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Life is good for only two things, discovering
mathematics and teaching mathematics.
Siméon Poisson
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Preface

A problem book at the college level. A study guide for the Putnam competition. A bridge
between high school problem solving and mathematical research. A friendly introduction
to fundamental concepts and results. All these desires gave life to the pages that follow.

The William Lowell Putnam Mathematical Competition is the most prestigious math-
ematics competition at the undergraduate level in the world. Historically, this annual
event began in 1938, following a suggestion of William Lowell Putnam, who realized
the merits of an intellectual intercollegiate competition. Nowadays, over 2500 students
from more than 300 colleges and universities in the United States and Canada take part
in it. The name Putnam has become synonymous with excellence in undergraduate
mathematics.

Using the Putnam competition as a symbol, we lay the foundations of higher math-
ematics from a unitary, problem-based perspective. As such, Putnam and Beyond is a
journey through the world of college mathematics, providing a link between the stim-
ulating problems of the high school years and the demanding problems of scientific
investigation. It gives motivated students a chance to learn concepts and acquire strate-
gies, hone their skills and test their knowledge, seek connections, and discover real world
applications. Its ultimate goal is to build the appropriate background for graduate studies,
whether in mathematics or applied sciences.

Our point of view is that in mathematics it is more important to understand why than
to know how. Because of this we insist on proofs and reasoning. After all, mathematics
means, as the Romanian mathematician Grigore Moisil once said, “correct reasoning.”
The ways of mathematical thinking are universal in today’s science.

Putnam and Beyond targets primarily Putnam training sessions, problem-solving
seminars, and math clubs at the college level, filling a gap in the undergraduate curriculum.
But it does more than that. Written in the structured manner of a textbook, but with
strong emphasis on problems and individual work, it covers what we think are the most
important topics and techniques in undergraduate mathematics, brought together within
the confines of a single book in order to strengthen one’s belief in the unitary nature of
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mathematics. It is assumed that the reader possesses a moderate background, familiarity
with the subject, and a certain level of sophistication, for what we cover reaches beyond
the usual textbook, both in difficulty and in depth. When organizing the material, we were
inspired by Georgia O’Keeffe’s words: “Details are confusing. It is only by selection,
by elimination, by emphasis that we get at the real meaning of things.”

The book can be used to enhance the teaching of any undergraduate mathematics
course, since it broadens the database of problems for courses in real analysis, linear
algebra, trigonometry, analytical geometry, differential equations, number theory, com-
binatorics, and probability. Moreover, it can be used by graduate students and educators
alike to expand their mathematical horizons, for many concepts of more advanced math-
ematics can be found here disguised in elementary language, such as the Gauss—Bonnet
theorem, the linear propagation of errors in quantum mechanics, knot invariants, or the
Heisenberg group. The way of thinking nurtured in this book opens the door for true
scientific investigation.

As for the problems, they are in the spirit of mathematics competitions. Recall that
the Putnam competition has two parts, each consisting of six problems, numbered Al
through A6, and B1 through B6. It is customary to list the problems in increasing order
of difficulty, with A1 and B1 the easiest, and A6 and B6 the hardest. We keep the same
ascending pattern but span a range from AO to B7. This means that we start with some
inviting problems below the difficulty of the test, then move forward into the depths of
mathematics.

As sources of problems and ideas we used the Putnam exam itself, the Interna-
tional Competition in Mathematics for University Students, the International Mathemat-
ical Olympiad, national contests from the United States of America, Romania, Rus-
sia, China, India, Bulgaria, mathematics journals such as the American Mathemati-
cal Monthly, Mathematics Magazine, Revista Matematicd din Timisoara (Timisoara
Mathematics Gazette), Gazeta Matematicd (Mathematics Gazette, Bucharest), Kvant
(Quantum), Kozépiskolai Matematikai Lapok (Mathematical Magazine for High Schools
(Budapest)), and a very rich collection of Romanian publications. Many problems are
original contributions of the authors. Whenever possible, we give the historical back-
ground and indicate the source and author of the problem. Some of our sources are hard
to find; this is why we offer you their most beautiful problems. Other sources are widely
circulated, and by selecting some of their most representative problems we bring them
to your attention.

Here is a brief description of the contents of the book. The first chapter is introductory,
giving an overview of methods widely used in proofs. The other five chapters reflect
areas of mathematics: algebra, real analysis, geometry and trigonometry, number theory,
combinatorics and probability. The emphasis is placed on the first two of these chapters,
since they occupy the largest part of the undergraduate curriculum.

Within each chapter, problems are clustered by topic. We always offer a brief theoret-
ical background illustrated by one or more detailed examples. Several problems are left
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for the reader to solve. And since our problems are true brainteasers, complete solutions
are given in the second part of the book. Considerable care has been taken in selecting the
most elegant solutions and writing them so as to stir imagination and stimulate research.
We always “judged mathematical proofs,” as Andrew Wiles once said, “by their beauty.”

Putnam and Beyond is the fruit of work of the first author as coach of the University
of Michigan and Texas Tech University Putnam teams and of the International Mathe-
matical Olympiad teams of the United States and India, as well as the product of the vast
experience of the second author as head coach of the United States International Math-
ematical Olympiad team, coach of the Romanian International Mathematical Olympiad
team, director of the American Mathematics Competitions, and member of the Question
Writing Committee of the William Lowell Putnam Mathematical Competition.

In conclusion, we would like to thank Elgin Johnston, Dorin Andrica, Chris Jeuell,
Ioan Cucurezeanu, Marian Deaconescu, Gabriel Dospinescu, Ravi Vakil, Vinod Grover,
V.V. Acharya, B.J. Venkatachala, C.R. Pranesachar, Bryant Heath, and the students of
the International Mathematical Olympiad training programs of the United States and
India for their suggestions and contributions. Most of all, we are deeply grateful to
Richard Stong, David Kramer, and Paul Stanford for carefully reading the manuscript and
considerably improving its quality. We would be delighted to receive further suggestions
and corrections; these can be sent to rgelca@ gmail.com.

May 2007 Razvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas






A Study Guide

The book has six chapters: Methods of Proof, Algebra, Real Analysis, Geometry and
Trigonometry, Number Theory, Combinatorics and Probability, divided into subchapters
such as Linear Algebra, Sequences and Series, Geometry, and Arithmetic. All subchapters
are self-contained and independent of each other and can be studied in any order. In most
cases they reflect standard undergraduate courses or fields of mathematics. The sections
within each subchapter are best followed in the prescribed order.

If you are an undergraduate student trying to acquire skills or test your knowledge
in a certain field, study first a regular textbook and make sure that you understand it very
well. Then choose the appropriate chapter or subchapter of this book and proceed section
by section. Read first the theoretical background and the examples from the introductory
part; then do the problems. These are listed in increasing order of difficulty, but even
the very first can be tricky. Don’t get discouraged; put effort and imagination into each
problem; and only if all else fails, look at the solution from the back of the book. But
even if you are successful, read the solution, since many times it gives a new insight and,
more important, opens the door toward more advanced mathematics.

Beware! The last few problems of each section can be very hard. It might be a
good idea to skip them at the first encounter and return to them as you become more
experienced.

If you are a Putnam competitor, then as you go on with the study of the book try
your hand at the true Putnam problems (which have been published in three excellent
volumes). Identify your weaknesses and insist on those chapters of Putnam and Beyond.
Every once in a while, for a problem that you solved, write down the solution in detail,
then compare it to the one given at the end of the book. It is very important that your
solutions be correct, structured, convincing, and easy to follow.

An instructor can add some of the problems from the book to a regular course in
order to stimulate and challenge the better students. Some of the theoretical subjects can
also be incorporated in the course to give better insight and a new perspective. Putnam
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and Beyond can be used as a textbook for problem-solving courses, in which case we
recommend beginning with the first chapter. Students should be encouraged to come up
with their own original solutions.

If you are a graduate student in mathematics, it is important that you know and
understand the contents of this book. First, mastering problems and learning how to write
down arguments are essential matters for good performance in doctoral examinations.
Second, most of the presented facts are building blocks of graduate courses; knowing
them will make these courses natural and easy.

“Don’t bother to just be better than your contemporaries or predecessors. Try to be
better than yourself” (W. Faulkner).



1

Methods of Proof

In this introductory chapter we explain some methods of mathematical proof. They
are argument by contradiction, the principle of mathematical induction, the pigeonhole
principle, the use of an ordering on a set, and the principle of invariance.

The basic nature of these methods and their universal use throughout mathematics
makes this separate treatment necessary. In each case we have selected what we think
are the most appropriate examples, solving some of them in detail and asking you to train
your skills on the others. And since these are fundamental methods in mathematics, you
should try to understand them in depth, for “it is better to understand many things than
to know many things” (Gustave Le Bon).

1.1 Argument by Contradiction

The method of argument by contradiction proves a statement in the following way:

First, the statement is assumed to be false. Then, a sequence of logical deductions yields
a conclusion that contradicts either the hypothesis (indirect method), or a fact known to
be true (reductio ad absurdum). This contradiction implies that the original statement
must be true.

This is a method that Euclid loved, and you can find it applied in some of the most
beautiful proofs from his Elements. Euclid’s most famous proof is that of the infinitude
of prime numbers.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. Assume, to the contrary, that only finitely many prime numbers exist. List them
aspr=2,pp=3,p3=25,..., py. The number N = p;p,--- p, + 1 is divisible by
a prime p, yet is coprime to pi, pa, ..., p,. Therefore, p does not belong to our list of
all prime numbers, a contradiction. Hence the initial assumption was false, proving that
there are infinitely many primes. m|
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We continue our illustration of the method of argument by contradiction with an
example of Euler.

Example. Prove that there is no polynomial
P(x) = apx" 4 ap_1x" '+ - 4 ag

with integer coefficients and of degree at least 1 with the property that P(0), P(1), P(2),
. are all prime numbers.

Solution. Assume the contrary and let P(0) = p, p prime. Then ag = p and P (kp) is
divisible by p for all k¥ > 1. Because we assumed that all these numbers are prime, it
follows that P(kp) = p for k > 1. Therefore, P (x) takes the same value infinitely many
times, a contradiction. Hence the conclusion. O

The last example comes from 1. Tomescu’s book Problems in Combinatorics (Wiley,
1985).

Example. Let F = {E1, E,, ..., E;} be a family of subsets with r elements of some
set X. Show that if the intersection of any r + 1 (not necessarily distinct) sets in F' is
nonempty, then the intersection of all sets in /' in nonempty.

Solution. Again we assume the contrary, namely that the intersection of all sets in F is
empty. Consider the set E; = {x;, x, ..., x,}. Because none of the x;,i =1,2,...,r,
lies in the intersection of all the E;’s (this intersection being empty), it follows that for
each i we can find some E; such that x; ¢ E;,. Then

ElﬂEilﬂEizﬂ-uﬂEir:@,

since, at the same time, this intersection is included in E; and does not contain any
element of E;. But this contradicts the hypothesis. It follows that our initial assumption
was false, and hence the sets from the family F' have a nonempty intersection. O

The following problems help you practice this method, which will be used often in
the book.

1. Prove that +/2 + +/3 + +/5 is an irrational number.

2. Show that no set of nine consecutive integers can be partitioned into two sets with
the product of the elements of the first set equal to the product of the elements of
the second set.

3. Find the least positive integer n such that any set of n pairwise relatively prime
integers greater than 1 and less than 2005 contains at least one prime number.
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4. Every point of three-dimensional space is colored red, green, or blue. Prove that one
of the colors attains all distances, meaning that any positive real number represents
the distance between two points of this color.

5. The union of nine planar surfaces, each of area equal to 1, has a total area equal to
5. Prove that the overlap of some two of these surfaces has an area greater than or
equal to é

6. Show that there does not exist a function f : Z — {1, 2, 3} satisfying f(x) # f(y)
for all x, y € Z such that |[x — y| € {2, 3, 5}.

7. Show that there does not exist a strictly increasing function f : N — N satisfying
f(2)=3and f(mn) = f(m)f(n)forallm,n € N.

8. Determine all functions f : N — N satisfying

f ) +yf0) =@+ f*+y?)
for all positive integers x and y.

9. Show that the interval [0, 1] cannot be partitioned into two disjoint sets A and B
such that B = A + a for some real number a.

10. Let n > 1 be an arbitrary real number and let k be the number of positive prime
numbers less than or equal to n. Select k + 1 positive integers such that none of
them divides the product of all the others. Prove that there exists a number among
the chosen k + 1 that is bigger than n.

1.2 Mathematical Induction

The principle of mathematical induction, which lies at the very heart of Peano’s axiomatic
construction of the set of positive integers, is stated as follows.

Induction principle. Given P(n), a property depending on a positive integer n,

(1) if P(ng) is true for some positive integer ng, and
(i1) if for every k > ng, P (k) true implies P(k + 1) true,

then P(n) is true for all n > ny.
This means that when proving a statement by mathematical induction you should (i)

check the base case and (ii) verify the inductive step by showing how to pass from an
arbitrary integer to the next. Here is a simple example from combinatorial geometry.

Example. Finitely many lines divide the plane into regions. Show that these regions can
be colored by two colors in such a way that neighboring regions have different colors.
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Solution. We prove this by induction on the number n of lines. The base case n = 1 is
straightforward, color one half-plane black, the other white.

For the inductive step, assume that we know how to color any map defined by & lines.
Add the (k + 1)st line to the picture; then keep the color of the regions on one side of this
line the same while changing the color of the regions on the other side. The inductive
step is illustrated in Figure 1.

Figure 1

Regions that were adjacent previously still have different colors. Regions that share
a segment of the (k 4 1)st line, which were part of the same region previously, now lie
on opposite sides of the line. So they have different colors, too. This shows that the new
map satisfies the required property and the induction is complete. O

A classical proof by induction is that of Fermat’s so-called little theorem.

Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then n? —n
is divisible by p.

Proof. We prove the theorem by induction on n. The base case n = 1 is obvious. Let us
assume that the property is true for n = k and prove it forn = k+ 1. Using the induction
hypothesis, we obtain

-1
(?)kj (mod p).
- N/

The key observation is that for 1 < j < p — 1, (f) is divisible by p. Indeed, examining

p

p—1

h+ D7 — G+ D=k + (’?)k!‘+1—k—1z
; J
j=1

~

<p>_p(p—1)---(p—j+1)
il 1-2---j ’

it is easy to see that when 1 < j < p — 1, the numerator is divisible by p while the
denominator is not. Therefore, (k + 1)? — (k + 1) = 0 (mod p), which completes the
induction. O
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The third example is a problem from the Sth W.L. Putnam Mathematical Competition,
and it was selected because its solution combines several proofs by induction. If you find
it too demanding, think of Vincent van Gogh’s words: “The way to succeed is to keep
your courage and patience, and to work energetically.”

Example. For m a positive integer and n an integer greater than 2, define f(n) = n,
fo(n) =nh® . fii(n) =n/i®™ .. .. Prove that

fm(n) <nll-..l < fm+l(n)7
where the term in the middle has m factorials.

Solution. For convenience, let us introduce go(n) = n, and recursively g;1(n) =
(gi(n))!. The double inequality now reads

ﬁn(”) < gm(n) < fm+l(n)-

Form = 1 this is obviously true, and it is only natural to think of this as the base case. We
start by proving the inequality on the left by induction on m. First, note that if t > 2n>
is a positive integer, then

2)[—)12 t t—2n? t

t!'>(n =n'n >n'.

Now, it is not hard to check that g,,(n) > 2n? for m > 2 and n > 3. With this in mind,
let us assume the inequality to be true for m = k. Then

ger1(n) = (g () > n&W > gk = £, (),

which proves the inequality for m = k + 1. This verifies the inductive step and solves
half of the problem.

Here we pause for a short observation. Sometimes the proof of a mathematical
statement becomes simpler if the statement is strengthened. This is the case with the
second inequality, which we replace by the much stronger

go(m)gi(n)---gun) < frur1(n),

holding true for m and n as above.
As an intermediate step, we establish, by induction on m, that

go(n)gl (n) c e 8m (I’l) < ngO(n)gl(”)“'gmfl(”)’

for all m and all n > 3. The base case m = 1 is the obvious n - n! < n". Now assume
that the inequality is true for m = k, and prove it for m = k + 1. We have
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g0(m)g1 (1) - g1 (M) = go(m)go(n) - -~ ge(n!) < go(n) (nh)&0rsWh-se1(nh
< n(n!)gl(n)...gk(n) < (n- n!)gl(n)u-gk(n)

< (nn)gl(n)“-gk(n) — ngo(ﬂ)gl(n)mgk(n)’

completing this induction, and proving the claim.

Next, we show, also by induction on m, that go(n)g,(n) - - - gu(n) < fi41(n) for
all n. The base case m = 1 is n - n! < n"; it follows by multiplying 1 -2 < n and
3.4...n < n"2, Let’s see the inductive step. Using the inequality for the g,,’s proved
above and the assumption that the inequality holds for m = k, we obtain

20(n) - gu(n)gmy1(n) < n®W &M <l — ¢ (),

which is the inequality for m = k + 1. This completes the last induction, and with it
the solution to the problem. No fewer than three inductions were combined to solve the
problem! O

Listen and you will forget, learn and you will remember, do it yourself and you will
understand. Practice induction with the following examples.

11. Prove for all positive integers n the identity

1 N 1 N +1 11 N 1 1
n+1l n+2 n 2 3 2n—1 2n

12. Prove that | sinnx| < n|sin x| for any real number x and positive integer .

13. Prove that for any real numbers x;, xa, ..., x,, n > 1,
| sinx;| + |sinxz| + -+ -+ |sinx,| + |cos(x; +x2 + -+ x,)| > 1.

14. Prove that 3" > n? for all positive integers n.

15. Let n > 6 be an integer. Show that

() <n= (3

16. Let n be a positive integer. Prove that

1+ ! + : +--+ : )
— —_— ... —_— < —.
23 0 33 nd 2
17. Prove that for any positive integer n there exists an n-digit number
(a) divisible by 2" and containing only the digits 2 and 3;
(b) divisible by 5" and containing only the digits 5, 6, 7, 8, 9.
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19.

20.

21.

22,
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Prove that for any n > 1, a 2" x 2" checkerboard with 1 x 1 corner square removed
can be tiled by pieces of the form described in Figure 2.

Given a sequence of integers xi, xa, . . ., X, whose sum is 1, prove that exactly one
of the cyclic shifts

-xl’x2a---5-xn; .x2,...,.xn,.X]; 7 -xn’-x]a"-’-xnfl

has all of its partial sums positive. (By a partial sum we mean the sum of the first
k terms, k < n.)

Let x1, x2, ..., X4, Y1, Y2, - .., Y be positive integers, n,m > 1. Assume that
X1+x+---+x,=y1+ ¥+ -+ yu < mn. Prove that in the equality

X1+xo+--+xp =1 +y2+--+ I

one can suppress some (but not all) terms in such a way that the equality is still
satisfied.

Prove that any function defined on the entire real axis can be written as the sum of
two functions whose graphs admit centers of symmetry.

Prove that for any positive integer n > 2 there is a positive integer m that can be
written simultaneously as a sum of 2, 3, ..., n squares of nonzero integers.

Figure 2

Even more powerful is strong induction.

Induction principle (strong form). Given P (n) aproperty that depends on an integern,

(1) if P(ng), P(no+ 1), ..., P(ng+ m) are true for some positive integer ny and non-

negative integer m, and

(i) if for every k > ng+ m, P(j) true for allny < j < k implies P (k) true,

then P(n) is true for all n > ny.

We use strong induction to solve a problem from the 24th W.L. Putnam Mathematical

Competition.
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Example. Let f : N — N be a strictly increasing function such that f(2) = 2 and
f(mn) = f(m) f(n) for every relatively prime pair of positive integers m and n. Prove
that f(n) = n for every positive integer n.

Solution. The proof is of course by induction on n. Monotonicity implies right away
that /(1) = 1. However, the base case is not the given f(2) = 2, but f(2) = 2 and
f(3) =3.

So let us find f(3). Because f is strictly increasing, f(3) f(5) = f(15) < f(18) =
F@) f©). Hence f(3)f(5) < 2f(9) and f(9) < f(10) = f(2)f(O5) = 2f().
Combining these inequalities, we obtain f(3) f(5) < 4f(5),so f(3) < 4. But we know
that f(3) > f(2) = 2, which means that f(3) can only be equal to 3.

The base case was the difficult part of the problem; the induction step is rather
straightforward. Let k¥ > 3 and assume that f(j) = j for j < k. Consider 2"(2m + 1)
to be the smallest even integer greater than or equal to k that is not a power of 2. This
number is equal to either k, k 4+ 1, k 4+ 2, or k + 3, and since k > 3, both 2" and 2m + 1
are strictly less than k. From the induction hypothesis, we obtain f(2"(2m + 1)) =
f@2HfC2m+ 1) =2"(2m + 1). Monotonicity, combined with the fact that there are at
most 2" (2m + 1) values that the function can take in the interval [1, 2" (2m + 1)], implies
that f(I) = [ forl < 2"(2m + 1). In particular, f (k) = k. We conclude that f(n) = n
for all positive integers n. m|

A function f : N — C with the property that f(1) = 1 and f(mn) = f(m)f(n)
whenever m and n are coprime is called a multiplicative function. Examples include
the Euler totient function and the Md&bius function. In the case of our problem, the
multiplicative function is also strictly increasing. A more general result of P. ErdGs shows
that any increasing multiplicative function that is not constant is of the form f(n) = n®
for some a > 0.

23. Show that every positive integer can be written as a sum of distinct terms of the
Fibonacci sequence. (The Fibonacci sequence (F),), is defined by Fy =0, F; =1,
and Fooi=F,+F,_1,n> 1.)

24. Prove that the Fibonacci sequence satisfies the identity
Fop1=F2 , +F*, f
w1 = F,  +F,;, forn>0.
25. Prove that the Fibonacci sequence satisfies the identity

F3n=}'ﬂr13+1"‘Fn3_F3

o1, forn>0.

26. Show that an isosceles triangle with one angle of 120° can be dissected into n > 4
triangles similar to it.
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27. Show that for all n > 3 there exists an n-gon whose sides are not all equal and such
that the sum of the distances from any interior point to each of the sides is constant.

(An n-gon is a polygon with n sides.)

28. The vertices of a convex polygon are colored by at least three colors such that no two
consecutive vertices have the same color. Prove that one can dissect the polygon
into triangles by diagonals that do not cross and whose endpoints have different

colors.

29. Prove that any polygon (convex or not) can be dissected into triangles by interior

diagonals.

30. Prove that any positive integer can be represented as 12 422 & - - - & n? for some

positive integer n and some choice of the signs.

Now we demonstrate a less frequently encountered form of induction that can be
traced back to Cauchy’s work, where it was used to prove the arithmetic mean—geometric
mean inequality. We apply this method to solve a problem from D. Busneag, 1. Maftei,

Themes for Mathematics Circles and Contests (Scrisul Romanesc, Craiova, 1983).

Example. Letay, ay, ..., a, be real numbers greater than 1. Prove the inequality

. 1 n
D s B
i_ll+a,- 14+ Yayar---a,
Solution. As always, we start with the base case:

1 4 1 - 2 ‘
1+ a 1+a 1+ Jaia;

Multiplying out the denominators yields the equivalent inequality

QH4+a+a)d+ Jaiaz) =2(1 4+ a; +a + araz).
After multiplications and cancellations, we obtain

2V a1ar + (a1 + ax)Jarar > ay + ap + 2a;a;.

This can be rewritten as

2Jarax(1 — Jara) + (a1 + ax)(Vajaz — 1) > 0,

or

(«/61102 — 1)(611 +a, — 2«/01612) > 0.
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The inequality is now obvious since aja; > 1 and a; + a, > 2,/a a;.

Now instead of exhausting all positive integers n, we downgrade our goal and check
just the powers of 2. So we prove that the inequality holds for n = 2* by induction on k.
Assuming it true for k, we can write

2k+l 2k 2k+l
1 1
= +
Zl+ai Zl+ai Z l—i-al-
i=1 i=1 i=2k41

> 2t ; : + :
1+ 2«/“1(12 s Aok 1+ Q\k/azk_Hdzk_iQ © e Aokl
2
k

>
pu 9
1 + Zktl/a]az © e dok+1

where the first inequality follows from the induction hypothesis, and the second is just
the base case. This completes the induction.

Now we have to cover the cases in which » is not a power of 2. We do the induction
backward, namely, we assume that the inequality holds for n + 1 numbers and prove it
forn. Letay, ay, ..., a, be some real numbers greater than 1. Attach to them the number
J/aiay - - - a,. When writing the inequality for these n + 1 numbers, we obtain

1 1 n+1
1+al 1+4"/0102"'an 14+ ”Kyal...an vayay - - - ay,
Recognize the complicated radical on the right to be /aa; - - - a,. After cancelling the
last term on the left, we obtain
1 N 1 P 1 - n
14+ a; 14+ a l+a, ~ 1+ Yaa---a,

as desired. The inequality is now proved, since we can reach any positive integer n by
starting with a sufficiently large power of 2 and working backward. O

Try to apply the same technique to the following problems.

31. Let f : R — R be a function satisfying f(*3%2) = f(xl);f(“) for any xy, x;.

Prove that
; (x] +x2+---+xn> _fEDFFO) -+ )
n n
for any x1, x2, ..., X,.
32. Show thatif ai, as, ..., a, are nonnegative numbers, then

(I+a)d+a) - (+a) =1+ Jaaz---an)"
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1.3 The Pigeonhole Principle

The pigeonhole principle (or Dirichlet’s box principle) is usually applied to problems
in combinatorial set theory, combinatorial geometry, and number theory. In its intuitive
form, it can be stated as follows.

Pigeonhole principle. If kn + 1 objects (k > 1 not necessarily finite) are distributed
among n boxes, one of the boxes will contain at least k 4+ 1 objects.

This is merely an observation, and it was Dirichlet who first used it to prove non-
trivial mathematical results. We begin with an easy problem, which was given at the
International Mathematical Olympiad in 1972, proposed by Russia.

Example. Prove that every set of 10 two-digit integer numbers has two disjoint subsets
with the same sum of elements.

Solution. Let S be the set of 10 numbers. It has 2'° — 2 = 1022 subsets that differ from
both § and the empty set. They are the “pigeons.” If A C §, the sum of elements of A
cannot exceed 91 +92 + - - - 4+ 99 = 855. The numbers between 1 and 855, which are all
possible sums, are the “holes.” Because the number of “pigeons’ exceeds the number of
“holes,” there will be two “pigeons” in the same “hole.”” Specifically, there will be two
subsets with the same sum of elements. Deleting the common elements, we obtain two
disjoint sets with the same sum of elements. O

Here is a more difficult problem from the 26th International Mathematical Olympiad,
proposed by Mongolia.

Example. Given a set M of 1985 distinct positive integers, none of which has a prime
divisor greater than 26, prove that M contains at least one subset of four distinct elements
whose product is the fourth power of an integer.

Solution. We show more generally that if the prime divisors of elements in M are among
the prime numbers p1, p2, ..., p, and M has at least 3 - 2" 4 1 elements, then it contains
a subset of four distinct elements whose product is a fourth power.

To each element m in M we associate an n-tuple (x1, X2, . .., X, ), where x; is 0 if the
exponent of p; in the prime factorization of m is even, and 1 otherwise. These n-tuples
are the “objects.” The “boxes” are the 2" possible choices of 0’s and 1’s. Hence, by the
pigeonhole principle, every subset of 2" 4- 1 elements of M contains two distinct elements
with the same associated n-tuple, and the product of these two elements is then a square.

We can repeatedly take aside such pairs and replace them with two of the remaining
numbers. From the set M, which has at least 3 - 2" + 1 elements, we can select 2" + 1
such pairs or more. Consider the 2” + 1 numbers that are products of the two elements
of each pair. The argument can be repeated for their square roots, giving four elements
a,b, c,d in M such that v/ab+/cd is a perfect square. Then abed is a fourth power and
we are done. For our problem n = 9, while 1985 > 3-2° + 1 = 1537. m|
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The third example comes from the 67th W.L. Putnam Mathematical Competition,
2006.

Example. Prove that for every set X = {x|, x», ..., x,,} of n real numbers, there exists a
nonempty subset S of X and an integer m such that

m+Z

seS

Solution. Recall that the fractional part of a real number x is x — | x]. Let us look at the
fractional parts of the numbers x;, x; + x3, ..., x;1 + x2 + - - - 4+ x,,. If any of them is
either in the interval [O, il] or [n g 1], then we are done. If not, we consider these n
numbers as the “pigeons’ and the n — 1 intervals [ =1 n+1] [n+l’ ”_3H] ., [n—H’ n+1]
as the “holes.” By the pigeonhole principle, two of these sums, say x| +x, + - - - +x; and
X1+x2+ -+ Xigm, belong to the same interval. But then their difference x; 1+ - - +Xg1m
lies within a distance of ——+ of an integer, and we are done. O

More problems are listed below.

33. Given 50 distinct positive integers strictly less than 100, prove that some two of
them sum to 99.

34. A sequence of m positive integers contains exactly »n distinct terms. Prove that if
2" < m then there exists a block of consecutive terms whose product is a perfect
square.

35. Let x1, x5, x3, ... be a sequence of integers such that
l=x1<xpx<x3<--- and x,,;<2n forn=1,2,3,....

Show that every positive integer k is equal to x; — x; for some i and ;.

36. Let p be a prime number and a, b, ¢ integers such that a and b are not divisible by
p. Prove that the equation ax? + by?> = ¢ (mod p) has integer solutions.

37. Ineach of the unit squares of a 10 x 10 checkerboard, a positive integer not exceeding
10 is written. Any two numbers that appear in adjacent or diagonally adjacent
squares of the board are relatively prime. Prove that some number appears at least
17 times.

38. Show that there is a positive term of the Fibonacci sequence that is divisible by 1000.

39. Letx; = xp = x3 = 1 and x,,43 = X, + X,11X,42 for all positive integers n. Prove
that for any positive integer m there is an index k such that m divides x;.
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40. A chess player trains by playing at least one game per day, but, to avoid exhaustion,
no more than 12 games a week. Prove that there is a group of consecutive days in
which he plays exactly 20 games.

41. Let m be a positive integer. Prove that among any 2m + 1 distinct integers of
absolute value less than or equal to 2m — 1 there exist three whose sum is equal
to zero.

42. There are n people at a party. Prove that there are two of them such that of the
remaining n — 2 people, there are at least | 5] — 1 of them each of whom knows
both or else knows neither of the two.

43. Letx;, x5, ..., x; be real numbers such that the set A = {cos(nmwx;)+cos(nmx,)+
.-+ 4 cos(nmxy) | n > 1} is finite. Prove that all the x; are rational numbers.

Particularly attractive are the problems in which the pigeons and holes are geometric
objects. Here is a problem from a Chinese mathematical competition.

Example. Given nine points inside the unit square, prove that some three of them form
a triangle whose area does not exceed %

Solution. Divide the square into four equal squares, which are the “boxes.” From the
9 =2 x 441 points, at least 3 = 2 4 1 will lie in the same box. We are left to show that
the area of a triangle placed inside a square does not exceed half the area of the square.

Cut the square by the line passing through a vertex of the triangle, as in Figure 3.
Since the area of a triangle is w and the area of a rectangle is base x height, the
inequality holds for the two smaller triangles and their corresponding rectangles. Adding
up the two inequalities, we obtain the inequality for the square. This completes the
solution. O

Figure 3

44. Inside a circle of radius 4 are chosen 61 points. Show that among them there are
two at distance at most \/5 from each other.
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45. Each of nine straight lines divides a square into two quadrilaterals with the ratio of
their areas equal to » > 0. Prove that at least three of these lines are concurrent.

46. Show that any convex polyhedron has two faces with the same number of edges.

47. Draw the diagonals of a 21-gon. Prove that at least one angle of less than 1° is
formed.

48. Let Py, P,, ..., Py, be a permutation of the vertices of a regular polygon. Prove
that the closed polygonal line P P, ... P, contains a pair of parallel segments.

49. Let S be a convex set in the plane that contains three noncollinear points. Each
point of S is colored by one of p colors, p > 1. Prove that for any n > 3 there
exist infinitely many congruent n-gons whose vertices are all of the same color.

50. The points of the plane are colored by finitely many colors. Prove that one can find
a rectangle with vertices of the same color.

51. Inside the unit square lie several circles the sum of whose circumferences is equal
to 10. Prove that there exist infinitely many lines each of which intersects at least
four of the circles.

1.4 Ordered Sets and Extremal Elements

An order on a set is a relation < with three properties: (i) a < a; (i) ifa < band b < a,
then a = b; (iii) a < b and b < ¢ implies a < c¢. The order is called total if any two
elements are comparable, that is, if for every a and b, eithera < b or b < a. The simplest
example of a total order is < on the set of real numbers. The existing order on a set can
be found useful when one is trying to solve a problem. This is the case with the following
two examples, the second of which is a problem of G. Galperin published in the Russian
journal Quantum.

Example. Prove that among any 50 distinct positive integers strictly less than 100 there
are two that are coprime.

Solution. Order the numbers: x; < x, < --- < x50. If in this sequence there are two
consecutive integers, they are coprime and we are done. Otherwise, xso > x;42-49 = 99.
Equality must hold, since xsop < 100, and in this case the numbers are precisely the 50
odd integers less than 100. Among them 3 is coprime to 7. The problem is solved. O

Example. Given finitely many squares whose areas add up to 1, show that they can be
arranged without overlaps inside a square of area 2.
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Solution. The guess is that a tight way of arranging the small squares inside the big square
is by placing the squares in order of decreasing side length.

To prove that this works, denote by x the side length of the first (that is, the largest)
square. Arrange the squares inside a square of side +/2 in the following way. Place the
first in the lower-left corner, the next to its right, and so on, until obstructed by the right
side of the big square. Then jump to height x, and start building the second horizontal
layer of squares by the same rule. Keep going until the squares have been exhausted (see
Figure 4).

Let / be the total height of the layers. We are to show that & < +/2, which in turn
will imply that all the squares lie inside the square of side /2. To this end, we will find a
lower bound for the total area of the squares in terms of x and /. Let us mentally transfer
the first square of each layer to the right side of the previous layer. Now each layer exits
the square, as shown in Figure 4.

Figure 4

It follows that the sum of the areas of all squares but the first is greater than or equal
to (ﬁ — x)(h — x). This is because each newly obtained layer includes rectangles of
base /2 — x and with the sum of heights equal to / — x. From the fact that the total area
of the squares is 1, it follows that

P+ (V2-x)h-x) <L
This implies that

2x2—«/§x—1
<=

h
x—~2
That & < +/2 will follow from

2x2 = 2x — 1
WV -l s
x—\/i
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This is equivalent to

2x2 —2vV/2x +1 >0,

or (x+/2 — 1)2 > 0, which is obvious and we are done. O

What we particularly like about the shaded square from Figure 4 is that it plays the

role of the “largest square” when placed on the left, and of the “smallest square” when
placed on the right. Here are more problems.

52,

53.

54.

5S.

56.

57.

Given n > 3 points in the plane, prove that some three of them form an angle less
than or equal to 7.

Consider a planar region of area 1, obtained as the union of finitely many disks.
Prove that from these disks we can select some that are mutually disjoint and have
total area at least é.

Suppose that n(r) denotes the number of points with integer coordinates on a circle
of radius r > 1. Prove that

n(r) < 272

Prove that among any eight positive integers less than 2004 there are four, say
a, b, ¢, and d, such that

d+d<a+b+c<4d.

Let ay, as, ..., a,, ... be a sequence of distinct positive integers. Prove that for
any positive integer n,

2n +1
ad+ai4-+a> 3

(al+a2+“'+an)-

Let X be a subset of the positive integers with the property that the sum of any two

not necessarily distinct elements in X is again in X. Suppose that {a;, a, ..., a,}

is the set of all positive integers not in X. Prove that a; +a, + - - - + a, < n’.

An order on a finite set has maximal and minimal elements. If the order is total, the

maximal (respectively, minimal) element is unique. Quite often it is useful to look at
such extremal elements, as is the case with the following problem.

Example. Prove that it is impossible to dissect a cube into finitely many cubes, no two
of which are the same size.
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Solution. For the solution, assume that such a dissection exists, and look at the bottom
face. It is cut into squares. Take the smallest of these squares. It is not hard to see that
this square lies in the interior of the face, meaning that it does not touch any side of the
bottom face. Look at the cube that lies right above this square! This cube is surrounded
by bigger cubes, so its upper face must again be dissected into squares by the cubes that
lie on top of it. Take the smallest of the cubes and repeat the argument. This process
never stops, since the cubes that lie on top of one of these little cubes cannot end up
all touching the upper face of the original cube. This contradicts the finiteness of the
decomposition. Hence the conclusion. m|

By contrast, a square can be dissected into finitely many squares of distinct size. Why
does the above argument not apply in this case?
And now an example of a more exotic kind.

Example. Given is a finite set of spherical planets, all of the same radius and no two
intersecting. On the surface of each planet consider the set of points not visible from
any other planet. Prove that the total area of these sets is equal to the surface area of one
planet.

Solution. The problem was on the short list of the 22nd International Mathematical
Olympiad, proposed by the Soviet Union. The solution below we found in I. Cuculescu’s
book on the International Mathematical Olympiads (Editura Tehnica, Bucharest, 1984).

Choose a preferential direction in space, which defines the north pole of each planet.
Next, define an order on the set of planets by saying that planet A is greater than planet
B if on removing all other planets from space, the north pole of B is visible from A.
Figure 5 shows that for two planets A and B, either A < B or B < A, and also that
for three planets A, B, C,if A < Band B < C then A < C. The only case in which
something can go wrong is that in which the preferential direction is perpendicular to the
segment joining the centers of two planets. If this is not the case, then < defines a total
order on the planets. This order has a unique maximal element M. The north pole of M
is the only north pole not visible from another planet.

) (T—0
TN

Figure 5



18

1 Methods of Proof

Now consider a sphere of the same radius as the planets. Remove from it all north

poles defined by directions that are perpendicular to the axes of two of the planets. This
is a set of area zero. For every other point on this sphere, there exists a direction in space
that makes it the north pole, and for that direction, there exists a unique north pole on
one of the planets that is not visible from the others. As such, the surface of the newly
introduced sphere is covered by patches translated from the other planets. Hence the total
area of invisible points is equal to the area of this sphere, which in turn is the area of one
of the planets. O

S8.

59.

60.

61.

62.

63.

64.

Complete the square in Figure 6 with integers between 1 and 9 such that the sum
of the numbers in each row, column, and diagonal is as indicated.

2| =09
5 (16
8
3

W esn o ®

Figure 6

-
-~

Given n points in the plane, no three of which are collinear, show that there exists
a closed polygonal line with no self-intersections having these points as vertices.

Show that any polygon in the plane has a vertex, and a side not containing that
vertex, such that the projection of the vertex onto the side lies in the interior of the
side or at one of its endpoints.

In some country all roads between cities are one-way and such that once you leave
a city you cannot return to it again. Prove that there exists a city into which all
roads enter and a city from which all roads exit.

At a party assume that no boy dances with all the girls, but each girl dances with
at least one boy. Prove that there are two girl-boy couples gb and g’b’ who dance,
whereas b does not dance with g’, and g does not dance with b'.

The entries of a matrix are real numbers of absolute value less than or equal to 1,
and the sum of the elements in each column is 0. Prove that we can permute the
elements of each column in such a way that the sum of the elements in each row
will have absolute value less than or equal to 2.

Find all odd positive integers n greater than 1 such that for any coprime divisors a
and b of n, the number a + b — 1 is also a divisor of n.
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65. The positive integers are colored by two colors. Prove that there exists an infinite

sequence of positive integers ky < k, < --- < k, < --- with the property that the
terms of the sequence 2k; < k; + ko < 2ky < kp + k3 < 2kz < --- are all of the
same color.

66. Let P P,... P, be a convex polygon in the plane. Assume that for any pair of
vertices P; and P;, there exists a vertex Py of the polygon such that ZP; P, P; = 7 /3.
Show that n = 3.

1.5 Invariants and Semi-Invariants

In general, a mathematical object can be studied from many points of view, and it is always
desirable to decide whether various constructions produce the same object. One usually
distinguishes mathematical objects by some of their properties. An elegant method is to
associate to a family of mathematical objects an invariant, which can be a number, an
algebraic structure, or some property, and then distinguish objects by the different values
of the invariant.

The general framework is that of a set of objects or configurations acted on by trans-
formations that identify them (usually called isomorphisms). Invariants then give ob-
structions to transforming one object into another. Sometimes, although not very often,
an invariant is able to tell precisely which objects can be transformed into one another,
in which case the invariant is called complete.

An example of an invariant (which arises from more advanced mathematics yet is
easy to explain) is the property of a knot to be 3-colorable. Formally, a knot is a simple
closed curve in R3. Intuitively it is a knot on a rope with connected endpoints, such as
the right-handed trefoil knot from Figure 7.

/'\/

Figure 7

How can one prove mathematically that this knot is indeed “knotted”? The answer is,
using an invariant. To define this invariant, we need the notion of a knot diagram. Such a
diagram is the image of a regular projection (all self-intersections are nontangential and
are double points) of the knot onto a plane with crossing information recorded at each
double point, just like the one in Figure 7. But a knot can have many diagrams (pull the
strands around, letting them pass over each other).
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A deep theorem of Reidemeister states that two diagrams represent the same knot
if they can be transformed into one another by the three types of moves described in

Figure 8.
7
b ) ( (Y
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Figure 8

The simplest knot invariant was introduced by the same Reidemeister, and is the
property of a knot diagram to be 3-colorable. This means that you can color each strand
in the knot diagram by a residue class modulo 3 such that

(1) at least two distinct residue classes modulo 3 are used, and

(ii) at each crossing, a + ¢ = 2b (mod 3), where b is the color of the arc that crosses
over, and a and c are the colors of the other two arcs (corresponding to the strand
that crosses under).

It is rather easy to prove, by examining the local picture, that this property is invariant
under Reidemeister moves. Hence this is an invariant of knots, not just of knot diagrams.

The trefoil knot is 3-colorable, as demonstrated in Figure 9. On the other hand,
the unknotted circle is not 3-colorable, because its simplest diagram, the one with no
crossings, cannot be 3-colored. Hence the trefoil knot is knotted.

2

XX

Figure 9

This 3-colorability is, however, not a complete invariant. We now give an example
of a complete invariant from geometry. In the early nineteenth century, F. Bolyai and a
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less well-known mathematician Gerwin proved that given two polygons of equal area,
the first can be dissected by finitely many straight cuts and then assembled to produce
the second polygon. In his list of 23 problems presented to the International Congress
of Mathematicians, D. Hilbert listed as number 7 the question whether the same prop-
erty remains true for solid polyhedra of the same volume, and if not, what would the
obstruction be.

The problem was solved by M. Dehn, a student of Hilbert. Dehn defined an invariant
that associates to a finite disjoint union of polyhedra P the sum 7 (P) of all their dihedral
angles reduced modulo rational multiples of 7= (viewed as an element in R/7 Q). He
showed that two polyhedra P; and P, having the same volume can be transformed into
one another if and only if /(P;) = I(P,), i.e., if and only if the sums of their dihedral
angles differ by a rational multiple of .

Itis good to know that the quest for invariants dominated twentieth-century geometry.
That being said, let us return to the realm of elementary mathematics with a short list
problem from the 46th International Mathematical Olympiad.

Example. There are n markers, each with one side white and the other side black, aligned
in a row with their white sides up. At each step, if possible, we choose a marker with
the white side up (but not one of the outermost markers), remove it, and reverse the two
neighboring markers. Prove that one can reach a configuration with only two markers
left if and only if n — 1 is not divisible by 3.

Solution. We refer to a marker by the color of its visible face. Note that the parity of
the number of black markers remains unchanged during the game. Hence if only two
markers are left, they must have the same color.

We define an invariant as follows. To a white marker with # black markers to its left
we assign the number (—1)’. Only white markers have numbers assigned to them. The
invariant S is the residue class modulo 3 of the sum of all numbers assigned to the white
markers.

It is easy to check that S is invariant under the operation defined in the statement.
For instance, if a white marker with ¢ black markers on the left and whose neighbors are
both black is removed, then S increases by —(—1)" 4+ (=1)'"! + (=1)'~! = 3(=1)"",
which is zero modulo 3. The other three cases are analogous.

If the game ends with two black markers then § is zero; if it ends with two white
markers, then S is 2. This proves that n — 1 is not divisible by 3.

Conversely, if we start with n > 5 white markers, n = 0 or 2 modulo 3, then by
removing in three consecutive moves the leftmost allowed white markers, we obtain a
row of n — 3 white markers. Working backward, we can reach either 2 white markers
or 3 white markers. In the latter case, with one more move we reach 2 black markers as
desired. m|

Now try to find the invariants that lead to the solutions of the following problems.
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1 Methods of Proof

67. An ordered triple of numbers is given. It is permitted to perform the following

68.

69.

70.

71.

72.

operation on the triple: to change two of them, say a and b, to (a + b)/+/2 and
(a—b)/ V2. Is it possible to obtain the triple (1, V2,1 + ﬁ) from the triple
(2, +/2, 1/+/2) using this operation?

There are 2000 white balls in a box. There are also unlimited supplies of white,
green, and red balls, initially outside the box. During each turn, we can replace two
balls in the box with one or two balls as follows: two whites with a green, two reds
with a green, two greens with a white and red, a white and a green with a red, or a
green and red with a white.

(a) After finitely many of the above operations there are three balls left in the box.

Prove that at least one of them is green.
(b) Is it possible that after finitely many operations only one ball is left in the box?

There is a heap of 1001 stones on a table. You are allowed to perform the following
operation: you choose one of the heaps containing more than one stone, throw away
a stone from the heap, then divide it into two smaller (not necessarily equal) heaps.
Is it possible to reach a situation in which all the heaps on the table contain exactly
3 stones by performing the operation finitely many times?

Starting with an ordered quadruple of positive integers, a generalized Euclidean
algorithm is applied successively as follows: if the numbers are x, y, u, v and
x >y, then the quadruple is replaced by x — y, y,u + v, v. Otherwise, it is
replaced by x, y — x, u, v + u. The algorithm stops when the numbers in the first
pair become equal (in which case they are equal to the greatest common divisor of x
and y). Assume that we start with m, n, m, n. Prove that when the algorithm ends,
the arithmetic mean of the numbers in the second pair equals the least common
multiple of m and n.

On an arbitrarily large chessboard consider a generalized knight that can jump p
squares in one direction and ¢ in the other, p, ¢ > 0. Show that such a knight can
return to its initial position only after an evern number of jumps.

Prove that the figure eight knot described in Figure 10 is knotted.

€

Figure 10
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73. In the squares of a 3 x 3 chessboard are written the signs + and — as described in
Figure 11(a). Consider the operations in which one is allowed to simultaneously
change all signs in some row or column. Can one change the given configuration
to the one in Figure 11(b) by applying such operations finitely many times?

Wl T O[T T+

+ |+ |- + = |-
_ | —ls — =1+

Figure 11

74. The number 99. ..99 (having 1997 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each
factor is (independently) increased or decreased by 2, and the resulting two numbers
are written. Is it possible that at some point all of the numbers on the blackboard
are equal to 97

75. Four congruent right triangles are given. One can cut one of them along the altitude
and repeat the operation several times with the newly obtained triangles. Prove that
no matter how we perform the cuts, we can always find among the triangles two
that are congruent.

76. For an integer n > 4, consider an n-gon inscribed in a circle. Dissect the n-gon
into n — 2 triangles by nonintersecting diagonals. Prove that the sum of the radii of
the incircles of these n — 2 triangles does not depend on the dissection.

In some cases a semi-invariant will do. A semi-invariant is a quantity that, although
not constant under a specific transformation, keeps increasing (or decreasing). As such
it provides a unidirectional obstruction.

For his solution to the following problem from the 27th International Mathematical
Olympiad, J. Keane, then a member of the US team, was awarded a special prize.

Example. To each vertex of a regular pentagon an integer is assigned in such a way that
the sum of all of the five numbers is positive. If three consecutive vertices are assigned
the numbers x, y, z, respectively, and y < 0, then the following operation is allowed:
the numbers x, y, z are replaced by x + y, —y, z + y, respectively. Such an operation is
performed repeatedly as long as at least one of the five numbers is negative. Determine
whether this procedure necessarily comes to an end after a finite number of steps.

Solution. The answer is yes. The key idea of the proof is to construct an integer-valued
semi-invariant whose value decreases when the operation is performed. The existence
of such a semi-invariant will guarantee that the operation can be performed only finitely
many times.
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Notice that the sum of the five numbers on the pentagon is preserved by the operation,
so it is natural to look at the sum of the absolute values of the five numbers. When the
operation is performed this quantity decreases by |x|+|z|—|x+y|—|y+z|. Although this
expression is not always positive, it suggests a new choice. The desired semi-invariant
should include the absolute values of pairwise sums as well. Upon testing the new
expression and continuing this idea, we discover in turn that the desired semi-invariant
should also include absolute values of sums of triples and foursomes. At last, with a
pentagon numbered v, w, x, y, z and the semi-invariant defined by

S, w, x,y,2) = o[+ [w| + |x| + |y| + [z] + [v + w[+ [w + x[ + [x + y|
+ly+zl+lz+v]+v+wHx[+lw+x+y+|x+y+2z]
+ly+z+vl+lz+v+wl+lv+tw+x+yl+lw+x+y+z
+lx+y+ztv[+ly+z+vt+wl+ilz+v+w+x],

we find that the operation reduces the value of S by the simple expression |z + v + w +
xXl—lz+v+w+x+2y|=|s—y|—|s+y|,wheres = v+ w + x + y + z. Since
s > 0and y < 0, we see that |s — y| — |s + y| > 0, so S has the required property. It
follows that the operation can be performed only finitely many times. O

Using the semi-invariant we produced a proof based on Fermat’s infinite descent
method. This method will be explained in the Number Theory chapter of this book. Here
the emphasis was on the guess of the semi-invariant. And now some problems.

77. A real number is written in each square of an n x n chessboard. We can perform
the operation of changing all signs of the numbers in a row or a column. Prove that
by performing this operation a finite number of times we can produce a new table
for which the sum of each row or column is positive.

78. Starting with an ordered quadruple of integers, perform repeatedly the operation
(@ b,c.d) —> (la = b, b —cl,|c —d|, |d —a]).
Prove that after finitely many steps, the quadruple becomes (0, 0, 0, 0).

79. Several positive integers are written on a blackboard. One can erase any two distinct
integers and write their greatest common divisor and least common multiple instead.
Prove that eventually the numbers will stop changing.

80. Consider the integer lattice in the plane, with one pebble placed at the origin. We
play a game in which at each step one pebble is removed from a node of the lattice
and two new pebbles are placed at two neighboring nodes, provided that those nodes
are unoccupied. Prove that at any time there will be a pebble at distance at most 5
from the origin.
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It is now time to split mathematics into branches. First, algebra. A section on algebraic
identities hones computational skills. It is followed naturally by inequalities. In general,
any inequality can be reduced to the problem of finding the minimum of a function.
But this is a highly nontrivial matter, and that is what makes the subject exciting. We
discuss the fact that squares are nonnegative, the Cauchy—Schwarz inequality, the triangle
inequality, the arithmetic mean—geometric mean inequality, and also Sturm’s method for
proving inequalities.

Our treatment of algebra continues with polynomials. We focus on the relations
between zeros and coefficients, the properties of the derivative of a polynomial, problems
about the location of the zeros in the complex plane or on the real axis, and methods for
proving irreducibility of polynomials (such as the Eisenstein criterion). From all special
polynomials we present the most important, the Chebyshev polynomials.

Linear algebra comes next. The first three sections, about operations with matrices,
determinants, and the inverse of a matrix, insist on both the array structure of a matrix
and the ring structure of the set of matrices. They are more elementary, as is the section on
linear systems. The last three sections, about vector spaces and linear transformations,
are more advanced, covering among other things the Cayley—Hamilton Theorem and the
Perron—Frobenius Theorem.

The chapter concludes with a brief incursion into abstract algebra: binary opera-
tions, groups, and rings, really no further than the definition of a group or a ring.

2.1 Identities and Inequalities

2.1.1 Algebraic Identities

The scope of this section is to train algebraic skills. Our idea is to hide behind each
problem an important algebraic identity. We commence with three examples, the first
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and the last written by the second author of the book, and the second given at a Soviet
Union college entrance exam and suggested to us by A. Soifer.

Example. Solve in real numbers the system of equations
Bx + y)(x + 3y)/xy = 14,
(x + y)(x* + 14xy + y?) = 36.
Solution. By substituting /x = u, ./y = v, we obtain the equivalent form
uvGut + 10u?v? + 3v*) = 14,
u® + 15u*v® + 15u%v* 4 0° = 36.

Here we should recognize elements of the binomial expansion with exponent equal to 6.
Based on this observation we find that

36 +2-14 = u® + 6u’v + 15u*v* + 201’0 + 15u*v* + 6uv’ + v°
and
36 —2- 14 = ub — 6u’v + 15u*v? — 200 + 15u%v* — 6uv’ + 0.

Therefore, (u + v)® = 64 and (u — v)® = 8, which implies u +v =2 and u — v = ++/2

‘/goruzl—ﬁ

(recall that # and v have to be positive). Sou = 1 + ‘/75 andv=1-— 5

andv=1+ ‘/75 The solutions to the system are
3 3 3 3
(x,y) = 54‘\/5,5—\/5 and (x,y) = 5—\/5,54_\/5 ) O

Example. Given two segments of lengths a and b, construct with a straightedge and a

compass a segment of length v/a* + b*.

Solution. The solution is based on the following version of the Sophie Germain identity:
a* +b* = (@® + V2ab + b*)(@* — V2ab + bP).

Write

\4/a4+b4:\/\/a2+«/§ab+b2'\/a2—\/§ab+b2.

Applying the law of cosines, we can construct segments of lengths \/ a? + 2ab + b?
using triangles of sides a and b with the angle between them 135°, respectively, 45°.
On the other hand, given two segments of lengths x, respectively, y, we can construct
a segment of length ,/xy (their geometric mean) as the altitude AD in a right triangle
ABC (LA = 90°) with BD = x and CD = y. These two steps combined give the
method for constructing va* + b?. |
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Example. Let x, y, z be distinct real numbers. Prove that

Sx—y+y—z+~z—x #0.
Solution. The solution is based on the identity
a*+ b3+ —3abc = (a+ b+ c)(a* + b* + ¢* — ab — be — ca).
This identity comes from computing the determinant

abc
D=|cab
bca

in two ways: first by expanding with Sarrus’ rule, and second by adding up all columns
to the first, factoring (a + b + ¢), and then expanding the remaining determinant. Note
that this identity can also be written as

1
a’+ b+ —3abe = s@+b+o) [(@ —b)* + (b — )+ (c —a)?].
Returning to the problem, let us assume the contrary, and set J/x — y = a, J/y —z =

b, /7 — x = c. By assumption, a + b + ¢ = 0, and so a® + b*> + ¢*> = 3abc. But this
implies

O=@x—+O0—2)+@—x)=3Jx—yJy—zvz—x #0,

since the numbers are distinct. The contradiction we have reached proves that our as-
sumption is false, and so the sum is nonzero. m|

And now the problems.

81. Show that for no positive integer n can both n + 3 and n? 4 3n + 3 be perfect cubes.

82. Let A and B be two n x n matrices that commute and such that for some positive
integers p and g, A? = 7, and B? = O,. Prove that A 4 B is invertible, and find
its inverse.

83. Prove that any polynomial with real coefficients that takes only nonnegative values
can be written as the sum of the squares of two polynomials.

84. Prove that for any nonnegative integer n, the number
55)1+1 + 55n + 1

is not prime.
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85

86.
87.

88.

89.
90.

91.

92.

93.

2 Algebra

Show that for an odd integer n > 5,

(=G

is not a prime number.

51985 _ 1 into a product of three integers, each of which is greater than 5'%.

Factor
Prove that the number

5125 -1
55 —1

is not prime.

Let a and b be coprime integers greater than 1. Prove that fornon > 0is a®" + b
divisible by a + b.

Prove that any integer can be written as the sum of five perfect cubes.

Solve in real numbers the equation
Vx—1+Ix+Vx+1=0.
Find all triples (x, y, z) of positive integers such that
x4+ y 4+ 22 —3xyz = p,

where p is a prime number greater than 3.

Let a, b, ¢ be distinct positive integers such that ab + bc + ca > 3k*> — 1, where k
is a positive integer. Prove that

a’ + b + ¢ > 3(abe + 3k).

Find all triples (m, n, p) of positive integers such that m 4+ n + p = 2002 and the
system of equations ’}—‘ +i=m, 4+ % =n, ¢ + % = p has at least one solution
in nonzero real numbers.

212 x2>0

We now turn to inequalities. The simplest inequality in algebra says that the square of
any real number is nonnegative, and it is equal to zero if and only if the number is zero.
We illustrate how this inequality can be used with an example by the second author of
the book.
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Example. Find the minimum of the function f : (0, c0)® — R,

fx,y,2) = x5+ 5" — (xy)¥*.

Solution. Rewrite the function as

17 1
fOy.2) = —yP?)?+2 [(xy)Z/4 - Z} Y
We now see that the minimum is — 3, achieved if and only if (x, y, z) = (a, a, log, %)’
where a € (0, 1) U (1, 00). -

We continue with a problem from the 2001 USA team selection test proposed also by
the second author of the book.

Example. Let (a,),>0 be a sequence of real numbers such that
, 1
ant1 > a, + 5 foralln > 0.

Prove that ./a, .5 > a _s,foralln > 5.

Solution. Tt suffices to prove that a, s > a2, for all n > 0. Let us write the inequality
for a number of consecutive indices:

> a2+ !
any1 > a; + -,
+1 5
1
ny2 = an+1 T3 5
1
a”+3 Fl+2 +Z 5’
1
al’l+4 - n+3 + 57
1
ants = n+4 + < 5

If we add these up, we obtain

1

An+s5 — a (an+1 + an+2 + an+3 + an+4) (apy1 + anan + ayys +ansg) +5- B
1\* 1\? 1\2 1\2

= a"‘“_i + a"+2_5 + an+3—§ + an+4_§ >0

The conclusion follows. O
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And finally a more challenging problem from the 64th W.L. Putnam Mathematics
Competition.

Example. Let f be a continuous function on the unit square. Prove that

1 1 2 1 1 2
| (f f<x,y>dx> av+ | (/ f(x,y)dy) i
0 0 0 0
1 pl 2 1 pl
S(f / f(x,y)dxdy> +/ / f(x, y)*dxdy.
o Jo o Jo

Solution. To make this problem as simple as possible, we prove the inequality for a
Riemann sum, and then pass to the limit. Divide the unit square into n” equal squares, then
pick a point (x;, y;) in each such square and define a;; = f(x;, y;),1,j =1,2,...,n.
Written for the Riemann sum, the inequality becomes

2

2 2
1 1 1
ﬁ; Xj:aij + ;Clﬂ SF lXj:aij +; Z]:alzj

Multiply this by n*, then move everything to one side. After cancellations, the inequality
becomes

@ =12 ak+ > ajaw—(n—1) Y (aijan +ajian) = 0.
ij ik, j#l ijk,j#k

Here we have a quadratic function in the g;;’s that should always be nonnegative. In
general, such a quadratic function can be expressed as an algebraic sum of squares, and
it is nonnegative precisely when all squares appear with a positive sign. We are left with
the problem of representing our expression as a sum of squares. To boost your intuition,
look at the following tableau:

all--.--.-..-.....aln

anl...............ann

The expression

2
(aij + ay — air — axj)
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when expanded gives rise to the following terms:
a’ +a> + a’ + a?. + 2a;;a1 + 2a;a; — 2a;a;; — 2a;iak; — 2a,di — 205 a;
ij kl il kj ijekl ilUkj ilUij ijlkj kIl klOkj -

For a fixed pair (i, j), the term a;; appears in (n — 1)* such expressions. The products
Zaijakl and 2a,~1akj appearjust once, while the products 2611'161,'/', 2al~jakj, 2aya;;, Zaklakj
appear (n — 1) times (once for each square of the form (i, j), (i, [), (k, j), (k,[)). It
follows that the expression that we are trying to prove is nonnegative is nothing but

2
Z(Cli/‘ + ay — ai — ax;)°,

ijkl

which is of course nonnegative. This proves the inequality for all Riemann sums of the
function f, and hence for f itself. O

94. Find

min max(a2 +b, b+ a).
a,beR

95. Prove that for all real numbers x,
243 —-4"46" -9 < 1.
96. Find all positive integers n for which the equation
nx*4+4x+3=0

has a real root.

97. Find all triples (x, y, z) of real numbers that are solutions to the system of equations

4x2
presn bl

4y? .
m =2z,

472
m =X.

98. Find the minimum of

1 1 1
log,, (xz — Z) + log,, (x3 — Z) + - +log, (Xl — 4_1) ,

overall x{,x»,...,x, € (J—P 1).
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99. Let a and b be real numbers such that
9a® + 8ab + 7b* < 6.
Prove that 7a + 5b + 12ab < 9.

100. Letay, az, . . ., a, be real numbers such thata; +a + - - - +a, > n? and a? + a2 +
---+a,% <n3+ 1. Provethatn — 1 < a, < n + 1 for all k.

101. Find all pairs (x, y) of real numbers that are solutions to the system
x4+2x3—y=—%+«/§,
yi42y —x = —é—l‘—x/g.
102. Letn be an even positive integer. Prove that for any real number x there are at least
2"/2 choices of the signs + and — such that
tx" £k Ex < %

2.1.3 The Cauchy-Schwarz Inequality
A direct application of the discussion in the previous section is the proof of the Cauchy—
Schwarz (or Cauchy—Bunyakovski—Schwarz) inequality
n n n 2
>yt (Yan)
k=1 k=1 k=1

where the equality holds if and only if the @;’s and the b;’s are proportional. The expression

n n

n 2
Z a,% Z b,% — (Z akbk>
k=1 k=1 k=1

is a quadratic function in the a;’s and b;’s. For it to have only nonnegative values, it
should be a sum of squares. And this is true by the Lagrange identity

n n n 2
Z a,f Z b,% — (Z akbk> = Z (a,‘bk — akbi)z .
k=1 k=1 k=1 i<k
Sadly, this proof works only in the finite-dimensional case, while the Cauchy—
Schwarz inequality is true in far more generality, such as for square integrable functions.
Its correct framework is that of a real or complex vector space, which could be finite or
infinite dimensional, endowed with an inner product (-, -).
By definition, an inner product is subject to the following conditions:
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(1) (x, x) > 0, with equality if and only if x = 0,
(ii) (x,y) = (y, x), for any vectors x, y (here the bar stands for complex conjugation if
the vector space is complex),
(1i) (Aix; + Aoxo, y) = Ar{x1, y) + Aa(xz, y), for any vectors x;, x», y and scalars A;
and X,.

The quantity [|x]| = +/{(x, x) is called the norm of x. Examples of inner product
spaces are R" with the usual dot product, C" with the inner product

((ZI’ZL---,Zn)’ (w19w27"'7w}1)> :le_1+12w_2++znw_nv

but also the space of square integrable functions on an interval [a, b] with the inner
product

b
tro) = [ roe@ar
a
The Cauchy-Schwarz inequality. Let x, y be two vectors. Then

Il - Nyl =[x, yi,
with equality if and only if the vectors x and y are parallel and point in the same direction.

Proof. We have

0 < (lIyllx = lxlly, Iylle = lxlly) = 21121y 1% = Ix Iy I, ¥) 4 (3, 2,

hence 2||x|| - ||y = ({x, ¥) + (v, x)). Yet another trick: rotate y by (x, y)/|{(x, y)|. The
left-hand side does not change, but because of property (ii) the right-hand side becomes
| it

m((x, y){x, ¥) + (x, y){x, y)), which is the same as 2|(x, y)|. It follows that

lxll - Iyl = 1{x, I,

which is the Cauchy—Schwarz inequality in its full generality. In our sequence of deduc-
tions, the only inequality that showed up holds with equality precisely when the vectors
are parallel and point in the same direction. O

As an example, if f and g are two complex-valued continuous functions on the
interval [a, b], or more generally two square integrable functions, then

2

b b b
f \f ()P f g 2dt > f Fgdi

Let us turn to more elementary problems.
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Example. Find the maximum of the function f(x, y, z) = 5x — 6y + 7z on the ellipsoid
2x2 +3y? +4z2 = 1.

Solution. For a point (x, y, z) on the ellipsoid,

2
(f(x,y,2)* = (5x — 6y +72)* = (i'ﬁx—i-\@y+;-2z>

V2 V3
< ((%)2 + (—%)2 + (%)2> ((fzx)2 + (V32 + (21)2)
= 1—(2x +3y? +47%) = 12—7

Hence the maximum of f is 4/147/2, reached at the pomt (x, v, z) on the ellipsoid for
whichx,z >0,y <0,and x : yz_f f O

The next problem was on the short list of the 1993 International Mathematical
Olympiad, being proposed by the second author of the book.

Example. Prove that

a b c d 2

>
b+2c+3d+c+2d+3a+b+2a+3b+a+2b+30 -3’
foralla,b,c,d > 0.

Solution. Denote by E the expression on the left. Then

4(ab+ ac +ad + bc + bd + cd)E
= (a(b+2c+3d)+b(c+2d+3a)+ c(d+2a+3b)+d(a+2b+ 3c))

a b d
x + ¥
b+2c+3d c¢c+2d+3a b+2a+3b a+2b+3c
> (a+b+c+d)?,

where the last inequality is a well-disguised Cauchy—Schwarz. Finally,
3(a+b+c+d)? > 8(ab+ac+ad+ bc + bd + cd),
because it reduces to
@—b’+@—c’+@—d>+b-—c’+b—d?+(—d?=>0.

Combining these two and cancelling the factor ab + ac + ad + bc + bd + cd, we obtain
the inequality from the statement. m|
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And now a list of problems, all of which are to be solved using the Cauchy—Schwarz

inequality.

103.

104.
105.

106.

107.

108.

109.

110.

If a, b, c are positive numbers, prove that

9a%b*c? < (a*b + b*c + *a)(ab* + bc* + ca?).
Ifa; +ay+ -+ +a, =nprove thata +aj +--- +a* > n.
Letay, as, ..., a, be distinct real numbers. Find the maximum of

A14g@q) + 20502 + -+ + Apls @)

over all permutations of the set {1, 2, ..., n}.
Let fi, fo,..., fu be positive real numbers. Prove that for any real numbers
X1, X2, ..., Xy, the quantity

(fix1 + foxa + -+ + fuxn)?
frt Fat ot

fixt 4 fox3 4+ fux) —

is nonnegative.

Find all positive integers n, k1, ..., k, such thatk; 4+ --- + k, = 5n — 4 and
: +---+ L. 1
kl kn -
Prove that the finite sequence ay, ay, . . ., a, of positive real numbers is a geometric

progression if and only if
(aoay + aray + -+ + ay_1a,)’ = (@5 +aj + -+ +a,_)(aj + a3 + - +a;).

Let P(x) be a polynomial with positive real coefficients. Prove that

VP(a)P(b) = P(ab),

for all positive real numbers a and b.
Consider the real numbers xo > x; > xp > - -+ > x,,. Prove that

1 1 1
Xo + + ++—an+2n
X0 — X1 X1 — X2 Xn—1 — Xp

When does equality hold?
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111. Prove that

sina costa

- > sec(a — b),
sin b cos

foralla, b € (0, 2).
112. Prove that

1 N 1 N 1 N 1 >(a+b+c+€/abc)2
a+b b+c c+a 2Jabc ~ (@+b)b+c)c+a)

foralla, b,c > 0.

2.1.4 The Triangle Inequality

In its most general form, the triangle inequality states that in a metric space X the distance
function § satisfies

8(x,y) <8(x,z)+38(z,y), foranyx,y,zeX.
An equivalent form is
18(x, y) = 8(y, 2)| = 8(x, 2).

Here are some familiar examples of distance functions: the distance between two real
or complex numbers as the absolute value of their difference, the distance between two
vectors in n-dimensional Euclidean space as the length of their difference ||v — w||, the
distance between two matrices as the norm of their difference, the distance between two
continuous functions on the same interval as the supremum of the absolute value of their
difference. In all these cases the triangle inequality holds.

Let us see how the triangle inequality can be used to solve a problem from
T.B. Soulami’s book Les olympiades de mathématiques: Réflexes et stratégies (Ellipses,
1999).

Example. For positive numbers a, b, ¢ prove the inequality

Va: —ab+ b2+ b2 —be +c2 > a? +ac + 2.

Solution. The inequality suggests the following geometric construction. With the same
origin O, draw segments O A, OB, and OC of lengths a, b, respectively, ¢, such that
O B makes 60° angles with O A and OC (see Figure 12).

The law of cosines in the triangles OAB, O BC, and O AC gives AB? = a*>—ab+b?,
BC? = b*—bc+c?,and AC? = a® +ac + c*. Plugging these formulas into the triangle
inequality AB + BC > AC produces the inequality from the statement. O
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Figure 12

Example. Let P(x) be a polynomial whose coefficients lie in the interval [1, 2], and let
Q(x) and R(x) be two nonconstant polynomials such that P(x) = Q(x)R(x), with Q(x)
having the dominant coefficient equal to 1. Prove that |Q(3)| > 1.

Solution. Let P(x) = a,x" 4+ a,_1x"~' + - - - + ao. We claim that the zeros of P (x) lie
in the union of the half-plane Re z < 0 and the disk |z| < 2.

Indeed, suppose that P(x) has a zero z such that Rez > 0 and |z| > 2. From
P(z) = 0, wededuce thata,z" +a,_ 17" = —a,_»7" > —a,_37" > —- - - —ay. Dividing
through by z", which is not equal to 0, we obtain

an—1 an—2 a3 ap

an+ — — — —_ e — —,
z 72 z3 7"

Note that Re z > 0 implies that Re % > (. Hence

Qn—1 ay_y  ay_3 aop
l<a, <Rela, + = = Re _”2 - ”3 _..._22
z z Z "
an—2 an—3 ap an—2 ap—-3 4 ap

— 2 3 crt —n = 5 3 “e. P
z Z z |z] |z] |z]

where for the last inequality we used the triangle inequality. Because the g;’s are in the
interval [1, 2], this is strictly less than

)

20z + 2l + 2P = 2|Z—|_

1—z|7!
The last quantity must therefore be greater than 1. But this cannot happen if |z| > 2,
because the inequality reduces to (% — 1)(\;_1 + 1) > 0, impossible. This proves the
claim.

Returning to the problem, Q(x) = (x —z1)(x —z2) - - - (x — zx), where z1, 22, ..., Zx
are some of the zeros of P(x). Then

1O =B -zl 13—z 13—zl
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If Rez; < 0, then |3 — z;| > 3. On the other hand, if |z;| < 2, then by the triangle
inequality |3 — z;| > 3 — |z;| > 1. Hence |Q(3)] is a product of terms greater than 1,
and the conclusion follows. O

More applications follow.

113. Let a, b, c be the side lengths of a triangle with the property that for any positive
integer n, the numbers a”, b", ¢" can also be the side lengths of a triangle. Prove
that the triangle is necessarily isosceles.

114. Given the vectors @, b, ¢ in the plane, show that
lall + bl + licl + lla + b+ ¢l = lla + bl + lla + ¢l + 16+ c|l.

115. Let P(z) be a polynomial with real coefficients whose roots can be covered by a
disk of radius R. Prove that for any real number k, the roots of the polynomial
nP(z) — kP’(z) can be covered by a disk of radius R + |k|, where n is the degree
of P(z), and P’(z) is the derivative.

116. Prove that the positive real numbers a, b, ¢ are the side lengths of a triangle if and
only if

a?+ b+ < 2\/azb2 + b2c? + c2a2.
117. Let ABC D be a convex cyclic quadrilateral. Prove that
|[AB—-CD|+|AD — BC| = 2|AC — BD|.

118. Let Vi, Vs, ..., V,, and W, W,, ..., W, be isometries of R" (m, n positive inte-
gers). Assume that for all x with ||x|| < L, |[Vix = Wix|| < 1,i =1,2,...,m.

i=1 i=1

for all x with ||x| < 1.

Sm’

119. Given an equilateral triangle A BC and a point P that does not lie on the circumcircle
of ABC, show that one can construct a triangle with sides the segments PA, P B,
and PC. If P lies on the circumcircle, show that one of these segments is equal to
the sum of the other two.

120. Let M be a point in the plane of the triangle A BC whose centroid is G. Prove that

MA?> .- BC+ MB> AC+ MC? - AB>3MG-AB-BC -CA.
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2.1.5 The Arithmetic Mean—-Geometric Mean Inequality

Jensen’s inequality, which will be discussed in the section about convex functions, states
that if f is a real-valued concave function, then

fQuxi +Aaxo + -+ Ax,) = A f () Ao f () + -+ A (X)),

for any xq, x», ..., x,, in the domain of f and for any positive weights A;, Ao, ..., Ay,
with Ay + A + - - - + A, = 1. Moreover, if the function is nowhere linear (that is, if it is
strictly concave) and the numbers A, A5, ..., A, are nonzero, then equality holds if and
onlyifx; =x, =---=ux,.

Applying this to the concave function f(x) = In x, the positive numbers xi, x, ...,
Xn, and the weights Ay = Ay = --- =X, = }l we obtain

Xitxod Inx; +Inx; +---+1Inx,
n .

1

n n
Exponentiation yields the following inequality.
The arithmetic mean-geometric mean inequality. Let x1, X3, ..., x, be nonnegative
real numbers. Then

Xi+xt
n

= NX1X2 Xy,

with equality if and only if all numbers are equal.

We will call this inequality AM—GM for short. We give it an alternative proof using
derivatives, a proof by induction on n. For n = 2 the inequality is equivalent to the
obvious (/aj —  /az)? > 0. Next, assume that the inequality holds for any n — 1 positive
numbers, meaning that

X+ X240+ X
n—1

with equality only when x; = x, = --- = x,_;. To show that the same is true for n
numbers, consider the function f : (0, co) — R,

Fl) = X144+ x+x  EHTTICE

n

To find the minimum of this function we need the critical points. The derivative of f is

1
YXIX2 Xt 1y xn

= =Y (¢ -
x)—;——xn =——(x'""" —¥xix2- - xX_1) .

n n
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Setting this equal to zero, we find the unique critical point x = "J/x1x, - - - x,,, since in
. _1 . 1. . .
this case x!~n = #/x7x; - - x,_1. Moreover, the function x' 7 is increasing on (0, 00);

hence f'(x) < Oforx < "Yx1x;---x,_1,and f'(x) > Oforx > "Yxix;---x,_1. We
find that f has a global minimum at x = "/x1x; - - - x,_;, where it takes the value

Xi+x 4 X+ XXX
n
— YX1Xy Xp—q - ’1(71*1)/x1xz s Xp—1
R R e I L R e I
= SREVATECRERE Sy

n
x4 — =D xx X

n

FOYxixy - xp) =

By the induction hypothesis, this minimum is nonnegative, and is equal to O if and only

if x; =x, =--- = x,-;. We conclude that f(x,) > 0 with equality if and only if
X1 =xp=---=x,_1and x, = "Yx1x;---x,_; = x1. This completes the induction.

We apply the AM—GM inequality to solve two problems composed by the second
author of the book.

Example. Find the global minimum of the function f : R> — R,
[l y)=3"@ 37—,
Solution. The expression
3f(x,y)+ 1 =31 $37F 1 —3.3H

is of the form a* + b + ¢* — 3abe, where a = V3%, b = /32 and ¢ = 1, all
of which are positive. By the AM—GM inequality, this expression is nonnegative. It is
equal to zero only when a = b = ¢, that is, when 2x + y = x 4+ 2y = 0. We conclude
that the minimum of f is f(0, 0) = —1. O

Example. Leta, b, c, d be positive real numbers with abcd = 1. Prove that

a b c d
+ + + >1
b+c+d+1 c+d+a+1 d+a+b+1 a+b+c+1

Solution. A first idea is to homogenize this inequality, and for that we replace the 1 in
each denominator by ~/abcd, transforming the inequality into

b

a C
+ +
b+c+d+abcd c+d+a+ Jabed d+a+b+ abed
d

+ " > 1.
a—+b+c+ ~abed
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Then we apply the AM—GM inequality to the last term in each denominator to obtain the
stronger inequality

4a N 4b N 4c¢ N 4d -
a+5b+c+d) b+5(c+d+a) c+5d+a+b) d+5a+b+c)

which we proceed to prove.

In order to simplify computations, it is better to denote the four denominators by
16x, 16y, 16z, 16w, respectively. Thena +b +c+d = x +y 4+ z + w, and so
4a + 16x = 4b 4 16y = 4c + 16z = 4d + 16w = 5(x + y + z + 2). The inequality
becomes

—1lx+5@y+z+w) —lly+5c+w+x) —llz4+S5w+x+y)
- +
16x 16y 162
—1lw+5x+y+2) -
16w -

17

or

Z w Z w X w X X Z
—mM+SG+—+—+—+—+—+—+—+X+—+1+—)zm
X X X y y y Z Z Z w w w

And this follows by applying the AM—GM inequality to the twelve summands in the
parentheses. |

Try your hand at the following problems.
121. Show that all real roots of the polynomial P(x) = x> — 10x + 35 are negative.
122. Prove that for any positive integer n,
1>t (= 1).
123. Letay, as, ..., a, and by, by, ..., b, be nonnegative numbers. Show that
(aray -+~ a)/" + (biby -+ by)'"" < (a1 + b1)(az + bo) -+ (an + b))/
124. Let a, b, c be the side lengths of a triangle with semiperimeter 1. Prove that

28
1<ab+bc+ca—abcfﬁ.

125. Which number is larger,
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126. On a sphere of radius 1 are given four points A, B, C, D such that

9

AB-AC-AD‘BC‘BD-CD:§.

Prove that the tetrahedron ABC D is regular.

127. Prove that

2 2

y2—x Zz_yz x—zz>
2x2+ 1 2y24+1  2z22+1 ~

El

for all real numbers x, y, z.

128. Letay, ay, . .., a, be positive real numbers such thata; +a, + - - - +a, < 1. Prove
that
aay---a,(1 —(a; +ay+---+a,)) < 1
(ar+a+---+a)d—aD(d —a)--- (1 —a,) ~ a1
129. Consider the positive real numbers xi, x5, ..., x, with x;x; - - - x, = 1. Prove that
1 1 1

<1

n—14+x n—14x n—1+4x,

2.1.6 Sturm’s Principle

In this section we present a method for proving inequalities that has the flavor of real
analysis. It is based on a principle attributed to R. Sturm, phrased as follows.

Sturm’s principle. Given a function f defined on a set M and a point xo € M, if

(1) f has a maximum (minimum) on M, and
(i1) if no other point x in M is a maximum (minimum) of f,

then xg is the maximum (minimum) of f.

But how to decide whether the function f has a maximum or a minimum? Two
results from real analysis come in handy.

Theorem. A continuous function on a compact set always attains its extrema.
Theorem. A closed and bounded subset of R" is compact.

Let us see how Sturm’s principle can be applied to a problem from the first Balkan
Mathematical Olympiad in 1984.
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Example. Let oy, ay, ..., oy be positive real numbers, n > 2, such that oy +ap + - - - +
o, = 1. Prove that

a] (Xz Ot,, n
+ ot > :
ltar+ 4o, ld+a+--+a, I+ar+- o~ 2n—1

Solution. Rewrite the inequality as

(03] 4 (0%) 4 n (679 > n
2—0[] 2—0[2 2—0[,!_21’1—1’

and then define the function

o) (0% oy

flay, a0, ..., 0p) = —a + % s o
As said in the statement, this function is defined on the subset of R” consisting of points
whose coordinates are positive and add up to 1. We would like to show that on this set
f is greater than or equal to 5.".

Does f have a minimum? The domain of f is bounded but is not closed, being the
interior of a tetrahedron. We can enlarge it, though, by adding the boundary, to the set

M= {(a1,0,...,0,) |y +oar+---+a,=1, ¢; >0, i=1,2,...,n}.

We now know that f has a minimum on M.

A look at the original inequality suggests that the minimum is attained when all the
a;’s are equal. So let us choose a point (ai, aa, ..., a,) for which ; # «; for some
indices i, j. Assume that o; < o; and let us see what happens if we substitute «; + x for
«; and o; — x for aj, with 0 < x < oj — o;. In the defining expression of f, only the
ith and jth terms change. Moreover,

o; o o +x aj— X

2—0:,-+2—05j 2—ai—x 2—a;+x
B 2x(aj —a; —x)(4 —a; —aj)
S Q2-0)Q2-a)Q2—a; —x)2—a; —x)

> 0,

so on moving the numbers closer, the value of f decreases. It follows that the point that
we picked was not a minimum. Hence the only possible minimum is (1,2, ..., 1) in

which case the value of f is 5-"~. This proves the inequality. O

However, in most situations, as is the case with this problem, we can bypass the use
of real analysis and argue as follows. If the g;’s were not all equal, then one of them must
be less than % and one of them must be greater. Take these two numbers and move them
closer until one of them reaches % Then stop and choose another pair. Continue the
algorithm until all numbers become % At this very moment, the value of the expression
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is %(2 — %)*1 -n = 5. Since during the process the value of the expression kept

decreasing, initially it must have been greater than or equal to 5."~. This proves the
n—

inequality.

Let us summarize the last idea. We want to maximize (or minimize) an n-variable
function, and we have a candidate for the extremum. If we can move the variables one
by one toward the maximum without decreasing (respectively, increasing) the value of
the function, than the candidate is indeed the desired extremum. You can find more
applications of Sturm’s principle below.

130. Let a, b, c be nonnegative real numbers such that a + b 4+ ¢ = 1. Prove that
4(ab + bc + ac) — 9abc < 1.

131. Let x, x2, ..., Xy, n > 2, be positive numbers such that x; +x, +--- +x, = 1.

Prove that
1 1 1
14+ — I+—)---(1+—)=>=m+ D"
X1 X2 X,

132. Prove that a necessary and sufficient condition that a triangle inscribed in an ellipse
have maximum area is that its centroid coincide with the center of the ellipse.

133. Leta,b,c > 0,a + b + ¢ = 1. Prove that

0<ab+bc+ac—2abc <

A R~

134. Let xy, x5, ..., x, be n real numbers such that 0 < x;
the inequality

3.for1 < j < n. Prove

H;l':l Xj Hj‘:l (I —x;)

= 7
(Zj’:l xj) <Z?:1 (I— xj))
135. Leta, b, ¢, and d be nonnegative numbers such thata < 1,a+b < 5,a+b+c < 14,
a—+ b+ c+d <30. Prove that

Va + Vb + /e ++d < 10.

136. What is the maximal value of the expression )
negative integers whose sum is equal to m?

i< XiXj if x1, x2, ..., x,, are non-

137. Given the n x n array (a;;);; with a;; =i + j — 1, what is the smallest product of
n elements of the array provided that no two lie on the same row or column?

138. Given a positive integer n, find the minimum value of
N4+t
X1+x+---+x,
subject to the condition that x1, x5, ..., x, be distinct positive integers.
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2.1.7 Other Inequalities

We conclude with a section for the inequalities aficionado. Behind each problem hides a
famous inequality.

139. If x and y are positive real numbers, show that x” + y* > 1.

140. Prove that for all a, b, ¢ > 0,
@ —a*>+3)° —b*+3)(—2+3)>(a+b+c).

141. Assume that all the zeros of the polynomial P(x) = x" +a;x"~!' +- .. +a, are real
and positive. Show that if there exist 1| < m < p < n such that a,, = (—1)’"( )

and a, = (~1)? ("), then P(x) = (x — 1)". !

142. Let n > 2 be an integer, and let x1, x, ..., x,, be positive numbers with the sum

equal to 1. Prove that
n 1+ 1 - ﬁ n—Xx;
i—1 Xi - o1 1 - Xi '

i=

143. Letay, as, ..., ay, by, by, ..., b, be real numbers such that
(@ +a;+-+a, — Db +by3+-+b,— 1
> (a1by + axbr + - - - +a,b, — 1)2-
Prove thatai +a3 +---+a?>1 and b} +b3+---+b>> 1.
144. Leta, b, c, d be positive numbers such that abc = 1. Prove that

1 1 1 3
> —.
ad(b+c) + b3(c +a) + cla+b) — 2

2.2 Polynomials
2.2.1 A Warmup
A polynomial is a sum of the form
P(x) = apyx" + a1 x" ' 4+ - + ay,

where x is the variable, and a,, a,_1, . .., ap are constant coefficients. If a, # 0, the
number n is called the degree, denoted by deg(P(x)). If a, = 1, the polynomial is
called monic. The sets, which, in fact, are rings, of polynomials with integer, rational,
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real, or complex coefficients are denoted, respectively, by Z[x], Q[x], R[x], and C[x].
A number r such that P(r) = 0 is called a zero of P(x), or a root of the equation
P(x) = 0. By the Gauss—d’Alembert theorem, also called the fundamental theorem
of algebra, every nonconstant polynomial with complex coefficients has at least one
complex zero. Consequently, the number of zeros of a polynomial equals the degree,
multiplicities counted. For a number «, P(a) = a," + a,_ 12" ~' + - - - + ay is called
the value of the polynomial at «.

We begin the section on polynomials with an old problem from the 1943 competition
of the Mathematics Gazette, Bucharest, proposed by Gh. Buicliu.

Example. Verify the equality

\3/20+ 14J§+\3/20— 142 = 4.

Solution. Apparently, this problem has nothing to do with polynomials. But let us denote
the complicated irrational expression by x and analyze its properties. Because of the cube
roots, it becomes natural to raise x to the third power:

x> =20+ 14v2 4+ 20 — 142
3 3 3
+ 3\/(20 + 144/2)(20 — 144/2) <\/20 +14v2 + \/20 — 14@)
= 40 + 3x~/400 — 392 = 40 + 6x.

And now we see that x satisfies the polynomial equation

x> —6x —40=0.

We have already been told that 4 is a root of this equation. The other two roots are
complex, and hence x can only equal 4, the desired answer. O

Of course, one can also recognize the quantities under the cube roots to be the cubes
of 2 4+ +/2 and 2 — +/2, but that is just a lucky strike.

145. Given the polynomial P (x, y, z) prove that the polynomial

O(x,y,2)=P(x,y,2) + P(y,z,x) + P(z,x,y)
—P(x,z,y) — P(y,x,2) — P(z,y,x)

is divisible by (x — y)(y — 2)(z — x).
146. Find all polynomials satisfying the functional equation

(x + DP(x) = (x — 10)P(x + 1).



147.

148.

149.
150.

151.

152.

153.
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Let P(x) be a polynomial of odd degree with real coefficients. Show that the
equation P(P(x)) = 0 has at least as many real roots as the equation P(x) = 0,
counted without multiplicities.

Determine all polynomials P(x) with real coefficients for which there exists a
positive integer n such that for all x,

P(x—i—l)—i-P(x—l):ZP(x).
n n

Find a polynomial with integer coefficients that has the zero +/2 + v/3.

Let P(x) = x* +ax?+bx*+cx+d and Q(x) = x>+ px +¢q be two polynomials
with real coefficients. Suppose that there exists an interval (r, s) of length greater
than 2 such that both P (x) and Q(x) are negative for x € (r, s) and both are positive
for x < r or x > s. Show that there is a real number x( such that P (xy) < Q(xp).

Let P(x) be a polynomial of degree n. Knowing that

k
Pk)y=——, k=0,1,...,n,
k+1

find P(m) form > n.

Consider the polynomials with complex coefficients
Px)=x"+ax" '+ +a,

with zeros x1, x», ..., x, and
Ox)=x"4+bx"'+...4+b,

with zeros x7, x3, ..., x2. Prove thatif a; + a3 +as+--- and ay + a4 +ag + - - -
are both real numbers, then sois by + by + - -- + b,,.

Let P(x) be a polynomial with complex coefficients. Prove that P(x) is an even
function if and only if there exists a polynomial Q(x) with complex coefficients
satisfying

P(x) = Q(x)Q(=x).

2.2.2 Viete’s Relations

From the Gauss—d’Alembert fundamental theorem of algebra it follows that a polynomial

P(x) = apx" 4 ap_1x" '+ -+ ag
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can be factored over the complex numbers as
P(x) = a,(x —x1)(x — x2) -+ - (x — xp).

Equating the coefficients of x in the two expressions, we obtain

ap—1
Xptxp ey =
ap
ap—>2
X1Xo +X1X3 + -+ Xp_1Xp = ,
al‘l

xixg e x, = (1)L
n
These relations carry the name of the French mathematician F. Viete. They combine
two ways of looking at a polynomial: as a sum of monomials and as a product of linear
factors. As a first application of these relations, we have selected a problem from a 1957
Chinese mathematical competition.

Example. 1f x + y 4+ z = 0, prove that

4y 4t O +y 42 x+y 47
2 5 N 7 '

Solution. Consider the polynomial P(X) = X3+ pX +¢, whose zeros are x, y, z. Then

4=y 42> =200y +x2+ y2) = —2p.

Adding the relations x> = —px — ¢, y> = —py — ¢, and 2> = —pz — ¢, which hold

because x, y, z are zeros of P(X), we obtain
Xy 47 =-3q.
Similarly,
Ayttt = pP+ Y+ ) — g+ y +2) =2p%

and therefore

Y+ =—p+y +2) =g+ +2) = 5py,

Xy 47 = —p(°+ ¥ +2) —qx* + vy + 2N = =5pPq — 2p*q = —Tpg.
The relation from the statement reduces to the obvious

—2p Spq _ —Tp’q
2 5 7
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Next, a problem from the short list of the 2005 Ibero-American Mathematical
Olympiad.

Example. Find the largest real number k with the property that for all fourth-degree
polynomials P(x) = x* + ax® 4+ bx? + cx + d whose zeros are all real and positive,
one has

(b—a—c)*>kd,
and determine when equality holds.

Solution. Let ry, rp, r3, r4 be the zeros of P(x). Viete’s relations read

a=—(ri+ry+r3+ry),
b =riry+rir3 +rirs + rar3 + rars + rarg,
¢ = —(rirar3 + rirary + rirsra + rarsry),

d = rirrsry.
From here we obtain

b—a—c=rira+rirs+rirg+rry+rarg+rirg) + (i +r+r3+rg)

+ (rirar3 + rirarg + rirsrg + rarary).
By the AM-GM inequality this is greater than or equal to
14 Y (}"17‘2}"31’4)7 = 14\/E

Since equality can hold in the AM—GM inequality, we conclude that k& = 196 is the
answer to the problem. Moreover, equality holds exactly whenr; =r, =r3 =ry =1,
that is, when P (x) = x* — 4x3 + 6x2 — 4x + 1. O

And now a challenging problem from A. Krechmar’s Problem Book in Algebra (Mir
Publishers, 1974).

Example. Prove that

3 / \3/ / \3/ / \3/21 3
i e == = (5 =37,
\/ €OS — + /€08 — 4+ ,/cos ( NG

Solution. We would like to find a polynomials whose zeros are the three terms on the left.

Let us simplify the problem and forget the cube roots for a moment. In this case we have
to find a polynomial whose zeros are cos 27”, cos 47”, cos 87" The seventh roots of unity
come in handy. Except for x = 1, which we ignore, these are also roots of the equation

x6+x5+x4+x3—|—x2+x+1=O,andarecos2k7”+isin2k7”,k= 1,2,...,6. We
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see that the numbers 2 cos - 2” ,2cos “ _and 2 cos ¥ are of the form x + —, with x one of
these roots.

If we define y = x + %, then x2 + xiz =y?—2and x>+ )% = y3 — 3y. Dividing the
equation x° + x> + x* + x> + x2 4+ x 4+ 1 = 0 through by x* and substituting y in it, we
obtain the cubic equation

Y 4+y2—2y—1=0.

The numbers 2cos , 2cos & =, and 2 cos & =
simpler task is fulﬁlled

But the problem asks us to find the sum of the cube roots of these numbers. Looking
at symmetric polynomials, we have

are the three roots of this equation. The

X+Y3 422 -3XYZ=X+Y+2)?-3X+Y+2)XY+YZ+ZX)
and

XYV} 4+ V32 + 723X —3(XY2)? = (XY +YZ+ XZ)?
—3XYZ(X+Y + Z)(XY +YZ + ZX).

Because X3, Y3, Z* are the roots of the equation y* + y> — 2y — 1 = 0, by Viete’s
relations, X3Y3Z3 = 1, s0 XYZ = «S/T = 1,and also X+ Y3+ Z® = —1 and
X3Y3 + X37% + Y373 = —2. In the above two equalities we now know the left-hand
sides. The equalities become a system of two equations in the unknownsu = X +Y 4+ Z
and v = XY +YZ 4+ ZX, namely

u? —3uv = —4,
v} — 3uv = —5.

Writing the two equations as u® = 3uv — 4 and v’ = 3uv — 5 and multiplying them,
we obtain (uv)® = 9(uv)> — 27uv + 20. With the substitution m = uv this becomes
m3 —3m3 +27m — 20 = 0, or (m — 3)* + 7 = 0. This equation has the unique solution

m=3-— 3/7 Hence u = /3m — 4 = /5 — 34/7. We conclude that
2 4 8 1 1
\3/cos7n+\3/cos7”+\3/cos7n=X+Y+Z=%u=,3/§(5—3«3/7),
as desired. O

All problems below can be solved using Viete’s relations.
154. Find the zeros of the polynomial
P(x) = x* — 6x7 + 18x% — 30x + 25

knowing that the sum of two of them is 4.



155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.
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Let a, b, ¢ be real numbers. Show thata > 0, b > 0, and ¢ > 0 if and only if
a+b+c>0,ab+ bc+ca>0,and abc > 0.

Solve the system
x+y+z=1,
xyz =1,
knowing that x, y, z are complex numbers of absolute value equal to 1.

Find all real numbers r for which there is at least one triple (x, y, z) of nonzero real
numbers such that

X2y + v’z + 22x = xy? + yz2 4+ zx? = rxyz.

For five integers a, b, ¢, d, e we know that the sums a + b 4+ ¢ +d + e and a® +
b* + ¢* + d* + €? are divisible by an odd number n. Prove that the expression
a’> 4+ b’ 4+ & + d° + ¢ — 5abcde is also divisible by n.

Find all polynomials whose coefficients are equal either to 1 or —1 and whose zeros
are all real.

Let P(z) = az* + bz® + cz> +dz+e = a(z — r1)(z — r)(z — r3)(z — r4), Where
a,b,c,d,e are integers, a # 0. Show that if »; 4+ r; is a rational number, and if
ri + ry # r3 + r4, then ryr; is a rational number.

The zeros of the polynomial P(x) = x* — 10x + 11 are u, v, and w. Determine the
value of arctan u + arctan v + arctan w.

Prove that for every positive integer n,

T 27 niw
t t ceet =2 1.
an2n—{—1anZn—|—1 an2n+1 nt

Let P(x) = x"+a,_x" "'+ - -+a be apolynomial of degree n > 3. Knowing that

apn_1 = — ('l'), ap_p = (;), and that all roots are real, find the remaining coefficients.

Determine the maximum value of A such that whenever P(x) = x> +ax?+bx +c¢
is a cubic polynomial with all zeros real and nonnegative, then

P(x) > A(x —a)’
for all x > 0. Find the equality condition.
Prove that there are unique positive integers a, n such that

a"t — (a+ 1)" = 2001.
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2.2.3 The Derivative of a Polynomial

This section adds some elements of real analysis. We remind the reader that the derivative
of a polynomial

P(x) = ax" +a,_1x" '+ - +ax +ap
is the polynomial

P'(x) = na,x" ' + (n — Da,_1x" >+ - +a.

If x1, x5, ..., x, are the zeros of P(x), then by the product rule,
P'(x 1 1 1
P(x) X—X] X—X X — X,

If a zero of P(x) has multiplicity greater than 1, then it is also a zero of P’(x), and the
converse is also true. By Rolle’s theorem, if all zeros of P(x) are real, then so are those
of P/(x). Let us discuss in detail two problems, the second of which is authored by
R. Gologan.

Example. Find all polynomials P (x) with the property that P (x) is a multiple of P”(x).

Solution. Let P(x) = Q(x)P"(x), with Q(x) a polynomial that is necessarily quadratic.
Since the multiplicity of a zero of P (x) is strictly greater than the multiplicity of the same
zero in P”(x), it follows that P (x) has at most two distinct zeros, and these must be zeros
of Q(x). Solet P(x) = a(x —a)f(x — b)" .

If a # b, then a and b are both zeros of Q(x), so P”(x) = n(n — Da(x —a)* ' (x —
b)"*1land Q(x) = ﬁ(x — a)(x — b). But this cannot happen unless k — 1 =
n —k — 1 = 0, for if a number is a zero of both P(x) and P”(x), then the difference
between the multiplicities of this zero in the two polynomials is 2.

If a = b, then P(x) = a(x — a)", n > 2, is a multiple of P”(x). The answer
to the problem consists of all quadratic polynomials and all polynomials of the form
Px)=a(x—a)",n>2. |

Example. Let P(x) € Z[x] be a polynomial with n distinct integer zeros. Prove that the
polynomial (P (x))?+ 1 has a factor of degree at least 2 L%J that is irreducible over Z[ x].

Solution. The statement apparently offers no clue about derivatives. The standard ap-
proach is to assume that

(P(x))*+ 1 = Pi(x)Pa(x) - - P(x)

is a decomposition into factors that are irreducible over Z[x]. Letting x1, x2, ..., x, be
the integer zeros of P(x), we find that
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Pl(x.,')Pz(xj)‘--Pk(xj):1, forj:1,2,...,n.

Hence P;(x;) = =1, which then implies
1,2,...,n.

Now let us see how derivatives come into play. The key observation is that the
zeros x; of (P(x))* appear with multiplicity greater than 1, and so they are zeros of the
derivative. Differentiating with the product rule, we obtain

1 . .
ey = Pi(x;),i = 1,2,...,k, j =

k
> P Pl(x)) - Pe(xy) =0, forj=12,...n.
i=1

This sum can be simplified by taking into account that Py (x;) P>(x;) - - - Pr(x;) = 1 and

Il _ p(y.
W—P,(x])as

k
> Pl(xpPi(xj) =0, forj=12,...n.

i=1

It follows that x; is a zero of the polynomial

k k !
Y 2P/(x)Pi(x) = (Z Pﬁ(x)> )
i=1

i=1

Let us remember that P;(x;) = =1, which then implies Zle Pl.Z(x j) —n = 0 for
j=12,...,n. The numbers x;, j = 1,2,...,n, are zeros of both Zle P?(x) —n
and its derivative, so they are zeros of order at least 2 of this polynomial. Therefore,

k
D ORI = (r —x)*x —x)7 - (x = x5,)7 Q) + 1,
i=1

for some polynomial Q(x) with integer coefficients. We deduce that there exists an index
i such that the degree of P;(x) is greater than or equal ton. Forn even,n =2 I_%J , and
we are done. For n odd, since (P (x))? + 1 does not have real zeros, neither does P (x),
so this polynomial has even degree. Thus the degree of P;;(x) is atleastn 4+1 =2 L%J .
This completes the solution. O

166. Find all polynomials P(x) with integer coefficients satisfying P(P’(x)) =
P'(P(x)) forall x € R.

167. Determine all polynomials P (x) with real coefficients satisfying (P (x))" = P(x")
for all x € R, where n > 1 is a fixed integer.
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168. Let P(z) and Q(z) be polynomials with complex coefficients of degree greater than
or equal to 1 with the property that P(z) = Oif and only if Q(z) = 0and P(z) =1
if and only if Q(z) = 1. Prove that the polynomials are equal.

169. Let P(x) be a polynomial with all roots real and distinct and such that none of its
zeros is equal to 0. Prove that the polynomial x> P”(x) 4+ 3x P’(x) 4+ P(x) also has
all roots real and distinct.

170. Let P,(x) = (x" — D(x" ' = 1)---(x — 1), n > 1. Prove that for n > 2, P(x)is
divisible by P, /> (x) in the ring of polynomials with integer coefficients.

171. The zeros of the nth-degree polynomial P (x) are all real and distinct. Prove that the
zeros of the polynomial G (x) = nP(x)P"(x) — (n — 1)(P’(x))? are all complex.

172. Let P(x) be a polynomial of degree n > 3 whose zeros x| < xp < x3 < -++ <
X,_1 < X, are real. Prove that

p’ (xl ';XZ) . p (xn—12+ xn) 75 0.

2.2.4 The Location of the Zeros of a Polynomial

Since not all polynomial equations can be solved by radicals, methods of approximation
are necessary. Results that allow you to localize the roots in certain regions of the real
axis or complex plane are therefore useful.

The qualitative study of the position of the zeros of a polynomial has far-reaching
applications. For example, the solutions of a homogeneous ordinary linear differential
equation with constant coefficients are stable (under errors of measuring the coefficients)
if and only if the roots of the characteristic equation lie in the open left half-plane (i.e.,
have negative real part). Stability is, in fact, an essential question in control theory, where
one is usually interested in whether the zeros of a particular polynomial lie in the open
left half-plane (Hurwitz stability) or in the open unit disk (Schur stability). Here is a
famous result.

Lucas’ theorem. The zeros of the derivative P'(z) of a polynomial P (z) lie in the convex
hull of the zeros of P(z).

Proof. Because any convex domain can be obtained as the intersection of half-planes,
it suffices to show that if the zeros of P(z) lie in an open half-plane, then the zeros of
P’(z) lie in that half-plane as well. Moreover, by rotating and translating the variable z
we can further reduce the problem to the case in which the zeros of P(z) lie in the upper
half-plane Im z > 0. Here Im z denotes the imaginary part.

Soletzy, z2, . . ., 2, be the (not necessarily distinct) zeros of P(z), which by hypoth-
esis have positive imaginary part. If Im w < 0, then Im w%@ >0,fork=1,...,n,and
therefore
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P(w) <« 1
=) 1 0.
m P(w) Z m w — Zk g

This shows that w is not a zero of P’(z) and so all zeros of P’(z) lie in the upper half-plane.

The theorem is proved. O

173. Let a;, as, . . ., a, be positive real numbers. Prove that the polynomial P(x) =
X" —ax" ' —ax"?—...—ag, hasa unique positive zero.

174. Prove that the zeros of the polynomial

P(2) =7 +7"+4z+1
lie inside the disk of radius 2 centered at the origin.

175. For a # 0 a real number and n > 2 an integer, prove that every nonreal root z of
the polynomial equation x" 4 ax + 1 = O satisfies the inequality |z| > / ﬁ

176. Leta € C and n > 2. Prove that the polynomial equation ax” +x + 1 =0has a
root of absolute value less than or equal to 2.

177. Let P(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in
the complex plane. Set g(z) = %. Show that all roots of the equation g’(z) = 0
have absolute value 1.

178. The polynomial x* — 2x% 4+ ax + b has four distinct real zeros. Show that the
absolute value of each zero is smaller than «/3 .

179. Let P,(z),n > 1,be asequence of monic kth-degree polynomials whose coefficients
converge to the coefficients of a monic kth-degree polynomial P(z). Prove that for
any € > Othereisngsuchthatifn > ngthen|z;(n)—z;| <€,i =1,2,..., k, where
z;(n) are the zeros of P,(z) and z; are the zeros of P(z), taken in the appropriate
order.

180. Let P(x) = a,x" +a,_1x"~' 4 - - +ag be a polynomial with complex coefficients,
with ap # 0, and with the property that there exists an m such that

m n
| > X
ap - (m)
Prove that P(x) has a zero of absolute value less than 1.
181. For a polynomial P(x) = (x — x1)(x — x2) - - - (x — x,,), with distinct real zeros

X] < Xp < -+ < Xp, we set §(P(x)) = min;(x;+; — x;). Prove that for any real
number £,
8(P'(x) —kP(x)) > 8(P(x)),

where P’(x) is the derivative of P(x). In particular, §(P'(x)) > §(P(x)).
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2.2.5 Irreducible Polynomials

A polynomial is irreducible if it cannot be written as a product of two polynomials in
a nontrivial manner. The question of irreducibility depends on the ring of coefficients.
When the coefficients are complex numbers, only linear polynomials are irreducible. For
real numbers some quadratic polynomials are irreducible as well. Both these cases are
rather dull. The interesting situations occur when the coefficients are rational or integer,
in which case there is an interplay between polynomials and arithmetic. The cases of
rational and integer coefficients are more or less equivalent, with minor differences such
as the fact that 2x + 2 is irreducible over Q[x] but reducible over Z[x]. For matters of
elegance we focus on polynomials with integer coefficients. We will assume implicitly
from now on that for any polynomial with integer coefficients, the greatest common
divisor of its coefficients is 1.

Definition. A polynomial P(x) € Z[x] is called irreducible over Z[x] if there do not
exist polynomials Q(x), R(x) € Z[x] different from +1 such that P(x) = Q(x)R(x).
Otherwise, P(x) is called reducible.

We commence with an easy problem.

Example. Let P(x) be an nth-degree polynomial with integer coefficients with the prop-
erty that | P(x)| is a prime number for 2n + 1 distinct integer values of the variable x.
Prove that P (x) is irreducible over Z[x].

Solution. Assume the contrary and let P(x) = Q(x)R(x) with Q(x), R(x) € Z[x],
O(x), R(x) # £1. Let k = deg(Q(x)). Then Q(x) = 1 at most k times and Q(x) =
—1 at most n — k times. Also, R(x) = 1 at most n — k times and R(x) = —1 at
most k times. Consequently, the product |Q(x)R(x)| is composite except for at most
k+ (n—k)+ (n — k) + k = 2n values of x. This contradicts the hypothesis. Hence
P (x) is irreducible. ]

The bound is sharp. For example, P(x) = (x+1)(x +5) has |P(—=2)| = |P(—4)| =
3, P(0)=5,and |P(—6)| =T7.

Probably the most beautiful criterion of irreducibility of polynomials is that discov-
ered independently by F.GM. Eisenstein in 1850 and T. Schénemann in 1846. We present
it below.

Theorem. Given a polynomial P(x) = a,x" + a,_1x"~' + - - + ao with integer coef-
ficients, suppose that there exists a prime number p such that a, is not divisible by p,
ay, is divisible by p fork =0,1,...,n — 1, and ay is not divisible by p*. Then P(x) is
irreducible over Z[x].
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Proof. We argue by contradiction. Suppose that P(x) = Q(x)R(x), with Q(x) and
R(x) not identically equal to £1. Let

Q(x) = bex* + by xp_1 + - - + by,

R(xX) = cpax" * 4+ x" o 4 cp.

Let us look closely at the equalities

i
E bjCl'_j=Cll', i=0,1,...,n,
j=0

obtained by identifying the coefficients. From the first of them, bycy = ayp, and because
ay is divisible by p but not by p? it follows that exactly one of by and ¢y is divisible by
p. Assume that by is divisible by p and take the next equality boc; + bicy = a;. The
right-hand side is divisible by p, and the first term on the left is also divisible by p. Hence
bicy is divisible by p, and since ¢ is not, b; must be divisible by p.

This reasoning can be repeated to prove that all the b;’s are divisible by p. It is
important that both Q(x) and R(x) have degrees greater than or equal to 1, for the fact
that by is divisible by p follows from

brco + br—1c1 + - - = ay,

where ay, is divisible by p for k < n. The contradiction arises in the equality a,, = byc,—x,
since the right-hand side is divisible by p, while the left-hand side is not. This proves
the theorem. o

The first three problems listed below use this result, while the others apply simi-
lar ideas.

182. Prove that the polynomial
P(x) =x"" +101x'% + 102
is irreducible over Z[x].
183. Prove that for every prime number p, the polynomial
Px)=x"""+x"? 4. 4x+1
is irreducible over Z[x].

184. Prove that for every positive integer 1, the polynomial P(x) = x*' +1 is irreducible
over Z[x].
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185. Prove that for any distinct integers a;, as, . . . , a, the polynomial
Px)=x—-a)x —ar)---(x —a,) — 1

cannot be written as a product of two nonconstant polynomials with integer coeffi-
cients.

186. Prove that for any distinct integers a;, as, . . . , a, the polynomial
P(x)=(x —a)’(x —a)* - (x —a,)’ + 1

cannot be written as a product of two nonconstant polynomials with integer coeffi-
cients.

187. Associate to a prime the polynomial whose coefficients are the decimal digits of the
prime (for example, for the prime 7043 the polynomial is P(z) = 7x> + 4x + 3).
Prove that this polynomial is always irreducible over Z[x].

188. Let p be a prime number of the form 4k + 3, k an integer. Prove that for any positive
integer n, the polynomial (x> + 1) + p is irreducible in the ring Z[x].

189. Let p be a prime number. Prove that the polynomial
Px)=x"""42xP 243" 3 4.4 (p=—Dx+p

is irreducible in Z[x].

190. Let P(x) be a monic polynomial in Z[x], irreducible over this ring, and such that
| P(0)] is not the square of an integer. Prove that the polynomial Q(x) defined by
O(x) = P(x?) is also irreducible over Z[x].

2.2.6 Chebyshev Polynomials

The nth Chebyshev polynomial 7, (x) expresses cosné as a polynomial in cos . This
means that 7,,(x) = cos(n arccos x), forn > 0. These polynomials satisfy the recurrence

To(x) =1, Ti(x)=x, T1(x)=2xT,(x) —Tp—1(x), forn=>1.

For example, T>(x) = 2x? — 1, T3(x) = 4x> — 3x, Ty(x) = 8x* — 8x? + 1.

One usually calls these the Chebyshev polynomials of the first kind, to distinguish
them from the Chebyshev polynomials of the second kind U, (x) defined by Uy(x) = 1,
U(x) = 2x, Uy (x) = 2xU,(x) — U,_1(x), for n > 1 (same recurrence relation
but different initial condition). Alternatively, U, (x) can be defined by the equality

U,(cosh) = Smg’Tzl)@.
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Chebyshev’s theorem. For fixedn > 1, the polynomial 2~"*' T, (x) is the unique monic
nth-degree polynomial satisfying

max |2_”+1T(x)|§ max |P(x)|,
—1<x<l1 —1<x<l1

for any other monic nth-degree polynomial P (x).

One says that among all monic nth-degree polynomials, 27"*!T;,(x) has the smallest
variation away from zero on [—1, 1]. This variation is zn%l Let us see how Chebyshev’s
theorem applies to a problem from Challenging Mathematical Problems with Elementary

Solutions by A.M. Yaglom and [.M. Yaglom.

Example. Let Ay, A,, ..., A, be points in the plane. Prove that on any segment of length
[ there is a point M such that

I\"

Solution. Rescaling, we can assume that/ = 2. Associate complex coordinates to points
in such a way that the segment coincides with the interval [—1, 1]. Then

MA,-MA;---MA, =|z—zi| -1z — 22| -+ |z — 22| = |P(2)],

where P(z) is a monic polynomial with complex coefficients, and z € [—1, 1]. Write
P(z) = R(z) +iQ(z), where R(z) is the real part and Q(z) is the imaginary part of the
polynomial. Since z is real, we have | P(z)| > |R(z)|. The polynomial R(z) is monic,
so on the interval [—1, 1] it varies away from zero at least as much as the Chebyshev
polynomial. Thus we can find z in this interval such that |R(z)| > 2,%_1 This implies
|P(z)| = 2- zi,,, and rescaling back we deduce the existence in the general case of a point

M satisfying the inequality from the statement. O

Stepping aside from the classical picture, let us also consider the families of polyno-
mials 7, (x) and U, (x) defined by To(x) = 2, 71 (x) = x, Tp41(x) = xT,(x) — T—1 (%),
and Up(x) = 1, Uy(x) = x, Upr1(x) = xU,(x) — U,—1(x). These polynomials are
determined by the equalities

1 1 1 1 1
’Z;(Z—I——):z“k—n and Z/In(z+—):<z”+l— n+])/(z——>.
z z z z z

Also, T,,(x) = %Tn(Zx) and U, (x) = U, (2x). Here is a quickie that uses 7, (x).

Example. Let a be a real number such that a + a~! is an integer. Prove that for any
n > 1, the number a” + a™" is an integer.
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Solution. An inductive argument based on the recurrence relation shows that 7,(x) is a
polynomial with integer coefficients. And since a" +a™" = 7,(a +a~"), it follows that
this number is an integer. O

191.

192.

193.

194.

195.

196.

Prove that forn > 1,

Tpi1(x) = xT,(x) — (1 — x*)U,_1 (x),
Uy(x) =xU,_1(x) + T, (x),

Compute the n x n determinants

x 1 00--- O 2x 1 00--- O

12x 10--- 0 12x 10--- 0

0 12x1--- 0 0 12x1--- 0
and

00 00--- 1 00 00--- 1

00 00---2x 00 00---2x

Prove Chebyshev’s theorem for n = 4: namely, show that for any monic fourth-
degree polynomial P (x),

max |P(x)| > max [27°Ty(x)
—1<x<l1 —1<x<l1

’

with equality if and only if P(x) = 273Ty(x).
Let r be a positive real number such that &/r + QL; = 6. Find the maximum value
of /r — 5/#;

Leta = 2}—1” Prove that the matrix

1 1 . 1
cosa cos 2« . cosno
cos 2« cos4da . cos 2no
cos(n — Na cos2(n — Da --- cos(n — 1no

is invertible.

Find all quintuples (x, y, z, v, w) with x, y, z, v, w € [=2, 2] satisfying the system
of equations
xX+y+z+v+w=0,
x3+y3+z3+v3+w3=0,
X+ Yy +22 400 +w =-10.
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197. Letx;, x», ..., x,,n > 2, bedistinct real numbers in the interval [—1, 1]. Prove that
1 1 1 Y
—t —F == 2",
5] 153 t,

where f; :]—[#k lxj —xkl,k=1,2,...,n.
198. For n > 1, prove the following identities:

T,x) (—1) d"

= (1 —x2)"3,
J1—x2 1-3-5-.-Q2n—1)dx"
=D'(n+1) 4" rntl
Uy(x)v/1 —x2= 1 —x*)"ta.
x) =T s ntnae )

2.3 Linear Algebra

2.3.1 Operations with Matrices

An m X n matrix is an array with m rows and n columns. The standard notation is
A = (a;j)i,j, where a;; is the entry (element) in the ith row and jth column. We denote
by 7, the n x n identity matrix (for which a;; = 1ifi = j, and 0 otherwise) and by O,
the n x n zero matrix (for which a;; = 0 for all i, j).

Given the matrix A = (a;;);,j, A" denotes the transpose of A, in which the i, j entry
is aj;, and A denotes the complex conjugate, whose entries are the complex conjugates
of the entries of A. Also, trA is the trace of A, namely the sum of the elements on the
main diagonal: a; + ax + -+ - + au,.

We illustrate how matrix multiplication can be used to prove an identity satisfied by
the Fibonacci sequence (Fy =0, F; = 1, F,»1 = F, + F,_1, n > 1). The identity we
have in mind has already been discussed in the introductory chapter in the solution to
problem 24; we put it here in a new perspective.

Example. Prove that

Fm+n+1:Fm+1Fn+l+Fan’ fOfm,nZO-

w- (1))

An easy induction shows that for n > 1,

n __ Ez-‘,—an
M _(Fn Fnl)‘

Solution. Consider the matrix
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The equality M™*" = M™ M" written in explicit form is

Fm+n+1 Fm+n — Fm+l Fm Fn+1 Fn
Fm+n Fm+n—l Fm Fm—l Fn Fn—l ’
We obtain the identity by setting the upper left corners of both sides equal. O

Here are some problems for the reader.

199. Let M be an n x n complex matrix. Prove that there exist Hermitian matrices A
and B such that M = A + i B. (A matrix X is called Hermitian if X’ = X).
200. Do there exist n x n matrices A and B such that AB — BA = 1,7

201. Let A and B be 2 x 2 matrices with real entries satisfying (AB — BA)" = 7, for
some positive integer 7. Prove that n is even and (AB — BA)* = T7,.

202. Let A and B be two n x n matrices that do not commute and for which there exist
nonzero real numbers p, g, r such that pAB 4+ gBA = T, and A> = r B?. Prove
that p = q.

203. Let a, b, c, d be real numbers such that ¢ # 0 and ad — bc = 1. Prove that there
exist # and v such that

(2a) =G D6

204. Compute the nth power of the m x m matrix

A10---0
Orx1---0
OOA---0

Jn(X) = .. .l. reC.
000---1
000--- A

205. Let A and B be n x n matrices with real entries satisfying
tr(AA" + BB') = tr(AB + A'B").

Prove that A = B'.
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2.3.2 Determinants

The determinant of an n x n matrix A = (a;;); j, denoted by det A or |a;;], is the
volume taken with sign of the n-dimensional parallelepiped determined by the row (or
column) vectors of A. Formally, the determinant can be introduced as follows. Let
er = (1,0,...,0), e = (0,1,...,0), ..., ¢, = (0,0,...,1) be the canonical basis
of R". The exterior algebra of R” is the vector space spanned by products of the form
ei, Nej, N\ Ae;, where the multiplication A is distributive with respect to sums and is
subject to the noncommutativity rule e; A e; = —e; A ¢; for all i, j (which then implies
e; Ne; = 0, for all i). If the row vectors of the matrix A are ry, rp, ..., r,, then the
determinant is defined by the equality

FriArRA---Ar, =(detA)eg Aex A--- Ae,.
The explicit formula is

det A = Z Sign(o)aie (12 2) * * * Ano ()
(e

with the sum taken over all permutations o of {1, 2, ..., n}.

To compute the determinant of a matrix, one applies repeatedly the row operation
that adds to one row a multiple of another until the matrix either becomes diagonal or
has a row of zeros. In the first case this transforms the parallelepiped determined by the
row vectors into a right parallelepiped in standard position without changing its volume,

as suggested in Figure 13.

Figure 13

But it is not our purpose to teach the basics. We insist only on nonstandard tricks and
methods. A famous example is the computation of the Vandermonde determinant.

Example. Let x1, x,, ..., x, be arbitrary numbers (n > 1). Compute the determinant
1 1 1
X1 X2 Xn
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Solution. The key idea is to view x, as a variable and think of the determinant as an
(n — 1)st-degree polynomial in x,. The leading coefficient is itself a Vandermonde
determinant of order n — 1, while the n — 1 roots are obviously x;, x3, ..., x,—1. The
determinant is therefore equal to

X1 X2 o Xp—l
(X — x1)(xp — x2) =+ - (X — Xp—1).

n—2 _n—2 n—2

XXy Xy

Now we can induct on n to prove that the Vandermonde determinant is equal to
[1- j(x,» — x;). This determinant is equal to zero if and only if two of the x;’s are
equal. O

We continue with a problem of D. Andrica.

Example. (a) Consider the real numbers a;;,i =1,2,...,n—2,j=1,2,...,n,n > 3,
and the determinants

| 1 1 |
an -+ Ark-1  Alrk+1 o Al
Ap = i
ap-2,1 " Qp-2k—1 An-2k+1 *** An—2.n
Prove that
Al +A3+As+ - =A,+ Ay +Ag+ .
(b) Define
n—(k+1) k—1
pe= ] Gi—x),  a=]]G—x)
i=0 i=1
where x;,i = 1,2, ..., n, are some distinct real numbers. Prove that
n _1 k
>l
=1 Pkdk

(c) Prove that for any positive integer n > 3 the following identity holds:

. (=D
Z (n—k)!n+k!

k=1
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Solution. We have

1 r .- 1 1
1 r .- 1 1
ar aiz - dip-1 A 0
ayy Ayp -t dyp-1 A2y |
an—2,1An—-22 *** An-2,n—1 An-2.n
Expanding by the first row, we obtain
Al —Ay+ A3 — Ay +---=0.
This implies
Al + A3+ As+--=Ar+ Ay + Ag+ -+,
and (a) is proved. _
For (b), we substitute a;; = x/,i =1,2,...,n—2, j =1,2,...,n. Then
r - 1 1 ... 1
X1 Xe—1 Xk41 0 Xn
Ay = ,
n.—2 . n‘—2 n'—2 ' n.f
X Xt X Ay ?
which is a Vandermonde determinant. Its value is equal to
1
l_[ (i —x;) = —.
i Pk
i,k
The equality proved in (a) becomes, in this particular case,
n
—Dk
> =0
=1 Prdk
as desired.
Finally, if in this we let x;, = k?, then we obtain the identity from part (c), and the
problem is solved. O

And here comes a set of problems for the reader.
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206.

207.

208.

209.

210.

211.

212.

2 Algebra

Prove that

@+ D> Gy + D ez +1)°

(xy+ D2 2+ 1?2 vz + D?| =20y — 2)*(z — x)*(x — y)*.

(xz+ D> (yz+ 1D @+ 1)

Let (F,), be the Fibonacci sequence. Using determinants, prove the identity

Fyi1Fyooy — F2 = (—1)",

Let p < m be two positive integers.

(o)

0 1

Given distinct integers xi, xo, ..
mn..(mn—-1n

(") -
("3 (") -

(m+p) (mjrﬂ) (’";}p)

foralln > 1.

Prove that

(;)

Prove the formula for the determinant of a circulant matrix

X1 X2 X3 -+ Xp

Xn X1 X2+ Xp—1

X3 X4 X5+ X2

X2 X3 X4 *°* X1
2wi/n

where ¢ = e

Compute the determinant of the n x

(—1li=Jl
a,-j = >

Prove that for any integers x, x7, ..
determinant

ki
¥

2
X1

kﬂ
X

is divisible by n!.

n—1 n
=D (Z cf"xk> ,
j=0 \k=1

n matrix A = (a;;);;, where

ifi #j,
ifi =j.

., X, and positive integers ki, ko, . ..

ki ky
.X%( ... xn
2. .. yk
%) Xy
ky k
_x2 “ .. xnn

., X, prove that [[,_;(x; — x;) is divisible by

, k,, the
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213. Let A and B be 3 x 3 matrices with real elements such that det A = det B =
det(A+ B) = det(A — B) = 0. Prove that det(x A + y B) = 0 for any real numbers
x and y.

Sometimes it is more convenient to work with blocks instead of entries. For that
we recall the rule of Laplace, which is the direct generalization of the row or column
expansion. The determinant is computed by expanding over all £ x k minors of some

k rows or columns. Explicitly, given A = (a;;); ;_,, when expanding by the rows
i1, 2, ..., g, the determinant is given by
det A = Z (—1)i1+m+ik+jl+m+j1‘Mka,
J1<ja<-<jk

where M is the determinant of the k x k matrix whose entries are a;;, with i €
{it,iz,...,ix}and j € {ji1, j2, ..., jr}, while N is the determinant of the (n —k) x (n —k)
matrix whose entries are a;; withi & {iy, iy, ..., i} and j & {ji, j2, ..., jx}. We exem-
plify this rule with a problem from the 4th International Competition in Mathematics for
University Students (1997).

Example. Let M be an invertible 2n x 2n matrix, represented in block form as

_(AB 4 _(EF
M_(CD> and M _<GH>'
Show that det M - det H = det A.

Solution. The idea of the solution is that the relation between determinants should come
from a relation between matrices. To this end, we would like to find three matrices
X,Y,Z such that XY = Z, while det X = det M, detY = det H, and det Z = det A.
Since among M, H, and A, the matrix M has the largest dimension, we might try to set
X = M and find 2n x 2n matrices Y and Z. The equality M - M~ = T,, yields two
relations involving H, namely AF + BH = 0and CF + DH = T7,. This suggests that
we should use both F and H in the definition of Y. So we need an equality of the form

() (n)-(2)
Y:<Ig)§).

The latter has determinant equal to det H, as desired. Also,

We can try
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A O
2= (20).

According to the rule of Laplace, the determinant of Z can be computed by expanding
along the n x n minors from the top n rows, and all of them are zero except for the
first. Hence det Z = det A - detZ, = det A, and so the matrices X, Y, Z solve the
problem. O

214. Show that if

_lab , a b
x_cd‘ andx_,d,,
then
ab’ ¢b' ba’ da’
n2 _ |ad cd bc' dc
(xx)” = bb' db’ aa’ ca’
bd' dd' ac’ cc’

215. Let A, B, C, D be n x n matrices such that AC = CA. Prove that

A B
det (C D) =det(AD — CB).

216. Let X and Y be n x n matrices. Prove that
det(Z, — XY) =det(Z, — Y X).

A property exploited often in Romanian mathematics competitions states that for any
n x n matrix A with real entries,

det(Z, + A*) = 0.
The proof is straightforward:

det(Z, + A?) = det((Z, + i A)(Z, — i A)) = det(Z, + i A) det(Z, — i A)
= det(Z, +iA)det@, +iA) = det(Z, + i A)det(Z, + i A).

In this computation the bar denotes the complex conjugate, and the last equality follows
from the fact that the determinant is a polynomial in the entries. The final expression is
positive, being equal to | det(Z, + i A)|%.

Use this property to solve the following problems, while assuming that all matrices
have real entries.

217. Let A and B be n x n matrices that commute. Prove that if det(A + B) > 0, then
det(A* + B*) > O forall k > 1.
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218. Let A be an n x n matrix such that A + A’ = O,,. Prove that
det(Z, + 1A% >0,

forall A € R.

219. Let P(t) be a polynomial of even degree with real coefficients. Prove that the
function f(X) = P(X) defined on the set of n x n matrices is not onto.

220. Let n be an odd positive integer and A an n x n matrix with the property that
A%? = O, or A?> = T,,. Prove that det(A + Z,,) > det(A — Z,,).

2.3.3 The Inverse of a Matrix

An n x n matrix A is called invertible if there exists an n x n matrix A~! such that
AA~' = A7'A = T,. The inverse of a matrix can be found either by using the adjoint
matrix, which amounts to computing several determinants, or by performing row and
column operations. We illustrate how the latter method can be applied to a problem from
the first International Competition in Mathematics for University Students (1994).

Example.

(a) Let A be an n x n symmetric invertible matrix with positive real entries, n > 2.
Show that A~! has at most n> — 2n entries equal to zero.
(b) How many entries are equal to zero in the inverse of the n x n matrix

1111--- 1
1222... 2
1211--- 1

A=l1212... 2 |?
1212... ...

Solution. Denote by a;; and b;; the entries of A, respectively, A~!. Then we have
Z?:o amibim = 1, so for fixed m not all the b;,,’s are equal to zero. For k # m we have
Z?:o aiib;, = 0, and from the positivity of the a;;’s we conclude that at least one b, is
negative, and at least one is positive. Hence every column of A~! contains at least two
nonzero elements. This proves part (a).

To compute the inverse of the matrix in part (b), we consider the extended matrix
(AZ,), and using row operations we transform it into the matrix (Z,A~"). We start with
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1111 1 1000---0
1222 2 0100---0
1211 1 0010---0
1212 2 0001...0
1212.-- -.. 0000---1

Subtracting the first row from each of the others, then the second row from the first, we
obtain

1000--- 0 2 -100---
o1117.---1 -1 100---
0100--- 0 -1 010---
0101--- 1 -1 001---

S O OO

o
—_
o
—_
[ ...
—_
o
o
o
—_

We continue as follows. First, we subtract the second row from the third, fourth, and so
on. Then we add the third row to the second. Finally, we multiply all rows, beginning
with the third, by —1. This way we obtain

1000--- 0 210 0 - 0
0100--- 0 =10 1 0 --- 0
0011--- 1 0 1 —10---0
0010--- 0 0 1 0 —1--- 0
0010 - 1 00 0. —1

Now the inductive pattern is clear. At each step we subtract the kth row from the rows
below, then subtract the (k + 1)st from the kth, and finally multiply all rows starting with
the (k + 1)st by —1. In the end we find that the entries of A lare b1 =2,b,, =",
biiv1 =biy1i = (—1)/, and bij = 0, for |i — j| > 2. This example shows that equality

can hold in part (a). |
221. For distinct numbers xy, x,, ..., X,, consider the matrix
1 1 |
‘xl _x2 P xn
A=
X{l_l x;—l . x’?fl
It is known that det A is the Vandermonde determinant A(xi, x2,...,X,) =

]_[i>j (x; — x;). Prove that the inverse of A is B = (b )1<k,m<n, Where
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223.

224.

225.

226.

2.3 Linear Algebra 71

k —1
bim = (=D A1, X2, ooy X)) T AL, ey Xkt Xk - > Xn)

X Sn—l(xl’ v X1 X415 - oy xn)-
Here S,,_; denotes the (n — 1)st symmetric polynomial in n — 1 variables.

Let A and B be 2 x 2 matrices with integer entries such that A, A + B, A + 2B,
A+3B, and A +4B are all invertible matrices whose inverses have integer entries.
Prove that A 4+ 5B is invertible and that its inverse has integer entries.

Determine the matrix A knowing that its adjoint matrix (the one used in the com-
putation of the inverse) is

m>*—11—-m 1l—m
A= 1-mm>=11-m |, m#1,-2.
l—m 1—m m?>—1

Let A = (a;j);j be an n x n matrix such that Z';:] la;j| < 1 foreachi. Prove that
7, — A is invertible.

Leta = £, n > 2. Prove that the n x n matrix

n+1°
sine sin2« --- sinna
sin2« sindo --- sin 2na
. . . 2
sinno sin 2no - - - sinn“«

is invertible.

Assume that A and B are invertible complex 7 x n matrices such thati (ATB— BT A)
is positive semidefinite, where X = Yt, the transpose conjugate of X. Prove that
A + iB is invertible. (A matrix T is positive semidefinite if (T v, v) > 0 for all
vectors v, where (v, w) = v'w is the complex inner product.)

We continue with problems that exploit the ring structure of the set of n x n matrices.
There are some special properties that matrices satisfy that do not hold in arbitrary rings.
For example, an n x n matrix A is either a zero divisor (there exist nonzero matrices B
and C suchthat AB = CA = ,), oritis invertible. Also, if a matrix has a left (or right)
inverse, then the matrix is invertible, which means that if AB = I,, then also BA = I,.

A good example is a problem of 1.V. Maftei that appeared in the 1982 Romanian
Mathematical Olympiad.

Example. Let A, B, C be n x n matrices, n > 1, satisfying

ABC+ AB+BC+AC+A+B+C=0,.

Prove that A and B 4+ C commute if and only if A and BC commute.
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Solution. 1f we addZ, to the left-hand side of the identity from the statement, we recognize
this expression to be the polynomial P(X) = (X 4+ A)(X 4+ B)(X + C) evaluated at the
identity matrix. This means that
Zn+A)Zy+ B)Zy+ C) =1I,.
This shows that Z,, + A is invertible, and its inverse is (Z, + B)(Z, + C). It follows that
Zn+B)Zy+C)Zn + A) =1,
or

BCA+BC+BA+CA+A+B+C=0,.

Subtracting this relation from the one in the statement and grouping the terms appropri-
ately, we obtain

ABC - BCA=(B+C)A-AB+C).
The conclusion follows. O
Here are other examples.
227. Let A be an n x n matrix such that there exists a positive integer k for which
kAM = (k 4+ 1) Ax.

Prove that the matrix A — Z,, is invertible and find its inverse.

228. Let A be an invertible n x n matrix, and let B = XY, where X and Y are 1 x n,
respectively, n x 1 matrices. Prove that the matrix A + B is invertible if and only
ifa = YA™'X #£ —1, and in this case its inverse is given by

—1 _ 41 1 —1p -1
(A+B)" =A ——AT'BA™.
a+1

229. Given two n x n matrices A and B for which there exist nonzero real numbers a
and b such that AB = aA + bB, prove that A and B commute.

230. Let A and B be n x n matrices, n > 1, satisfying AB — B?A*=7,and A>+ B3 =
O,. Prove that BA — A’B?> =1T,.
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2.3.4 Systems of Linear Equations

A system of m linear equations with n unknowns can be written as
Ax = b,

where A is an m x n matrix called the coefficient matrix, and b is an m-dimensional
vector. If m = n, the system has a unique solution if and only if the coefficient matrix A
is invertible. If A is not invertible, the system can have either infinitely many solutions
or none at all. If additionally b = 0, then the system does have infinitely many solutions
and the codimension of the space of solutions is equal to the rank of A.

We illustrate this section with two problems that apparently have nothing to do with
the topic. The first was published in Mathematics Gazette, Bucharest, by L. Pirgan.

Example. Consider the matrices

ax bB ay by
_(ab _(aB | aB bB as bs
A_<cd)’ B_()/(S)’ €= cadacydy |’

cB dB cé dé

where a, b, ¢, d, «, B, y, 6 are real numbers. Prove that if A and B are invertible, then C
is invertible as well.

Solution. Let us consider the matrix equation AX B = D, where

X:<xz> and D:(mn)‘
yi pPq

Solving it for X gives X = A"'DB~!, and so X is uniquely determined by A, B, and
D. Multiplying out the matrices in this equation,

ab Xz apB\ (mn
cd <yt <y8 “\pq)’
we obtain

aox +bay +ayz+byt apx +bBy +adz+bst\ _ (mn
cax +day+cyz+dyt cfx +dBy +cdz+dst )] \pq)’

This is a system in the unknowns x, y, z, t:

aox + bay +ayz+ byt = m,
apx + bBy + adz + bét = n,
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cax +day +cyz+dyt = p,
cfx +dBy + céz +dét =gq.

We saw above that this system has a unique solution, which implies that its coefficient
matrix is invertible. This coefficient matrix is C. O

The second problem we found in an old textbook on differential and integral calculus.

Example. Given the distinct real numbers a;, a,, as, let x, x», x3 be the three roots of
the equation

up Uz us
+ + =
a) +t a +t az +t

’

where uy, uy, us are real parameters. Prove that u, u,, u3 are smooth functions of
X1, X2, x3 and that

det (%) _ (= x) (0 — x3)(x3 — x1)
ax; (a1 — ax)(az — a3)(az — ay)
Solution. After eliminating the denominators, the equation from the statement becomes

a cubic equation in ¢, so xy, x, x3 are well defined. The parameters u;, u,, us satisfy the
system of equations

1 1 1
uy+ U + us; =1,
ap + xi as + xi as + xi
1 1 1
u + uy + us =1,
a; + xp ay + xp az + x;
1 1 1
u; + ur + us = 1.

1 2
a; + x3 ap + x3 as + x3

When solving this system, we might end up entangled in algebraic computations. Thus
it is better instead to take a look at the two-variable situation. Solving the system

1 1
up + uy =1,
a; + xi ar + xi
1 1
u; + u, =1,
a +x a + x;

with Cramer’s rule we obtain

(a1 +x1)(ar + x2)
uy =

(az + x1)(az + x2)
and u, = .
(a1 — a») (ar —ay)

Now we can extrapolate to the three-dimensional situation and guess that
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_ i@+
nk;&i (ai —ax) ’

It is not hard to check that these satisfy the system of equations. Observe that

=1,2,3.

Uu;

au,- . Hk;ﬁj(ai +xk)
ax;  [ljulai —a))

The determinant in question looks again difficult to compute. Some tricks simplify the
task. An observation is that the sum of the columns is 1. Indeed, these sums are

814,' 1 .o
—_— = u, i,j=1,23.
an di+Xj

, and so

3141 31/!2 8143 .

—+—=+—, =123,

8)6,’ 8Xi 8xi
which we should recognize as the left-hand sides of the linear system. So the determinant
becomes much simpler if we add the first and second rows to the last. Another observation
is that the determinant is a 3-variable polynomial in x1, x,, x3. Its total degree is 3, and it
becomes zero if x; = x; for some i # j. Consequently, the determinant is a number not
depending on x1, X7, x3 times (x; —x5)(x2 —x3)(x3 —x). This number can be determined
by looking just at the coefficient of x3x3. And an easy computation shows that this is

1
equal to (a1—az)(ax—a3)(az—ay) * o

From the very many practical applications of the theory of systems of linear equations,
let us mention the Global Positioning System (GPS). The principle behind the GPS is
the measurement of the distances between the receiver and 24 satellites (in practice some
of these satellites might have to be ignored in order to avoid errors due to atmospheric
phenomena). This yields 24 quadratic equations d(P, S;)? = riz, i=1,2,...,24,in
the three spatial coordinates of the receiver. Subtracting the first of the equations from
the others cancels the quadratic terms and gives rise to an overdetermined system of 23
linear equations in three unknowns. Determining the location of the receiver is therefore
a linear algebra problem.

231. Solve the system of linear equations
X1+ x4+ x3 =0,
X2+ x34+x4 =0,

X99 + X100 + x1 = 0,

X100 + X1 +x, =0.
232. Find the solutions xi, x5, X3, X4, X5 to the system of equations

X5 + X2 = yxi, X1+ x3 = yxz, X3 + X4 = yXx3,
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X3+ X5 = yxi, X4+ X1 = yXs,
where y is a parameter.

Let a, b, ¢, d be positive numbers different from 1, and x, y, z, ¢ real numbers
satisfying a* = bed, b’ = cda, ¢* = dab, d' = abc. Prove that

—x 1 11
L=y 1 1]
11 |=0
11—

Given the system of linear equations

anx; +apxy +apxs =0,
a x + anx; + axpxz =0,
azi1xy + azpxy + azxz =0,

whose coefficients satisfy the conditions

(a) a1, an, ass are positive,

(b) all other coefficients are negative,

(c) in each equation, the sum of the coefficients is positive,
prove that the system has the unique solution x; = x, = x3 = 0.

Let P(x) = x" +x"!' + ... 4+ x + 1. Find the remainder obtained when P (x"*!)
is divided by P (x).

Find all functions f : R\{—1, 1} — R satisfying
x—=3 3+x
f(x+l)+f(1—x) =

Find all positive integer solutions (x, y, z, t) to the Diophantine equation

for all x # +£1.

(x + W +2)(z+x) =txyz
such that ged(x, y) = ged(y, z) = ged(z, x) = 1.

We have n coins of unknown masses and a balance. We are allowed to place some
of the coins on one side of the balance and an equal number of coins on the other
side. After thus distributing the coins, the balance gives a comparison of the total
mass of each side, either by indicating that the two masses are equal or by indicating
that a particular side is the more massive of the two. Show that at least » — 1 such
comparisons are required to determine whether all of the coins are of equal mass.
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239. Letay =0, ay, ..., a,, a,+1 = 0be asequence of real numbers that satisfy |a;_; —
2a; + agyq| < 1 fork = 1,2,...,n — 1. Prove that |g;| < M for k =
1,2,....n—1.

240. Prove that the Hilbert matrix

1 1 1
Ly 3 p
1 1 1
2 3 4 n+1
r.+r tr 1
n n+l n+42 2n—1

is invertible. Prove also that the sum of the entries of the inverse matrix is n2.

2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases

In general, a vector space V over a field of scalars (which in our book will be only C, R,
or Q) is a set endowed with a commutative addition and a scalar multiplication that have
the same properties as those for vectors in Euclidean space.

A linear combination of the vectors vy, vy, ..., Uy isasumciv; + v+ -+ + Cupm
with scalar coefficients. The vectors are called linearly independent if a combination of
these vectors is equal to zero only when all coefficients are zero. Otherwise, the vectors
are called linearly dependent. If vy, v, ..., v, are linearly independent and if every
vector in V is a linear combination of these vectors, then vy, v,, ..., v, is called a basis
of V. The number of elements of a basis of a vector space depends only on the vector
space, and is called the dimension of the vector space. We will be concerned only with
finite-dimensional vector spaces. We also point out that if in a vector space there are
given more vectors than the dimension, then these vectors must be linearly dependent.

The rank of a matrix is the dimension of its row vectors, which is the same as the
dimension of the column vectors. A square matrix is invertible if and only if its rank
equals its size.

Let us see some examples. The first appeared in the Soviet University Student Math-
ematical Competition in 1977.

Example. Let X and By be n x n matrices, n > 1. Define B; = B, _1X — XB;_4, for
i > 1. Prove that if X = B,2, then X = O,,.

Solution. Because the space of n x n matrices is n>-dimensional, By, By, ..., B,» must
be linearly dependent, so there exist scalars ¢y, c1, .. ., ¢,2 such that

coBo+c1B1+:--+cp2B,p = O,.

Let k be the smallest index for which ¢; # 0. Then
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By =a1Byy1 +arBrio+ -+ a2 B2,

where a; = —=/. Computing Bi11 = B¢X — X By, we obtain
By =a1Biia +axBiys + -+ ap By,
and inductively
Biyj = a1Biyjy1 + @Brrjio+ - +ap 4 By, forj > 1.
In particular,
By =aiB,y + @B+ -+ a2 B

But B2,y = Bp2X — XB,2 = X* — X* = O, and hence B,2,; = O,, for j > 1.
It follows that X, which is a linear combination of B2, B,2,,, ..., B2, is the zero
matrix. And we are done. O

The second example was given at the 67th W.L. Putnam Mathematical Competition
in 2006, and the solution that we present was posted by C. Zara on the Internet.

Example. Let Z denote the set of points in R” whose coordinates are O or 1. (Thus Z has
2" elements, which are the vertices of a unit hypercube in R"”.) Let k be given, 0 < k < n.
Find the maximum, over all vector subspaces V C R” of dimension k, of the number of
pointsin ZN V.

Solution. Let us consider the matrix whose rows are the elements of V N Z. By construc-
tion it has row rank at most k. It thus also has column rank at most k; in particular, there
are k columns such that any other column is a linear combination of these k. It means
that the coordinates of each point of V N Z are determined by the k coordinates that lie
in these k columns. Since each such coordinate can have only two values, V N Z can
have at most 2* elements.

This upper bound is reached for the vectors that have all possible choices of 0 and 1
for the first k entries, and O for the remaining entries. O

241. Prove thatevery odd polynomial function of degree equal to 2m — 1 can be written as

P(x) = X n x +1 n x+2 n n x+m—1
V=aly) el 3 <\ s “\ om—1 )

where (1) = x(x — 1) - .- 2=2EL

242. Let n be a positive integer and P (x) an nth-degree polynomial with complex coef-
ficients such that P(0), P(1), ..., P(n) are all integers. Prove that the polynomial
n!P(x) has integer coefficients.
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243. Let A be the n x n matrix whose i, j entryisi + j foralli, j = 1,2, ...,n. What
is the rank of A?

244. For integers n > 2 and 0 < k < n — 2, compute the determinant

1k 2k 3 ... ok
2k 3k N (L

3k 4k 5 o (n42)F

n"f (n—lil)k (n-|;2)k~-: (Zn;l)k

245, Let V be a vector space and let f, fi, f2,..., fu be linear maps from V to R.
Suppose that f(x) = 0 whenever fi(x) = fo(x) =--- = f,(x) = 0. Prove that f
is a linear combination of fi, f>, ..., f,.

246. Given a set S of 2n — 1 different irrational numbers, n > 1, prove that there exist n
distinct elements x1, X7, ..., x, € S such that for all nonnegative rational numbers
ap,a, ...,a, witha; +a + - -- + a, > 0, the number a;x; + axxy + - -+ + a,x,
is irrational.

247. There are given 2n + 1 real numbers, n > 1, with the property that whenever one
of them is removed, the remaining 2n can be split into two sets of n elements that
have the same sum of elements. Prove that all the numbers are equal.

2.3.6 Linear Transformations, Eigenvalues, Eigenvectors

A linear transformation between vector spaces is a map 7 : V — W that satisfies
T (ojv; +apvp) = o1 T (v1) + T (vy) for any scalars o, oy and vectors vy, vp. A matrix
A defines a linear transformation by v — Awv, and any linear transformation between
finite-dimensional vector spaces with specified bases is of this form. An eigenvalue of a
matrix A is a zero of the characteristic polynomial P4 (1) = det(AZ, — A). Alternatively,
it is a scalar A for which the equation Av = Av has a nontrivial solution v. In this case
v is called an eigenvector of the eigenvalue A. If A, A, ..., A, are distinct eigenvalues
and vy, vy, ..., vy, are corresponding eigenvectors, then vy, vy, ..., v, are linearly inde-
pendent. Moreover, if the matrix A is Hermitian, meaning that A is equal to its transpose
conjugate, then vy, v, ..., v, may be chosen to be pairwise orthogonal.

The set of eigenvalues of a matrix is called its spectrum. The reason for this name
is that in quantum mechanics, observable quantities are modelled by matrices. Physical
spectra, such as the emission spectrum of the hydrogen atom, become spectra of matrices.
Among all results in spectral theory we stopped at the spectral mapping theorem, mainly
because we want to bring to your attention the method used in the proof.
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The spectral mapping theorem. Let A be an n x n matrix with not necessarily distinct
eigenvalues Ay, Ay, ..., Ay, and let P(x) be a polynomial. Then the eigenvalues of the
matrix P(A) are P(Ay), P(A2), ..., P(A,).

Proof. To prove this result we will apply a widely used idea (see for example the splitting
principle in algebraic topology). We will first assume that the eigenvalues of A are all
distinct. Then A can be diagonalized by eigenvectors as

A0 -o 0
0Ar--- 0
00 -2,

and in the basis formed by the eigenvectors of A, the matrix P (A) assumes the form

POL) O - 0
0 PAry)--- O
o o b

The conclusion is now straightforward. In general, the characteristic polynomial of a
matrix depends continuously on the entries. Problem 172 in Section 2.2.4 proved that the
roots of a polynomial depend continuously on the coefficients. Hence the eigenvalues of
a matrix depend continuously on the entries.

The set of matrices with distinct eigenvalues is dense in the set of all matrices. To
prove this claim we need the notion of the discriminant of a polynomial. By definition, if
the zeros of a polynomial are x;, x, . . ., X, the discriminantis [ |, _ ; (xi—x j)z. Itis equal
to zero if and only if the polynomial has multiple zeros. Being a symmetric polynomial in
the x;’s, the discriminant is a polynomial in the coefficients. Therefore, the condition that
the eigenvalues of a matrix be not all distinct can be expressed as a polynomial equation
in the entries. By slightly varying the entries, we can violate this condition. Therefore,
arbitrarily close to any matrix there are matrices with distinct eigenvalues.

The conclusion of the spectral mapping theorem for an arbitrary matrix now follows
by a limiting argument. O

We continue with two more elementary problems.
Example. Let A:V — W and B : W — V be linear maps between finite-dimensional

vector spaces. Prove that the linear maps AB and BA have the same set of nonzero
eigenvalues, counted with multiplicities.
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Solution. Choose a basis that identifies V with R” and W with R”. Associate to A and
B their matrices, denoted by the same letters. The problem is solved if we prove the
equality

det(\Z, — AB) = A*det(Al,, — BA),

where k is of course n — m. The relation being symmetric, we may assume that n > m.
In this case, complete the two matrices with zeros to obtain two n X n matrices A" and B’.
Because det(AZ, — A’B’) = det(Al — AB) anddet(AZ,, — B’A’) = A" ™ det(AZ, — BA),
the problem reduces to proving that det(AZ, — A’B’) = det(AZ, — B’A’). And this is
true for arbitrary n x n matrices A’ and B’. For a proof of this fact we refer the reader to
problem 209 in Section 2.3.2. O

If B = A", the transpose conjugate of A, then this example shows that AAT and ATA
have the same nonzero eigenvalues. The square roots of these eigenvalues are called the
singular values of A. The second example comes from the first International Mathematics
Competition, 1994.

Example. Let o be a nonzero real number and # a positive integer. Suppose that F' and
G are linear maps from R” into R” satisfying F oG — G o F = «F.

(a) Show that for all k > 1 one has F¥ o G — G o F¥ = akF*.
(b) Show that there exists k > 1 such that F¥ = O,.

Here F o G denotes F composed with G.

Solution. Expand F*¥ o G — G o F¥ using a telescopic sum as follows:

k
F*oG—GoF* =Z(Fk_i+loGoFi_l — FF6Go FY
i=1

k
=X:Fk_io(FoG—GoF)oF"_1
i=l1
k
=) F“'oaFoF™! =akF*~.

i=1

This proves (a). For (b), consider the linear map L(F) = FoG —Go F actingonalln xn
matrices F. Assuming F k £ O, for all k, we deduce from (a) that ak is an eigenvalue
of L for all k. This is impossible since the linear map L acts on an n>-dimensional space,
so it can have at most n” eigenvalues. This contradiction proves (b). |

248. Let A be a 2 x 2 matrix with complex entries and let C(A) denote the set of 2 x 2
matrices that commute with A. Prove that | det(A+ B)| > | det B|forall B € C(A)
if and only if A2 = O,.
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Let A, B be 2 x 2 matrices with integer entries, such that AB = BAanddet B = 1.
Prove that if det(A3 + B3) = 1, then A% = O,.

Consider the n x n matrix A = (a;;) witha;; = 1if j —i =1 (mod n) anda;; =0
otherwise. For real numbers a and b find the eigenvalues of aA + bA’.

Let A be an n x n matrix. Prove that there exists an n X n matrix B such that
ABA = A.

Consider the angle formed by two half-lines in three-dimensional space. Prove that
the average of the measure of the projection of the angle onto all possible planes in
the space is equal to the angle.

A linear map A on the n-dimensional vector space V is called an involution if

A’ =T.

(a) Prove that for every involution A on V there exists a basis of V consisting of
eigenvectors of A.

(b) Find the maximal number of distinct pairwise commuting involutions.

Let A be a 3 x 3 real matrix such that the vectors Au and u are orthogonal for each
column vector u € R3. Prove that

(a) A" = —A, where A’ denotes the transpose of the matrix A;

(b) there exists a vector v € R3 such that Au = v x u for every u € R3.

Denote by M), (R) the set of n x n matrices with real entries and let f : M,,(R) - R
be a linear function. Prove that there exists a unique matrix C € M, (R) such that
f(A) = r(AC) for all A € M,(R). In addition, if f(AB) = f(BA) for all
matrices A and B, prove that there exists A € R such that f(A) = AtrA for any
matrix A.

Let U and V be isometric linear transformations of R”, n > 1, with the property
that ||Ux — x|| < § and || Vx —x|| < ] forall x € R" with |lx|| = 1. Prove that

—ly,—1 1
f[UVU V™7 x —x|| < >
for all x € R" with ||x| = 1.
For an n x n matrix A denote by ¢y (A) the symmetric polynomial in the eigenvalues
)»1,)\2, ...,)»n OfA,
G (A) = D Aikiyhy, k=1.2,....n.
i1in ik

For example, ¢;(A) is the trace and ¢, (A) is the determinant. Prove that for two
n x n matrices A and B, ¢(AB) = ¢y (BA) forallk =1,2,...,n.
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2.3.7 The Cayley—-Hamilton and Perron—-Frobenius Theorems

We devote this section to two more advanced results, which seem to be relevant to
mathematics competitions. All matrices below are assumed to have complex entries.

The Cayley—-Hamilton Theorem. Any n x n matrix A satisfies its characteristic equa-
tion, which means that if P4(A) = det(A\Z,, — A), then P4(A) = O,.

Proof. Let Py(A) = A" 4+ a,_ ;A" ' + ... + ay. Denote by (AZ, — A) the adjoint of
(AZ, — A) (the one used in the computation of the inverse). Then

O, — AYOT, — A = det(\T, — A)T,.

The entries of the adjoint matrix (AZ,, — A)* are polynomials in A of degree at mostn — 1.
Splitting the matrix by the powers of A, we can write

(I, — A)* = B, 1A' + B,oA" 2 + -+ + By.
Equating the coefficients of A on both sides of
(AL, — A)(Bui A"+ ByaA" % + - + By) = det(AZ, — A),,
we obtain the equations
Bn—l = Ina
_ABn—l + B, = an—IIn’
_ABn—Z + Bn—3 = an—Zz-rzy
—AB() = a()In.

Multiply the first equation by A", the second by A”~!, the third by A”~2, and so on, then
add the n 4 1 equations to obtain

O, =A"+a, 1 A"V +a, A"+ -+ aZ,.
This equality is just the desired P, (A) = O,. O

As a corollary we prove the trace identity for SL(2, C) matrices. This identity is
important in the study of characters of group representations.

Example. Let A and B be 2 x 2 matrices with determinant equal to 1. Prove that

tr(AB) — (trA)(trB) + tr(AB~!) = 0.
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Solution. By the Cayley—Hamilton Theorem,
B> — (tB)B+1, = O,.
Multiply on the left by AB~! to obtain
AB — (rB)A+ AB™' = 0,,
and then take the trace to obtain the identity from the statement. O

Five more examples are left to the reader.

258. Let A be a2 x 2 matrix. Show that if for some complex numbers u and v the matrix
uZ, + vA is invertible, then its inverse is of the form u'Z, 4+ v’ A for some complex
numbers u’ and v'.

259. Find the 2 x 2 matrices with real entries that satisfy the equation

—2 -2
3 avy2
X3 - 3x _(_2_2).

260. Let A, B, C, D be 2 x 2 matrices. Prove that the matrix [A, B]-[C, D]+ [C, D] -
[A, B]isamultiple of the identity matrix (here [A, B] = AB — B A, the commutator
of A and B).

261. Let A and B be 3 x 3 matrices. Prove that

tr((AB — BA)?)
3 .

det(AB — BA) =

262. Show that there do not exist real 2 x 2 matrices A and B such that their commutator
18 nonzero and commutes with both A and B.

Here is the simplest version of the other result that we had in mind.

The Perron-Frobenius Theorem. Any square matrix with positive entries has a unique
eigenvector with positive entries (up to a multiplication by a positive scalar), and the
corresponding eigenvalue has multiplicity one and is strictly greater than the absolute
value of any other eigenvalue.

Proof. The proof uses real analysis. Let A = (a;;); ;_;, n = 1. We want to show that
there is a unique v € [0, 00)", v # 0, such that Av = Av for some A. Of course, since A
has positive entries and v has positive coordinates, A has to be a positive number. Denote
by K the intersection of [0, c0)" with the n-dimensional unit sphere. Reformulating the

problem, we want to show that the function f : K — K, f(v) = ng” has a fixed point.




2.3 Linear Algebra 85

Now, there is arather general result that states that a contractive function on acomplete
metric space has a unique fixed point, which we will prove in Section 3.1.3. Recall that
a metric space is a set X endowed with a function § : X x X — [0, co) satisfying
(1) 8(x,y) =0ifandonlyif x = y, (ii) §(x, y) = 6(y, x) forall x, y € X, (iii) 6 (x, y) +
8(y,z) = é(x, z)forallx, y, z € X. Ametric space is complete if every Cauchy sequence
converges to a limit in X. A function f : X — X is contractive if for any x # y,

S(f(x), fF(¥) = cdx,y)

for some fixed constant ¢, 0 < ¢ < 1.
With this in mind, we want to find a distance on the set K that makes the function f
defined above contractive. This is the Hilbert metric defined by the formula

S(v,w) =1In (max{ﬂ}/m_in {&}),
14 w; i wj

forv = (vy, vp,...,v,) and w = (wy, wy, ..., w,) € K. That this satisfies the triangle
inequality § (v, w) + §(w, u) > &(v, w) is a consequence of the inequalities

V; w; V;
max4{—g¢-max4—; >maxi—,
i w; i u; i w;

. V; . Wi . V;
mmni{—;;-mmny—; <mmis—g¢ .
i w; i u; i wj

Let us show that f is contractive. If v = (v, vp, ..., v,) and w = (wy, wa, ..., Wy)
arein K,v # w,andifo; > 0,i =1,2,...,n,then

. V; av] + oy + - -+ ouuy, V;
min{—¢ < <max y—.
i w; ajw] Fawy + -+ ow, i

Indeed, to prove the first inequality, add the obvious inequalities w; min, {l';—",_} <vj,j=
1,2,...,n. Because v # w and both vectors are on the unit sphere, at least one inequality
is strict. The second inequality follows from w; max; {%} >v;,j=1,2,...,n, where
again at least one inequality is strict.

Using this fact, we obtain for all j, 1 < j <n,

ajjvi+-+aj,vn ajjvit--+a;,vn
ajiwi+--taj,wn 1 ajiwi+-taj,wn

<l<
v; : v;
max; {w—} min; {w—}
1 1

maxj {aj1w1+..-+ajnwn min; PRI

<
max; {%} min; {%}
1 1

Therefore,
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It follows that for v, w € K, v # w, §(f(v), f(w)) < §(v, w).

Now, K is closed and but is not bounded in the Hilbert norm; some points are infinitely
far apart. But even if K is not bounded in the Hilbert metric, f(K) is (prove it!). If
we denote by K the closure of f(K) in the Hilbert norm, then this space is closed and
bounded.

The function ¢ : Ky x Kg — [0, 00), ¢ (v, w) = W attains its maximum c.
Since ¢ is strictly less than 1, ¢ < 1. This proves that f is contractive on Ko; its fixed
point is the unique eigenvector of A with positive coordinates.

We are done with the first half of the proof. Now let us show that the eigenvalue of
this positive vector is larger than the absolute value of any other eigenvalue. Let r(A) be
the largest of the absolute values of the eigenvalues of A and let A be an eigenvalue with
|A| = r(A). In general, for a vector v we denote by |v| the vector whose coordinates are
the absolute values of the coordinates of v. Also, for two vectors v, w we write v > w
if each coordinate of v is greater than the corresponding coordinate of w. If v is an
eigenvector of A corresponding to the eigenvalue A, then |Av| = |A| - |v|. The triangle
inequality implies A|v| > |Av| = r(A)|v|. It follows that the set

Ki={v|lvl=1 v=0, Av=r(A)v},

is nonempty. Because A has positive entries, A(Av — r(A)v) > 0 for v € Ky. So
A(Av) > r(A)(Av), for v € K|, proving that f(K;) € K. Again K, is closed and
f (K1) is bounded, so we can reason as above to prove that f restricted to K has a fixed
point, and because K| C K, this is the fixed point that we detected before. Thus r(A) is
the unique positive eigenvalue.

There cannot exist another eigenvalue A with |[A| = r(A), for otherwise, for a small
€ > 0 the matrix A — €Z, would still have positive entries, but its positive eigenvalue
r(A) — € would be smaller than the absolute value of the eigenvalue A — €, contradicting
what we just proved. This concludes the proof of the theorem. O

Nowhere in the book are more appropriate the words of Sir Arthur Eddington: “Proof
is an idol before which the mathematician tortures himself.”

The conclusion of the theorem still holds in the more general setting of irreducible
matrices with nonnegative entries (irreducible means that there is no reordering of the
rows and columns that makes it block upper triangular). This more general form of the
Perron—Frobenius Theorem is currently used by the Internet browser Google to sort the
entries of a search. The idea is the following: Write the adjacency matrix of the Internet
with a link highlighted if it is related to the subject. Then multiply each nonzero entry
by a larger or smaller number that takes into account how important the subject is in that
page. The Perron—Frobenius vector of this new matrix assigns a positive weight to each
site on the Internet. The Internet browser then lists the sites in decreasing order of their
weights.

We now challenge you with some problems.
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263. Let A be a square matrix whose off-diagonal entries are positive. Prove that the
rightmost eigenvalue of A in the complex plane is real and all other eigenvalues are
strictly to its left in the complex plane.

264. Let a;j, i, j = 1,2, 3, be real numbers such that g;; is positive for i = j and
negative for i # j. Prove that there exist positive real numbers ¢y, ¢, ¢3 such that
the numbers

ajicy +apcy +aizcs,  axcp + axncy +axcy,  asc) + apcy + asscs

are all negative, all positive, or all zero.

265. Letxy, x, ..., x, be differentiable (real-valued) functions of a single variable ¢ that
satisfy
dxl
— =anx; +apxy+ -+ aux,
dt
dX2
—— = anX| +anx; + -+ apxy,
dt
il + +o
= dap1X ap2X T ApnXn s
dr 1X1 2X2

for some constants a;; > 0. Suppose that for all 7, x;(z) — 0 ast — oo. Are the
functions x1, x», ..., x, necessarily linearly independent?

266. For a positive integer n and any real number ¢, define (x; )¢ recursively by xo = 0,
x1 = 1,and for k > 0,

cxpr1 — (n—k)xg
k+1

Xk4+2 =

Fix n and then take c to be the largest value for which x,,y; = 0. Find x; in terms
ofnandk,1 <k <n.

2.4 Abstract Algebra

2.4.1 Binary Operations

Abinary operation * on a set S associates to each pair (a, b) € S x S anelementaxb € S.
The operation is called associative if a x (b x c¢) = (a x b) * c for all a, b, c € S, and
commutative if a * b = b % a for all a, b € §. If there exists an element e such that
axe =exa = a forall a € S, then e is called an identity element. If an identity
exists, it is unique. In this case, if for an element @ € § there exists b € S such that
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a*b =b*a = e, then b is called the inverse of a and is denoted by a~!. If an element
has an inverse, the inverse is unique.

Just as a warmup, we present a problem from the 62nd W.L. Putnam Competition,
2001.

Example. Consider a set S and a binary operation * on S. Assume that (a xb) xa = b
foralla,b € S. Prove thata x (b*a) =b foralla,b € S.

Solution. Substituting b * a for a, we obtain
((bxa)*xb)x(b=xa)=b.
The expression in the first set of parentheses is a. Therefore,
ax((bx*xa)=>b,
as desired. O

Often, problems about binary operations look like innocent puzzles, yet they can have
profound implications. This is the case with the following example.

Example. For three-dimensional vectors X = (p,q,t) and Y = (p/, ¢/, t') define the
operations (p,q,1) * (p',q', 1) = (0,0, pg’ —gp’), and X oY = X + Y + ;X x Y,
where + denotes the addition in R3.

(a) Prove that (R?, o) is a group.
(b) Leta : (R, 0) — (R?, o) be a continuous map satisfying ¢(X o ¥) = a(X) oa(Y)
for all X, Y (which means that « is a homomorphism). Prove that

X +Y)=aX)+a(Y) and a(X*xY)=oa(X)*a(Y).
Solution. (a) Associativity can be verified easily, the identity element is (0, 0, 0), and the
inverse of (p, g, t) is (—p, —q, —t).
(b) First, note that X % Y = —Y % X. Therefore, if X is a scalar multiple of Y, then

X*xY=YxX=0.Ingeneral,if X*«Y =0,then XoY =X+ Y =Y o X. Hence in
this case,

aX+Y)=aXoY)=aX)oa¥Y) =a(X)+a(Y)+ %a(X) *a(Y)
on the one hand, and

da(X+Y)=a( oX)=a)oa(X) =aY) +a(X) + %a(Y) *a(X).
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Because a(X) x a(Y) = —a(Y) * a(X), this implies that o(X) * «(¥Y) = 0, and conse-
quently a(X +Y) = a(X) +«(Y). In particular, « is additive on every one-dimensional
space, whence o (rX) = ra(X), for every rational number r. But « is continuous, so
a(sX) = sa(X) for every real number s. Applying this property we find that for any
X,Y eR3ands € R,

so (X+Y+ %SX*Y) =« (sX—i—sY—l— %S2X*Y) =a(sX) o (sY))
=a(sX)oa(sY) = (sa(X)) o (sa(Y))
=sa(X) +sa(¥Y) + %sza(X) s a(Y).

Dividing both sides by s, we obtain
1 1
o (X+Y+ESX*Y) =a(X)+oz(Y)+§sX>kY.

In this equality if we let s — 0, we obtain ¢(X + Y) = a(X) + a(Y). Also, if we let
s = 1 and use the additivity we just proved, we obtain a(X *x ¥) = a(X) x a(Y). The
problem is solved. O

Traditionally, X * Y is denoted by [X, Y] and R® endowed with this operation is
called the Heisenberg Lie algebra. Also, R? endowed with o is called the Heisenberg
group. And we just proved a famous theorem showing that a continuous automorphism
of the Heisenberg group is also an automorphism of the Heisenberg Lie algebra. The
Heisenberg group and algebra are fundamental concepts of quantum mechanics.

267. With the aid of a calculator that can add, subtract, and determine the inverse of
a nonzero number, find the product of two nonzero numbers using at most 20
operations.

268. Invent a binary operation from which +, —, X, and / can be derived.

269. A finite set S is endowed with an associative binary operation * that satisfies (a
a)xb =>bx*(a*xa) =>bforall a,b € S. Prove that the set of all elements of the
form a * (b * c) with a, b, ¢ distinct elements of S coincides with S.

270. Let S be the smallest set of rational functions containing f (x, y) = x and g(x, y) =
y and closed under subtraction and taking reciprocals. Show that S does not contain
the nonzero constant functions.

271. Let* and o be two binary operations on the set M, with identity elements e, respec-
tively, ¢/, and with the property that for every x, y, u, v € M,

(xxy)ou*xv)=(xou)*x(yov).

Prove that
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(a) e=¢';
b) xxy=xo0y,foreveryx,y € M;
(c) xxy=yxx,foreveryx,y e M.

Consider a set S and a binary operation *x on § such that x % (y % x) = y for all
x,y in §. Prove that each of the equations a * x = b and x * a = b has a unique
solution in S.

On a set M an operation * is given satisfying the properties

(i) there exists an element e € M such that x x e = x for all x € M;
(1) (xxy)*z=(zxx)*xyforallx,y,z e M.

Prove that the operation * is both associative and commutative.

Prove or disprove the following statement: If F is a finite set with two or more
elements, then there exists a binary operation *x on F such that for all x, y, zin F,
(1) x %z =y x z implies x = y (right cancellation holds), and

(i1) x * (y * z) # (x * y) * z (no case of associativity holds).

Let % be an associative binary operation on a set S satisfying a « b = b * a only if
a =>b. Provethata x (bxc) =a=xcforalla, b,c € S. Give an example of such
an operation.

Let S be a set and * a binary operation on S satisfying the laws
i) xx(xxy)=yforallx,y e S,

(i) (yxx)*xx =yforallx,yin S.

Show that * is commutative but not necessarily associative.

Let *x be a binary operation on the set Q of rational numbers that is associative and
commutative and satisfies 0x0 = Oand (a+c)*(b+c) = axb+cforalla, b, c € Q.
Prove that either a * b = max(a, b) for all a, b € QQ, or a * b = min(a, b) for all
a,beQ.

2.4.2 Groups

Definition. A group is a set of transformations (of some space) that contains the identity
transformation and is closed under composition and under the operation of taking the
inverse.

The isometries of the plane, the permutations of a set, the continuous bijections on a

closed bounded interval all form groups.

There is a more abstract, and apparently more general definition, which calls a group

a set G endowed with a binary operation - that satisfies

(i) (associativity) x(yz) = (xy)z forall x, y,z € S;
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(i1) (identity element) there is e € G such that for any x € G, ex = xe = x;
(iii) (existence of the inverse) for every x € G there is x~! € G such that xx™! =
-1
x'x =e.

But Cayley observed the following fact.
Theorem. Any group is a group of transformations.

Proof. Indeed, any group G acts on itself on the left. Specifically, x € G acts as a
transformation of G by y — xy, y € G. O

A group G is called Abelian (after N. Abel) if the operation is commutative, that is,
if xy = yx for all x, y € G. An example of an Abelian group is the Klein four-group,
introduced abstractly as K = {a, b, c, e | a’?=b*=c*>=e,ab=c,ac =b,bc = a)},
or concretely as the group of the symmetries of a rectangle (depicted in Figure 14).

) a
SN~ 7

>< <>b

Figure 14

A group is called cyclic if it is generated by a single element, that is, if it consists of
the identity element and the powers of some element.

Let us turn to problems and start with one published by L. Daia in the Mathematics
Gazette, Bucharest.

Example. A certain multiplicative operation on a nonempty set G is associative and
allows cancellations on the left, and there exists a € G such that x> = axa forallx € G.
Prove that G endowed with this operation is an Abelian group.

Solution. Replacing x by ax in the given relation, we obtain axaxax = a’xa. Cancelling
a on the left, we obtain x (axa)x = axa. Because axa = x>, it follows that x> = x3,

and cancelling an x2, we obtain

x*=x foralxegG.

3

In particular, a®> = a, and hence a’x = ax forall x € G. Cancel a on the left to find that

a’x =x forallx € G.
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Substituting x by xa, we obtain a’>xa = xa, or ax® = xa, and since x

that a commutes with all elements in G. We can therefore write

3 = x, it follows

a’x = a(ax) = a(xa) = (xa)a = xa’,

whence xa® = a’x = x. This shows that a? is the identity element of the multiplicative

operation; we denote it by e. The relation from the statement implies x* = axa = xa®> =
xe; cancelling x, we obtain x> = e; hence for all x € G, x~! = x. It follows that G is a
group. It is Abelian by the well-known computation

xy =@y =y x7 = yx. O

Here are more examples of the kind.

278. Prove that in order for a set G endowed with an associative operation to be a group,
it suffices for it to have a left identity, and for each element to have a left inverse.
This means that there should exist ¢ € G such that ex = x for all x € G, and for
each x € G, there should exist x’ € G such that x’x = e. The same conclusion
holds if “left” is replaced by “right.”

279. Let (G, 1) and (G, %) be two group structures defined on the same set G. Assume
that the two groups have the same identity element and that their binary operations
satisfy

axb=(ala)l(alb),

foralla, b € G. Prove that the binary operations coincide and the group they define
is Abelian.

280. Letr, s, t be positive integers that are pairwise relatively prime. If the elements a
and b of an Abelian group with identity element e satisfy a” = b* = (ab)' = e,
prove that a = b = e. Does the same conclusion hold if a and b are elements of an
arbitrary nonAbelian group?

281. Assume that a and b are elements of a group with identity element e satisfying
(aba=")" = e for some positive integer n. Prove that b" = e.

282. Let G be a group with the following properties:
(1) G has no element of order 2,
(i) (xy)?> = (yx)?, forallx,y € G.
Prove that G is Abelian.

283. A multiplicative operation on a set M satisfies (i) a®> = b?, (i) ab®* = a,
(iii) a®(bc) = cb, (iv) (ac)(bc) = ab, for all a,b,c € M. Define on M the
operation
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a*b = a(b’b).
Prove that (M, x) is a group.

284. Given I' a finite multiplicative group of matrices with complex entries, denote by
M the sum of the matrices in I'. Prove that det M is an integer.

We would like to point out the following property of the set of real numbers.

Theorem. A nontrivial subgroup of the additive group of real numbers is either cyclic
or it is dense in the set of real numbers.

Proof. Denote the group by G. It is either discrete, or it has an accumulation point on the
real axis. If it is discrete, let a be its smallest positive element. Then any other element
is of the form b = ka + o with 0 < a < a. But b and ka are both in G; hence « is in G
as well. By the minimality of a, o can only be equal to 0, and hence the group is cyclic.

If there is a sequence (x,), in G converging to some real number, then +(x, — x,,,)
approaches zero as n, m — 0o. Choosing the indices m and n appropriately, we can find
a sequence of positive elements in G that converges to 0. Thus for any € > 0 there is an
element c € G with 0 < ¢ < €. For some integer k, the distance between kc and (k+ 1)c
is less than €; hence any interval of length € contains some multiple of ¢. Varying €, we
conclude that G is dense in the real axis. O

Try to use this result to solve the following problems.

285. Let f : R — R be a continuous function satisfying f(x) = f(x + +/2) =
f(x + +/3) for all x. Prove that f is constant.

286. Prove that the sequence (sin n),, is dense in the interval [—1, 1].
287. Show that infinitely many powers of 2 start with the digit 7.

288. Given a rectangle, we are allowed to fold it in two or in three, parallel to one side
or the other, in order to form a smaller rectangle. Prove that for any € > 0O there are
finitely many such operations that produce a rectangle with the ratio of the sides
lying in the interval (1 — €, 1 4 €) (which means that we can get arbitrarily close
to a square).

289. A set of points in the plane is invariant under the reflections across the sides of some
given regular pentagon. Prove that the set is dense in the plane.

“There is no certainty in sciences where one of the mathematical sciences cannot be
applied, or which are not in relation with this mathematics.” This thought of Leonardo
da Vinci motivated us to include an example of how groups show up in natural sciences.

The groups of symmetries of three-dimensional space play an important role in chem-
istry and crystallography. In chemistry, the symmetries of molecules give rise to physical
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properties such as optical activity. The point groups of symmetries of molecules were
classified by A. Schonflies as follows:

* (, : areflection with respect to a plane, isomorphic to Z,,
* (; :areflection with respect to a point, isomorphic to Z,,
* (, : the rotations by multiples of 2’7” about an axis, isomorphic to Z,,

e (,, : generated by a C,, and a C; with the reflection plane containing the axis of
rotation; in mathematics this is called the dihedral group,

* C,; : generated by a C,, and a C; with the reflection plane perpendicular to the axis
of rotation, isomorphic to C,, x C»,

* D, : generated by a C,, and a C,, with the rotation axes perpendicular to each other,
isomorphic to the dihedral group,

* D,, : generated by a C,, and a C», together with a reflection across a plane that divides
the angle between the two rotation axes,

* D, : generated by a C,, and a C, with perpendicular rotation axes, together with a
reflection with respect to a plane perpendicular to the first rotation axis,

S, : improper rotations by multiples of 2%, i.e., the group generated by the element
that is the composition of the rotation by =* and the reflection with respect to a plane
perpendicular to the rotation axis,

* Special point groups: Cy,’s and Doop,’s (same as Cy,, and D,,;, but with all rotations
about the axis allowed), together with the symmetry groups of the five Platonic solids.

When drawing a molecule, we use the convention that all segments represent bonds
in the plane of the paper, all bold arrows represent bonds with the tip of the arrow below
the tail of the arrow. The molecules from Figure 15 have respective symmetry point
groups the octahedral group and Cs;,.

F H
|
LT O.,.0.
AN B> H
F” | °F '
F H/O
Figure 15

290. Find the symmetry groups of the molecules depicted in Figure 16.
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2.4.3 Rings

Rings mimic in the abstract setting the properties of the sets of integers, polynomials, or
matrices.

Definition. Aringisa set R endowed with two operations + and - (addition and multipli-
cation) such that (R, +) is an Abelian group with identity element 0 and the multiplication
satisfies

(i) (associativity) x(yz) = (xy)z forall x, y, z € R, and
(ii) (distributivity) x(y +z) = xy +xz and (x + y)z = xz + yz forall x, y, z € R.

A ring is called commutative if the multiplication is commutative. It is said to have
identity if there exists 1 € Rsuchthat1-x =x-1 =xforallx € R. Anelementx € R
is called invertible if there exists x~! € R such that xx~! = x71x = 1.

We consider two examples, the second of which appeared many years ago in the
Balkan Mathematics Competition for university students.

Example. Let x and y be elements in a ring with identity. Prove thatif 1 —xy is invertible,
then sois 1 — yx.

Solution. Let v be the inverse of 1 — xy. Then v(1 — xy) = (1 — xy)v = 1; hence
vxy = xyv = v — 1. We compute

d4+yvx) (I —yx)=1—yx+yvx —yvxyx =1—yx+yvx —y(v— Dx = 1.

A similar verification shows that (1 — yx)(1 + yvx) = 1. It follows that 1 — yx is
invertible and its inverse is 1 + yvx. O

Example. Prove that if in a ring R (not necessarily with identity element) x* = x for all
X € R, then the ring is commutative.

Solution. For x, y € R, we have
xy® = yixy? = (xy? = y2xy?)’ = xy’xy’xy? — xy°xy’yixy® — xy?yixy’xy?
— y2xyxy’xy? 4 y2xyixy?yixy? + yixyty xy’ay?
_ y2xy2y2xy2y2xy2 +xy2y2xy2y2xy2.
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Using the fact that y* = y?, we see that this is equal to zero, and hence xy? — y?xy? = 0,
that is, xy?> = y?xy?. A similar argument shows that y>x = y%xy?, and so xy? = y’x
forall x, y € R.

Using this we obtain

xy = xyxyxy = xy(xy)? = x(xy)%y = x2yxy? = y3x3 = yx.
This proves that the ring is commutative, as desired. m|

We remark that both this and the second problem below are particular cases of a
general theorem of Jacobson, which states that if a ring (with or without identity) has the
property that for every element x there exists an integer n(x) > 1 such that x"® = x,
then the ring is commutative.

291. Let R be a nontrivial ring with identity, and M = {x € R | x = x?} the set of its
idempotents. Prove that if M is finite, then it has an even number of elements.

292. Let R be a ring with identity such that x® = x for all x € R. Prove that x> = x for
all x € R. Prove that any such ring is commutative.

293. Let R be a ring with identity with the property that (xy)?> = x?y? forall x, y € R.
Show that R is commutative.

294. Let x and y be elements in a ring with identity and » a positive integer. Prove that
if 1 — (xy)" is invertible, then sois 1 — (yx)".

295. Let R be a ring with the property that if x € R and x> = 0, then x = 0.
(a) Prove thatif x, z € R and z* = z, then zxz — xz = 0.
(b) Prove that any idempotent of R belongs to the center of R (the center of a ring
consists of those elements that commute with all elements of the ring).

296. Show that if a ring R with identity has three elements a, b, ¢ such that
(1) ab = ba, bc = cb;
(i1) for any x, y € R, bx = by implies x = y;
(iii) ca = b butac # b,
then the ring cannot be finite.



Real Analysis

The chapter on real analysis groups material covering differential and integral calculus,
ordinary differential equations, and also a rigorous introduction to real analysis with €-8

proofs.

We found it natural, and also friendly, to begin with sequences. As you will discover,
the theory of linear recurrences parallels that of linear ordinary differential equations.
The theory of limits is well expanded, covering for example Cauchy’s criterion for con-
vergence, the convergence of bounded monotone sequences, the Cesaro—Stolz theorem,
and Cantor’s nested intervals theorem. It is followed by some problems about series, with
particular attention given to the telescopic method for computing sums and products.

A long discussion is devoted to one-variable functions. You might find the first three
sections (on limits, continuity, and the intermediate value property) rather theoretical.
Next, you will be required to apply derivatives and their properties to a wide range of
examples. Then come integrals, with emphasis placed on computations and inequalities.
One-variable real analysis ends with Taylor and Fourier series.

From multivariable differential and integral calculus we cover partial derivatives
and their applications, computations of integrals, focusing on change of variables and
on Fubini’s theorem, all followed by a section of geometric flavor devoted to Green's
theorem, Stokes’ theorem, and the Gauss—Ostrogradski (divergence) theorem.

The chapter concludes with functional equations, among which will be found Cauchy’s
equation, and with ordinary differential and integral equations.

This is a long chapter, with many challenging problems. Now, as you start it, think of
Edison’s words: “Opportunity is missed by many people because it is dressed in overalls
and looks like work.”
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3.1 Sequences and Series

3.1.1 Search for a Pattern

In this section we train guessing. In each problem you should try particular cases until
you guess either the general term of a sequence, a relation that the terms satisfy, or an
appropriate construction. The idea to write such a section came to us when we saw the
following Putnam problem.

Example. Consider the sequence (u,), defined by up = u; = u, = 1, and

u Up42
det ("B ) =pn1 n>o0.
Up+1 Up

Prove that u, is an integer for all n.
Solution. The recurrence relation of the sequence is

Up2Un+1 n!
e o

Upy3 =
n Up
Examining some terms:
LRL U B
BETTTTITAS
_20 1
M4—1 1—7
221240
LETT TS
423 3 3413253
He= 2 -0
5.3.4.2 4.3.2
=t =54:244.2=6:4.2,
6-4.-2.5-3 5.4.3.2
ug = =6-5-34+45-3=7-5-3.
4.2 4.2

we conjecture that
up=n—DMm—=3)(n—-5)---.

This formula can be proved by induction. Assuming the formula true for u,, u,+,, and
U,42, We obtain

UyioUny) + 1! . m+Dn-1Dn-3)---nn—-—2)n—4)---+n!
Uy a (n—1@n—3)n—>5)-

Upy3 =
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_ n+1) -n!'+n! _ (n+2)n!
T m=Dm=3(n-=5--- m—-Dnm-=3)n-=5)---
=m+2nn—-2)(n—4)---.

This completes the induction, and the problem is solved. m|

297.

298.

299.

300.

301.

302.

303.

Find a formula for the general term of the sequence
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,....

Find a formula in compact form for the general term of the sequence defined re-
cursively by x; = 1, x, = x,_; + nifnisodd, and x, = x,_1 +n — 1ifnis
even.

Define the sequence (a,),>0 by ap =0,a; = 1,a; =2, a3 = 6, and
Anys = 2an43 + apy2 — 20541 — a,,  forn > 0.

Prove that n divides a,, for alln > 1.

The sequence ay, ai, az, . .. satisfies

1
Apan + Ap—pn = §(a2m + a2n)’

for all nonnegative integers m and n with m > n. If a; = 1, determine a,,.
Consider the sequences (a,),, (b,),, defined by

a=0, a=2, G =44+ a1, n =0,

by =0, b =1, byyir=a,—by+by—y, n=>0.
Prove that (a,)® = bs, for all n.
A sequence u,, is defined by

5
uy =2, ul:i’ un+1:un(uﬁ71—2)—u1, forn > 1.

Prove that for all positive integers n,

lun] = 2(2"—(—1)")/3’

where | -] denotes the greatest integer function.

Consider the sequences (a,), and (b,), defined by a; = 3, b; = 100, a,,+; = 3%,
bn4+1 = 100%. Find the smallest number m for which b,, > aigo.
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3.1.2 Linear Recursive Sequences

In this section we give an overview of the theory of linear recurrences with constant
coefficients. You should notice the analogy with the theory of ordinary differential
equations. This is not an accident, since linear recurrences are discrete approximations
of differential equations.

A kth-order linear recurrence with constant coefficients is a relation of the form

Xp = aiXp—1 +@xp 2+ -+ aGXy_y, n= ka

satisfied by a sequence (x,),>0.

The sequence (x,), is completely determined by xg, x, ..., xx—1 (the initial condi-
tion). To find the formula for the general term, we introduce the vector-valued first-order
linear recursive sequence v, = (v}l, v,zl, e, v,'j) defined by v,ll = Xpikh_1» v,% = Xpik_2,

., vij = x,. This new sequence satisfies the recurrence relation v,.; = Av,,n > 0,
where
ayazas--- Aag—1 a
100--- 0 O
010--- 0 O
A=1001-.- 0 0
000--- 1 0

It follows that v, = A"v, and the problem reduces to the computation of the nth power
of A. A standard method employs the Jordan canonical form.
First, we determine the eigenvalues of A. The characteristic polynomial is

A—ap —ay —az -+ dp| —ak
-1 2 0 -~ 0 O
O -1 x» - 0 O
PAM)=| o 0 —-1.-.- 0 0
0 0 0 -+ —1 A
When expanding by the first row it is easy to remark that all minors are triangular, so the
determinant is equal to A¥ — a; A%~ — a,A%=2 — ... — g;. The equation
Pa) = —adf T —apn - g =0

is called the characteristic equation of the recursive sequence.
Let Ay, A2, ..., A be the roots of the characteristic equation, which are, in fact, the
eigenvalues of A. If these roots are all distinct, the situation encountered most often, then
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A is diagonalizable. There exists an invertible matrix S such that A = SDS ~1 where D
is diagonal with diagonal entries equal to the eigenvalues of A. From the equality

v, = SD"S vy,

we conclude that the entries of v, are linear combinations of A, A3, ..., A}. In particular,
for x,,, which is the first coordinate of v,,, there exist constants oy, oo, ..., a; such that

Xy = oA +ory + - +oghy, forn > 0.

The numbers oy, ay, ..., o are found from the initial condition, by solving the linear
system

Ol1+0[2+"'06k=)C(),
Aoy 4 Ao + - Ao = X,

2 2 2
Aja + A0 + - - - Aag = Xo,

k—1 k—1 k—1
)»1 Oll—i—)uz Olz—l—-")»k o = Xp_1.

Note that the determinant of the coefficient matrix is Vandermonde, so the system has a
unique solution!
If the roots of the characteristic equation have multiplicities greater than 1, it might

happen that A is not diagonalizable. The Jordan canonical form of A has blocks of
the form

Ai 1020
or; 1---0
InGy=] 0 O 0

000--- X
An exercise in Section 2.3.1 shows that for j > i, the ij entry of J,,(X;)" is (‘" )k"+i_'i.

j—=i/"i
We conclude that if the roots of the characteristic equations are Ay, Az, ..., A, and

miy, my, ..., m; their respective multiplicities, then there exist constants «;;, i =
1,2,...,t,j=0,1,...,m; — 1, such that

t mi—1
’/l _
w=y Zaij(j)kf I forn 0.

It might be more useful to write this as



102 3 Real Analysis

t m;
X, = Z Z,B,-jnjk?_], for n > 0.

i=1 j=0
As s the case with differential equations, to find the general term of an inhomogeneous
linear recurrence

Xy = a1Xp—1 +arxy_2+ -+ ax,— + f(n), n=>1,

one has to find a particular solution to the recurrence, then add to it the general term of
the associated homogeneous recurrence relation.

Putting these ideas together, let us compute the general-term formula of the Fibonacci
sequence. The recurrence relation F,,; = F, + F,_; has characteristic equation Az —
A —1=0, withroots A; , = linS Writing F,, = oA + axA} and solving the system

ap +oax = Fy=0,
AL + oy = F1 =1,

we obtain o] = —ap = — \/Lg We rediscover the well-known Binet formula

Fi= e (<1+2ﬁ>” i (1 _2ﬁ>n)‘

In the same vein, let us solve a problem published in the American Mathematical
Monthly by 1. Tomescu.

Example. In how many ways can one tile a 2n x 3 rectangle with 2 x 1 tiles?

Solution. Denote by u, the number of such tilings. Start tiling the rectangle from the
short side of length 3, as shown in Figure 17.

Figure 17

In the last two cases from the figure, an uncovered 1 x 1 square can be covered in a
single way: by the shaded rectangle. We thus obtain

Upy1 = 3un + 2Un7

where v, is the number of tilings of a (2n — 1) x 3 rectangle with a 1 x 1 square missing
in one corner, like the one in Figure 18. That figure shows how to continue tiling this
kind of rectangle, giving rise to the recurrence
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Uptl = Uy + Uy

Combining the two, we obtain the (vector-valued) recurrence relation

(=G ()

The characteristic equation, of the coefficient matrix but also of the sequences u, and
U, 18

A—=3 =2
-1 A—-1

‘=x2—4x+1=0.

Itsrootsare A; » = 2+43. We computeeasilyu; = 3andv; = 1,soupy = 3-342-1 = 11.
The desired general-term formula is then

=5 (V3 1) (24 V3) + (V3 -1) (2-¥3)"). :

Figure 18
Below are listed more problems of this kind.

304. Let p(x) = x> — 3x + 2. Show that for any positive integer n there exist unique
numbers a, and b, such that the polynomial ¢,(x) = x" — a,x — b, is divisible
by p(x).

305. Find the general term of the sequence given by xo = 3, x; = 4, and
m+1D)n+2)x, =4+ 1) (n+3)x,_1 —4n+2)(n +3)x,_2, n=>2.

306. Let (x,),>0 be defined by the recurrence relation x,,+, = ax, + bx,_;, with xo = 0.
Show that the expression x,% — X,—1X,+1 depends only on b and x;, but not on a.

307. Define the sequence (a,), recursively by a; = 1 and

1+4a, + 1+ 24aq,

, forn>1.
16

apt1 =

Find an explicit formula for a, in terms of .
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308. Let a = 4k — 1, where k is an integer. Prove that for any positive integer n the

number
R A

309. Let A and E be opposite vertices of a regular octagon. A frog starts jumping at
vertex A. From any vertex of the octagon except E, it may jump to either of the
two adjacent vertices. When it reaches vertex E, the frog stops and stays there.
Let a, be the number of distinct paths of exactly n jumps ending at E. Prove that
as,—1 = 0 and

is divisible by 27!,

azn:—(xnil —ynil), n:1,2,3,...,

V2

where x =2 ++/2and y =2 — /2.
310. Find all functions f : N — N satisfying

F(fF(fm)+6f(n) =3f(f(n))+4n+2001, foralln e N.

311. The sequence (x,), is defined by x; = 4, x, = 19, and forn > 2, x,11 = [ h ]

Xp—1 "’

the smallest integer greater than or equal to xxi. Prove that x, — 1 is always a
multiple of 3.
312. Consider the sequences given by
3a, + /5a2 — 4
a0:19 al‘H—l - Z " ) nzlv
2
by =0, b,y = a, — by, n>1.

Prove that (a,)* = by, for all n.

3.1.3 Limits of Sequences

There are three methods for determining the limit of a sequence. The first of them is
based on the following definition.

Cauchy’s definition.

(a) A sequence (x,), converges to a finite limit L if and only if for every € > 0 there
exists n(€) such that for everyn > n(e), |x, — L| < €.
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(b) A sequence (x,), tends to infinity if for every € > 0 there exists n(€) such that for
n > n(e), x, > €.

The definition of convergence is extended to R”, and in general to any metric space,
by replacing the absolute value with the distance. The second method for finding the
limit is called the squeezing principle.

The squeezing principle.

(a) If a, < b, < ¢, for all n, and if (a,), and (c,), converge to the finite limit L, then
(by)y also converges to L.
() Ifa, < b, for all n and if (ay,), tends to infinity, then (b,), also tends to infinity.

Finally, the third method reduces the problem via algebraic operations to sequences
whose limits are known. We illustrate each method with an example. The first is from
P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics (Springer, 2004).

Example. Let (x,), be a sequence of real numbers such that
lim 2x,41 — x,) = L.
n—00
Prove that the sequence (x,), converges and its limit is L.
Solution. By hypothesis, for every € there is n(€) such that if n > n(e), then
L—€<2xy41—x, <L+e.
For such n and some k > 0 let us add the inequalities

L—¢€ <2xy41—Xx, <L +e,
2(L —€) < 4xy40 — 2x,41 < 2(L + €),

2N —€) < 2Mwppn — 25 My < 28 1L 4 €).
‘We obtain
A4+24+2HL—€) < Yxppp —xa < 1 +24 -+ 25HN(L + o),

which after division by 2¥ becomes

1 1 1
(1_?)(L_6)<xn+k_?xn< (1—?>(L+€)-

Now choose k such that |2lkx,,| < € and |2ik(L +¢€)| < €. Thenform > n + k,
L —3e <x, <L+ 3¢,

and since € was arbitrary, this implies that (x,), converges to L. m|
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Example. Prove that lim,_, o, &/n = 1.

Solution. The sequence x, = /n — 1 is clearly positive, so we only need to bound it
from above by a sequence converging to 0. For that we employ the binomial expansion

n n h 2 h n—1 n
n=~0+x)"=1+ X + X, o+ X, X,
1 2 n—1

Forgetting all terms but one, we can write

which translates to x,, < ,/ %, for n > 2. The sequence n > 2, converges to 0,

l b
and hence by the squeezing principle, (x,), itself converges to 0, as desired. O

The third example was published by the Romanian mathematician T. Lalescu in 1901
in the Mathematics Gazette, Bucharest.

Example. Prove that the sequence a, = "/(n + 1)! — \"/rﬁ, n > 1, is convergent and
find its limit.

Solution. The solution we present belongs to M. Tena. It uses Stirling’s formula
n n On .
nt=v2mn (2) et with0 <6, <1,
e

which will be proved in Section 3.2.11. Taking the nth root and passing to the limit, we
obtain

n
lim — =e.
n—o00 ”/n!
‘We also deduce that
. n+1 .on+1 n
lim = lim . =e.
n—oo [ n! n—oo n ¥ n!

Therefore,

i " (n + 1)' . n(n+1) ((n + 1)‘)’1 . n(n+1) (n + 1)”
nggo "—n' n_)oo ny)n+1 n—>oo T

_ n+1 _ n + 1\ 7T
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= | lim =e.
n—oo /nl

Taking the nth root and passing to the limit, we obtain

) n+1/(n + 1)1
lim —— =1,
n— 00 Jn!
and hence
" ) n+l/(n + 1)‘
lim =1 — —1=0
n—o00 \/n! n— 00 vn!

Thus, if we set

a \
un!

then lim,,_, o, b, = e. From the equality

( "+ 1)!)" B bT

n n ’

n!
we obtain

a. =1In (H—M)n (Inb )—1 <L)_l

107

The right-hand side is a product of three sequences that converge, respectively,to 1 = Ine,

1 =1Ine, and é Therefore, the sequence (a,), converges to the limit é
Apply these methods to the problems below.

313. Compute

lim |[sin (m/n2 +n+ 1)) .

n—o00

314. Let k be a positive integer and u a positive real number. Prove that

k

AW m\"k %
iim () () (1= 2) =
n—o00 k n n ekt k'

O

315. Let (x,), be a sequence of positive integers such that x,, = n* foralln > 1. Is it

true that lim,,_, o, X, = 00?
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316.

317.

318.

319.

320.

321.

322,

3 Real Analysis

Let (a,), be a sequence of real numbers with the property that for any n > 2 there
exists an integer k, ’% <k < n,such that aq,, = “7k Prove that lim,,_, o, a, = 0.

Given two natural numbers k and m let ay, ay, ..., ar, by, ba, ..., b, be positive
numbers such that

Y + Y + -+ Yax = by + by + -+ b,

for all positive integers n. Prove that k = m and aya, - - - ay = b1b; - - - by,.

Prove that
" 1
lim n2/ X Hldx = =,
Let a be a positive real number and (x,),> a sequence of real numbers such that

x; = a and

n—1
Xop1 = (n+2)x, — > kxi, foralln > 1.
k=1

Find the limit of the sequence.

Let (x,),>1 be a sequence of real numbers satisfying
Xn+m Exn +xm7 n,mz>=> 1.

Show that lim,, . o 3* exists and is equal to inf,>; *.

Compute
n L
k )12
lim — .
n—o00 Z (n2 )
k=1
Let b be an integer greater than 5. For each positive integer n, consider the number

X, =11...122...25,
—— — —
n—1 n
written in base b. Prove that the following condition holds if and only if b = 10:

There exists a positive integer M such that for any integer n greater than
M, the number x, is a perfect square.

We exhibit two criteria for proving that a sequence is convergent without actually

computing the limit. The first is due to Karl Weierstrass.
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Weierstrass’ theorem. A monotonic bounded sequence of real numbers is convergent.
Below are some instances in which this theorem is used.

323. Prove that the sequence (a,),>; defined by

11 1
ay=1l+-+s++-—Inr+1), nx=1,
2 3 n

is convergent.

324. Prove that the sequence

anz\/1+\/2+,/3+~-+\/ﬁ, n=>1,

is convergent.

325. Let (a,), be a sequence of real numbers that satisfies the recurrence relation a,+, =
Va2 +a, —1,forn > 1. Prove that a; ¢ (=2, 1).

326. Using the Weierstrass theorem, prove that any bounded sequence of real numbers
has a convergent subsequence.

Widely used in higher mathematics is the following convergence test.

Cauchy’s criterion for convergence. A sequence (x,), of points in R" (or, in general,
in a complete metric space) is convergent if and only if for any € > 0 there is a positive
integer n, such that whenever n,m > ne, ||x, — x| < €.

A sequence satisfying this property is called Cauchy, and it is the completeness of
the space (the fact that it has no gaps) that forces a Cauchy sequence to be convergent.
This property is what essentially distinguishes the set of real numbers from the rationals.
In fact, the set of real numbers can be defined as the set of Cauchy sequences of rational
numbers, with two such sequences identified if the sequence formed from alternating
numbers of the two sequences is also Cauchy.

327. Let (a,),>) be a decreasing sequence of positive numbers converging to 0. Prove
that the series S = a; — a; + a3 — a4 + - - - is convergent.

328. Let ao, by, cp be real numbers. Define the sequences (a,),, (b,)n, (cy)n recur-
sively by

9 = b Cn = 9 p—
) n+1 ) +1 )

an+1 =

Prove that the sequences are convergent and find their limits.
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329. Show that if the series ) a, converges, where (a,), is a decreasing sequence, then
lim,,_, o na, = 0.

The following fixed point theorem is a direct application of Cauchy’s criterion for
convergence.

Theorem. Let X be a closed subset of R" (or in general of a complete metric space)
and f : X — X a function with the property that || f (x) — f(V)| < cllx — y|| for any
x,y € X, where 0 < ¢ < 1 is a constant. Then f has a unique fixed point in X.

Such a function is called contractive. Recall that a set is closed if it contains all its
limit points.

Proof. Let xy € X. Recursively define the sequence x,, = f(x,—1),n > 1. Then
X041 — Xull < cllxXn — X1l < -+ < " llx1 — xoll-
Applying the triangle inequality, we obtain

||xn+p - xn” = ”xn+p — Xnt+p—1 ” + ||xn+p—1 - xn+p—2” +- 4+ ||xn+1 - xn”

< (TP TP e X — xo|

n

C
=c"(I4+c+-+c" Dx —xoll < -

llx1 = xoll.

This shows that the sequence (x,,), is Cauchy. Itslimit x* satisfies f(x*) = lim,, o, f(x;)
= lim, o, x, = x*; it is a fixed point of f. A second fixed point y* would give rise to
the contradiction ||x* — y*|| = | f(x*) — fFO™)| < cllx* — y*||. Therefore, the fixed
point is unique. |

Use this theorem to solve the next three problems.

330. Two maps of the same region drawn to different scales are superimposed so that the
smaller map lies entirely inside the larger. Prove that there is precisely one point
on the small map that lies directly over a point on the large map that represents the
same place of the region.

331. Let ¢ and € be real numbers with || < 1. Prove that the equation x — e sinx =t
has a unique real solution.

332. Let c and x( be fixed positive numbers. Define the sequence

1 c
xn=—<xn_1+ ), forn > 1.
2 Xn—1

Prove that the sequence converges and that its limit is ,/c.
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3.1.4 More About Limits of Sequences

We continue our discussion about limits of sequences with three more topics: the method
of passing to the limit in a recurrence relation, the Cesaro—Stolz theorem, and Cantor’s
nested intervals theorem. We illustrate the first with the continued fraction expansion of
the golden ratio.

Example. Prove that

1
+1_|_...

Solution. A close look at the right-hand side shows that it is the limit of a sequence (x;,),
subject to the recurrence relation x; = 1, x,,4; = 1+ XLH If this sequence has a finite limit
L, then passing to the limit on both sides of the recurrence relation yields L = 1 + %
Because L can only be positive, it must be equal to the golden ratio.

But does the limit exist? Investigating the first terms of the sequence we see that

1+4/5
2

X < X3 < < X4 < X,
and we expect the general situation to be
14+4/5
X < X3 < <Xt <0 < < s < Xy < X < v < X2

2

This can be proved by induction. Firstly, if x5, < #, then

2 51 1445
1+f 145

Xopeo =1+ >1+ = = s
" Xont1 1++/5 2 2
and by a similar computation, if x5, 1, > HT“E, then xy,43 < 1+Tﬁ Secondly,
5 1
xn = - 9
+2 1

and the inequality x,4» > x, is equivalent to x> — x, — 1 < 0, which holds if and

only if x, < IJ’Tﬁ Now an inductive argument shows that (x;,41), is increasing and
(x2n42)n 1s decreasing. Being bounded, both sequences are convergent. Their limits are
positive, and both should satisfy the equation L = 2 — L#H The unique positive solution
to this equation is the golden ratio, which is therefore the limit of both sequences, and

consequently the limit of the sequence (x,),. m|
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Next, we present a famous identity of S.A. Ramanujan.

Example. Prove that

\/1+2\/1+3\/1+4\/1+...:3.

Solution. We approach the problem in more generality by introducing the function f :
[1,00) — R,

f(x)=\/1+x\/1+(x+1)\/l+(x+2)«/1+---.

Is this function well defined? Truncating to n square roots, we obtain an increasing
sequence. All we need to show is that this sequence is bounded from above. And it is,
because

fx) = \/(x+1)\/(x+2)m

< \/2x\/3x\/m < \/2x\/4x\/ﬁ

k. 1 1,1, 1, 1,11
=X F XX < atatgtytgtgts

x = 2x.

This shows, moreover, that f(x) < 2x, for x > 1. Note also that

f(X)z\/T\/F:x_

For reasons that will become apparent, we weaken this inequality to f(x) > %(x +1).
We then square the defining relation and obtain the functional equation

(f@) =xf(x+D+ 1L

Combining this with

1
§(x+1)§f(x4r1) <2(x+1),

we obtain

x+1

X - 1< (fG)*<2x(x+ 1) +1,

which yields the sharper double inequality
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L
V2

Repeating successively the argument, we find that

(x+1) < f(x) <V2(x + ).

I (x+1) < f(x) <27 (x+ 1), forn> 1.

If in this double inequality we let n — oo, we obtain x + 1 < f(x) < x + 1, and hence
f(x) = x 4+ 1. The particular case x = 2 yields Ramanujan’s formula

\/1+2\/1+3\/1+4\/1+-~:3. O

Here are some problems of this kind.

333. Compute

/1+\/1+\/1+m.

334. Let a and b be real numbers. Prove that the recurrence sequence (x,), defined by
x1 > 0and x,41 = +/a + bx,, n > 1, is convergent, and find its limit.

335. Let 0 < a < b be two real numbers. Define the sequences (a,), and (b,), by
ap = a, b() = b, and
a, + b,
2 b

Prove that the two sequences are convergent and have the same limit.

apy1 = anbnv bn—H = n= 0.

336. Prove that for n > 2, the equation x” 4+ x — 1 = 0 has a unique root in the interval
[0, 1]. If x,, denotes this root, prove that the sequence (x,), is convergent and find
its limit.

337. Compute up to two decimal places the number

1+2\/1+2\/1+---+2\/1+2v1969,

where the expression contains 1969 square roots.

338. Find the positive real solutions to the equation

\/x+2\/x+~~+2\/x+2\/3x=x.
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339. Show that the sequence

v o R S v

converges, and evaluate its limit.

There is a vocabulary for translating the language of derivatives to the discrete frame-
work of sequences. The first derivative of a sequence (x;,),, usually called the first dif-
ference, is the sequence (Ax,), defined by Ax, = x,,+1 — x,. The second derivative, or
second difference, is A%x, = A(AX,) = Xp42 — 2Xp41 + Xn. A sequence is increasing
if the first derivative is positive; it is convex if the second derivative is positive. The
Cesaro—Stolz theorem, which we discuss below, is the discrete version of L’Hopital’s
theorem.

The Cesaro-Stolz Theorem. Let (x,), and (y,), be two sequences of real numbers with
(yu)n strictly positive, increasing, and unbounded. If
. Xn+1 — Xn
lim —
n=00 Ynt1 = Yn

—L,

then the limit

lim —
n—oo ))n

exists and is equal to L.

Proof. We apply the same €-§ argument as for L’Hopital’s theorem. We do the proof
only for L finite, the cases L = Fo00 being left to the reader.
Fix € > 0. There exists ng such that for n > ny,

€ — €
L——<M<L+—.
2 Yn+1 — Yn 2

Because y,+1 — y, = 0, this is equivalent to

€ €
(L - 5) nt1 = Yn) < Xpg1 — X < (L + E) (Yn+1 = Yn)-

We sum all these inequalities for n ranging between ny and m — 1, for some m. After
cancelling terms in the telescopic sums that arise, we obtain

€ €
(L-E) (Ym _yﬂo) < Xm — Xny < <L+§) m _y”())’

We divide by y,, and write the answer as
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L_i+(_Lm+i.m+@)<x_m<L+s+(_ m_s.m+@),
2 Ym 2 Ym Ym Ym 2 Ym 2 Ym o Ym

Because y, — 00, there exists n; > ng such that for m > n1, the absolute values of the
terms in the parentheses are less than % Hence form > ny,

Xm
L—e<—<L+e.
Ym
Since € was arbitrary, this proves that the sequence (’;—”)n converges to L. O

We continue this discussion with an application to Cesaro means. By definition, the
Cesaro means of a sequence (a,),> are
at+a+---+ay

Sy = , n>1.
n

Theorem. If (a,),>1 converges to L, then (s,),>1 also converges to L.

Proof. Apply the Cesaro-Stolz theorem to the sequences x, = a; +ax + - - - + a, and
v, =n,n > 1. O

The Cesaro—Stolz theorem can be used to solve the following problems.

340. If (u,), is a sequence of positive real numbers and if lim,,_, o “Z—*' =u > 0, then
lim,, 00 VU, = u.
341. Let p be areal number, p # 1. Compute
1P 2P 4 .o g P
m
n—00 np+l
342. Let 0 < xo < 1 and x,,41 = x, — x2 for n > 0. Compute lim,_, o 1X,,.
343. Let xo € [—1,1] and x,4y = x, — arcsin(sin® x,) for n > 0. Compute

lim,,_, o0 \/71X,,.

344. For an arbitrary number xo € (0, 7) define recursively the sequence (x,), by
Xny1 = sinx,, n > 0. Compute lim,,_, o \/71X,,.

345. Let f : R — R be a continuous function such that the sequence (a,),>o defined
by a, = fol f(n 4+ x)dx is convergent. Prove that the sequence (by,),>0, With
b, = fol f(nx)dx is also convergent.

346. Consider the polynomial P(x) = a,x™ + dp_1x™ '+ -+ ap, a; > 0,1 =

0,1,...,m. Denote by A, and G, the arithmetic and, respectively, geometric
means of the numbers P (1), P(2),..., P(n). Prove that
A, "
lim =% = —°
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347. Let k be an integer greater than 1. Suppose ag > 0, and define

1

a,

apy1 = ap +

for n > 0. Evaluate

_ a111€+1
lim -
n—oo n

We conclude the discussion about limits of sequences with the theorem of Georg
Cantor.

Cantor’s nested intervals theorem. Given a decreasing sequence of closed intervals
I DL D --- D1, D - with lengths converging to zero, the intersection N2 1,
consists of exactly one point.

This theorem is true in general if the intervals are replaced by closed and bounded
subsets of R” with diameters converging to zero. As an application of this theorem we
prove the compactness of a closed bounded interval. A set of real numbers is called
compact if from every family of open intervals that cover the set one can choose finitely
many that still cover it.

The Heine-Borel Theorem. A closed and bounded interval of real numbers is compact.

Proof. Let the interval be [a, b] and assume that for some family of open intervals (/)
that covers [a, b] one cannot choose finitely many that still cover it. We apply the
dichotomic (division into two parts) method. Cut the interval [a, b] in half. One of the
two intervals thus obtained cannot be covered by finitely many /,,’s. Call this interval J;.
Cut J; in half. One of the newly obtained intervals will again not be covered by finitely
many /,’s. Callit J,. Repeat the construction to obtain a decreasing sequence of intervals
J1 D J, D J3 D ---, with the length of J; equal to ”2;{’ and such that none of these
intervals can be covered by finitely many /,’s. By Cantor’s nested intervals theorem, the
intersection of the intervals Ji, k > 1, is some point x. This point belongs to an open
interval I, and so an entire e-neighborhood of x is in I,,. But then J; C I, for k large
enough, a contradiction. Hence our assumption was false, and a finite subcover always
exists. O

Recall that the same dichotomic method can be applied to show that any sequence
in a closed and bounded interval (and more generally in a compact metric space) has a
converent subsequence. And if you find the following problems demanding, remember
Charlie Chaplin’s words: “Failure is unimportant. It takes courage to make a fool of
yourself.”
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348. Let f : [a, b] — [a, b] be an increasing function. Show that there exists & € [a, b]
such that f(§) = &.

349. For every real number x; construct the sequence xi, x3, X3, ... by setting x,,1; =
X, (x, + %) for each n > 1. Prove that there exists exactly one value of x; for which
0 < x, < x,41 < 1 forevery n.

350. Given a sequence (a,), such that for any y > 1 the subsequence a,»| converges
to zero, does it follow that the sequence (a,), itself converges to zero?

351. Let f : (0, co) — R be a continuous function with the property that for any x > 0,
lim,_, o f(nx) = 0. Prove that lim,_, o, f(x) = 0.

3.1.5 Series

A series is a sum

oo
Zan:al+a2+...+a’l+..._

n=1

The first question asked about a series is whether it converges. Convergence can be
decided using Cauchy’s €-§ criterion, or by comparing it with another series. For com-
parison, two families of series are most useful:

(i) geometric series
L+x x4 x4

which converge if |x| < 1 and diverge otherwise, and
(ii) p-series
1

11
I TR TR RREE i LR

which converge if p > 1 and diverge otherwise.

The p-series corresponding to p = 1 is the harmonic series. Its truncation to the nth
term approximates In n. Let us use the harmonic series to answer the following question.

| sinn|

Example. Does the series Y~ | = converge?

Solution. The inequality | sin x| > —“2;“/5 holds if and only if % <{Z} < %, where {x}
1

denotes the fractional part of x (x — [x]). Because ; < %, it follows that for any n, either

| sinn| or | sin(n + 1)| is greater than —”22_‘/5 Therefore,
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Isinn| |sin(n + 1)] 2-V2 1
+ > : .
n n+1 - 2 n+1

Adding up these inequalities for all odd numbers n, we obtain

>, |sinn| 2-V2 &1 2 — ﬁ°°1
D D D e e D

n=1 n=1 n=1

Hence the series diverges. O

In fact, the so-called equidistribution criterion implies that if f : R — R is a
continuous periodic function with irrational period and if ), 'f;—")' < 00, then f is
identically zero.

The comparison with a geometric series gives rise to d’Alembert’s ratio test: Y -, dy,
converges if lim sup, | "“ | < 1 and diverges if liminf, |a”+1 | > 1. Here is a problem
of P. Erd6s from the Amencan Mathematical Monthly that apphes this test among other
things.

Example. Let (ny)r>1 be a strictly increasing sequence of positive integers with the
property that
n

lim —— = oo.
k—ooniny .- Ni_q

Prove that the series ) k=17 1s convergent and that its sum is an irrational number.

Solution. The relation from the statement implies in particular that n;; > 3n, fork > 3.
By the ratio test the series ) , i is convergent, since the ratio of two consecutive terms

is less than or equal to %
By way of contradiction, suppose that the sum of the series is a rational number g
Using the hypothesis we can find k > 3 such that

nj+1

——>3q, ifj=k
niny:---n;

Let us start with the obvious equality
p(niny---ng) = q(miny - - - ng) Z —.

From it we derive

gnny - qning .- -ng
p(niny---m) — Z Z -
j=1

j>k
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Clearly, the left-hand side of this equality is an integer. For the right-hand side, we have

anlnz ko gmima ke qminz ey Sl l+i+ _ I
Mit1 3nip 39 2

j>k
Here we used the fact that nn, - "i < —q and that n;,1 > 3n;, for j > k and k
sufficiently large. This shows that the right-hand side cannot be an integer, a contradiction.
It follows that the sum of the series is irrational. |
352. Show that the series

! + 2 + 4 + -+ 2 +
14+x  14+x%2 1+4x* 14 x%

converges when |x| > 1, and in this case find its sum.

353. For what positive x does the series

=D+ =D+ =D+ + =D+

converge?

354. Letay,ay,...,a,, ... be nonnegative numbers. Prove that Z:ozl a, < oo implies
> a1y < 0.

355. Let S = {x1, x2,..., X, ...} be the set of all positive integers that do not contain

the digit 9 in their decimal representation. Prove that
>4
— xn
356. Suppose that (x,), is a sequence of real numbers satisfying

1
Xnt1 < Xp + =, foralln > 1.
n

Prove that lim,,_, o, X, exists.
357. Does the series > -, sinw+/n? + 1 converge?

358. (a) Does there exist a pair of divergent series Y oo @n, > e by, witha; > ay >
ay > --->0and by > b, > b3 > --- > 0, such that the series Zn min(a,,, b,) is
convergent?

(b) Does the answer to this question change if we assume additionally that b, = %,
n=12,...7
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359.

360.

361.

362.

363.

364.

3 Real Analysis

Given a sequence (x,), with x; € (0, 1) and x,+1 = x,, — nx,% forn > 1, prove that
the series Y .- | x, is convergent.

Is the number
L
n=1 27
rational?

Let (a,),>0 be a strictly decreasing sequence of positive numbers, and let z be a
complex number of absolute value less than 1. Prove that the sum

ao+az+a + - +ad +

is not equal to zero.

Let w be an irrational number with 0 < w < 1. Prove that w has a unique
convergent expansion of the form

1 1 1 1
Po  PoPi1 boP1D2 poP1P2D3

where po, p1, p2, ... areintegers 1 < pp < py < pr <---.

The number g ranges over all possible powers with both the base and the exponent
positive integers greater than 1, assuming each such value only once. Prove that

1

— =1

q q_l

Prove that for any n > 2,

Z ! > Inlnn — 1.

p=<n,p prime P

Conclude that the sum of the reciprocals of all prime numbers is infinite.

3.1.6 Telescopic Series and Products

We mentioned earlier the idea of translating notions from differential and integral calculus
to sequences. For example, the derivative of (x,), is the sequence whose terms are
Xp+1 — Xn, 0 > 1, while the definite integral is the sum x; + xp + x3 + --- . The
Leibniz—Newton theorem
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b
/ f()dt = F(b) — F(a), where F'(t) = f(1),

becomes the telescopic method for summing a series
n
Zak:b,,+1—b1, Whereak:bk+1—bk, k> 1.
1

As in the case of integrals, when applying the telescopic method to a series, the struggle is
to find the “antiderivative” of the general term. But compared to the case of integrals, here
we lack an algorithmic way. This is what makes such problems attractive for mathematics
competitions. A simple example that comes to mind is the following.

Example. Find the sum

1 1 1
itz e T mevaEr

Solution. The “antiderivative” of the general term of the sum is found by rationalizing
the denominator:

1  Vk+1-Vk
VE+VEFT k+1—k

The sum is therefore equal to
V2-VD+ W3-V + -+t 1-Vn)=vVn+1-1. o

Not all problems are so simple, as the next two examples show.

JEFT - VR

2
Example. Letay = 1,a, =3, app1 = a"—;l, n > 1. Prove that

Ly by
a0+1 a1+1 an+l an+1—1

=1, foralln > 1.

Solution. We have

a1 — 1=

SO

1 1 1
= — , fork>1.
ag+1 — 1 a, — 1 a;, + 1

This allows us to express the terms of the sum from the statement as “derivatives’:
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1 1 1
= — , fork>1.
a;, + 1 a, — 1 ar+1 — 1
Summing up these equalities for k = 1,2, ..., n yields
1 T 1 1 n 1 1
ar+1 a,,—i—l_al—l a, — 1 a, — 1 az; — 1
n 1 1 1 1
ap—1 ap—1 2 -1
Finally, add —— + —L— to both sides to obtain the identity from the statement.

ap+1 ant1—1

Example. Express
1

i Vn++/n?—1
as a + b~/2 for some integers a and b.

Solution. We have

Hence the sum from the statement telescopes to

49 + 1 \/48+1 \/T 7 1
+ — /2 -0=54+———=543V2.
\/ 2 2 2 V2 V2

Apply the telescopic method to the following problems.

365. Prove the identity

> &+ Dk =n(n + D).
k=1

366. Let ¢ be a root of unity. Prove that

=A== (1=,

n=0

with the convention that the Oth term of the series is 1.

O

O



367.

368.

369.

370.

371.

372.

373.

374.

3.1 Sequences and Series

For a nonnegative integer k, define S;(n) = 1¥ + 2K 4 ... 4+ n*. Prove that

r—1
1+ (;)Sk(n) —(+1).
k=0

Let

dn + /4n? — 1
2n4+1+/2n -1

Prove that a; 4+ a, + - - - 4+ a4 is a positive integer.

a, = , forn>1.

Prove that

2": ( 1)k+1 B n
12222432 — oo (= 1)kF1E2 Tn41

k=1
Prove that

9999

1
;(\/ﬁ+«/n+1)((‘/ﬁ+«/4n+l) B

Leta, = /14 1+ 52+ /141 =12 n > 1. Prove that

1 1 1
a a ano

is a positive integer.
Evaluate in closed form
2 - m!n!
Z Z (m+n+2)

m=0 n=0

Leta, = 3n + +/n? — land b, = 2(v/n? —n + +/n%2 +n), n > 1. Show that

Var—bi+vay —by+ -+ Jaw —bi = A+ B2,

for some integers A and B.

Evaluate in closed form

n

PG IR SUCESIN

k=0

123
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2
375. Letayp = 1994 and a,,, = a:ﬁ for each nonnegative integer n. Prove that for
0 < n <998, the number 1994 — n is the greatest integer less than or equal to a,,.

376. Fix k a positive integer and define the sequence

a, = L(k+\/k2+1)"+(%> J n>0.

Prove that

The telescopic method can be applied to products as well. Within the first, relatively
easy, problem, the reader will recognize in disguise the Fermat numbers 2%* 4+ 1, n > 1.

Example. Define the sequence (a,), by ap = 3, and a,+1 = apa,---a, + 2, n > 0.
Prove that

apy1 =2(ap— )@ —1)---(a,—1)+1, foralln > 0.

Solution. The recurrence relation gives apa; - - - ax—1 = ax — 2, k > 1. Substitute this
in the formula for a;,; to obtain ay.1 = (ay — 2)a, + 2, which can be written as
ars1 — 1 = (ap — 1)%. And so

are1 — 1
— =q;— 1.
ay — 1
Multiplying these relations for k = 0, 1, ..., n, we obtain
apr1—1 a,—1 a — 1

= (an — D@1 — 1) -+~ (ao — D).

a, — 1 an_l—l' .ao—l
Since the left-hand side telescopes, we obtain

ane — 1
2 —(ap—)(ar — 1) (@, — 1),
ap -1

and the identity follows. m|
A more difficult problem is the following.

Example. Compute the product

where F), is the nth Fibonacci number.
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Solution. Recall that the Fibonacci numbers satisfy the Cassini identity

FupFooy — F = (=1)".

Hence
o] N N
(=D" . F2+ (=1)" ) Foo1 Fuya
1 =1 S 7 =] .
( ) i e =
. FoFnq . Fnn
= lim ———— = lim .
N—-oo FiFy N—ooo Fy

Because of the Binet formula

1 1+ ﬁ n+1 1— ﬁ n+1
F,=— — , forn >0,
V5 2 2

the above limit is equal to 1+T‘6 O

(-5)0-0-3)-

378. Let x be a positive number less than 1. Compute the product

377. Compute the product

o0

TT0+x%).

n=0

379. Let x be a real number. Define the sequence (x,),> recursively by x; = 1 and
Xp+1 = X" + nx, for n > 1. Prove that

ﬁ(l— l ):f‘.

Xn+1

3.2 Continuity, Derivatives, and Integrals

3.2.1 Limits of Functions

Among the various ways to find the limit of a function, the most basic is the definition
itself.
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Definition. For xy an accumulation point of the domain of a function f, we say that
lim,_,,, f(x) = L if for every neighborhood V of L, there is a neighborhood U of x
such that f(U) C V.

This definition is, however, seldom used in applications. Instead, it is more customary
to use operations with limits, the squeezing principle (if f(x) < g(x) < h(x) for all x and
lim,_,,, f(x) =lim,_,,, h(x) = L, then lim,_,, g(x) = L), continuity, or L’Hopital’s
theorem, to be discussed later.

Example. Compute

xlingo< x—i-\/x—i-x/;—«/;).

Solution. The usual algorithm is to multiply and divide by the conjugate to obtain

lim (,/x+\/x+\/}—«/z)= lim VARV

TR xS+ U

= lim Y+ = lim = —. O

X—00 X—00 2
X+ VX /x+Vx N
3

X

And now an example of type 1*°.

Example. Letay, a,, ..., a, be positive real numbers. Prove that

1
. f(ai+ay+ - t+a,\*
lim ( ! 2 ") = Yajay - a,.
x—0 n
Solution. First, note that

oat—1
lim
x—0 X

=Ina.

Indeed, the left-hand side can be recognized as the derivative of the exponential at 0. Or
to avoid a logical vicious circle, we can argue as follows: leta®* = 1+ ¢, witht — 0.

Then x = %, and the limit becomes

. tlna . Ina Ina
im——— =lim—— - = =
t—0 111(1 -|-l‘) t—0 11‘1(1 +t)t Ine
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Let us return to the problem. Because the limit is of the form 1°°, it is standard to
write it as

n aj +a5 +txy —n
: aic + ag + -4 a; —n\ g+ +otag-n’ nx
_|_
n

lim
x—0

Using the fact that lim,_,o(1 + #)!/! = e, we find this to be equal to

exp[lim (al +a, +---+a, —n)]

x—0 nx

1 T—1 5 —1 r—1
=exp[—lim (al +a2 +-~+a” >]
n x—0 x X X

1
= exp |:; (Ina; +Ina, +'--+lnan):| = Yaay---ay,,

the desired answer. O

We continue with a problem of theoretical flavor that requires an €-§ argument.
Written by M. Becheanu it was given at a Romanian competition in 2004.

Example. Let a € (0, 1) be a real number and f : R — R a function that satisfies the
following conditions:

(@) limyo f(x) =0;

(if) lim, oo L2210 = 0.

Show that lim,_, o, ££ = 0.

X

Solution. The second condition reads, for any € > 0, there exists § > 0 such that if
x € (—=6,0) then | f(x) — f(ax)| < €|x|. Applying the triangle inequality, we find that
for all positive integers n and all x € (34, §),

£ =@ )] < 1f(x) = f@x)] + | fax) = f@)| + -+ | f(@"'x) = f(a"x)]|

n

1— €
cex|(+ata’+4a ) =e—D x| < 1x].
1—a 1—a

Taking the limit as n — 0o, we obtain

€

|f(0)] <

X].
"

Since € > 0 was arbitrary, this proves that lim,_, o, ! ix) =0. O

380. Find the real parameters m and n such that the graph of the function f(x) =
V/8x3 4+ mx? — nx has the horizontal asymptote y = 1.
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381. Does

. . 1
lim (sin x)cosx
x—m/2

exist?

382. For two positive integers m and n, compute

. /Cosx — J/COoSXx
lim .
x—0 x2

383. Does there exist a nonconstant function f : (1, 00) — R satisfying the relation

fx) = f(’%) for all x > 1 and such that lim,_, o, f(x) exists?

384. Let f : (0, 00) — (0, 00) be an increasing function with lim,_, o ff%’)) =
f(mt)

f@®

that lim,_, o, = 1forany m > 0.

= 1. Prove

385. Let f(x) = ZZ=1 ay sin kx, with ay, as, ...,a, € R, n > 1. Prove that if f(x) <

| sin x| for all x € R, then

<1

Xn: kak
k=1

3.2.2 Continuous Functions

A function f is continuous at xy if it has limit at xy and this limit is equal to f(xp). A

function that is continuous at every point of its domain is simply called continuous.
Example. Find all continuous functions f : R — R satisfying f(0) = 1 and
f@2x)— f(x) =x, forallx € R.
Solution. Write the functional equation as
fo-1(3) =5

then iterate
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Summing up, we obtain

s () =s (1o k)

which, when n tends to infinity, becomes f(x) — 1 = x. Hence f(x) = x + 1 is the
(unique) solution. m|

We will now present the spectacular example of a continuous curve that covers a
square completely. A planar curve ¢(t) = (x(¢), y(¢)) is called continuous if both
coordinate functions x (¢) and y(¢) depend continuously on the parameter ¢.

Peano’s theorem. There exists a continuous surjection ¢ : [0, 1] — [0, 1] x [0, 1].

Proof. G. Peano found an example of such a function in the early twentieth century. The
curve presented below was constructed later by H. Lebesgue.

The construction of this “Peano curve” uses the Cantor set. This is the set C of all
numbers in the interval [0, 1] that can be written in base 3 with only the digits 0 and
2. For example, 0.1 is in C because it can also be written as 0.0222. .., but 0.101 is
not. The Cantor set is obtained by removing from [0, 1] the interval (%, %), then (%, %
and (g, g), then successively from each newly formed closed interval an open interval
centered at its midpoint and % of its size (Figure 19). The Cantor set is a fractal: each

time we cut a piece of it and magnify it, the piece resembles the original set.

Figure 19

Next, we define a function ¢ : C — [0, 1] x [0, 1] in the following manner. For a
number written in base 3 as 0.a1a; . . . a, ... with only the digits 0 and 2 (hence in the Can-
tor set), divide the digits by 2, then separate the ones in even positions from those in odd
positions. Explicitly, if b, = %, n > 1, construct the pair (0.b1b3bs ..., 0.bybsbs . . . ).
This should be interpreted as a point in [0, 1] x [0, 1] with coordinates written in base
2. Then ¢ (0.a1axazay ...) = (0.b1bs ..., 0.byby .. .). The function is clearly onto. Is it
continuous?

First, what does continuity mean in this case? It means that whenever a sequence
(x,)n in C converges to a point x € C, the sequence (¢ (x,)), should converge to ¢ (x).
Note that since the complement of C is a union of open intervals, C contains all its limit
points. Moreover, the Cantor set has the very important property that a sequence (x,),
of points in it converges to x € C if and only if the base-3 digits of x,, successively
become equal to the digits of x. It is essential that the base-3 digits of a number in C
can equal only O or 2, so that the ambiguity of the ternary expansion is eliminated. This
fundamental property of the Cantor set guarantees the continuity of ¢.
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The function ¢ is extended linearly over each open interval that was removed in the

process of constructing C, to obtain a continuous surjection ¢ : [0, 1] — [0, 1] x [0, 1].
This concludes the proof of the theorem. O

To visualize this Peano curve, consider the “truncations’ of the Cantor set

1 2 121278
Cl: 07_’_51 ) C2: 07_7_7_7_7_7_91 )

3°3 993399
C3: O’_’_’_a_9_7_7_’_a_a_$_7_’_’_’1
272799 27 27 3 327 279 9 27 27
C_012127812192078252612
YT 81°81°27°27°81°81°9°9°81°81°27°27°81°81° 33
55 56 19 20 61 62 7 8 73 74 25 26 79 80 }

1 212 7 8121920782526}

81781727727 8178179797 81" 81" 27 27 81 81’

and define ¢, : C, — [0, 1] x [0, 1], n > 1, as above, and then extend linearly. This
gives rise to the curves from Figure 20. The curve ¢ is their limit. It is a fractal: if we
cut the unit square into four equal squares, the curve restricted to each of these squares
resembles the original curve.

386.

387.

388.

389.

n=1 n=2 n=3 n=4
Figure 20

Let f : R — R be a continuous function satisfying f(x) = f(x?) for all x € R.
Prove that f is constant.

Does there exist a continuous function f : [0, 1] — R that assumes every element
of its range an even (finite) number of times?

Let f(x) be a continuous function defined on [0, 1] such that
1) fO)=rf1)=0;

(i) 2/ () + f(y) = 3f () forall x, y € [0, 1].

Prove that f(x) = 0 for all x € [0, 1].

Let f : R — R be a continuous function with the property that

. f(x4+2h) — f(x+h)
lim =
h—0+ h

0, forallx € R.

Prove that f is constant.
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390. Let a and b be real numbers in the interval (O, %) and let f be a continuous real-
valued function such that

f(f(x)) =af(x) +bx, forallx eR.

Prove that f(0) = 0.

391. Let f : [0,1] — R be a continuous function. Prove that the series Zflozl A (;fln) is
convergent for every x € [0, 1]. Find a function f satisfying

fo=Y" f(;n), for all x € [0, 1].
n=1

392. Prove that there exists a continuous surjective function ¢ : [0, 1] — [0, 1] x [0, 1]
that takes each value infinitely many times.

393. Give an example of a continuous function on an interval that is nowhere differen-
tiable.

3.2.3 The Intermediate Value Property

A real-valued function f defined on an interval is said to have the intermediate value
property (or the Darboux property) if for every a < b in the interval and for every A
between f(a) and f(b), there exists ¢ between a and b such that f(c) = A. Equivalently,
a real-valued function has the intermediate property if it maps intervals to intervals. The
higher-dimensional analogue requires the function to map connected sets to connected
sets. Continuous functions and derivatives of functions are known to have this property,
although the class of functions with the intermediate value property is considerably larger.

Here is a problem from the 1982 Romanian Mathematical Olympiad, proposed by
M. Chirita.

Example. Let f : [0,1] — R be a continuous function with the property that
fol fx)dx = %. Prove that there exists xo € (0, 1) such that

1
1+ xo <f(x0)<2—xo-

1
1
f dxzz.
0 1+X2 4
1

Consequently, the integral of the function g(x) = f(x) — ; —2 on the interval [0, 1] is
equalto 0. If g(x) isidentically 0, choose x( to be any number between 0 and 1. Otherwise,

Solution. Note that
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g(x) assumes both positive and negative values on this interval. Being continuous, g
has the intermediate value property, so there is some xy € (0, 1) for which g(xp) = 0.
We have thus found x, € (0, 1) such that f(xy) = ——. The double inequality from the

H—xé :
statement follows from 2xy < 1 + xg < 1 + x¢, which clearly holds since on the one
hand, xé —2x0+1=(xg— 1)2 > 0, and on the other, xg < Xp. O

Example. Prove that every continuous mapping of a circle into a line carries some pair
of diametrically opposite points to the same point.

Solution. Yes, this problem uses the intermediate value property, or rather the more
general property that the image through a continuous map of a connected set is connected.
The circle is connected, so its image must be an interval. This follows from a more
elementary argument, if we think of the circle as the gluing of two intervals along their
endpoints. The image of each interval is another interval, and the two images overlap,
determining an interval.

Identify the circle with the set S! = {z € C | |z| = 1}. If f : S — R is the
continuous mapping from the statement, then ¢ : §' — R, ¥/ (z) = f(z) — f(—2) is also
continuous (here the bar denotes the complex conjugate, and as such, —z is diametrically
opposite to z).

Pick zo € S'. If ¥(z9) = 0, then zy and —Z; map to the same point on the line.
Otherwise,

¥ (=20) = f(=20) — f(2) = =¥ (20)-

Hence 1 takes a positive and a negative value, and by the intermediate value property it
must have a zero. The property is proved. O

A more difficult theorem of Borsuk and Ulam states that any continuous map of the
sphere into the plane sends two antipodal points on the sphere to the same point in the
plane. A nice interpretation of this fact is that at any time there are two antipodal points
on earth with the same temperature and barometric pressure.

We conclude our list of examples with a surprising fact discovered by Lebesgue.

Theorem. There exists a function f : [0, 1] — [0, 1] that has the intermediate value
property and is discontinuous at every point.

Proof. Lebesgue’s function acts like an automaton. The value at a certain point is pro-
duced from information read from the digital expansion of the variable.

The automaton starts acting once it detects that all even-order digits have be-
come 0. More precisely, if x = 0.apaia; ..., the automaton starts acting once
ay, = 0 for all k > n. It then reads the odd-order digits and produces the value
f(x) = 0.a2,41a2143a20+5 - - . . If the even-order digits do not eventually become zero,
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the automaton remains inactive, producing the value 0. Because only the rightmost dig-
its of the numbers count, for any value of y and any interval I C [0, 1], one can find a
number x € [ such that f(x) = y. Hence the function f maps any subinterval of [0, 1]
onto [0, 1]. It satisfies the intermediate value property trivially. And because any neigh-
borhood of a point is mapped to the entire interval [0, 1], the function is discontinuous
everywhere. O

As the poet Paul Valéry said: “a dangerous state is to think that you understand.” To
make sure that you do understand the intermediate value property, solve the following
problems.

394. Let f : [a, b] — [a, b] be a continuous function. Prove that f has a fixed point.

395. One day, a Buddhist monk climbed from the valley to the temple up on the mountain.
The next day, the monk came down, on the same trail and during the same time
interval. Prove that there is a point on the trail that the monk reached at precisely
the same moment of time on the two days.

396. Let f : R — R be a continuous decreasing function. Prove that the system

x = f(y),
y = f(2),
z=f(x)

has a unique solution.

397. Let f : R — R be a continuous function such that | f(x) — f(y)| > |x — y| for all
x,y € R. Prove that the range of f is all of R.

398. A cross-country runner runs a six-mile course in 30 minutes. Prove that somewhere
along the course the runner ran a mile in exactly 5 minutes.

399. Let A and B be two cities connected by two different roads. Suppose that two cars
can travel from A to B on different roads keeping a distance that does not exceed
one mile between them. Is it possible for the cars to travel the first one from A to
B and the second one from B to A in such a way that the distance between them is
always greater than one mile?

400. Let
B n k _ n ak k
P(x)_Zakx and Q(x)_zzk_ lx ,
k=1 k=1
where ay, ay, . . ., a, are real numbers, n > 1. Show that if 1 and 2"t! are zeros of

the polynomial Q(x), then P(x) has a positive zero less than 2".
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401. Prove that any convex polygonal surface can be divided by two perpendicular lines
into four regions of equal area.

402. Let f : I — R be a function defined on an interval. Show that if f has the
intermediate value property and for any y € R the set f~!(y) is closed, then f is
continuous.

403. Show that the function

cosi forx #£0,
Ja(x) = * *

a forx =0,

has the intermediate value property if @ € [—1, 1] but is the derivative of a function
only ifa = 0.

3.2.4 Derivatives and Their Applications

A function f defined in an open interval containing the point x is called differentiable
at xg if

i fxo+h)— f(xo)
im
h—0 h

exists. In this case, the limit is called the derivative of f at xq and is denoted by f'(xo)
or %(xo). If the derivative is defined at every point of the domain of f, then f is simply
called differentiable.

The derivative is the instantaneous rate of change. Geometrically, it is the slope of
the tangent to the graph of the function. Because of this, where the derivative is positive
the function is increasing, where the derivative is negative the function is decreasing, and
on intervals where the derivative is zero the function is constant. Moreover, the maxima
and minima of a differentiable function show up at points where the derivative is zero,
the so-called critical points.

Let us present some applications of derivatives. We begin with an observation made
by F. Pop during the grading of USA Mathematical Olympiad 1997 about a student’s
solution. The student reduced one of the problems to a certain inequality, and the question
was whether this inequality is easy or difficult to prove. Here is the inequality and Pop’s
argument.

Example. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

A+ +<ad+b+c0.
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Solution. We prove that the function
f@®)y=a +b +¢
is increasing for r > 0. Its first derivative is
f'®)=a"na+b'Inb+c"Inc,

for which we can tell only that f'(0) = Inabc = In1 = 0. However, the second
derivative is (1) = a'In*a + b' In* b + ¢ In? ¢, which is clearly positive. We thus
deduce that f” is increasing, and so f'(¢) > f’(0) = O for ¢t > 0. Therefore, f itself is
increasing for ¢+ > 0, and the conclusion follows. O

And now an exciting example found in D. Bugneag, 1. Maftei, Themes for Mathematics
Circles and Contests (Scrisul Roméanesc, Craiova).

Example. Prove that

l4+a 1 --- 1
1 1+ap--- 1 1 1 1
. mamea (T — )
: : . : a a a,
1 1 ...1+an

Solution. In general, if the entries of a matrix depend in a differentiable manner on a
parameter x,

ay(x) app(x) -+ ap(x)
a1 (x) axn(x) -+ ax(x)
a1 (x) an2(x) tee ann(x)

then the determinant is a differentiable function of x, and its derivative is equal to

ay, (x) aj,(x) -+ - aj, (x) aj(x) ap(x) -+ ap(x)

a1 (x) an(x) -+ axy(x) ah, (x) ay(x) - -+ aj,(x)
+| 7. i o+

an1(X) apa(x) -+ app(x) an1(X) apa(x) -+ App(x)

ap(x) ap(x) -+ ap(x)

az (x) axp(x) -+ az(x)

a;l(x) a)/12(x) a;zzz(x)
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This follows by applying the product rule to the formula of the determinant. For our
problem, consider the function

XxX+a x .- X
X Xx—4+a--- X
fx) =
X x - x+4a,
Its first derivative is
1 1 ... 1 xX+a x--- x
, XxXx4+a--- X 1 1--. 1
Foy=" L+
X x ---Xx—4a, X x---x+a,
X+a x X
X x4+a -+ x
+
1 1 1

Proceeding one step further, we see that the second derivative of f consists of two types
of determinants: some that have a row of 0’s, and others that have two rows of 1’s. In
both cases the determinants are equal to zero, showing that f”(x) = 0. It follows that f
itself must be a linear function,

f) = fO)+ fO)x.

One finds immediately that f(0) = aja; - - - a,. To compute

11---1 a0--- 0 a; 0 ---0
Oay--- 0 11---1 0a -0
ffO=\ . |+ |
00 - a, 00 a, 11---1

expand each determinant along the row of 1’s. The answer is
'O =aaz---a,+aiaz---a, +---+araz- a1,

whence

1 1 1
f(x)=ala2..-an |:1+<——{——++_>x:|

ai ap ap

Substituting x = 1, we obtain the formula from the statement. O
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For a nonzero real number x prove that e* > x 4 1.

Find all positive real solutions to the equation 2* = x2.

Let f: R — Rbegivenby f(x) = (x —a)(x —ay) + (x —ax)(x —a3) + (x —
az)(x — ay) with ay, ay, a; real numbers. Prove that f(x) > 0O for all real numbers
x if and only if a; = ap = a;3.

Determine
max |25 —z+2|.
z2€C,|z|=1
Find the minimum of the function f : R — R,

(x2—x+1)3
x6—x34+1"

fx) =

How many real solutions does the equation
e e X
sin(sin(sin(sin(sin x)))) = 3

have?

Let f : R — R be a continuous function. For x € R we define

g(x) = f(X)/O f@)dt.

Show that if g is a nonincreasing function, then f is identically equal to zero.

Let f be a function having a continuous derivative on [0, 1] and with the property
that 0 < f/(x) < 1. Also, suppose that f(0) = 0. Prove that

1 2 1
[ / f(x)dx] > f [F (o Pdx.
0 0

Give an example in which equality occurs.

Let x, y, z be nonnegative real numbers. Prove that
(@) (x+y+2)™ Ty < 0+ )T+ @+ )T 2
(B) (x 4y + 2)EHH7 13727 > (x 4 )& (y 4 )0+ (7 4 x) @O,

Derivatives have an important application to the computation of limits.

I’Hopital’s rule. For an open interval I, if the functions f and g are differentiable on
I\{xo}, g'(x) # 0 for x € I, x # xo, and either lim,_,,, f(x) = lim,_,,, g(x) = 0
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orlim,_,,, | f(x)| = lim,_,, |g(x)| = oo, and if additionally lim,_, ,, L& exists, then

g'(x)
fx)

lim,_, o) exists and

fo )

lim im — .
=0 g(x) | a—w g'(x)

Let us see how L’Hopital’s rule is applied.

Example. Prove that if f : R — R is a differentiable function with the property that
lim,_, o f(x) exists and is finite, and if lim,_, o, xf’(x) exists, then this limit is equal
to zero.

Solution. If the limit lim, _, o, x f'(x) exists, then so does lim,_, o, (xf (x))’, and the latter
is equal to lim,_, o f(x) + lim,_, o xf’'(x). Applying L’Hoépital’s rule yields

/
lim (xf(x)) = lim M — tim Y him ),
X—> 00 X—> 00 X X—> 00 X X—> 00
Therefore,
lim f(x) = lim f(x)+ lim xf’(x),
X—> 00 X—> 00 X—>0
and it follows that lim,_, .. xf'(x) = 0, as desired. |

More problems follow.

413. Let f and g be n-times continuously differentiable functions in a neighborhood of
a point a, such that f(a) = g(a) = a, f'(a) = g'(a), ..., f" V() = g" V(a),
and £ (a) # g™ (a). Find, in terms of o,
ol ) _ e
lim —.
x=a f(x) — g(x)
414. For any real number A > 1, denote by f(A) the real solution to the equation
x(1 4+ Inx) = A. Prove that

A
lim fi o1,
A—>o0 L

InA

3.2.5 The Mean Value Theorem

In the old days, when mathematicians were searching for methods to solve polynomial
equations, an essential tool was Rolle’s theorem.
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Rolle’s theorem. If f : [a, b] — R is continuous on [a, b), differentiable on (a, b), and
satisfies f(a) = f(b), then there exists ¢ € (a, b) such that f'(c) = 0.

Its standard use was on problems like the following.

Example. Prove that the Legendre polynomial

n

d 2 n
Py(x) = x"=1)

dxn

has n distinct zeros in the interval (—1, 1).

Solution. Consider the polynomial function Q,(x) = (x> — 1)". Its zeros x = 1 and
x = —1 have multiplicity n. Therefore, for every k < n, the kth derivative Q©'(x) has
1 and —1 as zeros. We prove by induction on k that for 1 < k < n, Q% (x) has k distinct
zeros in (—1, 1).

By Rolle’s theorem this is true for k = 1. Assume that the property is true for k < n,
and let us prove it for k + 1. The polynomial Q® (x) has k + 2 zeros xog = —1 <
X1 < ---x; < x;41 = 1. By Rolle’s theorem, between any two consecutive zeros of the
function there is a zero of the derivative Q,(lk“)(x). Hence Q,(lk“)(x) has k + 1 distinct
zeros between —1 and 1. This completes the induction.

In particular, Q™ (x) = P,(x) has n distinct zeros between —1 and 1, as desired. O

Rolle’s theorem applied to the function ¢ : [a, b] — R,

J&x) g1
¢(x) =|f(a)ga) 1|,
f(b) gb) 1

yields the following theorem.

Cauchy’s theorem. If f, g : [a,b] — R are two functions, continuous on |a, b] and
differentiable on (a, b), then there exists a point ¢ € (a, b) such that

(f () — f(a)g'(c) = (g(b) — g(@)) f'(c).
In the particular case g(x) = x, we have the following.

The mean value theorem (Lagrange). If f : [a, b] — R is a function that is continu-
ous on |a, b] and differentiable on (a, b), then there exists ¢ € (a, b) such that

) - f@
i

f'e) =~

We use the mean value theorem to solve a problem of D. Andrica.
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Example. Let f : R — R be a twice-differentiable function, with positive second
derivative. Prove that

fx+ fl0)) = fl,
for any real number x.

Solution. If x is such that f’(x) = 0, then the relation holds with equality. If for a certain
x, f'(x) < 0, then the mean value theorem applied on the interval [x + f'(x), x] yields

f@) = fx+ f/(0)) = fo(=fx),

for some ¢ with x + f’(x) < ¢ < x. Because the second derivative is positive, f’ is
increasing; hence f'(c) < f'(x) < 0. Therefore, f(x) — f(x + f'(x)) < 0, which
yields the required inequality.

Inthe case f'(x) > 0, by the same argument f (x+ f'(x))— f(x) = f'(x) f'(c) forc
between x and x+ f'(x),and f'(c) > f'(x) > 0. Weobtainagain f(x)— f (x+ f'(x)) <
0, as desired. O

Example. Find all real solutions to the equation
446" =5 +5°.

Solution. This problem was given at the 1984 Romanian Mathematical Olympiad, being
proposed by M. Chiritd. The solution runs as follows.

Note that x = 0 and x = 1 satisfy the equation from the statement. Are there other
solutions? The answer is no, but to prove it we use the amazing idea of treating the
numbers 4, 5, 6 as variables and the presumably new solution x as a constant.

Thus let us consider the function f(t) = * + (10 — ¢)*. The fact that x satisfies the
equation from the statement translates to f(5) = f(6). By Rolle’s theorem there exists
¢ € (5, 6), such that f'(c) = 0. This means that x2¢*~! — x(10 — ¢)*~! = 0, or

xet Tl = (10 — ¢)* L.

Because exponentials are positive, this implies that x is positive.

If x > 1, then xS ol s el s (10 — ¢)*~!, which is impossible since the
first and the last terms in this chain of inequalities are equal. Here we used the fact that
c>5.

If0 < x < 1, thenxc™ ! < xc*~!. Let us prove that xc*~! < (10— ¢)*~!. With the
substitution y = x — 1, y € (—1, 0), the inequality can be rewritten as y + 1 < (IOT_C)Y .
The exponential has base less than 1, so it is decreasing, while the linear function on the
left is increasing. The two meet at y = 0. The inequality follows. Using it we conclude
again that xc** =1 cannot be equal to (10 — ¢)*~!. This shows that a third solution to the
equation from the statement does not exist. So the only solutions to the given equation
arex =0and x = 1. O
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Below you will find a variety of problems based on the above-mentioned theorems
(Rolle, Lagrange, Cauchy). Try to solve them, remembering that “good judgment comes
from experience, and experience comes from bad judgment” (Barry LePatner).

415. Prove that not all zeros of the polynomial P (x) = x* — v/7x +4x? — /22x + 15
are real.

416. Let f : [a, b] — R be a function, continuous on [a, b] and differentiable on (a, b).
Prove that if there exists ¢ € (a, b) such that

fb) — f(c) -
fe) = f(a) ’
then there exists & € (a, b) such that f'(§) = 0.
417. For x > 2 prove the inequality

T
—xcos— > 1.
X

(x + 1) cos d
x+1

418. Letn > 1 be an integer, and let f : [a, b] — R be a continuous function, n-times
differentiable on (a, b), with the property that the graph of f has n + 1 collinear
points. Prove that there exists a point ¢ € (a, b) with the property that £ (c) = 0.

419. Let f : [a, b] — R be a function, continuous on [a, b] and differentiable on (a, b).
Let M («, B) be a point on the line passing through the points (a, f(a)) and (b, f (b))
with « ¢ [a, b]. Prove that there exists a line passing through M that is tangent to
the graph of f.

420. Let f : [a, b] — R be a function, continuous on [a, b] and twice differentiable on
(a,b). If f(a) = f(b) and f'(a) = f’'(b), prove that for every real number A the
equation

f1@) = a(f@)* =0
has at least one solution in the interval (a, b).
421. Prove that there are no positive numbers x and y such that
X2V 4+ 927 =x 4 y.

422. Let « be a real number such that n® is an integer for every positive integer n. Prove
that « is a nonnegative integer.

423. Find all real solutions to the equation
6" +1=28" —27""

424. Let P(x) be a polynomial with real coefficients such that for every positive integer
n, the equation P (x) = n has at least one rational root. Prove that P(x) = ax + b
with a and b rational numbers.
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3.2.6 Convex Functions

A function is called convex if any segment with endpoints on its graph lies above the
graph itself. The picture you should have in mind is Figure 21. Formally, if D is an
interval of the real axis, or more generally a convex subset of a vector space, then a
function f : D — R is called convex if

FOx+(1—2)y) <Af@x) + (1 =2 f(Q»), forallx,ye D, xre0,1).

Here we should remember that a set D is called convex if forany x, y € Dand A € (0, 1)
the point Ax 4+ (1 — A)y is also in D, which geometrically means that D is an intersection
of half-spaces.

Af)+1-Mf(y)

JOx+(1-1)y)

X Ax+(1-N)y y

Figure 21

A function f is called concave if — f is convex. If f is both convex and concave,
then f is linear, i.e., f(x) = ax + b for some constants a and b.

Proposition. A twice-differentiable function on an interval is convex if and only if its
second derivative is nonnegative.

In general, a twice-differentiable function defined on a convex domain in R" is convex
if at any point its Hessian matrix is semipositive definite. This is a way of saying that
modulo a local change of coordinates, around each point the function f is of the form

F@ Xay ooy X)) = d(X1, Xay ooy X)) F X7+ X7+ X

where k < n and ¢ (x1, x5, ..., x,) is linear.
As an application, we use convexity to prove Holder’s inequality.

Holder’s inequality. Ifx(, x2, ..., X4, Y1, Y2, - - -, Y, P, and q are positive numbers with
% + % =1, then
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n n 1/p n 1/q
Sy = (zxf) (zyf) ,
i=1 i=1 i=1

with equality if and only if the two vectors (xi, x2, ..., %x,) and (¥1, y2, ..., Y,) are
parallel.

Proof. The second derivative of f : (0,00) — R, f(x) =1Inx,is f’(x) = —Xiz, which
is negative. So this function is concave. Setting A = %, we obtain

Upoise | 1 1.1
InX/?Y/"=—InX+-InY<hh|—-X+-Y), forallX,Y >0;
p q p q

hence
Upol 1 1
x'ryle < —x 4 —v.
p q
Using this fact, if welet X = ), x/ and Y =), y/, then

n n

1 . xip e yl-q Ha 1 xip
WZy_Z(Y> y) =2 %+

i=1 i=1

(5+3)
=(-+-)=1
P oq

n n 1/p n 1/q
i=1

i=1

~ <
SN———"

Q| =

Hence

and the inequality is proved. O

By analogy, a sequence (a,),>0 is called convex if

Ay + Gy
a, < 21 foralln > 1,
2
and concave if (—a,), is convex. Equivalently, a sequence is convex if its second
difference (derivative) is nonnegative, and concave if its second difference is nonpositive.
The following example motivates why convex sequences and functions should be studied

together.
Example. Let (a,), be a bounded convex sequence. Prove that

lim (@, 41 —a,) = 0.
n—00



144 3 Real Analysis

Solution. Abounded convex function on (0, 0o) has a horizontal asymptote, so its deriva-
tive tends to zero at infinity. Our problem is the discrete version of this result. The first
derivative of the sequence is b, = a,+; — a,, n > 1. The convexity condition can be
written as a,.1 — a, > a, — a,_,, which shows that (b,), is increasing. Since (a,), is
bounded, (b,), is bounded too, and being monotonic, by the Weierstrass theorem it con-
verges at a finite limit L. If L > 0, then b,, eventually becomes positive, so a, becomes
increasing because it has a positive derivative. Again by the Weierstrass theorem, a,
converges to some limit /, and then L = [ — [ = 0, a contradiction. A similar argument
rules out the case L < 0. We are left with the only possibility L = 0. O

And now some problems.

425. Let x;, x2, ..., x, be real numbers. Find the real numbers a that minimize the
expression

la — x|+ |a— x|+ -4 |a— x|
426. Leta, b > 0 and x, ¢ > 1. Prove that
(ab)c/2

c C
x4 4 x> 2x

427. A triangle has side lengths ¢ > b > ¢ and vertices of measures A, B, and C,
respectively. Prove that

Ab+ Bc+Ca > Ac + Ba + Cbh.
428. Show that if a function f : [a, b] — R is convex, then it is continuous on (a, b).

429. Prove that a continuous function defined on a convex domain (for example, on an
interval of the real axis) is convex if and only if

f(X+y> < J)+ 1)
2 2

, forallx,ye D.

430. Call a real-valued function very convex if

f(X)erf(y) 2f<x42ry)+|x_y|

holds for all real numbers x and y. Prove that no very convex function exists.

431. Let f : [a, b] — R be a convex function. Prove that

FO)+FO) + f@) +3f (#)

o[ () e (5) o (5]

forall x, y, z € [a, b].
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432. Prove that if a sequence of positive real numbers (b, ), has the property that (a"b,),
is a convex sequence for all real numbers a, then the sequence (In b,), is also
convex.

433. Find the largest constant C such that for every n > 3 and every positive concave
sequence (ax);_»

n 2 n
<Z ak) >Cn—1) Za,%.
k=1

k=1

A convex function on a closed interval attains its maximum at an endpoint of the inter-
val. We illustrate how this fact can be useful with a problem from Timisoara Mathematics
Gazette, proposed by V. Cartoaje and M. Lascu.

Example. Leta, b, c,d € [1, 3]. Prove that
(@+b+c+d)?>3a>+b>+ 2+ d.
Solution. Divide by 2 and move everything to one side to obtain the equivalent inequality
a* 4+ b* + > +d*> — 2ab — 2ac — 2ad — 2bc — 2bd — 2cd < 0.

Now we recognize the expression on the left to be a convex function in each variable.
So the maximum is attained for some choice of a, b, ¢, d = 1 or 3. If k of these numbers
are equal to 3, and 4 — k are equal to 1, where k could be 1, 2, 3, or 4, then the original
inequality becomes

Bk +4 —k)* =309k +4—k).

Dividing by 3, we obtain k> 4 4k + 4 > 6k + 3, or (k — 1)> > 0, which is clearly true.
The inequality is proved. Equality occurs when one of the numbers a, b, ¢, d is equal to
3 and the other three are equal to 1. O

Here are additional problems of this kind.

434. Let o, B, and y be three fixed positive numbers and [a, b] a given interval. Find
X, ¥,z in [a, b] for which the expression

E(x,y,2)=a(x =y’ + B0 -2’ +y@—x)’
has maximal value.

435. Let0 <a <bandt; > 0,i = 1,2,...,n. Prove that for any x1, x, ..., x, €

la, D],
n n l’l ( + b)2 n 2
(; tixi> (1221 Z) = —a4ab (Z l‘i) .

i=1
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436. Prove that for any natural number n > 2 and any |x| < 1,
IT+x)"+1-x)"<2"
437. Prove that for any positive real numbers a, b, c the following inequality holds

a+b+c

Fa Vabe < max{(va — vb)*, (Vb — J/c)*, (Ve — Ja)*).

438. Let f be a real-valued continuous function on R satisfying

1 X+h
flx) < ﬂ/ f(y)dy, forallx e Randh > 0.
x—h
Prove that (a) the maximum of f on any closed interval is assumed at one of the
endpoints, and (b) the function f is convex.

An important property of convex (respectively, concave) functions is known as Jen-
sen’s inequality.

Jensen’s inequality. For a convex function f let xy, xa, ..., X, be points in its domain
and let M1, Ly, ..., Ay be positive numbers with Ay + Ay + -+ + A, = 1. Then

Suxy+Aoxy + -+ Ax,) S A f () F A2 f () + -+ A f(x).

If f is nowhere linear and the x;’s are not all equal, then the inequality is strict. The
inequality is reversed for a concave function.

Proof. The proof is by induction on n. The base case is the definition of convexity. Let
us assume that the inequality is true for any n — 1 points x; and any n — 1 weights ;.
Consider n points and weights, and let A = A; +--- + A,_;. Note that A + A, = 1 and

% + k/\—z 4.+ A"T" = 1. Using the base case and the inductive hypothesis we can write

A Do
Suxi+ -+ X1 FAx,) = f (k (Tlxl +-- 4 Tlxn—l) + /\nxn>

n—1

Y xnl) + Anf (xn)

)»1 anl
fk(yf(xl)"i_"i_ X f(xn—l))"i')‘nf(xn)

= )\lf(-xl) +---+ )\nflf(-xnfl) + )‘nf(-xn)a

Al
<Af TX1+"-+

as desired. For the case of concave functions, reverse the inequalities. O

As an application, we prove the following.
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The generalized mean inequality. Given the positive numbers xi, xa, . .., x, and the
positive weights Ay, Ay, ..., Ay With Ay + Ay + --- + A, = 1, the following inequal-
ity holds:

A

AXT F Aoxp + -+ ApX, > XX, --xﬁ”.

Solution. Simply write Jensen’s inequality for the concave function f(x) = Inx, then
exponentiate. o

Forhai =Ml =---=X, = % one obtains the AM—GM inequality.

439. Show thatif A, B, C are the angles of a triangle, then

33

sinA +sin B +sin C > —

440. Let a;, i = 1,2,...,n, be nonnegative numbers with Z?:l a; = 1, and let
O<x;<1,i=1,2,...,n. Prove that

n
a; 1
:: S ap ,.az an *
— 14x L 4xx X
1=

441. Prove that for any three positive real numbers a;, a;, as,

24 24 2 3 3 3
ay +a; +a; S 4 + a5 + a3

al+a3+a; " al+a3+ai

442. LetO<x; <m,i =1,2,...,n,and setx = w Prove that

n . . n
sSin Xx; sin x

[1 < -

. X X

i=1

443. Letn > 1 and xq, x2, ..., x, > 0 be such that x; + x» + - - - + x, = 1. Prove that

X1 4 X2 T Xn >\/x_1+\/x_2+---+\/x_n
VI—x1 J1—x VT=x, ~ n—1 ’

3.2.7 Indefinite Integrals

“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps
learning stays young. The greatest thing in life is to keep your mind young.” Following
this advice of Henry Ford, let us teach you some clever tricks for computing indefinite
integrals.



148 3 Real Analysis

We begin by recalling the basic facts about indefinite integrals. Integration is the
inverse operation to differentiation. The fundamental methods for computing integrals
are the backward application of the chain rule, which takes the form

/f(M(X))u/(X)dx Z/f(u)du

and shows up in the guise of the first and second substitutions, and integration by parts

/udv:uv—/vdu,

which comes from the product rule for derivatives. Otherwise, there is Jacobi’s partial
fraction decomposition method for computing integrals of rational functions, as well as
standard substitutions such as the trigonometric and Euler’s substitutions.

Now let us turn to our nonstandard examples.

Example. Compute

sin x COS X
I, = ——dx and L, = —dx.
SIn X + Ccos x siInx + Cos x

Solution. The well-known approach is to use the substitution tan 5 = . But it is much
simpler to write the system

sinx 4+ cos x
11+12=/,—dx=/1dx=x+cl,
sin x + Cos x

cosx — sinx .
-+ =] ——dx =In(sinx +cosx) + C»,
SInx + Cos x

and then solve to obtain

1 1 1 1
11=§x—§1n(sinx+cosx)+Cj and 12=§x+§ln(sinx+cosx)+C§. O

We continue with a more difficult computation based on a substitution.

Example. For a > 0 compute the integral

x > 0.

1
dx,
/ xa/x% 4+ x4 41

Solution. Factor an x> under the square root to transform the integral into

| [—
dx = .
e fieied ey

1
a+1 dx.
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With the substitution u = Xia + % the integral becomes

1 1 1 3
— | ——du=—In{u+ M2+Z +C
a /uz_i_% a

1 (1 1 11
=——In|—++ +—+1)+C.

x211 x4

444. Compute the integral

/ (14 2x%)e" dx.
445. Compute

dx.

/‘x—l—sinx—cosx—l
x4+ e +sinx

446. Find

/‘()c6 + x3)V/x3 + 2dx
x2+1
—d
f x4t —x24+1 o

er —1
/‘/ dx, x>0.
X+ 1

449. Find the antiderivatives of the function f : [0, 2] — R,

f(x)=\/x3+2—2\/x3+1+ x3+10—6vx3+ 1.

450. For a positive integer n, compute the integral

447. Compute the integral

448. Compute

xn
/ 5 —dx.
l+x+5+--+35

451. Compute the integral

/ dx
(1 —x)J2x2 =1

4
1

/x + dx.
x4+ 1

452. Compute

Give the answer in the form « arctan

0(x)

149

PO 4 C o e @, and P(x), O(x) € Z[x].
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3.2.8 Definite Integrals
Next, definite integrals. Here the limits of integration also play a role.

Example. Let f : [0, 1] — R be a continuous function. Prove that

fﬂ xf(sinx)dx =m /2 f(sinx)dx.
0 0

Solution. We have

2

/n xf(sinx)dx = /zxf(sinx)dx + /n xf(sinx)dx.
0 0 z

We would like to transform both integrals on the right into the same integral, and for that
we need a substitution in the second integral that changes the limits of integration. This
substitution should leave f (sin x) invariant, so it is natural to try ¢ = w — x. The integral
becomes

/2(71 — 1) f(sint)dt.
0

Adding the two, we obtain fo% f(sin x)dx, as desired. |

453. Compute the integral

1 3
[
a1 —=x+J1+x

454. Compute

T xsinx
—.zd.x.
o 1-+sin“x

455. Let a and b be positive real numbers. Compute

x b
bea —ex
dx.
a X

456. Compute the integral

1
I:/ \3/2x3—3x2—x—|—1dx.
0
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457. Compute the integral

a dx
—— (a >0).
v/o x ++/a —x?
458. Compute the integral

ps

T
/ In(1 + tan x)dx.
0

459. Find

/1 In(1 4 x)
— dx.
0 1+ x2

460. Compute

/OO Inx 4
—dx,
0o x2+4+a?

where a is a positive constant.
461. Compute the integral
7 xcosx —sinx
/ —'de .
0 x>4sin“x
462. Let o be a real number. Compute the integral

! sin adx
I(a) = /

1 1 —2xcosa +x2°

463. Give an example of a function f : (2, c0) — (0, 0co) with the property that

/OO fP(x)dx
2

is finite if and only if p € [2, 00).

There are special types of integrals that are computed recursively. We illustrate this
with a proof of the Leibniz formula.

The Leibniz formula.

NG|
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Proof. To prove the formula we start by computing recursively the integral

b

)
In=/ tan” xdx, n > 1.
0

We have

e
f tan?" "2 x (1 + tan® x)dx — / tan”" "2 xdx
0 0

T
by
/ tan”" 2 x sec® xdx + I,_;.
0

g 4
T T

I, = / tan?" xdx = f tan?" =2 x tan® xdx
0 0

The remaining integral can be computed using the substitution tan x = ¢. In the end, we

obtain the recurrence

So forn > 1,
1 1 (=12
I, = —
2n — 1 2n_3+ + 3

+ (=",

1=

with
e
s
7
0

T 7
tan® xdx = / ldx = tanx
0

N

%
n=|
0

We find that
1 1 (=2
I, = —
2n—1 2n -3 + + 3
%, it
O

)
sec” xdx —
0

n—1 n T
+ D"+ (=D 1

Because tan” x — 0 as n — oo uniformly on any interval of the form [0, a), a <
follows that lim,,_, o I, = 0. The Leibniz formula follows.

Below are more examples of this kind.

464. Let P(x) be a polynomial with real coefficients. Prove that

/oo e P(x)dx = P(0)+ P'(0) + P"(0) + - - - .
0
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465. Let n > 0 be an integer. Compute the integral
/' T 1—cosnx
—dx
o 1 —cosx
466. Compute the integral

T

2
I, =/ sin” xdx.
0

Use the answer to prove the Wallis formula

, 2.4.6---2n 7* 1
lim - — =T

467. Compute

T sin nx

(A 429sinx

3.2.9 Riemann Sums

The definite integral of a function is the area under the graph of the function. In ap-
proximating the area under the graph by a family of rectangles, the sum of the areas of
the rectangles, called a Riemann sum, approximates the integral. When these rectangles
have equal width, the approximation of the integral by Riemann sums reads

n b
Jim %l;f(s,-) ~ [ rovax.

where each &; is a number in the interval [a + %(1) —a),a+ :l;(b —a)l.

Since the Riemann sum depends on the positive integer #, it can be thought of as the
term of a sequence. Sometimes the terms of a sequence can be recognized as the Riemann
sums of a function, and this can prove helpful for finding the limit of the sequence. Let us
show how this works, following Hilbert’s advice: “always start with an easy example.”

Example. Compute the limit

1 1 1
li ek — ).
ni%<n+l+n+2+ +2n>

Solution. If we rewrite

1 n 1 n +1
n+1 n+2 2n
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as

[ RS B
nf1+1 142 1+
1

we recognize the Riemann sum of the function f : [0, 1] - R, f(x) = T associated to

the subdivision xp = 0 < x| = % < Xy = % < <X, = :’—1 = 1, with the intermediate
points & = - € [x;, x;11]. It follows that

1 1 1 LS|
lim ek — | = — =1In(1 ' —1n2,
niw(n+1+n+2+ +2n) /0 1+x ( —|—x)|0

and the problem is solved. O

We continue with a beautiful example from the book of G. Pdlya, G. Szeg6, Aufgaben
und Lehrsdtze aus der Analysis (Springer-Verlag, 1964).

Example. Denote by G, the geometric mean of the binomial coefficients
n n n
o)\ )\, )

lim /G, = +e.
n—oo

Prove that

Solution. We have

n\ (n n\ - n! B s
<o><1> (n) _L[)k!(n —k)! (112! nl)?

n N1 — R\
_ n 1 — ke (—) ‘
11:[1( ) 1—[ n+1

k=1

The last equality is explained by Y ;_, (n+1—2k) = 0, which shows that the denominator
is just (n + 1)° = 1. Therefore,

o= 00 () =T1(-5)

Taking the natural logarithm, we obtain

1 1 & 2k k
~InG, = - 1 — In(1-— )
nn nz< n+1)n( n—i—l)

k=1
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This is just a Riemann sum of the function (1 — 2x) In(1 — x) over the interval [0, 1].
Passing to the limit, we obtain

1 1
lim —InG, :f (1 —2x)In(1 — x)dx.
0

n—o0o n

The integral is computed by parts as follows:
1
f (1 —-2x)In(1 — x)dx
0

1 1

= 2/ (1 —=x)In(1 —x)dx — / In(1 — x)dx
0 0

1

) 1 Ta—-x)? 1
=—(1-x) 1n(1—x)| -2 . dx+ ({1 —-x)In(1 —x)| +x
0 0 2 1 — X 0 0
! 1
=—/ 1—x)dx+1=—.
0 2
Exponentiating back, we obtain lim,,_, o, /G, = +/e. O
468. Compute
I [ N S ]
im T
n—oo | fAn2 — 12 /4n? — 22 4n? — n?
469. Prove that forn > 1,
1 1 1 1
+ o —_— < \/7_ — \/5_71

+ +-t
J24+5n  JA4+5n 6+ 5n V2n 4+ 5n
470. Compute

21/n 22/n 2n/n
lim + +ot .
n—oo \n+ 1 n+ % n+ 1

471. Compute the integral

/ In(1 —2acosx + a2)dx.
0

472. Find all continuous functions f : R — [1, co) for which there exista € Rand k a
positive integer such that

f)f@2x) - f(nx) < an*,

for every real number x and positive integer n.
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3.2.10 Inequalities for Integrals

A very simple inequality states that if f : [a,b] — R is a nonnegative continuous
function, then

b
f fx)dx =0,

with equality if and only if f is identically equal to zero. Easy as this inequality looks,
its applications are often tricky. This is the case with a problem from the 1982 Romanian
Mathematical Olympiad, proposed by the second author of the book.

Example. Find all continuous functions f : [0, 1] — R satisfying

1 1 1
/ fx)dx = = + / fA(xHdx.
0 3 0

Solution. First, we would like the functions in both integrals to have the same variable.
A substitution in the first integral changes it to fol f(x?)2xdx. Next, we would like to

. . 1 ..
express the number % as an integral, and it is natural to choose fo x2dx. The condition
from the statement becomes

1 1 1
/ 2xf (x®)dx = f x% 4 / f(xHdx.
0 0 0

1
/ [f2(x?) — 2xf (x?) + x*]dx = 0.
0

This is the same as

Note that the function under the integral, f2(x?) — 2xf(x?) + x2 = (f(x?) — x)%,isa
perfect square, so it is nonnegative. Therefore, its integral on [0, 1] is nonnegative, and
it can equal zero only if the function itself is identically zero. We find that f(x?) = x.
So f(x) = 4/x is the unique function satisfying the condition from the statement. O

473. Determine the continuous functions f : [0, 1] — R that satisfy

1
/0 J)x = f(x)dx = %

474. Let n be an odd integer greater than 1. Determine all continuous functions f :
[0, 1] — R such that



475.

476.

477.
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Let f : [0, 1] — R be a continuous function such that

1 1
/ fX)dx = f xf(x)dx = 1.
0 0

Prove that
1
/ F2(x)dx > 4.
0

For each continuous function f : [0, 1] — R, we define I (f) = fol x2 f(x)dx and

J(f) = fol x(f(x))*dx. Find the maximum value of 1(f) — J(f) over all such
functions f.

Let a;, ay, ..., a, be positive real numbers and let x1, x5, ..., x, be real numbers
such that ayx; + a»x, + - - - + a,x, = 0. Prove that

inxﬂa,» —Clj| <0.
i,J

Moreover, prove that equality holds if and only if there exists a partition of the set
{1,2,...,n} into the disjoint sets A;, Ay, ..., Ay such that if i and j are in the

same set, then a; = a; and also ZjeAi xj=0fori=1,2,... k.

We now list some fundamental inequalities. We will be imprecise as to the classes

of functions to which they apply, because we want to avoid the subtleties of Lebesgue’s
theory of integration. The novice mathematician should think of piecewise continuous,
real-valued functions on some domain D that is an interval of the real axis or some region
in R".

The Cauchy-Schwarz inequality. Let f and g be square integrable functions. Then

2
d 2(x)d 2(x)dx ).
(fo(x)g(x) x) < (/Df ) x) (/Dg ) x)

Minkowski’s inequality. If p > 1, then

(f |f<x>+g(x>|f’dx>p < (/ If(x)l”dx)p +(f |g<x>|f’dx>”.
D D D

Holder’s inequality. If p, g > 1 such that % + é =1, then

f f(D)g)ldx < ( / |f<x)|"dx>" ( f |g<x>|qu)“.
D D D
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As an instructive example we present in detail the proof of another famous inequality.

Chebyshev’s inequality. Let f and g be two increasing functions on R. Then for any
real numbers a < b,

b b b
b —a) f Fg()dx = ( f f(x)dx) ( f g(x)dx).

Proof. Because f and g are both increasing,

(f () = fF)(gx) —g(y) = 0.
Integrating this inequality over [a, b] X [a, b], we obtain
b b
/ f (f () = fF()(g(x) — g(y)dxdy = 0.

Expanding, we obtain

b b b b b b
//f(x)g(x)dxder/ / f(y)g(y)dxdy—/ / f(x)g(y)dxdy
a a ah ah a a

—f / f(gx)dxdy > 0.

By eventually renaming the integration variables, we see that this is equivalent to

b b b
(b — a)/ Fx)gx)dx — (/ f(X)dX> . (/ g(X)dX) >0,

and the inequality is proved. |

478. Let f : [0, 1] — R be a continuous function. Prove that

1 2 1
( / f(t)dt> < / £,
0 0

479. Find the maximal value of the ratio

3 3 3
( / f(x)dx> / / F)dx,
0 0

as f ranges over all positive continuous functions on [0, 1].



480.

481.

482.

483.

484.

48s.
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Let f : [0, c0) — [0, 00) be a continuous, strictly increasing function with f(0) =
0. Prove that

a b
/ J(x)dx + / f ' (x)dx = ab
0 0

for all positive numbers a and b, with equality if and only if b = f(a). Here f~!
denotes the inverse of the function f.

Prove that for any positive real numbers x, y and any positive integers m, n,

(n = D(m — D™ +y" ™) 4 (m +n = DE"Y" +x"y™)

m+n—1y 4 ym+n—1

> mn(x x).

Let f be a nonincreasing function on the interval [0, 1]. Prove that for any o €
0, D),

1 o
ozf fx)dx 5/ f(x)dx.
0 0

Let f : [0, 1] — [0, co) be adifferentiable function with decreasing first derivative,
and such that f(0) = 0 and f'(0) > 0. Prove that

/1 dx  _ f()
o P +1 = ()

Prove that any continuously differentiable function f : [a,b] — R for which
f(a) = 0 satisfies the inequality

Can equality hold?

b b
/ fx)?dx < (b —a)2/ f(x)%dx.

Let f(x) be a continuous real-valued function defined on the interval [0, 1].
Show that

1 1 1
/0 /0 ) + FO)ldxdy > /0 1 (0)ldx.

3.2.11 Taylor and Fourier Series

Some functions, called analytic, can be expanded around each point of their domain in a
Taylor series
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F&x) = fla)+ @(x _ap+ 1@

()
(—ap o4 D

5 oy x—a)y'"+---.

If @ = 0, the expansion is also known as the Maclaurin series. Rational functions,
trigonometric functions, the exponential and the natural logarithm are examples of ana-
lytic functions. A particular example of a Taylor series expansion is Newton’s binomial
formula

(e¢]

R I W B
n=0 :

n=0

which holds true for all real numbers a and for |x|] < 1. Here we make the usual
convention that (g) = 1.
We begin our series of examples with a widely circulated problem.

Example. Compute the integral

1
/ InxIn(l — x)dx.
0

Solution. Because
lin})lnxln(l —X) = lirr} InxIn(1 —x) =0,

this is, in fact, a definite integral.
We will expand one of the logarithms in Taylor series. Recall the Taylor series
expansion

o n
In(1—x)=-Y 2, forxe(~1,1).
n

n=1

It follows that on the interval (0, 1), the antiderivative of the function f(x) = Inx In(1 —
Xx) 18
= x" =1
/ln(l —x)Inxdx = —/;7lnxdx = —;;/x"lnxdx.
Integrating by parts, we find this is to be equal to
O 1/ gl s
—;;(n+llnx—m) +C.

Taking the definite integral over an interval [e, 1 — €], then letting ¢ — 0, we obtain
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e¢]

1
/ InxIn(l — x)dx = Zn(n—jrlﬂ

0 n=1

Using a telescopic sum and the well-known formula for the sum of the inverses of squares
of positive integers, we compute this as follows:

i 1 _i 1 1 _i 1 1 i 1
o+ 1) = \nm+1) @+D2) Z\n ont+l) Ha
n? 72
=l-|(—-1)=2-—,
6 6
which is the answer to the problem. |

Next, a problem that we found in S. Ridulescu, M. Ridulescu, Theorems and Prob-
lems in Mathematical Analysis (Editura Didactic3 si Pedagogicd, Bucharest, 1982).

Example. Prove that for |x| < 1,

o0

1
(arcsin x)? =
20

Solution. The function g : (—1,1) — R, g(x) = (arcsin x)* satisfies the initial value
problem

2k—1x2k.

1 —x%y"—xy =2=0, y(0)=y(0)=0.
Looking for a solution of the form y(x) = Z,fozo agx*, we obtain the recurrence relation
(k + 1) (k 4+ 2)an — k*ay =0, k> 1.

It is not hard to see that a; = 0; hence ay; = O for all k. Also, ag = 0, a, = 1, and
inductively we obtain

1 _
ay = k2(2kk)22k l, k>1.
The series
o
1
22k—1,.2k
2 G

is dominated by the geometric series Y ;- x%, so it converges for |x| < 1. It therefore

defines a solution to the differential equation. The uniqueness of the solution for the
initial value problem implies that this function must equal g. O
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We conclude the list of examples with the proof of Stirling’s formula.

Stirling’s formula.
n!=+2n < ) el2n, for some 0 < 6, < 1.

Proof. We begin with the Taylor series expansions

x2 o x xt xS

Inl+x)=+x—-—+ ———+ —+---. f -1, 1).
n(l £x) x—oE - 5+ , forx e (—1,1)

Combining these two, we obtain the Taylor series expansion

1 +x 2 2 2
1 =2 =3 ] = 2m+d e
nl—x x+3x +5x+ +2m+1x +
again for x € (—1, 1). In particular, for x = znlﬁ’ where n is a positive integer, we have
n+1 2 2 2
In = + + + e

n 41" 32n+ 13 52n+ 1)

which can be written as

L P e I I
n — n =
2 n 320+ 12 5020+ 1)

The right-hand side is greater than 1. It can be bounded from above as follows:

1 1 l &
Y3t Tsamtr TS EkZ(szr 1)
B 1 1
B +3(2n+1)2'1—m
1
= T e

So using Taylor series we have obtained the double inequality

1 n+1 1
I1<|n+=])n <l4+—
2 n 12n(n+1)

This transforms by exponentiating and dividing through by e into

1
1 (n+1\"" 1
1 < — < elZn(n+l)‘
e n
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To bring this closer to Stirling’s formula, note that the term in the middle is equal to

e '+ D"+ D) 'Wn+1  xq
e "n"(n!)~1\/n X

. o
where x, = e "n"n!y/n, a number that we want to prove is equal to ~/2me” 2 with
0 < 6, < 1. In order to prove this, we write the above double inequality as

1
| < Xy emn

)
Xn+1 e 2n+1)

We deduce that the sequence x, is positive and decreasing, while the sequence e~ ™ Xy 1S
increasing. Because e™ ™ converges to 1, and because (x,), converges by the Weierstrass
criterion, both x,, and e~ ~ X, must converge to the same limit L. We claimthat L = V2.
Before proving this, note that

1
e Ty, <L < x,,
. . . o .
so by the intermediate value property there exists 6, € (0, 1) such that L = e™ T2i x,, i.e.,

on
X, = e,
The only thing left is the computation of the limit L. For this we employ the Wallis

formula
_ 2.4.6---2n 7*1
lim — =,
n—oo|1-3-5---2n—-11| n

proved in problem 466 from Section 3.2.8 (the one on definite integrals). We rewrite this
limit as

L2
im ———— . —
n—oo  (2n)!  /n

Substituting n! and (2r)! by the formula found above gives

= /7.

2n 29
nlL? (ﬂ) et 22 1 1 46,-65,
lim c— = lim —Le @ = ./7.

n—00 «/_L (211)2” % ﬁ n—>oo\/_

Hence L = /27, and Stirling’s formula is proved. O
Try your hand at the following problems.

486. Prove that for any real number x, the series

)C4 XS )C12

1+ 4+ 4=
PR TR

is convergent and find its limit.
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487. Compute the ratio

4 8 12
T T
I+ +g+m+-
1 7.[4 718 7.[12
st tmt ot

488. For a > 0, prove that

o0
2 2
/ e~ cosaxdx = Jmwe ¢ /*
—0oQ

489. Find a quadratic polynomial P (x) with real coefficients such that

1
‘P(x) + —‘ <0.01, forallx e [—1,1]
x—4
490. Compute to three decimal places

1
[ cos /xdx.

0
491. Prove that for |x| < 1

. - 1 2k\ oy

arcsin x = E _ X .
— 222k + 1)\ k

492. (a) Prove that for |x| < 2

‘ =

<4arcs1n( )+x\/4—x )
(4 —x2)J/4—x2

> s

k=1

k

—~
=~ N

(b) Prove the identity

i 1 271«/_ 3436
2 =

k=1 k

In a different perspective, we have the Fourier series expansions. The Fourier series
allows us to write an arbitrary oscillation as a superposition of sinusoidal oscillations.
Mathematically, a function f : R — R that is continuous and periodic of period 7 admits
a Fourier series expansion

fx) +Z cos nr + 3 b, Sm2nn
xX)=a a, —x —X.
0 T

n=1
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This expansion is unique, and
1 T

ap = ~— / Sfx)dx,

27'[ 0

1 (7 2nm
a, = — f(x)cos —xdx,

T Jo T

I . 2nmw
b, = — f(x)sin —xdx.
T Jo T

Of course, we can require f to be defined only on an interval of length 7', and then
extend it periodically, but if the values of f at the endpoints of the interval differ, then
the convergence of the series is guaranteed only in the interior of the interval.

Let us discuss a problem from the Soviet Union University Student Contest.

Example. Compute the sum
o
Z coSn
1 +n?
n=1

Solution. The sum looks like a Fourier series evaluated at 1. For this reason we concen-
trate on the general series

1
Z cosnx.
‘ n?z4+1

The coefficients nZIT should remind us of the integration formulas

1
e* cosnxdx = e*(cosnx + nsinnx),
n?+1

. n .
e*sinnxdx = e*(sinnx + ncosnx).
n2 41

These give rise to the Fourier series expansion

X 1 -~
e=g< 1>+ — ;

which holds true for x € (0, 27r). Similarly, for e and x € (0, 277), we have

I 5. > n
cosnx—i—;(e — 1)2:’12_1_1

sinnx,

1 1
et = E(l ey + — n —e ) Z P Cosnx

2w n .
_;(l—e );n2+151nnx.
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Let Cy(x) = Y32, =5 cosnx and S, (x) = Y32, - sin nx. They satisfy
1 we*
5 TG+ 80 =
1 me "
E + Cn(X) — Sn()C) = m

Solving this linear system, we obtain
C. () 1 we* . we ¥ !
n(x) == —-1].
21e2m—1 1 —e 27

The sum from the statement is C(1). The answer to the problem is therefore

cy = I1[ me N we ! . a
2 e -1 - ’

We find even more exciting a fundamental result of ergodic theory that proves that
for an irrational number «, the fractional parts of na, n > 1, are uniformly distributed
in [0, 1]. For example, when o = log,,2, we obtain as a corollary that on average, the
first digit of a power of 2 happens to be 7 as often as it happens to be 1. Do you know a
power of 2 whose first digit is 7?7

Theorem. Let f : R — R be a continuous function of period 1 and let « be an irrational
number. Then

1 1
lim ;(f(a) + fQa) + -+ f(nw)) = /0 f(x)dx.

Proof. If we approximate f by a trigonometric polynomial with error less than €, then
both %(f(a) + fQa)+ - -+ f(na)) and fol f(x)dx are evaluated with error less than
€. Hence it suffices to check the equality term by term for the Fourier series of f. For
the constant term the equality is obvious. To check that it holds for f(x) = cos2mmx
or f(x) = sin2mwmx, with m > 1, combine these two using Euler’s formula into

¥ — cos 2mmx + i sin 2wmx.

We then have

1 . ‘ .
- (emeot + eanZma 44 eZmnmot)
n

et me cos2m(n + Dma +isin2x(n + Dma — 1

n(e2mime _ g2nimery — p(cos2mma + i sin 2mma — cos 2wmo + i sin 2wma)’

which converges to 0 as n — 00. And for the right-hand side,
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v 1 o
e27nmxdx — : e27nmx = 0.
0 2wim 0

Therefore, equality holds term by term for the Fourier series. The theorem is proved. O

If after this example you don’t love Fourier series, you never will. Below are listed

more applications of the Fourier series expansion.

493.

494.

495.

496.

497.

Prove that for every 0 < x < 2x the following formula is valid:

T —X sinx sin2x  sin3x

2_1+2+3

Derive the formula

i sin(2k — 1)x

1 x € (0,m).

k=1

Use the Fourier series of the function of period 1 defined by f(x) = % — x for
0 < x < 1 to prove Euler’s formula

L S S
6 22 32 4 '
Prove that
Tyl + L
8 325
For a positive integer n find the Fourier series of the function
.2
sin” nx
J)=—5—.
sin” x

Let f : [0,m] — R be a C*® function such that (—1)" f®’(x) > 0 for any
x €[0,7]and f®(0) = f@ () = 0 for any n > 0. Show that f(x) = asinx
for some a > 0.

3.3 Multivariable Differential and Integral Calculus

3.3.1 Partial Derivatives and Their Applications

This section and the two that follow cover differential and integral calculus in two and
three dimensions. Most of the ideas generalize easily to the n-dimensional situation.
All functions below are assumed to be differentiable. For a two-variable function this
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means that its graph (which is a surface in R?) admits a tangent plane at each point. For a
three-variable function, the graph is a three-dimensional manifold in a four-dimensional
space, and differentiability means that at each point the graph admits a three-dimensional
tangent hyperplane.

The tilting of the tangent (hyper)plane is determined by the slopes in the directions
of the coordinate axes, and these slopes are the partial derivatives of the function. We
denote the partial derivatives of f by %, %, % They are computed by differentiating
with respect to the one variable while keeping the others fixed. This being said, let us
start with the examples.

Euler’s theorem. A function z(x, y) is called n-homogeneous if z(tx,ty) = t"z(x, y)
forall x,y € Randt > 0. Assume that z(x, y) is n-homogeneous with n an integer.
Then forallk < n + 1,

k
K\ o 0%z
Jygk—i > — —D--(n—
;(j)x TN =nn—1)---(n—k+ Dz
Proof. We first prove the case k = 1. Differentiating the relation z(tx, ty) = t"z(x, y)
with respect to y, we obtain

0 0
t—Z(tx, ty) = t”—Z(x, y),
dy dy

which shows that g—; is (n — 1)-homogeneous.
Replace x by 1, y by ¥, and 7 by x in the homogeneity condition, to obtain z(x, y) =

x"z(1, 2). Differentiating this with respect to x yields

0 B
Sy =ae Tz (1L2) xS (1L2) (=),
8x X ay x x2

Yoz

Because g_z is (n — 1)-homogeneous, the last term is just —= ==
y x dy

right and multiplying through by x gives the desired

(x, y). Moving it to the

Now we prove the general case by induction on k, with k£ = 1 the base case. To simplify
the notation, set (’;) = 0if j < Oor j > k. The induction hypothesis is

K\ . ... 9z
Jyk=i_ 7~ N
Ej (j)x y PTI =nn—1)---(n—k+ 1)z,
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for some k < n. Multiply this equality by n, then apply the operator x% + y% to both
sides. The left-hand side becomes

3 Y (22 i 2
x—+y— |x —_—

J 0x yay Y OxJoyk—i

k\ L4 k\ N
— i Jyk—j_ "~ E : k=g~
- J(j)x T ol T L (J)x oty

k\ L4 k\ 4 dk+lz

— Jyk=i__ ~~ Jyk=iHl __ —  ~

2k J)(j)x Y axioyk-i 2 <)x Y axdgykit

J J J

K\ .. 9z k k . LR
=k Jyk=d —— Tkt — =
2 (j)x " gy 2,: <<J - 1) ! (1)) T ey

k+1 ) ) ak+lz
:k-n(n—l)--‘(n—kﬁ-l)z-l-Z( j )xfy"“’m-
J

The base case k = 1 implies that the right side equals n - n(n — 1)--- (n — k + 1)z.
Equating the two, we obtain

k 1 ) o gkt
2. ( . )”’y"“‘f—z =n(n— 1) (1 —k+ D = bz,
J

: s ykt1-
J

completing the induction. This proves the formula. O

498. Prove that if the function u(x, t) satisfies the equation

ou 9%u
T = 2 (x,1) € R?,
then so does the function
1 2
v(x, 1) = —e Fu(xt™, -7, xeR, t>0.
Jt

499. Assume that a nonidentically zero harmonic function u (x, y) is n-homogeneous for
some real number n. Prove that n is necessarily an integer. (The function u is called

s ie 9%u 3%u _
harmonic if proly o = 0.

500. Let P(x, y) be a harmonic polynomial divisible by x> + y2. Prove that P (x, y) is
identically equal to zero.

501. Let f : R? — R be a differentiable function with continuous partial derivatives
and with £(0, 0) = 0. Prove that there exist continuous functions g, g, : R? — R
such that

fx,y) =xg1(x,y) + yga(x, y).



170 3 Real Analysis

If a differentiable multivariable function has a global extremum, then this extremum
is found either among the critical points or on the boundary of the domain. We recall that
a point is critical if the (hyper)plane tangent to the graph is horizontal, which is equivalent
to the fact that all partial derivatives are equal to zero. Because any continuous function on
a compact domain attains its extrema, the global maximum and minimum exist whenever
the domain is closed and bounded. Let us apply these considerations to the following
problems.

Example. Find the triangles inscribed in the unit circle that have maximal perimeter.

Solution. Without loss of generality, we may assume that the vertices of the triangle have
the coordinates (1, 0), (cos s, sins), (cost,sint), 0 < s <t < 2mw. We are supposed to
maximize the function

(s, 1) = v/ (coss — 1)2 + (sins)2 + /(1 — cost)? + (sin7)2

+ v/ (cost — cos s)2 + (sint — sin s)2
:«/§<\/1 —coss ++/1 —cost+ /1 —cos(t—s))

2 (s S+ ) l‘+ .=y
=2|sin < 4 sin = 4 sin ,
2 2 2

over the domain 0 < s <t < 2m. To this end, we first find the critical points of f in the
interior of the domain. The equation

) s r—s
—f(s,t) = COS — — COS

=0
as 2 2

gives cos 5 = cos '5*, and since both 5 and 5* are between 0 and 7, it follows that

s 1= ;
5 = . The equation

of 5.1) t . t—s 0
—(s,1) = cos = + cos =
ot 2 2
implies additionally that coss = —cos 3, and hence s = 27” Consequently, t = %’T,

showing that the unique critical point is the equilateral triangle, with the corresponding
value of the perimeter 3\/5 .

On the boundary of the domain of f two of the three points coincide, and in that case
the maximum is achieved when two sides of the triangle become diameters. The value
of this maximum is 4, which is smaller than 3+/3. We conclude that equilateral triangles
maximize the perimeter. O

502. Find the global minimum of the function f : R? — R,
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9 7
f,y)=xt+6xy? +y" ——x — —y.
4 4
503. Find the equation of the smallest sphere that is tangent to both of the lines (i) x =

t+1,y=2t+4z=-3t+5,and (i) x =4t — 12,y = —t + 8,z =1+ 17.

504. Determine the maximum and the minimum of cos A + cos B + cos C when A, B,
and C are the angles of a triangle.

505. Prove that for «, 8, y € [0, %),
tano +tan B + tany < 2 B
an o + tan any < — seca sec Bsecy.
V3

506. Prove that any real numbers a, b, c, d satisfy the inequality
3(a® — ab + b*)(¢* — cd + d*) > 2(a*c? — abed + b*d?).

When does equality hold?

507. Given n points in the plane, suppose there is a unique line that minimizes the sum
of the distances from the points to the line. Prove that the line passes through two
of the points.

To find the maximum of a function subject to a constraint we employ the following
theorem.

The Lagrange multipliers theorem. If a function f(x,y, z) subject to the constraint
g(x,y,2) = C has a maximum or a minimum, then this maximum or minimum occurs at
a point (x,y, z) of the set g(x, v, 7) = C for which the gradients of f and g are parallel.

So in order to find the maximum of f we have to solve the system of equations
Vf = AVgand g(x,y,z) = C. The number A is called the Lagrange multiplier; to
understand its significance, imagine that f is the profit and g is the constraint on resources.
Then A is the rate of change of the profit as the constraint is relaxed (economists call this
the shadow price).

As an application of the method of Lagrange multipliers, we will prove the law of
reflection.

Example. For a light ray reflected off a mirror, the angle of incidence equals the angle of
reflection.

Solution. Our argument relies on the fundamental principle of optics, which states that
light travels always on the fastest path. This is known in physics as Fermat’s principle
of least time. We consider a light ray that travels from point A to point B reflecting
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off a horizontal mirror represented schematically in Figure 22. Denote by C and D
the projections of A and B onto the mirror, and by P the point where the ray hits the
mirror. The angles of incidence and reflection are, respectively, the angles formed by
AP and BP with the normal to the mirror. To prove that they are equal it suffices
to show that ZAPC = ZBPD. Letx = CP and y = DP. We have to minimize

f(x,y) = AP + BP with the constraint g(x,y) =x +y = CD.

Figure 22

Using the Pythagorean theorem we find that

f(x,y) =vx2+ AC*+/y2 + BD2.

The method of Lagrange multipliers yields the system of equations

X
I ——
Vx* 4+ CP?
y
I S—
Vy?>+ DP?
x+y=CD.

From the first two equations, we obtain
X _ y
VxI+CP? /24 DP?

ie, €& = DP  This shows that the right triangles CAP and DBP are similar, so

> AP BP"
ZAPC = ZBPD as desired.

O

The following example was proposed by C. Niculescu for Mathematics Magazine.

Example. Find the smallest constant £k > 0 such that

ab n bc + ca
a+b+2c b+c+2a cH+a+2b~

for every a, b, c > 0.

<k(a+b+c)
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Solution. We will show that the best choice for k is i. To prove this fact, note that the
inequality remains unchanged on replacing a, b, cby ta, tb, tc witht > 0. Consequently,
the smallest value of k is the supremum of

ab bc ca

’b7 -
fab o) = Y v rer2a T erat b

over the domain A = {(a, b,c) |a,b,c >0, a + b+ ¢ = 1}. Note that on A,

Fla.b. o) ab n bc n ca

a,b,c)= .

l+¢c 1+a 1+5b

To find the maximum of this function on A, we will apply the method of Lagrange
multipliers with the constraint g(a, b, c) = a + b + ¢ = 1. This yields the system of
equations

b n c bc .
l+¢ 14b (+4a)?
c a ca
+ - = )
l+a 1+c¢c (1+b)?
a b ab
+ - = A,
1+b6 1+a (1+c)?
a+b+c=1.

Subtracting the first two equations, we obtain

b—a+ c - a c - b —0
l+¢c 1+b 1+b l+a l+al

which after some algebraic manipulations transforms into

(b_a)[ 1 c(a+b+1)(a+b+2)] _o.

1+c¢ (1+a)2(1 +b)?

The second factor is positive, so this equality can hold only if a = b. Similarly, we prove
that b = c¢. So the only extremum of f when restricted to the planea + b + ¢ = 1 is

7 111y 1
3'3'3) 4
But is this a maximum? Let us examine the behavior of f on the boundary of A (to which
it can be extended). If say ¢ = 0, then f(a, b, 0) = ab. When a + b = 1, the maximum

of this expression is again %. We conclude that the maximum on A is indeed ;1‘, which is
the desired constant. O
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509.

510.

511.

512.

513.
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Using the method of Lagrange multipliers prove Snell’s law of optics: If a light ray
passes between two media separated by a planar surface, then

sin 6, V1

’

sin 6, 3

where 0; and 0, are, respectively, the angle of incidence and the angle of refraction,
and v; and v, are the speeds of light in the first and second media, respectively.

Let ABC be a triangle such that

tA2+2th+3tC2 6s\>
cot — cot — cot— | =(—) ,
2 2 2 Tr

where s and r denote its semiperimeter and its inradius, respectively. Prove that
triangle ABC is similar to a triangle 7 whose side lengths are all positive integers
with no common divisors and determine these integers.

Prove that of all quadrilaterals that can be formed from four given sides, the one
that is cyclic has the greatest area.

Of all triangles circumscribed about a given circle, find the one with the small-
est area.

Let a, b, ¢, d be four nonnegative numbers satisfyinga + b + ¢ +d = 1. Prove
the inequality

1 176
abc + bed + cda + dab < 77 + —abcd

Given two triangles with angles «, 8, v, respectively, a4, B1, y1, prove that

cosa;  cosfB;  cosy;
+ +

. g ; < cota + cot B + cot y,
sin o sin B sin y

with equality if and only if @« = &1, 8 = B1, ¥ = y1.

3.3.2 Multivariable Integrals

For multivariable integrals, the true story starts with a change of coordinates.

Theorem. Let f : D C R" — R be an integrable function. Let also x(u) =
(x;(u;))} ;=1 be a change of coordinates, viewed as a map from some domain D* to

D, with Jacobian g = det (5 3"‘ ) Then

0x
/ f)dx = fx(u)) ‘8—‘ du.
D D* u
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There are three special situations worth mentioning:

* The change in two dimensions from Cartesian to polar coordinates x = r cos9,

_ ; ; : 9(x,y)
y = r sin 6, with the Jacobian 365

=r.
* The change in three dimensions from Cartesian to cylindrical coordinates x = r cos 9,
y = rsin@, z = z, with the Jacobian % =r.

* The change in three dimensions from Cartesian to spherical coordinates x =

psingcosf,y = psingsinb, z = p cos ¢, with the Jacobian % = p?sin ¢.

As an illustration, we show how multivariable integrals can be used for calculating
the Fresnel integrals. These integrals arise in the theory of diffraction of light.

Example. Compute the Fresnel integrals
oo o
I=/ cosx*dx and J=[ sin x2dx.
0 0

Solution. Forthe computation of the firstintegral, we consider the surfacez = e~ * cos x>

and determine the volume of the solid that lies below this surface in the octant x, y, z > 0.
This will be done in both Cartesian and polar coordinates. We will also make use of the
Gaussian integral

/Ooe_’zdt = ﬁ,
0 2

which is the subject of one of the exercises that follow.
In Cartesian coordinates,

o o0 2 [e ) o0 2
V= / / e cosx’dydx = / (/ e’ dy) cos x2dx
o Jo 0 0

o0
= / ﬁcosx%lx = ﬁl.
o 2 2
In polar coordinates,

7[00 .
V = / / gP*sin’6 cos(p? cos? ) pdpdb
o Jo

| o0 S| tan” 0
:f f e 0 cos ududd :/ . —do
o cos2f J, o cos20 1+ tan*0

where we made the substitution u = u(p) = p? cos> 6. Ifin this last integral we substitute
tan @ = ¢, we obtain
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1 o0 [2
V:—/ dr
2)y t*+1

Aroutine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of % is

L 1 x2—xvV2+1
arctan n ,
2\/_ x«/_ 4«/5 X2+ xV/2+1
whence V = %[2 Equating the two values for V, we obtain I = @. A similar
argument yields J = @. O

The solutions to all but last problems below are based on appropriate changes of
coordinates.

514. Compute the integral [/, xdxdy, where

<

z{(x,y)eR2|sz, | <xy<2, 15—52}.

=

515. Find the integral of the function

f(x,y,z)=m

over the unit ball B = {(x, y,z) | x>+ y*+z*> < 1}.

// dxdy
p (24 y2)?

where D is the domain bounded by the circles

516. Compute the integral

x2+y2—2x=0, x2—|—y2—4x=0,
x?+y? =2y =0, x4+ y*—6y=0.

517. Compute the integral

= / xyldxdy,
D

where

%2 y22 %2 yz
(x,y) R’ | x =0, (—2+—> <—=->=¢, ab>0.
a b?
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518. Prove the Gaussian integral formula

o0 2
/ e Vdx = 7.

e¢]

1 p1 pl
/ / / (1 + u?® + v* + wH 2dudvdw.
o Jo Jo

520. Let D = {(x,y) e R? | 0 < x < y < «}. Prove that

519. Evaluate

2
// In|sin(x — y)|dxdy = ——In 2.
D 2

Our next topic is the continuous analogue of the change of the order of summation
in a double sum.

Fubini’s theorem. Let f : R? — R be a piecewise continuous function such that

d b
//|f(x,y)|dxdy<oo.

d b b pd
//f()ﬁy)d)cdy://f(x,y)dydx.

The matter of convergence can be bypassed for positive functions, in which case we
have the following result.

Then

Tonelli’s theorem. Let f : R? — R be a positive piecewise continuous function. Then

b pd d pb
//f(x,y)dxdy:/ / f(x, y)dydx.

The limits of integration can be finite or infinite. In the particular case that f (x, y) is
constant on the squares of an integer lattice, we recover the discrete version of Fubini’s
theorem, the change of order of summation in a double sum

SN fenny =3 fomn).

m=0 n=0 n=0 m=0

A slightly more general situation occurs when f is a step function in one of the variables.
In this case we recover the formula for commuting the sum with the integral:
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b X 0 b
f Y fxy =) | fox.
a4 p=0

n=0 "4

Here we are allowed to commute the sum and the integral if either f is a positive function,
or if fab > o o | f(n, x)| (or equivalently > 2 fab | f(n, x)|) is finite. It is now time for
an application.

Example. Compute the integral

Sl |
I = / —e Ydx.
0 WX

Solution. We will replace - S by a Gaussian integral. Note that for x > 0,

o 2 > 2 1 o 2 T
/ e dt = / e~ WA g — —/ e du=_|—.
oo o VX J s X

Returning to the problem, we are integrating the positive function \/L;e_’“ , which is inte-
grable over the positive semiaxis because in a neighborhood of zero it is bounded from
above by Ji; and in a neighborhood of infinity it is bounded from above by e~*/2.

Let us consider the two-variable function f(x, y) = e *e=*, which is positive and
integrable over R x (0, 00). Using the above considerations and Tonelli’s theorem, we
can write

1—/ —e*de— // X rdy = —— // ~(C+x gy dt
Nz Nz

1
:ﬁ/mm‘”:ﬁ:ﬁ

Hence the value of the integral in question is I = /7. O
More applications are given below.

521. Leta; < a; < --- < a, = m be positive integers. Denote by b, the number of
those a; for which a; > k. Prove that

a1+a2+~-+an=b1+b2+-~+bm.

522. Show that for s > 0,

o0
/ e **x 'sinxdx = arctan(s ).
0
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523. Show that fora, b > 0,

00 p,—ax _ efbx b
——dx =In—.
0 X a

=\ X" 1
Z—z —/ ?11'1(1 —t)d[.

525. Let F(x) = ) -, 2+ 7, x € R. Compute [° F(1)dt.

524. Let |x| < 1. Prove that

3.3.3 The Many Versions of Stokes’ Theorem

We advise you that this is probably the most difficult section of the book. Yet Stokes’
theorem plays such an important role in mathematics that it deserves an extensive treat-
ment. As an encouragement, we offer you a quote by Marie Curie: “Nothing in life is to
be feared. It is only to be understood.”

In its general form, Stokes’ theorem is known as

/dw:/ w
M aM

where w is a “form,” dw its differential, and M a domain with boundary d M. The
one-dimensional case is the most familiar; it is the Leibniz—Newton formula

b
/ f®dt = f(b) — f(a).

Three versions of this result are of interest to us.

Green’s theorem. Let D be a domain in the plane with boundary C oriented such that
— — —

D is to the left. If the vector field F (x,y) = P(x,y) i + Q(x,y) j is continuously

differentiable on D, then

7§de+Qdy—// (———)dxdy.

Stokes’ Theorem. Let S be an oriented surface with normal vector 7, bounded by a
closed, piecewise smooth curve C that is oriented such that if one travels on C with the

—
upward direction 7, the surface is on the left. If F is a vector field that is continuously
differentiable on S, then

- N
F -dR = (curl F - n)dS,
c s

where d S is the area element on the surface.
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The Gauss—Ostrogradsky (Divergence) Theorem. Let S be a smooth, orientable sur-

—
face that encloses a solid region V in space. If F is a continuously differentiable vector

field on V, then
//73-7615:/// div B dV,
S \%

where T is the outward unit normal vector to the surface S, dS is the area element on
the surface, and dV is the volume element inside of V.

We recall that for a vector field 77) = (Fy, F», F3), the divergence is

A —> 3F1 an 8F3
divF=V.-F=—4+ =42
ox ay 0z

while the curl is

— —
curl F =V x F =

8F3 8F2 - 8F1 3F3 —> 8F2 8F1 -
=\—-——)i+|\—F)J+t|\——-——F) k.
ay 0z 0z ax ox ay
. - . -
The quantity [/ ¢ F - 1 dSis called the flux of F' across the surface S.

Let us illustrate the use of these theorems with some examples. We start with an
encouraging problem whose solution is based on Stokes’ theorem.

Example. Compute
f ydx 4+ zdy + xdz,
c

where C is the circle x> + y*> + 7> = 1, x + y 4+ z = 1, oriented counterclockwise when
seen from the positive side of the x-axis.

Solution. By Stokes’ theorem,
2 -
vdx + zdy + xdz = curl F - ndS,
c s

where § is the disk that the circle bounds. It is straightforward that curl? =

(=1, —1, —1), while 7, the normal vector to the plane x + y + z = 1, is equal to

(-, L %). Therefore,

AV
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f]g vdx 4+ zdy + xdz = —AV3,
c

where A is the area of the disk bounded by C. Observe that C is the circumcircle of the

triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). The circumradius of this triangle

. /6 2 2m/3 O
3=

1—soA=3

3 7. The answer to the problem is therefore —

Example. Orthogonal to each face of a polyhedron construct an outward vector with
length numerically equal to the area of the face. Prove that the sum of all these vectors
is equal to zero.

Solution. We exhibit first an elementary solution based on vector operations. Consider
. — — — —>
the particular case of a tetrahedron A BC D. The four vectors are %BC X BA, %BA X BD,

=2 =2 = = i
>BDx BC,and 3 DA x DC. Indeed, the lengths of these vectors are numerically equal to
the areas of the corresponding faces, and the cross-product of two vectors is perpendicular
to the plane determined by the vectors, and it points outward because of the right-hand
rule. We have

e e T e e e
BC xBA+BAXxBD+ BD xBC+ DA x DC
— = = = —> = —  — — =
=BCxBA+BAXBD+ BD x BC+ (BA—BD) x (BC —BD)

This proves that the four vectors add up to zero.

In the general case, dissect the polyhedron into tetrahedra cutting the faces into
triangles by diagonals and then joining the centroid of the polyhedron with the vertices.
Sum up all vectors perpendicular to the faces of these tetrahedra, and note that the vectors
corresponding to internal walls cancel out.

The elegant solution uses integrals. Let S be the polyhedron and assume that its
interior V is filled with gas at a (not necessarily constant) pressure p. The force that the
gas exerts on S is [ p7 dA, where 77 is the outward normal vector to the surface of
the polyhedron and d A is the area element. The divergence theorem implies that

[/Sp%)dAszfvvpdv.

Here V p denotes the gradient of p. If the pressure p is constant, then the right-hand side
is equal to zero. This is the case with our polyhedron, where p = 1. The double integral
is exactly the sum of the vectors under discussion, these vectors being the forces exerted
by pressure on the faces. O
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As a corollary, we obtain the well-known fact that a container filled with gas under
pressure is at equilibrium; a balloon will never move as a result of internal pressure.

We conclude our series of examples with an application of Green’s theorem, the
proof given by D. Pompeiu to Cauchy’s formula for holomorphic functions. First, let
us introduce some notation for functions of a complex variable f(z) = f(x +iy) =
u(x,y)+iv(x,y). If u and v are continuously differentiable, define

aof 1[af of 1 ou  dv . (0u  dv
—=z|l-ti—|=z\z7"=)+til—+—])|
0z 2| ox ay 2 [\dx 0y ay  0x
The function f is called holomorphic if % = 0. Examples are polynomials in z and any
absolutely convergent power series in z. Also, let dz = dx + idy.

Cauchy’s theorem. Let I" be an oriented curve that bounds a region A on its left, and
letae A. If f(z) = f(x +iy) = u(x,y) +iv(x,y) is a holomorphic function on A
such that u and v are continuous on A U T and continuously differentiable on A, then

1
fla)= — ¢ L@

dz.
2ri Jrz—a

Proof. The proof is based on Green’s formula, applied on the domain A, obtained from
A by removing a disk of radius € around a as described in Figure 23 to P = F and
O =i F, where F is a holomorphic function to be specified later. Note that the boundary
of the domain consists of two curves, I" and I'.

Figure 23

Green’s formula reads

%Fdz—% Fdzz%Fdx—i—ide—% Fdx +iFdy
r re r I

.(O0F OF . oF
=f/ i|—+i— dxdy:Zz// —dxdy = 0.
Ac \0x ay A, 02

7§ F(2)dz =y§ F(z)dz.
r e

Therefore,
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We apply this to

F(z) =

El

@) (w,y) +ivl, y)(x —iy+a —if)
z— (x+a)+(y+p)?

where a = « 4 if. It is routine to check that F' is holomorphic. We thus have

f@ . _ f IQ

r<—a r.<—a

dz.

The change of variable z = a + €€’ on the right-hand side yields

P it T
1@ 4o [T L@ gy — i [T fla+ eear,

r,z—a . ee'’ .

When € — 0 this tends to 277i f (a), and we obtain

f(@

r<—a

dz =2mif(a).

Hence the desired formula. O

526.

527.

528.

529.

Assume that a curve (x(¢), y(¢)) runs counterclockwise around a region D. Prove
that the area of D is given by the formula

1 ! !
A=— (xy — yx)dt.
2 Jop
Compute the flux of the vector field
?(x, v,z) = x(e” — ezx)? + y(e’* — e"y)7 + z(e* — eyz)_lg
across the upper hemisphere of the unit sphere.

Compute
% yidx + 7%dy + x*dz,
c

where C is the Viviani curve, defined as the intersection of the sphere x> 4y 472 =
a® with the cylinder x? 4 y? = ax.

Let ¢ (x, y, z) and ¥ (x, y, z) be twice continuously differentiable functions in the

region {(x, y,z) | 3 < /x> + y? + 22 < 2}. Prove that
/f(vd)xwf)-?dszo,
s

where S is the unit sphere centered at the origin, 7 is the normal unit vector to this

sphere, and V¢ denotes the gradient %i + % j+ g—fk.
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Let f, g : R — R be twice continuously differentiable functions that are constant
along the lines that pass through the origin. Prove that on the unit ball B =
{,y, 2 2+ y2+22 < 1),

//vazgdv =///Bgv2fdv.

2 2 9 i
Here V= = - + 3?2 + 2 is the Laplacian.

Prove Gauss’ law, which states that the total flux of the gravitational field through
a closed surface equals —47 G times the mass enclosed by the surface, where G is
the constant of gravitation. The mathematical formulation of the law is

f/ F . 7dS = —4nMG.
S

Let

G( )= — a 0
xv - ’ ) .
Y x2+4y2" x2 +4y?

. . -
Prove or disprove that there is a vector field F : R® — R?,

Fx.y.2) = (M. y.2). Nx.y.2), P(x. y.2),

with the following properties:
(i) M, N, P have continuous partial derivatives for all (x, y, z) # (0, 0, 0);

.. = =
(i) curl ¥ = 0, forall (x, y, z) # (0,0, 0);
(i) F(x,y,0)= G (x,y).

Let F : R2 - R2, F(x,y) = (Fi(x,), Fx(x, y)) be a vector field, and let
G : R? — R be a smooth function whose first two variables are x and y, and the
third is #, the time. Assume that for any rectangular surface D bounded by the

curve C,
d - -
—// G(x,y,t)dxdy:—?g F -dR.
dt JJp c

G n oF, n aF
ot ox ay

Prove that

=0.
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534. Fortwo disjoint oriented curves C and C; in three-dimensional space, parametrized
by v (s) and _v)z(t), define the linking number

K(Cy, Co) 1 ?g yg V-V, dv, d7v, Jid
, = — . X s.
DY 4 o Jo, 171 — Va3 ds dt

Prove that if the oriented curves C; and —C/ bound an oriented surface S such
that S is to the left of each curve, and if the curve C; is disjoint from S, then
Ik(Cy, Cp) = 1k(C7, C»).

3.4 Equations with Functions as Unknowns

3.4.1 Functional Equations

We will now look at equations whose unknowns are functions. Here is a standard example
that we found in B.J. Venkatachala, Functional Equations: A Problem Solving Approach
(Prism Books PVT Ltd., 2002).

Example. Find all functions f : R — R satisfying the functional equation
fla =P = f0)? =2xf () +y*.
Solution. For y = 0, we obtain
G2 = f(x)? =2xf(0),
and for x = 0, we obtain
G2 = 02 + 2

Setting y = 0 in the second equation, we find that f(0) = 0 or f(0) = 1. On the other
hand, combining the two equalities, we obtain

fx)?=2xf(0) = f(0)* + x7,
that is,
f@)? =+ £0))*
Substituting this in the original equation yields

J? = f(x=H)+y*  (x+ f(0)>—(x—y+ f(0)°+y
2x o 2x

fy) =
=y + f0).

We conclude that the functional equation has the two solutions f(x) = x and f(x) =
x+ 1. O
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But we like more the nonstandard functional equations. Here is one, which is a
simplified version of a short-listed problem from the 42nd International Mathematical
Olympiad. We liked about it the fact that the auxiliary function . from the solution
mimics, in a discrete situation, harmonicity—a fundamental concept in mathematics.
The solution applies the maximum modulus principle, which states that if / is a harmonic
function then the maximum of || is attained on the boundary of the domain of definition.
Harmonic functions, characterized by the fact that the value at one point is the average
of the values in a neighborhood of the point, play a fundamental role in geometry. For
example, they encode geometric properties of their domain, a fact made explicit in Hodge
theory.

Example. Find all functions f : {0,1,2,...} x {0, 1,2, ...} — R satisfying

sfp+1g—D+f(p—1l,g+1))+1 if pg #0,
fp.q) = .
0 if pg = 0.

Solution. We see that f(1, 1) = 1. The defining relation gives f(1,2) =14 f(2,1)/2
and f(2,1) = 1+ f(1,2)/2, and hence f(2,1) = f(1,2) = 2. Then f(3,1) =
14+ f(2,2)/2, f2,2) =14+ f3,1)/2+ f(1,3)/2, f(1,3) = 14+ f(2,2)/2. So
f(2,2) =4, f(3,1) =3, f(1,3) = 3. Repeating such computations, we eventually
guess the explicit formula f(p, g) = pq, p,q > 0. And indeed, this function satisfies
the condition from the statement. Are there other solutions to the problem? The answer
is no, but we need to prove it.

Assume that fi and f; are both solutions to the functional equation. Let h = f; — f>.
Then £ satisfies

. %(h(p+1,q—1)+h(p—1,q+l)) if pg #0,
h(p,q) = 0

if pg = 0.

Fix aline p + ¢ = n, and on this line pick (po, go) the point that maximizes the value of
h. Because

1
h(po. q0) = E(h(po +1L,go—1) +h(po—1,q0+ 1)),

it follows that h(pg + 1, g0 — 1) = h(po — 1,90 + 1) = h(po, qo). Shifting the point,
we eventually conclude that / is constant on the line p + ¢ = n, and its value is equal to
h(n,0) = 0. Since n was arbitrary, we see that 4 is identically equal to 0. Therefore, f| =
/>, the problem has a unique solution, and this solution is f(p,q) = pqg, p,g > 0. O

And now an example of a problem about a multivariable function, from the same
short list, submitted by B. Enescu (Romania).
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Example. Let x1, x,, ..., x, be arbitrary real numbers. Prove the inequality

< /n.

aLE X2 o Xn
L+xi  1+xi+x3 14 x2 4 4 x2

Solution. We introduce the function

f( ) xl + xz + + xn
n(X1, X2, ..., Xp) = .
1, X2 1+xf  14x{+x3 1+x2 4 +x2
If wesetr = m, then

X1 X2 X

n\X1, X2, .., Xp =_+—++
Ju(x1, X2 ) ) r2+X% 72+X22+~-'+x,%

LY o
2y 1+ (32)? 1+(ﬂ)2+...+(x_n)2 '

We obtain the functional equation
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X1 1 X2 X3 X,
fn(xl’XZa---’xn):l 2+ fnfl (_7_""7_>'
+ X3 1 +x12 r o r r
Writing M,, = sup f,(x1, x2, ..., X,), we observe that the functional equation gives rise
to the recurrence relation
X1 M, —1
M, = sup 2

+
X1 1+x% /1+x12

We will now prove by induction that M,, < /n. For n = 1, this follows from :

+x7

<

% < 1. Assume that the property is true for k and let us prove it for k + 1. From the

induction hypothesis, we obtain

k
M, < sup al vk

+
2 /
X1 1+-x1 1+x12

We need to show that the right-hand side of the inequality is less than or equal to /k + 1.

Rewrite the desired inequality as

X

ﬁ—l-\/lzfx/k—i-kxz—i-l—i-x?
X
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Increase the left-hand side to x + +/k; then square both sides. We obtain

¥4k +2xvVk <k +kx+ 1+ x2,

which reduces to 0 < (x+/k — 1), and this is obvious. The induction is now com-

plete.

53s.

536.

537.

538.

539.

540.

541.

542.

O

Find all functions f : R — R satisfying
2=y =@ =@+ fO).

Find all complex-valued functions of a complex variable satisfying
f@Q+zfAd—-—2z)=147z, forallz.

Find all functions f : R\{l1} — R, continuous at 0, that satisfy

fx)=r <L> . forx e R\{1).

1—x
Find all functions f : R — R that satisfy the inequality
fa+n+f+a+ flz+x)=3f(x+2y+32)

forall x,y,z € R.

Does there exist a function f : R — R such that f(f(x)) = x* — 2 for all real
numbers x?

Find all functions f : R — R satisfying

f(x+y)=fx)f(y) —csinxsiny,
for all real numbers x and y, where c is a constant greater than 1.

Let f and g be real-valued functions defined for all real numbers and satisfying the
functional equation

S+ + flx—y)=2f()g(y)

for all x and y. Prove that if f(x) is not identically zero, and if | f (x)| < 1 for all
x, then |g(y)| < 1 for all y.

Find all continuous functions f : R — R that satisfy the relation

3fQ2x +1) = f(x)+5x, forallx.
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543. Find all functions f : (0, co) — (0, co) subject to the conditions
1) f(fF(f(x)+2x = f(Bx), forall x > 0;
(i) limy 00 (f(x) —x) = 0.

544. Suppose that f, g : R — R satisfy the functional equation

glx —y)=gx)g(y) + f(x)f(y)

for x and y in R, and that f(¢) = 1 and g(¢) = O for some ¢ # 0. Prove that f and
g satisfy

glx+y)=gx)gly) — f(x)f(y)

and

fxxy) =fx)gly) £g(x)f(y)
for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

fx+y)=f)+ fO).

We are looking for solutions f : R — R.

It is straightforward that f(2x) = 2 f(x), and inductively f(nx) = nf(x). Setting
y = nx, we obtain f (%y) = rll f(y). In general, if m, n are positive integers, then
FE) =mf)=2f0).

On the other hand, f(0) = f(0) + f(0) implies f(0) = 0, and 0 = f(0) =
f(x) 4+ f(—x) implies f(—x) = — f(x). We conclude that for any rational number x,
fx) = f(Dx.

If f is continuous, then the linear functions of the form

fx) =cx,

where ¢ € R, are the only solutions. That is because a solution is linear when restricted
to rational numbers and therefore must be linear on the whole real axis. Even if we
assume the solution f to be continuous at just one point, it still is linear. Indeed, because
f(x + y) is the translate of f(x) by f(y), f must be continuous everywhere.

But if we do not assume continuity, the situation is more complicated. In set theory
there is an independent statement called the axiom of choice, which postulates that given
a family of nonempty sets (A;);¢;, there is a function f : I — U; A; with f(i) € A;. In
other words, it is possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers
(vectors are real numbers, scalars are rational numbers). A corollary of the axiom of
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choice (Zorn’s lemma) implies the existence of a basis for this vector space. If (e;);¢; is
this basis, then any real number x can be expressed uniquely as

X =rie; + e+ +rpep,

where ry, 13, ..., r, are nonzero rational numbers. To obtain a solution to Cauchy’s
equation, make any choice for f(e;), i € I, and then extend f to all reals in such a
way that it is linear over the rationals. Most of these functions are discontinuous. As an
example, for a basis that contains the real number 1, set f(1) = 1 and f(e;) = O for all
other basis elements. Then this function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

545. Let f : R — R be a continuous nonzero function, satisfying the equation

fx+y) =fx)f(y), forallx,yeR.
Prove that there exists ¢ > 0 such that f(x) = ¢* forall x € R.

546. Find all continuous functions f : R — R satisfying

e+ =f@)+f+ f)f(y), forallx,yeR.
547. Determine all continuous functions f : R — R satisfying

J@)+ )

——F——, forallx,y e R.
I+ f(x)f(y)

fx+y) =
548. Find all continuous functions f : R — R satisfying the condition

fy)=xf(y)+yf(x), forallx,yeR.

549. Find the continuous functions ¢, f, g, h : R — R satisfying

dp(x+y+2)=fx)+ gy +h(),

for all real numbers x, y, z.

550. Given a positive integer n > 2, find the continuous functions f : R — R, with the
property that for any real numbers xi, x5, ..., Xx,,

Y FG) =D fitxp+ Y flitxHx)+e

i<j i<j<k

+ (D" x4+ x4+ 4x,) =0.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one contin-
uous function is automatically monotonic. So if we can read from a functional equation
that a function, which is assumed to be continuous, is also one-to-one, then we know that
the function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R — R satisfying (f o f o f)(x) = x for
all x € R.

Solution. For any x € R, the image of f(f(x)) through f is x. This shows that f is
onto. Also, if f(x;) = f(x2) then x; = f(f(f(x1))) = f(f(f(x2))) = xp, which
shows that f is one-to-one. Therefore, f is a continuous bijection, so it must be strictly
monotonic. If f is decreasing, then f o f is increasing and f o f o f is decreasing,
contradicting the hypothesis. Therefore, f is strictly increasing.

Fix x and letus compare f (x) and x. There are three possibilities. First, we could have
f(x) > x. Monotonicity implies f(f(x)) > f(x) > x, and applying f again, we have
x = f(f(fx)) > f(f(x)) > f(x) > x, impossible. Or we could have f(x) < x,
which then implies f(f(x)) < f(x) <x,andx = f(f(f(x))) < f(f(x)) < f(x) <
x, which again is impossible. Therefore, f(x) = x. Since x was arbitrary, this shows
that the unique solution to the functional equation is the identity function f(x) =x. O

551. Do there exist continuous functions f, g : R — R such that f(g(x)) = %2 and
g(f(x)) = x> forall x € R?

552. Find all continuous functions f : R — R with the property that
f(fx) —=2f(x)+x=0, forallx €R.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, be-
cause practically every evolutionary phenomenon of the real world can be modeled by
a differential equation. This section is about first-order ordinary differential equations,
namely equations expressed in terms of an unknown one-variable function, its derivative,
and the variable. In their most general form, they are written as F (x, y, y') = 0, but we
will be concerned with only two classes of such equations: separable and exact.

An equation is called separable if it is of the form % = f(x)g(y). In this case we
formally separate the variables and write

dy f
—_— = dx.
g(y) Jx)dx

After integration, we obtain the solution in implicit form, as an algebraic relation between
x and y. Here is a problem of 1.V. Maftei from the 1971 Romanian Mathematical
Olympiad that applies this method.
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Example. Find all continuous functions f : R — R satisfying the equation

_ 2 @)
fu)—xu+x)[v+o ;;pd@,

for all x € R. Here A is a fixed real number.

Solution. Because f is continuous, the right-hand side of the functional equation is a
differentiable function; hence f itself is differentiable. Rewrite the equation as

S _ A0
1+x2_k|:1+_/0 1+t2dt]’

and then differentiate with respect to x to obtain

f@d +x%) = f)2x _ ACY
(1+x2)? B

We can separate the variables to obtain

Fo
fo - Tiee

which, by integration, yields
In f(x) = Ax +In(1 +x%) +c.

Hence f(x) = a(l1 4 x?)e’* for some constant a. Substituting in the original relation,
we obtain a = A. Therefore, the equation from the statement has the unique solution

F(x) = A(l + xH)er. o
A first-order differential equation can be written formally as

p(x, y)dx + q(x, y)dy = 0.

Physicists think of the expression on the left as the potential of a two-dimensional force
field, with p and ¢ the x and y components of the potential. Mathematicians call this
expression a 1-form. The force field is called conservative if no energy is wasted in
moving an object along any closed path. In this case the differential equation is called
exact. As a consequence of Green’s theorem, the field is conservative precisely when the

exterior derivative
0 0
ox  dy
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is equal to zero. For functions defined on the entire two-dimensional plane, the field is
conservative if and only if it has a scalar potential. This means that there exists a scalar
function u(x, y) whose differential is the field, i.e.,

ou ou
— =pk,y) and — =gq(x,y).
ox ay

For a conservative field, the scalar potential solves the differential equation, giving the
solution in implicit form as u(x, y) = C, with C a constant. Let us apply this method to
a problem by the first author of the book.

Example. Does there exist a differentiable function y defined on the entire real axis that
satisfies the differential equation

Qx+y—e ¥ )dx+ (x +2y — e )dy = 0?

Solution. Let us assume that such a y does exist. Because

a 2 0 2
—(x—|—2y—e )>=—(2x+y—e x),
ax ay

the equation can be integrated. The potential function is

X y
ux,y) =x>+xy+y> — / e ds — / edt.
0 0

The differential equation translates into the algebraic equation

1\ 3 r o Yo e
<x+—y) +—y2=/ e’ ds+f e "dt+C
2 4 0 0

for some real constant C. The right-hand side is bounded from above by +/87 4 C (note
the Gaussian integrals). This means that both squares on the left must be bounded. In
particular, y is bounded, but then x + %y 1s unbounded, a contradiction. Hence the answer
to the question is no; a solution can exist only on a bounded interval. O

Sometimes the field is not conservative but becomes conservative after the differential
equation is multiplied by a function. This function is called an integrating factor. There
is a standard method for finding integrating factors, which can be found in any textbook.
In particular, any first-order linear equation

Yy + p(x)y =q(x)

can be integrated after it is multiplied by the integrating factor exp([ p(x)dx).
It is now time for problems.
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553.

554.

555.

556.

557.

558.

559.
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A not uncommon mistake is to believe that the product rule for derivatives says that
(fe) =fg. . Iff(x)= ¢*’, determine whether there exists an open interval (a, b)
and a nonzero function g defined on (a, b) such that this wrong product rule is true
for f and g on (a, b).

Find the functions f, g : R — R with continuous derivatives satisfying
f2+g2:f/2+g/2, f+g:g/_f/,

and such that the equation f = g has two real solutions, the smaller of them
being zero.

Let f and g be differentiable functions on the real line satisfying the equation

(fP+8)f +(fe)g =0.

Prove that f is bounded.

Let A, B, C, D, m, n be real numbers with AD — BC # 0. Solve the differential
equation

y(B 4+ Cx"y")dx + x(A + Dx"y")dy = 0.

Find all continuously differentiable functions y : (0, co) — (0, co) that are solu-
tions to the initial value problem

yWo=x, yQ)=1.

Find all differentiable functions f : (0, o0) — (0, oo) for which there is a positive
real number a such that

()=
for all x > 0.

Prove that if the function f(x, y) is continuously differentiable on the whole xy-
plane and satisfies the equation

af af
- - =0,
ox + fay

then f(x, y) is constant.
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3.4.3 Ordinary Differential Equations of Higher Order

The field of higher-order ordinary differential equations is vast, and we assume that you
are familiar at least with some of its techniques. In particular, we assume you are familiar
with the theory of linear equations with fixed coefficients, from which we recall some
basic facts. A linear equation with fixed coefficients has the general form

n d2

d
y+...+

d
4, — Y v a2 va= F.
dx"

ar)—-

dx? dx
If f is zero, the equation is called homogeneous. Otherwise, the equation is called
inhomogeneous. In this case the general solution is found using the characteristic equation

A"+ ay A"V 4+ ag = 0.

If Ay, Az, ..., A, are the distinct roots, real or complex, of this equation, then the general
solution to the homogeneous differential equation is of the form

Y(x) = Pi(x)e"* + Py(x)e" + - 4 Pr(x)e,

where P; (x) is a polynomial of degree one less than the multiplicity of A;,i = 1,2, ..., r.
If the exponents are complex, the exponentials are changed into (damped) oscillations
using Euler’s formula.

The general solution depends on n parameters (the coefficients of the polynomials),
so the space of solutions is an n-dimensional vector space V. For an inhomogeneous
equation, the space of solutions is the affine space yy + V obtained by adding a particular
solution. This particular solution is found usually by the method of the variation of the
coefficients.

We start with an example that exploits an idea that appeared once on a Putnam exam.

Example. Solve the system of differential equations
x// _ y/ + X = O,
y// + xl + y — 0
in real-valued functions x(¢) and y(r).

Solution. Multiply the second equation by i then add it to the first to obtain
(x +iy)" +ilx +iy) + (x +iy) = 0.

With the substitution z = x + iy this becomes the second-order homogeneous linear

differential equation z” + iz’ + z = 0. The characteristic equation is A> 4+ ii + 1 = 0,

with solutions A} , = *HZE 3;. We find the general solution to the equation
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z(t) = (a +ib) exp (#it) + (c+id)exp (#it) ,

for arbitrary real numbers a, b, ¢, d. Since x and y are, respectively, the real and complex
parts of the solution, they have the general form

—14+4/5 . —1+45 —1-4/5 . —1—4/5
x(t) =acos ——t — bsin Tr + ccos Tr — d sin Tt,

-1 5 -1 5 —1-4/5 —1—-4/5
y(t) = asin +ft + b cos +\/—t + ¢ sin T\/_t + d cos T\/—t.

The problem is solved. O

Our second example is an equation published by M. Gherménescu in the Mathematics
Gazette, Bucharest. Its solution combines several useful techniques.

Example. Solve the differential equation
2()7/)3 _ yy/y// _ yzy/// = 0.

Solution. In a situation like this, where the variable x does not appear explicitly, one can
reduce the order of the equation by taking y as the variable and p = y’ as the function.
The higher-order derivatives of y” are

y'= < y = 4 p—dy =p'p
dx dy dx ’
d d dy
" o__ " _ ’ — N2 " )
Y=y &5m03; () +pp") p

We end up with a second-order differential equation
2p* —yp?p' =¥ pp" = Y’ p(p)* = 0.

A family of solutions is p = 0, that is, y' = 0. This family consists of the constant
functions y = C. Dividing the equation by — p, we obtain

y2p" + ¥ (p)? + ypp' —2p* = 0.

The distribution of the powers of y reminds us of the Euler—Cauchy equation, while the
last terms suggests the substitution # = p>. And indeed, we obtain the Euler—Cauchy
equation

yvau" + yu' —4u =0,
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with general solution u = C;y* 4+ C,y~2. Remember that u = p*> = (y)?, from which
we obtain the first-order differential equation

y’ =4 /Clyz + Czy*2 — —M
y

This we solve by separation of variables

ydy

\/C1y4+C2’

dx =+

which after integration gives

vdy 1 dz
x=x | —————=4+- | ——.
VCiy*+ C, 2 VCi122 4+ C,
This last integral is standard; it is equal to ﬁ In|y +/y?+ Cy/Cy| if C; > 0 and
1

2J1C11
given in implicit form by

to

arcsin(%) if C; < 0and C, > 0. We obtain two other families of solutions

1 C2 1 . | 1|y
x == Injy+ [y2+—|+C3 and x ==+ arcsin + C;,
2/ Cy C 2/ —C 2
that is,
x=Aln|y++vy>*+ B|+C and x = Earcsin Fy 4+ G. ]

Here are more problems.
560. Solve the differential equation
xy" +2y +xy=0.

561. Find all twice-differentiable functions defined on the entire real axis that satisfy
f'(x)f"(x) =0 for all x.

562. Find all continuous functions f : R — R that satisfy

F(x)+ /x(x — O f@)dt =1, forallx € R.
0

563. Solve the differential equation

(x — Dy + (4x —5)y + (4x — 6)y = xe .
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564. Let n be a positive integer. Show that the equation
(1 —x%y" —xy +n*y =0
admits as a particular solution an nth-degree polynomial.
565. Find the one-to-one, twice-differentiable solutions y to the equation

d’y d*x

dy fx_y
dx2+dy2

566. Show that all solutions to the differential equation y” + ¢*y = 0 remain bounded
as x — oo.
3.4.4 Problems Solved with Techniques of Differential Equations

In this section we illustrate how tricks of differential equations can offer inspiration when
one is tackling problems from outside this field.

Example. Let f : [0,00) — R be a twice-differentiable function satisfying f(0) > 0
and f'(x) > f(x) forall x > 0. Prove that f(x) > O forall x > 0.

Solution. To solve this problem we use an integrating factor. The inequality
f'(x) = f(x)>0

can be “integrated’ after being multiplied by e~*. It simply says that the derivative of
the function e™ f(x) is strictly positive on (0, co). This function is therefore strictly
increasing on [0, 00). So for x > 0 we have e~ f(x) > ¢ " f(0) = f(0) > 0, which
then implies f(x) > 0, as desired. |

Example. Compute the integral

= e xzd
X) = e ' '7cos —dt.
y(x) /0 2

Solution. We will show that the function y(x) satisfies the ordinary differential equation
yV 4+ y = 0. To this end, we compute

00 2 00 2

2 X —X 2,2 .U

y’(x):f e’ /zsm—z-—zdt:—f e/ sin —du
A 22 g A 2

and
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Iterating, we eventually obtain

2
Vix)=— Ooe_’z/z cos ~—dt = — (x)
y - o 2t2 - y ’

which proves that indeed y satisfies the differential equation y'” + y = 0. The general
solution to this differential equation is

X X X o X X
y(x) =ev2 (C cos — + Czsin—) +e V2 <C3cos— —|—C4sin—) .
2 V2 V2 V2
To find which particular solution is the integral in question, we look at boundary values.
To compute these boundary values we refer to Section 3.3.2, the one on multivariable
integral calculus. We recognize that y(0) = f *e=/2dt is a Gaussian integral equal

to /%, y'(0) = — fo sin & du is a Fresnel integral equal to —¥%, y”(0) = 0, while

y"(0) = fo cos & du is yet another Fresnel integral equal to L We find that C; =

C2 Cy=0and C3 \/> The value of the integral from the statement is therefore

y(x) = \/;e fcos% |

An alternative approach is to view the integral as the real part of a (complex) Gaussian
integral.
We leave the following examples to the reader.

567. Show that both functions

0 pix ® sint
= —dt d = dt
y1(x) /o T an y2(x) /o T x

satisfy the differential equation y” + y = % Prove that these two functions are
equal.

568. Let f be a real-valued continuous nonnegative function on [0, 1] such that

f(t)2§1+2/ f(s)ds, forallt e [0,1].
0

Show that f(¢) < 1+ ¢ forevery ¢ € [0, 1].

569. Let f : [0, 1] = R be a continuous function with f(0) = f(1) = 0. Assume that
f” existson (0, 1) and f"(x) +2f'(x) + f(x) > 0 forall x € (0, 1). Prove that
f(x) <0Oforallx € [0, 1].

570. Does there exist a continuously differentiable function f : R — R satisfying
f(x) > 0and f'(x) = f(f(x)) forevery x € R?
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571. Determine all nth-degree polynomials P (x), with real zeros, for which the equality

n
1 n?

Z P(x) — x; - xP’(x)

i=1

holds for all nonzero real numbers x for which P’(x) # 0, where x;,i = 1,2, ..., n,
are the zeros of P (x).

572. Let C be the class of all real-valued continuously differentiable functions f on the
interval [0, 1] with f(0) =0 and f(1) = 1. Determine

1
u— }‘éfcfo /() — FG)ldx.
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Geometry and Trigonometry

Geometry is the oldest of the mathematical sciences. Its age-old theorems and the sharp
logic of its proofs make you think of the words of Andrew Wiles, “Mathematics seems to
have a permanence that nothing else has.”

This chapter is bound to take you away from the geometry of the ancients, with
figures and pictorial intuition, and bring you to the science of numbers and equations
that geometry has become today. In a dense exposition we have packed vectors and their
applications, analytical geometry in the plane and in space, some applications of integral
calculus to geometry, followed by a list of problems with Euclidean flavor but based on
algebraic and combinatorial ideas. Special attention is given to conics and quadrics, for
their study already contains the germs of differential and algebraic geometry.

Four subsections are devoted to geometry’s little sister, trigonometry. We insist on
trigonometric identities, repeated in subsequent sections from different perspectives: Eu-
ler’s formula, trigonometric substitutions, and telescopic summation and multiplication.

Since geometry lies at the foundation of mathematics, its presence could already be
felt in the sections on linear algebra and multivariable calculus. It will resurface again
in the chapter on combinatorics.

4.1 Geometry

4.1.1 Vectors

This section is about vectors in two and three dimensions. Vectors are oriented segments
identified under translation.
There are four operations defined for vectors: scalar multiplication o v, addition
- | = - = - = . .
U + W, dot product v - W, and cross-product v x w, the last being defined only in
three dimensions. Scalar multiplication dilates or contracts a vector by a scalar. The sum
of two vectors is computed with the parallelogram rule; it is the resultant of the vectors
acting as forces on an object. The dot product of two vectors is a number equal to the
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product of the magnitudes of the vectors and the cosine of the angle between them. A
dot product equal to zero tells us that the vectors are orthogonal. The cross-product of
two vectors is a vector orthogonal to the two vectors and of magnitude equal to the area
of the parallelogram they generate. The orientation of the cross-product is determined
by the right-hand rule: place your hand so that you can bend your palm from the first
vector to the second, and your thumb will point in the direction of the cross-product. A
cross-product equal to zero tells us that the vectors are parallel (although they might point
in opposite directions).

The dot and cross-products are distributive with respect to sum; the dot product is com-
mutative, while the cross-product is not. For the three-dimensional vectors w, T, W,
the number 7 - (¥ x W) is the volume taken with sign of the parallelepiped constructed
with the vectors as edges. The sign is positive if the three vectors determine a frame
that is oriented the same way as the orthogonal frame of the three coordinate axes, and
negative otherwise. Equivalently, U - (U x W) is the determinant with the coordinates
of the three vectors as rows.

A useful computational tool is the cab-bac identity:

Zx (B x)=(-D)b—(D-3)7C.
—

The quickest way to prove it is to check it for @, b, ¢ chosen among the three unit
vectors parallel to the coordinate axes i , j, and k , and then use the distributivity of
the cross-product with respect to addition. Here is an easy application of this identity.

— —
Example. Prove that for any vectors 7, b, _c), d,

(@ xB)x(Cxd)=(@ - (bxd)C—(a-(bx72)d.
Solution. We have
(@xb)x(Txd)=(d (@xbNT—(T-(Txbyd
— (@ (b xd)C—(a-(bx2)d.
In the computation we used the equality - (_v> X E)) =W (7 X _v>), which is
straightforward if we write these as determinants. O

Let us briefly point out a fundamental algebraic property of the cross-product. Denote
by so(3) the set of 3 x 3 matrices A satisfying A + A’ = O3 endowed with the operation
[A, B] = AB — BA.

Theorem. The map

0 —a) —ap
(ar,a2,a3) > | a1 0 —a3
day aj 0
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establishes an isomorphism between (R*, x) and (so(3), [, -1).

Proof. The proof is straightforward if we write the cross-product in coordinates. The
result shows that the cross-product defines a Lie algebra structure on the set of three-
dimensional vectors. Note that the isomorphism maps the sum of vectors to the sum of
matrices, and the dot product of two vectors to the negative of half the trace of the product
of the corresponding matrices. O

And now the problems.

573. For any three-dimensional vectors i, U, W, prove the identity

—
XX+ T Xx (W xD+w x (@ xv)=0.

—
574. Given three vectors 7, b, _c), define

— —
U=(b-E)Ya—(¢-a)b,
T =@ - b —(T-b)7,
— —
W=(b-a)¢ —(b-O)a
Prove that if 7, _b>, 7 form a triangle, then 7, _v), W also form a triangle, and

this triangle is similar to the first.

— — ) —
575. Let @, b, ¢ be vectors such that b and ¢ are perpendicular, but d and b are
not. Let m be a real number. Solve the system

- =
X - d =m,
X x b =~¢.

- . .
576. Consider three linearly independent vectors a,b,7Cin space, having the same
origin. Prove that the plane determined by the endpoints of the vectors is perpen-

- -
diculartothe vector @ x b + b x ¢ + ¢ x d.

577. The vectors 7, Z), and ¢ satisfy

- -

— e A -
d xXb=>bx¢=¢xd#0

—
Prove that @ —i-_b) +7=0.
578. Find the vector-valued functions % (1) satisfying the differential equation
—> —>/ v
U xu =7,

where T = T (¢) is a twice-differentiable vector-valued function such that both
o and U’ are never zero or parallel.
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579. Does there exist a bijection f of (a) a plane with itself or (b) three-dimensional
space with itself such that for any distinct points A, B the lines AB and f(A) f(B)
are perpendicular?

580. On so(3) we define the operation * such that if A and B are matrices corresponding

to the vectors @ = (a1, a», az) and ? = (b1, by, b3), then the ij entry of A x B is
equal to (—1)"*/ay_;bs_;. Prove the identity

CBA— BCA=(A%C)B— (AxB)C.

581. Prove that there is a bijection f from R? to the set su(2) of 2 x 2 matrices with
complex entries that are skew symmetric and have trace equal to zero such that

F(T x W) =[f(V), f(W)].

We present two applications of vector calculus to geometry, one with the dot product,
one with the cross-product.

Example. Given two triangles ABC and A’B’C’ such that the perpendiculars from
A, B,C onto B'C’, C'A’, A’B’ intersect, show that the perpendiculars from A’, B’, C’
onto BC, CA, AB also intersect.

Solution. This is the property of orthological triangles. Denote by O the intersection of
the first set of three perpendiculars, and by O’ the intersection of perpendiculars from A’
and B’. Note that if the vector XY is orthogonal to a vector Z—V[)/ , then for any point P in
the plane,

— = = —
(PX—PY) - ZW =XY - ZW =0;
hence PX - ZW = PY - ZW. Using this fact we can write
—_— —_—> —> — —> —_— —> - —> - —
OC'-OB=0'A-0B=0'A-0C=0B-0C=0B-0A=0C"0A.
Therefore, O'C’-(OB—0OA) = O'C’-AB = 0, which shows that O’C’ is perpendicular
to AB. This proves that the second family of perpendiculars are concurrent. O

Example. Let ABCD be a convex quadrilateral, M, N on side AB and P, Q on side
CD. Show that if AM = NB and CP = QD, and if the quadrilaterals AM QD and
BN PC have the same area, then AB is parallel to CD.

Solution. Throughout the solution we refer to Figure 24. We decompose the quadrilaterals
into triangles, and then use the formula for the area in terms of the cross-product.

In general, the triangle determined by ¥ ; and v3 has area equal to half the magnitude
of ¥ x 5. Note also that ¥ | x 3 is perpendicular to the plane of the triangle, so for
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Figure 24

a problem in plane geometry there is no danger in identifying the areas with the cross-
products, provided that we keep track of the orientation. The hypothesis of the problem
implies that

|
|
|
|

Using the factthat AD+CB = AB+C D (which follows fromﬁ—i—BC—i—CD—i—DA =
—
0 ), we obtain

_— = = —>

— =
AM xCD+DQ x AB=2D0 x AM.

— = = — ,

From here we deduce that AM x QC = DQ x M B. These two cross-products point
in opposite directions, so equality can hold only if both are equal to zero, i.e., if AB is
parallel to CD. O

More applications of the dot and cross-products to geometry can be found below.

582. Given two triangles ABC and A’B’C’ with the same centroid, prove that one can
construct a triangle with sides equal to the segments AA’, BB’, and CC’.

583. Given a quadrilateral ABC D, consider the points A", B’, C’, D’ on the half-lines
(i.e., rays) |AB, |BC, |CD, and | DA, respectively, such that AB = BA', BC =
CB',CD = DC’, DA = AD'. Suppose now that we start with the quadrilateral
A’B'C’D’. Using a straightedge and a compass only, reconstruct the quadrilateral
ABCD.
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584. On the sides of the triangle A BC construct in the exterior the rectangles AB B A,,
BCCB;, CAA,C,. Prove that the perpendicular bisectors of A;A,, B1B;, and
C,C; intersect at one point.

585. Let ABCD be a convex quadrilateral. The lines parallel to AD and C D through
the orthocenter H of triangle ABC intersect AB and BC, respectively, at P and
Q. Prove that the perpendicular through H to the line P Q passes through the
orthocenter of triangle AC D.

586. Prove that if the four lines through the centroids of the four faces of a tetrahedron
perpendicular to those faces are concurrent, then the four altitudes of the tetrahedron
are also concurrent. Prove that the converse is also true.

587. Let ABC be a convex quadrilateral, M, N € AB such that AM = MN = NB,
and P, Q € CD suchthat CP = PQ = QD. Let O be the intersection of AC
and B D. Prove that the triangles M O P and N O Q have the same area.

588. Let ABC be a triangle, with D and E on the respective sides AC and AB. If M
and N are the midpoints of BD and CE, prove that the area of the quadrilateral
BC DE is four times the area of the triangle AMN.

4.1.2 The Coordinate Geometry of Lines and Circles

Coordinate geometry was constructed by Descartes to translate Euclid’s geometry into the
language of algebra. In two dimensions one starts by fixing two intersecting coordinate
axes and a unit on each of them. If the axes are perpendicular and the units are equal, the
coordinates are called Cartesian (in the honor of Descartes); otherwise, they are called
affine. A general affine change of coordinates has the form

();:) = (j Z) <§> + <;), with (CCI Z) invertible.

If the change is between Cartesian systems of coordinates, a so-called Euclidean change
of coordinates, it is required additionally that the matrix

ab
(4)
be orthogonal, meaning that its inverse is equal to the transpose.
Properties that can be formulated in the language of lines and ratios are invariant
under affine changes of coordinates. Such are the properties of two lines being parallel
or of a point to divide a segment in half. All geometric properties are invariant under

Euclidean changes of coordinates. Therefore, problems about distances, circles, and
angles should be modeled with Cartesian coordinates.
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In this section we grouped problems that require only the knowledge of the theory
of lines and circles. Recall that the general equation of a line (whether in a Cartesian or
affine coordinate system) is ax 4+ by + ¢ = 0. That of a circle (in a Cartesian coordinate
system) is (x — h)? + (y — k)> = r?, where (h, k) is the center and r is the radius. Let us
see two examples, one in affine and one in Cartesian coordinates. But before we do that
let us recall that a complete quadrilateral is a quadrilateral in which the pairs of opposite
sides have been extended until they meet. For that reason, a complete quadrilateral has
six vertices and three diagonals.

Example. Prove that the midpoints of the three diagonals of a complete quadrilateral are
collinear.

Solution. As said, we will work in affine coordinates. Choose the coordinate axes to be
sides of the quadrilateral, as shown in Figure 25.

.d)

0,0

@,0) (0,0
Figure 25

Five of the vertices have coordinates (0, 0), (a, 0), (b, 0), (0, ¢), and (0, d), while the
sixth is found as the intersection of the lines through (a, 0) and (0, d), respectively, (0, ¢)
and (b, 0). For these two lines we know the x- and y-intercepts, so their equations are

! + ! 1 d ! —i—l 1
—x+—-y= and -x+-y=1.
a dy b cy

The sixth vertex of the complete quadrilateral has therefore the coordinates

(ab(c—d) cd(a—b))
ac—bd ’ ac—bd )’

We find that the midpoints of the diagonals are

(g f) (é g) (ab(c—d) cd(a—b))
2° 2/ 2°2)° 2(ac — bd)’ 2(ac —bd) )
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The condition that these three points be collinear translates to

1 a c 1
—_ d 1 =0.
2ac=bd) | 4p(c — d) cd(a — b) ac — bd
This is verified by direct computation. O

Example. In a circle are inscribed a trapezoid with one side as diameter and a triangle
with sides parallel to the sides of the trapezoid. Prove that the two have the same area.

Solution. We refer everything to Figure 26. Assume that the circle has radius 1, and the
trapezoid has vertices (1, 0), (a, b), (—a, b) and (—1, 0).

0,1)
(a,b

/ \ .
\@g-@

Figure 26

~

The triangle is isosceles and has one vertex at (0, 1). We need to determine the
coordinates of the other two vertices. One of them lies where the parallel through (0, 1)
to the line determined by (1, 0) and (a, b) intersects the circle. The equation of the line is

y = x + 1.

a—1
The relation a®> + b* = 1 yields b> = (1 — a)(1 + a), or l%a = ”T“ So the equation of
the line can be rewritten as

1+a
b

y=- x4+ 1.

Now it is easy to guess that the intersection of this line with the circle is (b, —a) (note that
this point satisfies the equation of the circle). The other vertex of the triangle is (—b, —a),
so the area is %(21))(1 +a) = b+ab. And the area of the trapezoid is %(261 +2)b = b+ab,
the same number. O

589. Prove that the midpoints of the sides of a quadrilateral form a parallelogram.
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590. Let M be a point in the plane of triangle ABC. Prove that the centroids of the
triangles MAB, MAC, and M C B form a triangle similar to triangle ABC.

591. Find the locus of points P in the interior of a triangle A BC such that the distances
from P to the lines AB, BC, and C A are the side lengths of some triangle.

592. Let Ay, A,, ..., A, be distinct points in the plane, and let m be the number of
midpoints of all the segments they determine. What is the smallest value that m
can have?

593. Given an acute-angled triangle ABC with altitude AD, choose any point M on
AD, and then draw BM and extend until it intersects AC in E, and draw CM and
extend until it intersects AB in F. Prove that Z/ADE = ZADF.

594. In a planar Cartesian system of coordinates consider a fixed point P(a, b) and a
variable line through P. Let A be the intersection of the line with the x-axis.
Connect A with the midpoint B of the segment O P (O being the origin), and
through C, which is the point of intersection of this line with the y-axis, take the
parallel to O P. This parallel intersects P A at M. Find the locus of M as the line
varies.

595. Let ABCD be a parallelogram with unequal sides. Let E be the foot of the per-
pendicular from B to AC. The perpendicular through E to B D intersects BC in F
and AB in G. Show that EF = EG if and only if ABC D is a rectangle.

596. Find all pairs of real numbers (p, g) such that the inequality

2 V2-1
N

2
holds for every x € [0, 1].

597. On the hyperbola xy = 1 consider four points whose x-coordinates are x;, x, X3,
and x4. Show that if these points lie on a circle, then x;x,x3x4 = 1.

The points of the plane can be represented as complex numbers. There are two
instances in which complex coordinates come in handy: in problems involving “nice”
angles (such as 7, 3, 7), and in problems about regular polygons.

In complex coordinates the line passing through the points z; and z, has the parametric
equation z = tz; + (1 — #)z, t € R. Also, the angle between the line passing through
z1 and z; and the line passing through z3 and z4 is the argument of the complex number
ﬁ The length of the segment determined by the points z; and z, is |z; — z2|. The
vertices of a regular n-gon can be chosen, up to a scaling factor, as 1, €, €, ..., el

where € = ¢27i/" = 00527” + i sin 27”



210 4 Geometry and Trigonometry

Example. Let ABC and BCD be two equilateral triangles sharing one side. A line
passing through D intersects AC at M and AB at N. Prove that the angle between the
lines BM and CN is 7.

Solution. Inthe complex plane, let B have the coordinate 0, and C the coordinate 1. Then
A and D have the coordinates e/™/? and e~/"/3, respectively, and N has the coordinate
te'™3 for some real number .

The parametric equations of N D and AC are, respectively,

z=ate™+ (1 —a)e ™3 and z=pg"+(1-p), a peR.
To find their intersection we need to determine the real numbers « and 8 such that
are™? + (1 —a)e ™3 = B3 4 (1 — B).
Explicitly, this equation is

143
az%“/_+(1—a) :

1—iv/3 1+iv/3

+1-5).
Setting the real and imaginary parts equal, we obtain the system

at+ (1 —a)=B+2(1—p),
ot — (1 —a) = B.

By adding the two equations, we obtain o = % So the complex coordinate of M is
ein/3 + (1 _ %)e—in/3.
The angle between the lines BM and CN is the argument of the complex number

ein/3 + (1 _ %) e—in/3 (ein/3 + e—in/3) _ %e—in/3 1 — %e—in/S 1
= = = —e€

—in/3
teit/3 — 1 teit/3 — 1 tei™/3 — 1 t '

The angle is therefore %, as claimed.

During the Mathematical Olympiad Summer Program of 2006, J. Bland discovered
the following simpler solution:

Place the figure in the complex plane so that the coordinates of A, B, C, D are,
respectively, i \/5, —1,1,and —i V3. Let MC have length 2¢, where ¢ is a real parameter
(positive if C is between A and M and negative otherwise). The triangles M C D and
N B D have parallel sides, so they are similar. It follows that BN = % (positive if B is

between A and N and negative otherwise). The coordinates of M and N are

1 1
m=—(1—|—;)—;i\/§ and n=(@+1)—tiv3.
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We compute
c—n 2t + 1+ i\/g i
=1 = —te 3.
b—m  —t—2+1i3
It follows that the two lines form an angle of Z, as desired. O

The second example comes from the 15th W.L. Putnam Mathematical Competition,
1955.

Example. Let A{A,As5. .. A, be aregular polygon inscribed in the circle of center O and
radius . On the half-line |O A; choose the point P such that A; is between O and P.
Prove that

ﬁPAi =PO" —r".

i=1

Solution. Place the vertices in the complex plane such that A; = re', 1 <i < n, where
€ is an nth root of unity. The coordinate of P is a real number rx, with x > 1. We have

n n n n
l_[PA,- =l_[|rx—re’| =r"l_[|x—e’| =r" l_[(x—e’)
i=1 i=1 i=1 i=1

=r"x"—-1)=(0x)"—r"=PO" —r".

The identity is proved. |

598. Let ABC DEF be a hexagon inscribed in a circle of radius r. Show that if AB =
CD = EF = r, then the midpoints of BC, DE, and FA are the vertices of an
equilateral triangle.

599. Prove that in a triangle the orthocenter H, centroid G, and circumcenter O are

collinear. Moreover, G lies between H and O, and % = %

600. On the sides of a convex quadrilateral ABC D one draws outside the equilateral
triangles ABM and CD P and inside the equilateral triangles BCN and AD Q.
Describe the shape of the quadrilateral M N P Q.

601. Let ABC be a triangle. The triangles PAB and Q AC are constructed outside of
the triangle ABC such that AP = AB, AQ = AC, and /BAP = /CAQ = «.
The segments BQ and C P meet at R. Let O be the circumcenter of the triangle
BCR. Prove that AO and P Q are orthogonal.

602. Let AA; ... A, be aregular polygon with circumradius equal to 1. Find the max-
imum value of [];_, PAy as P ranges over the circumcircle.



212 4 Geometry and Trigonometry
603. Let Ay, Ay, ..., A, be the vertices of a regular n-gon inscribed in the unit circle.
Prove that

A()A] . A()Az s A()A,,,l =n.

4.1.3 Conics and Other Curves in the Plane

The general equation of a quadratic curve is
ax> +by* +cxy +dx +ey+ f =0.

Such a curve is called a conic because (except for the degenerate case of two parallel
lines) it can be obtained by sectioning a circular cone by a plane.

The degenerate conics are pairs of (not necessarily distinct) lines, single points, the
entire plane, and the empty set. We ignore them. There are three types of nondegenerate
conics, which up to a change of Cartesian coordinates are described in Figure 27.

2 2 2 2
V= 4px St= -p=
parabola ellipse hyperbola
Figure 27

The parabola is the locus of the points at equal distance from the point (p, 0) (focus)
and the line x = —p (directrix). The ellipse is the locus of the points with the sum of
distances to the foci (¢, 0) and (—c, 0) constant, where ¢ = /|a? — b?|. The hyperbola
is the locus of the points with the difference of the distances to the foci (¢, 0) and (—c, 0)
constant, where ¢ = Va? + b2.

Up to an affine change of coordinates, the equations of the parabola, ellipse, and
hyperbola are, respectively, y> = x, x2+y? = 1, and x> — y?> = 1. Sometimes it is more
convenient to bring the hyperbola into the form xy = 1 by choosing its asymptotes as
the coordinate axes.

As conic sections, these curves are obtained by sectioning the circular cone 7> =
x? + y? by the planes z — x = 1 (parabola), z = 1 (ellipse), and y = 1 (hyperbola).
The vertex of the cone can be thought of as the viewpoint of a person. The projections
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through this viewpoint of one plane to another are called projective transformations. Up
to a projective transformation there is only one nondegenerate conic—the circle. Any
projectively invariant property that can be proved for the circle is true for any conic
(and by passing to the limit, even for degenerate conics). Such is the case with Pascal’s
theorem: The opposite sides of a hexagon inscribed in a conic meet at three collinear
points. Note that when the conic degenerates into two parallel lines, this becomes Pappus’
theorem.

To conclude our discussion, let us recall that the equation of the tangent line to a
conic at a point (xo, o) is obtained by replacing in the general equation of the conic x?
and y? by xxo, respectively, yyo, xy by "y‘)” *0_ and x and y in the linear terms by *5%,
respectively, 250

We now proceed with an example from A. Myller’s Analytical Geometry (3rd ed.,
Editura Didactici si Pedagogicd, Bucharest, 1972).

Example. Find the locus of the centers of the equilateral triangles inscribed in the parabola
2
y- =4px.

Solution. Let us determine first some algebraic conditions that the coordinates (x;, y;),
= 1, 2, 3, of the vertices of a triangle should satisfy in order for the triangle to be
equilateral. The equation of the median from (x3, y3) is

Yy=ys _ yi+ty2—2y
X — X3 X1+XQ—2)C3'

Requiring the median to be orthogonal to the side yields

yity—2y; y2—n
X1+ x2—2x3 xo—Xx;

=1,
or

(x1 —x2)(x1 +x2 — 2x3) + (y1 — y2)(y1 + y2 — 2y3) = 0.

So this relation along with the two obtained by circular permutations of the indices are
necessary and sufficient conditions for the triangle to be equilateral. Of course, the third

2
condition is redundant. In the case of three points on the parabola, namely (Z—”p, Vi),
i =1, 2,3, after dividing by y; — y,, respectively, by y, — y3 (which are both nonzero),
we obtain

01+ y2)OF + y3 —2y3) + 16p*(y1 + y2 — 2y3) =0,
24 y) (32 + y2 = 292) 4+ 16p*(y2 + y3 — 2y1) = 0.

Subtracting the two gives
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Vi =Y+ 1 =y 03 = 25153) +48p° (1 — y3) = 0.
Divide this by y; — y3 # 0 to transform it into
Y+ 5 435 + 301y + vy + yay) +48p° = 0.

This is the condition satisfied by the y-coordinates of the vertices of the triangle. Keeping
in mind that the coordinates of the center of the triangle are

_yitytys _yidntn
12p ' 3 '

we rewrite the relation as

1 3
—5<y% + 3+ 3+ SOT+y+ ¥3)2 +48p* =0,

then substitute 12px = y7 4+ y5 + y7 and 3y = y; + y» + y3 to obtain the equation of
the locus

27
—6px + ?yz +48p% =0,

or
4p
2
= —(x —8p).
y 9 (x —8p)
This is a parabola with vertex at (8 p, 0) and focus at ((é 4+ 8)p, 0). O

The second problem was given at the 1977 Soviet Union University Student Mathe-
matical Olympiad.

Example. Let P be a point on the hyperbola xy = 4, and Q a point on the ellipse
x? 4 4y% = 4. Prove that the distance from P to Q is greater than 1.

Solution. We will separate the conics by two parallel lines at a distance greater than 1.
For symmetry reasons, it is natural to try the tangent to the hyperbola at the point (2, 2).
This line has the equation y = 4 — x.

Let us determine the point in the first quadrant where the tangent to the ellipse has
slope —1. If (xp, yo) is a point on the ellipse, then the equation of the tangent at x is
xxo + 4yyy = 4. Its slope is —xo/4yy. Setting —xo9/4yyp = —1 and xé + 4y§ = 4,
we obtain xo = 4/+/5 and yo = 1/+/5. Consequently, the tangent to the ellipse is
y=+/5—x.

The distance between the lines y =4 —x and y = \/5 —x isequal to (4 — \/5) / ﬁ,
which is greater than 1. Hence the distance between the arbitrary points P and Q is also
greater than 1, and we are done. m|
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Consider a circle of diameter AB and center O, and the tangent # at B. A variable
tangent to the circle with contact point M intersects ¢ at P. Find the locus of the
point Q where the line O M intersects the parallel through P to the line AB.

On the axis of a parabola consider two fixed points at equal distance from the focus.
Prove that the difference of the squares of the distances from these points to an
arbitrary tangent to the parabola is constant.

With the chord P Q of a hyperbola as diagonal, construct a parallelogram whose
sides are parallel to the asymptotes. Prove that the other diagonal of the parallelo-
gram passes through the center of the hyperbola.

Astraight line cuts the asymptotes of a hyperbola in points A and B and the hyperbola
itself in P and Q. Prove that AP = BQ.

Consider the parabola y> = 4 px. Find the locus of the points such that the tangents
to the parabola from those points make a constant angle ¢.

Let Ty, T,, T5 be points on a parabola, and ¢, #,, #3 the tangents to the parabola at
these points. Compute the ratio of the area of triangle 777,73 to the area of the
triangle determined by the tangents.

Three points A, B, C are considered on a parabola. The tangents to the parabola

at these points form a triangle M N P (N P being tangent at A, PM at B, and M N

at C). The parallel through B to the symmetry axis of the parabola intersects AC

at L.

(a) Show that LM N P is a parallelogram.

(b) Show that the circumcircle of triangle M N P passes through the focus F of the
parabola.

(c) Assuming that L is also on this circle, prove that N is on the directrix of the
parabola.

(d) Find the locus of the points L if AC varies in such a way that it passes through
F and is perpendicular to BF.

Find all regular polygons that can be inscribed in an ellipse with unequal semiaxes.

We are given the parabola y> = 2px with focus F. For an integer n > 3 consider
aregular polygon A A, ... A, whose center is F and such that none of its vertices
is on the x-axis. The half-lines |FA|, |FA,, ..., |FA, intersect the parabola at B,
B>, ..., B,. Prove that

FBy+ FBy+---+ FB, > np.

A cevian of a triangle is a line segment that joins a vertex to the line containing the
opposite side. An equicevian point of a triangle ABC is a point P (not necessarily
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inside the triangle) such that the cevians on the lines AP, B P, and C P have equal

lengths. Let SBC be an equilateral triangle, and let A be chosen in the interior of

SBC, on the altitude dropped from S.

(a) Show that ABC has two equicevian points.

(b) Show that the common length of the cevians through either of the equicevian
points is constant, independent of the choice of A.

(c) Show that the equicevian points divide the cevian through A in a constant ratio,
which is independent of the choice of A.

(d) Find the locus of the equicevian points as A varies.

(e) Let S’ be the reflection of S in the line BC. Show that (a), (b), and (c) hold if A
varies on any ellipse with S and §’ as its foci. Find the locus of the equicevian
points as A varies on the ellipse.

A planar curve is called rational if it can be parametrized as (x(¢), y(¢)) with x(z)
and y(#) rational functions of the real variable . Here we have to pass to the closed real
line, so ¢ is allowed to be infinite, while the plane is understood as the projective plane,
zero denominators giving rise to points on the line at infinity.

Theorem. All conics are rational curves.

Proof. The case of degenerate conics (i.e., pairs of lines) is triVial The parabola y*> = 4 px

is parametrized by (%, t), the ellipse Z—z + 2 b2 = 1by (ai=5 0 +t2, b Hz_t,z) and the hyperbola

2 -1 -1
%3 — 3z = 1 by (a™f—, b'=—). The general case follows from the fact that coordinate
changes are rational (in fact, linear) transformations. O

Compare the standard parametrization of the circle (cosx, sinx) to the rational
parametrization (1 +t2’ : +12) This gives rise to the trigonometric substitution tan 5 = ¢
and explains why integrals of the form

f R(cosx, sinx)dx,

with R a two-variable rational function, can be reduced to integrals of rational functions.
Let us change slightly our point of view and take a look at the conic

y2=ax*+bx +ec.

If we fix a point (xg, yo) on this conic, the line y — yg = t (x — x¢) intersects the conic in
exactly one more point (x, y). Writing the conditions that this point is both on the line
and on the conic and eliminating y, we obtain the equation

[yo+t(x — xo)]2 =ax’*+bx +c.
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A few algebraic computations yield
2yof 4+ 12(x — x0) = a(x + xo) + b.

This shows that x is a rational function of the slope ¢. The same is true for y. As ¢ varies,
(x, y) describes the whole conic. This is a rational parametrization of the conic, giving
rise to Euler’s substitutions. In their most general form, Euler’s substitutions are

ax? 4+ bx +c — yo = t(x — xp).

They are used for rationalizing integrals of the form

/ R(x,vax? 4+ bx + c)dx,

where R is a two-variable rational function.

614. Compute the integral

dx
a+bcosx +csinx’
where a, b, c are real numbers, not all equal to zero.

615. Consider the system

X+y=2z+u,
2xy = zu.

Find the greatest value of the real constant m such that m < % for any positive
integer solution (x, y, z, u) of the system, with x > y.

We conclude our incursion into two-dimensional geometry with an overview of var-
ious famous planar curves. The first answers a question of GW. Leibniz.

Example. What is the path of an object dragged by a string of constant length when the
end of the string not joined to the object moves along a straight line?

Solution. Assume that the object is dragged by a string of length 1, that its initial co-
ordinates are (0, 1), and that it is dragged by a vehicle moving along the x-axis in the
positive direction. Observe that the slope of the tangent to the curve at a point (x, y)
points toward the vehicle, while the distance to the vehicle is always equal to 1. These
two facts can be combined in the differential equation

dy Y

E_ ]_y2
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Separate the variables

and then integrate to obtain

x=—y1—=y2—Iny—In(1++1-y?)+C.

The initial condition gives C = 0. The answer to the problem is therefore the curve

x=—yI—y2—Iny—In(l + 1 —2),

depicted in Figure 28. O

Figure 28

This curve is called a tractrix, a name given by Ch. Huygens. Clearly, it has the x-
axis as an asymptote. E. Beltrami has shown that the surface of revolution of the tractrix
around its asymptote provides a partial model for hyperbolic geometry. This surface has
been used in recent years for the shape of loudspeakers.

A variety of other curves show up in the problems below. In some of the solutions,
polar coordinates might be useful. Recall the formulas for changing between Cartesian
and polar coordinates: x =rcosf, y = rsin6.

616. Find the points where the tangent to the cardioid r = 1 + cos @ is vertical.

617. Given a circle of diameter AB, a variable secant through A intersects the circle at
C and the tangent through B at D. On the half-line AC a point M is chosen such
that AM = CD. Find the locus of M.



618.

619.

620.

621.

622,

623.

624.

625.
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Find the locus of the projection of a fixed point on a circle onto the tangents to the
circle.

On a circle of center O consider a fixed point A and a variable point M. The circle
of center A and radius AM intersects the line OM at L. Find the locus of L as M
varies on the circle.

The endpoints of a variable segment A B lie on two perpendicular lines that intersect
at O. Find the locus of the projection of O onto A B, provided that the segment AB
maintains a constant length.

From the center of a rectangular hyperbola a perpendicular is dropped to a variable
tangent. Find the locus in polar coordinates of the foot of the perpendicular. (A
hyperbola is called rectangular if its asymptotes are perpendicular.)

Find a transformation of the plane that maps the unit circle x> + y> = 1 into a
cardioid. (Recall that the general equation of a cardioid is r = 2a(1 4 cos9).)

Prove that the locus described by the equation x* +3xy + y*> = 1 contains precisely
three noncollinear points A, B, C, equidistant to one another, and find the area of
triangle ABC.

For n and p two positive integers consider the curve described by the parametric
equations

x =at" + bt + ¢y,

y =axt" + byt? 4¢3,

7 = a3t" + b3t? + c3,

where ¢ is a parameter. Prove that the curve is planar.

What is the equation that describes the shape of a hanging flexible chain with ends
supported at the same height and acted on by its own weight?

4.1.4 Coordinate Geometry in Three and More Dimensions

In this section we emphasize quadrics. A quadric is a surface in space determined by a
quadratic equation. The degenerate quadrics—Ilinear varieties, cones, or cylinders over
conics—add little to the picture from their two-dimensional counterparts, so we skip them.
The nondegenerate quadrics are classified, up to an affine change of coordinates, as

o xZ4 y2 +72=1, ellipsoid;

e x2+y%?—z% =1, hyperboloid of one sheet;
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» x?—y? — 7% =1, hyperboloid of two sheets;
« x%+ y? =z, elliptic paraboloid,;
¢ x% — y% = z, hyperbolic paraboloid.

In Cartesian coordinates, in these formulas there is a scaling factor in front of each
term. For example, the standard form of an ellipsoid in Cartesian coordinates is

2 2 2
X y Z
St a=1

As in the case of conics, the equation of the tangent plane to a quadric at a point
(X0, Y0, Zo) is obtained by replacing in the equation of the quadric x2, y?, and z2, respec-
; . ; XYo+yXo Xx20+2X0 Y20+2)0 .
tively, by xxo, y.yo, anq 2203 Xy, Xz, and yz., respectively, b}jr R and 5
and x, y, and z in the linear terms, respectively, by 25, 222 and =X
Our first example comes from the 6th W.L. Putnam Mathematical Competition.

Example. Find the smallest volume bounded by the coordinate planes and by a tangent
plane to the ellipsoid

2 2 2
X y <
;+—+§=l.

Solution. The tangent plane to the ellipsoid at (xg, Yo, zo) has the equation

XXo  YYo  ZZo _

a2 b2

. . 2 32 2 .
Its x, y, and z intercepts are, respectively, i—o, ’;—0, and ‘Z“—O The volume of the solid cut off
by the tangent plane and the coordinate planes is therefore
a’b*c?

X0Y020

V =

1
6

We want to minimize this with the constraint that (xg, yo, zo) lie on the ellipsoid. This
amounts to maximizing the function f(x, y, z) = xyz with the constraint

X2y
g(x»y,Z)Zz'i‘ﬁ‘i‘

22
c2
Because the ellipsoid is a closed bounded set, f has a maximum and a minimum on

it. The maximum is positive, and the minimum is negative. The method of Lagrange
multipliers yields the following system of equations in the unknowns x, y, z, and A:
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X

yz = 2)\.;,

Xz = 2)»%,

Z

=2\A—,

yz 2
2 2 2
X Z

+ r + —==1.

a’? b 2

Multiplying the first equation by x, the second by y, and the third by z, then summing up
the three equations gives

e (D4l D) 2o
Xy7 = ; + ﬁ + ; = .
Hence A = %xyz. Then multiplying the first three equations of the system together, we
obtain

3 Xy 27(xyz)*

2 __
(xy2)” = 8% a’b:c®  a?brc?

The solution xyz = 0 we exclude, since it does not yield a maximum or a minimum.
Otherwise, xyz = j:f’/%. The equality with the plus sign is the maximum of f; the other
is the minimum. Substituting in the formula for the volume, we find that the smallest
volume is ‘/;abc. O
Example. Find the nature of the surface defined as the locus of the lines parallel to a given
plane and intersecting two given skew lines, neither of which is parallel to the plane.

Solution. We will work in affine coordinates. Call the plane 7 and the two skew lines /;
and /,. The x- and y-axes lie in 7w and the z-axis is /;. The x-axis passes through [, N 7.
The y-axis is chosen to make /, parallel to the yz-plane. Finally, the orientation and the
units are such that /; is given by x = 1, y = z (see Figure 29).

A line parallel to 7 and intersecting /; and /[, passes through (1, s, s) and (0, 0, s),
where s is some real parameter playing the role of the “height.”” Thus the locus consists
of all points of the form 7(1, s, s) + (1 — £)(0, 0, s), where s and ¢ are real parameters.
The coordinates (X, Y, Z) of such a point satisfy X = ¢, Y = ts, Z = s. By elimination
we obtain the equation XZ = Y, which is a hyperbolic paraboloid like the one from
Figure 30. We stress once more that the type of a quadric is invariant under affine
transformations. o

A surface generated by a moving line is called a ruled surface. Ruled surfaces are
easy to build in real life. This together with its structural resistance makes the hyperbolic
paraboloid popular as a roof in modern architecture (see for example Felix Candela’s roof
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Figure 30

of the 1968 Olympic stadium in Mexico City). There is one more nondegenerate ruled
quadric, which makes the object of the first problem in our list. And if you find some
of the problems below too difficult, remember Winston Churchill’s words: “Success
consists of going from failure to failure without loss of enthusiasm.”

626. A cube is rotated about the main diagonal. What kind of surfaces do the edges
describe?

627. Prove that the plane

is tangent to the hyperboloid of one sheet

x2 y2 Z2

a?  br 2
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628. Through a point M on the ellipsoid

2

)

2

+o+5=1

S |R
38

%=
Q[\_)l!\l

take planes perpendicular to the axes Ox, Oy, Oz. Let the areas of the planar
sections thus obtained be S, S, respectively, S.. Prove that the sum

aS + bS, + cS.

is independent of M.

629. Determine the radius of the largest circle that can lie on the ellipsoid

X2 y2 Z2

630. Leta, b, c be distinct positive numbers. Prove that through each point of the three-
dimensional space pass three surfaces described by equations of the form

2 2 2
X y z

=1.
az—k+b2—k+c2—k

Determine the nature of these surfaces and prove that they are pairwise orthogonal
along their curves of intersection.

631. Show that the equations

xX=u+v+w,
y:u2+v2+w2,
z=u’+ v} +w?,

where the parameters u, v, w are subject to the constraint uvw = 1, define a cubic
surface.

We conclude our discussion of coordinate geometry with some problems in n dimen-
sions.

Example. Through a fixed point inside an n-dimensional sphere, n mutually perpendicu-
lar chords are drawn. Prove that the sum of the squares of the lengths of the chords does
not depend on their directions.

Solution. We want to prove that the sum in question depends only on the radius of
the sphere and the distance from the fixed point to the center of the sphere. Choose a
coordinate system in which the chords are the n orthogonal axes and the radius of the
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sphere is R > 0. The fixed point, which we call P, becomes the origin. The endpoints
of each chord have only one nonzero coordinate, and in the appropriate ordering, the kth
coordinates of the endpoints X; and Y} of the kth chord are the nonzero numbers x; and
vk, Kk = 1,2, ..., n. The center of the sphere is then

0 — X1+y1 X2+ ¥ Xn + Yn
= S Ty T .

The conditions that the points X; and Y lie on the sphere can be written as

2 2
X + Z xXj+y;
<Xk_ k 5 yk) + < J 5 yl) — RZ’

J#k

2 2

Xk + Yk Xj+y;j 2

_ ) = R?
(y" 2 )+Z( 2

J#k

withk =1, 2, ..., n. This implies

=i\’ xj+ 3\’
_ 2_ J J _
( 5 )_R Z( 5 ) k=1,2,...,n.

J#k

The term on the left is one-fourth of the square of the length of X, Y,. Multiplying by 4
and summing up all these relations, we obtain

X Yel? = 4nR* — 4 ¥> = 4nR> —4(n — 1 (k ">
DI = dn ZZ( ; nRE— 4 =1 (T

k=1 j#k
=4nR> —4(n — D|PO|>.

Hence the conclusion. O

632. Let n be a positive integer. Prove that if the vertices of a (2n + 1)-dimensional cube
have integer coordinates, then the length of the edge of the cube is an integer.

633. For a positive integer n denote by t the permutation cycle (n, ..., 2, 1). Consider
the locus of points in R” defined by the equation

D sign(0)X (1) X0 @) -+ Xen (g = 0,
o

where the sum is over all possible permutations of {1, 2, ..., n}. Prove that this
locus contains a plane.
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634. Prove that the intersection of an n-dimensional cube centered at the origin and with
edges parallel to the coordinate axes with the plane determined by the vectors

— 2 4 2nmw — o 2m . 4m . 2nm
d = [cos—,cos—,...,cos—— ) and b = (sin —, sin —, ..., sin —

n n n n n n

is a regular 2n-gon.

635. Find the maximum number of points on a sphere of radius 1 in R” such that the
distance between any two points is strictly greater than v/2.

4.1.5 Integrals in Geometry

We now present various applications of integral calculus to geometry problems. Here is
a classic.

Example. A disk of radius R is covered by m rectangular strips of width 2. Prove that
m > R.

Solution. Since the strips have different areas, depending on the distance to the center of
the disk, a proof using areas will not work. However, if we move to three dimensions the
problem becomes easy. The argument is based on the following property of the sphere.

Lemma. The area of the surface cut from a sphere of radius R by two parallel planes at
distance d from each other is equal to 2 Rd.

To prove this result, let us assume that the sphere is centered at the origin and the
planes are perpendicular to the x-axis. The surface is obtained by rotating the graph of
the function f : [a,b] — R, f(x) = +/R? — x2 about the x-axis, where [a, b] is an
interval of length d. The area of the surface is given by

b b
o [ oo/ Twr i =2 [ VR
b

:271/ Rdx =27 Rd.

Returning to the problem, the sphere has area 47 R? and is covered by m surfaces, each
having area 47 R. The inequality 4rm R > 4m R? implies that m > R, as desired. O

The second example, suggested to us by Zh. Wang, is even more famous. We present
the proof from H. Solomon, Geometric Probability (SIAM 1978).
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Crofton’s theorem. Let D be a bounded convex domain in the plane. Through each
point P(x, y) outside D there pass two tangents to D. Let t; and t, be the lengths of the
segments determined by P and the tangency points, and let o be the angle between the
tangents, all viewed as functions of (x, y).' Then

// Slnadxdy =272,
r¢p L

Proof. The proof becomes transparent once we examine the particular case in which D is
the unit disk x>+ y? < 1. Each point outside the unit disk can be parametrized by the pair
of angles (¢, ¢,) where the tangents meet the unit circle S'. Since there is an ambiguity
in which tangent is considered first, the outside of the disk is in 1-to-2 correspondence
with the set S' x S'. It so happens, and we will prove it in general, that on changing
coordinates from (x, y) to (¢1, ¢»), the integral from the statement becomes f f dgidg,
(divided by 2 to take the ambiguity into account). The result follows.

In the general case we mimic the same argument, boosting your intuition with Fig-
ure 31. Fix a Cartesian coordinate system with the origin O inside D. For a point (x, y)
denote by (¢1, ¢,) the angles formed by the perpendiculars from O onto the tangents
with the positive semiaxis. This is another parametrization of the exterior of D, again
with the ambiguity of which tangent is considered first. Let A;(e;, n;), i = 1, 2, be the
tangency points.

P
A A
6, %!
16 )\%Jm/ 2
(0]
Figure 31

The main goal is to understand the change of coordinates (x, y) — (¢1, ¢») and in
particular to write the Jacobian of this transformation. Writing the condition that the
slope of the line A P is tan(¢; + %), we obtain

(x —e€)cosgr + (y — i) sing =0.

Taking the differential yields

UIf the boundary of D has some edges, then there are points P for which ¢ and #, are not well defined,
but the area of the set of these points is zero, so they can be neglected in the integral below.
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cos¢pidx — cospide; — (x — €1) sin p1d¢p; + sin ¢p1dy — sin ¢p1dn;

+ (y —m)cos¢dg =0.

This expression can be simplified if we note that fl—z: is the slope of the tangent, namely
tan(¢; + %). Then cos ¢1de; + sin ¢1dn; = 0, so

cos ¢p1dx +sinpidy = [(x — €1)sing; — (y — n1) cos ¢11d ;.

And now a little Euclidean geometry. Consider the right triangle O;A; P with legs
parallel to the axes. The altitude from O; determines on A; P two segments of lengths
(x —€1) sin ¢; and —(y — n1) cos ¢; (you can see by examining the picture that the signs
are right). This allows us to further transform the identity obtained above into

cos p1dx + sin pdy = t1d .
The same argument shows that
cos prdx + sin pody = trd ;.

The Jacobian of the transformation is therefore the absolute value of

1 1
——(cos ¢ sin ¢, — sin ¢y cos ¢py) = — sin(¢p; — ¢»).
t nht

1h

And ¢ — ¢ is, up to a sign, the supplement of «. We obtain

1 2w 2 .
22 = —/ f dpde, = // MY ixdy.
2 Jo 0 p¢p hib

The theorem is proved. m|

636. A ring of height £ is obtained by digging a cylindrical hole through the center of a
sphere. Prove that the volume of the ring depends only on 4 and not on the radius
of the sphere.

637. A polyhedron is circumscribed about a sphere. We call a face big if the projection
of the sphere onto the plane of the face lies entirely within the face. Show that there
are at most six big faces.

638. Let A and B be two finite sets of segments in three-dimensional space such that the
sum of the lengths of the segments in A is larger than the sum of the lengths of the
segments in B. Prove that there is a line in space with the property that the sum of
the lengths of the projections of the segments in A onto that line is greater than the
sum of the lengths of the projections of the segments in B.
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639. Two convex polygons are placed one inside the other. Prove that the perimeter of
the polygon that lies inside is smaller.

640. There are n line segments in the plane with the sum of the lengths equal to 1. Prove
that there exists a straight line such that the sum of the lengths of the projections of
the segments onto the line is equal to %

641. In a triangle ABC for a variable point P on BC with PB = x let (x) be the
measure of ZP AB. Compute

/ cost(x)dx
0

in terms of the sides and angles of triangle ABC.

642. Let f : [0,a] — R be a continuous and increasing function such that f(0) = 0.
Define by R the region bounded by f(x) and the lines x = a and y = 0. Now
consider the solid of revolution obtained when R is rotated around the y-axis as a
sort of dish. Determine f such that the volume of water the dish can hold is equal
to the volume of the dish itself, this happening for all a.

643. Consider a unit vector starting at the origin and pointing in the direction of the
tangent vector to a continuously differentiable curve in three-dimensional space.
The endpoint of the vector describes the spherical image of the curve (on the unit
sphere). Show that if the curve is closed, then its spherical image intersects every
great circle of the unit sphere.

644. With the hypothesis of the previous problem, if the curve is twice differentiable,
then the length of the spherical image of the curve is called the total curvature.
Prove that the total curvature of a closed curve is at least 2.

645. Arectangle R is tiled by finitely many rectangles each of which has at least one side
of integral length. Prove that R has at least one side of integral length.

4.1.6 Other Geometry Problems

We conclude with problems from elementary geometry. They are less in the spirit of
Euclid, being based on algebraic or combinatorial considerations. Here “imagination is
more important than knowledge” (A. Einstein).

Example. Find the maximal number of triangles of area 1 with disjoint interiors that can
be included in a disk of radius 1. Describe all such configurations.

Solution. Let us first solve the following easier problem:

Find all triangles of area 1 that can be placed inside a half-disk of radius 1.
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We will show that the only possible configuration is that in Figure 32. Consider a
triangle that maximizes the area (such a triangle exists since the vertices vary on compact
sets and the area depends continuously on the vertices). The vertices of this triangle must
lie on the half-circle. If B lies between A and C, then A and C must be the endpoints
of the diameter. Indeed, if say C is not an endpoint, then by moving it toward the closer
endpoint of the diameter we increase both AC and the angle Z/BAC; hence we increase

the area. Finally, among all triangles inscribed in a semicircle AC, the isosceles right
triangle has maximal altitude, hence also maximal area. This triangle has area 1, and the
claim is proved.

Figure 32

Returning to the problem, let us note that since the two triangles in question are
convex sets, they can be separated by a line. That line cuts the disk into two regions, and
one of them, containing one of the triangles, is included in a half-disk. By what we just
proved, this region must itself be a half-disk. The only possible configuration consists of
two isosceles triangles sharing the hypotenuse. O

The next problem was published by the first author in the Mathematics Magazine.

Example. Let ABC be a right triangle (ZA = 90°). On the hypotenuse BC construct
in the exterior the equilateral triangle BC D. Prove that the lengths of the segments A B,
AC, and AD cannot all be rational.

Solution. We will find a relation between AB, AC, and A D by placing them in a triangle
and using the law of cosines. For this, construct the equilateral triangle ACE in the
exterior of ABC (Figure 33). We claimthat BE = AD. This is a corollary of Napoleon’s
problem, and can be proved in the following way. Let M be the intersection of the
circumcircles of BCD and ACE. Then ZAMC = 120° and ZDMC = 60°; hence
M € AD. Similarly, M € BE. Ptolemy’s theorem applied to quadrilaterals AMCE
and BMCD shows that ME = AM + CM and MD = BM + CM; hence AD =
AM + BM +CM = BE.

Applying the law of cosines in triangle ABE, we obtain BE?> = AB> + AE>+ AB -
AE\/§, and since BE = AD and AE = AC, it follows that

AD? = AB? 4+ AC?+ AB - ACV/3.
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VD
Figure 33

If all three segments AB, AC, and AD had rational lengths, this relation would imply
that +/3 is rational, which is not true. Hence at least one of these lengths is irrational. O

646. Three lines passing through an interior point of a triangle and parallel to its sides
determine three parallelograms and three triangles. If S is the area of the initial
triangle and S, S,, and Sz are the areas of the newly formed triangles, prove that
Si+ S8+ 85> 48

647. Someone has drawn two squares of side 0.9 inside a disk of radius 1. Prove that
the squares overlap.

648. A surface is generated by a segment whose midpoint rotates along the unit circle in
the x y-plane such that foreach 0 < o < 27, at the point of coordinates (cos «, sin )
on the circle the segment is in the same plane with the z-axis and makes with it an
angle of ¢. This surface, called a Mobius band, is depicted in Figure 34. What is
the maximal length the segment can have so that the surface does not cross itself?

=

Y

Figure 34

649. Let ABC D be a convex quadrilateral and let O be the intersection of its diagonals.
Given that the triangles OAB, OBC, OCD, and O D A have the same perimeter,
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prove that the quadrilateral is a rhombus. Does the property hold if O is some other
point in the interior of the quadrilateral?

650. Prove that the plane cannot be covered by the interiors of finitely many parabolas.

651. Let ABC be a triangle with the largest angle at A. On line AB consider the
point D such that A lies between B and D, and AD = AB?/AC?. Prove that
CD < /3BC3/AC2.

652. Show that if all angles of an octagon are equal and all its sides have rational length,
then the octagon has a center of symmetry.

653. Show that if each of the three main diagonals of a hexagon divides the hexagon into
two parts with equal areas, then the three diagonals are concurrent.

654. Centered at every point with integer coordinates in the plane there is a disk with
radius ﬁ.
(a) Prove that there exists an equilateral triangle whose vertices lie in different disks.
(b) Prove that every equilateral triangle with vertices in different disks has side

length greater than 96.

655. On acylindrical surface of radius r, unbounded in both directions, consider n points
and a surface S of area strictly less than 1. Prove that by rotating around the axis
of the cylinder and then translating in the direction of the axis by at most ;- units
one can transform S into a surface that does not contain any of the n points.

4.2 Trigonometry

4.2.1 Trigonometric Identities

The beauty of trigonometry lies in its identities. There are two fundamental identities,
sinx +cos’x =1 and cos(x — y) = cosxcosy — sinx sin y,

both with geometric origins, from which all the others can be derived. Our problems will
make use of addition and subtraction formulas for two, three, even four angles, double-
and triple-angle formulas, and product-to-sum formulas.

Example. Find all acute angles x satisfying the equation
2 sin x cos 40° = sin(x + 20°).

Solution. Trying particular values we see that x = 30° is a solution. Are there other
solutions? Use the addition formula for sine to rewrite the equation as
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sin 20°

tanx = .
2 cos 40° — cos 20°

The tangent function is one-to-one on the interval (0, 90°), which implies that the solution
to the original equation is unique. O

Example.

(a) Prove that if cosma = % then a is an irrational number.
(b) Prove that a regular tetrahedron cannot be dissected into finitely many regular tetra-
hedra.

Solution. (a) Assume that a is rational, @ = “*. Then cosnar = £1. We will prove by
induction that for all k£ > 0, cos kar = %, with m; an integer that is not divisible by 3.
This will then contradict the initial assumption.

The property is true for k = 0 and 1. The product-to-sum formula for cosines gives
rise to the recurrence

cos(k + amr = 2cosam coskarwr — cos(k — Damw, k> 1.

Using the induction hypothesis, we obtain cos(k + 1)amr = ";,fif , with my; = 2my —
3my_1. Since my is not divisible by 3, neither is m;., and the claim is proved.

Part (b) is just a consequence of (a). To see this, let us compute the cosine of the
dihedral angle of two faces of a regular tetrahedron ABCD. If AH is an altitude of the
tetrahedron and A E is an altitude of the face ABC, then ZA E H is the dihedral angle of the

faces ABC and BC D (see Figure 35). In the right triangle HAE,cos AEH = % = %

A

Figure 35

Now assume that there exists a dissection of a regular tetrahedron into regular tetra-
hedra. Several of these tetrahedra meet along a segment included in one of the faces
of the initial tetrahedron. Their dihedral angles must add up to 7, which implies that
the dihedral angle of a regular tetrahedron is of the form 7, for some integer n. This
was shown above to be false. Hence no dissection of a regular tetrahedron into regular
tetrahedra exists. |
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Remark. Itis interesting to know that Leonardo da Vinci’s manuscripts contain drawings
of such decompositions. Later, however, Leonardo himself realized that the decompo-
sitions were impossible, and the drawings were mere optical illusions. Note also that
Dehn’s invariant mentioned in the first chapter provides an obstruction to the decompo-
sition.

We conclude the introduction with a problem by the second author of the book.

Example. Let ag = V2 + /3 + /6 and let Apyl = 2( +2) for n > 0. Prove that

2" 3
a, = cot 3 —2 forall n.

Solution. We have

b4 ) T T T 7
CcOs — 2cos” — 1+ cos — 1+Cos<———)
¢ 24 24 _ 12 _ 3 4
by = 7w = 7@ 7T - . mw®w - T 7w
sin — 2sin — cos — sin — sin (— — —)
24 24 24 12 3 4

Using the subtraction formulas for sine and cosine we find that this is equal to

14+ 2 +% 44 /6+v2  4(/64+2) + (V6+2)

A B
46+ 2) +8+44/3
= (‘/_J”/:)ﬁ i */_=2+x/§+x/§+«/8=a0+2.

Hence the equality a, = cot (3% ” ) — 2 is true at least for n = 0.

To verify it in general, it sufﬁces to prove that b, = cot (2 3 i ), where b,, = a,, + 2,
n > 1. The recurrence relation becomes

(b, —2)*> =5
bpy1—2=——"—,
n+1 2bn
2 _
orb, | = bgT_nl. Assuming inductively that b, = cot ¢;, where ¢, = zk%, and using the
double-angle formula, we obtain
cot’cp — 1
b1 = —— = cot(2c;) = cot iy 1.
2 cot ¢y
This completes the proof. O

656. Prove that

3
sin 70° cos 50° 4+ sin 260° cos 280° = %
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657. Show that the trigonometric equation
sin(cos x) = cos(sin x)
has no solutions.
658. Show that if the angles a and b satisfy
tan’atan’b = 1 + tan’ a + tan’ b,
then
sina sinb = £ sin45°.
659. Find the range of the function f : R — R, f(x) = (sinx + 1)(cosx + 1).

660. Prove that

sec? x 4+ cs¢? x > 2"t

for all integers n > 0, and for all x € (0, Z).

f,/l_xd c(=1,1)
T X, X , D).

662. Find all integers k for which the two-variable function f(x, y) = cos(19x + 99y)
can be written as a polynomial in cos x, cos y, cos(x + ky).

663. Leta, b, c,d € [0, ] be such that
2cosa+6¢cosb+7cosc+9cosd =0

661. Compute the integral

and
2sina — 6sinb + 7sinc — 9sind = 0.
Prove that 3 cos(a + d) = 7 cos(b + ¢).
664. Let a be a real number. Prove that
5(sin3 a4+ cos®a) + 3sinacosa = 0.04
if and only if
5(sina + cosa) + 2sina cosa = 0.04.

665. Let ag, a1, ..., a, be numbers from the interval (0, Z) such that
t < ﬂ)—i—t ( n)+ +t ( ”)> |
an (ag — — an(a; — — co.+tan(a, — — ) =>n—1.
07y Ty 4

Prove that

tanaptana, - - -tana, > n"*l.
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4.2.2 Euler’s Formula

For a complex number z,

z 2 "
e =1 + + +eort =4+
2! n!
In particular, for an angle x,
_1 x2 oooxt o x x8 A
+l—‘—2—!—l§+—+ 5__6_17+
The real part of ' is
x? xt xS
while the imaginary part is
x X x X

These are the Taylor series of cos x and sin x. We obtain Euler’s formula
ix . .
e =Ccosx +1isnx.

Euler’s formula gives rise to one of the most beautiful identities in mathematics: '™ =
—1, which relates the number e from real analysis, the imaginary unit i from algebra,
and 7 from geometry.

The equality e"* = (e*)" holds at least for z a real number. Two power series are
equal for all real numbers if and only if they are equal coefficient by coefficient (since
coefficients are computed using the derivatives at 0). So equality for real numbers means
equality for complex numbers. In particular, e* = (¢'*)", from which we deduce the
de Moivre formula

cosnx + i sinnx = (cosx + i sinx)".

We present an application of the de Moivre formula that we found in Exercises and
Problems in Algebra by C. Nistisescu, C. Nitd, M. Brandiburu, and D. Joita (Editura
Didactici si Pedagogicd, Bucharest, 1983).

Example. Prove the identity

n+n+n+_”k W JT njmw
0 ‘ ok -~_ij1003 kcosk.
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Solution. Let €, €, ..., € be the kth roots of unity, that is, €; = cos 2% Az

j=1,2,...,k.Thesum

+ i sin

SRR
is equal to & if k divides s, and to O if k does not divide s. We have

n
Lz

j";uﬂ,.)n:i() >4 - (1)

1+ej=2cos%<cos%+isin%>,

it follows from the de Moivre formula that
k a jm njmw njmw
14+¢€)' = 2" cos" =— [ cos —— +isin — | .
Yitrar =3 2] (cos ™07 45017 )

Therefore,

k
’ .
(g)—k(;)—l—(znk)—l-—? E_ cos” —(c S%—FISIH%).

The left-hand side is real, so we can ignore the imaginary part and obtain the identity
from the statement. O

And now a problem given at an Indian Team Selection Test for the International
Mathematical Olympiad in 2005, proposed by the first author of the book.

Example. For real numbers a, b, ¢, d not all equal to zero, let f : R — R,
f(x) =a+ bcos2x + csin5x + d cos 8x.

Suppose that f(¢#) = 4a for some real number . Prove that there exists a real number s
such that f(s) < O.

Solution. Let g(x) = be?™ — ice>™ 4+ de®*. Then f(x) = a + Re g(x). Note that

2w 47 , .
gx)+g (x + ?> +g (x + ?> = g(x) (1 4 e2mil3 4 e4m/3) -0

Therefore,
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2r 4
f(x)+f(x+?>+f(x+?) = 3a.

Ifa < 0, then s = ¢ would work. If a = 0, then for some x one of the terms of the above
sum is negative. This is because f(x) is not identically zero, since its Fourier series is
not trivial. If a > 0, substituting x = ¢ in the identity deduced above and using the fact
that f () = 4a, we obtain

21 4 _ 0
f(t+?)+f<t+?>——a< .

Hence either f(r + 27”) or f(t+ %”) is negative. The problem is solved. O

666. Prove the identity

(1 +itant)” 1+ itannt
— ] = n>1.

l—itant) 1—itannt’

667. Prove the identity

668. Compute the sum

n n n
cos x + cos2x + -+ cosnx.
(})eosx+(2) ()

669. Find the Taylor series expansion at O of the function
f(x) = "% cos(x sin 0),

where 6 is a parameter.

670. Let z;, 22, z3 be complex numbers of the same absolute value, none of which is real
and all distinct. Prove that if z; 4+ 2523, 2o + z321 and z3 + z;2; are all real, then
712223 = 1.

671. Let n be an odd positive integer and let € be a real number such that % is irrational.
Set a; = tan(6 + kT”), k=1,2,...,n. Prove that

ait+ay+---+ay
alaz---an

is an integer and determine its value.

672. Find (cos «)(cos 2a)(cos 3a) - - - (cos 999«) with o = %.
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673. For positive integers n define F (n) = x" sin(nA)+y" sin(nB) +z" sin(nC), where
x,¥,2,A, B, C are real numbers and A + B 4+ C = kx for some integer k. Prove
that if F(1) = F(2) = 0, then F(n) = 0 for all positive integers n.

674. The continuous real-valued function ¢ (¢) is defined for ¢+ > 0 and is absolutely
integrable on every bounded interval. Define

oo oo
P= f e (Tt and Q= / e 2T gy,
0 0

Prove that
[4P* —20| <3,

with equality if and only if ¢ (¢) is constant.

4.2.3 Trigonometric Substitutions

The fact that the circle x> + y?> = 1 can be parametrized by trigonometric functions
as x = cost and y = sint gives rise to the standard substitution x = acost (or x =
a sin t) in expressions of the form v/a? — x2. Our purpose is to emphasize less standard
substitutions, usually suggested by the similarity between an algebraic expression and
a trigonometric formula. Such is the case with the following problem from the 61st
W.L. Putnam Mathematical Competition, 2000.

Example. Let f : [—1, 1] — R be a continuous function such that f(2x>—1) = 2xf(x)
for all x € [—1, 1]. Show that f is identically equal to zero.

Solution. Here the expression 2x? — 1 should remind us of the trigonometric formula
2cos’t — 1 = cos 2t, suggesting the substitution x = cost, ¢ € [0, ]. The functional
equation from the statement becomes f(cos2t) = 2coszf(cost).

First, note that setting x = 0 and x = 1, we obtain f(1) = f(—1) = 0. Now let us
defineg: R — R, g(t) = % Then for any ¢ not a multiple of ,

f(2cos’t — 1) _ 2costf(cost) . f(cost) _

g2 = = g(@).

sin(2t) ~ 2sintcost sin t

Also, g(t 4+ 2m) = g(¢). In particular, for any integers n and k,

g (1 + z—f) = g2 +2nm) = g2 = g(D).

Because f is continuous, g is continuous everywhere except at multiples of 7. The set
{1+ ’;—’[ | n, k € Z} is dense on the real axis, and so g must be constant on its domain.



4.2 Trigonometry 239

Then f(cost) = csint for some constant ¢ and ¢ in (0, ), i.e., f(x) = c+/1 — x2 for
all x € (—1, 1). It follows that f is an even function. But then in the equation from the
statement f(2x2 — 1) = 2xf(x) the left-hand side is an even function while the right-
hand side is an odd function. This can happen only if both sides are identically zero.
Therefore, f(x) = 0 for x € [—1, 1] is the only solution to the functional equation. O

We continue with a problem that was proposed by Belgium for the 26th International
Mathematical Olympiad in 1985.

Example. Let x, y, z be real numbers such that x + y + z = xyz. Prove that
x(1=yH(1 =2 +y(1 =21 —xH) +z(1 — xD)(1 — y?) = dxyz.

Solution. The conclusion is immediate if xyz = 0, so we may assume that x, y, z # 0.
Dividing through by 4xyz we transform the desired equality into

This, along with the condition from the statement, makes us think about the substitutions
x =tan A, y = tan B, z = tan C, where A, B, C are the angles of a triangle. Using the
double-angle formula

1 —tan%u
= = cot2u
2tanu tan 2u

we further transform the equality into
cot2B cot2C + cot2C cot2A 4 cot2A cot2B = 1.
But this is equivalent to
tan2A +tan 2B +tan2C = tan2A tan 2B tan 2C,
which follows from tan(2A + 2B 4+ 2C) = tan 2w = 0. |

And now the problems.

675. Leta, b, c € [0, 1]. Prove that

Vabe +/ (1 —a)(1 —b)(1 —c¢) < 1.

676. Solve the equation x*> — 3x = +/x + 2 in real numbers.
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677. Find the maximum value of

S=U-x)U=y)+dA—-x)(1 = y2)
if x? + x3 = y7 + y3 = ¢?, where c is some positive number.
678. Prove for all real numbers «a, b, ¢ the inequality

la — b| la — c| |b — c|
VI+a3VT+02 ~ V1+2V/T+ JT+b02/1+2
679. Leta, b, ¢ be real numbers. Prove that

(ab+bc +ca—1)?* < @+ D>+ D+ D).
680. Prove that

X y Z 33
+ + <
Vi+x2 J1+y2 S1+227 2

if the positive real numbers x, y, z satisfy x + y + z = xyz.

681. Prove that

X y z 33
+ + >
I—x2 1—y2 1-22 2

ifO0<x,y,z<landxy+yz+xz=1.

682. Solve the following system of equations in real numbers:

3x —y )
:x,

x — 3y

3y—z:y2,

y—3z

3z —x
:ZZ‘

z—3x

683. Letay = v/2, by = 2, and

2 4 — g2 b 2bn >0
Any1 =2 — /4 —ay, npl = ———F—==, n=0.
+1 +1 24 4—|—b3

(a) Prove that the sequences (a,), and (b,), are decreasing and converge to zero.
(b) Prove that the sequence (2"a,), is increasing, the sequence (2"b,), is decreas-
ing, and these two sequences converge to the same limit.
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(c) Prove there is a positive constant C such that one has 0 < b, — a, < 8% for
all n.

684. Two real sequences xy, x, ..., and yj, ¥, ... are defined in the following way:

Yn

Yl = ——F/—,
T T1y2

X1=)’1=\/§, Xnp1 = X + /1 +x2, forn > 1.

Prove that 2 < x,y, < 3 foralln > 1.

685. Let a, b, ¢ be real numbers different from +
a + b + c holds only if

\/%. Prove that the equality abc =

3a—a3 3b—-053 3c—c3'_3361—(/13+3b—b3+3c—c3
3a2—1 3b2—1 3¢2—1 3a>2—1 3b2—1 3c2—-1'

The parametrization of the hyperbola x> — y?> = 1 by x = cosh¢, y = sinh¢ gives
rise to the hyperbolic substitution x = a cosh ¢ in expressions containing +/a — 1. We
illustrate this with an example by the second author.

Example. Leta; = a; = 97 and

Apil = Ay —i—\/(a,zZ — 1)@, —1), forn> 1.

Prove that

(a) 2+ 2a, is a perfect square;
(b) 2 + /2 + 2a, is a perfect square.

Solution. We are led to the substitution a, = cosh t, for some number ¢, (which for the
moment might be complex). The recurrence relation becomes

cosht,,; =a,,; = cosht,cosht, | 4+ sinht,sinht, | = cosh(z, + t,_1).

We deduce that the numbers ¢, satisfy ty = 1, and #,.; = 1, + t,— (in particular they
are all real). And so 1, = F,ty, where (F,), is the Fibonacci sequence. Consequently,
a, = cosh(Fy,t9),n > 1.

Using the identity 2(cosh #)> — 1 = cosh 2¢, we obtain

2
11
24 2a, = (2cosh F§°> .

The recurrence relation

2cosh(k + 1)t = (2cosht)(2cosh kt) — 2 cosh(k — 1)t
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allows us to prove inductively that 2 cosh k%‘) is an integer once we show that 2 cosh %‘)
is an integer. It would then follow that 2 cosh Fn%’ is an integer as well. And indeed
2 cosh %0 = /2 + 2a, = 14. This completes the proof of part (a).

To prove (b), we obtain in the same manner

2
11
242+ 2a, = (ZCosh FZO) ,

and again we have to prove that 2(:osh%(J is an integer. We compute 2COSh%O =

V2 + /2 +2a, = /2 + 14 = 4. The conclusion follows. |
686. Compute the integral

/ dx

x+v/x2 -1

687. Let n > 1 be an integer. Prove that there is no irrational number a such that the
number

Ja+va—1+{a-va—1

is rational.

4.2.4 Telescopic Sums and Products in Trigonometry

The philosophy of telescopic sums and products in trigonometry is the same as in the
general case, just that here we have more identities at hand. Let us take a look at a slightly
modified version of an identity of C.A. Laisant.

Example. Prove that
n k n+1
1 3 1
Z ——) cos? (3]‘_"71) =—|{—-= + cos LD
3 4 3 3n
k=0
Solution. From the identity cos 3x = 4 cos® x — 3 cos x, we obtain

1
cos’ x = 1 (cos3x +3cosx).
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This telescopes to

! [(%) cos (3"*a) - (_g)_l Cosaj| |

For a = 37", we obtain the identity from the statement.
Test your skills against the following problems.
688. Prove that
27 sin® 9° + 9sin> 27° + 3 sin® 81° + sin® 243° = 20sin 9°.
689. Prove that

1 3 9

cot9° — 3tan 9° + cot27° — 3tan27° + cot 81° — 3tan 81°
27

+ cot 243° — 3 tan 243°

= 10tan 9°.

690. Prove that
1 1 1 1

sind5 sind6e | snd7osnage T sini33sin134  sinle

691. Obtain explicit values for the following series:

= 2
t T
(a) Z arctan o

n=1

> 8n
(b) Z arctan m .

n=1

692. Forn > 0 let

Prove that the series
S=u0+u1+u2+...+un+...
is convergent and find its limit.

Now we turn to telescopic products.

243
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Example. Prove that

e 1
[[——— =unl.
1 —tan“2"

n=

—_

Solution. The solution is based on the identity

2tan x
tan2x = ————.
1 —tan“x
Using it we can write
N
tan 27" +! 2—N
1_[ l_[ = tan 1.
1 — tan? 2tan2™"  tan2~VN

n=1 n=1

Since lim, o “* X — 1, when letting N — oo this becomes tan 1, as desired. O

693.

694.

695.

696.

697.

698.

In a circle of radius 1 a square is inscribed. A circle is inscribed in the square and
then a regular octagon in the circle. The procedure continues, doubling each time
the number of sides of the polygon. Find the limit of the lengths of the radii of the

circles.
1_cos61° - cos 62° y 1_cos119° _1
cos 1° cos 2° cos 59°
Evaluate the product
(I —cot1°)(1 —cot2°)---(1 —cot44°).

Prove that

Compute the product
(V3 4 tan 1°)(v/3 4 tan 2°) - - - (+/3 + tan 29°).

Prove the identities

1 b4 1 3n 1 On 1
@ |z—cos—-)|z—cos— || z—cos— | =—-,
2 7 2 7 2 7 8

) + T 1 4 3 1 n o 1 . 27w 1
CcOS — CcOS — — + cos — — 4+ cosS—— | = —.
20 2 20 2 20 2 20 16

Prove the identities
24

(a) ]_[sec(z")° = 2% tan2°,

25

(b) ]_[(2 cos(2")° — sec(2")°) = —1.

n=2
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Number Theory

This chapter on number theory is truly elementary, although its problems are far from
easy. (In fact, here, as elsewhere in the book, we tried to follow Felix Klein’s advice:
“Don’t ever be absolutely boring.”)! We avoided the intricacies of algebraic number
theory, and restricted ourselves to some basic facts about residue classes and divisibility:
Fermat’s little theorem and its generalization due to Euler, Wilson's theorem, the Chinese
Remainder Theorem, and Polignac’s formula. From all Diophantine equations we discuss
linear equations in two variables and two types of quadratic equations: the Pythagorean
equation and Pell’s equation.
But first, three sections for which not much background is necessary.

5.1 Integer-Valued Sequences and Functions

5.1.1 Some General Problems

Here are some problems, not necessarily straightforward, that use only the basic properties
of integers.

Example. Find all functions f : {0,1,2,...} — {0, 1, 2, ...} with the property that for
every m,n > 0,

2f(m* +n*) = (f(m)* + (f(n))*.
Solution. The substitution m = n = 0 yields
2£(0% +0%) = (£(0)* + (£(0))?,

and this gives f(0)> = £(0), hence f(0) = 0or f(0) = 1.

I Seien Sie niemals absolut langweilig.
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We pursue the track of f(0) = 0 first. We have
2117 + 0% = (F(1)* + (£(0))?,

so 2f(1) = f(1)?, and hence f(1) = 0 or f(1) = 2. Let us see what happens if
f (1) = 2, since this is the most interesting situation. We find immediately

2f(2) =2f(1*+1%) = (fF(D)* + (F(1)* =8,
so f(2) =4, and then
2f(@) =2f(2%+0%) = (f(2)* + (f(0))* = 16,

2f(5) =2fQ2*+1%) = (f () + (f(1))* = 20,
2f®) =22 +2) = (f@)* + (f(2)* =32.

So f(4) =8, f(5) =10, f(8) = 16. In fact, f(n) = 2n for n < 10, but as we will see
below, the proof is more involved. Indeed,

100 = (F(5)* + (fF(0)> =2f(5) =2f 3 +4) = (fO)* + (f4)*
= (f(3))* + 64,

hence f(3) = 6. Then immediately
29 =23+ 0% = (f3)* + (f(0)* = 36,
2£(10) = 2£ (3% + 1) = (fF(3)* + (f(1))> = 40,

so f(9) =18, f(10) = 20.
Applying an idea used before, we have

400 = (f(10))* + (£(0))* = 2£(10%) = 2£ (6> + 8% = (f(6))* + (f(8))*
= (f(6))* + 256,

from which we obtain f(6) = 12. For f(7) we use the fact that 72 4+ 12 = 5% + 5% and
the equality

(fD? + (F())? = (f5))* + (f(5))

to obtain f(7) = 14.
We want to prove that f(n) = 2n for n > 10 using strong induction. The argument
is based on the identities

5k + 1)+ 2% = (4k +2)* + Bk — 1)2,
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(Sk+2)* + 1> = (4k + )* + 3k +2)%,

(5k +3)* + 1* = (4k 4+ 3)* + Bk + 1)?,

(5k +4)* 4+ 2% = (4k 4+ 2)> + (3k + 4)?,

(Sk +5)* + 0% = (4k + 4)* + (3k + 3)°.
Note thatif k > 2, then the first term on the left is strictly greater then any of the two terms
on the right, and this makes the induction possible. Assume that f(m) = 2m form < n
and let us prove f(n) = 2n. Letn = 5k + j, 1 < j < 5, and use the corresponding

identity to write n? + m% = m% + m%, where m, m,, m3 are positive integers less than
n. We then have

() + (f ) = 2f 0+ m) = 2f (m3 +m3) = (f (m2)” + (f (m3))*.
This then gives
(f()* = @m2)* + @m3)> — @m1)? = 4m3 +m3 — m?) = 4n’.

Hence f(n) = 2n, completing the inductive argument. And indeed, this function satisfies
the equation from the statement.

If we start with the assumption f (1) = 0, the exact same reasoning applied mutatis
mutandis shows that f(n) = 0, n > 0. And the story repeats if f(0) = 1, giving
f(n) =1, n > 0. Thus the functional equation has three solutions: f(n) = 2n,n > 0,
and the constant solutions f(n) =0,n > 0,and f(n) =1,n > 0. O

With the additional hypothesis f(m?) > f(n?)if m > n, this problem appeared at the
1998 Korean Mathematical Olympiad. The solution presented above was communicated
to us by B.J. Venkatachala.

699. Let k be a positive integer. The sequence (a,), is defined by a; = 1, and forn > 2,
a, is the nth positive integer greater than a,_; that is congruent to » modulo k. Find
a, in closed form.

700. Three infinite arithmetic progressions are given, whose terms are positive integers.
Assuming that each of the numbers 1, 2, 3, 4, 5, 6, 7, 8 occurs in at least one of these
progressions, show that 1980 necessarily occurs in one of them.

701. Find all functions f : N — N satisfying
fm)+2f(f(n)) =3n+5, forallneN.
702. Find all functions f : Z — Z with the property that

2F(f(x) —3f(x)+x =0, forallxeZ.
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703. Prove that there exists no bijection f : N — N such that

f(mn) = f(m)+ f(n) +3f(m)fn),
forall m,n > 1.

704. Show that there does not exist a sequence (a,),> of positive integers such that
ant < (@n1 — ay)* < @, foralln > 2.
705. Determine all functions f : Z — Z satisfying

fEE+y +2) =)+ (FO) + (f@)°, forallx,y,zeZ

5.1.2 Fermat’s Infinite Descent Principle

Fermat’s infinite descent principle states that there are no strictly decreasing infinite
sequences of positive integers. Alternatively, any decreasing sequence of positive integers
becomes stationary. This is a corollary of the fundamental property of the set of positive
integers that every subset has a smallest element. To better understand this principle, let
us apply it to an easy example.

Example. At each point of integer coordinates in the plane is written a positive integer
number such that each of these numbers is the arithmetic mean of its four neighbors.
Prove that all the numbers are equal.

Solution. The solution is an application of the maximum modulus principle. Forn > 1,
consider the square of side 2n centered at the origin. Among the numbers covered by it,
the smallest must lie on its perimeter. Let this minimum be m(n). If it is also attained
in the interior of the square, then the four neighbors of that interior point must be equal,
and step by step we show that all numbers inside that square are equal. Hence there are
two possibilities. Either m(1) > m(2) > m(3) > --- orm(n) = m(n + 1) for infinitely
many n. The former case is impossible, since the m(n)’s are positive integers; the latter
case implies that all the numbers are equal. O

We find even more spectacular this problem from the 2004 USA Mathematical
Olympiad.

Example. Suppose that ay, ..., a, are integers whose greatest common divisor is 1. Let
S be a set of integers with the following properties:

(i) Fori =1,...,n,a; €8§.
(ii) Fori, j =1,...,n (not necessarily distinct), a; — a; € S.
(iii) For any integers x, y € S,ifx +y € S,thenx —y € S.
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Prove that S must equal the set of all integers.

Solution. This problem was submitted by K. Kedlaya and L. Ng. The solution below
was discovered by M. Ince and earned him the Clay prize.

First thing, note that if by, bs, ..., b,, are some integers that generate S and satisfy
the three conditions from the statement, then b; — 2b; and 2b; — b; are also in S for
any indices i and j. Indeed, since b;, b;, and b; — b; are in S, by (iii) we have that
b; —2b; € S. Moreover, fori = j in (ii) we find that 0 = b; — b; € S. Hence applying
(iii) to x € S and O we have that —x € S as well, and in particular 2b; — b; € §.

An n-tuple (by, by, ..., b,) as above can be substituted by (b, b — by, ..., b, —by),
which again generates S and, by what we just proved, satisfies (i), (ii), and (iii). Applying
this step to (|ay|, |az|, - .., |a,|) and assuming that |a;| is the smallest of these numbers,
we obtain another n-tuple the sum of whose entries is smaller. Because we cannot have
an infinite descent, we eventually reach an n-tuple with the first entry equal to 0. In the
process we did not change the greatest common divisor of the entries. Ignoring the zero
entries, we can repeat the procedure until there is only one nonzero number left. This
number must be 1.

From the fact that 0, 1 € S and then also —1 € §, by applying (iii)tox = 1, y = —1
we find that 2 € S, and inductively we find that all positive, and also all negative, integers
are in §. We conclude that § = 7Z. As L. Kaplansky said, “An elegant proof hits you
between your eyes with joy.” O

706. Show that no positive integers x, y, z can satisfy the equation
x? 4+ 10y% =372
707. Prove that the system of equations
x*+5y° =22,
Sx2 4 y? =1
does not admit nontrivial integer solutions.
708. Show that the equation
x?—y*=2xyz
has no solutions in the set of positive integers.

709. Prove that there is no infinite arithmetic progression whose terms are all perfect
squares.

710. Let f be a bijection of the set of positive integers. Prove that there exist positive
integersa < a +d < a + 2d such that f(a) < f(a+d) < f(a + 2d).
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711. Prove that for no integer n > 1 does n divide 2" — 1.

712. Find all pairs of positive integers (a, b) with the property that ab 4 a + b divides
a’>+b>+1.

713. Let x, y, z be positive integers such that xy — z> = 1. Prove that there exist
nonnegative integers a, b, ¢, d such that

x =a*>+b>, y=c2+d2, z=ac+ bd.

5.1.3 The Greatest Integer Function

The greatest integer function associates to a number x the greatest integer less than or
equal to x. The standard notationis | x |. Forexample, |2| =2, |3.2] =3, [-2.1] = -3.
This being said, let us start with the problems.

Beatty’s theorem. Ler o and B be two positive irrational numbers satisfying é + % =1
Then the sequences |an| and |fn|, n > 1, are strictly increasing and determine a
partition of the set of positive integers into two disjoint sets.

Proof. Inother words, each positive integer shows up in exactly one of the two sequences.
Let us first prove the following result.

Lemma. If x,, n > 1, is an increasing sequence of positive integers with the property
that for every n, the number of indices m such that x,, < n is equalton — 1, then x, = n
for all n.

Proof. We do the proof by induction. The base case is obvious: because the sequence is
increasing, the only n for which x, < 2 is n = 1. Now let us assume that x; = 1, x, =
2,...,x,—1 = n — 1. From the hypothesis it also follows that there are no other indices
m for which x,, < n. And because there is exactly one more term of the sequence that is
less than n 4 1, this term must be x,, and it is equal to n. |

Returning to the problem, let us write all numbers of the form |an] and | B#n] in an
increasing sequence y,. For every n there are exactly ng numbers of the form |k« ],
and I_%J numbers of the form | kB ] that are strictly less than n (here we used the fact that
o and B are irrational). We have

1 = n n | < n n n n_
SNSRI

Hence || + L%J = n — 1, which shows that the sequence y, satisfies the condition of
the lemma. It follows that this sequence consists of all positive integers written in strictly
increasing order. Hence the conclusion. |
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Our second example is a general identity discovered by the second author and D. An-
drica. Note the similarity with Young’s inequality for integrals (problem 480).

Theorem. Let a < b and ¢ < d be positive real numbers and let f : [a, b] — [c, d] be
a continuous, bijective, and increasing function. Then

DSR4+ DD LT 0] = n(Gy) = |b]1d] — al@)e(o),

a<k<b c<k=d

where k is an integer, n(G ) is the number of points with nonnegative integer coordinates
on the graph of f, and o : R — 7 is defined by

lx]  ifx e R\Z,
a(x) =140 ifx =0,
x —1 ifx e Z\{0}.

Proof. The proof is by counting. For a region M of the plane, we denote by n(M) the
number of points with nonnegative integer coordinates in M. For our theorem, consider
the sets

My ={(x,y)eR*|a<x<b, 0<y<f()}
My={(x,y)eR*|c<y=<d, 0<x=< [
Mi;={(x,y) eR*|0<x<b, 0<y<d),
My={(x,y)eR*|0<x<a, 0<y<c}

Then

nM) = Y L), n)= Y Lf k]
a<k<b c<k=d
n(Mz) = |b]|d], n(My) = a(a)a(c).
By the inclusion—exclusion principle,

n(MiUM,) =n(M) +n(M>) —n(M; N M,).

Note that n(M; N M) = n(Gy) and N(M; U M) = n(M3) — n(M,). The identity
follows. =

714. For a positive integer n and a real number x, prove the identity

1 n—1
LxJ—F\‘x—F—J—f-'--%—Lx%——J=Lnxj.
n n
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For a positive integer n and a real number x, compute the sum

1)

0<i<j<n J

Prove that for any positive integer n,

Lﬁj={ﬁ+ﬁj.

Express Y ;_, |v/k] in terms of n and a = [ /n].

Prove the identity

1)
22: L—l+«/1+8kJ _nm?+2)
2 - 37

n>1.

k=1

Find all pairs of real numbers (a, ) such that a|bn] = blan] for all positive
integers n.

For p and g coprime positive integers prove the reciprocity law

R e e R b R e

Prove that for any real number x and for any positive integer n,

Lx_]+ [2x | [3x] T Lnxj‘

>
lnx)z 5 2 3 n

Does there exist a strictly increasing function f : N — N such that (1) = 2 and

f(f(n) = f(n) +nforalln?

Suppose that the strictly increasing functions f, g : N — N partition N into two
disjoint sets and satisfy

gn) = f(f(kn))+1, foralln>1,

for some fixed positive integer k. Prove that f and g are unique with this property
and find explicit formulas for them.
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5.2 Arithmetic

5.2.1 Factorization and Divisibility

There isn’t much to say here. An integer d divides another integer » if there is an integer
d’ such that n = dd’. In this case d is called a divisor of n. We denote by gcd(a, b)
the greatest common divisor of a and b. For any positive integers a and b, Euclid’s
algorithm yields integers x and y such that ax — by = gcd(a, b). Two numbers are
called coprime, or relatively prime, if their greatest common divisor is 1. The fact that
for coprime numbers a and b there exist integers x and y such that ax — by = 1 is called
the fundamental theorem of arithmetic.

We begin with a problem from the Soviet Union Mathematical Olympiad for Uni-
versity Students in 1976.

Example. Prove that there is no polynomial with integer coefficients P (x) with the prop-
erty that P(7) = 5 and P(15) =9.

Solution. Assume that such a polynomial P(x) = a,x" +a,_;x" ' +- - -4 ao does exist.
Then P(7) = a,7" + a1 7" ' 4+ --- +agand P(15) = a,15" + a,_115" "' + - - + aq.
Subtracting, we obtain

4=P15) =P =a,15" =T +a,_; (15" =7"H+ ... 44,15 =7).

Since for any k, 15F — 7* is divisible by 15 — 7 = 8, it follows that P(15) — P(7) = 4
itself is divisible by 8, a contradiction. Hence such a polynomial does not exist. O

The second problem was given at the Asia-Pacific Mathematical Olympiad in 1998.

Example. Show that for any positive integers a and b, the product (36a + b)(a + 36b)
cannot be a power of 2.

Solution. Assume that (36a + b)(a + 36b) is a power of 2 for some integers a and b.
Without loss of generality, we may assume that a and b are coprime and @ < b. Let
36a + b = 2™ and a + 36b = 2". Adding and subtracting, we obtain 37(a + b) =
2M(2""™ + 1), respectively, 35(a — b) = 2™ (2"~ — 1). It follows that both a + b and
a — b are divisible by 2. This can happen only if both @ and b are divisible by 2"~
Our assumption that a and b are coprime implies that m = 1. But then 36a + b = 2,
which is impossible. Hence the conclusion. m|

724. Find the integers n for which (n® — 3n? +4)/(2n — 1) is an integer.

725. Prove that in the product P = 1!-2!-3!..-100! one of the factors can be erased so
that the remaining product is a perfect square.
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726. The sequence ay, a, as, ... of positive integers satisfies ged(a;, a;) = ged(i, j)
fori # j. Prove thata; = i for all i.

727. Let n, a, b be positive integers. Prove that
ng(n“ — 1, nb —1)= ngcd(a,b) _1

728. Let a and b be positive integers. Prove that the greatest common divisor of 2¢ 4 1
and 2° + 1 divides 28¢d@®) 4 1,

729. Fix a positive integer k£ and define the sequence (a,), by ay = k+ 1 and @, =
a? — ka, + k for n > 1. Prove that for any distinct positive integers m and n the
numbers a,, and a,, are coprime.

730. Leta, b, ¢, d, e, and f be positive integers. Supposethat S =a+b+c+d+e+ f
divides both abc+def and ab+bc+ca—de—ef — fd. Prove that S is composite.

731. Let n be an integer greater than 2. Prove that n(n — 1)* + 1 is the product of two
integers greater than 1.

732. Determine the functions f : {0, 1,2...} — {0, 1,2, ...} satisfying
() f@n+1)?— f2n)> =6f(n) + 1 and
(i) f(2n) = f(n) foralln > 0.

5.2.2 Prime Numbers

A positive integer is called prime if it has no other divisors than 1 and the number itself.
Equivalently, a number is prime if whenever it divides a product it divides one of the
factors. Any positive integer can be written as a product of primes in a unique way up to
a permutation of the factors.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. From the more than one hundred proofs of this theorem we selected the fascinating
topological proof given in 1955 by H. Furstenberg. By definition, a topology on a set X
is a collection 7 of sets satisfying

() 9, X eT,;
(ii) for any family (U;);¢; of sets from 7, the union U;¢, U; is also in 7
(iii) for any Uy, U,, ..., U, in T, the intersection Uy N U, N---N U, isin 7.

The elements of 7 are called open sets; their complements are called closed sets.
This definition is the abstraction, in the spirit of Bourbaki, of the properties of open sets
on the real axis.

Furstenberg’s idea was to introduce a topology on Z, namely the smallest topology in
which any set consisting of all terms of a nonconstant arithmetic progression is open. As
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an example, in this topology both the set of odd integers and the set of even integers are
open. Because the intersection of two arithmetic progressions is an arithmetic progres-
sion, the open sets of 7 are precisely the unions of arithmetic progressions. In particular,
any open set is either infinite or void.

If we define

Agag=1{..,a—2d,a—-d,a,a+d,a+2d,...}, aecZ, d=>0,

then A, 4 is open by hypothesis, but it is also closed because it is the complement of the
openset Ag11.qgUAgi2aU- - UAsig—1.4. Hence Z\A, 4 is open.
Now let us assume that only finitely many primes exist, say pi, p2, ..., p,. Then

Ao, py UAgp, U---UAg, =7Z\[{-1,1}.
This union of open sets is the complement of the open set
(Z\Ao,p,) U (Z\Ag p,) U - - - U(Z\Ag,p,);

hence it is closed. The complement of this closed set, namely {—1, 1}, must therefore
be open. We have reached a contradiction because this set is neither empty nor infinite.
Hence our assumption was false, and so there are infinitely many primes. O

Let us begin with the examples.
Example. Prove that for all positive integers n, the number
37 +1
is the product of at least 2n + 1 not necessarily distinct primes.
Solution. We induct on n. The statement is clearly true if n = 1. Because
1= (3" +1) (3> =3 +1),

it suffices to prove that 323" — 3% 4 1 is composite for all n > 1. But this follows from
the fact that

n n n n n ~n 2
P o3 = (34 1) =337 = (37 1) - (37
is the product of two integers greater than 1, namely,
3 41-3F and 3 +1-37.

This completes the induction. |
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We proceed with a problem from the 35th International Mathematical Olympiad,
1994, followed by several others that are left to the reader.

Example. Prove that there exists a set A of positive integers with the property that for
any infinite set S of primes, there exist two positive integers m € A and n ¢ A each of
which is a product of k distinct elements of S for some k > 2.

Solution. The proof is constructive. Let p; < p < -+ < p, < --- be the increasing
sequence of all prime numbers. Define A to be the set of numbers of the form p;, p;, - - - p;,,
wherei); < iy < .-+ <irandk = p; . Forexample,3-5-7 € Aand5-7-11-13-17 € A,
but5-7 ¢ A.

Let us show that A satisfies the desired condition. Consider an infinite set of prime
numbers, say g1 < q> < --- < g, <---. Takem = g2q3---qq4, and n = q3q4 - - - Ggr41-
Then m € A, while n ¢ A because g, > 3 and so g, + 1 # g3. O

733. Prove that there are infinitely many prime numbers of the form 4m 4 3, where
m > 0 is an integer.

734. Let k be a positive integer such that the number p = 3k + 1 is prime and let

1 N 1 . 1 m
1-2 3.4 Qk—12k n

for some coprime positive integers m and n. Prove that p divides m.

735. Solve in positive integers the equation

XY = yr

736. Show that each positive integer can be written as the difference of two positive
integers having the same number of prime factors.

737. Find all composite positive integers n for which it is possible to arrange all divisors
of n that are greater than 1 in a circle such that no two adjacent divisors are relatively
prime.

738. Is it possible to place 1995 different positive integers around a circle so that for any
two adjacent numbers, the ratio of the greater to the smaller is a prime?

739. Let p be a prime number. Prove that there are infinitely many multiples of p whose
last ten digits are all distinct.

740. Let A be the set of positive integers representable in the form a® + 2b? for integers
a, b with b # 0. Show that if p> € A for a prime p, then p € A.
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741. The positive divisors of an integern > lare 1l =d| < dp, < --- < dy = n. Let
s = didy + dods + -+ + dy_1di. Prove that s < n? and find all n for which s
divides n?.

742. Prove that there exist functions f, g : {0,1,2,...}x{0,1,2,...} - {0,1,2,...}
with the property that an odd number n > 1 is prime if and only if there do not exist
nonnegative integers a and b such that n = f(a, b) — g(a, b).

743. Let n > 2 be an integer. Prove that if k* + k + n is a prime number for all
0<k< ﬂ,thenk2+k+n is a prime number for all 0 < k <n — 2.

The following formula is sometimes attributed to Legendre.

Polignac’s formula. If p is a prime number and n a positive integer, then the exponent

of p inn! is given by
n n n
HRFIREIES
p 4 p

Proof. Each multiple of p between 1 and n contributes a factor of p to n!. There are
|n/p]| such factors. But the multiples of p? contribute yet another factor of p, so one
should add |n/p?|. And then come the multiples of p? and so on. O

Example. Let m be an integer greater than 1. Prove that the product of m consecutive
terms in an arithmetic progression is divisible by m! if the ratio of the progression is
coprime to m.

Solution. Let p be a prime that divides n!. The exponent of p in n! is given by Polignac’s
formula. On the other hand, in the product a(a +r)(a +2r)---(a+ (m — Dr) of m
consecutive terms in a progression of ratio r, with gdc(r, m) = 1, at least |m/p’ | terms
are divisible by p'. It follows that the power of p in this product is greater than or equal
to the power of p in m!. Because this holds true for any prime factor in m!, the conclusion
follows. O

All problems below are based on Polignac’s formula.
744. Find all positive integers n such that n! ends in exactly 1000 zeros.
745. Prove that n! is not divisible by 2" for any positive integer n.

746. Show that for each positive integer n,
nt=[Tlem@.2,.... [n/i]),
i=1

where Icm denotes the least common multiple.
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747. Prove that the expression

gcd(m, n) (n)
n m

is an integer for all pairs of integers n > m > 1.

748. Let k and n be integers with 0 < k < n?/4. Assume that k has no prime divisor
greater than n. Prove that n! is divisible by k.

5.2.3 Modular Arithmetic

A positive integer n partitions the set of integers Z into n equivalence classes by the
remainders obtained on dividing by n. The remainders are called residues modulo #.
We denote by Z,, = {0, 1,...,n — 1} the set of equivalence classes, indexed by their
residues. Two numbers a and b are said to be congruent modulo n, which is written
a = b (mod n), if they give the same remainder when divided by n, that is, if a — b is
divisible by n.

The ring structure of Z induces a ring structure on Z,. The latter ring is more
interesting, since it has zero divisors whenever n is composite, and it has other invertible
elements besides 1. To make this precise, for any divisor d of n the product of d and
n/d is zero. On the other hand, the fundamental theorem of arithmetic, which states
that whenever m and n are coprime there exist integers a and b such that am — bn =1,
implies that any number coprime to n has a multiplicative inverse modulo #. For a prime
p, every nonzero element in Z, has an inverse modulo p. This means that Z, is a field.
We also point out that the set of invertible elements in Z, is closed under multiplication;
it is an Abelian group.

A well-known property that will be used in some of the problems below is that modulo
9, a number is congruent to the sum of its digits. This is because the difference of the
number and the sum of its digits is equal to 9 times the tens digit plus 99 times the
hundreds digit plus 999 times the thousands digit, and so on. Here is an elementary
application of this fact.

Example. The number 2%° has 9 distinct digits. Without using a calculator, tell which
digit is missing.

Solution. As we have just observed, a number is congruent to the sum of its digits modulo
9. Note that 0 + 1 4+ 2 4 - - - +9 = 45, which is divisible by 9. On the other hand,

2% =2%(=1)° = —4 (mod 9).
So 2% is off by 4 from a multiple of 9. The missing digit is 4. O

We continue with a property of the harmonic series discovered by C. Pinzka.
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Example. Let p > 3 be a prime number, and let

r 1 1
+ + + -,
ps 3 P

the sum of the first p terms of the harmonic series. Prove that p? divides r — s.
Solution. The sum of the first p terms of the harmonic series can be written as

p‘ p! p!
-+ =+ +—
2 p
p! '
Because the denominator is p! and the numerator is not divisible by p, any common
prime divisor of the numerator and the denominator is less than p. Thus it suffices to

prove the property for r = ”T! + %! + -+ %! and s = (p — 1)!. Note that

(=D (p-D! (p— 1!
r—s—p( 1 + > ++ﬁ>

We are left with showing that

(p—D!  (p—D! (p—D!
T R

is divisible by p?. This sum is equal to

~ 1! (p—1)
Z(H k)—Pk;k(,,_k)-

So let us show that

PT

Z (p— D!

= k(p —k)
is an integer divisible by p. Note that if k~! denotes the inverse of k modulo p, then
p — k~! is the inverse of p — k modulo p. Hence the residue classes of [k(p — k)]™!
represent just a permutation of the residue classes of k(p — k), k =1,2, ..., ”T_l Using

this fact, we have

p—1

v - = = -
- = — D! k(p—k = — ! k(p—k
;k(p_k) (p >§[ (P—01' =@ >; (p—k)
n p=lopH
— 2 _ _(p_ 122 7 _
=—(p 1)!k2:1:k =—(p— D= = 0 (mod p).

This completes the proof. O
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We left the better problems as exercises.

Prove that among any three distinct integers we can find two, say a and b, such that
the number a*bh — ab?® is a multiple of 10.

Show that the number 20022°°? can be written as the sum of four perfect cubes, but
not as the sum of three perfect cubes.

The last four digits of a perfect square are equal. Prove that they are all equal to
ZEer0.

Solve in positive integers the equation
2% 3 =145
Define the sequence (a,), recursively by a; = 2, a, = 5, and
ap1 = 2 —n?a, + 2+n?a,_, forn > 2.

Do there exist indices p, g, r such thata, - a;, = a,?

For some integer k > 0, assume that an arithmetic progression an 4+ b, n > 1, with
a and b positive integers, contains the kth power of an integer. Prove that for any
integer m > 0 there exist an infinite number of values of n for which an + b is the
sum of m kth powers of nonzero integers.

Given a positive integer n > 1000, add the residues of 2" modulo each of the
numbers 1, 2, 3, ..., n. Prove that this sum is greater than 2n.

Prove thatif n > 3 prime numbers form an arithmetic progression, then the common
difference of the progression is divisible by any prime number p < n.

Let P(x) = apx™ +apu_1x™ '+ -4apand Q(x) = b,x"+b,_1x" ' +.-.4+bybe
two polynomials with each coefficient a; and b; equal to either 1 or 2002. Assuming
that P(x) divides Q(x), show that m + 1 is a divisor of n + 1.

Prove that if n is a positive integer that is divisible by at least two primes, then there
exists an n-gon with all angles equal and with side lengths the numbers 1,2, ..., n
in some order.

Find all prime numbers p having the property that when divided by every prime
number g < p yield a remainder that is a square-free integer.

5.2.4 Fermat’s Little Theorem

A useful tool for solving problems about prime numbers is a theorem due to P. Fermat.
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Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then
n? —n =0 (mod p).

Proof. We give a geometric proof. Consider the set M of all possible colorings of the
vertices of a regular p-gon by n colors (see Figure 36). This set has n” elements. The

group Z,, acts on this set by rotations of angles 2"7”, k=0,1,...,p—1.

b b
Figure 36

Consider the quotient space M /Z, obtained by identifying colorings that become the
same through a rotation. We want to count the number of elements of M /Z,. For that
we need to understand the orbits of the action of the group, i.e., the equivalence classes
of rotations under this identification.

The orbit of a monochromatic coloring has just one element: the coloring itself.
There are n such orbits.

What if the coloring is not monochromatic? We claim that in this case its orbit has
exactly p elements. Here is the place where the fact that p is prime comes into play.
The additive group Z, of residues modulo p is generated by any of its nonzero elements.
Hence if the coloring coincided with itself under a rotation of angle 2kx/p for some
0 < k < p, then it would coincide with itself under multiples of this rotation, hence
under all rotations in Z,. But this is not possible, unless the coloring is monochromatic.
This proves that rotations produce distinct colorings, so the orbit has p elements. We
deduce that the remaining n” — n elements of M are grouped in (disjoint) equivalence
classes each containing p elements. The counting of orbits gives

n? —n
IM/Z,| =n+ .

which shows that (n” — n)/p must be an integer. The theorem is proved. m|

In particular, if n and p are coprime, then n”~! — 1 is divisible by p. However, this
result alone cannot be used as a primality test for p. For example, L. Euler found that 341
divides 23*° — 1, while 341 = 31 x 11. So the converse of Fermat’s little theorem fails.

We illustrate the use of Fermat’s little theorem with a short-listed problem from the
46th International Mathematical Olympiad, 2005.
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Example. Show that for every prime p there is an integer n such that 2" 4 3" 46" — 1
is divisible by p.

Solution. The property is true for p = 2 and p = 3, since 2> + 3> + 62 — 1 = 48. Let
p be a prime greater than 3. By Fermat’s little theorem, 27~!, 37~! and 67! are all
congruent to 1 modulo p. Hence

3.207°0 4 2.3 46771 =34 241 =6 (mod p).
It follows that
6-2P"246-37"246-6"2=6 (mod p).

Dividing by 6, we find that 27=2 + 372 4 6P=2 — 1 is divisible by p, and we are
done. O

And here is a problem from the 2005 USA Mathematical Olympiad, proposed by the
first author of the book.?

Example. Prove that the system
X0+ y 4y =147,
BBy +y+ =157¥
has no solutions in integers x, y, and z.

Solution. Add the two equations, then add 1 to each side to obtain the Diophantine
equation

G Hy+ D242 = 1475 4157 1.

The right-hand side is rather large, and it is natural to reduce modulo some number. And
since the left-hand side is a sum of a square and a ninth power, it is natural to reduce
modulo 19 because 2 x 9 + 1 = 19. By Fermat’s little theorem, a'® = 1 (mod 19)
whenever a is not a multiple of 19, and so the order of a square is either 1, 3, or 9, while
the order of a ninth-power is either 1 or 2.

Computed by hand, the quadratic residues mod 19 are —8, —3, —2,0,1,4,5,6,7,9,
while the residues of ninth powers are —1, 0, 1. Also, applying Fermat’s little theorem
we see that

14757 £ 157" 4+ 1= 14 45 + 1 = 14 (mod 19).

An easy verification shows that 14 cannot be obtained as a sum of a quadratic residue and
a ninth-power residue. Thus the original system has no solution in integers x, y, and z.

2 The statement was improved by R. Stong and E. Johnston to prevent a simpler solution.
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A different solution is possible using reduction modulo 13. Fermat’s little theorem
implies a'?> = 1 (mod 13) when a is not a multiple of 13.

We start by producing the same Diophantine equation. Applying Fermat’s little
theorem, we can reduce the right-hand side modulo 13. We find that

14757 £ 157" + 1 = 4' + 12 = 6 (mod 13).

The cubes modulo 13 are 0, £1, and +5. Writing the first equation of the original sys-
tem as

4+ D+ y) =4 (mod 13),
it follows that x> 4 y must be congruent to 4, 2, 5, or —1. Hence
*+y+1)%=12,9,10 or 0 (mod 13).

Note also that z° is a cube; hence z° mustbe 0, 1, 5, 8, or 12 modulo 13. Ttis easy to check
that 6 (mod 13) cannot be obtained by adding one of 0, 9, 10, 12 to one of 0, 1, 5, 8, 12.
As a remark, the second solution also works if z° is replaced by z°. O

When solving the following problems, think that “work done with passion brings
results” (Virgil).

760. Show that if n has p — 1 digits all equal to 1, where p is a prime not equal to 2, 3,
or 5, then n is divisible by p.

761. Prove that for any prime p > 17, the number

P21

is divisible by 16320.

762. Let p be an odd prime number. Show that if the equation x> = a (mod p) has a
solution, then a7 =1 (mod p). Conclude that there are infinitely many primes
of the form 4m + 1.

763. Prove that the equation x> = y> + 7 has no integer solutions.

764. Letn > 1 be a positive integer. Prove that the equation (x 4+ 1)" — x" = ny has no
positive integer solutions.

765. Prove that the sequence 2" — 3, n > 1, contains an infinite subsequence whose
terms are pairwise relatively prime.

766. Let (x,), be asequence of positive integers satisfying the recurrence relation x,, 1 =
5x, — 6x,_1. Prove that infinitely many terms of the sequence are composite.
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767. Let f(xy, x2, ..., x,) be a polynomial with integer coefficients of total degree less
than n. Show that the number of ordered n-tuples (x1, x2, ..., x,) with0 < x; < 12
such that f(xy, x2, ..., x,) = 0 (mod 13) is divisible by 13.

768. Determine all integers a such that a* +1 is divisible by 12321 for some appropriately
chosen positive integer k > 1.

5.2.5 Wilson’s Theorem
Another result about prime numbers is known as Wilson’s theorem.
Wilson’s theorem. For every prime p, the number (p — 1)! + 1 is divisible by p.

Proof. We group the residue classes 1,2,..., p — 1 in pairs (a, b) such that ab =
1 (mod p). Let us see when a = b in such a pair. The congruence a> = 1 (mod p)
is equivalent to the fact that a> — 1 = (a — 1)(a + 1) is divisible by p. This happens
only whena = 1 ora = p — 1. For all other residue classes the pairs contain distinct
elements. So in the product2-3 - - - (p —2) the factors can be paired such that the product
of the numbers in each pair is congruent to 1. Therefore,

1-2---(p=2)-(p—1H=1-(p—1)=—1(mod p).
The theorem is proved. O

The converse is also true, since n must divide (n — 1)! for composite n. And now an
application.

Example. Let p be an odd prime. Prove that

12.32...(p—2)°= (—l)pT+1 (mod p)
and

2.4 (p—1)>=(=1)'T (mod p).
Solution. By Wilson’s theorem,

(1:3(p=2)Q2-4---(p— ) = —1 (mod p).
On the other hand,
=—(p—D@modp),3=—-(p—3)(mod p),....,p—2=—(p— (p—2))(mod p).
Therefore,
13 (p=2=(-1T@-4---(p— 1) (mod p).

Multiplying the two congruences and canceling out the product2 -4 ---(p — 1), we ob-
tain the first congruence from the statement. Switching the sides in the second and multi-
plying the congruences again, we obtain the second congruence from the statement. O
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Here are more examples.

769. For each positive integer n, find the greatest common divisor of n! + 1 and (n + 1)!.

770. Prove that there are no positive integers n such that the set {n,n + 1,n +2,n +
3,n +4, n+ 5} can be partitioned into two sets with the product of the elements of
one set equal to the product of the elements of the other set.

2

771. Let p be an odd prime. Show that if the equation x~ = a (mod p) has no solution

then a’x = —1 (mod p).

2 =

772. Let p be an odd prime number. Show that the equation x —1 (mod p) has a

solution if and only if p = 1 (mod 4).

773. Let p be a prime number and n an integer with 1 < n < p. Prove that

(p—m)!n—D!=(—D" (mod p).

774. Let p be an odd prime and ay, as, . . ., a, an arithmetic progression whose common
difference is not divisible by p. Prove that there exists an index i such that the
number a;a; - - - a, + a; is divisible by p*.

5.2.6 Euler’s Totient Function

Euler’s totient function associates to a positive integer n the number ¢ (n) of positive
integers less than or equal to n that are coprime to n. It has a simple formula in terms of
the prime factorization of n.

Proposition. Ifthe distinct prime factors of n are p1, pa, ..., pr, then

S )

Proof. This is just an easy application of the inclusion—exclusion principle. From the n
numbers between 1 and n, we eliminate the n/p; numbers that are divisible by p;, for
each 1 <i < n. We are left with

1 1 1
n—n|\—+—+--+—
P P2 Pk
numbers. But those divisible by both p; and p; have been subtracted twice, so we have
to add them back, obtaining

1 1 1 1 1 1
n—-n|\—+—+--+—|+n +—+---+ .
P1 P2 Pk pPi1p2 P3 Pk—1Pk
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Again, we see that the numbers divisible by p;, p;, and p; have been subtracted and then
added back, so we need to subtract these once more. Repeating the argument, we obtain
in the end

1 1 1 1 1 1 n
n—nl—+—+---4+—\)+n 4+ — 4+ 4 e
P1 P2 Pk pi1p2 P3 Pk—1Pk pip2--- Pk

Factoring this, we obtain the formula from the statement. O

In particular, n is prime if and only if ¢(n) =n — 1, and if n = p;p; - - - pr, where
p; are distinct primes, 1 <i < k,then¢p(n) = (p1 — D(p2—1)--- (p, — 1). Also, if m
and n are coprime, then ¢ (mn) = ¢ (m)¢ (n).

Fermat’s little theorem admits the following generalization.

Euler’s theorem. Letn > 1 be an integer and a an integer coprime to n. Then
a®™ =1 (mod n).

Proof. The group of units Z; in the ring Z, consists of the residue classes coprime to n.
Its order is ¢ (n). By the Lagrange theorem, the order of an element divides the order of
the group. Hence the conclusion.

Here is a more elementary argument. Consider the set S = {ay, az, ..., agm)} of all
residue classes modulo #n that are coprime to n. Because gcd(a, n) = 1, it follows that,
modulo n, aay, aa, . .., aayy) is a permutation of ay, as, . . ., agy. Then

(aay)(aaz) - - - (aagm)) = a1az - - - gy (mod n).

Since ged(ag, n) = 1,fork = 1,2, ..., ¢(n), we can divide both sides by aja; - - - ag)
to obtain a®™ = 1 (mod n), as desired. ]

We apply Euler’s theorem to a problem by I. Cucurezeanu.
Example. Let n be an even positive integer. Prove that n> — 1 divides 2" — 1.

Solution. Let n = m — 1, so that m is odd. We must show that m(m — 2) divides
20m=D' _ 1, Because ¢ (m) < m, ¢ (m) divides (m — 1)!, so 22" — 1 divides 2*~1D' — 1.
Euler’s theorem implies that m divides 29 — 1. Therefore, m divides 2¢"~D' — 1.
Arguing similarly for m — 2, we see that m — 2 divides 2""~""' — 1 as well. The numbers
m and m — 2 are relatively prime, so m(m — 2) divides 2"~ D" — 1, as desired. |

A second example comes from the 1997 Romanian Mathematical Olympiad.
Example. Let a > 1 be an integer. Show that the set
S:{a2+a— lL,a*+a®>—1,a*+a° — 1,...}

contains an infinite subset whose elements are pairwise coprime.
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Solution. We show that any subset of S having n elements that are pairwise coprime can
be extended to a set with n + 1 elements. Indeed, if N is the product of the elements
of the subset, then since the elements of S are coprime to a, so must be N. By Euler’s
theorem,

a® M+ L N _1=4g41—1=a (mod N).

It follows that a®™+! 4 q#™) _ 1 is coprime to N and can be added to S. We are
done. O

We now challenge you with the following problems.

775. Prove that for any positive integer n,

> ¢k) =n.

kln
Here k|n means k divides n.

776. Prove that for any positive integer n other than 2 or 6,

P(n) = /n.

777. Prove that there are infinitely many positive integers n such that (¢ (n))> + n? is a
perfect square.

778. Prove that there are infinitely many even positive integers m for which the equation
¢ (n) = m has no solutions.

779. Prove that for every positive integer s there exists a positive integer n divisible by
s and with the sum of the digits equal to s.

780. Prove that the equation
2x 4 3 — Z3
does not admit positive integer solutions.

781. Prove for every positive integer n the identity

nn+1)

o[ om 3] e [3]+om|2] =2

782. Given the nonzero integers a and d, show that the sequence
a,a+d,a+2d,...,a+nd,...

contains infinitely many terms that have the same prime factors.
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Euler’s theorem is widely used in cryptography. The encryption scheme used nowa-
days, called the RSA algorithm, works as follows:

A merchant wants to obtain the credit card number of a customer over the Internet.
The information traveling between the two can be viewed by anyone. The merchant is in
possession of two large prime numbers p and g. It transmits to the customer the product
n = pq and a positive integer k coprime to ¢p(n) = (p — 1)(¢ — 1). The customer
raises the credit card number « to the kth power, then reduces it modulo » and transmits
the answer § to the merchant. Using the Euclidean algorithm for the greatest common
divisor, the merchant determines positive integers m and a satisfying

mk—a(p—1)(g—1) =1.
Then he computes the residue of ” modulo n. By Euler’s theorem,
" = "k = P DEa-DH — (a(”‘”(q_l))a o= (a"’(”))a ~a =a (mod n).

For n sufficiently large, the residue class of @ modulo 7 is « itself. The merchant was
able to retrieve the credit card number.

As of this date there is no known algorithm for factoring numbers in polynomial time,
while large primes can be found relatively quickly, and for this reason an eavesdropper
cannot determine p and g from # in a reasonable amount of time, and hence cannot break
the encryption.

783. Devise a scheme by which a bank can transmit to its customers secure information
over the Internet. Only the bank (and not the customers) is in the possession of the
secret prime numbers p and q.

784. A group of United Nations experts is investigating the nuclear program of a country.
While they operate in that country, their findings should be handed over to the
Ministry of Internal Affairs of the country, which verifies the document for leaks of
classified information, then submits it to the United Nations. Devise a scheme by
which the country can read the document but cannot modify its contents without
destroying the information.

5.2.7 The Chinese Remainder Theorem

Mentioned for the first time in a fourth-century book of Sun Tsu Suan-Ching, this result
can be stated as follows.

The Chinese Remainder Theorem. Let m, my, ..., my be pairwise coprime positive
integers greater than 1. Then for any integers ay, ay, . . ., ai, the system of congruences
x =a; (mod m;), x = a, (mod my), ..., x =a, (mod my)

has solutions, and any two such solutions are congruent modulo m = mym; . . .my.
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Proof. For any j, 1 < j < k, the number m/m is coprime to m; and hence invertible
with respect to m ;. Let b; be the inverse. Then

m m m
Xo = —biay + —bray + - - + —bax
mi my mp
is a solution to the system. For any other solution x, the difference x — x is divisible by

m. It follows that the general solution is of the form x( + m¢, with ¢ an integer. O

We illustrate the use of the Chinese Remainder Theorem with an example from the
classic book of W. Sierpiriski, 250 Problems in Elementary Number Theory (Paistwowe
Wydawnictwo Naukowe, Warsawa, 1970).

Example. Prove that the system of Diophantine equations
xlz—l-x% —I—x_% +xi = y5,
XX +x g =20,
xf —i—xi —i—x; +x2 =1
has infinitely many solutions.
Solution. Leta = 12422432442 b = 13 4+23 433 44% ¢ = 1°+254+374+4°. Welook
for solutions of the form x| = a™b"c?, x, = 2a™b"c?, x3 = 3a™b"c?, x4 = 4a™b"cP.
These satisfy
x12 + x% + x32 + xf =@t petr,
xl3 + xg + xg’ + xi’ = gprIr,
xf + xg + x35 + xf = a>" P!
We would like the right-hand sides to be a fifth, second, and third power, respectively.
Reformulating, we want to show that there exist infinitely many m, n, p such that
2m+1=2n=2p =0 (mod 5),
3m=3n+1=3p =0 (mod 2),
Sm=5n=5p+1=0 (mod 3).

But this follows from the Chinese Remainder Theorem, and we are done. O

785. An old woman went to the market and a horse stepped on her basket and smashed
her eggs. The rider offered to pay for the eggs and asked her how many there were.
She did not remember the exact number, but when she had taken them two at a time
there was one egg left, and the same happened when she took three, four, five, and
six at a time. But when she took them seven at a time, they came out even. What
is the smallest number of eggs she could have had?
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Prove that for every n, there exist n consecutive integers each of which is divisible
by two different primes.

Let P(x) be a polynomial with integer coefficients. For any positive integer m, let
N (m) denote the number of solutions to the equation P(x) = 0 (mod m). Show
that if m; and m, are coprime integers, then N (mm,) = N (m)N (mn;).

Alice and Bob play a game in which they take turns removing stones from a heap
that initially has n stones. The number of stones removed at each turn must be
one less than a prime number. The winner is the player who takes the last stone.
Alice plays first. Prove that there are infinitely many n such that Bob has a winning
strategy. (For example, if n = 17, then Alice might take 6 leaving 11; then Bob
might take 1 leaving 10; then Alice can take the remaining stones to win.)

Show that there exists an increasing sequence (a,),>; of positive integers such that
for any k > 0, the sequence k + a,, n > 1, contains only finitely many primes.

Is there a sequence of positive integers in which every positive integer occurs exactly
once and for every k = 1,2, 3, ... the sum of the first k terms is divisible by k?

Prove that there exists a positive integer k such that k - 2" + 1 is composite for every
positive integer .

Let a and b be two positive integers such that for any positive integer n, a” + n
divides b" + n. Prove thata = b.

A lattice point (x, y) € Z? is visible from the origin if x and y are coprime. Prove
that for any positive integer n there exists a lattice point (a, b) whose distance from
every visible point is greater than 7.

5.3 Diophantine Equations

5.3.1 Linear Diophantine Equations

A linear Diophantine equation (named in the honor of Diophantus, who studied equations
over the integers) is an equation of the form

axi + -+ ayx, =b,

where ay, . .., a,, and b are integers. We will discuss only the Diophantine equation

ax — by =c.

Theorem. The equation ax — by = c has solutions if and only if gcd(a, b) divides

c. If (xo, yo) is a solution, then all other solutions are of the form x = xo +

b
gcd(a,b) 2

_ a
y—yo—l—mt,tez.
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Proof. For the equation to have solutions it is clearly necessary that ¢ be divisible by
gcd(a, b). Dividing through by gcd(a, b) we can assume that @ and b are coprime.

To show that the equation has solutions, we first examine the case ¢ = 1. The method
of solving this equation is a consequence of Euclid’s algorithm for finding the greatest
common divisor. This algorithm consists of a successive series of divisions

a=qb+r,
b= qyri + 1y,

ry =qsry +rs,

I'n—2 = {qnlrn—1 + 7y,

where r, is the greatest common divisor of a and b, which in our case is 1. If we work
backward, we obtain

1= rnfl(_qn) - (_rn72) = 7‘,172(1 - qnfl) —Fp3qn = - =4axo — by()

for whatever numbers x( and y, arise at the last stage. This yields a particular solution
(X0, ¥0)-

For a general c, just multiply this solution by c. If (x;, y;) is another solution, then
by subtracting axy — byy = ¢ from ax; —by; = ¢, we obtain a(x; — xo) —b(y1 — yo) = 0,

hence x; — xp = mt, and y; —yp = mt for some integer number ¢. This shows
that the general solution is of the form (x¢ + Mt, yo + mt), t an integer. The
theorem is proved. m|

The algorithm for finding a particular solution can be better visualized if we use the
continued fraction expansion

2 -
4_
b 1

—dp +
—a3+ -+
—dp—1 +

1

n

In this, if we delete ﬁ, we obtain a simpler fraction, and this fraction is nothing
but )yc—g
The equality ax — by = 1 shows that the matrix with integer entries

(52)
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has determinant 1. The matrices with this property form the special linear group SL(2, Z).
This group is generated by the matrices

0-1 11
S=(1 O) and T=(Ol>.

(a y) — STUST®S ... ST™S,

Explicitly,

bx

since matrix multiplication mimics the (backward) calculation of the continued fraction.
We thus have a method of expressing the elements of SL(2, Z) in terms of generators.
The special linear group SL(2, Z) arises in non-Euclidean geometry. It acts on the
upper half-plane, on which Poincaré modeled the “plane” of Lobachevskian geometry.
The “lines” of this “plane” are the semicircles and half-lines orthogonal to the real axis.

A matrix
ab
A(22)

az+b
%—7
cz+d

acts on the Lobachevski plane by
ad — bc = 1.

All these transformations form a group of isometries of the Lobachevski plane. Note
that A and —A induce the same transformations; thus this group of isometries of
the Lobachevski plane, also called the modular group, is isomorphic to PSL(2,7Z) =
SL(2, Z)/{—1,,1,}. The matrices S and T become the inversion with respect to the unit
circle z — —1 and the translation z — z + 1.

We stop here with the discussion and list some problems.

(53)

as the product of several copies of the matrices

(Vo) = (1)

(No, there is no typo in the matrix on the left.)

794. Write the matrix
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795. Let a, b, c, d be integers with the property that for any two integers m and n there
exist integers x and y satisfying the system

ax + by =m,
cx +dy =n.

Prove that ad — bc = =+1.

796. Let a, b, ¢, d be positive integers with gcd(a, b)) = 1. Prove that the system of
equations

ax —yz—c=0,
bx —yt+d=0
has infinitely many solutions in positive integers (x, y, z, f).

We now ask for the nonnegative solutions to the equation ax + by = ¢, where a, b, ¢
are positive numbers. This is a particular case, solved by Sylvester, of the Frobenius
coin problem: what is the largest amount of money that cannot be paid using coins worth
a, a, ...,a, cents? Here is the answer.

Sylvester’s theorem. Let a and b be coprime positive integers. Then ab — a — b is the
largest positive integer c for which the equation

ax +by=c
is not solvable in nonnegative integers.

Proof. Let N > ab—a —b. The integer solutions to the equation ax + by = N are of the
form (x, y) = (xo+bt, yo—at), with t aninteger. Choose ¢ suchthat0 < yp—ar <a—1.
Then

(xo+bt)a=N—-(yg—at)b>ab—a—b—(a—1)b=—a,

which implies that xy 4+ bt > —1, and so xy 4+ bt > 0. Hence in this case the equation
ax + by = N admits nonnegative integer solutions.
On the other hand, if there existed x, y > 0 such that

ax +by=ab—a—b,

then we would have ab = a(x + 1) + b(y + 1). Since a and b are coprime, this would
imply that a divides y + 1 and b divides x + 1. Butthen y +1 > a and x 4+ 1 > b, which
would then lead to the contradiction

ab=a(x+1)+b(y + 1) > 2ab.

This proves the theorem. O
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And now the problems.

797. Given a piece of paper, we can cut it into 8 or 12 pieces. Any of these pieces can be
cut into 8 or 12, and so on. Show that we can obtain any number of pieces greater
than 60. Can we obtain exactly 60 pieces?

798. Leta and b be positive integers. For a nonnegative integer n let s(n) be the number
of nonnegative integer solutions to the equation ax + by = n. Prove that the
generating function of the sequence (s(n)), is

1
(1 —x9)(1 —xb)’

fx) =
799. Let n > 6 be a positive integer. Prove that the equation
xX+y=n
admits a solution with x and y coprime positive integers both greater than 1.

800. Prove that the d-dimensional cube can be dissected into n d-dimensional cubes for
all sufficiently large values of .

5.3.2 The Equation of Pythagoras
The Diophantine equation
Xyt =27

has as solutions triples of positive integers that are the side lengths of a right triangle,
whence the name. Let us solve it.

If x and z have a common factor, this factor divides y as well. Let us assume first
that x and z are coprime. We can also assume that x and z have the same parity (both are
odd); otherwise, exchange x and y.

In this situation, write the equation as

y2 = (z + x)(z — x).

The factors z 4 x and z — x are both divisible by 2. Moreover, 2 is their greatest common
divisor, since it is the greatest common divisor of their sum 2z and their difference 2x.
We deduce that y is even, and there exist coprime integers # and v such that y = 2uv,
z+x = 2u? and z —x = 2v%. We obtain x = u?> —v? and z = u? +v>. Incorporating the
common factor of x, y, and z, we find that the solutions to the equation are parametrized
by triples of integers (u, v, k) as x = k(u?> — v?), y = 2kuv, and z = k(u®> + v?) or
x = 2kuv, y = k(u®> — v?), and z = k(u*> + v?). The positive solutions are called
Pythagorean triples.
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There is a more profound way to look at this equation. Dividing through by z2, we

obtain the equivalent form
\2 )2
() ()=
< <

This means that we are supposed to find the points of rational coordinates on the unit circle.
Like any conic, the circle can be parametrized by rational functions. A parametrization
is (L‘L—iz, %), t € RU {oo}. The fractions };—;z and % are simultaneously rational if
and only if # itself is rational. In that case # = 7 for some coprime integers « and v. Thus

we should have
- () :
= v d Y__ v
o u\2 z u\2’
1+ (—) 1+ (—)
v v

where again we look at the case in which x, y, and z have no common factor, and x and
z are both odd. Then y is necessarily even and

X
Z

y 2uv

7 u?4v?

Because u and v are coprime, and because y is even, the fraction on the right-hand side
is irreducible. Hence y = 2uv, z = u® 4+ v?, and consequently x = u? — v?. Exchanging
x and y, we obtain the other parametrization. In conclusion, we have the following
theorem.

Theorem. Any solution x, y, z to the equation x*> + y*> = z* in positive integers is of
the form x = k(u?> —v?), y = 2kuv, z = k(u* + v?), or x = 2kuv, y = k(u> — v?),
7z = k(u?® + v?), where k is an integer and u, v are coprime integers with u > v not
both odd.

We now describe an occurrence of Pythagorean triples within the Fibonacci sequence

1,1,2, 3,5,8,13,21, 34,55, 89, 144, 233, . . ..
——
——

Take the terms F, = 3 and F5 = 5, multiply them, and double the product. Then take the
product of F3 = 2 and Fs = 8. You obtain the numbers 30 and 16, and 30?4 16%> = 1156,
which is the square of Fy = 34.

Similarly, the double product of F5 = 5 and Fg = 8 is 80, and the product of F;, = 3
and F; = 13 is 39. And 80 + 39% = 7921 = Flzl. One more check: the double
product of Fg = 8 and F7; = 13 is 208, the product of F5 = 5 and F3 = 21 is 105, and
105% + 208? = 54289 = F}. In general, we may state the following.
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Example. The numbers 2F, F, |, F,_1F, > and F,,; form a Pythagorean triple.
Solution. In our parametrization, it is natural to try u = F,,;; and v = F),. And indeed,
u? =0 = (=) +v) = (Fopr = B)(Fari + F) = Fyoi Faga,

while the identity
Fopr =u>+v =F,  +F;
was established in Section 2.3.1. This proves our claim. O

801. Given that the sides of a right triangle are coprime integers and the sum of the legs
is a perfect square, show that the sum of the cubes of the legs can be written as the
sum of two perfect squares.

802. Find all positive integers x, y, z satisfying the equation 3* + y? = 5%.
803. Show that for no positive integers x and y can 2* + 25 be a perfect square.

804. Solve the following equation in positive integers:

x2 4+ y2 =1997(x — y).

5.3.3 Pell’s Equation

Euler, after reading Wallis’ Opera Mathematica, mistakenly attributed the first serious
study of nontrivial solutions to the equation

x> —Dy*=1

to John Pell. However, there is no evidence that Pell, who taught at the University of
Amsterdam, had ever considered solving such an equation. It should more aptly be called
Fermat’s equation, since it was Fermat who first investigated it. Nevertheless, equations
of Pell type can be traced back to the Greeks. Theon of Smyrna used the ratio ;—“ to

approximate ~/2, where x and y are solutions to x> — 2y?> = 1. A more famous equation
is Archimedes’ problema bovinum (cattle problem) posed as a challenge to Apollonius,
which received a complete solution only in the twentieth century.

Indian mathematicians of the sixth century devised a method for finding solutions to
Pell’s equation. But the general solution was first explained by Lagrange in a series of
papers presented to the Berlin Academy between 1768 and 1770.

Lagrange’s theorem. If D is a positive integer that is not a perfect square, then the
equation
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x2—Dy’=1

has infinitely many solutions in positive integers and the general solution (x,, Yn)u>1 IS
computed from the relation

(> Yu) = (x1 + 11/ D)",

where (x1, y1) is the fundamental solution (the minimal solution different from the trivial
solution (1, 0)).

The fundamental solution can be obtained by trial and error. But there is an algorithm
to find it. The continued fraction expansion or +/ D is periodic:

\/B:a0+

a +

a + ————
a2+...

When 7 is even, the fundamental solution is given by the numerator and the denominator
of the fraction

ao+
a +
a+ -+

1

ap—1

’

while when n is odd, the fundamental solution is given by the numerator and the denom-
inator of the fraction

ap +

a +

a+ -+

a, +

ay +
a+ -+

1

an—1

This algorithm is not as simple as it seems. The smallest solution (x;, y;) can depend
exponentially on D. From the computational point of view, the challenge is to determine
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the number R = In(x; +y; «/B), called the regulator, with a certain accuracy. At the time
of the writing this book no algorithm has been found to solve the problem in polynomial
time on a classical computer. If a computer governed by the laws of quantum physics
could be built, then such an algorithm exists and was discovered by S. Hallgren.

We found the following application of Pell’s equation published by M.N. Deshpande
in the American Mathematical Monthly.

Example. Find infinitely many triples (a, b, c) of positive integers such that a, b, ¢ are
in arithmetic progression and such that ab + 1, bc + 1, and ca + 1 are perfect squares.

Solution. A slick solution is based on Pell’s equation
x2—=3y?=1.

Pell’s equation, of course, has infinitely many solutions. If (, s) is a solution, then the
triple (a,b,c) = (2s — r,2s,2s + r) is in arithmetic progression and satisfies (2s —
N2s+1=@F—5)2Q2s—r)Q2s+r)+1=s>and2sQs +r)+ 1 = (r + )% ]

More examples follow.
805. Find a solution to the Diophantine equation
x2 = m*+ l)y2 =1,

where m is a positive integer.

806. Prove that there exist infinitely many squares of the form
1427 427,

where x and y are positive integers.

807. Prove that there exist infinitely many integers n such that n, n + 1, n 4+ 2 are each
the sum of two perfect squares. (Example: 0 = 0> +0%, 1 =0+ 12,2 = 124+ 12)

808. Prove that for no integer n can n> — 2 be a power of 7 with exponent greater than 1.

809. Find the positive solutions to the Diophantine equation
(x + 1)3 —x3 = yz.
810. Find the positive integer solutions to the equation

(x—y)’=x"—y.
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811. Prove that the equation
Oy 7+ =1999
has infinitely many integer solutions.

812. Prove that for every pair of positive integers m and n, there exists a positive integer
p satisfying

W+ ~m =1 =+ p—1.

5.3.4 Other Diophantine Equations

In conclusion, try your hand at the following Diophantine equations. Any method is
allowed!

813. Find all integer solutions (x, y) to the equation
x% + 3xy +4006(x + y) 4+ 2003% = 0.
814. Prove that there do not exist positive integers x and y such that x>+ xy +y? = x2y?.

815. Prove that there are infinitely many quadruples x, y, z, w of positive integers
such that

x* 4yt 4 2t =2002".
816. Find all nonnegative integers x, y, z, w satisfying
44444 =
817. Prove that the equation
Y+ +3x+y+2)+5=0

has no solutions in rational numbers.
818. Find all positive integers x, y such that 7% — 3> = 4.
819. Find all positive integers x satisfying

32 =23 41

820. Find all quadruples (u, v, x, y) of positive integers, where u and v are consecutive
in some order, satisfying

ut —v’ =1.
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Combinatorics and Probability

We conclude the book with combinatorics. First, we train combinatorial skills in set
theory and geometry, with a glimpse at permutations. Then we turn to some specific
techniques: generating functions, counting arguments, the inclusion—exclusion principle.
A strong accent is placed on binomial coefficients.

This is followed by probability, which, in fact, should be treated separately. But the
level of this book restricts us to problems that use counting, classical schemes such as the
Bernoulli and Poisson schemes and Bayes’ theorem, recurrences, and some minor geo-
metric considerations. It is only later in the development of mathematics that probability
loses its combinatorial flavor and borrows the analytical tools of Lebesgue integration.

6.1 Combinatorial Arguments in Set Theory and Geometry

6.1.1 Set Theory and Combinatorics of Sets
A first example comes from the 1971 German Mathematical Olympiad.

Example. Given 2"~! subsets of a set with n elements with the property that any three
have nonempty intersection, prove that the intersection of all the sets is nonempty.

Solution. Let § = {A, Ay, ..., A1} be the family of subsets of the set A with n
elements. Because S has 2"~! elements, for any subset B of A, either B or its complement
B¢isin S. (They cannot both be in § by the other hypothesis.)

Soif A; and A; arein S, then either A; N A; isin S, or its complement is in S. If the
complement is in § then A; N A; N (A; N A;)¢ is empty, contradicting the fact that the
intersection of any three elements of S is nonempty. Hence A; N A; € S.

We will now show by induction on k that the intersection of any k sets in § is
nontrivial. We just proved the base case k = 2. Assume that the property is true for
any k — 1 elements of S, and let us prove it for A4;,, A;,, ..., A;, € S. By the induction
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hypothesis, A;, N---NA;,_, € S,andalso A;, € §,s0(4;, N---NA;_,)NA; isinS.
This completes the induction. For k = 2"~!, we obtain that the intersection of all sets in
S is nontrivial. O

We found the following problem in the Mathematics Magazine for High Schools
(Budapest).

Example. Let A be a nonempty set and let f : P(A) — P(A) be an increasing function
on the set of subsets of A, meaning that

f(X)yc f(y) itXcyY.
Prove that there exists T, a subset of A, such that f(T) =T.

Solution. Consider the family of sets
F={K ePA)| f(K) CK}.

Because A € F, the family F is not empty. Let T be the intersection of all sets in F.
We will show that f(T) =T.

If K € F,then f(T) C f(K) C K, and by taking the intersection over all K € F,
we obtain that f(T) C T. Hence T € F.

Because f is increasing it follows that f(f(T)) C f(T), and hence f(T) € F.
Since T is included in every element of 7, we have T C f(T). The double inclusion
proves that f(T) = T, as desired. O

Since it will be needed below, let us recall that a graph consists of a set of vertices
connected by edges. Unless otherwise specified, our graphs have finitely many edges,
there is at most one edge connecting two vertices, and the endpoints of each edge are
distinct.

821. Let A and B be two sets. Find all sets X with the property that

ANX=BNX=ANBSA,
AUBUX =AUB.

822. Prove that every graph has two vertices that are endpoints of the same number
of edges.

823. Prove that a list can be made of all the subsets of a finite set such that
(i) the empty set is the first set;
(i1) each subset occurs once;
(iii) each subset is obtained from the preceding by adding or deleting an element.
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824. Let M be a subset of {1, 2,3, ..., 15} such that the product of any three distinct
elements of M is not a square. Determine the maximum number of elements in M.

825. Let S be a nonempty set and F a family of m > 2 subsets of S. Show that among
the sets of the form AA B with A, B € F there are at least m that are distinct. (Here
AAB = (A\B) U (B\A).)

826. Consider the sequence of functions and sets

s A, A AL B A B AL 4,

Prove that if the sets A,, are nonempty and finite for all n, then there exists a sequence
of elements x,, € A,,n =1, 2,3, ..., with the property that f,(x,+1) = x, for all
n>1.

827. In a society of n people, any two persons who do not know each other have exactly
two common acquaintances, and any two persons who know each other don’t have
other common acquaintances. Prove that in this society every person has the same
number of acquaintances.

828. Let A be a finite set and let f : A — A be a function. Prove that there exist the
pairwise disjoint sets Ag, Ay, Az, Az suchthat A = AgUA; UAU A3, f(x) =x
forany x € Apand f(A;)) NA; =0,i = 1,2,3. What if the set A is infinite?

6.1.2 Permutations

A permutation of a set § is a bijection o : § — S. Composition induces a group
structure on the set of all permutations. We are concerned only with the finite case
S =1{1,2,...,n}. The standard notation for a permutation is

( 123---n )
o = )
ayaxaz--- a
witha; =o0(@),i =1,2,...,n.

A permutation is a cycle (iyiy...i,) if 0(iy) = iy, 0(in) = i3, ..., o(iy) = i1,
and o(j) = j for j # iy, i, ...,i,. Any permutation is a product of disjoint cycles.
A cycle of length two (i1i,) is called a transposition. Any permutation is a product of
transpositions. For a given permutation o, the parity of the number of transpositions
in this product is always the same; the signature of o, denoted by sign(o), is 1 if this
number is even and —1 if this number is odd. An inversion is a pair (i, j) withi < j and
o (i) > o(j).

Let us look at a problem from the 1979 Romanian Mathematical Olympiad, proposed
by I. Raga.
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Example. Consider the permutations

(1 234~-1920>
o] = ’

ap az asasg --- dpg Ao

1 2 3 4 ...1920
Oy = .

dig dyy a7 ajg -+ dp a

Prove that if o has 100 inversions, then o, has at most 100 inversions.

Solution. Let us see what an inversion (a;, a;) of o becomes in 0,. If i and j have the
same parity, then a; and a; are switched in o7, and so (a;, a;) is no longer an inversion.
If i is even and j is odd, then g; and a; are also switched in o3, so the inversion again
disappears.

We investigate the case i odd and j even more closely. If j > i + 1, then in o, the two
elements appear in the order (a;, a;), which is again not an inversion. However, if i and
J are consecutive, then the pair is not permuted in o5; the inversion is preserved. There
are at most 10 such pairs, because i can take only the values 1, 3, ..., 19. So at most 10
inversions are “transmitted’” from oy to o,. From the 100 inversions of o, at most 10
become inversions of o, while 90 are “lost”: they are no longer inversions in o3.

It follows that from the (220) = 190 pairs (a;, a;) in o, withi < j, at least 90 are not
inversions, which means that at most 190 — 90 = 100 are inversions. This completes the
proof.

Here is a different way of saying this. Define

0_(1 2 3 4---1920)
T ax ajg aig aiy --- ay a )

Then between them o, and o3 have exactly (220) inversions, since each pair is an inversion
in exactly one. Hence o3 has at most 90 inversions. Because o, differs from o3 by
swapping 10 pairs of adjacent outputs, these are the only pairs in which it can differ from
o3 in whether it has has an inversion. Hence o, has at most 100 inversions. O

And now an example with a geometric flavor.

Example. Let o be a permutation of the set {1, 2, ..., n}. Prove that there exist permu-
tations o and o, of the same set such that o = 010, and o} and o are both equal to the
identity permutation.

Solution. Decompose the permutation o into a product of disjoint cycles. It suffices to
prove the property for each of these cycles; therefore, we can assume from the beginning
that o itselfis acycle of length n. If n = 1 or 2, then we choose oy = ¢ and o, the identity
permutation. Otherwise, we think of o as the rotation of a regular n-gon A} A, ... A, by
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an angle of 27” around its center. Such a rotation can be written as the composition of
two reflections that map the n-gon to itself, namely the reflection with respect to the per-
pendicular bisector of A; A3 and the reflection with respect to the perpendicular bisector
of A, A3 (see Figure 37). These reflections define the permutations o and o5. O

Figure 37

The following problems are left to the reader.
829. For each permutation ay, as, . .., ajo of the integers 1, 2, 3, ..., 10, form the sum
lay — ax| + laz — as| + las — a| + la7 — ag| + |ag — aiol.
Find the average value of all such sums.

830. Find the number of permutations ay, as, as, a4, as, as of the numbers 1, 2, 3,4,5,6
that can be transformed into 1, 2, 3, 4, 5, 6 through exactly four transpositions (and

not fewer).
831. Let f(n) be the number of permutations ay, as, ..., a, of the integers 1,2, ...,n
suchthat (i) a; = 1 and (ii) |a; —a;41| <2,i = 1,2, ...,n—1. Determine whether

f(1996) is divisible by 3.

832. Consider the sequences of real numbers x; > x, > -+ > x,and y; > yp > --- >
v, and let o be a nontrivial permutation of the set {1, 2, ..., n}. Prove that
n n
D @i =) < Y (= ye)™.
i=1 i=1
833. Letay, ay, ..., a, be a permutation of the numbers 1, 2, ..., n. We call g; a large

integerif a; > a; foralli < j < n. Find the average number of large integers over
all permutations of the first n positive integers.

834. Given some positive real numbers a; < a; < - -+ < a, find all permutations o with
the property that

als (1) < A20g) < - < aplg@n)-
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835. Determine the number of permutations ay, as, . . ., a4 of the numbers 1, 2, ...,
2004 for which

lai — 1] = laa — 2| = -+ - = |agoos — 2004] > 0.

836. Let n be an odd integer greater than 1. Find the number of permutations o of the
set {1, 2,...,n} for which

n?—1

lo()—1+c2)=2|+ -+ |on) —n| = 7

6.1.3 Combinatorial Geometry

We grouped under this title problems that are solved by analyzing configurations of
geometric objects. We start with an easy problem that was proposed in 1999 for the
Junior Balkan Mathematical Olympiad.

Example. In a regular 2n-gon, n diagonals intersect at a point S, which is not a vertex.
Prove that S is the center of the 2n-gon.

Solution. Fix one of the n diagonals. The other n — 1 diagonals intersect it, so there are
n — 1 vertices on one side and n — 1 vertices on the other side of this diagonal. Hence
this was a main diagonal. Repeating the argument we conclude that all » diagonals are
main diagonals, so they meet at the center. O

We continue with an example suggested to us by G. Galperin.

Example. Show that from any finitely many (closed) hemispheres that cover a sphere
one can choose four that cover the sphere.

Solution. In what follows, by a half-line, half-plane, and half-space we will understand
a closed half-line, half-plane, respectively, half-space. The hemispheres are obtained
by intersecting the sphere with half-spaces passing through the origin. This observation
allows us to modify the statement so as to make an inductive argument on the dimension
possible.

Alternative problem. Show that from any finitely many half-spaces that cover the three-
dimensional space one can choose four that cover the space.

Let us analyze first the one- and two-dimensional cases. Among any finite set of
half-lines covering a certain line one can choose two that cover it. Indeed, identifying
the line with the real axis, the first of them can be chosen to be of the form [a, c0), with
a smallest among the half-lines of this type in our set, and the other to be of the form
(—o00, b], with b largest among the half-lines of this type in our set.
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The two-dimensional analogue of this property states that from finitely many half-
planes covering the two-dimensional plane one can choose three that cover the plane.
We prove this by induction on the number #n of half-planes. For n = 3 there is nothing
to prove. Assume that the property is true for n half-planes and let us prove it for n + 1.
Choose i to be one of these half-planes.

If the boundary 04, of A, is contained in some other half-plane %, then either 4,
and &, cover the plane, or /i, contains /;. In the latter case we dispose of /; and use the
induction hypothesis.

If the boundary 04, is not contained in any half-plane, then any other half-plane
intersects it along a half-line. From the one-dimensional situation we know that two of
these half-lines cover it completely. Let 4, and %3 be the half-planes corresponding to
these two half-lines. There are two possibilities, described in Figure 38. In the first case
h; is contained in the union of 4, and /3, so it can be removed, and then we can use the
induction hypothesis. In the second case, /1, h,, and k3 cover the plane. This completes
the two-dimensional case.

Figure 38

The proof can be extended to three dimensions. As before, we use induction on the
number n > 4 of half-spaces. For the base case n = 4 there is nothing to prove. Now let
us assume that the property is true for n half-spaces, and let us prove it for n + 1. Let H;
be one of the half-spaces. If the boundary of H;, d H;, is included in another half-space
H,, then either H, and H, cover three-dimensional space, or H; is included in H, and
then we can use the induction hypothesis.

In the other case we use the two-dimensional version of the result to find three half-
spaces H,, Hz, and H, that determine half-planes on 0 H; that cover d H;. To simplify
the discussion let us assume that the four boundary planes 0H;, i = 1,2, 3,4, are in
general position. Then they determine a tetrahedron. If H; contains this tetrahedron, then
H,, H,, H;, H4 cover three-dimensional space. If H; does not contain this tetrahedron,
then it is contained in the union of H,, Hiz, and H,, so it can be removed and we can
apply the induction hypothesis to complete the argument. O

Our third example was published by V.I. Arnol’d in the Russian journal Quantum.
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Example. Prove that any n points in the plane can be covered by finitely many disks
with the sum of the diameters less than n and the distance between any two disks greater
than 1.

Solution. First, note that if two disks of diameters d; and d, intersect, then they can be
included in a disk of diameter d; + d5.

Let us place n disks centered at our points, of some radius @ > 1 the size of which
will be specified later. Whenever two disks intersect, we replace them with a disk that
covers them, of diameter equal to the sum of their diameters. We continue this procedure
until we have only disjoint disks.

We thus obtained a family of k& < n disks with the sum of diameters equal to na and
such that they cover the disks of diameter a centered at the points. Now let us shrink the
diameters of the disks by b, with 1 < b < a. Then the new disks cover our points, the
sum of their diameters is na — kb < na — b, and the distances between disks are at least
b. Choosing a and b such that 1 < b < a and na — b < n would then lead to a family
of circles with the sum of diameters less than n and at distance greater than 1 from each
other. For example, we canleta = 1 + % andb =1+ ﬁ O

837. In how many regions do n great circles, any three nonintersecting, divide the surface
of a sphere?

838. In how many regions do n spheres divide the three-dimensional space if any two
intersect along a circle, no three intersect along a circle, and no four intersect at one
point?

839. Given n > 4 points in the plane such that no three are collinear, prove that there
are at least (";3) convex quadrilaterals whose vertices are four of the given points.

840. An equilateral triangle of side length 7 is drawn with sides along a triangular grid
of side length 1. What is the maximum number of grid segments on or inside the
triangle that can be marked so that no three marked segments form a triangle?

841. 1981 points lie inside a cube of side length 9. Prove that there are two points within
a distance less than 1.

842. What is the largest number of internal right angles that an n-gon (convex or not,
with non-self-intersecting boundary) can have?

843. A circle of radius 1 rolls without slipping on the outside of a circle of radius /2.
The contact point of the circles in the initial position is colored. Any time a point
of one circle touches a colored point of the other, it becomes itself colored. How
many colored points will the moving circle have after 100 revolutions?

844. Several chords are constructed in a circle of radius 1. Prove that if every diameter
intersects at most k chords, then the sum of the lengths of the chords is less than k7.
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845. Inside a square of side 38 lie 100 convex polygons, each with an area at most 7
and the perimeter at most 2;r. Prove that there exists a circle of radius 1 inside the
square that does not intersect any of the polygons.

846. Given a set M of n > 3 points in the plane such that any three points in M can be
covered by a disk of radius 1, prove that the entire set M can be covered by a disk
of radius 1.

847. Prove that if a convex polyhedron has the property that every vertex belongs to an
even number of edges, then any section determined by a plane that does not pass
through a vertex is a polygon with an even number of sides.

6.1.4 Euler’s Formula for Planar Graphs

This section is about a graph-theoretical result with geometric flavor, the famous Euler’s
formula. Recall that a graph is a collection of points, called vertices, some of which are
joined by arcs, called edges. A planar graph is a graph embedded in the plane in such a
way that edges do not cross. The connected components of the complement of a planar
graph are called faces. For example, the graph in Figure 39 has four faces (this includes
the infinite face). Unless otherwise specified, all our graphs are assumed to be connected.

Figure 39

Euler’s theorem. Given a connected planar graph, denote by V the number of vertices,
by E the number of edges, and by F the number of faces (including the infinite face).
Then

V—-E+F=2.

Proof. The proof is an easy induction on F. If F = 1 the graph is a tree, and the number
of vertices exceeds that of edges by 1. The formula is thus verified in this case.

Let us now consider some F' > 1 and assume that the formula holds for all graphs
with at most F — 1 faces. Since there are at least two faces, the graph is not a tree.
Therefore, it must contain cycles. Remove one edge from a cycle. The new graph is still
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connected. The number of edges has decreased by 1; that of faces has also decreased by
1. By the induction hypothesis,

V—(E-1D+F—-1)=2;
hence Euler’s formula holds for the original graph, too. This completes the proof. O

This method of proof is called reduction of complexity, and is widely applied in a
combinatorial branch of geometry called low-dimensional topology.

As a corollary, if V, E, and F are the numbers of vertices, edges, and faces of a
convex polyhedron, then V — E + F = 2. As you can see, it was much easier to prove
this formula for general planar graphs. The number 2 in Euler’s formula is called the
Euler (or Euler—Poincar€) characteristic of the sphere, since any convex polyhedron has
the shape of a sphere. If a polyhedron has the shape of a sphere with g handles (a so-called
surface of genus g), this number should be replaced by 2 — 2g. The faces of such a graph
should be planar polygons (no holes or handles). The Euler characteristic is an example
of a “topological invariant”; it detects the number of handles of a polyhedral surface.

As an application of Euler’s formula, let us determine the Platonic solids. Recall that
a Platonic solid (i.e., a regular polyhedron) is a polyhedron whose faces are congruent
regular polygons and such that each vertex belongs to the same number of edges.

Example. Find all Platonic solids.

Solution. Let m be the number of edges that meet at a vertex and let n be the number
of edges of a face. With the usual notation, when counting vertices by edges, we obtain
2E = mV. When counting faces by edges, we obtain 2E = nF. Euler’s formula
becomes

2 2
—E—-E+-E=2,
m n

po (L] 1\
“\m o on 2)

The right-hand side must be a positive integer. In particular, % + % >
possibilities are the following:

or

%. The only

1. m = 3,n = 3,in which case E = 6, V = 4, F = 4; this is the regular tetrahedron.
2. m=3,n=4,inwhichcase E = 12, V = 8, F = 6; this is the cube.

3.m = 3,n = 5, in which case £ = 30, V = 20, F = 12; this is the regular
dodecahedron.
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4. m =4,n = 3,in which case £ = 12, V = 6, F = 8§; this is the regular octahedron.

5.m = 5,n = 3, in which case £ = 30, V = 12, F = 20; this is the regular

icosahedron.
We have proved the well-known fact that there are five Platonic solids. O
848. Inthe plane are given n > 2 points joined by segments, such that the interiors of any

849.

850.

851.

852.

853.

two segments are disjoint. Find the maximum possible number of such segments
as a function of n.

Three conflicting neighbors have three common wells. Can one draw nine paths
connecting each of the neighbors to each of the wells such that no two paths inter-
sect?

Consider a polyhedron with at least five faces such that exactly three edges emerge
from each vertex. Two players play the following game: the players sign their
names alternately on precisely one face that has not been previously signed. The
winner is the player who succeeds in signing the name on three faces that share a
common vertex. Assuming optimal play, prove that the player who starts the game
always wins.

Denote by V the number of vertices of a convex polyhedron, and by ¥ the sum of
the (planar) angles of its faces. Prove that 27V — ¥ = 4.

(a) Given aconnected planar graph whose faces are polygons with at least three sides
(no loops or bigons), prove that there is a vertex that belongs to at most five edges.

(b) Prove that any map in the plane can be colored by five colors such that adjacent
regions have different colors (the regions are assumed to be polygons, two regions
are adjacent if they share at least one side).

Consider a convex polyhedron whose faces are triangles and whose edges are ori-
ented. A singularity is a face whose edges form a cycle, a vertex that belongs only
to incoming edges, or a vertex that belongs only to outgoing edges. Show that the
polyhedron has at least two singularities.

6.1.5 Ramsey Theory

Ramsey theory is a difficult branch of combinatorics, which gathers results that show
that when a sufficiently large set is partitioned into a fixed number of subsets, one of the
subsets has a certain property. Finding sharp bounds on how large the set should be is a
truly challenging question, unanswered in most cases.

The origins of this field lie in Ramsey’s theorem, which states that for every pair of

positive integers (p, q) there is a smallest integer R(p, g), nowadays called the Ramsey
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number, such that whenever the edges of a complete graph are colored red and blue,
there is either a complete subgraph with p vertices whose edges are all red, or a complete
subgraph with g vertices whose edges are all blue. (Recall that a complete graph is an
unoriented graph in which any two vertices are connected by an edge.)

Here is a simple problem in Ramsey theory.

Example. Show that if the points of the plane are colored black or white, then there exists
an equilateral triangle whose vertices are colored by the same color.

Solution. Suppose that there exists a configuration in which no monochromatic equilat-
eral triangle is formed.

Figure 40

Start with two points of the same color, say black. Without loss of generality, we may
assume that they are (1, 0) and (—1, 0). Then (0, «/3) and (0, —«/3) must both be white.
Consequently, (2, 0) is black, and so (1, ﬁ) is white. Then on the one hand, (1, 2\/5)
cannot be black, and on the other hand it cannot be white, a contradiction. Hence the
conclusion. This argument can be followed easily on Figure 40. O

We now present a problem from the 2000 Belarus Mathematical Olympiad, which we
particularly liked because the solution contains a nice interplay between combinatorics
and number theory.

Example. Let M = {1,2,...,40}. Find the smallest positive integer n for which it
is possible to partition M into n disjoint subsets such that whenever a, b, and ¢ (not
necessarily distinct) are in the same subset, a # b + c.

Solution. We will show that n = 4. Assume first that it is possible to partition M into
three such sets X, Y, and Z. First trick: order the sets in decreasing order of their
cardinalities as | X| > |Y| > |Z]. Let x1, x2, ..., x|x| be the elements of X in increasing
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order. These numbers, together with the differences x; — x1,i = 2,3, ..., |X|, must all
be distinct elements of M. Altogether, there are 2| X| — 1 such numbers, implying that
2|X] —1<40,o0r |X| <20. Also, 3| X| > |X|+ Y|+ |Z]| =40, s0 | X| > 14.

There are | X| - Y| > | X]| X %(40 — | X]) pairs in X x Y. The sum of the numbers in
each pair is at least 2 and at most 80, a total of 79 possible values. Because 14 < |X]| < 20
and the function f(¢) = %t(40 — t) is concave on the interval [14, 20], we have that

14-26 20-20

| X1(40 — | X1) :
—————~—>min{y——, ——; =182 >2-79.

2 2 72
We can use the pigeonhole principle to find three distinct pairs (x1, ¥1), (x2, ¥2), (X3, ¥3) €
X x Y withx; + y; =x + y2 = x3 + ys.

If any of the x;’s were equal, then the corresponding y;’s would be equal, which is
impossible because the pairs (x;, y;) are distinct. We may thus assume, without loss of
generality, that x; < xo < x3. For1 < j < k < 3, the value x; — x; is in M but cannot be
in X because otherwise x; + (xx — x;) = x;. Similarly, y; —y ¢ Y for1 < j <k < 3.
Therefore, the three common differences x; — x; = y; — y2, x3 — X2 = y» — y3, and
x3—x; =y —yjarein M\(X UY) = Z. However, setting a = x, — x1, b = x3 — X2,
and ¢ = x3 — x;, we have a + b = ¢ with a, b, ¢ € Z, a contradiction.

Therefore, it is impossible to partition M into three sets with the desired property.
Let us show that this can be done with four sets. The question is how to organize the 40
numbers.

We write the numbers in base 3 as ... a, ... azaya; with only finitely many digits not
equal to 0. The sets Ay, A;, As, ... are constructed inductively as follows. A consists of
all numbers for which a; = 1. For k > 1 the set A; consists of all numbers with a; = 0
that were not already placed in other sets, together with the numbers that have a; = 1
and a; = O fori < k. An alternative description is that A; consists of those numbers that
are congruent to some integer in the interval (%3" ~1, 3*=11 modulo 3*. For our problem,

A ={1,11,21,101, 111, 121, 201, 211, 221, 1001, 1011, 1021, 1101, 1111},
Ay, = (2,10, 102, 110, 202, 210, 1002, 1010, 1102, 1110},

Az = {12, 20, 22, 100, 1012, 1020, 1022, 1100},

Ay = {112,120, 122, 200, 212, 220, 222, 1000}.

Using the first description of these sets, we see that they exhaust all positive integers.
Using the second description we see that (A; + Ax) N A = B,k > 1. Hence Ay, A, As,
A4 provide the desired example, showing that the answer to the problem is n = 4. O

Remark. In general, for positive integers n and k and a partition of {1, 2, ..., k} into n
sets, a triple (a, b, ¢) such that a, b, and ¢ are in the same set and a + b = c is called a
Schur triple. Schur’s theorem proves that for each n there exists a minimal number S(7)
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such that for any partition of {1, 2, ..., S(n)} into n sets one of the sets will contain a
Schur triple. No general formula for S(n) exists although upper and lower bounds have
been found. Our problem proves that $(4) > 40. In fact, S(4) = 45.

854.

855.

856.

857.

858.

What is the largest number of vertices that a complete graph can have so that its
edges can be colored by two colors in such a way that no monochromatic triangle
is formed?

For the Ramsey numbers defined above, prove that R(p,q) < R(p — 1,¢q9) +
R(p, g — 1). Conclude that for p, g > 2,

p+q—2)

R(p,q)f(
p—1

The edges of a complete graph with |k!e] + 1 edges are colored by k colors. Prove
that there is a triangle whose edges are colored by the same color.

An international society has members from six different countries. The list of
members contains 1978 names, numbered 1, 2, ..., 1978. Prove that there exists at
least one member whose number is the sum of the numbers of two members from
his/her own country, or twice as large as the number of one member from his/her
country.

Let n be a positive integer satisfying the following property: If n dominoes are
placed on a 6 x 6 chessboard with each domino covering exactly two unit squares,
then one can always place one more domino on the board without moving any other
dominoes. Determine the maximum value of 7.

6.2 Binomial Coefficients and Counting Methods

6.2.1 Combinatorial Identities

The binomial coefficient (Z) counts the number of ways one can choose k objects from
given n. Binomial coefficients show up in Newton’s binomial expansion

n n n n n—1 n n
(x+1 =<O)x +<1>x +-'-+(n_1>x+<n).

Explicitly,

if0 <k <n.

(n)_ n! _nn—=1---(n—k+1)
k] klin—k)! k!

The recurrence relation
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()-()+G20)

allows the binomial coefficients to be arranged in Pascal’s triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Here every entry is obtained by summing the two entries just above it.
This section presents applications of the basic properties of binomial coefficients.
Here is a problem from the 2001 Hungarian Mathematical Olympiad.

Example. Let m and n be integers such that 1 < m < n. Prove that m divides the number
m—1
n
n (—1)k( )

Solution. We would like to express the sum in closed form. To this end, we apply the
recurrence formula for binomial coefficients and obtain

B ()=S0 ()

m—1 n—1 m—2 n—1
—n (—1)’<( L >—nZ(—1)k< L )
k=0 k=0
-1
:n(—l)’"‘1<" 1) =m(—1)’”‘1<">.
m — m
The answer is clearly divisible by m. O

The methods used in proving combinatorial identities can be applied to problems
outside the field of combinatorics. As an example, let us take a fresh look at a property
that we encountered elsewhere in the solution to a problem about polynomials.

Example. If k and m are positive integers, prove that the polynomial
& D Y B G A R
is divisible by
G =DE" T =D (x = 1)

in the ring of polynomials with integer coefficients.
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Solution. Let us analyze the quotient

(xk+m _ 1)(xk+m71 _ 1) . (xk+1 _ 1)
@ =Dt =1 (x=1)

Pk,m (x) =

’

which conjecturally is a polynomial with integer coefficients. The main observation
is that

(xk-‘rm _ 1)(xk+m—l —1)--- (xk-i-l -1
@ =D =D (x— 1)

hrnl pk,m(x) = 111’1}

xR M1 x—1 x—1
= lim .

=1 x—1 x—1 xm —1 x—1
_k+m)k+m—1)---(k+1) (k+m
B m-(m—1)---1 \m )

With this in mind, we treat py , (x) as some kind of binomial coefficient. Recall that one

way of showing that (;’1 ) = WLM), is an integer number is by means of Pascal’s triangle.

We will construct a Pascal’s triangle for the polynomials py ,, (x). The recurrence relation

(k+m+l> <k+m> <k+m>
= +

m m m—1
has the polynomial analogue

(xk+m+1—l)~-(xk+2—l)_(xk+m—1)~-(xk+l—l)
" =1 =1 @ =1D-x=1)
1 (xk+m —1--- ()Ck+2 -1
R T I S POy Py

_l’_

Now the conclusion follows by induction on m + k, with the base case the obvious
xk+1—1:xk+xk71+.”+1. O

x—1

In quantum physics the variable x is replaced by ¢ = ¢'”, where % is Planck’s con-
stant, and the polynomials p,_,, ,»(q) are denoted by (::1 )q and called quantum binomial
coefficients (or Gauss polynomials). They arise in the context of the Heisenberg uncer-
tainty principle. Specifically, if P and Q are the linear transformations that describe,
respectively, the time evolution of the momentum and the position of a particle, then

PQ = qQP. The binomial formula for them reads

n

Q+Pr=Y (Z) 0" Pt
q

k=0

The recurrence relation we obtained a moment ago,
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()= (), (),

gives rise to what is called the g-Pascal triangle.

2y 2 2
= — f (2sin9)“"d6.
k T Jo

860. Consider the triangular n X n matrix

859. Prove that

111---1
011---1
A=]1001---1
000---1
Compute the matrix AF k> 1.

861. Let (F,), be the Fibonacci sequence, F; = F» = 1, F,| = F, + F,_,. Prove that
for any positive integer n,

n n n
F +F +---+F, = F,.
1 2 n

862. For an arithmetic sequence ay, a3, ...,a,,...,letS, =a;+a+---+a,,n > 1.
Prove that

n n
Z " a = 2 S
k k+1 — n +1 n+1-

k=0

863. Show that for any positive integer n, the number

0+ 1 41 2+ 1
S,= (" T o (P e (M)
0 2 2

is the sum of two consecutive perfect squares.
864. For a positive integer n define the integers a,, b,, and ¢, by
an + b2+ cyVh = (1 4+ V2 + V4"
Prove that

n a, if n = 0 (mod 3),

n n
2753 ( )ak =1{b,v2 ifn=2(mod 3),
a4 ifn =1 (mod 3).
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865. Prove the analogue of Newton’s binomial formula

n

oHyl=) (Z) LTyl

k=0
where [x], =x(x—1)---(x —n+1).

866. Prove that the quantum binomial coefficients ( ) previously defined satisfy

Z( l)k k(k 1)() —o.

q

6.2.2 Generating Functions

The terms of a sequence (a,),>0 can be combined into a function
G(x) =ap+aix + ax*+ -+ +ax" +---,

called the generating function of the sequence. Sometimes this function can be written
in closed form and carries useful information about the sequence. For example, if the
sequence satisfies a second-order linear recurrence, say a,+; + ua, + va,—; = 0, then
the generating function satisfies the functional equation

G(x) —ap — arx + ux(G(x) — ap) + vx*G(x) = 0.
This equation can be solved easily, giving

aog + (uag + a)x

G(x) =
) 1+ ux + vx?

If r; and r, are the roots of the characteristic equation A> 4+ uX + v = 0, then by using
the partial fraction decomposition, we obtain

Gy = JotWaotagy o P = > (ar} + Bri)a".
n=0

(1 —rx)(1 —rx) 1—rx 1—rx

And we recover the general-term formula a, = ar{ + Bry,n > 0, where o and 8 depend
on the initial condition.

It is useful to notice the analogy with the method of the Laplace transform used for
solving linear ordinary differential equations. Recall that the Laplace transform of a
function y(r) is defined as

Ly(s) = /Ooy(t)e”dt.
0
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The Laplace transform applied to the differential equation
y' +uy +vy=0
produces the algebraic equation
s2L(y) — y'(0) = sy(0) + u(sL(y) — y(0)) — vL(y) =0,

with the solution

_ $y(0) +uy(©) + y'(0)

L
) s24+us+v

Again the partial fraction decomposition comes in handy, since we know that the inverse
Laplace transforms of ﬁ and ﬁ are ¢"'* and 2. The similarity of these two methods
is not accidental, for recursive sequences are discrete approximations of differential
equations.

Let us return to problems and look at the classical example of the Catalan numbers.

Example. Prove that the number of ways one can insert parentheses into a product of

n + 1 factors is the Catalan number C,, = nl?(z:)

Solution. Alternatively, the Catalan number C, is the number of ways the terms of the
product can be grouped for performing the multiplication. This is a better point of view,
because the location of the final multiplication splits the product in two, giving rise to
the recurrence relation

Ch=CCro1 +CiCra+---+C1Cp, n > L.

Indeed, for every k =0, 1,...,n — 1, the first kK + 1 terms can be grouped in C; ways,
while the last n — k terms can be grouped in C,_;_; ways. You can recognize that the
expression on the right shows up when the generating function is squared. We deduce
that the generating function satisfies the equation

G(x) =xG(x)*+1.

This is a quadratic equation, with two solutions. And because lim,_,o G(x) = ap, we
know precisely which solution to choose, namely

1—+1—-4x

G = 2x

Expanding the square root with Newton’s binomial formula, we have

0 ® (Ll 1. =
/1 — 4y = (1 —4)6)1/2 — Z<1/2>(_4x)n — Z(z)(z 1) (2 n—+ 1)(—4)()"

n n!
n=0 n=0
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L = (n 3)(2n 5ol o @n=2
=1-2 @07 =1 zg(n—l)!(n—l)!n

n=1
2n —
=1-2
> (7, )
Substituting in the expression for the generating function and shifting the index, we obtain
o
1 2n
Gx) = n
) ; n+1 ( n )x

which gives the formula for the Catalan number C, = — . i

The binomial coefficients (’;) are generated by a very simple function, G(x) =
(x + 1)", and variations of this fact can be exploited to obtain combinatorial identi-
ties. This is the case with a problem published in the American Mathematical Monthly
by N. Gonciulea.

Example. Prove that

> () () = ()

Solution. Observe that (U.jz J) is the constant term in (1 + x)(x ' + x)/. It follows that

the sum is equal to the constant term in
" n\ ., 1 .
DU )2+ e + 1)
=0 M

_(l—i—x)Z( )(x_l—l—x)JZ" IT=04+x0Q+x"+x)"

J

1
= _(1 +.x)(2.x + 1 +X2)n — _(1 +x)2n+1‘
x" e

And the constant term in this last expression is (2"+1). O

867. Find the general-term formula for the sequence (y,),>0 with yo = 1 and y, =
ay,_1 + b" for n > 1, where a and b are two fixed distinct real numbers.

- n - 1 n
k and —_— .
Se(p) m ()

868. Compute the sums



869.

870.

871.

872.

873.

874.

875.

876.
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(a) Prove the identity

("= ()"

(b) Prove that the quantum binomial coefficients defined in the previous section
satisfy the identity

m-+n a m n
— (m—j)(k—j)
= (M) (1)
( k )q JX_; il \k—=1ij/,
Compute the sum
n n n lm n
(6)= () ()= (a)

Write in short form the sum
n N n+1 . n+2 . n n—+m
k k k k ’
P n . n—1 . n—2 4
" \o 1 2 '

Prove that the Fibonacci numbers satisfy

Denote by P (n) the number of partitions of the positive integer n, i.e., the number of
ways of writing n as a sum of positive integers. Prove that the generating function
of P(n),n > 1, is given by

o0 . 1
; P = o a =i -

with the convention P(0) = 1.

Prove that the number of ways of writing n as a sum of distinct positive integers is
equal to the number of ways of writing n as a sum of odd positive integers.

Let p be an odd prime number. Find the number of subsets of {1, 2, ..., p} with
the sum of elements divisible by p.

For a positive integer n, denote by S(n) the number of choices of the signs “4-" or
“—”suchthat+1+2=+--.-+n = 0. Prove that

n—1

2
S(n) = / costcos2t---cosntdt.
0
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877. The distinct positive integers ay, ay, .. ., dy, b1, by, ..., by, with n > 2, have the
property that the (’;) sums a; + a; are the same as the (g) sums b; + b; (in some
order). Prove that n is a power of 2.

878. Let Ay, Ay,..., A,,... and By, B,, ..., B,, ... be sequences of sets defined by
Al = @, Bl = {0}9 An—H = {x +1 | X € Bn}e Bn—H = (An U Bn)\(An N Bn)
Determine all positive integers n for which B, = {0}.

6.2.3 Counting Strategies

We illustrate how some identities can be proved by counting the number of elements of a
set in two different ways. For example, we give a counting argument to the well-known
reciprocity law, which we have already encountered in Section 5.1.3, of the greatest
integer function.

Example. Given p and g coprime positive integers, prove that

LT e L e 57

Solution. Let us look at the points of integer coordinates that lie inside the rectangle with
vertices 0 (0, 0), A(gq,0), B(q, p), C(0, p) (see Figure 41). There are (p — 1)(g — 1)
such points. None of them lies on the diagonal O B because p and ¢ are coprime. Half
of them lie above the diagonal and half below.

C©,p B(q.p)

0 Alg.0)
Figure 41

Now let us count by a different method the points underneath the line OB. The
equation of this line is y = Zx. Foreach 0 < k < ¢ on the vertical segment x = k there
are |kp/q | points below O B. Summing up, we obtain

LBJ+L2£J+...+L(Q_I)pJ= (p—l)(q—l).
q q q 2

The expression on the right remains unchanged if we switch p and g, which proves the
identity. O
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Next, a combinatorial identity.

n—1
2

) (2

Solution. The solution is a Fubini-type argument. Consider the set P of pairs (A, B),
where A is a subset of {1, 2, ..., n} with an odd number of elements a; < a, < --- <
ay+1 and B is a subset of {as, ay, ..., axy—_2, ay} with m elements by < b, < -+ < by,.

For a given k there are (Zk”+ 1) such subsets A, and for each A there are (’];) subsets B,
so the left-hand side of the identity is the number of elements of P counted by choosing
A first.

Let us count the same number choosing B first. Note that if (A, B) € P, then B
contains no pairs of consecutive numbers. More precisely, B = {b, b, ...,b,} C
{2,3,...,n— 1} with b; |, — b; > 2.

Fix By, a set with this property. We want to count the number of pairs (A, By) in X.
Choose ¢y, ¢y, ..., ¢, such that

Example. Let m and n be two integers, m < . Prove the identity

n—
2

k=m

1<co<b,by<cir<by,....,bj <ci<biyi,...,by, <c, <n.

Then for any subset E of {1, 2, ...,n}\{co, b1, c1, b2, ..., by, c;y} there is a unique A
such that (A, By) € Pand E C A.

Indeed, if (A, By) € P and E C A we have to decide which ¢;’s are in A. Since
the set D; = {x € A | b; < x < b;y;} must contain an odd number of elements
foreach 0 < i < m+ 1 (with by = 0, b1 = n + 1), and the set D; is either
{(xeE|b <x <b}or{x e E|b <x <b;iy1}U{c;}, the parity condition on the
cardinality of D; decides whether c; belongs to A. It is now clear that the number of pairs

(A, Bp) in P is the same as the number of subsets of {1, 2, ..., n}\{co, b1, ..., by, Cn},
and the latter is 22"~

How many subsets B with m elements of {2, 3,...,n — 1} do not contain consec-
utive numbers? If B = {b; < by < --- < b,}issuch aset,let B = {b; — 1,by —
2,...,b, —m}. Itis easy to see that B’ is an (arbitrary) subset of {1,2,...,n —m — 1}
with m elements, and for each such subset B’ = {b] < b, < --- < b, }, by letting

b; = b, +1i, we obtain a set B as above. Hence the number of such B’s is ("_Z_l), and by
choosing B first we count the number of elements in P as 2"~2"~! ("‘Z‘l). The identity
is proved. O

Using similar ideas solve the following problems.

879. Find in closed form

12"} +2.3(" D n("
. (2)+ . (3)+---+(n— )-n(n).
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880. Prove the combinatorial identity

881. Prove the identity

> () =2 ()0

882. Forintegers 0 < k <n, 1 <m < n, prove the identity

200206

883. Show that for any positive integers p and ¢,

1 (p+k "Ll (q+k
Zzp+k< k )+X(;2q+k< k ):2‘

q
k=0 k=

884. Letc, = (\_l’ll;z J). Prove that

n

n
E (k>ckcn—k = CuCp+1-

k=0
885. Let p and ¢ be odd, coprime positive integers. Set p’ = 2L and g

2
the identity

R (N v

Now we turn to more diverse counting arguments.

Example. What is the number of ways of writing the positive integer n as an ordered sum
of m positive integers?

Solution. This is a way of saying that we have to count the number of m-tuples of
positive integers (xy, x3, . . ., X,,) satisfying the equation x; + x, + - - - 4+ x,, = n. These
m-tuples are in one-to-one correspondence with the strictly increasing sequences 0 <
Y1 < yp < --- <y, = n of positive integers, with the correspondence given by y; = x,
Yo =X1+X2,..., Ym = X1+ X2+ -+ Xx,. The numbers yi, yo, ..., ¥n—1 can be chosen

in (”_1) ways from 1, 2, ..., n — 1. Hence the answer to the question is (”_1).
m—1 m—1
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This formula can also be proved using induction on m for arbitrary n. The casem = 1
is obvious. Assume that the formula is valid for partitions of any positive integer into
k < m positive integers, and let us prove it for partitions into m + 1 positive integers.
The equation x; 4+ x5 + - - - + X, + X, 11 = 1 can be written as

Xit+x2+ -+ xp=n0—Xp41-

AS x4 ranges among 1,2, ..., n — m, we are supposed to count the total number of
solutions of the equations x; +x, +---+x,, = r, withr = m,m+1,...,n — 1. By
the induction hypothesis, this number is

> (1)

r=m

We have seen in Section 6.2.2 that this number is equal to (:;11) This equality can also
be proved using Pascal’s triangle as follows:

m—1 n m T n—2
m—1 m—1 m—1
m m n—2 m+1 m+1 n—2
= + +-+ = + +-+
m m—1 m—1 m m—1 m—1
m+2 n—2 n—2 n—2 n—1
= 4+t e + = .
m m—1 m m—1 m
This proves that the formula is true for m + 1, and the induction is complete. m|

Example. There are n students at a university, n an odd number. Some students join
together to form several clubs (a student may belong to different clubs). Some clubs join
together to form several societies (a club may belong to different societies). There are k
societies. Suppose that the following hold:

(i) each pair of students is in exactly one club,
(i1) for each student and each society, the student is in exactly one club of the society,
(ii1) each club has an odd number of students; in addition, a club with 2m + 1 students
(m > 0) is in exactly m societies.

Find all possible values of .

Solution. This is a short-listed problem from the 45th International Mathematical Olym-
piad, 2004, proposed by Puerto Rico, which was given a year later at an Indian team
selection test. Here is an ingenious approach found by one of the Indian students, R. Shah.

Fix a student x and list the clubs to which the student belongs: Cy, C»,...,C,. If
C; has 2m; + 1 students, then it belongs to m; societies. Condition (ii) implies that for
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i # j the societies to which C; belongs are all different from the societies to which C;
belongs. Moreover, condition (ii) guarantees that any society will contain one of the
clubs C;. Therefore, m; +m, + --- +m, = k.

From condition (i) we see that any two clubs C; and C; have in common exactly the
student x. Therefore, in Cy, C», ..., C, there are altogether 2(m; +my +---+m,) + 1
students. But these are all the students, because by condition (i) any other student is in
some club with x. We obtain

2my +my+---+m)+1=2k+1=n.

Hence k = % is the only possibility. And this situation can be achieved when all

students belong to one club, which then belongs to % societies. O
Here is a third example.

Example. On an 8 x 8 chessboard whose squares are colored black and white in an
arbitrary way we are allowed to simultaneously switch the colors of all squares in any
3 x 3 and 4 x 4 region. Can we transform any coloring of the board into one where all
the squares are black?

Solution. We claim that the answer is no. Itis a matter of counting into how many regions
can an all-black board be transformed by applying the two moves several times. The total
number of 3 x 3 regions is (8 — 2) x (8§ — 2) = 36, which is the same as the number of
moves in which the colors in a 3 x 3 region are switched. As for the 4 x 4 regions, there
are (8 — 3) x (8 —3) = 25 of them. Hence the total number of colorings that can be
obtained from an all-black coloring by applying the specified operations does not exceed

236 % 225 — 261‘

This number is less than the total number of colorings, which is 2. Hence there are
colorings that cannot be achieved. Since the operations are reversible, this actually proves
our claim. O

And now the problems.

886. Two hundred students took part in a mathematics contest. They had 6 problems to
solve. Itis known that each problem was correctly solved by atleast 120 participants.
Prove that there exist two participants such that every problem was solved by at
least one of them.

887. Prove that the number of nonnegative integer solutions to the equation

X1+x+--+x,=n

m+n—1)‘

is equal to ( el
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A number n of tennis players take part in a tournament in which each of them plays
exactly one game with each of the others. If x; and y; denote the number of victories,
respectively, losses, of the ith player,i =1, 2, ..., n, show that

XA+ xi =y yi

Let A be a finite set and f and g two functions on A. Let m be the number of
pairs (x,y) € A x A for which f(x) = g(y), n the number of pairs for which
f(x) = f(y), and k the number of pairs for which g(x) = g(y). Prove that

2m <n +k.

A set S containing four positive integers is called connected if for every x € S at
least one of the numbers x — 1 and x + 1 belongs to S. Let C, be the number of
connected subsets of the set {1, 2, ..., n}.

(a) Evaluate C7.

(b) Find a general formula for C,,.

Prove that the set of numbers {1, 2, ..., 2005} can be colored with two colors such
that any of its 18-term arithmetic sequences contains both colors.

For A = {1,2,...,100} let A, A,, ..., A,, be subsets of A with four elements
with the property that any two have at most two elements in common. Prove that if
m > 40425 then among these subsets there exist 49 whose union is equal to A but
with the union of any 48 of them not equal to A.

Let S be a finite set of points in the plane. A linear partition of S is an unordered
pair {A, B} of subsets of S suchthat AUB =S, AN B =, and A and B lie on
opposite sides of some straight line disjoint from S (A or B may be empty). Let
Lg be the number of linear partitions of S. For each positive integer 7, find the
maximum of Lg over all sets S of n points.

Let A be a 101-element subset of the set S = {1, 2, ..., 1000000}. Prove that there
exist numbers t{, 2, . .., tigo in S such that the sets

Aj={x+tj|xeA}, j=12,...,100,

are pairwise disjoint.

Given a set A with n? elements, n > 2, and F a family of subsets of A each of
which has n elements, suppose that any two sets of F have at most one element in
common.

(a) Prove that there are at most n” + n sets in F.

(b) In the case n = 3, show with an example that this bound can be reached.
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896. A sheet of paper in the shape of a square is cut by a line into two pieces. One of
the pieces is cut again by a line, and so on. What is the minimum number of cuts
one should perform such that among the pieces one can find one hundred polygons
with twenty sides.

897. Twenty-one girls and twenty-one boys took part in a mathematics competition. It
turned out that
(i) each contestant solved at most six problems, and
(i1) for each pair of a girl and a boy, there was at least one problem that was solved
by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and at least
three boys.

6.2.4 The Inclusion-Exclusion Principle

A particular counting method that we emphasize is the inclusion—exclusion principle,
also known as the Boole—Sylvester formula. It concerns the counting of the elements in
a union of sets Ay U A, U ---U A, and works as follows. If we simply wrote

[AfU AU - U A, = [Ai[ 4 [Ag| + -+ [Anl],

we would overcount the elements in the intersections A; N A ;. Thus we have to subtract
|[AiNA|+|A1NAs|+---+]A,—1NA,|. Butthen the elements in the triple intersections
A; N AN A, were both added and subtracted. We have to put them back. Therefore, we
must add |[A{ N A, NA3|+---+|A,_»NA,_1 NA,|. And so on. The final formula is

[ALUA U= U A=) JAl =D AN A+ -+ (D" A N AN - N A,
i i,j

Example. How many integers less than 1000 are not divisible by 2, 3, or 5?

Solution. To answer the question, we will count instead how many integers between 1
and 1000 are divisible by 2, 3, or 5. Denote by A,, A3, and As be the sets of integers
divisible by 2, 3, respectively, 5. The Boole—Sylvester formula counts |A, U A3 U As| as

[Az| + |Az| + [As| — [A2 N As| — |[Ay N As| — [A3 N As| + |Ar N A3z N As|

RN R RE AR

= 500 + 333 4200 — 166 — 100 — 66 + 33 = 734.

It follows that there are 1000 — 734 = 266 integers less than 1000 that are not divisible
by 2, 3, or 5. O
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The second example comes from I. Tomescu’s book Problems in Combinatorics
(Wiley, 1985).

Example. An alphabet consists of the letters ay, a,, . . ., a,. Prove that the number of all
words that contain each of these letters twice, but with no consecutive identical letters,
is equal to

L |:(2n)v _ <n>2(2n D+ (”)22(2n )l (_1)112;1n|:|
27 ' 1 ' 2 ' iR

Solution. The number of such words without imposing the restriction about consecutive
letters is

2n)!  (2n)!

@hr o

This is so because the identical letters can be permuted.
Denote by A; the number of words formed with the n letters, each occurring twice,
for which the two letters a; appear next to each other. The answer to the problem is then

(2n)!
> —|AfUAU---UA,|

We evaluate |[A;UA,U- - -UA,| using the inclusion—exclusion principle. To this end,
let us compute |A; N A;, N---N A;, | for some indices iy, iy, ..., iy, k < n. Collapse the
consecutive letters Qi j=1,2,..., k. As such, we are, in fact, computing the number
of words made of the letters ay, as, ..., a, in which g;, a;,, . . ., a;, appear once and all
other letters appear twice. This number is clearly equal to

(2n — k)!
n—k ’

since such a word has 2n — k letters, and identical letters can be permuted. There are (2‘)
k-tuples (i1, io, ..., ix). We thus have

Ay UA U UA, =) Z( DENA, NA, NN A

B N 2n —k)!
_Z( ) (k) on—k

and the formula is proved. |

898. Let m, n, p, g, r, s be positive integers such that p < r <mandg < s < n. In
how many ways can one travel on a rectangular grid from (0, 0) to (m, n) such
that at each step one of the coordinates increases by one unit and such that the path
avoids the points (p, g) and (r, 5)?
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899. Let E be a set with n elements and F a set with p elements, p < n. How many
surjective (i.e., onto) functions f : E — F are there?

900. A permutation o of a set S is called a derangement if it does not have fixed points,
ie., if o(x) # x for all x € S. Find the number of derangements of the set
{1,2,...,n}.

901. Given a graph with n vertices, prove that either it contains a triangle, or there exists
a vertex that is the endpoint of at most | 7] edges.

902. Letm > 5 and n be given positive integers, and suppose that P is a regular (2n + 1)-
gon. Find the number of convex m-gons having at least one acute angle and having
vertices exclusive among the vertices of P.

903. Let S' = {z € C | |z] = 1}. For all functions f : §' — S!'set f! = f and
f"'= fo f",n>1.Callw € S'aperiodic point of f of period n if f'(w) # w
fori =1,...,n—1and f"(w) = w. If f(z) = 7™, m a positive integer, find the
number of periodic points of f of period 1989.

904. For positive integers xp, x2, ..., x, denote by [x1, X2, ..., x,,] their least common
multiple and by (x1, x3, ..., x,) their greatest common divisor. Prove that for
positive integers a, b, c,

la, b, c]? _ (a,b,c)?
la, b1[b, cllc,al  (a,b)(b,c)(c,a)

905. A 150 x 324 x 375 rectangular solid is made by gluing together 1 x 1 x 1 cubes.
An internal diagonal of this solid passes through the interiors of how many of the
1 x 1 x 1 cubes?

6.3 Probability

6.3.1 Equally Likely Cases

In this section we consider experiments with finitely many outcomes each of which can
occur with equal probability. In this case the probability of an event A is given by

number of favorable outcomes

P(A) = : .
total number of possible outcomes
The computation of the probability is purely combinatorial; it reduces to a counting
problem.

We start with the example that gave birth to probability theory.
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Example. Show that the probability of getting a six when a die is rolled four times is
greater than the probability of getting a double six when two dice are rolled 24 times.

Here is a brief history of the problem. Chevalier de Méré, a gambler of the seventeenth
century, observed while gambling that the odds of getting a six when rolling a die four
times seem to be greater than % while the odds of getting a double six when rolling two
dice 24 ti‘{nes seem to be less than % De Méré thought that this contradicted mathematics

because ¢ = %. He posed this question to B. Pascal and P. Fermat. They answered the

question...and probability theory was born. Let us see the solution.

Solution. The probability that a six does not occur when rolling a die four times is (%)4,
and so the probability that a six occursis 1 — (g)4 ~ 0.5177. The probability that a double
six does not occur when rolling two dice 24 times is (%)24, whence the probability that
a double six occurs is 1 — (%)24 ~ 0.4914. The second number is smaller. O

Example. Consider n indistinguishable balls randomly distributed in m boxes. What is
the probability that exactly k boxes remain empty?

Solution. Number the boxes 1, 2, ..., m and let x; be the number of balls in the ith box.
The number of ways one can distribute n balls in m boxes is equal to the number of
nonnegative integer solutions to the equation

X1+x2+-+xu =n.

These solutions were counted in problem 887 from Section 6.2.3 and were found to be
(m;;f;l). This is the total number of cases.

If we fix k boxes and distribute the balls in the remaining n — k boxes such that each
box receives at least one ball, then the number of ways to do this is equal to the number

of positive integer solutions to the equation
X1 +X2+ -+ Xk =n.

This was also computed in one of the examples from Section 6.2.3 and was shown to be
(mn—7<1—1) The k boxes can be chosen in (’Z) ways. We find the number of favorable cases

tobe (7)(," ! ,)- The required probability is therefore

m n—1
(6) ()
m+n—1 :
( m—1 )
If you grab n balls and place them one at a time randomly in boxes, you will find that
they do not seem to fit the probabilities just calculated. This is because they are not really

indistinguishable balls: the order of placement and the fact that they are macroscopic
balls makes them distinguishable. However, the example above does correspond to a real
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world situation, namely that about particles and states. The above considerations apply
to bosons, particles that obey the Bose—Einstein statistics, which allows several particles
to occupy the same state. Examples of bosons are photons, gluons, and the helium-4
atom. Electrons and protons, on the other hand, are fermions. They are subject to the
Pauli exclusion principle: at most one can occupy a certain state. As such, fermions obey
what is called the Fermi—Dirac statistics.

A third problem comes from C. Reischer, A. Sdmboan, Collection of Problems
in Probability Theory and Mathematical Statistics (Editura Didacticd si Pedagogici,
Bucharest, 1972). It shows how probabilities can be used to prove combinatorial identi-
ties.

Example. Prove the identity

n nn—1)---1 m+n
m+n—1 m+n—1m+n—-2)---m m

Solution. Consider a box containing n white balls and m black balls. Let A; be the event
of extracting the first white ball at the ith extraction. We compute

P(A) = —~
Y mn
P(Ay) = n m
T mn man—1
n n—1 m
P(Aj) = : . ,
m+n m+n—1 m+n-—2
n n—1 1
P(A,) = : e
m+n m+n—1 m
The events A;, Ay, As, ... are disjoint, and therefore

I =P(A)+ P(A2) + -+ P(An)
m
1+
m+n|: m+n—1

P nn—1)---1 :|
m+n—1Dm+n—-2)---1]"

The identity follows. m|

Because it will be needed below, let us recall that the expected value of an experiment
with possible outcomes ay, as, . . ., a, is the weighted mean

aPX=a)+wPX=a)+ ---+a,P(X =a,).

So let us see the problems.
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Let v and w be distinct, randomly chosen roots of the equation z'**’ — 1 = 0. Find
the probability that v/2 4+ /3 < [v + w].

Find the probability that in a group of n people there are two with the same birthday.
Ignore leap years.

A solitaire game is played as follows. Six distinct pairs of matched tiles are placed
in a bag. The player randomly draws tiles one at a time from the bag and retains
them, except that matching tiles are put aside as soon as they appear in the player’s
hand. The game ends if the player ever holds three tiles, no two of which match;
otherwise, the drawing continues until the bag is empty. Find the probability that
the bag will be emptied.

An urn contains n balls numbered 1,2, ...,n. A person is told to choose a ball
and then extract m balls among which is the chosen one. Suppose he makes two
independent extractions, where in each case he chooses the remaining m — 1 balls
at random. What is the probability that the chosen ball can be determined?

A bag contains 1993 red balls and 1993 black balls. We remove two balls at a time
repeatedly and
(i) discard them if they are of the same color,
(ii) discard the black ball and return to the bag the red ball if they are of different
colors.
What is the probability that this process will terminate with one red ball in the bag?

The numbers 1, 2, 3,4, 5, 6, 7, and 8 are written on the faces of a regular octahedron
so that each face contains a different number. Find the probability that no two
consecutive numbers are written on faces that share an edge, where 8 and 1 are
considered consecutive.

What is the probability that a permutation of the first n positive integers has the
numbers 1 and 2 within the same cycle.

An unbiased coin is tossed n times. Find a formula, in closed form, for the expected
value of |H — T'|, where H is the number of heads, and T is the number of tails.

Prove the identities
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6.3.2 Establishing Relations Among Probabilities

We adopt the usual notation: P(A) is the probability of the event A, P(A N B) is the
probability that A and B occur simultaneously, P(A U B) is the probability that either
A or B occurs, P(A — B) is the probability that A occurs but not B, and P(A/B) is the
probability that A occurs given that B also occurs.

Recall the classical formulas:

* addition formula:
P(AUB)= P(A)+ P(B) — P(AN B);
* multiplication formula:
P(ANB)=P(A)P(B/A);

* total probability formula: if B; " B; =@, i, j = 1,2, ..., n (meaning that they are
independent), and A C By U B, U ---U B,, then

P(A) = P(A/B\)P(B1) + P(A/By)P(B2) +--- + P(A/By) P(By);

* Bayes’ formula: with the same hypothesis,

P(A/B;)P(B;)

P(B;/A) = )
P(A/B1)P(By) + P(A/By)P(By) +---+ P(A/B,)P(By)
In particular, if By, Bs, ..., B, cover the entire probability field, then
PB/A) = 2B piasy.
P(A)

The Bernoulli scheme. As a result of an experiment either the event A occurs with
probability p or the contrary event A occurs with probability g = 1 — p. We repeat the
experiment n times. The probability that A occurs exactly m times is (:1) p"q" ™. This
is also called the binomial scheme because the generating function of these probabilities
is (¢ + px)".

The Poisson scheme. We perform n independent experiments. Foreachk, 1 < k < n,
in the kth experiment the event A can occur with probability py, or A can occur with
probability ¢ = 1 — p;. The probability that A occurs exactly m times while the n

experiments are performed is the coefficient of x™ in the expansion of

(p1x +q1)(p2x +q2) - - (PuX + qn).

Here is a problem from the 1970 Romanian Mathematical Olympiad that applies the
Poisson scheme.



6.3 Probability 315

Example. In a selection test, each of three candidates receives a problem sheet with n
problems from algebra and geometry. The three problem sheets contain, respectively,
one, two, and three algebra problems. The candidates choose randomly a problem from
the sheet and answer it at the blackboard. What is the probability that

(a) all candidates answer geometry problems;
(b) all candidates answer algebra problems;
(c) at least one candidate answers an algebra problem?

Solution. We apply the Poisson scheme. Define the polynomial

1 n—1 2 n—2 3 n—3
P(x)= (—x—l— )(—x—l— )(—x—l— >
n n n n n n

:j%mf+wnn—1&%+«@ﬂ—2%+4&x+m—4X"—DW‘3”

= P3x3 + P2x2 + Pix + Py.

The answer to question (a) is the free term Py = % The answer to (b) is the

_ 6n?—11n+6
Py = e

coefficient of x3, namely, P; = n%. The answerto (c)is P =1 — O

And now another problem posed to Pascal and Fermat by the Chevalier de Méré.

Example. Two players repeatedly play a game in which the first wins with probability
p and the second wins with probability ¢ = 1 — p. They agree to stop when one of
them wins a certain number of games. They are forced to interrupt their game when the
first player has a more games to win and the second player has b more games to win.
How should they divide the stakes correctly? Use the answer to prove the combinatorial
identities

u a—1+k b—1+4+k
(e S ()
k=
S fa—1+k\ , @+b—1 , , b= —k) [(p\*
p 9 = —7 1y P4 1+ Z = :
= a—1 al(b—1)! P (a+1)---(a+k) \q
Solution. Call P the probability that the first player wins the a remaining games before
the second player wins the b games he needs, and Q = 1 — P, the probability that the
second player wins b games before the first wins a. The players should divide the stakes
in the ratio g.
We proceed with the computation of P. The first player could have won the a games

in several mutually exclusive ways: in exactly a games, in exactly a + 1 games, ..., in
exactly a + b — 1 games. In all cases the last game should be won by the first player.
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Let us find the probability that the first player wins in exactly a + k games, k =
0,1,...,b— 1. The probability that the first player wins @ — 1 games outof a +k — 1 is
computed using the Bernoulli scheme and is equal to (“ﬁ Il) p*~ !4k, and the probability
of winning the (a + k)th is p. The probability of winning in exactly a + k games is the
product of the two, namely (“+k 1) peq-.

We deduce that the probability of the first player winning the stakes is

b—1
a—1
k=0

while for the second player this is

a—1

b—1+k
Q=qbZ( b_Jlr )p"-

k=0
The stakes should be divided in the ratio
a—1+k\ ,
(1)
nE-
b k
e ()

The first combinatorial identity is equivalent to P + Q = 1. For the second combi-
natorial identity, we look for a different way to compute P. Observe that after at most
a+ b — 1 games have been played, the winner is known. Let us assume that regardless of
the results, the players kept playing all the a + b — 1 games. If the first player had won at
least a of these games, he would have won the stakes as well. Hence P is the probability
that the first player wona,a + 1, ..., a + b — 1 of the final a + b — 1 games. Each of

these is computed using the Bernoulli scheme, and P is their sum, since the events are
incompatible. We obtain

P

a+b—-1
p— Z < > ath b1k
—\ a+ k
b—1 k
Rl UPNATY P Gt K Gl (g)
a!(b—l)' —@+1)---(a+k) \q ’
The second identity follows by equating the two formulas that we obtained for P. O

This is yet another example of how probability theory can be used to prove identities.
Since “wisdom is the daughter of experience” (Leonardo da Vinci), we let you train your
probabilistic skills with the following problems.
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An exam consists of 3 problems selected randomly from a list of 2n problems, where
n is an integer greater than 1. For a student to pass, he needs to solve correctly
at least two of the three problems. Knowing that a certain student knows how to
solve exactly half of the 2n problems, find the probability that the student will pass
the exam.

The probability that a woman has breast cancer is 1%. If a woman has breast
cancer, the probability is 60% that she will have a positive mammogram. However,
if a woman does not have breast cancer, the mammogram might still come out
positive, with a probability of 7%. What is the probability for a woman with
positive mammogram to actually have cancer?

Find the probability that in the process of repeatedly flipping a coin, one will en-
counter a run of 5 heads before one encounters a run of 2 tails.

The temperatures in Chicago and Detroit are x° and y°, respectively. These tem-

peratures are not assumed to be independent; namely, we are given the following:
(i) P(x° ="70°) = a, the probability that the temperature in Chicago is 70°,

(i) P(y° =70°) = b, and

(iii)) P(max(x°, y°) =70°) =c.

Determine P (min(x°, y°) = 70°) in terms of a, b, and c.

An urn contains both black and white marbles. Each time you pick a marble you
return it to the urn. Let p be the probability of drawing a white marbleandg = 1—p
the probability of drawing a black marble. Marbles are drawn until n black marbles
have been drawn. If n 4 x is the total number of draws, find the probability that
x =m.

Three independent students took an exam. The random variable X, representing
the students who passed, has the distribution

<0123)
2133 1 -
530 20 60

Find each student’s probability of passing the exam.

Given the independent events Ay, A», ..., A, with probabilities py, p2, ..., pu,
find the probability that an odd number of these events occurs.

Out of every batch of 100 products of a factory, 5 are quality checked. If one
sample does not pass the quality check, then the whole batch of one hundred will
be rejected. What is the probability that a batch is rejected if it contains 5% faulty
products.

There are two jet planes and a propeller plane at the small regional airport of Gauss
City. A plane departs from Gauss City and arrives in Eulerville, where there were
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already five propeller planes and one jet plane. Later, a farmer sees a jet plane flying
out of Eulerville. What is the probability that the plane that arrived from Gauss
City was a propeller plane, provided that all events are equiprobable?

A coin is tossed n times. What is the probability that two heads will turn up in
succession somewhere in the sequence?

Two people, A and B, play a game in which the probability that A wins is p, the
probability that B wins is g, and the probability of a draw is r. At the beginning,
A has m dollars and B has n dollars. At the end of each game, the winner takes a
dollar from the loser. If A and B agree to play until one of them loses all his/her
money, what is the probability of A winning all the money?

We play the coin tossing game in which if tosses match, I get both coins; if they
differ, you get both. You have m coins, I have n. What is the expected length of
the game (i.e., the number of tosses until one of us is wiped out)?

6.3.3 Geometric Probabilities

In this section we look at experiments whose possible outcomes are parametrized by the
points of a geometric region. Here we interpret “at random” to mean that the probability
that a point lies in a certain region is proportional to the area or volume of the region. The
probability of a certain event is then computed by taking the ratio of the area (volume)
of the favorable region to the area (volume) of the total region. We start with the game
of franc-carreau investigated by George-Louis Leclerc, Comte de Buffon, in his famous
Essai d’arithmétique morale.

Example. A coin of diameter d is thrown randomly on a floor tiled with squares of side
[. Two players bet that the coin will land on exactly one, respectively, more than one,
square. What relation should / and d satisfy for the game to be fair?

Figure 42
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Solution. The center of the coin falls on some tile. For the coin to lie entirely on that
tile, its center must fall inside the dotted square of side length / — 2 - ‘% = [ — d shown
in Figure 42. This happens with probability

(I —d)?
P=—7

For the game to be fair, P must be equal to %, whence the relation that d and / should
satisfy is

d= %(2—\/5)1. O

Example. What is the probability that three randomly chosen points on a circle form an
acute triangle?

Solution. The fact that the triangle is acute is equivalent to the fact that each of the arcs
determined by the vertices is less than a semicircle.

Because of the rotational symmetry of the figure, we can assume that one of the
points is fixed. Cut the circle at that point to create a segment. In this new framework,
the problem asks us to find the probability that two randomly chosen points on a segment
cut it in three parts, none of which is larger than half of the original segment.

Identify the segment with the interval [0, 1], and let the coordinates of the two points
be x and y. Then the possible choices can be identified with points (x, y) randomly
distributed in the interior of the square [0, 1] x [0, 1]. The area of the total region is
therefore 1. The favorable region, namely, the set of points inside the square that yield
an acute triangle, is

11 1 1 1 1
x,y) |0<x <=z, 2 <y<=-+4+xitUqix,y) §<x<1,x——<y<— .

272 2 2 2

1

The area of this region is le' Hence the probability in question is . |

As an outcome of the solution we find that when cutting a segment into three random
parts, the probability that the three segments can be the sides of an acute triangle is 4—11.

927. What is the probability that the sum of two randomly chosen numbers in the interval
[0, 1] does not exceed 1 and their product does not exceed %?

928. Let o and B be given positive real numbers, with @ < 8. If two points are selected
at random from a straight line segment of length 8, what is the probability that the
distance between them is at least «?

929. A husband and wife agree to meet at a street corner between 4 and 5 o’clock to go
shopping together. The one who arrives first will await the other for 15 minutes,
and then leave. What is the probability that the two meet within the given time
interval, assuming that they can arrive at any time with the same probability?
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930.

931.

932.

933.

934.

93s.

6 Combinatorics and Probability

Two airplanes are supposed to park at the same gate of a concourse. The arrival
times of the airplanes are independent and randomly distributed throughout the 24
hours of the day. What is the probability that both can park at the gate, provided
that the first to arrive will stay for a period of two hours, while the second can wait
behind it for a period of one hour?

What is the probability that three points selected at random on a circle lie on a
semicircle?

Letn > 4 be given, and suppose that the points Py, P,, ..., P, are randomly chosen
on a circle. Consider the convex n-gon whose vertices are these points. What is
the probability that at least one of the vertex angles of this polygon is acute?

Let C be the unit circle x> + y*> = 1. A point p is chosen randomly on the
circumference of C and another point ¢ is chosen randomly from the interior of C
(these points are chosen independently and uniformly over their domains). Let R
be the rectangle with sides parallel to the x- and y-axes with diagonal pg. What is
the probability that no point of R lies outside of C?

If a needle of length 1 is dropped at random on a surface ruled with parallel lines at
distance 2 apart, what is the probability that the needle will cross one of the lines?

Four points are chosen uniformly and independently at random in the interior of a
given circle. Find the probability that they are the vertices of a convex quadrilateral.
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Methods of Proof

1. Assume the contrary, namely that +/2 + +/3 + /5 = r, where r is a rational number.
Square the equality «/5 + «/§ =r— \/5 to obtain 5 + 2«/6 =r245-2r \/5 It follows
that 2+/6 + 2r+/5 is itself rational. Squaring again, we find that 24 + 20r2 + 8r+/30
is rational, and hence /30 is rational, too. Pythagoras’ method for proving that +/2 is
irrational can now be applied to show that this is not true. Write +/30 = ™ in lowest
terms; then transform this into m? = 30n2. It follows that m is divisible by 2 and because
2(%)* = 15n* it follows that n is divisible by 2 as well. So the fraction was not in lowest
terms, a contradiction. We conclude that the initial assumption was false, and therefore

V2 + /3 + +/5 is irrational.

2. Assume that such numbers do exist, and let us look at their prime factorizations. For
primes p greater than 7, at most one of the numbers can be divisible by p, and the partition
cannot exist. Thus the prime factors of the given numbers can be only 2, 3, 5, and 7.

We now look at repeated prime factors. Because the difference between two numbers
divisible by 4 is at least 4, at most three of the nine numbers are divisible by 4. Also, at
most one is divisible by 9, at most one by 25, and at most one by 49. Eliminating these at
most 3+ 1414 1 = 6 numbers, we are left with at least three numbers among the nine
that do not contain repeated prime factors. They are among the divisors of 2-3 -5 - 7,
and so among the numbers

2,3,5,6,7,10, 14, 15, 21, 30, 35, 42, 70, 105, 210.

Because the difference between the largest and the smallest of these three numbers
is at most 9, none of them can be greater than 21. We have to look at the sequence
1,2,3,...,29. Any subsequence of consecutive integers of length 9 that has a term
greater than 10 contains a prime number greater than or equal to 11, which is impossible.
And from 1,2, ..., 10 we cannot select nine consecutive numbers with the required
property. This contradicts our assumption, and the problem is solved.
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3. The example 22, 32,52, ..., 432, where we considered the squares of the first 14 prime
numbers, shows that n > 15.

Assume that there existay, as, . . ., a6, pairwise relatively prime integers greater than
1 and less than 2005, none of which is a prime. Let g; be the least prime number in the
factorization of a, k = 1,2, ..., 16. Let g; be the maximum of g, g3, ..., g15. Then
qi > p1e = 47. Because g; is not a prime, Z—i is divisible by a prime number greater than
or equal to ¢;. Hence a; > qi2 = 47? > 2005, a contradiction. We conclude that n = 15.

4. Arguing by contradiction, we assume that none of the colors has the desired property.
Then there exist distances » > g > b such that r is not attained by red points, g by green
points, and b by blue points (for these inequalities to hold we might have to permute the
colors).

Consider a sphere of radius r centered at a red point. Its surface has green and blue
points only. Since g, b < r, the surface of the sphere must contain both green and blue
points. Choose M a green point on the sphere. There exist two points P and Q on the
sphere such that MP = M Q = g and PQ = b. So on the one hand, either P or Q is
green, or else P and Q are both blue. Then either there exist two green points at distance
g, namely M and P, or Q, or there exist two blue points at distance b. This contradicts
the initial assumption. The conclusion follows.

(German Mathematical Olympiad, 1985)

5. Arguing by contradiction, let us assume that the area of the overlap of any two sur-
faces is less than é In this case, if S, S5, ..., S, denote the nine surfaces, then the area
of §; U S, is greater than 1 + %, the area of S; U S, U Sj3 is greater than 1 + g + %, R
and the area of §; U S, U --- U S is greater than

1+8+7—|— +1—45—5
99 9 9 7
a contradiction. Hence the conclusion.
(L. Panaitopol, D. Serbidnescu, Probleme de Teoria Numerelor si Combinatorica
pentru Juniori (Problems in Number Theory and Combinatorics for Juniors), GIL, 2003)

6. Assume that such an f exists. We focus on some particular values of the variable. Let
fO) =aand f(5) =b,a,be{1,2,3},a #b. Because [5—2|=3,|2—-0] =2, we
have f(2) # a, b, so f(2) is the remaining number, say c. Finally, because |3 — 0| = 3,
|3 —5] =2, we musthave f(3) = c. Therefore, f(2) = f(3). Translating the argument
to an arbitrary number x instead of 0, we obtain f(x+2) = f(x+3), and so f is constant.
But this violates the condition from the definition. It follows that such a function does
not exist.

7. Arguing by contradiction, let us assume that such a function exists. Set f(3) = k.
Using the inequality 23 < 32, we obtain
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¥ = @ = Q) < f3)=f3) =k,
hence k > 5. Similarly, using 3* < 23, we obtain
F=f31=f3)<f@)=f2=3=243<343="7".

This implies that k < 7, and consequently k£ can be equal only to 6. Thus we should
have f(2) = 3 and f(3) = 6. The monotonicity of f implies that 2* < 3? if and only
if 3" < 6", u, v being positive integers. Taking logarithms this means that ;- > log, 3 if
and only if = > log; 6. Since rationals are dense, it follows that log, 3 = log; 6. This
can be written as log, 3 = @ + 1, and so log, 3 is the positive solution of the quadratic

equation x> — x — 1 = 0, which is the golden ratio ”Tﬁ The equality

translates to 2'+Y5 = 9. But this would imply
65536 = 2732 < 2504V5) — 95 — 50049

We have reached a contradiction, which proves that the function f cannot exist.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism
Books PVT Ltd., Bangalore, 2002)

8. The constant function f(x) = k, where k is a positive integer, is the only possible
solution. That any such function satisfies the given condition is easy to check.

Now suppose there exists a nonconstant solution f. There must exist two positive
integers a and b such that f(a) < f(b). Thisimplies that (a+b) f(a) < af (b)+bf (a) <
(a+b) f (b), which by the given condition is equivalent to (a +b) f (a) < (a+b) f (a*>+
b%) < (a+b) f(b). We can divide by a+b > 0to find that f(a) < f(a*>+b* < f(b).
Thus between any two different values of f we can insert another. But this cannot go on
forever, since f takes only integer values. The contradiction shows that such a function
cannot exist. Thus constant functions are the only solutions.

(Canadian Mathematical Olympiad, 2002)

9. Assume that A, B, and a satisfy AUB = [0, 1], ANB = J, B = A+a. We can assume
that a is positive; otherwise, we can exchange A and B. Then (1 — a, 1] C B; hence
(1 —2a,1 —a] C A. An inductive argument shows that for any positive integer n, the
interval (1 — (2n+1)a, 1 —2na]isin B, while the interval (1 — (2n+2)a, 1 — (2n+1)a]
isin A. However, at some point this sequence of intervals leaves [0, 1]. The interval of
the form (1 — na, 1 — (n — 1)a] that contains 0 must be contained entirely in either A or
B, which is impossible since this inteval exits [0, 1]. The contradiction shows that the
assumption is wrong, and hence the partition does not exist.
(Austrian—Polish Mathematics Competition, 1982)
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10. Assume the contrary. Our chosen numbers aj, ay, ..., a4+ must have a total of at
most k distinct prime factors (the primes less than or equal to n). Let 0,(g) denote the
highest value of d such that pd|q. Also, let a = aja; - - - ar41 be the product of the

numbers. Then for each prime p, o,(a) = Zf;l op(a;), and it follows that there can

be at most one hostile value of i for which 0,(a;) > OPT(“) Because there are at most
k primes that divide a, there is some i that is not hostile for any such prime. Then
20,(a;) < op(a), soop(a;) < op(ail_) for each prime p dividing a. This implies that a;
divides a“—l which contradicts the fact that the a; does not divide the product of the other
a;’s. Hence our assumption was false, and the conclusion follows.

(Hungarian Mathematical Olympiad, 1999)

11. The base case n = 1 is % =1- % true. Now the inductive step. The hypothesis
is that
1 1 1 1 1 1

=l -
k+1+k—|— + +2k 2+ +2k—1 2k

We are to prove that

1 1 1 1 1 1 1 1
R T T S _ ]
k—|—2+ +2k+2k+1+2k+2 2+ 2k+2k+1 2k 4+ 2

Using the induction hypothesis, we can rewrite this as

1 1 1 1
2 T T T
B 1 4 1 4 +1+ 1 1
k41 k42 2k 2k+1 2k+2°
which reduces to
1 1 1

%42 k+1 2%k+2
obvious. This completes the induction.

12. The base case is trivial. However, as .M. Vinogradov once said, “it is the first
nontrivial example that matters.” And this is n = 2, in which case we have

| sin 2x| = 2| sin x|| cos x| < 2| sin x|.

This suggests to us to introduce cosines as factors in the proof of the inductive step.
Assuming the inequality for n = k, we can write

| sin(k + 1)x| = | sinkx cos x + sin x cos kx| < |sin kx||cos x| + | sin x|| cos kx|

< |sinkx|+ |sinx| < k|sinx| + |sinx| = (k + 1)| sin x]|.
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The induction is complete.

13. As in the solution to the previous problem we argue by induction on 7 using trigono-
metric identities. The base case holds because

| sinx| 4+ | cosx;| > sin x| + cos? x; = 1.

Next, assume that the inequality holds for n = k and let us prove it forn = k + 1. Using
the inductive hypothesis, it suffices to show that

I'sinx, 1| + | cos(x) +x2 + -+ + xpp1)| = [cOs(xy + x2 + -+ - + x,) .

To simplify notation let x,,; = x and x; +x,+- - -+ X, +X,41 = Y, so that the inequality
to be proved is | sin x| 4+ | cos y| > | cos(y — x)|. The subtraction formula gives

|cos(y —x)| = |cosycosx + sin ysinx| < |cosy||cosx|+ |sin y|| sin x|

< |cosy|—+ |sinx]|.

This completes the inductive step, and concludes the solution.
(Revista Mathematica din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

14. We expect an inductive argument, with a possible inductive step given by
3t =3.3"> 30 > (n+1)°.

In order for this to work, the inequality 3n* > (n + 1)? needs to be true. This inequality
is equivalent to 2n® > 3n? 4+ 3n + 1, which would, for example, follow from the separate
inequalities n® > 3n? and n® > 3n + 1. These are both true for n > 3. Thus we can
argue by induction starting with the base case n = 3, where equality holds. The cases
n=0,n =1, and n = 2 can be checked by hand.

15. The base case 26 < 6! < 3% reduces to 64 < 720 < 729, which is true. Assuming
the double inequality true for n we are to show that

1 n+l1 1 n+l
(n—;— ) <(n—|—1)!<(n; ) .

Using the inductive hypothesis we can reduce the inequality on the left to

<n 43# 1>n+1 S (%)n |

or
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(1+3)
1+-1] <3,
n

while the inequality on the right can be reduced to

1 n
1+—-) >2.
n
These are both true for alln > 1 because the sequence (14 %)” is increasing and converges
to e, which is less than 3. Hence the conclusion.

16. The left-hand side grows with n, while the right-hand side stays constant, so apparently
a proof by induction would fail. It works, however, if we sharpen the inequality to

L U NS SO B B
R — P —_— < —_— — —, n = .
23 33 nd 2 n

As such, the cases n = 1 and n = 2 need to be treated separately, and they are easy to
check.

The base case is forn = 3: 1 + 2% + 3% <1+ % + % < % — % For the inductive
step, note that from

1 1 1 3 1
1+?+¥+---+E<E—;, for some n > 3,

we obtain

1+ ! + ! + + ! + ! ) ! + !
— — o o —_— —_— < _—— — —_—
23 33 n 4+ 2 n m+1)3

All we need to check is

3 1 1 3 1

2 T n T

2 (m+ 1)’
which is equivalent to

1 1 1

n+1? n m+l)

or

1 1
n+1)P nn+l)

This is true, completing the inductive step. This proves the inequality.
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17. We prove both parts by induction on n. For (a), the case n = 1 is straightforward.
Assume now that we have found an n-digit number m divisible by 2" made out of the
digits 2 and 3 only. Let m = 2"k for some integer k. If n is even, then

2x 10" +m =2"2-5" +k)

is an (n + 1)-digit number written only with 2’s and 3’s, and divisible by 2"*!. If k is
odd, then

3% 10" +m=2"(3-5"+k)

has this property.

The idea of part (b) is the same. The base case is trivial, m = 5. Now if we have
found an n-digit number m = 5"k with this property, then looking modulo 5, one of the
(n + 1)-digit numbers

5x10"+m=5"(5-2"+k),
6x10"+m=5"6-2"+k),
7x 10" +m =5"(7-2"+k),
8x 10" +m =5"(8-2" +k),
I9x 10" 4+m=5"09-2"+k)

has the required property, and the problem is solved.
(USA Mathematical Olympiad, 2003, proposed by T. Andreescu)

18. We proceed by induction on n. The base case is obvious; the decomposition consists
of just one piece. For the induction step, let us assume that the tiling is possible for
such a 2" x 2" board and consider a 2"*! x 2"*! board. Start by placing a piece in the
middle of the board as shown in Figure 43. The remaining surface decomposes into four
2" x 2" boards with corner squares removed, each of which can be tiled by the induction
hypothesis. Hence we are done.

Figure 43

19. The property is clearly true for a single number. Now assume that it is true whenever
we have such a sequence of length £ and let us prove it for a sequence of length k + 1:
X1, X2, ..., xx4+1. Call a cyclic shift with all partial sums positive “good.”
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With indices taken modulo & + 1, there exist two terms x; and x4 such that x; > 0,
Xj+1 < 0,and x;+x;1; > 0. Without loss of generality, we may assume that these terms
are x; and x;41. Define a new sequence by y; = x;, j < k — 1, yv = x; + x341. By
the inductive hypothesis, yi, y», ..., ¥ has a unique good cyclic shift. Expand y, into
Xy, Xk+1 to obtain a good cyclic shift of x1, xo, ..., xx4+1. This proves the existence. To
prove uniqueness, note that a good cyclic shift of x1, x2, . .., x4+ can start only with one
of x1, xp, ..., x; (since x4 < 0). It induces a good cyclic shift of y;, ys, ..., y; that
starts at the same term; hence two good cyclic shifts of the longer sequence would produce
two good cyclic shifts of the shorter. This is ruled out by the induction hypothesis, and
the uniqueness is proved.

(G. Raney)

20. We induct on m + n. The base case m + n = 4 can be verified by examining the
equalities

I1+1=141 and 1+2=1+2.

Now let us assume that the property is true for m +n = k and prove itform +n = k+ 1.
Without loss of generality, we may assume that x; = max; x; and y; = max; y;, x; > yi.
If m = 2, then

Vi+wm=xi+x+---F+x,>2x1+n-1>y+n-1.

Itfollowsthaty; = x; =norn—1,y, =n—1,x, = x3 = --- = x, = 1. Consequently,
Y2 = x3 + x3 + - - - + x,,, and we are done. If m > 2, rewrite the original equality as

(i=yD+x+-+xp =24+ Yu

This is an equality of the same type, with the observation that x; — y; could be zero, in
which case x; and y; are the numbers to be suppressed.

We could apply the inductive hypothesis if y; > n, in which case y, + - - - 4+ y,, were
less than mn — y; < (m — 1)n. In this situation just suppress the terms provided by the
inductive hypothesis; then move y; back to the right-hand side.

Let us analyze the case in which this argument does not work, namely when y; < n.
Then y, + y3+ -+ 4+ ¥ < (m — 1)y; < (m — 1)n, and again the inductive hypothesis
can be applied. This completes the solution.

21. Let f be the function. We will construct g and & such that f = g + h, with g an odd
function and % a function whose graph is symmetric with respect to the point (1, 0).

Let g be any odd function on the interval [—1, 1] for which g(1) = f(1). Define
h(x) = f(x)—g(x),x € [—1, 1]. Now we proceed inductively as follows. Forn > 1, let
h(x) = —h(2—x)andg(x) = f(x)—h(x)forx € 2n—1, 2n+1], and then extend these
functions suchthat g(x) = —g(—x)and h(x) = f(x)—g(x)forx € [-2n—1, —2n+1).
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It is straightforward to check that the g and & constructed this way satisfy the required
condition.
(Kvant (Quantum))

22. We prove the property by induction on n. For n = 2, any number of the form n = 212,
t an integer, would work.

Let us assume that for n = k there is a number m with the property from the statement,
and let us find a number m’ that fulfills the requirement for n = k + 1. We assume in
addition that m > 7; thus we strengthen somewhat the conclusion of the problem.

We need the fact that every integer p > 2 can be represented as a®> + b> — 2, where
a, b, c are positive integers. Indeed, if p is even, say p = 2q, then

p=2q=0Gq)*+@q—1*—(5¢ — 1)
while if p is odd, p = 2¢g + 1, then
p=2q+1=0Cq—1*+@4q—4*— (5¢ — 47,

ifg > 1, whileif g = 1, then p = 3 = 4% + 52 — 6°.
Returning to the inductive argument, let

m=a%+a§=b%+b§+b§=---=lf+l§+---+l,f,
and also m = a® 4+ b*> — ¢?. Taking m’ = m + ¢ we have
m=a+b=al+al+ct=bj+by+t = =0 +LG+--+ 1+

This completes the induction.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), 1980, proposed by M. Cava-
chi)

23. The property can be checked easily for small integers, which will constitute the base
case. Assuming the property true for all integers less than 7, let Fj be the largest term
of the Fibonacci sequence that does not exceed n. The number n — Fj is strictly less
than n, so by the induction hypothesis it can be written as a sum of distinct terms of the
Fibonacci sequence, say n — F, = ) ; Fi;. The assumption on the maximality of F
implies that n — Fy, < F} (this because Fyy; = Fy + Fy_1 < 2F; for k > 2). It follows
that F;, # Fi,, for all j. We obtainn = ) i Fi, + Fy, which gives a way of writing n as
a sum of distinct terms of the Fibonacci sequence.

24. We will prove a more general identity, namely,

Fm+n+l :Fm+1Fn+l+Fan, form,n > 0.
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We do so by induction on n. The inductive argument will assume the property to be true
forn = k — 1 and n = k, and prove it for n = k + 1. Thus the base case consists of
n=0,F, = F,y;andn =1, F, , = F, 1 + F,—both of which are true.

Assuming that Fm+k = Fm-HFk + Fka_l and Fm+k+1 = Fm+]Fk+] + Fka, we
obtain by addition,

Foik + Fogis1 = Fup1 (Fx + Fiqp) + Fp(Feoy + Fr),

which is, in fact, the same as F,, ;o = F,1Fii2 + FuFiyr1. This completes the
induction. For m = n, we obtain the identity in the statement.

25. Inspired by the previous problem, we generalize the identity to
Fm+n+p = Fm+1Fn+1Fp+1 + FanFp - En—an—le—l’

which should hold for m, n, p > 1. In fact, we can augment the Fibonacci sequence by
F_; = 1 (so that the recurrence relation still holds), and then the above formula makes
sense for m,n, p > 0. We prove it by induction on p. Again for the base case we
consider p = 0, with the corresponding identity

Fm+n = Fm+1Fn+l — Fu1F,
and p = 1, with the corresponding identity
Fm+n+1 = Fm+1Fn+1 + FunFa.

Of the two, the second was proved in the solution to the previous problem. And the
first identity is just a consequence of the second, obtained by subtracting F,,—1 =
FuFo+Fy 1 Fy_ifromF, , | = F,11F,11+ F, F,. So the base case is verified. Now
we assume that the identity holds for p = k — 1 and p = k, and prove it for p = k + 1.
Indeed, adding

Foinpk—1 = Fnpi Fo Fe + FpFyFioy — Fy  Fy 1 Fro
and
Fm+n+k = Fm+1Fn+1Fk+l + FanFk - Fm—an—le—l’
we obtain

Fontntir1 = Fugnti—1 + Fugntr
= Fp1 Fop1(Fx + Fig) + Fp By (Fioy + F) — By Fyooy(Feo + Fiy)
= m+1Fn+1Fk+2+FmE1Fk+l _Fm—an—le-
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Figure 44

This proves the identity. Setting m = n = p, we obtain the identity in the statement.

26. The base case consists of the dissections for n = 4, 5, and 6 shown in Figure 44. The
induction step jumps from P (k) to P (k + 3) by dissecting one of the triangles into four
triangles similar to it.

(R. Gelca)

27. First, we explain the inductive step, which is represented schematically in Figure 45.
If we assume that such a k-gon exists for all k& < n, then the n-gon can be obtained by
cutting off two vertices of the (n — 2)-gon by two parallel lines. The sum of the distances
from an interior point to the two parallel sides does not change while the point varies,
and of course the sum of distances to the remaining sides is constant by the induction
hypothesis. Choosing the parallel sides unequal, we can guarantee that the resulting
polygon is not regular.

Figure 45

The base case consists of a rectangle (n = 4) and an equilateral triangle with two
vertices cut off by parallel lines (n = 5). Note that to obtain the base case we had to
apply the idea behind the inductive step.

28. The property is obviously true for the triangle since there is nothing to dissect. This
will be our base case. Let us assume that the property is true for any coloring of a k-gon,
for all k < n, and let us prove that it is true for an arbitrary coloring of an n-gon. Because
at least three colors were used, there is a diagonal whose endpoints have different colors,
say red (r) and blue (b). If on both sides of the diagonal a third color appears, then we
can apply the induction hypothesis to two polygons and solve the problem.

If this is not the case, then on one side there will be a polygon with an even number
of sides and with vertices colored in cyclic order rbrb ...rb. Pick a blue point among
them that is not an endpoint of the initially chosen diagonal and connect it to a vertex
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colored by a third color (Figure 46). The new diagonal dissects the polygon into two poly-
gons satisfying the property from the statement, and having fewer sides. The induction
hypothesis can be applied again, solving the problem.

Figure 46

29. We prove the property by induction on the number of vertices. The base case is the
triangle, where there is nothing to prove.

Let us assume now that the property holds for polygons with fewer than n vertices
and prove it for a polygon with n vertices. The inductive step consists in finding one
interior diagonal.

We commence with an interior angle less than 7 (which does exist because the sum
of all n angles is (n — 2)7). Let the polygonbe A1 A, ... A,, with LA, A A, the chosen
interior angle. Rotate theray |A; A, toward |A; A, continuously inside the angle as shown
in Figure 47. For each position of the ray, strictly between A} A, and A A,, consider the
point on the polygon that is the closest to A;. If for some position of the ray this point
is a vertex, then we have obtained a diagonal that divides the polygon into two polygons
with fewer sides. Otherwise, A A, is the diagonal.

Figure 47

Dividing by the interior diagonal, we obtain two polygons with fewer vertices, which
by hypothesis can be divided into triangles. This completes the induction.

30. We induct on the number to be represented. For the base case, we have
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1=12%
2=—12-2>-3>4+4°
3=—1>422,

4=—1>-2>4+3%
The inductive step is “P(n) implies P(n + 4)”’; it is based on the identity
m?> —(m+1)%*—(m+2)7>+ m+3)%*=4.

Remark. This result has been generalized by J. Mitek, who proved that every integer k
can be represented in the form k = £1° 4+ 2* 4. . . £ m® for a suitable choice of signs,
where s is a given integer > 2. The number of such representations is infinite.

(P. Erdés, J. Surdnyi)

31. First, we show by induction on k that the identity holds for n = 2*. The base case is
contained in the statement of the problem. Assume that the property is true for n = 2%
and let us prove it for n = 28!, We have

X4k Kok T Aokl
X1 Xk Xy e Xkt f( 2k2>+f(2+1 o 2 )
f 2k+1 - 2

S @D+ +f (1) S Qgr A+ (k1)

_ 2k + 2k

2
L FGD e f ) + f @) o f o)
- 2k+1 ’

which completes the induction. Now we work backward, showing that if the identity
holds for some n, then it holds for n — 1 as well. Consider the numbers x;, X2, ..., X,_;

and x, = % Using the hypothesis, we have

’

n

f (XI o xR ) L f@) e [ S (e
n

which is the same as

f<x1+---+xn—1>: f(x1)+~-.+f(xn—l)+lf(x1+~-.+xn—l).

n—1 n n n—1

Moving the last term on the right to the other side gives

n n—1

n—lf(x1+x2+"'+xn—l):f(-xl)+f(x2)+"'+f(xn—l)

n
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This is clearly the same as

f(x1+x2+"'+xn—l) _ SO+ x4+ fxa1)

n—1 n—1

and the argument is complete.

32. This is a stronger form of the inequality discussed in the beginning, which can be
obtained from it by applying the AM—GM inequality.
We first prove that the property holds for n a power of 2. The base case

(I+a)(1+a) > (1 + Jaar)*

reduces to the obvious a; + a, > 2./aja;.
If

k
(a1 +a) (1 +ay) = (1 + Yaaax)
for every choice of nonnegative numbers, then
(I+a) - A+ap)=0+a) - (I +ap)(+ax ) (14 ay+)

> (1+ Yar—azy)’ (1 + Yago—agn)”

7
> |:(1+\/2f/a] s ok Z\I(/azk+1"'azk+l) :|

= (1+ *Var—az)

This completes the induction.
Now we work backward. If the inequality holds for n + 1 numbers, then choosing

a,+1 = Yaa; - - - a,, we can write

n+1
(a0 a4 Saran = (14 Yoo daa)
which is the same as

(A 4a) - (L +a)(+ Yar-—ay) = (1 + YJar-—-a)".

Canceling the common factor, we obtain the inequality for » numbers. The inequality is
proved.

33. The “pigeons’ are the numbers. The “holes’ are the 49 sets

{1, 98}, {2,97}, ..., {49, 50}.
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Two of the numbers fall in the same set; their sum is equal to 99. We are done.

34. As G. Pélya said, “a trick applied twice becomes a technique.” Here we repeat the
idea of the Mongolian problem from the 26th International Mathematical Olympiad.

Let by, b, ..., b, be the sequence, where b; € {a;,a;,...,a,}, 1 <i < m. For
each j < m define the n-tuple K; = (ki, k», ..., k,), where k; = 0 if a; appears an even
number of times in by, by, ..., b; and k; = 1 otherwise.

If there exists j < m such that K; = (0,0, ..., 0) then byb, - - - b; is a perfect square
and we are done. Otherwise, there exist j < [ such that K; = K;. Then in the sequence
bjt1,bj4, ..., b eacha; appears an even number of times. The product bj b s - by
is a perfect square.

35. The sequence has the property that for any » the first n 4 1 terms are less than or

equal to 2n. The problem would be solved if we showed that given a positive integer n,

from any n + 1 distinct integer numbers between 1 and 2n we can choose two whose

difference is n. This is true, indeed, since the pigeonhole principle implies that one of

the n pairs (1,n + 1), (2,n 4 2), ..., (n, 2n) contains two terms of the sequence.
(Austrian—Polish Mathematics Competition, 1980)

36. The “holes” will be the residue classes, and the pigeons, the numbers ax?, ¢ — by?,

x,y=0,1,..., p—1. There are 2 p such numbers. Any residue class, except for 0, can
have at most two elements of the form ax? and at most two elements of the form ¢ — by?
from the ones listed above. Indeed, ax12 = axz2 implies xf = x%, SO (x1 —x2)(x1+x2) = 0.
This can happen only if x; = £x,. Also, ax?> = 0 only when x = 0.

We distinguish two cases. If ¢ — byg = 0 for some yy, then (0, yp) is a solution.
Otherwise, the 2p — I numbers ax?, c—by>,x =1,2,...,p—1,y=0,1,..., p—1lare
distributed into p — 1 “holes,” namely the residue classes 1, 2, ..., p — 1. Three of them
must lie in the same residue class, so there exist xy and y, with axg =c— byg (mod p).

The pair (xg, ¥o) is a solution to the equation from the statement.

Remark. A more advanced solution can be produced based on the theory of quadratic
residues.

37. In any 2 x 2 square, only one of the four numbers can be divisible by 2, and only
one can be divisible by 3. Tiling the board by 2 x 2 squares, we deduce that at most 25
numbers are divisible by 2 and at most 25 numbers are divisible by 3. There are at least
50 remaining numbers that are not divisible by 2 or 3, and thus must equal one of the
numbers 1, 5, or 7. By the pigeonhole principle, one of these numbers appears at least
17 times.

(St. Petersburg City Mathematical Olympiad, 2001)

38. A more general property is true, namely that for any positive integer n there exist
infinitely many terms of the Fibonacci sequence divisible by #.
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We apply now the pigeonhole principle, letting the “objects’ be all pairs of consec-
utive Fibonacci numbers (F,, F,, 1), n > 1, and the “boxes” the pairs of residue classes
modulo 7. There are infinitely many objects, and only n? boxes, and so there exist indices
i > j > 1suchthat F; = F; (mod n) and F;; = F;;; (mod n).

In this case

Fioi=F—F=F —F;=F;_| (mod n),

and hence F;_; = F;_; (mod n) as well. An inductive argument proves that F;_; =
Fi_x (mod n), k = 1,2,...,j. Inparticular, F;_; = Fy = 0 (mod n). This means
that F;_; is divisible by n. Moreover, the indices i and j range in an infinite family, so
the difference i — j can assume infinitely many values. This proves our claim, and as a
particular case, we obtain the conclusion of the problem.

(Irish Mathematical Olympiad, 1999)

39. We are allowed by the recurrence relation to set xo = 0. We will prove that there is
an index k < m?> such that x; divides m. Let r, be the remainder obtained by dividing
xy bymfort = 0,1,.. .,m> 4+ 2. Consider the triples (ro, r1,12), (r1,72,13), «..,
(T3, T3 41, Fmdan). Since r, can take m values, the pigeonhole principle implies that at
leasttwo triples are equal. Let p be the smallest number such that the triple (7, 741, 7p42)
is equal to another triple (ry, ry41,7g42), P < q < m?3. We claim that p = 0.

Assume by way of contradiction that p > 1. Using the hypothesis, we have

Fpg2 =Trp_1 +1prppr (mod m) and  ryq0 =ry—1 + ryrg41 (mod m).

Because r, = ry, rpy1 = ry41, and rpn = ryyo, it follows that r,_; = r,_y, so
(rp—1,7ps Tpg1) = (rq—1, g, Tg41), contradicting the minimality of p. Hence p = 0, so
rq = ro = 0, and therefore x, is divisible by m.

(T. Andreescu, D. Mihet)

40. We focus on 77 consecutive days, starting on a Monday. Denote by a, the number
of games played during the first n days, n > 1. We consider the sequence of positive
integers

al,az,...,an,a]+2O,a2+20,...,a77+20.

Altogether there are 2 x 77 = 154 terms not exceeding 11 x 12+20 = 152 (here we took
into account the fact that during each of the 11 weeks there were at most 12 games). The
pigeonhole principle implies right away that two of the above numbers are equal. They
cannot both be among the first 77, because by hypothesis, the number of games increases
by at least 1 each day. For the same reason the numbers cannot both be among the last
77. Hence there are two indices k and m such that a,, = a; + 20. This implies that in
the time interval starting with the (k 4 1)st day and ending with the nth day, exactly 20
games were played, proving the conclusion.
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Remark. In general, if a chess player decides to play d consecutive days, playing at
least one game a day and a total of no more than m with d < m < 2d, then for each
i <2d —n — 1 there is a succession of days on which, in total, the chess player played
exactly i games.

(D.O. Shklyarskyi, N.N. Chentsov, .M. Yaglom, Izbrannye Zadachi i Theoremy El-
ementarnoy Matematiki (Selected Problems and Theorems in Elementary Mathematics),
Nauka, Moscow, 1976)

41. The solution combines the induction and pigeonhole principles. We commence with
induction. The base case m = 1 is an easy check, the numbers can be only —1, 0, 1.

Assume now that the property is true for any 2m — 1 numbers of absolute value
not exceeding 2m — 3. Let A be a set of 2m + 1 numbers of absolute value at most
2m — 1. If A contains 2m — 1 numbers of absolute value at most 2m — 3, then we
are done by the induction hypothesis. Otherwise, A must contain three of the numbers
+(2m — 1), =2(2m — 2). By eventually changing signs we distinguish two cases.

Casel. 2m — 1, —2m + 1 € A. Pair the numbers from 1 through 2m — 2 as (1, 2m —

2),(2,2m —3), ..., (m — 1,m), so that the sum of each pair is equal to 2m —
1, and the numbers from O through —2m + 1 as (0, —2m + 1), (-1, —2m +
2),...,(—m + 1, —m), so that the sum of each pair is —2m + 1. There are

2m — 1 pairs, and 2m elements of A lie in them, so by the pigeonhole principle
there exists a pair with both elements in A. Those elements combined with
either 2m — 1 or —2m + 1 give a triple whose sum is equal to zero.

Casell. 2m — 1,2m — 2, -2m+2 € Aand —2m +1 ¢ A. If 0 € A, then 0 — 2m +
24+ 2m — 2 = 0 and we are done. Otherwise, consider the pairs (1,2m —
3),2,2m —4),...,(m — 2, m), each summing up to 2m — 2, and the pairs
1, —2m), ..., (—m+ 1, —m), each summing up to —2m + 1. Altogether there
are 2m — 2 pairs containing 2m — 1 elements from A, so both elements of some
pair must be in A. Those two elements combined with either —2m 42 or 2m — 1
give a triple with the sum equal to zero. This concludes the solution.

(Kvant (Quantum))

42. Denote by A the set of ordered triples of people (a, b, ¢) such that ¢ is either a
common acquaintance of both a and b or unknown to both a and b. If ¢ knows exactly
k participants, then there exist exactly 2k(n — 1 — k) ordered pairs in which ¢ knows
exactly one of a and b (the factor 2 shows up because we work with ordered pairs). There
will be

(n—1>2 (n—1)n—3)
m—1Dm—2)—2k(n—1-k)>m—1Dn—-2)—2 == =

2 2

ordered pairs (a, b) such that ¢ knows either both or neither of a and b. Counting by the
c’s, we find that the number of elements of A satisfies
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nn—1)(n—23)
> .

To apply the pigeonhole principle, we let the “holes” be the ordered pairs of people
(a, b), and the “pigeons” be the triples (a, b, c) € A. Put the pigeon (a, b, c) in the
hole (a, b) if ¢ knows either both or neither of a and b. There are W pigeons
distributed in n(n — 1) holes. So there will be at least

nn—1)(n —3) n
[ 2 /’“"‘”FEJ—]

pigeons in one hole, where [x] denotes the least integer greater than or equal to x. To
the “hole” corresponds a pair of people satisfying the required condition.
(USA Mathematical Olympiad, 1985)

|A] >

43. The beautiful observation is that if the sequence a,, = cos(nmx)+cos(nmxy)+-- -+
cos(nmxy), n > 1, assumes finitely many distinct values, then so does the sequence of
k-tuples u,, = (ay, az,, ..., ar,), n > 1. By the pigeonhole principle there exist m < n
such thata, = a,,, ax, = asp, . . ., ar, = ap,. Letus take a closer look at these relations.
We know that cos(nx) is a polynomial of degree n with integer coefficients in cos(x),
namely the Chebyshev polynomial. If A; = cos(nmx;) and B; = cos(mmx;), then the
previous relations combined with this observation show that A] + A + .- + A] =
B{ + Bg + -4 B,{ forall j = 1,2,...,k. Using Newton’s formulas, we deduce
that the polynomials having the zeros Ay, A», ..., A, respectively, By, By, ..., By are
equal (they have equal coefficients). Hence there is a permutation o of 1, 2, ..., n such
that A; = B, ;). Thus cos(nmx;) = cos(mmx,(y), which means that nx; — mx, ;) is a
rational number r; for 1 < i < k. We want to show that the x;’s are themselves rational.
If o (i) = i, this is obvious. On the other hand, if we consider a cycle of o, (i1i2i3 ... i),
we obtain the linear system

mxl-l — nx,-z = I"il,

mxiz - I’l)Ci3 = I"iz,

mx;, — nxl-l = ri.

It is not hard to compute the determinant of the coefficient matrix, which is n* — m* (for

example, by expanding by the first row, then by the first column, and then noting that

the new determinants are triangular). The determinant is nonzero; hence the system has

a unique solution. By applying Cramer’s rule we determine that this solution consists of

rational numbers. We conclude that the x;’s are all rational, and the problem is solved.
(V. Pop)

44. Place the circle at the origin of the coordinate plane and consider the rectangular
grid determined by points of integer coordinates, as shown in Figure 48. The circle is
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inscribed in an 8 x 8 square decomposed into 64 unit squares. Because 32 + 32 > 42, the
four unit squares at the corners lie ouside the circle. The interior of the circle is therefore
covered by 60 squares, which are our “holes.” The 61 points are the “pigeons,” and by
the pigeonhole principle two lie inside the same square. The distance between them does
not exceed the length of the diagonal, which is +/2. The problem is solved.

—
/
\
N L
Figure 48

45. If r = 1, all lines pass through the center of the square. If r £ 1, a line that divides
the square into two quadrilaterals with the ratio of their areas equal to r has to pass
through the midpoint of one of the four segments described in Figure 49 (in that figure
the endpoints of the segments divide the sides of the square in the ratio r). Since there
are four midpoints and nine lines, by the pigeonhole principle three of them have to pass
through the same point.

Figure 49

46. Choose a face with maximal number of edges, and let n be this number. The number
of edges of each of the n adjacent faces ranges between 3 and n, so by the pigeonhole
principle, two of these faces have the same number of edges.

(Moscow Mathematical Olympiad)
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47. An n-gon has (;) —n = %n(n — 3) diagonals. For n = 21 this number is equal to
189. If through a point in the plane we draw parallels to these diagonals, 2 x 189 = 378
adjacent angles are formed. The angles sum up to 360°, and thus one of them must be
less than 1°.

48. The geometric aspect of the problem is only apparent. If we number the vertices of the
polygon counterclockwise 1, 2, ..., 2n,then Py, Ps, ..., P, isjustapermutation of these
numbers. We regard indices modulo 2n. Then P; P, is parallel to P; P; if and only if
P;—P; = P11 — Py (mod 2n), thatis, ifand only if P; + P, = P;+ Pj;1 (mod 2n).
Because

2n 2n
D (Pi+Piyu)=2) Pi=2n2n—1)=0 (mod 2n)

i=1 i=1
and

2n
Zi =n(n — 1) = n (mod 2n),

i=1

it follows that P; + P;y1, i = 1,2, ..., 2n, do not exhaust all residues modulo 2n. By

the pigeonhole principle there exist i # j such that P, + P,y = P; + P;;; (mod 2n).

Consequently, the sides P; P, | and P; P; are parallel, and the problem is solved.
(German Mathematical Olympiad, 1976)

49. Let C be a circle inside the triangle formed by three noncollinear points in S. Then C
is contained entirely in S. Set m = np + 1 and consider a regular polygon A1 A, ... A,
inscribed in C. By the pigeonhole principle, some n of its vertices are colored by the
same color. We have thus found a monochromatic n-gon. Now choose « an irrational
multiple of . The rotations of AjA;--- A, by ka, kK = 0,1,2, ..., are all disjoint.
Each of them contains an n-gon with vertices colored by n colors. Only finitely many
incongruent n-gons can be formed with the vertices of AjA;---A,. So again by the
pigeonhole principle, infinitely many of the monochromatic n-gons are congruent. Of
course, they might have different colors. But the pigeonhole principle implies that one
color occurs infinitely many times. Hence the conclusion.
(Romanian Mathematical Olympiad, 1995)

50. This is an example in Ramsey theory (see Section 6.1.5) that applies the pigeonhole
principle. Pick two infinite families of lines, {A;, i > 1}, and {B;, j > 1}, such that
for any i and j, A; and B; are orthogonal. Denote by M;; the point of intersection of A;
and B;. By the pigeonhole principle, infinitely many of the M;;’s, j > 1, have the same
color. Keep only the lines B; corresponding to these points, and delete all the others. So
again we have two families of lines, but such that M ; are all of the same color; call this
color c;.
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Next, look at the line A,. Either there is a rectangle of color ¢;, or at most one point
M,; is colored by c;. Again by the pigeonhole principle, there is a color ¢, that occurs
infinitely many times among the M»;’s. We repeat the reasoning. Either at some step we
encounter a rectangle, or after finitely many steps we exhaust the colors, with infinitely
many lines A; still left to be colored. The impossibility to continue rules out this situation,
proving the existence of a rectangle with vertices of the same color.

Here is another solution. Considera (p+ 1) x (n (” +1) + 1) rectangular grid. By the

2
P ;1) +1 horizontal segments contains two points of the

same color. Since there are at most n (p ;1) possible configurations of such monochromatic

pairs, two must repeat. The two pairs are the vertices of a monochromatic rectangle.

pigeonhole principle, each of the n

51. We place the unit square in standard position. The “boxes” are the vertical lines
crossing the square, while the “objects’ are the horizontal diameters of the circles (Fig-
ure 50). Both the boxes and the objects come in an infinite number, but what we use for
counting is length on the horizontal. The sum of the diameters is

10
—=3x1+¢ €>0.
b4

Consequently, there is a segment on the lower side of the square covered by at least four
diameters. Any vertical line passing through this segment intersects the four correspond-
ing circles.

-
|
|
|
|
|
|
T
|
|
|

-

Figure 50

52. If three points are collinear then we are done. Thus we can assume that no three points
are collinear. The convex hull of all points is a polygon with at most n sides, which has
therefore an angle not exceeding @ All other points lie inside this angle. Ordered
counterclockwise around the vertex of the angle they determine n — 2 angles that sum up
to at most @ It follows that one of these angles is less than or equal to n=Dr _ x

nn—2) — n’
The three points that form this angle have the required property.
53. Denote by D(O, r) the disk of center O and radius r. Order the disks
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D(01, 1), D(O2,12), ..., D(On, 1y),

in decreasing order of their radii.

Choose the disk D(0Oy, r;), and then delete all disks that lie entirely inside the disk
of center O; and radius 3r;. The remaining disks are disjoint from D(Oy, r;). Among
them choose the first in line (i.e., the one with maximal radius), and continue the process
with the remaining circles.

The process ends after finitely many steps. At each step we deleted less than eight
times the area of the chosen circle, so in the end we are left with at least % of the initial
area. The chosen circles satisfy the desired conditions.

(M. Pimsner, S. Popa, Probleme de geometrie elementard (Problems in elementary
geometry), Editura Didactici si Pedagogici, Bucharest, 1979)

54. Given a circle of radius r containing n points of integer coordinates, we must prove
that n < 27~/r2. Because r > 1 and 277 > 6 we may assume n > 7.
Label the n lattice points counterclockwise P, P,, ..., P,. The (counterclockwise)

arcs Py Ps, P, Py, ..., P, P, cover the circle twice, so they sum up to 4. Therefore, one

of them, say P; Ps;, measures at most 47”.

Consider the triangle P, P, Ps, which is inscribed in an arc of measure 4n—”. Because
n > 7, the arc is less than a quarter of the circle. The area of P, P, P; will be maximized
if P; and P; are the endpoints and P, is the midpoint of the arc. In that case,

abc  2rsinZ -2rsinZ -2rsin 2 2rZ . 2rI . 2r3 44273
Area(P P, P;) = — = u L o< L L o= .
4r 4r 4r n3

And in general, the area of P; P, P; cannot exceed 4’73 Op the other hand, if the

n3
coordinates of the points P, P», P; are, respectively, (x1, y1), (x2, y2), and (x3, ¥3), then

111
Area(P, P, P3) = ii X1 X2 X3
Y1 Y2 y3

1
= §|x1)’2 — X2y1 + X2y3 — X3y2 + X3y1 — X1y3].

Because the coordinates are integers, the area cannot be less than % We obtain the

. . 2.3 . .
inequality % < 4rnf , which proves that 2w Nr2 > n, as desired.

Remark. The weaker inequality n(r) < 6+/7r2 was given in 1999 at the Iranian Mathe-
matical Olympiad.

55. Order the eight integers a; < ay < --- < ag < 2004. We argue by contradiction.
Assume that for any choice of the integers a, b, c,d, eithera +b +c < d + 4 or
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a+ b+ c > 4d. Let us look at the situation in which d is a3 and a, b, and ¢ are ay, as,
and a4. The inequality @y + a, + a4 < 4 + a3 is impossible because a4 > a3 + 1 and
ay + a; > 3. Thus with our assumption, a; + a, + a4 > 4as, or

ayg > 4613 —dy —daj.
By similar logic,

as > 4ay — ar — a; > 16a; — Sa, — Say,

ag > 4as — a, — ay; > 64a; — 2la, — 21ay,

a7 > 4ag — ar — a; > 256az — 85a, — 85ay,

ag > 4a7 — a, — a; > 1024a3 — 341a, — 341a;.

We want to show that if this is the case, then ag should exceed 2004. The expression
1024a3 — 341a, — 341a; can be written as 683as + 341(as; — az) + 341(a; — ay), so
to minimize it we have to choose a; = 1, ao = 2, a3 = 3. But then the value of the
expression would be 2049, which, as predicted, exceeds 2004. This contradiction shows
that our assumption was false, proving the existence of the desired four numbers.
(Mathematical Olympiad Summer Program, 2004, proposed by T. Andreescu)
56. There is no loss of generality in supposing thata; < a, < --- < a, < ---. Now
proceed by induction onn. Forn =1, af > 2*;—“(11 follows from a; > 1. The inductive
step reduces to

2n +3

2
d,ir] > g(al+612+"'+an)+ An1-

An equivalent form of this is
3a5+1 —2n+3)ayp =20@+a+---+ay).

At this point there is an interplay between the indices and the terms of the sequence,
namely the observation that a; + a, + - - - + a,, does not exceed the sum of integers from
1 to a,,. Therefore,

2@ +a+--tay) <20+2+ -+ a,) = apan + 1) < (@ny1 — Danyr-
We are left to prove the sharper, yet easier, inequality
3ay, — 2n +3)ans1 = (@ny1 — Dangr.

This is equivalent to a,,1 > n + 1, which follows from the fact that a,,,; is the largest of
the numbers.

(Romanian Team Selection Test for the International Mathematical Olympiad, pro-
posed by L. Panaitopol)
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57. Again, there will be an interplay between the indices and the values of the terms.
We start by ordering the a;’s increasingly a; < a, < --- < a,. Because the sum of

two elements of X is in X, given g; in the complement of X, foreach 1 < m < %, either

m or a; —m is notin X. There are [%-] such pairs and only i — 1 1ntegers less than a; and

notin X; henceaq; < 2i — 1. Summlng overi givesa; +a, +---+a, < n? as desired.

(In the solution we denoted by [x] the least integer greater than or equal to x.)
(proposed by R. Stong for the USAMO, 2000)

58. Call the elements of the 4 x 4 tableau a;;, i, j = 1, 2, 3, 4, according to their location.
As such, a;3 = 2, ap = 5, a3y = 8 and a4; = 3. Look first at the row with the largest
sum, namely, the fourth. The unknown entries sum up to 27; hence all three of them,
ag, ag3, and ayq, must equal 9. Now we consider the column with smallest sum. It is the
third, with

a3+ axp +az; +ass =2+ ax +a; +9 =13,
We see that a3 + az3 = 2; therefore, a3 = az; = 1. We than have
az1 +axn +asz +az =as +azxp + 148 =26.
Therefore, asz; 4+ a3, = 17, which can happen only if one of them is 8 and the other is 9.

Checking the two cases separately, we see that only a3; = 8, as; = 9 yields a solution,
which is described in Figure 51.

712123 <14
3/5(1|7|<0e
8918«
3

0/@@5@ é@\t

Figure 51

(such puzzles appear in the Sunday edition of the San Francisco Chronicle)

59. There are only finitely many polygonal lines with these points as vertices. Choose
the one of minimal length P P, ... P,. If two sides, say P; P;;; and P; P;;, intersect
at some point M, replace them by P; P; and P, P; to obtain the closed polygonal
line Py ... P;P;P;_y... Py Pjyy ... P, (Figure 52). The triangle inequality in triangles
M P; P; and M P, | P, shows that this polygonal line has shorter length, a contradiction.
It follows that P, P, ... P, has no self-intersections, as desired.
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Pj+l P
Figure 52

60. Let A;A;;; be the longest side of the polygon (or one of them if more such sides
exist). Perpendicular to it and at the endpoints A; and A, take the lines L and L/,
respectively. We argue on the configuration from Figure 53.

If all other vertices of the polygon lie to the right of L', then A;_1A; > A; A1,
because the distance from A; to a point in the half-plane determined by L’ and opposite
to A; is greater than the distance from A; to L’. This contradicts the maximality, so it
cannot happen. The same argument shows than no vertex lies to the left of L. So there
exists a vertex that either lies on one of L and L', or is between them. That vertex projects
onto the (closed) side A; A; 1, and the problem is solved.

’

L L

Ai Ai+1

Figure 53

Remark. 1t is possible that no vertex projects in the interior of a side, as is the case with
rectangles or with the regular hexagon.

(M. Pimsner, S. Popa, Probleme de geometrie elementard (Problems in elementary
geometry), Editura Didactici si Pedagogici, Bucharest, 1979)

61. First solution: Consider the oriented graph of roads and cities. By hypothesis, the
graph has no cycles. Define a partial order of the cities, saying that A < B if one can
travel from A to B. A partial order on a finite set has maximal and minimal elements. In
a maximal city all roads enter, and from a minimal city all roads exit.

Second solution: Pick an itinerary that travels through a maximal number of cities (more
than one such itinerary may exist). No roads enter the starting point of the itinerary, while
no roads exit the endpoint.

(Kvant (Quantum))
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62. Let b be a boy dancing with the maximal number of girls. There is a girl g’ he does
not dance with. Choose as b’ a boy who dances with g’. Let g be a girl who dances
with b but not with »’. Such a girl exists because of the maximality of b, since b’ already
dances with a girl who does not dance with b. Then the pairs (b, g), (b', g’) satisfy the
requirement.

(26th W.L. Putnam Mathematical Competition, 1965)

63. Let (a;j)ij, 1 <i <m,1 < j < n, be the matrix. Denote the sum of the elements
in the ithrow by s;,i = 1,2, ..., m. We will show that among all matrices obtained by
permuting the elements of each column, the one for which the sum [s1| 4 |s2] + - - - + S|
is minimal has the desired property.

If this is not the case, then |s;| > 2 for some k. Without loss of generality, we can
assume that s; > 2. Since s; + s2 + - - - + 5, = 0, there exists j such thats; < 0. Also,
there exists an i such that a;; > a;;, for otherwise s; would be larger than s;. When
exchanging a;; and g;; the sum |s1| + |s2| + - - - + [s,,| decreases. Indeed,

ISk — aix + aij| + 15 + aix — aij| = sk — aix + aij + |s; + ai — aij|
< sk — aik +a;; + || + aix — aij,

where the equality follows from the fact that s > 2 > a;; — a;;, while the strict
inequality follows from the triangle inequality and the fact that s; and a;x — a;; have
opposite signs. This shows that any minimal configuration must satisfy the condition
from the statement. Note that a minimal configuration always exists, since the number
of possible permutations is finite.

(Austrian—Polish Mathematics Competition, 1984)

64. We call a number good if it satisfies the given condition. It is not difficult to see
that all powers of primes are good. Suppose n is a good number that has at least two
distinct prime factors. Letn = p”s, where p is the smallest prime dividing n and s is not
divisible by p. Because n is good, p + s — 1 must divide n. For any prime ¢ dividing
s,s < p+s—1<s+gq,soq doesnot divide p + s — 1. Therefore, the only prime
factor of p +s — 11is p. Thens = p° — p 4+ 1 for some integer ¢ > 1. Because p must
also divide n, p¢ + s — 1 = 2p° — p divides n. Because 2p°~! — 1 has no factors of p,
it must divide s. But

—1 —1 1

P ept-n=p - = < prr < P -
_ . C c—l_p+1
=p +p T

a contradiction. It follows that the only good integers are the powers of primes.
(Russian Mathematical Olympiad, 2001)

65. Let us assume that no infinite monochromatic sequence exists with the desired prop-
erty, and consider a maximal white sequence 2k; < k; +k, < - -+ < 2k, and a maximal
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black sequence 2/ < I} + 1, < --- < 2[,,. By maximal we mean that these sequences
cannot be extended any further. Without loss of generality, we may assume that k,, < [,,,.

We look at all white even numbers between 2k, + 1 and some arbitrary 2x; let W be
their number. If for one of these white even numbers 2k the number k + k,, were white as
well, then the sequence of whites could be extended, contradicting maximality. Hence
k + k, must be black. Therefore, the number b of blacks between 2k,, + 1 and x + k,, is
at least W.

Similarly, if B is the number of black evens between 2/, + 1 and 2x, the number w
of whites between 2/,, + 1 and x + [,, is at least B. We have B + W > x — [,,,, the latter
being the number of even integers between 2/, + 1 and 2x, while b + w < x — k,,, since
x — k, is the number of integers between 2k, + 1 and x + k,,. Subtracting, we obtain

0<b—-—W)+(w-—B) <l,—k,,

and this inequality holds for all x. This means that as x varies there is an upper bound
for b» — W and w — B. Hence there can be only a finite number of black squares that
cannot be written as k, + k for some white 2k and there can only be a finite number of
white squares which cannot be written as /,, + [ for some black 2/. Consequently, from a
point onward all white squares are of the form /,, 4 [ for some black 2/ and from a point
onward all black squares are of the form k,, 4+ k for some white 2k.

We see that for k sufficiently large, & is black if and only if 2k — 2k, is white, while
k is white if and only if 2k — 2/, is black. In particular, for each such k, 2k — 2k, and
2k — 21,, have the same color, opposite to the color of k. So if we letl,, — k, = a > 0,
then from some point onward 2x and 2x + 2a are of the same color. The arithmetic
sequence 2x + 2na, n > 0, is thus monochromatic. It is not hard to see that it also
satisfies the condition from the statement, a contradiction. Hence our assumption was
false, and sequences with the desired property do exist.

(communicated by A. Negut)

66. We begin with an observation that will play an essential role in the solution.
Given a triangle XY Z, if ZXYZ < %, then either the triangle is equilateral or else
max{YX,YZ} > XZ, and if ZXYZ > 7, then either the triangle is equilateral or else
min{YX,YZ} < XZ.

Choose vertices A and B that minimize the distance between vertices. If C is a vertex
such that ZACB = %, then max{CA, CB} < AB, so by our observation the triangle
ABC is equilateral. So there exists an equilateral triangle ABC formed by vertices of
the polygon and whose side length is the minimal distance between two vertices of the
polygon. By a similar argument there exists a triangle A; B; C| formed by vertices whose
side length is the maximal distance between two vertices of the polygon. We will prove
that the two triangles are congruent.

The lines AB, BC, C A divide the plane into seven open regions. Denote by R, the
region distinct from the interior of ABC and bounded by side BC, plus the boundaries
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of this region except for the vertices B and C. Define Rp and R analogously. These
regions are illustrated in Figure 54. Because the given polygon is convex, each of Ay,
By, and C| lies in one of these regions or coincides with one of A, B, and C.

A Ry
Re
B C

Ry

Figure 54

If two of Ay, By, Cy, say A, and By, are in the same region Ry, then LA XB| <
%. Hence max{XA,, XB;} > A; B, contradicting the maximality of the length A, B;.
Therefore, no two of Ay, B;, C; are in the same region.

Suppose now that one of Ay, By, C; (say A;) lies in one of the regions (say Rga).
Because min{AB, A{C} > BC, we have that /ZBA,C < % We know that By does
not lie in R4. Also, because the polygon is convex, B does not lie in the interior of the
triangle AA| B, and C does not lie in the interior of triangle AA| B,. It follows that B,
lies in the closed region bounded by the rays |[A;B and |A;C. So does C;. Therefore,
3 =4B1ACy < ZBA,C < %, withequalities if By and C lie onrays |[A; B and |A;C.
Because the given polygon is convex, this is possible only if B; and C; equal B and C
in some order, in which case BC = B;C;. This would imply that triangles ABC and
A B,C) are congruent.

The remaining situation occurs when none of A;, By, C; are in R4 U Rg U R¢, in
which case they coincide with A, B, C in some order. Again we conclude that the two
triangles are congruent.

We have proved that the distance between any two vertices of the given polygon is
the same. Therefore, given a vertex, all other vertices are on a circle centered at that
vertex. Two such circles have at most two points in common, showing that the polygon
has at most four vertices. If it had four vertices, it would be a rhombus, whose longer
diagonal would be longer than the side, a contradiction. Hence the polygon can only be
the equilateral triangle, the desired conclusion.

(Romanian Mathematical Olympiad, 2000)

o () ()

67. Because
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the sum of the squares of the numbers in a triple is invariant under the operation. The
sum of squares of the first triple is % and that of the second is 6 + 2+/2, so the first triple
cannot be transformed into the second.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

68. Assign the value i to each white ball, —i to each red ball, and —1 to each green ball.
A quick check shows that the given operations preserve the product of the values of the
balls in the box. This product is initially i?°°° = 1. If three balls were left in the box,
none of them green, then the product of their values would be +i, a contradiction. Hence,
if three balls remain, at least one is green, proving the claim in part (a). Furthermore,
because no ball has value 1, the box must contain at least two balls at any time. This
shows that the answer to the question in part (b) is no.
(Bulgarian Mathematical Olympiad, 2000)

69. Let / be the sum of the number of stones and heaps. An easy check shows that the
operation leaves / invariant. The initial value is 1002. But a configuration with k heaps,
each containing 3 stones, has I = k 4 3k = 4k. This number cannot equal 1002, since
1002 is not divisible by 4.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

70. The quantity I = xv + yu does not change under the operation, so it remains equal to
2mn throughout the algorithm. When the first two numbers are both equal to gcd(m, n),
the sum of the latter two is —2— = 2 lem(m, n).

ged(m,n)
(St. Petersburg City Mathematical Olympiad, 1996)

71. We can assume that p and g are coprime; otherwise, shrink the size of the chessboard
by their greatest common divisor. Place the chessboard on the two-dimensional integer
lattice such that the initial square is centered at the origin, and the other squares, assumed
to have side length 1, are centered at lattice points. We color the chessboard by the Klein
four group K = {a, b, c, e | a’> =b*=c?>=e,ab = c,ac = b, bc = a} as follows: if
(x, y) are the coordinates of the center of a square, then the square is colored by e if both
x and y are even, by c if both are odd, by a if x is even and y is odd, and by b if x is odd
and y is even (see Figure 55). If p and g are both odd, then at each jump the color of
the location of the knight is multiplied by c. Thus after n jumps the knight is on a square
colored by ¢". The initial square was colored by e, and the equality ¢" = e is possible
only if n is even.

If one of p and g is even and the other is odd, then at each jump the color of the square
is multiplied by a or b. After n jumps the color will be a*»" %, The equality a*b"* = e
implies a* = b"*, so both k and n — k have to be even. Therefore, n itself has to be
even. This completes the solution.

(German Mathematical Olympiad)

72. The invariant is the 5-colorability of the knot, i.e., the property of a knot to admit a
coloring by the residue classes modulo 5 such that
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clblclblc| b
ajle|a e | aje
clblclblc| b
ajle|a e | ajle
clblclblc| b
ajle|a e | aje
Figure 55

(1) at least two residue classes are used;
(ii) at each crossing, a + ¢ = 2b (mod 5), where b is the residue class assigned to the
overcrossing, and a and c are the residue classes assigned to the other two arcs.

A coloring of the figure eight knot is given in Figure 56, while the trivial knot does
not admit 5-colorings since its simplest diagram does not. This proves that the figure
eight knot is knotted.

3 1 0

5

Figure 56

73. The answer is no. The idea of the proof is to associate to the configuration (a) an
encoding defined by a pair of vectors (v, w) € Z3 such that the (i, j) square contains a
+ if the ith coordinate of v is equal to the jth coordinate of w, and a — otherwise. A
possible encoding for our configuration is v = w = (1, 1, 0). Any other configuration
that can be obtained from it admits such an encoding. Thus we choose as the invariant
the possibility of encoding a configuration in such a manner.

It is not hard to see that the configuration in (b) cannot be encoded this way. A slick
proof of this fact is that the configuration in which all signs are negative except for the
one in the center can be obtained from this by the specified move, and this latter one
cannot be encoded. Hence it is impossible to transform the first configuration into the
second.

(Russian Mathematical Olympiad 1983—1984, solution by A. Badev)

74. The answer is no. The essential observation is that

99...99 =99 = 3 (mod 4).
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When we write this number as a product of two factors, one of the factors is congruent to
1 and the other is congruent to 3 modulo 4. Adding or subtracting a 2 from each factor
produces numbers congruent to 3, respectively, 1 modulo 4. We deduce that what stays
invariant in this process is the parity of the number of numbers on the blackboard that
are congruent to 3 modulo 4. Since initially this number is equal to 1, there will always
be at least one number that is congruent to 3 modulo 4 written on the blackboard. And
this is not the case with the sequence of nines. This proves our claim.
(St. Petersburg City Mathematical Olympiad, 1997)

75. Without loss of generality, we may assume that the length of the hypotenuse is 1 and
those of the legs are p and g. In the process, we obtain homothetic triangles that are in
the ratio p™¢q" to the original ones, for some nonnegative integers m and n. Let us focus
on the pairs (m, n).

Each time we cut a triangle, we replace the pair (m, n) with the pairs (m + 1, n)
and (m,n + 1). This shows that if to the triangle corresponding to the pair (m, n) we
associate the weight zmﬁ, then the sum / of all the weights is invariant under cuts. The
initial value of I is 4. If at some stage the triangles were pairwise incongruent, then the
value of I would be strictly less than

9] 00 1 00 1
Z 2m+n Z 2_m Z 2_n =4,
m,n=0 m=0 n=0

a contradiction. Hence a configuration with all triangles of distinct sizes cannot be
achieved.
(Russian Mathematical Olympiad, 1995)

76. First solution: Here the invariant is given; we just have to prove its invariance. We
first examine the simpler case of a cyclic quadrilateral ABC D inscribed in a circle of
radius R. Recall that for a triangle X Y Z the radii of the incircle and the circumcircle are
related by

X Y . Z
r = 4R sin — sin — sin —.
2 2 2

Let /CAD = oy, /ZBAC = o, ZABD = . Then /DBC = «;, and ZACD = B,
ZBDC = ay,and ZACB = ZADB = 180° — @1 — ap — B. The independence of the
sum of the inradii in the two possible dissections translates, after dividing by 4R, into
the identity

sinal+a2sinﬁsin 90°—w + sin 90"—0“-'_0[2 smﬂsma—2
2 2 2 2 2 2

=sinal+'Blsin%sin 90°—w + sin 900_o¢1+,8] smﬂsmﬁ
2 2 2 2 2 2
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This is equivalent to

ar+pitay . art+o . B +B .
0S sin Sin — — SIn sin —
2 2 2 2 2
Lar (B ar+B o artaa
=S — | S1n —COS —— — S1In — COS s
2 2 2 2 2

or

011+012+,3( a+ay — B al—az+/3>
0s cos 0§ ——— =

2 2 B 2

= sin 5 (sin (#1+ ) = sin (o2 + )
= sin > sin ( B4 > sin ( oy >))

Using product-to-sum formulas, both sides can be transformed into cos(o; + «2)
+ cos B1 — cos(ay + Bi) — cos as.

Figure 57

The case of a general polygon follows from the particular case of the quadrilateral.
This is a consequence of the fact that any two dissections can be transformed into one
another by a sequence of quadrilateral moves (Figure 57). Indeed, any dissection can be
transformed into a dissection in which all diagonals start at a given vertex, by moving
the endpoints of diagonals one by one to that vertex. So one can go from any dissection
to any other dissection using this particular type as an intermediate step. Since the sum
of the inradii is invariant under quadrilateral moves, it is independent of the dissection.

Second solution: This time we use the trigonometric identity
r
1+ rin cos X +cosY + cos Z.

We will check therefore that the sum of 1 + % is invariant, where r; are the inradii of the
triangles of the decomposition. Again we prove the property for a cyclic quadrilateral
and then obtain the general case using the quadrilateral move. Using the fact that the sum

of cosines of supplementary angles is zero and chasing angles in the cyclic quadrilateral
ABCD, we obtain

cos ZDBA + cos Z/BDA +cos ZDAB + cos ZBCD + cos ZCBD + cos ZCDB
=cosZDBA +cos Z/BDA +cos ZCBD +cos ZCDB
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=cosZDCA +cos Z/BCA +cosZCAD + cos ZCAB
=cos ZDCA +cos ZCAD + cos ZADC + cos ZBCA + cos ZCAB + cos ZABC,

and we are done.

Remark. A more general theorem states that two triangulations of a polygonal surface
(not necessarily by diagonals) are related by the move from Figure 57 and the move from
Figure 58 or its inverse. These are usually called Pachner moves.

Figure 58

(Indian Team Selection Test for the International Mathematical Olympiad, 2005,
second solution by A. Tripathy)

77. Let S be the sum of the elements of the table. By performing moves on the rows or
columns with negative sum, we obtain a strictly increasing sequence §1 < S, < --- .
Because S can take at most 2"” values (all possible sign choices for the entries of the table),
the sequence becomes stationary. At that time no row or column will have negative sum.

78. Skipping the first step, we may assume that the integers are nonnegative. The semi-
invariant is S(a, b, ¢, d) = max(a, b, ¢, d). Because for nonnegative numbers x, y, we
have |x — y| < max(x, y), S does not increase under 7. If S decreases at every step,
then it eventually becomes 0, in which case the quadruple is (0, 0, 0, 0). Let us see in
what situation S is preserved by 7T'. If

S(a,b,c,d) =S(T(a,b,c,d)) =S(la—>b]|,|b—c| |c—4d||d—al),

then next to some maximal entry there must be a zero. Without loss of generality, we
may assume a = S(a, b, c,d) and b = 0. Then

@, 0,c,d) —> (a.c,|c—d|.|d — al)
T
> (la—cl.le—lc—dl.|lc—d| —|d —all, |a — |d — all).

Can S stay invariant in both these steps? If |a — c¢| = a, thenc = 0. If |c — |c — d|| = a,
then since a is the largest of the four numbers, eitherc =d = aorelsec =0,d = a.
The equality ||c —d| — |d —a|| = acanholdonlyifc =0,d =a,ord =0, c = a.
Finally, |a — |d —a|| = a if d = a. So S remains invariant in two consecutive steps only
for quadruples of the form
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(a,0,0,d), (a,0,0,a),(a,0,a,0)),(a,o0,c,a),

and their cyclic permutations.
At the third step these quadruples become

(Cl, O, da |d - al)a (Cl, O, a, 0)7 (Cl, a, a, Cl), (Cl, c, |C - ala 0)

The second and the third quadruples become (0, 0, 0, 0) in one and two steps, respectively.
Now let us look at the first and the last. By our discussion, unless they are of the form
(a,0,a,0)or (a, a, 0, 0), respectively, the semi-invariant will decrease at the next step.
So unless it is equal to zero, S can stay unchanged for at most five consecutive steps. If
initially S = m, after 5m steps it will be equal to zero and the quadruple will then be
©,0,0,0).

79. If a, b are erased and ¢ < d are written instead, we have ¢ < min(a, ) and d >
max(a, b). Moreover, ab = cd. Using derivatives we can show that the function
flo)=c+ % is strictly decreasing on (0, #), which implies a + b < ¢ 4+ d. Thus the
sum of the numbers is nondecreasing. It is obviously bounded, for example by n times
the product of the numbers, where n is the number of numbers on the board. Hence the
sum of the numbers eventually stops changing. At that moment the newly introduced ¢
and d should satisfy ¢ +d = a + b and cd = ab, which means that they should equal a
and b. Hence the numbers themselves stop changing.
(St. Petersburg City Mathematical Olympiad, 1996)

80. To a configuration of pebbles we associate the number

1
§= Z N+

where the sum is taken over the coordinates of all nodes that contain pebbles. At one
move of the game, a node (i, j) loses its pebble, while two nodes (i1, j;) and (i, j») gain
pebbles. Since either the first coordinate or the second changes by one unit, |iy| + | ji| <
lil+1jl+ 1,k =1, 2. Hence

1 L1 1
2N+ T DL+ + 2L+ = Dlirl+1l + Dlial+l2l”

which shows that S is a nondecreasing semi-invariant. We will now show that at least one
pebble is inside or on the boundary of the square R determined by the lines x + y = £5.
Otherwise, the total value of S would be less than

1
Z i+

lil+1j1>5

=1+4ZZW_ Z i+

i=1 j=0 7 " il+ljI<5
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—1+4§:lool 1—4(1-=+2--+3 +41+51
a — pars 2i 2 4 8 16 32
65 7
= _——= =<
8 8

This is impossible, since the original value of S was 1. Consequently, there will always
be a pebble inside R, and this pebble will be at distance at most 5 from the origin.
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81. Assume that both numbers are perfect cubes. Then so is their product
(n+3)n*>+3n+3)=n’+6n*>+12n+9.

However, this number differs from the perfect cube (n + 2)* = n® 4+ 60> + 12n 4 8 by
one unit. And this is impossible because no perfect cubes can be consecutive integers
(unless one of them is zero). This proves the claim.

82. Let m = pq. We use the identity
xm ym — (X _ y)(xm—l _|_xm—2y RS ym—l)’
which can be applied to the matrices A and — B since they commute. We have

(A= (=B)A" '+ A" 2(=B)+ -+ (=B)"™")
= A" — (=B)" = (AP")? — (=1)P1(BY)" =T,.
Hence the inverse of A+ B =A — (—B)is A" ' + A" 2(=B) +--- + (—=B)"" .

83. First solution: Let F(x) be the polynomial in question. If F(x) is the square of a
polynomial, then write F (x) = G(x)? + 0. In general, F (x) is nonnegative for all real
numbers x if and only if it has even degree and is of the form

F(x) = R(x)*(x* +aix + b)) (x> +axx +by) -+ (x> + ayx + b,),
where the discriminant of each quadratic factor is negative. Completing the square

2 ap\? 2 . a%
x+akx—|—bk:<x+3) + A%, with A = bk_Z’

we can write
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F(x) = (P1(x)> + Q1)) (P2 (x)* + 02(x)%) - - (P () + 0 (%)),
where the factor R (x)? is incorporated in P (x)? and Q; (x)?. Using the Lagrange identity
(@* + bH)(* + d*) = (ac + bd)* + (ad — bc)?,

we can transform this product in several steps into P (x)>+ Q(x)?, where P (x) and Q(x)
are polynomials.

Second solution: Likewise, with the first solution write the polynomial as
F(x) = R(X)*(x* + a1x + b)) (x% + asx + by) - - - (x> + apx + by).

Factor the quadratics as (x 4+ o + i) (x + o, — iBy). Group the factors with +i8; into a
polynomial P (x) 4 i Q(x) and the factors with —iB; into the polynomial P(x) — i Q(x).
Then

F(x) = (R(x)P(x))* + (R(x) Q(x))?,
which proves the conclusion.

Remark. D. Hilbert discovered that not every positive two-variable polynomial can be
written as a sum of squares of polynomials. The appropriate generalization to the case
of rational functions makes the object of his 16th problem. While Hilbert’s proof is
nonconstructive, the first examples of such polynomials were discovered surprisingly late,
and were quite complicated. Here is a simple example found by T. Motzkin: f(x, y) =
1+ x2y2(x% + y2 = 3).

84. Simply substitute x = 5" in the factorization
XHx+1= (x2+x+l)(x3—x2+1)

to obtain a factorization of the number from the statement. It is not hard to prove that
both factors are greater than 1.

(T. Andreescu, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

85. Let
n n n
N = 5"7] _ 5n72 5n73 . .
(e G )

Then SN — 1 = (5 — 1)". Hence

B 4 41 B 4(2k)4+1 _ (22k+1 +2k+1 + l)(22k+1 _ 2k+1 4 1)
5 5 B 5 ’
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where k = % Since n > 5, both factors at the numerator are greater than 5, which
shows that after canceling the denominator, the expression on the right can still be written
as a product of two numbers. This proves that N is not prime.

(T. Andreescu, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

86. We use the identity
a@—l=@-D@+a+a*+a+1)
applied for a = 5%7. The difficult part is to factor a* 4+ a® 4+ a> 4+ a + 1. Note that
at+add+a*+a+1=@+3a+1*=5a@@+ 1)
Hence

at+ad+at+a+1=@+3a+1>=5%@+1)?
=@ +3a+ 1= 50+ 1)?
=@ +3a+14+5%0@+1))@*+3a+1-5Pw+1).

It is obvious that @ — 1 and a® + 3a + 1 4 5'%(a + 1) are both greater than 5'°°. As for
the third factor, we have

a?4+3a+1-5P+D)=aa@-5"43a-5"+1>a+0+1> 50

Hence the conclusion.
(proposed by Russia for the 26th International Mathematical Olympiad, 1985)

87. The number from the statement is equal to a* + a® + a? +a + 1, where a = 5%. As
in the case of the previous problem, we rely on the identity

at+dd+a*+a+1= @ +3a+1?*=5a+1)7?
and factor our number as follows:

at+dd+aP+a+1=@+3a+1D*=G%@+1)?
=@ +4+3a+1+58%@+1))@*+a+1-5%@+1).

The first factor is obviously greater than 1. The second factor is also greater than 1, since
a+a+1-58%-5%=a@-5% +@-5"%+1,

and a > 5'3. This proves that the number from the statement of the problem is not prime.
(proposed by Korea for the 33rd International Mathematical Olympiad, 1992)
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88. The solution is based on the identity
d"+ b = (@+b)(@ "+ —ab@ T + 0" ).

This identity arises naturally from the fact that both a and b are solutions to the equation
x% — (a + b)x + ab = 0, hence also to x* — (a + b)x*~! 4+ abx*=2 = 0.

Assume that the conclusion is false. Then for some 7, a** + b*" is divisible by a + b.
For k = 2n, we obtain that the right-hand side of the identity is divisible by a + b,
hence so is ab(a*' =2 + b*"~2). Moreover, a and b are coprime to a + b, and therefore
a®"~2 4 b**~2 must be divisible by a + b. Through a backward induction, we obtain that
a’ 4+ b° = 2 s divisible by a + b, which is impossible since a, b > 1. This contradiction
proves the claim.

(R. Gelca)

. 3 . .
89.Letn be aninteger and let “ = k. Because n3 —n is the product of three consecutive

integers, n — 1, n, n + 1, it is divisible by 6; hence k is an integer. Then
w—n=6k=k-1>+*k+1)> -k -k
It follows that
n=n— (k-1 k+1>+& +£,

and thus

w4 1_n3—n 3+ _1_n3+n 3+ n®—n 3+ nd—n\’
B 6 6 6 6 '

Remark. Lagrange showed that every positive integer is a sum of at most four perfect
squares. Wieferich showed that every positive integer is a sum of at most nine perfect
cubes of positive integers. Waring conjectured that in general, for every n there is a
number w(n) such that every positive integer is the sum of at most w(n) nth powers of
positive integers. This conjecture was proved by Hilbert.

90. First solution: Using the indentity
3,13, .3 1 2 2 2
a’+ b’ 4+ ¢ —3abc = §(a+b+c)((a—b) +b—-c)+(c—a))

applied to the (distinct) numbers a = v/x — 1, b = J/x, and ¢ = /x + 1, we transform
the equation into the equivalent

x=—D+x+Gx+1)-3Jx—Dxx+1)=0.
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We further change this into x = +/x3 — x. Raising both sides to the third power, we

obtain x*> = x? — x. We conclude that the equation has the unique solution x = 0.

Second solution: The function f : R — R, f(x) = v/x — 1 + /x + +/x + 1 is strictly
increasing, so the equation f(x) = 0 has at most one solution. Since x = 0 satisfies this
equation, it is the unique solution.

91. The key observation is that the left-hand side of the equation can be factored as
x+y+2)2+y2+22 —xy— yz —zx) = p.

Since x +y+z > 1 and p is prime, we must have x +y+z = p and x>+ y> +z2 —xy —
yz — zx = 1. The second equality can be written as (x — y)> + (y —2)> + (z —x)? = 2.
Without loss of generality, we may assume thatx > y > z. Ifx > y > z,thenx —y > 1,
y—z > 1,and x —z > 2, which would imply that (x — y)? 4+ (y —z)*> 4+ (z —x)?> > 6 > 2.

Therefore, either x = y = z+ 1 orx — 1 = y = z. According to whether the prime

p is of the form 3k + 1 or 3k + 2, the solutions are (2=, pT_l, ”TJ’Z) and the corresponding
permutations, or (”T_Z, pTH, pTH) and the corresponding permutations.
(T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL 2002)

92. The inequality to be proved is equivalent to
a’+ b + ¢ —3abc > 9%k.
The left-hand side can be factored, and the inequality becomes
(a+b+c)a*+b*>+c* —ab — be — ca) > k.

Without loss of generality, we may assume that a > b > c. It follows thata — b > 1,
b—c>1,a—c>2;hence (a —b)>+ (b—c)>+ (c—a)> > 1+1+4 = 6. Dividing
by 2, we obtain

a’+b>+c?—ab—bc—ca>3.
The solution will be complete if we show that a + b + ¢ > 3k. The computation

(a+b+c)=a*>+b*+c*—ab—bc—ca+3ab + bc + ca)
>3+33k*—1)=9%*
completes the proof.
(T. Andreescu)
93. This is a difficult exercise in completing squares. We have

2 Z2 x2 yz yz Zz
mnp=1+z—2+ﬁ+ﬁ+;+z—2+;+1
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Hence
m2+n2—i-p2 = mnp + 4.
Adding 2(mn + np + pm) to both sides yields
(m +n+ p)* = mnp + 2(mn + np + pm) + 4.
Adding now 4(m + n + p) + 4 to both sides gives
(m+n+p+2)7=@m+2)n+2)(p+2).
It follows that
(m +2)(n +2)(p +2) = 2004,

But 2004 = 2% x 3 x 167, and a simple case analysis shows that the only possibilities are
(m+2,n4+2, p+2)=(4,1002,1002), (1002, 4, 1002), (1002, 1002, 4). The desired
triples are (2, 1000, 1000), (1000, 2, 1000), (1000, 1000, 2).

(proposed by T. Andreescu for the 43rd International Mathematical Olympiad, 2002)

94, Let M(a, b) = max(a®+b, b>*+a). Then M(a, b) > a*+b and M (a, b) > b*+a,
so2M(a, b) > a®> + b + b* + a. It follows that

2M( b)+1> +1 2+ b—i—l 2>0
a, ~=\a A A — Y
2 2 2

hence M(a, b) > —;11. We deduce that

1
min M(a,b) = ——,
a,beR 4

which, in fact, is attained whena = b = —%.

(T. Andreescu)
95. Let a = 2* and b = 3*. We need to show that

a+b—a*+ab—b*<1.

But this is equivalent to

0<

[(@—b)*+ (- 1D+ B - 1.

N —
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The equality holds if and only ifa = b = 1,1.e.,x = 0.
(T. Andreescu, Z. Feng, 101 Problems in Algebra, Birkhduser, 2001)

96. Clearly, O is not a solution. Solving for n yields % > 1, which reduces to
x* 4 4x 4+ 3 < 0. The last inequality can be written in its equivalent form,

=12 +2(x+1><0,

whose only real solution is x = —1.
Hence n = 1 is the unique solution, corresponding to x = —1.
(T. Andreescu)

97.If x = 0, then y = 0 and z = 0, yielding the triple (x, y, z) = (0,0, 0). If x # 0,
then y # 0 and z # 0, so we can rewrite the equations of the system in the form
1

1+ — =
+4x2

1
14— =
4y?

A B i

14+ ! =
472

Summing up the three equations leads to

i D) (-t DY (-2 L) o
x  4x2 y  4y? 7 4z2)

This is equivalent to

1 Ly’ +11 Y +1{1 Ly’ =0
2x 2y 2z) 7
It follows that % = 21_\) = 21—2 = 1, yielding the triple (x, y, z) = (%, %, %). Both triples
satisfy the equations of the system.
(Canadian Mathematical Olympiad, 1996)

98. First, note that (x — %)2 > 0 implies x — }T < x2, for all real numbers x. Applying

this and using the fact that the x;’s are less than 1, we find that
1 2
logxk X1 — Z = logxk ('xk+1) = 210gxk X1

Therefore,

— ANPECS ylx Inxs Iy,
E Y X - = E og. X n . - = 2.
— gXk k+1 4] = P gxk k+1 = In X n P n )
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So a good candidate for the minimum is 2n, which is actually attained for x; = x;, =
1
e — xn o E‘
(Romanian Mathematical Olympiad, 1984, proposed by T. Andreescu)

99. Assume the contrary, namely that 7a + 5b + 12ab > 9. Then
94 + 8ab + 7b* — (Ta + 5b + 12ab) < 6 — 9.

Hence
1

2 2 2 l 2 1
2a 4ab+2b°+7(a a+4 +51b b+4 <0,

1\? 1\?
20 -b*+7(a—- = 5(b— = 0
(a )"+ (a 2)+ ( 2)<,

a contradiction. The conclusion follows.
(T. Andreescu)

or

100. We rewrite the inequalities to be proved as —1 < a; —n < 1. In this respect,
we have

n n n
Z(ak—n)2:Za,§—2nZak+n-n2§n3+1—2n-n2+n3=1,
k=1 k=1 k=1

and the conclusion follows.
(Math Horizons, proposed by T. Andreescu)

101. Adding up the two equations yields

1 1
<x4+2x3—x+z)+<y4+2y3—y+1) =0.

Here we recognize two perfect squares, and write this as

1\* 1\*
tx—=) +(y+y-=) =0.
2 2

Equality can hold only if x* + x — 3 = y> 4+ y — = 0, which then gives {x, y} C

{—% — ‘/75 —% + ‘/73}. Moreover, since x # y, {x, y} = {—% - ‘/75, —% + ‘/75}. A simple

verification leads to (x, y) = (—% + %g, _% — ?)‘

(Mathematical Reflections, proposed by T. Andreescu)
102. Let n = 2k. It suffices to prove that
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1
E:I:x x2St T xS0,

for all 2% choices of the signs + and —. This reduces to

1 1 1 1
(5 x4+ §x2> + (Exz + x3 + §x4)
Tt lx2k72 WIS 1x2k + lxzk -0
2 2 2 ’
which is true because %x”‘_z + x2k-1 %ka = %(xk_l + x%)2 > 0 and %xzk > 0, and
the equality cases cannot hold simultaneously.

103. This is the Cauchy—Schwarz inequality applied to the numbers a; = av'b,a, =
by/c,a3 = cy/a and by = cv/b, by = a./c, by = by/a. Indeed,

9a%b*c? = (abc + abe + abe)? = (a1by + axby + azbs)?
< (al + a3 +a3) (b + b5 + b3) = (a’b + b*c + ¢*a)(c*b + a’*c + b*a).

104. By the Cauchy—Schwarz inequality,
(@+a+-+a) <(+1+4-+ D@ +a+ - +ay).
Hence a? + a3 + - - - + a> > n. Repeating, we obtain
@+a+-+a) <A+1+-+ D@ +a3+-+ap,

which shows that a‘f + ag + -+ afl > n, as desired.

105. Apply Cauchy—Schwarz:

(@185 + @20y + + + nlom)” < (af + a3 + -+ +a3) (o) + o) + -+ + Al y)
= (a12+a§++ar2l)2

The maximum is a% + a% + -+ + a2. The only permutation realizing it is the identity
permutation.

106. Applying the Cauchy-Schwarz inequality to the numbers /fix1, v/ f2x2, ...,
 fuxn and /i, &/ fos - - o, A/ fn, We obtain

(fixi+ s+ -+ fuxDfi+ ot o+ f) = (fixi + fxa+ -+ fuxa)?

hence the inequality from the statement.
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Remark. In statistics the numbers f; are integers that record the frequency of occurrence
of the sampled random variable x;,i = 1,2,...,n. If fi + fo+---+ f, = N, then

2
2 Fix 4 fox2 4o 4 fux? — Uindfoatectfun)
N -1

is called the sample variance. We have just proved that the sample variance is nonnegative.

107. By the Cauchy—Schwarz inequality,

b (Laes D) o
: " \k ko) =0

We must thus have 5n — 4 > n?, so n < 4. Without loss of generality, we may suppose
thatk; < ... <k,.

If n = 1, we must have k; = 1, which is a solution. Note that hereinafter we cannot
have k; = 1.

If n = 2, we have (ki, k») € {(2,4), (3, 3)}, neither of which satisfies the relation
from the statement.

If n = 3, we have k; + ky + k3 = 11, so 2 < k; < 3. Hence (ki, k>, k3) €
{(2,2,7),(2,3,6),(2,4,5),3,3,5), (3,4,4)}, and only (2, 3, 6) works.

If n = 4, we must have equality in the Cauchy—Schwarz inequality, and this can
happenonly if k; =k, = k3 = k4 = 4.

Hence the solutions are n = 1 and k; = 1, n = 3, and (ky, ky, k3) is a permutation of
(2,3,6),and n = 4 and (ky, k>, k3, k4) = (4,4, 4, 4).

(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

108. One can check that geometric progressions satisfy the identity. A slick proof of
the converse is to recognize that we have the equality case in the Cauchy—Schwarz

inequality. It holds only if Z—‘l’ = Z—; = -+ = a,_/ay, ie., only if ap, ay, ..., a, is a
geometric progression.

109. Let P(x) = cox" 4+ c1x" ' 4+ --- + ¢,. Then
P(@)P () = (coa" +c1a" "+ -+ ) (cob” +c1p" ' + -+ ¢,)
> (coWab)" +c1(Vab)"™' + -+ ¢,)* = (P(Vab))?,
by the Cauchy—Schwarz inequality, and the conclusion follows.

110. First solution: Ifay, a,, . . ., a, are positive integers, the Cauchy—Schwarz inequality
implies

11 1 5
(a+a+---+ta)| —+—+--+— | =n".
a a a,
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Fora, = xo — x1,a, = x; — x2, ..., a, = X, — X, this gives
1 1 1 n?
+ +---+ =
Xo— X1  X]—X2 Xno1— Xy Xo— X1+ X1 —Xo+ -+ X1 — Xy
n2
X()—xn.

The inequality from the statement now follows from

n2
Xo + X, +

> 2n,
X0 — Xp

which is rather easy, because it is equivalent to

2
n
X0 — X, — — | >0.
( ’ VxO_xn> -

Equality in Cauchy—Schwarz holds if and only if xg — x;, x; — x2, ..., X,—1 — X, are

. 1 1 1 . Xy Xy — .. —
proportional to et SRR This happens when xg —x; = x| —x; = =

Xp—1 — Xp. Also, \/xo0 — x, — n/s/x0 — x, = 0 only if xo — x, = n. This means that
the inequality from the statement becomes an equality if and only if xq, x1, ..., x, is an
arithmetic sequence with common difference 1.

Second solution: As before, let a; = x; — x;41. The inequality can be written as

n—1

. al
i=1
This follows immediately from x +x~! > 2.
(St. Petersburg City Mathematical Olympiad, 1999, second solution by R. Stong)
111. Because

1

——— —=—cos(a — b) =sinasinb + cosa cos b,
sec(a — b)

it suffices to show that

sina cosa . .
( + b)(51na51nb+cosacosb)zl.

sin b cos

This is true because by the Cauchy—Schwarz inequality,

sinfa  cos’a . . .2 2 \2
- + (sinasinb + cosa cosb) > (sin“a + cos“a)” = 1.
sin b cos b
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112. Bring the denominator to the left:

<+zb><b+><+><1 P )><+b+ + abey?
a c)(c a a C aoc) .
a+b b+c c+a 2Jabc)

The identity
(a+b)(b+c)c+a)=c*a+b)+b*(c+a)+a*b+c)+ 2abe

enables us to transform this into

1 1 1 1
2 2 2
c(a+b)+b(c+a)+a(b+c)+2abc + + +
(e ) ( ) ( ) )(a+b b+c c+a 23abc>

> (c+b+a+x/3abc)2.

And now we recognize the Cauchy—Schwarz inequality. Equality holdsonlyifa = b = c.
(Mathematical Olympiad Summer Program, T. Andreescu)

113. Let ¢ be the largest side. By the triangle inequality, ¢" < a" +b" foralln > 1. This

is equivalent to
n b n
< () +(2) oz
c c

Ifa < cand b < c, then by letting n — o0, we obtain 1 < 0, impossible. Hence one of
the other two sides equals ¢, and the triangle is isosceles.

114. Defined = —d — b — &. The inequality becomes
1@l + 151 + 11 + Il = @ +dll + b +dIl + I + d|I.

If the angles formed by a with b ¢, and d come in increasing order, then the closed
polygonal line @, b, ¢, d isaconvex quadrilateral. Figure 59 shows how this quadrilateral
can be transformed into one that is skew by choosing one angle such that one of the pairs
of adjacent angles containing it totals at most 180° and the other at least 180° and then
folding that angle in.

The triangle inequality implies ||l;|| +IIé]l > ||l§+a7|| +]| E+c?|| . Tobe more convincing,
let us explain that the left-hand side is the sum of the lengths of the dotted segments,
while the right-hand side can be decomposed into the lengths of some four segments,
which together with the dotted segments form two triangles. The triangle inequality also
gives ||a| + IIJ | > |la + d |. Adding the two yields the inequality from the statement.

(Kvant (Quantum))

115. Let Ay, A2, ..., A, be the roots of the polynomial, D; = {z, |z — c| < R} the
disk covering them, and D, = {z, |z — c¢| < R + |k|}. We will show that the roots of
nP(z) — kP'(z) lie inside D;.
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Figure 59

For u ¢ D,, the triangle inequality gives

lu —2il = |lu —c| —|c—Ai| > R+ |k| = R = [k|.

L]

] < 1,fori =1,2,...,n. For such a u we then have
1

Hence

InP(u) — kP'(u)| = = |P(u)|

" 1
nP(u) —kP(u)gm

n
k|
8 Zw—m

i=1

"1
n_kZ;—u—)»,-

> [P (u)

k]

where the last inequality follows from the triangle inequality.
But we have seen that

- k| - ( k| )
n— = 1-— > 0,
§|M—)»i| ; lu — Al

and since P (u) # 0, it follows that u cannot be a root of n P (1) — k P’ (u). Thus all roots
of this polynomial lie in D,.
(17th W.L. Putnam Mathematical Competition, 1956)

116. The inequality in the statement is equivalent to
(@® 4+ b* + *)? < 4@ + b°* + *a?).
The latter can be written as
0 < (2be)? — (@ = b* — )2,
or

(2bc + b* + ¢ — a>)(2bc — b* — * + d?).
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This is equivalent to
O<@+b+c)(—a+b+c)a—b+c)a—b—oc).

It follows that —a + b +c,a — b + ¢, a — b — c are all positive, because a +b + ¢ > 0,
and no two of the factors could be negative, for in that case the sum of the three numbers
would also be negative. Done.

117. The first idea is to simplify the problem and prove separately the inequalities |[AB —
CD| > |AC — BD|and |AD — BC| = |AC — BD|. Because of symmetry it suffices to
prove the first.

Let M be the intersection of the diagonals AC and B D. For simplicity, let AM = x,
BM =y, AB = z. By the similarity of triangles M AB and M DC there exists a positive
number k such that DM = kx, CM = ky, and CD = kz (Figure 60). Then

|AB—CD| = |k —1]|z
and
|AC — BD| = [(kx +y) — (ky +x)| = [k — 1] - |[x — y].

By the triangle inequality, |x — y| < z, which implies |[AB — CD| > |AC — BD|,
completing the proof.

Figure 60

(USA Mathematical Olympiad, 1999, proposed by T. Andreescu, solution by
PR. Loh)

118. We induct on m. When m = 1 there is nothing to prove. Now assume that the
inequality holds for m — 1 isometries and let us prove that it holds for m isometries.
Define V = [/ Vi and W = []/,' Wi. Both V and W are isometries. For a vector x
with [lx|| < 1,
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= [|[VVux — WW,.x||

(f1v)- ()

Now we use the triangle inequality to increase the value of this expression to

=V Vi = Wa)x + (V= W)Wyx||.

IV (Vi = Wi)xll + [(V — W)W, x]|.
From the fact that V is an isometry it follows that
IV Vi = Wa)xll = [(Vin — Wi)x | < 1.

From the fact that W), is anisometry, it follows that || W,,x|| < 1,andso [|[(V-W)W,x| <
m — 1 by the induction hypothesis. Putting together the two inequalities completes the
induction, and the inequality is proved.

Remark. In quantum mechanics the vector spaces are complex (not real) and the word
isometry is replaced by unitary. Unitary linear transformations model evolution, and the
above property shows that (measurement) errors accumulate linearly.

119. Place triangle A BC in the complex plane such that the coordinates of the vertices A,
B, and C are, respectively, the third roots of unity 1, €, €2. Call z the complex coordinate
of P. Start with the obvious identity

z—1)+e(z—€)+€(z—€e?) =0.
Move one term to the other side:
€G- =@ -D+ez—e.
Now take the absolute value and use the triangle inequality:
i=€l=1c-D+ec-ol<lz=1l+[(c@=-e=lz—1+]z €.

Geometrically, thisis PC < PA + PB.

Equality corresponds to the equality case in the triangle inequality for complex num-
bers, which holds if the complex numbers have positive ratio. Specifically, (z — 1) =
ae(z — €) for some positive real number a, which is equivalent to

z—1
= qae.

z—¢€
In geometric terms this means that PA and P B form an angle of 120°, so that P is on

the arc A B. The other two inequalities are obtained by permuting the letters.
(D. Pompeiu)
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120. We start with the algebraic identity
P-4+ -0+20x -y =0+y+E -0 -2)E—x),
where x, y, z are complex numbers. Applying to it the triangle inequality, we obtain
Py =zl + 1yPlz = x[ + |zPPlx = ] = |x +y + zllx = yllx = zlly —zl.

So let us see how this can be applied to our problem. Place the triangle in the complex
plane so that M is the origin, and let a, b, and c, respectively, be the complex coordinates
of A, B, C. The coordinate of G is (“Zﬂ, andif wesetx =a,y = b, and z = cin the
inequality we just derived, we obtain the geometric inequality from the statement.

(M. Dincd, M. Chiritd, Numere Complexe in Matematica de Liceu (Complex Numbers

in High School Mathematics), ALL Educational, Bucharest, 1996)

121. Because P(x) has odd degree, it has a real zero r. If r > 0, then by the AM-GM
inequality

Pry=r+1+14+14+2°-5.2.7>0.

And the inequality is strict since 1 # 2. Hence r < 0, as desired.

122. We can rewrite the inequality as

or
n—1 n—2 ==
n +n +---+1=n7.

This form suggests the use of the AM—GM inequality, and indeed, we have

_ n 0l w1y ntl
1+n+n2+...+n”IZn\/l.n.nZ...n”_lzn nz =n?z2,

which proves the inequality.
(Gh. Cilugirita, V. Mangu, Probleme de Matematicd pentru Treapta 1 si a 1l-a de
Liceu (Mathematics Problems for High School), Editura Albatros, Bucharest, 1977)

123. The inequality is homogeneous in the sense that if we multiply some a; and by
simultaneously by a positive number, the inequality does not change. Hence we can
assume thata; + by = 1,k =1, 2, ..., n. In this case, applying the AM—GM inequality,
we obtain

al+a2+"'+an+bl+b2+"'+bn
n n
ar+bit+a+br+---+a,+b, n

= —=1,

n n

(ajaz---a)"'" + (biby - - - b)"" <
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and the inequality is proved.
(64th W.L. Putnam Mathematical Competition, 2003)

124. The inequality from the statement is equivalent to

1
0< 1—(a+b+c)+ab+bc+ca—abc<E,

that is,

0<(1—a)(1—b)(1—c)§%.

From the triangle inequalities a + b > ¢, b + ¢ > a, a + ¢ > b and the condition
a+ b+ ¢ = 2 it follows that 0 < a, b, c < 1. The inequality on the left is now evident,
and the one on the right follows from the AM—GM inequality

appliedtox =1—a,y=1—-b,z=1—c.

125. It is natural to try to simplify the product, and for this we make use of the AM-GM
inequality:

> n 1 & a1 352\ 13\%
H(l—%)f{gz(l—%ﬂ “(%) =(-30)

n= n=1

We now use Newton’s binomial formula to estimate this power. First, note that
25\ (13\'_ (25 13\
k 365) — \k+1/\365 ’

13 k+1
< 9
365~ 25—k

since this reduces to

and the latter is always true for 1 < k < 24. For this reason if we ignore the part
of the binomial expansion beginning with the fourth term, we increase the value of the
expression. In other words,

) 13 \* <1 25\ 13 n 25\ 132 ! 65 n 169-12 1
- — — — —=1-= < —.
365 - 1 /365 2 /3652 73 632 2
We conclude that the second number is larger.
(Soviet Union University Student Mathematical Olympiad, 1975)
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126. The solution is based on the Lagrange identity, which in our case states that if M is
a point in space and G is the centroid of the tetrahedron ABC D, then

AB?> + AC*+ CD?+ AD? + BC?* + BD?
=4(MA* + MB?* + MC? + MD?) — 16 MG>.

For M = O the center of the circumscribed sphere, this reads
AB*+ AC* +CD*+ AD*+ BC* + BD* = 16 — 160G>.

Applying the AM—GM inequality, we obtain

6AB-AC-CD-AD-BC-BD < 16 — 160G>.

This combined with the hypothesis yields 16 < 16 — OG?. So on the one hand we
have equality in the AM—GM inequality, and on the other hand O = G. Therefore,
AB = AC = AD = BC = BD = CD, so the tetrahedron is regular.

127. Adding 1 to all fractions transforms the inequality into

242+l Y422+l 22441

> 3.
2x2+1 2y2 +1 2z2+1  —

Applying the AM—GM inequality to the left-hand side gives

X2+ +1 y2+zz+1+zz+x2+l
2x2+ 1 2y2 + 1 27241

Y AL 4241 2]
- 2x2+1 2y?+1 22241

We are left with the simpler but sharper inequality

P4y +l Yy 4241 24P+
2x2 41 2y2 41 272+ 1

> 1.

This can be proved by multiplying together

_l’_

1 1 1
2 2 2 2
1 >2 2 2
X4y 4+ x+2+y+2 \/(x—i-z)(y

1 1
y2+z2+1=y2+§+zz+522\/(y2+

1 1
Z2+x2+1=zz+§+x2+522\/(22+
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and each of these is just the AM—GM inequality.
(Greek Team Selection Test for the Junior Balkan Mathematical Olympiad, 2005)

128. Denote the positive number 1 — (a; + a + - - - + a,) by a,+1. The inequality from
the statement becomes the more symmetric

a\az - - ApQpy - 1
(I —ap(d—ay)--- (I —a)(l —apy) ~ n"t!

But from the AM—GM inequality,

l—ai=ay+a3+ -+ ay41 > nYaxaz - ap,
l—ay=a+a3+ -+ a1 =2 nYaas - ap,

l—appi=ar+a+---+a, >naa, - a,.
Multiplying these n 4 1 inequalities yields
(1 - al)(l - a2) cet (1 - an+]) 2 nn+lala2 . .an’

and the conclusion follows.
(short list of the 43rd International Mathematical Olympiad, 2002)

129. Trick number 1: Use the fact that

:n—l—l—xj:(n_l) 1 n X ,
n—1+x; n—1+x; n—1+x;

j=12,...,n,

to transform the inequality into

X1 X2 X
+ +...+— 2 1.
n—1+x; n—-14x n—1+x,
Trick number 2: Break this into the 7 inequalities
1-1
X x. "
1] - 1-1 1_l] —L j=1,2,...,n,
n — +x] 'xl t1+x2 ”+"‘+Xn n

We are left with n somewhat simpler inequalities, which can be rewritten as

1-1 -1 _1 1-1 -1 _1
n n n n n n
X)Xy, X X et > (= Dt

Trick number 3: Use the AM—GM inequality
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-1 -1 -1 -1 1
T T e B s B nl>nln

n—1

This completes the proof.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1999,
proposed by V. Cértoaje and Gh. Eckstein)

130. First solution: Note that the triple (a, b, c¢) ranges in the closed and bounded set
D = {(x,y,2) € R0 < x,y,z < 1,x +y+z = 1}. The function f(x,y,z) =
4(xy + yz 4+ xz) — 9xyz — 1 is continuous; hence it has a maximum on D. Let (a, b, ¢)
be a point in D at which f attains this maximum. By symmetry we may assume that
a > b > c. This immediately implies ¢ < %

Let us apply Sturm’s method. Suppose that b < a, and let 0 < x < a — b. We show
that f(a —x,b + x,c) > f(a, b, c). The inequality is equivalent to

d(a —x)(b+x) —9@a —x)(b + x)c > 4ab — 9abc,
or
(4 —9¢)((a — b)x —x?) > 0,

and this is obviously true. But this contradicts the fact that (a, b, ¢) was a maximum.
Hence a = b. Then ¢ = 1 — 2a, and it suffices to show that f(a,a,1 — 2a) < O.
Specifically, this means

4a* — 8a(l —2a) — 9a*(1 —2a) — 1 < 0.

The left-hand side factors as —(1 — 2a)(3a — 1)> = —c(3a — 1)?, which is negative or
zero. The inequality is now proved. Moreover, we have showed that the only situations
in which equality is attained occur when two of the numbers are equal to % and the third
is 0, or when all three numbers are equal to %

Second solution: A solution is possible using the Viete relations. Here it is. Consider the
polynomial

P(x)=(x —a)(x —b)(x —¢) = x> — x> + (ab + bc + ca)x — abc,

the monic polynomial of degree 3 whose roots are a, b, c. Because a +b + ¢ = 1, at
most one of the numbers a, b, ¢ can be equal to or exceed % If any of these numbers is

greater than %, then
1 1 1 1
Pl-z)=lz—a]l=z—-Db])|z—¢c]) <O
2 2 2 2
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This implies
1 1 1
g~ Ty +be+ca)—abe <0,

and so 4(ab + bc + ca) — 8abc < 1, and the desired inequality holds.
Ifl—a>0,1-b>0,1-c>0,then

G-0) ()=o) o) =1 -emo=e

Similarly,

It follows that

8 1 a l) < (ll)
2 C C,

(Mathematical Reflections, proposed by T. Andreescu)

131. If x; < x; for some i and j, increase x; and decrease x; by some number a,
0 < a < x; — x;. We need to show that

1 1 1 1
1+ 1+ <({l+—=)t1+—),
Xi+a Xj—a X; X;

(xi+a+1)(xj—a+1) (Xi+1)()€j+1)

(x; +a)(xj —a) XiXj

or

All denominators are positive, so after multiplying out and canceling terms, we obtain
the equivalent inequality

—axl-2 + asz. —a*x; — azxj —ax; +ax; — a’ > 0.
This can be rewritten as

a(xj —x)(x; +x; + 1) > a*(x; +x; + 1),

whichis true, since a < x; —x;. Starting with the smallest and the largest of the numbers,
we apply the trick and make one of the numbers equal to % by decreasing the value of
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the expression. Repeating, we can decrease the expression to one in which all numbers
are equal to % The value of the latter expression is (n + 1)". This concludes the proof.

132. Project orthogonally the ellipse onto a plane to make it a circle. Because all areas
are multiplied by the same constant, namely the cosine of the angle made by the plane
of the ellipse and that of the projection, the problem translates to finding the largest area
triangles inscribed in a given circle. We apply Sturm’s principle, after we guess that all
these triangles have to be equilateral.

Starting with a triangle that is not equilateral, two cases can be distinguished. Either
the triangle is obtuse, in which case it lies inside a semidisk. Then its area is less than half
the area of the disk, and consequently smaller than the area of the inscribed equilateral
triangle. Or otherwise the triangle is acute. This is the case to which we apply the
principle.

Figure 61

One of the sides of the triangle is larger than the side of the equilateral triangle and
one is smaller (since some side must subtend an arc greater than 27” and another an arc
smaller than %”). Moving the vertex on the circle in the direction of the longer side
increases the area, as seen in Figure 61. We stop when one of the two sides becomes
equal to the side of the equilateral triangle. Repeating the procedure for the other two
sides, we eventually reach an equilateral triangle. In the process we kept increasing
the area. Therefore, the inscribed triangles that maximize the area are the equilateral
triangles (this method also proves that the maximum exists). These triangles are exactly
those whose centroid coincides with the center of the circle. Returning to the ellipse,
since the orthogonal projection preserves centroids, we conclude that the maximal-area
triangles inscribed an ellipse are those with the centroid at the center of the ellipse.

Remark. This last argument can be applied mutatis mutandis to show that of all n-gons
inscribed in a certain circle, the regular one has the largest area.
(12th W.L. Putnam Mathematical Competition, 1952)

133. The first inequality follows easily from ab > abc and bc > abc. For the second,
define E(a, b,c) = ab + bc + ac — 2abc. Assume thata < b < ¢, a < ¢, and let
o = min (% —a,c— %), which is a positive number. We compute
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E(@+a,b,c—a)=E(a,b,c)+a(l —2b)[(c —a) —«a].

Sinceb <canda+b+c=1,wehave b < % This means that E(a + o, b, c — ) >
E(a, b, c). So we were able to make one of a and ¢ equal to % by increasing the value
of the expression. Repeating the argument for the remaining two numbers, we are able
to increase E(a, b, ¢) to E(%, %, %) = 27—7 This proves the inequality.

(communicated by V. Grover)

134. The inequality from the statement can be rewritten as

My (5a)
M= = (- )

If we fix the sum S = x; 4+x, 4 - - - + x,,, then the right-hand side is constant, being equal
to (%)". We apply Sturm’s principle to the left-hand side. If the x;’s are not all equal,
then there exist two of them, x; and x;, with x;, < % < x;. We would like to show that
by adding a small positive number « to x; and subtracting the same number from x; the

expression grows. This reduces to

(xx + ) (x; — o) - XkX)
Q-xx—a)1—x+a) (1—x)(1—x)

Some computations transform this into
oa(l —xp —x)(x; —xp —a) > 0,

which is true if @« < x; — x;. Choosing o = x; — ;—f allows us to transform x; into % by
this procedure. One by one we make the numbers equal to %, increasing the value of the
expression on the left each time. The fact that in this case we achieve equality proves the
inequality in the general case.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)

135. We apply the same kind of reasoning, varying the parameters until we reach the
maximum. To find the maximum of ﬁ + \/Z—I— \/E—l— «/c_i , weincrease the suma—+b+c+d
until it reaches the upper limit 30. Because a + b + ¢ < 14 it follows that d > 16. Now
we fix a, b and vary ¢, d to maximize /c + +/d. This latter expression is maximal if
c and d are closest to #. But since ¢ +d < 30, # < 15. So in order to maximize
V¢ + +/d, we must choose d = 16.

Now we havea +b+c = 14,a+ b < 5,and a < 1. The same argument carries
over to show that in order to maximize +/a + /b + +/c we have to choose ¢ = 9. And
the reasoning continues to show that a has to be chosen 1 and b has to be 4.

We conclude that under the constraints a < 1,a+b < 5,a+ b + ¢ < 14, and
a+b+c+d <30, the sum /a + Vb + /¢ + +/d is maximal when a = 1, b = 4,
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¢ =9, d = 16, in which case the sum of the square roots is equal to 10. The inequality
is proved.
(V. Cartoaje)

136. There exist finitely many n-tuples of positive integers with the sum equal to m, so
the expression from the statement has indeed a maximal value.

We show that the maximum is not attained if two of the x;’s differ by 2 or more.
Without loss of generality, we may assume that x; < x, — 2. Increasing x; by 1 and
decreasing x; by 1 yields

Dxxi+ @ +DY x+@—DY x+@+Dx-1)
2<i<j 2<i 2<i

= Z xixj+xlzxi+x22xi+x1x2_xl+x2+l-

2<i<j 2<i 2<i

The sum increased by x, — x; — 1 > 1, and hence the original sum was not maximal.

This shows that the expression attains its maximum for a configuration in which the
x;’s differ from each other by at most 1. If % =rn+s, with 0 < s < n, then for this
to happen n — s of the x;’s must be equal to r + 1 and the remaining must be equal to r.
This gives that the maximal value of the expression must be equal to

%(n —s)(n—s— l)r2 +s(mn—s)r(r+1)+ %s(s —D(r+ 1)2.

(Mathematical Olympiad Summer Program 2002, communicated by Z. Sunik)

137. There are finitely many such products, so a smallest product does exist. Examining
the 2 x 2, 3 x 3, and 4 x 4 arrays, we conjecture that the smallest product is attained on the
main diagonal andis 1-3---5---(2n—1). To prove this, we show that if the permutation
o of {1,2,..., n} has an inversion, then a5 (1)a25(2) - - * Ao (n) 1S DOt minimal.

i+j-1 i+j+k—1

i+m+j—1 i+\n;+j+k—l
Figure 62
So assume that the inversion gives rise to the factorsi + (j+k)—1and (i +m)+j—1

in the product. Let us replace them withi + j — 1 and (i + m) + (j + k) — 1, as shown
in Figure 62. The product of the first pair is

PP4ik+i(G—D4mi+mk+m(G—1D)+G—-Di+(—Dk+( — 132,
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while the product of the second pair is
PPrim+ik+i(j-D4+G—Dm+ (G —Dk+ (G — D%

We can see that the first of these expressions exceeds the second by mk. This proves that if
the permutation has an inversion, then the product is not minimal. The only permutation
without inversions is the identity permutation. By Sturm’s principle, it is the permutation
for which the minimum is attained. This minimumis 1-3---5---(2n — 1), as claimed.

138. Order the numbers x; < x, < --- < x, and call the expression from the statement
E(x1,x,...,x,). Note that E(x, x2,...,X,) > %, which shows that as the variables
tend to infinity, so does the expression. This means that the minimum exists. Assume
that the minimum is attained at the point (y;, y2, ..., y»). If ¥, — y1 > n then there
existindicesi and j,i < j,suchthaty;,...,y;+1,...,y;—1,..., y, are still distinct
integers. When substituting these numbers into E the denominator stays constant while
the numerator changes by 3(y; +y;)(y; —y; — 1), anegative number, decreasing the value
of the expression. This contradicts the minimality. We now look at the case with no gaps:
v, —y1 = n — 1. Then there exists a suchthat yy =a+1,y, =a+2,...,y, =a+n.
We have

2 2
naS + 3n(n2+1)a2 + n(n+1)2(2n+1)a + n (n4+1)

E(yl, ey yn) = na + n(nz—&-l)

2
a3 + 3(n2+l)a2 + (n+1)§2n+1)a + n(njf-l)

!

When a = 0 this is just @ Subtracting this value from the above, we obtain

a4 A2 |:(n+1)§2n+1) _ n(n2+1)] a
> 0.

o7

We deduce that @ is a good candidate for the minimum.
If y, — yi = n, then there exista and k suchthat y, = a, ..., ys =a+k—1, ypy; =
a+k+1,...,y, =a+n. Then

a4+ +@+k=—1+@+k+1)>+---+(@a+n)’
a+--+@+k—D+@+k+D+---+(@+n)

Z;:o(a+j)3—(fl+k)3

Yiola+j)—(a+k)

na3+3[n(n2+1) —k] a2+3[n(n+1)6(2n+1> —kz]a+ |:n2(n:—1)2 —k3]

E(yr, ...,y =

na+"(”—2+1)—k
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Subtracting ”(”T“) from this expression, we obtain

2
na® 43 [n(n2+1) _ k] a2 [n(n+1)2(211+1) g2 _n (:;+1)] a—K+ n(n2+1)k

na—i—@—k

The numerator is the smallest when k = n and a = 1, in which case it is equal to O.

Otherwise, it is strictly positive, proving that the minimum is not attained in that case.

Therefore, the desired minimum is @, attained only if x, =k, k=1,2,...,n.

(American Mathematical Monthly, proposed by C. Popescu)

139. First, note that the inequality is obvious if either x or y is at least 1. For the case
x,y € (0, 1), we rely on the inequality

b a
“a+b—ab’
which holds for @, b € (0, 1). To prove this new inequality, write it as
a'=? <a+b-—ab,
and then use the Bernoulli inequality to write
a?P=0+a-D""<14+@-DA—-b)=a+b—ab.
Using this, we have

X M X M

x'+yt > + > + =
x+y—xy x+y—xy xX+y x+y

1,

completing the solution to the problem,
(French Mathematical Olympiad, 1996)

140. We have
X —x*+3>x3+2,
for all x > 0, because this is equivalent to (x> — 1)(x> — 1) > 0. Thus
@ —a*+3)B -+ - +3) =@+ 1+ DA+ + DA+ 1+).

Let us recall Holder’s inequality, which in its most general form states that for ry, 5, .. .,
rr > 0, with % + % + -4 i = 1 and for positive real numbers a;;,i = 1,2, ...k,
j: 1,2,...,1’1,

1 1 1
n n n n rn n %
T 2 Tk
E apag; - = E a; E ay; ce E (% .
i=1 i=1 i=1 i=1
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Applyingitfork =n = 3,r, =r, = r; = 3, and thenumbers a;; = a,a;; = 1,a;3 =1,
a)y =1,a»n =b,a3; =1,a3 =1, a3 = 1, azz3 = ¢, we obtain

@+b+c)<@+1+ DA+ + DI+ 1407,
We thus have
@H+1+ DA+ +DA+14+) > (@+b+c),

and the inequality is proved.
(USA Mathematical Olympiad, 2004, proposed by T. Andreescu)

141. Let x;,i = 1,2, ...,n, x; > 0, be the roots of the polynomial. Using the relations
between the roots and the coefficients, we obtain

n n
lexz..-xm:(m) and lexz"'x[’:(p)~

The generalized Maclaurin inequality

iIn/z/\;lxz...xm >'{/§:Aax2"'xp
G (;)

thus becomes equality. This is possible only if x; = x, = --- = x,. Since
D oxixp Xy = (l’;),itfollows thatx; =1,i =1,2,...,n,andhence P(x) = (x — 1)".

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

142. The idea of the solution is to reduce the inequality to a particular case of the Huygens
inequality,

ﬁ(ai + b)) = li[a,?i + li[bfi,
i=1 i=1 i=1

which holds for positive real numbers p1, p2, ..., pu, a1, a2, . .., ay, by, ba, . .., b, with
p+pt--+pa=1
To this end, start with
n—x; n—1

=14+
1 —x; X1+ F XX+ X

and apply the AM—GM inequality to get
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Multiplying all n inequalities gives

Thus we are left to prove

n

1 2 1
14+ —) > 1 .
l_[( +x1)_11:!< +n\l/x1"'xi—1xi+l"'xn)

i=1

This inequality is a product of the individual inequalities

n—1
’ .] = 17 21 . ’ n

Each of these is Huygens’ inequality applied to the numbers 1, 1, ..., 1 and x]—l, ey x_ll ,
ﬁ,...,xn,withpl =py=---=p, :ﬁ.

(Crux Mathematicorum, proposed by W. Janous)
143. We will use the following inequality of Aczel: If xi, xo, ..., Xim, V1, Y2, -« ., Y aT€
real numbers such that x? > x3 + - - - + x2, then

(1y1 =Xy = = X ym)® = (] = x5 — = x) (VT — ¥ == Y-

This is proved in the following way. Consider

fO) =@t +y)* =) (it + y)

i=2

and note that f(— i—i) < 0. It follows that the discriminant of the quadratic function f (¢)
is nonnegative. This condition that the discriminant is nonnegative is basically Aczel’s
inequality.

Letus return to the problem. Itis clear thata?+a+- - -+a2—1and b3 +b3+- - -+b>—1
have the same sign. If

Il>al+a;+---+a> or 1>b2+b3+---+Db7,
then by Aczel’s inequality,
(I—aby—---—ab)? >0 —at —a3 —---—a>)(l —b} —b) —--- — b?),

which contradicts the hypothesis. The conclusion now follows.
(USA Team Selection Test for the International Mathematical Olympiad, proposed
by T. Andreescu and D. Andrica)

144. The solution is based on the Muirhead inequality.
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Theorem. Ifa;, a», as, by, by, bs are real numbers such that
ar >a>asz >0, by > by > b3y >0, a, > by, a,+ax > by + by,

a1+a2+a3:b1+b2+b3,

then for any positive real numbers x, y, z, one has
E xal yazza3 > § :xbl by b3
sym sym

where the index sym signifies that the summation is over all permutations of x, y, z.

Using the fact that abc = 1, we rewrite the inequality as

1 1 1 3
ad(b+c) + b3(c +a) c3 (a+b) ~ 2(abc)4/3

Seta =x3,b = y3, c =z, with x, v, z > 0. The inequality becomes

1 3
E >
x9(y3 + Z3) - 2x4y4z4

cyclic
Clearing denominators, this becomes
lez 12y 22)612))923 + Zx9y9z6 >3 Zx“ySZS + 6x8y855,
sym sym sym sym

or

(wa Loy 85>+2<2x12 R SN )

sym sym sym sym
<§ :x996 E:XSSS)ZO'
sym sym

And every term on the left-hand side is nonnegative by the Muirhead inequality.
(36th International Mathematical Olympiad, 1995)

145. View Q as a polynomial in x. It is easy to see that y is a zero of this polynomial;
hence Q is divisible by x — y. By symmetry, it is also divisible by y — z and z — x.

146. Therelation (x+1) P(x) = (x—10) P (x+1) shows that P (x) is divisible by (x —10).
Shifting the variable, we obtain the equivalent relation xP(x — 1) = (x — 11)P(x),
which shows that P (x) is also divisible by x. Hence P(x) = x(x — 10) P;(x) for some
polynomial P;(x). Substituting in the original equation and canceling common factors,
we find that P;(x) satisfies
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xPi(x)=(x —9)P(x+1).

Arguing as before, we find that P;(x) = (x — 1)(x — 9) P,(x). Repeating the argument,
we eventually find that P(x) = x(x — 1)(x —2)--- (x — 10) Q(x), where Q(x) satisfies
QO(x) = Q(x + 1). It follows that Q(x) is constant, and the solution to the problem is

Px)=ax(x —1)(x —2)---(x — 10),

where a is an arbitrary constant.

147. Having odd degree, P(x) is surjective. Hence for every root r; of P(x) = 0 there
exists a solution a; to the equation P(a;) = r;, and trivially a; # a; if r; # r;. Then
P(P(a;)) = 0, and the conclusion follows.

(Russian Mathematical Olympiad, 2002)

148. First solution: Let m be the degree of P(x), and write
P(x) = apx™ + apm_1x" '+ - + ap.

Using the binomial formula for (x £ )™ and (x £ )"~ we transform the identity from
the statement into

—1
1’11(’7’112 )x’”72+Q(x)

= 20, X™ + 2am_1 X"V + 2a,,_2x" 2 + R(x),

20, x™ 4 2a,_1x" " + 2a,_>x""* + a,,

where Q and R are polynomials of degree at most m — 3. If we identify the coefficients
of the corresponding powers of x, we find that am% = 0. But a,, # 0, being the
leading coefficient of the polynomial; hence m(m — 1) = 0. So eitherm =0 orm = 1.
One can check in an instant that all polynomials of degree O or 1 satisfy the required
condition.

Second solution: Fix a point xo. The graph of P (x) has infinitely many points in common
with the line that has slope

m=n(P<xo+%)—P(xo))

and passes through the point (xg, P(xo)). Therefore, the graph of P(x) is a line, so the
polynomial has degree O or 1.

Third solution: If there is such a polynomial of degree m > 2, differentiating the given
relation m — 2 times we find that there is a quadratic polynomial that satisfies the given
relation. But then any point on its graph would be the vertex of the parabola, which
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of course is impossible. Hence only linear and constant polynomials satisfy the given
relation.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by D. Busneag)

149. Let x = /2 + /3. Then /3 = x — «/E, which raised to the third power yields
3 =x3 —34/2x2 4+ 6x — 24/2, or

34 6x —3 = (3x2+2)v2,
By squaring this equality we deduce that x satisfies the polynomial equation

x0—6xt —6x +12x2 —36x +1 = 0.

(Belgian Mathematical Olympiad, 1978, from a note by P. Radovici-Mérculescu)

150. Note that » and s are zeros of both P(x) and Q(x). So on the one hand, Q(x) =
(x —r)(x — s), and on the other, r and s are roots of P(x) — Q(x). The assumption that
this polynomial is nonnegative implies that the two roots are double; hence

P(x)— Q(x) = (x —r)*(x —s)* = Q(x).

We find that P(x) = Q(x)(Q(x) + 1). Because the signs of P(x) and Q(x) agree,
the quadratic polynomial Q(x) + 1 is nonnegative. This cannot happen because its
discriminant is (r —s)> —4 > 0. The contradiction proves that our assumption was false;
hence for some xg, P(xg) < Q(xp).

(Russian Mathematical Olympiad, 2001)

151. Because P(0) = 0, there exists a polynomial Q(x) such that P(x) = xQ(x). Then

1
ky=——, k=1,2,...,n.
M =17 "
Let H(x) = (x+1)Q(x)—1. Thedegreeof H(x)isnand H(k) =0fork =1,2,...,n.
Hence

Hx) =&+ DO —1=ap(x = D(x =2)---(x —n).

In this equality H(—1) = —1 yields ag = % For x = m, m > n, which gives

D" m—-1)(m—2)---(m—n)+1 + 1

Qm) = n+ Dim + 1) mtl

and so
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(=D mm = 1) - (m —n) m

P(m) .
(n+ DIm+1) m+ 1

(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

152. Adding and subtracting the conditions from the statement, we find that a; 4+ a, +
-+« +a, and a; — a; + --- + (—1)"a, are both real numbers, meaning that P (1) and
P(—1) are real numbers. It follows that P(1) = P(1) and P(—1) = P(—1). Writing
Px)=(x—x1)(x —x2)---(x — x,), we deduce

(I =x)d =x2)--- (I =x,) = (1 =x)(T =x2)--- (1 = X)),
(I4+x)(I+x) - (I+x)=0+x)A+X) - (1 +X,).

Multiplying, we obtain

A=xpDA=x3)--A=xH=0-3DA=%) - (1 —=X2).
This means that Q(1) = Q(1), and hence b + b, + - - - + b, is a real number, as desired.
(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

153. If such a Q(x) exists, it is clear that P (x) is even. Conversely, assume that P (x) is
an even function. Writing P (x) = P(—x) and identifying coefficients, we conclude that
no odd powers appear in P(x). Hence

P(x) = apx™ + agy ox™ 2 + -+ axx? + ap = P (x?).

Factoring
Pi(y) =a(y =y —=y2) - (y = ),
we have
P(x) = a(x® = y)(® = y2) -+ (x% = y).
Now choose complex numbers b, xi, x,, ..., X, such that b*> = (—1)"a and x]z = Y,
j=1,2,...,n. We have the factorization

P(x) = b*(x} — xH)(x3 — x?) - (x2 — x?)
=b*(x; — x)(x1 + X)(x2 — ) (02 + ) -+ (x5 — X) (X + x)
= [b(x1 —x)(x2 = x) -+ (xp — X)][B(x1 + x)(x2 + ) -+ - (X + )]
= 0(x)Q(—x),
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where Q(x) = b(x; — x)(xo — x) - - - (x,, — x). This completes the proof.
(Romanian Mathematical Olympiad, 1979, proposed by M. Tena)

154. Denote the zeros of P(x) by x1, x2, x3, x4, such that x; + x, = 4. The first Viete
relation gives x; + x + x3 + x4 = 6; hence x3 4+ x4 = 2. The second Viete relation can
be written as

X1Xx2 + x3x4 + (X1 + x2) (x3 + x4) = 18,

from which we deduce that x;x, + x3x4 = 18 — 2 -4 = 10. This, combined with the
fourth Viete relation xxx3x4 = 25, shows that the products x;x; and x3x4 are roots of
the quadratic equation u? — 10u +25 = 0. Hence x,x, = x3x4 = 5, and therefore x; and
x, satisfy the quadratic equation x> — 4x 4+ 5 = 0, while x3 and x, satisfy the quadratic
equation x%>—2x+5 = 0. We conclude that the zeros of P (x) are 2+i, 2—i, 14+2i, 1 —2i.

155.If a > 0, b > 0, ¢ > 0, then obviouslya + b + ¢ > 0, ab 4+ bc + ca > 0, and
abc > 0. For the converse, letu =a + b + ¢, v = ab + bc + ca, and w = abc, which
are assumed to be positive. Then a, b, ¢ are the three zeros of the polynomial

P(x) = x> —ux®+vx —w.

Note that if # < 0, that is, if t = —s with s > 0, then P(¢) = s> + us> + vs + w > 0;
hence ¢ is not a zero of P(x). It follows that the three zeros of P(x) are nonnegative,
and we are done.

156. Taking the conjugate of the first equation, we obtain

x+y+z=1,
and hence

1 1 1

—+—-4+-=1.

x 'y z

Combining this with xyz = 1, we obtain
xy+yz+xz=1.

Therefore, x, y, z are the roots of the polynomial equation
=12+t —1=0,

which are 1, i, —i. Any permutation of these three complex numbers is a solution to the
original system of equations.

’

157. Dividing by the nonzero xyz yields 2+ 1+ =1+ 1 +3 =r. Leta =3,b =
c=§. Then abc = l,£+%+%=r,a+b+c=r- Hence

SN
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at+b+c=r,
ab +bc+ca=r,
abc = 1.

We deduce that a, b, c are the solutions of the polynomial equation > —rt> +rt —1 = 0.
This equation can be written as

t—D[>=@F—=Dt+1]1=0.

Since it has three real solutions, the discriminant of the quadratic must be positive. This
means that (r — 1) —4 > 0, leading to r € (—oo, —1] U [3, 00). Conversely, all such
r work.

158. Consider the polynomial P (t) = t +qt4 +rt3+st?>+ut+vwithrootsa, b, ¢, d, e.
The condition from the statement implies that g is divisible by n. Moreover, since

S 1 (S -3 (£4)

it follows that r is also divisible by n. Adding the equalities P(a) = 0, P(b) = 0,
P(c) =0, P(d) =0, P(e) =0, we deduce that

AP+ +d+E+s@ P+ +dP+ D) tu@+b+ce+d+e)+5v
is divisible by n. But since v = —abcde, it follows that
a® 4+ b+ +d° + ® — Sabede

is divisible by n, and we are done.
(Kvant (Quantum))

159. Let P(x) = a,x" + a,_;x"~' 4+ - - + ay. Denote its zeros by x;, xs, ..., x,. The
first two of Viete’s relations give
ap—1
Xi+x2+-+x, =— ;
day
ap—2
X1Xo + X1X3 4+ -+ Xp_1Xp = P
n

Combining them, we obtain

2
an— ap—
x12+x§+---+x3=( l) —2< 2).
ay ap

The only possibility is x7 +x7 + - - - +x2 = 3. Given that x7x3 - - - x> = 1, the AM-GM
inequality yields
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_ 2 .2 2 nf 2.2 2 _
3=xy+x+ -+ x;, = nyxix5 x5 =n.

Therefore, n < 3. Eliminating case by case, we find among linear polynomials x + 1 and

x — 1, and among quadratic polynomials x> + x — 1 and x> — x — 1. As for the cubic

polynomials, we should have equality in the AM—GM inequality. So all zeros should

have the same absolute values. The polynomial should share a zero with its derivative.

This is the case only for x* + x> — x — 1 and x*> — x> — x + 1, which both satisfy the

required property. Together with their negatives, these are all desired polynomials.
(Indian Olympiad Training Program, 2005)

160. The first Viete relation gives

b
rn4rntratrnn=——,
a
SO r3 + r4 is rational. Also,
c
riro+rir3+rirg +rayr3 +rorg +ryrg = —.
a
Therefore,
c
riry + r3ry = ; — (7‘1 + 1’2)(}’3 + I’4).

Finally,

Firarsy + Firaks + rirary +rarsrg = ——,
a

which is equivalent to

d
(ry +r)r3ry + (r3 + ry)riry = -
We observe that the products ryr, and r3r4 satisfy the linear system of equations

ax + By =u,
yx + 8y = v,

wherea =1, 8 =1,y =rs+r,d=ri+rnu=5— 1 +rn)r+r),v=—2
Because r; + rp # r3 + r4, this system has a unique solution; this solution is rational.
Hence both rr; and r3r4 are rational, and the problem is solved.

(64th W.L. Putnam Mathematical Competition, 2003)

161. First solution: Let « = arctanu, 8 = arctan v, and arctan w. We are required to
determine the sum « + g + y. The addition formula for the tangent of three angles,
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tan o 4 tan S 4 tan y — tan « tan B tan y

tan(o + p + = R
( Pty 1 — (tan« tan B 4 tan B tan y + tan o tan y)

implies
U+v—+w—uvw
1 — (uv 4+ vw + uv)

tan(e + B+ y) =

Using Viete’s relations,

u+v+w=0, uv +vw + uw = —10, uvw = —11,

we further transform this into tan(a+8+y) = ﬁ = 1. Therefore,a+B+y = §+km,

where k is an integer that remains to be determined.

From Viete’s relations we can see the product of the zeros of the polynomial is
negative, so the number of negative zeros is odd. And since the sum of the zeros is O,
two of them are positive and one is negative. Therefore, one of «, 8, y lies in the interval
(—%, 0) and two of them lie in (0, £). Hence k must be equal to 0, and arctan u +

arctan v + arctan w = %.

Second solution: Because
ImIn(1 + ix) = arctan x,
we see that
arctan u + arctan v + arctan w = ImIn(i P(i)) = ImIn(11 + 11i)

T
=arctanl = —.
4

(Kozépiskolai Matematikai Lapok (Mathematics Magazine for High Schools, Bu-
dapest), proposed by K. Bérczi).

162. Expanding the binomial (cos « + i sin )™, and using the de Moivre formula,

(cosa +isina)™ = cosma + i sin ma,

we obtain
. m _ . m _ . m _ .
sinma = cos" 'asing — cos" P asin®a + cos" Casinda+ - .
1 3 5
Form =2n+1,ifa = Jﬁ’ %, - #Lthen sin(2n + 1)a = 0, and sin « and cos «

are both different from zero. Dividing the above relation by sin*" o, we find that

2 1 2 1 2 1
( n1+ )cotz”a— ( n3+ )cotz”_2a+--'+(—l)"(2211) =0
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holds true for & = 57, 22% -+ +s 3,47+ Hence the equation
2n+1 2n+1 ) 2n+1
n__ n— . -1 n =0
( 1 )x ( 3 )x o )(2n+1)
has the roots
k
w=co 2 k=1,2,....n.
2n + 1
The product of the roots is
2n+1
U %) NI
TN T 2n 41
1
So
2 1
cot? 7 cot® T - cot? o .
2n +1 2n +1 2n +1 2n +1
Because 0 < 2];11 < %, k=1,2,...,n, it follows that all these cotangents are posi-

tive. Taking the square root and inverting the fractions, we obtain the identity from the
statement.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1970)

163. A good guess is that P(x) = (x — 1)", and we want to show that this is the case. To

this end, let x1, x5, ..., x, be the zeros of P(x). Using Viéte’s relations, we can write
2
Z(xi — 1)’ = (Zx,-) — Zinxj — Zin +n
i i i<j i
= Z—ZM—ZI’I—FYL:O.
2
This implies that all squares on the left are zero. Sox; = x, = --- = x, = 1, and

P(x) = (x — 1)", as expected.
(Gazeta Matematicd (Mathematics Gazette, Bucharest))

164. Let «, B, y be the zeros of P(x). Without loss of generality, we may assume that
0<a <pB <y.Then

x—a=x4+a+p+y>0 and Px)=x —a)(x —B)(x —y).

If 0 < x < «, using the AM—GM inequality, we obtain

1
—P() =@=-0)B-X) -0 = Z@+B+y - 3x)°
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1 1
S A Fat+ By’ =S —a),
so that P(x) > — 5 (x — a)*. Equality holds exactly wheno —x = 8 —x =y — x in
the first inequality and @ + 8 + ¥ — 3x = x + @ 4+ B + y in the second, that is, when
x=0anda=8=y.
If B < x < y, then using again the AM—GM inequality, we obtain

1
—P) =@ - =Py —x) = S+ —a - B’

1 1
S @ Fat+ Bty =S —a),
so that again P(x) > —%(x — a)3. Equality holds exactly when there is equality in both
inequalities, that is, wheno = 8 = 0 and y = 2x.
Finally, when « < x < B or x > y, then

P(x)>0> —i(x — a)3
- 27 ’

Thus the desired constant is A = —%, and the equality occurs when o« = 8 = y and
x =0, or when @ = B = 0, y is any nonnegative real, and x = %

5
(Chinese Mathematical Olympiad, 1999)

165. The key idea is to view a"*! — (a + 1)" — 2001 as a polynomial in a. Its free term
is 2002, so any integer zero divides this number.

From here the argument shifts to number theory and becomes standard. First, note
that 2002 = 2 x 7 x 11 x 13. Since 2001 is divisible by 3, we musthavea = 1 (mod 3);
otherwise, one of @"*! and (a + 1)"” would be a multiple of 3 and the other not, and their
difference would not be divisible by 3. We deduce that ¢ > 7. Moreover, a"*! = 1
(mod 3), so we must have (a + 1)" = 1 (mod 3), which forces n to be even, and in
particular at least 2.

If a is even, then "' — (@ + 1)" = —(a + 1)" (mod 4). Because n is even,
—(a + 1)" = —1 (mod 4). But on the right-hand side, 2001 = 1 (mod 4), and the
equality is impossible. Therefore, a must odd, so it divides 1001 = 7 x 11 x 13.
Moreover, a"t!' — (a + 1)" = a (mod 4),soa = 1 (mod 4).

Of the divisors of 7 x 11 x 13, those congruent to 1 modulo 3 are precisely those not
divisible by 11 (since 7 and 13 are both congruent to 1 modulo 3). Thus a divides 7 x 13.
Now a =1 (mod 4) is possible only if a divides 13.

We cannot have a = 1, since 1 — 2" # 2001 for any n. Hence the only possibility
is a = 13. One easily checks that a = 13, n = 2 is a solution; all that remains to check
is that no other n works. In fact, if n > 2, then 13"t = 2001 = 1 (mod 8). But
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13"*+! = 13 (mod 8) since n is even, a contradiction. We conclude thata = 13, n = 2
is the unique solution.
(62nd W.L. Putnam Mathematical Competition, 2001)

166. Let us first consider the case n > 2. Let P(x) = a,x" + a,_1x" "' + -+ + ay,
a, # 0. Then
P'(x) = na,x" '+ (n— Dap 1 x" 2+ +ay.

Identifying the coefficients of x"=D in the equality P(P’(x)) = P'(P(x)), we obtain

n+l'nn:an_n‘

al‘l n

This implies a,n"~' = 1, and so

1

=1’

a, =

Since a,, is an integer, n must be equal to 1, a contradiction. If n = 1, say P(x) = ax +b,
then we should have a> + b = a, hence b = a — a®. Thus the answer to the problem is
the polynomials of the form P(x) = ax* + a — a’.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by

T. Andreescu)

167. Let m be the degree of P(x), s0 P(x) = aux" + ap_1x" ' + - - 4+ ap. If P(x) =
x*Q(x), then

Q" (x) = 2 Q")
SO

0"(x) = 0(x"),

which means that Q(x) satisfies the same relation.
Thus we can assume that P(0) # 0. Substituting x = 0, we obtain a; = ao, and
since ayp is a nonzero real number, it must be equal to 1 if n is even, and to £1 if n is odd.
Differentiating the relation from the statement, we obtain

nP" '(x)P'(x) = nP' (x")x""".

For x = 0 we have P’(0) = 0; hence a; = 0. Differentiating the relation again and
reasoning similarly, we obtain a, = 0, and then successively a3 = a4 = --- =a,, = 0.
It follows that P(x) = 1 if n is even and P(x) = %1 if n is odd.

In general, the only solutions are P(x) = x™ if n is even, and P(x) = +x™ if n is
odd, m being some nonnegative integer.

(T. Andreescu)
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168. Assume without loss of generality that deg(P(z)) = n > deg(Q(z)). Consider the
polynomial R(z) = (P(z) — Q(2)) P'(z). Clearly, deg(R(z)) < 2n — 1. If w is a zero of
P (z) of multiplicity k, then w is a zero of P’(z) of multiplicity k — 1. Hence w is also a
zero of R(z), and its multiplicity is at least k. So the n zeros of P(z) produce at least n
zeros of R(z), when multiplicities are counted.

Analogously, let w be a zero of P(z)— 1 of multiplicity k. Then wis azeroof Q(z)—1,
and hence of P(z) — Q(z). Itis also a zero of (P(z) — 1)) = P’(z) of multiplicity k — 1.
It follows that w is a zero of R(z) of multiplicity at least k. This gives rise to at least n
more zeros for R(z).

It follows that R(z), which is a polynomial of degree less than or equal to 2n — 1, has
at least 2n zeros. This can happen only if R(z) is identically zero, hence if P(z) = Q(2).

(Soviet Union University Student Mathematical Olympiad, 1976)

169. Let Q(x) = x P(x). The conditions from the statement imply that the zeros of Q(x)
are all real and distinct. From Rolle’s theorem, it follows that the zeros of Q’(x) are real
and distinct.

Let H(x) = xQ’(x). Reasoning similarly we deduce that the polynomial H’'(x) has
all zeros real and distinct. Note that the equation H'(x) = 0 is equivalent to the equation

x?P"(x) +3xP'(x) + P(x) = 0;

the problem is solved.
(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

170. Differentiating the product, we obtain
P'x)=) kx* " = 1) M = D =D (= D
k=1

We will prove that each of the terms is divisible by P, > (x). This is clearly true if
k> 5]
If k < 7], the corresponding term contains the factor

(xn _ 1) . (an/ZJ—i-z _ 1)(x\_n/2j+1 _ 1)

That this is divisible by Py, > (x) follows from a more general fact, namely that for any
positive integers k and m, the polynomial

(xk+ln . 1)(xk+m—l . 1) . (xk+1 _ 1)
is divisible by

@"=DE" =D (x=1)
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in the ring of polynomials with integer coefficients. Since the two polynomials are monic
and have integer coefficients, it suffices to prove that the zeros of the second are also
zeros of the first, with at least the same multiplicity.

Note that if ¢ is a primitive rth root of unity, then ¢ is a zero of x/ — 1 precisely when
j is divisible by r. So the multiplicity of ¢ as a zero of the polynomial (x” — 1)(x"~! —
1) (x—1)is [ ], while its multiplicity as a zero of (x**" —1) (x**"~1—1) ... (x**1—1)
is LmT”‘J — Léj. The claim now follows from the inequality

m+k k Lm J
— | =>1—=1.
r r| Lr
This completes the solution.

(communicated by T.T. Le)

171. The equation Q(x) = 0 is equivalent to

POP'(x) = (P)? [P%x)]z B
! P(x)? P ] —

We recognize the first term on the left to be the derivative of I;’((f)) . Denoting the roots of
P(x) by x1, x2, ..., X, the equation can be rewritten as
2
n n
1 1
Yt (D) -
2 _
P (x — xz) — X=X
or

n 1 n 1 2
n,; (x —x¢)? (;x—x/) '
If this were true for some real number x, then we would have the equality case in the
Cauchy—-Schwarz inequality applied to the numbers a; = 1, by = - _1x k=1,2,...,n.
This would then further imply that all the x;’s are equal, which contradicts the hypothesis
that the zeros of P (x) are distinct. So the equality cannot hold for a real number, meaning
that none of the zeros of Q(x) is real.

(D.M. Bitinetu, I.V. Maftei, .M. Stancu-Minasian, Exercitii §i Probleme de Analizd
Matematicd (Exercises and Problems in Mathematical Analysis), Editura Didacticd si
Pedagogicd, Bucharest, 1981)

172. We start with the identity

P’ (x 1 1

= ,forx £ x;, i=1,2,...,n.
P(x) X—X] X—X X — X, # X
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If P/(*132) = 0, then this identity gives

1 1
0= %_)@ + lezrxz ~ 4+ 4 x1;x2 . <040+ ---4+0=0,
a contradiction. Similarly, if P’(x—"*l;x") — 0, then
0 _1 + : +oot 0+0+---+0=0
- T T e~ . =0,
xn_12+x,l — X1 x”‘12+x” —x xn—12+x;z — Xys

another contradiction. The conclusion follows.
(T. Andreescu)

173. The equation P(x) = 0 is equivalent to the equation f(x) = 1, where f(x) =
S+ 5 +---+ . Since f is strictly decreasing on (0, 00), lim, ¢+ f(x) = oo and
lim,_, o f(x) = 0, the equation has a unique solution.

Remark. A more general principle is true, namely that if the terms of the polynomial
are written in decreasing order of their powers, then the number of sign changes of the
coefficients is the maximum possible number of positive zeros; the actual number of
positive zeros may differ from this by an even number.

174. Assume to the contrary that there is z with |z| > 2 such that P(z) = 0. Then by the
triangle inequality,

P(2)
Z7

‘ 7 4 1 7 4 1
0: —3 J— — > R

14 7

- A T TAg 0’
8 64 128 128

a contradiction. Hence our initial assumption was false, and therefore all the zeros of
P(z) lie inside the disk of radius 2 centered at the origin.

175. Let z = r(cost + isint), sint # 0. Using the de Moivre formula, the equality
7" +az + 1 = 0 translates to

r"cosnt +arcost +1 =0,

r*sinnt +arsint = 0.

View this as a system in the unknowns r" and ar. Solving the system gives

—1 cost
0 sint sin ¢
r't = = .
cosnt cost sin(n — 1)t

sinnt sint
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An exercise in the section on induction shows that for any positive integer k, | sin kt| <
k| sint|. Then

sin ¢ 1
n >

Csinmn—1Dt " n—1"

This implies the desired inequality |z| =7 >/ ﬁ

(Romanian Mathematical Olympiad, proposed by I. Chitescu)

176. By the theorem of Lucas, if the zeros of a polynomial lie in a closed convex domain,
then the zeros of the derivative lie in the same domain. In our problem, change the
variable to z = )lC to obtain the polynomial Q(z) = z" + z"~! + a. If all the zeros of
ax" + x 4+ 1 were outside of the circle of radius 2 centered at the origin, then the zeros
of Q(z) would lie in the interior of the circle of radius % Applying the theorem of Lucas
to the convex hull of these zeros, we deduce that the same would be true for the zeros of
the derivative. But Q'(z) = nz" ' + (n — 1)z" 2 has z = ”T_l > % as one of its zeros,
which is a contradiction. This implies that the initial polynomial has a root of absolute

value less than or equal to 2.

177. The problem amounts to showing that the zeros of Q(z) = zP'(z) — 5P (z) lie on
the unit circle. Let the zeros of P(z) be z1, z2, ..., 2,, and let z be a zero of Q(z). The
relation Q(z) = O translates into

Z Z z n
+ ot =,
=21 I—2 2—2Zp 2
or
2 2 2
() (o)
Z—2 Z—2 Z— 2n
and finally
Z+2z Z+z 2+ 2Zn
L2 24y =0.
I—21 Z—22 Z—Zn

The terms of this sum should remind us of a fundamental transformation of the complex
plane. This transformation is defined as follows: for @ a complex number of absolute
value 1, we let ¢,(z) = (z + a)/(z — a). The map ¢, has the important property that it
maps the unit circle to the imaginary axis, the interior of the unit disk to the half-plane
Rez < 0, and the exterior of the unit disk to the half-plane Rez > 0. Indeed, since
the unit disk is invariant under rotation by the argument of a, it suffices to check this
fora = 1. Then ¢ (e?) = —i cot %, which proves that the unit circle maps to the entire
imaginary axis. The map is one-to-one, so the interior of the unit disk is mapped to that
half-plane where the origin goes, namely to Re z < 0, and the exterior is mapped to the
other half-plane. If z has absolute value less than one, then all terms of the sum
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Z+ 2z Z+ 22 2+ 2,
+ +---+
Z—21 Z—22 Z— 2y

have negative real part, while if z has absolute value greater than 1, all terms in this sum
have positive real part. In order for this sum to be equal to zero, z must have absolute
value 1. This completes the proof.

An alternative approach to this last step was suggested by R. Stong. Taking the real
part of

Z+ 21 Z+ 22 2+ 2n
4 gz

=0,
Z— 21 —22 Z— Zn
we obtain
z2+z . 1 - |2I* — |z;1?
ZR( J)—Z_zRe«zﬂ,)(z—z,»:—g.
Z—2j 2=zl |z — 2]

Since |z;| = 1 for all j, we conclude that |z| = 1.
Remark. When a = —i, ¢, is called the Cayley transform.

178. Let the zeros of the polynomial be p, ¢, r, s. Wehave p+qg+r+s =0, pg+ pr+
rs+qr+4qs+rs = —2,and hence p> 4+ g +r>+s> = 0> —2(—2) = 4. By the Cauchy—
Schwarz inequality, (1+141)(g>+r*+5%) > (g -|—r—|—s)2 Furthermore, becauseq r,s

2

must be distinct, the inequality is strict. Thus4 = p>+¢*+r>+s* > p 24 Lpr p)z = 3 ,
or |p| < /3. The same argument holds for the other zeros.

(Hungarian Mathematical Olympiad, 1999)

179. We argue by induction on k. For k = 1 the property is obviously true.

Assume that the property is true for polynomials of degree kK — 1 and let us prove it
for the polynomials P,(z), n > 1, and P(z) of degree k. Subtracting a constant from
all polynomials, we may assume that P(0) = 0. Order the zeros of P,(z) such that
lz1(m)| < lz2(n)| < -+ < |zx(n)|. The product z;(n)z2(n) - - - zx(n), being the free term
of P,(z), converges to 0. This can happen only if z;(n) — 0. So we have proved the
property for one of the zeros.

In general, the polynomial obtained by dividing a monic polynomial Q(z) by z —
a depends continuously on a and on the coefficients of Q(z). This means that the
coefficients of P,(z)/(z — z1(n)) converge to the coefficients of P(z)/z, so we can apply
the induction hypothesis to these polynomials. The conclusion follows.

Remark. A stronger result is true, namely that if the coefficients of a monic polynomial
are continuous functions of a parameter ¢, then the zeros are also continuous functions
of 1.
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180. The hypothesis of the problem concerns the coefficients a,, and ay, and the conclusion
is about a zero of the polynomial. It is natural to write the Viete relations for the two
coefficients,

am
— =(=D" E X1X2+ X,
an
ap
n
Dividing, we obtain

am

ao

=(—D"x1x2---x,.
Z 1
X1X2 * X

()
> .
m
An application of the triangle inequality yields

()
pppaL— L]
[xillxa] - lxml  \m

Of the absolute values of the zeros, let o be the smallest. If we substitute all absolute
values in the above inequality by «, we obtain an even bigger left-hand side. Therefore,

(n)a== ()

It follows that « < 1, and hence the corresponding zero has absolute value less than 1,
as desired.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

181. Let

_P/(x)_ 1 1 1
O P(x) x—x x—x X — X,

f )

First, note that from Rolle’s theorem applied to P (x) = e~** f (x) it follows that all roots
of the polynomial P’(x) — kP (x) are real. We need the following lemma.

Lemma. If for some j, yo and y; satisfy yo < x; < y1 < yo + 6(P), then yo and y; are
not zeros of f and f(yo) < f(y1).

Proof. Let d = 6(P). The hypothesis implies that for all i, y; — yo < d < x;41 — X;.
Hence for 1 <i < j—1wehave yg—x; > y; —x;41 > 0,and so 1/(yp — x;) <
1/(y1 — x;11); similarly, for j <i <n — 1 we have y; — x;11 < yo — x; < 0 and again
L/ (yo — xi) < 1/(y1 — xiy1)-

Finally, yo — x, < 0 < y; —x1,80 1/(yo — x,) < 0 < 1/(y1 — x1), and the result
follows by addition of these inequalities.
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Returning to the problem, we see that if yo and y; are zeros of P’(x) — kP (x) with
Yo < ¥1, then they are separated by a zero of P and satisty f(yo) = f(y1) = k. From
the lemma it follows that we cannot have y; < yg + §(P(x)), so y; — yo > d, and we
are done.

(American Mathematical Monthly, published in a note by P. Walker, solution by
R. Gelca)

182. The number 101 is prime, yet we cannot apply Eisenstein’s criterion because of the
102. The trick is to observe that the irreducibility of P (x) is equivalent to the irreducibility
of P(x — 1). Because the binomial coefficients (121), 1 < k < 100, are all divisible by
101, the polynomial P(x — 1) has all coefficients but the first divisible by 101, while
the last coefficient is (—1)'°! + 101(—=1)'"" + 102 = 202, which is divisible by 101 but
not by 1012, Eisenstein’s criterion proves that P(x — 1) is irreducible; hence P(x) is
irreducible as well.

183. Note that P(x) = (x” — 1)/(x — 1). If P(x) were reducible, then so would be
P(x +1). But

Hr—1
P<x+1>=u=xf’“+<p)xp‘l+.--+( ’ )
X 1 p—1

The coefficient (Z) is divisibleby pforalll <k < p—1, and (p’i 1) = p is not divisible
by p?; thus Eisenstein’s criterion applies to show that P (x + 1) is irreducible. It follows
that P (x) itself is irreducible, and the problem is solved.

184. Same idea as in the previous problem. We look at the polynomial

Px+D=x+D"+1

n 2” n 2” n—1 2}’1
2 21 n=1_p
X 4+ 4 + 2.

For 1 < k < 2", the binomial coefficient (2]:) is divisible by 2. This follows from the

equality
2"y 2t 2t —1
k) k\k-1)
since the binomial coefficient on the right is an integer, and 2 appears to a larger power

in the numerator than in the denominator. The application of Eisenstein’s irreducibility
criterion is now straightforward.

185. Arguing by contradiction, assume that P(x) can be factored, and let P(x) =
QO(x)R(x). Because P(a;) = —1,i = 1,2,...,n, and Q(a;) and R(a;) are integers,
either Q(a;) = 1 and R(a;) = —1, or Q(a;) = —1 and R(a;) = 1. In both situations
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(Q+ R)(a;)) =0,i =1,2,...,n. Since the @;’s are all distinct and the degree of
Q(x) + R(x) is at most n — 1, it follows that Q(x) + R(x) = 0. Hence R(x) = —Q(x),
and P(x) = —Q?*(x). But this contradicts the fact that the coefficient of the term of
maximal degree in P (x) is 1. The contradiction proves that P (x) is irreducible.

(I. Schur)

186. Assume that the polynomial P (x) is reducible, and write it as a product Q (x) R(x) of
monic polynomials with integer coefficients of degree i, respectively, 2n —i. Both Q(x)
and R(x) are positive for any real number x (being monic and with no real zeros), and from
O(a)R(ay) =1,k =1,2,...,n,wefind that Q(ay) = R(ax) = 1,k =1,2,...,n.
If, say, i < n, then the equation Q(x) = 1 has n solutions, which, taking into account
the fact that O (x) has degree less than n, means that Q(x) is identically equal to 1. This
contradicts our original assumption. Also, if i = n, the polynomial Q(x) — R(x) has n
zeros, and has degree less than n, so it is identically equal to 0. Therefore, Q(x) = R(x),
which means that

(x —a)?(x —a)* - (x —a)* + 1= Q)%

Substituting integer numbers for x, we obtain infinitely many equalities of the form
p? + 1 = g2, with p and g integers. But this equality can hold only if p =0 and ¢ = 1,
and we reach another contradiction. Therefore, the polynomial is irreducible.

(I. Schur)

187.Let P(x) = a,x" + a,_1x"~!' + - -+ + ay, and assume to the contrary that P(x) =
O(x)R(x), where Q(x) and R(x) are polynomials with integer coefficients of degree
at least 1 (the degree zero is ruled out because any factor that divides all coefficients of
P (x) divides the original prime).

Because the coefficients of P(x) are nonnegative integers between 0 and 9, and the
leading coefficient is positive, it follows that the zeros of P (x) are in the union of the left
half-plane Im z < 0 and the disk |z| < 4. Otherwise, if Im z > 0 and |z| > 4, then

I <a, <Re(@, +a,1z7") =Re(—ayz > — -+ — a2 ")
9|z|~2 3
< —— <=
=T~ 4
a contradiction.
On the other hand, by hypothesis P(10) is prime; hence either Q(10) or R(10) is
1 (or —1 but then just multiply both polynomials by —1). Assume Q(10) = 1, and let
Ox)=clx—x)(x—x3)---(x —xx). Thenx;,i =1,2,...,k,are also zeros of P(x),
and we have seen that these lie either in the left half-plane or in the disk of radius 4
centered at the origin. It follows that

1= 0(10) = [Q(10)| = |c| - [10 = x1] - [10 — x3] - - - [10 — x| > |e] - 6,
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a contradiction. We conclude that P (x) is irreducible.

188. Assume the contrary, and let
@+ 1"+ p = Q@ RM),

with Q(x) and R(x) of degree at least 1. Denote by Q(x), Ié(x) the reduction of these
polynomials modulo p, viewed as polynomials in Z,[x]. Then Q(x)ﬁ(x) = x>+ D"
The polynomial x? + 1 is irreducible in Z,[x], since —1 is not a quadratic residue in
Z,. This implies Q(x) = (x? + 1)! and R(x) = (x> + 1)"*, with 1 < k < n — 1
(the polynomials are monic and their degree is at least 1). It follows that there exist
polynomials Q;(x) and R;(x) with integer coefficients such that

Q)=+ D*+p0i(x) and R(x) = x>+ 1)"* + pRi(x).
Multiplying the two, we obtain
D" +p=@2+ D"+ p((2+D"501(x) + (x> + DFR (x)) 4+ p> 01 (x) R, (x).
Therefore,
2+ D010 + (P 4+ DR(x) + pQi ()R (x) = 1.

Reducing modulo p we see that x% 4 1 divides 1in Z p[x], which is absurd. The contra-
diction proves that the polynomial from the statement is irreducible.

189. We will show that all the zeros of P (x) have absolute value greater than 1. Let y be
a complex zero of P(x). Then

0=0Q-—DP) =y +y" " +y" >+ - +y—p.

Assuming |y| < 1, we obtain

p P
p=0 4y Ty <D D) 1=p.
i=1

i=1

This can happen only if the two inequalities are, in fact, equalities, in which case y = 1.
But P(1) > 0, a contradiction that proves our claim.

Next, let us assume that P(x) = Q(x)R(x) with Q(x) and R(x) polynomials with
integer coefficients of degree at least 1. Then p = P(0) = Q(0)R(0). Since both Q(0)
and R(0) are integers, either Q(0) = £1 or R(0) = £1. Without loss of generality, we
may assume Q(0) = £1. This, however, is impossible, since all zeros of Q(x), which
are also zeros of P(x), have absolute value greater than 1. We conclude that P(x) is
irreducible.

(proposed by M. Manea for Mathematics Magazine)
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190. Let n be the degree of P(x). Suppose that we can find polynomials with integer
coefficients R;(x) and R,(x) of degree at most 2n — 1 such that Q(x) = P(x?) =
Ri(x)R>(x). Then we also have Q(x) = O(—x) = Ri(—x)R>(—x). Let F(x) be
the greatest common divisor of R;(x) and R;(—x). Since F(x) = F(—x), we can write
F(x) = G(x?) with the degree of G (x) atmostn—1. Since G (x?) divides Q(x) = P(x?),
we see that G(x) divides P(x) and has lower degree; hence by the irreducibility of
P(x), G(x) is constant. Similarly, the greatest common divisor of R,(x) and R,(—x) is
constant. Hence R{(—x) divides R,(x), while R,(x) divides R;(—x). Hence R;(x) and
R, (x) both have degree n, Ry(x) = cRi(—x), and Q(x) = cR;(x)R;(—x). Because
P(x) is monic, we compute ¢ = (—1)" and P(0) = (—1)"R;(0)?. Hence |P(0)| is a
square, contradicting the hypothesis.

(Romanian Team Selection Test for the International Mathematical Olympiad, 2003,
proposed by M. Piticari)

191. These are just direct consequences of the trigonometric identities
cos(n + 1)0 = cos O cosnf — sin 8 sin nb

and

sin(n + 1)0 sin nf
———— = cosf—

6.
sin @ sin 6 tcosn

192. Denote the second determinant by D,,. Expanding by the first row, we obtain

1 10--- 0
02x 1--- 0

D, :2XDn—1 —|0 12x--- 0 ZZXDn—l — D, .
00 0---2x

Since D; = 2x and D, = 4x* — 1, we obtain inductively D, = U, (x),n > 1. The same
idea works for the first determinant, except that we expand it by the last row. With the
same recurrence relation and with the values x for n = 1 and 2x2 — 1 for n = 2, the
determinant is equal to 7,,(x) for all n.

193. Let P(x) = x* 4+ ax?® 4+ bx? + cx + d and denote by M the maximum of | P (x)| on
[—1, 1]. From —M < P(x) < M, we obtain the necessary condition —M < %(P(x) +
P(—x)) < M for x € [—1, 1]. With the substitution y = x2, this translates into

—M <y’ +by+d<M, foryel0,]l].

For a monic quadratic function to have the smallest variation away from 0 on [0, 1], it
needs to have the vertex (minimum) at 3. The variation is minimized by (y — 3)? — 3,
and so we obtain M > % Equality is attained for §T4 (x).
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Now let us assume that P(x) is a polynornial for which M = % Then b = —1,

d = g Writing the double inequality —z < P(x) < 1 for x = 1 and —1, we obtain

—% < %—i—a—i—c < land—l < %—a—c < % Soontheonehand a—+c >0,

and on the other hand a+c < 0. It follows that a = —c. But then for x = %,
1 1

0< a(w» f) < ;,and forx = _fz < —a(rf2 f) < . This can happen only

if a = 0. Therefore, P(x) = x* — x> + § = 1 T4 (x).
194. From the identity

it follows that

1
«/?+ﬁ:63—3x6=198.

Hence

and the maximum value of /7 — 3% is 14.
(University of Wisconsin at Whitewater Math Meet, 2003, proposed by T. Andreescu)

195. Let x; = 2cosa, x, = 2cos2«, ..., X, = 2cosna. We are to show that the
determinant
To(x1) To(x2) -+ To(xn)

Ti(x)) Ti(x) -+ Ti(x,)

To—1(x1) Tyo1(x2) -+ Th—1(xy)

is nonzero. Substituting To(x;) = 1, T1(x;) = x,i = 1,2, ..., n, and performing row
operations to eliminate powers of x;, we can transform the determinant into

| X1 X2 Xp
2.4...2"
n—1 _n—1 n—1
x] xz PR xn

This is a Vandermonde determinant, and the latter is not zero since x; # x;, for 1 <i <
Jj < n, whence the original matrix is invertible. Its determinant is equal to
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2=D(n=2)/2 1_[ (cos jo — cosia) # 0.

I<i<j<n

196. Because the five numbers lie in the interval [—2, 2], we can find corresponding
angles t1, ty, 13, t4,ts € [0, w] such that x = 2cost;, y = 2costp, 7 = 2cost3, v =
2costy, and w = 2costs. We would like to translate the third and fifth powers into
trigonometric functions of multiples of the angles. For that we use the polynomials
T.(a). For example, 75(a) = a> — 5a® + 5a. This translates into the trigonometric
identity 2 cos 50 = (2cos6)> — 5(2cos0)> + 5(2cos ).

Add to the third equation of the system the first multiplied by 5 and the second
multiplied by —5, then use the above-mentioned trigonometric identity to obtain

2cos 5ty + 2cos 5ty + 2cos Stz + 2 cos Sty + 2 cos 5t5 = —10.

This can happen only if cos 5t; = cos 5f, = cos 5t3 = cos 5¢ts = cos 5t5 = —1. Hence
1,1, 13,14, 15 € 3 o7
17 27 3’ 4’ 5 5 b 5 9 5 .

Using the fact that the roots of x> = 1, respectively, x!° = 1, add up to zero, we

deduce that

4 9
2k k
E cos Al =0 and E cos il =0.
5 5
k=0 k=0

It follows that

T n 3n n S n Wk n I 0
cos — + cos — + cos — + cos — + cos — = 0.
5 5 5 5 5
Since cos % = cos 9?” and cos 3?” = CoS 7?”, we find that cos % + cos 3?” = % Also, it
is not hard to see that the equation 75(a) = —2 has no rational solutions, which implies

that cos % is irrational.

The first equation of the system yields Zf:] t; = 0, and the above considerations
show that this can happen only when two of the #; are equal to Z, two are equal to 3?”, and
one is equal to 7. Let us show that in this situation the second equation is also satisfied.
Using T3(a) = a® — 3a, we see that the first two equations are jointly equivalent to
S _cost; = 0and Y ,_, cos3t; = 0. Thus we are left to check that this last equality

is satisfied. We have

3 9 3
2COS?T[+ZCOS?7T+COS37T =2cos?n+200s%+cosn =0,

as desired. We conclude that up to permutations, the solution to the system is



410  Algebra
T T 3 3
2¢co8s—,2cos—,2cos—,2cos—,2cosm ).
5 5 5 5

(Romanian Mathematical Olympiad, 2002, proposed by T. Andreescu)
197. The Lagrange interpolation formula applied to the Chebyshev polynomial 7, _(x)

and to the points xi, X2, ..., X, gives

—x1) o (0 = D) (X — Xp1) - (X — x)
—x1) e (e — X)) Ok — Xgep1) - (g — X))

RS (x
Tpo1(x) = ; Tpo1(x1) =

Equating the leading coefficients on both sides, we obtain

n

-2 _ Z To—1(xi)

(= x1) e (= X)) (O = Xegr) - (o — )

We know that the maximal variation away from 0 of 7,_;(x) is 1; in particular,
|T,—1(xx)| < 1,k=1,2,...,n. Applying the triangle inequality, we obtain

=2 < Z | T—1 (x| - 1 .

= o — 2l b= b = Xl - e = xal T

The inequality is proved.
(T. Andreescu, Z. Feng, 103 Trigonometry Problems, Birkhiuser, 2004)

198. Let us try to prove the first identity. Viewing both sides of the identity as sequences
in n, we will show that they satisfy the same recurrence relation and the same initial
condition. For the left-hand side the recurrence relation is, of course,

L) _ . Li(x)  Thip(x)
V1—x2 VI=x2 J1=x%

and the initial condition is 77 (x)/+/1 — x2 = x/+/1 — x2. It is an exercise to check that
the right-hand side satisfies the same initial condition. As for the recurrence relation, we
compute

i (1 2)n+1—% "od (1 2)11-‘1-1—%
—Xx = —((1—x
dxntl dx" dx
d" 1
= <n +1-— 5) (1 — x%)""2(=2x)

n—1

1
T (1 — x>z,

d" 2\n—1
n(l—x) 2 —n2n+1)

=-02 1
2n + )xdx

Here we apply the Leibniz rule for the differentiation of a product to obtain
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n

dn—l

d 1 n\ d |
-2 1 1—x)"2—(2 1 _ 1 — x2)"—2
2n + )xdx”( X" — (2n 4+ )(l)dxxdxnl( X332
n n—1
= —@n+ Da—(1 = 22" —n@n+ 1) —— (1 —x>)"" 2.
dx" dxn—1

So if #,(x) denotes the right-hand side, then

(_l)n—ln dn—l
1-3---2n—1)dx"!

Look at the second identity from the statement! If it were true, then the last term would
be equal to /1 — x2U,_;(x). This suggests a simultaneous proof by induction. Call the
right-hand side of the second identity u,,(x).

We will prove by induction on n that 7,(x) = T,(x)/~/1 —x? and u,_;(x) =
/1 —x%U,_1(2x). Let us assume that this holds true for all k < n. Using the induction
hypothesis, we have

a1 (X) = xt, (x) — (1 — x2)"1+1,

Ty—1(x)
V1= x?
Using the first of the two identities proved in the first problem of this section, we obtain
ty(x) = T,(x)/+/1 — x2.

For the second half of the problem we show that +/1 — x?U,_(x) and u,_(x) are
equal by verifying that their derivatives are equal, and that they are equal at x = 1. The
latter is easy to check: when x = 1 both are equal to 0. The derivative of the first is

L) =x — V1 —=x2U,_»(x).

—X Sy
1—_X2Un71(x)+2 l—x Un—l('x)'

Using the inductive hypothesis, we obtain u/, _,(x) = —nT,(x)/+/1 — x2. Thus we are
left to prove that
—xUpo1(x) + 21 = U, (x) = —nT, (x),

which translates to

sinnx ., ncosnxsinx —cosxsinnx 1
- + 2sin“ x — C =
sin x SIn” x Sin x

—COSXx =ncosnx.

This is straightforward, and the induction is complete.
Remark. These are called the formulas of Rodrigues.

199.1f M = A + i B, then M’ = A’ — B = A — i B. So we should take

1 — 1 —
I t — — M!
A_2(M+M) and B 2i(M M),

which are of course both Hermitian.
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Remark. This decomposition plays a special role, especially for linear operators on
infinite-dimensional spaces. If A and B commute, then M is called normal.

200. The answer is negative. The trace of AB — BA is zero, while the trace of Z,, is n;
the matrices cannot be equal.

Remark. The equality cannot hold even for continuous linear transformations on an
infinite-dimensional vector space. If P and Q are the linear maps that describe the
momentum and the position in Heisenberg’s matrix model of quantum mechanics, and if
h is Planck’s constant, then the equality P Q — Q P = hZ is the mathematical expression
of Heisenberg’s uncertainty principle. We now see that the position and the momentum
cannot be modeled using finite-dimensional matrices (not even infinite-dimensional con-
tinuous linear transformations). Note on the other hand that the matrices whose entries
are residue classes in Zg,

0100 0000
0010 1000

A=1loo001| ™ B=10200]|
0000 0030

satisfy AB — BA =14.

201. To simplify our work, we note that in general, for any two square matrices A and B
of arbitrary dimension, the trace of AB — BA is zero. We can therefore write

AB——BA::(a b).
Cc —a

But then (AB — BA)*> = kZ,, where k = a® + bc. This immediately shows that an odd
power of AB — BA is equal to a multiple of this matrix. The odd power cannot equal Z,
since it has trace zero. Therefore, n is even.

The condition from the statement implies that k is a root of unity. But there are only
two real roots of unity and these are 1 and —1. The squares of both are equal to 1. It
follows that (AB — BA)* = k*T, = I, and the problem is solved.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

202. Assume that p # g. The second relation yields A2B? = B>A? = rA* and r B’A =
rAB? = A3. Multiplying the relation pAB + gBA = Z, on the right and then on the
left by B, we obtain

pBAB —qB’A=B and pAB®>+¢gBAB = B.

From these two identities and the fact that B2A = AB? and p # g we deduce BAB =
AB? = B?A. Therefore, (p +q)AB* = (p+q)B>A = B. This implies right away that
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(p+q)A’B? = AB and (p+q)B>A? = BA. We have seen that A? and B commute, and
so we find that A and B commute as well, which contradicts the hypothesis. Therefore,

P=9q.
(V. Vornicu)

203. For any number ¢,

(01)(07)= () (01)= (ov):

The equality from the statement can be rewritten
lu ab lvy (10
01 cd 01) \c1)’

a+ucv(@+uc)+b+ud) (10
c cv+d “\el )’

This translates to

Because ¢ # 0 we can choose u such that a + uc = 1. Then choose v = —(b + ud).
The resulting matrix has 1 in the upper left corner and O in the upper right corner. In the
lower right corner it has

cv+d=—cb+ud)+d=—bc—cud+d=1—ad —ucd +d
=1—(a+uc)d+d=1.

This also follows from the fact that the determinant of the matrix is 1. The numbers u
and v that we have constructed satisfy the required identity.

Remark. This factorization appears in Gaussian optics. The matrices

1 4+u d 1 +v
01 an 01

model a ray of light that travels on a straight line through a homogeneous medium, while

the matrix
10
cl

models refraction between two regions of different refracting indices. The result we have
just proved shows that any SL(2, R) matrix with nonzero lower left corner is an optical
matrix.
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204. First solution: Computed by hand, the second, third, and fourth powers of J4(1) are

241 0 A 3% 30 1 A 4x3 602 4x
0 A22x 1 0 A3 3)% 3x 0 A* 423 612
0 0 A22x |’ 0 0 A33x2 | 0 0 A% 4a3
00 02 00 0 A 00 0 A

This suggest that in general, the ijth entry of J,,(A)" is (J,,(A)");; = (jil.)k””_j, with
the convention (ll‘ ) = 0if/ < 0. The proof by induction is based on the recursive formula

for binomial coefficients. Indeed, from J,,(A)"*! = J,,(1)"J,,(1), we obtain

)" = AT )ij + T )i -1

—af " a4 n = n+1 i
j—i jol1—i j—i ’

which proves the claim.

Second solution: Define S to be the n x n matrix with ones just above the diagonal
and zeros elsewhere (usually called a shift matrix), and note that S* has ones above the
diagonal at distance k from it, and in particular S = O,.. Hence

n—1
Jn)' = OL, + 8 =Y (")A"—"S".

k
k=0
The conclusion follows.

Remark. The matrix J,,(A) is called a Jordan block. It is part of the Jordan canonical
form of a matrix. Specifically, given a square matrix A there exists an invertible matrix
S such that ST'AS is a block diagonal matrix whose blocks are matrices of the form
Jm; (A;). The numbers A; are the eigenvalues of A. As a consequence of this problem,
we obtain a standard method for raising a matrix to the nth power. The idea is to write
the matrix in the Jordan canonical form and then raise the blocks to the power.

205. There is one property of the trace that we need. For an n x n matrix X with real
entries, tr(X X') is the sum of the squares of the entries of X. This number is nonnegative
and is equal to O if and only if X is the zero matrix. It is noteworthy to mention that
| X|| = /tr(CC?) is a norm known as the Hilbert—Schmidt norm.

We would like to apply the above-mentioned property to the matrix A — B’ in order
to show that this matrix is zero. Writing

tr[(A — B')(A — B")] = tr[(A — B')(A' — B)] = tr(AA' + B'B — AB — B'A")
= tr(AA’ + B'B) — tr(AB + B'A"),
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we see that we could almost use the equality from the statement, but the factors in two
terms come in the wrong order. Another property of the trace comes to the rescue, namely,
tr(XY) = tr(Y X). We thus have

tr(AA’ + B'B) — tr(AB + B'A") = tr(AA") + tr(B' B) — tr(AB) — tr(B' A")
= tr(AA") + tr(BB") — tr(AB) — tr(A'B") = 0.

It follows that tr[(A — B")(A — B")"] = 0, which implies A — B’ = O,,, as desired.

Remark. The Hilbert—Schmidt norm plays an important role in the study of linear trans-
formations of infinite-dimensional spaces. It was first considered by E. Schmidt in his
study of integral equations of the form

b
F) - / K(x.y)f()dy = g(x).

Here the linear transformation (which is a kind of infinite-dimensional matrix) is

b
FG) — / K(x.y) f()dy.

and its Hilbert—Schmidt norm is

b b 1/2
<//|K(x,y)|2dxdy> .

For a (finite- or infinite-dimensional) diagonal matrix D, whose diagonal elements are
dy, ds, - - - € C, the Hilbert—Schmidt norm is

VDD = (ldi | + |dof? + )2

206. The elegant solution is based on the equality of matrices

2+ 1)? (xy +1)? (xz+1)? 1xx? 111
Gy + D224+ D*(yz+D2 | = 1yy* || 2x2y22
(xz+ D> (z+1D* @+ 1)° 1zz22) \x?y? 22

Passing to determinants and factoring a 2, we obtain a product of two Vandermonde
determinants, hence the formula from the statement.
(C. Cosnitd, F. Turtoiu, Probleme de Algebrd (Problems in Algebra), Editura Tehnici,

Bucharest, 1972)
207. Consider the matrix
11
m=(10)
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which has the property that

n Fn+1 Fn
= >
M (Fn Fn—l>’ forn > 1.

Taking determinants, we have
Fy 1 Fooy — F? = det M" = (det M)" = (—1)",

as desired.
(J.D. Cassini)

208. Subtract the pth row from the (p + 1)st, then the (p — 1)st from the pth, and so on.
Using the identity () — (”_1) = (”_1), the determinant becomes

(;)

(7)
(1)

1

0 (5)

: m—i+ . m—i—i—

0( 0 p) ( pflp)
Expanding by the first row, we obtain a determinant of the same form but with m replaced
by m — 1 and p replaced by p — 1. For p = 0 the determinant is obviously equal to 1,
and an induction on p proves that this is also true in the general case.

(C. Nistdsescu, C. Nitd, M. Brandiburu, D. Joita, Exercitii si Probleme de Algebrd

(Exercises and Problems in Algebra), Editura Didactici si Pedagogicd, Bucharest, 1983)

209. The determinant

X1 X2 Xn
(n—l) (n—l) e (n—])
is aninteger. On the other hand, for some positive integer m and k, the binomial coefficient
('Z) is a linear combination of m*, (k"_1 1), e (’g) whose coefficients do not depend on
m. In this linear combination the coefficient of m* is 1/k!. Hence by performing row
operations in the above determinant we can transform it into

1 1 1
X1 X2 Xn
n—1 _n—1 n—1
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The Vandermonde determinant has the value [[;_ . (x (= xj).

It follows that our determinant is equal to ]_[1> j( —x;)/(A12!--- (n — 1)!), which
therefore must be an integer. Hence the conclusion.

(Mathematical Mayhem, 1995)

210. The determinant is an nth-degree polynomial in each of the x;’s. (If you have a
problem working with multinomials, think of x; as the variable and of the others as
parameters!) Adding all other columns to the first, we obtain that the determinant is
equal to zero when x; +x, + --- 4+ x, = 0, so x; + x» + --- + x, is a factor of the
polynomial. This factor corresponds to j = 0 on the right-hand side of the identity from
the statement. For some other j, multiply the first column by ¢/, the second by ¢/, and
so forth; then add all columns to the first. As before, we see that the determinant is zero
when Y7, ¢/fx, = 0,50 Y }_, £/*x; is a factor of the determinant. No two of these
polynomials are a constant multiple of the other, so the determinant is a multiple of

I (Z 4)

j=1
The quotient of the two is a scalar C, independent of x;, x5, ..., x,. Forx; = 1, x, =
x3 =---=x, =0, we obtain
n—1
— Cl_[(é.]xl) — C;]+2+"'+(Vl*l)xl — Cé.n(nfl)/zxil
j=1

_Ce(n Dri n_C( l)n 1

Hence C = (—1)""!, which gives rise to the formula from the statement.

211. By adding the second row to the first, the third row to the second, ..., the nth row
to the (n — 1)st, the determinant does not change. Hence

2141 £1FI 1 10 0--- 00
—1 2—1--- F1 41 01 1 0--- 00
+1-1 2--- £1 1 00 1 1--- 00
det(A)=| . . ., .= .
FlElFl--- 2-1 000 O0... 11
LlFl 4l —1 2| |El1FlElFl... 12

Now subtract the first column from the second, then subtract the resulting column from
the third, and so on. This way we obtain
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100~ 0 0
0O 1 O 0 0
det(A)=|: : . 11 |=n+l
0O 0 0 .- 1 0
41243 —n+1n+1

(9th International Mathematics Competition for University Students, 2002)

212. View the determinant as a polynomial in the independent variables xy, x5, ..., X,.
Because whenever x; = x; the determinant vanishes, it follows that the determinant is
divisible by x; — x;, and therefore by the product [ | l<i<j<n (xj —x;). Because the k;’s are
positive, the determinant is also divisible by x;x; - - - x,,. To solve the problem, it suffices
to show that for any positive integers x, Xz, .. ., X,, the product

xixex [ G —x)

I<i<j<n

is divisible by n!. This can be proved by induction on n. A parity check proves the case
n = 2. Assume that the property is true for any n — 1 integers and let us prove it for n.
Either one of the numbers x1, x5, ..., x, is divisible by #n, or, by the pigeonhole principle,
the difference of two of them is divisible by n. In the first case we may assume that x,
is divisible by 7, in the latter that x, — x is divisible by n. In either case,

xixxer [ G —x)

I<i<j<n-—1

is divisible by (n — 1)!, by the induction hypothesis. It follows that the whole product is
divisible by n x (n — 1)! = n! as desired. We are done.
(proposed for the Romanian Mathematical Olympiad by N. Chichirim)

213. Expand the determinant as
det(xA + yB) = ap(x)y’ +a1(x)y* + ax(x)y + a3 (x),

where a; (x) are polynomials of degree at most i, i = 0, 1,2, 3. For y = 0 this gives
det(xA) = x3det A = 0, and hence a3(x) = O for all x. Similarly, setting y = x we
obtain det(x A + x B) = x> det(A + B) = 0, and thus ag(x)x> + a; (x)x? + ay(x)x = 0.
Also, for y = —x we obtain det(xA — xB) = x3det(A — B) = 0; thus —ao(x)x> +
a;(x)x?> — ay(x)x = 0. Adding these two relations gives a;(x) = 0 for all x. For
x = 0 we find that det(yB) = y3det B = 0, and hence a,(0)y> + a,(0)y = 0 for
all y. Therefore, ay(0) = 0. But ag(x) is a constant, so ag(x) = 0. This implies that
a(x)x = 0 for all x, and so a;(x) = O for all x. We conclude that det(xA + yB) is
identically equal to zero, and the problem is solved.
(Romanian mathematics competition, 1979, M. Martin)



Algebra 419

214. We reduce the problem to a computation with 4 x 4 determinants. Expanding
according to the rule of Laplace, we see that

a0b0 ba 00
» _|codo s |d ¢ 00
C=l0p0a| ™ XY= 0y
0d0c 00d ¢

Multiplying these determinants, we obtain (xx’)2.
(C. Cosnitd, F. Turtoiu, Probleme de Algebrd (Problems in Algebra), Editura Tehnici,
Bucharest, 1972)

215. First, suppose that A is invertible. Then we can write

AB\ (AO0\(Z, A'B
cpD) \cC1z, 0 D-—CA'B)"

The matrices on the right-hand side are of block-triangular type, so their determinants
are the products of the determinants of the blocks on the diagonal (as can be seen on
expanding the determinants using the rule of Laplace). Therefore,

det (2 g) = (det A)(det(D — CA™'B)) = det(AD — ACA™'B).

The equality from the statement now follows form that fact that A and C commute.

If A is not invertible, then since the polynomial det(A + €Z,) has finitely many zeros,
A + €7, is invertible for any sufficiently small € > 0. This matrix still commutes with
C, so we can apply the above argument to A replaced by A + €Z,,. The identity from the
statement follows by letting ¢ — O.

216. Applying the previous problem, we can write

I, X\ _ n Y 7,
det(Z, — XY) =det(Y In) = (-1 det(In X)

7, Y

_ (_1\2n _ _
=(-1 det(XIn) =det(Z, — Y X).
Note that we performed some row and column permutations in the process, while keeping

track of the sign of the determinant.

217. For k even, that is, k = 2m, the inequality holds even without the assumption from
the statement. Indeed, there exists € arbitrarily small such that the matrix By = B + €Z,
is invertible. Then

det(A*™ + By") = det B" det (A" By™)* + I,,)
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and the latter is nonnegative, as seen in the introduction. Taking the limit with € ap-
proaching zero, we obtain det(A%" 4+ B*") > 0.

For k odd, k = 2m + 1, let xo = —1, x1, X2, . . ., X2, be the zeros of the polynomial
x#m 4+ 1, with x4, =X, j = 1,2, ..., m. Because A and B commute, we have

AL gl a4 B)H(A —x;B)(A —X;B).
j=1

Since A and B have real entries, by taking determinants we obtain

det(A — x; B)(A — %, B) = det(A — x, B) det(A — X, B)
— det(A — x,;B) det (A — x, B)
= det(A — x;B)det(A — x;B) > 0,
for j = 1,2, ..., m. This shows that the sign of det(A?"*! 4 B?>"*1) is the same as the

sign of det(A + B) and we are done.
(Romanian Mathematical Olympiad, 1986)

218. The case A > 0 was discussed before. If A < 0, let w = v/—A. We have

det(Z, + 2A?) = det(Z, — w*A?) = det(Z, — wA)(Z, + wA)
= det(Z, — wA) det(Z, + wA).

Because —A = A’, it follows that
I, — wA =TI, + wA' =" (T, + wA).
Therefore,
det(Z, + 1A% = det(Z, + wA) det'(Z, + wA) = (det(Z, + wA))> > 0,
and the inequality is proved.

(Romanian mathematics competition, proposed by S. Ridulescu)

219. First solution: We can assume that the leading coefficient of P(¢) is 1. Let «
be a real number such that P(t) 4+ « is strictly positive and let ¥ be a matrix with
negative determinant. Assume that f is onto. Then there exists a matrix X such that
P(X)=Y —doZ,.

Because the polynomial Q(¢) = P(t) 4+ « has no real zeros, it factors as

m

o) =[]l¢+a0*+ b7

k=1
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with ay, by, € R. It follows that

det Q(X) = [ [ det [(X + ax)* + b;T,] = 0,
k=1

and the latter is positive, since for all k,

1 2
det [(X + ar)® + b{Z,] = b;" det [(b—x + %) + In} > 0.
k k

In particular, Q(X) # Y and thus the function f is not onto.

Second solution: Because the polynomial P(¢) is of even degree, the function it defines
on R is not onto. Let p be a number that is not of the form P(¢), t € R. Then the matrix
12, is not in the image of f. Indeed, if X is an n x n matrix, then by the spectral mapping
theorem the eigenvalues of P(X) are of the form p()), where A is an eigenvalue of X.
Since u is not of this form, it cannot be an eigenvalue of a matrix in the image of f. But
w is the eigenvalue of uZ,, which shows that the latter is not in the image of f, and the
claim is proved.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by D. Andrica)

220. If A> = O,, then

1 1 2 1 2
det(A + 7,,) = det (ZA2 + A+ In) = det (EA + In) = <det <§A + I,,)) > 0.
Similarly,

det(A —Z,) = det(—(Z, — A)) = (—1)"det(Z, — A) = (—1)" det (Zn — A+ lA2)

4
1 \? 1 2
= (—=1)" det (In - EA) =(—D" (det (In — 5A)) <0,

since n is odd. Hence det(A + Z,,) > 0 > det(A — Z,)).
If A2 = 7, then

0 < (det(A + 7,)%) = det(A + 7,)* = det(A> + 24 + T,,)
= det(2A + 27,) = 2" det(A + 7,,).

Also,

det(A —Z,) = (—1)"det(Z, — A) = (—1)" det (%(21'” — 2A)>
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1\" 1"
= <_§) det(Z, —2A+71,) = (_5) det(A> —2A +7T,)

1 n
= (—5> det(A —7,)* <0,

and the inequality is proved in this case, too.
(Romanian mathematics competition, 1987)

221. All the information about the inverse of A is contained in its determinant. If we
compute the determinant of A by expanding along the kth column, we obtain a polynomial
in x, and the coefficient of x;" ~! is exactly the minor used for computing the entry by,
of the adjoint matrix multiplied by (—1)**™. Viewing the product [],. ji —xj)asa
polynomial in x;, we have

l_[(xi —Xj) = A1, ooy Xkt X ds o o5 Xn) X (X — X1) -+ - (X — Xp—1)

i>j
X (X1 — X)) - (5 — Xp)

= (=" A1 X X X)X [ [ G = X)),
Jj#k

In the product [] itk (xx — x;) the coefficient of x,i”_l is
(D" Sy (X1 - Xkt Xkt s - ey X))
Combining all these facts, we obtain

bim = (=D A(xy, x2, o, ) (=DM (= DR (=D

X A(Xl,...,Xk_l,Xk+1,...,.xn)Sm(x1,...,Xk_l,Xk+1,...,xn)
k -1
= (_1) +mA(x1’x27""xn) A(x17""xk71$~xk+la"'v-xn)
X Sm(xlv"'7-xk—1’xk+l9"'axn)v

as desired.

222.The inverse of a 2 x 2 matrix C = (c;;);,; with integer entries is a matrix with integer
entries if and only if det C = %1 (one direction of this double implication follows from
the formula for the inverse, and the other from det C~! = 1/ det C).

With this in mind, let us consider the polynomial P(x) € Z[x], P(x) = det(A+xB).
The hypothesis of the problem implies that P(0), P(1), P(2), P(3), P(4) € {—1, 1}. By
the pigeonhole principle, three of these numbers are equal, and because P (x) has degree
at most 2, it must be constant. Therefore, det(A + x B) = +1 for all x, and in particular
forx = 5 the matrix A+ 5B is invertible and has determinant equal to 1. Consequently,
the inverse of this matrix has integer entries.

(55th W.L. Putnam Mathematical Competition, 1994)
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223. We know that AA* = A*A = (det A)Z3, so if A is invertible then so is A*, and
A = det A(A*)"!. Also, det A det A* = (det A)*; hence det A* = (det A)>. Therefore,
A = £+/det A*(A")7L.

Because

—m—-1 1 1
A* = (1 —m) 1 —-m—-1 1 ,
1 1 —-m—1

we have
detA* =1 —m)’[—m+ 1> +243m+D]=U—m)*m+2)>°

Using the formula with minors, we compute the inverse of the matrix

—m—1 1 1
1 —m—1 1
1 —m — 1
to be
1 —m?—m =2 m+2 m-+2
2
— > m+2 —m~—m —2 m+2
(' —m)im +2) m+2 m+2  —m*—m-—2

Then (A*)~! is equal to this matrix divided by (1 — m)3. Consequently, the matrix we
are looking for is

A = £+/det A*(A)!

2

1 —m—m —2 m+2 m—+2
=:l:1 3 > m-+2 —m*—m=2 m—+2
(1 —m)*(m +2) m-+2 m-+2 —mr—m=2

(Romanian mathematics competition)

224. The series expansion

+x+x +x +...
I_x

suggests that
Ly — A "=, + A+ A+ A3+ ...,

But does the series on the right converge?
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Let

n

o = max Z|a,-j| < 1.
1

j=1
Then
2
DD ajan| < layapl =) <|aij| > |ajk|> <a) lajl <o,
k| J Jik J k J

Inductively we obtain that the entries a;;(n) of A" satisfy ) jlaij(m)| < o" for all i.
Because the geometric series 1 + « + a® + o’ + - - - converges, so does Z, + A + A% +
A3 + ... . And the sum of this series is the inverse of Z,, — A.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

225. The trick is to compute A%, The elements on the diagonal are
Zsinzkma, m=12,...,n,
k=1

which are all nonzero. Off the diagonal, the (m, j)th entry is equal to
n 1 n n
sinkma sinkjo = — cosk(m — ja — k(m+ jo|.

We are led to the computation of two sums of the form )} _, coskx. This is done as
follows:

n n n

1 X 1 1 1
E kx = E in — kx = E in(k+ = )]x —sin(k — =x]]|.
2 cos kx 2sin% 2 sin > cos kx 2sin% 2 |:sm< 2)x sm< 2x):|

The sum telescopes, and we obtain

2sin 2 2

Xn:coskx — M — l
k=1 2

_ . _ (mEj)m
Note that for x = (m £ jla = =55-,

1 )
sin (n + 5) X = sin ((m + j)m — %) = (—1)mtiH! sin%

Hence
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(_1)m+j+l 1

+ ko = ——F — —.
;cos(m Jka 7 5

It follows that for m # j, the (m, j) entry of the matrix A?is zero. Hence A? is a diagonal
matrix with nonzero diagonal entries. This shows that A? is invertible, and so is A.

Remark. This matrix appears in topological quantum field theory. A matrix of this type is
used in the discrete Fourier transform, which has found applications to the JPEG encoding
of digital photography.

226.1f A + i B is invertible, then so is AT — i BT. Let us multiply these two matrices:
(A"—iB")(A+iB)=A"A+B'B+i(A"B — B'A).
We have

(ATA+ BB +i(A"B — BT A))v, v)
= (ATAv, v) + (B"Bv, v) + (i(ATB — BT A)v, v)
= ||Av||* + ||Bv||* + (i(A"B — B" A)v, v),

which is strictly greater than zero for any vector v # 0. This shows that the product
(A" —iB")(A + iB) is a positive definite matrix (i.e., (A" —iB")(A +iB)v,v) > 0
for all v # 0). The linear transformation that it defines is therefore injective, hence an
isomorphism. This implies that (AT — i B")(A 4 i B) is invertible, and so (A + i B) itself
is invertible.

227. First solution: The fact that A — 7, is invertible follows from the spectral mapping
theorem. To find its inverse, we recall the identity

X
l+x4+x> 4 xf=—r,

which by differentiation gives

kxk+t — (k+ Dxk 41

1+2 ek =
+2x+ -+ kx x 12

Substituting A for x, we obtain
(A=T) Ty +2A + -+ kA = kA — (k+ DA* 4+ T, = T,
Hence

A-=T) '=(A-T)(T, +2A + - -- + kA" ).
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Second solution: Simply write
I, = kA — (k+ DA*+ T, = (A —T,)(kA* — A1 — ... —A—T),

which gives the inverse written in a different form.
(Mathematical Reflections, proposed by T. Andreescu)

228.If o # —1 then

-1 _ 1 R | _ “1p _ 1 “1p -1
A A"T'BA (A+B)=7Z,+A"B— ——A"BA™'B
1 o+1

1
o+ 1

A~'B.

But (A~'B)? = A"'X(YA™'X)Y =aA~'XY = aA~' B. Hence in the above equality,
the right-hand side is equal to the identity matrix. This proves the claim.

Ifa = —1,then (A~'B)>+A~'B = 0, thatis, (Z, + A"'B)A~!' B = 0. This implies
that Z, + A~'B is a zero divisor. Multiplying by A on the right we find that A 4+ B is a
zero divisor itself. Hence in this case A 4+ B is not invertible.

(C. Nistdsescu, C. Nitd, M. Brandiburu, D. Joita, Exercitii si Probleme de Algebrd
(Exercises and Problems in Algebra), Editura Didactici si Pedagogicd, Bucharest, 1983)

229. The computation
(A —-bZ,)(B—al,) =abl,

shows that A — b7, is invertible, and its inverse is a]—b(B —aZl,). Then
(B —aZ,)(A —b1,) = abl,,

which translates into BA — aA — bB = O,. Consequently, BA = aA + bB = AB,
proving that the matrices commute.

230. We have
(A+iB>)(B+iA% = AB— B?A>+i(A*+ B =1I,.
This implies that A + i B? is invertible, and its inverse is B + i A>. Then
T, = (B+iA®>)(A+iB* = BA— A’B> +i(A> + B®) = BA — A’B?,

as desired.
(Romanian Mathematical Olympiad, 1982, proposed by 1.V. Maftei)

231. Of course, one can prove that the coefficient matrix is nonsingular. But there is a
slick solution. Add the equations and group the terms as
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3(x; 4+ x2 4+ x3) + 3(x4 + x5 + Xx6) + - - - 4+ 3(x97 + X08 + X99) + 3x100 = O.

The terms in the parentheses are all zero; hence x;o9 = 0. Taking cyclic permutations
yields x; = x, = - -+ = x190 = 0.

232. If y is not an eigenvalue of the matrix

01001
10100
010101,
00101
10010

then the system has the unique solution x; = x, = x3 = x4 = x5 = 0. Otherwise, the
eigenvectors give rise to nontrivial solutions. Thus, we have to compute the determinant

-y 1 0 0 1
1 -y 1 0 0
0O 1 —y 1 O
0 0 1 —y 1
1 0 0 1 —y

Adding all rows to the first and factoring 2 — y, we obtain

11 1 1 1
l-y 1 0 O
2-y»|/01 —y 1 O
00 1 —y 1
10 0 1 —y

The determinant from this expression is computed using row—column operations as fol-
lows:

11 1 1 1 1 0 0 0 0
-y 1 0 O l—-y—10 -1 -1
01 —y 1 0|=|0 1 -y 1 0
00 1 —y 1 0 0 1 —y 1
10 0 1 —y I -1 -1 0 —y-—1
—-y—10 -1 -1 —y—10 —1-1
_ 1 —y 1 0 | =y =y 0 -1
B 0 I —y 1 - 0 1 —y—1

-1 -1 0 —y—-1 -1 0 —y—y
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—-y—10 0 -1
0O —y 1 -1
-1 1 —y—=1-1}|
-1 0 0 -y

which, after expanding with the rule of Laplace, becomes

Y -1 —y—1-1 W2 Rty
‘l—y—lH -1 —y'_ Oiy = b

Hence the original determinant is equal to (y — 2)(y> + y — 1)2. If y = 2, the space
of solutions is therefore one-dimensional, and it is easy to guess the solution x| = x; =
X3 = X4 = X5 =A, L eR.

Ify = 1*‘/5 orif y =
cases, the m1nor

=1 f , the space of solutions is two-dimensional. In both

-y 1 0
1 —y 1
0 1 —y
is nonzero, hence x3, x4, and x5 can be computed in terms of x; and x;. In this case the
general solution is

s by =2+ yps =y + @), yA — ), A, neR.

Remark. The determinant of the system can also be computed using the formula for the
determinant of a circulant matrix.
(5th International Mathematical Olympiad, 1963, proposed by the Soviet Union)

233. Taking the logarithms of the four relations from the statement, we obtain the fol-
lowing linear system of equations in the unknowns Ina, In b, Inc, Ind:

—xIna+Inb+1Inc+1Ind =0,
Ina—ylnb+Inc+1Ind =0,
Ina+Inb—zInc+Ind =0,
Ina+Inb+Inc—tind =0.

We are given that this system has a nontrivial solution. Hence the determinant of the
coefficient matrix is zero, which is what had to be proved.
(Romanian mathematics competition, 2004)

234. First solution: Suppose there is a nontrivial solution (x;, x, x3). Without loss of
generality, we may assume x; < x, < x3. Letxo =x1+m,x3=x1+m+n,m,n > 0.
The first and the last equations of the system become
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(a1 +apn +a)x; + (a2 + az)m + aizn =0,
(as1 + azx + azz)xi + (a2 + azz)m + azzn = 0.
The hypotheses as; + a3 + az3 > 0 and a3; < 0 imply as; + as3 > 0, and therefore

(az + azz)m > 0 and azzn > 0. We deduce that x; < 0, which combined with a;, < 0,
ajz <0,ay +ap + a3 > 0gives

(ann +app+ap)x; <0, (@p+ap)m =<0, ap;3zn=<0.

The sum of these three nonpositive terms can be zero only when they are all zero. Hence
x; =0,m = 0, n = 0, which contradicts our assumption. We conclude that the system
has the unique solution x; = x, = x3 = 0.

Second solution: Suppose there is a nontrival solution (xi, x2, x3). Without loss of
generality, we may assume that |x3| > |x2| > |x;|. We have a3;,a3 < 0and 0 <
—das) — dzp < assz, SO

lazsxs| = | — az1x1 — azxz| < (—az — az)lx2| < (—az — az)lx3| < asslxsl.

This is a contradiction, which proves that the system has no nontrivial solution.
(7th International Mathematical Olympiad, 1965, proposed by Poland)

235. First solution: The zeros of P(x) are €, €2, ..., €", where € is a primitive (n + 1)st

root of unity. As such, the zeros of P(x) are distinct. Let
P(x") = Q(x) - P(x) + R(x),

where R(x) = a,_1x"~' 4 - - +a;x + ay is the remainder. Replacing x successively by

€, €2, ..., €", we obtain

ae" '+ fae+ar=n+1,
ap €)'+ ra e +ag=n+1,

A€ '+t a € +ag=n+1,
or

[ap— (n+ D] +ae+---+a, 1€ "' =0,
[ap— (n+ D] +a1(e) 4+ +a, ()" =0,

[ap— (mn+ D]+ ai(e) +---+ an—](f")n_l -0

This can be interpreted as a homogeneous system in the unknowns ay — (n + 1),
ai, ap, ..., a,—1. The determinant of the coefficient matrix is Vandermonde, thus nonzero,
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and so the system has the unique solutionay — (n +1) =a; = --- = a,_; = 0. We
obtain R(x) =n + 1.

Second solution: Note that
Tl =Gx=-DPx) +1;
hence
XKD — (e ®DEHD L G=D0ED L p(x) 4 1

Thus the remainder of any polynomial F(x"*') modulo P(x) is F(1). In our situation
this is n + 1, as seen above.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by M. Diaconescu)

236. The function ¢ (1) = ; +1 3 has the property that ¢ o ¢ o ¢ equals the identity function.

And ¢ (¢ (2)) = ﬁ Replace x in the original equation by ¢ (x) and ¢ (¢ (x)) to obtain
two more equatlons The three equations form a linear system

x—3 3+x
f(x+l>+f(1—x>:x’

f<3+x>+f(x) -3

1 +1
x—3 34+x
f(X)+f(x+1)— e
in the unknowns
x—3 3+x
o (3) (7).
Solving, we find that
f(t)— 4¢ t
1= 2

which is the unique solution to the functional equation.
(Kvant (Quantum), also appeared at the Korean Mathematical Olympiad, 1999)

237. It is obvious that ged(x, x + y) = ged(x, x + z) = 1. So in the equality from the
statement, x divides y + z. Similarly, y divides z + x and z divides x + y. It follows that
there exist integers a, b, ¢ with abc =t and

xX+y=cz,
y+z=ax,
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7+ x = by.

View this as a homogeneous system in the variables x, y, z. Because we assume that
the system admits nonzero solutions, the determinant of the coefficient matrix is zero.
Writing down this fact, we obtain a new Diophantine equation in the unknowns a, b, c:

abc—a—b—-c—-2=0.
This can be solved by examining the following cases:

1. a = b = c. Then a = 2 and it follows that x = y = z, because these numbers are
pairwise coprime. This means thatx = y = z = 1 and r = 8. We have obtained the
solution (1, 1, 1, 8).

2. a = b, a # c. The equation becomes a’c — 2 = 2a + ¢, which is equivalent to
c(@®> —1) = 2(a + 1), that is, c(a — 1) = 2. We either recover case 1, or find the
new solution ¢ = 1, a = b = 3. This yields the solution to the original equation
(1,1,2,9).

3. a > b > c. Inthis case abc — 2 = a + b + ¢ < 3a. Therefore, a(bc — 3) < 2. It
follows that bc — 3 < 2, that is, bc < 5. We have the following situations:

(i) b =2,c =1,s0a =5 and we obtain the solution (1, 2, 3, 10).
(i) b =3,c =1, soa = 3 and we return to case 2.

(iii)) b =4, ¢ = 1, so 3a = 7, which is impossible.

In conclusion, we have obtained the solutions (1,1, 1, 8), (1, 1,2,9), (1, 2, 3, 10),
and those obtained by permutations of x, y, z.
(Romanian Mathematical Olympiad, 1995)

238. Note that m comparisons give rise to a homogeneous linear system of m equations
with n unknowns, namely the masses, whose coefficients are —1, 0, and 1. Determining
whether all coins have equal mass is the same as being able to decide whether the solution
belongs to the one-dimensional subspace of R” spanned by the vector (1, 1, ..., 1). Since
the space of solutions has dimension at least n — m, in order to force the solution to lie
in a one-dimensional space one needs at least n — 1 equations. This means that we need
to perform at least n — 1 comparisions.
(Mathematical Olympiad Summer Program, 2006)

239. We are given that ay = a,+; = 0 and a;_; — 2a; + a1 = by, with by € [—1, 1],

k=1,2,...,n. Consider the linear system of equations

ap — 2a; + a, = by,

ay — 2a; +az = by,
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an—1 — 2an +apy1 = bn

inthe unknowns ay, as, . . ., a,. To determine g, for some k, we multiply the first equation
by 1, the second by 2, the third by 3, and so on up to the (k — 1)st, which we multiply by
k — 1, then add them up to obtain

—kai_y + (k — Dag =Y _ jb;.
j<k
Working backward, we multiply the last equation by by 1, the next-to-last by 2, and so
on up to the (k + 1)st, which we multiply by n — k, then add these equations to obtain
—(n—k+Dag+ (= Kay =Y (n—j+b;.
Jj>k
We now have a system of three equations,
—kay_1 + (k — Day = Zjij
j<k
ax—1 — 2ax + a1 = by,
~(n =k + Dagpr + (0 = kag = Y (0~ j+Db;
j>k
in the unknowns ay_1, a, ai+1. Eliminating a;_; and a;4, we obtain

k—1 n

—k 1 1
24— Na=b+- jb— —j 4 Db;.
(-2 Ja= o Dbt g D=+ o

j<k

Taking absolute values and using the triangle inequality and the fact that |b;| < 1, for all
J, we obtain

—n—1
- <1 —j+1
‘k(n_ 1)’|k|_ + - ZH k+12<n j+D
]<k Jj>k
_1+k—1+n—k_n+1
o 2 2 2

Therefore, |a;| < k(n — k + 1)/2, and the problem is solved.

240. The fact that the matrix is invertible is equivalent to the fact that the system of linear
equations
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L I
2 3 n+1 ’
X1 X2 Xn
n n+1 2n — 1
has only the trivial solution. For a solution (x1, X3, ..., x,,) consider the polynomial

PX)=xix+1Dx+2)---x4+n—1D~+xx(x+2)---x+n—1)+---
+xx(x+1)---(x +n—2).

Bringing to the common denominator each equation, we can rewrite the system in short

form as P(1) = P(2) = --- = P(n) = 0. The polynomial P(x) has degree n — 1;
the only way it can have n zeros is if it is identically zero. Taking successively x =
0,—1,-2,..., —n,wededuce that x; = O for all i. Hence the system has only the trivial

solution, and the matrix is invertible.

For the second part, note that the sum of the entries of a matrix A is equal to the sum
of the coordinates of the vector A1, where 1 is the vector (1, 1, ..., 1). Hence the sum
of the entries of the inverse matrix is equal to x; + x, + - - - + x,,, where (x1, X2, ..., X;;)
is the unique solution to the system of linear equations

X1 X2 Xn
— 4+ —= .._|__:]’
1 2
X1 X2 Xn
— = - =1,
2 3 +n+1
X1 X2 Xn
— = 1.
n+n+1+ +2n—1

This time, for a solution to this system, we consider the polynomial
Ox)=x1x+Dx+2)---x+n—-—D4+- - +xx(x+1)---(x+n-2)
—x(x+1D---(x+n-—-1).

Again we observe that Q(1) = Q(2) = --- = Q(n) = 0. Because Q(x) has degree n
and dominating coefficient —1, it follows that Q(x) = —(x — D)(x —2)--- (x — n). So

x1(x—|—1)(x+2)--~(x+n—1)+”‘+ xx+1D---(x+n-2)

n

xn—l
_x(x+1)---(x+n—1)—(x—1)(x—2)---(x—n)

xn—l

The reason for writing this complicated relation is that as x — oo, the left-hand side
becomes x; + x, + - - - + x,,, while the right-hand side becomes the coefficient of x"~! in
the numerator. And this coefficient is
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nin—1) +n(n+1) .y

T424 (= D+ 1424 dn=— >

The problem is solved.

Remark. It is interesting to note that the same method allows the computation of the
inverse as (b ) im, giving

_ (=D 4k — Dl +m — 1)!
T (k+m— D[k —Dm — DIPn—m)!n — k)’

bk,m

241. First, note that the polynomials (), (x;“), (x;rz), ... are odd and have degrees

1,3,5,..., and so they form a basis of the vector space of the odd polynomial func-
tions with real coefficients.

The scalars ¢y, c3, .. ., ¢, are computed successively from
P(1) = ¢y,
2
P(2) =c <1> + o2,

3 4
P(3)=Cl + + c3.
1 3
The conclusion follows.

(G. Pélya, G. Szeg6, Aufgaben und Lehrsditze aus der Analysis, Springer-Verlag, 1964)

242. Inspired by the previous problem we consider the integer-valued polynomials (r’;) =
xx—1---(x—m+1)/m!,m=0,1,2,.... They form a basis of the vector space of
polynomials with real coefficients. The system of equations

P =bo( V40 T )+t ) 400 k=01,... 0,
n n—1 1

can be solved by Gaussian elimination, producing an integer solution by, by, ..., b,.
Yes, we do obtain an integer solution because the coefficient matrix is triangular and has
ones on the diagonal! Finally, when multiplying (}), m =0, 1, ..., n, by n!, we obtain
polynomials with integer coefficients. We find that n! P (x) has integer coefficients, as
desired.

(G. Polya, G. Szeg6, Aufgaben und Lehrsditze aus der Analysis, Springer-Verlag, 1964)

243. For n = 1 the rank is 1. Let us consider the case n > 2. Observe that the rank does
not change under row/column operations. Fori =n,n — 1, ..., 2, subtract the (i — 1)st
row from the ith. Then subtract the second row from all others. Explicitly, we obtain
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2 3 ---n+1 23.---n+1

3 4 ...n42 11--- 1

rank . . . =rank | . . )
n+ln+2--- 2n 11-.- 1
12...n

11---1

=rank | 00--- 0 | =2,
00.--0

(12th International Competition in Mathematics for University Students, 2005)

244.The polynomials P;(x) = (x+j)*,j =0, 1,...,n—1,lieinthe (k+1)-dimensional
real vector space of polynomials of degree at most k. Because k41 < n, they are linearly
dependent. The columns consist of the evaluations of these polynomials at 1,2, ..., n,
so the columns are linearly dependent. It follows that the determinant is zero.

245. We prove this property by induction on n. For n = 1, if f is identically equal to
zero, then so is f. Otherwise, pick a vector e ¢ ffl (0). Note that any other vector
v € V is of the form ae + w with @ € R and w € f;'(0). It follows that f = ;fl ({3 11,
and the base case is proved.

We now assume that the statement is true for n = k — 1 and prove it for n = k. By
passing to a subset, we may assume that f1, f, ..., fi are linearly independent. Because
fx 1s linearly independent of fi, f>, ..., fi—1, by the induction hypothesis there exists a
vector ¢; such that fi(e;) = faler) = -+ = fi—1(ex) =0, and fi(ex) # 0. Multiplying
e by a constant, we may assume that f;(e;) = 1. The vectors ey, e, . .., ex— are defined
similarly, so that f;(e;) = 1if i = j and O otherwise.

For an arbitrary vectorv € V and fori = 1,2, ..., k, we have

k k
flv=>2_Fiwe; | = fiw) =) fiw) filey) = fi(v) = fi(v) file;) = 0.
j=1 j=1

By hypothesis f(v — Zl;zl fi(v)e;) = 0. Since f is linear, this implies

f) = fle) fi(v) + f(e2) f2(v) + -+ + flex) fyu(v), forallveV.

This expresses f as a linear combination of fi, f2, ..., fr, and we are done.
(5th International Competition in Mathematics for University Students, 1998)

246. First solution: We will prove this property by induction on n. For n = 1 it is
obviously true. Assume thatitis true forn—1, and letus prove itforn. Using the induction
hypothesis, we can find x;, x5, ..., x,—1 € S such that a;x; + axxo + - - - + ay—1x,—1
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is irrational for any nonnegative rational numbers ay, ay, .. ., a, not all equal to zero.
Denote the other elements of S by x,,, X,41, ..., X2,—1 and assume that the property does
not hold forn. Thenforeachk =0, 1, ..., n—1 we can find rational numbers r; such that

n—1
E bixx; | + cxXpyrx = 1%

i=1

with b, ¢, some nonnegative integers, not all equal to zero. Because linear combinations
of the x;’s,i = 1,2, ...,n — 1, with nonnegative coefficients are irrational, it follows
that ¢; cannot be equal to zero. Dividing by the appropriate numbers if necessary, we
may assume that for all k, ¢, = 1. We can write X, = ry — 27:—11 b;rx;. Note that the
irrationality of x,; implies in addition that for a fixed k, not all the b;;’s are zero.

Also, for the n numbers x,, x,+1, ..., X2,—1, we can find nonnegative rationals
di,d, ...,d,, not all equal to zero, such that

n—1

E AiXpyk =T,
k=0

for some rational number r. Replacing each x,,; by the formula found above, we obtain

n—1

n—1
dy (— Zbikxi + rk) =r.
0 i=1

k=

It follows that

n—1 /n—1
> (Z dkbik) %
i=1 \k=0

is rational. Note that there exists a nonzero dy, and for that particular £ also a nonzero
bix. We found a linear combination of x1, x», . .., x,—; with coefficients that are positive,

rational, and not all equal to zero, which is a rational number. This is a contradiction.
The conclusion follows.

Second solution: Let V be the span of 1, xy, x;, ..., xp,—1 over Q. Then V is a finite-
dimensional Q-vector space inside R. Choose a QQ-linear function f : V — Q such
that f(1) = 0 and f(x;) # 0. Such an f exists since the space of linear functions with
f(1) = 0 has dimension dim V — 1 and the space of functions that vanish on 1 and x;
has dimension dim V — 2, and because Q is infinite, you cannot cover an m-dimensional
vector space with finitely many (m — 1)-dimensional subspaces. By the pigeonhole
principle there are n of the x; for which f (x;) has the same sign. Since f(r) = 0 for all
rational r, no linear combination of these n with positive coefficients can be rational.
(second solution by R. Stong)
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247. First solution: Assume first that all numbers are integers. Whenever we choose a
number, the sum of the remaining ones is even; hence the parity of each number is the
same as the parity of the sum of all. And so all numbers have the same parity.

By subtracting one of the numbers from all we can assume that one of them is zero.
Hence the numbers have the same parity as zero. After dividing by 2, we obtain 2n + 1
numbers with the same property. So we can keep dividing by 2 forever, which is possible
only if all numbers are zero. It follows that initially all numbers were equal.

The case of rational numbers is resolved by multiplying by the least common multiple
of the denominators. Now let us assume that the numbers are real. The reals form an
infinite-dimensional vector space over the rationals. Using the axiom of choice we can
find a basis of this vector space (sometimes called a Hammel basis). The coordinates of
the 2n + 1 numbers are rational, and must also satisfy the property from the statement
(this follows from the fact that the elements of the basis are linearly independent over
the rationals). So for each basis element, the corresponding coordinates of the 2n 4 1
numbers are the same. We conclude that the numbers are all equal, and the problem is
solved.

However, this solution works only if we assume the axiom of choice to be true. The
axiom states that given a family of sets, one can choose an element from each. Obvious
as this statement looks, it cannot be deduced from the other axioms of set theory and
has to be taken as a fundamental truth. A corollary of the axiom is Zorn’s lemma, which
is the actual result used for constructing the Hammel basis. Zorn’s lemma states that if
every totally ordered subset of a partially ordered set has an upper bound, then the set
has a maximal element. In our situation this lemma is applied to families of linearly
independent vectors with the ordering given by the inclusion to yield a basis.

Second solution: The above solution can be improved to avoid the use of the axiom of
choice. As before, we prove the result for rational numbers. Arguing by contradiction
we assume that there exist 2n + 1 real numbers, not all equal, such that whenever one
is removed the others can be separated into two sets with n elements having the sum of
their elements equal. If in each of these equalities we move all numbers to one side, we
obtain a homogeneous system of 2xn + 1 equations with 2xn + 1 unknowns. In each row of
the coefficient matrix, 1 and —1 each occur n times, and 0 appears once. The solution to
the system obviously contains the one-dimensional vector space V spanned by the vector
(1,1, ..., 1). By hypothesis, it contains another vector that does not lie in V. Solving
the system using Gaussian elimination, we conclude that there must also exist a vector
with rational coordinates outside of V. But we already know that this is impossible. The
contradiction proves that the numbers must be all equal.

248. Let Ay, A, be the eigenvalues of A. Then —A;Z, and —X,Z, both belong to
C(A), so

0= |det(A — A To)| > |2, fori=1,2.
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It follows that A; = A, = 0. Change the basis to v, w with v an eigenvector of A (which
does exist because Av = 0 has nontrivial solutions). This transforms the matrix into one

of the form
Oa
00/

One easily checks that the square of this matrix is zero.
Conversely, assume that A> = (0,. By the spectral mapping theorem both eigenvalues
of A are zero, so by appropriately choosing the basis we can make A look like

Oa
00/"
If a = 0, we are done. If not, then

C(A)z{(ga> |a,ﬁeR}.

One verifies immediately that forevery B € C(A), det(A+ B) = det B. So the inequality
from the statement is satisfied with equality. This completes the solution.
(Romanian Mathematical Olympiad, 1999, proposed by D. Mihet)

249. Since det B = 1, B is invertible and B~! has integer entries. From
A+ B = (AB™) +1,)B®,

it follows thatdet((AB~")*+7,) = 1. We will show that (AB~")?> = O,. Set AB~! = C.
We know that det(C> + Z,) = 1. We have the factorization

C'+ 1, = (C+T)(C +€D)(C + €Dy,
where € is a primitive cubic root. Taking determinants, we obtain
P(—1)P(—€)P(—€*) =1,

where P is the characteristic polynomial of C.

Let P(x) = x> — mx + n; clearly m, n are integers. Because P(—€?) = P(—€) =
P(e€), it follows that P(—e) P(—€?) is a positive integer. So P(—1) = P(—€)P(—€?) =
1. We obtain 1 +m +n = 1 and (€2 4+ me + n)(e + me> + 1) = 1, which, after some
algebra, give m = n = 0. So C has just the eigenvalue 0, and being a 2 x 2 matrix, its
square is zero.

Finally, from the fact that AB = BA and (AB~")? = O,, we obtain A2B~2 = O,
and multiplying on the right by B? we have A? = O,, as desired.

(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)
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250. First solution: The eigenvalues are the zeros of the polynomial det(AZ,, —aA—bA").
The matrix AZ, —aA —bA! is a circulant matrix, and the determinant of a circulant matrix
was the subject of problem 211 in Section 2.3.2. According to that formula,

n—1
det(A\T, —aA —bA") = (="' [[e/ = at¥ - b),

j=0

where ¢ = ¢?/" is a primitive nth root of unity. We find that the eigenvalues of a A +b A’

areal’ +b:=/,j=0,1,...,n—1.
Second solution: Simply note that for ¢ = ¢*/" and j = 0,1,...,n— 1, (1,¢/,¢%,
..., £"=DJy s an eigenvector with eigenvalue a¢/ + bt /.

251. Let ¢ be the linear transformation of the space R” whose matrix in a certain basis

e1, ey, ..., e,1s A. Consider the orthogonal decompositions of the space R” = ker ¢ BT,

R" = Im¢ @ S. Set ¢ = ¢|r. Then ¢’ : T — Im¢ is an isomorphism. Let y’ be

its inverse, which we extend to a linear transformation y of the whole of R” by setting

Yls = 0. Then ¢py¢p = ¢'y'¢’ = ¢ on T and ¢y¢ = 0 on T+ = ker¢p. Hence

¢y d = ¢, and we can choose B to be the matrix of y in the basis ey, e3, .. ., e,.
(Soviet Union University Student Mathematical Olympiad, 1976)

252. The map that associates to the angle the measure of its projection onto a plane is
linear in the angle. The process of taking the average is also linear. Therefore, it suffices
to check the statement for a particular angle. We do this for the angle of measure 7,
where it trivially works.

Remark. This lemma allows another proof of Fenchel’s theorem, which is the subject of

problem 644 in Section 4.1.4. If we defined the total curvature of a polygonal line to be

the sum of the “exterior’” angles, then the projection of any closed polygonal line in three-

dimensional space onto a one-dimensional line has total curvature at least ¥ + 7 = 27

(two complete turns). Hence the total curvature of the curve itself is at least 2.
(communicated by J. Sullivan)

253. The first involution A that comes to mind is the symmetry with respect to a hyper-
plane. For that particular involution, the operator B = %(A + 7) is the projection onto
the hyperplane. Let us show that in general for any involution A, the operator B defined
as such is a projection. We have

»_ 1 1o 2 1
B = Z(A—l—I) = Z(A +2AT+71°) = Z(I+2A+I) = B.
There exists a basis of V consisting of eigenvectors of B. Just consider the decomposition

of V into the direct sum of the image of B and the kernel of B. The eigenvectors that
form the basis are either in the image of B, in which case their eigenvalue is 1, or in
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the kernel, in which case their eigenvalue is 0. Because A = 2B — 7, it has the same
eigenvectors as B, with eigenvalues 1. This proves (a).

Part (b) is based on the fact that any family of commuting diagonalizable operators
on V can be diagonalized simultaneously. Let us prove this property by induction on the
dimension of V. If all operators are multiples of the identity, there is nothing to prove.
If one of them, say S, is not a multiple of the identity, then consider the eigenspace V,
of a certain eigenvalue A. If T is another operator in the family, then since STv =
T Sv = AT, it follows that Tv € V;; hence V; is an invariant subspace for all operators
in the family. This is true for all eigenspaces of A, and so all operators in the family
are diagonal blocks on the direct decomposition of V into eigenvectors of A. By the
induction hypothesis, the family can be simultaneously diagonalized on each of these
subspaces, and so it can be diagonalized on the entire space V.

Returning to the problem, diagonalize the pairwise commuting involutions. Their
diagonal entries may equal +1 or —1 only, showing that there are at most 2" such
involutions. The number can be attained by considering all choices of sign on the diagonal.

(3rd International Competition in Mathematics for University Students, 1996)

254. From the orthogonality of Au and u, we obtain
(Au,u) = (u, A'u) = (A'u,u) =0.

Adding, we obtain that ((A + A")u, u) = 0 for every vector u. But A + A’ is symmetric,
hence diagonalizable. For an eigenvector v of eigenvalue A, we have

((A+ AHv, v) = (Av,v) = A{v,v) = 0.

This shows that all eigenvalues are zero, so A + A’ = 0, which proves (a).
As a corollary of this, we obtain that A is of the form

0 apn a3
A= —daip O ans
—ap3 —ay 0

So A depends on only three parameters, which shows that the matrix can be identified
with a three-dimensional vector. To choose this vector, we compute

0 apn a Ui apuy + apsu;
Au=| —apn 0 axn uy | = | —anpu + axu;
—ap3 —ay 0 u3 —apu| — axsiy

It is easy to see now that if we set v = (—ap3, a3, —ayz), then Au = v x u.

Remark. The set of such matrices is the Lie algebra so(3), and the problem describes two
of its well-known properties.
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255. There is a more general property, of which the problem is a particular case.

Riesz lemma. If V is a finite-dimensional vector space with inner product (-, -), then
any linear functional f : V — R is of the form f(x) = (x, z) for some unique z € V.

This result can be generalized to any (complex) Hilbert space, and it is there where
it carries the name of F. Riesz.

We prove it as follows. If f is identically zero, then f(x) = (x, 0). Otherwise, let
W be the kernel of f, which has codimension 1 in V. There exists a nonzero vector
y orthogonal to W such that f(y) = 1. Set u = (y, y) and define z = u~'y. Then
(z,z) = n~'. Any vector x € V is of the form x" + Az, with x’ € W. We compute

f) = fE)+Arf@) =r"" =Mz 2) = (K 2) + Az, 2) = (x, 2).

Note that z is unique, because if {x, z) = (x, z’) for all x, then z — 7’ is orthogonal to all
vectors, hence is the zero vector. There exists a simpler proof, but the one we gave here
can be generalized to infinite-dimensional Hilbert spaces!

For our particular case, V = M, (R) and the inner product is the famous Hilbert—
Schmidt inner product (A, B) = tr(AB").

For the second part of the problem, the condition from the statement translates to
tr((AB — BA)C) = 0 for all matrices A and B. First, let us show that all off-diagonal
entries of C are zero. If ¢;; is an entry of C with i # j, let A be the matrix whose entry
a;i is 1 and all others are 0, and B the matrix whose entry by; is 1 and all others are 0, for
some number k. Then tr((AB — BA)C) = ¢;; = 0. So C is diagonal. Moreover, choose
ajj = b;j = 1, withi # j. Then AB — B A has two nonzero entries, the (i, i) entry, which
is 1, and the (j, j) entry, which is —1. Therefore, tr((AB — BA)C) = ¢;; —c;; = 0. We
deduce that all diagonal entries of C are equal to some number A, and hence

f(A) = tr(AC) = tr(AA) = A tr(A),
as desired.
Remark. The condition f(AB) = f(BA) gives
tr(AC) = f(A) = f(ABB™Y) = f(B"'AB) = tr(B"'ABC) = tr(ABCB™});

hence by uniqueness of C, we have shown that C = BCB~! for all B, or BC = CB.
The solution of the problem is essentially a proof that if C commutes with all invertible
matrices B, then C = AZ, for some scalar A.

256. Fix x € R" with ||x|| = 1,and let y = U~'V~'x. Because U and V are isometric
transformations, ||y|| = 1. Then

IUVU~'V™x — x| = [UVy — VUYy|
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=10 =2V =L)y =V =L)U = L)yl
< IU =Z)(V =Z)yll + IV = Z)U = L)yl

The claim follows if we prove that ||(U — Z,)(V —Z,)y|l and ||(V — Z,)(U — Z,)y|| are
both less than 4—1‘, and because of symmetry, it suffices to check this for just one of them.
If(V-27,)y=0,then ||(U—-ZL,)(V—-1,)y]|=0< ;1‘. Otherwise, using the properties
of vector length, we proceed as follows:

—Zn)y
(U —-Z)V =Lyl = |(U—=ZHNV = LIyl

II(V Zoyll
=V =Z)yll x KU = Zy)zll,

where z is the length one vector M(V — 7,)y. By the hypothesis, each factor in
the product is less than % This proves the claim and completes the solution.

257. The equality for general k follows from the case k = n, when it is the well-known
det(AB) = det(BA). Apply this to

I, A M,—ABO,\ (M, A\ (1,0, T A
O, I, B Z,) \ B I,)]  \ B I, O, ML, — BA
to obtain

det(AZ, — AB) = det(\Z, — BA).

The coefficient of A¥ in the left-hand side is ¢ (A B), while the coefficient of A¥ in the
right-hand side is ¢ (B A), and they must be equal.

Remark. From the many applications of the functions ¢, (A), we mention the construction
of Chern classes in differential geometry.

258. From
= L + vAYW'T, + V' A) = uu'T, + (v’ + vu')A + vv' A2,
using the Cayley—Hamilton Theorem, we obtain
T = (uu' — vv'det A)Z, + (uv' + vu' + vv' trA)A.
Thus u’ and v’ should satisfy the linear system

uu' — (vdet A)v' =1,
vi' + (u +vtrA)v' = 0.
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The determinant of the system is u>+uv tr A4-v? det A, and an easy algebraic computation
shows that this is equal to det(uZ, 4+ vA), which is nonzero by hypothesis. Hence the
system can be solved, and its solution determines the desired inverse.

259. Rewriting the matrix equation as

5 (22
X2(X —3L,) = (_2 _2)

and taking determinants, we obtain that either det X = 0 or det(X — 3Z;) = 0. In the
first case, the Cayley—Hamilton equation implies that X> = (trX)X, and the equation
takes the form

s (22
[(trX)? —3uX]X = (_2 _2).

Taking the trace of both sides, we find that the trace of X satisfies the cubic equation
3 =3t +4 =0, with real roots r = 2 and t = —1. In the case trX = 2, the matrix

equation is
-2 -2
ax = (_2 _2)

X=(H>

When trX = —1, the matrix equation is

with the solution

with the solution

Let us now study the case det(X — 37,) = 0. One of the two eigenvalues of X is 3. To
determine the other eigenvalue, add 47, to the equation from the statement. We obtain

X3 —3X* 44T, = (X - 20)(X + 1) = <:§ :;) .

Taking determinants we find that either det(X — 27;) = 0 or det(X + Z,) = 0. So the
second eigenvalue of X is either 2 or —1. In the first case, the Cayley—Hamilton equation
for X is
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X? —5X +61, =0,

which can be used to transform the original equation into

4X — 121, = (:; :;)

with the solution

The case in which the second eigenvalue of X is —1 is treated similarly and yields the

solution
1 -2
(L)

(Romanian competition, 2004, proposed by A. Buju)

260. Because the trace of [A, B] is zero, the Cayley—Hamilton Theorem for this matrix
is [A, B]*> + (det[A, B])Z, = 0, which shows that [A, B]? is a multiple of the identity.
The same argument applied to the matrices [C, D] and [A, B] 4+ [C, D] shows that their
squares are also multiples of the identity.

We have

[A, B]-[C, D] +[C, D]-[A, B] = ([A, Bl + [C, D])?* — [A, B]*> — [C, D]~

Hence [A, B]-[C, D]+[C, D]-[A, B]is also a multiple of the identity, and the problem
is solved.
(Romanian Mathematical Olympiad, 1981, proposed by C. Nistdsescu)

261. The Cayley—Hamilton Theorem gives
(AB — BA)’ — ¢i(AB — BA)? + c2(AB — BA) — 313 = O;,

where ¢c; = tr(AB — BA) = 0, and c¢3 = det(AB — BA). Taking the trace and using the
fact that the trace of AB — BA is zero, we obtain tr((AB — BA)?)—3 det(AB—BA) = 0,
and the equality is proved.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu)

262.1et C = AB — BA. We have

AB?> + BA?> = (AB — BA)B+ B(AB — BA) = CB + BC = 2BC.
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Let Pg(L) = A>+rA+s be the characteristic polynomial of B. By the Cayley—Hamilton
Theorem, Pg(B) = 0. We have

O, = AP3(B) — Ps(B)A = AB*> — B?’A+r(AB — BA) = 2BC +rC.
Using this and the fact that C commutes with A and B, we obtain

0, = ARBC +rC) — 2BC +rC)A =2(AB — BA)C = 2C*.

C=(gg).

Hence C commutes only with polynomials in C. But if A and B are polynomials in C,
then C = O,, a contradiction. So C must be scalar whose square is equal to zero, whence
C = O, again. This shows that such matrices A and B do not exist.

(American Mathematical Monthly, solution by W. Gustafson)

Therefore, C?> = ©,. In some basis

263. Choose A € R sufficiently large such that AZ, + A has positive entries. By the
Perron—Frobenius Theorem, the largest eigenvalue p of AZ, 4+ A is positive, and all other
eigenvalues lie inside the circle of radius p centered at the origin. In particular, p is real
and all other eigenvalues lie strictly to its left. The eigenvalues of A are the horizontal
translates by A of the eigenvalues of AZ, 4+ A, so they enjoy the same property.

Remark. The result is true even for matrices whose off-diagonal entries are nonnegative,
the so-called Metzler matrices, where a more general form of the Perron—-Frobenius
Theorem needs to be applied.

264. First solution: Define A = (a;;); ;_,. Then replace A by B = «Z; — A, where
a is chosen large enough so that the entries b;; of the matrix B are all positive. By
the Perron—Frobenius Theorem, there exist a positive eigenvalue A and an eigenvector
¢ = (¢, €3, c3) with positive coordinates. The equality Bc = Ac yields

ajcy + apcy + ajzes = (o — Acy,
arc + ancy +axes = (o — A)ca,

azic1 + azncy + azes = (@ — A)cs.

The three expressions from the statement have the same sign as o — A: they are either all
three positive, all three zero, or all three negative.

Second solution: The authors of this problem had a geometric argument in mind. Here
it is.
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Consider the points P(ai, az1, as1), Q(a, ax, axn), R(ais, ax, asz) in three-di-
mensional Euclidean space. It is enough to find a point in the interior of the triangle
P O R whose coordinates are all positive, all negative, or all zero.

Let P’, Q', R’ be the projections of P, Q, R onto the xy-plane. The hypothesis
implies that P/, Q’, and R’ lie in the fourth, second, and third quadrant, respectively.

Case 1. The origin O is in the exterior or on the boundary of the triangle P'Q’'R’ (Fig-
ure 63).

8 >
,
)

R’ P’

Figure 63

Denote by S’ the intersection of the segments P’Q’ and OR’, and let S be the point
on the segment P Q whose projection is S’. Note that the z-coordinate of the point S is
negative, since the z-coordinates of P’ and Q' are negative. Thus any point in the interior
of the segment S R sufficiently close to S has all coordinates negative, and we are done.

Case 2. The origin O is in the interior of the triangle P’ Q’'R’ (Figure 64).

Q/

Figure 64

Let T be the point inside the triangle P Q R whose projectionis O. If T = O, we are
done. Otherwise, if the z-coordinate of T is negative, choose a point S close to it inside
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the triangle P Q R whose x- and y-coordinates are both negative, and if the z-coordinate
of T is positive, choose S to have the x- and y-coordinates positive. Then the coordinates
of § are all negative, or all positive, and again we are done.

(short list of the 44th International Mathematical Olympiad, 2003, proposed by
the USA)

265. Let A be the positive eigenvalue and v = (vy, v, ..., v,) the corresponding eigen-
vector with positive entries of the transpose of the coefficient matrix. The function
y(t) = vixi(t) + voxo () + - - - + v,x,(2) satisfies

dy
E = Zviaijxj = Z)\ijj' = )\y
i,j J
Therefore, y(t) = e*'yy, for some vector y,. Because
Jim y(@0) =) v lim xi(6) =0,

and lim,_, o, € = o0, it follows that y; is the zero vector. Hence
y(@) = vixi (1) + vaxa(t) + - - + vux, (1) =0,

which shows that the functions xi, x, . .., x,, are necessarily linearly dependent.
(56th W.L. Putnam Mathematical Competition, 1995)

266. We try some particular cases. For n = 2, we obtain ¢ = 1 and the sequence 1, 1, or
n = 3, ¢ = 2 and the sequence 1, 2, 1, and for n = 4, ¢ = 3 and the sequence 1, 3, 3, 1.
We formulate the hypothesis that ¢ = n — 1 and x; = (}_}).

The condition x,,; = 0 makes the recurrence relation from the statement into a linear
system in the unknowns (x1, x2, ..., x,). More precisely, the solution is an eigenvector

of the matrix A = (a;;);; defined by

i ifj=i+1,
ajj = I’l—j 1fj=l—1,

0 otherwise.

This matrix has nonnegative entries, so the Perron—Frobenius Theorem as stated here
does not really apply. But let us first observe that A has an eigenvector with positive
coordinates, namely x; = (’;:}), k=1,2,...,n,whoseeigenvalueisn — 1. This follows

by rewriting the combinatorial identity

()60
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as

n—1 k+1/n—-1 n—k(n—1

(k >_n—1Q44>+n—1Q—4>
To be more explicit, this identity implies that for c = n — 1, the sequence x; = (Z:})
satisfies the recurrence relation from the statement, and x,,,; = 0.

Let us assume that n — 1 is not the largest value that ¢ can take. For a larger value,
consider an eigenvector v of A. Then (A+Z,)v = (c+1)v,and (A+Z,)"v = (c+1)"v.
The matrix (A +Z,)" has positive entries, and so by the Perron—-Frobenius Theorem has a
unique eigenvector with positive coordinates. We already found one such vector, that for
which x; = ( P l) Its eigenvalue has the largest absolute value among all eigenvalues of
(A + Z,)", which means that n" > (c + 1)". This implies n > ¢ + 1, contradicting our
assumption. So n — 1 is the largest value c can take, and the sequence we found is the
answer to the problem.

(57th W.L. Putnam Mathematical Competition, 1997, solution by G. Kuperberg and
published in K. Kedlaya, B. Poonen, R. Vakil, The William Lowell Putnam Mathematical
Competition 1985-2000, MAA, 2002)

267. Let us first show that if the two numbers are equal, then the product can be found
in six steps. For x # —1, we compute (H)x — )%, QDx—->x+1,3)x+1— ﬁ,
D121 O 2 2> 7+ x, O)x +x,x —» X% Ifx = -1,
replace step (2) by x — x — 1 and make the subsequent modifications thereon.

If the two numbers are distinct, say x and y, perform the following sequence of

operations, where above each arrow we count the steps:

1 7 2
X,y —>x+y— (x+y)°,

Xy = x—y = (x =)
1

(x + y)%, (x—y)2—>4xyi> —
4xy’

1 1 17 1 1

—_——— —+ — =
4xy 4xy 4xy  4xy xy
2 2 18 2 2 4 1 19

—_—— — — 4+ — =
4xy 4xy 4xy 4xy 4dxy Xy
So we are able to compute the product in just 19 steps.
(Kvant (Quantum))

268. Building on the previous problem, we see that it suffices to produce an operation o,

from which the subtraction and reciprocal are derivable. A good choice is X+ Indeed,
1
x

= 5, andalsox —y = (1/?1}')4)‘ Success!
(DJ. Newman, A Problem Seminar, Springer-Verlag)
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269. Fix a and c in S and consider the function f, . : S\{a,c} — S,

Ja.c(b) =a*(bx*c).

Because a * f, .(b) *x c = (a xa) * b * (c *c) = b, the function is one-to-one. It follows
that there are exactly two elements that are not in the image of f, .. These elements are
precisely a and c. Indeed, ifa* (b*xc) = a, then (a*a)* (b*c) =a=*a,sobxc = ax*a,
and then b x (c * ¢) = (a * a) * ¢, which implies b = ¢. This contradicts the fact that
a, b, c are distinct. A similar argument rules out the case a * (b * c¢) = c.

Now choose a’, ¢’ different from both a and c¢. The union of the ranges of f, . and
fa.c» which is contained in the set under discussion, is the entire set S. The conclusion
follows.

Remark. An example of such a set is the Klein 4-group.
(R. Gelca)

270. Consider the set

U={hx,y) | h(=x,=y) = —h(x, y)}.

It is straightforward to check that U is closed under subtraction and taking reciprocals.
Because f(x,y) = x and g(x, y) = y are in U, the entire set S is in U. But U does not
contain nonzero constant functions, so neither does S.

(American Mathematical Monthly, 1987, proposed by 1. Gessel, solution by O.P.
Lossers)

271. All three parts of the conclusion follow from appropriate substitutions in the identity
from the statement. For example,

(exe)o(exe)=(eoe)x(e oe)
simplifies to ¢’ o ¢’ = e x e, which further yields ¢’ = e, proving (a). Then, from
(xxe)o(exy)=(xoe)x(eoy),

we deduce x o y = x x y, for every x, y € M, showing that the two binary operations
coincide. This further yields
(exx)x(yxe)=(exx)o(y*xe)=(eoy)x(xoe)=(exy)x*x(x*e),
and so x x y = y x x. Thus * is commutative and (c) is proved.
(Romanian high school textbook)

272. Substituting x = u x v and y = v, with u, v € S, in the given condition gives
(uxv)*x(vx(ux*xv)) =v. Butvx(uxv) = u,forallu, v € §. So (u*v)*u = v, forall
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u,v € §S. Hence the existence and uniqueness of the solution to the equation @ x x = b
is equivalent to the existence and uniqueness of the solution to the equation x x a = b.

The existence of the solution for the equation a * x = b follows from the fact that
x = b xa is a solution. To prove the uniqueness, let ¢ € § be a solution. By hypothesis
we have the equalities a * (bxa) =b,bx (cxb) =c,c*(a@a*c) =a. Fromaxc=>
it follows that ¢ % (@ x ¢) = c* b = a. Soa = ¢ * b, and from a * ¢ = b it follows that
cx(a*xc) = c*b = a. Therefore, b*xa = bx* (c*b) = c, which implies that b xa = c.
This completes the proof.

273. Substituting y = e in the second relation, and using the first, we obtain x x z =
(xxe)xz = (z*e)xx = zxx, which proves the commutativity. Using it, the associativity
is proved as follows:

(xxy)kz=(*xx)*xy=(y*2)*x =x*(y*2).

(A. Gheorghe)

274. The answer is yes. Let ¢ be any bijection of F with no fixed points. Define
x *y = ¢ (x). The first property obviously holds. On the other hand, x * (y * z) = ¢ (x)
and (x xy) xz = ¢(x xy) = ¢p(¢(x)). Again since ¢ has no fixed points, these two are
never equal, so the second property also holds.

(45th W.L. Putnam Mathematical Competition, 1984)

275. From a % (a * a) = (a * a) * a we deduce that a * a = a. We claim that
ax(bx*xa)=a foralla,besS.

Indeed, wehave ax (a* (bxa)) = (a*xa)*x(bxa) = ax(b*a)and (a*(b*a))*xa =
(a % b) * (a xa) = (a * b) x a. Using associativity, we obtain

ax(axbxa)=axbxa)=(@xb)*xa=(@x(bx*xa))*xa.

The “noncommutativity” condition from the statement implies a * (b * a) = a, proving
the claim.
We apply this property as follows:

(ax(bxc))yx(axc)=(axb)*x(c*x(a*xc))=(axb)=*c,
(axc)x(ax(bx*xc))=(ax(cxa))*x(b*xc)=ax*(bxc).

Since (a % b) * ¢ = a * (b % ¢) (by associativity), we obtain
(ax(bxc))yx(axc)=(axc)*(ax(b=*c)).

This means that a * (b * ¢) and a * ¢ commute, so they must be equal, as desired.
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For an example of such a binary operation consider any set S endowed with the
operation a x b = a forany a, b € S.

276. Using the first law we can write

yx(xxy) = (x*(x*y))*(x*y).

Now using the second law, we see that this is equal to x. Hence y * (x * y) = x.
Composing with y on the right and using the first law, we obtain

Vikx =y*k(yx(Xx*ky)) =x*xy.

This proves commutativity.
For the second part, the set S of all integers endowed with the operationxxy = —x—y
provides a counterexample. Indeed,

xx(xxy)=—x—(*xy)=—x—(—x—y)=y
and

*xx)xx=—(y*x)—x=—(-y—x)—x=y.

Also, (1 %¥2) %3 =0and 1 % (2 * 3) = 4, showing that the operation is not associative.
(33rd W.L. Putnam Mathematical Competition, 1972)

277. Define r(x) = 0 % x, x € Q. First, note that
xx(x+y)=0+x0)%(y+x)=0*xy+x=r(y+x.

In particular, for y = O we obtain x x x =r(0) + x = 0% 0+ x = x.

We will now prove a multiplicative property of r(x), namely that r(7'x) = “r(x)
for any positive integers m and n. To this end, let us show by induction that for all y and
all positive integers n, 0 x y % - -- x ny = nr(y). Forn = 0 we have 0 = 0 - r(y), and
for n = 1 this follows from the definition of r(y). Assume that the property is true for
k < n and let us show that it is true for n + 1. We have

Oxyx---s,nysx(n+1)y=0xy*x---x(nyxny)xm+ 1)y
=Oxyx---xny)x(ny*x(m+1)y)
= (0% y)) * ((0+ ny) * (y +ny))
=0xy+n—-1D0*y)*0xy+ny)
=m—1Dr(y)*xny+0=x*y.
Using the induction hypothesis, (n — 1)r(y) xny =0 y*x---x (n — 1)y xny = nr(y)

(this works even whenn = 1). Hence Oxyx---x(n+1)y = nr(y)+r(y) = (n+Dr(y),
which proves the claim.
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Using this and the associativity and commutativity of *, we obtain

2nr(y) = 0%y *2y % --- % 2ny
= Oxny)x(y*(n+1Dy)* 2y*(n+2)y)*--*(ny*2ny)
=r(ny)* (y* (y +ny)) * 2y * 2y +ny)) * - - - * (ny * (ny + ny)).

The first formula we have proved implies that this is equal to
(0 +r(ny)) * (y +7(ny)) * - - (ny +r(ny)).
The distributive-like property of * allows us to transform this into
(O y*2yx---sxny) +r(ny) =nr(y) +r(ny).

Hence 2nr(y) = nr(y) + r(ny), or r(ny) = nr(y). Replacing y by -, we obtain
r(%) = 1r(x), and hence r(%x) = “r(x), as desired.
Next, note that » o r = r; hence r is the identity function on its image. Also,

rz)=0xz=(—z4+2*0+2)=(—2)*x0+z=r(—2)+z,

or 7(z) — r(—z) = z. Hence for z #£ 0, one of r(z) and r(—z) is nonzero. Let y be this
number. Since r(y) = y, we have y = r(y) —r(—=y) =y —r(—y), sor(—y) = 0.
Also, if x = 2y, thenr(x) = 7r(y) = %y = x,and r(—x) = 2r(=y) = 0. If y > 0,
then r(y) = max(y, 0) and consequently r(x) = x = max(x, 0), for all x > 0, while
r(x) = 0 = max(x, 0) forall x < 0. Similarly, if y < 0, thenr(y) = min(y, 0), and then
r(x) = min(x, 0) for all x € Q. The general case follows from (¢ — b + b) * (0 + b) =
(a—Db)*x0+b.

(American Mathematical Monthly, proposed by H. Derksen, solution by J. Dawson)

278. For x € G and x’ its left inverse, let x” € G be the left inverse of x’, meaning that
x""x" = e. Then

xx' =e(xx) = (xX"x)(xx) =x"(x'x)x' =x"(ex’) =x"x' =e.
So x’ is also a right inverse for x. Moreover,

xe =x(x'x) = (xxx = ex = x,

which proves that e is both a left and right identity. It follows that G is a group.

279. Let e € G be the identity element. Set b = e in the relation from the statement.
Then

a=axe=(ala)l(ale) = (ala)la,
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and canceling @ we obtain ala = e, for all a € G. Using this fact, we obtain
axb=(ala)l(alb)=el(alb) =alb,

which shows that the composition laws coincide. Because axa = e, we see that a ' =a,
sofora,b e G,

ab = (ab)' =b"'a”! = ba,
which proves the commutativity.
(D. Stefdnescu)

280. The fundamental theorem of arithmetic allows us to find the integers # and v such
that us 4+ vt = 1. Since ab = ba, we have

ab = (ab)us-i-vt — (ab)us ((ab)t)v — (ab)”‘ve — (ab)us — auS(bS)u —ae = a™.
Therefore,
br = Bbr = a’b’ = (ab)r = au” = (ar)us = e.

Using again the fundamental theorem of arithmetic we can find x, y such thatxr+ys = 1.
Then

b = bxr—i—ys — (br)X(bS)y = e.

Applying the same argument, mutatis mutandis, we find that a = e, so the first part of
the problem is solved.

A counterexample for the case of a noncommutative group is provided by the cycles
of permutations a = (123) and b = (34567) in the permutation group S; of order 7.
Then ab = (1234567) and a®> = b> = (ab)” = e.

(8th International Competition in Mathematics for University Students, 2001)

281. Set ¢ = aba~"' and observe that ca = ab and that ¢" = e. We have
a=ea=c"a=c""ca=c"tab=c"(ca)b = " *ab?,
and, inductively,
a=c"%ab*, 1<k<n.

From a = ab", we obtain the desired conclusion b" = e.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by D. Bitinetu-
Giurgiu)

1

282. Applying the identity from the statement to the elements x and yx~", we have
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xy?x = x(x Hx(xT) = x Hx(yxTHx = ¥

Thus forany x, y, we have xy? = y?x. This means that squares commute with everything.
Using this fact, we rewrite the identity from the statement as

xyxy)c_ly_lx_ly_l =e

and proceed as follows:

1 1

x7ly T = xyxyx Pxy Tyx Ay Ry

= xyxyy *x Zxyxyy x 7 = (xyxyy 2x )%

e = xyxyx71y7

Because there are no elements of order 2, it follows that xyxyy 2x~2 = e and hence

xyxy = x>y%. Cancel an x and a y to obtain yx = xy. This proves that the group is
Abelian, and we are done.

(K.S. Williams, K. Hardy, The Red Book of Mathematical Problems, Dover, Mineola,
NY, 1996)

283. The first axiom shows that the squares of all elements in M are the same; denote
the common value by e. Then e?> = e, and from (ii), ae = a for alla € M. Also,
axb =a(eb) forall a, b € M. Let us verify the associativity of x. Using (iii) in its new
form e(bc) = cb, we obtain

a* (bxc)=ale(b(ec))] = a[(ec)b].
Continue using (iv) as follows:
al(ec)b] = [a(eb)][((ec)b)(eb)] = [a(eb)][(ec)e] = [a(eb)](ec) = (a * b) * c.
Here we used the fact that de = d, for the case d = ec. Thus associativity is proved.

The element e is a right identity by the following argument:

axe= a(eze) =a(ee) = ae’* = ae =a.

The right inverse of a is ae, since

a * (ea) = ale(ea)] = a(ae) = a’=e.
So there exists a right identity, and every element has a right inverse, which then implies
that (M, ) is a group.
(M. Becheanu, C. Vraciu, Probleme de Teoria Grupurilor (Problems in Group The-
ory), University of Bucharest, 1982)

284. How can we make the sum M interact with the multiplicative structure of I'? The
idea is to square M and use the distributivity of multiplication with respect to the sum of
matrices. If G, G,, ..., Gy are the elements of I", then
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k
2 ::((;]%_(;Z_F..._%(}k)zzzjzz EE: j ::j{:(L (z{:(; 1(;>

i=1 i=1 Gell

k
=Y Y Gi(G;'G)=kY_ G=kM.

Gel i=1 Gell

Taking determinants, we find that (det M)?> = k" det M. Hence either det M = 0 or
det M is equal to the order of I" raised to the nth power.

Remark. In fact, much more is true. The determinant of the sum of the elements of a
finite multiplicative group of matrices is nonzero only when the group consists of one
element, the identity, in which case it is equal to 1. This is the corollary of a basic fact in
representation theory.

A representation of a group is a homomorphism of the group into a group of matrices.
In our situation the group is already represented as a group of matrices. Arepresentation is
called irreducible if there does not exist a basis in which it can be decomposed into blocks.
Any representation of a finite group is the block sum of irreducible representations. The
simplest representation, called the trivial representation, sends all elements of the group
to the identity element. A result in representation theory states that for any nontrivial
irreducible representation of a finite group, the sum of the matrices of the representation
is zero. In an appropriately chosen basis, our group can be written as the block sum of
irreducible representations. If the group is nontrivial, then at least one representation is
nontrivial. In summing the elements of the group, the diagonal block corresponding to
this irreducible representation is the zero matrix. Taking the determinant, we obtain zero.

285. The condition from the statement implies that for all integers m and n,
fmv2+nv3) = £(0).

Because the ratio /2/+/3 is irrational, the additive group generated by +/2 and +/3 is not
cyclic. It means that this group is dense in R. So f is constant on a dense subset of R.
Being continuous, it must be constant on the real axis.

286. The conclusion follows from the fact that the additive group
= {n + 27m; m, n integers}

is dense in the real numbers. Indeed, by the result we just proved, we only need to check
that S is not cyclic. This is so because n and 2mm cannot both be integer multiples of
the same number (they are incommensurable).

287. That 2* starts with a 7 is equivalent to the existence of an integer m such 12—,;, € [7,8).

k . . . ..
Let us show that the set {1%)—,,, | k, m integers} is dense in the positive real numbers.
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Canceling the powers of 2, this amounts to showing that {52% | m, n integers} is dense.
We further simplify the problem by applying the function log, to the fraction. This
function is continuous, so it suffices to prove that {n — m log, 5 | m, n integers} is dense
on the real axis. This is an additive group, which is not cyclic since log, 5 is irrational
(and so 1 and log, 5 cannot both be integer multiples of the same number). It follows
that this group is dense in the real numbers, and the problem is solved.

(V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1997)

288. If r is the original ratio of the sides, after a number of folds the ratio will be 23" r,
where m and n are integer numbers. It suffices to show that the set {2"3"r | m,n € Z}
is dense in the positive real axis. This is the same as showing that {2"3" | m,n € Z} is
dense. Taking the logarithm, we reduce the problem to the fact that the additive group
{m +nlog,3 | m,n € Z} is dense in the real axis. And this is true since the group is not
cyclic.

(German Mathematical Olympiad)

289. Call the regular pentagon ABC DE and the set X. Composing a reflection across
AB with a reflection across BC, we can obtain a 108° rotation around B. The set X
is invariant under this rotation. There is a similar rotation around C, of the same angle
and opposite direction, which also preserves X. Their composition is a translation by
a vector that makes an angle of 36° with BC and has length 2sin 54° BC. Figure 65
helps us understand why this is so. Indeed, if P rotates to P’ around B, and P’ to P”
around C, then the triangle P’ BC transforms to the triangle P’ P P” by a rotation around
P’ of angle ZCP'P" = 36° followed by a dilation of ratio P'P”/P'C = 2sin54°.
Note that the translation preserves the set ¥. Reasoning similarly with vertices A and

P

P "
Figure 65

D, and taking into account that A D is parallel to BC, we find a translation by a vector
of length 2 sin 54° A D that makes an angle of 36° with BC and preserves X. Because

AD/BC = 2sin54° = @ the group G p¢ generated by the two translations is dense

in the group of all translations by vectors that make an angle of 36° with BC. The same
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is true if BC is replaced by AB. It follows that X is preserved both by the translations in
the group G ¢ and in the analogous group G 4. These generate a group that is dense in
the group of all translations of the plane. We conclude that X is a dense set in the plane,
as desired.

(communicated by K. Shankar)

290. The symmetry groups are, respectively, Cy,, Dy, and Dyy.

291. If x is an idempotent, then 1 — x is an idempotent as well. Indeed,
(1-xP=1-2x+x>=1-2x+x=1—x.

Thus there is an involution on M, x — 1 — x. This involution has no fixed points,
since x = 1 — x implies x> = x —x>orx =x —x = 0. Butthen0 =1-0 =1,
impossible. Having no fixed points, the involution pairs the elements of M, showing that
the cardinality of M is even.

(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by V. Zidaru)

292. We have y = y% = (—y)® = —y, hence 2y = 0 for any y € R. Now let x be an
arbitrary element in R. Using the binomial formula, we obtain
x+1=@+D0=x4+6x7+15x*+20x> + 15x2 + 6x + 1
=x"+xT+x+1,

where we canceled the terms that had even coefficients. Hence x* + x2 = 0, or x* =

—x2 = x2. We then have

and so x? = x, as desired. From the equality (x + y)> = x + y we deduce xy + yx = 0,
so xy = —yx = yx for any x, y. This shows that the ring is commutative, as desired.

293. Substituting x by x + 1 in the relation from the statement, we find that

(x4 Dy)* — (x + D?y* = (xy)> + 33> + yxy + y> —x%y> = 2xy* — y°
= yxy —xy? = 0.

Hence xy?> = yxy for all x, y € R. Substituting in this relation y by y 4 1, we find that
xy? +2xy 4+ x = yxy + yx + xy + x.

Using the fact that xy> = yxy, we obtain xy = yx, as desired.

294. This problem generalizes the first example from the introduction. The idea of the
solution is similar. Now let v be the inverse of 1 — (xy)". Then v(l1 — (xy)") =
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(1 — (xy)H)v = 1; hence v(xy)" = (xy)"v = v — 1. We claim that the inverse of
1 — (yx)"is 1 + (yx)""!yvx. Indeed, we compute
(14 )" yen) (1 = ()" = 1= (x)" + (2" yox — (30" yvx (yx)”
=1—(yx)" + (yx)"yvx — (yx)" ' yv(xy)'x
=1—(yx)" + ()" yvx — (0" 'y = Dx = 1.

Similarly,

(1= )"+ (yx)" 'yvx) = 1T — (x)" + (yx)" 'yvx — ()" (yx)" 'yvx
=1— ()" + (x)" 'yvx — (yx)" Ly (xy) vx
=1—x)" + x)" 'yox — x)" 'y - Dx = 1.

It follows that 1 — (yx)" is invertible and its inverse is 1 + (yx)"~'yvx.

295. (a) Let x and z be as in the statement. We compute

(zxz — x2)* = (zxz — x2)(zx7 — x2)
= (zx2)(zxz) — (z2x2)(x2) — (x2)(2x2) + (x2)(x2)
= 7x7°X7 — ZXZXZ — XZ°XZ + X7XZ
=zxzx7 — zxzxz —xzxz — xzxz = 0.

Therefore, (zxz—xz)? = 0, and the property from the statement implies that zxz—xz = 0.

(b) We have seen in part (a) that if z is an idempotent, then xzx — xz = 0. The same
argument works, mutatis mutandis, to prove that zxz = zx. Hence xz = zxz = zx,
which shows that z is in the center of R, and we are done.

296. We will show that the elements

ac,a’c,a’c,...,a"c, ...
are distinct. Let us argue by contradiction assuming that there exist n > m such that
a"c = a™c. Multiplying by ¢ on the left, we obtain ca(a"'c) = ca(a™'¢), so by (iii),
ba""'c = ba™~'c. Cancel b as allowed by hypothesis (ii) to obtain a"~!'c = a™ 'c. An
easy induction shows that a*c = ¢, where k = n — m. Multiplying on the right by a and
using ca = b, we also obtain a*b = b. The first condition shows that b commutes with
a, and so ba* = b; canceling b yields a* = 1. Hence a is invertible and a ' = a*~!,
The hypothesis ca = b implies

c=ba' =bd* "' =d"'"b=a'b,

hence ac = b, contradicting (iii). The contradiction proves that the elements listed in the
beginning of the solution are all distinct, and the problem is solved.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by C. Gutan)
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297. Examining the sequence, we see that the mth term of the sequence is equal to n
exactly for those m that satisfy

So the sequence grows about as fast as the square root of twice the index. Let us rewrite
the inequality as

nz—n+2§2m§n2—|—n,

then try to solve for n. We can almost take the square root. And because m and n are
integers, the inequality is equivalent to

2 1 2 1
n —n+Z<2m<n +n+-.

4

Here it was important that n> — n is even. And now we can take the square root. We
obtain

1 1
n—§<\/2m<n+§,
or

1
n<\/2m+§<n+1.

Now this happens if and only if n = |V2m + %J, which then gives the formula for the
general term of the sequence

1
am=Lv2m+§J, m>1.

(R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed., Addison—Wesley, 1994)
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298. If we were given the recurrence relation x,, = x,,_; + n, for all n, the terms of the

sequence would be the triangular numbers 7, = w If we were given the recurrence

. 2
relation x,, = x,_; + n — 1, the terms of the sequence would be 7,,_; + 1 = == 2"+2, In
our case,

n—n+2 n*+n
—F— =X =
2 2

We expect x,, = P (n)/2 for some polynomial P (n) = n’>+an+b; in fact, we should have
n2+1 _]
2 b

x, = | P(n)/2] because of the jumps. From here one can easily guess that x,, = |
and indeed

LnZHJ_Lm_l)ZH+2(n_1)+1J_L(n_1)2+1 1

- 1
5 5 3 3 —|—2J+(n )s

which is equal to L%J + (n — 1) if n is even, and to L%J + n if n is odd.
299. From the hypothesis it follows that a4 = 12, as = 25, ag = 48. We observe that

@a_@_ @&, d@_, 8 _ G _g
1 2 3 4 5 6

are the first terms of the Fibonacci sequence. We conjecture thata, = nF,, foralln > 1.
This can be proved by induction with the already checked cases as the base case.
The inductive step is

anya =2n+3)F3+ (n+2)Fyp —2(n + D Fyp — nFy
=2 +3)Fs+t M+ F2 — 2+ D) Fy —n(Fypo — Fupr)
=2n+3)Fu3+2F 0 — (n+2)(Fuy3 — Fugo)
=n+4)(Foyz+ Foyp2) = (n+4)Fopa.

This proves our claim.
(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
D. Andrica)

300. The relations
1 1
am + apy = E(aZm +ap) and ay, +ag= E(aZm + axm)

imply a,,, = 4a,,, as well as ag = 0. We compute a, = 4, ay = 16. Also, a; + a3 =
(a +ay)/2 = 10, s0 a3 = 9. At this point we guess that a; = k* forall k > 1.

We prove our guess by induction on k. Suppose that a; = j*forall j < k. The
given equation withm = k — 1 and n = 1 gives
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an = 5(0271—2 +az) —ay—2 =2a,-1 +2a1 — ap—
=2n*=2n+ 1) +2— m*>—4n+4) =n°.
This completes the proof.
(Russian Mathematical Olympiad, 1995)

301. First solution: If we compute some terms, ayg = 0, a; = 2, a3 = 8, a4 = 34,
as = 144, we recognize Fibonacci numbers, namely Fy, F3, Fg, Fo, and F. So a good
working hypothesis is that a, = F3, and also that b, = (F,)3, for all n > 0, from which
the conclusion would then follow.
We use induction. Everything is fine for n = 0 and n = 1. Assuming a; = F3; for
all k < n, we have
ap+1 = 4F5, + F3y_3 = 3F3, + F3, + F3,3

=3F3, + F3p1 + F30 + F3,3 =3F3, + F3,_1 + F3,_

= F3, +2F3, +2F3,_1 = F3, + 2F3,41 = F3, + F3,41 + F3,41

= F3u12 + F3p01 = F3u03 = F341)s

which proves the first part of the claim.
For the second part we deduce from the given recurrence relations that

byy1 =3b, +6b,_y —3b,_» — b,_3,n > 3.
We point out that this is done by substituting a,, = b,+1 + b, — b,_; into the recurrence
relation for (a,),. On the one hand, b, = (F,)? is true forn = 0, 1, 2, 3. The assumption
by = (Fy)? for all k < n yields
bust = 3(F)* + 6(F,1)’ = 3(F-2)’ — (Fy-3)’

= 3(Fyt + Fim2)® + 6(F-)’ = 3(Fu2)® — (Fymt — F)’

= 8(Fum1)’ + 12(Fy-)* Fyz + 6F1 (Fy2)” + (Fy2)?

= QFo1+ Fm0)’ = (Fus)’
This completes the induction, and with it the solution to the problem.

Second solution: Another way to prove that b, = (F,)? is to observe that both sequences
satisfy the same linear recurrence relation. Let

)

Fn+1 Fn
M" = .
( Fn Fnl)

Now the conclusion follows from the equality M*" = (M")3.

‘We have seen before that
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Remark. A solution based on the Binet formula is possible if we note the factorization
M3 —6 234+ 1=02 =4 —DRA>+ A1 —1).

Setting the left-hand side equal to O gives the characteristic equation for the sequence
(bn)n, while setting the first factor on the right equal to 0 gives the characteristic equation
for (a,),.

(proposed by T. Andreescu for a Romanian Team Selection Test for the International
Mathematical Olympiad, 2003, remark by R. Gologan)

302. We compute ug = 1+ 1, u; =2 + %, U, =2+ %, us; = 8 + %. A good guess is
u, = 2% 4 27 for some sequence of positive integers (x;),.
The recurrence gives

Q¥+l 4 D7 ¥+l — 2%n+2x—1 + 2= Xn =21 + 2% —2%n—1 + Q=X t20-1 _ gx1 =X

In order to satisfy this we hope that x,,y; = x,, +2x,_; and that x,, —2x,,_; = +x; = £1.

The characteristic equation of the first recurrence is A> — A — 2 = 0, with the roots 2 and

—1, and using the fact that xo = 0 and x; = 1 we get the general term of the sequence

x, = (2"—(=1)")/3. Miraculously this also satisfies x, —2x,_; = (—1)"*! so the second

condition holds as well. We conclude that [u, ] = 2%, and so [u, ] = 2'~CD"1/3,
(18th International Mathematical Olympiad, 1976, proposed by the UK)

303. We need to determine m such that b,, > a, > b,,_;. It seems that the difficult part
is to prove an inequality of the form a, > b,,, which reduces to 3%-1 > 100-1 or
an—1 > (log; 100)b,,_;. Iterating, we obtain 3“2 > (log, 100)100°»-2, that is,

an—o > logz(log; 100) 4 ((logs 100)b,, .

Seeing this we might suspect that an inequality of the form a, > u + vb,, holding for
all n with some fixed u and v, might be useful in the solution. From such an inequality
we would derive a,,; = 3% > 3“(3%)b». If 3 > 100, then a,, > 3“by41, and if
3* > u + v, then we would obtain a,,y|; > u + vb,, 1, the same inequality as the one we
started with, but with m + 1 and n + 1 instead of m and n.

The inequality 3" > 100 holds for v = 5, and 3* > u + 5 holds for u = 2. Thus
a, > 2+ 5b,, implies a,+, > 2+ 5b,,+1. Wehave by = 100,a; = 3,a, =27,a3 = 3%,
and 2 4+ 5b; = 502 < 729 = 3% so a3 > 2 + 5b;. We find that a, > 2 + 5b,_, for all
n > 3. In particular, a, > b, _».

On the other hand, a, < b,, implies a,+; = 3 < 100" < b,,,1, which combined
with a, < b; yields a, < b, foralln > 2. Hence b,,_» < a, < b,_1, which implies
that m = n — 1, and for n = 100, m = 99.

(short list of the 21st International Mathematical Olympiad, 1979, proposed by
Romania, solution by I. Cuculescu)
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304. Assume that we have found such numbers for every n. Then ¢,,+1(x) — xg, (x) must
be divisible by p(x). But

Gn+1(X) — xq,(x) = X" — App1X — by — x" ! + anx2 + bpx
= —ay 41X — byy1 + a, (x> = 3x +2) + 3a,x — 2a, + b,x
= a,(x*> = 3x +2) + Ba, + by — apy1)x — 2a, + b,y),

and this is divisible by p(x) if and only if 3a, + b, — a,+1 and 2a, + b,,; are both
equal to zero. This means that the sequences a,, and b, are uniquely determined by the
recurrences a; = 3, by = -2, a,+1 = 3a, + by, b1 = —2a,. The sequences exist and
are uniquely defined by the initial condition.

305. Divide through by the product (n + 1)(n + 2)(n + 3). The recurrence relation
becomes
Xn _ Xn—1 Xn—2
n+3  n+2 n+l

The sequence y, = x,,/(n + 3) satisfies the recurrence

Yn = 4yn—1 - 4yn—2-

Its characteristic equation has the double root 2. Knowing that yo = 1 and y; = 1, we
obtain y, = 2" — n2"~!. It follows that the answer to the problem is

Xy = +3)2" —n(n +3)2" L

(D. Bugneag, I. Maftei, Teme pentru cercurile si concursurile de matematicd (Themes
for mathematics circles and contests), Scrisul Roménesc, Craiova)

306. Define ¢ = b/x; and consider the matrix

A:(OC).
X1 4

An _ C-xnf] an
Xn Xn+1

Using the equality det A" = (det A)", we obtain

It is not hard to see that

c(Xn_1Xnp1 — X2) = (—x10)" = (=b)".

Hence x,% — Xpp1Xn—1 = (—=b)"'x, which does not depend on a.
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Remark. In the particular case a = b = 1, we obtain the well-known identity for the
Fibonacci sequence F,, 1 F,_1 — Fn2 = (=Dt
307. A standard idea is to eliminate the square root. If we set b, = /1 + 24a,, then
b2 =1+ 24a,, and so
3
br o =1+24a, =1+ 5+ 4a, + V1 + 24a,)

3 Loy
_1+§(1+6(bn 1)+b,,)

by +3\°
5 .

1
:Z(b§+6b,,+9)=(

Hence b, = %b,, + % This is an inhomogeneous first-order linear recursion. We can
solve this by analogy with inhomogeneous linear first-order equations. Recall thatif a, b
are constants, then the equation f’(x) = af (x) + b has the solution

f(x) =e* / e “bdx + ce™.

In our problem the general term should be

1

b" = 2n+1

+3

"1
E, I’lzl
=1

Summing the geometric series, we obtain b, = 3+ 2,,1—_2, and the answer to our problem is

_bg—1_1+1+1 1
="y T3 T3 e

(proposed by Germany for the 22nd International Mathematical Olympiad, 1981)

308. Call the expression from the statement S,,. It is not hard to find a way to write it in
closed form. For example, if we let u = 1 + i/a, then S, = %(u” +u").

Notice that u" and u" are both roots of the quadratic equation z> — 2z +a + 1 =0,
so they satisfy the recurrence relation x,,1» = 2x,+; — (a + 1)x,. The same should be
true for S,; hence

Sn+2:2Sn+l —(Cl+1)Sn, n>1.

One verifies that S; = 1 and S, = 1 — 2k are divisible by 2. Also, if S, is divisible by
2"~ and S, is divisible by 2", then (a 4+ 1)S,, and 25,1, are both divisible by 2"+ and
hence so must be S, 1,. The conclusion follows by induction.

(Romanian Mathematical Olympiad, 1984, proposed by D. Mihet)
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309. Denote the vertices of the octagon by A} = A, A, Az, A4, As = E, Ag, A7, Agin
successive order. Any time the frog jumps back and forth it makes two jumps, so to get
from A; to any vertex with odd index, in particular to As, it makes an even number of
jumps. This shows that a,,_; = 0.

We compute the number of paths with 2n jumps recursively. Consider the case
n > 2. After two jumps, the frog ends at A, A3, or A;. It can end at A; via A, or
Ag. Also, the configurations where it ends at Az or A; are symmetric, so they can be
treated simultaneously. If we denote by by, the number of ways of getting from Aj to
As in 2n steps, we obtain the recurrence ap, = 2dz,-» + 2by,—>. On the other hand, if
the frog starts at As, then it can either return to Az in two steps (which can happen in
two different ways), or end at A; (here it is important that n > 2). Thus we can write
by, = azy_» + 2by,_». In vector form the recurrence is

Ao _ 22 aryp—2 _ 22 n ar

by ) \12)\by /) \12 by |’
To find the nth power of the matrix we diagonalize it. The characteristic equation is
A2 — 41 +2 = 0, with roots x = 2 + +/2 and y=2-— /2. The nth power of the matrix

will be of the form
x” O -1
X ( . yn> X,

for some matrix X. Consequently, there exist constants «, 8, determined by the initial
condition, such that a,, = ax"~! 4+ By"~!. To determine o and B, note that a, = 0,
b, = 1, and using the recurrence relation, a4, = 2 and by = 3. We obtain o = \/LE and

B = —%[2, whence

Az = = forn > 1.

1 ( n—1
V2
(21st International Mathematical Olympiad, 1979, proposed by Germany)

310. We first try a function of the form f(n) = n + a. The relation from the statement
yields a = 667, and hence f(n) = n + 667 is a solution. Let us show that this is the
only solution.

Fix some positive integer n and define ay = n, and @, = f(f(---(f(n)---)),
where the composition is taken k times, k > 1. The sequence (ax)i>0 satisfies the
inhomogeneous linear recurrence relation

Api3 — 3agp + 6a, — 4a, = 2001.

A particular solution is @y = 667k. The characteristic equation of the homogeneous
recurrence a3 — 3ar2 + 6ai11 — 4axp = 0is
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A =322 +61—4=0.

An easy check shows that A; = 1 is a solution to this equation. Since A> — 32 +
61 —4 = (A — 1)(A% — 21 + 4), the other two solutions are A3 =1=% i+/3, that is,
A2z = 2(cos % +isin %). It follows that the formula for the general term of a sequence
satisfying the recurrence relation is

k k
a, = c¢1 + 2% cos ?71 + c32k sin ?n + 667k, k>0,

with ¢y, ¢2, and ¢3 some real constants.

If ¢, > 0, then az,+1) Will be negative for large m, and if ¢, < 0, then ag, will be
negative for large m. Since f(n) can take only positive values, this implies that ¢, = 0.
A similar argument shows that c3 = 0. It follows that a; = c¢; 4+ 667k. So the first term
of the sequence determines all the others. Since @y = n, we have ¢; = n, and hence
ap = n + 667k, for all k. In particular, a; = f(n) = n 4 667, and hence this is the only
possible solution.

(Mathematics Magazine, proposed by R. Gelca)

311. We compute x3 = 91, x4 = 436, x5 = 2089. And we already suggested by placing
the problem in this section that the solution should involve some linear recurrence. Let us
hope that the terms of the sequence satisfy a recurrence x,,1; = ax, + B8x,_1. Substituting
n =2andn = 3 we obtain « = 5, § = —1, and then the relation is also verified for the
next term 2089 = 5 - 436 — 91. Let us prove that this recurrence holds in general.

If y, is the general term of this recurrence, then y, = ar” + bs”, where

54421 5 4/2I

3 K 5 rs =1, r—s =+21;

r

and

_7V2 74

, ab = 1.
14 14

a

We then compute

ya Y1 Yn—1 — y2 _ (ar™ + bs" ™Y (ar"' + bs" ) — (ar” + bx™)?

Y1 = Yo — 1 Va1 ar" 1 4 psn—1
B ab(rs)" ' (r —s5)? B 3
Yn—1 Yn — 1
Of course, 0 < )%1 < 1 for n > 2. Because y,; is an integer, it follows that

2
y
Yn+1 = lri—‘ .
Yn—1
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Hence x, and y, satisfy the same recurrence. This implies that x, = y, for all n.
The conclusion now follows by induction if we rewrite the recurrence as (x,41 — 1) =
5, — 1) — (x,—1 — 1) + 3.

(proposed for the USA Mathematical Olympiad by G. Heuer)

312. From the recurrence relation for (a,),, we obtain

2a,41 — 3a, = /5a2 — 4,

and hence
4a;,., — 12a,41a, + 9a, = Sa; — 4.
After canceling similar terms and dividing by 4, we obtain

a2

2
nil — Sany1a, +a, = —1.

Subtracting this from the analogous relation for n — 1 instead of n yields

2 2
a, — 3apy1a, + 3apa, —a,_; = 0.

This is the same as
(an+1 - an—l)(an—H - 3an + an—l) = 07

which holds for n > 1. Looking at the recurrence relation we see immediately that the
sequence (a,), is strictly increasing, so in the above product the first factor is different
from 0. Hence the second factor is equal to 0, i.e.,

Qny1 = 3a, — Ay, n>=2.

This is a linear recurrence that can, of course, be solved by the usual algorithm. But this
is a famous recurrence relation, satisfied by the Fibonacci numbers of odd index. A less
experienced reader can simply look at the first few terms, and then prove by induction
thata, = Fy,11,n > 1.

The sequence (b,), also satisfies a recurrence relation that can be found by substituting
a, = b,+1 — b, in the recurrence relation for (a,),. After computations, we obtain

bn—i—l =2b, +2b,_1 —b,—2, n=>3.

But now we are told that b, should be equal to (F,)?, n > 1. Here is a proof by
induction on n. It is straightforward to check the equality for n = 1, 2, 3. Assuming that
by = (F;)? for all k < n, it follows that

bn—i—l = 2(Fn)2 + 2(Fn—1)2 - (Fn—2)2
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= (Fy + Fum))’ + (Fy = Fym)® = (Fy)?
= (Fup)’ + (Fim2)? = (Fim2)® = (Fup)™.
With this the problem is solved.
(Mathematical Reflections, proposed by T. Andreescu)

313. The function | sin x| is periodic with period . Hence

lim |sinTtyn2+n+ 1| = lim |sin7(v/n2+n+1—n)|.
n— o0

n—o0

But

n24+n+1-—n? 1
lim (va?2+n+1—-n)= lim = -,
n—00 n»oo‘/n2+n_+_1_|_n 2

It follows that the limit we are computing is equal to | sin 7|, which is 1.

314. The limit is computed as follows:

im (1) G (=)

w k
| - n
= lim — n (1 —ﬁ>
n—oo kl(n — k)! 1 — [ n
n

1 ) (n— k1 1.
fim "= DO +)-1im(1—ﬁ)‘“

- k! n—oo n k n—00 n
(1)
n

et o= (4 k= D) e (=D R — 1)

= — lim
k! n—oo /ﬁl’lk _ (’;)#nk—l 4o+ (_1)k
T s
Toet k! LT enfl
“w

Remark. This limit is applied in probability theory in the following context. Consider a
large population 7 in which an event occurs with very low probability p. The probability
that the event occurs exactly k times in that population is given by the binomial formula

P(k) = (Z)p"(l —pyt,

But for n large, the number (1 — p)"~* is impossible to compute. In that situation we set
u = np (the mean occurrence in that population), and approximate the probability by
the Poisson distribution
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ik

Py~ ek k!

The exercise we just solved shows that this approximation is good.

315. Let us assume that the answer is negative. Then the sequence has a bounded
subsequence (x,,)r. The set {xxnk | k € Z} is finite, since the indices x,, belong to a
finite set. Butx,, = n}, and this takes infinitely many values for k > 1. We reached
a contradiction that shows that our assumption was false. So the answer to the question
is yes.

(Romanian Mathematical Olympiad, 1978, proposed by S. Riddulescu)

316. Define the sequence (b,), by
b, = max{|ay|, 2" ' <k < 2"}.

From the hypothesis it follows that b, < %. Hence 0 < b, < 2,’1’—11, which implies
that (b,), converges to 0. We also have that |a,| < b,, for n > 1, so by applying the
squeezing principle, we obtain that (a,), converges to zero, as desired.

(Romanian Mathematical Olympiad, 1975, proposed by R. Gologan)

317. First solution: Using the fact that lim,_, o, </a = 1, we pass to the limit in the
relation from the statement to obtain

l+1+ - l=1414+1.

k times m times

Hence k = m. Using L’Hopital’s theorem, one can prove that lim,_,gx(a* — 1) = Ina,
and hence lim,,_, . n(/a — 1) = In a. Transform the relation from the hypothesis into

n(far — D+ +nag— 1) =n(/by — ) + -+ (/b — 1.
Passing to the limit with n — oo, we obtain
Ina;+Inay+---+Ina, =Inby +Inby +--- + Inby.

This implies that aya; - - - ap = b1 b, - - - by, and we are done.

Second solution: Fix N > k; then taking n = (1;/1—') for 1 < m < k, we see that the power-

. . . 1/N
sum symmetric polynomials in q;

! agree with the power-sum symmetric polynomials
in bil/ M Hence the elementary symmetric polynomials in these variables also agree and
hence there is a permutation & such that b; = a,.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by

D. Andrica, second solution by R. Stong)
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318. It is known that

lim x* = 1.
x—0t

Here is a short proof using L’Hopital’s theorem:

: 1

. x : x In x lim +xlnx lim,_, o+ %
lim x* = lim e = ¢ M0 = x
x—0F x—0F

— elimx—>0+(_x) = 1.

Returning to the problem, fix € > 0, and choose é > 0 such that for 0 < x < 4,
!x" — 1‘ < €.

Then for n > % we have

;
< n2/ |x"Jrl — x|dx,
0

1 1
n n €
=n2/ x|xx—1|dx<en2/ xdx = —.
0 0 2

1

lim | (! = x)dx =0,
n—oo 0

1
n2/ (! — x)dx
0

It follows that

and so

1

1
i I 1
lim n2/ tldx = lim n2/ xdx = —.
0 0 2

n—oo n—oo

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
D. Andrica)

319. We will prove by induction on n > 1 that

n
Xpil > E kxy > a-n!,
k=1

from which it will follow that the limit is co.
Forn = 1, we have x, > 3x; > x; = a. Now suppose that the claim holds for all
values up through n. Then

n

n
Yoz = (04 3Dxps — ) ko= (14 Dt + 230001 — ) ko
k=1 k=1
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n n n+1
>4 Dx,p + Zkak — kak = kak,
k=1 k=1 k=1
as desired. Furthermore, x; > 0 by definition and x;, x3, . .., x,, are also positive by the

induction hypothesis. Therefore, x,.0 > (n + x50 > (n+ 1)(@a-n!) =a - (n+ 1.
This completes the induction, proving the claim.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1999)

320. Denote A = inf,>; ** and for simplicity assume that A > —oo. Fix € > 0. Then

there exists ng such that “Z’—(? <Xi+e Let M = max<j<p, X;.

An integer m can be written as nog +n;, withO <n; <gandg = L%J' From the
hypothesis it follows that x,, < gx,, + x,,; hence
X qXn,  Xp,

n M
<Py I NG 1+ 2
m m

)»E—m
m m m

Therefore,

Since

lim

m—oo = m—>o00 m

it follows that for large m,

Xm
A< — <A+ 2e.
m

Since € was arbitrary, this implies

. 'xl‘l . xn
Iim — = A =inf —,
n—oo n n>1n

as desired.

321. We use the fact that

As a consequence, we have
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For our problem, let ¢ > 0 be a fixed small positive number. There exists n(¢) such

that for any integer n > n(¢),

()™
2
l—e< "= <l+4+e k=12,...,n
nZ
From this, using properties of ratios, we obtain
n k n%+l
| — 2k (?) 1+ f > n(e)
Ee<—= 7 — < €, forn > n(e).
k=1 n_2

Knowing that }";_, k = D this implies

forn > n(e).

9’

k
n+1 </ k\2t! n+1
1— - 1

(1=¢) 2n <k2_1:(n2) <{d+e) 2n

It follows that
1

k
) n k TZ—H
> ()" -5

k—1

(D. Andrica)
322. Assume that x,, is a square for all n > M. Consider the integers y, = ./x,, for

n > M. Because in base b,

b2n
11...1.111...,
b—1 \qz,_/

it follows that
th

Therefore,
. b
Iim — =+b—1.

n—oo yl’l

On the other hand,
(Oyn + Yn+1)(bYn — Yut1) = bzxn — Xntl = b2 + 3b* —2b - 5.
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The last two relations imply

lim (b ) . b +2 by/b—1
im (by, — y, = lim = .
n— 00 Y Yntl n—00 byn + Vnt1 2
Here we used the fact that
bn+2 bn+2
lim = lim =bvb—1
n—oo yi’l n—>oo yn+1

Since by, — y,1 s an integer, if it converges then it eventually becomes constant. Hence
there exists N > M such that by, — y,4+1 = b—“/gj for n > N. This means that b — 1 is
a perfect square. If b is odd, then @ is an integer, and so b divides b—‘/lz’j. Since the
latter is equal to by, — v, for n > N, and this divides b"t2 4+ 3p% —2b — 5, it follows
that b divides 5. This is impossible.

If b is even, then by the same argument % divides 5. Hence b = 10. In this case we
have indeed that x,, = (@%5)2, and the problem is solved.

(short list of the 44th International Mathematical Olympiad, 2003)

323. Recall the double inequality

1 n 1 n+1
<1+—) <e<<1—|——> , n>1.
n n

Taking the natural logarithm, we obtain

1 1
nln(l+—><l<(n+1)ln(1—|——),
n n

which yields the double inequality

1
p— <1n(n+1)—lnn<;.

Applying the one on the right, we find that
1
a, —dy_1=——In(n+1)+Inn >0, forn>2,
n

so the sequence is increasing. Adding the inequalities
1 <1,

— <In2—1nl,
2

1
— <In3 —1In2,
3
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1
— <Inn—In(n —1),
n

we obtain

1 1 1
1+§+§+-.-+—<1+lnn<l+ln(n+1)-
n

Therefore, a, < 1, for all n. We found that the sequence is increasing and bounded,
hence convergent.

324. The sequence is increasing, so all we need to show is that it is bounded. The main
trick is to factor a +/2. The general term of the sequence becomes

1 2 /3 n
<ﬁ\/1+\/1+ 14+ /1.

Let b, = \/1 + /1 + -+ + /1, where there are n radicals. Then b, = /T + b,. We
seethat by = 1 < 2, and if b, < 2, then b, < +/1 +2 < 2. Inductively we prove
that b, < 2 for all n. Therefore, a, < 2+/2 for all n. Being monotonic and bounded, the
sequence (a,), is convergent.

(Matematika v Skole, 1971, solution from R. Honsberger, More Mathematical
Morsels, Mathematical Association of America, 1991)

325. We examine first the expression under the square root. Its zeros are #g In order
for the square root to make sense, a, should be outside the interval (*1%/5, ,1%5).
Since a,, > 0 for n > 2, being the square root of an integer, we must have a, > #g

for n > 2. To simplify the notation, let r = #g

Now suppose by contradiction that a; € (—2, 1). Then

ad=a’+a —1= a—i—l 2—§< §2—§—1
p=amam i =\""Ty) T4~ \2) a7

soa, € [r,1). Nowifa, € [r, 1), then

2 _ 2 2
ay,=a,ta,—1<a, <l

Inductively we prove that a, € [r, 1) and a,4+1 < a,. The sequence (a,), is bounded
and strictly decreasing; hence it has a limit L. This limit must lie in the interval [r, 1).
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Passing to the limit in the recurrence relation, we obtain L = +/L? + L — 1, and therefore
L?> = L? + L — 1. But this equation has no solution in the interval [r, 1), a contradiction.
Hence a; cannot lie in the interval (-2, 1).

(Bulgarian Mathematical Olympiad, 2002)

326. This is the Bolzano—Weierstrass theorem. For the proof, let us call a term of the
sequence a giant if all terms following it are smaller. If the sequence has infinitely many
giants, they form a bounded decreasing subsequence, which is therefore convergent. If
the sequence has only finitely many giants, then after some rank each term is followed by
larger term. These terms give rise to a bounded increasing subsequence, which is again
convergent.

Remark. The idea can be refined to show that any sequence of mn + 1 real numbers has
either a decreasing subsequence with m + 1 terms or an increasing subsequence with
n + 1 terms.

327. Consider the truncations
S, =a;—a,+az—---*a,, n=>1.

We are to show that the sequence (s,,), is convergent. For this we verify that the sequence
(sn)n is Cauchy. Because (a,),> is decreasing, for all n > m,

|S) — Sm| = Gm — Qg1 + Qmio — -+ - T a,
=dam — (am—H — Amy2) — (am+3 - am+4) —
where the sum ends either in a,, or in —(a,,_; — a,). All terms of this sum, except for the
first and maybe the last, are negative. Therefore, |s, —s,,| < a,, +a,, foralln > m > 1.

As a, — 0, this shows that the sequence (s,), is Cauchy, and hence convergent.
(the Leibniz criterion)

328. For atriple of real numbers (x, y, z) define A(x, y, z) = max(|x—y|, |[x—z[, |y—zl).
Let A(ag, by, cy) = 8. From the recurrence relation we find that

1
A(ant1, bps1, Cng1) = EA(ana b,,cy), n=0.
By induction Af(a,, b,, ¢,) = 2%8. Also, max(|a,+1 — aul, |bpa1 — bul, lChe1 — cnl) =

%A(a,,, by, c,). We therefore obtain that |a,+1 — ay,|, |bytr1 — bul, |cus1 — cn| are all less
than or equal to 2%,8. So for n > m > 1, the absolute values |a, — a,,|, |b, — b,,|, and

|c, — c| are less than
1 N 1 T 1 5 é
— ... —_— < —_—
om 2m+l omn om
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This proves that the sequences are Cauchy, hence convergent. Because as n tends to
infinity A(a,, b,, c,) approaches 0, the three sequences converge to the same limit L.
Finally, because for all n, a, + b,, + ¢, = ag+ by + co, we should have 3L = ay+ by + co;
hence the common limit is (“°+l’3—°+"°>.

329. Because ) a, converges, Cauchy’s criterion implies that
,,ILHQO(QL”/N“ + a4+ +a,) =0.
By monotonicity

n
A2+l t a2+ ap = {5—‘ ay,

so lim,,_, o (%Mn = 0. Consequently, lim,,_, » %an = 0, and hence lim,,_, o, na, = 0, as
desired.
(Abel’s lemma)

330. Think of the larger map as a domain D in the plane. The change of scale from one
map to the other is a contraction, and since the smaller map is placed inside the larger,
the contraction maps D to D. Translating into mathematical language, a point such as
the one described in the statement is a fixed point for this contraction. And by the fixed
point theorem the point exists and is unique.

331. Define the function f(x) = € sinx + ¢. Then for any real numbers x; and x,,

X1 — X2

2

X+ x2
2

|f(x1) = f(x2)] = €] - | sinx; — sin x| < 2[e] - |sin

- |COS

X1 —

< 2le| - |sin

X2
‘ < €lx; — xz].

Hence f is a contraction, and there exists a unique x such that f(x) = esinx + ¢ = x.
This x is the unique solution to the equation.
(J. Kepler)

332. Define f : (0,00) — (0,00), f(x) = 3(x + £). Then f'(x) = 3(1 — %),
which is negative for x < /c and positive for x > ,/c. This shows that /c is a global
minimum for f and henceforth f((0, 00)) C [4/c, 00). Shifting indices, we can assume
that xo > 4/c. Note that | f'(x)| < % for x € [4/c, 00), so f is a contraction on this
interval. Because x, = f(f(--- f(xg9)), n > 1, the sequence (x,), converges to the
unique fixed point x* of f. Passing to the limit in the recurrence relation, we obtain
x* = %(x* + )%), which is equivalent to the quadratic equation (x*)> — ¢ = 0. We obtain
the desired limit of the sequence x* = /c.
(Hero)
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333. Define

n=\/1+\/1+\/1+---+\/1

where in this expression there are n square roots. Note that x,, is obtained from x, by

replacing /1 by v/ 1 + +/1 at the far end. The square root function being increasing, the
sequence (x,), is increasing. To prove that the sequence is bounded, we use the recurrence
relation x,1; = +/1 + x,, n > 1. Then from x, < 2, we obtain that x,,; = /1 + x, <
/142 < 2,soinductively x,, < 2foralln. Being bounded and monotonic, the sequence
(x,)n 1s convergent. Let L be its limit (which must be greater than 1). Passing to the
limit in the recurrence relation, we obtain L = /1 + L, or L> — L — 1 = 0. The only

f+1

positive solution is the golden ratio , which is therefore the limit of the sequence.

334. If the sequence converges to a certain limit L, then L = +/a 4+ bL, so L is equal to
the (unique) positive root o of the equation x> — bx —a = 0.

The convergence is proved by verifying that the sequence is monotonic and bounded.
The condition x,.1 > x, translates to x,f > a + bx,, which holds if and only if x, > «.
On the other hand, if x,, > «, then xlfH = a + bx, > a + ba = a?; hence Xpil = O
Similarly, if x, < «, then x,.1 < «. There are two situations. Either x; < «, and then
by induction x,, < « for all n, and hence x,,,; > x, for all n. In this case the sequence
is increasing and bounded from above by «; therefore, it is convergent, its limit being of
course «. Or x; > «, in which case the sequence is decreasing and bounded from below
by the same «, and the limit is again o.

335. By the AM-GM inequality, a, < b,,n > 1. Also,

dpy1 — A = /4y n «/a_n(\/> \/a_n) > O;

hence the sequence (a,), is increasing. Similarly,

n bn n_bn
bn+1_bn:%_bn:a <

so the sequence b, is decreasing. Moreover,
ap<a<a<---<a,<b, <---< b < by,

for all n, which shows that both sequences are bounded. By the Weierstrass theorem,
they are convergent. Let a = lim,,_,  a, and b = lim,,_, » b,. Passing to the limit in the
first recurrence relation, we obtain a = ~/ab, whence a = b. Done.

Remark. The common limit, denoted by M(a, b), is called the arithmetic—geometric
mean of the numbers a and b. It was Gauss who first discovered, as a result of laborious
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computations, that the arithmetic—geometric mean is related to elliptic integrals. The
relation that he discovered is

b4
M(a, b —
(a,b) = 1
where

K(k) =

! 1
d
/o VA =121 = k%2) :

is the elliptic integral of first kind. It is interesting to note that this elliptic integral is
used to compute the period of the spherical pendulum. More precisely, for a pendulum
described by the differential equation

d2

F—I—a) sinf =0,

with maximal angle 6,,.«, the period is given by the formula

P22 (sn ()

336. The function f,(x) = x" +x — 1 has positive derivative on [0, 1], so it is increasing
on this interval. From f,,(0) - f,(1) < O it follows that there exists a unique x, € (0, 1)
such that f(x,) = 0.

Since 0 < x,, < 1, we have x;f“ +x,—1 < x,, +x, — 1 = 0. Rephrasing, this means
that f,+1(x,) < 0, and so x,+; > x,. The sequence (x,), is increasing and bounded,
thus it is convergent. Let L be its limit. There are two possibilities, either L = 1, or
L < 1. But L cannot be less than 1, for when passing to the limit in x;; 4+ x, — 1 = 0,
we obtain L — 1 = 0, or L = 1, a contradiction. Thus L = 1, and we are done.

(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by A. Leonte)

337. Let

Xp = 1—|—2\/ +2\/ +2 1+2v196

with the expression containing n square root signs. Note that

x1 — (1 ++/2) = V1969 — (1 + +/2) < 50.

Also, since 4/ 1 +2(1 + \/5) =1 + /2, we have
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fost — (L4 V2) = VTF 25y — /1 +2(1 4 V2) = 20, — (1 = V/2)
T +y1+20+V2)

<xn—(1+«/§)
1+v2

From here we deduce that

50 10-3
(s =

and the approximation of x99 with two decimal places coincides with that of 1 ++/2 =
2.41. This argument proves also that the limit of the sequence is 1 + /2.
(St. Petersburg Mathematical Olympiad, 1969)

X1069 — (1 +v2) <

338. Write the equation as

\/x+2\/x+~-+2\/x+2«/x+2x=x.

We can iterate this equality infinitely many times, always replacing the very last x by its
value given by the left-hand side. We conclude that x should satisfy

\/x+2 X+2Vx+2---=x,

provided that the expression on the left makes sense! Let us check that indeed the
recursive sequence given by xo = x, and x,41 = +/x + 2x,, n > 0, converges for any
solution x to the original equation. Squaring the equation, we find that x < x2, hence
x > 1. But then x,,; < x,, because it reduces to x,f — 2x, + x > 0. This is always
true, since when viewed as a quadratic function in x,, the left-hand side has negative
discriminant. Our claim is proved, and we can now transform the equation, the one with
infinitely many square roots, into the much simpler

X =+/x+2x.

This has the unique solution x = 3, which is also the unique solution to the equation
from the statement, and this regardless of the number of radicals.

(D.O. Shklyarski, N.N. Chentsov, .M. Yaglom, Selected Problems and Theorems in
Elementary Mathematics, Arithmetic and Algebra, Mir, Moscow)

339. The sequence satisfies the recurrence relation

-xn+2=\/7_\/7+xna nzl’
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with x; = +/7 and x, = v/7 — /7. Let us first determine the possible values of the limit
L, assuming that it exists. Passmg to the limit in the recurrence relation, we obtain

L=+7-~7T+L.

Squaring twice, we obtain the polynomial equation L* — 14L? — L +42 = 0. Two roots
are easy to find by investigating the divisors of 42, and they are L = 2 and L = —3. The
other two are L = % + @. Only the positive roots qualify, and of them % + @ is not
a root of the original equation, since

1 V29 / 1 /29

—+—>3 7T-VT+3 T4+ -4+ —.

> + >3 > +3> + > + >
So the only possible value of the limit is L = 2.

Letx, =2+ «,. Then a;, ar € (0, 1). Also,

3—V9+a,
Opy2 = .
V1—V9+a,+4

If a, € (0, 1), then

where the last inequality follows from 3 + 2«,, > /9 + «,,. Similarly, if ¢, € (—1, 0),
then

3—V94«a, - 1

0 <oy < — = Elanl,
where the last inequality follows from 3 < /9 — || + 2. Inductively, we obtain
that o, € (—271"/21 2=17/2]y "and hence o, — 0. Consequently, the sequence (x,), is
convergent, and its limit is 2.
(13th W.L. Putnam Mathematics Competition, 1953)

340. The solution is a direct application of the Cesaro—Stolz theorem. Indeed, if we let
a, = Inu, and b,, = n, then

Up+1 dpy1 — Ay
In _—

=Inu,y; —Inu, =
Up bn—i—l - bn

and
ay

1
In Yu, = —Inu, = B
n

n
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The conclusion follows.

341. In view of the Cesaro—Stolz theorem, it suffices to prove the existence of and to
compute the limit

(n+ 1P
n— 00 (n 4+ 1)P+1 7y ’

We invert the fraction and compute instead

n+ 1)p+1 — pptl
lim
n— 00 (n + ])P

Dividing both the numerator and denominator by (n + 1)?*!, we obtain

1_(1_L)p+1

n+1
1 9
n+1

lim
n—oo

which, with the notation & = ﬁ and f(x) = (1 — x)?*!, becomes

h)— f(@©
—%EW=—]”(O)=[J+I.

We conclude that the required limit is ﬁ

342. An inductive argument shows that 0 < x,, < 1 forall n. Also, x,,+1 = x, —x,f < Xp,

so (x,), is decreasing. Being bounded and monotonic, the sequence converges; let x be

its limit. Passing to the limit in the defining relation, we find that x = x — x2, sox = 0.
We now apply the Cesaro—Stolz theorem. We have

. .. n . n+l-—n i 1
lim nx, = lim — = lim — 1 = lim
n—oo n—->-o0 — n—->o00 — — — [
Xn Xn+1 Xn xn_x% Xn
2
= lim o =1Ilm(—x,) =1,
n—soo ]l — (1 — xn) n— 00

Xp — X

and we are done.

343. It is not difficult to see that lim,,_, -, x, = 0. Because of this fact,

lim - =1,
n—00 SIn X,
If we are able to find the limit of
n

—

sin” x,
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then this will equal the square of the limit under discussion. We use the Cesaro—Stolz
theorem.

Suppose 0 < xg < 1 (the cases xo < 0 and xy = O being trivial; see above). If
0<x, <1,then0 < arcsin(sin2 X,) < arcsin(sinx,) = x,, 500 < X, < x,,. It
follows by induction on n that x,, € (0, 1] for all n and x,, decreases to 0. Rewriting the

recurrence as sin x,41 = sin x,/ 1 — sin* X, — sin® X, COS X, gives

1 1 sin x,, — Sin X,y

SinXx,y;  sinx, sin x,, Sin X, 11
sinx, — sinx,v/ 1 — sin* x, + sin® X,, COS Xy,
sin x, (sin x,+/ 1 — sin* x, — sin® x, cos Xn)
1 —+/1—sin* X, + sin x, cos x,
. . 4 )
sin x,+/ 1 — sin” x,, — sin” x,, COS X,

sin* Xn

1+4/ 1—sin* Xn
sinx,v 1 — sin* X, — sin® X, COS X,,

sin’ Xn

144/ 1—sin* x,,
V1 —sin* X, — sin x, cos x,

+ sin x,, cOS x,

+ cos x,

Hence

) 1 1
lim - — — =1.
n—oo \ sinx,,;  sinx,
From the Cesaro—Stolz theorem it follows that lim,,_, m = 1, and so we have
lim,_, o nx, = 1.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), 2002, proposed by
T. Andreescu)

344. We compute the square of the reciprocal of the limit, namely lim,,_, # To this

end, we apply the Cesaro—Stolz theorem to the sequences a,, = A% and b, = n. First,
note that lim,,_, o, x, = 0. Indeed, in view of the inequality 0 < sinx < x on (0, ), the
sequence is bounded and decreasing, and the limit L satisfies L = sin L, so L = 0. We
then have

. 1 1 .
Iim | — — — lim

n—00 xr%—s—l xr% n—00

1 x2 —sin’x
—— )= lim 2>—™

sin®x, X2 n—o0  x2 sin® x,,

2 @x)? _ xp)*t
x,%—%(l—cos2x,,)_ ) 2xn_[ T 4 +]

lim — = lim
xn—0 Exr%(l — cos 2x,) w0 2 |:(2Xn)2 @t 1. :|

n| 2 41
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24741 1

T 2220 3
We conclude that the original limit is /3.
(J. Dieudonné, Infinitesimal Calculus, Hermann, 1962, solution by Ch. Radoux)

345. Through a change of variable, we obtain

b Jo fndr Xn
n — n - yna

where x, = fO" f(t)dt and y, = n. We are in the hypothesis of the Cesaro—Stolz theorem,
since (y,), is increasing and unbounded and

_ n+1 n+1 1
Xn+1 Xn — f (t)dt f() (t)dt _ f f(t)dl _ / f(l’l + x)dx —a,,
Yn+1 — Yn (n+1)_n n 0

which converges. It follows that the sequence (b,), converges; moreover, its limit is the
same as that of (a,),.
(proposed by T. Andreescu for the W.L. Putnam Mathematics Competition)

346. The solution is similar to that of problem 342. Because P(x) > 0, for x =
1,2, ..., n,the geometric mean is well defined. We analyze the two sequences separately.
First, let

Spx=1+243 +... 4 nk,

Because

Snttk — Snk ) (n+ DF 1

Jm (n + DT — gkt = Jm, L e L Tkl

by the Cesaro—Stolz theorem we have that

. Sn k 1
lim — =
n—o0 pk+l k+1
Writing
Pl P2 R S Sy m—
An: ()+ ()+ + (n):am n,m_i_am_1 n,m ]+ +a,,
n n
we obtain
. Ay am
Iim — =

n—o00 pM m—|—]
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Now we turn to the geometric mean. Applying the Cesaro—Stolz theorem to the sequences

Pl P2 P
u, = In ()—Hn ()+---+ln ()
1m 2m n"
and v, = n,n > 1, we obtain
P
lim — = lim In = In () =Ina,.
n—00 v, n—00 (n‘) /n n—00 nm

Now we can simply invoke Stirling’s formula

n_—n

n'~n'e 2nn,

or we can argue as follows. If we let u, = :—,i, then the Cesaro—Stolz theorem applied to
Inu, and v, = n shows that if ”Z—“ converges, then so does //u,, and to the same limit.
Because

n
. n 1
lim = lim = -,
n—oo Y, n—oo\n+ 1 e
we have
. /n! 1
lim — =
n—oo n e
Therefore,
. Ay e
Iim — =

(Gazeta Matematicd (Mathematics Gazette, Bucharest), 1937, proposed by T. Popo-
viciu)
347. Clearly, (a,),>0 is an increasing sequence. Assume that a,, is bounded. Then it must
have a limit L. Taking the limit of both sides of the equation, we have

’

lim a,+; = lim a lim
n—00 ntl noo T n— 00 \/\/a_n
or L =L+ %L, contradiction. Thus lim,_, o, a, = +o00 and dividing the equation by

a,, we get lim,,_, o, L = 1.

an
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Let us write

k+1 b\ ¢
k
. a . ay
lim *+— = [ lim
n—oo n n—oo n
Using the Cesaro—Stolz theorem, we have
k+1 k+1 kel
a* 1~ nk
. n
lim = lim ”+ = lim /a ﬁi{ Jak+!
n—oo n n»oo n+1—n n—00
k+1 k+1
. an+l - an
= lim
e o) o) k=l
K k+ K k+ k/ k+1 k/ ok+1
att) o+ (Jatl) Va4 (Va
( k—1 k
dps1 — an)(anJrl +a, an+ - +a,)

im

e k+1 ot k1 e k=1
K K Mok 4 s
an+1 + an+1 an + +< an )

k—1 k
= lim n+1 +an+la" +- +an

00 k—1 k—2 1\
K k+1 K k+1 k k
Ya, ( an+]> —I—( an+]) ak+! —i—---—i—(\/a’ﬁ])

Dividing both sides by a*, we obtain

k1 At k apy k=1
- Gntl )y ( Gntl NI |
lim & = lim o
>0 I oo g, G0 -] " (k) 1 :
n T
( + (e ) ot
Since lim,,_, o 1 = 1, we obtain
n
jan}
Coapt k+1
lim = —.
n—oo n k

Hence

ak+1 1\*
Jim = = (”z) :

(67th W.L. Putnam Mathematical Competition, proposed by T. Andreescu; the special
case k = 2 was the object of the second part of a problem given at the regional round of
the Romanian Mathematical Olympiad in 2004)

348. Assume no such & exists. Then f(a) > a and f(b) < b. Construct recursively the
sequences (a,),>1 and (b,),>1 witha; = a, by = b, and
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nt+ by n+b n+b
ni1 = dy and bn+1:a + 0, lff a, + b, <Cl1+ n’
2 2
or
n+ by _ n + by n + by
apt+1 = Wt and bn+1 =b, lff @t > I + .
2 2
Because b, — a, = bz_,," — 0, the intersection of the nested sequence of intervals

lai, b1] D [az, b2] D laz, b3]1 D -+ D [an, by] D - -
consists of one point; call it £. Note that
& = lim a, = lim b,.
n—oQ n—oQ

We have constructed the two sequences such that a, < f(a,) < f(b,) < b, for all n,
and the squeezing principle implies that ( f(a,)), and (f(b,)), are convergent, and

Now the monotonicity of f comes into play. From @, < £ < b,, we obtain f(a,) <
f(&) < f(b,). Again, by the squeezing principle,

F© = lim f(a) = lim f(b) =§.

This contradicts our initial assumption, proving the existence of a point £ with the desired
property.

Remark. Thisresultis known as Knaster’s theorem. Its most general form is the Knaster—
Tarski theorem: Let L be a complete lattice and let f : L — L be an order-preserving
function. Then the set of fixed points of f in L is also a complete lattice, and in particular
this set is nonempty.

349, Let Pi(x) = x and P, 1(x) = P,(x)(P,(x) + %), forn > 1. Then P,(x) is a
polynomial of degree 2"~' with positive coefficients and x, = P,(x;). Because the
inequality x,+; > x, is equivalent to x,, > 1 — %, it suffices to show that there exists a
unique positive real number ¢ such that 1 — % < P,(t) < 1 for all n. The polynomial
function P, (x) is strictly increasing for x > 0, and P,(0) = 0, so there exist unique
numbers a,, and b, such that P,(a,) =1 — % and P,(b,) = 1, respectively. We have that
ay < Gy, since Poyi(ay) = 1 — 1 and Py (anq1) = 1 — 5. Similarly, b,y < by,
since P41 (byr1) = 1and Pyy(b,) =1+ 1.

It follows by induction on » that the polynomial function P, (x) is convex for x > 0,
since
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1
P (x)=P)(x) (ZP,,(X) + ;) + (P (x))?,

and P,(x) > 0, for x > 0. Convexity implies

P,(b,) — P(0) X
P(x) < ———x=—, for0<x <b,.
b,—0 b,

In particular, 1 — % = P,(a,) < Zi. Together with the fact that b, < 1, this means that

b, —a, < % By Cantor’s nested intervals theorem there exists a unique number ¢ such
that @, < t < b, for every n. This is the unique number satisfying 1 — % < P, <1
for all n. We conclude that ¢ is the unique number for which the sequence x, = P, (t)
satisfies 0 < x, < x,41 < 1 for every n.

(26th International Mathematical Olympiad, 1985)

350. The answer to the question is yes. We claim that for any sequence of positive integers
ny, there exists a number y > 1 such that (|y*|); and (n;); have infinitely many terms
in common. We need the following lemma.

Lemma. Forany o, 8,1 < a < B, the set U,fil[ozk, Bk — 1] contains some interval of
the form (a, 00).

Proof. Observe that (8/a)f — oo as k — oo. Hence for large k, «**' < ¥ — 1, and
the lemma follows.

Let us return to the problem and prove the claim. Fix the numbers «; and B,
1 < a; < B;. Using the lemma we can find some k; such that the interval [0/1”, {” —1]
contains some terms of the sequence (n;);. Choose one of these terms and call it #,.

Define
1/k I
o =14"", ,32=(t1+5) .

Then [ay, B2] C [a1, 1], and for any x € [z, B2], [xk1] = 1. Again by the lemma,
there exists k, such that [0/2‘2, ,852 — 1] contains a term of (ny); different from n;. Call

this term #,. Let
1/k 1\
o =1"", ,33=(t2+§) .

As before, [a3, B3] C [aa, Bo] and |x*2| = 1, for any x € [as, B3]. Repeat the con-
struction infinitely many times. By Cantor’s nested intervals theorem, the intersection
of the decreasing sequence of intervals [«, B;], j = 1,2, ..., is nonempty. Let y be
an element of this intersection. Then [y*/ | = tj, j = 1,2,..., which shows that the
sequence (|y”]) ;j contains a subset of the sequence (7). This proves the claim.
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To conclude the solution to the problem, assume that the sequence (a,), does not
converge to 0. Then it has some subsequence (a,, )x that approaches a nonzero (finite or
infinite) limit as n — oo. But we saw above that this subsequence has infinitely many
terms in common with a sequence that converges to zero, namely with some (@, )x.
This is a contradiction. Hence the sequence (a,), converges to 0.

(Soviet Union University Student Mathematical Olympiad, 1975)

351. The solution follows closely that of the previous problem. Replacing f by | f| we
may assume that f > 0. We argue by contradiction. Suppose that there exists a > 0
such that the set

A= f((a,00) = {x € (0,00) | f(x) > a}

is unbounded. We want to show that there exists xo € (0, co) such that the sequence
(nxo),>1 has infinitely many terms in A. The idea is to construct a sequence of closed
intervals I} D I, D I3 D --- with lengths converging to zero and a sequence of positive
integers ny < np < nz < --- suchthatn,fl C Aforall k > 1.

Let /; be any closed interval in A of length less than 1 and let n; = 1. Exactly as
in the case of the previous problem, we can show that there exists a positive number 1,
such that U,,>,, mI; is a half-line. Thus there exists n, > n; such that n,/; intersects
A. Let J; be a closed interval of length less than 1 in this intersection. Let I, = %]2.
Clearly, I, C I, and the length of I, is less than % Also, npI, C A. Inductively, let
ng > ny—; be such that n; I;_; intersects A, and let J; be a closed interval of length less
than 1 in this intersection. Define I, = iJ"'

We found the decreasing sequence of intervals I} D I, D I3 D --- and positive
integers n| < np < n3 < --- such thatn; I, C A. Cantor’s nested intervals theorem im-
plies the existence of a number x in the intersection of these intervals. The subsequence
(ngxo)y lies in A, which means that (nx(), has infinitely many terms in A. This implies
that the sequence f(nxy) does not converge to 0, since it has a subsequence bounded
away from zero. But this contradicts the hypothesis. Hence our assumption was false,
and therefore lim, ., f(x) = 0.

Remark. This result is known as Croft’s lemma. It has an elegant proof using the Baire
category theorem.

352. Adding a few terms of the series, we can guess the identity

! + —2 + + 2’ ! + 2 >1
e = , n=1.
1+x  14x2 14+x2 x—1 1—x2"
And indeed, assuming that the formula holds for n, we obtain
1 2 on 2n+1 1 2n+1 2n+1

1+x+1+x2+"'+1+x2n +1+x2n+1 =x_1+1_x2n+1 +1+x271+l
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1 2n+2

X—l + 1_x2n+2'

This completes the inductive proof.
Because
n+l 1 1

m
x—l-i_n%wl—xz"+1 x—1+m%ool—x’” x—1

our series converges to 1/(x — 1).
(C. Nistdsescu, C. Nitd, M. Brandiburu, D. Joita, Exercitii si Probleme de Algebrd
(Exercises and Problems in Algebra), Editura Didactici si Pedagogicd, Bucharest, 1983)

353. The series clearly converges for x = 1. We will show that it does not converge for
x # 1.

The trick is to divide through by x — 1 and compare to the harmonic series. By the
mean value theorem applied to f(¢) = t'/", for each n there exists ¢, between x and 1
such that

{’/)—c -1 1 1

= —Cn
x—1 n

It follows that

Jx =1

x—1

1 1, 1 _q
> —(max(1l, x))»~ > —(max(l, x))" .
n n

Summing, we obtain

= Yx -1 Ny
> 1’ — = N
nE_l 1 > (max(1, x)) E o o0

n=1

which proves that the series diverges.
(GT. Gilbert, M.I. Krusemeyer, L.C. Larson, The Wohascum County Problem Book,
MAA, 1996)

354. Using the AM—GM inequality we have

00 ooan an_H_loo 1 &
Z«/%G—MSZT—E;an+§;an<OO-

n=1 n=1
Therefore, the series converges.

355. There are exactly 8 - 9"~! n-digit numbers in S (the first digit can be chosen in 8
ways, and all others in 9 ways). The least of these numbers is 10”. We can therefore
write
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1

Z Z Z x_ = Z Z 10i-1

xj<10” i=110i~1<x;<10¢ i=110-1<x; <10/

8 i—1 n
Z o =80(1— 2 .
10i-1 10

Letting n — oo, we obtain the desired inequality.
356. Define the sequence

1 1
n = Xn 1 D PRV 22
Yn = Xn + +22+ +(n—1)2 n

By the hypothesis, (y,), is a decreasing sequence; hence it has a limit. But

1 1
1+ — -
et et T;eE T

o Lo g2
converges to a finite limit (which is % as shown by Euler), and therefore

1 1
= l- g = oy nz2

has a limit.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

357. We have

sintyVn2 4+ 1= (—=1)'sinm(Vn2+1—n) = (— 1)"s1nW+n

lies entirely in the interval (0, %), is decreasing, and

Clearly, the sequence x,, = -
+1+4n

converges to zero. It follows that sin x,, is positive, decreasing, and converges to zero.
By Riemann’s convergence criterion, ) ,_,(—1)" sin x,, which is the series in question,
is convergent. R

(Gh. Siretchi, Calcul Diferential si Integral (Differential and Integral Calculus),
Editura Stiintificd si Enciclopedicd, 1985)

358. (a) We claim that the answer to the first question is yes. We construct the sequences
(a,), and (b,), inductively, in a way inspired by the proof that the harmonic series
diverges. Atstep 1,leta; = 1,b; = % Then at step 2, leta, = a3 = % and by, = bz = 5

In general, at step k we already know a,, as, . .., a,, and by, ba, . .., b,, for some integer
ny. We want to define the next terms. If k is even, and if
1
bnk = S
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let
1
bys1 =" =bpym = oY
and
1
An+1 = - = Am42'c = 2k oy’

If k is odd, we do precisely the same thing, with the roles of the sequences (a,), and
(b,)n exchanged. As such we have

Zb erkl =1+1+--=o00,

k odd

Zan_ Zz’k =141+ =00,

k even

which shows that both series diverge. On the other hand, if we let ¢, = min(a,, b,), then
| 1
n

which converges to 1. The example proves our claim.

(b) The answer to the second question is no, meaning that the situation changes if we
work with the harmonic series. Suppose there is a series ) , a, with the given property.
Ifc, = % for only finitely many »’s, then for large n, a, = c,, meaning that both series
diverge. Hence ¢, = % for infinitely many n. Let (k,), be a sequence of integers
satisfying k,, 11 > 2k, and ¢, = i Then

km+l 1 1
Z Ck Z (km+1 B km)ckm-H = (km-H - km)k_ - 5
k=ky+1 m+1

This shows that the series ) . ¢, diverges, a contradiction.
(short list of the 44th International Mathematical Olympiad, 2003)

359. Forn > 1, deﬁne the function f, : (0, 1) — R, f,,(x) = x — nx?. Itis easy to see
that 0 < f,(x) < - L forall x € (0, 1). Moreover, on ©, 5 ] the function is decreasing.
With this in mind, we prove by induction that

O<xn<—2,
n

for n > 2. We verify the first three cases:
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0= fi(0) <x2= fi(x1)) =x —x12 < % < 4—21,
0= £(0) <x3 = folo) = 32 — 23 < % - g
0= f30) < x4 = f3(x3) = x3 —3x3 < 1.2
- 12 16
Here we used the inequality x; —x? — 1 = —(x; —1)? < O and the like. Now assume that

the inequality is true for n > 4 and prove it for n 4 1. Since n >, we have x,, < n% < %
Therefore,

2 2 4 2n-4
0= 50 <xea = o =y () = == T

n? n

n3
It is an easy exercise to check that

2n —4 2
< b
n3 (n+1)2

which then completes the induction.

We conclude that the series ) _, x, has positive terms and is bounded from above by
the convergent p-series 2 ) r%, so it is itself convergent.

(Gazeta Matematicd (Mathematics Gazette, Bucharest), 1980, proposed by L.
Panaitopol)

360. The series is convergent because it is bounded from above by the geometric series
with ratio % Assume that its sum is a rational number 3. Choose n such that b < 2".
Then

| 1

a
b [ [
k=1 2 k=n+1 2

n 1 m :
But the sum ) ;_, 5 1s equal to 7 for some integer 7. Hence

~ 1 a m 1 1 o 1 1
_Z?_E_? = 2n2b = 2n2+n = 2(n+1)2—1 - Z ? = Z F’

k=1 k>(n+1)2 k>n+1

SR

a contradiction. This shows that the sum of the series is an irrational number.
Remark. In fact, this number is transcendental.

361. The series is bounded from above by the geometric series |ao|(1 + |z| + |z]*> +- - -),
so it converges absolutely. Using the discrete version of integration by parts, known as
the Abel summation formula, we can write
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ag+arz+ a4+ +a -
=@ —a)+@—-a)d+2)+ -+ @ —a)d+z+--+2)+-.

Assume that this is equal to zero. Multiplying by 1 — z, we obtain
(@ —aN( —2) + (@ —a)( =2 + -+ (@ — @)1 ="+ = 0.

Define the sequence b, = a, — a,4+1, n > 0. It is positive and Zn b, = ay. Because
|z| < 1, the series ) _, b,z" converges absolutely. This allows us in the above inequality
to split the left-hand side into two series and move one to the right to obtain

bo+bi+- - Fby+ o =biz+ b+ by
Applying the triangle inequality to the expression on the right gives

|boz + b12% + - - - + b, 2" < bolz| + byl + -+ bl 4 -
<by+bi+--+b,+--,

which implies that equality cannot hold. We conclude that the sum of the series is not
equal to zero.

362. If such a sequence exists, then the numbers

1 1 1 1 1
— _|_ — e and —

Pop1 pop1D2 pop1P2P3 PoP1D2 pop1P2P3

should both be positive. It follows that

1 1 1 1 1
0<— —w= — + - < < )
Do PoP1 PoPiP2  PoP1P2D3 pop1 po(po+ 1)

Hence pg has to be the unique integer with the property that

This integer satisfies the double inequality

1
po<— <po+1,
w

which is equivalentto 0 < 1 — pow < w.
Let w; =1 — pow. Then
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The problem now repeats for w;, which is irrational and between 0 and 1. Again p; has
to be the unique integer with the property that

1 ! 1
<l—=—pw<—.
p1+1 D1
If we set w, = 1 — pjwq, then
1 1 w
w=—— + 2

Po PoPi PoPi

Now the inductive pattern is clear. At each step we set wyr; = 1 — prwy, which is an
irrational number between 0 and 1. Then choose p;; such that

1 1
———— Wy < ——.
D1 + 1 " Di+1

Note that

1
o+l e+

Wipr =1 — prwp <1 — pyi

and therefore py 1 > pr + 1 > py.
Once the numbers py, pi1, p2, ... have been constructed, it is important to observe
that since w; € (0, 1) and pop; - - - pr > (k + 1)!, the sequence

1 w
- _ Ho e (=R ket
Po  PoPi1 PiP2 - Pk
converges to w. So pg, p1, ..., Pk, - - . have the required properties, and as seen above,

they are unique.
(13th W.L. Putnam Mathematical Competition, 1953)

363. First, denote by M the set of positive integers greater than 1 that are not perfect
powers (i.e., are not of the form a”, where a is a positive integer and n > 2). Note that
the terms of the series are positive, so we can freely permute them. The series is therefore
equal to

=1
ka—l'

meM k=2

Expanding each term as a geometric series, we transform this into
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Again, we can change the order of summation because the terms are positive. The
innermost series should be summed as a geometric series to give

This is the same as

as desired.

(Ch. Goldbach, solution from G.M. Fihtenholts, Kurs Differentsial’novo i Integral no-
vo Ischisleniya (Course in Differential and Integral Calculus), Gosudarstvennoe Izda-
tel’stvo Fiziko-Matematicheskoi Literatury, Moscow 1964)

364. Let us make the convention that the letter p always denotes a prime number. Consider
the set A(n) consisting of those positive integers that can be factored into primes that do
not exceed n. Then

]_[<1+1+—+ ) Z —

p=n meA(n)

is sum includes 3" _, L. which is known to exceed Inn. Thus, after summing the
Th lud =17
geometric series, we obtain

!
1_[ (1 — —) > Inn.
p=n p

For the factors of the product we use the estimate

1
> (=17, for0<t< -~

To prove this estimate, rewrite it as f(r) > 1, where f(¢) = (1 — t)e’+’2. Because
(@) =1t(1— 2t)e’”2 > 0 on [0, %], f is increasing; thus f(t) > f(0) = 1.
Returning to the problem, we have

Hexp( ) H<1—1>_1>1nn.

p=n p=<n p
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Therefore,
1 1
Z —+ Z — > Inlnn
pn Py P
But
1 21 2
— < Z —=——-1<1
2 2
p=n p n=2 k 6
Hence
1
—>Inlnn —1,
p<n P
as desired.

(proof from I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the
Theory of Numbers, Wiley, 1991)

365. We have
K2+ Dk! = k> +k —k + Dk! = k(k + Dk! — (k — Dk!
=ktk+ D! — (k—Dk! =ay — ax,
where a; = (k — 1)k!. The sum collapses to a,,+; —a; =n(n + 1)

366. If ¢ is an mth root of unity, then all terms of the series starting with the mth are zero.
We are left to prove that

m—1
=) A =g (=),
n=0

Multiplying both sides by ¢ yields the equivalent identity

m—1

L= ¢ A== (1=,
n=0

The sum telescopes as follows:

m—1

DA == (1=

n=0

—1
I—A=""NA-0d=¢H---(1—2¢"

ME

Il
S

n
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m—1

=Y [A-00 =)= =0 =00 =¢-(1—¢"h)]
n=0

=1-0=1,

and the identity is proved.
367. We have

1+§(;>Sk(n)zl+g(/:)2p _1+2n32()

p=1 k=0

=1+ [(p+ 1) —pl=@m+1).

p=1

368. Set b, = +/2n — 1 and observe that 4n = b2, + b?2. Then

_ Day + B+ busiby (Bt — b) By + buiba + b))

bn+1 + bn B (bn+1 - bn)(bn+l + bn}
_ M (b b))
b5+1 - b2

So the sum under discussion telescopes as
13 3 1.3 3 13 3
ay+ay+---+ag = E(b2 —b1)+§(b3 —l)2)+---+§(b41 — by,)
1 1
= E(bfLl - b)) = E(~/813 — 1) = 364,

and we are done.
(Romanian Team Selection Test for the Junior Balkan Mathematical Olympiad, pro-
posed by T. Andreescu)

369. The important observation is that

(_1)k+1 2

1222432 — o (=D k(k+ 1)

Indeed, this is true for k = 1, and inductively, assuming it to be true for k = /, we obtain

II+1)

12_22_{_32_“._{_(_1)14—112:(_1)l+l 5

Then
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@+ D
2

= (=D +1) (—é +1+ 1) :

12-22432 ... 4 (=D + 1D = (—1 + (=D 1+ 1)

whence

(_1)l+2 2

12224383 — .4 (D20 + 12 (+DUA+2)

as desired. Hence the given sum equals

2”: 2 (ot
k4 1) k k+1)°

k=1

1 2n
211 — = .
n+1 n+1

370. The sum telescopes once we rewrite the general term as

telescoping to

(T. Andreescu)

1 Jn+1-3n
(AT D+ dn+ D I+t 1+ dm&n+1— g
Jn¥1—n

(Vn+ + /) (Vn+1—/n)
R bk [ rorey S}

n+1—-—n

The sum from the statement is therefore equal to +/10000 — 1 = 10 — 1 = 9.
(Mathematical Reflections, proposed by T. Andreescu)

371. As usual, the difficulty lies in finding the “antiderivative” of the general term.
We have

1 Jirasir— fiva-ip
Jlraebrs iva-te  TH0+—1-(a=
JUIHa+hr— Jiea-ty

4
n
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1

= (Vo r o+ -V —1p)
1

= Z(bn+1 —b,),

where b, = /n? + (n — 1)2. Hence the given sum collapses to }‘(29 -1 =7
(Mathematical Reflections, proposed by T. Andreescu)

372. Let us look at the summation over # first. Multiplying each term by (m +n 4 2) —
(n + 1) and dividing by m + 1, we obtain

m! n! (n+ 1!
m+ 1= \m+n+D!  (m+n+2)! '

This is a telescopic sum that adds up to

m! 0!
m+1 (m+ D

Consequently, the expression we are computing is equal to
2

i 1 o
—m+1)? 6]

(Mathematical Mayhem, 1995)

373. This problem is similar to the last example from the introduction. We start with

|
@—bwz5Pk+@+l%Hk—D—4/H+k+4JH—k+2/H—1]
1 2
::E@v%—¢k+1—vk—g‘
From here we obtain

M=%(z@-m—m)

=
=_%(M—ﬁ)+%(ﬁ—m).

The sum from the statement telescopes to

—%(@—ﬁ)+%(«/4_9—\/6)=—5+4ﬁ.

(Romanian Mathematical Olympiad, 2004, proposed by T. Andreescu)
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374. First solution: Let §,, = ZZZO(—I)k(n — k)!(n + k)!. Reordering the terms of the
sum, we have

Sp = (—=1)" Z(—l)kk!(Zn —k)!

k=0
1 2n
=(-1"5 ((—1)"n!n! + g(—l)kk!(Zn - k)!)
N2
(”) + (- 1)"
where T,, = i';o(—l)kk!(Zn — k)!. We now focus on the sum 7,,. Observe that
T, & (1
@' k=0 (21:1)
and
1 2n+1 1 n 1
G) 2+ D[N ]
Hence
n__m+1[1 L S SRS SRS 1}
O N i N G Y G I Gy ) G

This sum telescopes to

Al f 1 1 2]
204017 GBI

Thus 7, = (2"111) , and therefore

(n")? b 1)n(Zn—i-l)'

S, =
2 2(n+1)

Second solution: Multiply the kth term in S, by (n —k 4+ 1) + (n + k + 1) and divide by
2(n + 1) to obtain
1 n

- 1k _ N 3
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This telescopes to

— [n! DI+ (—D"2n+ D!].
2(nJH)[n(n-i-)-i-( )"(2n + 1]
(T. Andreescu, second solution by R. Stong)

. . . . _ _ 1
375. The sequence is obviously strictly decreasing. Because a; — a;+1 = 1 T

we have
1
ap+ 1 a1+ 1

a, = ap+ (a1 —aop) +---+ (ay —a,—1) = 1994 —n +
> 1994 — n.

Also, because the sequence is strictly decreasing, for 1 <n < 998,

1 1 n 998

+ ..o+ < < <1,
ap+1 a1 +1 a1 +1  agr+1

since we have seen above that agg; > 1994 — 997 = 997. Hence |a,| = 1994 — n, as
desired.

(short list of the 35th International Mathematical Olympiad, 1994, proposed by
T. Andreescu)

376.Let x; = k ++/k*+1and x, = k — ~/k% + 1. We have |x,| = xi < zl < %, SO
—(1)? < x5 < (3)". Hence

1\" "
x{+xy—1 <x{‘+(§) -1 <an§xi‘—<§> +1 <xi4+x3+1,
foralln > 1. From
A = (o )+ x) — (P xS
=2k(x} +x5) + (T + x5

for n > 1, we deduce that x{ + xJ is an integer for all n. We obtain the more explicit
formula a, = x{ + x5 for n > 0, and consequently the recurrence relation a, 4| =
2ka, + a,_1, foralln > 1. Then

1 1 2ka, 1 a1 —a,y 1 < 1 1 )

ap—1an anQp41

ap—14n+1 2](61” ap—10p+1 2k an—10,ap41 2k

It follows that

1 1 . 1 1 1
Z =—(— — lim = =_—.
ap— la,,+1 2k \apa; N—ocoayayiy 2kaga; 8k

n=1
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377.For N > 2, define

(=)0 2 (o)

The problem asks us to find limy_,», ay. The defining product for ay telescopes as
follows:

o= [(=D) 0 D050 )] [0 57) 0 5573)]
ccn ()G (Bt BB

Hence the infinite product is equal to

. . 2N +1
lim ay = — lim = —
N—o00 N—oo 2N — 1
378. Define the sequence (ay)y by
N
ay = 1_[(1 +x2n).
n=1

Note that (1 — x)ay telescopes as

(1 =)0+ )0 +x0 +xH (1 +x2)
= (1 =)+ D +xH -1+
= (1 =xHT+xY -1+

=.”=(1_)C2N+1)‘

Hence (1 — x)ay — 1 as N — oo, and therefore

[T+ -

n>0

1
1 —x

379. Let Py = ]_[,11\]:1 (1— o ), N > 1. We want to examine the behavior of Py as

. Xn+1 . .
N — oo. Using the recurrence relation we find that this product telescopes as
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Hence
1 1 Xn42  Xnpl | Xnp2 — (04 DXy xmtl
R — = = , forn>1.
P.yi P, (n+ 1) n! (n+1)! (n+ 1!

Adding up these relations for 1 < n < N + 1, and using the fact that the sum on the left
telescopes, we obtain

1 1 )C2 X3 xN-H
N R TR TR
X xz xN-H
=14+ 4+
Tata Tttt

Because this last expression converges to ¢*, we obtain that limy_, o, Py = e, as
desired.

(Revista Matematicd din Timisoara (Timisoara Mathematics Gazette), proposed by
T. Andreescu and D. Andrica)

380. We are supposed to find m and n such that

lim V83 +mx2—nx=1 or lim v8x3+mx —nx=1.
X—>—00

X—> 00

We compute

3.3 2
V8x3 + mx2 —nx = @ —n)x” +mx )
J(8x3 + mx2)? + nx~v/8x3 + mx? + n2x2

For this to have a finite limit at either 400 or —oo, 8 — n® must be equal to 0 (otherwise
the highest degree of x in the numerator would be greater than the highest degree of x in
the denominator). We have thus found that n = 2.

Next, factor out and cancel an x2 to obtain

m
JE+m r287 14

We see that lim, . », f(x) = {5. For this to be equal to 1, m must be equal to 12. Hence
the answer to the problem is (m, n) = (12, 2).

fx) =

381. This is a limit of the form 1°°. It can be computed as follows:

. . 1 . . 1 sinx—1
lim (Sln x)cosx = lim (1 4+ sinx — 1) sinx—1 "~ cosx
2

x—>m/2 xX—>7

sinx—1

limxﬁﬂ/z Sc05)c cosu — 1
- (ling(l + t)”’) = exp (“m —>
11—

u—0 sinu
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cosu — 1 u

:exp( o )260'1260:1.
u sin u

The limit therefore exists.

382. Without loss of generality, we may assume that m > n. Write the limit as

. W/cost x — "R/cos™ x
lim .
x—0 x2

Now we can multiply by the conjugate and obtain

cos” x —cos” x

lim
x—0 X2( mn (COS” x)mn—l + ..+ mn/ (COSm x)mn—l)

m—n

. cos" x(1 —cos X) . 1 —cos""x
= lim 5 = lim —
x—0 mnx x—0 mnx

(1 —cosx)(1 4+cosx +---+cos” " x)

= lim

x—=0 mnx?
m—n . 1—cosx m-—n
= im 5 = .
mn x—0 X 2mn

We are done.
X241

383. For x > 1 define the sequence (x,),>0 by xo = x and x,1; = #5—, n > 0. The
sequence is increasing because of the AM—GM inequality. Hence it has a limit L, finite
or infinite. Passing to the limit in the recurrence relation, we obtain L = LT“; hence

either L = 1 or L = oo. Since the sequence is increasing, L > xo > 1,s0 L = co. We
therefore have

F&) = f00) = f(x) = f) == lim f(x,) = lim £(x).
This implies that f is constant, which is ruled out by the hypothesis. So the answer to

the question is negative.

384. We can assume that m > 1; otherwise, we can flip the fraction and change 7 to %t.
There is an integer n suchthatm < 2". Because f isincreasing, f(t) < f(mt) < f(2"t).
We obtain

fme) — fQ2"1)
< < .
Q) Q)

The right-hand side is equal to the telescopic product

F@n  f@y  fen
f@=iny e
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whose limit as ¢ goes to infinity is 1. The squeezing principle implies that

fomt)

lim =1,

t— 00 f(l)

as desired.
(V. Radu)

385. The sum under discussion is the derivative of f at 0. We have

> kay| = |f'(0)| = lim S~ O
k=1 x—0 x—0
N f@| [ f@)] [sinx
= lim = lim | = .
x—0 X x—0 | sin x X

The inequality is proved.
(28th W.L. Putnam Mathematics Competition, 1967)

386. The condition from the statement implies that f(x) = f(—x), so it suffices to check
that f is constant on [0, 00). For x > 0, define the recursive sequence (x,)>g, by xo = x,
and x,,, = /x,, forn > 0. Then

fo) = ) = fx) == f(lim x,).

And lim,,_, o, x, = 1 if x > 0. It follows that f is constant and the problem is solved.

387. The answer is yes, there is a tooth function with this property. We construct f to
have local maxima at 22,% and local minima at O and 2%, n > 0. The values of the
function at the extrema are chosen to be f(0) = f(1) =0, f(%) = %, and f(zznlﬂ) = 2%,
and f (2%) = # for n > 1. These are connected through segments. The graph from
Figure 66 convinces the reader that f has the desired properties.

(Kozépiskolai Matematikai Lapok (Mathematics Gazette for High Schools, Bu-

dapest))

388. We prove by induction on n that f(5;) = 0 for all integers n > 0 and all integers
0 < m < 3". The given conditions show that this is true for n = 0. Assuming that it is
true forn — 1 > 0, we prove it for n.

If m = 0 (mod 3), then
(8- (55) -
3n - 3n—1 -
by the induction hypothesis.

Ifm=1(@mod 3),thenl <m <3" —2and
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Figure 66

- m—1 m2
3f (5) = 2f (3113—1) +f (3113—1> =0+0=0.

Thus f(g”—,,) =0.
Finally, if m = 2 (mod 3), then2 <m < 3" — 1 and

m+1 m—2

o1 (5)=2r (55) + 1 (55 =ovo=o

Hence f (3%) = 0 in this case, too, finishing our induction.

Because the set {3%; m,n € N} is dense in [0, 1] and f is equal to zero on this set,
f is identically equal to zero.

(Vietnamese Mathematical Olympiad, 1999)

389. We argue by contradiction. Assume that there exist a < b such that f(a) # f(b),
say, f(a) > f(D).

Letg : R - R, g(x) = f(x) + Ax, where A > 0 is chosen very small such that
g(a) > g(b). We note that

. gx+2h)—gx+h)
lim

=A>0, forallx € R.
h—0+ h

Since g is a continuous function on a closed and bounded interval, g has a maximum.
Let ¢ € [a, b] be the point where g attains its maximum. It is important that this point is
not b, since g(a) > g(b). Fix 0 < € < A. Then there exists § = §(¢) > 0 such that

g(c+2h)—g(c+h)
€ < <

0<A— A A+e, forallO < h <36.
Fix 0 < hy < min{é, %}. The above inequality written for 2 = hy, %, }%, etc., yields
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h h
g(c+ 2hg) > glc+ hy) > g(c—i—?O) > > g(c—i—z—:) > ..
Passing to the limit, we obtain that g(c 4+ 2h) > g(c), contradicting the maximality of
c. The contradiction proves that our initial assumption was false, and the conclusion
follows.

390. From the given condition, it follows that f is one-to-one. Indeed, if f(x) = f(y),
then f(f(x)) = f(f(y)), so bx = by, which implies x = y. Because f is continuous
and one-to-one, it is strictly monotonic.

We will show that f has a fixed point. Assume by way of contradiction that this is
not the case. So either f(x) > x forall x, or f(x) < x for all x. In the first case f must
be strictly increasing, and then we have the chain of implications

b
f) >x= f(f(x) > fx) = af (x) +bx > f(x) = f(x) < ﬁ

for all x € R. In particular, f(1) < % < 1, contradicting our assumption.
In the second case the simultaneous inequalities f(x) < x and f(f(x)) < f(x)
show that f must be strictly increasing again. Again we have a chain of implications

bx
1—a’

fx)<x= f(f) < fx)= fx) >af(x)+bx = fx) >

for all x € R. In particular, f(—1) > —% > —1, again a contradiction.

In conclusion, there exists a real number ¢ such that f(c) = ¢. The condition

f(f(c)) = af(c) + bc implies ¢ = ac + bc; thus c(a + b — 1) = 0. It follows that
¢ = 0, and we obtain f(0) = 0.

Remark. This argument can be simplified if we use the fact that a decreasing monotonic
function on R always has a unique fixed point. (Prove it!)
(45th W.L. Putnam Mathematical Competition, 2002, proposed by T. Andreescu)

391. Being continuous on the closed interval [0, 1], the function f is bounded and has
a maximum and a minimum. Let M be the maximum and m the minimum. Then
7 < f(ann) < 2Mn’ which implies that the series is absolutely convergent and its limit is a
number in the interval [m, M].

Leta € (0, 1) and m, and M, be the minimum and the maximum of f on [0, a]. If

o € [0, a] is such that f(x) = M,, then

M, =f(0l) =Z f(zo:ln) = M“Zzin =M,,
n=1 n=1

whence we must have equality in the above inequality, so f(a¢") = M,. Since
lim, . a" = 0, it follows that M, must equal lim,_o f(x) = f(0). Similarly,
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m, = f(0), and hence f is constant on [0, a]. Passing to the limit with a — 1, we
conclude that f is constant on the interval [0, 1]. Clearly, constant functions satisfy the
property, providing all solutions to the problem.

(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by M. Biluni)

392. Let ¢ : [0, 1] x [0, 1] be a continuous surjection. Define ¥ to be the composition

[0. 11 =% [0, 17 % [0, 11 25 [0, 1] x [0, 11 x [0, 1 25 [0, 1] x [0, 1],
where pryp : [0, 1] x [0, 1] x [0, 1] — [0, 1] x [0, 1] is the projection of the cube onto
the bottom face. Each function in the above chain is continuous and surjective, so the
composition is continuous and surjective. Moreover, because the projection takes each
value infinitely many times, so does 1. Therefore, i provides the desired example.

393. The first example of such a function was given by Weierstrass. The example we
present here, of a function f : [0, 1] — [0, 1], was published by S. Marcus in the
Mathematics Gazette, Bucharest.

If0 <x <1and x = 0.a1azas ... is the ternary expansion of x, we let the binary
representation of f(x) be 0.b1b,b5 . .., where the binary digits by, b,, b3, . .. are uniquely
determined by the conditions

(i) by = 1lifandonly ifa; =1,
(ii) b,y = by, if and only if a4 = a,, n > 1.

It is not hard to see that f(x) does not depend on which ternary representation you
choose for x. For example,

£@0.0222...) =0.0111--- =0.1000- - - = £(0.1000...).

Let us prove first that the function is continuous. If x is a number that has a unique
ternary expansion and (x,), is a sequence converging to x, then the first m digits of
x, become equal to the first m digits of x for n sufficiently large. It follows from the
definition of f that the first m binary digits of f(x,) become equal to the first m binary
digits of f(x) for n sufficiently large. Hence f (x,) convergesto f(x), so f is continuous
at x.

If x is a number that has two possible ternary expansions, then in one expansion

x has only finitely many nonzero digits x = 0.a;1a;...a;00..., with a; # 0. The
other expansion is 0.aja, ... ;222 ..., witha; = ax — 1 (= 0 or 1). Given a sequence
(x,), that converges to x, for sufficiently large n the first k — 1 digits of x,, are equal to
ai,a, ..., ag—1, while the next m — k + 1 are either ¢;,0,0,...,0,0ra;,2,2,...,2.
If f(x) = f(O.a1az...a00...) = 0.b1bybs ..., then for n sufficiently large, the first
k — 1 digits of f(x,) are by, by, ..., by_1, while the next m — k + 1 are either by, by =
biyp = -+ = b, (the digits of f(x))or 1 — by, 1 — byyy = --- = 1 — b,. The two

possible binary numbers are 0.b1b;...b;_10111 ... and 0.61b; ...b;_11000...; they
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differ from f(x) by at most # We conclude again that as n — oo, f(x,) — f(x).

This proves the continuity of f.

Let us show next that f does not have a finite derivative from the left at any point
x € (0, 1]. For such x consider the ternary expansion x = 0.ajaya3 . . . that has infinitely
many nozero digits, and, applying the definition of f for this expansion, let f(x) =
0.b1bybs . ... Now consider an arbitrary positive number n, and let k,, > n be such that
ay, # 0. Construct a number x” € (0, 1) whose first k, — 1 digits are the same as those
of x, whose k,th digit is zero, and all of whose other digits are equal to 0 if by, +; = 1
and to 1 if by, | = 0. Then

O0<x—x'<2-3%40.00...022...,0=3F+1
N ——’
kn

while in the first case,

/ —
|f(x) — F(x)] = 0.00...0b; 1, =0.00...01,
kn kn

and in the second case,

/!
|f(x)— f(x)]=0.00...011...1—=0.00...00b¢,45>...,
kn kn

and these are both greater than or equal to 2% ~!. Since k, > n, we have 0 < x — x’ <
37+ and
pa A WA A IR
> =—(|z)] >=-(=] .
37kl 6\ 2 T 6\2

fx) = f(x)

x—x'

f(x) = f(x)

x—x'

Letting n — oo, we obtain

/

x" — x, while — 0

This proves that f does not have a derivative on the left at x. The argument that f does
not have a derivative on the right at x is similar and is left to the reader.

Remark. S.Banach has shown that in some sense, there are far more continuous functions
that are not differentiable at any point than continuous functions that are differentiable at
least at some point.

394. We apply the intermediate value property to the function g : [a, b] — la,b],
gx) = f(x) — x. Because f(a) > a and f(b) < b, it follows that g(a) < 0 and
g(b) = 0. Hence there is ¢ € [a, b] such that g(c¢) = 0. This c is a fixed point of f.
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395. Let L be the length of the trail and T the total duration of the climb, which is the
same as the total duration of the descent. Counting the time from the beginning of the
voyage, denote by f(#) and g(¢) the distances from the monk to the temple at time ¢ on
the first and second day, respectively. The functions f and g are continuous; hence so is
¢:[0,T] > R,¢(t) = f(¢)—g(t). Itfollows that ¢ has the intermediate value property.
Because ¢ (0) = f(0)—g(0)=L—-0=L >0and¢(T) = f(T)—g(T)=0—-L <0,
there is a time #y with ¢ (f9) = 0. Att = 1y the monk reached the same spot on both days.

396. The fact that f is decreasing implies immediately that
lim (f(x) —x)=o0 and lim (f(x) —x) = —o0.
X——00 X—00

By the intermediate value property, there is x( such that f(xg) —xo = 0, thatis, f(xo) =
Xo. The function cannot have another fixed point because if x and y are fixed points, with
x < y,thenx = f(x) > f(y) = y, impossible.

The triple (xq, X9, Xo) is a solution to the system. And if (x, y, z) is a solution then
f(f(f(x))) = x. The function f o f o f is also continuous and decreasing, so it has
a unique fixed point. 