

Math Competition Preparation Seminar

Sequences and Series

December 1, 2025

1 Theory/Background

1.1 Arithmetic mean - Geometric mean Inequality

Let $n \in \mathbb{N}^*$ and $a_1, a_2, \dots, a_n \in \mathbb{R}^+$. Then

$$\frac{1}{n} \sum_{k=1}^n a_k \geq \sqrt[n]{\prod_{k=1}^n a_k}$$

Equality holds if and only if $a_1 = a_2 = \dots = a_n$.

1.2 Bernoulli's Inequality

- i) $(1+x)^r \geq 1 + rx, \forall r \geq 1, x \geq -1$.
- ii) $(1+x)^r \leq 1 + rx, \forall r \in [0, 1], x \geq -1$.

1.3 Bolzano-Weierstrass Theorem

Let $\{a_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ such that $\exists M > 0 : |a_n| \leq M, \forall n \in \mathbb{N}$. Then $\exists \{n_k\}_{k \in \mathbb{N}} \subset \mathbb{N}$ such that a_{n_k} converges.

1.4 Cesáro-Stolz Lemma

Let $\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$.

- If $a_n \rightarrow 0, b_n \rightarrow 0$, as $n \rightarrow \infty$ and $\exists n_0 \in \mathbb{N}$ such that b_n is decreasing $\forall n > n_0$, or
- If $a_n \rightarrow \infty, b_n \rightarrow \infty$, as $n \rightarrow \infty$ and $\exists n_0 \in \mathbb{N}$ such that b_n is increasing $\forall n > n_0$,

and $\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = l \in [-\infty, \infty]$, then $\lim_{n \rightarrow \infty} \frac{a_n}{b_n}$ exists and $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = l$.

2 Problems

Problem 1 Let $\{a_n\}_{n \in \mathbb{N}^*} \subset \mathbb{R}^+$ such that $a_{n+1} < a_n + \frac{1}{(n+1)^2}, \forall n \in \mathbb{N}^*$. Prove that a_n converges.

Problem 2 Consider $\{a_n\}_{n \in \mathbb{N}} : a_n \in \mathbb{R}^+$, such that $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} a_n^{\frac{n}{n+1}}$ also converges.

Problem 3 Prove the following limit for $p \geq 0$.

$$\lim_{n \rightarrow \infty} \frac{(1^{1^p} \cdot 2^{2^p} \cdots n^{n^p})^{1/n^{p+1}}}{n^{\frac{1}{p+1}}} = e^{-(p+1)^2}$$

Problem 4 Calculate the following limit for $p \geq 0$.

$$\lim_{n \rightarrow \infty} [(1^{1^p} \cdot 2^{2^p} \cdots (n+1)^{(n+1)^p})^{1/(n+1)^{p+1}} - (1^{1^p} \cdot 2^{2^p} \cdots n^{n^p})^{1/n^{p+1}}]$$

Problem 5 Let a_n denote the number of '0's in the ternary representation of $n \in \mathbb{N}^*$. Find all $x > 0$ such that the following series converges

$$\sum_{n=1}^{\infty} \frac{x^{a_n}}{n^3}$$

Problem 6 Define for $n \in \mathbb{N}$

$$x_n = \min\{|a - b\sqrt{3}| : a, b \in \mathbb{N}, a + b = n\}.$$

Find the smallest $p > 0$ such that $x_n \leq p, \forall n \in \mathbb{N}^*$.

Problem 7 Can $\sqrt{3}$ be written as a limit of a sequence of the form $\sqrt[3]{n} - \sqrt[3]{m}$, where $n, m \in \mathbb{N}^*$?

Problem 8 Determine the values of $d > 0$ for which the following series $\sum_{n=1}^{\infty} \sin(\log n)/n^d$ converges.

Problem 9 Prove that for a finite sequence $\{a_k\}_{k=1}^n, \exists m \in \{0, 1, \dots, n\}$ such that

$$\left| \sum_{k \leq m} a_k - \sum_{m \leq k} a_k \right| \leq \max_{k \in \{1, 2, \dots, n\}} |a_k|$$

Problem 10 Prove that for a finite sequence $\{a_k\}_{k=1}^n$, with $a_k > -1, \forall k \in \{1, 2, \dots, n\}$

- i) If $S = a_1 + \cdots + a_n \geq 0$, then

$$\prod_{k=1}^n (1 + a_k) \leq \sum_{k=0}^n \frac{S^k}{k!}$$

- ii) If

$$\sigma = \frac{a_1}{a_1 + 1} + \cdots + \frac{a_n}{a_n + 1} \geq 0,$$

then

$$\prod_{k=1}^n (1 + a_k) \geq \sum_{k=0}^n \frac{\sigma^k}{k!}$$

When does equality hold in i), ii)?