

Math Competition Preparation Seminar

Sequences

November 28, 2024

1 Theory/Background

1.1 Main Ideas

- Look for a pattern: When trying to find the general term of a sequence calculate the first few terms and look for a pattern. Make your guess and prove it by induction.
- Search for recursive relations, linear recursions are easy to solve.

1.2 Theorem

The general term of a sequence satisfying the linear recurrence relation:

$$x_{n+k} + a_{k-1}x_{n+k-1} + \dots + a_0x_n = 0, \forall n \in \mathbb{N}_0$$

is given by:

$$x_n = b_1z_1^n + b_2z_2^n + \dots + b_kz_k^n$$

where b_1, \dots, b_k are complex numbers to be determined by the initial conditions and z_1, \dots, z_k are the solutions of the "characteristic equation" (z_1, \dots, z_k are assumed to be distinct):

$$z^k + a_{k-1}z^{k-1} + \dots + a_0 = 0$$

1.3 Theorem(Weierstrass)

An increasing(resp. decreasing) sequence of real numbers that is bounded above(resp. bellow) converges.

2 Problems

Problem 1 Find a formula for the general term of the sequence

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, \dots$$

Problem 2 The sequence a_n of real numbers satisfies the relation

$$a_{m+n} + a_{m-n} = \frac{1}{2}(a_{2m} + a_{2n}), \forall m, n \in \mathbb{N}_0$$

If $a_1 = 1$, find a_n .

Problem 3 Find the general term y_n of the sequence of differentiable functions, with $y_0(x) = 1$, satisfying the following recurrence relation

$$y_{n+1}(x) = \frac{d}{dx}(y_n(x) \sin^2 x), \forall n \in \mathbb{N}$$

.

Problem 4 Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that

$$f(f(f(n))) + 6f(n) = 3f(f(n)) + 4n + 2001, \forall n \in \mathbb{N}$$

Problem 5 Find a closed formula for the general term of the sequence defined recursively by $x_1 = 1$, $x_n = x_{n-1} + n$ whenever n is odd, $x_n = x_{n-1} + n - 1$ whenever n is even.

Problem 6 Let A and E be opposite vertices of a regular octagon. A frog starts at vertex A . From any vertex of the octagon except E , it may jump to one of its two adjacent vertices. Once the frog reaches E , it stops jumping. Let a_n denote the number of distinct paths from A to E of n total jumps. Find the formula of a_n in terms of n .

Problem 7 Assume that $a_1 \geq a_2 \geq \dots \geq a_n \geq \dots \geq 0$ and the sequence $s_n = \sum_{k=1}^n \epsilon_k a_k$ is convergent, where $\epsilon_k = \pm 1$. Prove that

$$\lim_{n \rightarrow \infty} (\epsilon_1 + \dots + \epsilon_n) a_n = 0$$

Problem 8 Let c, x_0 be positive. Define the sequence

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right), n \in \mathbb{N}_0$$

Find the limit of the sequence if it exists.

Problem 9 Prove that the following sequence is convergent.

$$a_n = \sqrt{1 + \sqrt{2 + \sqrt{\dots + \sqrt{n}}}}$$

Problem 10 Let a_n be a sequence of real numbers defined recursively by

$$a_{n+1} = \sqrt{a_n^2 + a_n - 1}, n \in \mathbb{N}$$

Prove that $a_1 \notin (-2, 1)$.