
SEEMOUS AND IMC PREPARATION, DAY 1, 4/11/2022

ANALYSIS

1. Basic knowledge

Basic theory of real functions, limits, continuity, derivatives.

2. Exercises

Limits and functions

1. Find the limit limx→∞

(√
x+

√
x+
√
x−
√
x

)
.

2. Let a1, ..., an be positive real numbers. Find the limit

lim
x→0

(
ax1 + ...+ axn

n

)1/x

.

3. Does

lim
x→π

2

(sinx)
1

cos x

exist?

4. Let S be the set of rational numbers which are different from −1, 0, 1. Let f : S → S with
f(x) = x− 1

x . We set f (n) the composition of f with itself n times. Examine whether

∞⋂
n=1

f (n)(S) 6= ∅.

Continuity

5. Does there exist a continuous function f : [0, 1] → R that assumes every element of its range
an even (finite) number of times?

6. Let f : R → R be a continuous function. If limn→∞ f(na) = 0 for every a > 0, prove that
limx→∞ f(x) = 0.

Derivatives

7. Let f : R→ R be differentiable infinitely many times. If

f

(
1

n

)
=

n2

n2 + 1
, n = 1, 2, 3, ...

calculate f (k)(0) for every k ≥ 1.
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2 PROBLEM SOLVING SEMINAR

8. (IMC 2019, Day 2, Problem 1) Suppose f, g : R → R. Let f be continuous and g differentiable
on R. Assume

(f(0)− g′(0))(g′(1)− f(1)) > 0.

Show that there exists c ∈ (0, 1) such that f(c) = g′(c).

9. For x ≥ 2 prove that

(x+ 1) cos

(
π

x+ 1

)
− x cos

(π
x

)
> 1.

10. Let f(x) =
∑n
k=1 ak sin(kx) be a trigonometric polynomial with ai ∈ R. Prove that if f(x) ≤ | sinx|

for all x ∈ R, then ∣∣∣∣∣
n∑
k=1

kak

∣∣∣∣∣ ≤ 1.

11. (IMC 2013, Day 1, Problem 2) Let f : R→ R be a twice differentiable function such that f(0) = 0.
Prove that there exists ξ ∈

(
−π2 ,

π
2

)
such that

f ′′(ξ) = f(ξ)(1 + 2 tan2 ξ).

12. (IMC 2012, Day 1, Problem 4) Let f : R→ R be a continuously differentiable function that satisfies
f ′(t) > f(f(t)) for all t ∈ R. Prove that f(f(f(t))) ≤ 0 for all t ≥ 0.



SEEMOUS AND IMC PREPARATION, DAY 2, 02/12/2022

DISCRETE MATHEMATICS

1. Basic knowledge for Discrete mathematics

1.1. Elementary counting with bijections. In some problems (of discrete type) we want to prove
that two different (finite) sets A and B have the same cardinality (number of their elements). A very
nice way to prove that is by constructing a bijection φ : A → B, i.e. a map which is injection (one-by
one) and surjection (onto). If we have such a map, then |A| = |B|.

If we find an injection φ : A → B then we can only claim that |A| ≤ |B|. If we find a surjection
φ : A→ B then we can only claim that |A| ≤ |B|.

1.2. Additive and multiplicative principles. There are some important facts from set theory that
we need as a background.

1). If A1, ..., An are disjoint sets then ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =

n∑
i=1

|Ai|.

2. If φ : A→ B is a map of finite sets and for every y ∈ B there exists exactly m elements x ∈ A then
|A| = m|B|.

In this way we can prove that the number of permutations of a set A with n elements is n!. The
set of permutations of n elements is the group Sn, thus |Sn| = n!.

In the same way we can prove that if |A| = n then A has exactly 2n different subsets.

1.3. Inclusion-exclusion principle. Another useful tool is inclusion–exclusion principle, stating that
for any sets A1, ..., An then

|Ai ∪Aj | = |Ai|+ |Aj | − |Ai ∩Aj |,

for any two sets Ai, Aj ,

|Ai ∪Aj ∪Ak| = |Ai|+ |Aj |+ |Ak| − |Ai ∩Aj | − |Ai ∩Ak| − |Aj ∩Ak|+ |Ai ∩Aj ∩Ak|,

for any three sets Ai, Aj , Ak, and more generally∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅6=J⊂{1,...,n}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣ .
1.4. Invariants. Sometimes it’s useful to search for invariant quantities. An invariant is a quantity
that does’t change during a procedure, a game or in a dynamical enviroment. In other words, if there
is a repetition, try to search for something that does not change.

1.5. Box principle (Pigeonhole principle). If you try to put n+ 1 pigeons in n boxes, then at least
one box should contain at least 2 pigeons. And if you try to put mn + 1 numbers in n sets, then at
least one set should contain at least m+ 1 numbers.
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2 PROBLEM SOLVING SEMINAR

2. Exercises

Counting and basic principles

1. How many subsets of {1, 2, ..., 10000} contain at least one even number?

2. In a tennis tournament n players participate. Each game is a knock out: the winner continues
whereas the loser leaves the tournament. At the end of the last game of the tournament, the last
winner wins the tournament and this is the end. How many games took place in total?

3. A partition of n is an ordered sequence (λ1, ..., λk) such that
∑

i λi = n. We write p(n) for the
number of different partitions of n. For instance, p(4) = 5 and p(5) = 7. Let o(n) count the number of
partitions of n with odd parts and q(n) the number of partitions of n with not equal parts. For instance,
o(4) = 2 and q(4) = 2, whereas o(5) = 3 and q(5) = 3. Prove that for every n we have o(n) = q(n).

4. Let Bn be the number of permutations without fixed points. Then

Dn = n!

(
1− 1

1!
+

1

2!
− ...+ (−1)n

n!

)
.

Deduce that

lim
n→∞

Dn

n!
=

1

e
.

Invariants

5. Let n ≥ 1 be an odd integer and wite down all the numbers 1, 2, ..., 2n. Then pick any two numbers
a, b, erase them and write down instead |a− b|. Prove that an odd number will remain at the end.

6. A circle is divided into six sectors. Then we write the numbers 1, 0, 1, 0, 0, 0 into the sectors (di-
rected). You may increase two neighboring numbers by 1. Is it possible to equalize all numbers by a
sequence of such steps?

7. Suppose we have four integers a, b, c, d not all four equal. Starting from (a, b, c, d) in each step
we replace (a, b, c, d) by (a − b, b − c, c − d, d − a). Then at least one of the quadraple will eventually
become arbitrarily large.

8. Let d(n) be the digital sum of n ≥ 1. Solve n + d(n) + d(d(n) + d(d(d(n))) + d(d(d(d(n)))) +
d(d(d(d(d(n))))) = 29999999999999999999996.

9. Can we rearrange the integers 1, 1, 2, 2, 3, 3, ..., 1000002, 1000002 such that there are exactly n − 1
numbers between any n’s?

Pigeonhole

10. Let Sn = {1, 2, 3, ..., 2n}. If we pick n + 1 numbers from Sn, prove that one of them is divisi-
ble by another.

11. (IMC 2008, Day 2, Problem 4) Let f(x), g(x) be two nonconstant polynomials in Z[x] such that
g(x) divides f(x) in Z[x]. Prove that if f(x) − 2008 has at least 81 distinct integer roots, then the
degree of g(x) is at least 5.

12. Given n distinct real numbers a1, ..., an and M > 0, T > 1 there is an s such that M ≤ s ≤ MTn

and

|eiajs − 1| < 1

T
for all j = 1, ..., n.



SEEMOUS AND IMC PREPARATION, DAY 3, 13/1/2023

ANALYSIS

1. Basic knowledge

Basic theory of integrals (Calculus 1 and 2).

2. Exercises

Functional equations

1. Find all continuous functions f : [0, 1]→ R such that∫ 1

0

f(x)dx =
1

3
+

∫ 1

0

f(x2)2dx.

2. (IMC 2022, P1, Day 1) Let f : [0, 1]→ (0,∞) be an integrable function such that f(x)f(1− x) = 1
for all x ∈ [0, 1]. Prove that ∫ 1

0

f(x)dx ≥ 1.

3. (SEEMOUS 2013, P1) Find all continuous functions f : [1, 8]→ R such that∫ 2

1

f2(x3)dx+ 2

∫ 2

1

f(x3)dx =
2

3

∫ 8

1

f(x)dx−
∫ 2

1

(x2 − 1)2dx.

4. Let f : [0, 1]→ R be a continuous function. Prove that∫ π

0

xf(sinx)dx = π

∫ π
2

0

f(sinx)dx.

5. (SEEMOUS 2013, P3) Find the maximum value of∫ 1

0

|f ′(x)|2|f(x)| 1√
x
dx

over all continuously differentiable functions f : [0, 1]→ R with f(0) = 0 and∫ 1

0

|f ′(x)|2dx ≤ 1.

6. Let f be a continuously differentiable function f : [0, 1]→ R with f(0) = 0 and 0 < f ′(x) ≤ 1 for all
x ∈ [0, 1]. Prove that (∫ 1

0

f(x)dx

)2

≥
∫ 1

0

f(x)3dx.
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2 PROBLEM SOLVING SEMINAR

Give an example where equality holds.

7. Let f : [1,∞)→ [1,∞) be a continuous function and let c > 0 be a constant such that∫ t

1

f(x)dx ≤ ct2

for all t > 1. Prove that ∫ ∞
1

1

f(x)
dx =∞.

Computations

8. Calculate the integral ∫ π
2

0

log(sin(x))dx.

9. For every a ∈ R prove that∫ π

0

log
(
(sin a cosx)2 + (cos a sinx)2

)
dx ≤ −π log 2.

10. Compute the integral ∫ π

0

x sinx

1 + sin2 x
dx.

11. Let p(x) be a polynomial with real coefficients. Calculate the integral∫ ∞
0

e−xp(x)dx.



SEEMOUS and IMC preparation seminar, Day 4

George Soukaras

March 17, 2023

1 Theory/Background

Everything from Calculus I, Calculus II, Linear Algebra I, Linear Algebra II.

2 Problems of SEEMOUS 2023

Today we will discuss the following problems from the SEEMOUS 2023 Competition.

Problem 1 Prove that if A and B are n× n square matrices with complex entries satisfying

A = AB −BA+A2B − 2ABA+BA2 +A2BA−ABA2

then det(A) = 0.

Problem 2 For the sequence

Sn =
1√

n2 + 12
+

1√
n2 + 22

+ · · ·+ 1√
n2 + n2

find

lim
n→∞

n

(
n(ln(1 +

√
2)− Sn)−

1

2
√
2(
√
2 + 1)

)
Problem 3 Prove that if A is n × n square matrix with complex entries such that A + A∗ = A2A∗,

then A = A∗.(For any matrix M, denote by M∗ = M
t
the conjugate transpose of M .)

Problem 4 Let f : R → R be a continuous, strictly decreasing function such that f([0, 1]) ⊆ [0, 1].
(i) For all n ∈ N \ {0}, prove that there exists an ∈ (0, 1), solution of the equation

f(x) = xn

Moreover, if (an) is the sequence defined as above, prove that limn→∞ an = 1.

(ii) Suppose f has a continuous derivative, with f(1) = 0 and f ′(1) < 0. For any x ∈ R, we de-
fine

F (x) =

∫ 1

x

f(t) dt

Study the convergence of the series
∑∞

n=1 F (an)
α, with α ∈ R.

1



3 Problems from previous SEEMOUS competitions

Problem 5 (SEEMOUS 2020, P2) Let k > 1 be a real number. Calculate:

(a)L = lim
n→∞

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx

(b) lim
n→∞

n

[
L−

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx

]

Problem 6 (SEEMOUS 2020, P4) Consider 0 < α < T,D = R \ {kT + α|k ∈ Z}, and let
f : D → R a T-periodic and differentiable function which satisfies f ′ > 1 on (0, α) and

f(0) = 0, lim
x→α−

f(x) = +∞, lim
x→α−

f ′(x)

f2(x)
= 1

(i) Prove that for every n ∈ N \ 0, the equation f(x) = x has a unique solution in the interval
(nT, nT + α), denoted xn.

(ii) let yn = nT + a − xn and zn =
∫ yn

0
f(x) dx. Prove that limn→∞ yn = 0 and study the con-

vergence of the series
∑∞

n=1 yn and
∑∞

n=1 zn.
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IMC preparation seminar, Day 5

April 6, 2023

1 Theory/Background

Divisibility, prime numbers, congruences and Euler’s theorem, Wilson’s theorem, Struc-
ture of Zn, sequences, multiplicative functions.

2 Problems

Problem 1 Let k be an even number. Is it possible to write 1 as the sum of the
reciprocals of k odd integers?

Problem 2 Player A has chosen five numbers from the set {1, 2, 3, 4, 5, 6, 7}. If he
told Claudia what the product of the chosen numbers was, that would not be enough
information for Player B to figure out whether the sum of the chosen numbers was even
or odd. What is the product of the chosen numbers?

Problem 3 Let a and b be distinct positive integers such that ab(a + b) is divisi-

ble by a2 + ab+ b2. Prove that |a− b| > 3
√
ab.

Problem 4 Find all primes p and q such that p+ q = (p− q)3.

Problem 5 Find all n ≥ 1 such that

n! |
∏

p<q≤n

(p+ q).

Problem 6 When 44444444 is written in decimal notation, the sum of its digits is A.
Let B be the sum of the digits of A. Find the sum of the digits of B.

Problem 7 Suppose that x is a real number for which⌊
x+

19

100

⌋
+

⌊
x+

20

100

⌋
...+

⌊
x+

91

100

⌋
= 546.

Find ⌊100x⌋.

Problem 8 Find all positive integers n for which n! + 5 is a perfect cube.

Problem 9 (IMC 2020, P6) Find all prime numbers p for which there exists a
unique a ∈ {1, 2, ..., p} such that a3 − 3a+ 1 is divisible by p.

1



Problem 10 (IMC 2013, P5) Does there exist a sequence (an) of complex num-
bers such that for every positive integer p we have that

∞∑
n=1

apn

converges if and only if p is not a prime?

Problem 11 Find divisibility rules for 7 and for 17.

Problem 12 (IMC 2022, P6) Let p > 2 be a prime number. Prove that there
is a permutation (x1, x2, ..., xp−1) of the numbers (1, 2, ..., p− 1) such that

x1x2 + x2x3 + ...+ xp−2xp−1 ≡ 2 mod p.

Problem 13 Find all non-negative integers x, y, z satisfying 2x + 3y = z2.

Problem 14 Find all non-negative integers x, y satisfying x2 + 17y2 = 3.

Problem 15 Find all primes p and positive integers x, y satisfying

xy3

x+ y
= p.

Problem 16 (IMO shortlist 1986) The set S = {2, 5, 13} has the property that
for all distinct x, y ∈ S

xy − 1 = □.

Show that for all n /∈ S the set S ∪ {n} does not have this property.
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IMC PREPARATION-LINEAR ALGEBRA

5th of May 2023

Basic theory

• A matrix A is called square if its dimension is n x n for n ∈ N. The set of all m x n with elements
in a ring R will be denoted by Mm,n(R) (for us R = Z or Q or R or C). The element of A that is
in the i-th row and j-th column will be denoted by aij and we write A = (aij). A

t is the transpose
matrix of A i.e. At = (aji). A

∗ is the conjugate transpose of A i.e. A∗ = (aji). The identity matrix
(of any size) will be denoted by I. A matrix A ∈ Mn,n(R), is invertible if there exists a matrix
B ∈ Mn,n(R) such that AB = BA = I. B is unique, called the inverse matrix of A and denoted by
A−1. If all elements above the main diagonal or below the main diagonal of a matrix A are zero, we
call A lower and upper triangular respectively. A matrix that is both upper and lower triangular is
called diagonal.

• Given a square matrix A, an eigenvector v ∈ Mn,1(F) and its corresponding eigenvalue λ ∈ F \ {0}
satisfy the equation Av = λv.

• The trace of a square matrix A is the sum of its diagonal entries, i.e., tr(A) =
∑

i aii. The determinant
of a square matrix A will be denoted by det(A).

• A square matrix A is called idempotent if A2 = A. It is called nilpotent if there exists an integer m
such that Am = 0.

• The rank of a matrix A is the dimension of the vector space spanned by its columns (or equivalently,
its rows) and will be denoted by rank(A)

Theorem (Sylvester rank inequality). For matrices A,B where A has n columns and B has n rows:

rank(AB) ≥ rank(A) + rank(B)− n

Theorem (Frobenius inequality). For matrices of appropriate size:

rank(ABC) ≥ rank(AB) + rank(BC)− rank(B)

• The characteristic polynomial of a matrix A is the polynomial χA(x) = det(xI − A), where I is
the identity matrix. Its roots are the eigenvalues of A. The minimal polynomial of A is the monic
polynomial of lowest degree that annihilates A and will be denoted by mA(x).

Theorem (Cayley-Hamilton).
χA(A) = 0

• A square matrix A is symmetric if A = At, Hermitian if A = A∗, orthogonal if AtA = AAt = I,
unitary if A∗A = AA∗ = I, and normal if AA∗ = A∗A. If there exists an invertible P and diagonal D
such that A = PDP−1, we call A diagonalizable. A is diagonalizable ⇐⇒ its minimal polynomial
is a product of linear factors. A matrix A is normal ⇐⇒ it is unitarily diagonalizable.

Problems

1. For any integer n ≥ 2 and A,B ∈ Mn,n(R) that satisfy the equation (A+B)−1 = A−1 +B−1, show
that det(A) = det(B). Does the same conclusion follow for matrices with complex entries?

2. Let n be a fixed positive integer. Determine the smallest possible rank of an n × n matrix that has
zeros along the main diagonal and strictly positive real numbers off the main diagonal.

1



3. Determine all pairs (a, b) of real numbers for which there exists a unique symmetric M ∈ M2,2(R)
satisfying tr(M) = a and det(M) = b.

4. For an idempotent matrix A, show that rank(A) = tr(A).

5. For A ∈ M2,2(Z) that satisfies
det(A3 +A2 +A+ I) = 1

show that det(A+ I) = det(A2 + I) = 1. What are the possible values of det(A) and tr(A)?

6. Find all A ∈ Mn,n(C) such that A2023 = A∗A−AA∗.

7. Let A,B ∈ Mn,n(C) such that A∗B = O. Show that rank(A∗A+B∗B) ≤ rank(AA∗ +BB∗).

8. Let A,B ∈ Mn,n(R) such that A ̸= B, A3 = B3 and A2B = B2A. Can A2 +B2 be invertible?

9. Calculate the determinant of the n x n matrix

A =



3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+ 1


10. Let A,B ∈ M2,2(Z) such that A,A + B,A + 2B,A + 3B,A + 4B are invertible matrices such that

their inverses also have integer entries. Show that A+5B is also invertible and its inverse has integer
entries.

11. For n ∈ N, let dn be the greatest common divisor of the elements of the matrix An − I, where

A =

[
3 2
4 3

]
Show that limn→+∞ dn = +∞.

12. Find all matrices A ∈ Mn,n(R) whose eigenvalues are all real and which satisfy the relation A+Ak =
At for some k ≥ n.

13. Let A1, A2, ..., Ak ∈ Mn,n(C) be idempotent matrices such that AiAj = −AjAi for all i ̸= j. Show
that at least one of the given matrices has rank ≤ n

k .

14. Determine whether there exists an odd positive integer n, matrices A,B ∈ Mn,n(Z) such that:

(a) det(B) = 1

(b) AB = BA

(c) A4 + 4A2B2 + 16B4 = 2019I
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