicircle SR to the right of the line segment of radius R, centered
at c and not enclosing s = −β/α. By Cauchy’s theorem,

1
2πi

∫

DR

ysds

(αs + β)2
= 0.

We now proceed exactly as above. �
8.3.5 Let f(s) be a meromorphic function on C, analytic for Re(s) ≥ 1

2
and nonvanishing there. Suppose that log f(s) is a Dirichlet series and
that f(s) satisfies the functional equation

H(s) = wH(1 − s),

where w is a complex number of absolute value 1, and

H(s) = As

∏d1
i=1 Γ(αis + βi)∏d2
i=1 Γ(γis + δi)

f(s)

with certain A, αi, γi > 0 and Re(βi), Re(δi) ≥ 0. Show that f(s) is
constant.
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Since f(s) is analytic in Re(s) ≥ 1
2 , and the Γ-function does not

have any poles in Re(s) > 0, we see immediately that H(s) is ana-
lytic and nonvanishing (since f is) in the region Re(s) ≥ 1/2. By the
functional equation, the same is true for Re(s) ≤ 1/2. Thus H(s) is
entire. By Stirling’s formula and the functional equation, we see that
H(s) is of order 1. Since H(s) has no zeros, it follows by Hadamard’s
theorem that H(s) = eas+b for some constants a and b. Hence

f ′(s)
f(s)

= a − log A +
d1∑

i=1

Γ′

Γ
(γis + δi)γi −

d2∑

i=1

Γ′

Γ
(αis + βi)αi

is a Dirichlet series (since log f(s) is). The derivative of this is again
a Dirichlet series. Since

d

ds

(
Γ′

Γ
(s)
)

= −
∞∑

m=0

1
(s + m)2

,

then by Exercise 8.3.4 we deduce

1
2πi

∫

(σ)

d

ds

(
f ′(s)
f(s)

)
ysdy = O(1)

for any y ≥ 1. By Exercise 8.3.3, this means that every coefficient of

d

ds

(
f ′(s)
f(s)

)

is zero. Since f ′(s)/f(s) is a Dirichlet series, this means that f ′(s)/
f(s) = 0. Hence f(s) is a constant. �
8.3.6 Let F, G ∈ S. Suppose ap(F ) = ap(G), ap2(F ) = ap2(G) for all
but finitely many primes p. Show that F = G.

Set
f(s) =

∏

p

Fp(s)/Gp(s).

Since log Fp(s) is an absolutely convergent Dirichlet series for
Re(s) > θ,wededucethatFp(s) isabsolutelyconvergentforRe(s)> θ
and is nonvanishing there. Since θ < 1/2, this holds for Re(s) ≥ 1/2.
Since ap(F ) = ap(G) and ap2(F ) = ap2(G) for all but finitely many
primes p, we can factor

(
1 +

ap(F )
ps

+
ap2(F )

p2s

)−1
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from the numerator and denominator of Fp(s)/ap(s) and write

f(s) =
∏

p

fp(s),

where each fp(s) is absolutely convergent for Re(s) ≥ 1/2 and non-
vanishing there. Thus, f(s) satisfies the conditions of Exercise 8.3.5.
Hence f(s) is constant, and that constant must be 1, since

lim
s→∞

fp(s) = 1

and consequently lims→∞ f(s) = 1. Therefore, F = G. �
8.3.7 Assume Selberg’s conjectures (a) and (b). If F ∈ S has a pole of order
m at s = 1, show that F (s)/ζ(s)m is entire.

If G is a primitive function that has a pole at s = 1, then

∑

p≤x

ap(G)
p

is unbounded as x → ∞. If G �= ζ, by (b) we have

∑

p≤x

ap(G)
p

=
∑

p≤x

ap(G)ap(ζ)
p

= O(1),

a contradiction. Thus, the only primitive function with a pole at s =
1 is the Riemann zeta function. By Exercise 8.3.1, ζ(s) must appear
in the unique factorization of F as a product of primitive functions.
�
8.3.8 Assume Selberg’s conjectures (a) and (b). Show that for any F ∈ S,
there are no zeros on Re(s) = 1.

By Exercise 8.3.1, it suffices to prove this for primitive functions
F . For the primitive function ζ(s), this is true by Exercise 3.2.5. So
we may suppose F �= ζ. By Exercise 8.3.7, we may also suppose
F (s) has no pole at s = 1 and that it extends to an entire function.
For any t ∈ R, we can conclude that G(s) = F (s + it) is again
primitive. By conjecture (b),

∑

p≤x

ap(G)ap(ζ)
p

= O(1)
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as x → ∞. This means that

∑

p≤x

ap(F )
p1+it

= O(1)

for all t ∈ R. Hence, F (s) has no zeros on Re(s) = 1. �

8.4 Supplementary Problems

8.4.1 Verify that the primitive functions ζ(s), and L(s, χ), where χ is a
primitive character (mod q), satisfy Selberg’s conjectures (a) and (b).

To verify (a) for ζ(s), we apply Exercise 3.1.8. This also verifies (a)
for all L(s, χ). To verify (b), notice that

∑

p≤x

χ(p)
p

=
∑

n≤x

χ(n)Λ(n)
n log n

+ O(1)

follows easily by partial summation.
Now,

∑

n≤x

χ(n) log n

n
→ L′(1, χ)

and hence is O(1). On the other hand, we can write log n=
∑

d|nΛ(d),
so that ∑

n≤x

χ(n) log n

n
=
∑

d≤x

χ(d)Λ(d)
d

( ∑

e≤x/d

χ(e)
e

)
.

The inner sum by Exercise 2.4.6 is

L(1, χ) + O
(d

x

)
.

Hence ∑

n≤x

χ(n) log n

n
= L(1, χ)

∑

d≤x

χ(d)Λ(d)
d

+ O(1)

by an application of Chebyshev’s theorem (Exercise 3.1.5). There-
fore,

∑

d≤x

χ(d)Λ(d)
d

= O(1),
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since L(1, χ) �= 0 by Exercises 2.3.10 and 2.4.5. The result now fol-
lows easily by partial summation.

Finally, if χ1 and χ2 are distinct primitive characters mod q1 and
mod q2 (respectively) then we may view χ1χ̄2 as an imprimitive
character mod [q1, q2]. Indeed, we may extend both χ1 and χ2 to
characters mod [q1, q2] in the usual way. If q1 = q2, the extended
character is trivial if and only if χ1 = χ2. If q1 �= q2, then χ1χ2 is
never trivial, and so we are done by the previous considerations. �
8.4.2 For each F , G in S, define

(F ⊗ G)(s) =
∏

p

Hp(s),

where

Hp(s) = exp
( ∞∑

k=1

kbpk(F )bpk(G)p−ks
)
.

If Fp(s) = det(1−App
−s)−1 and Gp(s) = det(1−Bpp

−s)−1 for certain
nonsingular matrices Ap and Bp, show that

Hp(s) = det(1 − Ap ⊗ Bpp
−s)−1.

We use the well-known identity

det(1 − At) = exp

( ∞∑

k=1

tr(Ak)tk

k

)
,

so that what we must show is

det(1 − (A ⊗ B)t) = exp
( ∞∑

k=1

tr(Ak)tr(Bk)tk

k

)
.

Since the matrices Ap and Bp are nonsingular, the eigenvalues of the
matrix A⊗B can be taken to be λiµj as λi runs through eigenvalues
of A and µj runs through eigenvalues of B. Thus the right-hand
side of the identity to be proved is det(1 − (A ⊗ B)t) as required. �
8.4.3 With notation as in the previous exercise, show that if F, G ∈ S,
then F ⊗ G converges absolutely for Re(s) > 1.

This is the immediate consequence of Exercise 8.2.9.
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8.4.4 If F ∈ S and F⊗F extends to an analytic function for Re(s) ≥ 1/2,
except for a simple pole at s = 1, we will say that F is ⊗-simple. Prove
that a ⊗-simple function has at most a simple pole at s = 1.

Suppose F has a pole of order m at s = 1. Let s be real and s → 1+

Then
log F (s) ∼ m log

1
s − 1

.

But log F (s) =
∑

p
ap(F )

ps + O(1). Since F is ⊗-simple, we have by
definition ∑

p

|ap(F )|2
ps

∼ log
1

s − 1

as s → 1+. Thus, by Cauchy’s inequality

∣∣∣∣∣
∑

p

ap(F )
ps

∣∣∣∣∣ ≤
(
∑

p

|ap(F )|2
ps

)1/2(∑

p

1
ps

)1/2

,

from which we deduce that |m| ≤ 1, as required. �
8.4.5 If F ∈ S and

F = F e1
1 F e2

2 · · ·F ek
k

is a factorization of F into distinct primitive functions, show that

∑

p≤x

|ap(F )|2
p

= (e2
1 + e2

2 + · · · + e2
k) log log x + O(1),

assuming Selberg’s conjectures (a) and (b).

We have clearly
ap(F ) =

∑

i

eiap(Fi),

from which

∑

p≤x

|ap(F )|2
p

=
∑

i,j

eiej

∑

p≤x

ap(Fi)ap(Fj)
p

,

and the result is now clear. �
8.4.6 If F ∈ S, and F ⊗ F̄ ∈ S show that F is ⊗-simple if and only if F
is primitive, assuming Selberg’s conjectures (a) and (b).
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One way is clear. If F is primitive, then F is ⊗-simple. Now sup-
pose F is ⊗-simple. Then

∑

p≤x

|ap(F )|2
p

= log log x + O(1).

If F = F e1
1 F e2

2 · · ·F ek
k is the factorization of F into distinct primitive

functions, then by Exercise 8.4.5, we get

1 = e2
1 + e2

2 + · · · + e2
k,

from which we deduce that F is primitive. �
8.4.7 If F ∈ S is ⊗-simple and entire, prove that F (1 + it) �= 0 for all
t ∈ R.

Suppose F has a zero on Re(s) = 1. By translating, we may sup-
pose F has a zero at s = 1. Consider

G(s) = ζ(s)F (s)F̄ (s)(F ⊗ F̄ )(s).

Then G(s) is a Dirichlet series that is analytic for Re(s) ≥ 1/2. Also,
log G(s) is a Dirichlet series with nonnegative coefficients. By Exer-
cise 3.2.11, G(1 + it) �= 0 for all t ∈ R. By Landau’s theorem (Exer-
cise 2.5.14) the abscissa of convergence is a real singularity σ0 (say).
Thus log G(σ) ≥ 0 for σ > σ0. Hence

|G(σ)| ≥ 1

for σ > σ0. By continuity, |G(σ0)| ≥ 1. However, σ0 is a singularity
of log G(s), which must come from a zero of G(s). Thus G(s0) = 0,
which is a contradiction. Hence, F (1) �= 0. �
8.4.8 Let F ∈ S and write

−F
′

F
(s) =

∞∑

n=1

ΛF (n)n−s.

For T > 1 and n ∈ N, n > 1, show that

∑

|γ|≤T

nρ = −T

π
ΛF (n) + O

(
n3/2 log2 T

)

where ρ = β + iγ, β > 0 runs over the non-trivial zeros of F (s).
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This is a generalization of Exercise 7.4.17 and the proof is similar.
(The result shows how to reconstruct F (s) from a knowledge of its
zeros.) �
8.4.9 Suppose F, G ∈ S. Let

ZF (T ) = {ρ = β + iγ, β > 0, F (ρ) = 0 and |γ| ≤ T}.

Suppose that as T → ∞,

|ZF (T )∆ZG(T )| = o(T ),

where ∆ denotes the symmetric difference A∆B = (A \ B) ∪ (B \ A).
Show that F = G.

By the previous exercise,

−ΛF (n) = lim
T→∞

π

T

∑

|γ|≤T

nρ

where the summation runs over zeros of F (s) with imaginary part
γ satisfying |γ| ≤ T . Since the zeros of G(s) are the same apart from
o(T ) of them, we find that the above limit is −ΛG(n). Thus, F = G,
as required. �





9
Sieve Methods

9.1 The Sieve of Eratosthenes

9.1.2 Prove that there is a constant c such that
∏

p≤z

(
1 − 1

p

)
=

e−c

log z

(
1 + O

( 1
log z

))
.

Let V (z) =
∏

p≤z

(
1 − 1

p

)
. Then

− log V (z) =
∑

p≤z

1
p

+
∑

k≥2
p≤z

1
kpk

.

The second sum satisfies
∑

k≥2
p≤z

1
kpk

≤
∑

p≤z

∑

k≥2

1
pk

=
∑

p≤z

1
p(p − 1)

,

so that
− log V (z) =

∑

p≤z

1
p

+ c0 + O
(1

z

)
,

with

c0 = −
∑

p

{
log
(

1 − 1
p

)
+

1
p

}
.
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On the other hand, we have

R(z) :=
∑

p≤z

log p

p
= log z + O(1)

by Exercise 3.1.7, so that by partial summation

∑

p≤z

1
p

=
R(z)
log z

+
∫ z

2

R(t)dt

t log2 t

= log log z + c1 + O
( 1

log z

)

for some constant c1. Thus,

− log V (z) = log log z + (c0 + c1) + O

(
1

log z

)
,

so that with c = c0 + c1,

∏

p≤z

(
1 − 1

p

)
=

e−c

log z

(
1 + O

(
1

log z

))
,

as required. �
9.1.4 For z ≤ log x, prove that

π(x, z) = (1 + o(1))
xe−γ

log z

whenever z = z(x) → ∞ as x → ∞.

By Exercise 9.1.2,

π(x, z) = x
∏

p≤z

(
1 − 1

p

)
+ O(2z).

For z ≤ log x, the error term is O(xθ) with θ < 1. The result now
follows by applying Mertens’s theorem. �
9.1.5 (Rankin’s trick) Prove that

Φ(x, z) ≤ xδ
∏

p≤z

(
1 − 1

pδ

)−1

for any δ > 0.
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For any δ > 0, we have

Φ(x, z) ≤
∑

n≤x
p|n⇒p≤z

1 ≤
∑

n≤x
p|n⇒p≤z

(x

n

)δ

≤ xδ
∏

p≤z

(
1 − 1

pδ

)−1
.

�
9.1.6 Choose δ = 1 − 1

log z in the previous exercise to deduce that

Φ(x, z) � x(log z) exp
(
− log x

log z

)
.

Choosing δ = 1 − η with η → 0 as z → ∞, we see that

Φ(x, z) � xδ
∏

p≤z

(
1 +

1
pδ

)
.

Applying the elementary inequality 1 + x ≤ ex, we obtain

Φ(x, z) � exp
(
δ log x +

∑

p≤z

1
pδ

)
.

Writing p−δ = p−1pη = p−1eη log p, and using the inequality
ex ≤ 1 + xex, we deduce

∑

p≤z

1
pδ

≤
∑

p≤z

1
p

(
1 + (η log p)zη

)
,

since p ≤ z. Now choosing η = 1
log z gives the desired result. �

9.1.7 Prove that

π(x, z) = x
∑

d|Pz
d≤x

µ(d)
d

+ O
(
x(log z) exp

(
− log x

log z

))

for z = z(x) → ∞ as x → ∞.

Observe that

π(x, z) = x
∑

d|Pz
d≤x

µ(d)
d

+ O(Φ(x, z)),
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since [x/d] = 0 unless d ≤ x. Now use Exercise 9.1.6. �
9.1.8 Prove that

∑

d|Pz
d≤x

µ(d)
d

=
∏

p≤z

(
1 − 1

p

)
+ O

(
(log z)2 exp

(
− log x

log z

))
,

with z = z(x) → ∞ as x → ∞.

We have

∑

d|Pz
d≤x

µ(d)
d

=
∏

p≤z

(
1 − 1

p

)
−
∑

d|Pz
d>x

µ(d)
d

.

The last sum is dominated by

∑

d|Pz
d>x

1
d
≤ −Φ(x, z)

x
+
∫ ∞

x

Φ(t, z)dt

t2
,

on using partial summation. Using the estimate derived for Φ(t, z)
in Exercise 9.1.6, we get that the integral is bounded by

(log z)
∫ ∞

x
exp

(
− log t

log z

)dt

t
= (log z)

∫ ∞

x

dt

t1+1/ log z

� (log z)2 exp
(
− log x

log z

)
.

This completes the proof. �
9.1.9 Prove that

π(x, z) = xV (z) + O

(
x(log z)2 exp

(
− log x

log z

))
,

where
V (z) =

∏

p≤z

(
1 − 1

p

)

and z = z(x) → ∞ as x → ∞.

This essentially follows from Exercises 9.1.7 and 9.1.8. �
9.1.10 Prove that

π(x) � x

log x
log log x
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by setting log z = ε log x/ log log x for some sufficiently small ε in the
previous exercise.

We have
π(x) ≤ π(x, z) + π(z).

Choosing z as stated shows that

π(x, z) � x

log x
log log x

from Mertens’s theorem and Exercise 9.1.9. Here, the implied con-
stant depends on ε. �
9.1.11 For any A > 0, show that

π
(
x, (log x)A

)
∼ xe−γ

A log log x

as x → ∞.

Apply Exercise 9.1.9 with z = (log x)A. �
9.1.12 Suppose that

∑

p≤z
p∈P

ω(p) log p

p
≤ κ log z + O(1).

Show that
Fω(t, z) :=

∑

d≤t
d|P (z)

ω(d)

is bounded by

O
(
t(log z)κ exp

(
− log t

log z

))
.

We apply Rankin’s trick for any δ > 0,

Fω(t, z) ≤
∑

d|P (z)

ω(d)(t/d)δ.

Since ω is multiplicative (by definition), we see that

Fω(t, z) ≤ exp

⎛

⎜⎝δ log t +
∑

p≤z
p∈P

ω(p)
pδ

⎞

⎟⎠ ,
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on applying the elementary inequality 1 + x ≤ ex. Setting δ = 1− η
and using the inequality ex ≤ 1 + xex, which is valid for x ≥ 0, we
obtain

Fω(t, z) ≤ t exp

⎛

⎜⎝−η log t +
∑

p≤z
p∈P

ω(p)
p

+ ηzη
∑

p≤z
p∈P

ω(p) log p

p

⎞

⎟⎠ .

The hypothesis gives by partial summation that

∑

p≤z
p∈P

ω(p)
p

≤ κ log log z + O(1),

so that

Fω(t, z) � t exp(−η log t + κ log log z + κη(log z)zη).

Choosing η = 1/ log z gives the result. �

9.1.13 Let C be a constant. With the same hypothesis as in the previous
exercise, show that

∑

d|P (z)
d>Cx

ω(d)
d

= O
(
(log z)κ+1 exp

(
− log x

log z

))
.

With the notation of Exercise 9.1.12, we have

∑

d|P (z)
d>Cx

ω(d)
d

�
∫ ∞

Cx

Fω(t, z)dt

t2
,

and the previous exercise immediately gives the result. �

9.1.14 (Sieve of Eratosthenes) Suppose there is a constant C > 0 such
that |Ad| = 0 for d > Cx. Then

S(A,P, z) = XW (z) + O
(
x(log z)κ+1 exp

(
− log x

log z

))
.
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By the inclusion - exclusion principle, we have

S(A,P, z) =
∑

d|P(z)

µ(d)|Ad|

=
∑

d|P(z)
d≤Cx

µ(d)
Xω(d)

d
+ O(Fω(Cx, z)),

in the notation of the previous exercise. Then, the first sum can be
rewritten

X

⎛

⎜⎝
∑

d|P(z)

µ(d)ω(d)
d

−
∑

d|P(z)
d>Cx

µ(d)ω(d)
d

⎞

⎟⎠ ,

so that we can use the estimate of Exercise 9.1.13 on the second sum.
Exercise 9.1.12 gives an estimate for Fω(Cx, z). This completes the
proof. �

9.2 Brun’s Elementary Sieve

9.2.1 Show that for r even,

π(x, z) ≤ x
∑

d|Pz

µr(d)
d

+ O(zr).

Recall that

π(x, z) =
∑

n≤x

∑

d|(n,Pz)

µ(d)

≤
∑

n≤x

∑

d|(n,Pz)

µr(d)

≤
∑

d|Pz

µr(d)
[x
d

]

≤ x
∑

d|Pz

µr(d)
d

+
∑

d|Pz

|µr(d)|.

The last term is easily seen to be O(zr), as required. �
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9.2.3 Show that
∑

d|P (z)

µr(d)ω(d)
d

=
∏

p≤z
p∈P

(
1 − ω(p)

p

) ∑

δ|P (z)

ψr(δ)ω(δ)
Ω(δ)

,

where Ω(δ) =
∏

p|δ(p − ω(p)).

By Möbius inversion, we have

µr(d) =
∑

δ|d
µ(d/δ)ψr(δ),

so that
∑

d|P (z)

µr(d)ω(d)
d

=
∑

d|P (z)

ω(d)
d

∑

δ|d
µ(d/δ)ψr(δ)

=
∑

δ|P (z)

ψr(δ)ω(δ)
δ

∑

d|P (z)/δ

µ(d)ω(d)
d

=
∏

p≤z
p∈P

(
1 − ω(p)

p

)
·
∑

δ|P (z)

ψr(δ)ω(δ)
Ω(δ)

,

where Ω(δ) =
∏

p|δ(p − ω(p)). �

9.2.4 Suppose that ω(p) ≤ c, and that
∑

p≤z
p∈P

ω(p)
p ≤ c1 log log z + c2 for

some constants c, c1, and c2. Show that there are constants c3, c4 and c5

such that
∑

δ|P (z)
δ>1

ψr(δ)ω(δ)
Ω(δ)

� 1
r!

(c3 log log z + c4)r(log z)c5 .

Recall that

ψr(δ) ≤
(

ν(δ) − 1
r

)

so that the sum under consideration is

≤
∑

δ|P (z)
δ>1

(
ν(δ) − 1

r

)
ω(δ)
Ω(δ)

≤
∑

r≤m≤π(z)

(
m

r

)
1
m!

(∑

p≤z
p∈P

ω(p)
p − c

)m

≤ 1
r!

(c3 log log z + c4)r exp(c3 log log z + c4),
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which gives the result. �
9.2.6 Show that the number of primes p ≤ x such that p + 2 is also prime
is � x(log log x)2/(log x)2.

Let A = {n : n ≤ x}; P = {p : 2 < p ≤ z}, the set of odd primes
less than or equal to z. For each odd prime p, we distinguish the
residue classes 0 and −2(mod p), so that ω(p) = 2. Then, ω(d) =
2ν(d), where ν(d) is the number of prime factors of d, and Ad =
∩p|dAp. By the Chinese remainder theorem,

|Ad| =
xω(d)

d
+ Rd

with |Rd| = O(2ν(d)). Applying (9.1), we get

S(A, P, z) = xW (z) + O
(
x(exp

(
− c3 log x

log z

))
.

We choose log z = log x/A log log x for an appropriate constant A
This gives the result, since

W (z) =
∏

3≤p≤z

(
1 − 2

p

)
≤
∏

3≤p≤z

(
1 − 1

p

)2
,

so that an application of Mertens’s theorem completes the proof. �

9.2.7 (Brun, 1915) Show that

∑ ′ 1
p

< ∞,

where p is such that p + 2 is prime.

Let π2(x) be the number of twin primes less than or equal to x. By
partial summation, the sum is

�
∫ ∞

3

π2(t)dt

t2
�
∫ ∞

3

(log log t)2dt

t(log t)2
< ∞.

�
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9.3 Selberg’s Sieve

9.3.1 Let Pz =
∏

p≤z p be the product of the primes p ≤ z. Show that

π(x, z) ≤
∑

n≤x

( ∑

d|(n,Pz)

λd

)2
,

for any sequence λd of real numbers satisfying λ1 = 1.

This is clear from λ1 = 1. The quantity on the right-hand side is
always nonnegative and is equal to 1 when (n, Pz) = 1. �
9.3.2 Show that if |λd| ≤ 1, then

π(x, z) ≤
∑

d1,d2≤z

λd1λd2

[d1, d2]
x + O(z2),

where [d1, d2] is the least common multiple of d1 and d2.

In Exercise 9.3.1, we expand the sequence,

π(x, z) ≤
∑

n≤x

∑

d1,d2|(n,Pz)

λd1λd2

≤
∑

d1,d2≤z

λd1λd2

( ∑

n≤x
d1,d2|n

1
)
,

since λd = 0 for d > z. Since
∑

n≤x
d1,d2|n

1 =
x

[d1, d2]
+ O(1)

and |λd| ≤ 1, the estimate is clear. �
9.3.3 Prove that

[d1, d2](d1, d2) = d1d2,

where (d1, d2) is the greatest common divisor of d1 and d2.

This is clear from unique factorization. Write

d1 =
∏

p

pαp , d2 =
∏

p

pβp .



9.3 Selberg’s Sieve 433

Then
[d1, d2] =

∏

p

pmax(αp,βp)

and
(d1, d2) =

∏

p

pmin(αp,βp).

�
9.3.4 Show that

∑

d1,d2≤z

λd1λd2

[d1, d2]
=
∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

λd

d

)2
.

By the previous exercise, we can write the left-hand side as

∑

d1,d2≤z

λd1λd2

d1d2
(d1, d2) =

∑

d1,d2≤z

λd1λd2

d1d2

∑

δ|(d1,d2)

φ(δ)

=
∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

λd

d

)2
,

as required (notice that this is a “diagonalization” of the quadratic
form). �
9.3.5 If

uδ =
∑

δ|d
d≤z

λd

d
,

show that
λδ

δ
=
∑

δ|d
µ(d/δ)ud.

(Note that uδ = 0 for δ > z, since λd = 0 for d > z.)

This is an application of the dual Möbius inversion formula (Ex-
ercise 1.5.16). �
9.3.6 Show that if λ1 = 1, then

∑

d1,d2≤z

λd1λd2

[d1, d2]
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attains the minimum value 1/V (z), where

V (z) =
∑

d≤z

µ2(d)
φ(d)

.

By Exercise 9.3.4, we must minimize

∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

λd

d

)2

subject to the constraint λ1 = 1. By Exercise 9.3.5 we must minimize
∑

δ≤z

φ(δ)u2
δ

subject to ∑

d≤z

µ(d)ud = 1.

By the Lagrange multiplier method, this minimum is attained when

2φ(δ)uδ = λµ(δ)

for some scalar λ. Thus,

uδ =
λµ(δ)
2φ(δ)

,

so that
λ

2

∑

δ≤z

µ2(δ)
φ(δ)

= 1

and the minimum is

∑

δ≤z

φ(δ) · λ2µ2(δ)
4φ2(δ)

=
λ2

4

∑

δ≤z

µ2(δ)
φ(δ)

=
1

V (z)

as desired. �
9.3.7 Show that for the choice of

uδ = µ(δ)/(φ(δ)V (z)),
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we have |λd| ≤ 1.

We have, by Exercise 9.3.5,

λd

d
=

∑

t

µ(t)udt

=
µ(d)
φ(d)

∑

(d,t)=1
t≤z/d

µ2(t)
φ(t)V (z)

.

Hence

V (z)λd = µ(d)
∏

p|d

(
1 +

1
p − 1

) ∑

t≤z/d
(t,d)=1

µ2(t)
φ(t)

= µ(d)
∑

δ|d

µ2(δ)
φ(δ)

∑

t≤z/d
(t,d)=1

µ2(t)
φ(t)

.

Thus,

|λdV (z)| ≤
∑

t≤z

µ2(t)
φ(t)

= V (z),

so that |λd| ≤ 1, as required. �

9.3.8 Show that
π(x, z) ≤ x

V (z)
+ O(z2).

Deduce that π(x) = O
(

x
log x

)
by setting z = x1/2−ε.

We have

V (z) =
∑

δ≤z

µ2(δ)
φ(δ)


 log z

by the following elementary argument. We have

∑

δ≤z

µ2(δ)
φ(δ)

≥
∑

δ≤z

µ2(δ)
δ

.

Now, ∑

δ≤z

1
δ

= log z + O(1),
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and it is clear that

∑

δ≤z

µ2(δ)
δ

=
∑

δ≤z

1
δ
−
∑

m≤z

′ 1
m

,

where the dash on the sum means that m has a squared prime factor.
Clearly,

∑

m≤z

′ 1
m

≤ 1
4

∑

δ≤z/4

1
δ
≤ 1

4
(log z + O(1)).

Thus,
∑

δ≤z

µ2(δ)
φ(δ)


 log z.

Now choose z = x1/2−ε to obtain the desired result. �

9.3.9 Let f be a multiplicative function. Show that

f([d1, d2])f((d1, d2)) = f(d1)f(d2).

We can write
[d1, d2] = (d1, d2)e1e2,

where e1(d1, d2) = d1, e2(d1, d2) = d2. Thus e1, e2, (d1, d2) are mutu-
ally coprime. Therefore,

f([d1, d2]) = f((d1, d2))f(e1)f(e2).

Multiplying both sides by f(d1, d2) gives

f([d1, d2])f((d1, d2)) = f(d1)f(d2)

as desired, since e1 and (d1, d2) are coprime, as well as e2 and (d1, d2).
�

9.3.11 Show that
U(z) ≥

∑

δ≤z

1
f̃(δ)

,

where f̃(n) is the completely multiplicative function defined by f̃(p) =
f(p).
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We have

U(z) =
∑

d≤z

µ2(d)
f1(d)

.

Now, for square-free n,

f(n)
f1(n)

=
∏

p|n

f(p)
f(p) − 1

=
∏

p|n

(
1 − 1

f(p)

)−1

=
∑

d

′ 1
f̃(d)

,

where the dash on the summation means that d ranges over ele-
ments of the monoid generated by the prime divisors of n. Hence,
for square-free n,

1
f1(n)

=
1

f̃(n)

∑

d

′ 1
f̃(d)

,

so that

U(z) =
∑

d≤z

µ2(d)
f1(d)

≥
∑

δ≤z

1
f̃(δ)

,

as required. �
9.3.12 Let π2(x) denote the number of twin primes p ≤ x. Using Selberg’s
sieve, show that

π2(x) = O

(
x

log2 x

)
.

We consider the sequence an = n(n + 2) and count the number
of elements coprime to Pz . The number of n ≤ x such that d|an is
clearly

x2ν(d)

d
+ O

(
2ν(d)

)

by an application of the Chinese remainder theorem. Thus, f(d) =
d/2ν(d) in the notation of Selberg’s sieve, and we have

N(x, z) ≤ x

U(z)
+ O

( ∑

d1,d2≤z

2ν[d1,d2]
)

≤ x

U(z)
+ O

(∑

d≤z

2ν(d)
)2

.
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By Exercise 1.4.1, the error term is easily seen to be O
(
z2 log2 z

)
. By

Exercise 9.3.11,

U(z) ≥
∑

d≤z

2ω(d)

d
,

where ω(d) is the number of prime factors of d counted with mul-
tiplicity. By partial summation (using the result of Exercise 4.4.18)
we deduce

∑

d≤z

2ω(d)

d
∼ c(log z)2

for some nonzero constant c. Thus,

N(x, z) � x

(log z)2
+ O

(
z2 log2 z

)
.

The number of twin primes is clearly less than or equal to z+N(x, z)
for any value of z. Choosing z = x1/4 (say) gives us the required
result. �
9.3.13 (The Brun - Titchmarsh theorem) For (a, k) = 1, and k ≤ x,
show that

π(x, k, a) ≤ (2 + ε)x
ϕ(k) log(2x/k)

for x > x0(ε), where π(x, k, a) denotes the number of primes less than x
which are congruent to a (mod k).

We consider the set of numbers n ≤ x, n ≡ a (mod k) that are not
divisible by primes p such that p ≤ z and (p, k) = 1. Clearly, the
primes counted by

π(x, k, a) − π(z, k, a)

are contained in this set. In the notation of the Selberg sieve, we
obtain

N(d) =
x

kd
+ O(1),

and the upper bound becomes

x

kU(z)
+ O(z2).

By Exercise 9.3.11,

U(z) ≥
∑

d≤z
(d,k)=1

1
d
.
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Now,
k

φ(k)
U(z) ≥

∏

p|k

(
1 − 1

p

)−1 ∑

d≤z
(d,k)=1

1
d
≥
∑

m≤z

1
m

,

and the latter quantity is asymptotic to log z. This gives a final esti-
mate of

π(x, k, a) ≤ x

φ(k) log z
+ O(z2),

and choosing z = (2x/k)1/2−ε gives the final result. �
9.3.14 (Titchmarsh divisor problem) Show that

∑
p≤x d(p−1) = O(x),

where the sum is over primes and d(n) denotes the divisor function.

We have, trivially,

d(n) ≤ 2
∑

d|n
d≤√

n

1,

so that ∑

p≤x

d(p − 1) ≤ 2
∑

d≤√
x

π(x, d, 1).

By an application of the Brun - Titchmarsh theorem we get
∑

p≤x

d(p − 1) � x

log x

∑

δ≤√
x

1
φ(δ)

.

By Exercise 4.4.14 (or the weaker 4.4.13) we are done. �

9.4 Supplementary Problems

9.4.1 Show that
∑

p≤x
p≡1 (mod k)

1
p
� log log x + log k

ϕ(k)
,

where the implied constant is absolute.

By partial summation, we have

∑

p≤x
p≡1(mod k)

1
p

=
π(x, k, 1)

x
+
∫ x

2

π(t, k, 1)dt

t2
.
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We have the trivial estimate π(x, k, 1) ≤ x/k, so the first term is
negligible.

For the integral, we break the interval of integration into two
parts:

[
2, k2

]
and

[
k2, x

]
. On the first interval we use the trivial esti-

mate to get an estimate of O((log k)/k). On the second interval, we
use the Brun - Titchmarsh theorem (Exercise 9.3.13) to obtain the
final result. �
9.4.2 Suppose that P is a set of primes such that

∑

p∈P

1
p

= +∞.

Show that the number of n ≤ x not divisible by any prime p ∈ P is o(x)
as x → ∞.

We apply the sieve of Eratosthenes. The number is clearly
bounded by

x
∏

p≤z
p∈P

(
1 − 1

p

)
+ O(2z)

for any value of z. Now, for 0 < x < 1,

ex < (1 − x)−1

so that 1 − x < e−x. Hence the bound in question is

≤ x exp
(
−
∑

p≤z
p∈P

1
p

)
+ O(2z).

Since ∑

p∈P

1
p

= +∞,

the result follows upon choosing z = log x. �
9.4.3 Show that the number of solutions of [d1, d2] ≤ z is O(z(log z)3).

The number in question is clearly

≤
∑

d1,d2≤z

z

[d1, d2]

∑

δ|d1,d2

φ(δ)

≤ z
∑

δ≤z

φ(δ)
(∑

δ|d
d≤z

1
d

)2
� z(log z)2

∑

δ≤z

φ(δ)
δ2

� z(log z)3,
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as required. �
9.4.4 Prove that

∑

p≤x/2

1
p log(x/p)

= O

(
log log x

log x

)
,

where the summation is over prime numbers.

We subdivide the interval [1, x/2] into subintervals of the form
Ij =

[
ej , ej+1

]
. We estimate

∑

p∈Ij

1
p log(x/p)

≤ 1
log(x/ej)

∑

p∈Ij

1
p
.

By Chebyshev’s theorem,

∑

p∈Ij

1
p
� e−j

(ej

j

)
� 1

j
.

We need to estimate

log(x/2)∑

j=1

1
j log(x/ej)

= O
( log log x

log x

)

by an easy partial summation. �
9.4.5 Let πk(x) denote the number of n ≤ x with k prime factors (not
necessarily distinct). Using the sieve of Eratosthenes, show that

πk(x) ≤ x(A log log x + B)k

k! log x

for some constants A and B.

We prove it by induction on k. For k = 1, this is Exercise 1.5.12.
Clearly,

πk(x) ≤ 1
k

∑

p≤x/2

πk−1(x/p),

since a number p1 · · · pk ≤ x is counted k times in the summation
∑

p≤x/2

πk−1(x/p).
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(Also, we may suppose that each pi ≤ x/2, since k ≥ 2.) By the
induction hypothesis and Exercise 9.4.4, we are done. �
9.4.6 Let a be an even integer. Show that the number of primes p ≤ x such
that p + a is also prime is

� x

(log x)2
∏

p|a

(
1 +

1
p

)
,

where the implied constant is absolute.

We let an = n(n + a) and apply the Selberg sieve. For P , we take
the set of all primes, and in the notation of Theorem 9.3.10 we take
2 < z ≤ √

x. If n >
√

x, then an ≡ 0 (mod p) implies that either n or
n + a is composite. Thus, the number to be estimated is less than or
equal to √

x + N(x, z).

Let us write each square-free d as

d = p1 · · · pkq1 · · · qt,

where the pi’s divide a and the qi’s are coprime to a. By the Chinese
remainder theorem it is easily seen that for square-free d,

N(d) =
x

f(d)
+ Rd,

where Rd ≤ 2ω(d) and f(d) is the completely multiplicative function
defined by

f(p) =

⎧
⎨

⎩

p/2 if (p, a) = 1,

p if p|a.

Thus, by Exercise 9.3.11 and Theorem 9.3.10, we obtain that the
number of primes in question is

≤
√

x +
x

U(z)
+ O

( ∑

d<z2

2ω(d)
)
.

The error term is easily seen to be O(z2 log z). As for the other term,
we have

U(z) ≥
∑

m≤z

1
f(m)

,
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where

1/f(m) =
2ωa(m)

m

with wa(m) equal to the total number (including multiplicity) of
prime factors of m that are coprime to a. If we let da(m) be the num-
ber of divisors of m coprime to a, then we see that
1/f(m) ≥ da(m)/m. Hence

⎛

⎝
∑

m≤z

da(m)
m

⎞

⎠
∏

p|a

(
1 − 1

p

)−1
≥
∑

m≤z

da(m)
m

∑

γ(n)|a

1
n

,

where γ(n) is the product of the distinct prime divisors of a.
Rearranging the sums, we find that the above sum is

≥
∞∑

t=1

1
t

∑

m≤z
m|t,γ(t/m)|a

da(m) ≥
∑

t≤z

1
t

∑

m|t
γ(t/m)|a

da(m).

The inner sum is clearly greater than or equal to d(t). Thus

U(z) ≥
∏

p|a

(
1 − 1

p

)∑

t≤z

d(t)
t

.

By Exercise 2.5.9, this gives

U(z) ≥
∏

p|a

(
1 − 1

p

)
(log z)2.

Choosing z = x1/4 and observing that

∏

p|a

(
1 − 1

p

)−1
=

∏

p|a

(
1 − 1

p2

)−1
(1 +

1
p

)

�
∏

p|a

(
1 +

1
p

)

gives the final result. �
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9.4.7 Let k be a positive even integer greater than 1. Show that the number
of primes p ≤ x such that kp + 1 is also prime is

� x

(log x)2
∏

p|k

(
1 +

1
p

)
.

We proceed as in Exercise 9.4.6 and take the sequence
an = n(kn + 1). As before, we obtain

N(d) =
x

f(d)
+ Rd

with |Rd| ≤ 2ω(d), and f(d) as in Exercise 9.4.6. We proceed as in the
previous exercise to deduce the result. �

9.4.8 Let k be even and satisfy 2 ≤ k < x. The number of primes p ≤ x
such that p − 1 = kq with q prime is

� x

ϕ(k) log2(x/k)
.

We substitute x/k for x in the previous exercise and observe that
we have actually proved

∏

p|k

(
1 − 1

p

)−1 x

log2 x

as the upper bound. Since the product is k/ϕ(k), the result follows.
�

9.4.9 Let n be a natural number. Show that the number of solutions of the
equation [a, b] = n is d(n2), where d(n) is the number of divisors of n.

Clearly, a and b can only have prime factors dividing n. Writing

n =
∏

p|n
pνp(n), a =

∏

p|a
pνp(a), b =

∏

p|b
pνp(b)

we must have νp(n) = max(νp(a), νp(b)). The number of solutions
for this latter equation is enumerated as follows. We can set νp(a) =
νp(n) and vary νp(b) between 0 and νp(n) or the other way around.
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But we have counted the pair (νp(a), νp(b)) = (νp(n), vp(n)) twice.
Thus the number of solutions is

∏

p|n
(2νp(n) + 1) = d(n2).

�
9.4.10 Show that the error term in Theorem 9.3.10 can be replaced by

O
( ∑

a<z2

d(a2)|Ra|
)
.

By the previous exercise, the number of solutions of [d1, d2] = a
is d(a2), and we are done. �
9.4.11 Show that ∑

p≤x

p − 1
ϕ(p − 1)

= O
( x

log x

)
,

where the summation is over prime numbers.

Observe that

n

ϕ(n)
=
∏

p|n

(
1 − 1

p

)−1
�
∏

p|n

(
1 +

1
p

)
,

so that
n

ϕ(n)
�
∑

d|n

1
n

.

Therefore,
∑

p≤x

p − 1
ϕ(p − 1)

�
∑

d≤x

π(x, d, 1)
d

.

The latter sum is split into two parts: d ≤ √
x and d >

√
x. On

the second part we use the trivial estimate π(x, d, 1) ≤ x/d, and on
the first part, we use the Brun - Titchmarsh theorem to deduce the
desired estimate. �
9.4.12 Prove that ∏

r<p≤x

(
1 − r

p

)
� 1

(log x)r
.
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We have the inequality

1 − x ≤ e−x,

easily verified to be valid for x ≥ 0. Indeed, let f(x) = e−x + x − 1.
Then f ′(x) = −e−x +1, which is nonnegative for x ≥ 0. Hence, f(x)
is increasing, so that f(x) ≥ f(0) = 0, for x ≥ 0. This fact, combined
with the elementary fact

∑

p≤x

1
p

= log log x + O(1),

gives the desired result. �
9.4.13 Prove that for some constant c > 0, we have

∑

n≤x

d(n2)
ϕ(n)

= c(log x)3 + O
(
log2 x

)
.

We consider the Dirichlet series

f(s) =
∞∑

n=1

d(n2)
ϕ(n)ns

=
∏

p

(
1 +

3
ps(p − 1)

+ · · ·
)

.

We see that g(s) = f(s− 1) has a pole of order 3 at s = 1. Moreover,
we can write g(s) = ζ3(s)h(s), where h(s) is regular for Re(s) > 1/2.
Hence by the methods of Chapter 4, we deduce that

∑

n≤x

d(n2)n/ϕ(n) ∼ c1x(log x)2.

The result now follows by partial summation. �
9.4.14 Let d(n) denote the number of divisors of n. Show that

∑

p≤x

d2(p − 1) = O(x log2 x log log x),

where the summation is over prime numbers.

The sum in question is
∑

[d1,d2]≤x

π(x, [d1, d2], 1) =
∑

n≤x

π(x, n, 1)d(n2)
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by Exercise 9.4.4. By the Brun - Titchmarsh theorem, this latter sum
is bounded by

�
∑

n<x

xd(n2)
ϕ(n) log x

n

.

We split the summation over dyadic intervals of the form[
2k, 2k+1

]
= Ik (say). The sum is

�
N−1∑

k=1

x

N − k

⎛

⎝
∑

n∈Ik

d(n2)
ϕ(n)

⎞

⎠ ,

where N = [log x/ log 2]. The inner sum by the previous exercise is
O(k2), and we must estimate

x
N−1∑

k=1

k2

N − k
= x

N−1∑

j=1

1
j
(N − j)2

� xN2 log N = O(x log2 x log log x),

as desired. �
9.4.15 Show that the result in the previous exercise can be improved to
O(x log2 x) by noting that d2(n) ≤ d4(n), where d4(n) is the number of
ways of writing n as a product of four natural numbers.

If we write n = d1d2d3d4 ≤ x, then we must have some di ≥ n1/4.
It is than not difficult to see that

∑

p≤x

d2(p − 1) ≤
∑

p≤x

d4(p − 1)

�
∑

d1d2d3≤x3/4

π(x, d1d2d3, 1).

Now apply the Brun - Titchmarsh theorem (Exercise 9.3.13) to get
the desired result. �





10
p-adic Methods

10.1 Ostrowski’s Theorem

10.1.1 If F is a field with norm || · ||, show that d(x, y) = ||x− y|| defines
a metric on F.

We may suppose 0 �= 1 in F , in which case ||1|| = ||1||2 implies
||1|| = 1. Hence || − 1||2 = 1 gives || − 1|| = 1. Now, d(x, y) = 0
⇔ ||x − y|| = 0 ⇔ x = y; also, d(x, y) = d(y, x), since || − 1|| = 1.
Finally, d(x, y) = ||x − y|| ≤ ||x − z|| + ||z − x|| = d(x, z) + d(z, x),
which is the triangle inequality. �

10.1.2 Show that | · |p is a norm on Q.

Clearly |x|p = 0 if and only if x = 0. Also, we can write x =
pνp(x)x1, y = pνp(y)y1 with x1, y1 coprime to p. Then, it is clear that
|xy|p = |x|p|y|p. To prove the triangle inequality, suppose first that
νp(x) �= νp(y) and without loss of generality νp(x) < νp(y). Then
x + y = pνp(x)x1 + pνp(y)y1 = pνp(x)(x1 + pνp(y)−νp(x)y1), so that |x +
y|p ≤ |x|p = max(|x|p, |y|p) in this case. If νp(x) = νp(y), the number
x1 + y1 when written in lowest terms has denominator coprime to
p. Thus,

|x + y|p ≤ max(|x|p, |y|p)
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in this case also. Thus, we have the triangle inequality satisfied in a
sharper form. �
10.1.3 Show that the usual absolute value on Q is archimedean.

We must show that |x+y| ≤ max(|x|, |y|) is not satisfied for some
pair of rational numbers x, y. If x > y > 0, we have |x+y| = x+y >
x = |x|. �
10.1.4 If 0 < c < 1 and p is prime, define

||x|| =
{

cνp(x) if x �= 0
0 if x = 0,

for all rational numbers x. Show that || · || is equivalent to | · |p on Q.

Since νp(x + y) ≤ min(νp(x), νp(y)) the result is clear. �
10.1.6 Let F be a field with norm || · ||, satisfying

||x + y|| ≤ max(||x||, ||y||).

If a ∈ F and r > 0, let B(a, r) be the open disk {x ∈ F : ||x − a|| < r}.
Show that B(a, r) = B(b, r) for any b ∈ B(a, r). (This result says that
every point of the disk is the ‘center’ of the disk.)

If x ∈ B(a, r), then ||x−a|| < r, so that ||x−b|| = ||(x−a)+(a−b)||
≤ max(||x − a||, ||a − b||) < r, so that x ∈ B(b, r). The converse is
also clear. �
10.1.7 Let F be a field with || · ||. Let R be the set of all Cauchy sequences
{an}∞n=1. Define addition and multiplication of sequences pointwise: that
is,

{an}∞n=1 + {bn}∞n=1 = {an + bn}∞n=1,

{an}∞n=1 × {bn}∞n=1 = {anbn}∞n=1.

Show that (R, +,×) is a commutative ring. Show further that the subset
R consisting of null Cauchy sequences (namely those satisfying ||an|| → 0
as n → ∞) forms a maximal ideal m.

We must first show that the sum and product of two Cauchy se-
quences is again Cauchy. Let ε > 0. Choose N1 such that ||an −
am|| < ε/2 for n,m ≥ N1. Choose N2 such that ||bn − bm|| < ε/2 for
n,m ≥ N2. Then, for N = max(N1, N2), we have

||(an + bn) − (am + bm)|| ≤ ||an − am|| + ||bn − bm||
< ε/2 + ε/2 = ε,
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for n,m ≥ N . Thus, the sum of two Cauchy sequences is again
Cauchy. Now let K be such that ||an|| ≤ K, ||bn|| ≤ K for all n (this
is clear from the Cauchy property). Then given ε > 0, choose M1

such that for n,m ≥ M1, we have ||an − am|| < ε/2K. Let M2 be
such that ||bn − bm|| < ε/2K for n,m ≥ M2. For M = max(M1, M2)
and n,m ≥ M, we have

||anbn − ambm|| ≤ ||an||||bn − bm|| + ||bm||||am − an||
< ε/2 + ε/2 = ε.

Thus, the product of two Cauchy sequences is again Cauchy. There-
fore R is closed under taking sums and products. The other ring
axioms are easily verified. Clearly, the sum and product of two null
sequences is again a null sequence. It is also clear that given a null
sequence {an}∞n=1 and a Cauchy sequence {bn}∞n=1 ∈ R, {anbn}∞n=1

is again a null sequence. Therefore, the null sequences form an ideal
m of R. To show that m is a maximal ideal, it suffices to show that
R/m is a field. To do this, we must show that any nonzero element
has an inverse. Thus, given {an}∞n=1 �∈ m, we know that there is an
ε1 > 0 such that |an|p > ε1 for all n sufficiently large. By adjust-
ing a few of the initial elements (if necessary) we may suppose that
an �= 0 for all n, because the adjusted sequence would still be in the
same equivalence class (mod m). It is now clear that {1/an}∞n=1 is a
Cauchy sequence and is inverse to the given sequence. Thus, R/m
is a field and m is a maximal ideal. �.

10.1.9 Show that
Zp = {x ∈ Qp : |x|p ≤ 1}

is a ring. (This ring is called the ring of p-adic integers.)

Each x ∈ Qp is a Cauchy sequence, say {an}∞n=1. We have defined
|x|p = limn→∞ |an|p. Thus, |an|p ≤ 1 for n sufficiently large, since
the values taken on by |an|p are integral powers of p. If x, y ∈ Qp are
such that |xp| ≤ 1 and |yp| ≤ 1, then writing y = {bn}∞n=1, we see
that |an + bn|p ≤ max(|an|p, |bn|p) ≤ 1 for n sufficiently large. The
same is true for |anbn|p = |an||bn|. Thus, it is clear that Zp is a ring.
This completes the proof. �

10.1.10 Given x ∈ Q satisfying |x|p ≤ 1, and any natural number i, show
that |x − ai|p ≤ p−i. Moreover, we can choose ai satisfying 0 ≤ ai < pi.
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Let x = a/b, with (a, b) = 1. Since |x|p ≤ 1, p does not divide b,
so that pi and b are coprime. We can therefore find integers u and v
such that ub + vpi = 1. Let ai = ua. Then

|ai − x|p =
∣∣∣ua − a

b

∣∣∣
p

=
∣∣∣
a

b

∣∣∣
p
|ub − 1|p

≤ p−i,

so that ai does the job. By translating ai by a multiple of pi we can
ensure 0 ≤ ai < pi, and the above inequality is not altered. �
10.1.12 Show that the p-adic series

∞∑

n=1

cn, cn ∈ Qp

converges if and only if |cn|p → 0.

It is clear that if the series converges, then |cn|p → 0. Now sup-
pose |cn|p → 0. Let sN =

∑N
n=1 cn. Since Qp is complete, it suffices

to show that {sN}∞N=1 is Cauchy. We have for M > N ,

|sM − sN |p = |cN+1 + cN+2 + · · · + cM |p
≤ max (|cN+1|p, |cN+2|p, . . . , |cM |p) ,

which goes to 0 as N → ∞. �
10.1.13 Show that ∞∑

n=1

n!

converges in Qp.

Clearly, |n!|p → 0 as n → ∞, and we are done by Exercise
10.1.12. �
10.1.14 Show that ∞∑

n=1

n · n! = −1

in Qp.

We have

sN =
N∑

n=1

n · n! = (N + 1)! − 1,
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as an easy induction argument shows.
Indeed, s1 = 2! − 1 = 1 and

sN+1 = sN + (N + 1)(N + 1)! = (N + 2)! − 1

by the induction hypothesis. Thus, limN→∞ sN = −1. �
10.1.15 Show that the power series

∞∑

n=0

xn

n!

converges in the disk |x|p < p
− 1

p−1 .

The power of p dividing n! is
∞∑

i=1

[ n

pi

]
<

∞∑

i=1

n

pi
=

n

p − 1
.

Therefore,
|n!|p > p−n/(p−1),

so that
|xn/n!|p < |x|nppn/(p−1),

which goes to 0 as n → ∞. �
10.1.16 (Product formula) Prove that for x ∈ Q,

∏

p

|x|p = 1,

where the product is taken over all primes p including ∞.

This is just a restatement of unique factorization. �
10.1.17 Prove that for any natural number n and a finite prime p,

|n|p ≥ 1
|n|∞

.

This also is clear from

|n|p = p−νp(n)

and
|n|∞ = pνp(n)(n/pνp(n)).

�



454 10. p-adic Methods

10.2 Hensel’s Lemma

10.2.1 Show that x2 = 7 has no solution in Q5.

If it did, then we could write x as a 5-adic number

x =
∞∑

n=−N

an5n.

The 5-adic expansion of 7 is 2 + 1 · 5, so that N = 0. Thus

( ∞∑

n=0

an5n
)2

= 2 + 1 · 5.

Reducing (mod 5) shows that a2
0 ≡ 2 (mod 5) has a solution, which

is not the case. �
10.2.4 Let f(x) ∈ Zp[x]. Suppose that for some N and a0 ∈ Zp we
have f(a0) ≡ 0

(
mod p2N+1

)
, f ′(a0) ≡ 0

(
mod pN

)
but f ′(a0) �≡ 0(

mod pN+1
)
. Show that there is a unique a ∈ Zp such that f(a) = 0 and

a ≡ a0

(
mod pN+1

)
.

We proceed as in the proof of Theorem 10.2.3. Write f(x) =∑
i cix

i. We will solve inductively

f(an) ≡ 0
(
mod p2N+n+1

)

satisfying an+1 ≡ an

(
mod pN+n+1

)
, f ′(an) ≡ 0

(
mod pN

)
and

f ′(an) �≡ 0
(
mod pN+1

)
. Writing an+1 = an + tpN+n+1, we need

to solve
f(an + tpN+n+1) ≡ 0

(
mod p2N+n+2

)
,

which reduces (as before) to

f(an) + pN+n+1tf ′(an) ≡ 0
(
mod p2N+n+2

)
.

We can divide through by p2N+n+1, since

f ′(an) ≡ f ′(a0) ≡ 0
(
mod pN

)
,

which gives a congruence (mod p) since f ′(an)/pN is coprime to p
Thus, we can solve for t. The sequence {an}∞n=1 is Cauchy, and its
limit satisfies the required conditions. �
10.2.5 For any prime p and any positive integer m coprime to p, show that
there exists a primitive mth root of unity in Qp if and only if m|(p − 1).



10.2 Hensel’s Lemma 455

First suppose m|(p−1). The polynomial f(x) = xm−1 has m dis-
tinct roots (mod p) because (Z/pZ)∗ is a cyclic group of order (p−1).
Moreover, each of these roots lifts to Zp by Hensel’s lemma. Among
the roots (mod p), precisely ϕ(m), where ϕ(m) denotes Euler’s func-
tion, have order exactly m. For the converse, notice that if α ∈ Qp

such that α has order m then, since f(x) is monic, α ∈ Zp and α is
an element of order m (mod p). Thus, m|(p − 1). �
10.2.6 Show that the set of (p − 1)st roots of unity in Qp is a cyclic group
of order (p − 1).

This is again a consequence of Hensel’s lemma. Each of the
residue classes mod p lifts to a unique (p − 1)st root of unity in Zp.
It is clear that the set of such roots of unity is a group. The cyclic-
ity follows from the fact that there is an element of order (p − 1)
established in the previous exercise. �
10.2.7 (Polynomial form of Hensel’s lemma) Suppose f(x) ∈ Zp[x]
and that there exist g1, h1 ∈ (Z/pZ)[x] such that f(x) ≡ g1(x) h1(x)
(mod p), with (g1, h1) = 1, g1(x) monic. Then there exist polynomials
g(x), h(x) ∈ Zp[x] such that g(x) is monic, f(x) = g(x)h(x), and g(x) ≡
g1(x) (mod p), h(x) ≡ h1(x) (mod p).

The idea is to construct two sequences of polynomials gn and hn

such that

gn+1 ≡ gn(mod pn), hn+1 ≡ hn(mod pn),

and f(x) ≡ gn(x)hn(x)(mod pn), with each gn monic and of degree
equal to deg g1 and then take the limit. The idea is as in Hensel’s
lemma. We do this first for n = 2. Write g2(x) = g1(x) + pr1(x), for
some polynomial r1(x) ∈ Zp[x]. Similarly, h2(x) = h1(x) + ps1(x).
We want

f(x) ≡ g2(x)h2(x) (mod p2).

That is,

f(x) ≡ g1(x)h1(x) + pr1(x)h1(x) + ps1(x)g1(x) (mod p2).

Since f(x) ≡ g1(x)h1(x) (mod p), we can write f(x) − g1(x)h1(x) =
pk1(x) for some k1(x) ∈ Zp[x]. Therefore, we get

k1(x) ≡ r1(x)h1(x) + s1(x)g1(x) (mod p).
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Since (g1, h1) = 1, we can find polynomials a(x), b(x) such that

a(x)g1(x) + b(x)h1(x) ≡ 1 (mod p).

If we set r̃1(x) = b(x)k1(x), s̃1(x) = a(x)k1(x), these polynomials
almost work for r1, s1. We have to ensure that deg g2 = deg g1 and
that g2 is monic. By the Euclidean algorithm for (Z/pZ)[x],

r̃1(x) = g1(x)q(x) + r1(x)

with deg r1 < deg g1. Set s1(x) = s̃1(x) + h1(x)q(x); then

r1(x)h1(x) + s1(x)g1(x) ≡ k1(x) (mod p)

as required. Also, since deg r1 < deg g1, we have g2 monic and
deg g2 = deg g1. We now continue in this way for g3, g4, . . . and take
the limit. �.

10.2.9 Show that for p �= 2, the only solution to x2 ≡ 1 (mod pn) is
x = ±1, for every n ≥ 1.

For n = 1, this is clear. Since the polynomial f(x) = x2 − 1
satisfies f ′(x) = 2x and f ′(±1) �≡ 0 (mod p) (since p �= 2), we
can apply Hensel’s lemma to obtain that both x ≡ 1 (mod p) and
x ≡ −1 (mod p) extend to p-adic solutions. These are clearly x = ±1.
�

10.3 p-adic Interpolation

10.3.1 Show that there is no continuous function f : Zp → Qp such that
f(n) = n!

Let x ∈ Zp \ Z. We want n! → f(x) as n → x. But n! is getting
p-adically closer to 0 as n → x (since n gets large in the usual sense
as n → x). Therefore, limn→x n! = 0, so that there is no continuous
p-adic function interpolating the factorials. �
10.3.2 Let p �= 2 be prime. Prove that for any natural numbers n, s we
have

ps−1∏

j=1
(n+j,p)=1

(n + j) ≡ −1(mod ps).
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The numbers n, n+1, . . . , n+ps−1 form a complete set of residues
mod ps. The product therefore is congruent to the product of all the
coprime residue classes mod ps. Now, in any abelian group A,

∏

g∈A

g =
∏

g∈A

g2=1

g,

since we can pair g and g−1 in the left-hand product. By Exercise
10.2.9,

x2 ≡ 1 (mod ps)

has only 2 solutions, namely x = ±1. Thus,

ps−1∏

j=1
(n+j,p)=1

(n + j) ≡ −1 (mod ps).

(Notice that for s = 1, n = 0, this is just Wilson’s theorem.) �
10.3.3 Show that if p �= 2,

ak =
∏

j≤k
(j,p)=1

j ,

then ak+ps ≡ −ak(mod ps).
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We have

∏

j≤k+ps

(j,p)=1

j =
∏

j≤ps

(j,p)=1

j
∏

ps<j≤k+ps

(j,p)=1

j

≡ −
∏

j≤k
(j,p)=1

j(mod ps)

by application of Exercise 10.3.2. Therefore,

ak+ps ≡ −ak (mod ps).

�
10.3.4 Prove that for p �= 2,

Γp(k + ps) ≡ Γp(k) (mod ps).

We have Γp(n) = (−1)nan−1, in the notation of the previous exer-
cise. Thus,

Γp(k + ps) = (−1)k+ps
ak+ps−1 ≡ (−1)kak−1 (mod ps),

which gives the result. (Note that p is odd.) �
10.3.5 Let n, k be natural numbers and write

n = a0 + a1p + a2p
2 + · · · ,

k = b0 + b1p + b2p
2 + · · · ,

for the p-adic expansions of n and k, respectively. Show that
(

n

k

)
≡
(

a0

b0

)(
a1

b1

)(
a2

b2

)
· · · (mod p).

We have

(1 + x)n = (1 + x)a0(1 + x)a1p(1 + x)a2p2 · · ·
≡ (1 + x)a0(1 + xp)a1(1 + xp2

)a2 · · · (mod p).
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Now compare coefficients of xk on both sides. Since k = b0+b1p+· · ·
is the unique p-adic expansion, the result is now evident. �
10.3.6 If p is prime, show that

(
pn

k

)
≡ 0 (mod p)

for 1 ≤ k ≤ pn − 1 and all n.

The p-adic expansion of pn is just pn, so that a0 = a1 = · · · =
an−1 = 0 from which the result now follows. �
10.3.7 (Binomial inversion formula) Suppose for all n,

bn =
n∑

k=0

(
n

k

)
ak.

Show that

an =
n∑

k=0

(
n

k

)
(−1)n−kbk,

and conversely.

Consider the multiplication of formal power series:

( ∞∑

n=0

anxn

n!

)( ∞∑

n=0

cnxn

n!

)
=

∞∑

n=0

bnxn

n!
.

It is easily seen that

bn =
n∑

k=0

(
n

k

)
akcn−k.

Thus, the given relation for bn implies

∞∑

n=0

bnxn

n!
= ex

∞∑

n=0

anxn

n!

from which the result is clear. �
10.3.8 Prove that

n∑

k=0

(
n

k

)
(−1)k

(
k

m

)
=

⎧
⎨

⎩

(−1)m if n = m,

0 otherwise.
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Put

ak =

⎧
⎨

⎩

(−1)m if k = m,

0 otherwise.

In the notation of the previous exercise,

bn =
(

n

m

)
(−1)m,

so that

an =
n∑

k=0

(
n

k

)
(−1)n−k

(
k

m

)
(−1)m =

⎧
⎨

⎩

(−1)m if n = m,

0 otherwise,

as desired. �
10.3.9 Define

∆nf(x) =
n∑

k=0

(
n

k

)
(−1)n−kf(x + k).

Show that

∆nf(x) =
m∑

j=0

(
m

j

)
∆n+jf(x − m).

It suffices to show that

f(x) =
m∑

j=0

(
m

j

)
∆jf(x − m),

for the result follows by applying the operator ∆n to both sides of
the equation. But then

m∑

j=0

(
m

j

)
∆jf(x − m) =

m∑

j=0

(
m

j

) j∑

k=0

(
j

k

)
(−1)j−kf(x − m + k)

=
m∑

k=0

(−1)kf(x − m + k)
m∑

j=0

(
m

j

)(
j

k

)
(−1)j ,
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and the inner sum is 0 unless k = m, in which case it is (−1)m, by
Exercise 10.3.8. Thus, the result is immediate. �
10.3.10 Prove that

m∑

j=0

(
m

j

)
an+j(f) =

n∑

k=0

(−1)n−k

(
n

k

)
f(k + m)

with an(f) defined by

an(f) =
n∑

k=0

(−1)n−k

(
n

k

)
f(k).

For m = 0, the formula is clear. By the previous exercise,

∆nf(m) =
m∑

j=0

(
m

j

)
∆n+jf(0).

Now,

∆nf(m) =
n∑

k=0

(
n

k

)
(−1)n−kf(k + m),

and we need only observe that ∆nf(0) = an(f) to complete the
proof. �
10.3.11 Show that the polynomial

(
x

n

)
=

⎧
⎨

⎩

x(x−1)···(x−n+1)
n! if n ≥ 1

1 if n = 0.

takes integer values for x ∈ Z. Deduce that
∣∣∣∣

(
x

n

)∣∣∣∣
p

≤ 1

for all x ∈ Zp.

For x a natural number, this is clear. If x = −m (m ∈ N) then
(
−m

n

)
= (−1)n

(
m + n − 1

n

)
∈ Z.
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The polynomial
(
x
n

)
is continuous. Since Z is dense in Zp, it follows

that for all x ∈ Zp ∣∣∣∣

(
x

n

)∣∣∣∣
p

≤ 1. �

10.3.13 If f(x) ∈ C[x] is a polynomial taking integral values at integral
arguments, show that

f(x) =
∑

k

ck

(
x

k

)

for certain integers ck.

This is purely formal, and a consequence of Exercise 10.3.7. In-
deed, set

an(f) =
n∑

k=0

(
n

k

)
(−1)n−kf(k),

which gives a sequence of integers, since the f(k) are all integers.
By the binomial inversion formula,

f(n) =
n∑

k=0

(
n

k

)
ak(f).

Let D be the degree of f . Set

f∗(x) =
D∑

k=0

(
x

k

)
ak(f).

Now, for 0 ≤ n ≤ D,

f∗(n) =
D∑

k=0

(
n

k

)
ak(f) =

n∑

k=0

(
n

k

)
ak(f) = f(n).

Since the polynomials f(x) and f∗(x) have the same degree and
agree on D + 1 points, we must have f(x) = f∗(x). This completes
the proof. �
10.3.14 If n ≡ 1 (mod p), prove that npm ≡ 1 (mod pm+1). Deduce that
the sequence ak = nk can be p-adically interpolated.

We prove the congruence by induction. For m = 1, we may write
n = 1 + tp, for some t, so that np = (1 + tp)p ≡ 1 (mod p2). Assume
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that the result has been shown for m ≤ n. Then, we must show that
that npn ≡ 1 (mod pn+2). By induction, we have npn

= 1 + jpn+1 for
some j. Hence, npn+1

= (1 + jpn+1)p ≡ 1 (mod pn+2) as required.
To prove that the sequence of ak’s can be p-adically interpolated, it
suffices to show that if k ≡ k′(mod pm), then ak ≡ ak′(mod pm+1).
Indeed, we have

nk−k′ ≡ 1(mod pm+1)

by what we have just shown. �
10.3.15 Let (n, p) = 1. If k ≡ k′ (mod (p − 1)pN ), then show that

nk ≡ nk′ (
mod pN+1

)
.

We have to prove

nk−k′ ≡ 1 (mod pN+1).

But this follows from Euler’s theorem. �
10.3.16 Fix s0 ∈ {0, 1, 2, . . . , p − 2} and let As0 be the set of integers
congruent to s0 (mod p − 1). Show that As0 is a dense subset of Zp.

This is an application of the Chinese reminder theorem. Given
m ∈ Zp, we must find an integer n such that n ≡ m(mod pN ) and
n ≡ s0(mod p − 1), which we can do since p and p − 1 are coprime.
�
10.3.17 If (n, p) = 1, show that f(k) = nk can be extended to a continu-
ous function on As0 .

For s ∈ As0 , we write s = s0 + (p − 1)s1, and hence f(s) =
ns0(np−1)s1 . Since np−1 ≡ 1 (mod p), the function (np−1)s1 can be
p-adically interpolated for all s1 ∈ Zp by Exercise 10.3.14. Thus, f
extends to a continuous function on As0 . �

10.4 The p-adic ζ-Function

10.4.1 Verify that µk extends to a distribution on Zp.

We must verify that

µk(a + pn
Zp) =

p−1∑

b=0

µk(a + bpn + pn+1
Zp).
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The right-hand side equals

p(n+1)(k−1)
p−1∑

b=0

bk

(
a + bpn

pn+1

)
.

After multiplying both sides by p−n(k−1), the identity to be proved
reduces to

bk(px) = pk−1
p−1∑

b=0

bk

(
x +

b

p

)
,

and this is easily deduced from the power series generating func-
tion for the Bernoulli polynomials �
10.4.3 Show that µ1,α is a measure.

We have

µ1,α(a + pN
Zp) =

a

pN
− 1

2
− 1

α

(
(αa)N

pN
− 1

2

)

=
(1/α) − 1

2
+

a

pN
− 1

α

(
αa

pN
−
[

αa

pN

])
,

where [·] denotes the greatest integer function. Thus,

µ1,α(a + pN
Zp) =

1
α

[
αa

pN

]
+

(1/α) − 1
2

.

Since α ∈ Z
∗
p, 1/α ∈ Zp and ((1/α) − 1)/2 ∈ Zp if p �= 2. If p = 2,

then α−1 ≡ 1 (mod 2) and (α−1 − 1)/2 ∈ Zp in this case also. Thus,

µ1,α(a + pN
Zp) ∈ Zp,

and hence ∣∣µ1,α

(
a + pN

Zp

)∣∣ ≤ 1.

Since every compact-open set U is a finite disjoint union of inter-
vals of the form a + pN

Zp, the result immediately follows from the
nonarchimedean property of the p-adic norm. �
10.4.4 Let dk be the least common multiple of the denominators of coeffi-
cients of bk(x). Show that

dkµk,α(a + pN
Zp) ≡ dkkak−1µ1,α

(
a + pN

Zp

) (
mod pN

)
.
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The Bernoulli polynomial begins as

xk − k

2
xk−1 + · · · ,

as is easily checked. Now,

dkµk,α(a + pN
Zp) = dkp

N(k−1)

(
bk

(
a

pN

)
− α−kbk

(
(αa)N

pN

))
.

The polynomial dkBk(x) has integral coefficients, and its first two
terms are dkx

k − k(dk/2)xk−1. Since x = a/pN has denominator
pN , and we are multiplying by pN(k−1), the terms after xk−2 will be
divisible by pN for x = a/pN . Thus,

dkµk(a + pN
Zp) ≡ dkp

N(k−1)
( ak

pNk
− α−k

((αa)N

pN

)k

−k

2

( ak−1

pN(k−1)
− α−k

((αa)N
pN

)k−1))
(mod pN )

≡ dk

( ak

pN
− α−kpN(k−1)

(αa

pN
−
[αa

pN

])k

−k

2

(
ak−1 − α−kpN(k−1)

(αa

pN
−
[αa

pN

])k−1))

≡ dk

( ak

pN
− α−k

(αkak

pN
− kαk−1ak−1

[αa

pN

])

−k

2
(ak−1 − α−k(αk−1ak−1))

)
(mod pN )

≡ dkkak−1
( 1

α

[αa

pN

]
+

α−1 − 1
2

)
(mod pN )

≡ dkkak−1µ1,α(a + pN
Zp) (mod pN ).

10.4.5 Show that
∫

Zp

dµk,α = k

∫

Zp

xk−1dµ1,α.
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In the notation of the previous exercise we see that

dk

∫

Zp

dµk,α ≡
∑

0≤a≤pN−1

µk,α

(
a + pN

Zp

)
(mod pN )

≡ dkk
∑

0≤a≤pN−1

ak−1µ1,α

(
a + pN

Zp

)
(mod pN ),

from which the result now follows. �
10.4.6 If Z

∗
p is the group of units of Zp, show that

µk,α(Z∗
p) = (1 − α−k)(1 − pk−1)Bk,

where Bk is the kth Bernoulli number.

Clearly,

µk,α(Z∗
p) = µk,α(Zp) − µk,α(pZp)

= µk(Zp) − α−kµk(αZp) − µk(pZp) + α−kµk(αZp).

Now, µk(Zp) = Bk, and µk(pZp) = pk−1Bk. Also, since α is an inte-
ger coprime to p, αZp = Zp, so that µk(αZp) = Bk and µk(αpZp) =
pk−1Bk. The result now follows. �
10.4.8 (Kummer congruences) If (p − 1) � i and i ≡ j (mod pn) show
that

(1 − pi−1)Bi/i ≡ (1 − pj−1)Bj/j
(
mod pn+1

)
.

Let α be a primitive root (mod p). Since (p− 1) � i, we have αi �≡ 1
(mod p), so that α−i−1 ∈ Z

∗
p. By Theorem 10.4.7, it suffices to prove

α−i − 1 ≡ α−j − 1 (mod pn+1) and
∫

Z∗
p

xi−1dµ1,α ≡
∫

Z∗
p

xj−1dµ1,α

(
mod pn+1

)
.

The former congruence follows from Euler’s theorem. The latter fol-
lows from xi−1 ≡ xj−1(mod pn+1), by the same theorem. �
10.4.9 (Kummer) If (p − 1) � i, show that |Bi/i|p ≤ 1.

As in Exercise 10.4.8,

|Bi/i|p = |α−i − 1|−1
p |1 − pj−1|−1

p

∣∣∣∣∣

∫

Z∗
p

xi−1dµ1,α

∣∣∣∣∣
p

.
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Since (p − 1) � |i, αi − 1 is coprime to p. Thus,

|Bi/i|p =

∣∣∣∣∣

∫

Z∗
p

xi−1dµ1,α

∣∣∣∣∣
p

≤ 1,

because |µ1,α(U)|p ≤ 1 for all compact-open sets U . �

10.4.10 (Clausen and von Staudt) If (p − 1)|i and i is even, then

pBi ≡ −1 (mod p).

By Exercise 2.5.23,

(m + 1)sm(p) =
m∑

k=0

(
m + 1

k

)
Bkp

m+1−k,

where
sm(p) = 1m + 2m + · · · + (p − 1)m.

Therefore,

pBm = sm(p) −
m−1∑

k=0

1
m + 1

(
m + 1

k

)
Bkp

m+1−k

which is equal to

sm(p) − pm+1

m + 1
−

m−1∑

k=1

(
m

k − 1

)
Bk

k
pm+1−k.

By Exercise 10.4.9, |Bk/k|p ≤ 1 if (p − 1) � k. We now write
m = (p − 1)t and induct on t. For t = 1,

pBp−1 = sp−1(p) − pp−1 −
p−2∑

k=1

(
p − 1
k − 1

)
Bk

k
pp−k ≡ −1 (mod p)

by Fermat’s little theorem. The result is now deduced by an easy
induction argument. �
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10.5 Supplementary Problems

10.5.1 Let 1 ≤ a ≤ p − 1, and set φ(a) = (ap−1 − 1)/p. Prove that
φ(ab) ≡ φ(a) + φ(b) (mod p).

We have

(ab)p−1 = ap−1bp−1 = (1 + pφ(a))(1 + pφ(b))
≡ 1 + p(φ(a) + φ(b)) (mod p2),

and the result is now clear. �

10.5.2 With φ as in the previous exercise, show that

φ(a + pt) ≡ φ(a) − at (mod p),

where aa ≡ 1 (mod p).

We have

(a + pt)p−1 ≡ ap−1 + p(p − 1)tap−2 (mod p2)
≡ 1 + pφ(a) − ptap−1a (mod p2)
≡ 1 + pφ(a) − pt(1 + pφ(a))a (mod p2)
≡ 1 + pφ(a) − pta (mod p2),

from which the congruence follows. �

10.5.3 Let [x] denote the greatest integer less than or equal to x. For 1 ≤
a ≤ p − 1, show that

ap − a

p
≡

p−1∑

j=1

1
j

[
aj

p

]
(mod p).

We have

p−1∑

j=1

φ(aj) ≡
p−1∑

j=1

φ(a) +
p−1∑

j=1

φ(j) (mod p)

≡ (p − 1)φ(a) +
p−1∑

j=1

φ(j) (mod p).
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Thus

φ(a) ≡
p−1∑

j=1

φ(j) −
p−1∑

j=1

φ(aj) (mod p).

Write aj = rj + pqj , where 1 ≤ rj ≤ p − 1. Then by Exercise 10.5.2,

φ(aj) = φ(rj + pqj) ≡ φ(rj) −
qj

rj
(mod p),

so that
p−1∑

j=1

φ(aj) =
p−1∑

j=1

φ(rj) −
p−1∑

j=1

qj

rj
; (mod p).

Clearly, as j runs through 1 to p − 1, so does rj . Hence

φ(a) ≡
p−1∑

j=1

qj

rj
(mod p).

Now, aj ≡ rj (mod p) and qj = [aj/p], so that

aφ(a) ≡
p−1∑

j=1

1
j

[
aj

p

]
(mod p)

as desired. �
10.5.4 Prove the following generalization of Wilson’s theorem:

(p − k)!(k − 1)! ≡ (−1)k (mod p)

for 1 ≤ k ≤ p − 1.

Write

−1 ≡ (p − 1)! ≡ (p − 1)(p − 2) · · · (p − (k − 1))(p − k)! (mod p)
≡ (−1)k−1(k − 1)!(p − k)! (mod p),

from which the result follows. �
10.5.5 Prove that for an odd prime p,

2p−1 − 1
p

≡
p−1∑

j=1

(−1)j+1

2j
(mod p).
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Deduce that 2p−1 ≡ 1 (mod p2) if and only if the numerator of

1 − 1
2

+
1
3
− · · · − 1

p − 1

is divisible by p.

We have,

2p−1 − 1
p

=
(1 + 1)p − 2

2p
=

1
2p

p−1∑

j=1

(
p

j

)

=
1
2

p−1∑

j=1

(p − 1)!
(p − j)!j!

.

By Wilson’s theorem the numerator of each summand is congruent
to −1 (mod p). By Exercise 10.5.4, the denominator is congruent to
(−1)jj(mod p). Thus

2p−1 − 1
p

≡
p−1∑

j=1

(−1)j+1

2j
(mod p),

as desired. �

10.5.6 Let p be an odd prime. Show that for all x ∈ Zp, Γp(x + 1) =
hp(x)Γp(x), where

hp(x) =

⎧
⎨

⎩

−x if |x|p = 1,

−1 if |x|p < 1.

From the definition, we have

Γp(n + 1) =

⎧
⎨

⎩

−nΓp(n) if (n, p) = 1,

−Γp(n) if (n, p) �= 1.

The result now follows by continuity. �

10.5.7 For s ≥ 2, show that the only solutions of x2 ≡ 1 (mod 2s) are
x ≡ 1,−1, 2s−1 − 1, and 2s−1 + 1.
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We have 2s|(x2 − 1). Since x2 − 1 = (x − 1)(x + 1), exactly one of
(x − 1) or (x + 1) is divisible by 4. Either 2||(x − 1) or 2||(x + 1). In
the former case, x ≡ −1 (mod 2s−1), so that

x = 2s−1t − 1

for some t. If t is even, we get x ≡ −1 (mod 2s). If t is odd, we get
x ≡ 2s−1 − 1 (mod 2s.) In the latter case, x ≡ 1 (mod 2s−1), and if t
is odd, we get x ≡ 2s−1 + 1 (mod 2s). �
10.5.8 (The 2-adic Γ-function) Show that the sequence defined by

Γ2(n) = (−1)n
∏

1≤j<n
(j,2)=1

j

can be extended to a continuous function on Z2.

We have

Γ2(n + 2s) = Γ2(n)
∏

0≤j<2s

(n+j,2)=1

(n + j).

As we remarked earlier, the product of all the elements in an abelian
group is equal to the product of the elements of order 2. We must
therefore solve

x2 ≡ 1 (mod 2s).

By Exercise 10.5.7, these are precisely 1,−1, 2s−1 + 1, and 2s−1 − 1.
Therefore,

Γ2(n + 2s) ≡ Γ2(n) (mod 2s),

from which the result follows by an application of Mahler’s theo-
rem. This completes the proof. �
10.5.9 Prove that for all natural numbers n,

Γp(−n)Γp(n + 1) = (−1)[n/p]+n+1.

By Exercise 10.5.6, we have

1 = Γp(0) = Γp(−1)hp(−1) = Γp(−2)hp(−2)hp(−1),
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and so on. Thus,

Γp(−n)−1 =
n∏

j=1

hp(−j)

for any natural number n. Again by Exercise 10.5.6, we know that
hp(−j) = −1 if p|j, and j otherwise. Thus,

Γp(−n)−1 = (−1)[n/p]
∏

1≤j≤n
(j,p)=1

j

= (−1)[n/p]+n+1Γp(n + 1),

as desired. �
10.5.10 If p is an odd prime, prove that for x ∈ Zp,

Γp(x)Γp(1 − x) = (−1)�(x),

where �(x) is defined as the element of {1, 2, . . . , p} satisfying �(x) ≡
x (mod p). (This is the p-adic analogue of Exercise 6.3.4.)

From Exercise 10.5.9, we have

Γp(n + 1)Γp(−n) = (−1)n+1+[n/p].

Write n − 1 instead of n:

Γp(n)Γp(1 − n) = (−1)n+[(n−1)/p].

If n = a0 + a1p + a2p
2 + · · · is the p-adic expansion of n, then

[(n − 1)/p] = [((a0 − 1) + a1p + · · · )/p].

First suppose a0 �= 0. Then

[(n − 1)/p] = a1 + a2p + · · · ,

so that n − p[(n − 1)/p] = a0 = �(n). Clearly,

(−1)n+[(n−1)/p] = (−1)n−p[(n−1)/p] = (−1)�(n),

and the formula is proved in this case. If a0 = 0, then

n − 1 = (p − 1) + b1p + · · ·
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and
[(n − 1)/p] = b1 + b2p + · · · ,

which gives
n − p[(n − 1)/p] = p = �(n),

and again the formula is proved. �
10.5.11 Show that

Γp(1/2)2 =

⎧
⎨

⎩

1 if p ≡ 3 (mod 4),

−1 if p ≡ 1 (mod 4).

By Exercise 10.5.10,

Γp(1/2)2 = (−1)�(1/2).

Now, �(1/2) = �((p + 1)/2) = (p + 1)/2, so the result follows. �





11
Equidistribution

11.1 Uniform distribution modulo 1

11.1.1 Let us write the sequence of non-zero rational numbers in [0, 1] as
follows:

1,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5
,
1
6
,
5
6
, ...

where we successively write all the fractions with denominator b for b =
1, 2, 3, .... Show that this sequence is u.d. mod 1.

We denote by xn the sequence thus formed. Our goal is to show
that the number of n ≤ M with xn ≤ x is asymptotically Mx. Let
us first consider all the fractions with denominator at most N . The
number of such fractions is

VN =
N∑

b=1

φ(b).

For each x, we count the number of fractions ≤ x. This number is

N∑

b=1

∑

a≤bx

∑

d|a,d|b
µ(d),
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since the inner sum is zero unless (a, b) = 1. We find easily that this
is

N∑

b=1

∑

d|b
µ(d)

∑

a≤bx,d|a
1.

The innermost sum is [bx/d] and so the sum in question is

x
N∑

b=1

φ(b) + O

⎛

⎝
∑

b≤N

d(b)

⎞

⎠ ,

where d(b) denotes the number of divisors of b. By Exercise 1.4.1,
the error term is O(N log N). By Exercise 1.4.2, the main term is as-
ymptotic to cxN2 for some constant c. In other words, VN ∼ cN2.
Now let M be an arbitrary integer. As the sequence VN is strictly
increasing, there is an N such that

VN ≤ M < VN+1.

The number n ≤ M with xn ≤ x is equal to

xVN + O(N log N) + O(φ(N + 1)).

Since M = VN + O(φ(N + 1)), this completes the proof. �
11.1.2 If a sequence of real numbers {xn}∞n=1 is u.d., show that for any a
with 0 ≤ a < 1, we have

#{n ≤ N : (xn) = a} = o(N).

For any ε > 0, we take b = a + ε so that from the definition of u.d,
we have

#{n ≤ N : (xn) ∈ [a, a + ε]} ≤ 2εN,

for N ≥ N0(ε). Since the quantity in question is bounded by the
above, we are done. �
11.1.3 If the sequence {xn}∞n=1 is u.d. and f : [0, 1] → C is a continuous
function, show that

lim
N→∞

1
N

N∑

n=1

f(xn) →
∫ 1

0
f(x)dx,

and conversely.
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It suffices to establish the result for real-valued functions. For any
characteristic function of an interval, we have the result by virtue
of the definition of uniform distribution. Let ε > 0 be fixed. By
the theory of the Riemann integral, we know that there are step
functions (that is, finite R-linear combinations of characteristic func-
tions) f1, f2 such that

f1(x) ≤ f(x) ≤ f2(x),

∫ 1

0
f1(x)dx ≤

∫ 1

0
f(x)dx ≤

∫ 1

0
f2(x)dx,

and

0 ≤
∫ 1

0
(f2(x) − f1(x))dx ≤ ε.

The result is now immediate from our initial remark. For the con-
verse, we observe that given any ε > 0, the characteristic function
χ[a,b] of the interval [a, b] can be approximated by continuous func-
tions f1, f2 such that

f1(x) ≤ χ[a,b](x) ≤ f2(x),

and ∫ 1

0
(f2(x) − f1(x))dx ≤ ε.

Indeed, we may take

f1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

(x − a)/ε if a ≤ x ≤ a + ε

1 if a + ε ≤ x ≤ b − ε

(b − x)/ε if b − ε ≤ x ≤ b

0 if b ≤ x

with f2(x) analogously defined. Note that

∫ 1

0
(f2(x) − f1(x))dx ≤ 2ε.

This completes the proof. �
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11.1.4 If {xn}∞n=1 is u.d. then

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dx,

for any piecewise C1-function f : [0, 1] → C.
This is clear from the previous exercise. �

11.1.6 Show that Weyl’s criterion need only be checked for positive integers
m.

This is immediate upon taking complex conjugation in Weyl’s cri-
terion. �
11.1.7 Show that the sequence {xn}∞n=1 is u.d. mod 1 if and only if

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dx,

for any family of functions f which is dense in C[0, 1]. Here, C[0, 1] is the
metric space of continuous functions on [0, 1] with the sup norm.

The proof of this result follows the method of Theorem 11.1.5. We
simply replace trigonometric polynomials by finite linear combina-
tions of functions in our family. �
11.1.8 Let θ be an irrational number. Show that the sequence xn = nθ is
u.d.

By Weyl’s criterion, it suffices to check

N∑

n=1

e2πimnθ = o(N)

for m = 1, 2, ... Indeed, the sum on the left hand side is the sum of a
geometric progression and equals

e2πim(N+1)θ − 1
e2πimθ − 1

.

This is bounded by 2/|e2πimθ − 1|, where the denominator is non-
zero since θ is irrational. Thus, the sum in question is clearly o(N).
�
11.1.9 If θ is rational, show that the sequence xn = nθ is not u.d.

Let θ = a/b with a, b coprime integers. Then, Weyl’s criterion fails
with m = b since

N∑

n=1

e2πib(na/b) = N.
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�
11.1.10 Show that the sequence xn = log n is not u.d. but is dense mod 1.

By Weyl’s criterion, we need to consider the sum

N∑

n=1

e2πim log n =
N∑

n=1

n2πim.

We may apply the Euler-Maclaurin summation formula to the right
hand side to deduce that it is

∫ N

1
t2πimdt +

1
2
(N2πim − 1) +

∫ N

1
B1(t)(2πim)t2πim−1dt.

This is easily seen to be

N2πim+1 − 1
2πim + 1

+ O(log N).

Dividing by N and letting N tend to infinity shows that the first
term does not converge. For example, for m = 1, we have

N2πi = cos(2π log N) + i sin(2π log N).

If N = 2r, we get

N2πi = cos(2πr log 2) + i sin(2πr log 2).

Since log 2 is irrational, the sequence r log 2 is u.d. and we can make
r log 2 (mod 1) to be close to any number for infinitely many choices
of r. Thus, the limit does not exist. To show the sequence is dense
mod 1, we need only note that m log 2 is u.d. mod 1 since log 2 is
irrational. �
11.1.11 Let 0 ≤ xn < 1. Show that the sequence {xn}∞n=1 is u.d. mod 1 if
and only if

lim
N→∞

1
N

N∑

n=1

xr
n =

1
r + 1

,

for every natural number r.
If the sequence is u.d., then the value of the limit follows from

Exercise 11.1.3. The converse is immediate upon applying the
Weierstrass approximation theorem that states that every continu-
ous function can be approximated by a polynomial. �
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11.1.12 If {xn}∞n=1 is u.d. mod 1, then show that {mxn}∞n=1 is u.d. mod 1
for m a non-zero integer.

This is an immediate application of Weyl’s criterion. �
11.1.13 If {xn}∞n=1 is u.d. mod 1, and c is a constant, show that {xn +
c}∞n=1 is u.d. mod 1.

This is again an immediate consequence of Weyl’s criterion. �
11.1.14 If {xn}∞n=1 is u.d. mod 1 and yn → c as n → ∞, show that
{xn + yn}∞n=1 is u.d. mod 1.

By the previous exercise, we may suppose that c = 0. We must
show that for any interval [a, b],

#{n ≤ N : (xn + yn) ∈ [a, b]} = (b − a)N + o(N).

To this end, let ε > 0 be such that 2ε < b− a and |yn| < ε for n ≥ N0.
Then,

#{n ≤ N : (xn) ∈ [a+ε, b−ε]}−N0 ≤ #{n ≤ N : (xn +yn) ∈ [a, b]}

and

#{n ≤ N : (xn +yn) ∈ [a, b]} ≤ #{n ≤ N : (xn) ∈ [a−ε, b+ε]}+N0

Using the known u.d. of the sequence of xn’s, we now deduce the
desired result. �
11.1.15 Let Fn denote the nth Fibonacci number defined by the recursion
F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1. Show that log Fn is u.d. mod 1.

It is easy to deduce (by induction, for example) that

Fn =
αn+1 − βn+1

α − β

where α = (1 +
√

5)/2 and β = (1−
√

5)/2. Thus, it suffices to show
log(αn+1 − βn+1) is u.d. mod 1. Since |β/α| < 1, and we must study
the sequence

(n + 1) log α + log(1 − (β/α)n+1),

it suffices to show that (n + 1) log α is u.d. since the second term
tends to zero as n tends to infinity. By a classical theorem of Her-
mite, log α is irrational and thus the sequence (n + 1) log α is u.d.
mod 1. �
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11.1.18 Let y1, ..., yN be complex numbers. Let H be a subset of [0, H]
with 1 ≤ H ≤ N . Show that
∣∣∣∣∣

N∑

n=1

yn

∣∣∣∣∣

2

≤ N + H

|H|

N∑

n=1

|yn|2 +
2(N + H)

|H|2
H∑

r=1

Nr

∣∣∣∣∣

N−r∑

n=1

yn+ryn

∣∣∣∣∣ ,

where Nr is the number of solutions of h − k = r with h > k and h, k ∈
H.

We proceed as in the proof of Theorem 11.1.16. We have

|H|2
∣∣∣∣∣
∑

n

yn

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

h∈H

∑

n

yn+h

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

n

∑

h∈H
yn+h

∣∣∣∣∣

2

.

As before, we note that the inner sum is zero if n /∈ [−H + 1, N ].
Applying the Cauchy-Schwarz inequality, we get a bound of

≤ (N + H)
∑

n

∣∣∣∣∣
∑

h∈H
yn+h

∣∣∣∣∣

2

.

Expanding the sum, we obtain
∑

n

∑

h,k∈H
yn+hyn+k = |H|

∑

n

|yn|2 +
∑

n

∑

h�=k,h,k∈H
yn+hyn+k.

In the second sum, we combine the terms corresponding to (h, k)
and (k, h) to get

2 Re

⎛

⎝
∑

n

∑

h∈H

∑

k<h,k∈H
yn+hyn+k

⎞

⎠ .

As before, writing m = n + k, we can re-write the above as

2 Re

(
∑

m

H∑

r=1

ym+rymNr

)

from which the result is now easily deduced. �
11.1.19 Let θ be an irrational number. Show that the sequence {n2θ}∞n=1

is u.d. mod 1.
For each fixed h, the sequence (n + h)2θ − n2θ = 2hnθ + h2θ is

u.d. and so by Corollary 11.1.17, we are done. �



482 11. Equidistribution

11.1.20 Show that the sequence {an2 + bn}∞n=1 is u.d. provided that one
of a or b is irrational.

Suppose first that a is irrational. An application of Corollay
11.1.17 immediately gives the result. If a is rational, then b must
be irrational by hypothesis. Writing a = A/B with B > 0, we can
re-write the corresponding Weyl sum as:

B−1∑

d=0

[N/B]∑

k=1

e2πim(A(Bk+d)2/B+b(Bk+d)).

This simplifies to

B−1∑

d=0

e2πim(Ad2/B+bd)

[N/B]−1∑

k=1

e2πimBbk + O(B).

Since b is irrational, the inner sum is o(N/B) from which the result
follows. �
11.1.21 Let P (n) = adn

d + ad−1n
d−1 + · · · + a1 + a0 be a polynomial

with real coefficients with at least one coefficient ai with i ≥ 1 irrational.
Show that the sequence of fractional parts of P (n) is u.d. mod 1.

We proceed by induction on the degree of P . If the degree of P is
1 or 2, the result follows from the previous exercises. Suppose first
that a1 is irrational and a2, ..., ad are rational. Letting B be the least
common multiple of all the denominators of a2, ..., ad, we have as in
the previous exercise,

N∑

n=1

e2πimP (n) =
B−1∑

d=0

[N/B]−1∑

k=1

e2πimP (Bk+d) + O(B).

Since a1 is irrational, the sequence a1Bk is u.d. and we find the inner
sum is

[N/B]−1∑

k=1

e2πim(Bka1+a1d+a0),

which is o(N/B). The result now follows in this case. Now suppose
that the highest index for which ai is irrational is t. If t = 1 we
are done by the argument just given. For fixed h, consider Ph(n) =
P (n + h) − P (n), which is a polynomial of degree d − 1 and whose
corresponding highest index irrational coefficient is the coefficient
of nt−1. By induction, this sequence is u.d. By Corollary 11.1.17, we
are done. �
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11.2 Normal numbers

11.2.1 Show that a normal number is irrational.
A rational number has a b-adic expansion which is eventually

periodic and thus cannot be normal since we can find a block Bk

which does not occur at all in the expansion. �
11.2.3 If x is normal to the base b, show that mx is normal to the base b for
any non-zero integer m.

By Theorem 11.2.2, we need to check that for every h �= 0,

N∑

n=1

e2πihmxbn
= o(N).

But this is clear since x is normal. �
11.2.4 Let {vn}∞n=1 be a sequence of distinct integers and set for a non-zero
integer h,

S(N, x) =
1
N

N∑

n=1

e2πivnxh.

Show that ∫ 1

0
|S(N, x)|2dx =

1
N

,

and
∞∑

N=1

∫ 1

0
|S(N2, x)|2dx < ∞.

We have

∫ 1

0
|S(N, x)|2dx =

1
N2

N∑

n,m=1

∫ 1

0
e2πi(vn−vm)xdx.

The integral on the right hand side is zero if vn �= vm and 1 other-
wise. As the vn’s are distinct, this means the integral is 1 if n = m
and zero otherwise. The result is now immediate. �
11.2.6 Show that the sequence n!e is not u.d. mod 1.

We have

n!e =
(

n!
1!

+
n!
2!

+ · · · + n!
n!

)
+
(

1
n + 1

+
1

(n + 1)(n + 2)
+ · · ·

)
.
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The term in the first set of brackets is a positive integer and the term
in the second set is bounded by

1
n + 1

+
1

(n + 1)2
+ · · · =

1
n

,

which is less than 1 if n ≥ 2. Thus, the fractional part tends to zero
as n → ∞ and hence cannot be u.d. mod 1. �
11.2.7 If x is normal to the base b, show that it is simply normal to the base
bm for every natural number m.

If x has b-adic expansion,

x =
∞∑

n=1

an

bn
,

then its expansion in base bm is

∞∑

r=1

Ar(m)
bmr

where

Ar(m) =
m∑

k=1

a(r−1)m+kb
m−k.

The result now follows from the definition of normality. �

11.3 Asymptotic distribution functions mod 1

11.3.1 A sequence {xn}∞n=1 has a.d.f. g(x) if and only if for every piecewise
continuous function f on [0, 1], we have

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫ 1

0
f(x)dg(x).

This is immediate from the solution to Exercise 11.1.3 where the
theory of the Riemann integral is replaced by the theory of the
Riemann-Stieltjes integral. �
11.3.2 A sequence {xn}∞n=1 has a.d.f g(x) if and only if

lim
N→∞

1
N

N∑

n=1

e2πimxn =
∫ 1

0
e2πimxdg(x),
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for all integers m.
The necessity follows from Exercise 11.3.1. For the sufficiency, we

modify the proof of Theorem 11.1.5 by using the Riemann-Stieltjes
integral instead of the Riemann integral. �
11.3.4 Suppose that {xn}∞n=1 is a sequence such that for all integers m,
the limits

am := lim
N→∞

1
N

N∑

n=1

e2πimxn ,

exist and ∞∑

m=−∞
|am|2 < ∞.

Put

g1(x) =
∞∑

m=−∞
ame2πimx.

Show that

lim
N→∞

#{n ≤ N : xn ∈ [α, β]}
N

=
∫ β

α
g1(x)dx,

for any interval [α, β] contained in [0, 1].
By the Wiener-Schoenberg theorem, the sequence has a continu-

ous a.d.f. Letting f be the characteristic function of the interval and
using Exercise 11.3.1, the result follows. �

11.4 Discrepancy

11.4.1 Show that the sequence {xn}∞n=1 is u.d. mod 1 if and only if DN →
0 as N → ∞.

The sufficiency is clear. To show necessity, let m be an integer ≥ 2
and for 0 ≤ k ≤ m − 1, let Ik = [k/m, (k + 1)/m]. As the sequence
is u.d. mod 1, there is an N0 = N0(m) so that for N ≥ N0, and for
every k = 0, 1, ..., m − 1, we have

1
m

− 1
m2

≤ #{n ≤ N : (xn) ∈ Ik}
N

≤ 1
m

+
1

m2
.

Now consider J = [a, b]. We “approximate” J by intervals of the
type Ik. Indeed, there exist intervals J1, J2 which are a finite union
of intervals Ik so that

J1 ⊆ J ⊆ J2,
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and
|J2| −

2
m

≤ |J | ≤ |J1| +
2
m

.

Clearly,

#{n≤N : (xn)∈ J1}≤#{n≤N : (xn)∈ J}≤#{n≤N : (xn)∈J2},

so that ∣∣∣∣
#{n ≤ N : (xn) ∈ J}

N
− |J |

∣∣∣∣ ≤
3
m

+
2

m2
.

Therefore DN ≤ 3/m + 2/m2 for N ≥ N0. Since m can be taken to
be arbitrarily large, we deduce that DN → 0 as N → ∞. �
11.4.2 Show that

(
sinπz

π

)2 ∞∑

n=−∞

1
(z − n)2

= 1, z /∈ Z

By exercise 6.3.4, we get upon logarithmic differentiation that

z cot z = 1 + 2
∞∑

n=1

z2

z2 − n2π2
.

We can rewrite this as a conditionally convergent series:

π cot πz =
∑

n∈Z

1
(z − n)

.

Differentiating this once more, we obtain the desired result. �
11.4.5 For any δ > 0, and any interval I = [a, b], show that there are
continuous functions H+(x), H−(x) ∈ L1(R) such that

H−(x) ≤ χI(x) ≤ H+(x),

with Ĥ±(t) = 0 for |t| ≥ δ and
∫ ∞

−∞
(χI(x) − H−(x))dx =

∫ ∞

−∞
(H+(x) − χI(x))dx =

1
δ
.

Choose S±(x) for the interval I = [δa, δb] as in Theorem 11.4.4.
Put H±(x) = S±(δx). These functions have the stated property. �
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11.4.6 Let f ∈ L1(R). Show that the series

F (x) =
∑

n∈Z

f(n + x),

is absolutely convergent for almost all x, has period 1 and satisfies F̂ (k) =
f̂(k).

The fact that F (x) is absolutely convergent for almost all x fol-
lows from

∫ 1

0

∑

n∈Z

|f(n + x)|dx =
∫ ∞

−∞
|f(t)|dt < ∞.

The periodicity is clear. Finally,

F̂ (k) =
∫ 1

0
F (x)e(−kx)dx =

∑

n∈Z

∫ 1

0
f(n+x)e(−kx)dx =

∫ ∞

−∞
f(t)e(−kt)dt.

�
11.4.9 Let x1, ..., xN be N points in (0, 1). For 0 ≤ x ≤ 1, let

RN (x) = #{m ≤ N : 0 ≤ xm ≤ x} − Nx.

Show that

∫ 1

0
R2

N (x)dx =

(
N∑

n=1

(xn − 1/2)

)2

+
1

2π2

∞∑

h=1

1
h2

∣∣∣∣∣

N∑

n=1

e2πihxn

∣∣∣∣∣

2

.

RN (x) is a piecewise linear function of x with discontinuities only
at x1, ..., xN . Also, RN (0) = RN (1). Thus, we may expand RN (x) as
a Fourier series which represents RN (x) apart from a finite set of
values of x. Writing

RN (x) =
∞∑

h=−∞
ahe2πihx,

we have that

ah =
∫ 1

0
RN (x)e−2πihx.
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For 1 ≤ n ≤ N , let cn be the characteristic function of the interval
[xn, 1]. Then,

N∑

n=1

cn(x) = #{n ≤ N : 0 ≤ xn ≤ x}

so that

ah =
∫ 1

0

(
N∑

n=1

cn(x) − Nx

)
e−2πihxdx.

In particular,

a0 =
N∑

n=1

∫ 1

0
cn(x)dx − N

2
= −

N∑

n=1

(xn − 1/2).

For h �= 0,

ah =
N∑

n=1

∫ 1

xn

e−2πihxdx +
N

2πih
=

1
2πih

N∑

n=1

e−2πihxn .

The result now follows using Parseval’s identity. �
11.4.10 Let α be irrational. Let ||x|| denote the distance of x from the near-
est integer. Show that the discrepancy DN of the sequence nα satisfies

DN � 1
M

+
1
N

M∑

m=1

1
m||mα|| ,

for any natural number M .
This is immediate from the Erdös-Turán inequality and the obser-

vation that ∣∣∣∣∣

N∑

n=1

e2πihnα

∣∣∣∣∣ ≤
1

| sinπhα| ≤
1

2||hα|| .

�

11.5 Equidistribution and L-functions

11.5.1 ShowthatL(s, ρ)definesananalyticfunctionintheregionRe(s)> 1.



11.5 Equidistribution and L-functions 489

This is clear since the representations are unitary and finite di-
mensional. � 11.5.3 (Serre) Suppose that
for each irreducible representation ρ �= 1, we have that L(s, ρ) extends to
an analytic function for Re(s) ≥ 1 and does not vanish there. Prove that
the sequence xv is µ-equidistributed in the space of conjugacy classes, with
respect to the image of the normalized Haar measure µ of G.

By logarithmic differentiation and an application of the Tauberian
theorem, we deduce that for χ = tr ρ,

∑

Nv≤x

χ(xv) = o(πK(x)).

The result now follows from Theorem 11.5.2. �
11.5.4 Let G be the additive group of residue classes mod k. Show that a
sequence of natural numbers {xn}∞n=1 is equidistributed in G if and only
if

N∑

n=1

e2πiaxn/k = o(N),

for a = 1, 2, ..., k − 1.
This is immediate upon applying Weyl’s criterion (Theorem 11.5.2)

to the group Z/kZ and noting that its irreducible characters are
given by x �→ e2πiax/k. �
11.5.5 Let pn denote the n-th prime. Show that the sequence {log pn}∞n=1

is not u.d. mod 1.
Let an = 1 if n is prime and 0 otherwise. By Weyl’s criterion, we

must examine ∑

n≤N

ann2πim log n.

Using the prime number theorem and partial summation, we easily
find that this sum is

N2πim+1

(2πim + 1) log N
+ O

(
N

log2 N

)
.

Reasoning as in Exercise 11.1.10, we deduce that upon dividing by
N/ log N and letting N tend to infinity, the first term does not con-
verge. �
11.5.6 Let v1, v2, ... be a sequence of vectors in R

k/Z
k. Show that the se-

quence is equidistributed in R
k/Z

k if and only if
N∑

n=1

e2πib·vn = o(N),
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for every b ∈ Z
k with b unequal to the zero vector.

This follows upon writing down Weyl’s criterion (Theorem 11.5.2)
for the group R

k/Z
k and observing that all its characters are given

by
v �→ e2πib·v,

as b ranges over all the vectors of Z
k. �

11.5.7 Let 1, α1, α2, ..., αk be linearly independent over Q. Show that the
vectors vn = (nα1, ..., nαk) are equidistributed in R

k/Z
k.

We apply the previous exercise and consider the Weyl sums:

∑

n≤N

e2πin(b1α1+···+bkαk).

Since 1 and the αi’s are linearly independent over Q, the term b1α1+
· · · + bkαk is irrational and the geometric sum is easily estimated to
be O(1) when the bi’s are not all zero. �
11.5.8 Let a be a squarefree number and for primes p coprime to a, consider
the map

p �→ xp :=
(

a

p

)
,

where (a/p) denotes the Legendre symbol. Show that the sequence of xp’s
is equidistributed in the group of order 2 consisting of {±1}.

We use Serre’s theorem. The L-series to consider is

∏

p,(p,a)=1

(
1 −

(
a

p

)
p−s

)−1

,

and this converges for Re(s) > 1 and extends to an entire function
since it is a Dirichlet series attached to a quadratic character mod
a, by quadratic reciprocity. Thus, by Dirichlet’s theorem, it is non-
vanishing on Re(s) = 1 and so the equidistribution result follows.
�

11.6 Supplementary Problems

11.6.1 Show that Exercise 1.1.2 cannot be extended to Lebesgue integrable
functions f .
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Let f(x) = 1 if x = xn for some n and zero otherwise. Then,

1
N

N∑

n=1

f(xn) = 1,

whereas ∫ 1

0
f(x)dx = 0.

�
11.6.2 (Féjer) Let f be a real valued differentiable function, with f ′(x) > 0
and monotonic. If f(x) = o(x) and xf ′(x) → ∞ when x → ∞, show that
the sequence {f(n)}∞n=1 is u.d. mod 1.

We apply Weyl’s criterion to show that

N∑

n=1

e2πimf(n) = o(N),

for every non-zero integer m. By the Euler summation formula
(Theorem 2.1.9), we have

N∑

n=1

e2πimf(n)

=
∫ N

1
e2πimf(x)dx +

∫ N

1
B1(x)2πimf ′(x)e2πimf(x)dx + O(1).

Since f ′(x) > 0, the second integral is bounded by

2π|m|
∫ N

1
f ′(x)dx ≤ 2π|m|(f(N) − f(1)) = o(N),

by the first hypothesis. To estimate the first integral, let u(x) =
cos 2πmx and v(x) = sin 2πmx and let us consider the integrals

∫ N

1
u(f(x))dx, and

∫ N

1
v(f(x))dx.

We estimate the first one, the estimation of the second one being
similar. By the second mean value theorem for integrals, there is a ξ
with 1 ≤ ξ ≤ N such that

∫ N

1
u(f(x))dx =

∫ N

1

dv(f(x))
2πmf ′(x)
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=
1

2πmf ′(1)

∫ ξ

1
dv(f(x)) +

1
2πmf ′(N)

∫ N

ξ
dv(f(x)).

The two integrals on the right are easily seen to be bounded so that
the integral is O(1/f ′(N)). The result is now immediate. �
11.6.3 For any c ∈ (0, 1), and α �= 0, show that the sequence αnc is u.d.
mod 1.

Let f(x) = αxc and apply the previous exercise. �
11.6.4 For any c > 1, show that the sequence (log n)c is u.d. mod 1.

Let f(x) = (log x)c and apply the previous exercise. �
11.6.5 Let f be real-valued and have a monotone derivative f ′ in [a, b] with
f ′(x) ≥ λ > 0. Show that

∣∣∣∣
∫ b

a
e2πif(x)dx

∣∣∣∣ ≤
2

πλ
.

The integral in question is

1
2πi

∫ b

a

de2πif(x)

f ′(x)
.

Using the hypotheses satisfied by f ′, we may apply the second mean
value theorem to see that the integral is equal to

1
2πi

(
1

f ′(a)

∫ c

a
de2πif(x) +

1
f ′(b)

∫ b

c
de2πif(x)

)
,

for some c with a ≤ c ≤ b. The final estimate is now easily deduced
from this. �
11.6.6 Let f be as in the previous exercise but now assume that f ′(x) ≤
−λ < 0. Show that the integral estimate is still valid.

This is immediate from the previous exercise by replacing f by
−f and this does not change the absolute value of the integral. �
11.6.7 Let f be real-valued and twice differentiable on [a, b] with f ′′(x) ≥
δ > 0. Prove that ∣∣∣∣

∫ b

a
e2πif(x)dx

∣∣∣∣ ≤
4√
δ
.

Clearly f ′(x) is increasing. Suppose first that f ′(x) ≥ 0 in [a, b].
By the mean value theorem of differential calculus, we have for a <
c < b,

f ′(c) − f ′(a)
c − a

= f ′′(ξ),
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for some ξ ∈ [a, c]. Thus,

f ′(x) ≥ f ′(c) ≥ (c − a)δ + f ′(a) ≥ (c − a)δ,

for x ∈ [c, b]. By the previous exercises, we obtain
∣∣∣∣
∫ b

c
e2πif(x)dx

∣∣∣∣�
1

(c − a)δ
.

Breaking the original integral into two parts as:
∫ b

a

e2πif(x)dx =
∫ c

a

e2πif(x) +
∫ b

c

e2πif(x),

and using the trivial estimate of c − a for the first one, and the esti-
mate of O(1/(c − a)δ) for the second one, we choose c − a = 1/

√
δ

to derive the final estimate. If f ′(x) ≥ 0 throughout the interval,
we break up the interval into two subintervals on which f ′(x) has
constant sign. �
11.6.8 Let b − a ≥ 1. Let f(x) be a real-valued function on [a, b] with
f ′′(x) ≥ δ > 0 on [a, b]. Show that

∣∣∣∣∣
∑

a<n<b

e2πif(n)

∣∣∣∣∣�
f ′(b) − f ′(a) + 1√

δ
.

Since f ′′(x) ≥ δ > 0 and f ′(x) is increasing, we may write the
exponential sums as the (finite) sum,

∑

m

Sm,

where
Sm =

∑

a<n<b,m−1/2<f ′(n)<m+1/2

e2πif(n).

We may write
Sm =

∑

am<n<bm

e2πif(n),

for certain integers am, bm. Writing Fm(x) = f(x) − mx, and using
the Euler-Maclaurin sum formula, we get that

Sm =
∫ bm

am

e2πiFm(x)dx +
1
2
(e2πiFm(am) + e2πiFm(bm))+
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∫ bm

am

B1(x)2πF ′
m(x)e2πiFm(x)dx.

By the previous exercises, the first integeral is at most 4/
√

δ and the
second integral is bounded since |F ′

m(x)| ≤ 1/2 in this range. Thus,

|Sm| ≤ 4√
δ

+ 3.

There are at most |f ′(b) − f ′(a) + 2| values of m for which Sm is
non-zero and this completes the proof. �
11.6.9 Show that the estimate in the previous exercise is still valid if
f ′′(x) ≤ −δ < 0.

This is clear by replacing f(x) by −f(x) in the previous exercise.
�
11.6.10 Show that the sequence {log n!}∞n=1 is u.d mod 1.

By Stirling’s formula and Exercise 11.1.14, it suffices to show that
the sequence

(n + 1/2) log n − n

is u.d. mod 1. Let f(x) = (x + 1/2) log x − x. By Exercise 11.6.8,
∑

1≤N

e2πimf(n) � N1/2 log N,

from which we deduce the u.d. mod 1 of the sequence f(n). �
11.6.11 Let ζ(s) denote the Riemann zeta function and assume the Rie-
mann hypothesis. Let 1/2+ iγ1, 1/2+ iγ2, ... denote the zeros of ζ(s) with
positive imaginary part, arranged so that γ1 ≤ γ2 ≤ γ3 · · · . Show that
the sequence {γn} is uniformly distributed mod 1. The method of Ex-
ercise 8.4.8 can be adapted to show that the result still holds if n is
replaced by x > 1 where we set ΛF (x) = Λ(n) if x = n and zero
otherwise. With F = ζ and x = e2πm, the corresponding Weyl sums
are all shown to be sufficiently small. �
11.6.12 Let An be a sequence of sets of real numbers with #An → ∞. We
will say that this sequence is set equidistributed mod 1 (s.e.d. for short)
if for any [a, b] ⊆ [0, 1] we have

lim
n→∞

#{t ∈ An : a ≤ (t) ≤ b}
#An

= b − a.

The usual notion of u.d. mod 1 is obtained as a special case of this by taking
An = {x1, ..., xn}. Show that the sequence of sets An is s.e.d. mod 1 if and
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only if for any continuous function f : [0, 1] → C, we have

lim
n→∞

1
#An

∑

t∈An

f(t) =
∫ 1

0
f(x)dx.

It suffices to consider real-valued functions f . The necessity is
clear by approximating the continuous function f by step functions
as in the solution of Exercise 11.1.3. For the converse, we again pro-
ceed as in Exercise 11.1.3 and approximate the characteristic func-
tion of an interval by continuous functions. �
11.6.13 Show that the sequence of sets An is s.e.d mod 1 if and only if for
every non-zero integer m, we have

lim
n→∞

1
#An

∑

t∈An

e2πimt = 0.

This is again immediate from the fact that any continuous func-
tion can be uniformly approximated by a finite trigonometric poly-
nomial. The proof follows closesly that given for the Weyl criterion.
�
11.6.14 Let An be the finite set of rational numbers with denominator n.
Show the sequence An is set equidistributed mod 1.

By the previous exercise, it suffices to check
∑

(t,n)=1

e2πimt/n = o(φ(n)),

for non-zero m. But the exponential sum is a Ramanujan sum cn(m)
which equals µ(n/d)φ(n)/φ(n/d) where d = (m, n). For m fixed, d
is bounded since it must be a divisor of m. As n tends to infinity,
φ(n/d) tends to infinity and the result is now clear. �
11.6.15 A sequence of sets An with An ⊆ [0, 1] and #An → ∞ is said to
have set asymptotic distribution function (s.a.d.f. for short) g(x) if

lim
n→∞

#{t ∈ An : 0 ≤ t ≤ x}
#An

= g(x).

Show that the sequence has s.a.d.f. g(x) if and only if for every continuous
function f , we have

lim
n→∞

1
#An

∑

t∈An

f(t) =
∫ 1

0
f(x)dg(x).



496 11. Equidistribution

This is again similar to the proof of Theorem 11.3.1. �
11.6.16 (Generalized Wiener-Schoenberg criterion) Show that the se-
quence of sets {An}∞n=1 with An ⊆ [0, 1] and #An → ∞ has a continuous
s.a.d.f. if and only if for all m ∈ Z the limit

am := lim
n→∞

1
#An

∑

t∈An

e2πimt

exists and
N∑

m=1

|am|2 = o(N).

This too follows closely the proof of Theorem 11.3.3 where the
arguments are replaced by the appropriate limits over sets. �
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