

Problem 1

Monday, May 19, 2025 7:20 PM

Let q be a polynomial, then $q(x) = \sum_{n=0}^N \alpha_n x^n$

Then $\int_0^1 f(x) q(x) dx = \sum_{n=0}^N \alpha_n \int_0^1 x^n f(x) dx = 0$

Hence $\int_0^1 f(x) q(x) dx = 0$ for all polynomials $q(x)$

Also, f is continuous on $[0, 1] \Rightarrow \exists M > 0: |f(x)| \leq M \quad \forall x \in [0, 1]$

Take $\varepsilon > 0$, by the Weierstrass approximation Theorem:

$\exists P$: polynomial such that $|f(x) - P(x)| < \frac{\varepsilon}{M} \quad \forall x \in [0, 1]$

Therefore $|\int_0^1 f(x) (f(x) - P(x)) dx| \leq \int_0^1 |f(x)| |f(x) - P(x)| dx \leq \int_0^1 M \frac{\varepsilon}{M} dx = \varepsilon$

but $\int_0^1 f(x) (f(x) - P(x)) dx = \int_0^1 f^2(x) dx - \int_0^1 f(x) P(x) dx = \int_0^1 f^2(x) dx$

hence $\int_0^1 f^2(x) dx < \varepsilon \quad \forall \varepsilon > 0 \Rightarrow \int_0^1 f^2(x) dx = 0$

since f is continuous $f \equiv 0$

In the case when $\int_0^1 x^n f(x) dx = 0$ only holds for all even integers n , we see that $\int_0^1 f(x) q(x) dx = 0$ whenever q is a polynomial consisting of even powers of x ($x^{2k}, k \in \mathbb{N}$)

We notice that $f: [0, 1] \rightarrow \mathbb{R}$ is well defined, since $[0, 1] \xrightarrow{f} [0, 1] \rightarrow \mathbb{R}$ and is in fact continuous as the composition of continuous functions.

By the Weierstrass approximation Theorem:

$\forall \varepsilon > 0 \quad \exists P$: polynomial such that $|f(x) - P(x)| < \frac{\varepsilon}{M} \quad \forall x \in [0, 1]$

Now choose $y \in [0, 1]$, then $y \in [0, 1]$, $|f(y) - P(y)| < \frac{\varepsilon}{M}$

hence $|f(y) - P(y)| < \frac{\varepsilon}{M} \quad \forall y \in [0, 1]$

As in the previous proof

$\int_0^1 f^2(y) dy = \left| \int_0^1 f(y) (f(y) - P(y)) dy \right| < \varepsilon \quad \forall \varepsilon > 0 \Rightarrow f \equiv 0$

Problem 3

Tuesday, May 20, 2025 1:46 PM

Since the integrals $\int_0^1 f(x) dx$, $\int_0^1 xf(x) dx$ are known and we are looking for a lower bound of $\int_0^1 f^2(x) dx$ we will try the following:

$$\int_0^1 (f(x) - \alpha x - \beta)^2 dx \geq 0 \Rightarrow \int_0^1 f^2(x) dx - 2 \int_0^1 (\alpha x f(x) + \beta f(x)) dx + \int_0^1 (\alpha x + \beta)^2 dx \geq 0 \Rightarrow$$

$$\int_0^1 f^2(x) dx \geq 2\alpha + 2\beta - \frac{(\alpha + \beta)^2 - \beta^2}{3\alpha} = -\frac{\alpha^2}{3} - \alpha\beta - \beta^2 + 2\alpha + 2\beta$$

We will now maximize the right hand side with respect to α, β

$$\begin{cases} \frac{\partial}{\partial \alpha} \left(-\frac{\alpha^2}{3} - \alpha\beta - \beta^2 + 2\alpha + 2\beta \right) = 0 \\ \frac{\partial}{\partial \beta} \left(-\frac{\alpha^2}{3} - \alpha\beta - \beta^2 + 2\alpha + 2\beta \right) = 0 \end{cases} \Rightarrow \begin{cases} -\frac{2\alpha}{3} - \beta + 2 = 0 \\ -\alpha - 2\beta + 2 = 0 \end{cases} \Rightarrow \begin{bmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\frac{2}{3} \cdot 2 - 1 \cdot 1} \begin{bmatrix} 2 & -1 \\ \frac{2}{3} & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \frac{1}{\frac{1}{3}} \begin{bmatrix} 2 & -1 \\ \frac{2}{3} & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

plugging in these values

$$\int_0^1 f^2(x) dx \geq -\frac{\beta^2}{3} - 6 \cdot (-2) - (-2)^2 + 2 \cdot 6 + 2(-2) = 4$$

Problem 4

Tuesday, May 20, 2025 4:33 PM

Apply Cauchy-Schwarz twice

$$\int_0^4 (\int_0^x f^2(x) dx)^2 dx \cdot \int_0^4 1^2 dx \geq \left(\int_0^4 f^2(x) dx \right)^2 \Rightarrow \int_0^4 f^4(x) dx \cdot 4 \geq \left(\int_0^4 f^2(x) dx \right)^2$$

$$\int_0^4 f^2(x) dx \cdot \int_0^4 1^2 dx \geq (\int_0^4 f(x) dx)^2 \Rightarrow \int_0^4 f^2(x) dx \cdot 4 \geq (\int_0^4 f(x) dx)^2$$

hence $\frac{(\int_0^4 f(x) dx)^4}{\int_0^4 f^4(x) dx} \leq \frac{(4 \int_0^4 f^2(x) dx)^2}{\int_0^4 f^4(x) dx} \leq 4^2 \frac{4 \int_0^4 f^4(x) dx}{\int_0^4 f^4(x) dx} = 64$

We could instead apply Hölder's inequality:

$$(\int_0^4 |f(x)|^4 dx)^{\frac{1}{4}} (\int_0^4 1^4 dx)^{\frac{1}{4}} \geq \int_0^4 |f(x)| \cdot 1 dx \Rightarrow$$

$$(\int_0^4 f^4(x) dx)^{\frac{1}{4}} \cdot 4^{\frac{1}{4}} \geq \int_0^4 |f(x)| dx \geq |\int_0^4 f(x) dx| \Rightarrow$$

$$\frac{(\int_0^4 f(x) dx)^4}{\int_0^4 f^4(x) dx} \leq 4^{\frac{4}{9}}, \quad \frac{1}{4} + \frac{1}{9} = 1 \Rightarrow q = \frac{4}{3}$$

So far $\frac{(\int_0^4 f(x) dx)^4}{\int_0^4 f^4(x) dx} \leq 64$, 64 is an upper bound

This is in fact the maximum value, since equality in C-S, Hölder inequality holds when $f(x) = c \cdot 1 = c$ and by substituting $f(x) = c$ the expression attains the value 64.

Comment: Notice that applying Hölder's inequality solves the problem for any exponent (not only 4), whereas repeated applications of the C-S inequality works out only when the exponent is a power of 2.

Problem 5

Tuesday, May 20, 2025 6:13 PM

First think of the graph of f .

$f(x)=y \Leftrightarrow f'(y)=x$ which means that by exchanging the x,y axis we get the graph of f'

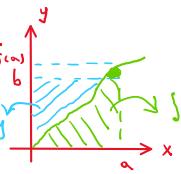
The figure on the right shows that the sum of the two integrals is larger

than the area of a rectangle with sides a, b .

This is exactly what we want to prove, let's make our idea precise:

$$\int_0^a f(x) dx + \int_0^b f'(y) dy \stackrel{y=f(x)}{=} \int_0^a f(x) dx + \int_{f'(a)}^{f'(b)} x f'(x) dx =$$

$$\int_0^a f(x) dx + \int_0^{f'(b)} x f'(x) dx = \int_0^{f'(b)} f(x) dx + \int_{f'(b)}^a f(x) dx + \int_0^{f'(b)} x f'(x) dx =$$



$$\int_0^{f'(b)} (f(x) + x f'(x)) dx + \int_{f'(b)}^a f(x) dx \stackrel{f' \geq 0}{\geq} \int_0^a x f(x) dx =$$

$f'(b) < x < a$
 $b < f(x) < f(a)$

$$x f(x) \Big|_0^{f'(b)} + b \times \Big|_{f'(b)}^a = b f'(b) + ab - b f'(b) = ab$$

If f is merely strictly increasing (monotonicity implies integrability), according to Lebesgue's theorem, f is differentiable on $(0, a)$ except for a set of measure 0. Hence our proof still works out by excluding this set when integrating.

Problem 6

Friday, May 23, 2025 12:22 PM

First we find a closed form for Dirichlet's kernel

$$D_N(\theta) = \sum_{n=-N}^N e^{in\theta} = e^{-iN\theta} \sum_{n=-N}^N e^{i(n+N)\theta} = e^{-iN\theta} \sum_{n=0}^{2N} e^{in\theta} = e^{-iN\theta} \frac{1 - e^{i(2N+1)\theta}}{1 - e^{i\theta}} =$$

$$\frac{e^{-i(N+\frac{1}{2})\theta}}{e^{-i\frac{\theta}{2}}} \frac{1 - e^{i(2N+1)\theta}}{1 - e^{i\theta}} = \frac{e^{-i(N+\frac{1}{2})\theta} - e^{i(N+\frac{1}{2})\theta}}{\sin \frac{\theta}{2}} \quad \forall N \in \mathbb{N}$$

We now need to find an upper and a lower bound for its norm

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin(N+\frac{1}{2})\theta}{\sin \frac{\theta}{2}} \right| d\theta = \frac{1}{\pi} \sum_{k=0}^{N-1} \int_{\frac{k\pi}{N}}^{\frac{(k+1)\pi}{N}} \left| \frac{\sin(N+\frac{1}{2})\theta}{\sin \frac{\theta}{2}} \right| d\theta \quad \theta = \frac{k}{N}\varphi$$

$$\frac{1}{\pi} \sum_{k=0}^{N-1} \int_0^{\frac{\pi}{N}} \left| \frac{\sin(N+\frac{1}{2})(\varphi + \frac{k}{N}\pi)}{\sin(\varphi + \frac{k}{N}\pi)} \right| d\varphi = \frac{1}{\pi} \sum_{k=0}^{N-1} \int_0^{\frac{\pi}{N}} \left| \frac{\sin(N+\frac{1}{2})(\varphi + \frac{k}{N}\pi)}{\sin(\varphi + \frac{k}{N}\pi)} \right| d\varphi \geq$$

$$\frac{1}{\pi} \sum_{k=0}^{N-1} \int_0^{\frac{\pi}{N}} \left| \frac{\sin(N+\frac{1}{2})(\varphi + \frac{k}{N}\pi)}{\frac{4+k}{N}\pi} \right| d\varphi \geq \frac{1}{\pi} \sum_{k=0}^{N-1} \frac{2}{\frac{k+1}{N}\pi} \int_0^{\frac{\pi}{N}} \left| \sin(N+\frac{1}{2})(\varphi + \frac{k}{N}\pi) \right| d\varphi =$$

$$\frac{2N}{\pi^2} \sum_{k=0}^{N-1} \frac{1}{k+1} \int_0^{\frac{\pi}{N}} \left| \sin(N+\frac{1}{2})(\varphi + \frac{k}{2N}\pi) \right| d\varphi =$$

$$\text{since } (N+\frac{1}{2})\varphi + \frac{k}{2N}\pi \leq n \Leftrightarrow \varphi \leq \frac{2N-k}{(N+\frac{1}{2})2N} \pi = \Phi_k < \frac{\pi}{N+2} < \frac{\pi}{N}$$

$$\frac{2N}{\pi^2} \sum_{k=0}^{N-1} \frac{1}{k+1} \left(\int_0^{\Phi_k} \sin(N+\frac{1}{2})(\varphi + \frac{k}{2N}\pi) d\varphi - \int_{\Phi_k}^{\frac{\pi}{N}} \sin(N+\frac{1}{2})(\varphi + \frac{k}{2N}\pi) d\varphi \right) =$$

$$\frac{2N}{\pi^2} \sum_{k=0}^{N-1} \left(\frac{1}{k+1} \left[-\frac{1}{N+\frac{1}{2}} \cos((N+\frac{1}{2})\varphi + \frac{k}{2N}\pi) \right]_0^{\Phi_k} - \left[\frac{1}{N+\frac{1}{2}} \cos((N+\frac{1}{2})\varphi + \frac{k}{2N}\pi) \right]_{\Phi_k}^{\frac{\pi}{N}} \right) =$$

$$\frac{2N}{\pi^2(N+\frac{1}{2})} \sum_{k=0}^{N-1} \frac{1}{k+1} \left(\cos \frac{kn}{2N} - \cos n - \cos n + \cos((N+\frac{1}{2})\frac{\pi}{N} + \frac{k}{2N}\pi) \right) =$$

$$\frac{2N}{\pi^2(N+\frac{1}{2})} \sum_{k=0}^{N-1} \frac{1}{k+1} \left(2 + \cos \frac{kn}{2N} - \cos \frac{k+1}{2N}\pi \right) > \frac{4N}{\pi^2(N+\frac{1}{2})} \sum_{k=0}^{N-1} \frac{1}{k+1} = \frac{4N}{\pi^2(N+\frac{1}{2})} \log N =$$

$$\frac{4N+2-2}{\pi^2(N+\frac{1}{2})} \log N = \frac{4}{\pi^2} \log N - \frac{2}{\pi^2} \frac{\log N}{N+\frac{1}{2}} \quad \text{bounded}$$

We previously used $1 + \frac{1}{2} + \dots + \frac{1}{N} > \log N$

Now for the upper bound notice

$$\frac{\sin(N+\frac{1}{2})\theta}{\sin \theta} = \frac{\sin N\theta \cdot \cos \frac{\theta}{2} + \cos N\theta \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}} = \frac{\sin N\theta}{\tan \frac{\theta}{2}} + \cos N\theta$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin(N+\frac{1}{2})\theta}{\sin \frac{\theta}{2}} \right| d\theta \leq \frac{1}{\pi} \left(\int_0^{\pi} \left| \frac{\sin N\theta}{\tan \frac{\theta}{2}} \right| d\theta + \int_0^{\pi} |\cos N\theta| d\theta \right)$$

$$\text{here } \int_0^{\pi} |\cos N\theta| d\theta \leq \int_0^{\pi} d\theta = \pi$$

$$\text{and } \int_0^{\pi} \left| \frac{\sin N\theta}{\tan \frac{\theta}{2}} \right| d\theta \stackrel{x=\pi-\theta, x \in [0, \frac{\pi}{2}]}{\leq} \int_0^{\pi} \frac{|\sin N\theta|}{\frac{\theta}{2}} d\theta =$$

$$\sum_{k=1}^{N-1} \int_{\frac{k\pi}{N}}^{\frac{(k+1)\pi}{N}} \frac{|\sin N\theta|}{\frac{\theta}{2}} d\theta + \int_0^{\frac{\pi}{N}} \frac{|\sin N\theta|}{\frac{\theta}{2}} d\theta \quad \theta > \frac{k}{N}\pi \leq \sum_{k=1}^{N-1} \int_{\frac{k\pi}{N}}^{\frac{(k+1)\pi}{N}} \frac{|\sin N\theta|}{\frac{k}{N}\pi} d\theta + \int_0^{\frac{\pi}{N}} \frac{|\sin N\theta|}{\frac{k}{N}\pi} d\theta =$$

$$\frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \int_{\frac{k\pi}{N}}^{\frac{(k+1)\pi}{N}} |\sin N\theta| d\theta + 2\pi = \frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \int_0^{\frac{\pi}{N}} |\sin N(\varphi + \frac{k}{N}\pi)| d\varphi + 2\pi =$$

$$\frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \int_0^{\frac{\pi}{N}} |\sin(N\varphi + k\pi)| d\varphi + 2\pi = \frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \int_0^{\frac{\pi}{N}} |\sin(N\varphi)| d\varphi + 2\pi =$$

$$\frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \int_0^{\frac{\pi}{N}} \sin N\varphi d\varphi + 2\pi = \frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \left(-\frac{\cos N\varphi}{N} \right) \Big|_0^{\frac{\pi}{N}} + 2\pi = \frac{2N}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} \frac{2}{N} + 2\pi =$$

$$\frac{4}{\pi} \sum_{k=1}^{N-1} \frac{1}{k} + 2\pi < \frac{4}{\pi} \log N + 2\pi$$

Combining the above results $\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta \leq \frac{4}{\pi} \log N + 3$

Finally $\frac{4}{\pi^2} \log N - 3 \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta \leq \frac{4}{\pi} \log N + 3 \Rightarrow$

$$\int_{-\pi}^{\pi} |D_N(\theta)| d\theta = \frac{4}{\pi^2} \log N + O(1)$$

Note that we used the inequality $1 + \frac{1}{2} + \dots + \frac{1}{N-1} < \log N$

(this inequality is inverted when we also add $\frac{1}{N}$)