Titu Andreescu

Essential Linear
Algebra with
Applications

A Problem-Solving Approach

X Birkhiuser



X Birkhduser






Titu Andreescu

Essential Linear Algebra
with Applications

A Problem-Solving Approach

Birkhauser



Titu Andreescu

Natural Sciences and Mathematics
University of Texas at Dallas
Richardson, TX, USA

ISBN 978-0-8176-4360-7 ISBN 978-0-8176-4636-3 (eBook)
DOI 10.1007/978-0-8176-4636-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014948201
Mathematics Subject Classification (2010): 15, 12, 08

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.birkhauser-science.com)


http://www.birkhauser-science.com

Preface

This textbook is intended for an introductory followed by an advanced course in
linear algebra, with emphasis on its interactions with other topics in mathematics,
such as calculus, geometry, and combinatorics. We took a straightforward path to
the most important topic, linear maps between vector spaces, most of the time finite
dimensional. However, since these concepts are fairly abstract and not necessarily
natural at first sight, we included a few chapters with explicit examples of vector
spaces such as the standard n-dimensional vector space over a field and spaces of
matrices. We believe that it is fundamental for the student to be very familiar with
these spaces before dealing with more abstract theory. In order to maximize the
clarity of the concepts discussed, we included a rather lengthy chapter on 2 x 2
matrices and their applications, including the theory of Pell’s equations. This will
help the student manipulate matrices and vectors in a concrete way before delving
into the abstract and very powerful approach to linear algebra through the study of
vector spaces and linear maps.

The first few chapters deal with elementary properties of vectors and matrices
and the basic operations that one can perform on them. A special emphasis is
placed on the Gaussian Reduction algorithm and its applications. This algorithm
provides efficient ways of computing some of the objects that appear naturally in
abstract linear algebra such as kernels and images of linear maps, dimensions of
vector spaces, and solutions to linear systems of equation. A student mastering
this algorithm and its applications will therefore have a much better chance of
understanding many of the key notions and results introduced in subsequent
chapters.

The bulk of the book contains a comprehensive study of vector spaces and linear
maps between them. We introduce and develop the necessary tools along the way,
by discussing the many examples and problems proposed to the student. We offer a
thorough exposition of central concepts in linear algebra through a problem-based
approach. This is more challenging for the students, since they have to spend time
trying to solve the proposed problems after reading and digesting the theoretical
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material. In order to assist with the comprehension of the material, we provided
solutions to all problems posed in the theoretical part. On the other hand, at the
end of each chapter, the student will find a rather long list of proposed problems,
for which no solution is offered. This is because they are similar to the problems
discussed in the theoretical part and thus should not cause difficulties to a reader
who understood the theory.

We truly hope that you will have a wonderful experience in your linear algebra
journey.

Richardson, TX, USA Titu Andreescu
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Chapter 1
Matrix Algebra

Abstract This chapter deals with matrices and the basic operations associated with
them in a concrete way, paving the path to a more advanced study in later chapters.
The emphasis is on special types of matrices and their stability under the described
operations.

Keywords Matrices * Operations ¢ Invertible ¢ Transpose ¢ Orthogonal
e Symmetric matrices

Before dealing with the abstract setup of vector spaces and linear maps between
them, we find it convenient to discuss some properties of matrices. Matrices are a
very handy way of describing linear phenomena while being very concrete objects.
The goal of this chapter is to define these objects as well as some basic operations
on them.

Roughly, a matrix is a collection of “numbers” displayed in some rectangular
board. We call these “numbers” the entries of the matrix. Very often, these “num-
bers” are simply rational, real, or more generally complex numbers. However, these
choices are not always adapted to our needs: in combinatorics and computer science,
one works very often with matrices whose entries are residue classes of integers
modulo prime numbers (especially modulo 2 in computer science), while other
areas of mathematics work with matrices whose entries are polynomials, rational
functions, or more generally continuous, differentiable, or integrable functions.
There are rules allowing to add and multiply matrices (if suitable conditions on the
size of the matrices are satisfied), if the set containing the entries of these matrices
is stable under these operations. Fields are algebraic structures specially designed to
have such properties (and more...), and from this point of view they are excellent
choices for the sets containing the entries of the matrices we want to study.

The theory of fields is extremely beautiful and one can write a whole series of
books on it. Even the basics can be fairly difficult to digest by a reader without some
serious abstract algebra prerequisites. However, the purpose of this introductory
book is not to deal with subtleties related to the theory of fields, so we decided
to take the following rather pragmatic approach: we will only work with a very
explicit set of fields in this book (we will say which ones in the next paragraphs), so
the reader not familiar with abstract algebra will not need to know the subtleties of

© Springer Science+Business Media New York 2014 1
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2 1 Matrix Algebra

the theory of fields in the sequel. Of course, the reader familiar with this theory will
realize that all the general results described in this book work over general fields.

In most introductory books of linear algebra, one works exclusively over the
fields R and C of real numbers and complex numbers, respectively. They are indeed
sufficient for essentially all applications of matrices to analysis and geometry, but
they are not sufficient for some interesting applications in computer science and
combinatorics. We will introduce one more field that will be used from time to time
in this book. This is the field F, with two elements O and 1. It is endowed with
addition and multiplication rules as follows:

0+0=0, 0+1=14+0=1, 14+1=0
and
0:0=0-1=1-0=0, 1-1=1.

We do not limit ourselves exclusively to R and C since a certain number of issues
arise from time to time when working with general fields, and this field F, allows
us to make a series of remarks about this issues. From this point of view, one can
see F, as a test object for some subtle issues arising in linear algebra over general
fields.

Important convention: in the remainder of this book, we will work exclu-
sively with one of the following fields:

¢ the field Q of rational numbers

¢ the field R of real numbers.

¢ the field C of complex numbers.

¢ The field with two elements F, with addition and multiplication rules
described as above.

We will assume familiarity with each of the sets Q, R and C as well as the
basic operations that can be done with rational, real, or complex numbers (such as
addition, multiplication, or division by nonzero numbers).

We will reserve the letter I for one of these fields (if we do not want to
specify which one of the previous fields we are working with, we will simply say
“Let F be a field).

The even more pragmatic reader can take an even more practical approach and
simply assume that F' will stand for R or C in the sequel.
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1.1 Vectors, Matrices, and Basic Operations on Them

Consider a field F. Its elements will be called scalars.

Definition 1.1. Let n be a positive integer. We denote by F” the set of n-tuples
of elements of F'. The elements of F" are called vectors and are denoted either in

row-form X = (xy, ..., x,) or in column-form
X1
X2
X =
Xn

The scalar x; is called the i th coordinate of X (be it written in row or column form).

The previous definition requires quite a few clarifications. First of all, note that
if we want to be completely precise we should call an element of F” an n-vector
or n-dimensional vector, to make it apparent that it lives in a set which depends
on n. This would make a lot of statements fairly cumbersome, so we simply call the
elements of F”" vectors, without any reference to n. So (1) is a vector in F!, while
(1,2) is a vector in F2. There is no relation whatsoever between the two exhibited
vectors, as they live in completely different sets a priori.

While the abuse of notation discussed in the previous paragraph is rather easy
to understand and accept, the convention about writing vectors either in row or in
column form seems strange at first sight. It is easily understood once we introduce
matrices and basic operations on them, as well as the link between matrices and
vectors, so we advise the reader to take it simply as a convention for now and make

Vi

L. V2 .
no distinction between the vector (v1, ..., v,) and the vector | _ |. We will see later

Vn

on that from the point of view of linear algebra the column notation is more useful.

The zero vector in F” is denoted simply 0 and it is the vector whose coordinates
are all equal to 0. Note that the notation O is again slightly abusive, since it does
not make apparent the dependency on n: the 0 vector in F? is definitely not the
same object as the zero vector in F>. However, this will (hopefully) not create any
confusion, since in the sequel the context will always make it clear which zero vector
we consider.

Definition 1.2. Let m, n be positive integers. An m x n matrix with entries in F
is a rectangular array
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aip dig ... Ay
ajy dzy ... dyy

Aml Am2 -« Amn
The scalar a;; € F is called the (i, j)-entry of A. The column-vector

Cl]j

Amj
is called the jth column of A and the row-vector
L; =[ai1,ai2,....ai]

is called the i th row of A. We denote by M,, , (F) the set of all m x n matrices with
entries in F.

Definition 1.3. A square matrix of order n with entries in F is a matrix 4 €
M, ,(F). We denote by M,,(F) the set M,, ,(F) of square matrices of order .

We can already give an explanation for our choice of denoting vectors in two
different ways: a m X n matrix can be seen as a family of vectors, namely its rows.
But it can also be seen as a family of vectors given by its columns. It is rather natural
to denote rows of 4 in row-form and columns of A in column-form. Note that a row-
vector in " can be thought of as a 1 x n matrix, while a column-vector in F”* can
be thought of as a n x 1 matrix. From now on, whenever we write a vector as a row
vector, we think of it as a matrix with one row, while when we write it in column
form, we think of it as a matrix with one column.

Remark 1.4. If F; C F are fields, then we have a natural inclusion M,, ,(F;) C
M, ,(F): any matrix with entries in F is naturally a matrix with entries in F. For
instance the inclusions Q C R C C, induce inclusions of the corresponding sets of
matrices, i.e.

MI‘V!,I‘I(Q) C Mm,n(R) C Mm,ﬂ(c)'

Whenever it is convenient, matrices in M,, ,(F) will be denoted symbolically
by capital letters A, B,C,... or by [a;;], [bij], [cij].... where a;;, bij,cij, ...
respectively, represent the entries of the matrices.

Example 1.5. a) The matrix [a;;] € M»3(Q), where a;; = i* + j is given by

A = 234 .
567
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b) The matrix

1234
2345
3456
4567

can also be written as the matrix A = [a;;] € M4(Q) witha;; =i 4+ j — 1.

Remark 1.6. Two matrices A = [a;;] and B = [b;;] are equal if and only if they
have the same size (i.e., the same number of columns and rows) and a;; = b;; for
all pairs (i, j).

A certain number of matrices will appear rather constantly throughout the book
and we would like to make a list of them. First of all, we have the zero m xn matrix,
that is the matrix all of whose entries are equal to 0. Equivalently, it is the matrix
all of whose rows are the zero vector in F", or the matrix all of whose columns are
the zero vector in . This matrix is denoted O,, , or, if the context is clear, simply
0 (in this case, the context will make it clear that O is the zero matrix and not the
element 0 € F).

Another extremely important matrix is the unit (or identity) matrix 7, <
M, (F), defined by

10...0
01...0
I, =
00...1
with entries
5. — lifi =
YUloifi #

Among the special but important classes of matrices that we will have to deal
with quite often in the sequel, we mention:

* The diagonal matrices. These are square matrices A = [a;;] such that a;; = 0
unless i = j. The typical shape of a diagonal matrix is therefore

ap 0...0
002... 0

00...a,
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* The upper-triangular matrices. These are square matrices A = [a;;] whose
entries below the main diagonal are zero, that is a;; = 0 whenever i > ;. Hence
the typical shape of an upper-triangular matrix is

appap ... d
0 azy ... dyy

A =
0 0 ...au,
Of course, one can also define lower-triangular matrices as those square matrices
whose entries above the main diagonal are zero.

We will deal now with the basic operations on matrices. Two matrices of the
same size m x n can be added together to produce another matrix of the same size.
The addition is done component-wise. The re-scaling of a matrix by a scalar is done
by multiplying each entry by that scalar. The obtained matrix has the same size as
the original one. More formally:

Definition 1.7. Let A = [a;;] and B = [b;;] be matrices in M,, ,(F) andletc € F
be a scalar.

a) The sum A 4 B of the matrices A and B is the matrix

A+ B = [a,’j + b,‘j].

In fully expanded form
ap ap aiz ... Ay byt by bz ... by,
Ay Ay a3 ... a4y byt by by3 ... by,
Aml Am2 Am3 - .. Amnp bml me bm3 e bmn

ayn+bi an+byn a+biz ... ay+ by
ari + by an+by ax+by ... axy+ by

am + bml am + bm2 ams + bmS ceeQpp T+ bmn
b) The re-scaling of A by c is the matrix
cA = [cayj].

Remark 1.8. a) We insist on the fact that it does not make sense to add two
matrices if they do not have the same size.
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b) We also write —A instead of (—1) A, thus we write A — B instead of A + (—1) B,
if A and B have the same size.

Example 1.9. We have

1100 0123 1223
0110+ |11234|=(1344
0011 2345 2356
but
1100
0110 (+1;
0011

does not make sense.
As another example, we have

1100 0111 1211
0110|+]0011]=(0121
0011 0001 0012

in M 3.4 (R)
On the other hand, we have the following equality in M3 4(F;)

1100 0111 1011
0110|+]0011|=]0101
0011 0001 00160

As we observed in the previous section, we can think of column-vectors in F” as
n x 1 matrices, thus we can define addition and re-scaling for vectors by using the
above definition for matrices. Explicitly, we have

X1 Y1 X1+
X2 Y2 X2+ 2
R e ol R .
Xn Yn Xn + Yn
and for a scalar ¢ € F
X1 CX]
X2 CX)p
C =

Xy cXxXy
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Similarly, we can define operations on row-vectors by thinking of them as matrices
with only one row.

Remark 1.10. a) Again, it makes sense to add two vectors if and only if they
have the same number of coordinates. So it is nonsense to add a vector in F?>
and a vector in F3.

b) Similarly, we let —X be the vector (—1)X and, if X,Y € F",welet X — Y =
X+ (-Y).

The following result follows from the basic properties of addition and multipli-
cation rules in a field. We leave the formal proof to the reader.

Proposition 1.11. For any matrices A, B,C € M, ,(F) and any scalars o, B € F
we have

(Al) (A4 B)+ C = A+ (B + C) (associativity of the addition);

(A2) A+ B = B + A (commutativity of the addition);

(A3) A+ Ony = Opy + A = A (neutrality of Op, ),

(A4d) A+ (—A) = (—A) + A = Oy, (cancellation with the opposite matrix).

(S1) (a+ B)A = aA + BA (distributivity of the re-scaling over scalar sums);

(S2) «a(A+ B) = aA + aB (distributivity of the re-scaling over matrix sums);
(S3) a(BA) = (aB)A (homogeneity of the scalar product);

(§S4) 1A = A (neutrality of 1).

Since vectors in F" are the same thing as n X 1 matrices (or 1 x n matrices,
according to our convention of representing vectors), the previous proposition
implies that the properties (A1)—(A4) and (S1)—(S4) are also satisfied by vectors
in F". Of course, this can also be checked directly from the definitions.

Definition 1.12. The canonical basis (or standard basis) of F" is the n-tuple of
vectors (eq, ..., e,), where

1 0 0
0 1 0
e = 0 , €)= 0 yeee, €y = 0
0 0 1

Thus e; is the vector in F" whose ith coordinate equals 1 and all other coordinates
are equal to 0.

Remark 1.13. Observe that the meaning of e; depends on the context. For example,

if we think of e; as the first standard basis vector in F? then ¢; = [éi|, but if we

1
think of it as the first standard basis vector in F3 thene; = | 0 |.Itis customary not
0
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to introduce extra notation to distinguish such situations but to rely on the context
in deciding on the meaning of e;.

The following result follows directly by unwinding definitions:

Proposition 1.14. Any vector v € F" can be uniquely written as

Vv =Xx1€1 + X202 + ...+ x,€,

for some scalars x1,...,x, € F. In fact, x1,...,x, are precisely the coordinates
of v.
Proof. If xy, ..., x, are scalars, then by definition
X1 0 0 X1
0 X7 0 X2
xiep+xer+ ... 4xe, =0 |+ 0 [ +...4]0|=]x
0 0 Xp Xp
The result follows. O

We have similar results for matrices:

Definition 1.15. Let m,n be positive integers. For | < i <mand1 < j <n
consider the matrix E;; € M, ,(F) whose (i, j)-entry equals 1 and all other entries
are 0.

The mn-tuple (Ei1,...,Eun, Exy...sEonyeo oy Ey ..., Epy) is called the
canonical basis (or standard basis) of M, ,(F).

Proposition 1.16. Any matrix A € M, ,(F) can be uniquely expressed as
m n
A=) aijkE
i=1j=1

for some scalars a;;. In fact, a;; is the (i, j)-entry of A.
Proof. As in the proof of Proposition 1.14, one checks that for any scalars x;; € F
we have

X11 X12 ... X1n

mnon X21 X22 ...
ZZXUEU = . . . .1
i=1j=1 A

Xml Xm2 «++« Xmn

which yields the desired result. O
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1100
Example 1.17. Let us express the matrix A = [ 0 1 1 0 | in terms of the canonical

0022
basis. We have

A=Ei+ En+ Exn+ Exp+2E33 4+ 2E3.

1.1.1 Problems for Practice

1. Write down explicitly the entries of the matrix A = [a;;] € M, 3(R) in each of
the following cases:

1

a) aj; = =1
b) aij =i+2j.
C) aijj =l]

2. For each of the following pairs of matrices (A4, B) explain which of the matrices
A + B and A — 2B make sense and compute these matrices whenever they do
make sense:

(1200 1111
a) A=[0130|andB=|0111
(0012 0021
b) A=[1100]and B=[110].
3 10 -210
)A=|-1-11|andB=| 4 11
[ 2 05 6 43

3. Consider the vectors

1 2
-2 2
V) = 3 s V) = —1
1 4
4 3

What are the coordinates of the vector v{ + 2v,?

3104
4. Express the matrix A = | 7—11—2 | in terms of the canonical basis of
8 9 5-3

M;4(R).

Sz 12

the matrix E11 - 3E12 + 4E23.



1.2 Matrices as Linear Maps 11

6. Let F be a field.

a) Prove thatif A, B € M,,(F) are diagonal matrices, then A + ¢B is a diagonal
matrix for any ¢ € F.

b) Prove that the same result holds if we replace diagonal with upper-triangular.

¢) Prove that any matrix A € M, (F) can be written as the sum of an upper-
triangular matrix and of a lower-triangular matrix. Is there a unique such
writing?

7. a) How many distinct matrices are there in M,, ,(F,)?
b) How many of these matrices are diagonal?
¢) How many of these matrices are upper-triangular?

1.2 Matrices as Linear Maps

In this section we will explain how to see a matrix as a map on vectors. Let F be
a field and let A € M, ,(F) be a matrix with entries a;;. To each vector X =
X1

X2
€ F" we associate a new vector AX € F™ defined by

anxy +apx; +...+am,x,

az Xy +ampxs + ...+ ayuXx,
AX =

amiX1 + AmaX2 + ...+ AmnXp

We obtain therefore a map F" — F™ which sends X to AX.

Example 1.18. The map associated with the matrix

1100
A={1110 | € Ms4R)
0011

is the map f : R* — R3 defined by

X +y
=|lx+y+z

X
A1 =4
; i

~ N =
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In terms of row-vectors we have
Sy, zt)y=x+y,x+y+z.z2+1).

Remark 1.19. Consider the canonical basis e, ..., e, of F". Then by definition for
alll <i <n

ay;
aj;
Aei = Cl = . £

Ami

X1

. X2 .
the ith column of A4. In general, if X = . € F" is any vector, then
Xn

AX = x1C1 + xCy + ... + x,C,,

as follows directly from the definition of AX.
The key properties of this correspondence are summarized in the following:

Theorem 1.20. For all matrices A, B € M, ,,(F), all vectors X,Y € F" and all
scalars a, B € F we have

a) A(aX + BY) = aAX + BAY.

b) (¢A+ BB)X = xAX + BBX.
c) IfAX = BX forall X € F", then A = B.

X1 Vi
" X2 2
Proof. Writing A = [a;;], B = [b;],and X = | _ |, Y = | |, we have
Xn Yn
ax; + By
axs + By
aA + BB = [aa;; + Bbij] and X + BY = .
ax, + Byn

a) By definition, the ith coordinate of A(aX + BY) is

D aylax; + By =a ) aijx;+BY ayy;.

j=1 j=1 j=1
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The right-hand side is the ith coordinate of «AX + BAY, giving the desired
result.
b) The argument is identical: the equality is equivalent to

Y (way + Bby)x; = oy ayx; + B Y byx;

Jj=1 Jj=1 Jj=1

which is clear.

¢) By hypothesis we have Ae; = Be;, where ey, ..., e, is the canonical basis of
F". Then Remark 1.19 shows that the ith column of A equals the i th column of
B for 1 <i < n, which is enough to conclude that A = B. ad

We obtain therefore an injective map A — (X +— AX) from M,, , (F) to the set
of maps ¢ : F" — F™ which satisfy

p(aX + BY) = ap(X) + Be(Y)

forall X,Y € F"and o, € F.Suchamap ¢ : F" — F™ is called linear. Note
that a linear map necessarily satisfies ¢(0) = 0 (take « = S = 0 in the previous
relation), hence this notion is different from the convention used in some other areas
of mathematics (in linear algebra a map ¢(X) = aX + b is usually referred to as
an affine map).

The following result shows that we obtain all linear maps by the previous
procedure:

Theorem 1.21. Let ¢ : F" — F™ be a linear map. There is a unique matrix
A € My, ,(F) such that p(X) = AX forall X € F".

Proof. The uniqueness assertion is exactly part ¢) of the previous theorem, so let us

focus on the existence issue. Let ¢ : F* — F™ be alinear map and let ey, ..., e, be

the canonical basis of F”. Consider the matrix A whose ith column C; equals the

vector ¢(e;) € F™. By Remark 1.19 we have de; = C; = ¢(e;) forall 1 <i <n.
X1

X2
If X =| . | € F"is an arbitrary vector, then X = xje; + ... + x,e,, thus since

Xn
@ is linear, we have

o(X) = p(x1e; + ...+ xpen) = x10(e1) + ... + x,0(ey) =
x1Ci + ...+ x,C, = AX,

the last equality being again a consequence of Remark 1.19. Thus ¢(X) = AX for
all X € F" and the theorem is proved. O
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We obtain therefore a bijection between matrices in M,, ,(F) and linear
maps F" — F™.

Example 1.22. Let us consider the map f : R* — R? defined by
fx,y,2,t) = (x =2y +z,2x =3z +t,t — X).

What is the matrix A € M3 4(R) corresponding to this linear map? By Remark 1.19,
we must have f(e;) = C;, where ey, e;,e3, e, is the canonical basis of R* and
Ci, Cy, Cs, Cy are the successive columns of A. Thus, in order to find A, it suffices
to compute the vectors f(ey),..., f(es). We have

f(el) = f(l,0,0, 0) = (1’27_1)7 f(eZ) = f(Ov 170’ 0) = (_27()’0)7
f(€3) = f(0907 170) = (17_350)7 f(€4) = f(OvO’ Os 1) = (Os 1» 1)

Hence
1 210
A=1| 2 0 =31
-10 01
In practice, one can avoid computing f(e1), ..., f(e4) as we did before: we look

at the first coordinate of the vector f(x,y,z,t), that is x — 2y + z. We write it
asl-x+(—2)-y+1-z+ 0-¢ and this gives us the first row of A, namely
[ 1-21 0]. Next, we look at the second coordinate of f(x, y,z,t) and write it as

2:x+0-y+4(=3)-z+ 11, which gives the second row [2 0 —3 1] of A. We
proceed similarly with the last row.

1.2.1 Problems for Practice

1. Describe the linear maps associated with the matrices
;_132(1) [31] [1100]
1501 24 2-325
2. Consider the map f : R® — R* defined by

f(x,y,2)=(x—=2y+2z2,y —z+ x,Xx,2).

Prove that f is linear and describe the matrix associated with f.
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3. a) Consider the map f : R> — R? defined by

fxoy) = (2 7).
Is this map linear?

b) Answer the same question with the field R replaced with F,.
4. Consider the map f : R*? — R? defined by

fx,y)=x+2y,x+y—1).

Is the map f linear?

1 =220
5. Consider the matrix A = | 2 0 41 |.Describe the image of the vector v =
-1 101
1
; through the linear map attached to A.
2

6. Give an example of a map f : R> — R which is not linear and for which

flav) =af()

foralla € R and all v € R2.

1.3 Matrix Multiplication

Let us consider now three positive integers m,n,p and A € M,,,(F), B €
M, ,(F). We insist on the fact that the number of columns n of A equals the
number of rows n of B. We saw in the previous section that A and B define natural
maps

pa: F" > F", @p:F? —> F",

sending X € F"toAX € F"andY € F?to BY € F".
Let us consider the composite map

paopp: FP — F"  (p40¢p)(X) = pa(pp(X)).

Since ¢4 and ¢p are linear, it is not difficult to see that ¢4 o @p is also linear. Thus
by Theorem 1.21 there is a unique matrix C € M,, ,(F) such that

Pa°o¢Pp = @c-

Let us summarize this discussion in the following fundamental:
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Definition 1.23. The product of two matrices A € M,, ,(F) and B € M, ,(F)
(such that the number of columns n of A equals the number of rows n of B) is the
unique matrix AB € M,, ,(F) such that

A(BX) = (AB)X

forall X € FP.

Remark 1.24. Here is a funny thing, which shows that the theory developed so far is
coherent: consider a matrix A € M,, ,(F) and a vector X € F”, written in column-
form. As we said, we can think of X as a matrix with one column, i.e., a matrix
X e M, 1 (F). Then we can consider the product AX € M,, 1 (F). Identifying again
M, 1(F) with column-vectors of length m, i.e., with F", AX becomes identified
with AX, the image of X through the linear map canonically attached to A. In
other words, when writing AX we can either think of the image of X through the
canonical map attached to A (and we strongly encourage the reader to do so) or
as the product of the matrix A and of a matrix in M, ; (F). The result is the same,
modulo the natural identification between column-vectors and matrices with one
column.

The previous definition is a little bit abstract, so let us try to compute explicitly
the entries of AB in terms of the entries a;; of A and b;; of B. Lete,... e,
be the canonical basis of F?. Then (AB)e; is the jth column of AB by
Remark 1.19. Let Ci(A4),...,C,(A) and Ci(B),...,C,(B) be the columns of A
and B respectively. Using again Remark 1.19, we can write

A(Bej) = AC;(B) = bi;Ci(A) + by; Co(A) + ... + b,; C, (A).
Since by definition A(Be;) = (AB)e; = C;(AB), we obtain
Ci(AB) = bi;Ci(A) + by; Cr(A) + ... + b,; C,(A) (1.1)
We conclude that
(AB)ij = anbyj + ainbyj + ...+ ainbyj (1.2)

and so we have established the following

Theorem 1.25 (Product Rule). Let A = [a;;]] € M, ,(F) and B = [b;] €
M, ,(F). Then the (i, j)-entry of the matrix AB is

(AB);; = Z ajxby;.
k=1

Of course, one could also take the previous theorem as a definition of the product
of two matrices. But it is definitely not apparent why one should define the product
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in such a complicated way: for instance a very natural way of defining the product
would be component-wise (i.e., the (i, j )-entry of the product should be the product
of the (i, j)-entries in A and B), but this naive definition is not useful for the
purposes of linear algebra. The key point to be kept in mind is that for the purposes
of linear algebra (and not only), matrices should be thought of as linear maps,
and the product should correspond to the composition of linear maps.

Example 1.26. a) If A = |:a11 a121| and B = |:b” b121| are matrices in M,(F),
aj1 Ay b21 b22

then A B exists and

AB = |:6111b11 + anby anbn + alzb22i|
aribiy + axnby anbin + anbn

b) If
ap diz
b1 b1p
azy ax an [bm byy
asy asy

then the product A B is defined and it is the 3 x 2 matrix

anbi + apby anbi + anbxn
AB = | anbii + axnbsi anbir + anbyn
azby + axbyy az by + anby

The product BA is not defined since B € M, ,(F) and A € M;,(F).
c) Considering

A=|2 0 and B:[_;ﬂ
-1 3
we get
21
AB =] -24
-81

d) Take A, B € M,(C), where

10 00
A= B =
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Then, both products AB and BA are defined and we have

00 00
AB—|:00i|—02 and BA—[20i|.

This last example shows two important things:

* multiplication of matrices (even in M,(F)) is not commutative, i.e., generally
AB # BA when AB and BA both make sense (this is the case if A, B € M, (F),
for instance).

¢ There are nonzero matrices A, B whose product is O: for instance in this example
we have A # Oy, B # O,,but AB = O;.

Definition 1.27. Two matrices A, B € M, (F) commute if
AB = BA.

One has to be very careful when using algebraic operations on matrices, since
multiplication is not commutative in general. For instance, one uses quite often
identities such as

(a+b)?=a*>+2ab+ b (a+b)(a—>b)=a*>-b>

for elements of a field F. Such identities are (in general) no longer true if a, b are
matrices and they should be replaced by the following correct identities

(A+B)Y?=A*>+ AB+ BA+ B>, (A+ B)(A—B) = A>— AB + BA— B>.

We see that the previous identities (which hold for elements of a field) hold for A
and B if and only if 4 and B commute.

Matrix multiplication obeys many of the familiar arithmetical laws apart from
the commutativity property. More precisely, we have the following:

Proposition 1.28. Multiplication of matrices has the following properties

1) Associativity: we have (AB)C = A(BC) for all matrices A € M, ,(F), B €
M, ,(F),C e M, ,(F).

2) Compatibility with scalar multiplication: we have «(AB) = (¢A)B = A(aB)
ifoe F,Ae My ,(F)and B e M, ,(F)

3) Distributivity with respect to addition: we have

(A+B)C =AC+BC if A BeM,,(F) and C eM,,(F),
and

D(A+B)=DA+ DB if A BeM,,(F) and D € M,,(F).
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All these properties follow quite easily from Definition 1.23 or Theorem 1.25. Let
us prove for instance the associativity property (which would be the most painful
to check by bare hands if we took Theorem 1.25 as a definition). It suffices (by
Theorem 1.21) to check that for all X € F? we have

((AB)C)X = (A(BC))X.
But by definition of the product we have
(AB)C)X = (AB)(CX) = A(B(CX))
and
(A(BC))X = A(BC)X) = A(B(CX)),
and the result follows. One could also use Theorem 1.25 and check by a rather

painful computation that the (i, j)-entry in (AB)C equals the (i, j)-entry in
A(BC), by showing that they are both equal to

Z ajkbricy;j.
ki

All other properties of multiplication stated in the previous proposition are
proved in exactly the same way and we leave it to the reader to fill in the details.

Remark 1.29. Because of the associativity property we can simply write ABCD
instead of the cumbersome ((AB)C)D, which also equals (A(BC))D or
A(B(CD)). Similarly, we define the product of any number of matrices. When
these matrices are all equal we use the notation

A" =AXx Ax...x A,

with n factors in the right-hand side. This is the nth power of the matrix A. Note
that it only make sense to define the powers of a square matrix! By construction we
have

A=A A
We make the natural convention that A° = I, for any A € M, (F). The reader

will have no difficulty in checking that 7, is a unit for matrix multiplication, in the
sense that

A-IL,=A and I,-A=A if A€ M,,(F).
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We end this section with a long list of problems which illustrate the concepts
introduced so far.

Problem 1.30. Let A(x) € M3(R) be the matrix defined by

1 x x?

A(X)= {01 2x
00 1

Prove that A(x)A(x;) = A(x; + x3) for all x;, x, € R.
Solution. Using the product rule given by Theorem 1.25, we obtain
1 x4 xf 1 x x%

A(xl)A(Xz) = 01 2)61 01 2)62
00 1 00 1

1 X2+ Xy X3+ 2x1x2 + x7 Lxy +x; (x1 + x2)?
=10 1 2x, + 2x; =10 1 2(x1 + x2)
0 0 1 0 0 1
By definition, the last matrix is simply A(x; + x»). a

The result established in the following problem is very useful and constantly used
in practice:

Problem 1.31. a) Prove that the product of two diagonal matrices is a diagonal
matrix.

b) Prove that the product of two upper-triangular matrices is upper-triangular.

¢) Prove that in both cases the diagonal entries of the product are the product of the
corresponding diagonal entries.

Solution. a) Let A = [a;;] and B = [b;;] be two diagonal matrices in M, (F). Let
i # j €{l,...,n}. Using the product rule, we obtain

(AB);; = Zaikbkj-
k=1

We claim that a;;by; = 0 forall k € {1,2,...,n}, thus (AB);; = 0 for all
i # j and AB is diagonal. To prove the claim, note that since i # j, we have
i # korj # k. Thus either a;z = 0 (since A is diagonal) or b;; = 0 (since B
is diagonal), thus in all cases a;;by; = 0 and the claim is proved.

b) Let A = [a;;] and B = [b;;] be upper-triangular matrices in M, (F'). We want to
prove that (AB);; = O foralli > j. By the product rule,

n
(AB)ij = Z aikbkjv
k=1
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thus it suffices to prove that for all i > j and all k € {1,2,...,n} we have
ajxbr; = 0.Fixi > jand k € {1,2,...,n} and suppose that a;xby; # 0, thus
ajx # 0and by; # 0. Since A and B are upper-triangular, we deduce thati < k
and k < j,thusi < j, a contradiction.

¢) Again, using the product rule we compute

n
(AB)ii =) aikbi:.
k=1

Assume that A and B are upper-triangular (which includes the case when they
are both diagonal). If a;by; is nonzero for some k € {1,2,...,n},theni < k
and k < i, thus k = i. We conclude that

(AB);; = a;;b;;

and the result follows. a

Problem 1.32. A matrix A € M,(R) is called right stochastic if all entries are
nonnegative real numbers and the sum of the entries in each row equals 1. We
define the concept of left stochastic matrix similarly by replacing the word row
with column. Finally, a matrix is called doubly stochastic if it is simultaneously
left and right stochastic.

a) Prove that the product of two left stochastic matrices is a left stochastic matrix.

b) Prove that the product of two right stochastic matrices is a right stochastic matrix.

¢) Prove that the product of two doubly stochastic matrices is a doubly stochastic
matrix.

Solution. Note that c) is just the combination of a) and b). The argument for proving
b) is identical to the one used to prove a), thus we will only prove part a) and
leave the details for part b) to the reader. Consider thus two left stochastic matrices
A, B € M,(R),say A = [a;;] and B = [b;;]. Thus a;; > 0, b;; > 0 for all
i,j €{l,2,...,n} and moreover the sum of the entries in each column of 4 or B
is 1, which can be written as

Ya =1, Y bi=1
k=1 k=1
fori € {1,2,...,n}. Note that by the product rule
n
(AB); =Y aiby
=1

is nonnegative for all 7, j € {1,2,...,n}. Moreover, the sum of the entries of AB
in the ith column is
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Z(AB)kz = Z Zakjbji = Z (Zakjbji)
k=1 k=1 k=1

j=1 ji=1
n n n n

SHIUH )37 S SORES SR
j=1 k=1 j=l j=1

where we used once the fact that A is left stochastic (so that Y ;_, ax; = 1 for all
j) and once the fact that B is stochastic (hence Z';Zl bj; = 1for all i). The result
follows. ' O

Problem 1.33. Let (E;;)1<i j<» be the canonical basis of M, (F). Prove that if
i,j,k, 1 €{1,2,...,n},then
EijEy = 8k Ei.

where §;; equals 1 if j = k and O otherwise.

Solution. We use the product rule: let u,v € {1,2,...,n}, then

(Eij ExD)u = > _(EiJuw(Ext)n-

w=1

Now (Egp)cq is zero unless a = ¢ and b = d, and it is equal to 1 if the previous
two equalities are satisfied. Thus (E;; )uw(Eki)w is zero unless i = u, j = w and
k = w, [ = v. The last equalities can never happen if j # k, so if j # k, then
(Eij Exi)uv = O forall u,v € {1,2,...,n}. We conclude that E;; Ex; = 0 when
J#k.

Assuming now that j = k, the previous discussion yields (E;;j Ex;) = 1 if
u =i and v = [, and it equals O otherwise. In other words,

(Eij Ekl)uv = (Eil)uv

forallu,v € {1,2,...,n}. Thus E;; Ex; = E;; in this case, as desired. O

Problem 1.34. Let (Ej;)i<; <, be the canonical basis of M,(F). Let i,j €
{1,2,...,n} and consider a matrix A = [a;;] € M, (F).

a) Prove that
00...a;;0...0
00...a50...0
AE;j;=| .. . . ,
00...a,;0...0

the only possibly nonzero entries being in the jth column.
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b) Prove that

0 0 ...0
EiA = ajiajz ...dA4jp
Y 0 0...0|
| 0 0 ... 0 |

the only possibly nonzero entries being in the i th row.

Solution. a) Write

n
A= Z aklEk,l.

k=1

Using Problem 1.33, we can write

n n
AE;; =Y auEwiEij = ) aubiiEr,
ki=1 k=1

n
= ZakiEk,j =ayEj+ayk;+...+tauk,;.
k=1

Coming back to the definition of the matrices Ey;, ..., E, ;, the result follows.
b) The proof is identical and left to the reader.

a

Problem 1.35. Prove that a matrix A € M, (F) commutes with all matrices in
M, (F) if and only if A = c 1, for some scalar ¢ € F.

Solution. If A = ¢/, for some scalar ¢ € F, then AB = ¢B and BA = ¢B for all
B € M, (F), hence AB = BA for all matrices B € M, (F). Conversely, suppose
that A commutes with all matrices B € M, (F). Then A commutes with E;; for all
i,j €{l1,2,...,n}. Using Problem 1.34 we obtain the equality

00@1,00
00612,00

00...a,;0...0
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If i # j, considering the (j, j)-entry in both matrices appearing in the previous
equality yields a;; = 0, thus a;; = O fori # j and A is diagonal. Contemplating
again the previous equality yields a;; = aj; for all i, j and so all diagonal entries
of A are equal. We conclude that A = ay,[,, and the problem is solved. O

Problem 1.36. Find all matrices A € M3(C) which commute with the matrix
100

A=1020
003

Solution. Let B = [b;;] be a matrix commuting with A. Using the product rule, we
obtain

100 bi1 b1y b1z by b biz
AB = 020 . b21 b22 b23 = 2b21 2b22 2b23
and
bi1 b1z b1z 100 bi1 2b13 3by3
BA = b21 b22 b23 . 020 = b21 2b22 3b23
b3 b3y b33 003 b3y 2b3; 3b33

Comparing the equality AB = BA yields
by =b13 =by =by3y=b3; =b3 =0

and conversely if these equalities are satisfied, then AB = BA. We conclude that

by 0 0

the solutions of the problem are the matrices of the form B = | 0 by, 0 |, that
0 0 b3

is the diagonal matrices. O

Problem 1.37. A 3 x 3 matrix A € M3(R) is called circulant if there are real
numbers a, b, ¢ such that

abc
A=|cab
bca

a) Prove that the sum and product of two circulant matrices is a circulant matrix.
b) Prove that any two circulant matrices commute.
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abc xXyz
Solution. Let A= | ca b | and B = | z x y | be two circulant matrices.
bca yzZXx

a) Note that

a+xb+yc+z
A+B=|c+za+xb+y
b+yc+za+x

is a circulant matrix. Using the product rule we compute

uvw
AB=|wuv |,
VWU

where
u=ax+bz+cy, v=ay+bx+cz, w=az+by+cx.

Thus AB is also a circulant matrix.
b) Similarly, using the product rule we check that

uvw

BA=|wuv |=AB.
VWU

Problem 1.38. If A, B € M, (C) are matrices satisfying
A?> = B> = (AB)* =1,

prove that A and B commute.

Solution. Multiplying the relation ABAB = I, by A on the left and by B on the
right, we obtain

A*’BAB? = AB.

By assumption, the left-hand side equals 7, BAI, = BA, thus BA = AB. O
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1.3.1 Problems for Practice

1. Consider the matrices
4
A=[123] and B=|5
6

Which of the products AB and BA make sense? For each product which makes
sense, compute the entries of the product.
2. Consider the matrices

111 011
A=1011 and B=]110
001 001

in M3(F,). Compute AB and BA.
3. Consider the matrices

01
A=|3-10|, B=|2-1
10

Which of the products A%, AB, BA, B> makes sense? Compute all products that

make sense.
4. Let A = I3
. =111

a) Find all matrices B € M,(C) which commute with A.
b) Find all matrices B € M,(C) for which AB + BA is the zero matrix.

5. Determine all matrices A € M;(R) commuting with the matrix

i)

. 1x .
1 —
6. Let G be the set of matrices of the form T |:x ] ] with x € (—1, 1). Prove

that the product of two elements of G is an element of G.

7. (matrix representation of C) Let G be the set of matrices of the form [Z _b:|
a

witha,b € R.

a) Prove that the sum and product of two elements of G is in G.
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b) Consider the map f : G — C defined by

(D

Prove that f is a bijective map satisfying f(4 + B) = f(A) + f(B) and
f(AB) = f(A)f(B) forall A,B € G.

¢) Use this to compute the nth power of the matrix |:Z = :|
a

. For any real number x let

1—-x0 x
A(x) = 0O 1 O
x 01—x

a) Prove that for all real numbers a, b we have
A(a)A(b) = A(a + b — 2ab).

b) Given a real number x, compute A(x)".

. Compute A%°, where

100
A=1020
003

a) Give a detailed proof, by induction on k, for the binomial formula: if
A, B € M,,(F) commute then

x ()
(A+B) =) ; AF=I BJ.

Jj=0

b) Give a counterexample to the binomial formula if we drop the hypothesis
that A and B commute.
a) Let

00 1

B=(00-1
110

Prove that B3 = O;.
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b) Let a be a real number. Using part a) and the binomial formula, compute A"
where

10 a
A=1{01—a
aa 1

Let

1 01
— 1
A=1|-11;
001

a) Prove that (4 — I3) = 0;.
b) Compute A" for all positive integers n, by using part a) and the binomial
formula.

a) Prove that the matrix

110
A=|011
001

satisfies (4 — I3)? = Os.
b) Compute A" for all positive integers 7.
a) Prove that the matrix

2 34
A=1| 420
-302

satisfies (A — 213)* = O;s.
b) Compute A" for all positive integers 7.
Suppose that A € M, (C) is a diagonal matrix whose diagonal entries are
pairwise distinct. Let B € M, (C) be a matrix such that AB = BA. Prove
that B is diagonal.
A matrix A € M, (R) is called a permutation matrix if each row and column
of A has an entry equal to 1 and all other entries equal to 0. Prove that the
product of two permutation matrices is a permutation matrix.
Consider a permutation o of 1,2, ..., n, that is a bijective map

o:{1,2,....,n} - {1,2,...,n}.
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We define the associated permutation matrix P, as follows: the (i, j)-entry of
P, isequalto 1 if i = o(j) and O otherwise.

a) Prove that any permutation matrix is of the form P, for a unique permutation
o.

b) Deduce that there are n! permutation matrices.

¢) Prove that

P(TI'P02=P010(72

for all permutations oy, 05.
d) Given a matrix B € M, (F), describe the matrices P, B and BP, in terms
of B and of the permutation o.

1.4 Block Matrices

A sub-matrix of a matrix A € M,,,(F) is a matrix obtained from A by deleting
rows and/or columns of A (note that A itself is a sub-matrix of A). A matrix can be
partitioned into sub-matrices by drawing horizontal or vertical lines between some
of its rows or columns. We call such a matrix a block (or partitioned) matrix and
we call the corresponding sub-matrices blocks.

Here are a few examples of partitioned matrices:

1123 010]0
12

0121, |: i|, 1111
0]0 1 1123

We can see a partitioned matrix as a “matrix of matrices”: the typical shape of a
partitioned matrix A of size m X n is

A][ A[2 e A]k

_ Ay Ay ... Ay

Ap A . Alk
where A;; is a matrix of size m; x n; for some positive integers my, ..., m; and
ni,....npwithm; +my~+...+my=mandn; +ny+...+n, =n.Ifl =k,
we call the blocks Ay, ..., A, the diagonal blocks and we say that 4 is block

diagonal if all blocks of A but the diagonal ones are zero. Thus a block diagonal
matrix is of the form
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Ayp 0 ... 0
0 Ap ... O
A= . . . .
0 0 ...Ak

An important advantage is given by the following rules for addition and
multiplication of block matrices (which follow directly from the rules of addition
and multiplication by matrices; we warn however the reader that the proof of the
multiplication rule is quite involved from a notational point of view!):

o If
Ay A o Ak By By ... Bk
Azl A22 P A2k le BZZ PP sz
= . . . . and B=| . . |
Ajpg A . Al By By ... By

with A;; and B;; of the same size for all 7, j (so the rows and columns of B and
A are partitioned in the same way), then

Ay + By A+ B ... Ay + By
Aoy + By Ay + By ... Ay + By

A+ B = : : :
An + Bn A + By Ak + B
o If
Ay A .o Ay By By ... By,
_ Ay Ay ... A B By By ... By
A.n A'zz A.lk B.kl B;cz B.kr

are m x n, respectively n x p partitioned matrices, with A4;; of size m; x n; and
B;; of size n; x p;, then

CiiCn...Cy,
Co Cpy ... Gy,
AB=| . . . .

Ci Cp...Cp
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where

1.4.1 Problems for Practice

If A = [a;] € My, p,(F) and B € My, ,,,(F) are matrices, the Kronecker
product or tensor product of A and B is the matrix A ® B € My, mynn, (F)
defined by

a”B alzB al.nlB

ale azzB az_nlB
A® B = ,

aml.lB aml,zB e aml,n] B
1. Compute the Kronecker product of the matrices

010
A=1100 and B=|:T_11:|.
001

2. Do we alwayshave A @ B = B ® A?

. Checkthat I, ® I, = I,,,,.

4. Prove that if Ay € My, »,(F), Ay € My, ,,(F), By € My, ,(F) and B, €
M,, ,,(F), then

w

(A1 ® By) - (A2 ® By) = (A142) ® (B1B2).
5. Prove thatif A € M,,(F) and B € M, (F) then

A®B=(A®In)'(1m®3)'

1.5 Invertible Matrices

Let n be a positive integer. We say that a matrix A € M,,(F) is invertible or non-
singular if there is a matrix B € M,,(F) such that

AB = BA = 1I,.
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Such a matrix B is then necessarily unique, for if C is another matrix with the same
properties, we obtain

C =1,-C = (BA)C = B(AC) = BI, = B.

The matrix B is called the inverse of 4 and denoted A™".
Let us establish a few basic properties of invertible matrices:

Proposition 1.39. a) If ¢ is a nonzero scalar, then ¢, is invertible.
b) If A is invertible, then so is A™', and (A~")™! = A.
c) If A, B € M,,(F) are invertible, then so is AB and

(AB) ' = B4

Proof a) The matrix ¢~'1, is an inverse of the matrix c/,,.

b) Let B = A~!,then BA = AB = I,, showing that B is invertible, with inverse A.

¢) By assumption A~ and B! exist, so the matrix C = B~!'4~! makes sense. We
compute

(AB)C = ABB™'A™!' = AILA™' = 447! = I,
and similarly

C(AB) =B 'A7'AB=B"'I,B=B"'B =1,
showing that A B is invertible, with inverse C.

a

Remark 1.40. a) One should be careful when computing inverses of products of
matrices, for the formula (4B)~! = A~'B~! is not correct, unless 4 and B
commute. We will have

(ABC) ' =Cc7'B7147!

and not A"'B~'C~! in general. Thus the inverse of the product equals the
product of the inverses in the reverse order.

b) By the proposition, invertible matrices are stable under product, but they are
definitely not stable under addition: the matrices I, and —I,, are invertible, but
their sum O, is not invertible (as O, A = O, # I, for any matrix A € M,,(F)).

The set of invertible matrices plays an extremely important role in linear algebra,
so it deserves a definition and a special notation:

Definition 1.41. The set of invertible matrices A € M, (F) is called the general
linear group and denoted GL, (F).
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Unfortunately, with the tools introduced so far it is illusory to hope to understand
the fine properties of the general linear group GL, (F). Once we develop the theory
of linear algebra from the point of view of vector spaces and linear transformations,
we will have a much more powerful theory that will make it easier to understand
invertible matrices. Just to give a hint of the difficulty of the theory, try to prove by
bare hands that if A, B € M, (F) satisfy AB = I,, then A is invertible. The key
point is proving that this equality forces BA = I, but this is definitely not trivial
simply by coming back to the multiplication of matrices! In subsequent chapters we
will develop a theory of determinants which allows a much cleaner characterization
of invertible matrices. Also, in subsequent chapters we will describe an algorithm,
based on operations on the rows of a matrix, which gives an efficient way of solving
the following problem: given a square matrix A, decide whether A is invertible and
compute its inverse if A is invertible. This problem is not easy to solve with the tools
we have introduced so far.

010

Problem 1.42. Consider the matrix A = | 1 0 0 |. Is the matrix A invertible? If
001

this is case, compute A7,

Solution. Since we don’t have any strong tools at our disposal for the moment, let
abc

us use brute force and look for a matrix | x y z [ such that
uvw

010 abec
100 |-|xyz|=1I.
001 uvw

xXyz

The left-hand side equals | @ b ¢ |, so this last matrix should be equal to /5. This
uvw

gives a unique solution x = b = w = 1 and all other variables are equal to 0. We

conclude that 4 is invertible and

010
A7'=1100
001

a

It is clear that the method used to find the inverse of A in the previous problem is
not efficient and quickly becomes very painful even for 3 x 3 matrices. We will see
later on a much more powerful approach, but we would like to present yet another



34 1 Matrix Algebra

method, which can be fairly useful in some situations (especially when the matrix
has some nice symmetry properties or if it has many zeros).

Consider a matrix A € M, (F) and a vector b € F". Assume that we can always
solve the system AX = b with X € F" and that it has a unique solution. Then one
can prove (we will see this in a later chapter, so we will take it for granted in this
chapter) that A is invertible and so the solution of the system is givenby X = A~'h
(multiply the relation AX = b by A~!). On the other hand, assume that we are
able to solve the system by hand, then we have a description of X in terms of the
coordinates of b. Thus we will know explicitly A~'5 for all vectors b € F" and this
is enough to find A~!. In practice, the resolution of the system will show that

ciby 4+ caby + ...+ by

P c21b1 + cnby 4 ...+ conby

cnbr + cnby + ...+ Cunby

for some scalars c;;, independent of by, ..., b,. Letting b be the ith vector of the
canonical basis of F", the left-hand side A~!b is simply the ith column of AL,
while the right-hand side is the ith column of the matrix [c;;]. Since the two sides
are equal and this for all i, we conclude that

A_l = [Cij]-

Note that once the system is solved, it is very easy to write the matrix A~! directly
by looking at the expression of A~'h. Namely, if the first coordinate of A™'b is
ciiby + ciabs + ... + ciub,, then the first row of A=! is (ci1,¢12,...,c1). Of
course, the key part of the argument is the resolution of the linear system AX = b,
and this will be discussed in a subsequent chapter. We will limit therefore ourselves
in this chapter to rather simple systems, which can be solved by hand without any
further theory.
Let us see a few concrete examples:

Problem 1.43. Compute the inverse of the matrix A in the previous problem using
the method we have just described.

b,
Solution. Given a vector b = | b, | € F3, we try to solve the system AX = b,
bs
X1
with X = | x, |. The system can be written as
X3

X2 =bi, xi=0by, x3=b;,
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or equivalently
xi=by, xp=b1, x3=0b;.

Since this system has a solution for all b € F 3 we deduce that A is invertible and
that for all b € F3 we have

X1 b2
Ah=X=|x|=|h
X3 b3

The first coordinate of A~'b is b, thus the first row of A~ is (0, 1, 0), the second
coordinate of A™'b is by so the second row of A~! is (1,0, 0). Finally, the third
coordinate of A™'b is b3, so the third row of A~ is (0, 0, 1). We conclude that

010
A7'=1100
001

Problem 1.44. Consider the matrix

1111
0111
0011
0001

Prove that A is invertible and compute A~!.

b,
Solution. Again, given a vector b = Z € F* we try to solve the system
by
X
AX = b with X = iz . The system can be written
8

X1+ X2+ x3+ x4 =Dy
X2+ X3+ x4 =by
X3+ x4 = b3
)C4=b4
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and can be solved rather easily: the last equation gives x4, = b4. Subtracting the last
equation from the third one yields x3 = b3 — by, then subtracting the third equation
from the second one yields x, = b, — b3 and finally x; = b; — b,. Thus the system
always has solutions and so A is invertible, with

X1 bl—bz
- by —b
A lb:X: X2 — 2 3

X3 b3—b4

X4 b4

The first coordinate of A~'h being b; — by, we deduce that the first row of A is
[1 -10 0]. Similarly, the coordinate b, — b3 gives the second row of A namely

[O 1-1 0], and so on. We end up with

A7 =

oo o -
S o =
|
—_

Problem 1.45. Let n be a positive integer. Find the inverse of the matrix

123... n
012...n—1
001...n—-2
000... 1

Solution. Let A be the matrix whose inverse we are trying to compute. Given a
vector b € R" with coordinates by, b,, ..., b,, let us try to solve the system AX =
b. This system is equivalent to

X1+ 2x4+3x3+ ...+ nx, = b
X2+ 2x34+...+m—1x, = by

Xp—1 + 2x, = by
X, = b,

In principle one can easily solve it by starting with the last equation and
successively determining Xx,, X,—i,...,X; from the equations of the system. To
make our life simpler, we subtract the second equation from the first, the third
equation from the second.,.. ., the nth equation from the n — 1th equation. We end
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up with the equivalent system

X1+x2+x3+...+x, =b;—by
Xo+x3+...+x,=b— b3

Xp—1 + Xy = by_1 — by
X, = b,.

Subtracting again consecutive equations yields

X1 =b1—2b2+b3, X2=b2—2b3 +b4,...,x,,_1 Zb,1_1—2bn, Xn an.

Since the system AX = b always has solutions, we deduce that A4 is invert-
ible. Moreover, the system is equivalent to A~'» = X and the expressions of
X1,X2,...,%, give us the rows of A™': x; = by — 2b, + b3 shows that the first

row of A™! equals (1,-2,1,0,...,0),..., x,—1 = b,—1 — 2b, shows that the next-
to-last row is (0,0,...,0,1,—2) and finally the last row of A7l is (0,0,...,1).
Thus

1-21 0...00
00

01 -21...
A"l =1 :

00 0 O0...1-2

00 0 O0...01

a

Problem 1.46. Let A, B € M, (F) be matrices such that AB = BA. Prove that if
A is invertible, then A™'B = BA™!.

Solution. Multiply the relation AB = BA on the left by A~! and on the right by
A~!. We obtain

AT'ABA™' = A7'BAAT!.
Since A™'A = I,, the left-hand side equals BA™'. Since AA™' = I,, the right-
hand side equals A™!B. Thus A™'B = BA™!, as desired. |

Problem 1.47. Prove that a diagonal matrix A € M, (F) is invertible if and only
if all its diagonal entries are nonzero. Moreover, if this is the case, then A1 is also
diagonal.
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Solution. Let A = [a;;] € M,(F) be a diagonal matrix. If B = [b;;] € M, (F) is
an arbitrary matrix, let us compute A B. Using the product rule, we have

(AB);; = Z aikby;.
k=1

We have a;;, = 0 for k # i, since A is diagonal. Thus
(AB);j = a;ib;;
and similarly
(BA)jj = ajjbij.

Suppose now that a;; # 0 for all i € {1,2,...,n} and consider the diagonal
matrix B with diagonal entries b;; = i Then the formulae in the previous

paragraph yield AB = BA = I, thus A is invertible and A~! = B is diagonal.
Conversely, suppose that A is invertible and diagonal, thus we can find a matrix
B suchthat AB = BA = I,,. Thusforalli € {1,...,n} we have
1= (In)ii = (AB)ii = a;ibii,

hence a;; # 0 for all i and so all diagonal entries of A are nonzero. O

Sometimes, it can be very easy to prove that a matrix A is invertible and to
compute its inverse, if we know that A satisfies some algebraic equation. For
instance, imagine that we knew that

A +34+1,=0,.
Then 4% + 34 = —1I,,, which can be written as

A-(—A*=31,) =1,.
On the other hand, we also have

(—A?=31,)- A=—-A>-34=1,,

thus A4 is invertible and A~! = —A2 — 31,,. In general, a similar argument shows
that if A € M, (C) satisfies an equation of the form

adAd + ad_lAd_l +...+apl, =0
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for some complex numbers ay, . .., ay with ay # 0, then A is invertible and

A7 = — (a—"Ad‘l T e ﬂ1,1) :
ap ao ao

Of course, it is totally mysterious how to find such an algebraic equation satisfied
by A in general, but we will see much later how to naturally create such equations
(this will already require a lot of nontrivial theory!).

We discuss below two more such examples.

Problem 1.48. Consider the matrix
121
A=1]213
30-—1
a) Check that

A>— A2 —8A4 — 1815 = O;.

b) Deduce that A is invertible and compute A~

Solution. a) We compute brutally, using the product rule

121 121 8 46
A>=1213 |-|213 |=]|1352
30—1 30-—1 064
and
121 8 46 3420 14
AA=1213 |-|1352]|=]293126
30-—1 0 64 24 6 14
It follows that
8 16 8
A —A*—18,=| 16 8 24 | =84
24 0 —8

and the result follows.
b) We can write the identity in a) as follows:

A(A* — A—81) = 1815
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or equivalently

1
A-—(A*— A—81) = I5.
18( 3) 3

Similarly, we obtain

1
ﬁ(Az—A—813)-A=13

and this shows that A is invertible and

: -12 5
A_lzﬁ(Az—A—Sh):l— 11 —4 —1
-3 6 -3

Problem 1.49. Letn > 1 be an integer and let

2in

2in 2 . . 2w
{=en =cos— +isin—.
n n

Let F, be the Fourier matrix of order 7, whose (J, k)-entry is {U=D®*=D for | <
Jj k <n.

a) Let F, be the matrix whose (/, k)-entry is the complex conjugate of the (J, k)-
entry of F,. Prove that

Fn'FnZFn'Fnzl’lln-

b) Deduce that F;, is invertible and compute its inverse.

Solution. a) Let j,k € {1,2,...,n} and let us use the product rule to compute

(Fo-F)je = Y (F)ji - (Fu =
=1

n n
Z é‘(j—l)(l—l) LLU=D0=T) = Zé‘(j—l)(l—l)—(l—l)(k—l)’

=1 =1

the last equality being a consequence of the fact thatE = (7. Thus

n n—1
(Fy Fjie = Y ¢70070 =3 @/
I=1 =0
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The last sum is the sum of a geometric progression with ratio &/ =% If j = k,
then /% = 1, so the sum equals 7, since each term is equal to 1 in this case. If
j # k,then &/=% = 1 and we have

STV e (o GO G (0 Uy
;(zf V=1 s

the last equality being a consequence of the formula {" = 1. We conclude that
(F, - F,) jk equals n when j = k and equals O otherwise. It follows that

Fy - Tn =nl,.
The equality F, - F, = nl, is proved is exactly the same way and we leave the

details to the reader.
b) By part a) we can write

1—
= _Fn = Im
n n

which plainly shows that F}, is invertible and

1 —
F,'=—F,. O
n

1.5.1 Problems for Practice

1. Find the inverse of the matrix

+=[3d]

2. For which real numbers x is the matrix

a=23]

invertible? For each such x, compute the inverse of A.
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. Is the matrix

101
A=1011 EM3(F2)
110

invertible? If so, compute its inverse.

. Same problem with the matrix

101
A=1011|¢e Ms(Fy).
010

. Consider the matrix

12345
01234

A=100123| € MsR).

00012
00001

Prove that A is invertible and compute its inverse.

. Consider the matrix

0111
1011
1101
1110

1

Matrix Algebra

a) Compute the inverse of 4 by solving, for each b € R*, the system AX = b.
b) Prove that A?> = 31, + 2A. Deduce a new way of computing A~

. Let A be the matrix

3 —-12
A=| 5 -2373
-1 0 -1

a) Check that 4> = 0;.
b) Compute (/3 + A)~.
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Let n be a positive integer. Find the inverse of the n x n matrix A whose entries
on or above the main diagonal are equal to 1 and whose entries (strictly) below
the main diagonal are zero.

. Consider the matrices

0100 0 010
4 |-1000 o ool
1l o0oo00-1}|" T 1-1000
0010 0 —-100
and
0001
0-10
€= 0100
-1000

and let H be the set of all matrices of the form aA + bB + ¢C + d 14, with
a, b, c,d real numbers.

a) Prove that A> = B> = C* = —I, and
BC=—-CB=A4, CA=-AC =B, AB=-BA=C.

b) Prove that the sum and product of two elements of H is an element of H.
¢) Prove that all nonzero elements of H are invertible.

Let A, B € M, (R) such that
A+ B=1, and A*>+ B>=0,.
Prove that A and B are invertible and that
(A'+ By =21,

for all positive integers n.
Let A € M, (R) be an invertible matrix such that

Al =1, - A.

Prove that
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12. Let A € M, (R) be a matrix such that 4> = A, where p is a real number with
u # —1. Prove that

1
I, +A) ' '=1, - ——4.
(I, + A) Ol

13. Recall that a permutation matrix is a matrix A € M,,(C) such that every row
and column of A contains one entry equal to 1 and all other entries are 0. Prove
that a permutation matrix is invertible and that its inverse is also a permutation
matrix.

14. Suppose that an upper-triangular matrix A € M, (C) is invertible. Prove that
A~ is also upper-triangular.

15. Let a, b, ¢ be positive real numbers, not all of them equal and consider the
matrix

[a0b0cO]
0a0cOb
c0a0boO
0b0aOlc
b0c0aO

|0c0b0a |

Prove that A is invertible. Hint: A™! is a matrix of the same form as A (with
a, b, ¢ replaced by suitable real numbers x, y, ).

1.6 The Transpose of a Matrix

Let A € M,,,(F) be a m x n matrix. The transpose of A is the matrix ‘4 (also
denoted as A”) obtained by interchanging the rows and columns of A. Consequently
"Ais an x m matrix, i.e., A € M, ,,(F). It is clear that I, = I,. Note that if
A = [ajj], then'A = [aj;], that is

(A)ij = Aji (1.3)
12 3
Example 1.50. a) The transpose of the matrix | 0 —1 —2 | is the matrix
345
103
2-14

3-25
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10
1234 21

Th f th i is th i
b) The transpose of the matrix [0123:|1st e matrix 39
43

The following proposition summarizes the basic properties of the operation A —
"Aon M, ,(F).

Proposition 1.51. The transpose operation has the following properties:
1) "("A) = Aforall A € M,, ,(F).

2) (A+B)="A+ "B forall A,B € M, ,(F);

3) "(cA)=c'Aifc € Fisascalarand A € M,, ,(F).

4) "(AB)='B'AifAe M, ,(F)and B € M, ,(F);

5) 1(AF) = ("A)F if A € M, (F) and k is a positive integer;

6) If the matrix A is invertible, then ' A is also invertible and

() =4

Proof. Properties 1), 2), and 3) are immediate from the definition of the transpose
of a matrix (more precisely from relation (1.3)). Let us prove (4). First, note that
'BeM,,(F)and'A € M, ,,(F), thus'B - A makes sense. Next, if A = [a;;] and
B = [bj], we have

("(AB))ii = (AB)ix = Y _aybji = Y ("Bl ("4)ji = ("B A

j=1 j=1

thus "(AB) = 'B' A.
Property 5) follows by induction on k, using property 4. Finally, property 6) also
follows from 4), since

I, = lln = Z(A 'A_l) = Z(A_l)tA

and similarly ‘4 - "(A7") = I,. O

It follows from the previous proposition that the transpose operation leaves the
general linear group GL,(F) invariant, that is ‘A € GL,(F) whenever A €
GL,(F).

Problem 1.52. Let X € F" be a vector with coordinates xi, ..., x,, considered as
a matrix in M, ; (F). Prove that for any matrix A € M, (F') we have

'X("A-AX = Z(a,-lxl + ainxs + ...+ ainx,)’.

i=1
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Solution. First of all, we use Proposition 1.51 to obtain

'X("A- A)X = 'X'AAX = "(AX) - AX.

Write now
anxy + ...+ awx, »1
Y o= AX = ax Xy + ...+ apxy, _ 2
an Xy + . + apnXy Yn
Then
1
Y.Y = [yl V2 ... yn] y.z
"

and using the product rule for matrices, we obtain that the last quantity equals J’12 +
...+ y2. We conclude that

XCA-DX ="Y-Y =yl + .. +yp =) (anxi +anpXs+ ...+ ainx,)’.

i=1
a

There are three types of special matrices that play a fundamental role in linear
algebra and that are related to the transpose operation:

* The symmetric matrices. These are matrices A € M, (F) for which ‘4 = A4
or equivalently a;; = aj; for all i, j. They play a crucial role in the theory
of quadratic forms and euclidean spaces (for the latter one choose FF = R),
and a whole chapter will be devoted to their subtle properties. For example, all
symmetric matrices of order 2 and 3 are of the form

b abc
|:a :|, a,b,c € F and bde |, ab,c,d,e f€eF.
bc
ce f

¢ The orthogonal matrices. These are matrices A € GL,,(F') for which

A7l =14,
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They also play a fundamental role in the theory of euclidean spaces, since these
matrices correspond to isometries of such spaces. They will also be extensively
studied in the last chapter of the book.

¢ The skew-symmetric (or antisymmetric) matrices. These are matrices for which

A+'4A= Oy,
that is YA = —A. These matrices are related to alternating forms. They satisfy
a;j = —aj; forall i, j. Thus 2a;; = 0.If F € {Q, R, C}, then this last equality
forces a;; = O for all i. Thus the diagonal elements of a skew-symmetric matrix
are in this case equal to 0. On the other hand, over a field F' such as F, (the
field with two elements), the condition 2a;; = 0 does not give any information

about the element a;;, since for any x € F, we have 2x = 0. Actually, over such a
field there is no difference between symmetric and skew-symmetric matrices! All
skew-symmetric matrices of order 2 and 3 over the field C of complex numbers
are of the following form:

0 0 ab
|: a]’ aeC and —a 0 ¢ |, a,b,ceC.
—a 0

—b—c0

Proposition 1.53. All matrices in the following statements are square matrices of
the same size. Prove that

1) The sum of a matrix and its transpose is a symmetric matrix. The difference of a
matrix and its transpose is a skew-symmetric matrix.

2) The product of a matrix and its transpose is a symmetric matrix.

3) Any power of a symmetric matrix is symmetric.

4) An even power of a skew-symmetric matrix is symmetric. An odd power of a
skew-symmetric matrix is skew-symmetric.

5) If A is invertible and symmetric, then A™" is symmetric.

6) If A is invertible and skew-symmetric, then A~ is skew-symmetric.

Proof. 1) If A is a matrix, then ‘(A +' A) = "A+' ('A) = '"A+ A = A +' A,
thus A +' A is symmetric. Similarly, ‘(4 —" A) = A — A = —(A —" A), thus
A =" A is skew-symmetric.

2) We have "(A"A) = "("A)'A = A" A, thus A’ A is symmetric.

3) and 4) follow from the equality (‘A)" = (A"), valid for any matrix A and any
n>1.

5) and 6) follow from the equality ‘(A~') = (‘A)~!, valid for any invertible
matrix A. |

We end this section with a rather long list of problems that illustrate the ideas
introduced in this section.
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Problem 1.54. Describe the symmetric matrices A € M,,(F) which are simultane-
ously upper-triangular.

Solution. Let A = [a;;] be a symmetric and upper-triangular matrix. By definition
a;jj = Owheneveri > j (since A is upper-triangular) and moreover a;; = a;; for all
i,j €{l,2,...,n}. Weconclude that a;; = O wheneveri # j,thatis A4 is diagonal.
Conversely, any diagonal matrix is clearly symmetric and upper-triangular. Thus the
answer of the problem is: the diagonal matrices. O

Problem 1.55. How many symmetric matrices are there in M, (F,)?

Solution. By definition, each entry of a matrix A = [a;;] € M,(F,) is equal to 0
or 1, and A is symmetric if and only if a;; = aj; foralli, j € {1,2,...,n}. Thusa
symmetric matrix A is entirely determined by the choice of the entries above or on
the main diagonal, that is the entries a;; with 1 < i < j < n. Moreover, for any
choice of these entries, we can construct a symmetric matrix by defining a;; = a;;
fori > j.Foreach pair (i, j) with 1 <i < j < n we have two choices for the entry
a;; (either 0 or 1). Since there are n + (';) = ”(”T-H) such pairs (i, j) (n pairs with

i = jand (;) = "("T_” pairs with i < j) and since the choices are independent,
n(n+1)

we deduce that the number of symmetric matrices in M, (F,) is2™ 2 . O

Problem 1.56. a) Describe the diagonal matrices A € M, (R) which are skew-
symmetric.

b) Same question, but replacing R with F,.

Solution. a) Let A = [a;;] € M, (R) be a diagonal skew-symmetric matrix. Since
A is diagonal, all entries away from the main diagonal are zero. Also, since A +
A = 0, we have

aij +ai; =0

for all i € {1,2,...,n}, by noticing that A and ‘A have the same diagonal
entries. We conclude that 2a;; = O and so a;; = Oforalli € {1,2,...,n}. Thus
A = O, is the unique diagonal skew-symmetric matrix in M, (R).

b) As in part a), a matrix A = [a;;] € M,(F,) is diagonal and skew-symmetric
if and only if it is diagonal and its diagonal entries a;; (for 1 < i < n) satisfy

2a;; = 0. However, any element x of F, satisfies 2x = 0, thus the condition
2a;; = 0 is automatic. We conclude that any diagonal matrix A € M, (F;) is
skew-symmetric! O

Problem 1.57. A matrix A € M, (R) has a unique nonzero entry in each row and
column, and that entry equals 1 or —1. Prove that A is orthogonal.

Solution. Let A = [a;;]. We need to prove that A™! = " A, thatis A- 'A = I, and
'"A-A=1,Fixi,j €{l,2,...,n}. Then the (i, j)-entry of A- A is

n
(A . tA),'j = Zaikajk.
k=1
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Assume that a;ra ;i is nonzero for some k € {1,2,...,n}, thus both a;x and a
are nonzero. If i # j, this means that A has at least two nonzero entries in column
k, which is impossible. Thus if i # j,thena;ra;x = Oforallk € {1,2,...,n}and
consequently the (i, j)-entry of A- A4 is 0.

On the other hand, if i = j, then

n
(A-"A)y = a.
k=1

Now, by assumption the ith row of A consists of one entry equal to 1 or —1, and
all other entries are 0. Since ) j_, a,.zk is simply the sum of squares of the entries
in the i th row, we deduce that > ;_, a?, = landso (A-'A);; = 1fori = j. We
conclude that A - ' A = I,,. The reader will have no problem adapting this argument
in order to prove the equality ‘A - A = I,. O

Remark 1.58. In particular all such matrices are invertible, a fact which is definitely
not obvious. Moreover, it is very easy to compute the inverse of such a matrix:
simply take its transpose!

Problem 1.59. Prove that any matrix A € M,,(C) can be expressed in a unique way
as B + C, where B is symmetric and C is skew-symmetric.

Solution. If 4 = B + C with B symmetric and C skew-symmetric, then
necessarily ‘A = B — C, thus

1 1

Conversely, choosing B and C as in the previous relation, they are symmetric,
respectively skew-symmetric (by the previous proposition) and they add up to A.
O

13
22
and of a skew-symmetric matrix C. Find B.

Problem 1.60. The matrix 4 = |: ] is the difference of a symmetric matrix B

Solution. By assumption we have A = B — C with ‘B = B and ‘C = —C. Thus
‘A="(B-C)="'B—'C=B+C.
We conclude that

A+'A=(B-C)+(B+C)=2B
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and so

ad

Problem 1.61. a) Let A € M,(R) be a matrix such that ‘A - A = O,. Prove that
A= 0,.
b) Does the result in part a) hold if we replace R with C?

Solution. a) Let A = [A;;]. By the product rule for matrices, the (i,i)-entry of
"A-Ais

(A A=) (DA = ) A
k=1

k=1

Since ‘A - A = O,, we conclude that for all i € {1,2,...,n} we have

Zn:A,i,. =0.
k=1

Since the square of a real number is nonnegative, the last equality forces Ay; = 0
forall k € {1,2,...,n}. Since i was arbitrary, we conclude that A = 0.

b) The result does no longer hold. Let us look for a symmetric matrix A € M,(C)
such that Y4 - A = O,, thatis A2 = 0,. Since 4 is symmetric, we can write

+=[5d]
for some complex numbers a, b, d. Now
g [a b][a b] _ [ a’? + b? b(a~|—d)]
bd bd b(a+d) b*+ d?
So we look for complex numbers a, b, d which are not all equal to 0 and for

which

a*+b>=0, bla+d)=0, b*+d*=0.
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It suffices to ensure that a + d = 0 and ¢®> + b? = 0. For instance, one can take
a=i,b=1,d = —i.
O

Remark 1.62. We could have also used Problem 1.52 in order to solve part a).
Indeed, for any X € R” we have ‘X('A- A)X = 0 and so

Z(ailxl +anxs 4 ...+ aipx,)’ =0

i=1
for any choice of real numbers x, ..., x,. Since the sum of squares of real numbers
equals O if and only if all these numbers are equal to 0, we deduce that

apx1+...+a;, =0

for all i € {1,2,...,n} and all real numbers xi,...,x,. Thus AX = 0 for all
X € R" and then A = O,.

1.6.1 Problems for Practice

1. Consider the matrices

<[] -

Compute each of the following matrices:

a) A-'B.
b) B-'A.
¢) (A+2'B)(B +2'A).

2. Let 6 € Rand let
_ | cosf —sinf
" | sinf® cosf |’

a) Prove that A is orthogonal.
b) Find all values of 6 for which A4 is symmetric.
¢) Find all values of 6 for which 4 is skew-symmetric.

3. Which matrices A € M,,(F,) are the sum of a symmetric matrix and of a skew-
symmetric matrix?
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4.

11.

12.
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Write the matrix

123
A=|234
345

as the sum of a symmetric matrix and of a skew-symmetric matrix with real
entries.

. All matrices in the following statements are square matrices of the same size.

Prove that

a) The product of two symmetric matrices is a symmetric matrix if and only if
the two matrices commute.

b) The product of two antisymmetric matrices is a symmetric matrix if and only
if the two matrices commute.

c¢) The product of a symmetric and a skew-symmetric matrix is skew-
symmetric if and only if the two matrices commute.

. We have seen that the square of a symmetric matrix A € M, (R) is symmetric.

Is it true that if the square of a matrix A € M, (R) is symmetric, then A is
symmetric?

. Consider the map ¢ : M3(R) — M3(R) defined by

p(A) = "A+24.
Prove that ¢ is linear, that is
@(cA+ B) = cp(A4) + ¢(B)

for all A, B € M3(R) and all ¢ € R.

. Let A € M, (R) be a matrix such that A- ‘A = O,. Prove that A = O,.
. Find the skew-symmetric matrices A € M,,(R) such that 4> = O,.
. Let Ay,..., Ay € M, (R) be matrices such that

tA]'A]—i-...—i-lAk‘Ak:On.

Provethat Ay = ... = Ay = O,.

a) Let A € M3(R) be a skew-symmetric matrix. Prove that there exists a
nonzero vector X € R? such that AX = 0.

b) Does the result in part a) remain true if we replace M3(R) with M;(R)?

Describe all upper-triangular matrices A € M,,(R) such that

A-"TA="A4-A.



Chapter 2
Square Matrices of Order 2

Abstract The main topic of this chapter is a detailed study of 2 x 2 matrices and
their applications, for instance to linear recursive sequences and Pell’s equations.
The key ingredient is the Cayley—Hamilton theorem, which is systematically used in
analyzing the properties of these matrices. Many of these properties will be proved
in subsequent chapters by more advanced methods.

Keywords Cayley—-Hamilton ¢ Trace ¢ Determinant ¢ Pell’s equation
* Binomial equation

In this chapter we will study some specific problems involving matrices of order
two and to make things even more concrete, we will work exclusively with matrices
whose entries are real or complex numbers. The reason for doing this is that in this
case one can actually perform explicit computations which might help the reader
become more familiar with the material introduced in the previous chapter. Also,
many of the results discussed in this chapter in a very special context will later
on be generalized (very often with completely different methods and tools!). We
should however warn the reader from the very beginning: studying square matrices
of order 2 is very far from being trivial, even though it might be tempting to believe
the contrary.

A matrix A € M,(C) is scalar if it is of the form z/, for some complex number
z. One can define the notion of scalar matrix in full generality: if F is a field and
n > 1, the scalar matrices are precisely the matrices of the form c/,, where ¢ € F
is a scalar.

2.1 The Trace and the Determinant Maps

We introduce now two fundamental invariants of a 2 x 2 matrix, which will be
generalized and extensively studied in subsequent chapters for #n x n matrices:

© Springer Science+Business Media New York 2014 53
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ap are

Definition 2.1. Consider a matrix 4 = [
az) A

] € M,(C). We define
* the trace of A4 as
Tr(A) = ay| + ax.
* the determinant of A as
det A = ajja»n — appas.

We also write

app a
det A = 11 412

az ax»

for the determinant of A.
We obtain in this way two maps

Tr,det : M(C) - C

which essentially govern the theory of 2 x 2 matrices. The following proposition
summarizes the main properties of the trace map. The second property is absolutely
fundamental. Recall that ’ A is the transpose of the matrix A.

Proposition 2.2. For all matrices A, B € M»(C) and all complex numbers z € C
we have

(a) Tr(A + zB) = Tr(A) + zTr(B).
(b) Tr(AB) = Tr(BA).
(c) Tr('A) = Tr(A).

Proof. Properties (a) and (c) are readily checked, so let us focus on property
(b). Write

A= [011 a12:| and B — |:b11 b12]‘
asy dA bzl b22

Then

AB = |:a11b11 + anby anbi + a12b22:|
axbi + anbsi axnbiy + anbxn
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and

BA — [bllall + binaz bna + bixaxn j| .

byiay + bypaz byain + byar.
Thus
TI'(AB) = a”b” + Clzzbzz + a12b21 + Cl21b12 = TI'(BA)

|

Remark 2.3. The map Tr : M,(C) — C is not multiplicative, i.e., generally
Tr(AB) # Tr(A)Tr(B). For instance Tr(/, - I,) = Tr(I;) = 2 and Tr(l,) - Tr(ly) =
2:2=4#2.

Let us turn now to properties of the determinant map:

Proposition 2.4. For all matrices A, B € M,(C) and all complex numbers o we
have

(1) det(AB) = det A - det B;

(2) det'A = det A;

(3) det(eA) = a®det A.

Proof. Properties (2) and (3) follow readily from the definition of a determinant.
Property (1) will be checked by a painful direct computation. Let

=lea) o=

_ | ax+bzay + bt
lex4dzey +dt

Then

and so
det(AB) = (ax + bz)(cy + dt) — (cx + dz)(ay + bt) =
acxy + adxt + bcyz+ bdzt —acxy —bext —adyz — bdzt =
xt(ad —bc) — yz(ad — bc) = (ad — be)(xt — yz) = det A - det B,

as desired. O

Problem 2.5. Let A € M,(R) such that

det(A + 21,) = det(A — I).
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Prove that

det(A + 1) = det(A).

Solution. Write 4 = [a 2 ] The condition becomes
c

a+2 b _
c d+2|

a—1 b
c d-1

or equivalently
(a+2)d+2)—bc=(@—-1)(d—-1)—bc.

Expanding and canceling similar terms, we obtain the equivalent relation a+d =—1.
Using similar arguments, the equality det(A + I;) = det 4 is equivalent to (a +
1)(d + 1) —bc = ad — bc, ora + d = —1.The result follows. |

2.1.1 Problems for Practice

1. Compute the trace and the determinant of the following matrices

<[ =134 b

2. LetA = |:; ii| Compute the determinant of A”.

(O8]

. The trace of A € M,(C) equals 0. Prove that the trace of 43 also equals 0.
4. Prove that for all matrices A € M,(C) we have

(Tr(A))* — Tr(4%)
3 :

detA =

5. Prove that for all matrices A, B € M,(C) we have
det(A + B) = det A + det B + Tr(A) - Tr(B) — Tr(AB).

6. Let f : M,(C) — C be a map with the property that for all matrices A, B €
M,(C) and all complex numbers z we have

f(A+zB) = f(A)+zf(B) and f(AB) = f(BA).
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(a) Consider the matrices

10 01 00 00
Ey = . Ep= . By = . Ep=
i=o0] E2=[0o] E=[10] E2=[0)]

and define Xij = f(E,j) Check that E12E21 = E]] and E21E12 = E22, and
deduce that x1; = x2».

(b) Check that E;;E;» = Ej; and E1pE1; = O,, and deduce that x;, = 0.
Using a similar argument, prove that x,; = 0.

(c) Conclude that there is a complex number ¢ such that

f(A) =c-Tr(A)

for all matrices A.

2.2 The Characteristic Polynomial and the Cayley—Hamilton
Theorem

Let A € M,(C). The characteristic polynomial of A is by definition the
polynomial denoted det(X 1, — A) and defined by

det(XI, — A) = X> — Tr(A)X + det A.

We note straight away that AB and BA have the same characteristic polynomial
for all matrices A, B € M,(C), since AB and BA have the same trace and the
same determinant, by results established in the previous section. In particular, if P
is invertible, then 4 and PAP ™! have the same characteristic polynomial.

The notation det(X I, — A) is rather suggestive, and it is indeed coherent, in the
sense that for any complex number z, if we evaluate the characteristic polynomial of
A at z, we obtain precisely the determinant of the matrix z/, — A. More generally,
we have the following very useful:

Problem 2.6. For any two matrices A, B € M,(C) there is a complex number u
such that

det(A + zB) = det A + uz + det B - 7°

for all complex numbers z. If A, B have integer/rational/real entries, then u is
integer/rational/real.
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Solution. Write A = [“ b ] and B = [“ p } Then
cd y 8

a+zab+zp8
c+zyd+z

det(A +zB) =

(a+z0)(d +28)—(b+zB)(c+zy) = 22 (aS—By)+z(a8 +da—Bc—yb)+ad —bc.

Since a§ — By = det B and ad — bc = det A, the result follows. |

In other words, for any two matrices A, B € M,»(C) we can define a quadratic
polynomial det(A + X B) which evaluated at any complex number z gives det(A4 +
zB). Moreover, det(A + X B) has constant term det A and leading term B, and if
A, B have rational/integer/real entries, then this polynomial has rational/integer/real
coefficients. Before moving on, let us practice some problems to better digest these
ideas.

Problem 2.7. Let U,V € M,(R). Using the polynomial det(U + X V'), prove that
det(U + V) +det(U — V) = 2detU + 2det V.
Solution. Write
f(X)=det(XV +U) =detV - X>+mX + detU,
for some m € R. Then
det(U+V)+det(U—-V)= f(1)+ f(-1) =

(detV +m +detU) + (detV —m +detU) = 2(detU + det V).

Problem 2.8. Let A, B € M,(R). Using the previous problem, prove that
det(4A> 4+ B?) + det(AB + BA) > 0.
Solution. As suggested, we use the identity
det(U + V) +det(U — V) = 2detU + 2det V.
from Problem 2.7, and take U = A% + B2,V = AB + BA. Thus

det(A%> + B> + AB + BA) + det(4> + B> — AB — BA)
= 2det(A% + B?) + 2det(AB + BA).
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AsA> + B>+ AB+ BA=(A+ B)>and A> + B> — AB — BA = (A— B)?, we
obtain

2det(A2 4+ B?) + 2det(AB + BA) = det(4 + B)* + det(A — B)> > 0.

Problem 2.9. Let A, B € M;(R). Using the polynomial
f(X) = det(I» + AB + x(BA — AB)),

prove that

2AB + 3BA 3AB +2BA
det (12 + %) = det (12 + %) )

Solution. As suggested, consider the polynomial of degree at most 2

F(X) = det(I» + AB + x(BA — AB)).

2 3
We need to prove that f (g) =f (g) We claim that f(X) = f(1 — X), which
clearly implies the desired result. The polynomial g(X) = f(X) — f(1 — X) has
degree at most 1 and satisfies g(0) = g(1) = 0. Indeed, we have
g(0) = f(0) — f(1) = det({, + AB) — det({, + BA) =0,
since AB and BA have the same characteristic polynomial. Also, g(1) = f(1) —
f(0) = 0. Thus g must be the zero polynomial and the result follows. |

We introduce now another crucial tool in the theory of matrices, which will
be vastly generalized in subsequent chapters to n x n matrices (using completely
different ideas and techniques).

Definition 2.10. The eigenvalues of a matrix A € M,(C) are the roots of its
characteristic polynomial, in other words they are the complex solutions A, A, of
the equation
det(tl, — A) = 1> — Tr(A)t + det A = 0.
Note that

A+ = TI'(A) and AA, =det A,

i.e., the trace is the sum of the eigenvalues and the determinant is the product
of the eigenvalues. Indeed, by definition of A; and A, the characteristic polynomial
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is (X — A1)(X — X,), and identifying the coefficients of X and X° = 1 yields the
desired relations.

The following result is absolutely fundamental for the study of square
matrices of order 2.

Theorem 2.11 (Cayley—-Hamilton). For any A € M,(C) we have

A* —Tr(A)- A+ (detA) - I, = O,.
Proof. Write A = |:a Z i|, then a direct computation shows that
c

2 [ a*+bc bla+d)
|c@a+d) d*+be |
Letting x = Tr(A), we obtain

2
AZ—TT(A)-A—i—(detA)-Iz:[a +be  bx ]_[axbx}

cx d*+bc cx dx
L [ad—=be 0 _[a*+ad —ax 0 _0
0 ad—bc| 0 d>+ad —dx |~ 7

since a’4+ad —ax=a(a+d —x)=0 and similarly d> 4+ ad —dx=d(a +d —x)=0.
O

Remark 2.12. (a) In other words, the matrix A is a solution of the characteristic
equation

det(tl, — A) = t*> — Tr(A)t + det A = 0.

(b) Expressed in terms of the eigenvalues A; and A, of A, the Cayley—Hamilton
theorem can be written either

Az—()tl + M)A+ MAy- I = 0, 2.1)
or equivalently
(A=A - L)(A—=Ay- 1) = O,. (2.2)

Both relations are extremely useful when dealing with square matrices of order 2,
and we will see many applications in subsequent sections.
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Problem 2.13. Let A € M,(C) have eigenvalues A; and A,. Prove that foralln > 1
we have

Tr(A") = A" + AL,

Deduce that A} and A} are the eigenvalues of A”.
Solution. Let x, = Tr(A"). Multiplying relation (2.1) by A" and taking the
trace yields

Xp2 — (A1 + A2)xp 41 + A1dox, = 0.

Since xo = 2 and x; = Tr(4A) = A; 4+ A;, an immediate induction shows that
X, = A} + A} forall n.

For the second part, let z;, z, be the eigenvalues of A”. By definition, they are the
solutions of the equation > — Tr(A")¢ + det(A") = 0. Since det(A") = (det A)" =
ATAS and Tr(A") = A} + A}, the previous equation is equivalent to

2 (A" AAL =0 or (1 —A")(t — ALY = 0.

The result follows. O

Problem 2.14. Let A € M,(C) be a matrix with Tr(A4) # 0. Prove that a matrix
B € M,(C) commutes with A if and only if B commutes with 4.

Solution. Clearly, if BA = AB, then BA? = A2B, so assume conversely that

BA? = A?B. Using the Cayley—Hamilton theorem, we can write this relation as
B(Tr(A)A —detA - I,) = (Tr(A)A —detA- I,)B

or

Tr(A)(BA — AB) = O,.

Since Tr(A) # 0, we obtain BA = AB, as desired. O

Problem 2.15. Prove that for any matrices A, B € M,(R) there is a real number «
such that (AB — BA)? = al,.

Solution. Let X = AB — BA. Since Tr(X) = Tr(AB) —Tr(BA) = 0, the Cayley—
Hamilton theorem yields X?> = —det X/, and so we can take o« = — det X. O

Problem 2.16. Let X € M,(R) be a matrix such that det(X 2 + I,) = 0. Prove that
X2+ L, = 0.

Solution. We have det(X +i/l,) = O ordet(X —il,) = 0, and since det(X —il,) =

det(X + il,), we deduce that det(X + il;) = 0 = det(X —il). If X = |:CCZ 2],
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the relation det(X + il,) = 0 is equivalent to (a + i)(d + i) — bc = 0, i.e.,
ad —bc =landa+d = 0. ThusdetX = 1 and 7Tr(X) = 0 and we conclude
using the Cayley—Hamilton theorem. O

An important consequence of the Cayley—Hamilton theorem is the following
result (which can of course be proved directly by hand).

Theorem 2.17. A matrix A € M,(C) is invertible if and only if det A # 0. If this is
the case, then

1
A7 = —(Tr(A) - I, — A).
detA(r() 2 — A)

Proof. Suppose that A is invertible. Then taking the determinant in the equality
A- A7 = I, we obtain

detA-detA™' =detl, =1,

thus det A # 0.
Conversely, suppose that det A # 0 and define

1
B =——(Tr(A) - I, — A).
o T -L= )
Then using the Cayley—Hamilton theorem we obtain

1 1
AB = —(Tr(A)- A — A®>) = —— -det AL, = I
dera (1A )= Gera AL =1

and similarly BA = I,. Thus A is invertible and A™' = B. O

Remark 2.18. One can also check directly that if det A # 0, then A is invertible, its
inverse being given by

A71 — 1 daz —dap
detA | —a»n an ’

Problem 2.19. Let A, B € M,(C) be two matrices such that AB = I,. Then A4 is
invertibleand B = A~'. In particular, we have BA = I,.

Solution. Since AB = I,, we have det A - det B = det(AB) = 1, thus det A # 0.
The previous theorem shows that A4 is invertible. Multiplying the equality AB = I,
by A~ on the left, we obtain B = A~'. Finally, BA = A~'4 = I,. O

A very important consequence of the previous theorem is the following charac-
terization of eigenvalues:

Theorem 2.20. If A € M,(C) and z € C, then the following assertions are
equivalent:
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(a) zis an eigenvalue of A;
(b) det(zl, — A) = 0.
(¢) There is a nonzero vector v € C? such that Av = zv.

Proof. By definition of eigenvalues, (a) implies (b). Suppose that (b) holds and let
B = A — zI,. The assumption implies that det B = 0 and so by by; = byby1. We
need to prove that we can find x;, x, € C not both zero and such that

biix; +bipx; =0 and  byyxy + bypx, = 0.

If b1y # 0 or by # 0, choose x; = by and x| = —byy, so suppose that by} = 0 =
b1,. If one of by, by, is nonzero, choose x; = —by, and x, = by, otherwise choose
X1 = xp = 1. Thus (b) implies (c).

Suppose now that (c) holds. Then A%v = zAv = z?v and using relation (2.1) we
obtain

(2% — Tr(A)z + det A)v = 0.

Since v # 0, this forces z> — Tr(A4)z + det A = 0 and so z is an eigenvalue of A.
Thus (c) implies (a) and the theorem is proved. O

Problem 2.21. Let A € M,(C) have two distinct eigenvalues A;, A,. Prove that we
can find an invertible matrix P € GL,(C) such that

. . X
Solution. By the previous theorem, we can find two nonzero vectors X| = |: 1 i|
X21

and X, = |:;612:| such that AX; = A; X;.
2

X11 X12

Consider the matrix P = [ } whose columns are X, X,. A simple

X21 X22
computation shows that the columns of AP are A;X; and A,X,, which are the
A 0 A O
columns of P |: 0 Az],thus AP =P [ 0 A,
then P is invertible (we haven’t used so far the hypothesis 1; # A4,).
Suppose that det P = 0, thus xj;Xx2 = Xx21x2. This easily implies that the
columns of P are proportional, say the second column X is « times the first column,
Xi. Thus X, = aX;. Then

i|. It remains to see that if A # A,,

AzXz = AXZ = OlAX1 = Ci)thI = )LlXQ,

forcing (A1 — A,) X, = 0. This is impossible as both A; — A, and X, are nonzero.
The problem is solved. |
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Problem 2.22. Solve in M;(C) the following equations

(a)
(b)
(©)

A% = 0,.
A% =1,
A% = A.

Solution. (a) Let A be a solution of the problem. Then det A = 0 and the Cayley—

(b)

(©)

Hamilton relation reduces to Tr(4)A = 0. Taking the trace yields Tr(4)?> = 0,
thus Tr(A) = 0. Conversely, if det A = 0 and Tr(4) = 0, then the Cayley—
Hamilton theorem shows that A> = O,. Thus the solutions of the problem are
the matrices

A=|:a b:|, with a,b,c € C and a*>+ bc =0.

Cc —a

We must have detA = =£1 and, by the Cayley—Hamilton theorem, I, —
Tr(A)A +det AI, = O,.1f det A = 1, then Tr(A)A = 21, and taking the trace
yields Tr(A4)?> = 4, thus Tr(A) = 2. This yields two solutions, A = #1,.
Suppose that det A = —1. Then Tr(4)A = O, and taking the trace gives
Tr(A) = 0. Conversely, any matrix A with Tr(4) = O and det4 = —l isa
solution of the problem (again by Cayley—Hamilton). Thus the solutions of the
equation are

a b

c —a

+71, and A=|: i|, a,b,ceC, a*+bc=1.

If det A # 0, then multiplying by A™! yields A = I,. So suppose that det A =
0. The Cayley—Hamilton theorem yields A — Tr(A)A = O,. If Tr(A) # 1, this
forces A = O;, which is a solution of the problem. Thus if A # O, I, then
det A = 0 and Tr(A) = 1. Conversely, all such matrices are solutions of the
problem (again by Cayley—Hamilton). Thus the solutions of the problem are

0,, I, and A= |:a b :|, a,b,ceC, da*>+bc=a.
cl—a
|
Problem 2.23. Let A € M,(C) be a matrix. Prove that the following statements are
equivalent:
(a) Tr(A) = detA = 0.
(b) A2 = 0,.
(c) Tr(A) = Tr(4%) = 0.

(d)

There exists n > 2 such that A" = O,.

Solution. Taking the trace of the Cayley—Hamilton theorem, we see that Tr(A42) =
Tr(A)? — 2 det A. From this it is clear that (a) and (c) are equivalent.
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The implication (a) implies (b) is just an application of the Cayley—Hamilton
theorem. The implication (b) implies (d) is obvious. Thus we need only show (d)
implies (a). If A" = O, for some n > 2, then clearly det A = 0. Thus the Cayley—
Hamilton theorem reads A> = Tr(A)A. Iterating this an immediate induction gives
A" = Tr(A)" ' A, hence O, = Tr(A)"~'A. Taking the trace of this identity gives
0 = Tr(A)" and hence Tr(A) = 0. |

Problem 2.24. Find all matrices X € M,(R) such that X* = I,.
Solution. We must have (det X)* = 1 and so det X = 1 (since det X € R). Letting
t = Tr(X), the Cayley—Hamilton theorem and the given equation yield

L=X=XtX-L)=ttX -L)—X =({*— )X —t,.

If 1> # 1, then the previous relation shows that X is scalar and since X3 = I,, we
must have X = I,. If > = 1, then the previous relation gives # = —1. Conversely,
any matrix X € M,(R) with Tr(X) = —1 anddet X = 1 satisfies X?>+X+1, = 0,
and so also X3 = I,. We conclude that the solutions of the problem are

a b

I, and |:
c—1—a

i|, a,b,ceR, a*+a+bc=-1.

2.2.1 Problems for Practice

1. Let A, B € M,(R) be commuting matrices. Prove that
det(4> + B?) > 0.
Hint: check that A% + B> = (A 4+ iB)(A —iB).
2. Let A, B € M,(R) be such that AB = BA and det(4> + B?) = 0. Prove
that det A = det B. Hint: use the hint of the previous problem and consider the
polynomial det(4 + XB).

3. Let A, B, C € M;(R) be pairwise commuting matrices and let

f(X) = det(42 + B + C? + x(AB + BA + CA)).

(a) Prove that f(2) > 0. Hint: check that

A> 4+ B2+ C?+2(AB+ BA+CA) = (A+ B+ C)°.
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(b) Prove that f(—1) > 0. Hint: denote X = A — Band Y = B — C and
check that

2
1 \? 3
A2+BZ+C2—(AB+BC+CA)=(X—i—EY) +(§Y) .

Next use the first problem.
(¢) Deduce that

det(A2 4+ B> + C?) + 2det(AB + BC + CA) > 0.

Let A, B € M,(C) be matrices with Tr(AB) = 0. Prove that (4B)? = (BA)>.
Hint: use the Cayley—Hamilton theorem.

. Let A be a2 x 2 matrix with rational entries with the property that

det(A*> —21,) = 0.

Prove that A2 = 2I, and detA = —2. Hint: use the fact that A2 — 21, =
(A — v/215)(A + v/21,) and consider the characteristic polynomial of A.

Let x be a positive real number and let A € M,(R) be a matrix such that
det(A% + xI,) = 0. Prove that

det(4*> + A + xI,) = x.

. Let A, B € M;(R) be such that det(AB — BA) < 0. Consider the polynomial

F(X) = det(I + (1 — X)AB + XBA).

(a) Prove that f(0) = f(1).
(b) Deduce that

1
det(l, + AB) < det (12 + (4B + BA)) .

Let n > 3 be an integer. Let X € M;(R) be such that
1 -1
X"+ X" = .
R

(a) Prove that det X = 0. Hint: show that det(X? + I,) = 0.
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(b) Lett be the trace of X . Prove that

" =2

(c) Find all possible matrices X satisfying the original equation.

9. Letn > 2 be a positive integer and let A, B € M,(C) be two matrices such that
AB # BA and (AB)" = (BA)". Prove that (AB)" = «al, for some complex
number «.

10. Let A, B € M,(R) and let n > 1 be an integer such that C"* = I, where
C = AB — BA. Prove that n is even and C* = I,. Hint: use Problem 2.15.

2.3 The Powers of a Square Matrix of Order 2

In this section we will use the Cayley—Hamilton theorem to compute the powers of a
given matrix A € M,(C). Let A; and A, be the eigenvalues of A. The discussion and
the final result will be very different according to whether A; and A, are different
or not.

Let us start with the case A; = A, and consider the matrix B = A — A1 [,. Then
the Cayley—Hamilton theorem in the form of relation (2.2) yields B> = O,, thus
BF = 0, fork > 2. Using the binomial formula we obtain

A"=B+0D)' =) (Z)A’,’_kBk =AML, +nA"'B.
k=0
Let us assume now that A; # A, and consider the matrices
BZA—Allz and CZA—)QIQ
Relation (2.2) becomes BC = O, or equivalently B(A —A,1) = O,. Thus BA =
A2 B, which yields BA?> = A,BA = A}B and by an immediate induction BA" =

A} B for all n. Similarly, the relation BC = O, yields CA" = A C for all n. Taking
advantage of the relation C — B = (A; — A,) I, we obtain

(A1 —A2)A" = (C — B)A" = CA" — BA" = A|C — A} B.
Thus

1
A" = ——(A]C = A3B).
T (HC —13B)

All in all, we proved the following useful result, in which we change notations:
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Theorem 2.25. Let A € M,>(C) and let Ay, A, be its eigenvalues.
(a) If Ay # Ay, then for alln > 1 we have A" = A B + A C, where

B

= A— A dC =
Al_kz( 2 2)07’1 A2_Al

(A= 1).

(b) If A1 = Ay, then for alln > 1 we have A" = A|B + n)t’l’_lC, where B = I,
and C = A — Allz.

Problem 2.26. Compute A", where A = |: ! 3 35i| .

Solution. As Tr(A4) = —4 and det A = 4, the eigenvalues of A are solutions of the
equation t24+ 4t +4=0,thus A, = A, = —2 are the eigenvalues of A. Using the
previous theorem, we conclude that for any n > 1 we have

. ) . _ a—113n—2 3n
A" = (=2)" L +n(=2)"" (A +2L) = (2" [ —3n —3n —2}

|

Though the exact statement of the previous theorem is a little cumbersome, the
basic idea is very simple. If one learns this idea, then one can compute A" easily.
Keep in mind that when computing powers of a 2 x2 matrix, one starts by computing
the eigenvalues of the matrix (this comes down to solving the quadratic equation
t2 — Tr(A)t + det A = 0). If the eigenvalues are equal, say both equal to A, then
B := A — AL satisfies B> = O, and so one computes A" by writing A = B + A1,
and using the binomial formula. On the other hand, if the eigenvalues are different,
say A and A,, then there are two matrices B, C such that for all n we have

A" = A1 B + AiC.

One can easily find these matrices without having to learn the formulae by heart:
if the previous relation holds for all n > 0, then it certainly holds for n = 0 and
n = 1. Thus

IL=B+C, A=MB+AC.

This immediately yields the matrices B and C in terms of I, A and A, A;.
Moreover, we see that they are of the form x/, + yA for some complex numbers
x, y. Combining this observation with Theorem 2.25 yields the following useful

Corollary 2.27. For any matrix A € M,(C) there are sequences (Xu)n>0, (VYn)n>0
of complex numbers such that

A" = x, A+ y, I

foralln > 0.
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One has to be careful that the sequences (x,),>0 and (y,),>0 in the previous
corollary are definitely not always characterized by the equality A" = x,4 + y, I»
(this is however the case if A is not scalar). On the other hand, Theorem 2.25 shows
that we can take

Py

B MM = Ao
A=A

dy, =
and y PR

Xn

when Ay # A, and, when A; = A,
xp =nM " and y, = —(n — DAL

Problem 2.28. Letm, n be positive integers and let A, B € M,(C) be two matrices
such that A” B" = B"A™.If A™ and B" are not scalar, prove that AB = BA.

Solution. From Corollary 2.27 we have
A = xp A+ ye I and B¥ = B + v b, k>0,
where (X)i>0, (Vi )k>0> (Ur)k>0, (Vi )k>0 are sequences of complex numbers. Since
A™ and B" are not scalar matrices it follows that x,,, # 0 and u, # 0. The relation
A™B"™ = B"A™ is equivalent to
(xmA + ym12)(unB + Vn12) = (MnB + VnIZ)(xmA + ymIZ)
ie.
Xmun(AB — BA) = O,.

Hence AB = BA. O
Problem 2.29. Lett € R and let

cost —sint
A[ == . .
sint cost
Compute A} forn > 1.

Solution. We offer three ways to solve this problem. The first is to follow the usual
procedure: compute the eigenvalues of A, and then use the general Theorem 2.25.
Here the eigenvalues are e’ and e~ and it is not difficult to deduce that

4 — cosnt —sinnt
! sinnt cosnt |’
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Another argument is as follows: an explicit computation shows that 4; 4+, =
Ay Ay, thus
Al; =A A A= At+t+...+t = Au:.

Finally, one can also argue geometrically: A, is the matrix of a rotation of angle
t, thus A} is the matrix of a rotation of angle nt. O

2.3.1 Problems for Practice

1. Consider the matrix

S

(a) Let n be a positive integer. Prove the existence of a unique pair of integers
(x,,, yu) such that

A" = x, A+ yu Ih.

(b) Compute lim,,_, %

2. Given a positive integer n, compute the nth power of the matrix
a=|17,
11
3. Let a, b be real numbers and let n be a positive integer. Compute the nth power

of the matrix [a bi|.
0a

4. Let x be a real number and let

A= cosx +sinx  2sinx
—sinx cosx —sinx |’

Compute A" for all positive integers n.

2.4 Application to Linear Recurrences

In this section we present two classical applications of the theory developed in
the previous section. Let a, b, ¢, d, xq, yo be complex numbers and consider two
sequences (X, ),>0 and (y,),>0 recursively defined by
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(2.3)

Xn4+1 = ax, + byn
Yn+1 = CXy + dynv n = 0

We would like to find the general terms of the two sequences in terms of the initial
dataa,b,c,d, x¢, yo and n.
The key observation is that the system can be written in matrix form as follows

oo 1 R ) Rl 6 B
Yn+1 cd Yn Yn+1 Yn

where 4 = [a b

J i| is the matrix of coefficients. An immediate induction yields
¢

[x"] =A”[x°] n >0, (2.4)
Yn Yo

and so the problem is reduced to the computation of A", which is solved by
Theorem 2.25.

Let us consider a slightly different problem, also very classical. It concerns
second order linear recurrences with constant coefficients. More precisely, we fix
complex numbers a, b, X¢, x| and look for the general term of the sequence (x,,),>0
defined recursively by

Xpt1 = ax, +bx,—, n=>1, (2.5)

We can easily reduce this problem to the previous one by denoting y, = x,—; for

n>1and y, = E(XI —axp) if b # 0 (which we will assume from now on, since

otherwise the problem is very simple from the very beginning). Indeed, relation
(2.5) is equivalent to the following system

{ Xp4+1 = ax, + byn n>0

Yn+1 = Xy

As we have already seen, finding x, and y, (or equivalently x,) comes down to
computing the powers of the matrix of coefficients

a=9"1
10
The characteristic equation of this matrix is A2 —al — b = 0. If A; and A, are the
roots of this equation, then Theorem 2.25 yields the following:
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o If 1; # A,, then we can find constants u, v such that
Xy = ur] +vAj
for all n. These two constants are easily determined by imposing
xo=u-+v and x| =ul; +vAi,

and solving this linear system in the unknowns u, v.
e If A; = A,, then we can find constants u, v such that for all n > 0

Xp = (un + v)A7,

and u and v are found from the initial conditions by solving xo = v and x; =
(m+v)A.
Problem 2.30. Find the general terms of (x,;)n>0, (Vn)n>o if

Xn+1 = Xp + 2yn
Y+l = —2X, + 5y, n =0,

al’lde = 1,y0 =2.

1 2 . .. .
s | with characteristic equation

Solution. The matrix of coefficients is A = |:

A% —6A + 9 = 0 and solutions A; = A, = 3. Theorem 2.25 yields (after a simple
computation)

11 -22 (3 —2n)3""! 2n3"!
An — 3)11 3}1 1 —
2 [—2 2] [ —2n3=1 (34 2m)30!
Combined with xo = 1 and yy = 2, we obtain

X, =@2n+3)3 land y, =2 +3)3""!, n>0.

Problem 2.31. Find the limits of sequences (x,),>0 and (¥,),>0, Where

Xpp1 = (I —a)x, +ay,
Yut1 = Bxy + (1 = By,

and o, B are complex numbers with |1 —a — 8| < 1.
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Solution. The matrix of coefficients is
l—a «
B 1-p

and one easily checks that its eigenvalues are A; = 1 and A, = 1 —a — . Note that
|A2] < 1, in particular A, # 1. Letting

_ 1 _ _ 1 B a
R 1 [ |

Theorem 2.25 gives the existence of an explicit matrix C such that
A" =AMB+ A;C =B+ AC.

Since |A2| < 1, we have lim,_ . A5 = 0 and the previous relation shows that
lim, 00 A" = B.

Yn Yo
and if /1, [, are their limits, then

. X X
Since [ " :| = A" [ 0 i| we conclude that x,, and y, are convergent sequences,

Taking into account the explicit form of B, we obtain

. . Bxo + ayg
lim x, = lim y, = ——.
n—>00 n—>00 a+p

2.4.1 Problems for Practice

1. Find the general term of the sequence (x,),>o defined by x; = 1, x, = 0 and for
alln > 1

Xp+2 = 4Xp41 — Xp.
2. Consider the sequence (x,),>o defined by xo = 1, x; =2 and foralln > 0
Xn4+2 = Xp+1 — Xp.

Is this sequence periodical? If so, find its minimal period.
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3. Find the general terms of the sequences (x,),>0 and (y,),>0 satisfying xo =
yvo=1,x =1,y =2and

2x, + 3y,, 2yn + 3x,
—5 s Ynd1 = —5 .

Xn+1

4. A sequence (x,),>o satisfies xo = 2, x; = 3 and foralln > 1

Xn+1 = A/ Xn—1Xp.

Find the general term of this sequence (hint: take the logarithm of the recurrence
relation).
5. Consider amap f : (0, 00) — (0, 00) such that

J(f(x)) = 6x = f(x)

for all x > 0. Let x > 0 and define a sequence (z,),>0 by 20 = x and z,4+1 =
f(zy) forn > 0.

(a) Prove that
Zn42 + Zn41 — 6z, =0

forn > 0.
(b) Deduce the existence of real numbers a, b such that

=a-2" 4 b (=3)

foralln > 0.
(c) Using the fact that z, > 0 for all n, prove that b = 0 and conclude that
f(x) = 2x forall x > 0.

2.5 Solving the Equation X" = A

Consider a matrix A € M;(C) and an integer n > 1. In this section we will explain
how to solve the equation X" = A, with X € M,(C).
A first key observation is that for any solution X of the equation we have

AX = XA.

Indeed, this is simply a consequence of the fact that X" - X = X - X". We will need
the following very useful:
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Proposition 2.32. Let A € M,(C) be a non-scalar matrix. If X € M,(C)
commutes with A, then X = al, + BA for some complex numbers a, B.

Proof. Write A = |:(c1 cbz’:| and X = |:x ); :| The equality AX = XA is equivalent,
Z

after an elementary computation, to
bz=cy, ay+bt=bx+dy, cx+dz=az+ ct,
or

bz=cy, (@—d)y=b(x—1), c(x—1t)=z(a—d).

Ifa # d,set p = 2=L. Thenz = ¢f, y = bf and fa — x = pd —t. We deduce
that X = al, + BA, wherea = —fa + x = —fd +¢.

Suppose that a = d. If x # ¢, the previous relations yield b = ¢ = 0 and so A4 is
scalar, a contradiction. Thus x = ¢ and bz = cy. Moreover, one of b, ¢ is nonzero
(as A is not scalar), say b (the argument when ¢ # 0 is identical). Setting § = 5
and @ = x — Ba yields X = al, + BA.

O

Let us come back to our original problem, solving the equation X" = A. Let 14
and A, be the eigenvalues of A. We will discuss several cases, each of them having
a very different behavior.

Let us start with the case A # A,. By Problem 2.21, we can then write A =
P [)(L)l /{) i| P! for some P € GL,(C). Since AX = XA and A is not scalar, by

2
Proposition 2.32 there are complex numbers a, b such that X = al, + bA. Thus

a+bl1 0 -1
X=P P
[ 0 a+bkzi|

The equation X" = A is then equivalent to

(a + bAy)" 0 A0
0 (a +bA2)n o 0 )Lz ’
It follows that @ + bA; = z; and @ + bA, = zp, where Zf = A; and Z§ = A,, and

X:P[Zlo

P~!. Hence
0 Zz]

Proposition 2.33. Let A € M,(C) be a matrix with distinct eigenvalues Ay, A,. Let

A0 i| P~L. Then the solutions of the

P € GL,(C) be a matrix such that A = P [ 02
2
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equation X" = A are given by X = P |:Z01 0
2

of the equations t" = Ay and t" = A, respectively.

i| P! where z; and 7, are solutions

Let us deal now with the case in which A is not scalar, but has equal eigenvalues,
say both eigenvalues equal A. Then the matrix B = A — A, satisfies B> = O, (by
the Cayley—Hamilton theorem) and we have A = B + Al,. Now, since AX = XA
and A is not scalar, we can write X = ¢/l + dA for some complex numbers c, d
(Proposition 2.32). Since A = B + Al, it follows that we can also write X =
al, + bB for some complex numbers a, b. Since B? = 0,, the binomial formula
and the given equation yield

A=X"= (al, +bB)" =a"I, + na" " 'bB.

Since A = B + AI,, we obtain

B+ A, =nd" " 'bB + d" .
Since B is not scalar (as A itself is not scalar), the previous relation is equivalent to

l=na""'p and A=d".
This already shows that A # 0 (as the first equation shows that a # 0), soif A =0
(which corresponds to 4> = 0,) then the equation has no solution. On the other
hand, if A # 0, then the equation ¢” = A has n complex solutions, and for each of

them we obtain a unique value of b, namely b = na,}_, . We have just proved the
following

Proposition 2.34. Suppose that A € M,(C) is not scalar, but both eigenvalues of
A are equal to some complex number A. Then

(a) If A = 0, the equation X" = A has no solutions for n > 1, and the only solution
X = Aforn =1
(b) If & # 0, then the solutions of the equation X" = A are given by

1
X = a]2 + —(A —/\12),
na

n—1

where a runs over the n solutions of the equation 7" = A.

Finally, let us deal with the case when A is scalar, say A = ¢ I, for some complex
number c. If ¢ = 0, then X" = O, has already been solved, so let us assume that
¢ # 0. Consider a solution X of the equation X" = ¢/, and let A;, A, be the
eigenvalues of X. Then A| = A} = c. We have two possibilities:
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» Either A; # A,, in which case X has distinct eigenvalues and so (Problem 2.21)
A O

e can write X = P
we can wri [OAZ

] P! for some invertible matrix P. Then X" =

n
P [Al 0 ] P! and this equals ¢/, since A} = A} = c. The conclusion is that

0 A}
for each pair (1, A,) of distinct solutions of the equation " = ¢ we obtain a
whole family of solutions, namely the matrices X = P [)é)l /{) i| P! for some
2

invertible matrix P.

» Suppose that .} = Ay andlet Y = X — A, I,, then Y2 = O, and the equation
X" = clisequivalentto (Y + A1 1,)" = cI,. Using again the binomial formula
and the equality Y2 = O,, we can rewrite this equation as

ML+ nA7Y = cb.

Since A{ = cand A # 0 (as ¢ # 0), we deduce that necessarily ¥ = O, and so
X = A1, with A, one of the n complex solutions of the equation " = c. Thus
we obtain 7 more solutions this way.

We can unify the previous two possibilities and obtain

Proposition 2.35. If ¢ # 0 is a complex number, the solutions in M,(C) of the
equation X" = cI, are given by

X:P[”O]P—1 (2.6)
0y

where x,y are solutions (not necessary distinct) of the equation 7" = ¢, and P €
GL,(C) is arbitrary.

Problem 2.36. Let? € (0, ) be a real number and let # > 1 be an integer. Find all
matrices X € M,(R) such that

X — cost —sint
sint cost |

Solution. With the notations of Problem 2.29, we need to solve the equation X" =

A;. Let X be a solution, then X4, = 4, X = X"*! Writing X = |:a Z], the
c
relation XA, = A, X yields bsint = —csint and —a sint = —d sint, thusa = d

and ¢ = —b. Hence X = |:a —b

b i| Next, since X" = A;, we have
a

(det X)" = det X" =detA4, =1,
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and since det X = a2 + % > 0, we deduce that > + b*> = 1. Thus we can
write @ = cosx and b = sinx for some real number x. Then X = A, and the
equation X" = A, is equivalent (thanks to Problem 2.29) to A,, = A,. This is
further equivalent to nx = t + 2k for some integer k. It is enough to restrict to
k €{0,1,...,n—1}. We conclude that the solutions of the problem are the matrices

CoS f;, — sinty
Xk = . )
Sinf; COS

t + 2k
wheretkzu,kzo,l,...,n—l. O
n

a—b

Problem 2.37. Let A = |:
b a

] € M;(R). Prove that the following statements
are equivalent:

(1) A" = I, for some positive integer n;
(2) a = cosrm, b = sinrm for some rational number r.

Solution. If a = cos(];‘n) and b = sin(];‘n) for some n > 1 and k € Z, then
Problem 2.29 yields A = [, thus (2) implies (1).

Assume now that (1) holds. Then (det A)” = det A” = 1 and since detA =
a? + b% > 0, we must have det A = 1, thatis a®> + b2 = 1. Thus we can find # € R
such that @ = cost and b = sint. Then A = A, and by Problem 2.29 we have
I, = A" = Ay;. This forces cos(nt) = 1 and so ¢ is a rational multiple of . The
problem is solved. O

2.5.1 Problems for Practice

1. Let n > 1 be an integer. Prove that the equation

01
X" =
[oo]
has no solutions in M;(C).
2. Solve in M;(C) the binomial equation

s [-1-2
X_[l 2].

3. Letn > 1 be an integer. Prove that the equation

X”=[3_1]
00

has no solutions in M;(Q).
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4. Find all matrices X € M;(R) such that

; [4 3
X _[—3—2]'

5. Find all matrices A, B € M;(C) such that
AB =0, and A°+ B = 0,.

6. Solve in M;(R) the equation

xn=| 7 7.
—~15 12

7. Solve in M;(R) the equation
xn=| 072
21 7

2.6 Application to Pell’s Equations

Let D > 1 be an integer which is not a perfect square. The diophantine equation,
called Pell’s equation

_x2 — Dy2 = 1 (27)

has an obvious solution (1, 0) in nonnegative integers. A well-known but nontrivial
result (which we take for granted) is that this equation also has nontrivial solutions
(i.e., different from (0, 1)).

In this section we explain how the theory developed so far allows finding all
solutions of the Pell equation once we know the smallest nontrivial solution. Let Sp
be the set of all solutions in positive integers to the Eq. (2.7) and let (x, y;) be the
fundamental solution, i.e., the solution in Sp for which the first component x; is
minimal among the first components of the elements of Sp.

If x, y are positive integers, consider the matrix

x Dy
Ay = |:y x ]

so that (x, y) € Sp if and only if det A(, ;) = 1. Elementary computations yield the
fundamental relation

A(x,y) : A(u.v) = A(xu+Dyv,xv+yu) (28)
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Passing to determinants in (2.8) we obtain the multiplication principle:

if (x,y),(,v) € Sp, then (xu+ Dyv,xv+ yu) € Sp.

It follows from the multiplication principle that if we write

D
A =7
Yn  Xn

then (x,, y,) € Sp for all n. The sequences x, and y, are described by the recursive
system

%xn+1 = X1Xn +Dy1yn (29)
Ynt1 = V1Xp +X1Yn, n =1
consequence of the equality A’(’; ,1y|) = A(xl,yl)A'(lxl,v])- Moreover, Theorem 2.25

gives explicit formulae for x,, and y, in terms of x|, yy, n: the characteristic equation
of matrix A, ) is

A2—2xA+1=0

with A1, = x; £ ,/xlz —1 = x; £ y1+/ D, and Theorem 2.25 yields, after an
elementary computation of the matrices B, C involved in that theorem

% = 5100+ VD" + (v~ 11D

(2.10)
1

m=5JD

Note that relation (2.10) also makes sense for n = 0, in which case it gives the
trivial solution (xg, yo) = (1, 0).

[(x1 + y1vV/D)' — (x1 — yv/D)"], n=>1.

Theorem 2.38. All solutions in positive integers of the Pell equation x> — Dy?* = 1
are described by the formula (2.10), where (x1, y1) is the fundamental solution of
the equation.

Proof. Suppose that there are elements in Sp which are not covered by formula
(2.10), and among them choose one (x,y) for which x is minimal. Using the
multiplication principle, we observe that the matrix A(xﬁy)A&ll,yl) generates a
solution in integers (x’, y’), where

x'=xix—Dyy

/

Yy =-=ynx+x1y

We claim that x’, y’ are positive integers. This is clear for x’, as x > +/Dy and x| >
V' Dy, thus x;x > Dy, y. Also, x;y > yx is equivalent to x2(x?2—1) > x*(x1-1)
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or x > x;, which holds because (xi, y;) is a fundamental solution and (x, y) is
not described by relation (2.10) (while (x1, y;) is described by this relation, with
n=1),. Moreover, since Ay Ay, y) = A(x,y), We have x = x'x1+Dy'y; > x'
and y = x’'y; + y’x; > y’. By minimality, (x’, y") must be of the form (2.10), ie.,

k k+1
Ay, ))A(xl 1y = Al ., for some positive integer k. Therefore A, y=A(,7 ). ie.,

(x, y) is of the form (2.10), a contradiction.
Problem 2.39. Find all solutions in positive integers to Pell’s equation

x2 =2y =1.

Solution. The fundamental solution is (x1, y;) = (3, 2) and the associated matrix is

34
A = [2 3}

The solutions (x,, y,)n>1 are given by AE’”), ie.

Xy = %[(3 +2v2)" + (3 —2+/2)"]

1 n n
Yy = z—ﬁ[(3+2ﬁ) —(3-2v2)"].

|

We can extend slightly the study of the Pell equation by considering the more
general equation

ax*—by* =1 (2.11)

where we assume that ab is not a perfect square (it is not difficult to see that if ab is
a square, then the equation has only trivial solutions). Contrary to the Pell equation,
this Eq. (2.11) does not always have solutions (the reader can check that the equation
3x2 — y% = 1 has no solutions in integers by working modulo 3).

Define the Pell resolvent of (2.11) by

W —aby’ =1 (2.12)

and let S, 5 be the set of solutions in positive integers of Eq. (2.11). Thus S 45 is the
set denoted S, when considering the Pell equation (it is the set of solutions of the
Pell resolvent). If x, y, u, v are positive integers consider the matrices

x by u abv
B(X.y):[yaxi|v Au.v:|:v u ]s

the second matrix being the matrix associated with the Pell resolvent equation.
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An elementary computation shows that

B WAy = BGutbyv.axvtyuys

Passing to determinants in the above relation and noting that (x, y) € S, if and
only if det B(, ,) = 1, we obtain the multiplication principle:

if (x,y)eS,p and (u,v) €Sy, then (xu-byv,axv+ yu)€ Sqp,

i.e., the product B, ,) A,y generates the solution (xu + byv,axv + yu) of (2.11).
Using the previous theorem and the multiplication principle, one easily obtains the
following result, whose formal proof is left to the reader.

Theorem 2.40. Assume that Eq.(2.11) is solvable in positive integers, and let
(x0, yo) be its minimal solution (i.e., x¢ is minimal). Let (uy, vy) be the fundamental
solution of the resolvent Pell equation (2.14). Then all solutions (x,, y,) in positive
integers of Eq. (2.11) are generated by

B(«\’nqy:z) = B(X(JJ’())A?L{].V])’ n z 0 (213)
It follows easily from (2.13) that

Xp = Xolp + bJ’oVn

(2.14)
Yn = Youp + axov,, n =0

where (u,, v,),>1 is the general solution to the Pell resolvent equation.

Problem 2.41. Solve in positive integers the equation
6x> —5y* = 1.

Solution. This equation is solvable and its minimal solution is (xo, yo) = (1, 1).
The Pell resolvent equation is u? —30v2 = 1, with fundamental solution (uy,vy) =
(11, 2). Using formulae (2.14) and then (2.10), we deduce that the solutions in
positive integers are (X, ¥, )n>1, Where

6+ v/30 6— /30
X, = +1—2(11 +230)" +

—0 (1 —2+/30)"

(11 —2+/30)".

54 /30 5— /30
Vi +1—;/_(11 +2V30)" +

12
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2.6.1 Problems for Practice

1. A triangular number is a number of the form 1 4 2 + ... 4 n for some positive
integer n. Find all triangular numbers which are perfect squares.

2. Find all positive integers n such that n 4 1 and 3n + 1 are simultaneously perfect
squares.

3. Find all integers a, b such that > 4+ b?> = 1 + 4ab.

4. The difference of two consecutive cubes equals 1> for some positive integer 7.
Prove that 2n — 1 is a perfect square.

5. Find all triangles whose sidelengths are consecutive integers and whose area is
an integer.



Chapter 3
Matrices and Linear Equations

Abstract This chapter introduces and studies the reduced row-echelon form of
a matrix, and applies it to the resolution of linear systems of equations and the
computation of the inverse of a matrix. The approach is algorithmic.

Keywords Linear systems * Homogeneous Systems ¢ Row-echelon form e
Gaussian reduction

The resolution of linear systems of equations is definitely one of the key motivations
of linear algebra. In this chapter we explain an algorithmic procedure which allows
the resolution of linear systems of equations, by performing some simple operations
on matrices. We consider this problem as a motivation for the introduction of
basic operations on the rows (or columns) of matrices. A much deeper study of
these objects will be done in later chapters, using a more abstract (and much more
powerful) setup. We will fix a field F in the following discussion, which the reader
might take R or C.

3.1 Linear Systems: The Basic Vocabulary

A linear equation in the variables xi, ..., x, is an equation of the form

aixy+...+apx, = b,

where ay,...,a,,b € F are given scalars and n is a given positive integer. The
unknowns xi, ..., X, are supposed to be elements of F.
A linear system in the variables xi,...,x, is a family of linear equations,

usually written as

auxi+ anxy +..4 apx, =b
ar xi+ anx, +..4 ayx, =b 3.1)

AmX1+amXas + ..+ AupXy = by,
© Springer Science+Business Media New York 2014 85
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Here a1,a12,...,an, and by, ..., b, are given scalars. There is a much shorter
notation for the previous system, using matrices and vectors: denoting X the
(column) vector with coordinates x, ..., x,, A the matrix [a;;]i<i<m.1<j<n, and b
the (column) vector whose coordinates are by, . . ., b, the system can be rewritten as

AX =b. (3.2)
Finally, we can rewrite the system in terms of vectors: if Cy,...,C, are the
columns of the matrix A, seen as vectors in F' (written in column form), the system

is equivalent to

x1C1 + xCy + ...+ x,C, = b. 3.3)

Definition 3.1. (a) The linear system (3.1) is called homogeneous if b} = ...
bn = 0.

(b) The homogeneous linear system associated with the system (3.2) is the system
AX =0.

Thus a homogeneous system is one of the form AX = 0 for some matrix A. For
the resolution of linear systems, homogeneous systems play a crucial role, thanks to
the following proposition, which shows that solving a general linear system reduces
to finding one solution and then solving a homogeneous linear system.

Proposition 3.2 (Superposition Principle). Let A € M, ,(F) and b € F™. Let
S C F" be the set of solutions of the homogeneous linear system AX = 0. If the
system AX = b has a solution X, then the set of solutions of this system is Xy + S.

Proof. By assumption AX, = b. Now the relation AX = b is equivalentto AX =
AXy,or A(X —Xy) = 0. Thus a vector X is a solution of the system AX = b if and
only if X — Xj is a solution of the homogeneous system AY = 0,i.e., X — X, € S.
This is equivalent to X € Xy + S. |

Definition 3.3. A linear system is called consistent if it has at least one solution. It
is called inconsistent if it is not consistent, i.e., it has no solution.

Let us introduce a final definition for this section:

Definition 3.4. (a) Two linear systems are equivalent if they have exactly the
same set of solutions.

(b) Let A, B be matrices of the same size. If the systems AX = 0 and BX = 0 are
equivalent, we write A ~ B.

Remark 3.5. (a) Typical examples of inconsistent linear systems are

X1=O
X1=1
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or

x1—2x2=1
2X2—X1 =0

(b) Note that homogeneous systems are always consistent: any homogeneous
system has an obvious solution, namely the vector whose coordinates are all
equal to 0. We will call this the trivial solution. It follows from Proposition 3.2
that if the system AX = b is consistent, then it has a unique solution if and only
if the associated homogeneous system AX = 0 has only the trivial solution.

3.1.1 Problems for Practice

1. For which real numbers «a is the system

X1 +2x =1
3x1 +6x, =a

consistent? Solve the system in this case.
2. Find all real numbers a and b for which the systems

X1 +2x, =3

—Xx1+3x, =1
and

X1 +ax, =2

—X; +2x,=b

are equivalent.
3. Let a, b be real numbers, not both equal to 0.

(a) Prove that the system

ax; +bx, =0
—bxi +ax, =0

has only the trivial solution.
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(b) Prove that for all real numbers c, d the system

ax, +bx, =c
—bxi +axy, =d

has a unique solution and find this solution in terms of a, b, ¢, d.

. Let A € M;,(C) be a matrix and consider the homogeneous system AX = 0.

Prove that the following statements are equivalent:

(a) This system has only the trivial solution.
(b) A isinvertible.

. Let A and B be n x n matrices such that the system A BX = 0 has only the trivial

solution. Show that the system BX = 0 also has only the trivial solution.

. Let C and D be n x n matrices such that the system CDX = b is consistent for

every choice of a vector b in R”. Show that the system CY = b is consistent for
every choice of a vector b in R".

. Let A € M, (F) be an invertible matrix with entries in a field F. Prove that for

all b € F" the system AX = b is consistent (the converse holds but the proof is
much harder, see Theorem 3.25).

3.2 The Reduced Row-Echelon form and Its

Relevance to Linear Systems

Consider a matrix A with entries in a field F. If R is a row of A4, say R is zero if all

entries in row R are equal to 0. If R is nonzero, the leading entry of R or the pivot

of R is the first nonzero entry in that row. We say that A is in reduced row-echelon

form if A has the following properties:

(1) All zero rows of A are at the bottom of A (so no nonzero row can lie below a

ZEro row).

(2) The pivot in a nonzero row is strictly to the right of the pivot in the row above.
(3) In any nonzero row, the pivot equals 1 and it is the only nonzero element in its

O,

column.

For instance, the matrix [, is in reduced row-echelon form, and so is the matrix
. The matrix

34)
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is in reduced row-echelon form, but the slightly different matrix

1-21-1

B=|00T11

0000

is not in reduced row-echelon form, as the pivot for the second row is not the only
nonzero entry in its column.

What is the relevance of this very special form of matrices with respect to the
original problem, consisting in solving linear systems of equations? We will see
in the next sections that any matrix can be put (in an algorithmic way) in reduced
row-echelon form and that this form is unique. Also, we will see that if A,.r is the
reduced row-echelon form of A, then the systems AX = 0 and A,.r X = 0 are
equivalent. Moreover, it is very easy to solve the system A,.r X = 0 since A,.r is
in reduced row-echelon form.

Example 3.6. Letus solve the system AX = 0, where A is the reduced row-echelon
matrix given in relation (3.4). The system is

x1—2x2—X4=0

X3+x4=0
We can simply express x3 = —x4 and x; = 2x, + X4, thus the general solution of
the system is
(2a + b,a,—b,b)

witha,b € F.

In general, consider a matrix A which is in reduced row-echelon form and let
us see how to solve the system AX = 0. The only meaningful equations are those
given by the nonzero rows of A (recall that all zero rows of A are at the bottom).
Suppose that the ith row of A is nonzero for some i and let the pivot of that row be
in column j, so that the pivot is a;; = 1. The ith equation of the linear system is
then of the form

n
X; + Z ajpxi = 0.
k=j+1

We call x; the pivot variable of the row L;. So to each nonzero row we associate a
unique pivot variable. All the other variables of the system are called free variables.
One solves the system starting from the bottom, by successively expressing the pivot
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variables in terms of free variables. This yields the general solution of the system,
in terms of free variables, which can take any value in F. If yy, ..., y, are the free
variables, then the solutions of the system will be of the form

buyr +biyr + ...+ bigys

X = boy1 + banyr + ...+ bagys

bnlyl + bn2y2 + ...+ bnsys

for some scalars b;;. This can also be written as

bu bis
b b
X=y] 2 +...+ys =
bnl bnx
We call
bll bls
Y1: b21 LA ] YS= bzs
bnl bn‘\'
the fundamental solutions of the system AX = 0. The motivation for their name is
easy to understand: Yy, ..., Y; are solutions of the system AX = 0 which “generate”
all other solutions, in the sense that all solutions of the system AX = 0 are obtained
by all possible linear combinations of Yi,...,Ys (corresponding to all possible
values that the free variables y1, ..., ys can take).

Example 3.7. Let us consider the matrix in reduced row-echelon form

1100-10 2
0010 3 01
A=(0001 0 0-1
0000010
0000 00O

and the associated homogeneous linear system AX = 0. This can be written as

X1+ X2—x5+2x7=0
X3+3X5+X7=O
X4—X7=O
X6=0
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The pivot variables are x|, X3, X4, X¢, as the pivots appear in columns 1, 3,4, 6. So
the free variables are x,, x5, x7. Next, we solve the system starting with the last
equation and going up, at each step expressing the pivot variables in terms of free
variables. The last equation gives x¢ = 0. Next, we obtain x4 = x7, then x3 =
—3x5 — x7 and x; = —Xx, + x5 — 2x7. Thus

[ —xy 4+ x5 — 2x7 | [ —17] 1] [ —27]

X2

—3)(?5 — X7
X = X7 =X + x5 - + x7-
X5
0

X7

=l oelel e S

The three column vectors appearing in the right-hand side are the fundamental
solutions of the system AX = 0. All solutions of the system are given by all possible
linear combinations of the three fundamental solutions.

The number of fundamental solutions of the system AX = 0 is the total
number of variables minus the number of pivot variables. We deduce that the system
AX = 0 has the unique solution X = 0 if and only if there are no free variables,
or equivalently every variable is a pivot variable. This is the same as saying that
the number of pivot variables equals the number of columns of A. Combining these
observations with the superposition principle (Proposition 3.2) we obtain the very
important:

Theorem 3.8. (a) A homogeneous linear system having more variables than
equations has nontrivial solutions. If the field containing the coefficients of the
equations is infinite (for instance R or C), then the system has infinitely many
solutions.

(b) A consistent linear system AX = b having more variables than equations has
at least 2 solutions and, if the field F is infinite (for instance F = Ror F = C),
then it has infinitely many solutions.

We turn now to the fundamental problem of transforming a matrix into a reduced
row-echelon form matrix. In order to solve this problem we introduce three types of
simple operations that can be applied to the rows of a matrix. We will see that one
can use these operations to transform any matrix into a reduced row-echelon form
matrix. These operations have a very simple motivation from the point of view of
linear systems: the most natural operations that one would do in order to solve a
linear system are:

e multiplying an equation by a nonzero scalar;
» adding a multiple of an equation to a second (and different) equation;
* interchanging two equations.
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Note that these operations are reversible: for example, the inverse operation of
multiplication of an equation by a nonzero scalar a is multiplication of that equation
by the inverse of a. It is therefore clear that by performing any finite sequence
of such operations on a linear system we obtain a new linear system which has
precisely the same set of solutions as the original one (i.e., a new linear system
which is equivalent to the original one). These operations on equations of the system
can be seen as operations on the matrix associated with the system. More precisely:

Definition 3.9. An elementary operation on the rows of a matrix A (or elemen-
tary row operation) is an operation of one of the following types:

(1) row swaps: interchanging two rows of the matrix A.

(2) row scaling: multiplying a row of A by a nonzero scalar.

(3) transvection: replacing a row L by L + ¢ L’ for some scalar ¢ and some row L’
of A, different from L.

The previous discussion shows that if A is a matrix and B is obtained from
A by a sequence of elementary row operations, then A ~ B, where we recall
(Definition 3.4) that this simply means that the systems AX = 0 and BX = 0
are equivalent.

Corresponding to these operations, we define elementary matrices:

Definition 3.10. A matrix A € M,(F) is called an elementary matrix if it is
obtained from 7, by performing exactly one elementary row operation.

Note that elementary matrices have the same number of rows and columns. There
are three types of elementary matrices:

(1) Transposition matrices: those obtained from 7, by interchanging two of its rows.

(2) Dilation matrices: those obtained from 7, by multiplying one of its rows by a
nonzero scalar.

(3) Transvection matrices: those obtained from 7, by adding to a row a multiple of
a second (and different) row.

A simple, but absolutely crucial observation is the following:

Proposition 3.11. Let A € M, ,(F) be a matrix. Performing an elementary row
operation on A is equivalent to multiplying A on the left by the elementary matrix
corresponding to that operation.

Proof. If E is any m x m matrix and A € M,, ,(F), then the ith row of EA is
eiiLy+erLly+ ...+ eimLy, where Ly, ..., Ly are the rows of A and e;; are the
entries of E. The result follows readily from the definitions. |

We now reach the most important theorem of this chapter: it is one of the
most important theorems in linear algebra, since using it we will obtain algorithmic
ways of solving many practical problems, concerning linear systems, invertibility of
matrices, linear independence of vectors, etc.
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Theorem 3.12. Any matrix A € M,,,(F) can be put into a reduced row-echelon
form by performing elementary row operations on its rows.

Proof. The proof is algorithmic. Start with any matrix A and consider its first
column. If it is zero, then pass directly to the next column. Suppose that the first
column Cj is nonzero and consider the first nonzero entry, say it is a;;. Then
interchange rows L and L; (if i = 1 we skip this operation), so in the new matrix
we have a nonzero entry x in position (1, 1). Multiply the first row by 1/x to obtain
a new matrix, in which the entry in position (1, 1) is 1. Using transvections, we can
make all entries in the first column below the (1, 1) entry equal to O: for i > 2
subtract b;; times the first row, where b;; is the entry in position (7, 1). Thus after
some elementary row operations we end up with a matrix B whose first column is
either 0 or has a pivot in position (1, 1) and zeros elsewhere.

Next, we move to the second column C, of this new matrix B. If every entry
below b, is zero, go directly to the third column of B. Suppose that some entry
below by, is nonzero. By possibly swapping the second row and a suitable other row
(corresponding to the first nonzero entry below by;), we may assume that by, # 0.
Multiply the second row by 1/by, so that the entry in position (2,2) becomes 1.
Now make the other entries in the second column zero by transvections. We now
have pivots equal to 1 in the first and second columns. Needless to say, we continue
this process with each subsequent column and we end up with a matrix in reduced
row-echelon form. O

Remark 3.13. The algorithm used in the proof of the previous theorem is called
Gaussian reduction or row-reduction.

By combining the Gaussian reduction theorem (Theorem 3.12) and Proposi-
tion 3.11 we obtain the following result, which will be constantly used in the next
section:

Proposition 3.14. For any matrix A € M,, ,(F) we can find a matrix B € M,,,(F)
which is a product of elementary matrices, such that A,.y = BA.

Remark 3.15. In order to find the matrix B in practice, the best way is to row-reduce
the matrix [A|/,,] if A is m x n. The row-reduction will yield the matrix [A,.r|B],
as the reader can check.

Example 3.16. Let us perform the Gaussian reduction on the matrix

01234
101 23

A= M, 5(R).
011 11]Mes®

31-102

The first nonzero entry in column C; appears in position (2, 1) and equals —1, so
we swap the first and second rows, then we multiply the new first row by —1 to get
a pivot equal to 1 in the first row. We end up with the matrix
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10-1-2-3
A = 012 3 4
011 1 1
31-1 0 2

We make zeros elsewhere in the first column, by subtracting three times the first row
from the last row. The new matrix is

10-1-2-3
Ay = 012 3 4
011 1 1
012 6 11

Since we are done with the first column, we go on to the second one. The entry
in position (2, 2) is already equal to 1, so we don’t need to swap rows or to scale
them. Thus we make directly zeros elsewhere in the second column, so that the only
nonzero entry is the 1 in position (2, 2). For this, we subtract the second row from
the third and the fourth. The new matrix is

10-1-2-3
012 3 4
00-1-2-3
000 3 7

We next consider the third column. The first nonzero entry below the entry in
position (2,3) is —1, so we multiply the third row by —1 and then make the 1
in position (3, 3) the only nonzero entry in that column by transvections. We end
up with

1000 O
A = 010-1-2
001 2 3
000 3 7

We repeat the procedure with the fourth column: we multiply the last row by 1/3
(so that the first nonzero entry below the one in position (3, 4) becomes 1 our pivot)
and then make the entry in position (4, 4) the only nonzero entry in its column by
transvections. The final matrix is the reduced row-echelon form of A, namely

1000 0
4 |0100 1/3
>~ 10010-5/3

0001 7/3
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Problem 3.17. Solve the homogeneous linear system AX = 0, where A is the
matrix from the previous example.

Solution. The systems AX = 0 and A,.rX = 0 being equivalent, it suffices to
solve the latter system. The pivot variables are x1, x,, X3, x4 and the free variable is
xs. The system A,.r X = 0 is given by

X1=O
X2+X3—5=0
X3—§X5=O
X4+%X5:0

The resolution is then immediate and gives the solutions

1 5 7
(0,—=t,=t,—=t.t), teR. O
3°3 3

3.2.1 Problems for Practice

1. Find the reduced row-echelon form of the matrix with real entries

12345
A=123456
34567

2. Implement the Gaussian reduction algorithm on the matrix

02112
1 1021
31102
1 1111

A=

3. Determine the fundamental solutions of the homogeneous linear system of
equations AX = 0, where A is the matrix

1 =210
A=|-2 402
-1 212
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4. (a) Write the solutions of the homogeneous system of equations AX = 0 in
parametric vector form, where

103
A=]01-1
—11-4

(b) Find a solution to the system for which the sum of the first two coordi-
natesis 1.
5. Solve the homogeneous system

X+2y—-3z=0
2x +5y+2z=0

3x—y—4z=0
6. Show that the homogeneous system of equations AX = 0 has nontrivial
solutions, where
2-131
A= 1022
3170
1 2 4-1

Then determine a matrix B of size 4 x 3 obtained from A by erasing one of its
columns such that the system BY = 0 has only the trivial solution.
7. Let n > 2 be an integer. Solve in real numbers the linear system

X1+ X3 X2 + X4 Xp—2 + Xp

, X3 = s ey Xp—1 =
2 3 2 =l 2

Xy =

3.3 Solving the System AX = b

Consider a linear system AX = b with A € M,, ,(F) and b € F™, in the variables
X1,...,X,, which are the coordinates of the vector X € F”. In order to solve
this system, we consider the augmented matrix (A|b) obtained by adding to the
matrix A a new column (at the right), given by the coordinates of the vector b.
Elementary row operations on the equations of the system come down to elementary
row operations on the augmented matrix, thus in order to solve the system we can
first transform (A|b) into its reduced row-echelon form by the Gaussian reduction
algorithm, then solve the new (much easier) linear system. The key point is the
following easy but important observation:
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Proposition 3.18. Consider the linear system AX = b. Suppose that the matrix
(A’|b") is obtained from the augmented matrix (A|b) by a sequence of elementary
row operations. Then the systems AX = b and A’X = b’ are equivalent, i.e., they
have exactly the same set of solutions.

Proof. As we have already noticed, performing elementary row operations on (A|b)
comes down to performing elementary operations on the equations of the system
AX = b, and these do not change the set of solutions, as they are reversible. O

We now reach the second fundamental theorem of this chapter, the existence and
uniqueness theorem.

Theorem 3.19. Assume that (A|b) has been brought to a reduced row-echelon form
(A’|b") by elementary row operations.

(a) The system AX = b is consistent if and only if (A’'|b") does not have a pivot in
the last column.

(b) If the system is consistent, then it has a unique solution if and only if A’ has
pivots in every column.

Proof. (a) Assume that (A’|b") has a pivot in the last column. If the pivot appears
in row i, then the i th row of (A4’|b") is of the form (0, ..., 0, 1). Thus among the
equations of the system A’X’ = b’ we have the equation Ox| + ...+ 0x) = 1,
which has no solution. Thus the system A’X’ = b’ has no solution and so the
system AX = b is not consistent.

Conversely, suppose that (A’|b’) does not have a pivot in the last column.
Say A’ has pivots in columns j; < ... < jr <nandcall x;,...,x;, the pivot
variables, and all other variables the free variables. Give the value O to all free
variables, getting in this way a system in the variables x;,, ..., x, . This system
is triangular and can be solved successively from the bottom, by first finding
Xj.,then xj;_,,..., then x;,. In particular, the system has a solution and so the
system AX = b is consistent.

(b) Since we can give any value to the free variables, the argument in the second
paragraph of the proof of (a) shows that the solution is unique if and only if
there are no free variables, or equivalently if and only if A’ has a pivot in every
column. O

For simplicity, assume that F = R, i.e., the coefficients of the equations of the
linear system AX = b are real numbers. In order to find the number of solutions
of the system, we proceed as follows. First, we consider the augmented matrix
[A]b] and perform the Gaussian reduction on it to reach a matrix [A’|b]. If this
new matrix has a row of the form (0,0, ..., 0, |c) for some nonzero real number c,
then the system is inconsistent. If this is not the case, then we check whether every
column of A’ has a pivot. If this is the case, then the system has a unique solution.
If not, then the system has infinitely many solutions.
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Problem 3.20. Let us consider the matrix

122
A=|011
244

Given a vector b € R3, find a necessary and sufficient condition in terms of the
coordinates of b such that the system AX = b is consistent.

Solution. The augmented matrix of the system is

122h
[Alb] =011 b,
244 by

In order to obtain its row-reduction, we subtract twice the first row from the third
one, and in the new matrix we subtract twice the second row from the first one. We
end up with

100b, —2by
[Alb] ~ 011 b
000 b;—2b

By the previous theorem, the system AX = b is consistent if and only if this last
matrix has no pivot in the last column, which is equivalent to b3 = 2b;. |

Using the fact that for two matrices A, B differing by a sequence of elementary
row operations the systems AX = 0 and BX = 0 are equivalent, we can give a
proof of the uniqueness of the reduced row-echelon form of a matrix. The following
simple and elegant proof of this nontrivial theorem is due to Thomas Yuster.!

Theorem 3.21. The reduced row-echelon form of a matrix is unique.

Proof. The proof goes by induction on the number n of columns of the matrix
A € M, ,(F). The result being clear for n = 1, assume that n > 1 and that
the result holds for n — 1. Let A € M, ,(F) and let A’ be the matrix obtained
from A by deleting the nth column. Suppose that B and C are two distinct reduced
row-echelon forms of 4. Since any sequence of elementary row operations bringing
A to a reduced row-echelon form also bring A’ to a reduced row-echelon form,
by applying the induction hypothesis we know that B and C differ in the nth
column only.

Let j be such that b;, # c¢;, (such j exists by the previous paragraph and the
assumption that B # C). If X is a vector such that BX = 0, then CX = 0 (as

ISee the article “The reduced row-echelon form of a matrix is unique: a simple proof”, Math.
Magazine, Vol. 57, No 2, Mar 1984, pp. 93-94.
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the systems BX = 0 and CX = 0 are equivalent to the system AX = 0), so that
(B—C)X = 0. Since B and C differ in the nth column only, the j th equation of the
system (B — C)X = Oreads (b;, — cj,)x, = 0 and so x, = 0 whenever BX =0
or CX = 0. It follows that x,, is not a free variable for B and C and thus B and C
must have a pivot in the nth column. Again, since B and C only differ in the last
column and since they are in reduced row-echelon form, the row in which the pivot
in the last column appears is the same for B and C. Since all other entries in the
last column of B and C are equal to O (as B and C are in reduced echelon form),
we conclude that B and C have the same nth column, contradicting the fact that
bjn # cjn. Thus B = C and the inductive step is completed, proving the desired
result.

O

3.3.1 Problems for Practice

1. Write down the solution set of the linear system

X1 —3)(?2 —2X3 =-5
X2 —X3
—2x1 +3x; +7x3 =

[l
|
A

in parametric vector form.

2. Let A be a matrix of size m x n and let b and ¢ be two vectors in R” such that the
system AX = b has a unique solution and the system AX = c has no solution.
Explain why m > n must hold.

3. Find a necessary and sufficient condition on the coordinates of the vector b € R*
for the system AX = b to be consistent, where

3 —62-1
4= -2 413
0 011
1 =210

4. Find x, y, z and w so that

x3[[1-1] |00
yallzw]| |00
Find one solution with x positive and one with x negative.

5. Explain why a linear system of 10 equations in 11 variables cannot have a unique
solution.
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6. Find all possible values for & and k such that the system with augmented matrix

12| h
2k |12
has

(a) aunique solution.
(b) infinitely many solutions.
(c) no solution.

7. For what value of s is the vector vi = (s,—7,—6) a linear combination of the
vectors v, = (1,0,—1) and v3 = (1, -7, —4)?
8. Let a, b be real numbers. Solve in real numbers the system

Xt+y=a
y+z=0>b
Z+t=a
t+x=>

3.4 Computing the Inverse of a Matrix

Recall that a matrix A € M, (F) is invertible if there is a matrix B such that
AB = BA = I,. Such a matrix is then unique and is called the inverse of A and
denoted A™!. A fundamental observation is that elementary matrices are invertible,
which follows immediately from the fact that elementary row operations on matrices
are reversible (this also shows that the inverse of an elementary matrix is still an
elementary matrix). For instance, if a matrix E is obtained from 7, by exchanging
rows i and j, then E~! is obtained from I, by doing the same operation that is
E~!' = E. Also, if E is obtained by adding A times row j to row i in I, then E~!
is obtained by adding —A times row j to row i in [,,. Due to its importance, let us
state this as a proposition:

Proposition 3.22. Elementary matrices are invertible and their inverses are also
elementary matrices.

Here is an important consequence of the previous proposition and
Proposition 3.14.

Theorem 3.23. For a matrix A € M, (F) the following statements are equiva-
lent:

(a) A is invertible.
(b) Aref = I,.
(c) A is a product of elementary matrices.
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Proof. First, let us note that any product of elementary matrices is invertible,
since any elementary matrix is invertible and since invertible matrices are stable
under product. This already proves that (c) implies (a). Assume that (a) holds. By
Proposition 3.14 and our initial observation, we can find an invertible matrix B
such that A,y = BA. Since A is invertible, so is BA and so A,y is invertible. In
particular, all rows in A,.r are nonzero (it is easy to see that if A,.s has an entire
row consisting of zeros, then A,.7C is never equal to /) and so A,.r has n pivots,
one in each column. Since moreover A4,y is in reduced row-echelon form, we must
have A,.y = I,. Thus (b) holds.

Finally, if (b) holds, then by Proposition 3.14 we can find a matrix B which is a
product of elementary matrices such that BA = I,,. By the previous proposition B
is invertible and B~! is a product of elementary matrices. Since BA = I,,, we have
A= B7'BA = B~ !andso A is a product of elementary matrices. Thus (b) implies
(c) and the theorem is proved. O

The following proposition expresses the solutions of the system AX = b when
A is an invertible matrix. Of course, in order to make this effective, one should have
an algorithm allowing one to compute A~'. We will see such an algorithm (based
again on row-reduction) later on (see the discussion following Corollary 3.26).

Proposition 3.24. If A € M, (F) is invertible, then for all b € F" the system
AX = b has a unique solution, namely X = A~'b.

Proof. Let X be a solution of the system. Multiplying the equality AX = b on the
left by A~! yields A~'(4X) = A~ 'b. Since
AT AX) = A" ADX =1,X = X,

we conclude that X = A5, thus the system has at most one solution. To see that
this is indeed a solution, we compute

A(A7'D) = (AA™Yb = I,b = b.

O

It turns out that the converse is equally true, but much trickier. In fact, we have
the fundamental:

Theorem 3.25. Let A € M,(F) be a matrix. The following statements are
equivalent:

(a) A is invertible
(b) Forallb € F" the system AX = b has a unique solution X € F".
(c) Forallb € F" the system AX = b is consistent.

Proof. We have already proved that (a) implies (b). It is clear that (b) implies (c),
so let us assume that (c) holds. Let 4,7 be the reduced row-echelon form of A. By
Proposition 3.14 we can find a matrix B which is a product of elementary matrices
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(thus invertible) such that A,.; = BA. We deduce that the system A,. X = Bb
has at least one solution for all b € F” (indeed, if AX = b,then 4,.r X = BAX =
Bb). Now, for any b’ € F" we can find b such that ¥’ = Bb, by taking b = B~'b’.
We conclude that the system 4,.; X = b is consistent for every b € F". But then
any row of A,.; must be nonzero (if row i is zero, then choosing any vector b
with the ith coordinate equal to 1 yields an inconsistent system) and, as in the first
paragraph of the proof of Theorem 3.23 we obtain A,y = I,,. Using Theorem 3.23
we conclude that A is invertible and so (a) holds. The theorem is proved. O

Here is a nice and nontrivial consequence of the previous theorem:
Corollary 3.26. Let A, B € M,,(F) be matrices.

(a) If AB = I, then A is invertible and B = A™".
(b) If BA = I, then A is invertible and B = A™".

Proof. (a) For any b € F" the vector X = BbD satisfies AX = A(Bb) =
(AB)b = b, thus the system AX = b is consistent for every b € F". By
the previous theorem, A is invertible. Multiplying the equality AB = I, on the
left by A" we obtain B= A"'AB = A7 !, thus B = A~ L.

(b) By part (a), we know that B is invertible and A = B~!. But then A itself is
invertible and A~! = B, since by definition B - B '=B"1.B=1,. O

The previous corollary gives us a practical way of deciding whether a square
matrix A is invertible and, if this is the case, computing its inverse. Indeed, A
is invertible if and only if we can find a matrix X such that AX = I, as then
X = A7 The equation AX = I, is equivalent to n linear systems: AX| = ey,
AX, = ey,..., AX, = e,, where ¢; is the ith column of /, and X; denotes the ith
column of X. We already know how to solve linear systems, using the reduced row
echelon form, so this gives us a practical way of computing X (if at least one of
these systems is inconsistent, then A is not invertible).

In practice, one can avoid solving n linear systems by the following
trick: instead of considering » augmented matrices [A4|e;], consider only one
augmented matrix [4]|/,], in which we add the matrix /, to the right of A (thus
[A|1,] has 2n columns). Thus we solve simultaneously the » linear systems we
are interested in by enlarging the augmented matrix! Now find the reduced
row-echelon form [A’| X] of this n x 2n matrix [A|],]. If A’ is different from 7/,
then A is not invertible. If A’ = I,,, then the inverse of A is simply the matrix X.

Example 3.27. Consider the matrix

1222
2122

A= M,(R).
2212 | EM®)

1222

We will try to see whether the matrix A is invertible and, if this is the case, compute
its inverse. Consider the augmented matrix B = [A]|l4] and let us find its reduced
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row-echelon form using Gaussian reduction. Subtracting twice the first row from
each of the second, third, and fourth row of B, we end up with

12 2 2 1000
B, = 0-3-2-2-2100
0-2-3-2-2010
0-2-2-3-2001

Multiply the second row by —1/3. In the new matrix, add twice the second row to
the third and fourth row. We end up with

122 2 1 000
o1 2 2 2 _loo

B, = 35 32 32 3
PO B A
00-5-3-5-501

Multiply the third row by —%. In the new matrix add 2/3 times the third row to
the fourth one, then multiply the fourth row by —5/7. Continuing the Gaussian
reduction in the usual way, we end up (after quite a few steps which are left to the
reader) with the matrix

5 2 2 2
o100 2 s 1]
0010 3 2 s ]
oSl b
000l 5 5 5 -3

This shows that A4 is invertible and
52 2 2

7 7 7 7
1 2 s 2 2
I — 7 7 7 7
AT =13 5 3

7 7 7 7

2 2 20 s

7 7 7 7

Let us take a closer look at this example, with another proof (this proof works
in general when the coefficients of the matrix have sufficient symmetry). Let us
consider solving the system AX = Y. This can be written

X1+ 2x +2x3 4+ 2x4 = )1
2X1 + X7 +2X3 +2X4 =)
2x1 +2x2 + X3+ 2x4 = 33
2x1 +2x2 +2x3+ X4 = Y4
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We can easily solve this system by introducing
S =x1 4+ x2 + x3 + x4.

Then the equations become

Thus x; = 2§ — y;. Taking into account that
S=x1+x+x3+x4 =
2S=y)+@2S—y2) +(2S —y3) + 25 —y4) =85 — (y1 + y2 + y3 + ya).

we deduce that

Vi Y2+ Y3t
7

S

and so

5 N 2 n 2 n 2
X]=—= = = =
1 7)’1 7)’2 7)’3 7)’4
and similarly for x,, x3, x4. This shows that for any choice of ¥ € R* the system
AX =Y is consistent. Thus A is invertible and the solution of the system is given
by X = A7'Y . If the first row of A7 is (a, b, ¢, d), then

X1 =ay; + by, + cy; + dys.

But since we know that

_ 5 +2 +2 +2
X1 = 7y1 7)/2 7y3 7Y4

and since yy, y2, ¥3, Y4 are arbitrary, we deduce that

In this way we can find the matrix A~ and, of course, we obtain the same result
as before (but the reader will have noticed that we obtain this result with much less
effort!).
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3.4.1 Problems for Practice

1. Is the matrix

1 2 3
A=|-1-2-4
01 1

invertible? If so, compute its inverse.
2. For which real numbers x is the matrix

1x1
A=(01x
101

invertible? For any such number x, compute the inverse of A.
3. Let x, y, z be real numbers. Compute the inverse of the matrix

I1xy
A=|01z¢
001

4. Determine the inverse of the matrix

nll...1
Inl...1

= € M,(R).
111...n

5. Let a be a real number. Determine the inverse of the matrix

0 0 ...00]
a 0 ...00
a> a 1 ...00

A= . . . . .. EM,,(R).
a”'_2 a”._3 a"'_4..'.i6
_a"_l a"2 a”_3...a1_




Chapter 4
Vector Spaces and Subspaces

Abstract In this chapter we formalize and generalize many of the ideas
encountered in the previous chapters, by introducing the key notion of vector
space. The central focus is a good theory of dimension for vector spaces spanned
by finitely many vectors. This requires a detailed study of spanning and linear
independent families of vectors in a vector space.

Keywords Vector space ¢ Vector subspace ¢ Span ¢ Linearly independent set
e Dimension ¢ Direct sum ¢ Basis

In this chapter we formalize and generalize many of the ideas encountered in the
previous chapters, by introducing the key notion of vector space. It turns out that
many familiar spaces of functions are vector spaces, and developing an abstract
theory of vector spaces has the advantage of being applicable to all these familiar
spaces simultaneously. A good deal of work is required in order to define a good
notion of dimension for vector spaces, but once the theory is developed, a whole
family of nontrivial tools are at our disposal and can be used for a deeper study of
vector spaces.

In all this chapter we fix a field F € {Q, R, C, F,}, which the reader might want
to take R or C, for simplicity. The elements of F are called scalars.

4.1 Vector Spaces-Definition, Basic Properties and Examples

We refer the reader to the appendix on algebraic preliminaries for the notion of
group and commutative group (we will recall below everything we need, anyway).
Let us simply recall that a commutative group (V, +) is a set V' endowed with an
addition rule + : V x V. — V, denoted (v,w) — v + w, and satisfying natural
identities (which are supposed to mimic the properties of addition on integers,
rational numbers, real numbers, etc.). We are now ready to introduce a fundamental
definition, that of a vector space over a field F. The prototype example to keep in
mind is F" (n being any positive integer), which has already been introduced in the
first chapter.

© Springer Science+Business Media New York 2014 107
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Definition 4.1. A vector space over F' or an F-vector space is a commutative
group (V, +) endowed with a map F x V' — V, called scalar multiplication and
denoted (a,v) — a - vsuch that foralla,b € F and u,v € V we have

aa-v+w)y=a-v+a-wand(a+b)-v=a-v+b-v.
b) 1.-v=nw.
c) (ab)y-v=a-(b-v).

The elements of V' are called vectors.

Remark 4.2. 1) We usually write av instead of @ - v.
2) By definition, a vector space over F' is nonempty!

Before giving quite a few examples of vector spaces we will make the definition
more explicit and then try to explain different ways of understanding a vector space.

Thus a vector space over F is a set V, whose elements are called vectors, in
which two operations can be performed

* addition, taking two vectors v, w and returning a vector v + w
 scalar multiplication, taking a scalar ¢ € F and a vector v € V, and returning the
vector cv.

Moreover, the following properties/rules should hold:

1) addition is commutative: v + w = w + v for all vectors v,w € V.

2) addition is associative: (u + v) + w = u + (v + w) for all vectors u,v,w € V.

3) addition has an identity: there is a vector 0 € V such that0 +v = v+ 0 = v for
allveV.

4) there are additive inverses: for all v € V there is a vector w € V such that
v+w=0.

5) Wehave lv=vforallve V.

6) For all scalars a,b € F and all v € V we have (ab)v = a(bv).

7) Scalar multiplication is additive: for all scalars @ € F and all v, w € V we have
a(v+w) =av+aw.

8) scalar multiplication distributes over addition: for all scalars a,b € F and all
v € V we have (a + b)v = av + bv.

One can hardly come up with a longer definition of a mathematical object, but
one has to understand that most of the imposed conditions are natural and fairly
easy to check. Actually, most of the time we will not even bother checking these
conditions since they will be apparent on the description of the space V' and its
operations. The key point is that we simply want to add vectors and multiply them
by scalars without having too many difficulties.

Remark 4.3. An important observation is that the addition + : V — V is an
internal operation, while the scalar multiplication - : F x V' — V is an external
operation.

Let us make a few simple, but important remarks concerning the previous rules.
First of all, one should be careful to distinguish the scalar 0 € F and the vector
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0 € V which is the identity for the addition rule. Of course, they are denoted in
exactly the same way, but they live in quite different worlds, so that there should
not be any risk of confusion. Next, since addition is associative, we will not bother
writing ((# + v) + w) 4+ z, but simply u +v +w + z.

Now let us focus a little bit on property 4. So let us start with any vector v € V.
Property 4 ensures the existence of a vector w € V for which v + w = 0. A natural
question is whether such a vector is unique. The answer is positive (and this holds
in any group): suppose that w’ is another such vector. Then using properties 2
(associativity) and 3 we obtain

w=w+0=w+@@+w)=w+v)+w =0+w =w.

Thus w is uniquely determined by v, and we will denote it as —v.

Another natural question is whether this vector —v coincides with the vector
(—1)v obtained by multiplying v by the scalar —1. Since mathematical definitions
are (usually) coherent, one expects that the answer is again positive, which is the
case. Indeed, on the one hand properties 5 and 8 yield

(lyw+v=(Clw+lv=(-1+1)v=0v
and on the other hand property 8 gives
0v+0v=(0+0)=0v
Adding —Ov to the previous relation we obtain Ov = 0, thus
ov=0, (-l)v=-v

for all v € V. There are a lot of such formulae which can be obtained by
simple algebraic manipulations straight from the definitions. Again, we will simplify
notations and write v — w for v + (—w).

In the proof that Ov = 0 we used a trick which deserves to be glorified since it is
very useful:

Proposition 4.4 (Cancellation law). Ler V be a vector space over F.

a) If v+ u=w+ uforsomeu,v,w eV, thenv =w.
b) If au = av for some v,w € V and some nonzero a € F, then u = v.

Proof. a) We have
v=v+0=v+@u—u) = vV+u)—u=w+u)—u=w+@u—u) =w+0=w,

hence v = w, as desired.
b) Similarly, we have

u=l-u=@ ' 'ayu=aau) =aYav)=@layv=1-v=v. 0O
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It is now time to see some concrete vector spaces. We have already encountered
quite a few in previous chapters. Let us explain why. Let us fix a field F.

First, the field F itself is a vector space over F. Indeed, addition and multi-
plication on F satisfy all properties 1-8 by definition of a field! Note here that
scalar multiplication coincides with the multiplication in F. The zero vector 0 in F
coincides with the natural unit for addition in F.

Another very important class of vector spaces over F occurs as follows: let K
be a field containing F. Then K is a vector space over F, for essentially the same
reasons as in the previous paragraph. Important examples of this situation are Q C
R, R C C, Q C C. Thus R is a vector space over Q, C is a vector space over R, C
is a vector space over Q.

Next, consider a positive integer n and recall that F" is the set of n-tuples of

X1

X2

elements of F, written in column form, X = . We add two such vectors

Xn
component-wise and we re-scale them by scalars in F' component-wise

X1 Y1 X1+ X1 Xy
X2 2 X2+ 2 X2 cXxX2
+ Y = Y and ¢ =
xﬂ yn xl1 + yn xl’l fo’l

It is not difficult to check that properties 1-8 are all satisfied: they all follow from

the corresponding properties of addition and multiplication in F', since all operations

are defined component-wise. Thus F" is a vector space for these two operations. Its
0

. 0 . .
zero vector 0 is the vector having all coordinates equal to 0.

0
Consider next the set V = M,, ,,(F) of m x n matrices with entries in F, where
m, n are given positive integers. Recall that addition and scalar multiplication on V
are defined component-wise by

laij] + [bij] = laij + bij] and  cla;;] = [caij]

for matrices [a;;], [bij] € V and scalars ¢ € F. Again, all properties 1 — —8 follow
from the corresponding properties of the operations in F. The zero vector in V is
the matrix O,, , all of whose entries are equal to 0.

We consider now function spaces. In complete generality, let X be any
nonempty set and consider the set V' = FX of functions f : X — F. We can
define addition and scalar multiplication on V' by the rules

(f +8)(x) = f(x) +g(x) and (cf)(x) = cf(x)
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1.5

0.2 0.4 0.6 0.8

1.5

Fig. 4.1 The functions f(x) = x2, g(x) = 1 — 2x and their sum (f + g)(x) = x —2x + 1

forc € F and x € X. Then V is a vector space over F, again thanks to the fact that
all operations are induced directly from the corresponding operations in F. The zero
vector 0 of V isthe map 0 : X — F sending every x € X to 0 € F. Note that for
X = {1,2,...,n} we recover the space F": givingamap f : {1,2,...,n} - F
is the same as giving a n-tuple of elements of I (namely the images of 1,2, ...,n),
that is an element of F".

One can impose further natural properties on the maps f : X — F and still
get vector spaces, contained in F*. For instance, consider the set C[0, 1] of real-
valued continuous functions on the interval [0, 1]. Thus an element of C[0, 1] is a
continuous map f : [0, 1] — R. The addition and scalar multiplication are inherited
from those on the vector space RI*!! of all real-valued maps on [0, 1]. For example,
if f(x) = x?and g(x) =1 —2x, then (f + g)(x) = x> — 2x + 1, for all x in the
interval [0, 1] (see Fig. 4.1).

As another example, the function f given by f(x) = sin5mx and its re-scaling
—%f are depicted in Fig. 4.2.

The key point is that the sum of two continuous maps is still a continuous map,
and if f is continuous and c is a real number, then ¢ f is also continuous. This
ensures that the addition and scalar multiplication laws are well defined on C|0, 1].
They satisfy all properties 1-8, since these properties are already satisfied on the
larger space RI®!. Then CJ0, 1] is itself a vector space over R, contained in R,
This is an example of vector subspace of a vector space, a crucial notion which will
be introduced and studied at length in the sequel.

There is nothing special about the interval [0, 1]: for each interval / we obtain a
vector space of continuous real-valued maps on /. If the real numbers are replaced
with complex numbers, we obtain a corresponding vector space of complex-valued
continuous maps on /.
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Fig. 4.2 The function f(x) = sin57x and its re-scaling by a factor of —3

In fact, there are many other function spaces: we could consider the vector space
of piecewise continuous functions, differentiable functions, bounded functions,
integrable functions, etc, as long as any two functions in such a space add up to
another function in the same space and re-scaling of a function in the space is
another function in the space. The possibilities are endless.

Let us consider now another very important class of vector spaces, namely spaces
of polynomials. Consider the set R[X] of polynomials in one variable and having
real coefficients. This set is a vector space over R. Recall that the addition and re-
scaling of polynomials are done coefficient-wise, so the fact that R[X] is a vector
space over R follows directly from the fact that R itself is a field. The zero vector in
R[X] is the zero polynomial (i.e., the polynomial all of whose coefficients are 0).

The vector space R[X] contains a whole bunch of other vector spaces over R: for
each nonnegative integer n consider the set R,[X] of polynomials in R[X] whose
degree does not exceed n. For example the polynomials
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3
1+ X2, ZX—l—nXZ, 1-X-X°
are all in R3[X], only the first two are in R,[X] and none of them is in R;[X]. Since
the sum of two polynomials of degree at most 7 is a polynomial of degree at most
n, and since deg(c P) < n for any real number ¢ and any P € R,[X], we deduce
that R, [X] is stable under the addition and scalar multiplication defined on R[X],
thus it forms itself a vector space over R. To be completely explicit, any polynomial
in R, [X] can be written in the form
ao+ar X +arX>+ -+ a, X"
where a;, 0 < i < n, are real numbers, and then
(@a0+ar X+ +a, X")+ (bo + b1 X +--- + b, X")
=(agp+bo)+ (a1 +b)X +---+ (a, + b)) X"

and forc € F

clap+ a1 X +---+a,X") = (cap) + (cap)X + -+ + (ca,) X".

4.1.1 Problems for Practice

1. Consider the set V = R? endowed with an addition rule defined by
() + &)= +xy+))
and with a multiplication rule by elements A of R as follows
A-(x,y) = (2x,0).

Is V endowed with these operations a vector space over R?
2. Define an operation +4 on (0, o) by

a +* b = ab
fora,b € (0, 00), and an external multiplication by real numbers as follows
a-«b=>b"

fora € R, b € (0,00). Does (0, c0) endowed with this new addition and scalar
multiplication become a vector space over R?
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3. (Complexification of a real vector space) Let I be a vector space over R. Let V¢
be the product V' x V' (this is the set of ordered pairs (x, y) of elements of V)
endowed with the following addition rule

)+ Y) =@+ Xy + ).

Also, for each complex number z = a + ib, consider the “multiplication by
zrule”

z-(x,y) := (ax — by,ay + bx)

on V¢. Prove that V¢ endowed with these operations becomes a C-vector space
(this space is called the complexification of the vector space ).

4.2 Subspaces

We have already seen in the previous subsection a lot of subspaces of concrete vector
spaces. In this section we formalize the concept of vector subspace of a given vector
space and then study some of its basic properties.

Definition 4.5. Let V be an F-vector space. A subspace of V' is a nonempty subset
W of V which is stable under the operations of addition and scalar multiplication:
v+we Wandcve Wiorallv,we Wandc € F.

Example 4.6. Let V be the vector space over R of all maps f : R — R. Then the
following sets V1, V5, V3, V, are subspaces over R.

I) Vi={feV| fisacontinuous function on R}.
I) Vo, ={f €V | fisadifferentiable function on R}.
) Vi;={f €V | f isanintegrable function on the interval [a, b],
where a,b € R}.
IV) Vy={f €V | thereexists § € Rsuchthat|f(x)| <0, Vx €R}.

The previous definition invites a whole series of easy observations, which are
however very useful in practice.

Remark 4.7. 1. First, note that a vector subspace of a vector space must contain
the zero vector. Indeed, say W is a vector subspace of V. Since W is nonempty,
there is v € W, but then 0 = Ov € W. Thus if a subset W of a vector space
V' does not contain the zero vector, then this subset W has no chance of being a
vector subspace of V.

2. Next, a key observation is that if W is a subspace of 1, then W becomes itself
an F-vector space, by restricting the operations in 1V to . Indeed, since
properties 1-8 in the definition of a vector space are satisfied in V, they are
automatically satisfied in the subset W of V. This was essentially implicitly used
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(or briefly explained) in the previous section, where many examples of vector
spaces were constructed as vector subspaces of some standard vector spaces.

3. In practice, one can avoid checking two conditions (stability under addition and
under scalar multiplication) by checking only one: v+ cw € W whenever v, w €
W and ¢ € F. More generally, a nonempty subset W of V is a vector subspace
if and only if

av+bweW

for all a,b € F and v,w € W. We deduce by induction on n that if W
is a vector subspace of V and wy,...,w, € W and cj,...,c, € F, then
ccwr +...+cew, €W

4. Another very important observation is the stability under arbitrary intersec-
tions of vector subspaces. More precisely, if (W;);¢; is a family of subspaces of
V, then

W =nNiag W

is again a subspace of V. Indeed, W is nonempty because it contains O (as any
subspace of V' contains 0) and clearly W is stable under addition and scalar
multiplication, since each W; has this property.

Problem 4.8. Consider the vector space V = R3 over R and the subsets Vi, V5
defined by

Vi={(x,y,00eR|x+y+z=1}

Vo =1{(x,y,9) €R | x +2y + 2> V2}.

Which (if either) of these is a subspace of V'?
Solution. Neither V| nor V, contain (0, 0, 0), thus they are not subspaces of V. [
Problem 4.9. Let V = R? and

U={(x.y,2) eR¥|x*+y?+2 <1

Is U a subspace of V?

Solution. U is not a subspace of V, since the vector u = (1, 0, 0) belongs to U, but
the vector 2u = (2, 0, 0) does not belong to U . O

Problem 4.10. Determine if W is a subspace of V' where

(a) V = CJ0, 1] and W consists in those functions f in V for which f(0) = 0.
(b) V = CJ0, 1] and W consists in those functions f in V for which f(1) = 1.
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(¢) V =CJ0, 1] and W consists in those functions f in V for which

/lf(x)dx=0.
0

(d) V =CJ0, 1] and W consists in those functions f in V for which

/lf(x)dx:l.
0

(e) V is the space of three times differentiable functions on [0, 1] and W consists in
those functions in V' whose third derivative is 0.

Solution. a) If f(0) = 0 and g(0) = 0, then (f + ¢cg)(0) = 0 for all ¢ € R, and
f 4+ cg is a continuous map. Thus W is a subspace of V.

b) W does not contain the zero element of V' (which is the constant map equal to
0), thus W is not a subspace of V.

¢) If f,g € W, then forall ¢ € R the map f + cg is continuous and

1 1 1
/ (f +cg)(x)dx = / f(x)dx + c[ g(x)dx =0,
0 0 0

thus f 4+ cg € W. It follows that W is a subspace of V.

d) W does not contain the zero map in V/, thus it is not a subspace of V.

e) If f, g are three times differentiable and the third derivative is 0, then f + cg has
the same property for all real numbers c, since (f +cg)® = f© 4+ cg®. Thus
W is a subspace of V' (consisting actually of polynomial functions of degree at
most 2). O

Problem 4.11. Let U and V be the sets of vectors
U={(x1,x2) | x1,x0>0} and V ={(x1,x2) | x1x2>0}

in R?.

(a) Show that U is closed under addition.
(b) Show that V is closed under re-scaling.
(c) Show that neither U nor V is a subspace of R?.

Solution. It is clear that U is stable under addition, since nonnegative real numbers
are closed under addition. To see that V' is closed under re-scaling, consider a scalar
cand v = (x1,x2) in V. Then cv = (cx1,cx2) and (cx1)(cx2) = ¢?x1x, > 0
because ¢ > 0 and x;x, > 0.

U is not a subspace of RZ as v = (1,1) € Ubut —v = (=1)v ¢ U. V
is not a subspace of R? since vi = (2,2) € V, v, = (=1,-3) € V, but
vitw=(,-1)¢V. O
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The union of two subspaces Wy, W, of V' is almost never a subspace of V, as
the following problem shows.

Problem 4.12. Let V be a vector space over a field F' and let V;, V, be subspaces
of V. Prove that the union of Vi, V; is a subspace of V' if and only if

VicV, or 1, CV.

Solution. If V; C V, (resp. V2 € Vy), then Vi UV, = V, (resp. Vi UV, = 1)).
Therefore in both cases V; U V; is a subspace of V.

Conversely, suppose that V; U V, is a subspace of V. If V| C V,, then we are
done, so suppose that this is not the case. Thus we can find v € V| which does not
belong to V,. We will prove that V, C V.

Take any vector x € V,. Since V| U V, is a subspace of V' containing x and v,
it contains their sum x +v. Thus x +v € Viorx +v € V,. If x + v € V5, then
v = (x +v) —x € V,, since V, is a subspace of V. This contradicts the choice
of v, thus we must have x + v € V;. Since v € Vj, we also have —v € V; and so
x = (x +v) —v € V. Thus any element of V, belongs to V; and we have V, C V],
as desired. O

We now define a very important operation on subspaces of an F'-vector space:

Definition 4.13. Let W, W,, ..., W, be subspaces of a vector space V. Their sum
Wi+ Wh + ...+ W, is the subset of V' consisting of all vectors w; +w, + ...+ w,
withw, € Wy, ...,w, € W,.

One could extend the previous definition to an arbitrary family (W;);e; of
subspaces of V. In this case Ziel W; consists of all sums Ziel w; withw; € W,
for all i € I and all but finitely many of the vectors w; are zero, so that the sum
> ie; wi has only finitely many nonzero terms and thus makes sense, even if / if
infinite. In practice we will however deal with finite collections of subspaces. The
following result also holds for infinite families of vector subspaces, but in the sequel
we prefer to focus on finite families, for simplicity.

Proposition 4.14. If Wi, W,, ..., W, are subspaces of a vector space V, then W; +
Wy + ...+ W, is a subspace of V.

Proof. Let us denote for simplicity S = W| + Wo + ... + W,. Let s,s’ € S and
let ¢ be a scalar. It remains to prove that s 4+ ¢s’ € S. By definition, we can find
Wi,...,w, and w), ..., w), such that w;,w, € W for1 <i <n and
s=wit+wat.o+w,, S=wiHwi4 .+
Then
s+es' =witwt . twi e Hwh+. W) =

witwr4 ..ot w,Few] +enwh+.o+ew, = (i +ew)) + .o+ (W +ew)).
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Since W; is a subspace of V and since w;, w; € W;, it follows that w; + cw; € W,
for all 1 <i < n. The previous displayed formula expresses therefore s + ¢s’ as a
sum of vectors in Wy, ..., W, and shows that s + c¢s’ € S. This finishes the proof
that S is a subspace of V. |

Problem 4.15. Prove that W + W, + ... + W, is the smallest subspace of V
containing all subspaces Wi, ..., W,.

Solution. Itis clear that W) + ...+ W, contains Wy, W, ..., W, since each vector
w; of W; can be writtenas 0+0+...+04+w; +0+...4+0and 0 € WiN...NW,. We
need to prove that if W is any subspace of V' which contains each of the subspaces
Wi, ..., W, then W contains W)+ W,+. ..+ W,. Take any vector v of Wi+...+W,.
By definition, we can write v = wy + wy + ... + w, for some vectors w; € W;.
Since W contains Wy, ..., W, it contains each of the vectors wy, ..., w,. And since
W is a subspace of V, it must contain their sum, which is v. We proved that any
element of Wi + ... 4+ W, belongs to W, thus W) 4 ... 4+ W, C W and the result
follows. O

We now introduce a second crucial notion, that of direct sum of subspaces:
Definition 4.16. Let Wi, W5, ..., W, be subspaces of a vector space V. We say that
Wi, Wa, ..., W, are in direct sum position if the equality

wit+wr+...+w, =0

withw, € Wy,...,w, € W, forcesw;, =w, = ... =w, =0.

There are quite a few different ways of expressing this condition. Here is one
of them:

Proposition 4.17. Subspaces Wi, ..., W, of a vector space V are in direct sum
position if and only if every element of Wy + W, + ... + W, can be uniquely written
asasumw; + ... +w, withwy € Wi,...,w, € W,

Proof. Suppose that W, ..., W, are in direct sum position and take an element v of
W, + ...+ W,. By definition we can express v = w; + ... + w, withw; € W; for
all 1 <i < n. Suppose that we can also write v = w| + ...+ w/, with w} € W;. We
need to prove that w; = w/ forall 1 <i < n. Subtracting the two relations yields

O=v—v=w —w)+ W —wy)+...4+ (w, —w)).

Let u; = w; — w}. Since W; is a subspace of V, we have u; € W;. Moreover,
uy + ... +u, = 0. Since Wy,..., W, are in direct sum position, it follows that
Uy =...=u, =0,andsow; = w§ forall 1 <i < n, which is what we needed.

Conversely, suppose every element of W)+ W, +- - -+ W, can be written uniquely
as a sum of elements of Wy,..., W,. Then 0 = 0 4+ 0 + ---0 must be the unique
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decomposition of 0. Thus whenever w; € Wi, wy, € W,,...,w, € W, satisfy
wi+wy+---4+w, =0, wehavew, =wy =--- =w, =0. Thus W, ..., W, are
in direct sum position. |

Finally, we make another key definition:

Definition 4.18. a) We say that a vector space V' is the direct sum of its subspaces
Wy, W, ..., W, and write

V=weWwW,e..eW,

if Wi, Wa, ..., W, are in direct sum positionand V = W) + W, 4+ ... + W,,.
b) If V1, V, are subspaces of a vector space V', we say that I, is a complement (or
complementary subspace) of V if ViV, = V.

By the previous results, V. = W, &...@® W, if and only if every vector v € V can
be uniquely written as a sum wy + wp + ... + w,, with w; € W; for all i. Hence, if
V1, V5 are subspaces of V, then V; is a complement of V) if and only if every vector
v € V can be uniquely expressed as v = v; + v, withv; € Vi and v, € V5.

The result of the following problem is extremely useful in practice.

Problem 4.19. Prove that V; is a complement of V; if and only if V; + V, = V and
VNV, ={0}.

Solution. Assume that V; is a complement of V|, thus V =V, @V, andeachv € VV
can be uniquely written as the sum of an element of V| and an element of V,. This
clearly implies that V1 +V, = V.If v € Vi NV,, then we can write v = v+0 = 0+v
and by uniqueness v = 0, thus V; N V, = {0}.

Conversely, assume that 1} NV, = {0} and V; + V, = V. The second relation
implies that each vector of V is the sum of a vector in V| and one in V,. Assume that
v € V can be written both v; + v, and v| + v/, with v, V| € V; and v»,V) € V5. Then
v — \/1 = 1/2 — v,. Now the left-hand side belongs to V| while the right-hand side
belongs to V5, thus they both belong to V; N V, = {0} and so v; = \/1 and v, = v’z,
giving the desired uniqueness result. |

Example 4.20. 1. The vector space V = R? is the direct sum of its subspaces
Vi = {(x,0) | x € Ryand V5 = {(0,y) | y € R}. Indeed, any (x, y) € R? can
be uniquely in the form (a,0) + (0,b), viaa = x and b = y.

2. Let V.= M, (R) be the vector space of n x n matrices with real entries. If V}
and V, are the subspaces of symmetric, respectively skew-symmetric matrices,
then V = V; @ V,. Indeed, any matrix A € V can be uniquely written as the
sum of a symmetric matrix and a skew-matrix matrix: the only way to have 4 =
B + C with B symmetric and C skew-symmetric is via B = %(A + "A) and
C = %(A —1A4).

3. Let V be the vector space of all real-valued maps on R. Let V| (respectively
V5) be the subspace of V' consisting in even (respectively odd) functions. Recall
that a map f : R — R is even (respectively odd) if f(x) = f(—x) for all
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x (respectively f(—x) = — f(x) for all x). Then V = V| & V,. Indeed, for
any map f, the only way to write f = g + h with g even and & odd is via
g(x) = f(x)+2f(—x) and h(x) = f(x)—zf(—x).

Problem 4.21. Let V be the space of continuous real-valued maps on [—1, 1] and let

1
Vi=(fe w/_l F(tydi =0

and V/, be the subset of V' consisting of constant functions.

a) Prove that Vi, V; are subspaces of V.
b) Provethat V = V| & V,.

Solution. a) If fi, f, are in V} and ¢ € R, then ¢ f; + f> is continuous and

1 1 1
/ (cfi + f)0)di = ¢ / A + / Adi =0,
—1 1 1

thus cfi + f> € V; and V) is a subspace of V. It is clear that V; is a subspace
of V.
b) By the previous problem, we need to check that Vi NV, = {0}and V = Vi + V.

Assume that f € V3 N V,, thus f is constant and f_ll f@)dt =0.Say f(t) =c
forall t € [—1, 1], then

0= /_ll f@)dt =2,

thus ¢ = 0 and f = 0. This shows that V; NV, = {0}.
In order to prove that V = V] + V;,let f € V and let us try to write f =c + g
with ¢ a constant and g € V. We need to ensure that

1
| swar=o.
-1
that is
1
[ (f@t)—c)dt =0.
-1
It suffices therefore to take
1 1
= —- Hdt
=5 [ s

andg = f —c. |
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4.2.1 Problems for Practice

»

10.

. Show that none of the following sets of vectors is a subspace of R>:

(a) The set U of vectors x = (x|, X, x3) such that x? + x7 + x3 = 1.
(b) The set V of vectors in R? all of whose coordinates are integers.
(c) The set W of vectors in R? that have at least one coordinate equal to 0.

Determine if U is a subspace of M;(R), where

(a) U is the set of 2 x 2 matrices such that the sum of the entries in the first
column is 0.

(b) U is the set of 2 x 2 matrices such that the product of the entries in the first
column is 0.

Is R a subspace of the C-vector space C?

Let V' be the set of all periodic sequences of real numbers. Is V' a subspace of
the space of all sequences of real numbers?

Let V be the set of vectors (x,y,z) € R3 such that x(y> +7>) = 0.Is V a
subspace of R3?

Let V be the set of twice differentiable functions f : R — R such that for all
x we have

F"(x) + x> f'(x) = 3f(x) = 0.

Is V' a subspace of the space of all maps f : R — R?
Let V be the set of differentiable functions f : R — R such that for all x we
have

f'x) = f(x)? = x.

Is V a subspace of the space of all maps f : R — R?

a) Is the set of bounded sequences of real numbers a vector subspace of the
space of all sequences of real numbers?

b) Answer the same question if instead of bounded sequences we consider
monotonic sequences.

Let V be the set of all sequences (x,),>o of real numbers such that

Xpt2 +nXpp1 — (1 —1)x, =0

for all n > 0. Prove that V is a subspace of the space of all sequences of real
numbers.

Let V' be the space of all real-valued maps on R and let W be the subset of V'
consisting of maps f such that f(0) + f(1) = 0.

a) Check that W is a subspace of V.
b) Find a subspace S of V suchthat V =W & S.
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11. Let V be the space of continuously differentiable maps f : R — R and let
W be the subspace of those maps f for which f(0) = f/(0) = 0. Let Z be
the subspace of V' consisting of maps x — ax + b, with a,b € R. Prove that
V=we<Z

12. Let V be the space of convergent sequences of real numbers. Let W be the
subset of V' consisting of sequences converging to 0 and let Z be the subset of
V consisting of constant sequences. Prove or disprove that W, Z are subspaces
of VandW e Z =V.

13. (Quotient space) Let I/ be a vector space over F and let W C V be a subspace.
For a vectorv € V,let[v] = {v + w : w € W}. Note that [v;] = [vp] if
vi — v, € W. Define the quotient space V/W to be {[v] : v € V}. Define
an addition and scalar multiplication on V/W by [u] + [v] = [u + v] and
a[v] = [av]. Prove that the addition and multiplication above are well defined
and V/ W equipped with these operations is a vector space.

14. Let F € {R,C} and let V be a nonzero vector space over F. Suppose that V/
is the union of finitely many subspaces of V. Prove that one of these subspaces
isV.

4.3 Linear Combinations and Span

Let V be a vector space over a field F' and let vi,v,,...,v, be vectors in V. By
definition, V' contains all vectors ¢iv; + ... + ¢V, With ¢1,...,¢, € F. The
collection of all these vectors plays a very important role in the sequel and so
deserves a formal definition:

Definition 4.22. Letv,vs,..., v, be vectors in a vector space V over F.
a) A vector v € V is a linear combination of v{,v,, ..., v, if there are scalars
c1,¢2,...,c, € F such that
v=cCcivi+ vyt ...+ v “4.1)
b) The spanofvy,...,v, is the subset of V' consisting in all linear combinations of
Vi, V2,...,V,. Itis denoted Span(vy, vz, ..., v,).

Example 4.23. 1) The span Span(v) of a single vector v in R” consists in all re-
scaled copies of v (we also say all scalar multiples of v). Using the geometric
interpretation of vectors in R? (or R?), if v # 0 then Span(v) is represented by
the line through the origin in the direction of the vector v.

2) Lete; = (1,0,0) and e, = (0, 1, 0). Then

xX1ey + x2e3 = (x1,x2,0).
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Since x; and x, are arbitrary we see that Span(e,, ;) consists in all vectors in R
whose third coordinate is 0. This is the x;x,-plane in R3.In general, if two vectors
vi and v, in R? are not collinear, then their span is the unique plane through the
origin that contains them.

Problem 4.24. Show that the vector (1,1,1) cannot be expressed as a linear
combination of the vectors

vi = (1,0,0), v2 = (0,1,0) and v3 = (1,1,0).
Solution. An arbitrary linear combination
xX(vi + xov2 + x3v3 = (X + X3, X + x3,0)

of v, v, and v3 has 0 as the third coordinate, and so cannot be equal to (1,1,1). O

More generally, let us consider the following practical problem: given a family
of vectors v, v,,...,v; in F" and a vector v € F", decide whether this vector is a
linear combination of vy, ..., v, that is v € Span(vy, ..., v). Consider the n x k
matrix A whose columns are vy,...,v. Saying that v € Span(vy,...,v) is the
same as saying that we can find x;,...,x; € F such thatv = xjv; + ... 4+ Xxvg,
or equivalently the system AX = v is consistent (and then Xxi,..., X, are given
by the coordinates of X). Since we have a practical way of deciding whether this
system is consistent (via row-reduction of the augmented matrix [A|v]), we see that
we have an algorithmic solution to the previous problem. Of course, we can solve
the previous problem via this method, too.

Problem 4.25. Consider the vectors vi = (1,0,1,2), v, = (3,4,2,1) and v3 =
(5,8,3,0). Is the vector v = (1,0, 0, 0) in the span of {vy, v,,v3}? What about the
vector w = (4,4,3,3)?

Solution. In order to solve this problem, we use the method described above.
Namely, we consider the matrix

135
A= 048
123
210

We want to know if the system AX = v is consistent. The row-reduction of the
augmented matrix [A[|v] is

10-10
0120
00 01
0000

[Av] ~
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Looking at the third row in the matrix appearing in the right-hand side, we see that
the system is not consistent, thus v is not in the span of {v{, v, v3}.

For the vector w, we use the same method. The row-reduction of the augmented
matrix [A|w] is now

10-11
01 21
0000
0000

[Alw] ~

which shows that the system is consistent and so w is in the span of {v;, v,, v3}. If we
want to explicitly find the linear combination of vy, v,, v3 giving w, all we need is to
solve the system

101 1
01 2 S ERE
000 2=
00 0 i 0

This yields without any problem x; = x3 4+ 1 and x, = 1 — 2x3. Thus we can write
w= (14 x3)vi + x2v2 + (1 —2x3)v3

and this for any choice of x3. We can take for instance x3 = 0 and obtain w =
Vi + vy O

The following result is easily proved, but explains the importance of the notion
of span:

Proposition 4.26. Let V be a vector space over F and let vi,vy,...,v, € V.

Then

a) Span(vy,va,...,vy,) is the intersection of all subspaces of V which contain
Vi, V2,...,Vy.

b) Span(vi,va,...,v,) is the smallest vector subspace of V which contains
Vi, V2,...,Vy.

Proof. Since an arbitrary intersection of vector subspaces is a vector subspace, part
a) implies part b), so we will focus on the proof of part a).

First, let us prove that Span(vy, vy, ..., v,) is contained in every vector subspace
W of V that contains vy, v, ...,v,. This will imply that Span(vy,vs,...,v,) is
contained in the intersection of all such subspaces W. Or, since W is a subspace of
V and since vy, v,,...,v, € W, we also have civy + covy + ... +¢c,v, € W for all
scalars ¢y, ¢, ...,c, € F.Thus W contains all linear combinations of v, va, ..., v,,
i.e., it contains Span(vy, v, ..., vy,).
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It remains to see that Span(vy, vs, ..., V) is a vector subspace of V' (as it contains
Vi,V2,...,Vy, this will imply that it contains the intersection of vector subspaces
containing v, vs,...,v,). So let x,y € Span(vy,v,...,v,;) and ¢ € F a scalar.
Since x, y are linear combinations of vi, vy, ..., v,, we can write x = a;v| +asv, +
...+ ay,v, and y = byvy + byv, + ... + b,v, for some scalars ay,...,a, and
bi,...,b,. Then

x4+ cy = (a; +chbp)vi + (a2 + ch))va + ... + (a, + cby)vy,
is also a linear combination of vy, v,, ..., v,, thus it belongs to Span(vy, va, ..., vy).
The result follows. O

Remark 4.27. 1t follows from the previous proposition and Problem 4.15 that

n
Span(vy,va, ..., v) = ZFV,’,

i=1

where Fv; is the subspace of V' consisting in all multiples cv; of v; (equivalently,
Fv; = Span(v;)).

We can extend slightly the previous definition and results by considering arbitrary
subsets of V':

Definition 4.28. Let S be a subset of V.

a) Span(S) is the subset of V' consisting in all linear combinations c;v; + cov, +
...+ ¢ vy, where vi,v,,...,v, is a finite subset of S and ¢y, cy,...,c, are
scalars.

b) We say that S is a spanning set or generating set for V if Span(S) = V.

Example 4.29. 1) Consider the space V' = F" and the canonical basis

1 0 0
1 0
el = O ’ 62 - 0 ’ ’ en = 0
0 0 1
X1
X2
Then ey, ..., e, is a spanning set for F”, since any vector X = | x3 | can be
Xn

written X = xje; 4+ xpe3 + ... + Xue,.
2) Similarly, consider the space V' = M,, ,(F) of m X n matrices with entries in F'.
If E;; is the matrix in V' having the (i, j)-entry equal to 1 and all other entries 0,
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then the family (E;;)1<i<m,1<j<n is a spanning family for V, since any matrix
A = [a;;] can be written

m n
A= ZZCZ,’]‘EU.

i=1j=1

3) In the space R, [X] of polynomials with real coefficients and degree bounded by
n, the family 1, X, ..., X" is spanning.

Similarly, one can prove (or deduce from the previous proposition) that for an
arbitrary subset S of V, the set Span(.S) is the smallest vector subspace of V' which
contains S. Note the very useful

if Sy C S, then Span(S;) C Span(S>). 4.2)

Indeed, Span(S,) is a vector subspace containing S,, thus also Sy, hence it contains
Span(S;). Alternatively, this follows from the fact that any linear combination of
finitely many elements of .S is also a linear combination of finitely many elements
of S,. It follows from relation (4.2) that any subset of ' containing a spanning
set for V' is a spanning set for 1.

Row-reduction is also very useful in understanding Span(vi,...,v;), when
Vi, ...,V € F". Indeed, consider the k xn matrix A whose rows are the coordinates
of the vectors vy,..., v in the canonical basis of F". Performing elementary
operations on the rows of A does not affect the span of the set of its rows, hence
Span(vi, ..., ) is precisely the span of the rows of A,.r, where we recall that
Arey is the reduced row-echelon form of A (of course, it suffices to consider only
the nonzero rows of A,.r). This gives in practice a quite manageable form of
Span(vy, ..., vg).

Example 4.30. Consider the vectors vi = (1,2,3,4), v» = (3,1,2,1) and
vi = (1,2,1,2) in R*. We would like to obtain a simple description of V =
Span(vy, va, v3).

Consider the matrix

1234
A=|3121
1212

whose first row is given by the coordinates 1,2,3,4 of v; with respect to the
canonical basis of R*, and similarly for the second and third row (replacing v; with
v, and vz respectively). Row-reduction yields

1002
Arer =010 %
001 1
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Thus
3 4
V = Span((1, 0,0, —g), (0,1,0, g), (0,0,1,1))
and this is the same as the set of vectors
3 4
= (a,b,c,—=a + =b
w=(a,b,c Sa + 5 +¢)

with a,b,c € R.

4.3.1 Problems for Practice

1. Find at least three different ways to express the matrix

=[%7]

as a linear combination of the matrices

1 1 1 -1 10
A1—|:_1 _1:|, A2—|:_] 1] and A3—|:_10i|

2. Show that the vector (1, 1, 1) cannot be expressed as a linear combination of
a; = (1,-1,0), a, = (1,0,-1) and as; = (0,1,-1).

3. Let ¥ be the subset of R” consisting of those vectors whose sum of coordinates
equals 0. Let Z be the span of (1,1,...,1) in R". Prove or disprove that
WeZ=R"

4. Let P be the span of (1,1,1) and (1,1,—1) in R3, and let D be the span of
(0,1, —1). Is it true that P @ D = R3?

5. One of the vectors by = (3,—7,—6) and b, = (0,2, 4) is in the plane spanned
by the vectors vi = (1,0,—1) and v, = (1, —7, —4). Determine which one and
write it as linear combination of the vectors v; and v,. Also, prove that the other
vector is not in the plane spanned by v; and v,.

6. Let V be the vector space of real-valued maps on R and let f, (respectively g,)
be the map sending x to cos nx (respectively cos” (x)). Prove or disprove that

Span({ fu|n = 0}) = Span({gn|n = 0}).
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4.4 Linear Independence

Consider some vectors vy, vy, ..., V, in a vector space V over F, and a vector v in
Span(vy, va, ..., v,). By definition, there are scalars ¢y, ¢, ..., ¢, such that

v=civi +cvo + ...+ cpvy.
There is nothing in the definition of the span that requires ¢y, ¢3, . . . , ¢, in relation
(4.2) to be unique.

Problem 4.31. Let vy, v,, v3 be three vectors in R” such that 3v; + v, +v3 = 0
and let v = v; + v, — 2v3. Find infinitely many different ways to write v as a linear
combination of vy, v, v3.

Solution. Let o be an arbitrary real number. Re-scaling both sides of the equal-
ity 3vi + v» + v3 = 0 by o and adding the corresponding relation to the
equality v = v; + v, — 2v3 yields

v=0Ca+ v + (¢ + vy + (¢ — 2)v3.

Thus each value of o provides a different way to write v as a linear combination of
Vi, V2, V3. O

Suppose now that a vector v can be written as v = ajv; + davo + ... + a,v,. If
b1, by, ..., b, are scalars such that we also have v = byv; + byv> + ...+ b,v,, then
subtracting the two relations we obtain

0= (al - bl)Vl + (aZ - bZ)VZ +...+ (an - bn)vn~

Thus we would be able to conclude that a;, as, ..., a, are unique if the equation
(withzy,...,z, € F)

i+ v+ .+, =0

would force z; = ... = z, = 0. As we said above, this is not always the case: take
for instance n = 1, vi = 0, then a;v; = 0 for any choice of the scalar a;. On the
other hand, vectors vy, ..., v, having the uniqueness property play a fundamental

role in linear algebra and they also deserve a formal definition:

Definition 4.32. a) Vectors vy, v,...,V, in some vector space V' are linearly
dependent if there is a relation

ccviteva+ ... +cev, =0

for which at least one of the scalars ¢y, ¢3, . .., ¢, is nonzero.
b) Vectors vy, vy, ..., v, in the vector space V are linearly independent if when-
ever we have scalars ay,a,,...,a, with ajvy + a,v, + --- + a,v, = 0, then

a=a,=---=a, =0.
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Example 4.33. In all situations considered in example 4.29, the corresponding
generating family is also linearly independent.

Before going on to more abstract things, let us consider the following very
concrete problem: given some vectors vy, ..., v; in F" (take for simplicity F'=R),
decide whether they are linearly independent. We claim that this problem can be
solved algorithmically in a fairly simple way. Indeed, we need to know if we can
find x1,...,x; € F, notall equal to 0 and such that

X1+ ...+ xxve =0.

Let A be the n x k matrix whose columns are given by the coordinates of vy, ..., v
with respect to the canonical basis of F”. Then the previous relation is equivalent to
AX = 0, where X is the column vector with coordinates x1, ..., x;. Thus vy, ..., vi

are linearly independent if and only if the homogeneous linear system AX = 0
has a nontrivial solution. We know that this problem can be solved algorithmically,
via the row-reduction algorithm: let A,.; be the reduced row-echelon form of
A. If there is a pivot in every column of A,.r, then vi,... v, are linearly
independent, otherwise they are not. Thus the original problem can also be solved
algorithmically. Also, note that since every homogeneous linear system with more
variables than equations has a nontrivial solution, we deduce that if we have more
than n vectors in F”, then they are never linearly independent! Thus sometimes
we can solve the original problem with absolutely no effort, simply by counting the
number of vectors we are given!

Problem 4.34. Consider the vectors vi = (1,2,3,4,5), v, = (2,3,4,5,1), vz =
(1,3,5,7,9), vs = (3,5,7,9,1) in R®. Are these vectors linearly independent? If
the answer is negative, give a nontrivial linear dependency relation between these
vectors.

Solution. We consider the matrix

1213
2335
A=|3457
4579
5191

Row-reduction yields

100-2
010 2
Arer =001 1
000 0
000 0
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Since there is no pivot in the last column, the vectors vy, v,,v3, v are linearly
dependent.

To find a nontrivial linear dependency relation, we solve the system AX = 0,
which is equivalent to the system A,.r X = 0. This system is further equivalent to

X1 = 2X4, Xy = —2X4, X3 = —X4.

Taking x4 = 1 (we can take any nonzero value we like), we obtain the dependency
relation

2vi —2vo —v3 + vy = 0. O
Problem 4.35. Show that the 4 vectors
vi=(2,1,3,1), v, =(-1,0,1,2), vs = (3,2,7,4), v = (1,2,0,—1)

are linearly dependent, and find three of them that are linearly independent.

Solution. Row reduction yields

2-13 1 1020
1022 0110
3170 o001
12 4-1 0000

Thus the 4 vectors are dependent. Eliminating the vector v3 (the one that does
not have a pivot in its column) yields the linearly independent set of vectors
{vi.va, val. O

One may argue that the above definition is a little bit restrictive in the sense that
it only deals with finite families of vectors. If we had an infinite family (v;);e; of
vectors of V', we would not be able to give a meaning to the infinite sum ) ., ¢;v;
for any choice of the scalars ¢;. However, if all but finitely many of the scalars c;
were 0, then the previous sum would be a finite sum and would thus make sense. So
one can extend the previous definition by saying that the family (v;);e; is linearly
dependent if one can find scalars (c;);e; such that all but finitely many are 0, not all
of them are 0 and ), ¢;v; = 0. Equivalently, and perhaps easier to understand,
an arbitrary family is linearly dependent if there is a finite subfamily which
is linearly dependent. A family of vectors is linearly independent if any finite
subfamily is linearly independent. Thus, a (possibly infinite) set L is linearly
independent if whenever we have distinct elements /;,...,[, € L and scalars
ai,ds,...,a, withaily +azl, +---+a,l, =0,thena; =a, =---=a, =0.
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Remark 4.36. 'We note the following simple but extremely useful facts:

a) A subfamily of a linearly independent family is linearly independent. Indeed,
let (v;);e; be a linearly independent family and let J be a subset of /. Assume
that (v;);ey is linearly dependent, thus (by definition) we can find a finite linearly
dependent subfamily v;,,...,v; withiy,...,i, € J.Butiy,...,i, € I, thus
Vi, ..., Vi, is a finite linearly dependent subfamily of the linearly independent
family (v;);e;, contradiction.

b) If two vectors in a family of vectors are equal, then this family is automat-
ically linearly dependent. Indeed, say vector v appears at least twice in the
linearly independent family (v;);e;. Then by part a), the subfamily v, v should
be linearly independent. But this is absurd, since an obvious nontrivial linear-
dependency relationis 1 -v + (—1)v = 0.

Problem 4.37. Let V be the vector space of all real-valued maps on R. Prove that
the maps x — |x — 1|, x = |x —2|,..., x = |x — 10| are linearly independent.

Solution. Let f;(x) = |x —i|for 1 <i < 10 and suppose that

arfi+arfo+...+anfio=0

for some real numbers ay, ..., ajo. Suppose that some a; is nonzero. Dividing by
a;, we obtain that f; is a linear combination of fi,..., fi—1, fi+1,-.., f10- But
fi,--os fi—1, fi+1, ..., fio are all differentiable at i, hence f; is also differentiable
at i. This is obviously wrong, hence a; = 0 for all 1 < i < 10, and the result
follows. O

One can relate the notions of span and that of being linearly dependent, as the
following proposition shows. It essentially says that a set v, v,, ..., v, is linearly
dependent if and only if one of the vectors vi,...,v, is a linear combination
of the other vectors. Note that we used the word set and not family, that is in the
above statement we assume that vy, ..., v, are pairwise distinct (as we observed at
the end of the previous paragraph, if two vectors are equal among vy, ..., Vv,, then
the family vy, ..., v, is automatically linearly dependent).

Proposition 4.38. Ler S be a set of vectors in some vector space V. Then S is
linearly dependent if and only if there is v € S such that v € Span(S \ {v}).

Proof. We deal separately with each implication. First, suppose that S is linearly
dependent. By definition, this means that we can find finitely many vectors
Vi, Va,...,v, €8 and some scalars a;, a, ..., a,, not all 0, such that

aivi +ava + ...+ a,v, = 0.

Note that vy, ..., v, are pairwise distinct, since the elements of S are assumed to be
pairwise distinct.
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Since not all scalars are 0, there is i € {1,2,...,n} such that a; # 0. Dividing
the previous equality by a;, we obtain

ap aj—1 ai+1 an
—v1+...+a—vi_1+vi+ Vl'+1+...+a—V”=O,

1 1 1 1

hence
ap ai—1 ai+1 ap
Vi=—""Vi—...— — Vi | — —Vi4] — ...~ — V.
a; a; a; a;
We deduce that v; belongs to the span of vi,...,vi—1,Vit1,...,V,, Which is
contained in the span of S \ {v;}, as {vi,...,vi—1,Vit1,...,Vvu} C S \ {v;}. This

proves one implication.
Next, suppose that there is v € S such that v € Span(S \ {v}). That means that
we can find vi,v,,...,v, € S \ {v} and scalars ay, as, ..., a, such that

v=avi+ayv,+...+a,v,

But then

- v+ (—a)n+...+(—ay)v, =0
and the vectors v, vy, ..., v, are linearly dependent. Since v ¢ {vi, ..., v,}, it follows
that S has a finite subset which is linearly dependent and so S is linearly dependent.
The result follows. O

The following rather technical and subtle result (the Steinitz exchange lemma)
is the fundamental theorem in the basic theory of vector spaces. We will deduce
from it a lot of very nontrivial results, which will help building the theory of finite
dimensional vector spaces.

Theorem 4.39 (Exchange lemma). Let L = {vi,vp,...,v,} and § =
{wi,wa,...,wy} be two finite subsets of a vector space V, with L linearly
independent and S a spanning set. Thenn < m and we can find vectors si, . . . , Sm—n
in S such that L U {sy, 83, ..., Sm—n} is a spanning set.

Proof. The result will be proved by induction on n. There is nothing to be proved
when n = 0, so assume that the result holds for n and let us prove it for n + 1. Since
V1, V2, ..., V4 are linearly independent, so are vy, v,, ..., v, by Remark 4.36. Thus
by the inductive hypothesis we already have n < m and the existence of vectors
S1y ..y Sm—n such that {vy,...,v,,S1,...,Sm—n} is a spanning set. In particular, we
can express v, as a linear combination

Vn+1 = aA1Vy +...+a,v, + b1S1 +...4+ bm_nsm_n.
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If m = n, then the previous relation can be written

Vol = a1Vi+ ...+ apvy
and contradicts the hypothesis that v, v,,...,v, are linearly independent. Thus
m # n and since n < m, we must have n + 1 < m. The same argument also proves
that at least one of by, b, ..., b,—, is nonzero. Permuting the vectors sy, ..., Sy—n,
we may assume that b; # 0. Dividing the relation

Vn+1 = A1V +...+ayv, + b]S] + ...+ bm_nsm_n

by b; and rearranging terms yields

s alv anv n lv bm—ns
1= —7Vi— ... 7 Vn 7 VYn+l = -7 T Om—n
bl bn bl b]
which shows that s; € Span(vy, ..., VvV, Vut1,52, -+ Sm—n). Thus
V = Span(vi, ..., Vu, 815« Sm—n) C Span(vy, ..., Vuy, Vugb1, 525« > Sm—n)
and L U {s5,...,S,—,} is a spanning set, which is exactly what we needed. O

Remark 4.40. One can slightly refine the previous theorem by no longer assuming
that L is finite (but still assuming that S is finite). Indeed, any subset of L is still
linearly independent. Hence Theorem 4.39 shows that any finite subset of L has size
at most m and hence L is finite and has size n < m.

4.4.1 Problems for Practice

1. Are the vectors
vi=(,2,1), vy =(-3,4,5,v3 =(0,2,-3)

linearly independent in R*?
2. Consider the vectors

vi=(1,2,1,3), w=(,-1,1,-1), v;=(3,0,3,1)

in R*.

a) Prove that v;, v,, v3 are not linearly independent.
b) Express one of these vectors as a linear combination of two other vectors.
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3. Let V be the vector space of polynomials with real coefficients whose degree
does not exceed 3. Are the following vectors

1+3X + X%, X?-3X+1, 3X3—-Xx*2—-Xx-1
linearly independent in V'?

4. Let V be the space of all real-valued maps on R.

a) Ifa; <.... < a, are real numbers, compute

n
lim 2 :e(ai—an)x.
X—>00

i=1
b) Prove that the family of maps (x > e**),er is linearly independent in V.

5. Let V be the space of all maps ¢ : [0,00) — R. For each a € (0, c0) consider
the map f, € V defined by

X) = .
folw) = ——
a) Leta; < ... < a, be positive real numbers and suppose that «y, ..., ®, are
real numbers such that
n
Z o; fui (x) = 0

i=1

for all x > 0. Prove that for all real numbers x we have

Z(xi . l—[(x +aj)=0.

=l

By making suitable choices of x, deduce thato; = ... = «, = 0.
b) Prove that the family (f;),~o is linearly independent in V.

6. Consider V' = R, seen as vector space over F = Q.

a) Prove that 1, \/5 ﬁ is a linearly independent set in V. Hint: if a, b, ¢ are
rational numbers such that @ + b+/2 + c+/3 = 0, check that a2 + 2ab~/2 +
2b% = 3c2.

b) Prove that the set of numbers In p, where p runs over the prime numbers, is
linearly independent in V.
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7. a) If m, n are nonnegative integers, compute

2w
/ cos(mx) cos(nx)dx.
0

b) Deduce that the maps x > cos nx, with n nonnegative integer, form a linearly
independent set in the space of all real-valued maps on R.

8. Letvy, vy, ..., v, be linearly independent vectors in R”. Is it always the case that
vi,vi +va,...,vi +v2 + ...+ v, are linearly independent?

4.5 Dimension Theory

We are now ready to develop the dimension theory of vector spaces. For general
vector spaces, this is rather subtle, but we will stick to finite dimensional vector
spaces, for which the arguments are rather elementary consequences of the subtle
exchange lemma proved in the last section. We fix a field F and all vector spaces in
this section will be over F.

Definition 4.41. A vector space V is called finite dimensional if it has a finite
spanning set.

Thus V' is finite dimensional if we can find a finite family of vectors
Vi,Va,...,v, € V such that all vectors in V are linear combinations of
Vi,V2,...,v,. For instance, the spaces F", M, ,(F) and R,[X] are finite
dimensional, by example 4.29. However, not all vector spaces are finite dimensional
(actually most of them are not).

Problem 4.42. Prove that the vector space V' of all polynomials with real coeffi-
cients is not a finite dimensional R-vector space.

Proof. Suppose that V' has a finite spanning set, so there are polynomials
Pi,...,P, € V such that V"= Span(Py,..., P,;). Let d be the maximum of
deg(Py),...,deg(P,). Since all P; have degree at most d, so does any linear
combination of Pj,..., P,. It follows that any vector in V has degree at most d,
which is certainly absurd since X?*! has degree greater than d. |

We would like to define the dimension of a finite dimensional vector space. This
should be an invariant of the vector space and should correspond to the geometric
picture (you might prefer to take ' = R for a better geometric intuition): a line
(namely F) should have dimension 1, a plane (i.e., F?) should have dimension 2, in
general F" should have dimension n. Before stating and proving the main result, let
us introduce a crucial definition and practice some problems to get a better feeling
about it.

Definition 4.43. A basis of a vector space V is a subset of V' which is linearly
independent and spanning.
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For instance, the generating families appearing in example 4.29 are all bases of
the corresponding vector spaces (this explains why we called them canonical bases
in previous chapters!).

Problem 4.44. Given the matrix

20
A= [03} € M>(R),

find a basis of the subspace U of M,(R) defined by
U={XeMR)| XA=AX}.

ap az

Solution. Consider a square matrix X = [ :| Then X € U if and only if

as dy
XA = AX, which can be rewritten as

2ay 3ay | _ | 2a; 2a;
2613 3614 - 3613 3614 ’
This equality is equivalent to a, = a3 = 0. Thus

U = {|:a1 0 :| |a1,a4 GR},
0 ay

and so a basis of U is given by the matrices X| = [(1) 8} and X, = [g (1)] (it is
not difficult to check that X and X, are linearly independent).

Problem 4.45. Determine a basis of the subspace U of R*, where
U=1{@a,bcdeR | a+bh=0 c=2d}.
Solution. Since b = —a and ¢ = 2d, we can write
U=1{(a,—a,2d,d)|a,d € R} = {av| + dw]a,d € R},
where vi = (1,—1,0,0) and v, = (0,0, 2, 1). Thus vy, v, form a generating family
for U. Moreover, they are linearly independent, since the relation av; + dv, = 0 is

equivalent to (a, —a,2d,d) = (0,0,0,0) and forces a = d = 0. We conclude that
a basis of U is given by v; and v,. O

Problem 4.46. Consider the subspaces U, V of R* defined by

U={(x,y.zw)eR*|y+z4+w=0}
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and
V={(x,y.zw) e R* | x = —y, z =2w}.

Find a basis for each of the subspaces of U, V and U N V of R*.

Solution. Expressing w in terms of y and z, we obtain
U={(x,y,2,—y —2)|y,z€ R} = {xu1 + yus + zus|x, y,z € R},

where u; = (1,0,0,0),u, = (0,1,0,—1) and u3 = (0,0, 1, —1). Let us see whether
uy, up, us are linearly independent. The equality xu; + yu, + zuz = 0 is equivalent
to (x,y,z,—y —z) = (0,0,0,0) and forces x = y = z = 0. Thus uy, up, u3 are
linearly independent and therefore they form a basis of U.

Let us deal now with V. Clearly

V=A{(=y,y,2w,w)|y,w € R} = {yv; + wip|y,w € R},

where vi = (—1,1,0,0) and v, = (0,0,2,1). As above, v; and v, are linearly
independent, since the relation yv; 4+ wv, = 0 is equivalent to (—y, y,2w,w) =
(0,0,0,0) and forces y = w = 0. Thus vy, v, form a basis of V.

Finally, a vector (x, y,z,w) € R* belongs to U N V if and only if

x=-y, z=2w, y+z+w=0.
This is equivalent to x = 3w,z =2wand y = —3w, or
(x,y,z,w) = Bw, =3w, 2w, w) = w(3,-3,2,1).

Thus (3,—3,2,1) forms a basisof U N V. O

Problem 4.47. Consider the space V' of functions f : R — R spanned by the
functions in B = {1, x +> sin(2x), x > cos(2x)}.

a) Prove that B forms a basis of V.
(b) Prove that x > sin?(x) is a function in V and write it as a linear combination of
elements of B.

Solution. a) We need to prove that the vectors in B are linearly independent. In
other words, we need to prove that if @, b, ¢ are real numbers such that

a + bsin(2x) + ccos(2x) =0

for all real numbers x, thena = b = ¢ = 0. Taking x = 0 we obtaina + ¢ = 0,
then taking x = /2 yieldsa—c = 0. Thus @ = ¢ = 0. Finally, taking x = /4
yields b = 0.
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For all x € R we have
cos(2x) = 2cos?(x) — 1 = 2(1 —sin®(x)) — 1 = 1 — 2sin?(x),

thus

1 —cos(2x)

.2 _
sin“(x) = 5

We deduce that x — sin?(x) is in V and the previous formula expresses it as a
linear combination

1 1
sin?(x) = 3 14 0-sin(2x) — 3 cos(2x).

|

Let us prove now the first fundamental result regarding dimension theory of

vector spaces.

Th

a)
b)

eorem 4.48. Let V be a finite dimensional vector space. Then

V' contains a basis with finitely many elements.
Any two bases of V' have the same number of elements (in particular any basis
has finitely many elements).

Proof. a) Among all finite spanning sets S of V' (we know that there is at least one

b)

such set) consider a set B with the smallest possible number of elements. We will
prove that B is a basis. By our choice, B is a spanning set, so all we need to prove
is that B is linearly independent. If this is not the case, then Proposition 4.38
yields the existence of a vector v € B such that v € Span(B \ {v}). It follows
that B \ {v} is also a spanning set. This contradicts the minimality of B and
shows that B is indeed linearly independent.

Let B be a basis with finitely many elements, say n. Let B’ be another basis of
V. Then B’ is a linearly independent set and B is a spanning set with n elements,
thus by Remark 4.40 B’ is finite, with at most n elements. This shows that any
basis has at most n elements. But now we can play the following game: say B’
has d elements. We saw that d < n. We exchange B and B’ in the previous
argument, to get that any basis has at most d elements, thus n < d. It follows
that n» = d and so all bases have the same number of elements. a

The previous theorem allows us to make the following:

Definition 4.49. Let I/ be a finite dimensional vector space. The dimension dim V

of

V is the number of elements of any basis of V.

Example 4.50. a) Consider the vector space F". Its canonical basis ey, ...,e, is a

basis of F" with n elements, thus dim F”" = n.
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b) Consider the space F[X], of polynomials with coefficients in F, whose degree
does not exceed n. A basis of F[X], is givenby 1, X, ..., X", thus

dim F[X], = n + 1.

¢) Consider the vector space M,, ,(F') of m x n matrices with entries in F. A basis
of this vector space is given by the elementary matrices E;; with 1 <i < m and
1 < j < n (the canonical basis of M,, ,(F)). It follows that

dim M, ,(F) = mn.
Problem 4.51. Find a basis as well as the dimension of the subspace
V ={(a,2a) |a € R} C R®.

Solution. By definition V' is the linear span of the vector (1,2), since (a,2a) =
a(1,2). Since (1,2) # (0,0), we deduce that a basis of V is given by (1,2) and
dimV = 1. |

The second fundamental theorem concerning dimension theory is the following:
Theorem 4.52. Let V be a vector space of dimension n < oco. Then

a) Any linearly independent set in V has at most n elements.

b) Any spanning set in V has at least n elements.

c) If S is a subset of V with n elements, then the following assertions are
equivalent:

i) S is linearly independent
ii) S is a spanning set
iii) S is a basis of V.

Proof. Fix a basis B of V. By definition, B has n elements.

a) Since B is a spanning set with n elements, the result follows directly from
Remark 4.40.

b) Let S be a spanning set and suppose that S has d < n elements. Since B is
linearly independent, Theorem 4.39 yields n < d, a contradiction.

¢) Clearly iii) implies i) and ii). It suffices therefore to prove that each of i) and ii)
implies iii). Suppose that S is linearly independent. By Theorem 4.39 we can
add n —n = 0 vectors to S so that the new set is a spanning set. Clearly the
new set is nothing more than S, so S is a spanning set and thus a basis (since by
assumption S is linearly independent).

Now suppose that S is a spanning set and that S is not linearly independent.

By Proposition 4.38 we can find v € S such that v € Span(S \ {v}). Then S\ {v}
is a spanning set with n — 1 elements, contradicting part b). Thus § is linearly
independent and a basis of V. |
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The following problems are all applications of the previous theorem.

Problem 4.53. Prove that the set U, where
U={1,1,1),(1,2,1),2,1,1)}

is a basis of R®.

Solution. Letv; = (1,1,1), v, = (1,2,1) and v3 = (2,1, 1). Since dimR? = 3,
it suffices to prove that vy, v, v3 are linearly independent. Suppose that x, y,z € R
satisfy

xvi 4+ yvy +zv3 = 0.

This can be written as

X+y+2z=0
xX+2y+z=0
x+y+z=0

Combining the first and the last equation yields z = 0, and similarly, combining the
second and the last equation yields y = 0. Coming back to the first equation, we
also find x = 0, and the result follows. O

Problem 4.54. Determine a basis of R? that includes the vector v = (2, 1, 1).

Solution. Let e, 5, e3 be the canonical basis of R>. Then v = 2¢; + e, + e3. It
follows that e; belongs to the span of v, e;, e, thus the span of v, ey, e; is R3. Thus
v, e}, e, form a basis of R?, since dim R? = 3 (of course, one can also check directly
that v, ey, e, are linearly independent). O

Problem 4.55. Let R, [X] be the vector space of polynomials with real coefficients
whose degree does not exceed n. Prove that if Py, Py,..., P, € R,[X] satisfy
deg Py = k for0 < k < n, then Py, Py,..., P, form a basis of R,[X].

Solution. Since dimR,[X] = n + 1, it suffices to prove that Py, Py,..., P, are
linearly independent. Suppose that ag, ay, ..., a, € R are not all zero and

a()P()+Cl]P1 +...+anP,, =0.

Let j be the largest index for which a; # 0. Then by hypothesis ag Py + a1 P1 +
...+ a; P; has degree exactly j, which contradicts the fact that this polynomial is
the zero polynomial (sinceaj+; = ... =a, =0andaoPo + ... + a, P, = 0) and
that the zero polynomial has degree —oo. |

Problem 4.56. Let P € R[X] be a polynomial. Prove that the following assertions
are equivalent:

a) P(n) is an integer for all integers n.
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b) There are integers n and ay, . . ., a, such that

n

PO) ZzakX(X—l)..];!(X—k+1)y

k=0

with the convention that the first term in the sum equals ay.

Solution. Let P w, with Py = 1. It is not difficult to see

that Py(Z) C Z (as the values of Py at all integers are, up to a sign, binomial
coefficients). This makes it clear that b) implies a).

Suppose that a) holds and let d = deg P. Since deg P, = k for 0 < k < d,
Problem 4.55 yields real numbers ag, ay, . ..,ay suchthat P = agPo+a; P1+...+
aq Py. We need to prove that ay, . . ., a4 are actually integers. But by hypothesis

m m m
P(m) :a0+ a; + a + ... Ap—1 + ap
1 2 m—1

are integers, form = 0, ..., d. Using the relation

am = P(m) — (ao + (nli)al + (,721)612 + ... (mri l)am—l)

it is easy to prove by induction on j that ao,...,a; are integers for 0 < j < d.
Thus ay, . .., a, are all integers and the problem is solved. O

Before moving on to another fundamental theorem, let us stop and try to explain
how to solve a few practical problems. First, consider some vectors vi,..., Vg
in R" and consider the problem of deciding whether this is a basis of R". By the
previous results, this is the case if and only if k' = n and vy,..., v are linearly
independent. This is equivalent to saying that k = n and A,.r = I,. We see that we
have an algorithmic solution for our problem.

Consider now the problem: given vi,..., v in R”, decide whether they span
R”. To solve this problem, we consider the matrix 4 whose rows are given by the
coordinates of the vectors vy, ..., v; with respect to the canonical basis of R”. We
row-reduce A and obtain its reduced echelon-form A,.¢. Then vy, ..., v span R" if
and only if the rows of A,.r span R". This is the case if and only if A,.; has a pivot
in every column.

Next, consider the following trickier problem: given some vectors vy, ..., Vg in
R”, find a subset of {vy, ..., vt} which forms a basis of R". Of course, if v, ..., v
do not span R”, then the problem has no solution (and we can test this using the
procedure described in the previous paragraph). Assume now that vy, ..., vt span
R”. Let A be the matrix whose columns are given by the coordinates of vy, ..., vk
in the canonical basis of R”. We leave it to the reader to convince himself that those
vectors v; corresponding to columns of A containing a pivot form a basis of R”.
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Example 4.57. Consider the vectors vi = (1,0,—1,0), v, = (0,1,—1,1), v3 =
2,3,—-12,-1), v4 = (1,1,1,1), vs = (1,—1,0,—1). We would like to find a
subset of these vectors which gives a basis of R*. Let us check first whether they
span R*. For that, we consider the matrix

10 -1 0
01 -1 1
A=|(23 —-12-1
11 1 1
1-1 0 -1

The row-reduction is

1000
0100
Arer =1 0010
0001
0000

and it has pivots in every column, thus vy, ..., vs span R*.
Now, to solve the original problem, we consider the matrix

10 211
|01 31
~1-1-121 0
0 1 —11-1

whose columns are the coordinates of vy, va, v3, v4, vs. Its row-reduction is

1000 1
;) _|0100-3
/710010 0
0001 —4

The columns containing pivots are the first four, so v, v, v3, v4 form a basis of R*.

Note that we could have read whether vy, ..., vs span R* directly on A’, without
the need to introduce the matrix A. Indeed, it suffices to check that A’ has a pivot in
every row, which is the case.

Problem 4.58. Let S be the set

S = =20,(1].] 6 |,]—2



4.5 Dimension Theory 143

a) Show that S spans the space R? and find a basis for R? contained in S.
b) What are the coordinates of the vector ¢ = (1,1, 1) with respect to the basis
found in a)?

Solution. a) Consider the matrix
1 0-51

A=|-216 =2
02-81

Its row-reduction is

10-50
Arer = |01 40
000 1

Since A has a pivot in each row, the columns of A span R?, thus S spans R3.
Considering the pivot columns of A, we also deduce that a subset of S that forms

1 0 1
a basis of R3 consistsof | —2 |, [ 1| and | =2 |.
0 2 1
b) Since
101 |1 100] 6
—-21-=2]1|~]010]| 3|,
0211 001]|-5

the coordinates of ¢ with respect to this basis given by the last column of the
matrix above, namely 6, 3, —5. O

Theorem 4.59. Let V be a finite dimensional vector space and let W be a subspace
of V. Then

a) W is finite dimensional and dim W < dim V. Moreover, we have equality if and
onlyif W =V.
b) Any basis of W can be extended to a basis of V.

Proof. Letn =dimV.

a) If S is any linearly independent set in W, then S is a linearly independent
set in V' and so S has at most n elements by part a) of Theorem 4.52. Note
that if we manage to prove that W is finite dimensional, then the previous
observation automatically implies that dimW < n (as any basis of W is a
linearly independent set in W). Suppose that W is not finite dimensional. Since
W is nonzero, we can choose w; € W nonzero. Since {w;} is not a spanning
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set for W, we can choose w, € W not in the span of w;. Assuming that
we constructed wy, ..., wy, simply choose any vector wyy; in W but not in
the span of wy,...,w,. Such a vector exists, since by assumption the finite
set {wy,...,wg} is not a spanning set for W. By construction, wy, ..., w; are
linearly independent for all k. Thus wy, ..., w,4+; is a linearly independent set
with more than n elements in W, which is absurd. Thus W is finite dimensional
anddim W < n.

We still have to prove that dim W = n implies W = V. Let B be a basis
of W. Then B has n elements and is a linearly independent set in V. By part c)
of Theorem 4.52 B is a spanning set for V', and since it is contained in W, we
deduce that W = V.

b) Let d = dimW < n and let B be a basis of W. Let B’ be a basis of V. By
Theorem 4.39 applied to the linearly independent set B in I and to the spanning
set B’ in V, we can add n—d elements to B to make it a spanning set. This set has
n elements and is a spanning set, thus it is a basis of V' (part ¢) of Theorem 4.52)
and contains B. This is exactly what we needed. |

The following result is very handy when estimating the dimension of a sum of
subspaces of a given vector space.

Theorem 4.60 (Grassmann’s formula). If Wi, W, are subspaces of a finite dimen-
sional vector space V, then

dim W, + dim W = dim(W; + W) + dim(W; N W5).

Proof. Let m = dimW;, n = dimW, and k = dim(W; N W,). Let B =
{vi,..., v} be a basis of W; N W,. Since W) N W, is a subspace of both W)
and W,, Theorem 4.59 yields bases B, B, of W, and W, which contain B. Say
By = {vi,...,viu, . it and By = vy, .o, ve, WL, Wi . We will
prove that the family

S =i, ViU U, W Waek )
is a basis of W + W, and so
dm(W+ W) =k+m—-k+n—k=m+n-—=k,
as desired.
We start by proving that S is a spanning set for W; + W,. Let x be any vector
in W, 4+ W,. By definition we can write x = x| + x, with x; € Wj and x, € W,.

Since B; and B; are spanning sets for W and W,, we can write

Xy =ayvy+...+apvi + biuy + ...+ bp—p s
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and
Xo=civi+...+cvie +diwr + ..o+ diiwn—k
for some scalars a;, b, ¢;, d,. Then
x = (a1+c)vi+...+(ar+cp)vi+biur+. . . 4+by—kup—r +dywi+. . . +dy—kWn—i

isin the span of S. Since x was arbitrary in W; 4 W,, it follows that S spans W+ W,.
Finally, let us prove that S is a linearly independent set in W} 4+ W,. Suppose that

awvi+ ... +agve +biur + ..+ byt Fcwy + .o Wy =0
for some scalars a;, b i, ci. Then
apvi + ..+ agve + biuy + ..+ byt = —(C1w1 F ...+ Ci—kWi—k).
The left-hand side belongs to | and the right-hand side belongs to W,, hence both
sides belong to W) N W,, and so they are linear combinations of vy, ..., v¢. Thus we
can write
awvi+ ...+ avg + by + ..o+ bp—gug—k = divi + ...+ divi

for some scalars dy, . .., di. Writing the previous relation as

(ag—dyvi+ ...+ (ar —dp)vk +biuy + ... + byt =0

and using the fact that vy, ..., vk, uy, ..., u,—x are linearly independent, it follows
thata; = dy,...,ay = dyand by = ... = by, = 0. By symmetry we also obtain
ci1=...=cp—r =0.Thenav; + ...+ axvy = 0 and since vy, ..., v are linearly
independent, we conclude that a; = ... = a; = 0. Thus all scalars a;, b}, ¢; are 0
and S is a linearly independent set. This finishes the proof of the theorem. |

Remark 4.61. Suppose that W, W, are subspaces of a finite dimensional vector
space V, such that V. = W) @& W,. If B and B, are bases for W, and W,, then
B U B, is a basis for V. This follows from the proof of the previous theorem, or it
can simply be checked by unwinding definitions. More generally, if a vector space
V is the direct sum of subspaces Wy, ..., W, and B; is a basis for W; (1 <i < n),
then B; U ... U B, is a basis for V. We leave this as an easy exercise for the reader.

Problem 4.62. Let Vi, V,,...,V; be subspaces of a finite dimensional vector
space V. Prove that

dm(Vi + Vo + ...+ V) <dimV; +dimV, + ... +dim V.
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Solution. It suffices to prove the result for k = 2, as then an immediate induction
on k yields the result in general (noting that Vi + Vo, + ... + Vi, = (V1 + V) +
Vi + ...+ V for k > 3). But for k = 2 this follows from

dim(V; + V) = dimV; + dim V, —dim(V; N V;) <dimV; +dimV,. O

Problem 4.63. Let V' be a finite dimensional vector space over a field F. Let U, W
be subspaces of V. Prove that V = U @ W ifand only if V = U + W and

dimV =dimU + dim W.
Solution. If V= U & W, then clearly V = U 4+ W and we can obtain a basis of
V' by patching a basis of U and one of W, so dim V' = dim U + dim W. Suppose
now that V. = U + W and dimV = dimU + dim W. We need to prove that
UNW = {0}. But
dim(U N W) =dimU +dimW —dim(U + W) =dimV —dimV =0,

thusU N W = 0. O

4.5.1 Problems for Practice
1. Do the following two sets of vectors span the same subspace of R3?
X ={(1,1,0), (3,2,2)} and Y ={(7.3,8), (1,0,2), (8,3,10) }

2. The set S consists in the following 5 matrices:
10 11 00 10 00
00]’ 00]’ 11]° —-10]’ 10]°
(a) Determine a basis B of M;,(R) included in S.
(b) Write B ﬂ as a linear combination of elements of B.
3. Letey, ey, €3, e4 be the canonical basis of R* and consider the vectors
vi=e1+ey Vy=e3 Vi=e, V4=e+ey.

a) Are the subspaces Span(vy, v,) and Span(vs, v4) in direct sum position?
b) Are the subspaces Span(vy, v,, v3) and Span(vy4) in direct sum position?



4.5

Dimension Theory 147

. Let V be the set of polynomials f with real coefficients of degree not exceeding

4 and such that f(1) = f(—1) = 0.

a) Prove that V is a subspace of the space of all polynomials with real
coefficients.
b) Find a basis of V' and its dimension.

. Let V be the set of vectors (x,y,z,¢) € R* such that x = zand y = 1.

a) Prove that V is a subspace of R*.
b) Give a basis and the dimension of V.
¢) Complete the basis found in b) to a basis of R*.

. Consider the set V' of vectors (x1, X2, X3, x4) € R* such that

X1 +x3=0 and x,+ x4 =0.

a) Prove that V is a subspace of R*.

b) Give a basis and the dimension of V.

c¢) Let W be the span of the vectors (1,1,1,1), (1,—1,1,—1) and (1,0, 1, 0).
Give a basis of W and find V + W and V N W (you are asked to give a basis
for each of these spaces).

. A set of three linearly independent vectors can be chosen among

u=(1,0,—-1), v=(2.,1,1) w=(@4,1,—-1), and x= (L1 1).

(a) Determine such a set and show that it is indeed linearly independent.
(b) Determine a nontrivial dependence relation among the four given vectors.

. Exactly one of the vectors by = (7,2,5) and b, = (7,2, —5) can be written as

a linear combination of the column vectors of the matrix

103
A=1|(114
011

Determine which one and express it as a linear combination of the column
vectors of A.

. Let V be the set of matrices A € M, (C) for which a;; = 0 whenever i — j is

odd.

a) Prove that V' is a subspace of M,,(C) and that the product of two matrices
in V belongs to V.
b) Find the dimension of V' as C-vector space.
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10.

11.

12.

13.

4 Vector Spaces and Subspaces
Let V be the set of matrices A € M, (R) such that

An+1—in+1—j = Ajj
fori, j €[l,n].

a) Prove that V is a subspace of M, (R).
b) Find the dimension of V' as R-vector space.

Find all real numbers x for which the vectors
V1 =(1,0,X), V2=(1,1,X), V3=(X,0,1)

form a basis of R>.

Let P, = X*(1 — X)"7. Prove that Py,..., P, is a basis of the space of
polynomials with real coefficients, whose degree does not exceed n.

Let V be a vector space of dimension n over F,. Prove that for all d € [1,n]
the following assertions hold:

a) There are (2" — 1)(2" —2)...(2" —2¢Y) d-tuples (vi,...,vy) in V¥ such
that the family vy, ..., v is linearly independent.

b) There are (2" — 1)(2" —2) ... (2" —2"~!) invertible matrices in M, (F>).

¢) There are

Q=R =1)... @ -
Q4 -1 —=1)...2—-1)

subspaces of dimension d in V.



Chapter 5
Linear Transformations

Abstract While the previous chapter dealt with individual vector spaces, in this
chapter we focus on the interaction between two vector spaces by studying linear
maps between them. Using the representation of linear maps in terms of matrices,
we obtain some rather surprising results concerning matrices, which would be
difficult to prove otherwise.

Keywords Linear maps ¢ Kernel * image ¢ Projection * Symmetry ¢ Stable
subspace ¢ Change of basis * Matrix ¢ Rank

The goal of this chapter is to develop the theory of linear maps between vector
spaces. In other words, while the previous chapter dealt with basic properties of
individual vector spaces, in this chapter we are interested in the interactions between
two vector spaces. We will see that one can understand linear maps between finite
dimensional vector spaces in terms of matrices and, more importantly and perhaps
surprisingly at first sight, that we can study properties of matrices using linear maps
and properties of vector spaces that were established in the previous chapter.

5.1 Definitions and Objects Canonically Attached
to a Linear Map

Unless stated otherwise, all vector spaces will be over a field F', which the reader
can take R or C. In the previous chapter we defined and studied the basic properties
of vector spaces. In this chapter we will deal with maps between vector spaces.
We will not consider all maps, but only those which are compatible with the
algebraic structures on vector spaces, namely addition and scalar multiplication.
More precisely:

Definition 5.1. Let V, W be vector spaces over F. A linear map (or linear
transformation or homomorphism) between V and W isamap T : V — W
satisfying the following two properties:
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1) T(vi +v2) = T(v1) + T (vy) for all vectors vi, v, € V, and
2) T(cv) = cT(v)forallv e V and all scalars ¢ € F.

The reader will notice the difference between this definition and the definition
of linear maps in other parts of mathematics: very often in elementary algebra or in
real analysis when we refer to a linear map we mean a map f : R — R of the form
f(x) = ax + b for some real numbers «a, b. Such a map is a linear map from the
point of view of linear algebra if and only if » = 0 (we refer to the more general
maps x — ax + b as affine maps in linear algebra).

In practice, instead of checking separately that T respects addition and scalar
multiplication, it may be advantageous to prove directly that

T(V] + CV2) = T(V]) + CT(Vz)

for all vectors vi, v, € V and all scalars ¢ € F.

Problem 5.2. If T : V — W is a linear transformation, then 7(0) = 0 and
T(—v) =—-T(v)forallveV.

Solution. Since T is linear, we have
TO)=T(0O+0)=T(0)+T(0)
thus 7'(0) = 0. Similarly,

T(=) =T(=y) = (=DHT V) = =T ). 0

Example 5.3. a) If V is a vector space over I and ¢ € F is a scalar, then the map
T :V — V sending v to cv is linear (this follows from the definition of a vector
space). For ¢ = 0 we obtain the zero map, which we simply denote 0, while
for ¢ = 1 we obtain the identity map, denoted id. In general, linear maps of the
form v — cv for some scalar ¢ € F are called scalar linear maps.

b) Consider the vector space V' = R[X] of polynomials with real coefficients
(we could allow coefficients in any field). The map T : V — V sending P
to its derivative P’ is linear, as follows immediately from its definition. Note
that if deg P < n, then deg P’ < n, thus the map T restricts to a linear map
T : R,[X] — R,[X] for all n (recall that R,[X] is the vector subspace of V
consisting of polynomials whose degree does not exceed n).

¢) The map T : R — Rdefined by T'(x, y) = xy + 1 is not linear, since 7(0, 0) =
1 # 0 (by Problem 5.2). Similarly, the map 7 : R> — R? defined by T'(x,y) =
(x,y + 1) is not linear.

d) Consider the vector space V' of continuous real-valued maps on [0, 1]. Then the
map T : V — Rsending f € V to fol f(x)dx is linear. This follows from
properties of integration.

e) Consider the trace map Tr : M,,(F) — F defined by



5.1 Definitions and Objects Canonically Attached to a Linear Map 151

Tr(A) =an +apn+...+a,, if A= [a,»j].

By definition of the operations in M, (F), this map is linear. It has the extremely
important property that

Tr(AB) = Tr(BA)

for all matrices A, B. Indeed, one checks using the product rule that both terms
are equal to ZLZI aijbj;.

f) In the chapter devoted to basic properties of matrices, we saw that any matrix
A € M, ,(F) defines a linear map F" — F™ via X — AX. We also
proved in that chapter that any linear map 7" : F" — F™ comes from a
unique matrix A € M,,,(F). For example, the map 7T : R3 — R? defined

by T(x1, x2,x3) = (x1, xp) for all xy, x5, x3 € R is linear and associated with

the matrix A = [(1) (1) 8] The linear maps T : F" — F'™ are exactly the maps
T(xy,...,xp) = (@ux1 + ...+ awmXn, ..., GumXx1 + ...+ GuuXyp)
with aij € F.

g) We introduce now a fundamental class of linear transformations: projections
onto subspaces. Suppose that V' is a vector space over a field F and that W, W,
are subspaces of V such that V = W) & W,. The projection onto ¥, along W,
is the map p : V — W defined as follows: for each v € V, p(v) is the unique
vector in W for which v — p(v) € W,. This makes sense, since by assumption v
can be uniquely written as v; + v, with v; € W} and v, € W,, and so necessarily
p(v) = vy. It may not be apparently clear that the map p is linear, but this is
actually not difficult: assume that v,v' € V and let w = p(v) and w' = p(V').
Thenw,w € Wy sow +w € Wy, and

VHEV)Y=wH+w)=@—w) + ( —w) e W,
so by definition
pv+V)=w+w =p@)+ p(v).

We leave it to the reader to check that p(av) = ap(v) forv € V anda € F,
using a similar argument. Note that p(v) = v for all v € W}, but p(v) = 0 for
all v € W,. In general, we call a linear map 7 : V — V a projection if there is
a decomposition V' = W; @& W, such that T is the projection onto W, along W,.

h) Assume that we are in the situation described in g). We will define a
second fundamental class of linear maps namely symmetries with respect to
subspaces. More precisely, for any decomposition V' = W, & W, of V into the
direct sum of two subspaces Wi, W, we define the symmetry s : V' — V with
respect to W, along W, as follows: take a vector v € V, write it v = wy + w,
with w; € W, and w, € W,, and set
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s(v) = wp —ws.

Again, it is not difficult to check that s is a linear map. Note that s(v) = v
whenever v € W, and s(v) = —v whenever v € W,. Note that if F = F,,
then s is the identity map, since —v = v for all v € V if V is a vector space
over F,. In general a linear map 7 : V' — V is called a symmetry if there is a
decomposition V' = W; @& W, such that T is the symmetry with respect to W,
along W,.

Suppose that T : V' — V is a linear transformation. If W is a subspace of V,
there is no reason to have T'(W) C W. However, the subspaces W with this property
play an absolutely crucial role in the study of linear maps and deserve a special name
and a definition. They will be extensively used in subsequent chapters dealing with
deeper properties of linear maps.

Definition 5.4. Let 7 : V — V be a linear map on a vector space V. A subspace
W of V is called stable under 7" or T-stable if T(W) C W.

Problem 5.5. Consider the map T : R> — R? sending (x1, x3) to (x, —x;). Find
all subspaces of R? which are stable under 7.

Solution. Let W be a subspace of R? which is stable under T'. Since R? and {0}
are obviously stable under T, let us assume that W ## {0}, R?. Then necessarily
dim W = 1, that is W = Ry for some nonzero vector v = (xi, x3). Since W is
stable under T, there is a scalar ¢ € R such that T'(v) = cv, thatis (x5, —x;) =
(cx1,cx2). We deduce that x, = cx; and —x; = cx» = ¢?x;. Thus (¢ + 1)x; =0
and since ¢ € R, we must have x; = 0 and then x, = 0, thus v = 0, a contradiction.
This shows that the only subspaces stable under 7" are R? and {0}. |

Remark 5.6. The result of the previous problem is no longer the same if we replace
R by C. In this new situation the line spanned by (1,i) € C? is stable under 7.

If W is a stable subspace, then T restricts to a linear map 7' : W — W. For
instance, one-dimensional stable subspaces (i.e., lines in V stable under 7') will be
fundamental objects associated with linear transformations on finite dimensional
vector spaces. The following exercise studies those linear maps 7' for which every
line is a stable subspace.

Problem 5.7. Let V be a vector space over some field F andlet 7 : V — V be
a linear transformation. Suppose that all lines in V' are stable subspaces under 7.
Prove that there is a scalar ¢ € F such that T(x) = cx forall x € V.

Solution. Let x € V be nonzero and consider the line L = Fx spanned by x.
By hypothesis T (L) C L, thus we can find a scalar c, such that T(x) = ¢, - x. We
want to prove that we can choose ¢, independently of x.

Suppose that x and y are linearly independent (in particular nonzero). Then
x + y # 0 and the equality T(x + y) = T(x) + T'(y) can be written

Cx-‘ry'(x‘f‘y)zcx'x‘i‘cy'y
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or equivalently

(Cxty —Cx) X+ (cxyy—cy)-y =0.

This forces ¢,+, = ¢x = c¢,. Next, suppose that x and y are nonzero and linearly
dependent. Thus y = ax for some nonzero scalar a. Then T(y) = aT(x) can
be written ¢y - y = acy - x or equivalently ¢y, - y = ¢, - y and forces ¢; = cy.
Thus as long as x, y are nonzero vectors of V, we have ¢, = c,. Letting ¢ be the
common value of ¢, (when x varies over the nonzero vectors in V') yields the desired
result. O

Let V and W be vector spaces over F and let us denote Hom(V, W) the set of
linear transformations between V' and W . It is a subset of the vector space M (V, W)
of all maps f : V — W. Recall that the addition and scalar multiplication in
M(V, W) are defined by

(f+M =/ +gWm). (NHO)=cf)

for f,ge M(V,W),c € FandveV.

Proposition 5.8. Let V, W be vector spaces. The set Hom(V, W) of linear trans-
formations between V and W is a subspace of M(V, W).

Proof. We need to prove that the sum of two linear transformations is a linear
transformation and that ¢7 is a linear transformation whenever ¢ is a scalar and
T is a linear transformation. Both assertions follow straight from the definition of a
linear transformation. |

We introduce now a fundamental definition:

Definition 5.9. The kernel (or null space) of a linear transformation 7 : V — W is
kerT ={veV,T(v) =0}
The image (or range) Im(7’) of T is the set
Im(F) ={T(v)|veV}CW.

The following criterion for injectivity is extremely useful and constantly used
when dealing with linear maps.

Proposition 5.10. If T : V — W is a linear transformation, then T is injective if
and only ifker T = {0}.
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Proof. Since T(0) = 0, it is clear that ker 7 = {0} if T is injective. Conversely,
assume that ker T = {0}. If T'(v;) = T(v;), then

T(Vl — Vz) = T(Vl) — T(Vg) = 0,
thus v — v, € ker T and so v; = v,. Thus T is injective. O

Problem 5.11. Find the dimension of the kernel of the linear map determined by
the matrix

1 =210
A=|-1212]|¢€ M34(R)
-2 402

Solution. Let T be the corresponding linear map, so that
T(x1, X2, Xx3,X4) = (x1 — 2x2 + X3, —=X1 + 2x2 + X3 + 2x4, —2x1 + 4X2 + 2X4).
A vector x = (xy,...,x4) belongs to ker(7) if and only

X1 —2x,+x3=0
—X1+2x +x3+2x4=0
—2X1 +4X2+2.X4=O

The matrix associated with this system is A and row-reduction yields

-2 1

1 0—
Ay =100 11

0001
Thus the previous system is equivalent to

X1—2X2—X4=0
X3+x4=0

We conclude that
ker(T) = {(x1, x2,2x2 — x1, X1 — 2Xx2)|x1, X2 € R}.

The last space is the span of the vectors vi = (1,0,—1,1) and v, = (0,1,2,-2)

and since they are linearly independent (as x;v; + x,v, = 0 is equivalent to
(x1,x2,2x7 — x1, X1 — 2x3) = (0,0,0,0) and so to x; = x, = 0), it follows that
dimker T = 2. O

Problem 5.12. Give a basis for the kernel of the linear map 7 : R* — R? given by

Tx,y,)=(x—-2y+z2x -3y +z,x+y—22,3x —y — 22).
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Solution. We need to find those (x, y, z) for which T'(x, y,z) = 0, in other words
we need to solve the system

x—2y+z=0
2x =3y +2z=0
x+y—2z=0

3x —y—2z=0

The matrix of this homogeneous system is

and row-reduction yields

10-1
01 -1
00 0
00 0

Aref =

Thus the system is equivalent to

x—z=0
y—z=0

and its solutions are given by (x, x, x) with x € R. In other words,
Ker(T) = {(x,x,x)|x € R}

and a basis is given by the vector (1,1, 1). O

Problem 5.13. LetA = [i {| andlet T : M,(R) — M;(R) be the map defined by
F(X) = AX.

(a) Prove that F is a linear transformation.
(b) Find the dimension of ker(F') and a basis for ker(F').

Solution. (a) For any two matrices X and Y in M;(R) and any scalar ¢ we have
F(X+cY)=AX 4+cY)=AX 4+ cAY = F(X) + cF(Y),

thus F is a linear transformation.
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(b) We need to find the dimension and a basis of the space of matrices that are
solutions of the matrix equation AX = 0. This equation is equivalent to

X1+ X X+ xo2 | _ (00
X11 + X21 X12 + X2 00

or X1 = —x1; and x5 = —x;,. Thus
X111 X12
ker(F) = {|: ] |x11, x12 € R}.
—X11 —X12

This last space is clearly two-dimensional, with a basis given by

10 01
1o and 0—11"
|
Proposition 5.14. If T : V — W is a linear transformation, then ker T and Im(T)

are subspaces of V, respectively W. Moreover, ker T is stable under T, and if
V = W then Im(T) is stable under T .

Proof. Letvi,v, inkerT and let ¢ € F. We need to prove that vi 4+ cv, € kerT.
Indeed,

Tvi+cevy) =TW)+cT(v)) =0+c¢-0=0.

Similarly, if wi,w, € Im(T), then we can write w; = T'(v;) and w, = T (v;) for
some vq, Vv, € V. Then

wi+cewy =TWy) +cT(v) =TW + cvy) € Im(T)

for all scalars ¢ € F, thus Im(7") is a subspace of W.

It is clear that Im(7") is stable under T if V' = W. To see that ker T is stable
under T, take v € kerT, so that T(v) = 0. Then T(T'(v)) = T(0) = 0, thus
T(v) € ker T and so ker T is stable. O

The following problem gives a characterization of projections as those linear
maps 7 forwhichT o7 =T.

Problem 5.15. Let V' be a vector space over a field F andlet T : V — V be a
linear map on V. Prove that the following statements are equivalent:

a) T is a projection
b) Wehave To T =T.
Moreover, if this is the case, then ker T @ Im(T) = V.
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Solution. Assume that a) holds and let us prove b). Assume that 7 is the projection
onto W, along W, for some decomposition V' = W; @ W,. Take v € V' and write
v =w;+w;, withw; € Wyandw, € W5. ThenT(v) = wyand T(T(v)) = T(wy) =
wy, hence T(T'(v)) = T(v) forallve VandsoT o T = T and b) holds.

Assume now that T o T = T and let us prove b). We start by proving that
ker T @ Im(T) = V. Suppose that v € ker T N Im(T'), so that v = T (w) for some
w € V,and T(v) = 0. We deduce that

0=T®W) =T(Tw)=T(w)

hence v = T(w) = 0 and ker T N Im(7") = {0}. Next, letv € V and put vi =
v—T(v) and v, = T(v). Clearly v = v| 4+ v, and v, € Im(T'). Moreover,

TGh)=TW-TW)=TWV)-T(T») =0

andsov; € kerT.Hencev € ker T + Im(T") and ker T & Im(7T") = V holds.

Set Wi = Im(T') and W, = ker T'. By assumption V = Wy @ W, and T'(v) € W;
for all v € W. It suffices therefore to prove that v — T'(v) € W, for all v € V, as this
implies that T is the projection onto W, along W,. But v — T'(v) € W, if and only
if T(v—T(v)) =0, thatis T(v) = T?(v), which follows from our assumption that
b) holds. Note that the last statement of the problem has already been proved. [

Remark 5.16. We have a similar statement for symmetries assuming that F' €
{Q,R,C} (so we exclude FF = F,). Namely, if V' is a vector space over F' and
T : V — V is a linear map, then the following statements are equivalent:

a) T is a symmetry.
b) T o T = id, the identity map of V' (sending every vector of V' to itself).
Moreover, if this is the case then V = Ker(T —id) & Ker(T + id).

5.1.1 Problems for practice

In the next problems F is a field.

1. Let f : C — C be a R-linear map. Prove the existence of complex numbers
a,b such that f(z) = az + bz forall z € C.
2. Consider the map f : R* — R? defined by

S (x1, x2, X3, X4) = (X1 4+ X2+ X3+ X4, 2X1 + X2 — X3 4+ X4, X1 — X2 + X3 — X4).

a) Prove that f is a linear map.
b) Give a basis for the kernel of f.
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Let V be the space of polynomials with real coefficients whose degree does not
exceed 3, and let the map f : V — R* be defined by

f(P) = (P(0), P(1), P(=1), P(2)).

a) Prove that f is a linear map.
b) Is f injective?

. Let n be a positive integer and let V' be the space of real polynomials whose

degree does not exceed 7. Consider the map
[V =V, f(P(X)=P(X)+(1-X)P'(X),

where P’(X) is the derivative of P.

a) Explain why f is a well-defined linear map.
b) Give a basis for the kernel of f.

. Find all subspaces of R? which are stable under the linear transformation

T:R?>R> T(x,y)=(x+y —x+2y).

. Let V be the space of polynomials with real coefficients whose degree does not

exceed n. Let T be the linear transformation on V' sending P to its derivative.
Find all subspaces of V' which are stable under T'.

. Let T : R[X] — R[X] be the map defined by

T(P(X)) = P(X)—2(X*-1)P"(X).

a) Prove that 7" is a linear map.
b) Prove that for all n > 0, the space of polynomials with real coefficients
whose degree does not exceed # is stable under 7.

. Let V be a vector space over a field F and let T1,...,T, : V — V be linear

transformations. Prove that

ﬁkerTi C ker (i 7}) .
i=1

i=1

. Let V' be a vector space over a field F' and let 71,7, : V — V be linear

transformations such that 77 o 7, = T; and T, o T} = T5. Prove that
ker T} = ker T>.

Let V be a vector space over F and let T : V' — V be a linear transformation
such that

kerT =kerT? and ImT = ImT?2.
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Prove that

V =kerT & ImT.

For each of the following maps 7 : R} — R?, check that 7T is linear and then
check whether ker(7") and Im(7") are in direct sum position.

a) T(x,y.2) =(x =2y +z.x —z,x =2y +2).
b) T(x,y,2)=CBx+y+2.,0,x+y+2).

Let f : R — R be a map such that f(x + y) = f(x) + f(y) for all real
numbers x, y. Prove that f is a linear map of Q-vector spaces between R and
itself.

(Quotient space) Let V' be a finite dimensional vector space over F' and let
W C V be a subspace. For a vector v € V, let

Pl=fv+w:we W}

Note that [vy] = [v,] if vi — v, € W. Define the quotient space V/W to be
{[v] : v € V}. Define an addition and scalar multiplication on V/W by [u] +
[v] = [u + v] and a[v] = [av]. We recall that the addition and multiplication
above are well defined and V/W equipped with these operations is a vector
space.

a) Show that the map = : V — V/W defined by 7w (v) = [v] is linear with
kernel W.

b) Show that dim(W) + dim(V/ W) = dim(V).

¢) Suppose U C V is any subspace with W @ U = V. Show that 7|y : U —
V/W is an isomorphism, i.e., a bijective linear map.

d) Let T : V — U be a linear map, let W C ker T be a subspace of V', and
V. — V/W be the projection onto the quotient space. Show that there is
a unique linearmap S : V/W — U suchthat T = S o 7.

5.2 Linear Maps and Linearly Independent Sets

The following result relates linear maps and notions introduced in the previous
chapter: spanning sets, linearly independent sets. In general, if 7 : V — W is
linear, it is not true that the image of a linearly independent set in V' is linearly
independent in W (think about the zero linear map). However, if T is injective, then
this is the case, as the following proposition shows (dealing also with the analogous
result for spanning sets).

Proposition 5.17. Let T : V — W be a linear transformation.

a) If T is injective and if L is a linearly independent set in V, then T(L) :=

{T(l),l € L} is a linearly independent set in W.
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b) If T is surjective and if S is a spanning set in V, then T(S) is a spanning set
inW.
c) If T is bijective and if B is a basis in V, then T(V') is a basis in W.

Proof. Part c) is simply a combination of a) and b), which we prove separately.

a) Suppose we have

C|T(l1) “+ e+ C,,T(Z,,) =0

for some scalars ¢y, . .., ¢,. The previous relation can be written as T'(cy /1 +-- -+
cnly) = 0, thus ¢y + -+ + ¢,l, € ker T. Since T is injective, we deduce that
citly +---4+culy, =0.Hencec; = ¢, = --- = ¢, = 0. Thus T(L) is linearly
independent.

b) Let w € W. Since T is surjective, there is v € V such that T (v) = w. Since S
is a spanning set in V', we can write v as a linear combination of some elements
S1,...,8, of S,say v =cy81 + ...+ ¢,s, for some scalars cy, ..., c,. Then

w=TW) =T(151+...+cnsp)=c1T(s1)+ ...+ cnT(sy).

Thus w is in the span of 7'(sy), ..., T(s,), thus in the span of T(S). Sincew € W
was arbitrary, the result follows. O

The following corollary is absolutely fundamental (especially part c)). It follows
easily from the previous proposition and the rather subtle properties of finite
dimensional vector spaces discussed in the previous chapter.

Corollary 5.18. Let V and W be finite dimensional vector spaces and let
T : V. — W be a linear transformation.

a) If T is injective, then dim V < dim W.
b) If T is surjective, then dim V' > dim W.
c) If T is bijective, then dimV = dim W.

Proof. Again, part c) is a consequence of a) and b). For a), let B be a basis of V
and let vy, ..., v, beits elements. By Proposition 5.17 T'(vy), ..., T(v,) are linearly
independent vectors in W. Thus dim W > n = dim V.

The argument for b) is similar, since Proposition 5.17 implies that the vectors
T(v1),...,T(v,) form a spanning set for W, thus n > dim W. O

We can sometimes prove the existence of a linear map 7 without having to
explicitly write down the value of 7' (x) for each vector x in its domain: if the domain
is finite dimensional (this hypothesis is actually unnecessary), it suffices to give the
images of the elements in a basis of the domain. More precisely:

Proposition 5.19. Let V, U be vector spaces over a field F. Let {vi,v,,...,v,} be
a basis of V and let {uy,us,...,u,} be any set of vectors in U. Then there is a
unique linear transformation T : V — U such that

T(Vl) = ui, T(VZ) =Uz,..., T(Vn) = Up.
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Proof. We start by proving the uniqueness. Suppose that we have two linear
transformations 7, T’ : V' — U such that T (v;) = T'(v;) = u; for 1 <i < n. Then
T — T’ is a linear transformation which vanishes at vy, ..., v,. Thus ker(T — T’),
which is a subspace of V, contains the span of vy, ..., v,, which is V. It follows that
T=T".

Let us prove existence now. Take any vector v € V. Since vy, ..., v, form a basis
of V, we can uniquely express v as a linear combination v = ajv; + ... + a,v,
for some scalars ay,...,a, € F.Define T(v) = aju; + ... + a,u,. By definition
T (v;) = u; for all i, and it remains to check that T is a linear transformation. Let
v,V € V andlet ¢ be a scalar. Write v = a;v;+...+a,v, andV = byvi+...+b,v,
for some scalars a;, b; € F. Then

v4+cov = (a; +ch)vi + ...+ (a, + cby)v,,

thus
T +cV)=(a +cb)uy + ...+ (a, + cbyu, =
(@yuy + ...+ apuy) +c(biuy + ...+ byu,) = TOW) + cT (),
which proves the linearity of 7" and finishes the proof. |

Problem 5.20. Find a linear transformation 7 : R?> — R*, whose image is the
linear span of the set of vectors

{(1,2,1,1),(3,1,5,2)}.
Solution. Lete; = (1,0,0), e; = (0,1,0) and e3 = (0, 0, 1) be the standard basis
of R®. Let vi = (1,2,1,1) and v, = (3,1, 5,2). By Proposition 5.19 there is a
linear transformation 7" : R?> — R* such that
T(el) =V, T(ez) = V), T(€3) =0.
The image of T is precisely the set of linear combinations of 7'(e1), T(e;) and
T (e3), and this is clearly the span of vy, v;.

We note that T is very far from being unique: we could have taken 7' (e3) = v,
for instance (there are actually lots of linear maps with the desired property). |

Problem 5.21. Let
vi =(1,0,0), v, =(1,1,0), v3;=(1,1,1)
and let 7 : R?> — R? be a linear transformation such that
Tv)=@3.2), T)=(-12), T(v)=(01).

Compute the value of 7°(5, 3, 1).
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Solution. We look for scalars a, b, ¢ such that
(5,3,1) =avy + bvy + cvs,
as then, by linearity,
T(5,3,1) =aT () +bT(v2) + cT(v3).
The equality
(5,3,1) = avy + bvy + cvs,
is equivalent to
(5,3,1) = (a,0,0) + (b,b,0) + (c,c,c) =(a+b+c,b+c,c).

Thusc¢ =1,b+ ¢ =3 anda + b + ¢ = 5, which gives

It follows that

T(5,3,1)=2T(v1)) +2T(v2)) + T(v3) = (6,4) + (—2,4) + (0,1) = (4,9). O

Remark 5.22. One can easily check that vy, v,, v3 form a basis of R3, thus such a
map exists by Proposition 5.19.

Problem 5.23. Determine the linear transformation 7 : R?> — R3 such that
T(1,0,1)=(,0,0), T(@,1,1)=(0,1,0), T(0,0,1)=(1,1,1).

Solution. We start with an arbitrary vector v = (x1, X2, x3) and look for scalars
k1, ko, k3 such that

v=1ki(1,0,1) + k2(0, 1, 1) + k3(0,0, 1).
If we find such scalars, then
T(v)=kT(,0,0)+ kT(0,1,1) + k37(0,0,1) =
(k1,0,0) + (0,k2,0) + (k3, k3, k3) = (k1 + k3, ko + k3, k3).
The equality

V= k](l,o, 1) + kz(o, 1, 1) + k3(0,0, 1)



5.2 Linear Maps and Linearly Independent Sets 163

is equivalent to
(x1, x2,x3) = (k1. ko, ki + ko + k3)
or
ki =x1, ky=2x2, ki=2x3—x1—x2.
Thus for all (x1, X2, x3) € R3

T(x1.x2,x3) = (ky + k3, ka + k3, k3) = (X3 — X2, X3 — X1, X3 — X1 —X2).

5.2.1 Problems for practice

1. Describe the linear transformation 7" : R?> — R such that
TO,1,1)=(1,2,3), T(1,0,1)=(1,-1,2)
and
T1,1,0) =(-1,-1,-1).
2. Is there a linear map T : R? — R? such that
T(1,1)=(1,2), T1,-1)=(-1,2), T(2,3) =(1,2)?
3. Find all real numbers x for which there is a linear map 7 : R* — R? such that
T(1,1,1)=({1,x,1), T@1,0,—-1)=(1,0,1)
and
T(-1,-1,0)=(1,2,3), T(,-1,-1)=(1,x,-2).
4. Find a linear map 7 : R* — R? whose image is the span of the vectors
(—-1,-1,-1) and (1, 2, 3).
5. a) Let V be the space of polynomials with real coefficients whose degree does
not exceed 3. Find all positive integers n for which there is a bijective linear
map between V' and M, (R).

b) Answer the same question if the word bijective is replaced with injective.
¢) Answer the same question if the word bijective is replaced with surjective.
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5.3 Matrix Representation of Linear Transformations

We have already seen in the chapter devoted to matrices that all linear maps
T : F" — F™ are described by matrices A € M,,,(F). We will try to extend
this result and describe linear maps F : V — W between finite dimensional
vector spaces V, W in terms of matrices. The description will not be canonical,
we will need to fix bases in V and W. All vector spaces in this section are finite
dimensional over F.

It will be convenient to introduce the following definition:

Definition 5.24. A linear transformation 7 : V' — W is called an isomorphism of
vector spaces or invertible if it is bijective. In this case we write V' >~ W (the map
T being understood).

Problem 5.25. Let T : V — W be an isomorphism of vector spaces. Prove that its
inverse T~ : W — V is an isomorphism of vector spaces.

Solution. The map T~! is clearly bijective, with inverse 7. We only need to check
that 77! is linear, i.e.

T w4 cwy) = T (1) + T ()

for all vectors wi,w, € W and all scalars ¢ € F. Letv; = T~ '(w;) and v, =
T~'(w»). Then T'(v;) = w; and T (v,) = w», thus

T wi+cwy) =T HT W) + cT) =T HT (v + cva)) = vi + cvs,

as needed. O

It turns out that we can completely classify finite dimensional nonzero vector
spaces up to isomorphism: for each positive integer n, all vector spaces of
dimension n are isomorphic to F”. More precisely:

Theorem 5.26. Let n be a positive integer and let V be a vector space of dimension
nover F. If B = (ey,...,e,) is a basis, then the map ig : F" — V sending
(X1,...,X,) to x1e1 + X203 + ... + xuey is an isomorphism of vector spaces.

Proof. ltis clear that ip is linear and by definition of a basis it is bijective. The result
follows. O

Remark 5.27. Conversely, if T : V' — W is an isomorphism of vector spaces, then
necessarily dim V' = dim W. This is Corollary 5.18 (recall that we only work with
finite dimensional vector spaces).

Thus the choice of a basis in a vector space of dimension n allows us to identify
it with F*. Consider now a linear map 7' : V' — W and suppose that dim V' = n
and dim W = m. Choose bases By = (vi,...,v,) and By = (wy,...,wy) in V
and W, respectively. By the previous theorem we have isomorphisms

iBVIFI1—>V, iBWZFm—>W
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We produce a linear map ¢ by composing the maps ip, : F" =V, T:V - W
andig) : W — F™

gr: F" > F", @r=igl oToip,.

Since @7 is a linear map between F" and F' it is uniquely described by a matrix
A € M,,,(F). This is the matrix of 7 with respect to the bases By and By .
It highly depends on the two bases, so we prefer to denote it Matg,, 5, (7). We put
By (i.e., the basis on the target of 7)) before By (the basis at the source of T) in
the notation of the matrix for reasons which will be clear later on. When V' = W
and we fix a basis B of V, we write Matg (T") instead of Matp (7), the matrix of
T with respect to the basis B both at the source and target of 7T'.

The previous construction looks rather complicated, but it is very natural: we
have a parametrization of linear maps between F” and F"" by matrices, and we can
extend it to a description of linear maps between V' and W by identifying V' with
F" and W with F™, via the choice of bases in V' and W. Note the fundamental
relation

ig, (AX) = T(ip, (X)) if X € F" and A= Matg, s, (T). (5.1)

Taking for X a vector in the canonical basis of F”, we can make everything
completely explicit: let ey, ..., e, be the canonical basis of F" and fi,..., f, the
canonical basis of F™.If A = [a;;], then by definition Ae; = ay; fi + ...+ ami fin>
thus for X = ¢; we have

igy (AX) =ipy(au fi +ax fo+ ...+ ami fu)
=a;wr + aiwy + ...+ Apiwn

On the other hand, i, (¢;) = v;, thus relation (5.1) is equivalent to the fundamental
and more concrete relation

T(Vi) =apw) +awy + ...+ auiwny. (52)

In other words:

Proposition 5.28. Let T : V. — W be a linear transformation and let By =
iyee o), By = (wi,...,wy) be bases in V and W. Then column j of
Matg,, g, (T) € My, ,(F) consists in the coordinates of T (v;) with respect to the
basis By. In other words, if Matg, p, (T) = [a;;] then for all 1 <i < n we have

m
T(V,‘) = Zajiwj.

Jj=1
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Problem 5.29. Find the matrix representation of the linear transformation 7' :
R? — R? defined by

Tx,y,20=x+2y—z,y+zx+y—22)

with respect to the standard basis of R?.

Solution. Let e; = (1,0,0), e; = (0,1,0), e3 = (0,0, 1) be the standard basis
of R3. Then

T(er) = T(1,0,0) = (1,0,1) = le; + Oes + les
T(es) = T(0,1,0) = (2,1,1) = 2e; + les + les
T(es) = T(0,0,1) = (—=1,1,-2) = —le; + les — 2e3.

Thus the matrix representation of 7' with respect to the standard basis is

12 -1
011
11-2

|

Problem 5.30. Let P, be the vector space of polynomials with real coefficients, of
degree less than n. A linear transformation 7' : P; — Ps is given by

T(P(X)) = P(X)+ X?P(X)

a) Find the matrix of this transformation with respect to the basis B = {1, X +
1, X2 + 1} of P; and the standard basis C = {1, X, X2, X3, X*} of Ps.
b) Show that 7T is not onto and it is injective.

Solution. a) We need to find the coordinates of T'(1), T(X + 1) and T(X? + 1)
with respect to the basis C. We have

T =14+X>=1-140-X+1-X>4+0-X>4+0-X*
TX+1) = X+14+X*(X+1) = [+ X+ X4+ X° = L1+ 1 X +1- X2+ 1-X340-X 4,
T(X*+1) = X241+ X3(X*+1) = 1+2X24+X* = 1-140-X +2-X2+0-X 3+ X 4.

It follows that the required matrix is
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111
010
112
010
001

b) Since dimP; = 5 > dim P; = 3, T cannot be onto. To prove that T is
injective, it suffices to check that ker(7) = 0. But if P € ker(T), then
P(X)+ X2P(X) =0, thus (1 + X?>)P(X) = 0. Since 1 + X? # 0, it follows
that P(X) = 0 and so ker(T') = 0. O

Problem 5.31. Let V be the space of polynomials with real coefficients whose
degree does not exceed n, a fixed positive integer. Consider the map

T:V—>V, TPX)=PX+1).
(a) Prove that T is an invertible linear transformation.
(b) What are the matrices of T and 7~ with respect to the basis 1, X, ..., X" of V'?

Solution. a) It is not difficult to see that 7 is a linear transformation, for if P;, P,
are vectors in V' and c is a scalar, we have

T(Pi+cP)X)=Pi+cP)X+D)=PI(X+D+cP(X+1

= T(P1(X)) + cT(P2(X)).

Next, to see that T is invertible it suffices to prove that 7' is bijective. We can
easily find the inverse of T by solving the equation P(X + 1) = Q(X). This is
equivalent to P(X) = Q(X —1), thus the inverse of T is givenby T~} (P (X)) =
P(X —1).

b) For 0 < j < n the binomial formula yields

J .
. _ ._ ] i
T(Xf)_(X~|—1)f_;(i)X
and
J .
—1 iN _ i 1\ J i
T'(x/) = (X 1)1_;( 1)/ (l,)x.

Thus if A = [a;;] and B = [b;;] are the matrices of T, respectively 7! with
respect to the basis 1, X, ..., X", we have (with the standard convention that

(}) =0forn < k)
aij = (f) bij = (=1~ (f)
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Remark 5.32. Since T and T ! are inverse to each other, the product of the matrices
A and B is the identity matrix /,,. We invite the reader to use this in order to prove
the following combinatorial identity:

n o ] k .
o))«

where the right-hand side equals 1 if i = k and O otherwise.

The next result follows formally from the fundamental bijection between linear
maps F" — F™ and matrices in M,, ,(F). Recall that Hom(V, W) is the vector
space of linearmaps 7' : V — W.

Theorem 5.33. Let By,Bwy be bases in two (finite-dimensional) vector
spaces V,W. The map T — Matg, p,(T) sending a linear transformation
T : V. — W to its matrix with respect to By and By is an isomorphism of
vector spaces

Hom(V, W) ~ M,, ,(F).

Proof. Let ¢(T) = Matp,, p,(T). It is clear from Proposition 5.28 that ¢ is
a linear map from Hom(V, W) to M,,,(F). It is moreover injective, since if
©(T) = 0, Proposition 5.28 yields T (v;) = O for all i, thus ker 7 contains
Span(vy,...,v,) = V and T = 0. To see that ¢ is surjective, start with any matrix
A = [a;j] € M,, ,(F). It induces a linear transformation ¢4 : F" — F™ defined by
X — AX. By construction, the linear transformation 7' = i, o ¢4 o iEV' satisfies
©(T) = A. More concretely, since vy, ..., v, is a basis of V, there is a unique linear
map T : V — W such that

m
T(V,’) = Zajiw_,
j=1
for all 1 <i < n (Proposition 5.19). By Proposition 5.28 we have Matg,, p, = A
and we are done. a

Recall that dim M,, ,(F) = mn, a basis being given by the canonical basis
(Eij)1<i<m1<j<n- The theorem and Remark 5.27 yield

dim Hom(V, W) = dim V - dim W.

We conclude this section with some rather technical issues, but which are
absolutely fundamental in the theory of linear transformations. First, we want to
understand the link between the matrix of a composition 7" o S of linear maps and
the matrices of 7 and S. More precisely, fix two linear maps 7 : V — W and
S:W —Uandsetm =dimV,n = dmW, p = dimU. Also, fix three bases
By, By and By in U, V, W respectively. Let us write for simplicity

A= MatBU,BW(S) and B = Matg,, B, (T).
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Corresponding to By, By, By we have isomorphisms
iy : F" =V, ip, : F" > W, ip,:F' ->U
and by definition of A, B we have (relation (5.1))

i, (BX)=T(p,(X)),X e€F", ip,(AY)=S(ip,(Y)),Y € F?.
Applying S to the first relation and then using the second one, we obtain for X € F™
S o T(in, (X)) = S(iz, (BX)) = in, (ABX).

This last relation and the definition of Matg, 5, (S o T') show that
Matp, 5, (SoT)=A-B.

In other words, composition of linear transformations comes down to multipli-
cation of matrices or formally

Theorem 5.34. Let T : V. — Wand S : W — U be linear transformations
between finite-dimensional vector spaces and let By, By, By be bases of U,V
and W, respectively. Then

MatBU,BV(S o T) = MatBU,BW (S) . MatBW_BV(T).

A less technical corollary which will be constantly used is the following:

Corollary 5.35. Let T, T, : V. — V be linear transformations on a finite
dimensional vector space V and let B be a basis of V. Then

MatB(Tl o Tz) = MatB(Tl) . MatB(Tz).

Problem 5.36. Let V' be the space of polynomials with real coefficients whose
degree does not exceed 2. Consider the maps

T:R*—>V, T(a,b,c)=a+2bX +3cX?
and

SV = MyR), S(a—i—bX—i—ch):[ a “+b].

a—c b

We consider the basis B; = (1, X, X 2) of V, the canonical basis B, of R® and the
canonical basis B3 = (Ell’ EIZ’ E21, Ezz) of MQ(R)

a) Check that T and S are linear maps.
b) Write down the matrices of 7 and S with respect to the previous bases.
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¢) Find the matrix of the composition S o 7" with respect to the previous bases.
d) Compute explicitly S o7, then find directly its matrix with respect to the previous

bases and check that you obtain the same result as in c).
Solution. a) Let u be a real number and let (a, b, ¢) and (a’, b’, ¢’) be vectors in R3.
Then
T(u(a,b,c)+ (@' ,b',c"))=T(au+a',bu+b',cu+c)

= (au+a’) +2(bu+b)X +3(cu+c)X?* =
u(a +2bX 4+ 3cX?) + (@’ +2b'X +3c¢'X?) =uT(a,b,c) + T, b, ).
thus 7 is linear. One checks similarly that S is linear.

b) We start by computing the matrix Matg, p,(T") of T with respect to B; and B;.
Let B> = (e1, e, e3) be the canonical basis of R?, then

T(e)) =T(1,0,00=1=1-1+0-X+0- X2,
T(e,) =T(0,1,00=2X=0-14+2-X +0- X2,

T(e3) =T(0,0,1) =3X>=0-14+0-X +3- X2,
hence
100
Matg, 5,(T) =020
003

Similarly, we compute

11
S(1)=|:10j|:1‘E11+1~E12+1-E21+0-E22,

0-En+1-En+0-Exy+1-En,

so=[31]

00
S(X?) = [_10} =0-Ej+0-Ep+ (=1) Ex +0- En,

hence

100

110
MatBLBl(S) = 10—1

010
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c) Using the theorem, we obtain

MatBLBZ(S o T) = MatBS,Bl (S) . MatBl_Bz(T)

100 100

110 100 120
= 1020 | =

10-1 003 10-3

010 020

d) We compute

(SoT)(a,b,c)=S(T(a,b,c) = S(a+2bX +3cX? = [a_3c
Next,
11
(SoT)(e) = |:1 0i| =1-En+1-En+1-E;+0-Eyp,
02
(SoT)(e) = [02] =0-Ey+2-Ep+0-Ey+2-Ep
and

somen =%

and so the matrix of S o T is

100
120
10-3 |’
020

MatBLBz(S [e] T) =

which coincides of course with the one obtained in part c).

a a-+2b

i|=0'E11+0'E12+(—3)'E21+0'E22

171

]

|

Problem 5.37. Let A € M,(F)andletT : F" — F" be the linear map sending X

to AX. Prove that A is invertible if and only if T is bijective.

Solution. If A is invertible, let B € M, (F) be such that AB = BA = I,. Let
S : F" — F"bethemap X — BX.Then SoT has associated matrix (with respect
to the canonical basis in F*) BA = I,,, thus S o T = Id. Similarly, 7 o S = id, thus

T is bijective.

Next, suppose that T is bijective and let B be the matrix of T~! with respect
to the canonical basis. Then AB is the matrix of 7 o T~' = id with respect to
the canonical basis, thus AB = I,,. Similarly BA = I, and A is invertible with

inverse B.

|
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Next, suppose that we have a linearmap 7 : V — W, with a given matrix A with
respect to two bases By, C; of V, W respectively. Let us choose two new bases B,, C,
of V, W respectively. We would like to understand the matrix of 7" with respect to
the new bases. To answer this, we need to introduce an important object:

Definition 5.38. Let V be a vector space and let B = (vq,...,v,) and B’ =
(v}, ..., v)) be two bases of V. The change of basis matrix from B to B’ is the
matrix P = [p;;] whose columns are the coordinates of the vectors v, ..., v, when
expressed in the basis B. Thus

r_
Vi = Ppijvit ...+ DujVa

forl <j <n.

Problem 5.39. Consider the vectors

V) = (1,2), V) = (1,3)

a) Prove that B’ = (v, v») is a basis of R?.
b) Find the change of basis matrix from B’ to the canonical basis of R?.

Solution. a) It suffices to check that v; and v, are linearly independent. If av; +
bv, = 0 for some real numbers a, b, then

(a,2a) + (b,3b) = (0,0)
thus

a+b=0, 2a+3b=0.

Replacing b = —a in the second equation yieldsa = b = 0.
b) Let B = (ej, e;) be the canonical basis. We need to express e, e in terms of
vi, V2. Let us look for a, b such that

ey = avy + bv,.
Equivalently, we want
a+b=1, 2a+3b=0.
This has the unique solution ¢ = 3,b = —2, thus
e = 3V1 — 2\12.

Similarly, we obtain

ey = —v; + vy
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The coordinates 3, —2 of e; when written in base B’ yield the first column of the
change of basis matrix, and the coordinates —1, 1 of e, when written in base B’
yield the second column, thus the change of basis matrix is

p=|371
-2 1 O
Problem 5.40. Let V, B, B’, P be as above. Consider a vector v € V and let X and
X'’ be the column vectors representing the coordinates of v with respect to the bases
B and B’. Prove that X = PX'.
Solution. Indeed, by definition we have

1. ’.)
V=XVt . F X =XV XY,

thus
n n n n
DNV =D X[V =D X)) ke
k=1 j=1 j=1 k=l
n n n
=> O pipxivie =Y (PX vk
k=1 j=1 k=1
and since vy, ..., v, are linearly independent, it follows that X = PX’. O

Remark 5.41. The previous definition and problem are always a source of confusion
and trouble, so let us insist on the following issue: the change of basis matrix from
B to B’ expresses B’ in terms of B, however (and this is very important in practice)
as the problem shows, the change of basis matrix takes coordinates with respect to
B’ to coordinates with respect to B. Thus we have a change of direction.

We also write Matg(B’) for the change of basis matrix from B to B’. A simple
but very important observation is that

MatB (B,) = MatB’B/(idV),

as follows directly from Proposition 5.28. Using this observation and Theorem 5.34,
we deduce that for any bases B, B/, B” of V we have

Matg (B/) . MatB/(B") = Matg (B”).
Since Matg (B) = I, for any basis B, we deduce that
MatB(B/) -Matp/(B) = I,.

Thus the change of basis matrix is invertible and its inverse is simply the change
of basis matrix for the bases B’, B.
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Problem 5.42. Consider the families of vectors B = (vq, v2,v3), B = (w1, wa, w3),
where

vi=(0,1,1), v =(1,0,1), v;=(1,1,0)

and
wy = (1,1,-1), w,=(1,0,-1), w3 =(-1,—-1,0).
a) Prove that 3 and B’ are bases of R>.
b) Find the change of basis matrix P from B to B’ going back to the definition of P.

c) Find the change of basis matrix P using the canonical basis of R® and the
previous theorem.

Solution. a) To prove that B is a basis, we find the reduced row-echelon form of
the matrix

011
A=1101
110

using row-reduction. This yields
Aref = 13
and so vy, v, vs are linearly independent, hence a basis of R3. We proceed
similarly with wy, wo, ws.
b) First, we use the definition of P: the columns of P are the coordinates of
wi, wa, w3 when expressed in the basis B. First, we try to express
wy=avy +bva+cvi=((b+c,a+c,a+b)
which gives

b+c=1, a+c=1, a+b=-1,

with the solution

1 3
a=——-=b, c¢c==
2 2
Thus
1 1 3
wq —Evl — EVZ + 5113
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_17
2
and the first column of P is —% . Similar arguments yield
3
5 |
wy = —v; + s,
[ —1
hence the second column of P is | 0 | and finally w3 = —v3, thus the third
!
0
columnof Pis | O [.We conclude that
-1
1
—? -1 0
5 1 -1

c) Let B” = (ey, e,, e3) be the canonical basis of R?. We want to find Matg(B’)
and we write it as

Matz(B') = Matg(B”) - Matgr (B') = (Matg//(l?))_1 - Matg» (B').
Next, by definition

011 11 -1
Matg(B)=|101 |, Mag/(B)=| 1 0 —I
110 -1-10

Next, using either the row-reduction algorithm or by solving the system
011

101 | X = b, one computes

110
011" iy
o1 | = §ond
o)LL 4
and finally
11 1 1
—15 51% 1 1 -1 —?—10
5 5 —> —-1-10 5 1 -1
Without any miracle, we obtain the same result as in part b)! O

Similar arguments give the following fundamental:



176 5 Linear Transformations

Theorem 5.43. Let T : V — W be a linear map and let By, B, be two bases of V,
C1, Cy two bases of W. If P = Matc,(C,) and Q = Matg, (B,) are the change of
basis matrices, then

Matc, 5,(T) = P~'Matc, 5,(T)O.
Proof. By Theorem 5.34 we have
PMatc, ,(T) = Matc, ¢,(idw) - Matc, 5,(T) = Matc, p,(T)
and similarly
Matc, 5, (T)Q = Matc, 5, (T)Matp, 5,(idy) = Matc,,5,(T).
Thus
PMatc, ,(T) = Matc, 5,(T)Q

and the result follows by multiplying on the left by the invertible matrix P. O

Here is a different proof which has the advantage that it also shows us how to
recover the rather complicated formula in the previous theorem (experience shows
that it is almost impossible to learn this formula by heart). It assumes familiarity
with the result of Problem 5.40 (which is however much easier to remember!).

Write A; for the matrix of 7' with respect to By, C; and A, for the matrix of T
with respect to B;, C,. Start with a vector v in V and write X, X, for its coordinates
with respect to B; and B, respectively. By Problem 5.40 we have X; = QX». Let
Y1, Y be the coordinates of 7'(v) with respect to C; and C, respectively. Again by
Problem 5.40 we have Y} = PY,. On the other hand, by definition of A; and A4,
we have A1 X; = Y and A, X, = Y,. Since P and Q are invertible, we obtain
X, = Q71X1 and so

A1X; =Y, = PY, = PA, X, = PA,07 ' X|.

Since this holds for every v € V (equivalently, for any X;), we deduce that
A; = PA,Q0 'andso 4, = P7'AQ.

While the previous results are quite a pain in the neck to state and remember,
the following special case is absolutely fundamental and rather easy to remember
(or reprove)

Corollary 5.44. Let T : V — V be a linear transformation on a finite dimensional
vector space V and let B, B’ be bases of V. If P is the change of basis matrix from
B to B, then

Matg (T) = P~'Matg(T)P.



5.3 Matrix Representation of Linear Transformations 177
Here is how one should recover this result in case of doubt: write X, X ; for the
column vectors representing the coordinates of v € V with respect to B, B’. Then
X1y = Matg(T) X, X}(v) = MatB/(T)X'

and by Problem 5.40 we have X, = PX] and X7() = PXz,. Thus Combining
these relations yields

PMatB/(T) = MatB(T)P,
both being equal to PX /T(V). Multiplying by P! yields the desired result.
Problem 5.45. Consider the matrix

2 -10
A=|-21 =2
1 1 3

and let T : R> — R3 be the associated linear transformation, thus T'(X) = AX for
all X € R3. Consider the vectors

1 1 1

a) Prove that vy, v», v3 form a basis of R* and compute the matrix of T with respect
to this basis.

b) Find the change of basis matrix from the canonical basis to the basis (vy, v, v3).

¢) Compute A" for all positive integers 7.

Solution. a) It suffices to check that vy, v,, v3 are linearly independent. If a, b, ¢ are
real numbers such that av; 4+ bv, + cv; = 0, we obtain

a+b+c=0, a—c=0, —a—-b=0.

The first and third equations yield ¢ = 0, then the second one gives a = 0 and
finally » = 0. Thus vy, v;, v3 are linearly independent and hence they form a
basis. Another method for proving this is as follows: consider the matrix whose
columns are the vectors vy, v,, v3 are use row-reduction to bring this matrix to its
reduced row-echelon form. We end up with /3 and this shows that vy, v,,v3 is a
basis of R3.

To compute the matrix of 7' with respect to the new basis, we simply express
each of the vectors T'(v1), T (v2), T (v3) in terms of vy, v, v3. We have

T(V]) = AV] = 1 =V,
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then
2
T(Vz) = AVz = 0 = 2V2
-2
and
3
T(V3) = AV3 = -3 = 3V3.
0

We conclude that the matrix of T with respect to the basis (vy, v, v3) is

100
B=1020
003

b) Call the change of basis matrix P. By definition, the columns of P consist of the
coordinates of vy, v,, v3 with respect to the canonical basis of R3. Thus

1 1 1
P=(1 0 -1
-1-10

¢) The matrix of T with respect to (v, v, v3) is, thanks to the change of matrix
formula, equal to P~' AP . Combining this observation with part a), we deduce
that

100
P7'AP =]020
003

Raising this equality to the nth power and taking into account that (P~'AP)" =
P~1A" P (this follows easily by induction on 1) yields

100
PlA"P=1|02"0
00 3"

It follows that
100

A"=P|020 0 | P
00 3"



5.3 Matrix Representation of Linear Transformations 179

We can easily compute P! either by expressing the vectors of the canonical
basis in terms of vy, v, v3, or by solving the system PX = b. We end up with

111
Pl=|-1-1=2
1 0 1
Finally,
100 1—2" 43" 1 =201 -2+l 4 3
A"=P|0200 | P = 1-3" 1 13"
00 3" 7—1 2n—1 2t

Problem 5.46. Let T : R> — R3 be the linear map defined by
Tx,y,20=02x+y—z,y,x+Y).
Let ey, e, e3 be the canonical basis of R? and let
vi=e+te3, Vvy=-—e +e, Vvi=e t+e+es.
a) Prove that (v, v2, v3) is a basis of R3.

b) Find the matrix of 7" with respect to this basis.

Solution. a) In order to prove that (v, v,,v3) is a basis of R3, it suffices to check
that they are linearly independent. If

avy + bvy +cvz =0,
for some real numbers a, b, ¢, then
(a—b+c)eg+(b+c)ey+ (a+c)es=0.
Since ey, e,, e; are linearly independent, this forces
a—-b+c=0, b+¢c=0, a+c=0.

The first and third equations yield » = 0, then ¢ = 0 and a = 0. Thus (vy, v2, v3)
is a basis of R?. Another method for proving this is as follows: consider the
matrix A whose columns are the coordinates of v, v,, v3 when expressed in terms
of the canonical basis, that is

1-11
A=[011
1 01
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Row-reduction yields A,.r = I3 and the result follows.
b) We compute

T(v))=T7T(@1,0,1)=(1,0,1) = vy,
then
Tvy) =T(-1,1,0) = (-1,1,0) = v,
and finally
T(v;)=T(1,1,1)=(2,1,2).

To conclude, we need to express the vector (2, 1, 2) in terms of vy, v,, v3. We look
therefore for a, b, ¢ such that

(2,1,2) = avy + bvy, +cv3
or equivalently
2,1,2)=(@—-b+c,b+c,a+c).
Solving the corresponding linear system yields
a=1, b=0, c=1.
Thus T'(v3) = v 4 v3 and so the matrix of T with respect to (v{, v, v3) is
101
B=]1010
001 O

Motivated by the previous corollary, we introduce the following fundamental
definition:

Definition 5.47. Two matrices A, B € M, (F) are called similar or conjugate if
there exists P € GL, (F) such that B = P~!'AP. Equivalently, they are similar if
they represent the same linear transformation of V' = F" in possibly two different
bases.

It is an easy exercise for the reader to prove that similarity is an equivalence
relation on M, (F), that is

e any matrix A is similar to itself.
e If A is similar to B, then B is similar to A.
e If A is similar to B and B is similar to C, then A is similar to C.
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One of the most fundamental problems in linear algebra is the classification of
matrices up to similarity. In fact, the main goal of the next chapters is to prove that
suitable matrices are similar to rather simple matrices: we dedicate a whole chapter
to matrices similar to diagonal and upper-triangular ones, and we will see in the last
chapter that any symmetric matrix with real entries is similar to a diagonal matrix.

5.3.1 Problems for practice

1. Let B = (e, e3) be the canonical basis of R? and let B’ = ( f{, f»), where
Si=e +e, fr=e +2e.

a) Prove that /3 is a basis of R

b) Find the change of basis matrix P from B to B3, as well as its inverse.

c) Let T be the linear transformation on R?> whose matrix with respect to the
1 -1
2-3
of T with respect to the bases B’ on the target and 55 on the source.

basis B (both on the source and target of R?)is 4 = [ :| Find the matrix

2. Consider the matrix

17 —28 4
A=|12-203
16 =28 5

and the associated linear map 7 : R®> — R? defined by 7(X) = AX.

a) Find a basis B; of the kernel of T'.

b) Let V be the kernel of T —id, where id is the identity map on R3. Give a basis
Bz of V.

¢) Prove that VV @ ker(T) = R>.

d) Find the matrix of 7 with respect to the basis B; U BB, of R>.

3. Let B = (vq, v2, v3), where

1 -1 1
vi=1101], w= 1 , v3=12
2 3
and let B’ = (wy, wy, w3), where
2 -3 -2
wi=[10]|, wo=1|-21], w3=|-=-3
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a) Prove that B and B’ are both bases of R3.
b) Find the change of basis matrix P from B to B’ as well as its inverse P~
c) Consider the linear transformation 7 : R* — R? whose matrix with respect
1 04
to the basis B (both on the source and target of 7)is [ 0 10 |. Find the
-201
matrix of T with respect to 5 (both on the source and target of T').

4. Let V be a vector space over a field F, of dimensionn. Let T : V' — V be a
projection (recall that this is a linear map such that T o 7 = T).

a) Prove that V = Ker(T) & Im(T).
b) Prove that there is a basis of V' in which the matrix of T is |:{)l OO j| for
n—i
somei € {0,1,...,n}.

5. Let V be a vector space over C or R, of dimension n. Let 7 : V — V be a
symmetry (that is a linear transformation such that 7 o T = id is the identity
map of V).

a) Prove that V = ker(T —id) & ker(T + id).
b) Deduce that there is i € [0, n] and a basis of V' such that the matrix of 7" with

I; O
t to this basis i ! )
respect to tnis basis IS|:0 —]n_,':|

6. Let T be the linear transformation on R* whose matrix with respect to the
canonical basis is

-1 11
A=|-6 4 2
3 —11

a) Check that 4> = 2A4.

b) Deduce that T'(v) = 2v for all v € Im(T).

¢) Prove that ker(T") and Im(7) are in direct sum position in R3.

d) Give bases for ker(7T) and Im(7), and write the matrix of 7 with respect
to the basis of R® deduced by patching the two bases of ker(7’) and Im(7T")

respectively.
7. Let A = |:; f:| and consider the map 7' : M,(C) — M,(C) defined by

T(B) = AB — BA.

a) Prove that T is linear.
b) Find the matrix of 7 with respect to the canonical basis of M (C).
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8. Let V be the vector space of polynomials with complex coefficients whose
degree does not exceed 3. Let T : V' — V be the map defined by T(P) =

P + P’. Prove that T is linear and find the matrix of T with respect to the basis

1,X, X%, X3of V.

9. a) Find the matrix with respect to the canonical basis of the map which projects
a vector v € R to the xy-plane.

b) Find the matrix with respect to the canonical basis of the map which sends a
vector v € R to its reflection with respect to the xy-plane.

c) Let & € R. Find the matrix with respect to the canonical basis of the
map which sends a vector v € R? to its rotation through an angle 6,
counterclockwise.

10. Let V be a vector space of dimension n over F. A flag in V is a family of
subspaces Vp C V1 C ... C V, such that dimV; = i for all i € [0,n]. Let

T : V — V be a linear transformation. Prove that the following statements are

equivalent:

a) Thereisaflag 1y C ... C V, in V such that T(V;) C V; foralli € [0, n].
b) There is a basis of I with respect to which the matrix of T is upper-triangular.

11. Prove that the matrices

1100 1234
0110 0123
A=1loo11| ™ B=|0012
0001 0001

are similar.

5.4 Rank of a Linear Map and Rank of a Matrix

In this section we discuss a very important numerical invariant associated with a
linear transformation and to a matrix: its rank. All vector spaces over the field F
will be assumed to be finite dimensional in this section.

Definition 5.48. Let IV, W be finite dimensional vector spaces over F. The rank of
alinear map T : V' — W is the integer

rank(7") = dimIm(7T).

Let us try to understand more concretely the previous definition. Let 7 : V — W
be a linear transformation and let vy, ..., v, be a basis of V. Then the elements of
Im(T") are of the form 7'(v) with v € V. Since vy,...,v, span V,eachv € V can
be written v = x;v; + ... + x,v, with x; € F, and

TO)=Txvi+...+x,) =x1T) + ... +x,T(vy).
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Thus T'(vy), ..., T(v,) is a spanning set for Im(7") and
rank(7") = dim Span(7 (vy), ..., T (v,)).

Since we have already seen an algorithmic way of computing the span of a finite
family of vectors (using row-reduction, see the discussion preceding Example 4.30),
this gives an algorithmic way of computing the rank of a linear transformation.
More precisely, pick a basis wy,...,w, of W and express each of the vectors
T(v),...,T(v,) as linear combinations of wy,...,w,. Consider the matrix A
whose rows are the coordinates of 7'(vy),..., T (v,) when expressed in the basis
Wi, ..., wy of W. Performing elementary operations on the rows of A does not
change the span of T'(vy),..., T (v,), so that rank(7") is the dimension of the span
of the rows of A,.r, then reduced row-echelon form of A. On the other hand, it is
very easy to compute the last dimension: by definition of the reduced row-echelon
form, the dimension of the span of the rows of A,.r is precisely the number of
nonzero rows in A,y or, equivalently, the number of pivots in A,.r. Thus

rank(7") = number of nonzero rows of A,.; = number of pivots in A,.s.

Let us see two concrete examples:
Problem 5.49. Compute the rank of the linear map 7 : R> — R* defined by
T(x,y,20=x+y+z,x—y,y—2,2—X).
Solution. We let v|, v, v3 be the canonical basis of R? and compute
T(v)=T(1,0,0)=(1,1,0,-1),

thus the first row of the matrix A in the previous discussion is (1, 1,0,—1). We do
the same with v,, v3 and we obtain

11 0 -1
A=|1-11 0
10-11

Using row-reduction we compute
100 0
Ay =1010-1
001 -1

and we deduce that
rank(7") = 3.
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Problem 5.50. Let V' be the space of polynomials with real coefficients of degree
not exceeding 3, and let 7 : V' — V be the linear map defined by

T(P(X))=PX+1)—P(X).
Find rank(7).

Solution. We start by choosing the canonical basis 1, X, X 2 X3 of V and
computing

T()=0, TX)=X+1-X=1, TX)=X+1)>-X>=1+2X
and
T(X)H)=X+17°-X>=1+3X +3X°
The matrix A in the previous discussion is

0000
1000
1200
1330

and row-reduction yields

1000
0100
0010
0000

Aref =

There are three pivots, thus

rank(7") = 3. O

We turn now to a series of more theoretical exercises, which establish some other
important properties of the rank of a linear map. In all problems below we assume
that the vector spaces appearing in the statements are finite dimensional.

Problem 5.51. LetT : V — W be a linear map. Prove that

rank(7") < min(dim V, dim W).

Solution. Since Im(7") C W, we have rank(7) < dim W. As we have already
seen, if v, ..., v, is a basis of V, then Im(T) is spanned by T'(vy), ..., T (v,), thus

rank(7) < n = dim V.

The result follows by combining the two inequalities. |
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Problem 5.52. Let7T):U — V and T; : V. — W be linear maps. Prove that

rank(73 o T7) < min(rank(77), rank(75)).
Solution. The image of T, o Tj is included in that of 75, thus rank(73 o T7) <
rank(7>). Next, we consider the restriction 7, of 75 to Im(7}), obtaining a linear

map 7, : Im(T;) — W whose image clearly equals that of 7> o T|. Applying
Problem 5.51 to T we obtain

rank(7; o Ty) = rank(7,) < dim(Im(7})) = rank(7}),
and the result follows. |
Problem 5.53. Let 77,7, : V — W be linear transformations. Prove that

|rank(77) — rank(7%)| < rank(7} + T>) < rank(7}) + rank(73).

Solution. We have Im(7 + 7>) C Im(77) + Im(73) and so
rank(77 4+ T5) < dim(Im(7}) + Im(7>)) <

dim Im(7) + dim Im(73) = rank(7}) + rank(7>),

establishing the inequality on the right. On the other hand, we clearly have Im(73) =
Im(—T73), thus rank(73) = rank(—7>). Applying what we have already proved, we
obtain

rank(7} + T3) + rank(73) = rank(7} + T») + rank(—73) > rank(77),

thus rank(7; 4+ 73) > rank(7}) — rank(73). We conclude using the symmetry in 7}
and T>. O

Problem 5.54. Prove thatif S;: U — V,T:V — Wand S, : W — Z are linear
maps such that Sy, S, are bijective, then

rank(S,7S,) = rank(7T).
Solution. Since S| is bijective, we have
(TSHW) =TS (U))=T) =Im(T).

Since S, is bijective, it realizes an isomorphism between (7'S;)(U) and
S>((T'S1)(U)), thus these two spaces have the same dimension. We conclude
that

rank(7") = dimIm(7T") = dim(T'S,)(U) =

= dim Sz((TSl)(U)) = lel(SzTSl)(U) = rank(SzTSl).

Note that we only used the injectivity of S| and the surjectivity of ;.
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We will now prove the first fundamental theorem concerning the rank of a
linear map:

Theorem 5.55 (The Rank-Nullity Theorem). Let V, W be vector spaces over a
field F and let T : V — W be a linear transformation. If V' is finite-dimensional,
then

dimker T + rank(7") = dim V. (5.3)

Proof. Letn = dimV and let r = dimker 7. Since ker T is a subspace of V, we
have r < n, in particular r < co. We need to prove that dimIm7 =n —r.

Letvy,...,v, beabasis of ker T and extend it to a basis vy, ..., v, of V. We will
prove that T (v,41), ..., T(v,) form a basis of Im(7"), which will yield the desired
result.

Let us start by proving that T(v,41),...,T(v,) are linearly independent.
Suppose that a, 41, ..., a, are scalars in F such that

art1T(vr41) + ...+ anT(vy) = 0.

This equality can be written as T'(a,+1V,+1 + ... + @,v,) = 0, or equivalently
ar41Vr41 + ... + ay,v, € ker T. We can therefore write

ary1Vrd1 + ...+ apv, =bivi + ...+ by,

for some scalars by, ...,b, € F. But since vy,...,v, form a basis of V, the last
relation forces a¢,4+; = ... = a, = 0and by = ... = b, = 0, proving that
T(vy+1),..., T (v,) are linearly independent.

Next, we prove that T(v.41),...,T(v,) span Im(T). Let x € Im(T). By
definition, there is v € V such that x = T'(v). Since vy, ..., v, span V, we can find
scalars ay,...,a, € F suchthatv = ayv; + ...+ a,v,. Since v{,...,v, € ker T,
we obtain

x=TW =Y aTw)= Y aT()eSpan(T(r41).....T(v)).

i=1 i=r+1
This finishes the proof of the theorem. |

Corollary 5.56. Let V be a finite-dimensional vector space over a field F and
let T : V. — V be a linear transformation. Then the following assertions are
equivalent:

a) T is injective.
b) T is surjective.
c) T is bijective.

Proof. Suppose that a) holds. Then the rank-nullity theorem and the fact that
kerT = 0 yield dimIm(7') = dim V. Since Im(T') is a subspace of the finite-
dimensional vector space V' and dimIm(7") = dim V', we deduce that Im(7') = V
and so T is surjective, thus b) holds.
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Suppose now that b) holds, thus dimIm(7") = dim V. The rank-nullity theorem
yields dimker 77 = O, thus ker7 = 0 and then T is injective. Since it is also
surjective by assumption, it follows that ¢) holds. Since c) clearly implies a), the
result follows. O

Remark 5.57. Without the assumption that V' is finite dimensional, the previous
result no longer holds: one can find linear transformations 7" : V' — V which are
injective and not surjective, and linear transformations which is surjective and not
injective. Indeed, let V' be the space of all sequences (x,),>0 of real numbers and
define two maps 71,7, : V — V by

T](X(),)C],.. ) = (X],Xz,. . .), Tz(.Xo,xl,...) = (O,Xo,xl,. . )

Then T is surjective but not injective, and 75 is injective but not surjective.

Problem 5.58. Let A and B be n x n matrices such that A B is invertible. Show that
both A and B are invertible.

Solution. Let 77 : F" — F" and T, : F" — F" be the linear maps associated
with A and B respectively (so T1(X) = AX and T,(X) = BX). Then AB is the
matrix of the linear map 7} o T, with respect to the canonical basis of F" (both
on the source and on the target). Since AB is invertible, we deduce that 7 o T is
bijective, hence T is injective and 7] is surjective. But an injective or surjective
linear transformation on a finite dimensional vector space is automatically bijective.
Thus T; and T, are both bijective and the result follows from Problem 5.37. O

Problem 5.59. Let A, B € M, (C) satisfy AB = I,,. Prove that BA = I,,.

Solution. By the previous problem, A and B are invertible. Multiplying the relation
AB = I, on the right by A™! yields B = A™!. Thus BA = A™'A = I,. O

Problem 5.60. Show that if A and B are square matrices in M, (C) with AB =
A+ B, then AB = BA.

Solution. The condition AB = A + B implies (A — I,)(B — I,,) = I,,. Therefore
A —1I, and B — I, are mutually inverse and (B — I,,)(A — I,,) = I,,, which implies
BA=A+ B =AB. |

Problem 5.61. Let T : R* — R? be the linear transformation defined by
Tx,y,2)=x—y,2x—y—2z,x =2y +2).

Find the kernel of 7" and the rank of 7T'.

Solution. In order to find the kernel of 7', we need to find those x, y,z € R? such
that

x—y=0, 2x—y—2z=0, x—-2y+4+z=0.
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The first equation gives x = y, the second one z = x and so x = y = z, which
satisfies all equations. It follows that the kernel of T is the subspace {(x, x, x)|x €
R?}, which is precisely the line spanned by the vector (1, 1, 1).

Next, then rank of T' can be determined from the rank-nullity theorem:

3 = dimR® = dimker T + rank(7') = 1 + rank(T),

thus rank(7) = 2. |
We turn now to the analogous concept for matrices

Definition 5.62. Let A € M,,,(F). The rank of A is the integer rank(A) defined
as the rank of the linear map F" — F" sending X to AX (i.e., the canonical linear
map attached to A4).

Remark 5.63. We can restate the results established in Problems 5.51, 5.52, 5.53,
and 5.54 in terms of matrices as follows:

a) rank(A) < min(m,n) if A € My, ,(F).

b) |rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B) for all A,B €

¢) rank(PAQ) = rank(A) for all P € GL,,(F), A € M, ,(F) and Q € GL,(F).
That is, the rank of a matrix does not change if we multiply it (on the left or
on the right) by invertible matrices.

d) rank(AB) < min(rank(A),rank(B)) for A € M, ,(F) and B € M, ,(F).

Of course, we can also make the definition very concrete: let A € M,, ,(F) and
let ey, es,...,e, be the canonical basis of F”. Write ¢ : F" — F™ for the linear
map X — AX canonically attached to A. By the previous discussion Im(gp) is the
span of g(ey), ..., p(e,). Now, if Cy, ..., C, are the columns of A4, seen as column
vectors in F™, then by definition ¢(e;) = C; for all i. We conclude that the image
of ¢ is the span of Cy, ..., C,.

Let us summarize the previous discussion in an important

Theorem 5.64. Let A € M,,,,(F) and let C1,Cs,...,C, € F™ be its columns.
Then

rank(A4) = dim Span(C,, C,, ..., C,).

So, following the previous discussion, we obtain the following algorithm for
computing the rank of A: consider the transpose ‘A of A (thus the columns of
A become rows in the new matrix) and bring it to its reduced row-echelon form.
Then count the number of nonzero rows or equivalently the number of pivots.
This is the rank of A. We will see later on (see Problem 5.70) that the trick of
considering the transpose of A is actually not necessary: A and ’ A have the same
rank. Of course, we can also avoid considering the transpose matrix and instead
using column operations on A.
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Problem 5.65. Compute the rank of the matrix

Solution. Following the previous discussion we bring the matrix

-120 1 1

122 1 3
tA:

01-11 -1

1 0-1-21

to its reduced row-echelon form by row-reduction

1000 0
0100 1
0010 1
0001 -1

(tA)ref =

Since there are 4 nonzero rows, we deduce that
rank(A) = 4. 0
Problem 5.66 (Sylvester’s Inequality). Prove that for all A, B € M, (F) we have
rank(AB) > rank(A) + rank(B) — n.

Solution. Consider V' = F" and the linear transformations 7,7, : V — V
sending X to AX, respectively BX. We need to prove that

rank(7 o T,) > rank(7}) + rank(73,) — dim V.
By the rank-nullity theorem we know that
rank(7}) — dim V = —dimker 77,
thus it suffices to prove that

rank(73) — rank(7; o T5) < dimker 7.
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Let W = T,(V) = Im(T») and let T/ : W — V be the restriction of 7} to W. Then
using again the rank-nullity theorem, we obtain

rank(7y o T») = dim Ty (W) = rank(7})
= dim W — dimker 7.
Now dim W = rank(73), so we are reduced to proving that
dimker 7T} < dimker 7.

This is clear, as ker Tl’ =kerT)NW C kerT;. O
Problem 5.67. Let A € M;,(R) and B € M, 3(R) be matrices such that

0 —-1-1
AB=|-1 0 -1
1 1 2

a) Check that (AB)?> = AB and that AB has rank 2.
b) Prove that BA is invertible.
c) Prove that (BA)? = (BA)? and deduce that BA = I,.

Solution. a) One checks using the product rule that the matrix
0 —1-1

X=|-10 -1
I 1 2

satisfies X2 = X. Next, one computes the rank of X by computing the reduced
row-echelon form of “X:

10-1
("X)rey =] 01-1
00 0

Since there are two pivots, AB = X has rank 2.
b) Using Remark 5.63, we obtain

rank(BA) > rank(A(BA)B) = rank((AB)?) = rank(4B) = 2.

On the other hand, BA is a 2 x 2 matrix, thus necessarily rank(BA) = 2 and so
BA is invertible.
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c) Since (AB)?> = AB, we have
B(AB)*A = B(AB)A = (BA)~.

The left-hand side equals (BA)* and so (BA)*> = (BA)?. Since BA is invertible,
it follows that BA = I, and the problem is solved. |

The second fundamental theorem concerning rank is the following:

Theorem 5.68. Let A € M,,,(F) and let 0 < r < min(m,n). Then rank(A) =
r if and only if there are matrices P € GL,,(F) and Q € GL,(F) such that
A = PJ,Q, where

1.0
Jr = [0 0:| € Mm.n(F)-

Proof. If A = PJ, Q, then by part c) of Remark 5.63 we have rank(A4) = rank(J}).
The linear map associated with J, is (x,...,x,) — (x1,...,X,), and its image
is F", which has dimension r, thus rank(J,) = r. This proves one implication.

Assume now that rank(A) = r and let 7 : F" — F™ be the linear map sending
X to AX, so that A is the matrix of 7" with respect to the canonical bases of F”
and F™. Thanks to Theorem 5.43, it suffices to prove that we can find two bases
By, B, of F", F™ respectively such that the matrix of T with respect to By, B,
is J,. In order to construct By and B,, we start with a basis ey, ...,e,—, of ker T
(note that dimker 7" = n — r by the rank-nullity theorem) and we complete it to a
basis ey, ..., e, of F". Let f; = T(e,—r4;) for 1 <i <r.Weclaim that fi,..., f,
is a basis of Im(7T’). Since dimIm(7") = r, it suffices to see that fi,..., f, span
Im(7"). But any x € Im(T) can be written x = T(aje; + ... + aye,) and since
T(e;) =0forl < j <n—r,wehave

X =dap—r1 /1 +...+a,fr € Span(fi,..., fr),

proving the claim (this argument has already been used in the last paragraph of the
proof of the rank-nullity theorem).

Complete now fi,..., f, to a basis fi,...,f,, of F™. Cal By =
(en—r+1>----€n,€1,...,¢,) and By = (f1,..., fm)- Then by construction the
matrix of 7' with respect to By, B, is J, and the theorem is proved. O

Corollary 5.69. Let A, B € M,,,(F). Then rank(A) = rank(B) if and only if
there are matrices P € GL,,(F) and Q € GL,(F) such that B = PAQ.

Proof. If B = PAQ with P, Q invertible, then the result follows from part
¢) of Remark 5.63. Assume that rank(4) = rank(B) = r, then by the previous
theorem we can write A = P1J,Q; and B = P,J,Q, for invertible matrices
Py, P, 01, Q5. Setting P = P,P[ " and Q0 = Q7'0Q, we obtain B = PAQ. O
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Problem 5.70. Prove that for all A € M,, ,(F) we have

rank(A) = rank(’ A).

Solution. Say A has rank r and write A = PJ,Q with P € GL,(F)
and Q € GL,(F). Then ‘A = 'Q'J,'P and since 'P,'Q are invertible,
we have rank(’A) = rank(’J,). Since 'J, = J,, we conclude that
rank(’A) = rank(A4) = r. O

Problem 5.71. Let A € M, (C). Find, as a function of A, the smallest integer r
such that A can be written as a sum of r matrices of rank 1.

Solution. For all matrices X, Y € M, (C) we have
rank(X + Y) < rank(X) 4+ rank(Y)

thusif A = A; + --- + A, with rank(A4;) = 1, then

rank(A) = rank (Z A,-) < Zrank(A,-) =s.

i=1 i=1

We will prove that we can write A as a sum of rank(A) matrices of rank 1, which
will imply that the answer of the problem is rank(A). Indeed, if A has rank k, write
A = PJiR for some P,R € GL,(C). Thus A = A; + A> + --- + Ay, where
A; = PE;; Q and E;; is the matrix having all entries 0 except for entry (i, i), which
is 1. Clearly A; has rank 1 (since P, Q are invertible and E;; has rank 1). O

Problem 5.72. Let A € M,(F) have rank r € [1,n — 1]. Prove that there exist
BeM,,(F), CeM,,(F)with
rank(B) = rank(C) = r,

such that A = BC.
Solution. Write A = PJ,Q, where P, Q are invertible n x n matrices. Note that
choosing B| = I:Ir:| eM,,(F)andC| = [I, O] € M,,(F)wehave J, = B|C|

0
and By, C; both have rank r. But then

xA = PJ.Q = (PB)(C,0)
and B = PBy e M, ,(F),C = C,Q € M,,(F) both have rank r, since P, Q are

invertible (Remark 5.63). The problem is solved. O

Problem 5.73. Let A = [a;;] € M, (C) be a matrix of rank 1. Prove that there exist
complex numbers xi, X2, ..., X,, Y1, Y2, ..., yn such thata;; = x;y; for all integers
1<i,j<n.
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Solution. According to the previous problem there exist two matrices
BeM, (C) , CeM,C

sothat A = BC. If

X1
B=|" . c=0i ...,
Xn
then
X1 X1Y1 X1Y2 -« X1)n
4= " 1 Ya e Ya) = X2Y1 X2Y2 ... X2)n
Xn Xn Y1 XnY2 - - XnYn

5.4.1 Problems for practice

1. a) Find the rank of the linear transformation
T:R >R, Txy2=x-y,y—22—x).

b) Answer the same question with R replaced with F,.
2. Let T be the linear transformation on R*® whose matrix with respect to the
canonical basis is

121
A=(01-1
111

Find a basis of Im(7") and ker(7"), and compute the rank of 7.
3. Compute the rank of the matrices

0113

111 =2 1111
A=|01-34 |, B=|211-4
22 2 -4 222 2

3223
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10.

11.

12.
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. Let A, B € M3(F) be two matrices such that AB = O;. Prove that

min(rank(A), rank(B)) < 1.

. Let A € M3(C) be a matrix such that A2 = O;.

a) Prove that A has rank O or 1.
b) Deduce the general form of all matrices A € M3(C) such that A> = O;.

. Find the rank of the matrix A = [cos(i — j)]i<i j<n-
. a) Let V be an n-dimensional vector space over F andlet 7 : V — V be a

linear transformation. Let 7/ be the j-fold iterate of T' (so T2 =ToT,
T3 =T oToT,etc). Prove that

Im(7") = Im(7T"*1).
Hint: check that if Im(7/) = Im(T/*') for some j, then Im(T%) =

Im(T*+!) fork > j.
b) Let A € M, (C) be a matrix. Prove that A" and A”*! have the same rank.

. Let A € M, (F) be a matrix of rank 1. Prove that

A2 = Tr(A)A.

. Let A € M,,(F) and B € M, (F). Prove that

A0
rank |: 0 B] = rank(A) + rank(B).

Prove that for any matrices A € M, ,(F) and B € M,,(F) we have

rank |:](;' 21| = n + rank(B).
Letn > 2andlet A = [a;;] € M, (C) be a matrix of rank 2. Prove the existence
of real numbers x;, y;, 7, for 1 <i < nsuchthatforalli,j € {1,2,...,n}
we have

ajj = Xx;y; + zit;.

Let A = (aij)lsiijn , B = (bij)lsiijn be complex matrices such that

i
aij =27/ 'b,’j

for all integers 1 <1, j < n. Prove that rank A = rank B.
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13.

14.

15.

16.

17.

18.
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Let A € M,(C) be a matrix such that A> = A, i.e., A is the matrix of a
projection. Prove that

rank(A) + rank(l, — A) = n.

Let n > k and let Ay,...,Ar € M,(R) be matrices of rank n — 1. Prove
that A;A;... Ay is nonzero. Hint: using Sylvester’s inequality prove that
rank(A;...A;)>n—jforl <j <k.

Let A € M, (C) be a matrix of rank at least n — 1. Prove that rank(4%) > n —k
for 1 < k < n. Hint: use Sylvester’s inequality.

a) Prove that for any matrix A € M, (R) we have

rank(A) = rank(’ AA).

Hint: if X € R" is a column vector such that ‘44X = 0, write ‘X ‘AAX =
0 and express the left-hand side as a sum of squares.

b) Let A = [1

ll :| Find the rank of A and A A and conclude that part a) of

the problem is no longer true if R is replaced with C.
Let A be an m x n matrix with rank r. Prove that there is an m x m matrix B
with rank m — r such that BA = O,, ,,.
(Generalized inverses) Let A € M,, ,(F). A generalized inverse of A is a matrix
X € M, ,,(F) such that AXA = A.

a) If m = n and A is invertible, show that the only generalized inverse of A
is A1

b) Show that a generalized inverse of A always exists.

¢) Give an example to show that the generalized inverse need not be unique.



Chapter 6
Duality

Abstract After an in-depth study of duality for finite dimensional vector spaces,
we prove Jordan’s classification result of nilpotent transformations on a finite
dimensional vector space. We also explain how to describe vector subspaces by
equations using hyperplanes.

Keywords Duality ¢ Dual basis * Linear form ¢ Hyperplane ¢ Orthogonal

This chapter focuses on a restricted class of linear maps between vector spaces,
namely linear maps between a vector space and the field of scalars (seen as a vector
space of dimension 1 over itself). Such linear maps are called linear forms on the
vector space. Even though the whole chapter might look rather formal at first sight,
the study of linear forms (known as duality) on finite dimensional vector spaces
is very important and yields a lot of surprising properties. For instance, we will
use duality to prove a famous result due to Jordan which completely classifies the
nilpotent linear transformations on a finite dimensional vector space. This is one
of the most important results in linear algebra! We will also use duality in the last
chapter, in a more geometric context.

6.1 The Dual Basis

We fix a field F in the sequel. The reader may take F' € {R, C} if he/she prefers.

Definition 6.1. The dual V* of a vector space V over F is the set of linear maps
[ : V — F, endowed with the structure of a vector space over F by defining

L+ L)) =LO)+ L) and (cl)(v) =cl(v)

forll,lz,l € V*,Vl,VZ,V e€¢Vandc e F.

We leave to the reader the immediate verification of axioms of a vector space,
which show that V* is indeed a vector space over F when endowed with the
previous operations. An element [ of VV'* is called a linear form on V. These objects

© Springer Science+Business Media New York 2014 197
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are not very mysterious: assume for instance that V' = F” and let e, ..., e, be the
canonical basis. Then for all (x,...,x,) € V we have

I(x1,...,x0) = l(x1e1+. . .4+xpe,) = x1l(e)+. .. +x,1(ey) = arx1+...+anx,,

where a; = I(e;) € F. Conversely, any map of the form (xy,...,x,) — ajx; +
...+ ay,x, is a linear form on R”. In general, if V is a finite dimensional vector
space and ey, ..., e, is a basis of V, then the linear forms on V' are precisely those
maps [ : V — F of the form

I(x1e1 + ...+ xpey) =a1x1 + ...+ apx,

withay,...,a, € F.
By definition we have a canonical map

V*xV —F, (,v)~I10b).

We also denote this map as (I, v) — ([, v) and call it the canonical pairing between
V' and its dual. Unwinding definitions, we obtain the useful formulae

(Cl[ + 12,\1) = C(Z],V) + (ZQ,V), and (l,CV] + Vz) = C(l,V[) + (Z,Vz).

The canonical pairing is a key example of a bilinear form, a topic which will be
studied in much greater depth in subsequent chapters.
Each vector v € V' gives rise to a natural linear form

ev, : V¥ > F, [—1{)

on V*, obtained by evaluating linear forms at v. We obtain therefore a map
L2V =V, 1(v) =ev,,

called the canonical biduality map. Note that by definition

(tw). 1) = (L.v)

for all linear forms / on V' and all vectors v € V. A fundamental property of the
biduality map is that it is always injective. In other words, if v is a nonzero vector
in V, then we can always find a linear form / on V' such that /(v) # 0. The proof
of this rather innocent-looking statement uses the existence of bases for general
vector spaces, so we prefer to take the following theorem for granted: we will see in
short time that the biduality map is an isomorphism when V' is finite dimensional,
with an easy proof, and this is all we will need in this book.
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Theorem 6.2. For any vector space V over F, the canonical biduality map t :
V — V** isinjective.

Before moving on, let us introduce a useful and classical notation, called the
Kronecker symbol:

Definition 6.3. If i, j are integers, welet §;; = 1ifi = j and §;; = 0if i # j.

Let us assume now that V' is finite dimensional, of dimension n > 1 and let
us consider a basis e, e,,...,e, of V. If v is a vector in V, then we can write
v =x1e; + ...+ x,e, for some scalars x, ..., x, which are uniquely determined.
Define the i th coordinate form by

el V—>F, e(W=x if v=uxiei+...+ x50,
Thus by definition for all v € V' we have
n
V= Ze,-*(")ei,
i=1
or equivalently

n
V= Z(ei*,v)e,-.
i=1
Note that forall 1 <i,j <n we have

e;"(ej) = 8,'/'.

We are now ready to state and prove the first fundamental result of this chapter:

Theorem 6.4. Let V be a vector space of dimensionn > 1 and let ey, . ..,e, be a
basis of V. Then the coordinate forms e}, . .., e; form a basis of V* as vector space
over F.

Proof. Let us check first that e is an element of V'*, i.e., that e/ is linear. But if
x =xie;1+...+xye,and y = yje; + ...+ ye,, and if ¢ € F is a scalar, then

x+cy = +cyder+ ...+ Xy + cya)en,
thus
ef(x +cy)=xi +cy =ef(x)+ce’(y),

so e/ is linear.
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*

Next, let us prove that ef,...,e;

ci,...,c, € F are scalars such that

are linearly independent. Suppose that

cief + ...+ cuep =0.
Evaluating at ¢; yields
cifef.e) + ...+ cule;,e;) =0.

The left-hand side equals

n n
3

E Cj(€j,€,‘) = E C_/8[_/ = (.

j=1 Jj=1

Thus ¢; = Oforalli andsoef,..., e, are linearly independent.

Finally, let us prove that ef, ..., e; are a generating family for V*. Let/ € V*
be an arbitrary linear form. If v = x;e; + ... 4 x,e, is a vector in V, then linearity
of [ gives

(Lvy =xi(lier) + ...+ xa{lien) = (Ler)(ef, v) + ...+ (L ex) e, v)

= ((l,er)ef + (l,ex)es + ...+ (l.en)e, . V).
showing that

I =(lel)ef +(l,ex)es + ...+ (I en)e).

*

Thus / belongs to the span of e, .. ., e, which finishes the proof of the theorem. [J

Remark 6.5. The proof shows that for any [ € V* we have the useful relation
I ={(lel)ef +(l,e)es + ...+ (l,en)er.

This is the “dual” relation of the tautological relation

n

V= Z(e;k,v)e,-,

i=1
valid for allv € V.

The previous theorem explains the following:

Definition 6.6. If ¢;,...,e, is a basis of a vector space V over F, we call
ef,...,e; the dual basis of e,...,e,. It is uniquely characterized by the prop-
erty that

ef(ej) =08; forall 1<i,j<n.

A crucial consequence of the previous theorem is the following:
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Corollary 6.7. For all finite dimensional vector spaces V over F we have

dimV = dim V*.
Moreover, the canonical biduality map ¢ : V. — V** is an isomorphism of vector
spaces over F.

Proof. The first part is clear from the previous theorem and the fact that all bases
in a finite dimensional vector space have the same number of elements, namely the
dimension of the space. To prove that ¢ is an isomorphism, it suffices to prove that ¢
is injective, since

dimV = dim V* = dim V**,

as follows from what we have already proved.
So suppose that ((v) = 0, which means that {(/,v) = 0 for all [ € V*. Let

ey....,e, beabasis of V. Then (e}, v) = O0forall 1 <i < n, and since
n
V= Z(e;k,v)e,-,
i=1
we obtain v = 0, establishing therefore the injectivity of ¢. O

Remark 6.8. Conversely, one can prove that if the biduality map is an isomorphism,
then V is finite dimensional. In other words, the biduality map is never an
isomorphism for an infinite dimensional vector space!

Recall that R, [X] is the vector space of polynomials with real coefficients
whose degree does not exceed 7.

Problem 6.9. Let V = R,[X]. It is easy to see that the maps P — P®(0)
(where P is the ith derivative of P) are elements of V' *. Express the dual basis of
1,X,..., X" in terms of these maps.

Solution. Let ¢; = X' € V and let ey, ....e, be the dual basis. By definition
e(ej) =6;j. Thusforall P =ap+a; X + ... +a,X" € V we have
|
ef (P) =a; = = PV(0).
i

Thus e is the linear form given by P — l.l—!P(" )(0). O

The following problem gives a beautiful and classical application of the ideas
developed so far:

Problem 6.10 (Lagrange Interpolation). Let V' = R,[X] and let xo,...,x, be
pairwise distinct real numbers. For 0 <i < n define

L =[] X=x

0<j<n i X
J#i
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a) Show that
Li(xj)=26; forall 1<i,j <n.

b) Prove that Ly, ..., L, form a basis of V.
¢) Describe the dual basis of Lo, ..., L,.
d) Prove Lagrange’s interpolation formula: for all P € V' we have

P = i P(X,')L,‘.

i=0

e) Prove that for any by,...,b, € R we can find a unique polynomial P € V
with P(x;) = b; for 0 < i < n. This polynomial P is called the Lagrange
interpolation polynomial associated with by, ..., b,.

Solution. a) By construction we have L;(x;) = 0 for j # i. On the other hand,
- X —Xj
Li(x;) = 1_[ N —x 1,
0<j=n
J#
thus
Li(xj) = 8.

b) Since dim V' = n + 1 (a basis being given by 1, X, ..., X"), it suffices to check
that Lo, ..., L, are linearly independent. Suppose that agpLo + ... +a,L, =0
for some scalars ay, . . . , a,. Evaluating this equality at x; and using part a) yields

0= ZCZJ'LJ‘(X,') = Zaj&j = da;
j =0 j=0

forall0 <i < n,thus Ly,..., L, are linearly independent.
¢) By definition of the dual basis and by part a), we have

Li(Lj)=8;j =8 =L;(x:)
forall i, j. Fixi € {0,...,n}. Since L} (L;) = L;(x;) forall0 < j < n and
since Ly, ..., L, span V, we deduce that

LY(P)= P(x;) forall PeV.

d) By definition of the dual basis

n

P =Y (L P)L;.

i=0

By part c) we have (L}, P) = P(x;), which yields the desired result.
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e) It suffices to take P = ) _,b;L; in order to prove the existence part. For
uniqueness, if Q € V also satisfies Q(x;) = b; for 0 < i < n, it follows that
P — Q is a polynomial whose degree does not exceed n and which has at least
n + 1 distinct roots, thus P — Q = 0and P = Q.
O

Problem 6.11. Let xo, ..., x, € [0, 1] be pairwise distinct and let V = R, [X].
a) Prove that the map/ : V' — R defined by

I(P) = /0] P(x)dx

is a linear form on V.
b) Using the previous problem, prove that there is a unique n + 1-tuple (ao, ..., a,)
of real numbers such that

/1 P(x)dx = ia[P(x,-)
0 i=0

forall P € V.

Solution. a) This is a direct consequence of basic properties of integral calculus.

b) We use the result and notations of the previous problem, which establishes that
Ly,...,LYisabasis of V* and L} (P) = P(x;) for all P € V. Thus saying
that

/1 P(x)dx = iaiP(x,-)
0 i=0

for all P € V is equivalent to saying that

I(P)=) a;L}(P)

i=0

for all P € V, in other words

n
*
1= alL;
i=0
as elements of V*. Since Lj,..., L) is a basis of V'*, the existence and

uniqueness of ay, ..., a, is clear. O

Let us consider now the following practical problem: given a basis vy, ..., v,
of R”, express the dual basis v}, ..., v} in terms of the dual basis e}, ..., e, of the
canonical basis of R". To do so, write

n n
v = E aje;j and v = E bjie;.
j=1 j=l1
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Note that in practice we have an easy access to the matrix A = [a;;]: its columns are
precisely the coordinates of vy, ..., v, with respect to the canonical basis ey, ..., e,
of R". We are interested in finding B = [b;;]. Using the identity v} (v;) = §;;, we
obtain

Sip =vi) =D buef(v)) =Y b~y aye(er)
k=1 =1

k=1

= Zzazjbki&d = Zakjbki = ('B- A)j.
k=1

k=11=1
Since this holds for all i, j, we deduce that
'B-A=1, ie, B="A""

Thus in practice we need to compute A~ (via row-reduction on the matrix (A|7,))
and take the transpose!

Problem 6.12. Lete], e}, e} be the dual basis of the canonical basis of R3. Express
in terms of e}, e, e the dual basis of the basis of R? consisting in

-3 -1 0
v = 2 |, v = 1 , v3=| -2
1 1 3

Solution. We leave to the reader to check that v|, v,, v3 form a basis of R?, using
row-reduction on the matrix A whose columns are vy, v,, v3. Using row-reduction
on (A|1l3), one obtains

1 -5-3-2
A7'=-18 9 6
-1-21
With the above notations
—58 —1
B=-|[-39-2
26 1
and then
2
= —ge e 4
8 9 6
vy = 567 + 56; + 56;,
2 1
* _ * _ - * _ *
vy = e 7e2 + 763.
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Consider now the following inverse problem: given a basis fi,..., f, of V*,
is there always a basis ¢, . .., ¢, of IV whose dual basis is fi,..., f,? If so, how
to find such a basis?

Let us start with any basis vy,...,v, of V (we know that dim V' = n since we
know that dim V* = n). Of course, in practice the choice of vy, ..., v, will be the
natural one (for instance if V' = R” then we will take for vy, ..., v, the canonical

basis, if V = R,_1[X], we will take for vi, ..., v, the basis 1, X,..., X", etc).
Define a matrix

A=lai). aij = fi(v)).

This will be known in practice. On the other hand, we are looking for a basis
el....,e, of Vsuchthat e’ = f;, that is

fi (ej) = 5i_/

for 1 < i,j < n. We are therefore looking for an invertible matrix B such that
setting

n
e = E bj,'Vj,
Jj=1

these vectors satisfy the previous relations. Well, these relations are equivalent to

8ij = file)) =Y _bij i) = Y _ bijaic = (AB)y;.
k=1 k=1

that is

AB =1,.
In other words, ey, ..., e, exist if and only if the matrix A is invertible, and then
ei,...,e, are uniquely determined by

B=A""

It is however not clear that the matrix A is invertible. This is however the case, as
the following theorem shows:

Theorem 6.13. Letv,...,v, be a basis of V and let f1,..., f, be a basis of V*.
The matrix A = [a;;] with a;; = fi(v;) is invertible. Consequently (thanks to the

above discussion) for any basis fi, ..., f, of V* there is a unique basis ey, .. . , e,
of V whose dual basis is f1,..., f.
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Proof. Assume that A is not invertible. We can thus find a nonzero vector X € F”
with coordinates x1, ..., x, such that AX = 0. Thus for all j € {1,2,...,n} we
have

0= ajxi =y fiw)x = f;(Q_xv).
i=1 i=1

i=1

The vector v = x;v; + ...+ x,v, is therefore nonzero (since vy, . . ., v, are linearly
independent and X # 0) and we have

i) =...= fun) =0.
Since f1,..., f, is a spanning set for V*, we deduce that /[(v) = 0 forall [ € V*.

Thus v is a nonzero vector in the kernel of the biduality map V — V**, which was
however shown to be an isomorphism. This contradiction shows that A is invertible
and finishes the proof. |

In practice, it is helpful to know that a converse of the theorem holds:

Theorem 6.14. Let V be a vector space of dimension n over a field F. If the matrix
A = la;j] with ajj = fi(v;) is invertible for some vy,...,v, € V and some
floeeos fu € V¥, then vy,...,v, form a basis of V and fi,..., f, form a basis
of V*.

Proof. Suppose that vy, ..., v, are linearly independent, say xiv{ + ...+ x,v, =0
for some x1,...,x, € F, not all equal to 0. Applying f; to this relation, we obtain

0= fi(xivi+...+x0) =ajixi +...+a;ux,

forall j € {1,2,...,n}, thus AX = 0, where X € F" has coordinates x1, ..., X,,
contradicting that A4 is invertible. Thus vy, ..., v, are linearly independent and since
dim V' = n, they form a basis of V.

Similarly, if fi,..., f, were linearly dependent, we could find a nontrivial
dependency relation x; f| + ... + x, f, = 0, which evaluated at each v; would
yield

n
E ajjx; =0,

i=1
thatis ‘AX = 0 and ' A would not be invertible, a contradiction. O

Problem 6.15. Consider the following linear forms on R>:
hix,y,2) =x+2y+3z, hix,y,2) =2x+3y+z, L(x,y,2) =3x+y+2z

a) Prove that /1, [, /s form a basis of the dual of R3.
b) Find the basis of R® whose dual basis is [}, [, 3.
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Solution. a) Consider the canonical basis e;, 5, 3 of R? and the matrix

123
A:[li(ej)]z 231
312

This matrix is invertible, as one easily shows using row-reduction. It follows from
the previous theorem that [}, [, /3 form a basis of the dual of R>.
b) We compute the inverse of A using row-reduction. We obtain

=51 7
7 =5
7 =51

1

ATl = —
18

Using the previous discussion, we read the desired basis vy, v, v3 of R3 on the
columns of A~

-5 1 7

vi=— | 1|, va=—| 71|, v3=—|-5

Problem 6.16. Let IV = R;[X] and, for P € V, set

1
L(P)=P(1), L(P)=P'(1), L(P) =/0 P(x)dx.

a) Prove that [}, [,, [5 is a basis of V'*.
b) Find a basis e, e,, e3 of V whose dual basis is /1, [», /5.

Solution. a) It is not difficult to check that /1, /5, /3 are linear forms on V. In order
to prove that they form a basis of V*, we will use the previous theorem. Namely,
we consider the canonical basis v = 1, v = X and v; = X? of V and the
matrix

A= [li(v))].

Noting that if P = aX? 4+ bX + c then

b
L(P)=a+b+c, bL(P)=2a+Db, 13(P)=%+§+c,

we deduce that
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11
A=101
1

15

W= N =

One easily checks using row-reduction that A is invertible and by the previous
theorem [}, /,, /5 form a basis of V*.

b) Using the method discussed before Theorem 6.13, we see that we have to
compute the matrix B = A~'. Row-reduction yields

-21 3
B=A1'=| 6 —2-6
-3 2 3

2
Moreover, using that method we deduce that
e = —2v + 6v; —3v3 = =2+ 6X —3X°,

1 3 1 3,
€2=§V1—2V2+§V3=§—2X+§X,

e3 =3y, —6vy + 3v3 =3 — 6X + 3X°.

6.1.1 Problems for Practice

In the following problems we let R,[X] be the space of polynomials with real
coefficients whose degree does not exceed 7.

1. Find the dual basis of the basis of R? consisting of

vi=(1,-1,0), v, =(0,01), vs=(I,1,1).
2. Consider the linear forms on R3
Lix,y,2) =2x4+4y 4z, bL(x.y.2) =4x+2y+3z, BL(x,y.2) =x+y.
a) Prove that /,, [, /3 form a basis of the dual of R>.

b) Find the basis of R? whose dual basis is /1, [, I3.

3. Let V be a finite dimensional vector space over a field F. Prove that for all
x # y € V we can find a linear form / on V such that /(x) # [(y).
4. Define Py = 1 and, fork > 1,

PX)=XX-1)...(X -k +1).
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Also, let fi : R,[X] — R be the map defined by f;(P) = P (k).

a) Prove that Py, ..., P, is a basis of R, [X].

b) Prove that f,..., f, is a basis of R,[X]*.

c) Let (Py,..., P)) be the dual basis of (Po,..., P,). Express P, in terms of
f07 cec ﬁl‘

5. Leta # b be real numbers and for k € {0, 1,2} set
Pi(X) = (X —a)* (X = by,

a) Prove that Py, P;, P, form a basis of Ry[X].
b) Letc = “erb and, for o € {a,b,c}, let f, : R;[X] — R be the map defined
by fo(P) = P(). Prove that f,, f, f. form a basis of Ry[X]*.

c¢) Express the dual basis Pj, P*, P)" in terms of the basis f,, fp, fe.
6. Fori > 0let f; : Ry[X] — R be the map defined by

1
f,-(P):/0 x'P(x)dx.

a) Prove that fy, f1, f> form a basis of Ry[X]*.
b) Find a basis of Ry[X] whose dual basis is fy, f1, f2-

7. Let V be the vector space of all sequences (x,),>o of real numbers such that
Xn42 = Xn+1 + Xy

foralln > 0.

a) Prove that V' has dimension 2.
b) Let lp,/; : V — R be the linear forms sending a sequence (x,),>o to Xo,
respectively x;. Find the basis e(, e; of V' whose dual basis is /o, /;.

8. Let X be a finite set and let V' be the space of all maps ¢ : X — F. For each
x € X, consider the map [, : V — F sending f to f(x). Prove that the family
(I;)xex is a basis of V'*,

9. Let [ be a linear form on R, [X] and let k € [0, n] be an integer. Prove that the
following statements are equivalent:

a) We have /(X* P) = 0 for all polynomials P € R,_;[X].
b) There are real numbers o, . . ., @x—; such that for all P € R,[X]

k—1
1(P) =Y "a; PD(0).
i=0
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10. a) Letay, ..., a, be pairwise distinct real numbers. Prove that there is a unique
n + 1-tuple of real numbers (by, ..., b,) such that for any P € R,[X] we
have

P(O)+ P'(0) = ) b P(an).
k=0

b) Find such numbers by, ...,b, forn =2,a9 = 1,a; = 2and a, = 3.
11. Prove Simpson’s formula: for all P € R,[X]

b _
[ P(x)dx = bT“ (P(a) +4P (#) n f(b)) .

12. a) Let /1,1, be nonzero linear forms on some nonzero vector space V over R.
Prove that we can find v € V such that [, (v)[5(v) is nonzero.
b) Generalize this to any finite number of nonzero linear forms.
13. Let V, W be vector spaces. Prove that (V x W)* is isomorphic to V* x W*,

6.2 Orthogonality and Equations for Subspaces
Let V be a vector space over a field F', let [ be a linear formon V and v € V. We say
that / and v are orthogonal if

([,vy=0, ie. [(v) =0, orequivalently v € kerl.

If S is any subset of V, we let
St={leV* (v)=0 VveS)

be the orthogonal of S. These are the linear forms on V' which vanish on S, or
equivalently on the span of S (by linearity). Thus

st = Span(S)J‘.

Note that S+ is a subspace of V*, since if /, and /, vanish on S, then so does
l1 + ¢l for all scalars ¢ € F.
Similarly, if S is a subset of V*, we let

St={peV| (v)y=0 VleS}

be the orthogonal of S. The elements of S+ are the vectors killed by all linear
forms in S, thus

St = ﬂkerl.

lesS
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This makes it clear that St is a subspace of V', as intersection of the subspaces
(kerl);es of V. Again, by linearity we have

S+ = (Span(S))*

forall S C V*.

In practice, finding the orthogonal of a subset of a finite dimensional vector space
or of its dual comes down to solving linear systems, problem which can be easily
solved using row-reduction for instance. Indeed, let V' be a finite dimensional vector
space over F and let S be a set of vectors in V. Finding S* comes down to finding
those linear forms / on V' vanishing on each element of S. Let ey, ..., e, be a basis
of V, then a linear form / on V is of the form

I(x1e1+ ...+ xpey) =aix; + ...+ ayx,

for some ay,...,a, € F. Writing each element s € S with respect to the basis
ei,...,ey, yields

s = oge; + ...+ ey,

for some scalars a;. Then / € S+ if and only if
ajog + ...+ apog, =0

for all s € S. This is a linear system in ay,...,a,, but the reader will probably
be worried that it may have infinitely many equations (if S is infinite). This is
not a problem, since as we have already seen S+ = (Span(S))* and Span(S) is
finite dimensional (since a subspace of 1), thus by choosing a basis of Span(S) say
S1,...,Sk, we reduce the problem to solving the system

a1 +... .+ Anlsin = 0
for 1 < j < k. The discussion is similar if we want to compute the orthogonal of a

subset of V*.
Let us see some concrete examples:

Problem 6.17. Consider the subspace W of R? defined by
W ={(xy2ecR|x+y+z=0}

Give a basis of the orthogonal W+ of W.

Solution. By definition, a linear form / on R? belongs to W+ if and only if
l(x,y,z) = 0 whenever x + y + z = 0. In other words,

I(x,y,—x —y)=0 forall x,y cR,
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which can be written as
xI(1,0,—-1) + yI(0,1,—1) = 0.
Thus / € W+ if and only if
/(1,0,—-1) =1(0,1,—-1) = 0.
Now, a linear form / on R? is of the form
[(x,y,2) =ax + by + cz,

where a, b, ¢ are real numbers. Thus / € W if and only if

a—c=0, b—c=0,
or equivalently a = b = c. It follows that the linear form

lh(x,y,20=x+y+z

is a basis of W+. O
Problem 6.18. Let S = {v;,v;,v3} C R*, where

vi=(1,0,1,0), v, =(0,1,1,0), v3=(—1,1,0,1).

Describe S+ by giving a basis of this space.

Solution. A linear form / on R* is of the form
I(x,y,z,t) =ax + by + cz+ dt,

where a, b, ¢, d are real numbers. The condition / € S is equivalent to

[(v1) = 1(v2) =1(v3) = 0.

Thus [ € St if and only if a, b, c, d are solutions of the system

a+c=0
b+c=0
—a+b+d=0

This system can be solved without difficulty: the first and second equations give
a = b = —c and the third equation yields d = 0, thus the solutions of the system
are {(u, u, —u, 0)|u € R}. The corresponding linear forms are

L(x,y,z,t) =u(x +y —2),
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hence a basis of S+ is given by

11(X,y,z,t) =x+y—z.

O
Problem 6.19. Consider the set S = {/;, [} where
Lx,y,z2) =2x+4+3y—2z, bLx,y,2)=x-2y+2z
Find a basis for S*.
Solution. A vector (x, y,z) is in S+ if and only if
Lix,y.,2) = h(x,y,2) =0,
that is
2x +3y—z=0
x—2y+z=0
Solving the system yields
y=-3x, z=-T7x
Thus a basis of S+ is given by (1, -3, —7). O

Let us continue with an easy, but important theoretical exercise.

Problem 6.20. a) If S| C S, are subsets of V or of V*, then 52l C SIJ-.
b) If S is a subset of V or V*, then § C (S1)*.

Solution. a) Suppose that Sy, S, are subsets of V. If [ € S L then [ vanishes on S,.
Since S; C S,, it follows that / vanishes on S; and so !/ € S]l. Thus S2l C SIJ-.
Suppose that Sy, S, are subsets of V*. If v € S L then all elements of S,
vanish at v. Since S; C S», it follows that all elements of S; vanish at v and so
v € Si. The result follows.
b) Suppose that S C V and let v € S. We need to prove that if / € S+, then
(I,v) = 0, which is clear by definition! Similarly, if § C V* and/ € S, we need
to prove that (/,v) = 0 for all v € S+, which is again clear. |

Remark 6.21. While it is tempting to believe that the inclusion in part b) of the
problem is actually an equality, this is completely false: (S+)L is a subspace of
V or V*, while S has no reason to be a subspace of V' or V* (it was an arbitrary
subset). Actually, we will see that the inclusion is an equality if S is a subspace
of V or V* when V is finite dimensional.
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The fundamental theorem concerning duality of vector spaces is the following:

Theorem 6.22. Let V be a finite dimensional vector space over F. Then for all
subspaces W of V or V* we have

dim W + dim W+ = dim V.

Proof. Let n = dimV. Let W be a subspace of V', of dimension m < n, and
let ey,...,ey, be a basis of W, completed to a basis ej,...,e, of V. We need to
prove that dim WL = n —m. Let ef',... ey be the dual basis of V* associated
with ey, ..., e,. We will prove that e ,....,e; is a basis of W<, which will
prove the equality dim W+ = n — m. First, notice that e i1s---.€, belong to
W+, since e;‘ vanishes at eq,...,e, for all m < j < n, thus it vanishes on
W = Span(ey, ..., en).

Since e,’; e ey form a subfamily of the linearly independent family
ef,... ey, it suffices to prove that they span WL, Let] € W+, so that [ vanishes

on W. Using Remark 6.5, we obtain

n

I= Y (le)e Span(ef,.....e5)
i=m+1

and the proof of the equality dim W+ = n — m is finished.

Suppose now that W is a subspace of V*. By definition W+ consists of vectors
v € Vsuchthat {(/,v) = Oforalll € W.Lett: V — V** be the canonical biduality
map. The equality (/,v) = 0is equivalent to (¢(v), /) = 0. Thus v € W+ if and only
if t((v) € (V*)* vanishes on W. Since ¢ is an isomorphism and since the space of
g € (V*)* which vanish on W has dimension dim V* —dim W = dim V — dim W
by the first paragraph, we conclude that dim W+ = dim V — dim W, finishing the
proof of the theorem. |

Let us also mention the following very important consequence of the previous
theorem: we can recover a subspace in a finite dimensional vector space (or its dual)
from its orthogonal:

Corollary 6.23. Let V be a finite dimensional vector space over F and let W be a
subspace of V or V*. Then (W)L = W.

Proof. By Problem 6.20 we have an inclusion W C (W)L, By the previous
theorem

dim(WH)t = dimV — dim W+ = dim W.
Thus we must have (W+)+ = W. O

The previous result allows us to give equations for a subspace W of a finite
dimensional vector space V over F. Indeed, let n = dim V and p = dim W, thus
dimwt =n— p by the previous theorem. Let /[y, ..., [,—, be a basis of W+, Then
by the previous corollary

W=WHt=peV|Lv)=...=1l,_,(») =0}
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Ife;,...,e, is afixed basis of V, the linear form /; is of the form
li(xier + ...+ xpen) = apnxy + ainxy + ...+ ainxy
for some a;; € F. We deduce that
W ={xie1+...+xpe, € Vlianxi+... +ajnx, =0 forall 1<i<n-—p},

in other words W can be defined by n — p equations, which are linearly inde-
pendent (since /1, ...,/,—, form a basis of W and thus are linearly independent).
Moreover, one can actually write down explicitly these equations if we know the
coefficients a;;, in other words if we can find a basis of WL, Butif W is given,
then we have already explained how to compute W=, and we also know how to
compute a basis of a given vector space, thus all the previous steps can actually be
implemented in practice (we will see a concrete example in a few moments).
Conversely, if /1, ..., [,—, are linearly independent linear forms on V, then

Z=WweVlhv)=...=l_,(v) =0}
is a vector subspace of V' of dimension p, since
Z = (Span(ly, ..., L— )t
thus by Theorem 6.22
dimZ = n —dimSpan(/y,...,l,—,) =n—(n— p) = p.

We can summarize the previous discussion in the following fundamental:
Theorem 6.24. Let V' be a vector space of dimension n over a field.

a) If W is a subspace of V of dimension p, then we can find linearly independent
linear forms Iy, ..., 1,—, on 'V such that

W={peVlh(v)=...=1,_,() =0}
We say that [y (v) = ... = l,_,(v) = 0 are equations of W (of course, there are

many possible equations for W!).
b) Conversely, if i, ..., l,_p, are linearly independent linear forms on V, then

W=peVIh(y)=...=1_,1v) =0}

is a subspace of dimension p of V.

With the above notations, the case p = n — 1 is particularly important and
deserves a
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Definition 6.25. Let I/ be a finite dimensional vector space over F'. A subspace W
of V is called a hyperplane if

dimW =dimV —1.

For instance, the hyperplanes in R? are the subspaces of dimension 1, i.e., the
lines. On the other hand, the hyperplanes in R? are the subspaces of dimension 2,
i.e., planes spanned by two linearly independent vectors (this really corresponds to
the geometric intuition). There are several possible definitions of a hyperplane and
actually the previous one, though motivated by the previous theorem, is not the most
natural one since it does not say anything about the case of infinite dimensional
vector spaces. The most general and useful definition of a hyperplane in a (not
necessarily finite dimensional) vector space V over F is that of a subspace W
of V of the form ker/, where [ is a nonzero linear form on V. In other words,
hyperplanes are precisely the kernels of nonzero linear forms. Of course, this
new definition is equivalent to the previous one in the case of finite dimensional
vector spaces (for instance, by the rank-nullity theorem or by the previous theorem).
It also shows that the hyperplanes in F” are precisely the subspaces of the form

H ={(x1,....,xy) € F'layx; + ...+ a,x, = 0}

for some nonzero vector (a1, ...,a,) € F".Ingeneral, ife,...,e,isabasisof V,
then the hyperplanes in V' are precisely the subspaces of the form

H={v=xie1+...+ x5, € V]ayx; +... 4+ ayx, = 0}.

Notice that if H is a hyperplane in a finite dimensional vector space, then H - has
dimension 1, thus itis a linein V.

We say that hyperplanes Hj, ..., H, are linearly independent if they are the
kernels of a linearly independent family of linear forms. The previous theorem can
be rewritten as:

Theorem 6.26. a) Any subspace of dimension p in a vector space of dimension n
is the intersection of n — p linearly independent hyperplanes of V.

b) Conversely, the intersection of n— p linearly independent hyperplanes in a vector
space of dimension n is a subspace of dimension p.

We end this section with two concrete problems:
Problem 6.27. Let W be the subspace of R* spanned by the vectors
vi=(,1,-1,00 and v, =(-1,2,-1,1).
Find equations for W.

Solution. Here V' = R* and ey, ey, €3, e4 is the canonical basis of V. As the
discussion above shows, the problem comes down to finding a basis of WL. Now
WL consists in those linear forms

I(x,y,2,t) =ax + by + cz+dt
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which vanish on v; and v, i.e., such that
a+b—c=0, —a+2b—c+d=0.
We obtain
c=a+b, d=a+c—-2b=2a-b
and so
[(x,y,z,t) =ax + by + (a+ b)z+ (2a — b)t
=a(x+z4+2t)+b(y +z—1).
We deduce that a basis of W+ is given by
Lix,y,z,t) =x+2z+2t and bL(x,y,z,t) =y +z—t.
As we have already seen above, we have
W={eV|lLl) =hyv) =0}=
{(x,y.2.1) eRYx +z4+2t =y +z7—1t =0}

and /;(v) = [(v) = 0 are equations for W. |

Problem 6.28. Let V = R;[X]. Write the vector subspace of W spanned by 1+ X
and 1 — X 4+ X3 as the intersection of 2 linearly independent hyperplanes.

Solution. Consider the canonical basis
e1=1,eo=X,e5 = Xz,e4 = X3
of V' and
v=14+4X=e +e, w=I1-X+X>=¢ —e+es.

Writing W = Span(vy, v;) as the intersection of 2 linearly independent hyperplanes
is equivalent to finding two equations defining W, say [, (v) = [,(v) = 0, as then

W = H, N Hy, where H; =Xkerl;.

Thus we are reduced to finding a basis /;, /, of W=, A linear form [ on V is of
the form

l(x1e1 + x2e0 + x3€3 + x4€4) = ax) + bxs + cx3 + dxy



218 6 Duality

for some real numbers a, b, ¢, d. This linear form belongs to W+ if and only if
I(v1) = l(v,) = 0, which is equivalent to

a+b=a-b+d=0.
This gives b = —a and d = —2a, that is
[(x1e1 4+ ...+ xqeq) = a(x; — x3 — 2x4) + CX3.
We deduce that a basis /;, I, of W+ is given by
Lixier + ...+ Xyeq) = x1 — xp — 2x4, bL(xie1 + ...+ x4e4) = x3
and so W is the intersection of two linearly independent hyperplanes
H=kerl, ={a+bX +cX*>+dX*eV|a—b—-2d =0}
and

Hy =kerl, = {a +bX +cX>+dX* e V]c =0}

6.2.1 Problems for Practice

1. Consider the linear forms
hx,y)=x-=2y, h(x,y)=2x+3y

on R2. Give a basis of S+, where S = {/;,,}.
2. Give a basis of S, where S consists of the linear forms

Lix,y,)=x+y—2z bh(x,y,20=2x-3y+2z [L(x,y,2)=3x-2y

on R3.
3. Find a basis of W+, where

WZ{(X,y,z,t)eR4|x+2y +z—1t =0
4. Let§ = {(vl,Vz,V3)}, where
vi=0,1,1), v=(,1,0, v=(352).

Describe S+.
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. Give equations for the subspace of R* spanned by

vi=(1,-2,2,—1), v =(—1,0,4,-2).

. a) Find the dimension p of the subspace W of R* spanned by

vi=(1,2,-2.1), v =(=1,2,0,—-3), v;=(0,4,-2,-2).

b) Write W as an intersection of 4 — p linearly independent hyperplanes.
¢) Can we write W as the intersection of 3 — p hyperplanes?

. Let V. = M, (R) and for each A € V consider the map

I:V >R, LuB)=AB.

a) Provethatl, € V*forall A e V.
b) Prove that the map

V — V*, A1 A
is a bijective linear map (thus an isomorphism of vector spaces).
c) Let S, and A, be the subspaces of V' consisting of symmetric, respectively

skew-symmetric matrices. Prove that

St={l4Aec A} and A+ ={lA€S,).

. Let V be the space of polynomials with real coefficients and let W be the

subspace of V* spanned by the linear forms (/,),>0, where [,(P) = P (0).
Prove that W+ = {0}, but W # V*. Thus if W is a subspace of V*, we do not
always have (WL)1 = W (this is the case if V' is finite dimensional, or, more
generally, if W is finite dimensional).

. Let [ be a linear form on M, (R) such that

I(AB) = 1(BA)

forall A, B € M, (R). Let (E;;)1<i,j<n be the canonical basis of M,(R).

a) Prove that [(Ey)) = ... = I(E,,). Hint: fori # j E;E;; = E;; and
EjiEij = Ejj.

b) Prove that l(EU) =0 fori # ] Hint: E”Eij = Eij and E,’jE,'i = On

¢) Deduce that there is a real number ¢ such that

I(A) =c-Tr(A) forall A e M,(R).

Using the previous problem, determine the span of the set of matrices of the
form AB — BA, with A, B € M, (R) (hint: consider the orthogonal of the span).
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11. Let V be a vector space and let Wy, W, be subspaces of V or V*. Prove that
(Wi + W)t = Wit 0w,

12. Let V be a finite dimensional vector space and let W; and W, be subspaces of
V. Prove that

(Wi N W)t = Wit + Wit

Hint: use the previous problem and Corollary 6.23.

13. Let W}, W, be complementary subspaces in a finite dimensional vector space V
over a field F. Prove that WIJ' and WZJ' are complementary subspaces in V*.

14. Let H,, H, be distinct hyperplanes in a vector space V' of dimension n > 2 over
R. Find d1m(H1 N Hz).

15. Prove that a nonzero finite dimensional vector space over R is not the union of
finitely many hyperplanes.

16. Prove that the hyperplanes in M, (R) are precisely the subspaces of the form

(X € M,(R)| Tr(AX) = 0}

for some nonzero matrix A € M, (R).

17. Let W be a subspace of dimension p in a vector space V' of dimension n. Prove
that the minimal number of hyperplanes whose intersection is W is n — p.

18. Let V be a finite dimensional vector space and let [, /;,...,[, € V* be linear
forms. Prove that [ € Span(/y,...,[,) if and only if N’_, kerl; C kerl.

i=1

6.3 The Transpose of a Linear Transformation

Let V, W be vector spaces over a field F and let T : V — W be a linear
transformation. For each [ € W* we can consider the composite [ o T : V — F,
which is a linear form on V. We obtain therefore a map

'T.-W*—=V* 'T()=IoT.

In terms of the canonical pairing between V' and V*, and between W and W*,
we have

('T).v) =({.T)

foralll € W*andv € V. We call 'T the transpose of the linear transformation 7 .
If V and W are finite dimensional, the following theorem completely elucidates
the map 'T:



6.3 The Transpose of a Linear Transformation 221

Theorem 6.29. Let T : V. — W be a linear transformation between finite
dimensional vector spaces and let B and B’ be two bases of V and W respectively.
If A is the matrix of T with respect to B and B', then the matrix of 'T : W* — V*
with respect to the dual bases of B' and B is ' A.

Proof. Let B = (vi,...,v,) and B’ = (wi,...,wy). Write A = [a;;] and let
B = [b;;] be the matrix of ' T with respect to the bases w{, ..., wy and v{,...,v}.
By definition we have

m
T(V,’)ZZaijj, VISISH
j=I
and
n
"T(wf) = Zbkivl’:, V1<i<m.
k=1

Fix 1 <i < m and write the last equality as
n
Zbkiv}: =woT.
k=1

Evaluating at v;, with j € [1, n] arbitrary, we obtain

Zbkiv;:(vj) = Zbki5kj = bji
k=1 k=1

and

m m
wHT ) =wiQ ayw) =Y adu = ay;.
=1

=1

Comparing the two expressions yields
aj; = bji for all i,j,

which is exactly saying that B = ' A. |

The following problems establish basic properties of the correspondence
T — 'T. For linear maps between finite dimensional vector spaces, they follow
immediately from the previous theorem and properties of the transpose map on
matrices that we have already established in the first chapter. If we want to deal with
arbitrary vector spaces, we cannot use these results. Fortunately, the results are still
rather easy to establish in full generality.
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Problem 6.30. Prove that for all linear transformations 77,7, : V. — W and all
scalars ¢ € F we have

I(Tl + CT2) = tT] +c th.
Solution. We need to prove that if / is a linear form on W, then
[ o(Ty +CT2)=ZOT] +cloTs.

This follows from the fact that / is linear. O

Problem 6.31. a) Let 7} : V; — Vo and T5 : V, — V3 be linear transformations.
Prove that

“(TroTy) = 'Tio'T.

b) Deduce thatif T : V — V is an isomorphism, then sois ‘T : V* — V*, and
Ty = (T,

Solution. a) Let/ be a linear form on V3. Then
(ThoT)()=1lo(ThoT))=(oT)oT =
'Ti(l o T) = "Ti("Th(1)) = "Ty o "T»(I).
The result follows.
b) Since T is an isomorphism, there is a linear transformation T~ such that T o
T—! = T~'oT = id. Using part a) and the obvious equality ‘id = id, we obtain
"To(T™)=id="(T"YHT,

from where the result follows. O

Problem 6.32. Let T : V — W be a linear transformation and let ¢y, : V' — V**,
tw « W — W™** be the canonical biduality maps. Prove that

twoT = "("T)ouy.
Solution. Let v € W, then
"'Tyow(v) = "("T)(ev,) =ev, 0 'T.
The last map sends [ € W* to
ev,o 'T()=ev,(IoT)=({oT)Wv) =T®H))

= evr () = tw (TM) (D).
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Thus
"(Tyow( =ev,o'T =1y (T(v)

for all v € V, which is exactly the desired equality. O

The following technical but very important result makes the link between the
transpose operation and orthogonality. This allows us to use the powerful results
established in the previous section.

Theorem 6.33. Let T : V. — W be a linear transformation between finite
dimensional vector spaces. We have

ker('T) = (Im(T))™, ker T = (Im('T))*
and
Im(‘T) = (kerT)*, Im(T) = (ker('T))*.
Proof. By definition we have
ker('T)={l e W*|loT =0} ={l € W*|(T(v)) =0VveV}
={ eW*lw)=0VweIm(T)} = (In(T))*.
Similarly, we have
(Im('T)* = eV|'THV) =0V e W*}
={eV|l(TW)=0VIeW*}={eV|T(y) =0} =kerT.
Note that we could have also deduced this second result by using the already
established equality ker(’T) = (Im(T))*, applying it to ’ T and using the previous
problem (and the fact that ¢y and ty are isomorphisms).

Using what we have already established and the fact that our spaces are finite
dimensional (thus we can use Corollary 6.23), we obtain

(ker T)* = ((Im(‘T))H)* = Im('T).

We proceed similarly for the equality Im(7") = (ker('T))*. O
The previous theorem allows us to give a new proof of the classical but nontrivial

result that a matrix and its transpose have the same rank:

Problem 6.34. a) Let T : V — W be a linear transformation between finite
dimensional vector spaces. Prove that T and ‘T have the same rank.
b) Prove thatif A € M,,,(F), then A and its transpose have the same rank.
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Solution. Using Theorem 6.29, we see that b) is simply the matrix translation of a).
In order to prove part a), we use Theorem 6.33, which yields

rank('T) = dim(Im('T)) = dim(ker 7).
By Theorem 6.22 and the rank-nullity theorem, the last expression equals
dim V —dimker T = dim Im(7") = rank(7).

The result follows.

6.3.1 Problems for Practice

In the next problems we fix a field F.

1. Consider the linear map
T :R?> — R?, T(x,y,2) =(x—=2y+3z,x—y+72).

Let e}, e5 be the dual basis of R?. Find the coordinates of the vector ‘T'(e} —
e3.ef + eF) with respect to the dual basis of the canonical basis of R®.

2. Find the matrix of /T with respect to the dual base of the canonical base of R3,
knowing that

T(x,y,2) = (x—2y 4+ 32,2y —z,x —4y + 32).

3. Let T : V — W be a linear transformation between finite dimensional vector
spaces over F. Prove that

a) T isinjective if and only if 'T is surjective.
b) T is surjective if and only if T is injective.

4. Let T : V — V be a linear transformation on a finite dimensional vector space
V over F, and let W be a subspace of V. Prove that W is stable under 7" if and
only if W+ is stable under 'T.

5. Find all planes of R® which are invariant under the linear transformation

T:R>— R, T(x,y,2)=x—=2y+20,x+y+2).
6. Let V be a finite dimensional vector space and let 7 : V — V be a linear

transformation such that any hyperplane of V' is stable under 7. Prove that T is
a scalar times the identity (hint: prove that any line in V* is stable under 'T).
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6.4 Application to the Classification of Nilpotent Matrices

In this section we will use the results established in the previous sections to give a
simple proof of a beautiful and extremely important theorem of Jordan. This will be
used later on to completely classify matrices in M, (C) up to similarity. Actually, the
proof will be split into a series of (relatively) easy exercises, many of them having
their own interest. We will work over an arbitrary field F in this section, but the
reader may assume that F' = R or C if he/she wants.

We have seen several important classes of matrices so far: diagonal, upper-
triangular, symmetric, orthogonal, etc. It is time to introduce another fundamental
class of matrices and linear transformations:

Definition 6.35. a) Let V be a vector space over F and let T : V — V be a linear
transformation. We say that 7 is nilpotent if 75 = 0 for some k > 1, where
TK =ToTo...oT (k times). The smallest such positive integer k is called the
index of 7. Thus if k is the index of T, then T% = 0 but T¥~! # 0.

b) A matrix A € M, (F) is called nilpotent if A = O, for some k > 1. The
smallest such positive integer k is called the index of A.

If V is a finite dimensional vector space over F, if B is a basis of V and if T :
V — V is a linear transformation whose matrix with respect to Bis A € M,(F),
then the matrix of 7% with respect to B is A¥. It follows that 7T is nilpotent if and
only if A is nilpotent, and in this case the index of 7 equals the index of A.
In particular, any matrix similar to a nilpotent matrix is nilpotent and has the same
index. This can also be proved directly using matrix manipulations: if A4 is nilpotent,
P is invertible, and B = PAP ™!, then an easy induction shows that

B¥ = pA*p~!
for all k > 1, thus B¥ = 0O, if and only if Ak = o,, establishing the previous

statement.

Problem 6.36. Let 77, 7, be two linear transformations on a vector space V' and
assume that 7y o T, = T, o Ty. If T}, T, are nilpotent, then so are 7} o 7, and
T + 1.

Solution. Say 71" = 0 and T} = 0 for some k;,ky > 1. Then T} = T} = 0
where k = k| + k,. Since T; and T, commute, we obtain

(Tho T =TFoTF =0

and

2%
2k \ ok i
(T +T)* =) (k )lek T;.

i=0
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For each 0 < i < k we have T2~ = 0 and for each i € [k + 1,2k] we have
Ti =0.Thus T?*~'Ti = 0forall 0 <i < 2k and so (T} + T»)** = 0, establishing
that 71 + 75 is nilpotent. O

Remark 6.37. 1) Similarly (and actually a consequence of the problem), the
sum/product of two nilpotent commuting matrices is a nilpotent matrix.
2) The result of the previous problem is no longer true if we don’t assume that

T, and 7, commute: the matrices |:8 (1):| and |:(1) 8:| are nilpotent, but their sum is

not nilpotent, also the matrices |:g (1)] and B _i] are nilpotent, but their product

is not nilpotent.

3) It follows from 2) that the nilpotent matrices in M,,(F) do not form a vector
subspace of M,,(F). A rather challenging exercise for the reader is to prove that
the vector subspace of M, (F') spanned by the nilpotent matrices is precisely the
set of matrices of trace 0.

The result established in the following problem is very important:

Problem 6.38. a) Let T : V — V be a nilpotent transformation of index k
and let v € V be a vector such that T¥=!(v) # 0. Prove that the family
v, T(),...,T*¥"1(v)) is linearly independent in V.

b) Deduce that if V' is finite dimensional then the index of any nilpotent transfor-
mation on V' does not exceed dim V.

¢) Prove that if A € M, (F) is nilpotent, then its index does not exceed n.

Solution. a) Suppose that
ayw+aTW) + ... +a, T*'(v) =0 (6.1)

for some scalars ay, ...,ax—;. Applying T¥~! to this relation and taking into
account that T/ = 0 for j > k yields

aT*'"M) +0+...+0=0,

and since T*~'(v) # 0, we obtain ¢y = 0. Applying now T*~2 to relation
(6.1) gives a;T*"'(v) = 0 and then a; = 0. Continuing by induction yields
ap = ... = ai—; = 0 and the result follows.

b) Suppose that T is nilpotent on V, of index k. Part a) shows that V' contains a
linearly independent family with k elements, thus dim V' > k and we are done.

¢) This follows from b) applied to V' = F" and the linear map 7 : V — V sending
X to AX (using the discussion preceding the problem, which shows that A and
T have the same index). O

Using the previous problem, we are ready to introduce a fundamental kind of
nilpotent matrix: Jordan blocks. This is the goal of the next problem:
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Problem 6.39. Let 7 : V — V be a nilpotent linear transformation on index & on
a vector space, let v € V and let

W = Span(v, T(v), ..., T*"'(v)).

a) Prove that W is stable under 7.

b) Prove that if T7%~1(v) # 0, then T*~'(v), T*=2(v), ..., T(v),v form a basis of
W (thus dim W = k) and the matrix of the linear transformation 7 : W — W
with respect to this basis is

010...0
001...0
Je= i
000...1
000...0

This matrix is called a Jordan block of size k (note that J; = O, the 1 x 1
matrix with one entry equal to 0).

Solution. a) Any element of W is of the form
w=aw+aTO) +...+a_,TF(v).
Since T*(v) = 0, we have
Tw) =aoTW) + ... +arTF'(v) e W,

thus W is stable under T'.

b) If TK=1(v) # 0, part a) of the previous problem shows that 7¥='(v), ..., T(v),v
is a linearly independent family and since it also spans W, it is a basis of W.
Moreover, since 7% (v) = 0 and

T(T'() =T (v)
for k —2 > i > 0, it is clear that the matrix of T : W — W with respect to this

basis is Jy. O

The main theorem concerning nilpotent linear transformations on finite
dimensional vector spaces is the following beautiful:

Theorem 6.40 (Jordan). Let V be a finite dimensional vector space over a field F
andlet T : V. — V be a nilpotent linear transformation. Then there is a basis of V
with respect to which the matrix of T is of the form
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Jo 0 ... 0
0 Jip... O
A= ,
0 0 ...J,

for some sequence of positive integers ki > ky > ... > kg with
ki+...+ks=n.

Moreover, the sequence (ki, ..., kg) is uniquely determined.
We can restate the previous theorem in terms of matrices:

Theorem 6.41 (Jordan). Any nilpotent matrix A € M, (F) is similar to a block-

Jg 0 ... 0
0 Ji, ... O

diagonal matrix L for a unique sequence of positive integers
0 0 ... Jx

kv, ..., kg) withk, >k, > ... > ks and
ki+ky+...+ky=n.

Jo 0 ... 0

0 Ji,... 0

The matrix is called the Jordan normal (or canonical) form

0 0 ...Jg
of AorT.
The next series of problems is devoted to the proof of this theorem. We will start
with the uniqueness of the sequence (k1, ..., k;). The proof, given in the next three

problems, will also show how to compute explicitly these integers and therefore how
to find in practice the Jordan normal form of a nilpotent matrix.

Problem 6.42. Let T be the linear transformation on F'” associated with the Jordan
block J,. Prove that forall 1 <k <n — 1 we have

rank(T%) = n —k
and deduce that

rank(J¥) =n —k
forl <k<n-1. "

Solution. If ey, ..., e, is the canonical basis of F", then

T(el) = 07 T(ez) = ey, T(e3) =é€2,..., T(el’l) = €én—1.
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In other words, T'(e;) = e;—; for 1 < i < n, with the convention that ¢y =
We deduce that T?(e;) = T(ej_1) = e;» for 1 < i < n, with e_; =
An immediate induction yields

0.
0.

T/ (e;) = e
forl<j<mn-—1landl <i <n,withe, = 0forr < 0. Thus
Im(T/) = Span(ey, e, ..., en—j)
and this space has dimension n — j, which yields
rank(T%) =n —k

for 1 < k < n—1. The second part is an immediate consequence of the first part. (]

Problem 6.43. Suppose that A € M, (F) is similar to

Jog 0 ... 0
0 J,... 0
0 0 ...Jy
Let N; be the number of terms equal to j in the sequence (k, ..., kq). Prove that

foralll < j <n

rank(Aj) = Nj-H +2Nj+2+ oo+ (m—Jj)N,.

Solution. If Ay, ..., A; are square matrices, then
Ay 0 ... 0
0 A4,... 0
rank . =rank(A;) + ... + rank(Ay,),

0 0 ...A4
as the reader can easily check by using the fact that the rank of a matrix is the

dimension of the span of its column set. Since similar matrices have the same rank,
we deduce that for all j > 1 we have

JLo o0
, 0J,...0 d A
rank(A’) = rank {(2 . = Zrank(]kji).
. . EE i=1
0 0 J!

gy
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By the previous problem, rank(Jk’;_ ) equals k; — j if j < k; and O otherwise. Thus,
since N, is the number of indices i for which k; = ¢, we have

d
Zrank(Jk{_) = Z Z rank(J,j)
i=1

t>j ki=t

ZZNI'([_j):Nj-i-I+2Nj+2+~~-+(n_j)Nn-

1>
|
Problem 6.44. Prove thatif ky > ... > kg and k| > ... > k;, are sequences of
Jgg 0 ... 0
0 J, ... O
positive integers adding up to n and such that A = . is similar
0 0 ...Jg
0 Jy 0
to B = . , then these sequences are equal. This is the uniqueness
0 0 ...Jp,
part of Jordan’s theorem.
Solution. Let N; be the number of terms equal to j in the sequence (ki, ..., ky),
and define similarly N} for the sequence (kj, ...,k ). We are asked to prove that

N; =Nj’- forl <j <n.
Since A and B are similar, A/ and B/ are similar for all j > 1, thus they have
the same rank. Using the previous problem, we deduce that

Nj+1~|—2Nj+2+...+(n—j)Nn=NJ/.+1+2NJ’-+2+...+(n—j)N,:

for j > 1. Setting j = n — 1 gives N, = N,, then setting j = n — 2 and using
N, = N, gives N, = N,_,. Continuing this way yields N; = Nj for2 < j <n.
We still need to prove that Ny = N 1’ , but this follows from

Ni+2N,+...4nN, =N/ +2N;+...+nN, =n,
since

ki+...+kq=ki+...+k) =n. -

Remark 6.45. The previous two problems show how to compute the sequence
(ki, ..., k) in practice. Namely, we are reduced to computing Ny, ..., N,. For this,
we use the relations

rank(Aj) =Njy1+2Njp+...+(m—j)N,
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for 1 < j < n (it suffices to take j < k if A has index k, noting that the previous
relation for j = k already yields Ny+; = ... = N, = 0). These determine
completely N, ... N,. To find N;, we use the relation

Ny +2Ny,+...+nN, =n.

Example 6.46. As a concrete example, consider the matrix

One can easily check that this matrix is nilpotent: we compute using the product
rule

00—-48
00—-48
0000
0000

and then A® = Oj, using again the product rule. Thus A4 is nilpotent of index k = 3.
It follows that Ny = 0 and

Ny + 2N, +3N; = 4.

Next, it is easy to see that the rank of A is 2, since the first and second rows are
identical, the last row is half the third row, and the first and third row are linearly
independent. Thus

2 =rank(A) = Ny + 2N3; + 3Ny = N, + 2N3
Next, it is clear that A2 has rank 1, thus
1 = rank(4%) = N3 + 2N, = Ns.
It follows that
N =1, N,=0, N3=1, Ny=0
and so the Jordan normal form of 4 is

0100
0010
0000
0000
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The uniqueness part of Jordan’s theorem being proved, it remains to prove the
existence part, which is much harder. The basic idea is however not very surprising:
we work by strong induction on dim V', the case dim V' = 1 being clear (as then
T = 0). Assume that the result holds for dim V' < n and let us consider the case
dim V' = n. We may assume that T # 0, otherwise we are done. Let k| = k be the
index of T and let v € V such that T%~!(v) # 0. By Problem 6.39, the subspace

W = Span(v, T(v),...,T*"'(v))

is invariant under T, which acts on it as the matrix J; on F¥. Moreover, dim W = k.
If k = n, then we are done. If not, we look for a complementary subspace W' of W
which is stable under 7. If we could find such a space W', then we could apply the
inductive hypothesis to the map T : W’ — W’ (note that its index does not exceed
k1) and find a basis of W’ in which the matrix of 7 has the desired form. Patching
the basis 7¥~'(v), ..., T(v), v and this basis of W’ would yield the desired basis of
V' and would finish the inductive proof. The key difficulty is proving the existence
of W’. This will be done in the two problems below.

Problem 6.47. a) Prove that if A € M, (F) is nilpotent, then ‘A is nilpotent and
has the same index as A.

b) Suppose that V' is a finite dimensional vector space over F. Prove that if T :
V — V is nilpotent, then ‘T : V* — V* is also nilpotent and has the same
index as T'.

Solution. a) For all £k > 1 we have
(tA)k — [(Ak),

thus ( A)* = O, if and only if A¥ = O,,. The result follows.

b) Let B be abasis of V and let B* be the dual basis of B. If A4 is the matrix of 7" with
respect to 3, then the matrix of ‘T with respect to B* is ' A, by Theorem 6.29.
The result follows now from part a).

We can also prove this directly as follows: if & > 1, then (* T)k = 0 if and
only if (‘{T)¥(/) = Oforalll € V*, equivalently [ o T¥ = 0 forall [ € V*.
This can be written as: for all v € V and all [ € V* we have [(T*(v)) = 0.
Now, the assertion that /(7% (v)) = 0 for all [ € V* is equivalent to TX(v) = 0,
by injectivity of the biduality map V — V**. Thus (‘T)* = 0 if and only if
T* = 0, and this even when V is infinite dimensional. In other words, part b)
holds in all generality (but the proof requires the injectivity of the map V' — V**,
which is difficult and was not given for infinite dimensional vector spaces). [

Problem 6.48. Let 7 : V' — V be a nilpotent transformation of index k on a finite
dimensional vector space V and let v € V be such that T¥~!(v) # 0. We denote for
simplicity S = ‘T : V* — V* and we recall that S is nilpotent of index k by the
previous problem.

a) Explain why we can find a linear form / € V* such that

I(T 7 (v) # 0.
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b) Prove that the orthogonal W' of
Z = Span(l, S(I),..., S Y1) c v*

is stable under 7'.

¢) Prove thatdim W’ 4+ dim W = dim V.

d) Deduce that W/ @ W = V, thus W' is a complementary subspace of W, stable
under 7. This finishes the proof of Jordan’s theorem!

Solution. a) This is a direct consequence of the injectivity (and actually bijectivity
since our space is finite dimensional) of the biduality map V' — V**.

b) Let us try to understand concretely the space Z+. A vector x is in Z+ if and only
if S/(I)(x) =0for0 < j <k —1.Since S = T*, we have

S/ (x) = (Lo TV)(x) = (T’ (x)),
thus
Zt={xeV|I(T/(x)) =0 forall 0<, <k-—1}.
Now let x € Z+ and let us prove that T(x) € Z1, i.e., that
I(T'(T(x))) =0
for 0 < j < k — 1, or equivalently [(T/(x)) = O for 1 < j < k. This is clear
for1 < j <k —1,since x € Z*, and it is true for j = k since by assumption
Tk =0.
¢) By Theorem 6.22 we have
dim(W') = dim(Z1) = dim V* — dim Z = dim V — dim Z.
It suffices therefore to prove that dimZ = dim W. Now dimW = k by
Problem 6.39, and dim Z = k by the same problem applied to V*, S (which
is nilpotent of index k) and [ (note that SK='(I) = [ o T*=1 #£ 0 since
[(T*='(v)) # 0). Thus dim W’ + dim W = dim V.
d) By part c) it suffices to prove that W/ N W = {0}. Let w € W and write
w=aw+aTOW) +...+a_ T*'(v)
for some scalars ag,...,dar—1. Suppose that w € W', thus w € Z+, that is
I(T/(w)) = 0for0 < j < k — 1. Taking j = k — 1 and using the fact that
T™ = 0 form > k yields

aol(T*'(v)) = 0.
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Since [(T*='(v)) # 0, we must have ay = 0. Taking j = k — 2 gives similarly
a;l(T*='(v)) = 0 and so a; = 0. Continuing like this we obtain @y = ... =
ax—1 = 0 and so w = 0. This finishes the solution of the problem. O

6.4.1 Problems for Practice

In the problems below F is a field.

1. Let T : V — V be alinear transformation on a finite dimensional vector space
such that for all v € V there is a positive integer k such that T¥(v) = 0. Prove
that 7" is nilpotent.

2. Let V be the space of polynomials with real coefficients andlet 7 : V' — V be
the map sending a polynomial to its derivative. Prove that for all v € V there is
a positive integer k such that 7 (v) = 0, but T is not nilpotent.

. Describe the possible Jordan normal forms for a nilpotent matrix A € My(F).

. Find, up to similarity, all nilpotent 3 x 3 matrices with real entries.

5. A nilpotent matrix A € Ms(C) satisfies rank(A) = 3 and rank(4?) = 1. Find
its Jordan normal form.

6. a) Prove that the matrix

W

31 3
A=|2 0 2
—3-1-3

is nilpotent and find its index.
b) Find the Jordan normal form of A.
7. Find the Jordan normal form of the matrix

-1 10
A=]1 12
1 -10

8. Consider the matrix

3—-11 -7
9-3-7-1
00 4 -8
00 2 —4

a) Prove that A is nilpotent.
b) Find its Jordan normal form.
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11.

12.

13.

Application to the Classification of Nilpotent Matrices 235

. Describe up to similarity all matrices A € M,,(F) such that A> = O,.
. Let A € M, (F) be a nilpotent matrix. Prove that A has index # if and only if

rank(A) =n — 1.
Let A € M, (F) be a nilpotent matrix, say A% = 0, for some k > 1. Prove that
I, + x A is invertible for all x € F and

(I, + xA) ' =1, —xA + x2A%> — .+ (=D Ixk=l 4571

(Fitting decomposition) Let V' be a finite dimensional vector space over a field
FandletT : V — V be a linear transformation. Write

N =|JkerT*, I =()Im(T").

k>1 k>1

a) Prove that N and I are subspaces of V/, stable under 7.

b) Prove that there exists n such that N = ker 7" and / = Im(7").

¢) Deducethat V =N & I.

d) Prove that the restriction of T to N is nilpotent and the restriction of T
to [ is invertible. We call this decomposition V' = N @ [ the Fitting
decomposition of 7.

e) Prove that if V= V; & V), is a decomposition of V' into subspaces stable
under 7 and such that T'|y, is nilpotent and T |y, is invertible, then V; = N
and V, = 1.

Find the Fitting decomposition of the matrix

=[]
=27

Do the same with the matrix



Chapter 7
Determinants

Abstract This rather technical chapter is devoted to the study of determinants
of matrices and linear transformations. These are introduced and studied via
multilinear maps. The present chapter is rich in examples, both numerical and
theoretical.

Keywords Determinant ¢ Multilinear map * Laplace expansion ¢ Cofactor

This rather technical chapter is devoted to the study of determinants of matrices
and linear transformations. We have already seen in the chapter devoted to square
matrices of order 2 that determinants are absolutely fundamental in the study of
matrices. The advantage in that case is that many key properties of the determinant
can be checked by easy computations, while this is no longer the case for general
matrices: it is actually not even clear what the analogue of the determinant should
be for n x n matrices.

The definition of the determinant of a matrix is rather miraculous at first sight,
so we spend a large part of this chapter explaining why this definition is natural
and motivated by the study of multilinear forms (which will also play a key role
in the last chapter of this book). Once the machinery is developed, the proofs of
the main properties of the determinants are rather formal, while they would be very
painful if one had to manipulate the brutal definition of a determinant as polynomial
expression of the entries of the matrix.

Permutations play a key role in this chapter, so the reader not familiar with
them should start by reading the corresponding section in the appendix dealing
with algebraic preliminaries. The most important thing for us is that the set S, of
permutations of {1,2,...,n} is a group of order n! with respect to the composition
of permutations, and there is a nontrivial homomorphism ¢ : S, — {—1, 1}, the
signature.
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7.1 Multilinear Maps

Let Vi, V3, ..., V4 and W be vector spaces over a field F (the reader might prefer to
take R or C in the sequel).

Definition 7.1. A map f : Vi x ... x V; — W is called multilinear if for all
i € {1,2,...,d} and all vi € Vi,...,vicy € Vic1,vig1 € Vigr,...,vg € Vy the
map

Vi>W, vit> f(vi,va,...,vq)
is linear.

Let us see what the condition really says in a few simple cases. First, if d = 1,
then it simply says that the map f : V; — W is linear. Secondly, if d = 2, the
condition is that x — f(a,x) and x — f(x,b) are linear for alla € V| and b €
V5. Such maps are also called bilinear and they will be studied rather extensively
in the last chapter of the book. If d = 3, the condition is that x +— f(a,b, x),
x = f(a,x,c)and x — f(x,b,c) should be linear for all a € Vi,b € V, and
c eV

There is a catch with the previous definition: one might naively believe that a
multilinear map is the same as a linear map f : Vi x ... x V; — W. This is
definitely not the case: consider the map f : R> — R sending (x, y) to xy. It is
bilinear since for all @ the map x > ax is linear, but the map f is not linear, since

F((1.0)) + f((0.1)) =0 # f((1,0) + (0. 1)) = 1.

One can develop a whole theory (of tensor products) based on this observation, and
the reader will find the basic results of this theory in a series of exercises at the end
of this section (see the problems for practice section).

Though one can develop a whole theory in the general setting introduced before,
we will specialize to the case V|, = V5, = ... = V; and we will simply call this
space V. Multilinear maps f : V¢ — W will also be called d-linear maps. The
next problem gives an important recipe which yields d-linear forms from linear
forms.

Problem 7.2. Let f1, f>,..., f4 : V — K be linear forms and consider the map

VS K, (xX1...x0) = filx).. . fa(xq).
Prove that f is d-linear.

Solution. If i € {1,...,d}and x; € V},...,x;—1 € Vi_1,Xi+1 € Vig1,..,Xq €
V4, then the map x; — f(xy,...,xg) is simply the map x; — af;(x;) where
a= ]_[j#i fj(x;)is ascalar. Since f; is a linear form, so is a f;, thus x; — af; (x;)
is a linear map and the result follows. O
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Not all d-linear forms are just products of linear forms:

Problem 7.3. Prove that the map f : (R?)2 — R given by

J((x1,x2), (1, ¥2)) = X191 + X2)2

is 2-linear, but is not a product of two linear maps, i.e., we cannot find linear maps
I1.1, : R?> — Rsuch that f(x,y) = [;(x)»(y) for all x, y € R?.

Solution. If x; and x, are fixed, then it is not difficult to see that the map
(y1,y2) = Xx1y1 + x2) is linear. Similarly, if y;, y, are fixed, then the map
(x1,Xx2) > x1y1 + x2); is linear. Thus f is 2-linear. Assume by contradiction that
f(x.y) = [1(x)5(y) for two linear maps [y, [, : R> — R and for all x = (x;, x3)
and y = (y1,)) in R%. It follows that we can find real numbers a = [;(1,0),
b =10(0,1),c =16(1,0)and d = [,(0, 1) such that

X1Y1 + X2y2 = (ax; + bxy)(cy1 + dy»)

for all x1, y1, X2, y2 € R. We cannot have (a, b) = (0, 0), so assume without loss of

generality that b # 0. Taking x, = —%* we obtain
axi
X1)1 = Tyz
for all real numbers x1, yy, y,. This is plainly absurd and the result follows. O

Let us consider now a d-linear form f : V¢ — W and a permutation o € Sy.
We define a new map o(f) : V¢ — W by

o(f)(x1,.. . xa) = f(X6(1)s - - > Xo(d))-
It follows easily from the definition of d-linear maps that o (f) is also a d-

linear map. Moreover, for all o, T € S; and all d-linear maps f we have the crucial
relation (we say that the symmetric group S, acts on the space of d -linear forms)

(00)(f) =0 (z(f)) (7.1)
Indeed, by definition we have
(@) (X1, xd) = f(Xo@)s - -+ Xo(z(a@))
while!

o(t(f)(x1,.. . x0) = () Xot)s - - Xo(@) = (Ko@) - - Xo((d))-

"Note that setting y; = Xo(;), We have y.¢) = Xo(z(i))-
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Recall (see the appendix on algebraic preliminaries for more details on permu-
tations) that there is a special map ¢ : S; — {—1, 1}, the signature. The precise
definition is

a(i)—o(j)
8(0') = 1_[ T .
I<i<j<n J
This map ¢ is multiplicative, that is

e(ot) =¢e(0)-&(7)

for all o, T € S;. Recall that a transposition is a permutation o for which there are

integers i # j € {1,2,...,d} such that 6(i) = j, 0(j) = i and o(k) = k for

all k # i, j. In this case we write ¢ = (i, j). We note that () = —1 for any

transposition o. We also recall that any permutation is a product of transpositions.
We introduce now two fundamental classes of d -linear maps:

Definition 7.4. Let f : V¢ — W be a d-linear map.

a) We say that f is antisymmetric if o (f) = (o) f forallo € S;.
b) We say that f is alternating if f(x;,x,...,x4) = 0 whenever
X1,X2,...,Xq € V are not pairwise distinct.

The two definitions look quite different, but most of the time they are equivalent.
There are however some subtleties related to the field F, as the following problems
show. However, the reader should keep in mind that over fields such as the real,
rational, or complex numbers there is no difference between alternating and
antisymmetric d -linear maps.

Problem 7.5. Prove that an alternating d-linear map f : V¢ — W is
antisymmetric.

Solution. Since any permutation is a product of transpositions and since ¢ is
multiplicative, relation (7.1) reduces the problem to proving that t(f) = —f for
any transposition t = (i, j), with i < j. Consider arbitrary vectors xp, Xz, . . ., X4
and note that

flxr, ., xi1, X + X, Xig1s e Xj—1, X +xj,xj+1,...,xd) =0

since f is alternating. Using the d-linearity of f, the previous relation can be
written

SO oo xi X xa) F (XX, X))+

SO nxj, o onxiouxg) + f(xr, .o xq) =0.
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Using again the fact that f is alternating, it follows that the first two terms in the
above sum are zero and we obtain the desired result, noting that the third term is

()X, .. Xa). O

Problem 7.6. Suppose that F' € {Q, R, C}. Prove that an antisymmetric d-linear
map f : V¢ — W (with V, W vector spaces over F) is alternating. Thus over such a
field F there is no difference between antisymmetric and alternating d-linear maps.

Solution. Suppose that xi, ..., x; are not pairwise distinct, say x; = x; for some
i < j. Consider the transposition t = (7, j). Since f is antisymmetric and
e(r) = —1, we deduce that t(f) = —f. Evaluating this equality at (xi,...,xs)
yields

SO, oo XXy uxg) = = (XL X, X Xa).

But since x; = x;, the previous relation can be written

2f(x1,...,xq) =0.

Since F € {Q, R, C}, the previous relation yields f(xi,...,x;) = 0 (note that this
would be completely wrong if we had F' = F5, see also the example below). Thus
f is alternating. O

Example 7.7. Bad things happen when F = F,. Let f : F?> — F be the
multiplication map, that is f(x,y) = xy. It is clearly bilinear and it is not
alternating, since f(1,1) = 1 # 0. On the other hand, f is antisymmetric. Indeed,
we only need to check that f(x,y) = —f(y,x), or equivalently 2xy = 0. This
holds since2 =141 = 0.

A natural question is: how to construct antisymmetric or alternating d-linear
maps? The following problem shows that starting with any d-linear map f we can
obtain an antisymmetric one by taking a weighted average of the values o ( /). This
will play a crucial role in the next section, when defining the determinant of a family
of vectors.

Problem 7.8. Let f : V¢ — W be a d-linear map. Prove that
A(f) =) e()a(f)

gESy
is an antisymmetric d-linear map.

Solution. It is clear that A( f) is a d-linear map, since it is a linear combination of
d-linear maps. Let T € S; and let us prove that t(A( f)) = e(r)A(f). Note that by
relation (7.1) we have

T(A(f) = )Y e0)r(0(f) = Y _ &0)(xo)(f).

0ESy 0ESy
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Thus, using the fact that e(t)e(0) = ¢(r0), we obtain

e(T(A(f) = Y &(xo)(xa)(f).

oES,

Note that the map o — to is a permutation of S; (its inverse being simply o +—
7o), thus the last sum equals > ves, £(0)a(f) = A(f). We conclude that

e(m)T(A(f) = A(f)

and the result follows, since (7) ™! = (7). O

A crucial property of alternating d-linear forms, which actually characterizes
them, is

Theorem 7.9. Let f : V¢ — W be an alternating d-linear form. If xi,
X2,...,Xq €V are linearly dependent, then f(xy,x,,...,x4) = 0.

Proof. Since xi,...,x; are linearly dependent, some x; lies in the span of
(xj) )i, say

X = E a;x;

J#i

for some scalars a ;. Then using the d-linearity of f', we obtain

f(X1,...,Xd) = Zajf(xl,...,x,-_l,xj,xi+1,...,xd).

J#i
As f is alternating, each of the terms f(x1,...,X;—1, X}, Xj41, ..., Xq) is zero, since
X1y.o o Xi—1,Xj, Xi41, ..., Xq are not pairwise distinct. Thus f(x;,...,x4) =0. O

7.1.1 Problems for Practice

Let F be a field and let Vi, ..., V,; be finite dimensional vector spaces over F.
We define the tensor product V; ® ... ® V; of V1, ..., V; as the set of multilinear
maps f : V" x...x VS — F,where V;* is the dual of V;.

1. Check that V; ® ... ® Vj is a vector subspace of the vector space of all maps
[V x...xV—>F.
2. Ifv; e Viforalll <i <d,defineamapv;®...Qvy, : V]*x...de* — F by

M ®...8vy)(f1,.. fa) = fi(vD) a(v2). .. fa(va)
for f; € V;*.
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a) Provethat vi ® ... Q@ vy € V1 ® ... ® V; (elements of V} ® ... ® V; of the
formv; ® ... ® v, are called pure tensors).

b) Isthemap V1 x...xV; - V1 ®...Q V; sending (vi,...,vg) tovi®...Qvy
linear? Is it multilinear?

c) Is every elementof V1 ® ... ® V; a pure tensor?

3. Foreach 1 <i < d let (e;;)i<j<n be abasis of V;. Let (¢/;)1<j<n, be the
associated dual basis of V;*.

a) Prove thatforany f € V] ® ... ® V; we have

ni ng
f= Z Z flet ) mmeq ;e ®...®eq ;.

J1=1 Jja=1

b) Prove that the family of pure tensors ¢ ;, ®...®ey j,, where 1 < ji < ny,...,
1 <j;<ngformsabasisof V1 ®...Q V.
¢) Prove that

dm(V, ® ...® V) =dimV; - ...-dim V.

4. Prove that V] ® ... ® V; has the following universal property: for any vector
space W over F and any multilinear map f : V} x ... x V; — W there is a
unique linearmap g : V1 ® ... ® V; — W such that

g ®...0v) = f(vi,..,vq)

forallv; e V;, 1 <i <d.

5. Prove that there is an isomorphism (V; ® V) ® V3 — V; ® V, ® V3 sending
(Vi ®v) ®vztovy ® vy, @ vz forall vy € Vi, vy € Va,v3 € V3.

6. Prove that there is an isomorphism V|* ® V,* — (V1 ® V5)*.

7. Prove that there is an isomorphism V|* ® V> — Hom(V;, V>) sending f; ® v» to
the map v; — f1(vi)y, forall f; € V/* and v, € V5. We recall that Hom(V;, 2)
is the vector space of linear maps between V; and V5.

7.2 Determinant of a Family of Vectors, of a Matrix,
and of a Linear Transformation

Let V' be a vector space over F, of dimension n > 1. Let (v,vs,...,v,) be an
n-tuple of vectors in V' forming a basis of V. The order of v, v,,...,v, will be
very important in the sequel, so one should not consider only the set {v{,...,v,},

but the n-tuple (vq, ..., vy,).
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Consider the dual basis v{,...,v) of the dual space V'*. Recall that v} is the
linear form on V' such that

VIV F o X)) = X

forall xy,...,x, € F. Thatis, v/ (v) is the ith coordinate of v when expressed as a
linear combination of vy, ..., v,.
By Problem 7.2 the map

[V F, (x1,..0X0) = vi(x1).. v (x,)

is a n-linear form. By Problem 7.8, the map
Af): V" > F. A1 ox) = Y e(0) f(Xo(1) - Xo(m)
o€ES,
is an antisymmetric n-linear form.

Definition 7.10. Let f be as above and let xi,....,x, € V. We call
A(f)(xy,...,x,) the determinant of x, ..., x, with respect to (v{,...,v,) and
denote it det(y, v,y (X1, ..., X5).

Remark 7.11. 1) By definition we have

o) (X1, 2x) = Z (@ (Xo(1))- - V) (Xom))- (7.2)

og€S,

In other words, if we write

n
Xi = E Cljl‘Vj
j=1

for some scalars a;; € F (which we can always do, since vy, ..., v, is a basis
of V), then
det(v] _____ V”)(Xl, Ceey xn) = Z 8(0’)&10(1) CeeAuo(n)-
oES,

2) We claim that det, ., (vi,...,v») = 1. Indeed, suppose that vi (vs)). ..
V¥ (Vo(n)) 18 a nonzero term appearing in the right-hand side of relation (7.2).
Then v} (v4(;)) is nonzero for all i € [1,n], which forces o (i) = i for all i.
Thus the only nonzero term appearing in the right-hand side of (7.2) is the one
corresponding to 0 = id, which is clearly equal to 1. This proves the claim.

3) The geometric interpretation of the determinant is as follows: consider F = R

and let e;, e,, . . ., e, be the canonical basis of R”. If x{, x,, ..., x,, are vectors in
R", we write det(x), X2, . .., X,) instead of det(, ¢,.. ¢,) (X1, X2, ..., X,). We can
associate to the vectors xy, X, . . ., X, the parallelepiped

P(x1,X2,..,x,) ={aix; +axxs + ...+ apxylay, ..., a, €[0,1]}.
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For instance, if x; = e; for all i, then the associated parallelepiped is the
hypercube [0, 1]”. The geometric interpretation of det(xy, x5, .. ., X,) is given by
the fundamental equality

| det('xlv x27 ey xn)| = VO](P('X15 -x25 L] xn))»

the volume being taken here with respect to the Lebesgue measure on R” (this is
the usual area/volume when n = 2/n = 3).

Example 7.12. Consider the vector space V = F 2 over F and let e, e, be the

canonical basis of V. For any vectors x| = |:Zi| and x, = [;i| in V we have

det(el,ez)(xl,xz) =ad — bc.

det(el.ez) (I:;] s |:i:|) =4-2.3=-2.

Here is the first big theorem concerning determinants:

For instance

Theorem 7.13. Let vy,...,v, be a basis of a vector space V over F. The
determinant map det,, . ) : Ve — F with respect to this basis is n-linear and
alternating.

Proof. Denote f = det,....,,).- By Definition 7.10 and the discussion preceding it
we know that f is n-linear and antisymmetric. If F € {Q, R, C}, then Problem 7.6
shows that f is alternating. Let us give a proof which works for any field F (the
reader interested only in fields such as R, C, Q may skip the following technical
proof).

Let x1,...,x, € V and suppose that they are not pairwise distinct, say x; = x;
for some i < j.Let t = (i, ), a transposition and let 4, be the set of even
permutations in S, that is those permutations o for which (o) = 1. Since (o) =
e(r)e(o) = —¢e(o) for all o € S, we deduce that S, = A4, U 74, (disjoint union)
and using formula (7.2) we can write

@ ax) = Vo). i om) = Y Vi(ram)- - V) (Keom)-

0€EA, 0€EA,

We claim that x;,) = X,u) for all kK and 0 € A,, which clearly shows that
f(x1,...,x,) = 0. The claim is clear if o(k) ¢ {i,j}, as then ta(k) = o(k).
Suppose that o (k) = i, then to(k) = j and the claim comes down to x; = x;,
which holds by assumption. The argument being similar for o (k) = j, the theorem
is proved. O
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The second big theorem in the theory of determinants and multilinear maps is the
following:

Theorem 7.14. Let (vy,...,v,) be an n-tuple of vectors of V, forming a basis of V.
If f: V" — F is any alternating n-linear form, then

S = 1w -detg, v

Proof. Let x1, ..., x, be vectors in V' and write
Xi =apvy +apva + ...+ aipvy

for some scalars a;;. By part 1) of Remark 7.11 we have

det(vl ,,,,, vn)(xl, cee xn) = Z 8(0)a10(1)- < lpo(n)-

0ES,

On the other hand, repeatedly using the n-linearity of f, we can write

n
f(xl,...,x,,) = f(a11V1 + ... -|-a1,,V,1,X2,...,)Cn) = Zauf(v,-,xz,...,xn)

i=1

n n
= Z a”azjf(v,-,vj,X3, . .,.Xn) =...= Z alilaziz...a,,,»nf(vil, ...,V,'”).
. 1

i,j=1 i1yeein=

Now, since f is alternating, we have f(v;,...,v;,) = O unless ij,...,i, are
pairwise distinct, i.e., unless there is a permutation o € S, such that o (k) = iy
for 1 < k < n. We conclude that

f('xlv B xn) = Z Ais(1)- - -ana(n)f(va(l)a cee Va(n))~

o€ES,

Since f is antisymmetric (by Problem 7.5 and the alternating property of f), we
can further rewrite the last equality as

fx1,. %) = Z e(0)aioqy. - Anomy f (V1. V) =

o€S,
detq, ..., (X150 X)) f (V15 V0),

and the result follows. O
Let us record two important consequences of Theorem 7.14

Corollary 7.15. Let V be a vector space of dimension n > 1. The vector space of
n-linear alternating forms f : V" — F has dimension 1.
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Proof. Consider a basis vy, ...,v, of VV and let f = det,,. y,). By Theorem 7.13,
the map f is an alternating n-linear form. By part 2) of Remark 7.11 we have
f(i,...,v;) = 1, thus f is nonzero. On the other hand, Theorem 7.14 shows
that any alternating n-linear form differs by a scalar from det,, ). The result
follows. O

Corollary 7.16. Given a basis vy, v, ...,v, of a vector space V over F, there is a
unique n-linear alternating form f : V" — F such that f(vi,va,...,v,) = 1. This
Sform is given by f = det(y, v,,...v0)-

Proof. Uniqueness follows directly from Theorem 7.14. The existence has already
been established during the proof of the last corollary. O

Theorem 7.14 can also be used to establish a criterion to decide when a family
of vectors forms a basis of a finite dimensional vector space: it all comes down to
computing determinants, and we will see quite a few methods to compute them in
the next sections (however, in practice it the method explained before Problem 4.34
and based on row-reduction is the most efficient one).

Corollary 7.17. Let V be a vector space of dimension n over F and let

X1,X2,...,X, € V. The following assertions are equivalent:
a) xi,Xxa,..., X, form a basis of V (or, equivalently, they are linearly independent).
b) For any basis vi,v,, ..., v, we have

det(vl,vz ,,,,, Vn)(xls X2y nny xn) # 0.

c) There is a basis vy, Vs, . . ., v, such that

det(vl,vz ..... v,,)(xls X2y nny xn) # 0.

Proof. Suppose that a) holds and let vy, ..., v, be a basis of V. By Theorem 7.14
applied to f = det(y, . \,) we have

.....

det(x1,..4,x”)(xlv ey xn) = det(x] ..... x,,)(Vh ey Vn) . det(vl ..... v,,)(xlv ceey xn)-

By Remark 7.11 the left-hand side is 1, thus both factors in the right-hand side are
nonzero, establishing b). It is clear that b) implies c), so assume that c¢) holds and
let us prove a). Since dim V' = n, it suffices to check that xy, x, .. ., x,, are linearly
independent. If this is not the case, we deduce from Theorems 7.14 and 7.9 that
det(y, vy,...0) (X1, X2, ..., X,,) = 0, a contradiction. O

Problem 7.18. Let V be a finite dimensional F-vector space, let ej,...,e, be a
basis of V and let T : V — V be a linear transformation. Prove that for all
Vi,...,V, € V we have

Zdet(vl, e Viel, T(V,‘), Vidls.oos Vn) = TI'(T) . det(vl, .. .,Vn),

i=1
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where all determinants are computed with respect to the basis ey, .. ., e, and where
Tr(T) is the trace of the matrix of 7' with respect to the basis e1, . .., e,.

Solution. Consider the map

n
:V"—>F, oW,...,v)= Zdet(vl, o Viel, TV Vie1s o oo V).

i=1

This map is a sum of n-linear maps, thus it is n-linear. Moreover, it is
alternating. Indeed, assume for example that vi=v,. Then det(vy, ..., vi—1, T (v;),
Vitl, .- Vy)=0fori > 2 and

det(T (v1),va,...,vy) +det(vi, T(v2),...,vy) =
det(T (v1), vi, V3, ..., v) +det(vy, T(v1),v3,...,v;) =0,

since the determinant is antisymmetric.
Since the space of n-linear alternating forms on V' is one-dimensional, it follows
that we can find a scalar « € F such that
o, ..., vy) = adet(vy,...,w)

for all vy, ...,v,. Choose vi = ey,...,v, = e, and let A = [a;;] be the matrix of
T with respect to ey, .. ., e,. Then the right-hand side equals ¢, while the left-hand
side equals

n n
E det(el,...,ei_l, E aj,-ej,e,-+1,...,e,,)=
=1

i=1

n n n
E E ajidet(é’l,---,ei—l,ej,€i+1,~--,€n)=E aii,

i=1j=1 i=1

the last equality being a consequence of the fact that the determinant map is
alternating. Since Y '_,a;; = Tr(T), we conclude that « = Tr(7) and we are
done. O

Remark 7.19. Tr(T) is actually independent of the choice of the basis ey, .. ., ¢,
and it is called the trace of 7. To prove the independence with respect to the choice
of the basis, we need to prove that for all A € M,,(F) and all P € GL,(F) we have

Tr(A) = Tr(PAP™).

By a fundamental property of the trace map (which the reader can check without
any difficulty) we have

Tr(AB) = Tr(BA)
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for all matrices A, B € M, (F). Thus
Tr(PAP™") = Tr((PA)P™Y) = Te(P~1(PA)) = Tr((P~' P)A) = Tr(A).
Consider a vector space V' of dimension n > 1 and a linear transformation
T:V —V.If f:V"— F isan n-linear form, then one can easily check that
e the map
Ty V" —>F, (x1,...x) > f(T(x1),....T(xs))

is also an n-linear form.
» If f is alternating, then so is T's.

Using these observations, we will prove the following fundamental theorem:

Theorem 7.20. Let V be a vector space of dimension n > 1 over F. For any linear
transformation T : V. — V there is a unique scalar detT € F such that

F(T 1), T(x2)s s T(xn)) = det T - F(X1, X2, .., Xn) (7.3)

for all n-linear alternating forms f : V" — F and all x1,x;,...,x, € V.

Proof. Fix abasis vy, vy,..., v, of V and denote fy = det,, ,,)- By Theorem 7.13
and Remark 7.11 fj is n-linear, alternating and we have fo(vy,...,v,) = L.

Since (x1,...,x,) — fo(T(x1),...,T(xy,)) is n-linear and alternating, it must
be a scalar multiple of fj, thus we can find det 7 € F such that

Jo(T(x1),...,T(xy)) =detT - folxi,...,x,)

for all xy,...,x, € V. Since any n-linear alternating form f is a scalar multiple
of fy (Corollary 7.15), it follows that relation (7.3) holds for any such map f
(since by definition of det T it holds for fy), which establishes the existence part
of the theorem. Uniqueness is much easier: if relation (7.3) holds for all f and all
X1,..., X, choosing f = f;and x; = v; for all i yields

detT = fo(T(v1),....T(vn)),

which clearly shows that det 7" is unique. O

Definition 7.21. The scalar det T is called the determinant of the linear transfor-
mation 7.

Note that the end of the proof of Theorem 7.20 gives an explicit formula

detT = dety,.. ) (T (1), .... T(v,)) (7.4)

and this for any choice of the basis vy, .. ., v, of V. In particular, the right-hand side
is independent of the choice of the basis!
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Moreover, this allows us to express det 7" in terms of the matrix A7 of T with
respect to the basis vy, ..., v,. Recall that A7 = [a;;] with

T(Vl‘) = Zajivj.
j=1

Following the proof of Theorem 7.14 (i.e., using the fact that det,,,
and alternating, thus antisymmetric), we obtain

vy) 18 n-linear

detiy .o (TO1). .. TO) = Y &(0)a10(1)- - -Anom)-

og€ES,

The right-hand side is expressed purely in terms of the matrix A7, which
motivates the following:

Definition 7.22. If A = [a;;] € M, (F), we define its determinant by

detA = Z e(0)a15(1- - Ano(n)- (7.5)

oES),
We also write det A as

ajpadyp ... Ay
dz) dyy ... Ay

Apl Ap2 - . Apn

Problem 7.23. Prove that the determinant of a diagonal matrix is the product of
diagonal entries of that matrix. In particular det I, = 1.
Solution. Let A = [a;;] be a diagonal n x n matrix. Then

detA = Z e(0)aio()y- - -Ano(n)-

og€S,

Consider a nonzero term in the previous sum, corresponding to a permutation o. We
have a;4(;) # Oforalli € {1,2,...,n} and since A is diagonal, thus forces o(i) = i

foralli € {1,2,...,n}. It follows that the only possibly nonzero term in the above
sum is the one corresponding to the identity permutation, which equals a;;. . .a,,,
hence

detA =ay...a,,,

as desired. O
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Let us come back to our original situation: we have a vector space V over F, a
linear transformation 7 : V' — V, a basis vy, ...,v, of V and the matrix Ay of T
with respect to this basis. The previous discussion gives

detT = detAr (7.6)
Note that the left-hand side is completely intrinsic to 7" by Theorem 7.20, in
particular it is independent of the choice of vy, .. ., v,. On the other hand, the matrix
Ar certainly depends on the choice of the basis vy, . . ., v,. The miracle is that while

Ar depends on choices, its determinant does not! Let us glorify this observation,
since this is a very important result:

Theorem 7.24. If A € M, (F), then det A = det(PAP™") for any invertible matrix
P € GL,(F). In other words, similar matrices have the same determinant.

We can turn this discussion upside down: start now with any matrix 4 € M, (F)
andlet 7 : F" — F" be the linear transformation sending X € F” to AX. Then
A is the matrix of 7' with respect to the canonical basis ey, ..., e, of F" and the
previous discussion shows that det A = det 7. We deduce from Theorem 7.20 that

F(AX1, AXs, ... AX,) =detA- f(X1,.... X,)

for all n-linear alternating forms f : (F")" — F.

7.2.1 Problems for Practice

1. Check that the general definition of the determinant of a matrix matches the
definition of the determinant of a matrix A € M;(C) as seen in the chapter
concerned with square matrices of order 2.

2. Recall that a permutation matrix is a matrix A € M, (R) having precisely one
nonzero entry in each row and column, and this nonzero entry is equal to 1.
Prove that the determinant of a permutation matrix is equal to 1 or —1.

3. Let A = [a;;] € M,(C) and let B = [(—1)""/a;;] € M, (C). Compare det A
and det B.

4. Generalize the previous problem as follows: let z be a complex number and let
A = [a;j] € M,(C) and B = [Z1/a;;] € M,(C). Express det B in terms of
det A and z.

5. (The Wronskian) Let fi, f5,..., f, be real-valued maps on some open interval
I of R. Assume that each of these maps is differentiable at least n — 1
times. For x € I let W(fi,..., f,)(x) be the determinant of the matrix 4 =

[ fi(j _1)(x)]]§i, j<n> Where fl-(] ) is the Jjth derivative of f; (with the convention
that fi(o) = f;). The map x — W(fi,..., fu)(x) is called the Wronskian of
T



252 7 Determinants

a) Take n = 2 and fi(x) = e, fo(x) = e’ for two real numbers a, b.
Compute the Wronskian of fi, f>.
b) Prove thatif fi,..., f, are linearly dependent, then

W(fi,..., f) =0.

6. Consider a matrix-valued map 4 : I — M,(R), A(t) = [a;;(¢)], where a;; :
I — R are differentiable maps on some open interval I of R. Let By be the
matrix obtained by replacing all entries in the kth row of A by their derivatives.
Prove that forall 7 € 1

det(A(t)) = X”:det(Bk(z)).

k=1

In the next problems V' is a vector space of dimension n > 1 over a field
F € {R, C}. If p is a nonnegative integer, we let A?V* be the vector space of
all p-linear alternating forms w : V? = V x...x V — F, with the convention
that A°V = F.

7. Prove that APV* = 0 for p > n.

8. Prove that if W is a finite dimensional vector space over F andif f : V — W
is a linear map, then f induces a linear map f* : APW* — APV* defined by

FH@) 1, vp) = o(f(n).. . f(Vp)).

9. Prove thatif g : W — Z is a linear map from W to another finite dimensional
vector space Z over F, then

(go f)F = fTog"
as maps APZ* — APV*,

If w € A?PV* and n € A1V *, we define the exterior product w A n of @ and
nasthemap w A n: VP4 — F defined by

1
(A (i, ...y vPﬂ):T Z (0)0(Vo(1), - -+ Vo () NVa(p+1)s - - - Vo(ptq))-

0ES, 4y

10. Prove that w A p € APTIV*,
11. Prove that

woAn=(CDnAow.
12. Check that for all w; € APV*, wy € AYV* and w3 € A"V* we have

(a)l A a)z) N W3 = w1 N\ (a)z A 6()3).
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We define w; A wy A ... A @, by induction on r as follows:

DA A0, = (W AW A ... AWr—1) A Oy.

13. Check that for all wy,...,w, € V* = AW* and all vy, .. . v, € V we have
(@1 AL A1, ... vp) = det(w; (x5)).

The right-hand side is by definition the determinant of the matrix A =
[wi(x;)] € My (F).
14. Prove that wy, ..., w, € V* = A'V* are linearly independent if and only if

oA A .. Ao, £ 0.

15. Letwy, ..., w, be abasis of V. Prove that the family (w;, A.. . A®;,)1<i)<..<ip<n
forms a basis of A?V* and deduce that

!
dimarys = (") =
p p!(n—p)!

7.3 Main Properties of the Determinant of a Matrix

We reach now the heart of this chapter: establishing the main properties of the
determinant map that was introduced in the previous section. We have fortunately
developed all the necessary theory to be able to give clean proofs of all important
properties of determinants.

A first very important result is the homogeneity of the determinant map: if
we multiply all entries of a matrix 4 € M, (F) by a scalar A € F, then the
determinant gets multiplied by A”.

Proposition 7.25. We have det(AA) = A" det A forall A € M,,(F) andall A € F.
Proof. Write A = [a;;], then AA = [Aa;;], hence by definition

det(A4) = Y e(0)(Aaioq) - - .- Anon) =

oES,

Z e(@)A"aig, ... Anomy = A" - det A,

og€ES,

as desired. |
Problem 7.26. Prove that for any 4 € M, (C) we have
det(4) = det A,

where the entries of A are the complex conjugates of the entries of A.
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Solution. Let A = [a;;], then A = [a;;] and so

det(Z) = Z e(0)aioty -+ nom) =

oES),

Z e(0)aig(l)- - Anom) = Z e(0)ais(1)- - Anon) = det A.

oES, oES),

The main property of the determinant is its multiplicative character.

Theorem 7.27. For all linear transformations T, T, on a finite dimensional vector
space V we have

det(Ty o T,) = det T - det 7.
Proof. Letvy,...,v, be abasis of V. By Theorem 7.20 we have
det(T) o Tr) = dety,....,) (T1(T2(v1)), ..., T1 (T2(vy)))
=detT; - detq,,.v)(T2(v1), ..., Ta(vy)).
Relation (7.4) shows that
detqy,..v) (T2(v1), ..., Ta(vy)) = det T3.

Combining these two equalities yields the desired result. O

Combining the previous theorem and relation (7.6) we obtain the following
fundamental theorem, which would be quite a pain in the neck to prove directly
from the defining relation (7.5).

Theorem 7.28. For all matrices A, B € M, (F) we have
det(AB) = det A - det B.

Proof. Let V. = F" and let T} : V — V be the linear transformation sending
X € V to AX. Define similarly 75 replacing A by B. If S is a linear transformation
on V, let Ag be the matrix of S with respect to the canonical basis of V' = F”.
Then A = Ar,, B = Ap, and AB = Ar,or,. The result follows directly from the
previous theorem and relation (7.6). O

Problem 7.29. An invertible matrix A € M,,(R) has the property that both A and
A~ have integer entries. Prove that det A € {—1,1}.
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Solution. We have 4 - A™' = 1I,, so using the fact that the determinant is
multiplicative and that det [, = 1 (which follows straight from the definition of
the determinant of a matrix), we obtain

1 =detl, =det(A-A7") =det A-det(A™).

Next, recalling the definition of the determinant of a matrix, we notice that if all
entries of the matrix are integers, then the determinant of the matrix is an integer
(since it is obtained by taking sums and differences of products of the entries of the
matrix). Since A and A~! have by hypothesis integer entries, it follows that det A
and det A™! are two integers, whose product equals 1. Thus det A is a divisor of 1
and necessarily det A € {—1, 1}. |

Remark 7.30. A much more remarkable result is the following kind of converse:
suppose that A € M, (R) is a matrix with integer entries. If detA < {-—1, 1},
then A~! has integer entries. This is fairly difficult to prove with the tools we have
introduced so far! The reader might try to do the case n = 2, which is not so difficult.

We can use the previous theorem and Corollary 7.17 to obtain a beautiful
characterization of invertible matrices. The result is stunningly simple to state.

Theorem 7.31. A matrix A € M, (F) is invertible if and only if det A # 0.

Proof. Suppose that A is invertible, so there is a matrix B € M, (F) such that
AB = BA = I,,. Taking the determinant yields det A - det B = 1, thus det A # 0.

Conversely, suppose that det A # 0 and let ey, ..., e, be the canonical basis of
F", and C,,...,C, € F" the columns of A. Then det A = det,,  .,)(Ci,...,Cy)
is nonzero, thus by Corollary 7.17 the vectors C1, ..., C, are linearly independent.

This means that the linear map ¢ : F" — F" sending X to AX is injective, and
so invertible. Let v be its inverse and let B be the matrix of v in the canonical
basis of F”. The equalities p oy = ¥ o ¢ = id yield AB = BA = I, thus A is
invertible. |

Problem 7.32. Let A and B be invertible n x n matrices with real entries, where n
is an odd positive integer. Show that AB + BA is nonzero.

Solution. Suppose that AB+ BA = O,,, thus AB = —BA. Taking the determinant,
we deduce that

det(AB) = (—1)" det BA = —det BA.

On the other hand, det(AB) = det Adet B = det(BA), thus the previous equality
yields 2 det A det B = 0. This contradicts the hypothesis that A and B are invertible.
a

Problem 7.33. Let A and B be two square matrices with real coefficients. If 4 and
B commute, prove that

det(A* + B?) > 0.
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Solution. Since A and B commute, we have
A’ 4+ B*= (A +iB)(A—iB).
Thus
det(A? + B?) = det(A4 + iB) det(A — i B).

But using Problem 7.26 we obtain

det(A —iB) = det(A + iB) = det(A + iB),
thus
det(4> + B?) = |det(A + iB)|* > 0,

as desired. O

Problem 7.34. Let n be an odd integer and let A, B € M, (R) be matrices such that
A% + B? = 0,,. Prove that AB — BA is not invertible.

Solution. Consider the equality
(A+iB)(A—iB) = A>+ B>+ i(BA— AB) = i(BA — AB).
Taking the determinant yields
det(A +iB)det(A —iB) = i" det(BA — AB).

Suppose that det(4 B — BA) # 0 and note that since A, B have real entries, we have
by Problem 7.26

det(A —iB) = det(A + iB) = det(A + iB)
and so
|det(4 + iB)|*> = i" det(BA — AB).

Since det(AB — BA) is nonzero, we deduce that i” is real, contradicting the
hypothesis that n is odd. Thus

det(AB — BA) =0

and the result follows. O
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Remark 7.35. An alternate solution goes as follows. Note that we have
(A+iB)(A—iB)= A+ B*+i(BA— AB) = i(BA— AB)
and
(A—iB)(A+iB) = A> + B> —i(BA— AB) = —i(BA — AB).
Since
det((A +iB)(A—iB)) =det(A +iB)det(A—iB) = det((A—iB)(A+iB)),
and n is odd, we conclude that
i"det(BA— AB) = (—i)"det(BA — AB) = —i" det(BA — AB)

and hence det(BA — AB) = 0.

Problem 7.36. Let p, ¢ be real numbers such that the equation x> + px +¢ = 0
has no real solutions. Prove that if 7 is odd, then the equation X%+ pX +¢I, = O,
has no solution in M, (R).

Solution. Suppose that X2 + pX +¢I, = O, for some X € M,(R). We can write
this equation as

(v §n) = 25,

Taking the determinant, we deduce that

(Z5%) = (e (o +2n)) =0

This is impossible, since by assumption p?> < 4¢ and n is odd. |

Another important property of the determinant of a matrix is its behavior with
respect to the transpose operation. Recall that if A = [a;;] € M,(F), then its
transpose ' 4 is the matrix defined by ‘4 = [a;].

Theorem 7.37. For all matrices A € M, (F) we have
det A = det(’ A).

Proof. By formula (7.5) applied to ' A we have

det(’A) = Z 8((7)610(1)1. <lo(myn-

o€ES,
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For any permutation o we have

Ao()1- - -Aomn = A16=1(1)- » “Qno—1(n)»
since @;,—1;y = do(jy; With j = o~'(i) (and when i runs over {1,2,...,n}, so
io=1(i) ()i J

does j). Using this relation and the observation that (') = e(0)™' = e(0), we
obtain?

det(A) = Z e(0 a1y - Apg—1(ny =

oES,

= Z e(0)ais(1)- - -Anom) = det A.

o€ES,

The result follows. O

Problem 7.38. Let A be a skew-symmetric matrix (recall that this means that
A+"A = 0,) of odd order with real or complex coefficients. Prove that det(4) = 0.

Solution. By hypothesis we have ‘4 = —A. Since det(4) = det(’A), it follows
that

det(A) = det('A) = det(—A) = (—=1)" det(A) = —det(A).

Thus det(A) must be 0. |
Problem 7.39. Let A be a matrix of odd order. Show that

det(A — "A) = 0.
Solution. We have
"A="A)="A-"("A)="A—A=—-(4-"4),

thus the matrix A4 — A is skew-symmetric and its determinant must be 0 by

Problem 7.38. O
Problem 7.40. Let ay,...,a, and by,...,b, be complex numbers. Compute the
determinant
ay + by by - b
by a,+by ... by
b, b, ...a,+b,

2Note that when o runs over S, so does 0~ !.
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Solution. Let A be the matrix whose determinant we need to evaluate. We have
det A = det("A)

and the columns of ! A are the vectors aje; + byv, .. .,a,e, + b,v, where ey, . . ., e,
is the canonical basis of C" and v is the vector all of whose coordinates are equal
to 1. We deduce that?

det('A) = det(aje; + byv, . ..,a,e, + b,v).

Using the fact that the determinant map is multilinear and alternating, we obtain

n
det(’A): det(alel, .. .,ane,,)—i-z det(alel, .. .,a;_le,-_l,b,-v, a;j41€i 41, .. .,anen).

i=1

Indeed, note that det(xy,...,x,) = O if at least two of the vectors xi, ..., x, are
multiples of v. We conclude that

n
t
det(‘4) =ay...a, + Zal. .ai—bia;jqq...aydet(er,....,ei—1,Vv,€i+1,...,6,).

i=1

Since v = e; + ... + e, and the determinant map is multilinear and alternating,
we have

det(eq,...,ei—1,V,€i+1,...,ey) = det(ey,...,e;) =1

for all . We conclude that

detA = ay...a, +Xn:bi-nak.

i=1 ki

O

Recall that a matrix A € M, (F) is called upper-triangular if all entries of A
below the main diagonal are 0, that is @;; = O whenever i > j. Similarly, 4 is
called lower-triangular if all entries above the main diagonal are 0, thatis a;; = 0
whenever i < j. The result of the following computation is absolutely crucial:
the determinant of an upper-triangular or lower-triangular square matrix is
simply the product of the diagonal entries. One can hardly underestimate the
power of this innocent-looking statement.

3We simply write det instead of detie, ....e,)-
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Theorem 7.41. If A = [a;;] € M, (F) is upper-triangular or lower triangular,
then

i=1

Proof. The argument being identical in the lower-triangular case, let us assume that
A is upper-triangular. Consider a nonzero term £(0)d@1o(1). - -Gno(s) appearing in the
right-hand side of formula (7.4). Then each a;,(;) is nonzero and so necessarily
i < o(i)foralli.Butsince ) ;_;i = Y.;_,0(i) (as o is a permutation), all
the previous inequalities must be equalities. Thus o is the identity permutation and
the corresponding term is ayj...a,,. Since all other terms are 0, the theorem is
proved. |

Problem 7.42. For 1 < i,j < n we let a;; be the number of common positive
divisors of i and j, and we let b;; = 1if j divides i, and b;; = 0 otherwise.

a) Prove that A = B - ' B, where A = [a;;] and B = [b;;].
b) What can you say about the shape of the matrix B?
¢) Compute det 4.

Solution. a) Letus fixi, j € {l,2,...,n} and compute, using the product rule
n
(B-'B)ij =Y bibj.
k=1

Consider a nonzero term b;;bj; in the previous sum. Since b;; and b are
nonzero, k must divide both i and j, that is k is a common positive divisor
of i and j. Conversely, if k is a common positive divisor of i and j, then
bix = bjrx = 1. We deduce that the only nonzero terms in the sum are those
corresponding to common positive divisors of i and j, and each such nonzero
term equals 1. Thus (B - 'B);; is the number of common positive divisors of
i and j, which by definition of A is simply a;;. Since i, j were arbitrary, we
deduce that A = B - ' B.

b) If i < j are between 1 and n, then certainly j cannot divide i and so b;; = 0.
Thus b;; = 0 whenever i < j, which means that B is lower-triangular. We can

say a little more: since i divides i for alli € {1,2,...,n}, we have b;; = 1, thus
all diagonal terms of B are equal to 1.

¢) Since the determinant is multiplicative and since det B = det(’B), we have
(using part a))

det A = det(B - ' B) = (det B)*.

We can now use part b) and the previous theorem to conclude that det B = 1
and so

detA = 1. O
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The next theorem (which can be very useful in practice) would also be quite
painful to prove directly by manipulating the complicated expression defining the
determinant of a matrix. The theory of alternating multilinear forms makes the proof
completely transparent.

Theorem 7.43 (Block-Determinants). Let A € M, (F) be a matrix given in block

form
B D
A= ,
|:0q,p Cj|

where B € M,(F), C € My(F) (withp+q =n)and D € M, ,(F). Then
det A = det B - det C.

Proof. Consider the map

X D
(FP)?P F, Xi,...X,) = ,
@ (F)P — P(X, ) 'Oq,,,c'
where X € M, (F) is the matrix with columns X1, ..., X,. The determinant map

on (F")" (with respect to the canonical basis of F") being linear with respect to
each variable, ¢ is p-linear. Moreover, ¢ is alternating: if X; = X; for some i # j,

then columns i and j in the matrix [ :| are equal and so this matrix has

0,, C
determinant 0.
Now, applying Theorem 7.14 to the canonical basis of F7, we obtain

X D I, D
<p(X)=‘ ‘:detX-' P '

0,,C 0y, C

forall X € M,(F). The same game played with the g-linear alternating form ¥ —
I, D| _.
1d
‘ Oy ¥ yields
' Iy D'zdetY~’ Ty
O4p Y Oyp Iy

Thus

detA:dethetC‘OIp = det BdetC,

q.r °q

the last equality being a consequence of the fact that the matrix |: Ty D] is upper-
q.p 1q
triangular with diagonal entries equal to 1, thus its determinant equals 1. O
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Problem 7.44. Let A € M,(C) andlet T : M, (C) — M, (C) be the map defined
by T(X) = AX. Find the determinant of 7.

Solution. Let (E;;)i<; j<x be the canonical basis of M, (C). Note that
n
T(E;j)=AE; = ZakiEkj»
k=1

as shows a direct inspection of the product AE;;. We deduce that the matrix of
T with respect to the basis Eqq,..., Eu, E12, .. Enay ..., E1n, ..., Eyy is a block-
diagonal matrix with n diagonal blocks equal to A. It follows from Theorem 7.43
that

detT = (det A)".

7.3.1 Problems for Practice

1. A5 x5 matrix A with real entries has determinant 2. Compute the determinant
of 24, =34, A%, —A3, (' A)>.

2. Prove that the determinant of an orthogonal matrix A € M, (R) equals —1 or 1.
We recall that A is orthogonal if A- "4 = I,.

3. a) A matrix A € M, (R) satisfies A> = I,. What are the possible values of

det A?

b) Answer the same question with R replaced by C.
¢) Answer the same question with R replaced by F5.

4. Prove that for all A € M,,(R) we have

det(A- 'A) > 0.

5. If A = [a;;] € M,,(C), define A* = [a;;] € M,(C).

a) Express det(A4*) in terms of det A.
b) Prove that det(A4 - A*) > 0.

6. Let T be a linear transformation on a finite dimensional vector space V.
Suppose that V' = V| & V, for some subspaces Vi, V, which are stable under
T.Let T}, T, be the restrictions of 7 to V7, V5. Prove that

detT = detT; - det T>.

7. The entries of a matrix A € M, (R) are equal to —1 or 1. Prove that 2"~ divides
det 4.
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10.

11.

12.

13.

14.
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. Prove that for any matrix A € M, (R) we have

a) det(4% +1,) > 0.
b) det(A2 + 4 + 1,) > 0.

. Prove that if A, B € M,,(R) are matrices which commute, then

det(4”> + AB + B?) > 0.
Let A, B, C € M, (R) be pairwise commuting matrices. Prove that
det(A>+ B>+ C*—AB— BC —CA) > 0.

Hint: express A2+ B2 4+ C? — AB — BC — CA simply in terms of the matrices
X=A—BandY =B —-C.
Let A € M, (C) and consider the matrix

I, A
B=|" .
i)

a) Prove that det B = det(/,, — A) - det(, + A). Hint: start by proving the

equality
I, Al |1, O, |1 A
AlL| |(4A1,-4%| |0, I1,|"

b) If B is invertible, prove that I, — A? is invertible and compute the inverse of
B in terms of A and the inverse of I, — A2.

Prove that for all matrices A, B € M, (R) we have

‘A—B

_ . 2
5 4 '—|det(A+lB)| .

Let A, B € M,(R) be matrices such that A> + B> = AB and AB — BA is
invertible.

a) Let j = e’5,sothat j2+ j + 1 = 0. Check that
(A+ jB)(A+ 7 'B) = j(BA— AB).
b) Prove that n is a multiple of 3.

(Matrices differing by a rank one matrix) Let A € GL,(F) be an invertible
matrix and v, w € M, ;(F) be vectors thought of as n x 1 matrices.

a) Show that

det(4 —v-'w) = det(A)(1 —'wA™ ),
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where we think of the 1 x 1 matrix ‘wA~!v as a scalar.
Hint. One way to prove this formula is to justify the block matrix formula

1—‘wA v iw 11 of_ I'w] (10 |t fy
0 A AW, | vAal |vI| |[0A=v-tw]|
b) If furthermore ‘wA~'v # 1, show that

- - 1 - -
(A—V'IW) 1=A l+mA 1V'IWA 1.

15. (Determinants of block matrices) Let X € M, (F) be a matrix given in block

form
A B
X =
o)

where A € M,(F),B e M,,(F),C e M, ,(F),D € M,(F),and p+q = n.
If A is invertible, show that

det(X) = det(A) det(D — CA™'B).

Hint. Generalize the block matrix formula from the preceding problem.

16. (Smith’s determinant) For 1 < i,j < n let x;; be the greatest common
divisor of i and j. The goal of this problem is to compute det X, where
X = [xijli<ij<n-

Let ¢ be Euler’s totient function (i.e., ¢(1) = 1 and, for n > 2, ¢(n) is
the number of positive integers less than n and relatively prime to n). Define
yij = @(j)if j divides i, and y;; = 0 otherwise. Also, let b;; = 1if j divides
i and O otherwise.

a) Prove that X =Y ' B, where Y = [y;;] and B = [b;;].
b) Prove that

det X = p(1)p(2)...0(n).
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12

If n = 2, then S, contains only the permutations (i ;) and (2 |

), hence we get
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ap an
= dajpax —dapdasy,

azy dxn

a formula which we have extensively used in the chapter devoted to square matrices
of order 2. The value of the determinant of a matrix of order two may be remembered
by the array

ap apn
X = dajax —apdz

asg an +

If n = 3, then S35 contains six permutations:
123 123 123
123)° 312)° 231)°
123 123 123
321)° 132)° 213)°

The first three permutations are even and the last three are odd. In this case we get

ail ap as
Qs App A3 | = A11a22a33 + A13A21A32 + A1202303)
as| as asz

— d13dnzd3) — aj1dz3ds — d12d21ds33

The value of the determinant of order three may be remembered using a particular
scheme similar to that used for determinants of order two:

+ apaxasz; — ajzanas;

— d11d23d3zp — adi2drdsz

i.e., the first two columns of the determinant are repeated at its right, the products of
the three elements along the arrows running downward and to the right are noted as
well as the negative of the products of the three elements along the arrows running
upward and to the right. The algebraic sum of these six products is the value of the
determinant.



266 7 Determinants

For example, applying this scheme we get

1 4 o 1 4
N X XS
-1 2 1] -1 2=(2)+8-0-0-0—(—4) =14

X XN
2 0 1 2 0

Problem 7.45. Compute the determinant
2 3
-3 5.
1 -2

W N =

Solution. Using the rule described above, we obtain

2 3
—35|=64+304+6+27-5+8=72.
1 -2

[SSIN SR

Problem 7.46. Consider the invertible matrix

211
A=]111
112

Find the determinant of the inverse of A.

Solution. It is useless to compute A~! explicitly in order to solve the problem.
Indeed, since A - A~' = I5, we have det A - det(4~!) = 1 and so

_ 1
det(A 1) = m

It suffices therefore to compute det A. Now, using the previous rule, we obtain
detA=44+1+1-1-2-2=1.
Thus

det(A™") = 1.
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No such easy rules exist for matrices of size at least 4. In practice, the following
properties of the determinant allow computing a large quantity of determinants
(the elements Ry, R,, ..., R, below are the rows of the matrix whose determinant
we are asked to compute or study).

1. If every element of a row of a determinant of order n is multiplied by the scalar
A, then the value of the determinant is multiplied by A.

2. If two rows of a determinant are interchanged, then the determinant gets
multiplied by —1. More generally, we have the following formula where o is
any permutation in S,

Rsq Ry

R; 0 R
det . = g(o) det

Ra(n) Rn

3. Adding a scalar multiple of a row of a determinant to another row does not
change the value of the determinant: for j # k and A € F we have

Ry
Ry
. R2
det | R; + ARy | = det
R,

n

4. A very useful property is that the determinant of an upper (or lower) triangular
matrix is simply the product of its diagonal entries.

Note that the operations involved are the elementary row operations studied in
Chap. 3. This gives us a practical way of computing determinants, known as the
Gaussian elimination algorithm for determinants: start with the matrix A whose
determinant we want to evaluate and perform Gaussian reduction in order to bring
it to its reduced row-echelon form. This will require several elementary operations
on the rows of the matrix A, which come down to multiplying A by a sequence of
elementary matrices E1, ..., E; on the left. Thus at the end we obtain

E\E>.. . ExA = Apey,
where A, is the reduced row-echelon form of A. Taking determinants gives
det(E)) - det(E) -...-det Ey -det A = det A,.r.

Since At is upper-triangular, its determinant is simply the product of its diagonal
entries (in particular if some diagonal entry equals 0, then det A = 0). Also, the
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previous rules 1-3 allow us to compute very easily each of the factors det E|,
det Ej,. .., det E. We can neglect those matrices E; which correspond to transvec-
tions, as their determinant is 1. Next, if E; corresponds to multiplication of a row by
ascalar A, thendet E; = A, and if E; corresponds to a permutation of two rows, then
det E; = —1. Thus, in practice we simply follow the Gaussian reduction to bring
the matrix to its reduced row-echelon form, and keep in mind to multiply at each
step the value of the determinant by the corresponding constant, which depends on
the operation performed as explained before.

Remark 7.47. a) Note that since det(’A) = det A for all A € M, (F), all previous
properties referring to rows of a matrix (or determinant) still hold when the word
row is replaced with the word column.

b) For any particular problem an intelligent human being can probably do better
than the naive Gaussian elimination. The most likely way is by being oppor-
tunistic to produce more zeroes in the matrix with carefully placed row and/or
column operations. Two more systematic ways are:

e If there is some linear dependence among the columns (or rows) then the
determinant vanishes, which gives an early exit to the algorithm. Note that
this is the case if a column (or row) consists entirely of zeros, or if there are
two equal columns or two equal rows.

* Since we can easily compute the determinant of an upper-triangular matrix,
we do not need to fully reduce, just get down to a triangular matrix.

¢) There are some extra rules one could exploit (they are however more useful in
theoretical questions):

e If a column is decomposed as the sum of two column vectors, then the
determinant is the sum of the corresponding two determinants, i.e.

det[cicr...cp+cf ... cn]

:det[c1 c2... ¢ ...c,,]—l—det[c] cz...c,'{’...cn].

A similar statement applies to rows.
e If A € M, (C), then the determinant of the conjugate matrix of A equals the
conjugate of determinant of A, i.e.

det A = det A.

* For A, B € M,(F) we have
det(A - B) = det A - det B.
e If Ae M,(F)and A € F, then

det(AA) = A" det A.
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Problem 7.48. Prove that for all real numbers a, b, ¢ we have

1 1 1
a b c =0.
b+cc+aa+b

Solution. Adding the second row to the third row yields

1 1 1 1 1 1
a b c = a b c
b+cc+aa+b a+b+ca+b+ca+b+c

Since the third row is proportional to the first row, this last determinant vanishes. [

Problem 7.49. Let a, b, c be complex numbers. By computing the determinant of
the matrix

abc
A=|bca
cab

in two different ways, prove that

a’+b>+ ¢ —3abc = (a+ b+ c¢)(a* + b* + ¢ —ab — bc — ca).

Solution. First, we can compute det A using the rule described in the beginning of
this section. We end up with

det A = —abc + abc + abc —a® — b — ¢ = —(a® + b* + > — 3abc).

On the other hand, we can add all columns to the first column and obtain

a+b+cbhbc 1bc
detA=|a+b+ccal=@+b+c)|lcal.
a+b+cab lab

The last determinant can be computed using the rule described in the beginning of
the section. We obtain

1bc
leca|=bc+ab+ca—c?—a*—b>=—(a*>+b*>+c*—ab—bc —ca).
lab

Thus
detA = —(a + b + c)(a® + b* + ¢* —ab — bc — ca).

Comparing the two expressions for det A yields the desired result. O
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Problem 7.50. Prove that

bi+cici+aia+b ay by ¢
by+cycrtaryay+by| =2ax by ey
by +c3c3+azaz + b; az bz c3

for all real numbers aq, a», as, by, ba, b3, c1, 2, ¢3.

Solution. Performing the indicated operations on the corresponding matrices, we
have the following chain of equalities:

bi+cici+aia +b bi—ajci+aa + b
C1—>C1—C2
bh+aootaa+b|——— bh—actaa+b
by +c3c3+azaz+ bs by —az c3+az asz + b

—2a; ¢1+ay a; + by aycy+apar+b
C—C1—C3
— | 2arctara;+hy|=-2\ac,+axa, + b
—2as3 3+ asz az + by az ¢z +az az + b
o ay ¢ by ay by ¢
£—2 a202b2 =2 aszCQ.
C3—>C3—Cy
as c3 bz as bz c3
The result follows. O

Remark 7.51. An alternate and shorter solution to the previous problem is to note
that

b1+clcl+a1a1+b1 Cl]b]C] 011
by+creat+arar+by | =|axbyer|-|101
by + ¢3¢z +asz as + bs as bz c3 110
Problem 7.52. Compute det A, where xy, .. ., x,, are real numbers and
14+x1 x2 x3... x4
A= X1 l4+xx3... x4
X1 X X3...14+x,

Solution. We start by adding all the other columns to the first column, and factoring
out 1 + x; + ...+ x,. We obtain

1 X2 ... X

detA=(14+x+...4+x,) 1 14+x... x,

1 X ... 14+x,



7.4 Computing Determinants in Practice 271

In this new determinant, from each row starting with the second we subtract the first
row. We end up with

1 x ... x,

o1...0
detA=(14+x1+x2+...4+x)

0 0...1

The last determinant is that of an upper-triangular matrix with diagonal entries equal
to 1, thus it equals 1. We conclude that

detA=14+x;+x2+...+x,.

Problem 7.53. Let A = [a;;] € M, (R) be the matrix defined by
ajj = n+1,%fz:=]:
1, ifi # j.
Compute det A.
Solution. The matrix A can be written in the form

n+1 1 ... 1
1 n+1... 1

A=
1 1 ...n+1

Adding all columns of A to the first column we obtain

2n 1 ... 1 1 1 ... 1

2nn+1... 1 Iln+1... 1
detA = . . . =2n . . .

2n 1 ...n+1 1 1 ...n+1

The last determinant can be computed by subtracting the first column from each
of the other columns, and noting that the resulting matrix is lower-triangular.
We obtain

11 ... 1 10...0
Iln+1... 1 In...0
detA =2n|. . . . =2n
1 1 ...n+1 10...n
=2n(l-n-n...n)=2n-n""' =2n".
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Remark 7.54. The previous two problems are special cases of Problem 7.40.

Problem 7.55. Prove that for all real numbers a, b, ¢

2 2

cos-a sin” a cos2a

cos? b sin®b cos2b | = 0.

2

cos? ¢ sin ¢ cos2¢

Solution. We have

cos?a sin®a cos2a cos?a — sin? a sin®a cos2a

cos? b sin®b cos2b | = | cos? b — sin® b sin® b cos2b

cos? ¢ sin’ ¢ cos2c cos? ¢ — sin® ¢ sin® ¢ cos2¢
cos2a sin®a cos2a

= |cos2b sin?b cos2b| = 0.
cos2¢ sin® ¢ cos2¢

The result follows. O
Problem 7.56. Let A € M,(R).

a) Show that if n> —n + 1 entries in A are equal to 0, then det(A4) = 0.
b) Show that one can choose A such that det A # 0 and A has n?> — n + 1 equal
entries.

c¢) Show that if n> —n + 2 entries in A are equal, then det(A4) = 0.

Solution. a) We claim that the matrix A has a column consisting entirely of zeros,
which implies det A = 0. Indeed, if each column of A has at most n — 1 zeros,
then A has at most n(n — 1) zero entries in total. This contradicts the hypothesis.

b) Consider the matrix A whose elements off the main diagonal are equal to 1
and the diagonal entries are 1,2, ...,n. Then n? —n + 1 entries are equal to 1,
but det A # 0. Indeed, subtracting the first row from each subsequent row yields
an upper-triangular matrix with nonzero diagonal entries, thus invertible.

¢) If n> — n + 2 entries in A are equal (say to some number a), then there are at
most n — 2 entries of A that are not equal to a. Thus at most n — 2 columns of 4
contain an entry which is not equal to a. Said differently, at least 2 columns
of A have all entries a. But then A4 has two equal columns and det(4A) = 0. O

Problem 7.57 (The Vandermonde Determinant). Let a;,a;,...,a, be complex
numbers. Prove that the determinant of the matrix 4 = [ai] 71]15,3 j<n (Where if
necessary we interpret 0° as being 1) equals

det(d) = [ (aj—a).

I<i<j<n
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Solution. Starting from the right-hand side and working left subtract a; times each
column from the column to its right. This gives

1 0 0 0 0
1 (a2 —ay) (a2 —ay)az -+ (a2 —a)as= (ay — ay)ay™>
detd = |1 (a3 —ay) (a3 —ap)as -+ (a3 —a))ay ™ (a3 —ay)as™>

1 (a, —a1) (an —ay)a, -+ (a, _al)aZ_S (an _al)a;t'_2

(a2 — ay) (az —ar)as -+ (az — ar)ay ™ (ay — ay)as™>
(a3 —ay) (a3 —ai)as -+ (a3 — ar)ai = (a3 —ay)a’s™>

(an —ar) (@, —ar)ay -+ (ay —ap)al= (a, —a))a’ >

Factoring out @; — a; from row k gives

n—3
lay---aj a2

n—3 n—2
laz--- a5 aj
detA = H(aj —ap)-
,} 2 . . .
n—=3 _n—2
1 a, -+~ a, " a,

This last determinant is of the same form as the original matrix, but of a smaller
size, hence we are done using an easy induction on n. O

Problem 7.58 (The Cauchy Determinant). Leta,...,a, and by, ..., b, be com-
plex numbers such that a; + b; # 0for 1 <1i,j < n.Prove that the determinant of
the matrix 4 = [aiJlr—bj] equals

[li<icj<nla; —ai)(b; —bi)
l_[?.j=1(ai +b;)) ’

Solution. Subtracting the last column from each of the first 7 —1 columns and using
the identity

detA =

L0 b
ai +b; ai+b, (& +b;)a; +by)

to factor a b, — b; out of the j-th column and a a5, out of the i-th row yields

+
1 1 1
ai+b; a1+h2 d1+{7n71
(bn_bl) (b — by 1) az+b az+b2 B 1
(ar +by) -+ (an + by) : e

detA =

1 1 1
an+by an+by ap+by—1
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Similarly, subtracting the last row from each of the first # — 1 rows in the matrix
appearing in the last equality and pulling out common factors, we obtain

1 1 1
01-{-171 al-{-bz e a1+{7n—1
n—1 ax+b ar+by " ax+b,—
det A = H,‘:l(bn_bi)(an_ai) . . . _”
l—[n (Cl-‘rb )nn_l(a +b) . . . .
i=1\4i n i=1\%n i 1 1 1 0
an—1+by ap—1+by T an—1+by—
1 1 ... 1 1
Hence
1 1 1
al-{-bl a1-{—b2 e dl+lbn—1
n—1 b b
1_['=1 w —bi)(a, —a;) ar+b ax+by " aytby—
detA4A = ! . ) o ,

—1
H?=1(ai + bn) H?:l (an + bl) . . .
1 1 1
an—1+b1 ap—1+by "7 ap—1+by—

which allows us to conclude by induction on 7, the last determinant being of the
same form, but of smaller dimension. O

Another useful tool for computing determinants is the Laplace expansion.
Consider a matrix A € M,,(F) with entries a;;. The minor of a;; is the determinant
M;; of the matrix obtained from A by deleting row i and column j. The cofactor
Of(,ll'j is Cij = (—1)i+le'j.

Example 7.59. The minor of a,; in

—-2-10
1 2 3
4 0 =2
is
-2 -1
M =4
23 ‘ 4 0 ‘
and the cofactor of a,3 is Cp3 = (—=1)*T3 My = —4.

The cofactors play a key role, thanks to the following theorem, which shows that
the computation of a determinant of order » may be reduced to the computation of
n determinants of order n — 1. If we use properties 1)-11) of determinants and we
create some zeros on the kth line, then we only need the cofactors corresponding to
the nonzero elements of this line, i.e., combining these methods we can reduce the
volume of computations.
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Theorem 7.60 (Laplace Expansion). Let A = [a;;] € M, (F) be a matrix and let
Ci,j be the cofactor of a;;.

a) (expansion with respect to column j) For each j € {1,2,...,n} we have

detA = ZaijCij.

i=1

b) (expansion with respect to row i) For eachi € {1,2,...,n} we have
n
detA = Zaij,-j.
j=1

Proof. We will prove only part a), the argument being similar for part b) (alter-
natively, this follows from a) using that the determinant of a matrix equals the
determinant of its transpose). Fix j € {1,2,...,n}, let B = (ey,...,e,) be the
canonical basis of F" and let Cy,...,C, € F" be the columns of A, so that
Cr = >/, ajre; for all k. We deduce that

n
detA = detB(Cl, v Cn) = detB(Cl, .. .,Cj_l, Zaijei,CjH, .. .,Cn)

i=1

= ZaijdetB(Cl, Ceey Cj_l,e,‘, Cj+19 .. .,Cn).

i=1

It remains to see that X;; := detg(Cy,...,C;j—1,€;,Cjy1,...,C,) equals C;;, the
cofactor of a;;. By a series of n — j column interchanges, we can put the jth
column of the determinant X;; in the last position, and by a sequence of n — i
row interchanges we can put the i th row in the last position. We end up with

ayp ... dyjj—1 drj+1 --- Aip 0

_ n—i+n—j
Xij = (1) !
Apl -..Ap j—1 Ap j+1 -+ Aup 0
ajl ... 4jj—1 4ij+1 .- Qin 1

The last determinant is precisely C;;, thanks to Theorem 7.43. The result follows,
since (—1)" "+ = (1), O

Example 7.61. Expanding with respect to the first row, we obtain

ap a2 ags
daz) dx dz3z | = 41y

dap) azz daz) an

asp ass

an) a3

asp ass asy as

asp azp asj
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Problem 7.62. Let

11 1 1
A= 11 1 -3
22 -2-2
3-1-1-1
Compute
(a) det(A) (b) det(A’ A). (c) det(4 + A). (d) det(A™1).

Solution. (a) Subtracting the second row from the first and expanding with respect
to the first row yields

(1)(1) (1) 43 b

detA = Tl=—-41]2 2 —2|.
22 -2-2 3 1.
3-1-1-1

In the new determinant, subtract twice the first row from the second one, and
add the first row to the last one. We obtain

111
detA=—-4]00—4|.
40 0

Expanding with respect to the last row yields

detA = —4-4-(—4) = 64.

(b) Since the determinant map is multiplicative and det A = det(* A), we obtain

det(A'A) = det A - det(' A) = (det A)? = 64> = 4096.

(c) We have

det(A + A) = det(24) = 2* - det(A) = 16- 64 = 1024.
(d) Finally,
1 1

det(4) 64"

det(A™!) =
O

Problem 7.63. Let A = [a;;] € M,(R) be a matrix with nonnegative entries such
that the sum of the entries in each row does not exceed 1. Prove that |det A| < 1.

Solution. We will prove the result by induction on n, the case n = 1 being clear.
Assume that the result holds for » — 1 and let A be a matrix as in the statement of
the problem. For 1 <i < n let A; be the matrix obtained by deleting the first row
and column i from A. Then



7.4 Computing Determinants in Practice 277

n
detA = Z(—l)iﬂa” det Al',

i=1

and by the inductive hypothesis applied to each A; we have |det A;| < 1. We deduce
that

|det Al <) an|detd;| < D ay <1

i=1 i=1
and the result follows. O

We have already seen that a matrix A € M, (F) is invertible if and only if
det A # 0. It turns out that we can actually compute the inverse of the matrix A by
computing certain determinants. Before doing that, let us introduce a fundamental
definition:

Definition 7.64. Let A € M,(F) be a square matrix with entries in F. The
adjugate matrix adj(A) is the matrix whose (i, j)-entry is the cofactor C;; of a;;.
Thus adj(A) is the transpose of the matrix whose (i, j)-entry is the cofactor C;;
of aijj.

We have the fundamental result:
Theorem 7.65. If A € M, (F) has nonzero determinant, then

- 1 .
A7l = detAadJ(A).

Proof. Tt suffices to prove that A -adj(A) = det A - [,,. Using the multiplication rule,
this comes down to checking that

Z Ck,ja,;j =detA- 5

Jj=1

forall 1 <i,k < n, where §;; equals 1 if i = k and 0 otherwise.

If k = i, this follows by Laplace expansion of det A with respect to the i th row,
so suppose that k& # i and consider the matrix A’ obtained from A by replacing its
kth row with a copy of the ith row, so that rows i and k in A’ coincide, forcing
det A/ = 0. Using the Laplace expansion in A" with respect to the kth row and
taking into account that the cofactors involved in the expression do not change when
going from A to A" (as only the kth row of A is modified), we obtain

0=detd =) a;C;

Jj=1

and the result follows. O
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The previous theorem does not give a practical way of computing the inverse of
a matrix (this involves computing too many determinants), but it is very important
from a theoretical point of view: for instance, it says that the entries of A~! are
rational functions of the entries of A (in particular they are continuous functions
of the entries of A if A has real or complex coefficients). The practical way
of computing the inverse of a matrix has already been presented in the chapter
concerning linear systems and operations on matrices, so we will not repeat the
discussion here.

7.4.1 Problems for Practice

1. Let x be a real number. Compute in two different ways the determinant

x11
1x1
11x

2. Let a, b, ¢ be real numbers. Compute the determinant

a—b—c 2a 2a
2b b—c—a 2b
2¢ 2c c—a-—»>b

3. Let x be a real number. Compute the determinant

cosx O sinx
0O 1 0
—sinx 0 cosx

4. Leta, b, ¢ be real numbers. Compute the determinant

a+1b+1c+1
b+ca+ca+b
1 1 1

5. Let a, b, ¢ be real numbers. Find a necessary and sufficient condition for the
vanishing of the following determinant

(a+b)? a® b?
a> (a+c¢)P 2
b? 2 (b+c)?



7.4 Computing Determinants in Practice 279

0yz
6. Let x,y,z be real numbers. By considering the matrices | z x 0 | and
y0x
0zy
y x 0 |, compute the determinant
z0x
2+ xy X
xy Z24+x* yz
Xz yz  x2 4 y?
7. Let x, y, z be real numbers. Compute
1 cosx sin x
1 cos(x + y) sin(x + y)|.
1 cos(x + z) sin(x + z)
8. Compute det(A), where A is the n X n matrix
-1 11...1
A= 1 —11...1
1 11...-1
9. Leta, b, ¢, d be real numbers and consider the matrices
abcd 11 11
badc 11 —1-1
A = B =
cdab|’ 1-1-11
dcba 1-11 -1
a) Compute det B.
b) By considering the matrix A B, compute det A.
10. Let a be a real number. Prove that for n > 3 we have D,, = aD,,—1 — D, —,,
where
a1l 0 0 ......... 0
1 a 1 0 ......... 0
01 a 1 ......... 0
D,=10 01 a ......... 0
000 O0...1 a1
000 O0...01 a

is the determinant of an n x n matrix.
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11. Leta,b,c € Rand x = a®> + b? + ¢%, y = ab + bc + ca. Prove that

1 x X X
Ix+yx+y 2x
I 2x x4+yx+y
Ix+y 2x x4y

= (@® + b> + ¢ — 3abc)*.

12. Compute det 4 in each of the following cases:

(@ a;; =min(, j),fori,j =1,...,n.
(b) a;; = max(i, j),fori,j =1,...,n.
© aj;j=1i—jlfori,j=1,...,n.

13. Letn > 2 and let A = [a;;] € M, (R) be the matrix defined by

P 0,ifi =j
YO 1L #£
a) Compute det A.
b) Prove that
2— 1
A= a
n—1 n—1

27(i+j)

14. Letn > 3 and let A be the n X n matrix whose (i, j)-entry is a;; = cos ==

fori, j € [1,n]. Find det({,, + A).
15. Let A be a matrix of order 3.

(a) If all the entries in A are 1 or —1 show that det(A4) must be even integer and
determine the largest possible value of det(A).

(b) If all the entries in A are 1 or 0, determine the largest possible value of
det(A).

16. Letn > 2 and let x4, ..., x, be real numbers. Compute the determinant of the
matrix whose entries are sin(x; + x;) for1 <i, j <n.
17. Let A € M, (R) be the matrix whose (7, j)-entry is a;; = % Prove that

(12!, .,nh*
detd = ———n——.
(n)2112!...2n)!
Hint: use the Cauchy determinant.
18. Let V be the space of polynomials with real coefficients whose degree does
not exceed n. Compute the determinant of the linear transformation 7' sending
PeVtoP+ P.
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19.

20.

21.

22.

23.

24.

25.
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Prove that any matrix A € M, (R) with determinant 1 is a product of matrices
of the form I, + AE;;, withi # j € [1,n] and A € R. Hint: use elementary
operations on rows and columns.

Let A be an invertible matrix with integer coefficients. Prove that A~! has
integer entries if and only if det A € {—1, 1}.

Let A, B € M,(R) be matrices with integer entries such that A, 4 + B, ...,
A + 2n B are invertible and their inverses have integer entries. Prove that A +
(2n + 1) B has the same property. Hint: prove first the existence of a polynomial
P with integer coefficients such that P(x) = det(A 4+ xB) for all x € R.

Let A, B € M, (C) be matrices which commute. We want to prove that the
adjugate matrices adj(A) and adj(B) also commute.

a) Prove the desired result when A and B are invertible.
b) By considering the matrices A + %1,1 and B + %I,, for k — oo, prove the
desired result in all cases.

Let A € M, (C), with n > 2. Prove that
det(adj(A4)) = (det A)"~'.

Hint: start by proving the result when A is invertible, then in order to prove the
general case consider the matrices A + %I,, for k — oo.
(Dodgson condensation) Consider a 3 x 3 matrix

ap ap aps
A= |ay apan
as) dsp ass

View this matrix as being composed of four 2 x 2 matrices (overlapping at ay).
Form a 2 x 2 matrix by taking the determinants of these four 2 x 2 matrices

NW NE
[SW SEi|' Show that

NW NE
= det(A).
‘SW SE' 4z det(4)
(Dodgson condensation, continued) Choose your favorite 4 x4 matrix A = [a;;]
with ay, a3, azy, ass, and arpas; — azas; all nonzero.

a) Compute det(A).

b) View A as being composed of a 3 x 3 array of overlapping 2 x 2 matrices
and compute the determinants of these 9 matrices. Write them in a 3 x 3
matrix B. View this 3 x 3 matrix as being composed of four overlapping
2 x 2 matrices. For each compute the determinant and divide by the entry of
A the four had in common. Write the results in a 2 x 2 matrix C. Take the
determinant of C and divide it by the central entry of B (the one common to
the four determinants that make up C). Compare your result to the result of

part (a).
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Remark. This method of computing a determinant, due to Charles Dodgson,
a.k.a. Lewis Carroll, extends to higher dimensions. It is best visualized if you
imagine filling a pyramidal array of numbers. We start with an (n + 1) x (n 4 1)
array of all ones and we lay the n x n matrix whose determinant we want in
the layer above, with each entry of A sitting between four of the ones. At each
stage, we fill the next layer by computing the determinant of the 2 x 2 matrix
formed by the four touching cells in the layer below and dividing by the entry
two layer down directly below the cell. (Thus at the first stage there is a division
by 1 that we neglected to mention above.) When you are done, the entry at
the top of the pyramid will be the determinant. (There is a slight complication
here. Following this procedure naively might result in dividing by zero. This is
fixable, but makes the algorithm less pretty.)

7.5 The Vandermonde Determinant

If A € M, (F), by definition

detA = Z 8(0)a15(1)a20(2). - o (n)

o€ES,

is a polynomial expression in the entries of the matrix A. This suggests using
properties of polynomials (such as degree, finiteness of the number of roots...) for
studying determinants. This is a very fruitful idea and we will sketch in this section
how it works.

We start with an absolutely fundamental computation, that of Vandermonde
determinants. These determinants play a crucial role in almost all aspects of
mathematics. We have already given a proof of the next theorem in Problem 7.57.
Here we give a different proof.

Theorem 7.66. Let F be a field and let x1, . ..,x, € F. Then

X[ ... x?_l
1 X) xn—l
N ¥4 _
= l_[ (xj —xi).
......... I<i<)<n
1 ox, ...xtt

Proof. We will prove the statement by induction on »n, the casesn = 1 andn = 2
being left to the reader. Assume that the result holds for n — 1 (and for any choice of

X1,y

. Xp—1)and let x1, ..., x, € F.If two of these elements are equal, the result is

clear: the determinant we want to compute has two equal columns, so must vanish.
So assume that x1, .. ., x,, are pairwise distinct and consider the polynomial
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1 x; Xt
1 x x5!
P(X) = .
1 x,—1 ... x;’:f
1 X ...x1!

Expanding with respect to the last row, we see that

1 x; ... x?_2
n—2
pxy=xmt| b BT x|
1 Xp—y ... X"7F
for some a,,—, . ..,ap € F. Thus by the inductive hypothesis the leading coefficient

of Pis 1_[151-<./-Sn_1(xj‘ — x,-) 7é 0.
Leti € [1,n — 1]. Taking X = x;, we obtain a determinant with two equal rows,

which must therefore vanish. It follows that P(x;) = ... = P(x,—1) = 0. Since P
has degree n — 1, leading coefficient [ [,;_;,_;(x; — x;) and vanishes at n — 1
distinct points xi, ..., x,—1, we deduce that

n—1

PX)= ] G—x) J]x =)

I<i<j<n—1 i=1

Plugging in X = x, yields the desired result. |

Remark 7.67. We call the determinant the Vandermonde deter-

1 x, ...x"1

minant associated with xi,...,x,. It follows fronq the previous theorem that
the Vandermonde determinant associated with xi,...,x, is nonzero if and only
if x1,...,x, are pairwise distinct. Vandermonde determinants are ubiquitous in
mathematics and are closely related to the following fundamental problem: “for
distinct complex numbers xi, ..., X, and arbitrary complex numbers by, ..., b,,
find a polynomial P (X) of degree at most n — 1 such that P(x;) = b;.” Written out
as a linear system for the coefficients a; of P yields the equation Va = b, where b is
the column vector whose coordinates are the b;’s and V is the Vandermonde matrix
associated with xq, ..., x, (thus det V' is the Vandermonde determinant associated
with x1, .. ., x,,). The fact that the Vandermonde determinant is nonzero is equivalent
to this problem having a unique solution. The unique solution of this problem
(known as Lagrange interpolation) is given by

“ X—Xj
P(X):Zb,-nm.
=1 j# T
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Problem 7.68. Let a, b, ¢ be nonzero real numbers. Prove that

a* b* ¢?
c? a® b | = (a* — be)(b? — ca)(c* — ab).
ac ab bc

Solution. Dividing all entries of the first column by a?, all entries of the second
column by b2, and all entries of the third column by ¢2, we obtain

a* b* ¢? I 1 1
¢ a 12| = @he”| (7 (3)" ()
ac ab bc [% % %

11
= —(abc)’ gz %2 :
() () (2

We recognize a Vandermonde determinant associated with £, ¢,
further write

b

o thus we can

a? b? ¢?

b b
c? a2 b2 :—(abc)2 v_cy. (2.4 (C_Z_E)
ac ab be c a c b b a
We have
é_g__cz—ab
c a ac

and similar identities obtained by permuting a, b, c. We conclude that

a* b? ¢?
c? a? b2 | = (a* — be)(b* — ca)(c* — ab).
ac ab bc

Problem 7.69. Let F be a field and let xy, ..., x, € F. Compute
Xp ... XPTE X
1 xp ... X372 40

n—=2 ,.n
| G S i i
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Solution. Write
PX)=X—x)..X=x)=X"4a,.1 X" " +... +aX +a

for some scalars ay,...,a, € F, with a,—; = —(x; + ... + x;,). Next, add to
the last column the first column multiplied by ay, the second column multiplied by
ai,..., the n — I1th column multiplied by a,—,. The value of the determinant does
not change, and since

-2 -1
X! F apax!™ .4 ag = —ap—1x,
we deduce that
n—2 .n n—2 n—1
| R ST A o | B T A o
n—2 ..n n—2 n—1
I xp ... x5 x{ 4 I X2 ...x37 " x|
- n—1
n—=2 \.n n—=2 n—l1
I xp oo x 7 X)) | S N A o
n
=Q_x) ] & —x,
i=1  l<i<j<n
the last equality being a consequence of Theorem 7.66. |

Remark 7.70. An alternate solution is to remark that the desired determinant is the
coefficient of X"~ ! in the Vandermonde determinant

1xp - xJ
n
= 1 @i —x - [T =0
Lxy - xy I<i<j<n k=1
1 X .-+ X"
Problem 7.71. Let Py, ..., P,_; be monic polynomials with complex coefficients
such thatdeg P; =i for0 <i <n —1 (thus Py = 1). If xy, ..., x, € C, compute

P()(X]) Pl(xl) P,,_](Xl)
Po(x2) Pi(x2) ... Poi(x2) |

PO(xn) Pl(xn) s Pn—l(xn)
Solution. Let A be the matrix whose determinant we want to compute and let us

write

Pi(X) = X! +C,',l'_1Xi_1 + ...+ ¢Cio
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for some complex numbers ¢;;. The matrix A is then equal to

1 x, Xlz X?71 Leciocao..-Cno
2 n—1

1 xo x5 ...x] 01 ¢q...0n1

1x, x2 ... xr! 00 0 ...1
Since the second matrix is upper-triangular with diagonal entries equal to 1, its
determinant equals 1. Using Theorem 7.66, we deduce that

Po(x1) Pi(x1) ... Py—1(x1)
PO(XZ) Pl(x2) <o Pn—l(XZ) _ 1_[ (X‘ —X‘)
- ;= x0).

I<i<j<n

PoCia) Pi(%n) ... Paci ()

Problem 7.72. For 0 < k < n compute det A, where

1% 2k 3k m+ D
2k 3k 45 (n+2)F

m+DFm+2)F (n+3)% ... 2n+ 1)F
Solution. Consider the matrix

1 2k 3 ... nk (x + D)k
2k 3k 4k m+DF (x +2)F

(n—lil)k (njﬁz)k (n~|;3)k (2}1)k (x+n'+1)k

obtained from A by modifying its last column. Then p(x) = det(4y) is a
polynomial in the variable x, whose degree is at most k < n. Indeed, expanding
the determinant of A, with respect to the last column shows that p(x) is a linear
combination of (x + 1)*, ..., (x +n + 1)*, each of which has degree k.

Next, observe that p vanishes at 0, 1,...,n — 1, since when x € {0, 1,...,n —1}
the matrix A, has two equal columns, thus det(A,) = 0. Since deg p < n and p
has at least n distinct roots, it follows that p is the zero polynomial. In particular
p(n) = 0, hence the determinant to be evaluated is 0. O



7.5 The Vandermonde Determinant 287
7.5.1 Problems for Practice

1. Given real numbers a, b, ¢, compute the determinant

b+c a+c a+b
b% + c? a? + c* a® + b?|.
b3+c3a3+c3a3+b3

2. Leta,b, c be real numbers. Compute

a+bab a® + b2
b+ c bc b? + 2.
¢ +aca 02+a2

3. Let z1,...,2, be pairwise distinct complex numbers. Let f; : R — C be the
map x — e%*. Prove that f,..., f, are linearly independent over C. Hint: if
ay f1+...+a, fr =0, take successive derivatives of this relation and evaluate
atx = 0.

4. a) Prove that for any positive integer n there is a polynomial 7, of degree n

such that

T,(cos x) = cosnx

for all real numbers x. This polynomial 7, is called the nth Chebyshev
polynomial. For instance, 77 (X) = X, To(X) = 2X? — 1.
b) Let xy,..., x, be real numbers. Using part a), compute the determinant

1 cos(xy) cos(2xy) ... cos((n —1)xy)
1 cos(xp) cos(2x3) ... cos((n —1)xp)

1 co'st).cn) cos.(.2.xn) cos((n — 1)xy)

5. Let x1,..., Xy, V1, - - -, Vu be complex numbers and let k € [0,n — 1]. Compute
the determinant of the n x n matrix whose (i, j)-entry is (x; + y; )< Hint:
use the binomial formula and write the matrix of the product of two simpler
matrices, of Vandermonde type.

6. Letag,ai,...,a,—1 be complex numbers and consider the matrix

dg dyp dy ...dy—

A= ap—1 dody ... Adp—

ayp dyds ... Ay

obtained by cyclic permutations of the first row.
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10.

a) Letz = e’ and consider the matrix B = [z(i_l)(f_l)]lsi,js,l. Compute the
matrix AB.
b) Deduce that

n n—1

detA = 1_[ Zajzj(k_l)

k=1 \j=0

. Consider the “curve” C = {(1,¢,#2,...,t" )|t € C}in C", where n is a

positive integer. Prove that any n pairwise distinct points of C form a basis
of C".

. Using Vandermonde’s determinant, prove that we cannot find finitely many

maps f;, g; : R — Rsuch that

e =" fi(0)gi(y)

i=1

forall x,y € R.

. Letz;,z2,...,n be complex numbers such that
a+tot. . tu=g+s+...to=...=4+5+...+Z=0.
Provethatzy; =z, =... =z, = 0.

Prove that there exists an infinite set of points
eovy P3, P, Py, Py, P, Py, P3, ...

in the plane with the following property: for any three distinct integers a, b, and
¢, points P,, Py, and P. are collinear if and only if a + b + ¢ = 2014. Hint: let

P, be the point with coordinates (x, x3), where x = n — %.

7.6 Linear Systems and Determinants

In

this section we will use determinants to make a more refined study of linear

systems. Before doing that, we will show that the computation of the rank of a
matrix A € M, ,(F) can be reduced to the computation of a certain number of
determinants. This will be very important for applications to linear systems, but is
not very useful in practice, since it is more practical to compute the rank of a matrix

by

computing its reduced echelon form (by definition of this form, the rank of A4 is

simply the number of pivots).

by

Let A € M,, ,(F) be a matrix. Recall that a sub-matrix of 4 is a matrix obtained
deleting a certain number of rows and columns of A.
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Theorem 7.73. Let A € M,, ,(F) be a matrix of rank r. Then

a) There is an invertible r X r sub-matrix in A.
b) For k > r, any k x k sub-matrix of A is not invertible.

In other words, the rank of A is the largest size of an invertible sub-matrix of A.

Proof. Let A = [a;;] and let Cy, ..., C, be the columns of A4, so that
r = dim Span(Cy, ..., C,).

Let d be the largest size of an invertible sub-matrix of A. We will prove separately
the inequalitiesd > r andr > d.

We start by proving the inequality » > d. Let B be an invertible d x d sub-matrix
of A. Permuting the rows and columns of A (which does not change its rank), we
may assume that B consists in the first d rows and columns of A. Then Cy,...,C,
are linearly independent (as any nontrivial linear relation between Cy, . . ., C; would
induce a nontrivial relation between the columns of B, contradicting the fact that B
is invertible). But then

r = dim Span(Cy, ..., C,) > dim Span(Cy,...,C;) = d.

Let us prove now that r < d. By definition of r, we know that we can find r
columns of A which form a basis of the space generated by the columns of 4. Let B
be the m x r matrix obtained by deleting all other columns of A except for these r.
Then B has rank 7. But then ’ B also has rank r (because a matrix and its transpose
have the same rank), thus the space generated by the rows of B has dimension r.
In particular, we can find r rows of B which are linearly independent. The sub-
matrix obtained from B by deleting all other rows except for these r is an invertible

r X r sub-matrix of 4, thudd > r. O
Problem 7.74. Letvi,...,v, € F" be vectors and let A € M, ,(F) be the matrix
whose columns are vy, ..., v,. Prove that vy, ..., v, are linearly independent if and

only if A has a p x p invertible sub-matrix.

Solution. vy, ...,v, are linearly independent if and only if they form a basis of
Span(vy, ..., v,) or equivalently if dim Span(vi, ...,v,) = p. Finally, this is further
equivalent to rank(A) = p. The result follows then directly from the previous
theorem. O

Problem 7.75. Consider the vectors
vi =(1,x,0,1), v, =(0,1,2,1), v3y=(1,1,1,1) e R%.

Prove that for any choice of x € R* the vectors vy, v,, v3 are linearly independent.
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Solution. The matrix whose columns are vy, v, v3 is

101
x11
021
111

By Problem 7.74 vy, v,, v3 are linearly independent if and only if A has a3 x 3
invertible sub-matrix. Such a matrix is obtained by deleting one row of A. Deleting
the second row yields a sub-matrix whose determinant is

101
021|=-1,
111
thus the corresponding sub-matrix is invertible and the result follows. O

Thanks to the previous results, we can make a detailed study of linear systems.
Consider the linear system

anxi+ anpxs +..4 awx, = b
Clz])Cl-f- (253 .%) +..4 Ay Xy = b2

A X1+ amaX2 + .. A aupXy = by,

by
with A = [a;;] € My (F), b = b, € F™ a given vector and unknowns
b
X1
X1y, X, Let X = *2 and let Cy,...,C, be the columns of 4. Then the
Xn

system can be written as
AX =b or x;Ci+...+x,C, =b.

The first fundamental theorem of linear systems is the following:

Theorem 7.76 (Rouché-Capelli). Consider the linear system above and let
[A,b] € My, ,+1(F) be the matrix obtained by adding a rightmost column to A,
equal to b. Then
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a) The system is consistent* if and only if rank(A) = rank[A, b].

b) Assume that the system is consistent and let Xy be a solution of it. Let Sy, be the
set of solutions of the associated homogeneous system.’ Then the set of solutions
of the original system is {Xo+ X |X € S} and Sy, is a vector space of dimension
n — rank(A) over F.

Proof. a) The system being equivalent to b = x,C; + ... + x,,C,, it is consistent
if and only if b is a linear combination of Cy,...,C,, which is equivalent
to b € Span(Cy,...,C,). This is further equivalent to Span(Cy,...,C,) =
Span(Cy, ..., Cy, b) and finally

dim Span(Cy, ..., C,) = dim Span(Cy,.. ., C,,b).

By definition, the left-hand side equals rank(A) and the right-hand side equals
rank[A, b]. The result follows.

b) By Proposition 3.2 we know that the set of solutions of the system is {Xy +
X|X € &} It remains to prove that Sy is of dimension n — rank(A4). But the
corresponding homogeneous system can be written AX = 0, thus its set of
solutions is the kernel of the map 7 sending X € F”" to AX € F™. By the
rank-nullity theorem we deduce that

dim Sy, = n —dimIm(7) = n — rank(A)
and the theorem is proved. O

Let us take for simplicity ¥ = R or F = C (the same argument will apply to
any infinite field). It follows from the previous theorem that we have the following
possibilities:

* the system has no solution. This happens precisely when A and [A, b] do not have
the same rank.

 the system has exactly one solution, which happens if and only if A has rank
exactly n, or equivalently its columns are linearly independent.

* the system has more than 1 solution, and then it has infinitely many solutions.
More precisely, the solutions depend on n — rank(A) parameters.

Here is an important consequence of the previous results:

Theorem 7.77. Let A € My, ,(F) and let F\ be a field containing F. Consider the
linear system AX = 0. If it has a nontrivial solution in F{', then it has a nontrivial
solution in F".

Proof. Since the system has nontrivial solutions in F{', A has rank r < n seen as
element of M,, ,(F1). But Theorem 7.73 shows that the rank of A seen as element
of M, ,(F1) or M,, ,(F) is the same, thus using again the previous discussion we
deduce that the system has nontrivial solutions in F”. |

“4Recall that this simply means that the system has at least one solution.

5This is the system AX = 0, i.e., it has the same unknowns, but b is equal to 0.
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To make a deeper study of the linear system AX = b, assume that it is consistent
and that A has rank r (therefore [A4, b] also has rank r). By Theorem 7.73 the matrix
A has an invertible r X r sub-matrix. By permuting the equations and the unknowns
of the system, we may assume that the sub-matrix consisting in the first » rows and
columns of A is invertible. Then x1, ..., x, are called the principal unknowns and
the first r equations of the system are called the principal equations. All other
equations can be deduced from the first r, so separating the principal and non-
principal unknowns yields the equivalent system

anxi+anx; +..4apx, =bi— a1 X041 — .. —AXy
anXi+anx; +..4ayx =by—ar, 41X, 41— ... — A2 Xy
arX1+ampXxs +..4 X, = br —Ary+1Xr41 — ... — AppXy

This a Cramer system, that is the number of unknowns (which are xy, ..., x;)

equals the number of equations and the matrix of the system (which is [a;;]i<i j<r)
is invertible. This kind of system has a unique solution, which can be expressed in
terms of some determinants, as the following theorem shows:

Theorem 7.78. Let A = [a;j]i<i j<n be an invertible matrix in M, (F), let b =

b
by € F" be a given vector and consider the system AX = b with the unknowns
by
X1, ..., Xy. Then the system has a unique solution
X=4""p
and we have for alli € [1,n]
A;
Xi = —,
A

where A = detA and A; is the determinant of the matrix obtained from A by
replacing the ith column with the vector b.

Proof. 1t is clear that the system AX = b is equivalent to X = A~'b and so it has
a unique solution. To prove the second part, let ey, . . ., e, be the canonical basis of
F" and write det instead of det(, .. If Ci, ..., C, are the columns of A, then by
definition

A = det(Cl, cey C,'_],b, C,'+1, P, Cn)

Since AX = b, we have x;C; + ... + x,C, = b. Since det is multilinear and
alternating, we obtain
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n
Al' = det(Cl,...,Ci_l,ijCj,CH_l,...,Cn) =
j=1

n
> xjdet(Cr.....Ci1.C;.Cigr. ... Cy) = x; det(Cy. ... Ci—1. Ci. Cigy......Cy)
j=1

=x;detA = x; A.

The result follows. O

Finally, we want to give another criterion for consistency. Recall that
AeM,,(F) is the matrix of the system, that we assume rank(A) = r and
(by permuting the unknowns and the equations) that the r x r sub-matrix of A4
consisting in the first » rows and columns of A is invertible.

Theorem 7.79. Under the previous hypotheses, the system AX = b € F™ is
consistent if and only if for all k € [r + 1, m] we have

app ayp ... Ay b]
asi Az ... axy by

A = =0.
arl Ay ... Apy br
aki A - .. Agr by
Proof. If the system is consistent, then b is a linear combination of Cy,..., C,,

so the last column of the matrix defining Ay is a linear combination of the other
columns, thus Ay = 0 and for all k € [r + 1, m].

Conversely, assume that all determinants A, are 0. Note that it makes sense to
define Ay for k < r by the same formula, and it is clear that we still have Ay = 0
for k < r (as the corresponding matrix has two equal rows). Expanding A; with
respect to its last row and denoting A, 1, ..., A,+1, the corresponding cofactors
(which are independent of k) we obtain

Ak + o+ Argrrake + det(aij)i<ij<rbe =0,
for all k and so
Arg11Cr+ oo+ Apg1 G+ det(aij)i<i j<rb = 0.
Since det(a;;)1<i j<r 7 0 by assumption, this shows that b € Span(Ci, ..., C,) and

so b is a linear combination of the columns of A, which means that the system is
consistent. O
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Let us see a few examples of explicit resolutions of linear systems using the
above ideas. Actually for the first one the method of reduced echelon form is much
more practical than the following. We strongly suggest the reader to compare the
two methods.

Problem 7.80. a) Solve in real numbers the system
X1+ 3x,—5x3 =4
X1 +4x, —8x3=5
—3x1—Tx,+9x3 =6
b) Solve the system
X1 +3X2—5X3 =4
X1 +4x, —8x3 =7
—3x1 —Tx, + 9x3 = —6

Solution. a) The matrix of the system is

1 3 =5
A=|1 4 -8
—3-79

and one easily computes det A = 0. Thus the system is not a Cramer system.
Looking at the sub-matrix of A consisting in the first two rows and columns, we
see that it is invertible. It follows that A has rank 2. The system is consistent if
and only if

1 3 -54
rank | 1 4 -85 | =2.
-3-796

This means that all matrices obtained from this matrix by deleting one column
have determinant 0. But one easily checks that the matrix obtained by deleting
the second column is invertible, thus the system is not consistent and thus it has
no solution.

b) The matrix of the system is the same. The system is consistent if and only

1 3 54
if all matrices obtained by deleting one column from | 1 4 —8 7 | have
-3-79 -6

determinant 0. One easily checks that this is the case, thus the system will have
infinitely many solutions. The principal unknowns are xi, x, and the system is
equivalent to

X1 +3x=5x3+4, x;+4x,=8x3+7
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and can be solved using Cramer’s formulae or directly. One finds
Xy =3x3+3, x;=—-4x3-—5.

We conclude that the solutions of the system are given by (—4¢ — 5,3t + 3,¢)
with r € R. O

Problem 7.81. Leta, b, ¢ be given real numbers. Solve the linear system
b+c)x+by+cz=1

ax +(c+a)yy+cz=1
ax +by +(a+b)z=1

Solution. The matrix of the system is

b+c b c
A= a a+c c
a b a+b

and a brutal computation left to the reader shows that
det A = 4abc.

We consider therefore two cases.
If abc # 0 the system is a Cramer system with a unique solution given by
Cramer’s formulae

1 b c b+cl ¢ b+c b 1

la+c ¢ a 1 ¢ a a+cl

1 b a+b a la+b a b 1
= 4abc V= 4abc Lt 4abc

In order to compute x explicitly, we subtract b times the first column from the
second one, and ¢ times the first column from the third one, ending up with

1 0 0

la+c—5>b 0

1 0 a+b—c| (a+c—b)a+b—oc)
4abc N 4abc

X =

and we similarly obtain

_b+c—a)b+a—c) _(a+c—=b)b+c—a)
= 4abc R 4abc '
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In the second case we have abc = 0, that is A is not invertible. The system is
consistent if and only if

b+c b c 1
rank(A) =rank | a a+c¢ ¢ 1
a b a+bl
While one can follow the discussion given in this chapter, it is much easier to deal
with this case as follows: say without loss of generality that @ = 0. The system
becomes
b+c)x+by+cz=1
c(y+2)=1
b(y +2)=1
It is clear from the second and third equations that if the system is consistent, then
necessarily b = ¢ and b is nonzero. So if b # ¢ or bc = 0, then the system has

no solution in this case. Assume therefore that b = ¢ is nonzero. The system is
equivalent to

b2x+y+z2) =1
b(y+2) =1

making it clear that x = Oand y + z = 1% In this case the solutions of the system
are given by (0, y, % —y)withy e R. |

Problem 7.82. Let n be an integer greater than 1. Solve the linear system

X1+ X2 +..+4 X, =1
X1+ 2x +..4+4 nx, =0

X142, 4+ 40" %, =0

Solution. The matrix of the system is

1 1 1 1
2 3 n—1 n
A=
i 211‘—1 3;1.—1 . (Il _'l)n—l nn.—l

and it is invertible as its determinant is a Vandermonde determinant.
Therefore the system is a Cramer system and we have

11 ... 1 1 1 .1
1 2 ... i—=1 0 i+1 ... n
12t =1 0 G+ )

det A
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The numerator of the previous fraction is the Vandermonde determinant attached

tol,2,...,i —1,0,i +1,...,n, while the denominator is the Vandermonde deter-
minant attached to 1,2,...,i — 1,i,7 4+ 1,...,n. Recalling that the Vandermonde
determinant attached to xi, .. ., x, equals [ [, ; _;,(x; — x;) and canceling similar

factors in the numerator and denominator, we end up with

_ IS0 DIk _ 1y = bm!
[T521G = D) TTimipa k= 1) (i = Dlil(n —1)!

_(_ i—1”—!_ it [
=D i!(n—i)!_( D (z)

n=PW”C)
1

Remark 7.83. An alternate solution goes as follows: write P(T) = > j_; xk T*.
Then the first equation reads P(1) = 1 and the rest read P® (1) = 0 for
k=1,...,n—1. Since we also have P(0) = 0 by construction, we see that the
unique solution is P(T) = 1 — (1 — T)" from which we read off the coefficients

xe = (D).

Problem 7.84. Let ay,...,a,,b;,...,b, be pairwise distinct complex numbers
such that a; + b; # 0 for all i, j € [1,n]. Find all complex numbers xi, ..., x,
such that for all i € [1, n] we have

and so for i € [1,n]

|

n

Xj _
Zai—i—bj =1

i=1

Solution. The determinant of the associated matrix is a Cauchy determinant and
equals (by Problem 7.58)

[Ticicj<nla; —ai)(b; —b)
[l jenma@ + b))
Thus the system has at most one solution. One could in principle argue as in the

previous problem to find this solution, but there is a much more elegant (and very
useful) technique that we prefer to present. Consider the rational function

detA =

£0

n

X
F(X):ZXJ:bj.

Jj=1
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The system is equivalent to F(a;) = ... = F(a,) = 1. Write
P(X)
F(X)=——, X)y=X+b)...(X + b,
()= 50 QX0 =X +b) (X +by)

for some polynomial P, and notice that deg P < n — 1. The system becomes
P(aj) = Q(aj) for1 < j < n.Since Q — P is a monic polynomial of degree n
vanishing at ay, ..., a, and since a1, . . ., a, are pairwise distinct, we deduce that the
system is equivalent to

0X)— P(X) =[[(X —a).
k=1

The conclusion is that xi, . . ., x,, is a solution of the system if and only if

n

3 Xj e X 4 b)) = [Tiey (X — i)
X +b; [Tiei (X + br) .

j=1

In order to find each x ;, we multiply the previous relation by X + b; and then make
X tend to —b;. We deduce that

Tl (X 4+ b)) = TTh (X — ) w1 k=1(ax + b))
R = (—1y 1Skt T
Y [Tz (X +b0) b [Tz (b = b))

It follows that the system has a unique solution, given by

[Ti=i(ax + b))

= (=1 n—1 .
x/ ( ) Hk;éj (bk _b])

7.6.1 Problems for Practice

1. Let A € M,(C) and let B = adj(A) be the adjugate matrix.

a) Prove that if A4 is invertible, then so is B.
b) Prove that if A has rank n — 1, then B has rank 1.
c) Prove that if A has rank at most n — 2, then B = O,,.

2. Using the previous result, find all matrices A € M, (C) which are equal to their
adjugate matrix. Hint: the case n = 2 is special.
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. Let a,b be complex numbers and consider the matrix A € M, (C) whose

diagonal entries are all equal to a, and such that all other entries of A are equal
to b.

a) Compute det A.
b) Find the rank of A (you will need to distinguish several cases, according to
the values of a and b).

Find real numbers a, b, ¢ such that for all polynomials P with real coefficients
and whose degree does not exceed 2 we have

1
/ P(x)dx = aP(0) + bP(%) + cP(1).
0

. Given real numbers a, b, ¢, u, v, w, solve the linear system

ax—by =u
by —cz=v
cz—ax =w

. Given a real number a, solve the linear system

x4 Y 4z
1+a+1+2a+1+3a_1

X Yy z —
2+4a + 2+2a + 24+3a —

X ) z
34a + 34-2a + 3+3a

. Let S, be the linear system

x—2y+z=1
3x +2y—2z=2
2x—y+az=3

a) Find all real numbers a for which the system has no solution.
b) Find all real numbers a for which the system has a unique solution.
c¢) Find all real numbers a for which the system has infinitely many solutions.

Given real numbers a, b, ¢, d, solve the linear system
x+y+z=1

ax +by +cz=d
a’x + b%y + ¥z =d?
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9. Given real numbers a, b, ¢, d, «, solve the linear system

I4+a)x+y+z+t=a
x+(Q+a)y+z+t=>
x+y+(Q+a)z+t=c
x+y+z+(0+w)=d

10. Find the necessary and sufficient condition satisfied by real numbers a, b, ¢ for
the system

x—a(y+z) =0
y—b(x+2)=0
z—c(x+y)=0

to have a nontrivial solution.
11. Leta, b, ¢ be pairwise distinct real numbers. Solve the system

x+ay+azz=a3
X+ by + b’z =53
x+cey+clz=¢c?

12. Let a, b be complex numbers. Solve the linear system

ax+y+z+t=1

xX+ay+z+t=>
x+y+az+t=>0%
x+y+z+at=5b



Chapter 8
Polynomial Expressions of Linear
Transformations and Matrices

Abstract From a theoretical point of view, this chapter is the heart of the book.
It uses essentially all results established before to prove a great deal of surprising
results concerning matrices. This chapter makes heavy use of basic properties of
polynomials which are used to study the eigenvalues and eigenvectors of matrices.

Keywords Minimal polynomial ¢ Characteristic polynomial ¢ Eigenvalue
* Eigenvectors

From a theoretical point of view, we reach now the heart of the book. In this chapter
we will use everything we have developed so far to study linear maps and matrices.
To each matrix (or linear transformation of a finite dimensional vector space) we
will associate two polynomials, the minimal and the characteristic polynomial. They
are not enough to characterize the matrix up to similarity, but they give lots of
nontrivial information about the matrix. We also associate a collection of scalars
called eigenvalues of the matrix (if the field of scalars is C, the eigenvalues are
simply the roots of the characteristic polynomial) and a collection of subspaces
indexed by the eigenvalues and called eigenspaces. An in-depth study of these
objects yields many deep theorems and properties of matrices.

In this chapter we will make heavy use of basic properties of polynomials. We
recalled them in the appendix concerning algebraic prerequisites, and we strongly
advise the reader to make sure that he is familiar with these properties before starting
reading this chapter. We fix a field F' (the reader will not loose anything assuming
that F is either R or C).

8.1 Some Basic Constructions

Let V be a vector space over a field F, and let T : V — V be a linear
transformation. We define a sequence (7);>¢ of linear transformations of V by
the rule

T°=id, T''=ToT!
© Springer Science+Business Media New York 2014 301
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for i > 0, where id denotes the identity map (sending every vector v to v). In other
words, T is the ith iterate of 7', for instance

T’(v) = T(T(T())

forallve V.
IfP=ay+a1X+...4+a,X" € F[X] we define a linear transformation P (7")
of V by

P(T):=aoT°+a\T' + ... +a,T".
The following result follows easily by unwinding definitions. We will use it

constantly from now on, without further reference, thus the reader may want to
take a break and check that he can actually prove it.

Proposition 8.1. If Py, P, € F[X] and T is a linear transformation of V, then
a) P\(T)+ P»(T) = (P1 + P)(T).
b) P\(T) o Py(T) = (P1Po)(T).

We warn the reader that we do not have P(T)) + P(T3) = P(T} + T) and
P(Ty) o P(T») = P(Ty o T») in general. For instance, take P(X) = X? and
Ty = T, = id, then

P(T)) + P(T») = 2id # 4id = (T, + Th)>.

We invite the reader to find a counterexample for the equality P(77) o P(T3) =
P (Tl (¢] Tz)

Definition 8.2. The F-algebra generated by the linear transformation 7 is the set

F[T] = {P(T), P € F[X].

The following result follows directly from the previous proposition:

Proposition 8.3. For all x,y € F[T] and ¢ € F we have x + cy € F[T] and
xoy € F[T). Thus F[T] is a subspace of the space of linear transformations on V,
which is stable by composition of linear transformations.

Actually, the reader can easily check that F[T] is the smallest subspace of the
space of linear transformations on V' which contains id, 7 and is closed under
composition of linear transformations.

All previous constructions and results have analogues for matrices. Namely, if
A € M,(F) is a square matrix of order n with coefficients in F, we have the
sequence (A');>o of successive powers of A4, and we define for P = ag + a1 X +
coota, X" € FIX]

P(A) = a()]n +a1A + ... +a,lA”.

We have P(A) - Q(A) = (PQ)(A) for all polynomials P, Q and all matrices A.
The algebra generated by A is defined by

F[A] = {P(A), P € F[X].

It is a subspace of M,,(F) which is stable under multiplication of matrices.
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Remark 8.4. If A is the matrix of some linear transformation 7" of V' in some basis
of V, then P(A) is the matrix of P(T) in that basis.

Problem 8.5. a) Let A, B € M, (F) be matrices, with B invertible. Prove that for
any P € F[X] we have

P(BAB™"Y = BP(A)B™".

b) Prove that if A, B € M, (F) are similar matrices, then P(A) and P(B) are
similar matrices for all P € F[X].

Solution. a) Suppose first that P(X) = X* for some k > 1, we need to prove that
(BAB~")* = BA*B~!. But using that B~! B = I, several times, we obtain

(BAB™")* = BAB™'BAB™'...BAB™!
= BA’B™'BAB™'...BAB™' = ... = BA*B~".

In general, write P(X) =ap+ a1 X + ...+ aka, then

k k
P(BAB™") =) a;(BAB™"Y =) a;BA'B™"
i=0 i=0

k
= B()_aiA)B™' = BP(A)B™!
i=0

and the problem is solved.
b) Write A = CBC ™! for some invertible matrix C. Then by part a)

P(A) = P(CBC™Y) = CP(B)C',

thus P(A) and P(B) are similar. O

8.1.1 Problems for Practice

1. Prove Proposition 8.1.
2. Let

-1 1 1
A=|1 -11
-2 2 =3

Compute P(A), where P(X) = X3 — X + 1.
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3. Let a, b, ¢ be real numbers and let

0 b ¢
A=|a 0 —c
—a b 0

Compute P(A), where
P(X) = X(X? 4 ab + bc + ca).

4. Prove that the matrix

201
A=|—-40-2
—40 -2

is nilpotent.

5. Let A € M,,(F) be a symmetric matrix. Prove that for all P € F[X] the matrix
P(A) is symmetric.

6. Let A € M, (F) be a diagonal matrix. Prove that for all P € F[X] the matrix
P(A) is diagonal.

7. Let A € M,(F) be an upper-triangular matrix. Prove that for all P € F[X] the
matrix P(A) is upper-triangular.

8. Let V be the vector space of smooth functions f : R — RandletT : V — V
be the linear transformation sending f € V to its derivative f’. Can we find a
nonzero polynomial P € R[X] such that P(T) = 0?

8.2 The Minimal Polynomial of a Linear
Transformation or Matrix

Let V be a finite dimensional vector space over F, say of dimension n > 1. We
will be concerned with the following problem: given a linear transformation T
of V, describe the polynomials P € F[X] for which P(T) = 0. Note that we
can also ask the dual question: given a polynomial P € F[X], describe the linear
transformations 7" for which P(7T") = 0. This is more difficult to answer, and solving
this problem actually requires the resolution of the first problem.

So let us start with a linear transformation 7' of V' and consider the set

I(T) = {P e F[X], P(T) = 0.

A key observation is that /(7)) is not reduced to {0}. Indeed, the space of
linear transformations on V has dimension 72, thus the linear transformations
id, 7,72, ..., T"* cannot be linearly independent. Thus we can find ay, . . ., @,2 not
all O such that

apid +a,T + ... —i—a,,zT”2 =0

and thenag + a1 X + ... + cz,,zX”2 is a nonzero element of /(7).
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Theorem 8.6. There is a unique monic (nonzero) polynomial urp € I(T) such that
I(T) is the set of multiples of ur in F[X], i.e.

I(T) = pr - FIX].

Proof. Proposition 8.1 implies that 7(7") is a subspace of F[X] and that PQ € I(T)
whenever P € I(T) and Q € F[X]. Indeed,

(PO)(T) = P(T) o Q(T) = 00 O(T) = 0.

The discussion preceding Theorem 8.6 shows that /(7") # 0. Let P be a nonzero
polynomial of smallest degree in /(7). Dividing P by its leading coefficient (the
new polynomial is still in /(7") and has the same degree as P), we may assume that
P is monic. By the first paragraph, all multiples of P belong to /(7). Conversely,
let S be an element of /(T) and write S = QP + R with Q,R € F[X] and
deg R < deg P. Note that R = S — QP € I(T) since I(T) is a subspace of F[X]
and S, QP € I(T). If R # 0, then since deg R < deg P we obtain a contradiction
with the minimality of P. Thus R = 0 and P divides S. It follows that I(T) is
precisely the set of multiples of P and so we can take ur = P.

Finally, we need to prove that wr is unique. If S had the same properties, then
S would be a multiple of w7 and wr would be a multiple of S. Since they are both
monic, they must be equal. O

Definition 8.7. The polynomial w7 is called the minimal polynomial of 7.

Due to its importance, let us stress again the properties of the minimal
polynomial ji7:

* it is monic and satisfies ©r (7)) = 0.
e For any polynomial P € F[X], we have P(T) = O if and only if ur
divides P.

The whole theory developed above applies verbatim to matrices: if
A € M, (F), there is a unique monic polynomial p4 € F[X] with the following
properties:

* pa(A) = O, and
e If P € F[X], then P(A) = O, if and only if u4 divides P.

Remark 8.8. If P is a polynomial and A is a matrix (or a linear transformation)
satisfying P(A) = O,, we will sometimes say that P kills A or that A is killed
by P. Thus the polynomials killing A are precisely the multiples of the minimal
polynomial of A.

The discussion preceding Theorem 8.6 shows that we can find a nonzero
polynomial P of degree not exceeding n2 such that P(T) = 0. Since 7 divides P,
it follows that deg ur < n?. This bound is fairly weak and the goal of the next
sections is to introduce a second polynomial canonically associated with T, the
characteristic polynomial of 7'. This will be monic of degree n and will also vanish
when evaluated at 7. This will yield the inequality deg ur < n, which is essentially
optimal.
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Let us give a few examples of computations of minimal polynomials:

Example 8.9. Let F be a field. All matrices below are supposed to have entries
in F.

a) The minimal polynomial of the matrix O, is clearly ;tp, = X. More generally,
the minimal polynomial of the scalar matrix ¢/, is X —c.

b) Consider some elements d,...,d, € F and a diagonal matrix A = [a;;], with
a;; = d;. The elements d, ..., d, are not necessarily pairwise distinct, so let
us assume that d;,, .. ., d;, is the largest collection of pairwise distinct elements

among dy, ..., d,. Note that for any polynomial Q € F[X] the matrix Q(A)
is simply the diagonal matrix with diagonal entries Q(d,),..., Q(d,). Thus
QO(A) = O, if and only if Q(d;) = 0 for 1 < i < n. This happens if and
only if 0(d;;) = ... = Q(d;;) = 0. Since d;,, . . ., d;, are pairwise distinct, this
is further equivalent to (X —d;,)...(X —d;,) | Q. Thus the minimal polynomial
of Ais

pa(X) = (X —d;)...(X —dy,).

In particular, we see that dy, ..., d, are pairwise distinct if and only if p 4 has
degree n, in which case 4 = [[/_; (X — d;).

¢) Suppose that F = R and that a matrix A € M, (F) satisfies A*+1, = O,. What
is the minimal polynomial p 4 of A? For sure it divides X? + 1, since X? + 1
vanishes at A. The only monic nonconstant divisor of X? + 1 in R[X]is X% + 1
itself, thus necessarily ;g = X2 + 1.

d) With the tools introduced so far it is not easy at all to compute the minimal
polynomial of a given matrix. We will introduce in the next sections another
polynomial (called the characteristic polynomial of the matrix) which can be
directly computed (via the computation of a determinant) from the matrix and
which is always a multiple of the minimal polynomial. This makes the compu-
tation of the minimal polynomial much easier: one computes the characteristic
polynomial P of the matrix, then looks at all possible monic divisors Q of P and
checks which one kills the matrix and has the smallest degree. We will see later
on that one does not really need to check all possible divisors, which makes the
computation even more rapid.

Problem 8.10. Let 7 be a linear transformation on a finite dimensional F-vector
space V and let V = V| & V, be a decomposition of V into subspaces which
are stable under 7. Let P, P;, P, be the minimal polynomials of 7, T'|y, and T'|y,
respectively. Prove that P is the least common multiple of P, and P5.

Solution. Let Q be the least common multiple of P; and P,. Since P kills T, it also
kills T'|y, and T'|y,, thus it is a multiple of P; and P,. It follows that Q divides P.
In order to prove that P divides Q, it suffices to prove that Q kills 7. But since
Q is a multiple of P; and P kills T'|y,, it follows that Q kills T'|y,. Similarly, O
kills T|y,. Since V = V| @ V3, we deduce that Q kills 7 and the result follows. [
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A natural and rather subtle problem is the following: suppose that A € M,,(Q) is
a matrix with rational entries. We can definitely see A as a matrix with real entries,
i.e., as an element of M, (R) or as a matrix with complex entries, i.e., as an element
of M, (C). Thus we can attach to A three minimal polynomials! Fortunately, the
following theorem shows that the three polynomials are actually one and the same:
the minimal polynomial of a matrix does not depend on the field containing the
entries of the matrix:

Theorem 8.11. Let Fy C F, be two fields and let A € M, (F)). Then the minimal
polynomial of A seen as element of M, (F) and that of A seen as element of M,,(F3)
coincide.

Proof. Let p; be the minimal polynomial of A € M,(F;) and p, that of
A e M, (F,). Since Fi[X] C F;[X], the polynomial p; belongs to F,[X] and
kills A, thus it must be a multiple of ;. In other words, u, divides w;. Let
d; = deg ;. It suffices to prove that d, > d; and for this it suffices to prove that
there is a nonzero polynomial P € F;[X] of degree at most d, which vanishes at A
(as such a polynomial is necessarily a multiple of 1¢;). By hypothesis, we know that
we have a relation

Cl()[n +611A =+ ... +adzAd2 = On

with a; € F, (namely the coefficients of p,). This is equivalent to n? linear
homogeneous equations in the unknowns ay,...,a4,. The coefficients of these
equations are entries of the matrices I,,, 4, .. ., A% g0 they belong to F. So we have
a linear homogeneous system with coefficients in F; and having a nontrivial solution
in F,. Then it automatically has a nontrivial solution in F; (by Theorem 7.77),
giving the desired polynomial P. |

We end this section with a series of problems related to the pointwise minimal
polynomial. Let V' be a finite dimensional vector space over a field F and let
T : V — V be a linear transformation with minimal polynomial pr. For x € V,
consider

I, ={P € F[X]|P(T)(x) = 0}.
Note that the sum and difference of two elements of 7, is still in /.

Problem 8.12. Prove that there is a unique monic polynomial p, € F[X] such that
I, is the set of multiples of i, in F[X]. Moreover, p, divides ur.

Solution. We may assume that x # 0. Note that uy € I, since u7(T) = 0. Let
U be the monic polynomial of smallest degree which belongs to 7,,. We will prove
that I, = u, F[X].

First, if P € u, F[X], then P = u, Q for some Q € F[X] and

P(T)(x) = Q(T)(ux(T)(x)) = Q(T)(0) = 0,

thus P € I. This shows that u, F[X] C I,.
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Conversely, let P € I, and, using the division algorithm let P = Qu, + R for
some polynomials O, R € F[X] such that deg R < deg jt,. Assume that R # 0.
Since P and Qpu, belong to I, (the second one by the previous paragraph), we
deduce that R € I,. Let a be the leading coefficient of R, then %R is a monic
polynomial belonging to I, and with degree less than that of i, a contradiction.
Thus R = 0 and p, divides P, finishing the solution. O

Problem 8.13. Let 7 be a linear transformation on a finite dimensional vector
space V over F, where F is an arbitrary field.

a) Prove that if u7 = P¥Q with k > 1, P € F[X] irreducible and Q relatively
prime to P, then we can find x € V such that u, = P,
b) Prove that if x;,x, € V are such that u,, and ., are relatively prime, then

Mxi+x; = Mx; Mxy-
¢) Conclude that there is always a vector x € V such that u, = ur.

Solution. a) Suppose on the contrary that p, # PX forallx € V.Letx € V.
Then by hypothesis (P*Q)(T)(x) = 0. Hence v = Q(T)(x) lies in the kernel
of P¥(T) and so p, divides P*. Since j1, # P¥ and P is irreducible, p, divides
P*=!and so P*~1(T)(v) = 0, thatis (P*~'Q)(T)(x) = P*"(T)(v) = 0. But
since x was arbitrary, this means j7|P¥~'Q, a contradiction.

b) Let Py = pu,, and P, = p,,, and let P = P, P,. Since P is a multiple of both
P, and P, we deduce that P(T') vanishes at both x; and x,, thus it vanishes at
X1 + X2 and s0 fy v, | P.

On the other hand, py, 4+x,(T)(x1 4+ x2) = 0, thus

(Pt +3)(T) (1) + (P ) (T) (x2) = 0.

The first term in the sum is 0, since P;(7T)(x;) = 0, thus the second term must be
0, which means that yy, = P> | Pifly,+x,. Since P; and P; are relatively prime,
it follows that P, divides iy, +x, and by symmetry P; also divides pty,+x,. Using
again that P, and P, are relatively prime, we conclude that P = P, P, divides
Hx,+x,- Combining this with the divisibility jiy, 4y, | P and using that iy, 4y,
and P are both monic, the result follows.

¢) Consider the decomposition py = Plk '...P¥ of ur into irreducible polynomi-
als. Here Py,..., P, are pairwise relatively prime irreducible polynomials and
k; are positive integers. By part a) we can find x; € V such that u,, = Pik‘ .
Applying successively part b), we obtain

k kr J—
Mxi+..4x, = Mxp- - -Hx, = Pll"'Pr = KT
and so we can take x = x; + ... + X,.
O

Problem 8.14. Let V, be the span of x,7T(x),T?(x),.... Prove that V, is a
subspace of V' of dimension deg jt,, stable under 7.
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Solution. It is clear that V. is a subspace of V, stable under 7. Let d = deg .
We will prove that x, T(x), ..., T¢ !(x) form a basis of V, which will yield the
desired result.

Suppose first that agx + a,T(x) + ... + aq_1T¢"'(x) = 0 for some scalars
aop, . ..,a4—1, not all of them equal to 0. The polynomial P = a9 + a1 X + ... +
aq—1 X% is then nonzero and belongs to I, (i.e., P(T)(x) = 0). Thus P is a
multiple of u,, which is impossible as it is nonzero and its degree is less than that
of jty. Thus x, T'(x), ..., T¢(x) are linearly independent over F.

Let W be the span of x, T(x), ..., T%"'(x). We claim that W is stable under 7.
It suffices to check that T¢(x) belongs to W. But since . (7)(x) = 0 and j, is
monic of degree d, we know that there are scalars by, . . ., by—; such that

T(x) 4+ by T (x) + ...+ box = 0.

This relation shows that 7¢ (x) is a linear combination of x, T(x), ..., T¢~'(x) and
so it belongs to W.

Now, since W is stable under 7' and contains x, it must contain all 7% (x) for
k > 0, thus W must also contain V,. It follows that x, T(x),..., Td_l(x) is a
generating subset of V) and the proof is finished, since we have already shown that
this set is linearly independent. O

8.2.1 Problems for Practice

1. Compute the minimal polynomial of the following matrices:

)3 010 123
A=|:_42:|, A=[100]|, A=|012
001 001

2. Compute the minimal polynomial of the matrix A € M, (R) all of whose entries
are equal to 1.
3. Let A € M, (C). Prove that
dim Span(I,,, A, A%,...) = deg ji4.

4. Find a matrix A € M,(R) whose minimal polynomial is

a) X2—3X +2.
b) X2.
c) X2+ 1.

5. Let V' be a finite dimensional vector space over F andlet T : V — V be an
invertible linear transformation. Prove that T~! € F[T].
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6. For which positive integers n can we find a matrix A € M, (R) whose minimal
polynomial is X2 + 1?
7. Compute the minimal polynomial of the projection/symmetry of C" onto a
subspace along a complementary subspace.
8. Let T : M,(C) — C be the map sending a matrix to its transpose. Find the
minimal polynomial of 7.
9. Let T : M,(C) — C be the map sending a matrix A = [a;;] to the matrix
A= [@;;], where 7 is the complex conjugate of z. Find the minimal polynomial
of T.
10. Describe the minimal polynomial of a matrix A € M,,(C) of rank 1.

8.3 Eigenvectors and Eigenvalues

Let V be a vector space over a field F and let T be a linear transformation of V.
In this section we will be interested in those A € F for which A - id — T is not
invertible. The following definition is fundamental.

Definition 8.15. An eigenvalue of 7 is a scalar A € F such that A -id — T
is not invertible. An eigenvector of 7 corresponding to the eigenvalue A (or
A-eigenvector) is any nonzero element of the space ker(A - id — 7"), which is called
the eigenspace corresponding to A (or the A-eigenspace).

Thus a A-eigenvector v is by definition nonzero and satisfies
Tv) = Av,

and the A-eigenspace consists of the vector 0 and all A-eigenvectors.
We have the analogous definition for matrices:

Definition 8.16. Let A € M, (F) be a square matrix. A scalar A € F is called an
eigenvalue of A if there is a nonzero vector X € F” such that AX = AX. In this
case, the subspace

ker(Al, — A) := {X € F"| AX = A- X}

is called the A-eigenspace of A.

It is an easy but important exercise for the reader to check that the two
definitions are compatible, in the following sense: let V' be finite dimensional and
let T : V — V be a linear transformation. Choose any basis of V' and let A be the
matrix of 7' with respect to this basis. Then the eigenvalues of 7' are exactly the
eigenvalues of A.



8.3 Eigenvectors and Eigenvalues 311

10
the eigenspaces of A, if we consider A as a matrix with complex entries. Let A be
an eigenvalue and let X be a nonzero vector such that AX = AX. If xy, x, are the
coordinates of X, the condition AX = AX is equivalent to the equations

Example 8.17. Consider the matrix A = [O -1 ] Let us find the eigenvalues and

—Xy = Axl, X1 = A)Cz.
We deduce that
—Xy = )L2X2.

If x, = 0, then x; = 0 and X = 0, a contradiction. Thus x, # 0 and necessarily
A% = —1, thatis A € {—i,i}. Conversely, i and —i are both eigenvalues, since we
can choose x, = 1 and x; = A as a solution of the previous system. Actually the
A-eigenspace is given by

ker(klz — A) = {(AXz,X2)|X2 € C}

and it is the line spanned by v = (4, 1) € C%. Thus seen as a complex matrix, A has
two eigenvalues +i, and the eigenspaces are the lines spanned by (i, 1) and (—i, 1).

We see now A as a matrix with real entries and we ask the same question.
Letting A € R be an eigenvalue and X an eigenvector as above, the same
computations yield

A%+ Dx, = 0.

Since A is real, A2 + 1 is nonzero and so x, = 0, then x; = 0 and X = 0. The
conclusion is that seen as a matrix with real entries, A has no eigenvalue, thus
no eigenspace. This example shows that eigenvalues and eigenspaces are very
sensitive to the field of scalars.

Given a matrix A € M,,(F), how can we find its eigenvalues and its eigenspaces?
The first part is much harder than the second one. Indeed, finding eigenspaces is
equivalent to solving linear systems of the form AX = AX, which is not (too)
difficult. On the other hand, finding eigenvalues comes down to solving polynomial
equations, which is quite hard (but can be done approximately with the help of a
computer as long as we are not interested in exact formulae). In practice (and for
reasonably sized matrices) we use the following fundamental observation in order
to compute eigenvalues:

Proposition 8.18. A scalar A € F is an eigenvalue of A € M, (F) if and only if
det(Al, — A) = 0.

Proof. AI, — A is not invertible if and only if its determinant vanishes. The result
follows. 0
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Let us come back to our problem of computing the eigenvalues of a matrix. If we
know that
app aiz ... 4
A = | 92 a2 ... du
Apl Ap2 - .. Apn

where a;; € F fori, j = 1,2,...,n, then the proposition says that we can find the
eigenvalues of A by solving the polynomial equation

)L—all —dyp ... —dip
—dny A— ayy ... —dyy -0
—Ay1  —Qpy ... A —any,

in F. This is a polynomial equation of degree n. If the degree is greater than 4, there
is no general solution in terms of radicals (of course, there are instances in which
one can solve the equations in terms of radicals, but most of the time this will not
happen).

100
Example 8.19. Let us find the eigenvalues of A = [ 00 —1 |[. We start by
010
simplifying the equation
A—100
0 A 1|=0.
0 —14

Expanding with respect to the first column and doing the computations, we obtain
the equivalent equation

A-D@A*+1)=0.

Next, we recall that eigenvalues are sensitive to the field of scalars. Since nothing
was said about the field of scalars in this problem, we consider two cases. If we take
the field of scalars to be C, then the eigenvalues are 1, i, which are the complex
solutions of the equation (A — 1)(A% 4 1) = 0. If the field of scalars is R, then the
only eigenvalue of A4 is 1.

Remark 8.20. Let us mention two important and interesting consequences of
Proposition 8.18 and the discussion following it:

 For any matrix A € M,,(F), A and its transpose ’ A have the same eigenvalues.
Indeed, for A € F we have

det(Al, — "A) = det(' (AI, — A)) = det(AI, — A),
thus det(A1,, — A) = 0 if and only if det(Al, — "A) = 0.
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e Any matrix A € M,(F) has finitely many eigenvalues, since they are all
solutions of a polynomial equation of degree n, namely det(Al, — A) = 0.
Actually, since a polynomial of degree n has at most n distinct roots, we deduce
that any matrix A € M, (F) has at most  eigenvalues.

We can restate part of the previous remark in terms of linear transformations:

Corollary 8.21. Let V be a finite dimensional vector space over F and let T :
V' — V be a linear transformation. Then T has only finitely many (actually at most
dim V') distinct eigenvalues.

Remark 8.22. On the other hand, a linear transformation on an infinite dimensional
vector space may very well have infinitely many eigenvalues. Consider for instance
the space V of all smooth functions f : R — R, and consider the map T : V — V
sending f to its derivative. Then f, : x > e®* is an eigenvector with eigenvalue a
for all @ € R, thus any real number is an eigenvalue for 7.

The following important problem shows that it is very easy to describe the
eigenvalues of an upper-triangular matrix:

Problem 8.23. Let A = [a;;] be an upper-triangular matrix in M, (F). Prove that
the eigenvalues of A are precisely its diagonal elements.

Solution. By definition, A € F is an eigenvalue of A if and only if A1, — A is
not invertible. The matrix AJ, — A is also upper-triangular, with diagonal elements
A —a;;. But an upper-triangular matrix is invertible if and only if its diagonal entries
are nonzero (because its determinant equals the product of the diagonal entries by
Theorem 7.41). The result follows.

Problem 8.24. Find the eigenvalues of A8, where

1357
1
0536
0004
0002

e My(R).

Solution. It is useless to compute explicitly A®: by the product rule for matrices,
the product of two upper-triangular matrices A = [a;;] and B = [b;;] is an
upper-triangular matrix with diagonal entries a;;b;;. It follows that A® is an upper-
triangular matrix with diagonal entries 1,1/10%,0, 64. By the previous problem,
these are also the eigenvalues of A°. |

The next important result says that eigenvectors corresponding to different
eigenvalues are linearly independent.

Theorem 8.25. Let Ay, ..., Ay be pairwise distinct eigenvalues of a linear transfor-
mation T. Then the A;-eigenspaces of T are in direct sum position.
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Proof. By definition, we need to prove that if 7(v;) = A;v; andv; + ... + v =0,
then v = ... = vy = 0. We will prove this by induction on k. The result is clear
when k = 1, so assume that it holds for k — 1 and let us prove it for k. We have

0=Twvi+...+v))=TW)+...+Tv) = Avi + ... + Ay,
which combined with the relation A;vy 4 ... + Apv, = 0 yields
0=QAx —A )i +...+ (A — Ak vi— = 0.

The inductive hypothesis implies that (A — A;)v; = O for 1 < i < k. Since
Ak # A, this forces v; = 0 for 1 < i < k. But then automatically vy = 0, since
vi + ...+ vr = 0. The inductive step being proved, the problem is solved. |

Problem 8.26. Let A be an eigenvalue of a linearmap 7 : V — V, where V is a
vector space over F and let P be a polynomial with coefficients in F. Prove that
P (1) is an eigenvalue of P(T).

Solution. The hypothesis yields the existence of a nonzero vector v € V' such that
T(v) = Av. By induction, we obtain T%(v) = Ay for k > 1. Indeed, if T¥(v) =
¥y, then

T (v) = T(T*(v)) = T(Afv) = AFT(v) = AFFly,
We deduce that if P(X) = a, X" + ...+ a1 X + ay, then
P(TYv) =a, T"(v) + ...+ a;T(v) + ayv
=a,A"v+ ... +apv=PQA)y

and so P(A) is an eigenvalue of P(T). |
The following consequence of the previous problem is very useful in practice:

Problem 8.27. Let A € M, (C) be a matrix and let P € C[X] be a polynomial
such that P(A) = O,. Prove that any eigenvalue A of A satisfies P(1) = 0.

Solution. By the previous problem, P(A) is an eigenvalue of P(A) = O,. Since 0
is the only eigenvalue of O,, we deduce that P(1) = 0. O

In particular, we obtain the following:

Theorem 8.28. Let T : V — V be a linear transformation on a finite-dimensional
vector space V over F. Then the eigenvalues of T are precisely the roots in F of
the minimal polynomial pur of T.

Proof. Since up(T) = 0, the previous problem shows that all eigenvalues of T
are roots of pr. Conversely, let A € F be a root of pur and assume that A is not
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an eigenvalue of 7. Thus T — Aid is invertible. Since ur(A) = 0, we can write
ur(X) = (X —1)Q(X) for some Q € F[X]. Since ur(T) = 0, we deduce that

(T —Xid) o Q(T) = 0.
As T — Aid is invertible, the last relation is equivalent to Q(7") = 0. Hence ur

divides Q, which is absurd. The problem is solved. |

The next problem is a classical result, which gives rather interesting bounds on
the eigenvalues of a matrix.

Problem 8.29 (Gershgorin Discs). Let A = [a;;] € M, (C) be a matrix and let

Rl’ = Z |a,-j|.

I<j=<n

j#i

a) Prove that if |a;;| > R; for all i, then A is invertible.
b) Deduce that any eigenvalue of A belongs to the set

U{Z € Cllz—a;i| £ Ri}.

i=1
¢) Give a geometric interpretation of the result established in part b).

Solution. a) Suppose that A is not invertible, thus we can find a nonzero vector
X € C", with coordinates xi, X2, ..., X,, such that AX = 0. Let i/ be an index
such that

|x;| = max |x;].
<j=n
The ith equation of the linear system AX = 0 reads
ajp Xy +aipxz + ...+ aimx, =0,

or equivalently
aixX; = — E al-jxj.
J#i

Using the triangular inequality, i.e., |21 + ... + 24| < |z1] + ... + |za|, valid for
all complex numbers zy, . . ., z,), we deduce that

lagi||xii| = |Zaijxj| = Zla,-ijjI.

j#i j#i
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Since |x;| < |x;| for all j, we can further write
lai|xi] <Y laillxi] = Rilxil.
J#i
Note that x; # 0, since otherwise |x;| < |x;| = 0 for all j, thus x; = 0 for

all j, contradicting the fact that X # 0. Thus we can divide by |x;| the previous
inequality and obtain

laii| < R;,

which contradicts the assumption of the problem. Hence A is invertible.

b) Let A be an eigenvalue of 4 and let B = A — Al,. Write B = [b;;], with
bij = a;; wheni # j and b;; = a;; — A. Since B is not invertible, part a)
ensures the existence of an index i such that |b;;| < Z# ; 1bij|. This can be also
written as

lai; — Al < R;
and shows that

A€ U{ze Cllz—a;i| < R;}.

i=1

¢) Theset {z € C||z—a;;| < R;} is the closed disc centered at a;; and having radius
R;. Thus part b) says that the eigenvalues of A are located in a union of discs
centered at the diagonal entries of A and whose radii are Ry,...,R,. O

Remark 8.30. Consider
Ci =) lajl.
J#i
Applying the result established before to ’ A (which has the same eigenvalues as A)
we obtain that the eigenvalues of A are also located in

U{Z € C||z—a,-,-| < C,}

i=1

8.3.1 Problems for Practice

1. Find the eigenvalues and the eigenvectors of the matrix

110
A=1021|¢e Ms(C).
001
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10.

. Find all real numbers x for which the matrix A = |:
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. Let V be the set of matrices A € M,(C) with the property that [;] is an

eigenvector of A. Prove that V is vector subspace of M,(C) and give a basis
for V.

. Let ey, e, e3, e4 be the standard basis of C* and consider the set V of those

matrices A € M4(C) with the property that e}, e are both eigenvectors of A.
Prove that V' is a vector subspace of M4(C) and compute its dimension.
1

. Find all matrices A € M3(C) for which the vector | 2 | is an eigenvector with

3
eigenvalue 2.

. Find the eigenvalues of the matrix A € M, (R) all of whose entries are equal

to 2.
1x

51 i| € M,(R) has

a) two distinct eigenvalues.
b) no eigenvalue.

. Let V be the space of all polynomials with real coefficients. Let T be the linear

transformation on V sending P(X) to P(1 — X). Describe the eigenvalues of
T.Hint: whatis T o T'?

. A matrix A € M,(R) is called stochastic if a;; > 0 for all i, j € [I,n] and

> i—yaij = 1foralli € [l,n].

a) Prove that 1 is an eigenvalue of any stochastic matrix.
b) Prove that any complex eigenvalue A of a stochastic matrix satisfies |[A| < 1.

. Consider the map T : R[X] — R[X] sending a polynomial P(X) to P(3X).

a) Prove that T is a bijective linear transformation, thus its inverse 7! exists
and is linear.

b) Find the eigenvalues of T'.

¢) Deduce that there is no polynomial P € R[X] such that

7' = P(T).
Let A, B € M, (C) be matrices such that
AB — BA = B.
a) Prove that ABX — B¥A = kB* for all k > 1.

b) Deduce that B is nilpotent. Hint: consider the eigenvalues of the map T :
M,(C) - M,(C) givenby T(X) = AX — XA.
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11.

12.

13.

14.

15.

8 Polynomial Expressions of Linear Transformations and Matrices

Let V be the space of continuous real-valued maps on [0, 1]. Define a map
T:V —>Vby

1
T(f)x) = /O min(x. 1) f(1)d1

for f e V.

a) Justify that T is well defined and a linear transformation on V.
b) Is V finite dimensional?
c¢) Find the eigenvalues and describe the corresponding eigenspaces of 7.

Let V be the space of polynomials with real coefficients whose degree does not
exceedn andlet T : V' — V be the map defined by

T(P) = P(X) — (1 + X)P'(X).

a) Explain why T is a linear transformation on V.
b) Find the eigenvalues of T'.

Let V' be the space of all sequences (x,),>; of real numbers. Let T be the
map which associates to a sequence (x,),> the sequence whose general term
is AF2OEIN0 (for p > 1),

a) Prove that T is a linear transformation on V.
b) Find the eigenvalues and the corresponding eigenspaces of 7.

Let V be the vector space of polynomials with real coefficients and let
T : V — V be the map sending a polynomial P to

T(P)=(X>—1)P"(X)+ XP'(X).

a) Prove that T is a linear map.
b) What are the eigenvalues of 7'?

a) Let A € M,(C) be a matrix with complex entries, let P € C[X] be a
nonconstant polynomial and let u be an eigenvalue of P (A). Prove that there
is an eigenvalue A of A such that P(A) = p (this gives a converse of the
result proved in Problem 8.26 for matrices with complex entries). Hint: factor
the polynomial P(X)—pu as ¢ ]_[;1:1 (X —z;) for some nonzero constant ¢ and
some complex numbers zj, . . ., Z7, and prove that at least one of the matrices
A—z1l,,...,A—z41, is not invertible.

b) By considering the matrix A = [(1) _01 ], prove that the result established in

part a) is false if we replace C with R.
c) Suppose that a positive real number A is an eigenvalue of A%, where A4 €
M, (R) is a matrix. Prove that ~/A or —+/A is an eigenvalue of A.
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16. Let A € M,(R) be a matrix and let

0 4
B = .
[ A2A ]
Express the eigenvalues of B in terms of those of A.
17. Consider the matrix

. . 2 .
Prove that the eigenvalues of A4 are 4 sin (ﬁ) forl <j <n.

8.4 The Characteristic Polynomial

We saw in the previous section that finding the eigenvalues of a matrix A € M,,(F)
comes down to solving the polynomial equation

det(AL, — A) = 0

in F'. In this section we will study in greater detail the polynomial giving rise to this
equation.

By construction, the determinant of a matrix is a polynomial expression with
integer coefficients in the entries of that matrix. The following theorem refines this
observation a little bit.

Theorem 8.31. Consider two matrices A, B € M,(F). There is a polynomial
P € F[X] such that for all x € F we have

P(x) = det(xA + B).
Denoting this polynomial P(X) = det(XA + B), we have
det(XA + B) = det(A)X" + oy X" '+ ... + a1 X + det B

for some polynomial expressions oy, . . ., 0,—1 with integer coefficients in the entries
of A and B.
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Proof. Define P by

P(X) =Y e0)(@io)X + bio)- - (@nom X + buoim)-

og€ES,

It is clear on the definition that P is a polynomial whose coefficients are polynomial
expressions with integer coefficients in the entries of A and B. It is also clear that
P(x) = det(xA + B) for x € F. The constant term is given by plugging in X = 0
and thus equals det B. Moreover, for each o € S, we have

(@) (aicyX + bis))- - (o)X + buom)) = €(0)a15()- - Anom X" + ...,

all terms but the first in the right-hand side having degree at most n — 1. Taking the
sum over o, we see that P(X) starts with det A - X", all other terms having degree
at most n — 1. The result follows. O

It follows from the theorem that if A, B have integer (respectively rational)
entries, then det(XA + B) has integer (respectively rational) coefficients.
Armed with the previous results, we introduce the following

Definition 8.32. The characteristic polynomial of the matrix A € M, (F) is the
polynomial y 4 € F[X] defined by

xa(X) =det(X - I, — A).

Problem 8.33. Find the characteristic polynomial and the eigenvalues of the matrix

0100
20-10

A= M, (R).
07 0 6| €MW®

0030

Solution. We compute using Laplace expansion with respect to the first row

X-10 0
-2X 1 0
X) = X1y —A) =

xa(X) = det(X1, — A) 0 -7 X —6
0 0 3%

X 1 0 -2 1 0
X|-7X —6|+|0 X —6|=

03X 0 3%

X(X?—11X) —2(X>—18) = X* — 13X% + 36.
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In order to find the eigenvalues of A, we need to find the real solutions of the
equation

x*—13x2+36 =0.

Letting y = x?

we obtain the quadratic equation
y2—13y +36=0

with solutions y; = 4 and y, = 9. Solving the equations x> = 4 and x> = 9 yields
the eigenvalues £2, £3 of A. O

Problem 8.34. Find the characteristic polynomial and the eigenvalues of the matrix

011
A=1101 EM3(F2).
111

Solution. We will constantly use that —1 = 1 in F,. We obtain

xa(X) = det(X T3 — A) = det(X 15 + A) =

X1 1 I+X 0 1
1 X 1 =|11+XX+1 1
1 1X+1 0 X X+1

the equality being obtained by adding the second column to the first one and the
third column to the second one. Now

I+X 0 1

I+XX+1 1
0 X X+1

X+1 ix(jr] : =X +DX+1D)*=X+1)°.
0 X X+1
Thus
xa(X) = (X + 1)°
and consequently the unique eigenvalue of A is 1. O

In the following more theoretical exercises, we will

e compute the characteristic polynomial for a rather large class of matrices: upper-
triangular, nilpotent, companion matrices, etc.

 establish a few basic properties of the characteristic polynomial which turn out
to be important in practice or in theoretical problems.
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For upper-triangular matrices the characteristic polynomial can be read off
directly from the diagonal entries:

Problem 8.35. Let A = [a;;] be an upper-triangular matrix (so that a;; = 0
whenever i > j). Prove that

xa(X) = [[(X —aip).

i=1

Solution. The matrix X1, — A is again upper-triangular, with diagonal entries equal
to X — a;;. The result follows directly from Theorem 7.41.
O

Recall that * A is the transpose of the matrix A.

Problem 8.36. Prove that A and ’ A have the same characteristic polynomial when
A e M,(F).

Solution. Indeed (X1, — A) = XI, — ' A. Since a matrix and its transpose have
the same determinant (Theorem 7.37), we have

x4(X) = det(X1, — A) = det("(XI, — A)) = det(XI, — 'A) = y: 4(X).

as desired. O

Problem 8.37. Prove that the characteristic polynomial y 4 of A is of the form
1a(X) = X" —Tr(A) X" 4+ ...+ (=1)" det A.
Solution. Let us come back to the definition

det(X - I, = A) = Y £(0)(X810(1) = @1001)- - (X Sno(n) — Anoim)-

€S,

A brutal expansion shows that

n
(X(Sla(l) - alo(l))' . ~(X5n0(n) - ana(n)) = X" 1_[ Sio(i)_

i=1

n
X! Z(H Sko))ajo(jy + - - -

J=1 ke

Note that []7_, 8;s(;) is nonzero only for the identity permutation, in which case
it equals 1. This already shows that y4(X) is monic of degree n. It is clear that
its constant term is y 4(0) = det(—A) = (—1)" det A (all these results also follow
straight from Theorem 8.31).
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Next, if j € {1,2,...,n}, then ]_[k7éj Sko (k) is nonzero only when o(k) = k
for all k # j, but then automatically o(j) = j (as ¢ is a permutation) and so o
is the identity permutation. Thus the coefficient of X =1 is nonzero in (X Sis(1) —
ai51))- - -(X8uo(n) — Ano(ny) if and only if o is the identity permutation, in which
case this coefficient equals — > i _, a;; = —Tr(A). This shows that the coefficient

j
of X" Vin y4(X) is —Tr(A). O

Problem 8.38. Let A € M, (F) be a nilpotent matrix.

a) Prove that
XA(X) = Xn.

b) Prove that Tr(4%) = 0 forall k > 1.

Solution. a) Note that by definition there is a positive integer k such that A¥ = O,.
Then

xXkr, = XK1, — AF = (X1, — A)(X* ', + XF2A 4+ AR,
Taking determinants yields
X" =y (X)-det(X*'L, + ...+ AFTY.

The right-hand side is the product of two polynomials (again by the polynomial
nature of the determinant). We deduce that y4(X) divides the monomial X”¥.
Since moreover y 4(X) is monic of degree n (by Problem 8.37), it follows that
xa(X) = X",

b) Replacing A with A* (which is also nilpotent), we may assume that k = 1. We
need to prove that Tr(4) = 0. But by part a) y4(X) = X", thus the coefficient
of X"~!in y4(X) is 0. By the previous problem, this coefficient equals —Tr(4),
thus Tr(A4) = 0. O

The following computation will play a fundamental role in the next section,
which deals with the Cayley—Hamilton theorem. It also shows that any monic
polynomial of degree n with coefficients in F is the characteristic polynomial of
some matrix in M, (F).

Problem 8.39. Letag,ay,...,a,—; € F and let
0 0 0...0 ag

0 0...0 g
A=[101 0 ...0 a

—
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Prove that
XA:X”—an_lX”_l—...—ao.
Solution. Let P = X" —a,_; X" ' — ... —a; X — ay. Consider the matrix
X 0 0...0 —ay
—1 0...0 —da
B=XI,-A=| 0 -1 X 0 —ay
0 0 0...—1X-—a,

Adding to the first row of B the second row multiplied by X, the third row multiplied
by X?2,..., the nth row multiplied by X"~! we obtain the matrix

0 0 ... 0 P

—1 0...0 —da
C=0-1X...0 —ap

0 0 O0...-1X—a,,

We have y4 = det B = detC and, expanding det C with respect to the first row,
we obtain

-1X ...0

0 -1...0

detC = (_1)n+1P . — (_])n+1P(_1)n—l — P,

0 0...-1
observing that the matrix whose determinant we need to evaluate is upper-triangular
with diagonal entries —1. The result follows. O

Recall that two matrices A, B € M, (F) are called similar if they represent the
same linear transformation of I in possibly different bases of this F'-vector space.
Equivalently, A and B are similar if there is P € GL,(F) such that B = PAP~!,
i.e., they are conjugated by an invertible matrix. A fundamental property is that
the characteristic polynomial is invariant under similarity of matrices. More
precisely:

Theorem 8.40. Two similar matrices have the same characteristic polynomial.
Proof. Suppose that A and B are similar, thus we can find an invertible matrix

P € M,(F) such that B = PAP~'. Note that

XI,— B =XPP ' —PAP™' = P(XI, — A)P~".
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Now, we will take for granted that the determinant is still defined and multiplicative
for matrices with entries in F[X] (recall that F[X] is the set of polynomials in
one variable with coefficients in F'). The existence is easy, since one can simply
define in the usual way

detA = Z e(0)a15(1- - Anon)

oES,

for a matrix A = [a;;] with entries in F[X]. The fact that the determinant is
multiplicative is trickier (the hardest case being the case when F is a finite field)
and we will take it for granted.

Consider then P, X1, — A, X1, — B as matrices with entries in F[X]. The inverse
of P in M, (F) is also an inverse of P in M,,(F[X]), thus P is invertible considered
as amatrix in M, (F[X]). The multiplicative character of the determinant map yields

x5(X) = det(X1, — B) = det(P) - det(X I, — A) - det(P)™"
= det(X1, — A) = ya(X),

as desired. O

Problem 8.41. Prove that if A, B € M,(F), then AB and BA have the same
characteristic polynomial. You may assume for simplicity that F = Ror F = C.

Solution. If A is invertible, then AB and BA are similar, as
AB = ABAA™' = A(BA)A™".

The previous theorem yields the result in this case.

Suppose now that A4 is not invertible. As A has only finitely many eigenvalues
(Corollary 8.21) and since F is infinite, there are infinitely many A € F such that
A, := A - I, — Aisinvertible. By the first paragraph for all such A we have

det(A, B) = det(BA,).

This can be written as
det(AB — AB) = det(AB — BA).

Both sides are polynomials in A. Since they agree on infinitely many values of A,
these polynomials are equal. In particular, they agree on A = 0, which is exactly the
desired result. |

Remark 8.42. The previous proof crucially uses the fact that F is infinite. The same
result is true if ' = F, (or more generally any field), but the proof requires more
tools from algebra.

The previous theorem shows that the following definition makes sense.
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Definition 8.43. Let V be a finite dimensional F-vector space. The characteristic
polynomial y7 of the linear transformation 7' of V is the characteristic polynomial
of the matrix of T in any basis.

Problem 8.44. Let T : R?* — R? be the linear transformation defined by
T (x1,x2,x3) = (x1 — 2x2 + X3, X2 — X3, X1).

Compute the characteristic polynomial of T'.

Solution. The matrix of T with respect to the canonical basis is

1-21
A=101 -1
10 O
Thus
X-1 2 -1
r(X)=aX)=| 0 X—-11|=
-1 0 X
X—11 2 <1 s s
(X 1)‘ . X‘ ‘X_ll‘_x 2X% 1.

|

Problem 8.45. Let T : V — V be a linear transformation on a finite dimensional
vector space and let W be a subspace of V' which is stable under 7. Let T be the
restriction of 7' to W. Prove that y7, divides yr.

Solution. Choose a basis wy,...,wy of W and complete it to a basis
Wi, .oy Wiy Vi1, .- Vg Of V. Since W is stable under T the matrix of T

. . . A *
with respect to the basis wy,..., Wk, Vk+1, ..., v, is of the form [0 j|, where

A € M;(F) is the matrix of 7} with respect to wy, ..., w,. Using properties of
block-determinants (more precisely Theorem 7.43) we obtain

xr(X) = ya(X) - xp(X)

and the result follows. O

The previous problem allows us to make the precise link between characteristic
polynomial and eigenspaces: by construction the eigenvalues of a matrix can be
recovered as the roots in F' of the characteristic polynomial, but it is not clear
how to deal with their possible multiplicities. Actually, there are two different (and
important) notions of multiplicity:



8.4 The Characteristic Polynomial 327

Definition 8.46. Let 7 : V — V be a linear transformation on a finite dimensional
vector space V over F and let A € F be an eigenvalue of 7.

a) The geometric multiplicity of A is the dimension of the F-vector space Ker(A -
id—T).

b) The algebraic multiplicity of A is the multiplicity of A as a root of the
characteristic polynomial y7 of T (i.e., the largest integer j such that (X — 1)/
divides y7(X)).

Of course, we have similar definitions for the multiplicities of an eigenvalue of a
matrix: if A € M,,(F) and A € F is an eigenvalue of A, the algebraic multiplicity
of A is the multiplicity of A as a root of y 4, while the geometric multiplicity of A is
dim Ker(A1, — A). A good exercise for the reader is to convince himself that if 4
is the matrix of a linear transformation 7" with respect to any basis of V, then the
corresponding multiplicities of A for A and for T are the same.

Remark 8.47. The algebraic multiplicity and the geometric multiplicity are not
always equal: consider the matrix 4 = 8(1):| It has O as an eigenvalue with

geometric multiplicity 1: indeed the system AX = 0 is equivalent to x, = 0, thus
Ker(A) is the line spanned by the first vector of the canonical basis of F2. On the
other hand, the characteristic polynomial of A is y4(X) = X?2, thus the algebraic
multiplicity of 0 is 2. If the algebraic multiplicity of an eigenvalue A coincides
with its geometric multiplicity, we will simply refer to this common value as the
multiplicity of A.

Problem 8.48. Consider the matrix

8 —1-5
A=|-23 1 | e M5R).
4 —1-1

a) Find the characteristic polynomial and the eigenvalues of A.
b) For each eigenvalue A of A, find the algebraic and the geometric multiplicity
of A.

Solution. a) Adding the second and third column to the first one yields

X-8 1 5 X-2 1 5
aX)=| 2 X-3 -1 |=|[x-2Xx-3 -1
-4 1 X+1 X-2 1 X+1

11 5
=X-2)[1X-3 -1 |.
1 1 X+1
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To compute the last determinant, subtract the first row from the second and the
third row, then expand with respect to the first column. We obtain in the end

xa(X) = (X =2)(X —4)%.

The eigenvalues of A are the real roots of y 4, thus they are 2 and 4.

b) Since y4(X) = (X — 2)(X — 4)?, it follows that 2 has algebraic multiplicity
1 and 4 has algebraic multiplicity 2. To find the geometric multiplicity of 2, we
determine the 2-eigenspace by solving the system AX = 2X. The reader will
check without difficulty that the system is equivalent to x = y = z (where
X, ¥,z are the coordinates of X), thus the 2-eigenspace is one-dimensional and
the geometric multiplicity of the eigenvalue 2 is 1 (we could have done this
without any computation if we knew the theorem below). For the eigenvalue
4, we proceed similarly by solving the system AX = 4X. An easy computation

shows that the system is equivalent to y = —x and z = Xx, thus the 4-eigenspace
is also one-dimensional and so the geometric multiplicity of the eigenvalue 4 is
also 1. |

As we have already seen, algebraic multiplicity and geometric multiplicity are
not the same thing. The next result gives however precious information concerning
the link between the two notions.

Theorem 8.49. Let A € M,(F) and let A € F be an eigenvalue of A. Then the
geometric multiplicity of A does not exceed its algebraic multiplicity. In particular,
if the algebraic multiplicity of A is 1, then its geometric multiplicity equals 1.

Proof. Let V = F" and let T be the linear map on V attached to A. Let W =
ker(Al, — A) = ker(Aid—T'). Then W is stable under 7', thus by Problem 8.45 (and
letting T'|w be the restriction of T to W) xr|,, divides y7. On the other hand, T'|w
is simply multiplication by A on W, thus

xriy (X) = (X =) 7.

It follows that (X — A)4™W divides y 4(X) = y7r(X) and the result follows.  [J
The result established in the next problem is very important in applications:

Problem 8.50. Let A € M, (C) be a matrix with complex entries. Let Sp(A) be the
set of eigenvalues of A (we call Sp(A) the spectrum of A) and, for A € Sp(A4), let
m;, be the algebraic multiplicity of A.

a) Explain the equality of polynomials

X)) = T[] x—=nm.

2.€Sp(A)
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b) Prove that

Te(A) = Y mph.

A€Sp(A)

In other words, the trace of a complex matrix is the sum of its eigenvalues,
counted with their algebraic multiplicities.
¢) Prove that

detA = ]_[ prcs
L€Sp(A)

that is the determinant of a matrix is the product of its eigenvalues, counted
with their algebraic multiplicities. O

Solution. a) It is clear by definition of algebraic multiplicities that [ [, ¢g,4)(X —
A)™ divides y4(X) (this holds for a matrix with coefficients in any field).
To prove the opposite divisibility (which allows us to conclude since both
polynomials are monic), we will crucially exploit the fact that the matrix has
complex entries and that C is algebraically closed. In particular, we know that y 4
splits in C[X] into a product of linear factors X — z. Any such z is an eigenvalue
of A, since det(zl,, — A) = 0. Hence z € Sp(A) and by definition its multiplicity
as root of y 4(X) is m,. The result follows.

b) The coefficient of X"~ in [; cgp(4) (X —A)" is — 3=, cgp(a) M2A- On the other
hand, the coefficient of X"~! in y 4 equals —Tr(A4) by Problem 8.37. The result
follows from a).

¢) Taking X = 0 in the equality established in a) and using the fact that y4(0) =
(=1)"det A and that } ; ¢, 4) M = 1, we obtain

(—1)'detd = x40 = [][ v™ =0 [T ™.

LE€Sp(A) AESp(A)
The result follows by dividing by (—1)". |

Remark 8.51. If we replace C with R or Q the result is completely false: it may even

happen that Sp(A) is empty! Indeed, consider for instance the matrix 4 = [(1) _Ol}

Here is a nice application of the previous problem.

Problem 8.52. a) Let A € M,,(R) be a matrix such that
A* =34 421,=0.

Prove thatdet 4 € {1,2,4,....,2"}.
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b) Let k € {1,2,4,...,2"}. Construct a matrix A € M, (R) such that A> — 34 +
21, = 0and det A = k.

Solution. a) By Problem 8.27 for any complex eigenvalue A of A we have
A2—3)+2 = 0, thatis (A—1)(1—2) = 0. It follows that each complex eigenvalue
of A is either 1 or 2. Since det A is the product of all complex eigenvalues of A
(counted with their algebraic multiplicities), the result follows.

b) Write k = 27 with p € {0,1,...,n}. Then a diagonal matrix A having p
diagonal entries equal to 2 and the other diagonal entries equal to 1 is a solution
of the problem. O

8.4.1 Problems for Practice

1. Find the characteristic polynomial and the eigenvalues of the matrix
3 0-1
A=| 2 4 2 | € M3R).

-10 3

2. Find the characteristic polynomial and the eigenvalues of the matrix

1100
0101

A= My(F>).
1010 € 4(F2)

0011

3. a) Give an example of a matrix A € M,(R) whose characteristic polynomial
equals X* — X3 4+ 1.
b) Is there a matrix A € M3(Q) whose characteristic polynomial equals X3 —
/22 Give an example of such a matrix in M3 (R).
4. For each of the matrices below, compute its characteristic and minimal polyno-

mial
a)
A=|:_]_3:|
2 1
b)
100
A=1]1020

103
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8.

9.
10.

Then find their eigenvalues and the corresponding eigenspaces, by considering
these matrices as matrices with rational entries. Then do the same by consider-
ing these matrices as matrices with real (and finally with complex) entries.

. Letn > 2 and let

—
\®}
N

.22
.22
A=|2 2 1...22|eM®R.

\S]
—
\S]

a) Compute the minimal polynomial and the characteristic polynomial of A.
b) Describe the eigenvalues of A and the corresponding eigenspaces.

.a) Let A € M,(R) be the matrix associated with the projection of R”

onto a subspace W along a complementary subspace of W. Compute the
characteristic polynomial of A4 in terms of n and dim W.

b) Answer the same question assuming that A is the matrix associated with the
symmetry with respect to a subspace W along a complementary subspace
of W.

. Consider the following three 5 x 5 nilpotent matrices

01000 01000 01000
00100 00100 00100
A=]00010|, B=({00000(,C=({00000
00000 00000 00001
00000 00000 00000

Since these matrices are nilpotent they all have characteristic polynomial
xa(X) = yp(X) = yc(X) = X°.

a) Compute the minimal polynomials of these matrices and use them to show
that A4 is not similar to either B or C.

b) Compute the dimensions of the kernels of these matrices and use them to
show that B is not similar to A or C.

Let A € M,(R) be a matrix such that A*> + I, = 0. Prove that Tr(A) is an
integer.

Prove that any matrix A € M, (R) is the sum of two invertible matrices.

Let A € M, (C) be an invertible matrix. Prove that for all x # 0 we have

xl‘l

x4(0)

Xa—1(x) = xa(1/x).
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11. Let A = [a;;] € M,(C) and let A = [a;;] be the matrix whose entries are the
complex-conjugates of the entries of A. Prove that the characteristic polynomial
of AA has real coefficients. Hint: use the fact that A4 and AA have the same

characteristic polynomial.
12. Let A€ M, ,(C) and B € M, ,(C).

a) Prove the following identities for x € C

xl, A1 [ 1, Onp| _[xI,—AB A
BI,| |-BI1,] | Op I,

I, O, ) xI, A| | xI, A
-B xI, B I,| |O,,xI,—BA]|

and

b) Deduce that
XTxap(X) = X? ypa(X).

13. Let A and B be matrices in M5(C). Show that
1
det(AB — BA) = 5Tr[(AB — BA)Y.

Hint: if a, b, ¢ are the eigenvalues of AB — BA, prove thata + b + ¢ = 0 and
then that

a® +b* +c* = 3abe.
14. Prove that for all A, B € M, (C)
deg(det(XA + B)) < rank(A).
Hint: if r is the rank of A, start by reducing the problem to the case A =

I, 0
[0 O} € M,(C).

15. Let A, B, C and D be square matrices in M, (C) and let

A B
M:[C D]eMz,,(C).

a) Assume that DC = CD and that D is invertible. Check the identity

AB] [D 0] _[AD—-BC B
cCD| |-crI, | 0, D
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16.

17.

18.

19.
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and deduce that
det M = det(AD — BC).
b) Assume that DC = CD, but not necessarily that D is invertible. Prove that
det M = det(AD — BC).

Hint: consider the matrix D, = xI, + D with x € C.
¢) By considering the matrices

A= 10’ B— 10’ C — 107 D:Ol,
11 01 00 00
prove that the result in part b) no longer holds if we drop the hypothesis
CD = DC.

a) Find two matrices A, B € M4(R) with the same characteristic and minimal
polynomial, but which are not similar.

b) Can we find two such matrices in M,(R)?

Let A = [a;;] € M, (C) and let s, be the sum of all k x k principal minors of A

(thus s; is the sum of the diagonal entries of A, that is Tr(A), while s, is det A).

Prove that

HaX) = X" =5 X" 5 X" — 4 (=),

Hint: use the multilinear character of the determinant map.
Let V = M, (R) and consider the linear transformation 7 : V' — V defined by

T(A) = —A + Tr(A) - I,,.

a) Prove that V is the direct sum of the eigenspaces of T'.
b) Compute the characteristic polynomial of 7.

Let V = M, (R) and consider the linear transformation 7 : V' — V sending A
to ! A. Find the characteristic polynomial of 7. Hint: whatis T o T'?

8.5 The Cayley—-Hamilton Theorem

We now reach a truly beautiful result: any matrix is killed by its characteristic
polynomial. Recall that y 4 denotes the characteristic polynomial of A € M, (F).
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Theorem 8.53 (Cayley—-Hamilton). For all matrices A € M,,(F) we have
Xa(A4) = Oy.
In other words, if y4(X) = X" + a,_1 X"~ ' + ...+ ay, then
A"+ a, A+ L+ a1 A+ agl, = O,

There are quite a few (at least 30...) different proofs of this result, nei-
ther of them being straightforward. The reader should therefore start by finding
the error in the following classical, but unfortunately wrong argument: since
xa(X) =det(X1I, — A), we have

x4(A) =det(Al, — A) = det(4 — A) = det(O0,) = 0.
Before moving to the rather technical proofs of the previous theorem, we take a

break and focus on some applications:

Problem 8.54. Let A € M, (F). Prove that the minimal polynomial of A divides
the characteristic polynomial of A.

Solution. Since y 4 annihilates A by the Cayley—Hamilton theorem, it follows that
4 divides y 4.
|

Problem 8.55. Let A € M, (F) be an invertible matrix. Prove that there are scalars
ap, ..., d,—1 € F such that

A7 = apl, + a;A+ ...+ Cln_lAn_l.

Solution. The characteristic polynomial of A is of the form X" +b,_ X" ' 4+.. .+
b1 X + by, with by = (—1)" det A nonzero. By the Cayley—Hamilton theorem

A"+ b, AV 4+ b A+ bol, = O,.

Multiplying by 5-A~" we obtain

1 _ bn—l _ bl -
—ATT g 2y L+ A7 = 0,.
b() b() bO !
Thus we can take
b by 1
ap = — ay,=——,..., dp_1 =——.
0 by 1 bo 1 bo
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Problem 8.56. Let A € M, (C) be a matrix. Prove that the following statements
are equivalent:

a) A is nilpotent (recall that this means that A¥ = O, for some k > 1).
b) The characteristic polynomial of 4 is X".

c) A" = 0,.

d) The minimal polynomial of A is of the form X* for some k > 1.

Solution. The fact that a) implies b) follows directly from part a) of Problem 8.38.
That b) implies c) is a direct consequence of the Cayley—Hamilton theorem. If c)
holds, then X" kills A, thus the minimal polynomial of A divides X" and is monic,
thus necessarily of the form X* for some k > 1, proving that c) implies d). Finally,
since the monic polynomial of A kills A, it is clear that d) implies a). O

We will give two proofs of the Cayley—Hamilton theorem in this section. Neither
of them really explains clearly what is happening (the second one does a much better
job than the first proof from this point of view), but with the technology we have
developed so far, we cannot do any better. We will see later on a much better proof,'
which reduces (via a subtle but very useful density argument) the theorem to the
case of diagonal matrices (which is immediate).

Let us give now the first proof of the Cayley—Hamilton theorem. Let A € M,,(F)
andlet B = X1, — A € M,(K), where K = F(X) is the field of rational fractions>
in the variable X, with coefficients in F. Consider the adjugate matrix C = adj(B)
of B. Its entries are given by determinants of (n — 1) x (n — 1)-matrices whose
entries are polynomials of degree < 1 in X. Thus each entry of C is a polynomial

of degree at most n — 1 in X, with coefficients in F'. Let
cij = +elPX + . 4 e xn!

be the (i, j)-entry of C, with ci(f), el ci(;_l) € F.Let C® be the matrix whose

entries are the cl.(jl.(). Then
C=CO+cWx+. ... +Ccr Uy
Next, recall that
B-C=B-adj(B)=detB -1, = y4(X)-1,.

Thus we have

(XI, —A) - (CO 4+ VX 4+ ... +C" VX" =y (X)-I,.

"Which unfortunately works only when F C C, even though one can actually deduce the theorem
from this case.

2An element of K is a quotient 4, where A, B € F[X]and B # 0.
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Writing y4(X) = X" +u,—1 X""'+...+uy € F[X], the previous equality becomes
—ACO (€O - AC)X + (€Y —ACHX +...+(C"D — 4Cc~Dyx"!
+CUIX" = ugly + i L, X + o+ g L X"+ L X

Identifying coefficients yields
~ACO = yo1,, CO—-4ACY =u1,,...,
cr?—Ac" Y =y,1,, C"V =1,

Dealing with these relations by starting with the last one and working backwards
yields

cr V=1, C"?=A+ul,, C"P=A+u, 1 A+u I,
and an easy induction gives
CUI™D = A fuy AT
In particular
CO ="y, (A" 24 . +ul,.
Combining this with the relation —AC© = w1, finally yields
A"+ up g A+t ugl, = Oy,

thatis y4(A) = O,.

As the reader can easily observe, though rather long, the proof is fairly elemen-
tary and based on very simple manipulations. It is not very satisfactory however,
since it does not really show why the theorem holds.

We turn now to the second proof of the Cayley—Hamilton theorem. We will
actually prove the following result, which is clearly equivalent (via the choice of
a basis) to the Cayley—Hamilton theorem.

Theorem 8.57. Let V be a finite dimensional vector space over F and let
T :V — V be a linear map. Then y7(T) = 0.

Proof. The idea is to reduce the problem to linear maps for which we can compute
easily yr. The details are a little bit more complicated than this might suggest. ..
Fix an x € V. If m is a nonnegative integer, let

W, = Span(T°(x), T'(x),..., T™(x)).
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Note that Wy € W; C ... C V and that dim W,, < dim W,,4+; < dimV for all
m > 0. Hence there must be some least m such that dim W,,_; = dim W,,. Since
Wi—1 = W,,, we must have W,,_; = W,,, in other words 7" (x) lies in the subspace
W,,—1 and we can write 7" (x) as a linear combination of 7% (x) for 0 < k < m, say

m—1
T"(x) =Y aT"(x).

k=0

Note that this implies W,,_; is stable under 7. Since m is minimal, the vectors
T(x),..., T '(x) must be linearly independent (a linear dependence among
them would express a lower iterate as a linear combination of earlier iterates).
Therefore they are a basis of W,,_; and with respect to this basis the matrix of
T1 = T|Wm_1 is

000---0 aog
100---0 a;
A=1010---0 a;
000---1ap_
The characteristic polynomial of this matrix was computed in Problem 8.39 and it
equals X™ — @,,—; X" ! — ... — ay. Hence

m—1
ar(T)(x) = T"(x) = Y axTF(x) = 0.
k=0

By Problem 8.45, since W,,_; is T'-stable, the characteristic polynomial 7, of T
restricted to W,,,_; divides yr. Therefore yr(7)(x) = 0. Since x was arbitrary, we
conclude that y7(7T') vanishes when applied to any vector, that is, it is the zero linear
map. O

8.5.1 Problems for Practice

1. Prove that for any A = [a;;] € M3(C) we have
A* —Tr(A) - A* + Tr(adjA) - A —det A - 13 = 0.
2. Let A € M3(R) be a matrix such that
Tr(A) = Tr(4%) = 0.

Prove that A> = a5 for some real number «.



338 8 Polynomial Expressions of Linear Transformations and Matrices

3. Let A, B € M3(C) be matrices such that the traces of AB and (A B)? are both 0.
Prove that (AB)? = (BA)>.
4. Let A, B,C € M, (C) be matrices such that AC = CB and C # O,.

a) Prove that for all polynomials P € C[T] we have
P(A)C = CP(B).

b) By choosing a suitable polynomial P and using the Cayley—Hamilton
theorem, deduce that A and B have a common eigenvalue.

5. Let A, B € M,,(C) be matrices such that (4AB)" = O,. Prove that (BA)" = O,.
Hint: prove first that (BA)"*! = O,, then use Problem 8.56.

6. Let A € M,(C) be a matrix such that A and 34 are similar. Prove that A" =
O,. Hint: similar matrices have the same characteristic polynomial. Also use
Problem 8.56.

7. Let A € M,(C). Prove that A" = O, if and only if Tr(4*) = 0 for all k > 1.
Hint: to establish the harder direction, prove that all eigenvalues of A must be 0
and use Problem 8.56.

8. Let V be a vector space of dimension n over a field F and let T : V — V be
a linear transformation. The goal of this problem is to prove that the following
assertions are equivalent:

i) There exists a vector x € V such that x, T(x),..., 7"~ !(x) forms a basis
of V.
ii) The minimal polynomial and the characteristic polynomial of T coincide.

a) Assume that i) holds. Use Problem 8.14 to prove that deg ur > n and
conclude that ii) holds using the Cayley—Hamilton theorem.

b) Assume that ii) holds. Using Problems 8.13 and 8.14, explain why we can
find x € V such that x, T(x), T%(x), ... span V. Conclude that i) holds.

9. Letn > 1 and let A, B € M,(Z) be matrices with integer entries. Suppose
that det A and det B are relatively prime. Prove that we can find matrices
U,V € M,(Z) such that AU + BV = I,,.



Chapter 9
Diagonalizability

Abstract The main focus is on diagonalizable matrices, that is matrices similar to
a diagonal one. We completely characterize these matrices and use this to complete
the proof of Jordan’s classification theorem for arbitrary matrices with complex
entries. Along the way, we prove that diagonalizable matrices with complex entries
are dense and use this to give a clean proof of the Cayley—Hamilton theorem.

Keywords Diagonalizable ¢ Trigonalizable ¢ Jordan block < Jordan’s
classification

In this chapter we will apply the results obtained in the previous chapter to study
matrices which are as close as possible to diagonal ones. The diagonal matrices are
fairly easy to understand and so are matrices similar to diagonal matrices. These
are called diagonalizable matrices and play a fundamental role in linear algebra.
For instance, we will prove that diagonalizable matrices form a dense subset of
M, (C) (i.e., any matrix in M, (C) can be approximated to arbitrary precision with
a diagonalizable matrix) and we will use this result to give a very simple proof
of the Cayley—Hamilton theorem over C, by reducing it to the case of diagonal
matrices (which is trivial). Also, we will prove that any matrix A € M,(C) is
the commuting sum of a nilpotent and of a diagonalizable matrix, showing once
more the importance of diagonalizable (and nilpotent) matrices. We then use the
classification of nilpotent matrices obtained in the chapter concerned with duality to
prove the general form of Jordan’s theorem, classifying all matrices in M,,(C) up to
similarity. Along the way, we give applications to the resolution of linear differential
equations (of any order) with constant coefficients, as well as to linear recurrence
sequences.

A large part of the chapter is devoted to finding intrinsic properties and
characterizations of diagonalizable matrices. In this chapter F' will be a field, but
the reader will not loose anything by assuming that F is either R or C.
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9.1 Upper-Triangular Matrices, Once Again

Recall that a matrix A = [a;;] € M,(F) is called upper-triangular if a;; = 0
whenever i > j, that is all entries of A below the main diagonal are zero. We have
already established quite a few results about upper-triangular matrices, which make
this class of matrices rather easy to understand. For instance, we have already seen
that the upper-triangular matrices form a vector subspace of M, (F) which is closed
under multiplication. Moreover, it is easy to compute the eigenvalues of an upper-
triangular matrix: simply look at the diagonal entries! It is therefore easy to compute
the characteristic polynomial of such a matrix: if A = [a;;] is an upper-triangular
matrix, then its characteristic polynomial

xa(X) =X —aip).

i=1

Before dealing with diagonalizable matrices, we will focus on the trigonalizable
ones, i.e., matrices A € M, (F) which are similar to an upper-triangular matrix. We
will need an important definition:

Definition 9.1. A polynomial P € F[X] is split over F if it is of the form
PX)=c(X—a))...(X —ay)

for some scalars ¢, ay,...,a, € F (not necessarily distinct).

For instance, X2 + 1 is not split over R since it has no real root, but it is split over
C,since X>4+1 = (X +i)(X —i). On the other hand, the polynomial X?>—3X 42 is
split over R, since it factors as (X —1)(X —2). It is pointless to look for a polynomial
in C[X] which is not split, due to the following amazing theorem of Gauss:

Theorem 9.2 (The Fundamental Theorem of Algebra). Any polynomial
P e C[X] is split over C.

This theorem is usually stated as: C is an algebraically closed field, that is any
nonconstant polynomial equation with complex coefficients has at least one complex
solution. The previous theorem is actually equivalent to this usual version of Gauss’
theorem (and it is a good exercise for the reader to prove the equivalence of these
two statements).

By the previous discussion, the characteristic polynomial of an upper-triangular
matrix is split over F. Since the characteristic polynomials of two similar matrices
are equal, we deduce that the characteristic polynomial of any trigonalizable matrix
is split over F.

Problem 9.3. Give an example of a matrix A € M,(R) which is not trigonalizable
in M. 2 (R)
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Solution. Since the characteristic polynomial of a trigonalizable matrix is split
over R, it suffices to find a matrix A € M,(R) whose characteristic polynomial
is not split over R. Consider the matrix

A= [ 0 1] |
-10
Its characteristic polynomial is X2 + 1, which is not split over R. Thus A4 is not
trigonalizable in M;(R). O

The following fundamental theorem gives an intrinsic characterization of trigo-
nalizable matrices.

Theorem 9.4. Let A € M,(F) be a matrix. Then the following assertions are
equivalent:

a) The characteristic polynomial of A is split over F.
b) A is similar to an upper-triangular matrix in M, (F).

Proof. The discussion preceding the theorem shows that b) implies a). We will
prove the converse by induction on n. It is clearly true for n = 1, so assume that
n > 2 and that the statement holds for n — 1.

Choose a root A € F of the characteristic polynomial y4 of A (we can do it,
thanks to the hypothesis that y 4 is split over F'), and choose a nonzero vector v € F"
such that Av = Av. Since v # 0, we can complete v; to a basis vy,...,v, of
V = F". The matrix of the linear transformation 7" attached to A with respect to
the basis vy, ..., v, is of the form

A%
03]

for some B € M,,_(F). Thus we can find an invertible matrix P; such that

_ A %
=[]

for some B € M,_;(F). Since similar matrices have the same characteristic
polynomial, we obtain

xa(X) = XPIAPI—I(X) = (X =V yxpX),

the last equality being a consequence of Theorem 7.43. It follows that yp is split
over F. Since B € M,_,(F), we can apply the inductive hypothesis and find
an invertible matrix Q € M,_(F) such that QBQ ™' is upper-triangular. Let

P, = |:(1) gi|, then P, € M,(F) is invertible (again by Theorem 7.43 we have
det P, = det Q # 0) and
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o A
Py(P AP P! = [0 QB*Q‘l]

is upper-triangular. Setting P = P, Py, the matrix PAP ™! is upper-triangular, as
desired. O

Combining the previous two theorems, we obtain the following very important
result:

Corollary 9.5. For any matrix A € M,(C) we can find an invertible matrix
P € M, (C) and an upper-triangular matrix T € M, (C) such that A = PTP™".
Thus any matrix A € M, (C) is trigonalizable in M, (C).

Proof. By Gauss’ theorem the characteristic polynomial y4 of A is split over C.
The result follows from Theorem 9.4. O

As a beautiful application of Corollary 9.5, let us give yet another proof of the
Cayley—Hamilton theorem for matrices in M, (C) (the result applies of course to
matrices in M,(Q) or M, (R)). Recall that this theorem says that y4(4) = O, for
any matrix A € M,(C), where y 4 is the characteristic polynomial of A. We will
prove this in two steps: first, we reduce to the case when A is upper-triangular, then
we prove the theorem in this case by a straightforward argument.

Let A € M,(C) be a matrix and let P be an invertible matrix such that the matrix
T = PAP~!is upper-triangular. We want to prove that y 4(4) = O,, but

xa(A) = xa(P7'TP) = P~ x4(T)P = P~ x7(T)P,

the last equality being a consequence of the fact that A and 7" are similar, thus have
the same characteristic polynomial. Hence it suffices to prove that y7(7T) = O,, in
other words, we may and will assume that A is upper-triangular.

Letey,...,e, be the canonical basis of C" and consider the polynomials

k
0c(X) = [](X —ai),

i=1

so that 0, = x4 (since A is upper-triangular). We claim that Q(A)e; = 0 for
1 <i < kandforalll <k < n. Accepting this for a moment, it follows that
0,(A)e; =0foralll <i < n,thatis y4(A)e; = Oforall 1 <i < n, which is
exactly saying that y 4(A4) = O,.

It remains to prove the claim, and we will do this by induction on k. If k = 1, we
need to check that Q(A)e; = 0, thatis (A —ay;I,)e; = 0, or equivalently that the
first column of A —ay; 1, is zero, which is clear since A is upper-triangular. Assume
now that Qy(A)e; = 0 for 1 < i < k, and let us prove that Qy4(A)e; = 0 for
1<i<k+1.1f1<i<k,then Qr(A)e; = 0 yields

Ok+1(A)e; = (A — ak+14+11,) Qi (A)e; = 0.
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Ifi =k + 1, then

Or+1(Ae; = Ok (A)(A — akvrh+11n)ei =

k
Qi (A)(Ae; — arrikrie) = =Y i1 Qk(A)e; =0,
i=1
since Q(A)e; = 0for 1 <i < k. The inductive step is established and the claim
is proved.

Problem 9.6. Let A € M,(C) and let Q € C[X] be a polynomial. If the
characteristic polynomial of A equals []/_,(X — A;), prove that the characteristic

polynomial of Q(4) equals []/_;(X — O(1))).

Solution. By the previous corollary we can writt A = PTP~! for some
P € GL,(C) and some upper-triangular matrix 7. The characteristic polynomial
of T is the same as that of A4, and it is also equal to [['_ (X — ;) if T = [t;;].
Thus the diagonal entries of T are A1, ..., A, (up to a permutation). Next, Q(A4) =
PQ(T)P~" and the characteristic polynomial of Q(A) is the same as that of Q(T).
But Q(T) is again upper-triangular, with diagonal entries Q (1), ..., Q(4,), so

Xow = xom = [(X = Q).

i=1

O
Problem 9.7. Let A € M,(C) have eigenvalues A(,...,A, (counted with their
algebraic multiplicities). Prove that for all 9 € C[X] we have
n n
det Q(A) = [[ o). Tr(Q(A) =D Q).
i=1 i=1
Solution. Simply combine the previous problem with Problem 8.50. O

9.1.1 Problems for Practice

1. For each of the following matrices decide whether A is trigonalizable over R or
not:
121
a) A=|322]{.
011

b)A:[l4]
25
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X

2. Find all real numbers x for which the matrix 4 =
x—124+x

able in M, (R).
3. Find an upper-triangular matrix which is similar to the matrix

o)

4. Find an upper-triangular matrix which is similar to the matrix

] is trigonaliz-

100
210
321

5. A matrix A € M5(C) has eigenvalues 1, 2, —1. Find the trace and the determinant
of A3+ 24+ I.

6. Let A € M, (F) be a matrix. Prove that A4 is nilpotent if and only if A is similar
to an upper-triangular matrix all of whose diagonal entries are 0.

7. Let A, B € M, (C) be matrices such that AB = BA.

a) Prove that each eigenspace of B is stable under the linear transformation
attached to A.

b) Deduce that A and B have a common eigenvector.

¢) Prove by induction on 7 that there is an invertible matrix P such that PAP ™!
and PBP~! are both upper-triangular.

8. Let A, B € M,(C) be two matrices. Recall that the Kronecker or tensor product
of A and B is the matrix A ® B € M,2(C) defined by

Cl]]B alzB Cl]nB
a21B azzB aan

AQ B =
anB apB ...a,,B
We recall that

(A® B)- (A ® B') = (A44") ® (BB')

for all matrices 4, A’, B, B’ € M,,(C).

a) Consider two invertible matrices P, Q such that P~'AP and Q~'BQ are
upper-triangular. Prove that (P ® Q)™'(4 ® B)(P ® Q) is also upper-
triangular and describe its diagonal entries in terms of the eigenvalues of A
and B.
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b) Deduce that if

X)) =]]X =) and (X)) =]](X =)
i=1

i=1

then

xaes(X) = [T]]X = Ain))

i=1j=1

9.2 Diagonalizable Matrices and Linear Transformations

Diagonal matrices are fairly easy to understand and study. In this section we study
those matrices which are as close as possible to being diagonal: the matrices
which are similar to a diagonal matrix. We fix a field F'. All vector spaces will
be considered over F' and will be finite-dimensional.

Definition 9.8. a) A matrix A € M, (F) is called diagonalizable if it is similar to
a diagonal matrix in M, (F).

b) A linear transformation 7' : V' — V on a vector space V is called diagonalizable
if its matrix in some basis of V is diagonal.

Thus a matrix A € M, (F) is diagonalizable if and only if we can write
A= PDP™!

for some invertible matrix P € M, (F) and some diagonal matrix D = [d;;] € M, (F).
Note that any matrix which is similar to a diagonalizable matrix is itself
diagonalizable. In particular, if 7 is a diagonalizable linear transformation, then
the matrix of 7 with respect to any basis of V is still diagonalizable (but not
diagonal in general).

We can give a completely intrinsic characterization of diagonalizable linear
transformations, with no reference to a choice of basis or to matrices:

Theorem 9.9. A linear transformation T : V. — V on a vector space V is
diagonalizable if and only if there is a basis of V consisting of eigenvectors of T.

Proof. Suppose that T is diagonalizable. Thus there is a basis vy, ..., v, of V such
that the matrix A of T with respect to this basis is diagonal. If (a;;)1<i<n are the
diagonal entries of A, then by definition T (v;) = a;;v; for all 1 < i < n, thus

Vi, ...,V is a basis of V consisting of eigenvectors for 7.
Conversely, suppose that there is a basis vy,...,v, of V consisting of eigen-
vectors for 7. If T'(v;) = d,v;, then the matrix of T" with respect to vy, ..., v, is

diagonal, thus T is diagonalizable. O
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Remark 9.10. One can use these ideas to find an explicit way to diagonalize a
matrix A. If A € M,(F) is diagonalizable, then we find a basis of IV = F”
consisting of eigenvectors and we let P be the matrix whose columns are this
basis. Then P~'AP = D is diagonal and A = PDP~!,

Remark 9.11. Suppose that A is diagonalizable and write A = PDP ™' for some
diagonal matrix D and some invertible matrix P.

a) The characteristic polynomials of A and D are the same, since A and D are
similar. We deduce that

[TX = dit) = xa(x).

i=1

In particular, the diagonal entries of D are (up to a permutation) the eigenvalues
of A (counted with algebraic multiplicities). This is very useful in practice.

b) Let A be an eigenvalue of A. Then the algebraic multiplicity of A equals the
number of indices i € [1,n] for which d;; = A (this follows from a)). On
the other hand, the geometric multiplicity of A as eigenvalue of A or D is the
same (since X — P~!X induces an isomorphism between Ker(A, — 4) and
Ker(AI, — D), thus these two spaces have the same dimension). But it is not
difficult to see that the geometric multiplicity of A as eigenvalue of D is the
number of indices i € [1,n] for which d;; = A, since the system DX = AX is
equivalent to the equations (d;; — A)x; = 0 for 1 <i < n. We conclude that for
a diagonalizable matrix, the algebraic multiplicity of any eigenvalue equals
its geometric multiplicity.

Problem 9.12. Show that

is not diagonalizable when a # 0.

Solution. Suppose that A is diagonalizable and writt 4 = PDP~! with P
invertible and D diagonal. Since A is upper-triangular with diagonal entries equal
to 1, we deduce that the eigenvalues of A are equal to 1. By the previous remark
the diagonal entries of D must all be equal to 1 and so D = I,. But then
A= PI,P~! = I,, acontradiction. O

Problem 9.13. Prove that the only nilpotent and diagonalizable matrix A € M,,(F)
is the zero matrix.

Solution. Suppose that 4 is diagonalizable and nilpotent and write A = PDP ™!,
By Problem 8.38 and the previous remark we obtain

n

X" = ya(X) =X —du).

i=1

Thus d;; = O foralli and then D = O, and A = PO, P~ = 0O,. |
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The study of diagonalizable matrices is more involved than that of trigonalizable
ones. Before proving the main theorem characterizing diagonalizable matrices, we
will prove a technical result, which is extremely useful in other situations as well
(the reader will find two more beautiful applications of this result in the next
section).

Letk > 1be an integer and let Py, ..., Py pairwise relatively prime polynomials
in F[X]. Denote P = Pj ... P the product of these k polynomials.

Problem 9.14. Let Q; = %. Prove that Q1, ..., Oy are relatively prime, i.e., there
is no nonconstant polynomial Q dividing all Q, ..., Q.

Solution. Suppose there is an irreducible polynomial Q that divides Q; for all i.
Since Q|Q1 = P,--- Py, we deduce that Q divides P; for some j € {2,...,k}.
But since Q divides Q;, it also divides P; for some i # j, contradicting that P;
and P; are relatively prime. O

Note that it is definitely not true that Qi,..., Q) are themselves pairwise
relatively prime: if k > 2, then both Q| and Q, are multiples of Py.
The technical result we need is the following:

Theorem 9.15. Suppose that T is a linear transformation on some F -vector space
V' (not necessarily finite dimensional). Then for any pairwise relatively prime
polynomials Py, ..., P, € F[X] we have

k
ker P(T) = @D ker Pi(T),
i=1
where P = PP, ... Py.

Proof. Consider the polynomials Q; = ,% as in the previous problem. Since

they are relatively prime, Bezout’s lemma' yields the existence of polynomials
Ry, ..., Ry such that

ORI +...4+ QxR =1 9.1)
Since P; divides P, it follows that ker P;(T') C ker P(T) for alli € [1,k]. On
the other hand, take x € ker P(T') and let x; = (Q; R;)(T)(x). Then relation (9.1)

shows that

X=x1+x2+ ...+ x¢.

IThis lemma says that if A, B € F[X] are relatively prime polynomials, then we can find
polynomials U,V € F[X] such that AU + BV = 1. This easily yields the following more
general statement: if Py, ..., Py are polynomials whose greatest common divisor is 1, then we can
find polynomials Uy, ..., Uy suchthat U P} + ... + Uy Py = 1.
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Moreover, P;(T)(x;) = (P;Q;R;)(T)(x) and P; Q; R; is a multiple of P. Since
x € ker P(T) C ker(P;Q;R;)(T), it follows that x; € ker P;(T), and since
X = X1 + ...+ X, we conclude that

k
ker P(T) = Z ker P;(T).

i=1

It remains to prove that if x; € ker P;(T) and x; + ...+ x; = 0,then x; = 0
foralli € [1, k]. We have

O1(T)(x1) + OQ1(T)(x2) + ...+ O1(T)(xx) = 0.

But Qi(T)(x2) = ... = Q1(T)(xx) = 0, since Q; is a multiple of P,, ..., Pk
and P,(T)(x2) = ... = Pr(T)(xx) = 0. Thus Q;(T)(x;) = 0 and similarly
Q;i(T)(x;) =0for1 < j < k.Butthen

x1 =R Q)(T)(x1) + ... + (Re Q)(T)(x) =0
and similarly we obtain x; = ... = x; = 0. The theorem is proved. O

We are now ready to prove the fundamental theorem concerning diagonalizable
linear transformations.

Theorem 9.16. Let V be a finite dimensional vector space over F and let
T : V — V be a linear transformation. The following assertions are equivalent:

a) T is diagonalizable.

b) There is a polynomial P € F[X] which splits over F and has pairwise distinct
roots, such that P(T) = 0.

¢) The minimal polynomial wr of T splits over F and has pairwise distinct roots.

d) Let Sp(T) C F be the set of eigenvalues of T. Then

P ker(T —1-id) = V.

A€Sp(T)

Proof. We start by proving that a) implies b). Choose a basis in which T is
represented by the diagonal matrix D. Let P be the polynomial whose roots are
the distinct diagonal entries of D. Then P(T) is represented by the diagonal matrix
P (D) with entries P(d;;) = 0. Thus P(T) = 0.

That b) implies c) is clear since the minimal polynomial of 7" will divide P and
hence it splits over F', with distinct roots.

That c) implies d) is just Theorem 9.15 applied to P the minimal polynomial of
T and P; its linear factors.

Finally, to see that d) implies a), write Sp(T) = {A1, ..., A;} and choose a basis
Vi,...,V, of V obtained by patching a basis of ker(7 — A, - id), followed by a basis
of ker(T — A, -id), .. ., followed by a basis of ker(T — A, -id). Then vy, ..., v, form
a basis of eigenvectors of T, thus a) holds by Theorem 9.9. O
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Remark 9.17. a) If T is a diagonalizable linear transformation, then example 8.9

b

C

)

~

shows that the minimal polynomial of 7 is

pr(X)= ] &x=n,

A€Sp(T)

the product being taken all eigenvalues of 7', counted without multiplicities.
Taking the same product, but counting multiplicities (algebraic or geometric, they
are the same) of eigenvalues this time, we obtain the characteristic polynomial
of T.

If T is any linear transformation on a finite dimensional vector space V', then T
is diagonalizable if and only if the sum of the dimensions of the eigenspaces of
T equals dim V, i.e.,

> dimker(T — A -id) = dim V.
AeSp(T)

Indeed, this follows from the theorem and the fact that the subspaces ker(7 —A-id)
are always in direct sum position.

Suppose that T is diagonalizable. For each A € Sp(T) let w; be the projection
on the subspace ker(7 — A - id). Then

T = Z Aﬂ/\.

AeSp(T)

This follows from @jesp(r) ker(T — A -id) = V and the fact that if

v= > v with v €ker(T —2-id).
A€Sp(T)

then

Tw= Y Tw)= Y An= Y Am®.

1€Sp(T) 1€Sp(T) 2€Sp(T)

Due to its importance, we will restate the previous theorem in terms of matrices:

Theorem 9.18. Let A € M, (F). Then the following assertions are equivalent:

a) A is diagonalizable in M, (F).
b) If Sp(A) is the set of eigenvalues of A, then

P ker(Al, — A) = F".
AESP(A)

¢) The minimal polynomial w4 of A is split over F, with pairwise distinct roots.
d) There is a polynomial P € F[X] which is split over F, with pairwise distinct

roots and such that P(A) = O,,.
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In the following problems the reader will have the opportunity to check the
comprehension of the various statements involved in the previous theorem.

Problem 9.19. Explain why the matrix A with real entries is diagonalizable in each
of the following two cases.

(a) The matrix A has characteristic polynomial

X3 -3X%+2X.
(b)

10000
03000
A=100400
00032
00014

Solution. (a) We have
X3 —3X2 42X =X(X*>-3X +2) = X(X - (X —2),

which is split, with distinct roots. Since this polynomial kills A (by the Cayley—
Hamilton theorem), the result follows from the implication “b) implies a)”
in Theorem 9.16. We can also argue directly, as follows: if vi,v,,v; are
eigenvectors corresponding to the eigenvalues 0, 1, 2, then vy, v, v3 are linearly
independent (since the eigenvalues are distinct) and thus must form a basis
of R?. Thus A is diagonalizable (by Theorem 9.9 and the discussion preceding
it).
(b) We have

xa(X) =det(XIs — A4) = (X — D(X =3)(X —H[(X = 3)(X —4) — 2]
= (X=1)(X=3)(X—4)(X2=7X +10) = (X—1)(X —2)(X =3)(X —4)(X =5).

This polynomial is split with distinct roots, so the same argument as in part a)
yields the result. O

Problem 9.20. Consider the matrix

010
A=1]001
100

a) Is A diagonalizable in M5(C)?
b) Is A diagonalizable in M3(R)?
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Solution. One easily finds that the characteristic polynomial of A4 is y4(X) =
X3 —1. This polynomial is split with distinct roots in C[X], thus A is diagonalizable
in M3;(C). On the other hand, A is not diagonalizable in M;3(R), since its
characteristic polynomial does not split in R[X]. O

Problem 9.21. Let

~7-16 4
A=|6 13 —2| e M3R)
12 16 1

(a) Prove that A = 5 is an eigenvalue of A.
(b) Diagonalize A, if possible.

Solution. (a) We have

—12-16 4
A-5I=| 6 8 =2
12 16 —4

and the last row is the opposite of the first row. Thus A — 57 is not invertible
and 5 is an eigenvalue of A.

(b) We take advantage of part a) and study the 5-eigenspace of A. This is described
by the system of equations

—12x — 16y +4z =0
6x +8y —2z=0
12x + 16y —4z =0
As we have already remarked in part a), the first and the third equations are
equivalent. The system is then equivalent (after dividing the first equation by 4
and the second one by 2) to
—3x—4y+z=0
3x+4y—2z=0
Again, the first and second equations are equivalent. Thus the 5-eigenspace is
ker(A —51) = {(x,y,3x +4y)|x,y € R}
and this is a two-dimensional vector space, with a basis given by

V1 :(1,0,3), V2:(0,1,4).

We deduce that 5 has algebraic multiplicity at least 2. Since the sum of the
complex eigenvalues of A equals the trace of A, whichis =7 + 13 + 1 = 7, we
deduce that —3 is another eigenvalue of A, and the corresponding eigenspace is a
line. Solving the system AX = —3X yields the solution (-2, 1, 2). We deduce that
a diagonalization of A is given by
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10-27T50 0 1027
A=(011 050 (]01 1 . O
342 1100-3][342

Problem 9.22. Consider the matrix

010
A=|-440| e M3R).
212

Is this matrix diagonalizable?

Solution. We start by computing the characteristic polynomial

X -1 0
xaX)=14X-4 0 =(X - 2)‘ ‘
2 -1 X-=-2 4 X4

(X —2)(X*—4X +4) = (X —2)°.

Thus 2 is an eigenvalue of A with algebraic multiplicity 3. If A is diagonalizable,
then 2 would have geometric multiplicity 3, that is Ker(4 — 273) would be three
dimensional and A = 217;. Since this is certainly not the case, it follows that A is
not diagonalizable. O

Problem 9.23. Find all values of a € R for which the matrix

21 -2
A=|1la-1|¢e M;R)
111

is diagonalizable.

Solution. As usual, we start by computing the characteristic polynomial y4(X)
of A. Adding the first column to the third one, then subtracting the first row from
the third one, we obtain

X-2 -1 2

xaX)=| -1 X—-a 1 =
-1 -1 X+1

X-2 -1 X

-1 X—-a0|=XX-1)(X—a).

I-X 0 0

If a ¢ {0,1}, then y4(X) is split with distinct roots and since it kills A (by the
Cayley—Hamilton theorem), we deduce that A is diagonalizable.
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Suppose that a = 0, thus 0 is an eigenvalue of A with algebraic multiplicity 2.
Let us find its geometric multiplicity, which comes down to solving the system
AX = 0. This system reads to

2X1 +x,—2x3=0
X1—x3=0
X1+X2—X3=0

and its solutions are (x1, 0, x;) with x; € R. As this space is one dimensional, we
deduce that the geometric multiplicity of 0 is 1 and so A is not diagonalizable.

If a = 1, a similar argument shows that 1 is an eigenvalue with algebraic
multiplicity 2 and with geometric multiplicity 1, thus A is not diagonalizable. All in
all, the answer of the problem is: all @ € R\ {0, 1}. O

Problem 9.24. Diagonalize, if possible, the matrix
40-2

A=|25 4 | e My(R)
005

Solution. We start by computing the characteristic polynomial of A:
X—-4 0 2

—2 X-5 —4 :(X—S)’
0 0 X-5

X—-—4 0

5 X_5'=(X—4)(X—5)2.

We deduce that 4 has two eigenvalues, namely 4 with algebraic multiplicity 1
and 5 with algebraic multiplicity 2. Next, we study separately the corresponding
eigenspaces. Since 4 has algebraic multiplicity 1, we already know that the 4-
eigenspace will be a line. To find it, we write the condition AX = 4X as the system

4x — 2z = 4x
2x + 5y +4z =4y
5z =4z

This system can easily be solved: the last equation gives z = 0, the first one becomes
tautological and the second one gives y = —2x. Thus the 4-eigenspace is the line
spanned by v; = (1, -2, 0).

Next, we study the 5-eigenspace. Write the equation AX = 5X as the system

4x — 27 = 5x
2x + 5y +4z=>5y
57 =15z
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The last equation is tautological. The first equation gives x = —2z and the second
one becomes then tautological. Thus the solutions of the system are (—2z, y,z) =
¥(0,1,0) + z(—2,0, 1) with y,z € R?. We deduce that the 5-eigenspace is two-
dimensional, with a basis given by v, = (0,1,0) and v = (2,0, 1).

Since the sum of the dimensions of the eigenspaces equals 3 = dimR?, we
deduce that A is diagonalizable and vy, v,,v3 form a basis of eigenvectors. The
matrix P whose columns are the coordinates of v;,v,,v3 with respect to the
canonical basis is

1 0-2
P=|-210
00
We have
400
A=PDP7', with D=]050]. O
005

We end this section with some more theoretical exercises.

Problem 9.25. Let T be a diagonalizable linear transformation on a finite dimen-
sional vector space V over a field F'. Let W be a subspace of V' which is stable
under 7. Prove that T'|y : W — W is diagonalizable.

Solution. Since 7' : V — V is diagonalizable, there is a polynomial P € F[X] of

the form P = (X — Ay)...(X — Ax) with Ay,..., Ay € F pairwise distinct, such
that P(T) = 0. Since P(T)(v) = O forall v € V, we have P(T)(w) = 0 for all
w e W.Thus P(T|w) = 0 and so T |y is diagonalizable by Theorem 9.16. |

The result established in the next problem is very useful in many situations.

Problem 9.26. Let V' be a finite dimensional vector space over a field F and let
Ti,T, : V — V be linear transformations of V. Prove that if 7; and 7>, commute,
then any eigenspace of 75 is stable under 7.

Solution. Let A € F be an eigenvalue of 75 and let £} = ker(A - id — T5) be the
corresponding eigenspace. If v € E), then T>(v) = Av, thus

(T (v)) = Ti(T2(v)) = T1(Wv) = ATi(v)

and so T7(v) € E,. The result follows. O

Problem 9.27. Let V be a finite dimensional vector space over a field F' and let
T, T, : V — V be diagonalizable linear transformations of V. Prove that 7} and
T, commute if and only if they are simultaneously diagonalizable.
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Solution. Suppose first that 7} and 7, are simultaneously diagonalizable. Thus
there is a basis B of V' in which the matrices of 7} and 7, are diagonal, say D;
and D,. We clearly have DD, = D, D, thus the matrices of 71 o T, and T, o T
coincide in this basis and so 77 0 T, = T3 o Tj.

Conversely, suppose that 77 and 7, commute. Let A, ..., A; be the distinct
eigenvalues of 7} and let W; = ker(T; — A;) be the corresponding eigenspaces.
Since T is diagonalizable, we have V. = W, @& ... & W;. Since T} and T;
commute, 75 leaves each W; invariant by Problem 9.26. Since 75 is diagonalizable,
so is its restriction to W;, by Problem 9.25. Thus there is a basis B; of W;
consisting of eigenvectors for 7,|y;. Consider the basis B’ consisting of all vectors
in By U...U By. Then B’ consists of eigenvectors for both T} and T (this is clear
for T,, and holds for 7} since T} acts on W; by the scalar A;). Thus the matrices of
T\ and T in the basis B’ are both diagonal and the result follows. O

Problem 9.28. Let A be an invertible matrix with complex coefficients and let
d > 1. Prove that A is diagonalizable if and only if A¢ is diagonalizable. What
happens if we don’t assume that A is invertible?

Solution. Suppose that A is diagonalizable, thus there is an invertible matrix P such
that PAP ! is a diagonal matrix. Then (PAP~")? = PA? P~ is also a diagonal
matrix, hence A is diagonalizable. This implication does not require the hypothesis
that A is invertible.

Suppose now that A? is diagonalizable and that A is invertible. Since A< is diag-
onalizable and invertible, its minimal polynomial is of the form (X —A) ... (X =A%)
with Aq, ..., Ax pairwise distinct and nonzero. Consider the polynomial P(X) =
(X4 —=4y)... (X4 =Ly). Since each of the polynomials X¢ —A,,..., X4 — A, has
pairwise distinct roots and since these polynomials are pairwise relatively prime,
their product P has pairwise distinct roots. Since P(A4) = 0, we deduce that A4 is
diagonalizable.

Finally, if we only assume that A¢ is diagonalizable and A is not invertible, then
one of the eigenvalues of A is 0. Hence one of the factors of the matrix P(X) above
becomes X“. Since this does not have distinct roots the proof breaks down. Indeed
A need not be diagonalizable in this case. For instance, consider the matrix A =
|:g é:| This matrix satisfies 4> = 0, thus A? is certainly diagonalizable. However,
A is not diagonalizable. Indeed, if this was the case, then A would necessarily be the
Zero matrix, since its eigenvalues are all 0. Hence for the more difficult implication
one cannot drop the hypothesis that A is invertible. O

Problem 9.29. Let A be a matrix with real entries such that 4% = A2.

a) Prove that A2 is diagonalizable.
b) Find A if its trace equals the number of columns of A.

Solution. a) The hypothesis yields 4* = A3 = A2, thus (4%)> = A2 It follows
that A is killed by the polynomial X(X — 1), which has pairwise distinct and
real roots. Thus A? is diagonalizable.
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b) Let n be the number of columns of A. The trace of A equals 7, and this is also the
sum of the complex eigenvalues of A, counted with their algebraic multiplicities.
By hypothesis each eigenvalue A satisfies A> = A2, thus A € {0, 1}. Since the
n eigenvalues add up to n, it follows that all of them are equal to 1. Thus all
eigenvalues of A2 are 1 and using part a) we deduce that A> = I,,. Combining
this with the hypothesis yields 4 - I, = I,, and then A = I,,, which is the unique
solution of the problem.

O

Problem 9.30. Let A; € M,(F) and A, € M,(F) and let

A0
A= [ b Aj € Mysy(F).

Prove that A is diagonalizable if and only if A; and A, are diagonalizable.

Solution. If P € F[X]is a polynomial, then

P(A) 0 }

P(d) = [ 0 P(A)

If A is diagonalizable, then we can find a polynomial P which splits over F into a
product of distinct linear factors and which kills A. By the previous formula, P also
kills Ay and A;, which must therefore be diagonalizable.

Suppose now that A; and A, are diagonalizable, thus we can find polynomials
P, P, which split over F into products of distinct linear factors and which kill 4,
and A, respectively. Let P be the least common multiple of P; and P,. Then P splits
into a product of distinct linear factors and kills A, which is therefore diagonalizable.

An alternative solution is based on the study of eigenspaces of A. Namely, it is
not difficult to see that for any A € F we have

ker(A — Al,4y) = ker(A; — Al),) @ ker(4, — Al,).

Now a matrix X € M, (F) is diagonalizable if and only if @,er ker(X — Al,) =
F", from where the result follows easily. m|

9.2.1 Problems for Practice

1. a) Diagonalize the matrix

EN
Il

12
)
in My (C).

b) Do the same by considering A as an element of M;(R).
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2. For each matrix A below, decide if A is diagonalizable. Explain your reasoning.
If A is diagonalizable, find an invertible matrix P and a diagonal matrix D such
that P~'AP = D.

(a)

500
A=]050| € M3R)
105

(b)

300
A=1050| e Ms(R)
105

3. a) Letay,...,a, be complex numbers and let A = [a;a;]i<; j<n € M,(C).
When is A diagonalizable?
b) Letay,...,a, bereal numbers and let A = [a;a;]i<; j<n € M,(R). When
is A diagonalizable?
4. Let A be the n x n matrix all of whose entries are equal to 1. Prove that A €
M, (R) is diagonalizable and find its eigenvalues.
5. Compute the nth power of the matrix

133
A=313
331

Hint: diagonalize A.
6. Find all differentiable maps x, y,z : R — R such that x(0) = 1, y(0) = 0,
z(0) = 0 and

X'=y+z yY=x+z 7=x-3y+4z

0 11
Hint: the matrix A = | 1 01 | has an eigenvalue equal to —1. Use this to
1-34

diagonalize A. How is this related to the original problem?
7. Let V be a finite dimensional vector space over Candlet 7 : V — V be a
linear transformation.

a) Prove that if 7 1is diagonalizable, then T? is diagonalizable and
ker T = ker T2.

b) Prove that if 72 is diagonalizable and kerT = kerT?, then T is
diagonalizable.
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10.

11.

12.

13.

9 Diagonalizability

. Let A, B € M, (F) be matrices such that A4 is invertible and A B is diagonal-

izable. Prove that BA is also diagonalizable. What happens if we don’t assume
that A is invertible?

. Find all matrices A € M3(R) such that

900
A*=1140
111

900
Hint: start by diagonalizing the matrix | 1 4 0 | and prove that any solution of
111
the problem is diagonalizable and commutes with this matrix.
Let A € M,(C) be a matrix such that A? = I, for some positive integer d.
Prove that

a) A is diagonalizable with eigenvalues d'th roots of unity.
b) Deduce that

d
1 ,
dimker(4 — 1I,) = 7 E Tr(A").

i=1

Let F be an arbitrary family of diagonalizable matrices in M,,(C). Suppose that
AB = BA for all A, B € F. Prove that there is an invertible matrix P such
that PAP~! is diagonal for all A € F. Hint: proceed by induction on n and use
Problem 9.26 and the arguments in the solution of Problem 9.27.

(Functions of a diagonalizable matrix) Let A € M, (F) be a diagonalizable
matrix with A = PDP~! and D diagonal with diagonal entries d;;. Let f :
F — F be any function and let f(D) be the diagonal matrix with (i,7) entry
f(d;;). Define f(A) = Pf(D)P~".

a) Prove that f(A) is well defined. That is, if we diagonalize A in a different
way, we will get the same matrix f(A). (Hint: there is a polynomial p with
p(dii) = f(dii).)

b) Prove that if A is diagonalizable over F = R and m is odd, then there is a
diagonalizable matrix B with B = A.

Let A, B € M, (R) be diagonalizable matrices such that
AB’ = B°A.

Write B = PDP~! with P invertible and D diagonal.

a) Let C = P~'AP. Prove that CD> = D°C.
b) Prove that CD = DC. Hint: use the injectivity of the map x — x> (x € R).
¢) Deduce that AB = BA.



9.3 Some Applications of the Previous Ideas 359

14. Let A € M,(C) and let B = [/01 ﬂ € M,,(C).

a) Prove that for all P € C[X] we have
| P(A) AP'(4)
ra=[ "0 20D |

b) Deduce that B is diagonalizable if and only if A = O,,.

15. Find all matrices A € M, (R) such that A°> = A2 and the trace of A equals 7.
Hint: prove that all complex eigenvalues of A are equal to 1 and then that A is
diagonalizable in M, (C).

16. Let A, B € M, (R) be diagonalizable matrices such that 4> = B°>. Prove that
A = B. Hint: use problems 13 and 9.27.

17. Let V be a finite dimensional C-vector space and let 7 : V — V be a linear
transformation such that any subspace of V' which is stable under T has a
complement which is stable under 7'. Prove that T is diagonalizable.

18. Let V' be a finite dimensional vector space over some field F andlet 7T : V —
V be a diagonalizable linear transformation on V. Let C(T') be the set of linear
transformations S : V — V suchthat SoT =T o S.

a) Prove that a linear transformation S : V' — V belongs to C(T) if and only
if S leaves invariant each eigenspace of 7.

b) Let m, be the algebraic multiplicity of the eigenvalue A of T. Prove that
C(T) is an F-vector space of dimension ) _, mi, the sum being taken over
all eigenvalues A of T'.

c) Suppose that the eigenvalues of 7 are pairwise distinct. Prove that
id, T, T?,...,T""" form a basis of C(T) as F-vector space.

9.3 Some Applications of the Previous Ideas

In this section we would like to come back to the technical result given by

Theorem 9.15 and give some further nice applications of it. First of all, we will apply

it to the resolution of linear differential equations with constant coefficients.
Consider the following classical problem in real analysis: given complex num-

bers ag, ay, . .. ,a,—1 and an open interval / in R, find all smooth functions f:/—C
such that
FP) + ana fOVX) L arf (X)) +aof(x) =0 9.2)

for all x € I. Here £ is the ith derivative of f.
It follows from elementary calculus that any solution of Eq. (9.2) is smooth,
i.e., infinitely differentiable. Let V' be the space of smooth functions f : I — C.
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Note that V' is an infinite dimensional vector space over C, but we had no finiteness
assumption in Theorem 9.15, so we can use it for this vector space. Consider the
linear transformation 7" sending a map f in V to its derivative

T:V—V, T(f)=/f"
Then T*(f) = f® for all k > 0, thus solving Eq. (9.2) is equivalent to finding
ker P(T), where
PX)=X"4+a,.,. X" ' +... +a

is the characteristic polynomial of Eq. (9.2). Since we work over the complex
numbers, we can factor

d
P(X) =][(x -z

i=1

for some positive integers k1, ..., k; and some pairwise distinct complex numbers
21, ...,24- By Theorem 9.15 we have

d
ker P(T) = @) ker(T —z; -id)"

i=1
so it suffices to understand ker(7 — z - id)¥, where z is a complex number and k is a
positive integer. Let g € V' be the map

g(x) = e™,

so that g’ = zg. Then for any f € V we have

(T —z-id)(fg) = (fg) —zfg = f'g.

thus by an immediate induction

(T —z-id)*(fg) = fPg.

Take h € ker(T —z-id)¥ and let f = h/g (note that g has no complex zero). Then
the previous computation gives f*) = 0, that is f is a polynomial map of degree
less than k. Conversely, the same computation shows that any such f gives rise to
an element of ker(T — z-id)* (if multiplied by g). We conclude that ker(T — z - id)*
consists of the maps x — g(x)P(x), with P a polynomial of degree < k — 1 with
complex coefficients, a basis of ker(T —z-id)¥ being given by the maps x > x/ ",
where 0 < j <k — 1.
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Putting everything together, we obtain the following:

Theorem 9.31. Let ay, ..., a,—1 be complex numbers and write

d
X" + an_lxn—l +...4a= H(X _Zi)ki.

i=1

a) The complex-valued solutions of the differential equation
FO 4 a, fO V4 4af tanf =0

are the maps of the form

d
X f(x) =) e Pi(x),

i=1

where P; is a polynomial with complex coefficients whose degree does not exceed
ki —1.

b) The set of complex-valued solutions of the previous differential equation is a
vector space of dimensionn = k| + ...+ kg over C, a basis being given by the
maps x — xJe%* wherel <i <d and0 < j <k;.

We consider now the discrete analogue of the previous problem, namely linear
recurrence sequences. Let ay, ..., ays—; be complex numbers and consider the set
S of sequences (x,),>0 of complex numbers such that

Xn4d = AoXp + A1 Xp41 + ... + Ad—1Xn4d—1
foralln > 0.
First of all, it is clear that an element of S is uniquely determined by its first d
terms Xo, . . ., X4—1. In other words, the map

S —CY (Xp)azo P> (X0, X1, ...\ Xa—1),

which is clearly linear, is bijective and so an isomorphism of vector spaces. We
deduce that

dimS =d.
We would like to describe explicitly the elements of S. We proceed as above,
by working in the big space V of all sequences (x,),>0 of complex numbers and

considering the shift map

T:V — Va T((xn)nz()) = (xn+l)nz()~
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Note that 7 is clearly a linear map and that
TH((Xn)nz0) = (Xn4k)nz0-
It follows that
S =ker P(T), where P(X)=X%—a;,X"—... —a

is the characteristic polynomial of the recurrence relation. As before, factorizing

P
P(T) =[x —z)"

i=1

we obtain using Theorem 9.15 that

P
S = @ ker(T -z - id)"

i=1

and so the problem is reduced to understanding the space ker(T — z - id)* where 7 is
a complex number and k is a positive integer.

Let us start with the case z = 0, i.e., understanding ker Tk, We have
Tk((x,,)nzo) = 0 if and only if x,4; = O for all n > 0, i.e., the sequence
X0, X1, ... becomes the zero sequence starting with index k. A basis of ker Tk is
given by the sequences x@, ..., x*=1, where x(/) is the sequence whose jth term
is 1 and all other terms O.

Assume now that z # 0. Let x = (x,),>0 be any sequence in V' and define a new

sequence y = (yn)nZO by

yn:z_”

for n > 0. One can easily check by induction on j that
(T —z-id)! (x) = @/(T =id)! ()n)nz0,

where (T —id)/ (y),, is the nth component of the sequence (7 — id)/ (y). It follows
that

x € ker(T —z-id)* ifand only if y € ker(T — id)*.
We are therefore reduced to understanding Ker(7 — id)*. If k = 1, a sequence

X = (Xy)n>o0 is in Ker(T — id)* if and only if x,,+1 — x, = O forn > 0, i.e., x isa
constant sequence. If k = 2, a sequence x = (x,,),0 is in Ker(7 —id)* if and only
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if (T —id)(x) is a constant sequence, i.e., the sequence (x,+1 — X, ),>0 iS constant,
that is x is an arithmetic sequence or equivalently

X, =an—+b

for some complex numbers a, b. In general, we have

Proposition 9.32. Ifk is a positive integer, then ker(T —id)¥ is the set of sequences
of the form

X, =ag+an—+...+ ak_lnk_l
with ay, ...,ax—1 € C, a basis of it being given by the sequences

Y = (nj)nzo

for0 < j <k — 1 (with the convention that 0° = 1).

Proof. Tt suffices to prove that the sequences x@, ..., x*~D form a basis of
ker(T — id)~.

First, we prove that x©O . x®=D gre linearly independent. Indeed, if not, then
we can find complex numbers uy, . . ., ur—;, not all 0, such that for alln > 0

up+un+...+ uk_lnk_l =0.

The polynomial ug +u; X +. .. +u;—; X*~! is then nonzero and has infinitely many
roots, a contradiction.

Next, we prove that x/) € ker(T — id)¥ for 0 < j < k — 1, by induction on k.
This is clear for k = 1, and assuming that it holds for k — 1, it suffices (thanks to
the inductive hypothesis and the inclusion ker(T —id)*~! C ker(T —id)*) to check
that x*=1 ¢ ker(T — id)¥, or equivalently that

(T —id)x* ™Y = ((n + D1 —n*1),50 € ker(T —id)* 7",
But the binomial theorem shows that ((n + 1)¥~! —n¥~1), ¢ is a linear combination
of x©, ..., x%*=2 which all belong to ker(T — id)*~! by the inductive hypothesis,
hence the inductive step is proved.
To conclude, it suffices to prove that dimker(7 — id)* < k for all k, which we

do again by induction on k. This has already been seen for k = 1, and if it holds for
k — 1, then the rank-nullity theorem applied to the map

T —id : ker(T —id)* — ker(T —id)¥~!
yields

dimker(T —id)* < dimker(7 — id) + dimker(7 — id)*~".
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Now dimker(7 —id) < 1 and by induction dimker(7 — id)*~' < k — I, hence
dimker(7 —id)* < k and the inductive step is completed. The proposition is finally
proved. O

We can now put everything together and the previous discussion yields the
following beautiful:

Theorem 9.33. Let ay,...,as—1 be complex numbers. Consider the polynomial
p
P(X) = Xd —ad_le_l —...—qayp = H(X —Zi)ki
i=1

and assume for simplicity that ay # 0, so that all z; are nonzero.
Let S be the set of sequences (x,)n>0 of complex numbers such that

Xn+d = AoXn + A1 Xn41 + ... + Ad—1Xn+d—1

foralln > 0.

a) A sequence (X,)n>0 is in S if and only if there are polynomials Q; with complex
coefficients, of degree not exceeding k; — 1, such that for all n

Xp = Ql(n)Z’f +...+ Qp(n)Z';,.

b) S is a vector space of dimension d over C, a basis being given by the sequences
(Zn!)i<i<po<j<ki-

We promised that we will use the ideas developed in this chapter to give a
very natural and simple proof of the Cayley—Hamilton theorem for matrices with
complex entries. It is now time to honor our promise! We will need some topological
preliminaries, however. . .

A sequence of matrices (Ay)r>0 in M,,(C) converges to a matrix A € M, (C)
(which we denote by Ay — A) if for all i, j € [1,n] the sequence with general
term the (i, j)-entry of A converges (as a sequence of complex numbers) to the
(i, j)-entry of A. Equivalently, the sequence (A )x>o converges to A if forall e > 0
we have

max |[(Ax)ij — Aij| <e
1<i,j<n

for all k large enough (depending on &). We leave it to the reader to check that if
Ay — A and By — B, then Ay + By — A + B and Ay - By — A - B. Finally,
a subset S of M, (C) is dense in M, (C) if for any matrix A € M, (C) there is a
sequence of elements of S which converges to A. That is, any matrix in M, (C) is
the limit of a suitable sequence of matrices in S

The following fundamental result makes the importance of diagonalizable
matrices fairly clear.
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Theorem 9.34. The set of diagonalizable matrices in M, (C) is dense in M, (C).
In other words, any matrix A € M, (C) is the limit of a sequence of diagonalizable
matrices.

Proof. Suppose first that 7" is an upper-triangular matrix with entries 7;;. Consider
the sequence Ty of matrices, where all entries of 7 except the diagonal ones are
equal to the corresponding entries in 7', and for which the diagonal entries of T} are
tii + k% Clearly, lim oo Ty = T. We claim that if k is large enough, then T} is
diagonalizable. It suffices to check that the eigenvalues of T} are pairwise distinct.
But since T is upper-triangular, its eigenvalues are the diagonal entries. Thus it
suffices to check that for k large enough the numbers #;; + %, tn + klz, T kL,,
are pairwise distinct, which is clear.

Now let A € M, (C) be an arbitrary matrix. By Corollary 9.5 we can write
A = PTP~! for some invertible matrix P and some upper-triangular matrix 7.
By the previous paragraph, there is a sequence Dy of diagonalizable matrices which

converges to T'. Then D; := PD; P~ is a sequence of diagonalizable matrices
which converges to A. Thus any matrix is a limit of diagonalizable matrices and the
theorem is proved. O

Remark 9.35. a) We can restate the theorem as follows: given any matrix A =
[a;;] € M,(C) and any & > 0, we can find a diagonalizable matrix B = [b;;] €
M,,(C) such that

max |a;; —b;j| <e.
1<i,j<n

b) This result is completely false over the real numbers: the diagonalizable matrices
in M, (R) are not dense in M, (R). The reason is that the characteristic polyno-
mial of a diagonalizable matrix is split. One can prove that if lim, ., 4, = A
and A, is diagonalizable for all 7, then the characteristic polynomial of 4 is split.
Conversely, if this happens, then A is trigonalizable in M, (R) and the proof of
the previous theorem easily yields that A is a limit of diagonalizable matrices
in M, (R). We deduce that the trigonalizable matrices in M, (R) are precisely
the limits of sequences of diagonalizable matrices in M, (R). In other words, a
matrix A € M, (R) is trigonalizable if and only if it can be approximated to any
precision by a diagonalizable matrix in M, (R).

Using the previous theorem, we can give a very simple and natural proof of the
Cayley—Hamilton theorem.

Theorem 9.36 (Cayley—-Hamilton). Forany matrix A € M,,(C) we have y 4(A) =
O,, that is A is annihilated by its characteristic polynomial.

Proof. If A is diagonal, the result is clear: if a1, ..., a, are the diagonal entries of
A, then y4(X) = (X —ay)...(X —a,) and clearly this polynomial annihilates A
(since it vanishes at ay, ..., a,).
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Next, suppose that A is diagonalizable. Thus we can write A = PDP~! for an
invertible matrix P and a diagonal matrix D. Since A and D are similar, we have
X4 = xp-So we need to check that yp(A4) = O,. But

xp(A) = xp(PDP™") = Pyp(D)P~" = 0,,

the last equality being a consequence of the first paragraph and the equality
1p(PDP~™') = Pyp(D)P~! being a consequence of linearity and of the equality
(PDP~Y)* = PD*P~!forall k > 0.

Finally, let A € M,(C) be arbitrary. By Theorem 9.34 there is a sequence
(Ax)k>1 of diagonalizable matrices such that Ay — A. The coefficients of y g4,
are polynomial expressions in the coefficients of Ay and since limy_, o A = A, it
follows that the coefficient of X¢ in y 4, converges to the coefficient of X in y4
for all d < n. Now write

X4, (X) =ao(k)+a1 (k)X +...+a,(k)X", xsa(X)=ao+a1 X+...+a,X".
By the previous paragraph we know that
ao(k) 1, + ai(k)Ax + ... + an(k) Ay = Oy

for all k. Passing to the limit and using the fact that AZ — A’ and a; (k) — a; for
alli > 0, we deduce that

xa(A) =aol, +a A+ ...+ a,A" =
klim (ao(k) I, + a1 (k) Ak + ... + ay(k)A}) = O,
—>00

finishing the proof of the theorem. O

Remark 9.37. a) The second half of the proof of the previous theorem essentially
proves that if a polynomial equation on C" holds on a dense subset, then it holds
everywhere. The reader is strongly advised to convince himself that he can adapt
the argument to prove this very useful result.

b) In fact by using some deep facts from algebra one can show that the Cayley—
Hamilton theorem for the field C just proven implies the Cayley—Hamilton
theorem over an arbitrary field. One first needs to know that one can choose
n* elements x;; of C such that there is no polynomial equation with integer
coefficients (in n? variables) satisfied by the x; ; (this is a generalization of a
transcendental number which is a number that satisfies no polynomial equation
with integer coefficients). Then since the Cayley—Hamilton theorem holds for the
matrix with entries x;;, we conclude that each coefficient of the Cayley—Hamilton
theorem gives a polynomial identity in n? indeterminates which holds over the
integers. Second, one needs to know that for any field F and any n” elements a;;
of F there is a morphism (a map respecting addition and multiplication) from
Z[x11,...,Xu,) to F taking x;; to a;;. Thus each coefficient also vanishes in F
for the matrix A = (a;;) and the Cayley—Hamilton theorem holds for F.
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We will end this chapter by explaining how we can combine the ideas seen so far
with Jordan’s Theorems 6.40 and 6.41 to obtain a classification up to similarity of
all matrices A € M,,(C) (Theorems 6.40 and 6.41 classified nilpotent matrices up
to similarity).

Suppose that V' is a finite dimensional vector space over a field F and that T :
V' — V is a trigonalizable linear transformation on V. Recall that this is equivalent
to saying that the characteristic polynomial of T is split over F. For instance, if
F = C, then any linear transformation on V is trigonalizable. Let

d

xr(X) =[Jx =)k

i=l1

be the factorization of the characteristic polynomial of 7', with Ay,...,A; €
F pairwise distinct and ky,...,k; positive integers. Thus k; is the algebraic
multiplicity of the eigenvalue A;.

By the Cayley—Hamilton theorem y7(7') = 0, thus Theorem 9.15 yields

d
V = @Pker(T - A; -id)".

i=1

We call the subspace
Ci =ker(T — A; -id)k

the characteristic subspace of A;. Note that the A;-eigenspace is a subspace of C;
and that the previous relation can be written as

d
V=@a.
i=l1

Since T commutes with (T — A; - id)%, T leaves invariant C; = ker(T — A, - id)%,
thus each characteristic subspace C; is stable under 7.

Let 7; be the restriction of 7' — A; -id to C;. By definition, Tl-k" =0, thus 7; is a
nilpotent transformation on C;, of index not exceeding k;. Thus T; is classified up
to similarity by a Jordan matrix, that is there is a basis B; of C; in which the matrix
of T; is

o, 0 ... 0
0 Jip; oo O
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for a sequence k; > ... > k,, ; of positive integers adding up to dim C;. We recall
that

010...0
001...0
o=
000...1
000...0

is the Jordan block of size k.

Definition 9.38. If A € F, we let
JoA)=A-1,+ J, € M,(F)

the Jordan block of size n associated with A.
The previous discussion naturally leads to

Theorem 9.39 (Jordan). Let T : V — V be a trigonalizable linear transforma-
tion on a finite dimensional vector space. Then there is a basis of V' in which the
matrix of T is of the form

JgRX) 0 ... 0
0 JuAy)... 0
0 0 ... Jk,(Ag)
for some positive integers ki, .. ., ky adding up to n and some Ay, ..., Ay € F.

Proof. With notations as above, we found a basis 5; of C; in which the matrix of
the restriction of T to C; is Jaim, (A;). Patching these bases B; yields a basis of V
in which the matrix of 7" has the desired form. a

We can restate the previous theorem in terms of matrices:

Theorem 9.40 (Jordan). Any trigonalizable matrix A € M,(F) is similar to a
matrix of the form

Jo(A) 0 ... 0
0 Ju(a)... 0
0 0 ... J,(ha)

for some positive integers ky, ..., k, adding up to n and some Ay, ..., gy € F.
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The story isn’t quite finished: we would like to know when two block-diagonal
matrices as in the theorem are similar, in other words we would like to know if

Aly...,Aqg and ky, ..., kg are determined by the similarity class of the matrix
Jg@Ap) 0 ... 0
Do “
0 0 .. Jy0)

Suppose that A is a matrix similar to the matrix (x). Then the characteristic
polynomial of A is

d
xa(X) =[] 2o, Q) (X).

i=1

Now, since J,, is nilpotent we have y;, (X) = X" and so

X5,0n(X) = (X =21)".

It follows that

d
xa(X) =[x =)

i=1

and so necessarily A1, ..., A, are all eigenvalues of A. Note that we did not assume
that A,..., A, are pairwise distinct, thus we cannot conclude from the previous
equality that kq, ..., kg are the algebraic multiplicities of the eigenvalues of A. This
is not true in general: several Jordan blocks corresponding to a given eigenvalue
may appear. The problem of uniqueness is completely solved by the following:

Theorem 9.41. Suppose that a matrix A € M, (F) is similar to

JeygR) 0 ... 0
0 JupA)... 0
0 0 ... Jk,(Ag)
for some positive integers ki, ..., kg adding up to n and some Ay,..., Ay € F.

Then

a) Each A; is an eigenvalue of A.
b) For each eigenvalue A of A and each positive integer m, the number of Jordan
blocks J,,(A) among Ji, (A1), ..., Ji,(Aq) is
Np(A) = rank(A — AL,)" ! — 2rank(A — A1,)" + rank(A — AL,)" !

and depends only on the similarity class of A.
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Proof. We have already seen part a). The proof of part b) is very similar to the
solution of Problem 6.43. More precisely, let B = A — A, and observe that B is
(Ji, (A1) = AL 0 0

0 Ty (ha) = ML) ... 0

similar to , thus

0 0 ...(Jkd(ld)—klkd)m

d
rank(B™) = Zrank(]k,. (A) — ALg)™.
i=1

Now, the rank of (J,,(1) — ul,)™ is

e nif A # w, asin this case
JoQA)—pul, =J,+ A=,

is invertible,
e n—mforA = pand m < n, as follows from Problem 6.42.
e OforA =pandm >n,as J) = O,.

Hence, if N,,(1) is the number of Jordan blocks J,,,(A) among Ji, (A1), ..., Ji,
(Aq), then

rank(B™) = Z (ki —m) + Z ki,

Ai=A Ai#A
ki=m
then subtracting these relations for m — 1 and m yields

rank(B™ ") — rank(B") = Z 1

Ai=A
ki>m

and finally
rank(B" ") — 2rank(B") + rank(B" ") = (rank(B™ ') — rank(B"))—
(rank(B™) — rank(B"*)) = > 1 = N,,(A).
A=A

ki =m

as desired. O

Note that if an eigenvalue A has algebraic multiplicity 1, then there is a single
Jordan block attached to A, and it has size 1.
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Example 9.42. Consider the matrix

1 000 2
00100
A= 00000
0 1000
—-1000-2

We compute y4(X) by expanding det(X /5 — A) with respect to the third row
and obtain (using again an expansion with respect to the second row in the new
determinant)

X-100 =2 Y_10 o
X
xa(X) =X 8 _1; 8 =X’ 0 X 0
1 00X+2 b oXx+2
X—-1 =2
= X3 : X+2'=X4(X+1)

The eigenvalue —1 has algebraic multiplicity 1, thus there is a single Jordan
block associated with this eigenvalue, of size 1. Let us deal now with the eigenvalue
0, which has algebraic multiplicity 4. Let N,, be the number of Jordan blocks of size
m associated with this eigenvalue. By the previous theorem

N = rank(A4?%) — 2rank(4) + 5,
N, = rank(A4%) — 2rank(A4?) + rank(A)

and so on. One easily checks that A has rank 3. Next, one computes

~1000-2 1000 2
0000 0 0000 0
A>=] 00000 |, A= 00000
00100 0000 0
1000 2 ~1000-2

Note that A% has rank 2 (it is apparent that a basis of the space spanned by its rows
is given by the first and fourth row) and A has rank 1. Thus

N =2-2-345=1,

thus there is one Jordan block of size 1 and

N,=1-2-243=0,
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thus there is no Jordan block of size 2. Since the sum of the sizes of the Jordan
blocks associated with the eigenvalue 0 is 4, and since we already know that there
is a block of size 1 and no block of size 2, we deduce that there is one block of size
3 and so the Jordan canonical form of A is

—-10000
00000
00010
00001
00000

9.3.1 Problems for Practice

1. Given a real number @ and two real numbers a, b, find all twice differentiable
functions f : R — R satisfying f(0) = a, f'(0) = b and

f//—"_wzf:()

2. Find all smooth functions f : R — R such that f(0)=1, f’(0)=0, f”(0)=0
and

T+ f =0

3. Let V be a finite dimensional F-vector space and let 7 : V' — V be a linear
transformation such that 7° = id.

a) Prove that V = Ker(T —id) @ Ker(T? + T + id).
b) Prove that

rank(7 —id) = dimKer(7? + T + id).
¢) Deduce that
V = Ker(T —id) & Im(T — id).
4. Describe the sequences (x,),>0 of complex numbers such that
Xpts + Xp43 — Xpp1 — X, =0

foralln > 0.
5. Find the Jordan canonical form of the matrix
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1 0 -3
A= 1 —-1-6
-1 2 5

6. Compute the Jordan canonical form of the matrix

1100
0120
0010
0002

A=

7. Consider the matrix

(011000
000210
000012
000000
000000

1000000 |

a) Prove that A> = Os and find the characteristic polynomial of A.
b) Find the Jordan canonical form of A.

8. What are the possible Jordan forms of a matrix whose characteristic polynomial
is (X — 1)(X —2)*?

9. Consider a matrix A€ M¢(C) of rank 4 whose minimal polynomial is X(X — 1)
(X —2)%

a) What are the eigenvalues of 4?
b) Is A diagonalizable?
¢) What are the possible forms of the Jordan canonical form of A?

10. Prove that any matrix similar to a matrix of the form

JoA) 0 ... 0
0 Ju(a)... 0
0 0 ... Ji, (M)

is trigonalizable (this is a converse to Jordan’s theorem).
11. a) What is the minimal polynomial of J, (1) when A € Cand n > 1?
b) Explain how we can compute the minimal polynomial of a matrix in terms
of its Jordan canonical form.
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12.

13.

14.

15.

16.

17.

9 Diagonalizability

Prove that two matrices A, B € M, (C) are similar if and only if P(A) and

P (B) have the same rank for all polynomials P € C[X].

Use Jordan’s theorem to prove that any matrix A € M, (C) is similar to its

transpose.

a) Prove thatif A € M, (C) is similar to 24, then A is nilpotent.

b) Use Jordan’s theorem to prove that if A € M,(C) is nilpotent then A is
similar to 2A.

LetT : V — V be atrigonalizable linear transformation on a finite dimensional

vector space V' over a field F. Let

d

xr(T) =[x =)

i=1

be the factorization of its characteristic polynomial and let
C; = ker(T — A; -id)~

be the characteristic subspace of A;.

a) Prove that ker(T — A; -id)* = C; for all k > k;. Hint: use Theorem 9.15 to
show that V = ker(T — A; - id)* & @ ;;C;, then take dimensions.
b) Prove that

dim Cl' = ki.

Hint: consider the matrix of 7 with respect to a basis of V' obtained by
patching a basis of C; and a basis of a complementary subspace of C;. What
is its characteristic polynomial?

c¢) Prove that the smallest positive integer k for which

ker(T — A; -id)f = G
is the multiplicity of A; as root of the minimal polynomial of 7.

(The Dunford-Jordan decomposition) a) Using Jordan’s theorem, prove that any
trigonalizable linear transformation 7 : V' — V on a finite dimensional vector
space is the sum of a diagonalizable and of a nilpotent transformation, the two
transformations commuting with each other.

b) State the result obtained in a) in terms of matrices.
b) Conversely, prove the sum of a nilpotent and of a diagonalizable transforma-
tions which commute with each other is trigonalizable.

(More on the Dunford—Jordan decomposition) Let 7 : V — V be a

trigonalizable linear transformation with

d

xr(T) = l_[(X — Ak

i=1
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as in Problem 15. Let C; be the characteristic subspace of the eigenvalue A;.
We define the A;-spectral projection 7, as the projection of V' onto C; along
@ ;% C;. Thus by definition if v € V is written as v; + ... + vq withv; € C;,
then

m, (V) = ¢.

a) Use the proof of Theorem 9.15 to show that
Ty € F[T]

b) Let

d
D IZ/\,"JT)“.

i=1

Prove that D is a diagonalizable linear transformation on V, that N=T—-D
is nilpotent and N o D = D o N. Thus D, N give a Dunford—Jordan
decomposition of 7'.

¢) Prove that D and N are in F[T].

d) Deduce from part ) that if D’ is diagonalizable, N’ is nilpotent, D’ and N’
commute and D’ + N’ = T, then D’ = D and N’ = N. In other words,
the pair (D, N) in the Jordan—Dunford decomposition is unique.

e) Find the Dunford—Jordan decomposition of the matrices

-11 0 110 1 0 -3
A= 0 -1 1 B=J]011|, C=]1 -1-6
0 0 -1 001 -1 2 5



Chapter 10
Forms

Abstract This chapter has a strong geometrical flavor. It starts with a discussion
of bilinear and quadratic forms and uses this to introduce Euclidean spaces and
establish their main geometric properties. This is in turn applied to linear algebra,
leading to a classification of symmetric and orthogonal matrices with real entries.

Keywords Quadratic form ¢ Bilinear form ¢ Polar form ¢ Euclidean space
e Inner-product < Positive-definite  matrix ¢ Orthogonal projection
* Gram—Schmidt algorithm

The goal of this last chapter is to make a rather detailed study of Euclidean spaces
over the real numbers. Euclidean spaces make the link between linear algebra,
geometry and analysis. They are therefore of fundamental importance. The geo-
metric insight they offer also reveals unexpected and deep properties of symmetric
and orthogonal matrices. Thus on the one hand proving the fundamental theorems
concerning Euclidean spaces will use essentially everything we have developed so
far, so this is also an opportunity to see real applications of linear algebra, on the
other hand the geometry of Euclidean spaces helps discovering and proving many
interesting properties of matrices! Among the important topics discussed in this
chapter, we mention: basic properties of bilinear and quadratic forms, orthogonality
and inequalities in Euclidean spaces, orthogonal projections and their applications
to minimization problems, orthogonal bases and their applications, for instance
to Fourier analysis, the classification of isometries (i.e., linear transformations
preserving distance) of an Euclidean space, the classification of symmetric matrices,
and its applications to matrix inequalities, norms, etc. In all this chapter we work
with the field F = R of real numbers. Many exercises (left to the reader) are devoted
to the analogous theory over the field of complex numbers.
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378 10 Forms
10.1 Bilinear and Quadratic Forms

We have already introduced the notion of d-linear form on a vector space in the
chapter devoted to determinants. We will be concerned with a special case of this
notion, and for the reader’s convenience we will give the detailed definition in this
special case:

Definition 10.1. Let V' be a vector space over R. A bilinear form on V' is a map
b :V x V — R such that

e Forall x € V the map b(x,-) : V — R sending v to b(x, v) is linear.
e Forall y € V the map b(-, y) : V — Rsending v to b(v, y) is linear.

The bilinear form b is called symmetric if »(x, y) = b(y,x) forall x,y € V.

Remark 10.2. If x1,...,x, € V,y1,...,ym € Vand ay,...,a,,c1,...,cm € R,
then for any bilinear form b on V' we have

b(Y aixi, ) cjy)) = Y aic;b(xi,y)) (10.1)

i=1 j=1 i=1j=1

In particular, if V is finite dimensional and if ¢4, . . ., ¢, is a basis of V, then b is
uniquely determined by its values at the pairs (e;,e;) with 1 < i, j <n (ie,if
b, b’ are bilinear forms on V and b(e;,e;) = b'(e;,e;) forall 1 < i,j < n, then
b=1").

Example 10.3. a) Ifay,...,a, are real numbers and V' = R”, then setting for x =
(x1,....,xp)and y = (y1,..., ¥n)
b(X, y) =a1x1y1+...+apxXpyn

yields a symmetric bilinear form on V. The choice a; = ... = a, = 1l is
particularly important and in this case we call b the canonical inner product
onR".

b) Consider the space V' of continuous, real-valued functions on [—1, 1]. Then

1
b(fg) = / (g

is a symmetric bilinear form on V, as the reader can easily check.
c) Let V be the space M,,(R) of n x n matrices with real entries, and consider the
map b : V x V — R defined by

b(A, B) = Tr(AB).
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d)

e)

Then b is a symmetric bilinear form on V. A slightly different and more
commonly used variant is

b'(A, B) = Tr(A'B).

The reason why &' is preferred to b is that one can easily check that if A = [a;;]
and B = [b;;], then

b/(A, B) = Z aijb,-j,

ij=I

that is if we identify V = R”’ via the canonical basis of V, then b’ becomes
identified with the canonical inner product on R”.

Let V be the space of sequences (x,),>1 of real numbers for which Y, ., x2 is
a convergent series. Define B

b(x,y) = anyn

n>1

for x = (X4)u>1 and y = (¥u)u>1 in V. Note that the series ) . X, Vu
converges since it converges absolutely. Indeed, we have (|x,| — |y,])> > 0
which can be written as

X3+ o
2

[x0 yn| <

2 2
and by assumption the series with general term X”JFTy” converges. One can easily
check that b is a symmetric bilinear form on V.

Let V be the space of polynomials with real coefficients and, for P, Q € V,
define
P(n)Q(n)
b(P.Q)=)_ —
n>1

Note that the series converges absolutely, since n% /2" = O(1/n?) forall k > 1.
Then b is a symmetric bilinear form.

It follows easily by unwinding definitions that the set of all bilinear forms on V' is

naturally a vector subspace of the vector space of all maps V' x V' — R. Moreover,
the subset of symmetric bilinear forms is a subspace of the space of all bilinear
forms on V. To any bilinear form b one can attach a map of one variable

q:V —>R, gqx)=b(x,x).
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This is called the quadratic form attached to 5. Let us formally define quadratic
forms:

Definition 10.4. A quadratic form on V isa map g : V — R for which there is a
bilinear form b : V x V' — R such that ¢(x) = b(x, x) forall x € V.

A natural question is whether the bilinear form b attached to a quadratic form
as in the previous definition is uniquely determined by the quadratic form. So the
question is whether we can have two different bilinear forms by, b, such that

bi(x,x) = by(x,x)

for all x. Stated differently, is there a nonzero bilinear form b such that b(x, x) =0
for all x € V? The answer is yes: consider the bilinear form » : R> x R — R
defined by

b((Xl,yl), (Xz, yz)) = X1)2 — X2)1.

Clearly this is a nonzero bilinear form and b(x, x) = 0 for all x. On the other hand,
if we further impose that » should be symmetric, then we have uniqueness, as
shows the following fundamental:

Theorem 10.5. For any quadratic form q : V — R there is a unique symmetric
bilinear formb : 'V x V — R such that g(x) = b(x,x) forall x € V. It is
determined by the polarization identity

qx +y)—qx) —q(y)
> .

b(x,y) =

Proof. Fix a quadratic form g : V' — R. By hypothesis we can find a bilinear (but
not necessarily symmetric) form B such that g(x) = B(x, x) for all x € V. Define
amapb:V xV — Rby

qgx +y)—qx)—q(y)
> .

b(x,y) =

We claim that b is a symmetric bilinear form and b (x, x) = ¢g(x). By definition,
we have

B(x+y,x+y)— B(x,x)— B(y,y)_

b(x,y) = 7

Since B is bilinear, we can write
B(x +y.x+y) = B(x,x) + B(x.,y) + B(y,x) + B(y, y).

Thus

B(x,y) + B(y,x)
5 )

b(x,y) =
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This makes it clear that b(x, x) = B(x,x) = g(x) and that b(x, y) = b(y, x) for
all x, y € V. Itremains to see that b is bilinear. But for fixed x the maps B(x, -) and
B(-, x) are linear (since B is bilinear), thus so is the map

_ B(x,) + B(-, x)

b(x,-) 7

Similarly, b(:, x) is linear for all x € V/, establishing that b is bilinear and proving
the claim.

Let us now show that b is unique. If b’ is another bilinear symmetric form such
that b’(x, x) = ¢g(x) for all x, then a computation as in the previous paragraph gives

gx+y)=b'(x+y.x+y) =
b'(x,x) +2b"(x,y) + b'(y.y) = q(x) + q(y) + 2b'(x, y),

thus necessarily b’(x, y) = b(x, y) for all x, y, thatis b’ = b. O

Definition 10.6. If b is attached to ¢ as in the previous theorem, we call b the polar
form of g.

Example 10.7. a) Consider the space V' = R” and the map ¢ : R” — R defined by
(X1, X)) = X7+ ..+ X2
Then g is a quadratic form and its polar form is
b((x1,.. s Xn), V1see s Vn)) = X1V1 4+ oo+ Xy Vn-
Indeed, let us compute for x = (xy,...,x,)and y = (y1,..., Vn)

G +y)—q(x) —q(y) _ Yo (i + i)’ = Y P = Y
2 2

n
= E Xi Vi -
i=1

The map (x, y) — Y :_, x;y; being bilinear and symmetric, it follows on the
one hand that ¢ is a quadratic form and on the other hand that b is its polar form.

b) Consider the space V' of continuous real-valued maps on [0, 1] and define ¢q :
V — Rby

1
a(f) = fo F()dx.
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To see that ¢ is a quadratic form and to find the polar form of f, we compute

9(f+8) = a(f) —a(®) _ Jo(f()+8(0)2dx — [y f(x)*dx— fy g(x)*dx
2 2

1
- /0 F()g()dx.

Since the map b defined by b( f, g) = fol f(x)g(x)dx is bilinear and symmetric,
it follows that ¢ is a quadratic form with polar form b.
¢) As a counter-example, consider the map ¢ : R — R defined by

q(x.y) = x> +2y% + 3x.

We claim that ¢ is not a quadratic form. Indeed, otherwise letting b its polar form
we would have

b((x,y). (x,y)) = x* +2y* + 3x

for all x, y € R%. Replacing x by —x and y by —y and taking into account that
b is bilinear, we obtain

X2 +2y2 + 3.X = b((X,y),(X,y)) = b(_(xvy)»_(x’y)) =
b((_x»_y)v(_x’_y)) = X2 +2y2 —3X,

thus 6x = 0 and this for all x € R, which is plainly absurd.

The previous theorem establishes therefore a bijection between quadratic
forms and symmetric bilinear forms: any symmetric bilinear form b determines
a quadratic form x — b(x, x), and any quadratic form determines a symmetric
bilinear form, namely its polar form.

Problem 10.8. Let ¢ be a quadratic form on V', with polar form b.
a) Prove thatforall x,y € V

_ 4 +y)—qx—y)
; :

b(x,y)
b) (Parallelogram law) Prove that forall x,y € V

g(x +y)+qx—y) =2(q(x) +q()).
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¢) (Pythagorean theorem) Prove that for all x, y € V we have b(x, y) = 0 if and
only if

gx +y)=qx)+q).

Solution. a) By the polarization identity we have
q(x +y) = q(x) +q(y) +2b(x, y)
and (noting that g(—y) = ¢q(y) and b(x, —y) = —b(x, y))
q(x —y) = q(x) +q(y) = 2b(x,y).

Subtracting the two previous relations yields the desired result.
b) It suffices to add the two relations established in the proof of part a).
¢) This follows directly from the polarization identity. O

Let us try to understand the quadratic forms on R". If ¢ is a quadratic form on
R”" with polar form b, and if ey, ..., e, is the canonical basis of R”, then for all
x =xie; + ...+ x,e, € R” we have, using Remark 10.2

q(x1,...,xy) =b(xie1 + ...+ xpey, x161 + ... + X5€,) =
n n
E b(ei.ej)xix; = E aijXiXj,
ij=1 ij=1

with a;; = b(e;, e;). Notice that since b(e;,e;) = b(e;,e;), we have a;; = aj;,
thus any quadratic form ¢ on R” can be written

n n
_ _ 2
q(x1,...,x,) = E ajjxXix; = E aiix; +2 E ajxixj,

ij=1 i=1 I<i<jzn

with A = [a;;] a symmetric matrix.
Conversely, if A = [a;;] is any matrix in M, (R) (not necessarily symmetric),
then the map

n

. n

q:R"=>R, qx,...,x,) = E ajjXiX;
ij=1

is a quadratic form on R”, with polar form

Cl,’j (x,-x} + ijl()

JENE AN AEDD >

ij=1
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We leave this as an easy exercise for the reader. Notice that

n n
q(x) = E aijXiXj = E bijxix;,
ij=1 ij=1

with

aij +aji
bij = T,

and the matrix B = [b;;] is symmetric.
There is another natural way of constructing quadratic forms on R": pick real
numbers oy, ..., o, and linear forms /1, ..., [, on R", and set

q(x) = alll(x)z +.o..+ arlr(x)z'

Then ¢ is a quadratic form on R”, with associated polar form given by

b(x,y) = Zaili ()i (y),

i=1

as the reader can easily check. The following amazing result due to Gauss says that
we obtain in this way all quadratic forms on R”. Moreover, Gauss described an
algorithm which allows us to write a given quadratic form ¢ in the form

g=ol} +.. . +al?
with [y, ..., [, linearly independent linear forms. This algorithm will be described

in the (long) proof of the following theorem.

Theorem 10.9 (Gauss). Let q be a quadratic form on V. = R". There are real
numbers ay, . . ., o, and linearly independent linear forms Iy, ..., 1, € V* such that
forallx e V

q(x) = a1 (x)* + ...+ ol (%)

Before giving the proof of the theorem, let us make some further remarks on the
statement. Of course, we may assume that o; # 0 for 1 < i < r, otherwise simply
delete the corresponding term o; 11-2. Let 7 be the set of those i for which «; > 0 and
let J be the set of those i for which «; < 0. Then

q(x) = Y (el (x) = D (V=) (x)

i€l ieJ
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and defining
L, = \/Ol_ll, if iel and L; = \/—Oll'li if ielJ,

we obtain
_ 2 2
g=) Li-) L}
i€l iel
Moreover, since /i,...,[, are linearly independent, so are Li,...,L,. In other

words, we can refine the previous theorem by asking that o; € {—1, 1} for all i.
One can prove that the number of elements of /, J, as well as the number r are
uniquely determined by ¢ (this is Sylvester’s inertia theorem). The pair (||, |J|)
consisting in the number of elements of / and J is called the signature of g. We
call |7| + |J| = r the rank of g (we will see another interpretation of r later on,
which will also explain its name).

We will start now the algorithmic proof of Theorem 10.9, by induction on n. For
n = 1 we can write ¢(x;) = a;x7, where x; € Rand ) = ¢(1) € R, so the result
holds.

Assume now that the result holds for n — 1. We can write

n
2
q(xi,...,xy) = E a;iX; +2 E ajjXiX;
i=1 I<i<j<n
for some scalars a;; € R. We will discuss two cases:

e Thereisi € {1,2,...,n} such that a;; # 0. Without loss of generality, we may
assume that a,, # 0. We consider g(x1, ..., x,) as a quadratic polynomial in the
variable x, and complete the square, to obtain

n—1 n—1
q(x1,...,x,) = a,mx,%—i-Z (Z a,-nx,-) X +Za,~,~xi2+2 Z ajjxXjx; =

i=1 i=1 1<i<j<n—1

n—1 a 2 n—1 a 2 n—1
in in 2
anpn | X0 + E Xi | —Qnn E xXi | + E ajiX; +2 E aijXiX;
: Apn ; Ann

i=1 I<i<j<n—1

2

n—1
ai}’l /
= dnn (xn+ E xi) +q(x1,~--,xn—1),

a
i=1 """

where ¢’ is a quadratic form on R"~!. By induction, we can write

r
q' (x1,..., Xpm1) = Z%’Li(xl, R

i=1
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for some linearly independent linear forms L; in xy, ..., x,—;. Defining

n—1

Ain
Lepr1(xr, .o oox0) = X0 + E a—xi, Or41 = dpp
nn

i=1
and
L, x) = Li(xr, ..y xp—1)

for 1 <i < r we obtain

r+1

q(x) =) aili(x)?

i=1

for all x € V and the inductive step is finished (we leave it to the reader to check
that /1, ..., [,4 are linearly independent).

e Alla;; =0.Ifall a;; = 0, then ¢ = 0 and the result is clear. If not, without loss
of generality we may assume that a,_; , 7# 0. We use the identity

b c c b bc
axy+bx+cy=a Xy +-—-x+-y =a(x+—> y+-—-)—-—
a a a a a

to rewrite

n—2
q(xh ey xn) = 2an—1,nxn—1xn +2 E AjinXiXy

i=1

n—2
+2 E Aip—1XiXp—1 + 2 E aijjxixj =
i=1 1<i<j<n—2

n—2 n—2
a; a; n—
2an—l,n (xn—l + Z = xi) * (xn + Z L] X,’) + q/(xh e 7xn—2)

im1 Ap—1.n i=1 Ap—1.n

for some quadratic form ¢’ on R"~2. Applying the inductive hypothesis, we can
write

.
q' (X1, X)) = ZaiLi(xl, e Xn)?
i=1

for some linearly independent linear forms L; of xi,..., x,—», as well as some
scalars «;. Using the identity



10.1 Bilinear and Quadratic Forms 387

(a +b)>—(a —b)?
ab =

4 b
we obtain
n—2 a n—2 a
i,n in—1
2ap—15 | Xn—1 + Z Xi || X0+ Z —X; | =
— Ap—1n — Up—1n
i=1 i=1
Ap—1,n 2 2
) (lr_H(X],...,X,,) —lr+2(X],...,Xn) )7
where
n—2
Qaiy + ajp—1
lr+1()€1, s sxn) = Xp—1 + Xn + Z - Xi,
i=1 Ap—1n
and
n—2 a a
in — Uin—1
Lrgo(X1, .0 Xn) = Xy — X + Z ——X;.
P Ap—1.n
i=1
All in all, setting
Ap—1n
Or41 = —Or42 = )
we have
r+2
2
q(x) =Y aili(x)*.
i=1
We leave it to the reader to check that [y, ..., [, are linearly independent. This

finishes the proof of Theorem 10.9.

Problem 10.10. Implement the algorithm described in the previous proof in each
of the following cases:

a) ¢ is the quadratic form on R? defined by
q(x,y,2) = xy + yz +zx.
b) ¢ is the quadratic form on R? defined by

g(x. 3.2 =(x =y + -2+ E@—x)>~
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Solution. a) With the notations of the previous proof, we have a;; = Ofor1 <i <
3, thus we are in the second case of the above proof. We focus on the nonzero
term yz and we write

q(x,y,2) = (y + x)(z + x) — x*.
Next, using the identity

_ (a + b)* — (a — b)?
B 4

ab

we obtain

(2X+y+Z)2—(y—Z)2'

y+x)z+x) = 1

We conclude that

1 1
q(x.y.9) = 7Qx +y + 2 — i —z)? —x?

and one easily checks that the linear forms 2x + y 4 z, y — z and x are linearly
independent.

b) Itis tempting to say that g is already written in the desired form, but the problem
is that the linear forms x — y, y — z, and z — x are not linearly independent (they
add up to 0). Therefore we write (by brutal expansion)

g,y ==y’ + (-2 +@—x)’ =
2(x* + y* + 27 — xy — yz—2x).

We are in the first case of the previous proof, so we focus on the term x2 and try
to complete the square:

2 2
+z +z
q(x,y,z)=2(x—y2 ) _(y2) +2y? 4+ 2% —2yz =
2 2 2 2

y+z 3yc 4+ 3z° - 6yz y+z 3 5

2(x — =2|x- (y —
(x 3 ) + 3 X 3 + 2(y 2)

and we easily check that the linear forms x — yT+Z and y — z are linearly

independent. O
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10.1.1 Problems for Practice

1. Prove that the map
h:R*xR?> >R, b((x,y),(z,1)) = xt — yz

is a bilinear form on R?. Describe the associated quadratic form.
2. Consider the map ¢ : R* - R,

qg(x,y,2,t) = xy + 22> +tx — 1>

a) Prove that g is a quadratic form and find its polar form.

b) Implement Gauss’ algorithm and write ¢ in the form Y '_, o;/? with real
numbers ¢; and linearly independent linear forms /;.

¢) What is the signature of ¢?

3. Use Gauss’ algorithm to write each of the following quadratic forms as
> '_ ;7 with linearly independent linear forms /y,...,/, and scalars
Oy oo, O,

a) q(x,y.2) = (x =2y +2)* — (x —y)* + 2%

b) g(x,y,2) = (x =2y +2)* + (y =22+ x)* — (2 —2x + y)*.
c) q(x,y,z,t) =xy + yz+zt + tx.

d) qg(x,y,2) = x>+ xy + yz + zx.

For each of these quadratic forms, find its signature and its rank.
4. a) If g is a quadratic form on R”, is it true that {x € R"|¢(x) = 0} is a vector
subspace of R"?
b) Describe geometrically {x € R"|g(x) = 0} if g(x,y) = x> — 2y2,
if g(x,y) = x> 4+ y? and finally if g (x, y,2) = x> + y? — 2%
5. Which of the following maps are quadratic forms:

a) ¢ :R >R, q(x,y,2) =x>+y> + 7%
b) ¢g:R* >R q(x,y,z2,t) =xt -2 +z2t — y.
©) q:R* >R, gq(x.y.2.0) = (x +2)(y +1)?

6. Let V be the space of continuous real-valued maps on [—1, 1] and consider the
map b : V x V — R defined by

1
b(f.g) = /_ (=)W + (g 1),

a) Prove that b is a symmetric bilinear form on V.
b) If ¢ is the associated quadratic form, find those f € V for which ¢(f) = 0.
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Let b be a bilinear form on a vector space V' over R. The kernel of b is the set
ker b defined by

kerb={x e V|b(x,y) =0 VyeV}
a) Prove that ker b is a vector subspace of V.

b) Find the kernel of the polar form of the quadratic form ¢(x, y,z) = xy +
yz + zx on R3.

. If b is a bilinear form on a vector space V over R, is it true that {(x,y) €

V x V|b(x,y) = 0} is a vector subspace of V' x V?

. Let V = M, (R) and consider the map ¢ : V' — V defined by

q(A) = Tr("AA) + (Tr(A))>.

Prove that ¢ is a quadratic form on V' and describe its polar form.

One can define bilinear forms over C, but they do not have all the properties
one desires. Instead it is standard to take sesquilinear forms (sesqui- meaning
one-and-a-half).

Definition. Let V' be a vector space over C. A sesquilinear form on V' is a map
¢ .V xV — C such that

i) For all x € V the map ¢(x,-) : V — C sending y to ¢(x, y) is linear.
ii) For all y € V the map ¢(:, y) : V — C sending x to the complex conjugate
o(x,y) of p(x,y) € Cis linear.

The sesquilinear form ¢ is called conjugate symmetric or hermitian if
o(x,y) =¢(y,x)forallx,y e V.

In the next problems V is a C-vector space.
Prove that the set S(V') of sesquilinear forms on V' is a vector subspace of the
C-vector space of allmaps ¥ : V x V — C.
Prove that the set H(V) of hermitian sesquilinear forms on V is a vector
subspace of the R-vector space S(V'). Is H(V') a C-vector subspace of S(V)?
Prove that we have a direct-sum decomposition of R-vector spaces

S(V)=HWV)®iH).

Let ¢ be a hermitian sesquilinear form on V' and consider the map @ : V' — C
defined by

D(x) = @(x, x).

A map @ : V — C of this form is called a hermitian quadratic form and if
®d(x) = @(x,x) for all x € V, we call the hermitian sesquilinear form ¢ the
polar form of @.
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14.

15.

16.

a) Prove that @(x) € Rforall x € V.
b) Prove that ®(ax) = |a|*®(x) foralla € Cand x € V.
¢) Prove that for all x, y € V we have

O(x +y) = @(x) + (y) + 2Re(p(x, y)).
d) Deduce the polarization identity
P(x +y) = P(x —y) +i(P(x +iy) — P(x —iy)) = 49(y.x).

Conclude that the polar form of a quadratic hermitian form is unique.
e) Prove the parallelogram law

O(x +y) + P(x —y) = 2(2(x) + 2(»)).

Let V = C”" and consider the map @ : V' — R defined by
D(x1,...,x,) = |x1|2 + |x2|2 +...+ |xn|2
for all (xy,...,x,) € C". Prove that @ is a hermitian quadratic form and find

its polar form.
Let V be the space of continuous maps f : [0,1] — C. Answer the same
questions as in the previous problem for the map @ : V' — R defined by

1
o(f) = /0 (@)t

Prove the complex analogue of Gauss’ theorem: if @ is a hermitian quadratic
form on C”", then we can find o, ..., € {—1,1} and linearly independent
linear forms /;, ..., [, on C" such that for all x € C"

D(xp,....x,) = Zai|li(x)|2'

i=1

10.2 Positivity, Inner Products, and the Cauchy-Schwarz

A

Inequality

fundamental notion in the theory of bilinear and quadratic forms is that of

positivity:

Definition 10.11. a) A symmetric bilinear form b : V' x V' — R is called positive

if b(x,x) > 0 forall x € V. We say that b is positive definite if b(x, x) > 0 for
all nonzero vectors x € V.
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b) A quadratic form g on V is called positive (or positive definite) if its polar form
is positive (or positive definite). Thus ¢ is positive if g(x) > 0 forall x € V, and
positive definite if moreover we have equality only for the zero vector.

Problem 10.12. Which of the following quadratic forms are positive? Which ones
are positive definite?

a) q(x,y,2) = xy 4+ yz + zx.
b) g(x,y,2) = x> +2(y —2)* + 3(z — x)*.
©) q(x,y,2) = x>+ y>+ 22 —xy —yz—zx.

Solution. a) We have to check whether xy + yz + zx > 0 for all real numbers
X, ¥, z. This is definitely not the case, since taking z = 0 we would have xy > 0
for all x, y € R, which is definitely absurd. Thus ¢ is not positive, and thus not
positive definite either.

b) It is clear that ¢(x,y,z) > 0 for all x,y,z € R, since g(x, y,z) is a sum of
squares of real numbers. Thus ¢ is positive. To see whether ¢ is positive definite,
we need to investigate when ¢ (x, y,z) = 0. This forces

xX=y—z=z—x=0

and then x = y = z = 0. Thus ¢ is positive definite.
¢) We observe that

=9+ 0=+ @=x?
5 >

0

q(x,y,2) =

for all x, y,z € R, thus g is positive. Notice that ¢ is not positive definite, since
q(1,1,1) = 0,but (1,1, 1) # (0,0,0). O

We introduce now another fundamental concept, which will be constantly used
in the sequel:

Definition 10.13. a) An inner product on a R-vector space V is a symmetric
positive definite bilinear form on V.

b) An Euclidean space is a finite dimensional R-vector space V' endowed with an
inner product.

We warn the reader that some authors do not impose that an Euclidean space
is finite dimensional. When dealing with inner products and Euclidean spaces, the
notation (x, y) is preferred to b(x, y) (where b is the inner product on V). If (, ) is
an inner product on V, we let

[lx[] = v/ {x, x)

and we call ||x|| the norm of x (the reason for this name will be given a bit later).
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Remark 10.14. a) If V is an Euclidean space, then any subspace W of V is
naturally an Euclidean space, when endowed with the restriction of the inner
product on V' to W: note that this restriction is still an inner product on W, by
definition.

b) R” endowed with the canonical inner product

((xX1s s X0)s V1s s Y)) = X1Y1+ X2y + oo+ X

is an Euclidean space. We leave it to the reader to check this assertion.

Problem 10.15. Let n be a positive integer and let V' be the space of polynomials
with real coefficients whose degree does not exceed n. Prove that

(P.Q) =Y P()0()

i=0
defines an inner product on V.

Solution. First, it is clear that for any P the map Q +— (P, Q) is linear, and
similarly for any Q the map P +— (P, Q) is linear. Next, we have

(P.P) =Y PGY
i=0

and the last quantity is clearly nonnegative. Finally, assume that (P, P) = 0 for
some P € V. Then Y |_, P(i)*> = 0, which forces P(i) = 0 forall0 <i < n.
Thus P has at least n 4 1 distinct roots and since deg P < n, we deduce that P = 0.
The result follows. O

Problem 10.16. Let V' be the space of continuous real-valued maps on [a,b]
(where a < b are fixed real numbers). Prove that the map (, ) defined by

b
(fg) = / F()g(x)dx

is an inner product on V.

Solution. It is easy to see that (, ) is a symmetric bilinear form, it remains to check
that it is positive definite. Since f? is a continuous nonnegative map, we have

b
i f) = / F()dx = 0,
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Suppose that { f, f) = 0 and that f is nonzero. Thus there is xy € (a, b) such that
f(x0) # 0. By continuity we can find ¢ > 0 such that (xo — €, xo + €) C [a, b] and
| f(x)| = e for x € (xo — &, xg + ¢€). It follows that

xo+e
(ff)z/ e?dx =2¢ >0

Xp—¢€

and the result follows. a

Problem 10.17. Let V' be the space of smooth functions f : [0, 1] — R such that
f(0) = f(1) = 0. Prove that

1
U@»=—A(fum%m+f%wﬂMMx

defines an inner product on V.

Solution. Using integration by parts, we obtain

1 1
(ﬁg)=—U€4:WQ%+ZALW@MTﬂdX=ZZ;fTﬂ§@MX

The last formula makes it clear that (, ) is a symmetric bilinear form on V.
It remains to see that it is positive definite. We have

1
UJ7=2A(ﬂ@D%sz

with equality if and only if (by the previous problem) f’(x) = 0 for all x. This
last condition is equivalent to saying that f is constant. But since f vanishes by
assumption at 0, if f if constant then it must be the zero map. Thus (f, f) = 0
implies f = 0, which yields the desired result. O

The fundamental result concerning positive symmetric bilinear forms is the

Theorem 10.18 (Cauchy-Schwarz Inequality). Letr b : V xV — R be a
symmetric bilinear form and let q be its associated quadratic form.

a) If b is positive, then for all x,y € V we have

b(x.y)* < q(x)q(y).

b) If moreover b is positive definite and if b(x, y)* = q(x)q(y) for some x,y € V,
then x and y are linearly dependent.

Proof. a) Consider the map F' : R — R given by

F(1) = q(x +1y).
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Note that since b is bilinear and symmetric, we have
F@t)=b(x+1ty,x +ty) =b(x,x)+ b(x,ty) + b(ty,x) + b(ty,ty)
= q(x) +1b(x,y) +th(x,y) + ?b(y,y) = q(x) + 2tb(x, y) + 7q(y).

Thus F(t) is a quadratic polynomial function with leading coefficient ¢(y) > 0.
Moreover, since b is positive, we have F(t) > 0 for all ¢ € R. It follows that the
discriminant of F is nonpositive, that is

4b(x,y)> —4q(x)gq(y) < 0.

But this is precisely the desired inequality (after division by 4).

b) Suppose that b is positive definite and that b(x, ¥)?> = ¢(x)g(y). We may assume
that y # 0, so that ¢(y) > 0. Thus with the notations used in the proof of part a),
the discriminant of F is 0. It follows that F' has a unique real root, say ¢. Then
q(x+1ty) = 0 and since q is positive definite, this can only happen if x +¢y = 0.
Thus x and y are linearly dependent. O

The following result is a direct consequence of the previous theorem, but it is of
fundamental importance:

Corollary 10.19. If V is a vector space over R endowed with an inner product
(,), thenforall x,y € V we have

[ (e )< [Ix] - [yl

Example 10.20. a) Let V = R”" be endowed with the canonical inner product.
The inequality |(x, y)| < ||x]| - ||»|| can be re-written (after squaring) as

(x1y1+...+xny,,)2§(x12+...+xn2)(y12+...+y,f).

b) Let V be the space of continuous real-valued maps on [a, b], where a < b are
real numbers. The map ( , ) : V x V' — R defined by

b
(fig) = / F()g(x)dx

is an inner product on V (see Problem 10.16) and the inequality in the corollary
becomes (after squaring)

b 2 b b
( / f(x)g(x)dx) 5( / f(x)de>-(/ g(x)zdx).
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Let V be a vector space over R, endowed with an inner product ( ,). By the
previous corollary we have

fu.v) <1forallu,v eV —{0}.

| < u,v
= Nulliivle =

Thus there exists a unique angle 6 € [0, r] satisfying

(u, v)
0= .
el vl

We define this angle 6 to be the angle between the vectors u, v.
An important consequence of the Cauchy—Schwarz inequality is

Theorem 10.21 (Minkowski’s Inequality). Ler V be a vector space over R and
let q be a positive quadratic form on V. Then for all x,y € E we have

Va@) + va(y) = Valx +y).

Proof. Squaring the inequality we obtain the equivalent one
q(x) +4q(y) +2vq(x)q(y) Z q(x +y).
Letting b be the polar form of ¢, the polarization identity yields
q(x +y) =q(x) +q(y) +2b(x.y).

Comparing this equality and the previous inequality, we obtain the equivalent form

Va(x)q(y) = b(x,y),

which, squared, is exactly the Cauchy—Schwarz inequality. O

Consider now an inner product { , ) on some R-vector space V. Recall that we
defined

-1V =R, lx]] = V(x. x).

Since an inner product is positive definite, we see that ||x|| > 0 for all x, with
equality if and only if x = 0. Also, since an inner product is a bilinear form, we
have ||ax|| = |al||x|| for all @ € R. Finally, Minkowski’s inequality yields

1 + pIl < 1lxIl + 1yl

for all x, y € V. We call this inequality the triangle inequality.
A map || - ]| : V — Rsatisfying the following properties:

e ||v|| = O for all v € V, with equality if and only if v = 0.
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e |lav|| = |a]|-||v|| forallv € V and a € R.
o |v+w|| <Vl + |[w]| forallv,w € V

is called a norm on V. This explains why we called ||x|| the norm of x.

Minkowski’s inequality shows that any inner product on a vector space V' over
R naturally endows the space V' with a norm || - ||. We can use this norm to define a
distance d : V x V — R* by

d(u,v) = ||lu—v||.
One can check (see the exercise section) that for all u, v,w € V we have
d(u,v) +dv,w) > d(u,w).

This construction is of fundamental importance, since it allows us to do analysis
on V as we do it on R. Note that if V = R" with n < 3, endowed with its
canonical inner product, then the distance obtained as above is really the Euclidean
distance that we are used with on the line, in the plane and in three-dimensional
space. For instance, the distance between the points (1, 1) and (2, 3) is

d((1,1),2,3) = VI =22+ (1-3) = V5,

and this really corresponds to the geometric distance between these two points in
the plane.

10.2.1 Practice Problems

In the following problems, whenever the inner product on R” is not specified, it is
implicitly assumed that we consider the canonical inner product on R”, defined by

(Cery e X)), 1)) =Xy X202 + oo+ X V.

1. Let V be an R-vector space endowed with an inner product { , ). Recall that
the distance between two points x,y € V is

d(x,y) = V{x—y,x—y).

Prove the triangle inequality
d(x,y)+d(y,z) > d(x,2)

forall x,y,ze V.
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a) What is the distance between the vectors u = (1,1,1) and v = (1,2, 3) in
R*?

b) What are their respective norms?

¢) What is the angle between u and v?

. Find the angle between the vectors u = (1,2) and v = (1, —1) in R%.
. Find the vectors v of norm 1 in R? such that the angle between v and (1, 1, 0)

e T
IS4.

. Among all vectors of the form (1,x,2,1) with x € R, which vector is at

smallest distance from (0, 1, 1, 1)?

. Find all values of o € R for which the map { , ) : R* x R* — R defined by

(Cer, X2, X3, X4), (Y1, Y2, Y3, ¥3)) = ax1y1 + 2x2y2 + (1 —o)x3y3 + X404

is an inner product.

. Prove thatif f : [a, b] — R is a continuous map, then

b 2 b
(/ f(l)dt> S(b—a)/ f(t)%dt.

. a) Prove thatif x1, ..., x, are positive real numbers, then

1 1 1 )
xi+x4+...+x) | —+—+...+— ) =n".
X1 X2 Xn

When do we have equality?

b) Prove thatif f : [a,b] — (0, 00) is a continuous map, then

’ d ’ 1d b 2
. _ > _
/af(t)t [ = b -a

When do we have equality?

. Let f :[0,1] — R be a continuous map taking nonnegative values and let

1
Xy = / t" f(t)dt.
0
Prove that for alln, p > 0

Xn+p =< NV Xon A/ X2p-

Let V be a C-vector space and let @ be a hermitian quadratic form on V.
Assume that @ is positive definite, i.e., @(x) > 0 for all nonzero vectors x € V.
Let ¢ be the polar form of @.
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a) Prove the Cauchy—Schwarz inequality: for all x, y € IV we have

lp(x, Y)|* < P(x)P(y),

with equality if and only if x, y are linearly dependent.
b) Prove Minkowski’s inequality: for all x, y € V we have

Vo) + Vo) = Vox + y).

11. Prove that there is no inner product {, ) on the space V of continuous real-
valued maps on [0, 1] such that for all f € V' we have

(f.f) = sup f(x)".

x€[0,1]

Hint: the parallelogram law.

10.3 Bilinear Forms and Matrices

From now on we will focus only on finite dimensional vector spaces V over R.
We have already seen that we can describe linear transformations on V' in terms of
matrices. We would like to have a similar description for bilinear forms.

Definition 10.22. Consider a basis e,...,e, of V, and let b be a symmetric
bilinear form on V. The matrix of » with respect to the basis ¢, ..., e, is the
matrix (b(e,-, ej))lﬁi,jfn-

b) If ¢ is a quadratic form on V, the matrix of g with respect to the basis
ei,...,ey, is the matrix of its polar form with respectto ey, ..., e,.

Theorem 10.23. Let V be a finite dimensional vector space and let ey, ..., e,
be a basis of V. Sending a symmetric bilinear form to its matrix with respect to
ei,...,ey establishes an isomorphism of R-vector spaces between the vector space
of symmetric bilinear forms on V and the vector space of symmetric matrices in
M, (R).

Proof. Ttis clear that if A4 is the matrix of » and A’ is the matrix of ', then c A + A’
is the matrix of ¢cbh + b’ for all scalars ¢ € R. Also, since b is symmetric, we have
b(ei,e;) = b(ej,e;), thus the matrix of b is symmetric. Thus sending a symmetric
bilinear form b to its matrix A with respect to ey, ..., e, induces a linear map ¢
from symmetric bilinear forms on V' to symmetric matrices A € M, (R).

Injectivity of the map ¢ follows directly from Remark 10.2, so it remains to prove
that ¢ is surjective. Start with any symmetric matrix A = [a;;]. If x = x1e; +... +
Xpe, and y = yje; + ...+ y,e, are vectors in V, define

n
b(x,y) = Z ajx;y;.

ij=1
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It is easy to see that b is a symmetric bilinear form whose matrix in the basis
ei,...,ey is precisely A. O

A natural question is the following: what is explicitly the inverse of the
isomorphism given by the previous theorem? Fortunately, this has already been
answered during the proof: it is the map sending a symmetric matrix A = [a;;]
to the bilinear form b defined by

b(xier + ...+ Xpen. yie1 + ...+ yuea) = Y @ijX;y;.
ij=1

This formula does not come out of nowhere, but it is imposed by Remark 10.2.
Also, note that the right-hand side of the previous equality can be written as ' XAY,
where X, Y are the column vectors whose coordinates are xi, ..., X,, respectively
Y1,...,Yn. Here we consider X as a 1 x n matrix and of Y as a n x 1 matrix,
so that ' XAY is a 1 x 1 matrix, that is a real number. We obtain the following
characterization of the matrix of b with respect to the basis ey, ..., e,.

Theorem 10.24. Leteq, es,.. ., e, beabasis of V and let b be a symmetric bilinear

form on V. The matrix of b with respect to ey, . . ., e, is the unique symmetric matrix
A € M, (R) such that

b(x,y) = "XAY
for all vectors x,y € V (where X, Y are the column vectors whose coordinates are

those of x, y with respect to eq, . . ., ey).

Remark 10.25. Keep the hypotheses and notations of the previous theorem and
discussion. If g is the quadratic form attached to b, then

n n
g(xier + ...+ x,e,) = 'XAX = Z ajjxXix; = Za,-,-xi2 +2 Z ajxixj,

ij=1 i=1 1<i<j<n

the last equality being a consequence of the equality a;; = a;; fori < j. The
presence of the factor 2 is quite often a source of errors when dealing with the link
between quadratic forms and matrices. Indeed, it is quite tempting (and this happens

quite often!) to say that the quadratic form associated with the matrix A = |:(1) (1):| is

q(x1,x2) = X1x2,
which is wrong: the quadratic form associated with A is

q(x1,x2) = 2x1X5.
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An even more common mistake is to say that the matrix associated with the
quadratic form

q(x,y,2) =xy +yz+zx

011 oll
22

onR¥is|101]. Actually, the correct matrix is % 0 % , since the polar form
110 1o

of ¢q is the bilinear form b defined by

Xy+yx+xz+Zx+yz+7y

b((x,y,2), (x",y'.7)) = ;

Armed with Theorem 10.24, it is not difficult to understand how the matrix of
a bilinear form varies when we vary the basis. More precisely, consider two bases
el,....e;and e, ... e, of V and let A, A’ be the matrices of a symmetric bilinear
form b with respect to these bases. If x = xje; +...+x,e, = xje| +...+x,e) is
a vector in V, let X (respectively X’) be the column vector whose coordinates are
X1, ..., X, (respectively x{, ..., x,). Then

b(x,y) = "XAY = 'X'A'Y’".

Letting P be the change of basis matrix from ey, ..., e, to ei, ..., e, (recall that
the columns of P are the coordinates of ei, ...,e, when expressed in terms of
ei,...,ey), we have

X =PX', Y =PY'
It follows that
'X'A'Y' = b(x,y) = 'XAY = "(PX)APY' = "(X)' PAPY’

and we obtain the following

Theorem 10.26. Suppose that a symmetric bilinear form b has matrix A with

respect to a basis ey, ...,e, of V. Let e{, .. ,e;l be another basis of V and let
P be the change of basis matrix from ey, . .., ey, to e{, .. ,e;. Then the matrix of b
with respectto ey, ..., e, is

A = "PAP.

The previous theorem suggests the following

Definition 10.27. Two symmetric matrices A, B € M, (R) are called congruent
if they are the matrices of some symmetric bilinear form in two bases of F".
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Equivalently, A and B are congruent if there is an invertible matrix P € M, (F)
such that B = ' PAP.

By definition, the congruence relation is an equivalence relation on the set of
symmetric matrices A € M,,(R), that is:

e any matrix A is congruent to itself (this is clear).

e If A is congruent to B, then B is congruent to A: indeed, if B = ' PAP, then
A="(PHBP L

e If Aiscongruentto B and B is congruent to C, then A is congruent to C. Indeed,
if B="PAP and C = "QBQ,then C = "(PQ)A(PQ).

Note that two congruent matrices have the same rank. This allows us to define
the rank of a symmetric bilinear form as the rank of its matrix in any basis of
the surrounding space (the previous discussion shows that it is independent of the
choice of the basis). Note that we cannot define the determinant of a symmetric
bilinear form in a similar way: if A and B are congruent matrices, then it is not true
that det A = det B. All we can say is that if B = ' PAP, then

det B = det(' P)det Adet P = det A - (det P)?,

thus det A and det B differ by the square of a nonzero real number. In particular,
they have the same sign. The discriminant of a symmetric bilinear form is defined
to be the sign of the determinant of its matrix in a basis of the surrounding space
(it is independent of the choice of the basis).

The fundamental theorem concerning the congruence relation is the following
consequence of Theorem 10.9:

Theorem 10.28 (Gauss). Any symmetric matrix A € M,(R) is congruent to a
diagonal matrix.

Proof. Consider the associated quadratic form g on V' = R”

n
g(X) = "XAX, ie., q(xi,...,x,) = Z aijXiX;.
ij=I

By Theorem 10.26, it suffices to prove the existence of a basis of R” with respect to
which the matrix of ¢ is diagonal (as then A will be congruent to the corresponding
diagonal matrix).

By Theorem 10.9 we know that we can find real numbers «;, . . ., &, and linearly
independent linear forms [y, ..., [, € V* such that

q(X) =Y ali(X)*
i=1
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for all X € V. Complete the family (/1,...,[,) to a basis (/1,...,[,) of V*.
By Theorem 6.13 there is a basis (e1, ..., e,) of V whose dual basis is (/1,...,1,).
Thus, if X = xje; + ...+ x,e, € V, then

q(X) = zr:aili(X)z = Zr:aixiz,

i=l i=l

so that the matrix of ¢ with respect to the basis (e, ..., e,) is the diagonal matrix
D with diagonal entries o1, ..., ;. ad

Remark 10.29. The proof also shows the following interesting fact: if g is a
quadratic form on R” with polar form b, then we can find a basis fi,..., f, of
R” such that

b(fi, f;) =0 forall 1<i#j<n.

Such a basis is called a g-orthogonal basis of R”. We can even impose that ¢( f;) €
{—1,0,1} forall 1 <i < n.Indeed, as in the above proof we can write

q(X) = a;li(X)?

i=1

and by the discussion following Theorem 10.9 we can even ensure that o; € {—1, 1}
foralll <i <r.Ifey,...,e, is abasis as in the above proof, then

q(X) = iot,-xiz

i=1

for X = x1e; + ...+ x,e,, thus

b(X, Y) = iaix,-yi

i=1
with o; = 0 for r < i < n. It follows that we can take f; = ¢; for1 <i <n.
We introduce one more definition before ending this section:

Definition 10.30. A symmetric matrix A € M, (R) is called positive if ' XAX > 0
for all X € R". It is called positive definite if ' XAX > 0 for all nonzero vectors
X e R".

In other words, A = [a;;] is positive (respectively positive definite) if and only
if the quadratic form associated with A, namely (x1, ..., x,) — Z? =1 @ijXiXj, is
positive (respectively positive definite). Any symmetric positive definite matrix A
gives rise to an inner product { , )4 on R", defined by

(X,Y)4 = (X, AY) = 'XAY,

where ( , ) is the canonical inner product on R”.
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Note that if A is positive then letting ey, ..., e, be the canonical basis of R”,
we have

a;; = 'e;Ae; > 0,

and if A is positive definite then the inequality is strict. Also, note that any matrix
congruent to a positive (respectively positive definite) symmetric matrix is itself
positive (respectively positive definite), since

'X('PAP)X = "(PX)A(PX).

Problem 10.31. Let A € M, (R) be any matrix.

a) Prove that A4 is symmetric and positive.
b) Prove that * AA is positive definite if and only if 4 is invertible.

Solution. Note that
"(TAA) = "A-1("A) = "AA4,
thus ‘A A is symmetric. Next, for all X € R" we have
‘X("AA)X = "(AX)(AX) = ||AX|P = 0,

with equality if and only if AX = 0. Both a) and b) follow from these observations
(and the fact that A4 is invertible if and only if AX = 0 implies X = 0). O
Remark 10.32. The same result holds with A A4 instead of ‘A A.

Remarkably, the converse of the result established in the previous problem holds:

Theorem 10.33. Any symmetric positive matrix A € M, (R) can be written as ' BB
for some matrix B € M, (R).

Proof. We use Gauss’ Theorem 10.28. By that theorem, there is an invertible
matrix P such that ‘' PAP = D is a diagonal matrix. By the discussion preceding
Problem 10.31 we know that D itself is positive and its diagonal coefficients d;;
are nonnegative. Hence we can write D = ' D D for a diagonal matrix D; whose
diagonal entries are J/d;;. But then

A='p'pp~'=1'p~'"pD D, P~ = 'BB,

with B = D, P!, O

Problem 10.34. Let (V, (, )) be an Euclidean space and let vy, ..., v, be a family
of vectors in V. Let A € M,,(R) be the Gram matrix of the family, i.e., the matrix
whose (i, j)-entry is (vi, v;).

a) Prove that A is symmetric positive.
b) Prove that A is positive definite if and only if vy, ..., v, are linearly independent.
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Solution. Again, it is clear that 4 is symmetric. For all x, ..., x, € R we have
n n
Za,jxisz ZX,’.Xj(Vi,v]'):
ij=l1 ij=l1

n

n n n n
ZX,’ 'Z(V,‘,Xj\/j) = Z(X,‘V,‘,Z)Cj\/j) = || ZXiViHZ > 0,
i=1 j=1 i=1 j=1 i=1
with equality if and only if }"/_, x;v; = 0. The result follows. O

Problem 10.35. Let n > 1 and let A = [a;;] € M,(R) be defined by a;; =
min(i, j). Prove that A is symmetric and positive definite.

Solution. It is clear that the matrix is symmetric. Note that we can write

minGi, j) = Y 1.

k<ik<j

Doing so and interchanging orders of summation, we see that

n n n n n n n 2
>3 mint sy = 32303 s = 30T
i=1j=1 k=1i=k j=k k=1 \i=k

This last expression is clearly nonnegative, and it equals 0 if and only if

X1+ +x,=0x4+---+x,=0, ... ,x, =0.

Subtracting each equation from the one before it, we see that the unique solution is
X|; = xp = -+ = X, = 0, which shows that the matrix is positive definite.
An alternative argument is to note that

min(i, j) = [o /00 f; (x)dx.

where fi(x) = 1 for x € [0,i] and fi(x) = O for x > i (i.e., f; is the
characteristic function of the interval [0,7]). It follows that A is the Gram matrix
of the family f,..., f,, thus it is symmetric and positive. Since fi,..., f, are
linearly independent (in the space of integrable functions on [0, 00)), it follows that
A is positive definite (all this uses Problem 10.34).

Yet another argument is to note that A = ‘BB where B is the upper triangular
matrix all of whose nonzero coefficients are equal to 1. Since B is invertible, we
deduce that A is positive definite by Problem 10.31. O
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10.3.1 Problems for Practice

1. Consider the map g : R> — R defined by
4,3, =(x+2y +32°+ (v +2° - (y — 2%

a) Prove that ¢ is a quadratic form and find its polar form b.

b) Is g positive definite?

¢) Give the matrix of ¢ with respect to the canonical basis of R3.
d) Consider the vectors

v =(2,0,0), vy =(=51,1), v3=(l,1,—1).

Prove that (v{, 5, v3) is a basis of R® and find the matrix of b with respect
to this basis.

2. Consider the map g : R3 — R defined by

q(x,y,2) = x(x =y +2) =2y(y + 2).

a) Prove that ¢ is a quadratic form and find its polar form b.
b) Find the matrix of ¢ with respect to the canonical basis of R3.
¢) Find those vectors v € R? such that b(v,w) = 0 for all vectors w € R3.

3. Consider the quadratic form ¢ on R* defined by
q(x.y.2) =2x(x +y —2) +y* + 2.

a) Find the matrix of ¢ with respect to the canonical basis of R?.

b) Write ¢ in the form Z;Zl o; l,-2 with /4, ..., [, linearly independent linear
forms.

¢) Find the rank, signature, and discriminant of g.

d) Find a g-orthogonal basis of R?® and give the matrix of ¢ with respect to this
basis.

4. Is the matrix A = [a;;] € M,(R) with a;; = i - j positive? Is it positive
definite?

5. a) Prove that a symmetric positive definite matrix is invertible.
b) Prove that a symmetric positive matrix is positive definite if and only if it is

invertible.

6. All entries but the diagonal ones of the matrix A € M, (R) are equal to —1,
while all diagonal entries are equal to n — 1. Is A positive? Is it positive definite?

7. Prove that any symmetric positive matrix A € M, (R) is the Gram matrix of a
family of vectors vy, ...,v, € R". Hint: use Theorem 10.33.

8. Let V be a R-vector space endowed with an inner product (, ) andlet xy, ..., x,
be vectors in V. The Gram determinant of x, ..., x,, denoted G(x1,..., Xx;)
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10.

11.

12.

13.

is by definition the determinant of the Gram matrix [{x;, x;)]i<; j <. Prove that
X1,...,X, is linearly independent if and only if G(x, ..., x,) # 0.

. Compute the Gram determinant of the vectors

x1=(1,2,1), x=(-1,—-1,2), x3=(1,0,—1)

in R. Are they linearly independent?

Prove that the matrix A = [%]15,-, j<n is symmetric and positive (hint: what
is [, £ 7dr).

Let A = [a;;] € M,(R) be a matrix such thata;; = 1fori # j,anda;; > 1
foralli € [1,n]. Prove that A is symmetric and positive definite.

Let n be a positive integer. Consider the space V' of polynomials of degree at
most n with real coefficients. Define a map

b:VxV =R, bPQ)= /1 tP(1)Q'(t)dt,
0

where Q’ is the derivative of Q.

a) Prove that b is a bilinear form on V. Is it symmetric?
b) Let g be the quadratic form attached to b, so that ¢(x) = b(x, x). Find the
matrix of ¢ with respect to the basis 1, X, ..., X" of V.

In this long problem we establish the link between sesquilinear maps and
matrices, extending thus the results of this section to finite dimensional
C-vector spaces. Let V' be a finite dimensional C-vector space and let B =
(e1,...,e,) be a basis of V. Recall that S(V) is the set of sesquilinear forms
onV.

a) Let ¢ € S(V) be a sesquilinear form on V. The matrix of ¢ with respect to
B is the matrix A = [a;;] € M, (C) where a;; = ¢(e;,e;) for 1 <i,j < n.
Prove that for all vectors x, y € V' we have

o(x,y) = X*AY,

where X, Y are the column vectors whose coordinates are the coordinates of
x,y with respect to B, and X* = ' X is the row vector whose coordinates
are the complex conjugates of the coordinates of x with respect to B.

b) Prove that A is the unique matrix having the property stated in a).

¢) Prove that the map sending ¢ € S(V') to its matrix with respect to B is an
isomorphism of C-vector spaces between S(V') and M, (C).

d) Let ¢ € S(V) and let A be its matrix with respect to B. Prove that ¢
is hermitian if and only if A satisfies A = 'A. Such a matrix is called
conjugate symmetric or hermitian. We usually write A* instead of 7 A,
so a matrix A is hermitian if and only if A = A*.
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e) Let B’ be another basis of V and let P be the change of basis matrix from
BtoB.Ifx,y € V,let X,Y (respectively X’, Y’) be the column vectors
whose coordinates are the coordinates of x, y with respect to B (respectively
B’). Prove that if A (respectively A’) is the matrix of ¢ with respect to B
(respectively B), then

A = P*AP.

f) A hermitian matrix A € M, (C) is called positive (respectively positive
definite) if X*AX > Oforall X € C" (respectively if moreover X*AX # 0
for X # 0). Prove that for any matrix B € M,,(C) the matrices B* B and
BB* are hermitian positive, and they are hermitian positive definite if and
only if B is invertible.

g) Prove that any hermitian positive matrix A can be written as BB* for some
matrix B € M,(C).

10.4 Duality and Orthogonality

Let b be a symmetric bilinear form on a vector space V over R (for now we don’t
assume that V is finite dimensional). For each y € V the map x — b(x, y) is by
definition linear, thus it is a linear form on V. Letting V' * be the dual of V', we obtain
therefore a map

oV =V op()(x) = b(x, ).

Since for all x € V the map y — b(x, y) is linear, it follows that ¢ is a linear map.

Problem 10.36. Suppose that V is finite dimensional and let ey, ..., e, be a basis
of V. Let ei“, ..., e, be the dual basis! of e,...,e,. Prove that the matrix of ©b
with respect to the bases ey, ..., e, and ei“, ..., ey is the matrix of b in the basis
€l1,...,€,.

Solution. For x = xj1e; + ... + x,e, € V we have
@p(ei)(x) = b(x,e) = x1b(er,e;) + ...+ xub(en. €;)
= b(ey,ei)ef (x) + ...+ b(es, ei)e) (x).
Thus

pp(ei) = b(er,e))ef + ...+ bley, e)e,.

'Recall that e/ (¢;) = 1;—;, where 1;—; equals 1 if i = j and 0 otherwise.
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The result follows. O
The following result, though very simple, is very useful:

Theorem 10.37 (Riesz’s Representation Theorem). If V is an Euclidean (thus
finite dimensional) space with inner product (, ), then the map ¢y : V — V*is
an isomorphism. In other words, for any linear map | : V — R there is a unique
vector v € V such that [(x) = (v, x) forallx € V.

Proof. Since dim V' = dim V'*, it suffices to prove that ¢ ) is injective. Assume
that ¢( y(x) = 0 for some x € V. Then by definition (x,y) = Oforall y € V,in
particular {x,x) = 0. But then ||x||> = 0, where || - || is the norm associated with
the inner product, and so x = 0. a

Let V' be again an arbitrary vector space over R and let b be a symmetric bilinear
formon V.

Definition 10.38. a) Two vectors x, y € V are called orthogonal (with respect to
b)if b(x,y) = 0.

b) The orthogonal S+ of a subset S of V is the set of vectors v € V which are
orthogonal to each element of S.

¢) Two subsets S, T of V are called orthogonal if S C T, that is any element of
S is orthogonal to any element of 7.

Remark 10.39. Suppose that ( , ) is an inner product on V, with associated norm

[| - || (thus ||x|| = /{x,x)). Then vectors x, y € V are orthogonal if and only if
[l + yII7 = [Ix]? + [1y1

This is the Pythagorean theorem and follows directly from the polarization identity

[lx + 211 = 11x]1? +2(x,p) + [y

Coming back to the general case, note that b(x,y) = 0 is equivalent to
op(¥)(x) = 0, i.e., x and the linear form ¢,(y) are orthogonal in the sense of
duality. This allows us to use the results we have already established in the chapter
concerned with duality to obtain information about symmetric bilinear forms. As a
consequence, we obtain the following fundamental:

Theorem 10.40. Let V be an Euclidean space and let W be a subspace of V. Then
WL ®W =V, inparticular

dim W' + dimW = dim V.

Moreover, ( WH)+ = W.

We can slightly refine the following theorem by allowing infinite dimensional
ambient spaces and finite dimensional subspaces therein.
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Theorem 10.41. Let V be any R-vector space endowed with an inner product and
let W be a finite dimensional subspace of V. Then

WaeWr=V and Wt =w.

Proof. Let (, ) be the inner product on V', with associated norm || - ||. We start by
proving that W @ WL = V. If x € W N W, then (x,x) = 0, that is ||x]|> = 0,
and so x = 0. Thus W N W+ = {0}. We still need to prove that W + W+ =V, so
let x € V be arbitrary and consider the map f : W — Rdefined by f(y) = (x, y).
Then f is a linear form on W. Since W is an Euclidean space (for the inner product
inherited from the one on V'), by Theorem 10.37 there is a unique z € W such that
f(»y) = {(z,y) forall y € W. We deduce that (x —z,y) = O for all y € W, thus
x —z € W=, Since z € W, we conclude that x € W + W and the result follows.

It remains to prove that W+ = W. By definition W is contained in W++,
so let x € WL, By the result established in the previous paragraph we can write
x=y+zwithy € Wandz € Wt. Since x € WL, we have (x,z) = 0, thus
(y,2) +1|z]> =0.But y € W and z € W, thus (y,z) = 0 and so ||z||*> = 0, then
z=0and finallyx =y e W. O

Remark 10.42. The hypothesis that W is finite dimensional is crucial in the
previous theorem. Indeed, consider the following situation: V' is the space of
continuous real-valued maps on [0, 1] and W is the subspace consisting of maps
f such that f(0) = 0. Endow V with the inner product given by

1
(fg) = / F()g(x)dx.

Then the orthogonal W+ of W is reduced to {0}, thus we do nothave W W=+ =V
or WL = W. To prove that W+ = {0}, let f € W, Note that the map g defined
by g(x) = xf(x) belongs to W and so ( f, g) = 0. This can be written as

1
/ xf(x)2dx = 0.

0

Since the map x + x f(x)? is continuous, nonnegative, and with average 0, it is the
0 map and so f(x) = 0 for all x € (0, 1]. By continuity, we deduce that f = 0.

The previous theorem has quite a lot of important applications in analysis, in
particular concerning minimization problems. We will see a few examples in the
sequel, but before that we introduce two very important definitions.

Definition 10.43. Let V' be a R-vector space endowed with an inner product. Let
W be a finite dimensional subspace of V. By Theorem 10.41 we have V = W @
W+, The orthogonal projection onto W is the projection py : V — W onto W
along W+. In other words, for x € V py (x) is the unique vector in W such that
x— pw(x) e Wi,
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Remark 10.44. Simply by definition we have

pw(xX) + pyr(x) = x

for all x € V and all subspaces W of V. This can be very useful in practice, since it
might be easier to compute the orthogonal projection onto W than that onto W,

Example 10.45. Endow R? with the canonical inner product. Let W = {(0,0, a3) |
a3 € R}. Then the orthogonal complement W+ is

Wt ={(a1.42.0) | a1,a2 € R}

Note that W is the Cartesian z-axis and W= is the Cartesian x y-plane. The orthog-
onal projection Py of R® onto W is the map

Py R > R?  Py(x,y.2) =(0,0,2).
Problem 10.46. Let
vi =(1,—-1,0,0) and v, = (1,0,—1,0).

Find the matrix of the orthogonal projection of R* onto W = Span(vy, v2).

Solution. Let v € R* and write py (v) = av; + bv, for some real numbers a, b.
Since v — pw (v) is orthogonal to W, we have

(v—(avi 4+ bvy),vi) = (v —(avy + bvy), v) =0,
which can also be written, taking into account that
ilP =2, [wl?=2, (v.v)=1,
as
2a +b = (v,v1), a+2b={(v,v).

Solving the system yields

Since
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we can easily compute the values py(e1),..., pw(es), where ey,...,e4 is the
canonical basis of R*. More precisely, we obtain for v = v, thata = % and b = %,

thus
Vi + v 2 1 1
pwle) = ———2 = (— -5 3 0),

3 3737 3

and similar arguments yield

—2vi +v 1 2 1
pwley) = ——=2 = (—— = —570),

3 33’
V1—2V2 1 12
= = __7__5_»0
pw(es) 3 (3 33 )

and finally
pw(€4) =0-vi+0-vy = (0,0,0,0)

We conclude that the desired matrix is

2 _1
373

Definition 10.47. Let V' be an Euclidean space. A linear map p : V' — V is called
an orthogonal projection if there is a subspace W of V' such that p is the orthogonal
projection onto W.

The next theorem describes orthogonal projections as solutions to minimization
problems. The result is absolutely fundamental:

Theorem 10.48. Let V be a R-vector space with an inner product {, ) and with
associated norm || - ||. Let W be a finite dimensional subspace of V and letv € V.
Then pw (v) is the element of W at smallest distance from v, i.e.

[lv—pw (v)|| = min |[x —v||.
xewW

Moreover, pw (v) is the unique element of W with this property.

Proof. Let x € W and apply the Pythagorean theorem (Remark 10.39; observe that
x — pw(v) € Wand v — py(v) € W) to obtain

[Ix =vI> = [1(x = pw ) + (pw ) =V)II* =

[lx = pw WP+ 1pw () = VI = || pw () — v
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This shows that ||x — v|| > ||pw (v) — v|| for al v € V and yields the first part of the
theorem. For the second part, note that equality holds in the first offset equation if
and only if x = py (v). This finishes the proof of the theorem. O

Definition 10.49. With the notations of Theorem 10.48, we define the distance
from v to W as

d(v. W) = |lv = pw ]| = min||x — ||

Problem 10.50. Let V' be a R-vector space endowed with an inner product (, ) and
let W be a finite dimensional subspace of V. Let xy, ..., x,, be a basis of W and let
v € V. Prove that

G, x1,...,%,
A wy? = G0 X0 X))
G(x1,...,x,)
where G(x1,...,x,) = det({x;,x;)) is the Gram determinant of the family
X1yeooy Xp.
Solution. Write py (v) = a1x; + ... + a,x, for some real numbers ay,...,a,.
By definition

dw, W) = |lv=pwWI> = (v = pw®),v) = [V[I> = (v, pw (),
thus
AW, W) + a1 (v, x1) + ...+ an (v, x,) = [V~
Since
oxi) = (v—pw®).xi) + {(pw®). xi) = (pw (). x;)
= ay(x1. %) + a2 (X2, Xi) + .+ (X X;).

we deduce that d(v, W)? and a,...,a, are solutions of the linear system in the
unknowns g, ..., 1,

A (vox,) = |2
At {xg, xn) = (v xp)

fo + ti(v,x1)

+ ..
ti{xt, x1) + b{x,x2) + ..

f{xn, xn) + (X2, %) 4 oA (X0, x0) = (v, xy)

The result follows then straight from Cramer’s rule. O
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Problem 10.51. Consider the vectors

|
—_—
—
—_— N = D

Find the distance from b to the space W = Span(vy, v;).

Solution. We start by finding the orthogonal projection of » on W by writing
b=pwb)+u

with (u, vi) = (u,v;) = 0. Writing pwy (b) = av; + Bv, we obtain

a|vil]* + B(vi.va) = (b. 1)
and

a(vi,va) + Blmal* = (b, v2),
which reduces to

2a =6, 48 =6.

We deduce that

1 3
b = — — =
pw (D) 2V1 + 2\/2 1

and so

db. W) = b —pw )l =

VE=32+ (- (D2 +GE-D+ (1= (=D = V24

Of course, one can also use the previous exercise, by computing (exercise left to
the reader) G(vy, v;) = 48 and G (b, vy, v,) = 32 - 36, then

_ G(b,V[,Vz) _
db, W) = RTORDE = V24.
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However, we strongly advise the reader to redo every time the argument explained
in the first part of the solution. O

Problem 10.52. Let n be a positive integer and let V' be the vector space of
polynomials with real coefficients whose degree does not exceed n. For P,Q € V
define

(P.Q) = / P(1)0(x)e—"dx.

a) Explain why ( , ) is a well-defined inner product on V.
b) Find

oo
min / A+ax+...+ anx”)ze_xdx.
0

ap,....a, €R

Solution. a) The definition makes sense, since xe™ is integrable on [0, 0o) for
all k > 0. More precisely, we have the following classical result, which follows
easily by induction on k combined with integration by parts

/ e xkdx = k.
0

It is easy to see that (, ) is indeed an inner product: it is clearly symmetric
and bilinear, and we have

(P, P) = [000 P(x)*e " dx > 0.

If the last quantity equals 0, then so does fol e P(x)%dx < fooo e~ P(x)%dx.
Since x — e™* P()c)2 is continuous, nonnegative, and with average value 0 on
[0, 1], it must be the zero map, thus P vanishes on [0, 1] and so P = 0 (because
P is a polynomial). This proves the claim that (, ) is an inner product.

b) Let W be the span of X, X2, ..., X" then Wisa subspace of ' and the problem
asks us to find

inf ||1 + P|> =d(—1, W)~
PeW
We know that the minimum value is attained when P is the orthogonal projection

of —1 on W. This is characterized by (P + 1,Q) = O forall Q € W, or
equivalently (P + 1, X¥) = 0 forall 1 <k < n. Using the identity

/ e xkdx = k!
0
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and writing P = a1 X + ... 4+ a, X", we can rewrite the condition as
n n
KU+ aik+)=0 or 14+ aj(k+1)...(k +n)=0.
i=1 i=1

Thus the polynomial Q = 1+ 7_,a;(X+1)...(X +i) vanishesat1,2,...,n
and since it has degree n and leading coefficient a,, we must have

O=a,(X—-1)...(X —n).
We need to evaluate
n
d=1LW2=[[1+P|P=(1+P1)=1+) ail = Q(0) = (-1)"nla,.
i=1
Taking X = —1 in the equality
1+ (X +1) ... (X +n) =a,X—1)...(X —n)
i=1
yields
l=a,(—1)"(n+ 1.
We conclude that the answer of the problem is

1 1
_lnl — !. = . O
(=D'nla, =n n+1)! n+1

10.4.1 Problems for Practice

Whenever it is not specified, the inner product on R” is the canonical one.

1. Let
1 6 4
x1=131, X, = | 4 and b=1]-2
-2 2 -3

Find the distance from b to the plane spanned by x; and x;.
2. Determine the orthogonal projection of b = (2, 1, 1) on the subspace spanned
by (1,1,1) and (1,0, 1).
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10.

11.

. Let W be the subspace of R* spanned by w = (1,—1,1,—1). Find the

orthogonal projection of b = (3,0, 3, —2) on the orthogonal complement wt.

. Consider the vector space V' of continuous real-valued maps on [0, 1], with the

inner product defined by

1
(fig) = / F()g()dx.

Determine which of the functions f(x) = x and g(x) = x> is closer (with

respect to the distance associated with the norm induced by the inner product)

to the function A (x) = x2.

. a) Let V be an Euclidean space and let 77, T, be orthogonal projections such

that 77075 is a projection. Prove that Ty 0T, = T,07). Hint: use Problem 14.
b) Does this result remain true if we no longer assume that 77 and 7, are
orthogonal projections, but only projections?

. Letay,...,a, be real numbers, not all of them equal to 0. Let H be the set of

vectors (x1,...,X,) € R" such thata;x; + ...+ a,x, = 0. Find the matrix of
the orthogonal projection onto H with respect to the canonical basis of R”.

. Let V be the vector space of polynomials with real coefficients whose degree

does notexceed n. If P = Y>"!_ja; X' € Vand Q = Y '_ b; X' € V, define

(P.Q) = aib;.
i=0

Let H be the subspace of polynomials in V' vanishing at 1. Compute d(X, H).

. Let V be the set of polynomials with real coefficients and degree not exceeding

3. Find

ps
min/ | P(x) — sinx|°.
Pev

—T

. Find the vector in Span((1, 2, 1), (—1, 3, —4)) which is closest (with respect to

the Euclidean norm) to the vector (—1, 1, 1).
Letv; = (0,1,1,0), v, = (1,—1,1,—1) in R*. Let W be the span of vy, v,.

a) Find the matrix of the orthogonal projection of R* onto W with respect to
the canonical basis of R*.
b) Compute the distance from (1,1,1,1) to W.

Let V' be the space of smooth real-valued maps on [0, 1], endowed with

1 1
(fig) = /0 F()g(x)dx + /0 £1(0)8' () dx.



418 10 Forms

a) Prove that (, ) is an inner product on V.

b) Let W) be the subspace of V' consisting of maps f vanishing at 0 and 1.
Let W, be the subspace of V' consisting of maps f such that f” = f. Prove
that W) @ W, = V and that W, and W, are orthogonal to each other.

¢) Describe the orthogonal projection of V' onto W,.

12. Let (V,{, )) be an Euclidean space and let f : V' — V be a map such that
(f(x),y) = {(x, f(y)) forall x,y € V.Prove that f is linear.

13. Let V be an Euclidean space andlet T : V — V be a linear map such that T? =
T,i.e., T is a projection. Prove that the following statements are equivalent:

a) T is an orthogonal projection.
b) Forall x,y € V we have (T (x), y) = (x, T(y)).

14. Let V be an Euclidean space and let 7 be a linear transformation on V' such
that 72 = T,i.e., T is a projection.

a) Suppose that 7" is an orthogonal projection. Using the Pythagorean theorem,
prove that for all x € V we have

T = ]l

b) Conversely, suppose that ||T(x)|| < ||x]|| for all x € V. Prove that (x, y) =
0for x € ker T and y € Im(T) (hint: use that ||T(x + c¢y)||? < ||x + cy||?
for all real numbers ¢) and deduce that 7" is an orthogonal projection.

10.5 Orthogonal Bases

Let V be a vector space over R endowed with an inner product (x, y) — (x, y),
with associated norm || - || (recall that ||x|| = /{x, x) forall x € V).

Definition 10.53. a) A family (v;);e; of vectors in V is called orthogonal if
(vi,vj) =0 forall i#jel.

It is called orthonormal if moreover ||v;|| = 1 for all i € I. Thus the vectors in
an orthonormal family of V' have norm 1 and are pairwise orthogonal.

b) An orthogonal basis of V is a basis of I which is an orthogonal family.

c) An orthonormal basis of V' is a basis which is an orthonormal family.

Note that the canonical basis of R” is an orthonormal basis of R” with respect
to the canonical inner product on R”. In the following two exercises the reader will
find two other very important examples of orthonormal families.

Problem 10.54. Let xo, ..., x, be pairwise distinct real numbers and consider the
space V of polynomials with real coefficients and degree not exceeding 7, endowed
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with

(P,Q) =) P(x)Q(x).

i=0

Prove that ( , ) is an inner product on V' and that the family (L;)o<;<, Where

X—Xk
Lx) =[] —
o0<k<n ' k

k#i

is an orthonormal family in V.

Solution. Clearly ( , ) is a symmetric bilinear form on V and for all P € V we
have

(P,P)=Y P(x;)’ >0,
i=0

with equality if and only if P(x;) = 0 for 0 <i < n. Since X, .. ., X, are pairwise
distinct and since deg P < n, it follows that necessarily P = 0 and so ( , ) is an
inner product on V.

To prove the second assertion, leti # j € {0,...,n} and let us compute

n
(Li.Lj) =Y Li(xi)Lj(xp)-
k=0
Now, by construction we have
Li(x;) =8y,
where §;; = 0if i # j and I otherwise. Thus
n
(Li.Lj) =Y 8ixbjk.

k=0

Ifi # j,then §ixéjx = 0for0 < k < n, thus (L;,L;) = 0.Ifi = j, then

8ixSjx = 0fork # i and 1 for k =i, thus (L;, L;) = 1 and the result follows. O

Problem 10.55. Let V' be the space of continuous 27 -periodic maps f : R — R,
endowed with the inner product

()= [ rgdx.
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Let ¢,, s, € V be the maps defined by
cp(x) = cos(nx), s,(x) = sin(nx).

Prove that the family

okl Ul Ul

is an orthonormal family in V.

Solution. To simplify notations a little bit, let Cy = % and forn > 1

2

Clearly

71
|| Coll? =/ de =L

-7

Next,

1 /” 1+cos(2nx)d 1
—dx =1,

T
1
I|Cal* = / —cos?(nx)dx = —
T b4 2

-7

since
f cos(px)dx =0 V peZ* (10.2)

(a primitive of cos(px) is % sin(px) and this vanishes at & and —r). Similarly, we
obtain that ||S,|| = 1, by using the identity

1 —cos(2nx)

.2 o
sin“(nx) = >

Thus ||v|| = 1 forall v € F.
It remains to check that elements of F are pairwise orthogonal. That Cy is
orthogonal to C,, and S, for all » > 1 follows from relation (10.2) and its analogue

/ sin(px) =0, V peZ (10.3)

-
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Next, we check that C,, and C,, are orthogonal for m # n. This follows from the
identity

cos((m —n)x) + cos((m + n)x)
2

cos(nx) cos(mx) =

and relation (10.2). Similarly, the fact that S,, and S, are orthogonal for n # m is a
consequence of the relations

cos((m — n)x) — cos((m + n)x)
2

sin(nx) sin(mx) =
and (10.2). Finally, the fact that S, and C,, are orthogonal for n,m > 1 follows

from relations

sin((m + n)x) + sin((n —m)x)
2

sin(nx) cos(mx) =

and (10.3). O

A fundamental property of orthonormal families is that they are linearly
independent. More precisely

Proposition 10.56. Let V' be a vector space over R endowed with an inner product.
Then any orthogonal family (v;);e; of nonzero vectors in E is linearly independent.

Proof. Suppose that ) ., a;v; = 0 for some scalars @; € R, such that all but
finitely many of them are 0. For j € I we have

(Vj,ZClivl’) =0.

i€l

By bilinearity, the left-hand side equals

2
> ailvivi) = ajllv; 17,

i€l

the last equality being a consequence of the fact that (v;);e; is orthogonal. We
deduce (thanks to the hypothesis that v; # 0 for all j) thata; = O forall j € I
and the result follows. O

The following result is a direct consequence of the previous proposition:

Corollary 10.57. An orthogonal family of nonzero vectors in an Euclidean space
of dimension n has at most n elements. Moreover, it has n elements if and only
if it is an orthogonal basis. In particular, an orthonormal family of n vectors in
an n-dimensional Euclidean space is automatically an orthonormal basis of that
space.
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When we have an orthonormal basis ey, ..., e, of an Euclidean space V/, it is
rather easy to write down the coordinates of a vector v € V' with respect to this
basis: these coordinates are simply (v, e;) for 1 < i < n. More precisely, we have
the very important formula

n

Vv = Z(V, e,~)e,» (104)

i=1

called the Fourier decomposition of v with respect to the orthonormal basis
ei,...,ey. In order to prove formula (10.4), write

n
V= E Xié€;

i=1
for some real numbers x; and observe that

(Vaej) = Z(xieiaej> = th‘(eivej) =Xj

i=1 i=1

foralll < j <n.
Let us come back for a moment to the setup and notations of Problem 10.54.
Recall that we proved in that problem that the polynomials

Lix) = ] 2=

0<k<n Xi — Xk
k#i

for 0 < i < n form an orthonormal family in the space V' of polynomials with real
coefficients and degree at most n, endowed with the inner product defined by

(P,O) =) P(x)Q(x).

i=0

Since dim V' = n+1 and since the family (L, )o<; <, is orthonormal (Problem 10.54)
and has n + 1 elements, Corollary 10.57 shows that this family is an orthonormal
basis of V. Moreover, for each P € V' the Fourier decomposition of P becomes

n
P = Z(P,L,»)L,».
i=0
Note that

(P.Li) =Y P(xt)Li(xi) = P(x)),

k=0
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since L;(x;) = 0 fori # k and 1 for i = k. We obtain in this way Lagrange’s
interpolation formula: for all polynomials P of degree at most » we have

P = ZP(mL —ZP(x,) H

0<k<n

ki

=X
Let us do now the same thing starting with Problem 10.55. Let 7, be the space

of trigonometric polynomials of degree at most 7. By definition,

Tn = Span(co, €1y v+ s Cuy Sty v+ Sn)s
where we recall that

cx(x) = cos(kx), si(x) = sin(kx).
Thus an element of 7, is a continuous 27 -periodic map of the form

n
X ap+ Z(ak cos(kx) + by sin(kx))
k=1

with ag, by € R. By Problem 10.55 the family

el Ul st U

is orthonormal with respect to the inner product

(e = [ rgdx

on 7,. This family is therefore linearly independent in 7, and by definition it spans
T., hence it is an orthonormal basis of 7,. If f : R — R is any continuous
2m-periodic map, we call the sum

gEFn

the nth partial Fourier series of f. A small calculation shows that we can also
write

5.0 = 2

+ Z (ak (f)cos(kx) + b (f)sin(kx))
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where
an(f) = % i f(x)cos(mx)dx, b,(f)= % i f(x)sin(mx)dx

and the mth Fourier coefficients of f'.
We can also rewrite the previous results in terms of the complex Fourier
coefficients

an) =5 [ P

of f. These are usually referred to simply as the Fourier coefficients of f. A nice
exercise for the reader consists in checking that the partial Fourier series can also be
expressed as

n

Si()x) = Y a(f)e™,

k=—n
by first checking that for m > 0

an(f) = ibu(f)

em(f) = 7

Note that relation (10.4) says that

f=80) if feT,

but of course we do not have f = S, (f) for any continuous 27 -periodic function
f. One may wonder what is the actual relationship between f and the partial
Fourier series of f. The naive guess would be that

lim S,(/)(x) = f(x)

for every continuous 2m-periodic map f : R — R. This is not true, but there are
many situations in which this is actually true: a deep theorem in Fourier analysis
due to Dirichlet says that if f and its derivative are piecewise continuous, then for
all x we have

S+ + fx-)

Tim $,(f)(x) = :

where f(x+) and f(x—) are the one-sided limits of f at x. Thus if moreover f is
continuous, we do have

Jdim S, (f)(x) = f(x),
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which we can write as

o) = Y et = 0y Z (@ (f) cos(k) + b (f) (k)

keZ

Orthogonal bases are extremely useful in practice, as we can easily compute
orthogonal projections and distances once we have at our disposal an orthogonal
basis of the space we are interested in. More precisely, we have the following very
useful

Theorem 10.58. Let V be a vector space over R endowed with an inner product
(,) and let W be a finite dimensional subspace of V. Let vy,...,v, be an
orthogonal basis of W. Then for all v € V we have

pwv) =) i),

Tl

Proof. Let us write v = py(v) + u, with u € W, that is (u,v;) = 0 for all
i € [1,n]. Letting py (v) = ayv; + ... 4+ a,v, and using the fact that vy, ..., v, is
an orthogonal family, we obtain

0= (u,vi) = (v,v;) = (pw(v), i)
= (v, ) Za, vivi) = (vovi) — oyl 1%

It follows that

and the theorem is proved. O

We can say quite a bit more. The inequality in the theorem below is called
Bessel’s inequality.

Theorem 10.59. Let V be a vector space over R endowed with an inner product
(,), and let W be a finite dimensional subspace of V. If vi,...,v, is an
orthonormal basis of W, then for all v € V we have

pw(v) = Z(V vi) Vi
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and

n n

dw, W) = |lv =" (vovi) vl = [IvIl> = Y (v, wi)*.

i=1 i=1
In particular we have

n

D i) < [l

i=1

Proof. The formula for py (v) is a direct consequence of the previous theorem.
Next, using the Pythagorean theorem

V[P = 1l = pw DI + [ pw W)

On the other hand, since vy, ..., v, is an orthonormal basis, we have

Ipw WP = 11D v.vi) - wil P =

i=1

n n

Do (v, vy = Y v (v - (i) =

i.j=1 i.j=1

n n

Z Sij(vovi)-(v.vj) = Z(v, vi)2.

ij=1 i=1
Combining these equalities yields

n n

d, W) = |lv =" (v.vi) vl = (VI[P = Y (v, wi)*

i=1 i=l
Finally, since d(v, W)? > 0, the last inequality is a direct consequence of the
previous formula. O

Remark 10.60. Let V be a vector space over R endowed with an inner product and
let (v;);e; be an orthogonal family. If (a;);e; are real numbers, all but finitely many
being equal to 0, then

2 2 2
1> amilP =" allvill*.

i€l iel
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In particular, if (v;);e; is an orthonormal family, then

1> amill> =) a}.

i€l iel
This can be proved in the same way as the previous theorem: we have

||2:a,'v,-||2 = (Zaivi»zajvj> =

iel iel JjEl
Z a,-a_,- (Vi,Vj> = Za?(v[,v[) = Za?||v[||2,
i.jel iel iel

since the family is orthogonal. Note that the algebraic operations are allowed since
we assumed that all but finitely many of the a;’s are zero, thus we never manipulate
infinite sums.

Remark 10.61. Let us come back to the discussion preceding the previous theorem.
If f : R — Ris a continuous 2x-periodic map, we deduce from that discussion
and the previous theorem that S,(f) (the nth partial Fourier series of f) is the
orthogonal projection of f on the space 7, of trigonometric polynomials of degree
at most n and that

DLl =IAIP = f@)ldx.

8€Fn

This can be rewritten in terms of the Fourier coefficients a,,(f), b, (f) of f as

2 i
ao(f) n Z(ak(f)z +bi(f)H) < — f(x)zdx.

Since this holds for all n, we deduce that the series

> @) + b (f)P)

k>1

converges and

2 i
ao(f) n Z(ak(f)z +bi(f)H) < — f(x)zdx.

The convergence of the previous series yields

lim a,(f) = lim by(f) = 0,
n—>oo n—>o0
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a nontrivial result known as the Riemann—Lebesgue theorem. On the other hand,
one can prove (this is the famous Plancherel theorem) that the previous inequality
is actually an equality, that is for all continuous 27 -periodic maps f we have

2 ™ T
aO(Zf) + Z(ak(f)z + bk (f)?) = L f(x)*dx.
k=1 o

T

The proof is beyond the scope of this book. A good exercise for the reader is to
convince himself that Plancherel’s theorem can be rewritten as

1 /g
YlaNP=o—| f)’dx,

k€L

where we recall that
1 " —ikx
a(f) == [fx)edx.
27 J_»

Plancherel’s theorem also holds for functions f : R — R which are piecewise
continuous and 27 -periodic.

Problem 10.62. a) Determine an orthogonal basis of R? containing the vector
w=(1,2,-1).

b) Let W be the subspace of R? spanned by w. Find the projection of v = (1,2, 1)
onto the orthogonal complement of W.

Solution. a) We look for an orthogonal basis w, v{, v, of R>. In particular vy, v,
should be an orthogonal basis of (Rw)L. A vector v = (x, y, z) belongs to (Rw)*
if and only if

0=(ww)=x+4+2y—z

Thus we must have

vi = (x5, y1,X1 +2y1), v = (x2,y2,X2 4+ 2y2)

for some real numbers xy, X2, y1, y2. Moreover, we should have (vi,v,) = 0
and vy, v, should be nonzero: this automatically implies that v;, v, are linearly
independent (because (vi,v,) = 0) and so they form a basis of (Rw)=t.
The condition (v, v;) = 0 is equivalent to

X1X2 + y1y2 + (1 + 2y1)(x2 + 2y,2) = 0.



10.5 Orthogonal Bases 429

We see that we have lots of choices: to keep things simple we choose x; +2y; =
0, forinstance y; = 1 and x; = —2. Then the condition becomes —2x,+ y, = 0,
so we choose x, = 1 and y, = 2. This gives

V) = (—2, ],O), V) = (1,2,5).

We insist that this is only one of the many possible answers of the problem.

b) As we have already seen in part a), the orthogonal complement of W is exactly
Span(vy, ;) and an orthogonal basis of W+ is given by v|,v,. Applying the
previous theorem yields

_ {v,m) (v, v2)
Pwa0) = ETE R
1 125
=32=G 33

We could have done this in a much easier way as follows: instead of computing
pw (v) we compute first py (v). Now an orthogonal basis of W is given by w, thus

(v, w) 4 2 4 2

pw(v) = WW = EW = (5, 3’—5)'
Next, we have
125
pwi(v) =v—pw(®) :(573,3)- O

The previous results concerning orthonormal bases show rather clearly the
crucial role played by these objects. Yet, we avoided a natural and very important
question: can we always find an orthonormal basis? The answer is given by the
following fundamental theorem. We do not give its proof right now since we will
prove a much stronger result in just a few moments.

Theorem 10.63. Any Euclidean space has an orthonormal basis.

The following theorem refines Theorem 10.63 and gives an algorithmic con-
struction of an orthonormal basis of an Euclidean space starting with an arbitrary
basis of the corresponding vector space. It is absolutely fundamental:

Theorem 10.64 (Gram—-Schmidt). Let vi,...,v; be linearly independent vectors
in a vector space V over R (not necessarily finite dimensional), endowed with an
inner product (, ). Then there is a unique orthonormal family ey, . ..,eq in V with
the property that for all k € [1,d] we have

Span(ey, ..., ex) = Span(vy,...,vg) and (er,vi) > 0.
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Proof. We will prove the theorem by induction on d. Let us start with the case
d = 1. Suppose that e, is a vector satisfying the conditions imposed by the theorem.
Since e; € Rvy, we can write ¢; = Av; for some real number A. Then (e, v;) =
Al|vi]|? is positive, thus A > 0. Next, ||e;|| = 1, thus |A| = HV_l]H and so necessarily

A= Hvl_l\l and e; = mvl. Conversely, this vector satisfies the desired properties,
which proves the theorem when d = 1.

Assume now that d > 2 and that the theorem holds ford — 1. Let vy, ..., vs be
linearly independent vectors in V. By the inductive hypothesis we know that there
is a unique orthonormal family e, .. ., e;— satisfying the conditions of the theorem
with respect to the family vy, ..., v4s—;. It suffices therefore to prove that there is a
unique vector e; such that ey, ..., e, satisfies the conditions of the theorem with
respect to vy, ..., v, that is such that

lleall =1, (eq,e;i) =0 V1<i<d-1,
and
Span(ey,...,es) = Span(vy,...,vq).
Assume first that e, is such a vector. Then
eq € Span(ey,...,eq) = Span(vy,...,vy) = Rvg + Span(vy,...,vg—1)
= Rv,; + Span(ey, ..., e4—1).

Thus we can write

d—1
eq = Avg + Zaiei

i=1

for some real numbers A,ay,...,a,y—1. Then for all i € [1,d — 1] we have (since
ei,...,e4—1 is an orthonormal family)
d—1
0= (ea.er) = Alva.er) + Y ajlej.er) = Mva.e;) +ai,
j=1
thus a; = —A(vy, e;) are uniquely determined if A is so. Next, we have
d—1

eq = A(vg — Z(vd,ei)ei).

i=1
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Note that z = v; — Zf;ll (v4,ei)e; is nonzero, since otherwise vy €
Span(ey,...,eq—1) = Span(vy,...,v4—1), contradicting the hypothesis that
V1,...,Vvq are linearly independent. Now ||eg|| = 1 forces |[A| = ﬁ, and the

condition (eg,vy) > 0 shows that the sign of A is uniquely determined and is
actually positive:

d—1
e 1
(ea.va) = (ea. Td + Y (va.eier) = T

i=1

We deduce that A is uniquely determined by

r=
I
and the uniqueness follows.
Conversely, we can define A = ﬁ and e; = Az. The previous computations
show that e; satisfies all required properties and this proves the existence part and
finishes the proof of the inductive step. O

Remark 10.65. a) Let us try to understand the proof geometrically (i.e., let us give
a less computational and more conceptual proof of the theorem). Assuming

that we constructed ey, ..., es—1, we would like to understand how to construct
eq. This vector e; must be orthogonal to ej,...,es—; and it must belong
to W = Span(vy,...,vg). It follows that e; must be in the orthogonal of
Span(ey,...,eq—1) = Span(vy,...,vs—1). However
dim Span(vy, ..., v4—1)*" = dimSpan(vi, ..., vq) — dim Span(vy, ..., vi_1)
=d—-—(d-1)=1,

thus e, is uniquely determined up to a scalar. Since we further want e; to be of
norm 1, this pins down e, up to a sign. Finally, the condition that {e;,v;) > 0
determines uniquely the sign and so determines uniquely e, .

b) Part a) (and the proof of the theorem also) gives the following algorithm,

known as the Gram—Schmidt process, which constructs ey, . . ., e4 starting from
Vi,...,vq. Set fi = vy and ey = ﬁ, then assuming that we constructed
fir--os fimrandeq, ..., e, let
k—1
N3

Sr =Vk—2(vk,€i)ei, and ¢ =

i=1

I fiell”

That is, at each step we subtract from v, its orthogonal projection
Zk_} (vi,e;)e; onto Span(ey,...,ex—;) and obtain in this way f;. Then

=
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we normalize f; to get ¢;. Note that in practice it can be very useful to
observe that we can compute || f;|| via

I SelP = (fieo vi)-

This formula follows from the fact that vy = f; + Zf:f (vi,ei)e; and e; is
orthogonal to fi for 1 <i <k — 1.

Example 10.66. Let us consider the vectors
vi=(1,1,1), v, =(02,1), v3=(3,1,3) R’

An easy computation shows that the determinant of the matrix whose columns
are vy, p, v3 is nonzero, thus vy, v,, v3 are linearly independent. Let us follow the
Gram—Schmidt process and find the corresponding orthonormal basis of R3. We set

1 1 1

_—

BB

V1

[[vall

=(

fi=v, e

§||<
o =

Next, set
fr=va— (v eider =vs—V3e1 =vs—(1,1,1) = (=1, 1,0)

and

_ S _ L _ 1T
S T ATV, SV, SV, S

Finally, set

S3=vi—(vz,er)e; —(v3,ez)e; =

7 7 7 7
—— 2e0 = (3,1,3) — (=, =, = -1,1,0
n-pat Vi =0G.1.3) (5.3, + (110
1 1 2
=3733)
and
1
/3 (-1,-1,2).

SRTTATIR
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Problem 10.67. Let V' be the space of polynomials with real coefficients whose
degree does not exceed 2, endowed with the inner product defined by

1
(P.0) = [ PrIQwax
-1
Find the orthonormal basis of V' obtained by applying the Gram—Schmidt process
to the basis 1, X, X2 of V.

Solution. We start withv; = 1, v, = X and v; = X? and apply the Gram—Schmidt
process. We obtain

1
[l = V2, e1=ﬁ,
then
frmvr— s ) = x 1[1 dx = X
=n—W —F=)—F==4 — = xdx =
2 =W VZﬁ > >,
and
! 2
AP = (fva) = /lxzdx -2
thus
€2= f2 — E
I 211 2
Finally,
1 1 3 3
= —_ =) —= — s _X _X
PR E R R CI A
1 1 3 1 1
ZXZ——/ dex——(/ xX*dx)X = X>— =
24 24 3
and
LAIR = (f5.v3) / 22 = L = 8
= ,V = X( X" —=)dx = —.
: . -1 3 45
Hence

1 3X2—1\/§
3= —— = —.
1551 2 2
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Hence the answer is

1 \/3 3x2-1 /5
S x, — /=, O
V2 2 2 2

The following problem is a generalization of the previous one. It is much more
challenging and represents an introduction to the beautiful theory of orthogonal
polynomials.

Problem 10.68 (Legendre’s Polynomials). Let » > 1 and let V' be the space of
polynomials with real coefficients whose degree does not exceed n, endowed with
the inner product

1
(P.Q)= /_1 P(x)Q(x)dx.

Let L, be the nth derivative of (X2 — 1)".

a) Prove that Lo, ..., L, is an orthogonal basis of V.

b) Compute || Lg]|.

¢) What is the orthonormal basis of V' obtained by applying the Gram—Schmidt
process to the canonical basis 1, X, ..., X" of V?

Solution. For j € [0,n] let P; = (X* — 1)/ and note that —1 and 1 are roots
with multiplicity j of P;. It follows that for k € [0, j], —1 and 1 and roots with

multiplicity j — k of P;k) (kth derivative of P;). If P € V, we deduce from this
observation and integration by parts that for j > 1

1
(L. Py = [ PPwP@dr = PP

1 1
/l P;j—l)(x)P/(X)dx — _/;] P;j—l)(x)P/(x)dx

and repeating this argument gives
L
(Lj,P)= (_1)kf PI™x) PO (x)dx
—1

fork € [0, j] and P € V. Taking j = k yields the fundamental relation

1 1
(Lk,P)z(—l)"/ (xz—l)kP(k)(x)dxzf 1 —=xD)PO(x)ydx  (10.5)
—1 -1

fork € [0,n]and P € V.
It is now rather easy to deal with the problem.
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a) For j < k we have by relation (10.5)
(Li.L / (1= XD LO (x)dx,

Since deg L; = j, we have L(/.k) = 0 and so (Lg,L;) = 0, proving that
Lo. ..., L, is an orthogonal family.
b) By definition L, has degree n and
LX) = (X2 = 1" = (X?)® =2n(2n —1)...1 = (2n)!.

We deduce from relation (10.5) that
1 1
(L..L,) = (2n)!/ (1—x)"dx = 2(2n)!/ (1 —x%)"dx.
-1 0
Let

1
I, = / (1 —x»"dx
0

and observe that an integration by parts yields

1 1
I, = x(l _ xz)nl(l) _/ x(l _ x2)n—1(_2x) — 21’!/ x2(1 _ xz)n—ldx
0 0

=2n /1(1 —(1=x2)A —x>""Ydx = 2n(I,_, — I,),
0
thus
Q2n+ 1)1, =2nl,_,.
Taking into account that /, = 1 we obtain

2"n! 4"n)?
1n=]_[ —]—[ = .
b 2z—I—1 1-:3-...-2n+1)  (@Cn+1)!

i=1

Finally

2n+1n!2

[|Lall? = (Ly, Ly) = 220!, = T
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and

2
2n +1

[ILall = 2"n!.

c) Let Oy = HZ_I;H Then by part a) the family Qy, ..., O, is orthonormal in V' and
since dim V' = n + 1, it follows that Qy, ..., Q, is an orthonormal basis of V.
Moreover, we have deg Q; = deg Ly = k for k € [0, n], which easily implies
that

Span(Qo. ..., Q) = Span(X°, ..., X¥)
for k € [0, n]. Finally,

(X5 L) [y L= x?)kdx

= > 0,
|| Ll | L]l

(X%, 04) =

since we have already seen that L,gk) is a positive real number. We conclude
that Qy, ..., Q, is obtained from 1, X, ..., X" by applying the Gram—Schmidt
process. |

10.5.1 Problems for Practice

1. Apply the Gram—Schmidt algorithm to the vectors
V) = (1,2,—2), V) = (0,—1,2), V3 = (—1,3,1)

2. Consider the vector space V' of polynomials with real coefficients and degree
not exceeding 2, endowed with the inner product defined by

1
(P.0) =/0 *P(x)0(x)dx.

Apply the Gram—Schmidt algorithm to the vectors 1, X, X2.
3. Consider the map ( , ) : R* x R} — R defined by

(Cerx2,x3), (1, ¥2, ¥3)) = (x1 +x2 + x3)(y1 + y2 + y3)+

(2 + x3)(y2 + ¥3) + x3¥3.

a) Check that this defines an inner product on R?.
b) Applying the Gram—Schmidt algorithm to the canonical basis of R?, give an
orthonormal basis for R? endowed with this inner product.
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4. Find an orthogonal basis of R* containing the vector (1,2, —1, =2).
5. (The QR factorization) Let A € M,, ,(R) be a matrix with linearly independent
columns Cy, ..., C,. Let W be the span of Cy, ..., C,, a subspace of R”.

a) Prove that there is a matrix Q € M,, ,(R) whose columns are an orthonor-
mal basis of W, and there is an upper-triangular matrix R € M, (R) with
positive diagonal entries such that

A= OR.

Hint: the columns of Q are the result of applying the Gram—Schmidt process
to the columns of A.

b) Prove that the factorization A = QR with Q, R matrices as in part a) is
unique.

6. Using the Gram—Schmidt process, find the QR factorization of the matrix

235
A=1046
007

7. Find the QR factorization of the matrix

12
A=1]21
13

8. Describe the QR factorization of an upper-triangular matrix A € M, (R).
9. If f : R — Ris a continuous 27 -periodic function, we denote

g

() =5 [ e

a) Prove that if f is continuously differentiable, then for all n € Z we have

en(f) = in-ca(f).

b) Deduce that under the assumptions of a) we have

Jim nea() =0
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and

Y rwllen( NI < oo

nez

Hint: use the Riemann-Lebesgue theorem and Bessel’s inequality, as well as
part a).

¢) Prove that if f,g : R — R are continuous 2x-periodic maps such that
cn(f) = cu(g) forall n € Z, then f = g. Hint: use Plancherel’s theorem
for the function f — g.

10. Consider the 27-periodic function f : R — R such that f(0) = f(x) = 0,
f()=0fort € (0,7)and f is odd, i.e., f(—x) = — f(x) for all x.

a) Explain why such a map exists, plot its graph and show that it is piecewise
continuous.

b) Compute its Fourier coefficients a,,( ) and b,,(f) for all m > 0.

c¢) Using Plancherel’s theorem, deduce Euler’s famous identity

> o = e

— =

= 2n+1) 8

d) Deduce from part c¢) the even more famous Euler’s identity
1 _
2=

11. Consider the 27-periodic function ' : R — R such that f(t) = t>for ¢ €
[, 7].

2

a) Compute the Fourier coefficients of f.
b) Using Plancherel’s theorem, prove the following identity

1
R

12. Let E be an Euclidean space, let ey, ..., e, be an orthonormal basis of E and
let T be a linear transformation on £. Prove that

-

n

Tr(T) = Z(T(ei)aei>~

i=1

13. Let V be an Euclidean space and let 7" be a linear transformation on V' such
that Tr(T') = 0. Let ey, ..., e, be an orthonormal basis of V.
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14.

15.

16.

a) Prove that one can find i,j € {1,2,...,n} such that (T(e;),e;) and
(T (ej), e;) have opposite signs. Hint: use Problem 12.
b) Check that the map f : [0, 1] — R defined by

J@)=(T(te; + (1 —1t)ej), te; + (1 —1t)ej)

is continuous and that £(0) f(1) < 0.
¢) Conclude that there is a nonzero vector x € E such that

(T'(x),x) =0.
d) Finally, prove by induction on n that there is an orthogonal basis of V' in

which the diagonal entries of the matrix of 7" are all equal to 0.

Let V be an Euclidean space of dimension #, let ey, ..., e, be an orthonormal
basis of V andlet T : V' — V be an orthogonal projection. Show that

rank(7) = Z 1T (eI
i=1

Let V' be an Euclidean space of dimension n and let ey, ..., e, be nonzero
vectors in V' such that for all x € V we have

n

> ew x) = x|]”.

k=1
a) Compute the orthogonal of Span(ey, ..., e,) and deduce that ey, ..., e, is a
basis of V.
b) By choosing x = ¢;, prove that ||e;|| < 1 forall 1 <i <n.
¢) By choosing x € Span(ey,...,e;_1,€j+1,...,e,)", prove that ||e;|| = 1 for
alll <i <n.
d) Conclude that ey, ..., e, is an orthonormal basis of V.

(Hermite’s polynomials) Let n be a positive integer and let V' be the space of
polynomials with real coefficients whose degree does not exceed n, endowed
with

(P, Q) =/0 P()O(t)e 'dt.

a) Explain why (, ) is well defined and an inner product on V.
b) Define hy = (X*e=X)®eX for k > 0. What are the coefficients of /1 ?
¢) Prove that for all k € [0,n] and all P € V we have

(P, hy) = (=1)F /Ooo PO (0)tke " dr.
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17.

18.

10 Forms

d) Prove that hy, ..., h, is an orthogonal basis of V.
e) Prove that ||k || = k! for k € [0, n].

(Chebyshev’s polynomials) Let n be a positive integer and let V' be the space
of real polynomials with degree not exceeding n, endowed with

lP(t)Q(t)dt
o 1—2

a) Explain why (, ) makes sense and defines an inner product on V.

b) Prove that for each k > O there is a unique polynomial T} (the kth
Chebyshev polynomial) such that Ty (cos x) = coskx forall x € R.

c) Prove that Ty, ..., T, is an orthogonal basis of V.

d) Find ||Ty|| for k € [0, n].

(P.Q) =

(Cross-product) Let V' be an Euclidean space of dimension n» > 3 and

let (e;,...,e,) be a fixed orthonormal basis. If vi,...,v, € V, write
det(vy, ..., v,) instead of det(, o) (Vi,. .., V).
a) Letvy,...,v,—; € V.Prove the existence of a unique vector vi A...Av,_| €

V such that forallv e V
det(vi,...,vu—1,v) = (W, VI A ... A V) (10.6)

We call this vector vi A ... A v, the cross-product of v{,...,v,_;.
b) Prove that vi A ... A v,_; is orthogonal to vy, ..., v,—1.
c¢) Prove thatvy,...,v,_; are linearly dependent if and only if

VIA...AV,— =0.

d) Letv; = Z?:l a;je;. By choosing v = ¢; in (10.6) prove that

n
VIA ... AV = Z(—l)”_iAi e,

i=1

where A; is the determinant of the (n — 1) X (n — 1) matrix obtained from
[a;;] (i.e., the matrix whose columns are vy,...,v,—) by deleting the ith
row. In particular, if n = 3 check that

up Vi Uzvi — uzvy
Uy | AN va | = | uzvi —u1v3
us V3 Upvy — upvi



10.5 Orthogonal Bases 441

19.

20.

21.

e) Prove thatif fi,..., f, is an orthonormal basis of V, then det( f1,..., f,) €
{—1,1}. We say that fi,..., f, is positive or positively oriented (with

respect to (eq, ...,e,)) ifdet(f1,..., fu) = 1.
f) Prove that if v, ...,v,—; is an orthonormal family, then v, ..., v,—1, v A
... A vy 1s a positive orthonormal basis.

Let vi,...,v,—1 be linearly independent vectors in a Euclidean space V of
dimension n > 3. Let H be the hyperplane spanned by vy, ..., v,—_;.

a) Prove that for all v € V we have

(ViAo AVZ,Y)
iAo AV

pu(v) =v— Vi A AV

and

[{(v,vi Ao Ave—r)]
ViAo AV

div,H) =

b) Prove that
H={eV|[{vin...Av_1) =0}

In this problem V is an Euclidean space of dimension 3.

a) (Lagrange’s formula) Prove that for all x, y € V' we have
(e, )2+ e ARl = 1x]1P - [yl
b) Prove that if 6 is the angle between x and y, then
llx Ayl = [lx|[- l[y]| - |sin0].

This exercise develops the theory of orthogonal bases over the complex
numbers. Let V' be a finite dimensional vector space over C, endowed with a
hermitian inner product ( , }, i.e., a hermitian sesquilinear form ( , ) : VxV —
C such that (x, x) > 0 for all nonzero vectors x € V. Such a space is called a
hermitian space. Two vectors x, y € V are orthogonal if (x, y) = 0. Starting
with this definition, one defines the notion of orthogonal/orthonormal family
and orthogonal/orthonormal basis as in the case of vector spaces over R.

a) Prove that an orthogonal family consisting of nonzero vectors is linearly
independent, and deduce that if dim V' = n, then an orthonormal family
consisting of n vectors is an orthonormal basis of V.
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b) Letey,...,e, be an orthonormal basis of V and let x = xje; + ... 4+ x,¢e,
and y = yje; + ...+ y,e, be two vectors in V. Prove that

(x,y) =Xiy1 + ... + X
and
x> = i)+ ..+ ol

c¢) State and prove a version of the Gram—Schmidt process in this context.

d) Prove that there is an orthonormal basis of V.

e) Prove that any orthonormal family in V' can be completed to an orthonormal
basis of V.

f) Let W be a subspace of V and let wy, ..., wy be an orthonormal basis of W.

i) Provethat W @ W+ =V and W)L =W,
ii) The orthogonal projection py of V onto W is the projection of V onto W
along W+. Prove that for all v € V

k
pw ) =Y (i v)wi

i=1

and

[[v—pw W = min [[v —w]|.
wew

10.6 The Adjoint of a Linear Transformation

Let (V, (, )) be an Euclidean space (the condition that V is finite dimensional will be
crucial in this section, so we insist on it). Let 7 : V' — V be a linear transformation.
For all y € V, the map x + (T(x), y) is a linear form on V. It follows from
Theorem 10.37 that there is a unique vector 7*(y) € V such that

(T(x),y) =A(T*(»).x) = (x, T*())

for all x € V. We obtain in this way amap T* : V — V, uniquely characterized by
the condition

(T(x).y) = (x,T*(y))

forall x, y € V. Itis easy to see that T* is itself linear and we call T* the adjoint
of T. All in all, we obtain the following
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Theorem 10.69. Let (V,(, ) be an Euclidean space. For each linear transforma-
tion T : V — V there is a unique linear transformation T* : V. — V, called the
adjoint of T, such that forall x,y € V

(T(x).y) = {x.T*(y)).

As the following problem shows, the previous result fails rather badly if we don’t
assume that V' is finite dimensional:

Problem 10.70. Let V be the space of continuous real-valued maps on [0, 1],
endowed with the inner product

1
(fig) = /0 F)g@yd.

Prove that the linear transformation 7" sending f* to the constant map equal to f(0)
has no adjoint.

Solution. Suppose that 7" has some adjoint 7*. Let W = ker T, that is the subspace
of maps f with f(0) = 0. Fix g € V. Since

(T(f).8) =(f£T"(g)
for all f, g € V, we deduce that (T*(g), f) = 0 forall f € W. Applying this to
the function f given by x — xT*(g)(x) which is in W, we conclude that

1
(T*(g), f) = /(; x(T*(g)(x))*dx = 0.

Since x — x(T*(g)(x))? is continuous, nonnegative, and with average equal to 0,
it is the zero map, thus T*(g) vanishes on (0, 1] and then on [0, 1] by continuity.
We conclude that T*(g) = O forall g € V, thus (T'(f),g) = Oforall f,g eV
and finally 7(f) = O for all f € V. Since this is clearly absurd, the problem is
solved. O

Note that for all x, y € V we have
(y.T(x)) =(T(x).y) = (x.T*()) =(T*().x) = (y.(T)*(x))
It follows that T'(x) — (T*)*(x) = 0 and so
(T =T,
which we write as

T =T.
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Thus the map T — T is an involution of the space of linear transformations on
V. The fixed points of this involution are called symmetric or self-adjoint linear
transformations. They will play a fundamental role in this chapter. More precisely,
we introduce the following definitions:

Definition 10.71. Let (V, (, )) be an Euclidean space. A linear transformation 7 :
V — V is called symmetric or self-adjoint if 7* = T and alternating or skew-
symmetric if 7* = —T.

In the next problems the reader will have the opportunity to find quite a few
different characterizations and/or properties of self-adjoint and alternating linear
transformations.

Problem 10.72. Let (V,(, )) be an Euclidean space andlet 7 : V — V be a linear
transformation. Let ey, .. ., e, be an orthonormal basis and let A be the matrix of
T with respect to ey, ..., e,. Prove that the matrix of 7* with respect to ey, ..., e,
is 'A. Thus T is symmetric if and only if A is symmetric, and 7 is alternating if
and only if A is skew-symmetric (be careful to the hypothesis that ¢;, ..., ¢, is
an orthonormal basis, nor just any basis!).

Solution. Let B = [b;;] be the matrix of T* with respect to ey, ..., e,, thus for all
i € [1,n] we have

T*(ei) =) biiex.

k=1

Since
(T(ei).ej) = (ei. T*(e)))

and T'(e;) = ZZ:] ay; ey, and since the basis is orthonormal we obtain

(T(ei).ej) Zak, ex,ej) =ajj

and
n
(ei. T*(ej)) = Zbkj(ei,ek) =
k=1
We conclude that b;; = aj; forall i, j € [1,n], and the result follows. |

Problem 10.73. Prove that any two distinct eigenspaces of a symmetric linear
transformation are orthogonal.
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Solution. Let A1, A, be different eigenvalues of 7" and let x, y be nonzero vectors
in V such that T(x) = A1x and T (y) = A,y. Since T is symmetric we have

(T(x).y) = (x.T(y).
The left-hand side equals A;(x, y), while the right-hand side equals A,(x, y). Since
A1 # Ay, it follows that (x, y) = 0 and the result follows. |

Problem 10.74. Let n be a positive integer and let V' be the space of polynomials
with real coefficients whose degree does not exceed n, endowed with the inner
product defined by

1
(P,Q) = /_1 P(x)Q(x)dx.

Prove that the linear transformation 7:V — V sending P to 2XP’(X)+(X? — 1)
P”(X) is symmetric.

Solution. Since the maps P — P’ and P +— P” are linear, it follows that T is a
linear transformation (note that 7'(P) belongs to V since deg XP’' < deg P < n
and deg(X? — 1) P” < deg P < n). In order to prove that T is symmetric, we need
to prove that

(T(P). Q) =(P.T(Q))

for all polynomials P, Q € V. Note that using the product rule for derivatives, we
can write

T(P)=((X*-1)P).

Hence integration by parts gives

1 1
(T(P). Q) = /_ (8 = DP(0) 0() d = /_ (1=3)P/(3)0'(3) d.

Note that this last expression is symmetric in P and Q, so it also equals
(T(Q), P)= (P, T(Q)). Thus T is symmetric. O

Problem 10.75. Let V' be an Euclidean space and let T : V' — V be a linear
transformation.

a) Prove that T is alternating if and only if (T'(x),x) = Oforall x € V.
b) Prove that if this is the case, then the only possible real root of the characteristic
polynomial of T is 0.
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Solution. a) Suppose that T is alternating, thus 7 4+ 7* = 0. Then for all x € V
we have

(T(x).x) = (x,T*(x)) = {x,=T(x)) = ~(T(x), x),

thus (T'(x), x) = 0.
Conversely, suppose that (T'(x),x) = 0 forall x € V. Thus forall x,y € V
we have

0=(T(x+y),x+y)=(Tx)+T(),x+y)=
(T(x),x) +(T(x),y) + {(x, T(») +(T(»),y) =

(T(x).y) +{T*(x).y) = (T + T*)(x). y).

Thus (T 4+ T*)(x) is orthogonal to V' and thus it equals 0, and this holds for all
x € V. Itfollows that T is alternating.

b) Suppose that A is a real root of the characteristic polynomial of T'. Thus there is
a nonzero vector x € V such that 7(x) = Ax. Then

MxI] = (Ax,x) = (T(x),x) =0,
andso A = 0. O

Problem 10.76. Let V' be an Euclidean space and let ey, ..., e, be a basis of V.
Prove that the map 7' : V' — V defined by

n

T(x) =) (ex. xX)ex

k=1
is a symmetric linear transformation on V. Is T positive? Is it positive definite?

Solution. Note that x — (e, x) is a linear map for all 1 < k < n (by definition of
an inner product). It follows that T itself is a linear transformation of V. In order to
check that 7' is symmetric, we need to prove that

(T(x).y) = {x.T(y))
for all x, y € V. Using the bilinearity of { , ), we obtain

n n

(T(x).y) = () (e X)ex. ) = Y _(ex. x) - (ex. ).

k=1 k=1

A similar computation yields

(, T()) = (x. Y (ex: y)ex) =Z€k x) - {ex. y),
k=1 k=1

establishing therefore the desired equality and proving that T is symmetric.
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Notice that the previous computations also give

n

(T(x),x) =) (e, %)

k=1

The last sum is nonnegative since it is a sum of squares of real numbers. It follows
that 7 is positive. Moreover, if (7T (x),x) = 0, then the previous argument yields
(ex,x) = O forall 1 <k < n. Thus x is orthogonal to Span(ey,...,e,) = V and
so x = 0. It follows that T is positive definite. O

Problem 10.77. Let T be a linear transformation on an Euclidean space V. Prove
that the following statements are equivalent:

a) Forall x € V we have ||T(x)|| = ||T*(x)]].
b) Forall x,y € V we have (T'(x), T(y)) = (T*(x), T*()).
¢) T* and T commute.

Such a linear transformation 7 is called normal. Note that symmetric as well as
alternating linear transformations are normal.

Solution. Suppose that a) holds. Using the polarization identity twice and the
linearity of T" and T*, we obtain

_ TG +IP = IT@IP = NTWIP _

(T(0).T() .

IT*(x + WP - NT* I = IT* O]

: = (T*@).T* ().

Thus b) holds.
Suppose now that b) holds. For all x, y € V we have

(ToT*=T"oT)(x),y) =(T(T*(x)),y) —(T*(T(x)).y)
=(T"(x), T*(»)) = (y. T(T(x))) =(T(x), T(»)) = (T(»). T(x)) = 0.
Thus (T o T* —T* o T)(x) = Oforall x € V, thatis T and T* commute and so

¢) holds.
Finally, suppose that c) holds. Then
IT)I)> = (T(x), T(x)) = (x, T*(T(x))) =
(x, T(T*(x))) = (T(T*(x)), x) = (T*(x), T*(x)) = [|T* ()|,

thus ||7(x)|| = ||T*(x)|| for all x € V and so a) holds. The problem is solved. O
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Problem 10.78. Let 7" be a normal linear transformation on an Euclidean space V.
Prove that if V; is a subspace of V' which is stable under 7', then Vll is also stable
under 7.

Solution. The resultis clearif 1} = Oor V; = V, so assume that this is not the case.
Choose an orthonormal basis ey, ..., e, of V' obtained by patching an orthonormal
basis of V| and an orthonormal basis of Vll. Since V; is stable under 7', the matrix
A B

of T with respect to ey,...,e, is of the form M = |:O c

i| for some matrices

A, B, C. Since T and T* commute, we have
AB| A 0] _['A0 | 4B
0C ‘B'c| ['B'C 0C |’
In particular, we must have C'C = 'BB + 'CC. Thus

Tr('BB) = Tr(C'C) — Tr('CC) = 0,

which can be written as Zi,j bl-zj = 0, where B = [b;;]. We deduce that b;; = 0 for
all i, j, thatis B = 0. But then it is clear that VlL is stable under 7T'. ad

10.6.1 Problems for Practice

1. Let V be an Euclidean space and let 7" be a linear transformation on V. Prove
that ker T* o T = ker T. Hint: if x € ker T* o T, compute || T (x)||>.

2. Let T be a symmetric linear transformation of an Euclidean space V. Prove that
V =1Im(T) & ker T and that Im(7") and ker T are orthogonal.

3. Prove that if 7" is a normal endomorphism of an Euclidean space V', then

kerT = kerT*.
4. Prove that if T is a linear transformation on an Euclidean space V, then
detT = detT*.
5. Prove that if T is a linear transformation on an Euclidean space V', then
ker(T*) = Im(T)*, Im(T*) = (ker 7).

6. Let V be an Euclidean space and let v € V be a vector with ||v|| = 1. Prove
that if k is a real number, then the map

T:V—>V, Tkx) =x+k{x,vy

is a symmetric linear transformation on V.
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7.

10.

11.

12.

Let V be the space of polynomials with real coefficients whose degree does not
exceed n and consider the map ( , ) : V x V — R defined by

1 1—x
(P,Q) = /_1 \/ n +XP(X)Q(x)dx.

a) Explain why ( , ) is well defined and an inner product on V.
b) Prove that the map 7 : V' — V defined by

T(P(X)) = (X>-1)P"(X) + (X + )P'(X)

is a self-adjoint linear transformation on V.

. Prove that if a, b are real numbers, then the linear transformation

T:R>—R> T(x,y)=(ax+by,—bx +ay)

is normal.

. Let V be an Euclidean space of dimension 2 and let T : V' — V be a normal

linear transformation. Let A be the matrix of 7 with respect to an orthonormal
basis of V. Prove that either T is symmetric or

ab
A=
5]
for some real numbers «, b.
Let P € GL,(R) be an invertible matrix and let E = M,,(R) endowed with the
inner product given by

(A, B) = Tr(A' B).

Find the adjoint of the linear transformation T : E — E sending A to PAP ™!,

Let V be an Euclidean space and let T be a linear transformation on V' such
that ||T(x)]| < ||x|| forall x € V.

a) Prove that ||T*(x)|| < ||x]|| forall x € V.
b) Prove that ker(7 — id) = ker(T™* — id).
c¢) Deduce that V is the orthogonal direct sum of ker(7" — id) and Im(7" — id).

Let V be a hermitian space, that is a finite dimensional vector space over C
endowed with a hermitian inner product { , ) : V x V — C.

a) Prove that for any linear transformation 7 : V' — V there is a unique linear
transformation 7* : V — V (called the adjoint of T) such that for all
x,yeV

(x.T(») =(T"(x). y).
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Be careful that the left-hand side is no longer equal to (7'(y), x), but rather

(T(y).x).
b) Prove that the map T + T* is a linear involution on the space of linear
transformations on V/, such that for all S, T

(SoT)*=T*oS*.
¢) Prove that T is invertible if and only if T* is invertible, and then
(T*)—l — (T_l)*.

d) If eq,...,e, is an orthonormal basis of V and if A4 is the matrix of T with
respect to this basis, prove that the matrix of 7* is A* := "A. We say that
T is self-adjoint or hermitian if 7 = T*.

e) Prove that any orthogonal projection is a hermitian linear transformation.

f) Prove that ker 7* = (Im(7T"))* and Im(7*) = (ker T')*.

g) Prove that if T is hermitian, then the orthogonal of a subspace stable under
T is also stable under 7.

10.7 The Orthogonal Group

Let Vi, V, be Euclidean spaces with inner products (, ); and (, ),, and with
corresponding norms || - || and || - ||5.

Definition 10.79. An isometry (or isomorphism of Euclidean spaces) between
Vi and V, is an isomorphism of R-vector spaces T : Vi — V, such that for all
x,yen

(T(x).T(y)2 = (x. ¥

Thus an isometry is a bijective linear map which is compatible with the inner
products on V; and V. The following exercise gives an equivalent formulation of
this compatibility:

Problem 10.80. Let V; and V, be as above and let T : V; — V5, be a linear
transformation. Prove that the following statements are equivalent:

a) For all x, y € V| we have

(T(x). T(y)2 = (x.y).

b) For all x € V| we have ||T (x)]||2 = ||x]||i.
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Solution. If a) holds, then taking y = x we obtain
T = lIxl7

and so |[|T'(x)||2 = ||x]||1, showing that b) holds.
If b) holds, then the polarization identity and the linearity of 7" yield

0. Ty, < L@+ TOIE = ITIE =TI _

2

TG+ DIE=NTOIE=NTOIE _ llx + I = x} =1yl _
- - (xv J’)ls
2 2
finishing the solution. O
Remark 10.81. If T is alinear transformation as in the previous problem, then 7T is
automatically injective: if T(x) = 0, then ||T(x)||, = 0, thus ||x||; = 0 and then
x =0.

Definition 10.82. a) Let V be an Euclidean space. A linear transformation 7" :
V — V is called orthogonal if T is an isometry between V' and V. In other
words, T is orthogonal if T is bijective and forall x,y € V

(T(x).T(y)) = {x. ).

Note that the bijectivity of T is a consequence of the last relation, thanks to
the previous remark. Thus T is orthogonal if and only if 7" preserves the inner
product.

b) A matrix A € M, (R) is called orthogonal if

A'A =1,

The equivalence between the first and last point in the following problem implies
the following compatibility of the previous definitions: let A € M, (R) and endow
R” with its canonical inner product. Then A is orthogonal if and only if the linear
transformation X — AX on R” is orthogonal. Also, by the previous problem a
linear map 7" on V is orthogonal if and only if ||7(x)|| = ||x]|| for all x € V. Hence
A is orthogonal if and only if

[AX]| = [|1X]

for all X € R”, where || - || is the norm associated with the canonical inner product
on R”, that is

Gl = Y2+ oo+ 2.
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Example 10.83. A very important class of orthogonal transformations/matrices is
given by orthogonal symmetries. Namely, consider an Euclidean space V' and a
subspace W. Then V = W @ W+, so we can define the symmetry sy with respect
to W along W+, Recall that if v € V is written as v = w + w* with w € W and
wt € Wi, then

sw(v) =w—wt,

so that sy fixes pointwise W, and —sy fixes pointwise w+t.

In order to see that sy is an orthogonal transformation, it suffices to check that
[lsw()|| = ||v|| for all v € V, or equivalently

1 il
[lw —=w=[| = |Iw+w™|

for all (w,wb) € W x WL, But by the Pythagorean theorem the squares of both
sides are equal to ||w||> + ||w"|[?, whence the result.

Orthogonal symmetries can be easily recognized among orthogonal maps: they
are precisely the self-adjoint orthogonal transformations, that is their matrices in an
orthonormal basis of the space are simultaneously symmetric and orthogonal. The

point is that an orthogonal matrix A is symmetric if and only if A> = I, since
A-"A=1,.

Let us come back to the general context of an orthogonal matrix A € M, (R) and
analyze a little bit the relation

A'A=1,.

Using the product rule and denoting Rj,..., R, the rows of A, we see that the
previous equality is equivalent to

(Ri,R;)=0 if i#j, [|[R]*=1 1<i<n,

in other words A is orthogonal if and only if its rows Rj,..., R, form an
orthonormal basis of R". Also, notice that A is orthogonal if and only if ‘A is
orthogonal, thus we have just proved the following:

Theorem 10.84. Let A € M, (R) be a matrix and endow R" with the canonical
inner product, with associated norm ||-||. The following statements are equivalent:

a) A is orthogonal.

b) The rows of A form an orthonormal basis of R”.

¢) The columns of A form an orthonormal basis of R".
d) Forall X € R" we have

IAX]] = [ X]].
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Problem 10.85. Let V' be an Euclidean space and let T : V' — V be a linear
transformation. Prove that the following assertions are equivalent:

a) T is orthogonal.

b) We have (T'(x),T(y)) = (x,y) forallx,y € V.
c¢) Forall x € V we have ||T(x)|| = ||x]|.

d) T*o T =1d.

Solution. By definition a) implies b), which is equivalent to c¢) by Problem 10.80.
If b) holds, then

(T*oT(x)—x.y) = (y.TH(T(x) = {x.y) = (T(x).T(y) — {x.y) =0

forall x,y € V, thus T*(T'(x)) = x for all x € V and d) follows. It remains to
see that d) implies a). It already implies that 7" is bijective, with inverse 7%, so it
suffices to see that b) holds. Since b) is equivalent to ¢) by Problem 10.80, it suffices
to check that c) holds. Or

TP = (T(x), T(x)) = (x, T*(T(x))) = (x,x) = ||x||?

for all x € V', which yields c). m|

We can also characterize orthogonal linear transformations in terms of their effect
on orthonormal bases, as the following problem shows:

Problem 10.86. Let V' be an Euclidean space and let T : V' — V be a linear
transformation. Then the following statements are equivalent:

a) T is orthogonal.

b) For any orthonormal basis ey, . .., e, of V, the vectors T (e}), ..., T (e,) form an
orthonormal basis of V.
¢) There is an orthonormal basis ey, ..., e, of V such that T'(e;),...,T(e,) is an

orthonormal basis of V.

Solution. Suppose that a) holds and let ey, ..., e, be an orthonormal basis of V.
Then for all i, j € [1, n] we have

(T(ei).T(ej)) = (ei,ej) = li=j.

It follows that T'(e;),..., T (e,) is an orthonormal family, and since it has n =
dim V' elements, we deduce that it is an orthonormal basis of V. Thus a) implies b),
which clearly implies c).

Suppose that c) holds. Let x € V and write x = xje; + ... + Xx,e,. Since
T(e1),...,T(e,) and ey, ..., e, are orthonormal bases of V', we have

TP = llxiT(en) + ...+ xaT (e = x7 + ...+ x; = [|x]]”.

Thus [|T'(x)|| = ||x|| forall x € V, and T is orthogonal (by the previous problem).
O
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Remark 10.87. The previous problem has the following very useful consequence:
leteq, ..., e, be an orthonormal basis of V' and let ei, . ’61/1 be another basis of V.
Let P be the change of basis matrix from ey, ...,e, toej,...,e,. Thene],... e,
is orthonormal if and only if P is orthogonal. We leave the details of the proof to

the reader.

Theorem 10.88. The set of orthogonal linear transformations on an Euclidean
space V' forms a group under composition. In more concrete terms, the composi-
tion of two orthogonal transformations is an orthogonal transformation, and the
inverse of an orthogonal transformation is an orthogonal transformation.

Proof. If Ty, T, are orthogonal linear transformations, then 77 o T, is a linear
transformation and

1Ty o To(x)[| = [[T(T2 (o) = (| T2 ()] = [|x]]

for all x € V thus Ty o T, is an orthogonal linear transformation on V by
Problem 10.85. Similarly, we prove that the inverse of an orthogonal transformation
is an orthogonal transformation. The result follows. O

The group O(V) of orthogonal transformations (or isometries) of 1 is called the
orthogonal group of V. It is the group of automorphisms of the Euclidean space V'
and plays a crucial role in understanding the space V.

Problem 10.89. Let V be an Euclidean space and let 7 be an orthogonal linear
transformation on V. Let W be a subspace of V' which is stable under 7.

a) Prove that T(W) = W and T(W+) = W+,
b) Prove that the restriction of T to W (respectively W) is an orthogonal linear
transformation on W (respectively W=).

Solution. a) This follows easily from Problems 10.85 and 10.78, but for the
reader’s convenience we give a direct argument. Since 7 maps W into W by
assumption and since T |y is injective (because T is injective on V'), it follows
that T|y : W — W is surjective, thus T (W) = W. The same argument reduces
the proof of the equality 7 (W) = W+ to that of the inclusion 7(W=) c W+.
Let x € W' and y € W. We want to prove that (T(x),y) = 0. But T is
orthogonal, so T* = T~! (Problem 10.85) and so

(T(x).y) = (x. T (y).

Since W is stable under T~', we obtain 77!(y) € W, and since x € W+, we
must have (x, T~'(y)) = 0. Thus (T (x), y) = 0 and we are done.
b) Let T; be the restriction of 7 to W. Using Problem 10.85 we obtain forall x € W

T ol = [T = [Ix]l,

thus using Problem 10.85 again we obtain that 7 is an orthogonal linear map on
W . The argument for W+ being identical, the problem is solved. O
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We will now classify the orthogonal transformations of an Euclidean space in
terms of simple transformations. The proof requires two preliminary results, which
are themselves of independent interest.

Lemma 10.90. Let V be an Euclidean space and let T be a linear transformation
on V. Then there is a line or a plane in V which is stable under T .

Proof. The minimal polynomial of T is a polynomial P with real coefficients. If it
has a real root, it follows that 7" has an eigenvalue and so the line spanned by an
eigenvector for that eigenvalue is stable under 7. Suppose that P has no real root.
Let z be a complex root of P. Then since P has real coefficients, z is also a root of P
and so Q = (X —z)(X —7) divides P. Moreover, Q(T) is not invertible, otherwise
P

o would be a polynomial of smaller degree killing 7. Thus there is a nonzero vector

x € V such that Q(T)(x) = 0. This can be written as T?(x) + aT(x) + bx = 0
for some real numbers a, b. It follows that the space generated by x and T'(x) is a
plane which is stable under 7', and the lemma is proved. a

Lemma 10.91. Let V be a two-dimensional Euclidean space and let T be an
orthogonal transformation on V with no real eigenvalue. Then there is an orthonor-
mal basis of V with respect to which the matrix of T is of the form

Ry = |:0059 —sm@]

sinf cos 6

Proof. Let e}, e; be an arbitrary orthonormal basis of V' and write T'(e;) = ae; +
be, for some real numbers a, b. Since

a’+b* = [T’ = lleil]> = 1,
we can find a real number 6 such that ¢ = cos € and b = sin 0. The orthogonal of
T (ey) is given by the line R(— sin fe; +cos fe,). Since (T (e1), T'(e2)) = (e, e2) =
0, we deduce that T'(e;) € R(—sin fe; + cos fe,) and so
T (e2) = c(—sinfe; + cos bey)
for some real number c. Since

T ()l = llez2ll = 1,

we deduce that |c| = 1 and so ¢ € {—1, 1}. It remains to exclude the case ¢ = —1.
But if ¢ = —1, then the matrix of T with respect to ey, e; is

4= cos@ sind
~ | sinf —cosh
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and one can easily check that its characteristic polynomial is X — 1, which has real
roots. It follows that if ¢ = —1, then T has a real eigenvalue, contradiction. The
result follows. O

We are now ready for the proof of the fundamental theorem classifying orthogo-
nal linear transformations on an Euclidean space:

Theorem 10.92. Let V' be an Euclidean space and let T be an orthogonal
transformation on V. Then we can find an orthonormal basis of V with respect
to which the matrix of T is of the form

I, 0 0 o0

0 -1, 0 0

A= 0 0 Ry 0

0 0 . 0 Ry,

where 0y, . .., 0 are real numbers and
cosf —sin6

Ry = .

i |:sin9 cos 6 i|
Proof. We will prove the result by induction on dimV. If dimV = 1, then

everything is clear, since we must have 7 = +id. Assume now thatdimV =n > 2
and that the result is known in dimension at most n — 1.
Suppose that 7" has a real eigenvalue A and let e; be an eigenvector. Then

[Alllexl] = [lAed]] = [T (eD]| = lleall,

thus A € {—1,1}. Let W = Rey, then W is stable under T, hence W+ is stable
under T (because T is orthogonal). Moreover, the restriction of 7' to W is still
an orthogonal transformation, since we have ||T(x)|| = ||x|| for all x € V,
thus also for all x € W+. By the inductive hypothesis, W+ has an orthonormal
basis es, ..., e, with respect to which the matrix of T restricted to W+ is of the
right shape (i.e., as in the statement of the theorem). Adding the vector Hf’_llH and
possibly permuting the resulting orthonormal basis i—;ll, €z, ...,e, of V yields an
orthonormal basis with respect to which the matrix of 7" has the desired shape.
Assume now that 7" has no real eigenvalue. By Lemma 10.90 we can find
two dimensional subspace V of T stable under 7. Since T is orthogonal, the
space W+ is also stable under T, and the restrictions of 7 to W and W< are
orthogonal transformations on these spaces. By the inductive hypothesis W+ has
an orthonormal basis es3,...,e, with respect to which the matrix of T'|y 1L is
block-diagonal, with blocks of the form Ry,. By Lemma 10.91 the space W has an
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orthonormal basis e, e; with respect to which the matrix of 7|y is of the form Ry.
Then the matrix of T with respect to ey, .. ., e, has the desired shape. The theorem
is proved. O

We can also rewrite the previous theorem purely in terms of matrices:

Corollary 10.93. Let A € M, (R) be an orthogonal matrix. There is an orthogonal
matrix P € M, (R), integers p,q,k such that p + q + 2k = n and real numbers
01, ..., 0k such that

I, 0 ... 0 O
0—-1,... 00
A=P7'| 0 0 Ry 0 | P
0 0 . 0 Ry,
Remark 10.94. a) The determinant of the matrix

I, 0 0 0

0 -1, 0 0

0 0 Ry 0

0 0 . 0 Rg,

is (—1)? € {—1,1}, since det Ry, = 1 for 1 <i < k. It follows that
detT € {—1,1}

for any orthogonal transformation 7" on V. Equivalently, det A € {—1, 1} for any
orthogonal matrix A € M, (R). Of course, we can prove this directly, without
using the previous difficult theorem: since A-'A = I, and det(’ A) = det A, we
deduce that

1 =det(4-'A) = det(4),

thus det 4 € {—1, 1}.

An isometry 7 with det7 = 1 is called a positive isometry, while an
isometry 7" with det7 = —1 is called a negative isometry. Geometrically,
positive isometries preserve the orientation of the space, while negative ones
reverse the orientation.

We can use the previous remark to define the notion of oriented orthonormal
basis of V. Fix an orthonormal basis B = (ey,...,e,) of V.If B = (f1,..., f»)
is another orthonormal basis of V, then the change of basis matrix P from B to
B’ is orthogonal, thus det P € {—1, 1}. We say that B3 is positive or positively
oriented (with respect to B) if det P = 1, and negative or negatively oriented
(with respect to B) if det P = —1. If V = R” is endowed with the canonical
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inner product, then we always take for B the canonical basis, so we simply say
that an orthonormal basis is positive or negative if it is positive or negative with
respect to the canonical basis of R”.

b) The characteristic polynomial of the matrix

I, 0 0 0
0—I, ... 0 0
0 0 Ry ... 0
0 0 ... 0 Ry

is

X =17 (X + D)7 [[(X* —2cos 6, X + 1).

i=1

Notice that the complex roots of the polynomial X? —2cos X + 1 are ¢/ and
e and they have absolute value 1. We deduce from the previous theorem that
if A is a complex root of the characteristic polynomial of an orthogonal matrix,
then |A| = 1. In other words, all complex eigenvalues of an orthogonal matrix
have absolute value 1. This can also be proved directly, but the proof is trickier
than the one that det A € {—1, 1} for an orthogonal matrix A.

Let us try to study the orthogonal group in small dimension, by starting in
dimension 2. We could use the previous theorem, but we prefer to give direct
arguments in this case, since everything can be done by hand in a fairly simple and
explicit way. So, let us try to understand orthogonal matrices A € M,(R). Consider

a matrix
ab
A=
]

satisfying A - ‘A = I,. We know by the previous discussion that det A € {—1,1}
(recall that this is immediate from the relation A - ‘A = I,). Therefore, it is natural
to consider two cases:

e det A = 1. In this case the inverse of A is simply
4 = d —b
—c a

and since A is orthogonal we have A~! = " A, givinga = d and b = —c, that is

=107
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Moreover, we have a? + ¢2 = 1, thus there is a unique real number 6 € (—x, 7]
such that a = cos 6 and ¢ = sin 6. Therefore

cos —sin 6
A= Ry = .
0 [sin@ cos 6 ]

The corresponding linear transformation 7 : R> — R? (sending X to AX) is
given by

T(x,y) = (cosfx —sinfy,sinOx + cos 6y)

and geometrically this is the rotation of angle 6. A simple computation shows
that

R91 . R92 = R91+92 = R92 . R91 (107)

for all real numbers. In particular, all rotations commute with each other.
An important consequence of this observation is that the matrix of 7" with respect
to any positive orthonormal basis of R? is still Ry (since the change of basis
matrix from the canonical basis to this new positive orthonormal basis is still a
rotation, thus it commutes with Ry). Similarly, one checks that the matrix of T
with respect to any negative orthonormal basis of R? is R_,. The formula (10.7)
also shows that it is very easy to find the angle of the composite of two rotations:
simply add their angles and subtract a suitable multiple of 27 to bring this angle
in the interval (—m, 7].

e detA = —1. Now the inverse of A is |:_d b ], thus the condition A™! = ‘4
c —a

yields d = —a and b = c. Also, we have a? + b% = 1, thus there is a unique
real number 6 € (—m, 7] such that a = cos 6 and b = sin . Then

cosf sinf
A = . — .
S I:sinG —cos@]

Note that Sy is symmetric and orthogonal, thus 592 = I, and the corresponding
transformation 7' : R?> — R?

T(x,y) = (cosfx + sinfy,sinOx — cos Oy)
is an orthogonal symmetry. In order to find the line with respect to which 7 is

an orthogonal symmetry, it suffices to solve the system AX = X. An easy
computation left to the reader shows that the system is equivalent to

sin Q - X = CoS Q .
2) T 2)
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and so the line AX = X is spanned by the vector

- (2) ()

Note that the orthogonal of this line is spanned by the vector

o (m(E)m(2)

and the vectors ey, e, form a positive orthonormal basis of R2 in which the matrix

ofTis[1 0 ]
0-—1

One can easily check that
So, - So, = Roy—0,.,

thus the composite of two orthogonal symmetries is a rotation (this was actually
clear from the beginning, since the product of two matrices of determinant —1 is a
matrix with determinant 1). Similarly, one checks that

So, Ro, = So,—6,»  Ro, So, = So,+6,,

thus the composite of a rotation and an orthogonal symmetry is an orthogonal
symmetry (this was also clear for determinant reasons).
All in all, the previous discussion gives

Theorem 10.95. Let A € M,(R) be an orthogonal matrix.
a) Ifdet A =1, then

A= Ry = |:c030 —sm9i|

sinf cos6

for a unique real number 0 € (—mn, ], and the corresponding linear transfor-
mation T on R? is the rotation of angle 6. Any two such matrices commute and
the matrix of T in any positive orthonormal basis of R? is R,.
b) Ifdet A = —1, then
cosf) sinf
A= S =
f |: sind —cos 6 }

for a unique real number 0 € (—mn, ). The matrix A is symmetric and the
corresponding linear transformation on R? is the orthogonal symmetry with

respect to the line spanned by (cos (%) , sin (%))
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Let us consider now the more complicated case dim V' = 3. Here it is no
longer easy to do explicit computations, so we will use Theorem 10.92 and our
understanding of the case dim V' = 2 in order to understand the case dim V' = 3.

Recall the integers p, ¢, k from Theorem 10.92. Since

p+q+2k =3,

we see that necessarily p # 0 or ¢ # 0. We can also prove this directly, observing
that the characteristic polynomial of 7" has degree 3, thus it has a real root and so
T has a real eigenvalue, which is necessarily equal to —1 or 1 since it has absolute
value 1.

Replacing T with —T', we exchange the roles of p and ¢. For simplicity, let us
assume that p > 1, i.e., T has at least one fixed point v. Then T fixes the line
D spanned by v, and induces an isometry on the plane P orthogonal to D. This
isometry is classified by Theorem 10.95, which deals with isometries of a plane.
Thus we reduced the case dim V' = 3 to the case dim IV = 2. We can be a little bit
more explicit, by discussing the following cases:

» Either 7 or —T7 is the identity map. This case is not very interesting.

* We have dimker(7 — id) = 2. If e, e3 is an orthonormal basis of the plane
ker(T — id), completed to an orthonormal basis e, e;,e3 of V, then T fixes
pointwise Span(e,, e3) and leaves invariant the line spanned by e;. Thus the

A00
matrix of 7" with respect to ey, e;, e3 is of the form | 0 1 0 | for some real
001
number A, which is necessarily —1 (it must be —1 or 1 since the matrix must
be orthogonal, and it cannot be 1 as otherwise T = id). We deduce that 7 is
the orthogonal symmetry with respect to the plane ker(7 — id). Notice that
det T = —1 in this case (i.e., T is a negative isometry).

¢ We have dim ker(7 —id) = 1, thus ker(7 —id) is the line spanned by some vector
e; of norm 1. Complete e to a positive orthonormal basis e}, e;,e3 of V = R3.
For instance, one can simply find a vector e, of norm 1 orthogonal for e, and if

uj Vi
er = | up and e; = | v |,
u3 V3
set
Usvsy — U3V
ey =e; Ney .= | uzvy —uv3

Uujpva — Uy
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The isometry that 7 induces on Span(e;, e3) has no fixed point (since all fixed
points of T are on the line spanned by ), thus it is a rotation of angle 6 for a
unique real number 6 € (—m, 7r]. The matrix of T with respect to ey, e, €3 is

1 0 0
Rg:= | 0cosf —sin6
0 sinf cos®

We say that T is the rotation of angle 6 around the axis Re;. Note that det 7 =
1, that is 7 is a positive isometry. Also, note that the angle 6 satisfies

1+ 2cos@ = Tr(A),

but this relation does not uniquely characterize the angle 6 (since —6 is also
a solution of that equation). In order to find 6, it remains to find sin 6. In order to
do that, one checks that

10 0
det(e, er.e5) (€1, €2, T(€2)) = |0 1 cos @ | = sinb.
00 sinf

* Finally, assume that ker(7" —id) = {0}. One possibility is that T = —id. Assume
that T # —id. Since either T or —T have a fixed point (this follows from the fact
that p or g is nonzero, i.e., that T has a real eigenvalue, which must be 1) and
since T has no fixed point, it follows that —7 has a fixed point. Let e; be a vector
of norm 1 which is fixed by —T', thus T'(e;) = —e;. Complete e; to a positive
orthonormal basis ey, e;, e3 of V, then arguing as in the previous case we deduce
that the matrix of 7" with respect to ey, e;, e3 is

-1 0 0 —-100
0 cos@ —sinf | =Rg-| 010
0 sinf cos@ 001

for some 8 € (—m, ]. Thus T is the composite of a rotation of angle 6 and
of an orthogonal symmetry with respect to the orthogonal of the axis of the
rotation. Also, notice that det 7 = —1, thus 7 is a negative isometry.

We can also slightly change the point of view and discuss the situation in
terms of matrices. Consider an orthogonal matrix A € M3(R) and the associated
linear transformation 7 : V — V sending X to AX, where V = R? is endowed
with the canonical inner product. We exclude the trivial cases A = =+1;.
In order to study the isometry 7', we first check whether 7 is a positive or
negative isometry by computing det 7 = det A.

Assume first that T is positive, i.e., det A = 1. We then check whether 4
is symmetric, i.e., A = ' A. Let us consider two cases:
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» If A is symmetric, then A> = I; (since A is orthogonal and symmetric) and so
T is an orthogonal symmetry. We claim that 7 is the orthogonal symmetry
with respect to a line. Indeed, since A% = I, all eigenvalues of A are —1 or 1.
Moreover, they are not all equal since we excluded the cases A = 413, and their
product is 1, since det A = 1. Thus one eigenvalue is 1 and the other 2 are equal
to —1. It follows that the matrix of 7" with respect to some orthonormal basis

100
er,er,e3 of R®is | 0 —1 0 | and T is the orthogonal symmetry with respect
00 -1

to the line spanned by e;. To find this line, we compute ker(A — /3) by solving
the system AX = X. A basis v of the space of solutions of this system will span
the line we are looking for.

« If Ais not symmetric, then A is a rotation of angle 6 for a unique 6 € (-, 7].
We find the axis of the rotation by solving the system AX = X: if Ae; = ¢;
for some unit vector ¢, then the axis of the rotation is spanned by ¢;. To find
the angle of the rotation, we start by using the relation

1 4 2cos @ = Tr(A), (%)

which pins down 6 up to a sign. Next, we choose any vector e, of norm 1
orthogonal to e; and we set e3 = e; Ae,. Then ey, €3, e3 is a positive orthonormal
basis of R?® and det(e, er.e5) (€1, €2, Aez) gives sin 6, which then determines 6
uniquely. Notice that in practice it suffices to find the sign of the determinant
of the vectors e, ¢», Ae, with respect to the canonical basis of R3, as this
sign gives the sign of sin 6, which in turn determines 6 uniquely thanks to
relation (x).

Assume now that 7 is negative, i.e., det A = —1. Then —T is positive, thus the
previous discussion applies to —7.
Let us see two concrete examples:

Problem 10.96. a) Prove that

-1 2 2
A== 2 -1 2
2 2 -1

is an orthogonal matrix.
b) Describe the isometry of R? defined by A4, i.e., the map 7 : R*> — R? given by
T(X)=AX.

Solution. a) Using the product rule, one easily checks that A - YA = I, thus A4 is
orthogonal. Alternatively, one checks that the columns (or rows) of A form an
orthonormal family.

b) First, we check whether 7 is a positive or negative isometry by computing det A.
An easy computation shows that det A = 1, so T is a positive isometry. Since
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A is symmetric, we deduce from the above discussion that A is the orthogonal
symmetry with respect to a line. To find this line, we solve the system AX = X.
If x, y, z are the coordinates of X, the system is equivalent to

—x +2y+2z=3x
2x —y +2z=3y
2x+2y—z=3z

and has the solution x = y = z. Thus T is the orthogonal symmetry with respect
to the line spanned by (1, 1, 1). |

Problem 10.97. Prove that the matrix

2 21
A=-]1-212
1 22

is orthogonal and study the associated isometry of R>.

Solution. One easily checks either that A - ‘A = I3 or that the rows of A form an
orthonormal family. Next, one computes det A = 1, thus the associated isometry T
is positive. Since A is not symmetric, it follows that T is a rotation. To find its axis,
we solve the system AX = X, which is equivalent to

2x +2y +z=3x
—2x +y +2z =3y
x—2y+4+2z7=3z

and then to
x=z y=0
1
Thus the axis of the rotation is spanned by the vector | 0 |. We normalize it to make
1

it have norm 1, thus we consider instead the vector

which spans the axis of 7.
Let 6 be the angle of the rotation, so that

5
1+2cosf =Tr(A) = 3
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thus
1
cosf = —.
3

It remains to find the sign of sin 6. For that, we choose a unit vector orthogonal to
er, say

0
€) = 1
0
and compute the sign of
10 2
det(ej, ez, dep) = —= |01 1 |=——= <0,

3V2 |1 020 32

thus sin 6 < 0 and finally

1
6 = —arccos —. |
3

10.7.1 Problems for Practice

1. Prove the result stated in Remark 10.87.
2. a) Prove that the matrix

is orthogonal.

b) Describe the isometry 7 : R*> — R? sending X to AX: is it positive or
negative? If it is a rotation, describe the angle, if it is a symmetry describe
the line with respect to which T is the orthogonal symmetry.

3. a) Prove that each of the following matrices is orthogonal

001 1 12 2 10 0
100, =21 =21, 00 -1
010 2-21 0-10

b) If A is one of these matrices, describe the isometry T : R® — R3 sending X
to AX (for instance, if T is a rotation then you will need to find the axis and
the angle of the corresponding rotation).
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10.

11.

12.

13.

14.

10 Forms

. Prove that the matrix

2 -6 3
A=—-|-6-3-2
3 —2-6

is orthogonal and study the associated isometry of R?.

. Find the matrix of the rotation of angle % around the line spanned by (1, 1, 1).
. Let V be an Euclidean space and let T : V' — V' be a linear map. Prove that T’

is orthogonal if and only if ||7(x)|| = 1 whenever ||x|| = 1.

. a) Describe all orthogonal matrices A € M, (R) having integer entries.

b) How many such matrices are there?

. a) Describe the matrices in M, (R) which are simultaneously diagonal and

orthogonal.
b) Describe the matrices in M,,(R) which are simultaneously upper-triangular
and orthogonal.

. Let V' be an Euclidean space. Recall that if W is a subspace of V, then sy

denotes the orthogonal symmetry with respect to W, that is the symmetry with
respect to W along W+,

a) Let v be a vector in V with ||[v]| = 1 and let H = (Rv) be its orthogonal.
Prove that for all x € V we have

Sg(x) = x —2(v, x)v.

b) Let vi,v, € V be vectors in V' with the same norm. Prove that there is a
hyperplane H of V such that sy (v;) = v,.

Find the matrix (in the canonical basis of R?) of the orthogonal symmetry of
R3 with respect to the line spanned by (1,2, 3).

Find the matrix (in the canonical basis of R?) of the orthogonal symmetry of
R3 with respect to the plane spanned by (1, 1, 1) and (0, 1, 0).

Let V be a three-dimensional Euclidean space and let r be a rotation on V' and
s an orthogonal symmetry. Prove that s o r o s is a rotation and describe its axis
and its angle in terms of those of r.

Let V be a three-dimensional Euclidean space. When does a rotation of V
commute with an orthogonal symmetry of V'?

Let A = [a;;] € M, (R) be an orthogonal matrix. Prove that

n
n < Z |ai;| <n/n.
ij=1

Hint: the sum of squares of the elements in each row is 1. For the inequality on
the right use the Cauchy—Schwarz inequality.
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15.

16.

17.

18.

19.

Let A = [a;;] € M,(R) be an orthogonal matrix.

a) Let X be the vector in R” all of whose coordinates are equal to 1. Compute
(X, AX), where ( , ) is the standard inner product on R”.
b) Prove that

n
| Y aijl <n.

i,j=1

Let v € R” be a nonzero vector. Find all real numbers k for which the linear
map T : R" — R”" defined by

T(x)=x+k({x,v)v

is an isometry.
Let V be an Euclidean space and let T : V' — V be a linear transformation
such that (T'(x), T (y)) = 0 whenever (x, y) = 0.

a) Let x, y be vectors of norm 1 in V. Compute (x + y,x — y).
b) Prove that there is a nonnegative real number k such that for all x € V

TNl = k|lx]].

Hint: if ||x|| = ||y|| = 1, show that ||T'(x)|| = ||T(y)]|| using part a) and
the hypothesis.
¢) Prove that there is an orthogonal transformation S on V such that T = kS.

Let V = M, (R) be endowed with the inner product
(A, B) = Tr('AB).

Let A € V. Prove that the following statements are equivalent:

a) A is orthogonal
b) The linear transformation 7" : V' — V sending B to AB is orthogonal.

(Cayley transform)

a) Let A € M,,(R) be a skew-symmetric matrix. Prove that 7, + A4 is invertible.
Hint: if AX = —X, compute (AX, X) in two different ways.

b) Prove thatif A € M, (R) is skew-symmetric, then (1, — A)(I,, + A)~'is an
orthogonal matrix which does not have —1 as eigenvalue.

c) Conversely, prove that if B is an orthogonal matrix not having —1 as
eigenvalue, then we can find a skew-symmetric matrix A such that B =
(I, — AU, + A~

d) Prove that the map A — (I, — A)(I, + A)~" induces a bijection between the
skew-symmetric matrices in M, (R) and the orthogonal matrices in M, (R)
for which —1 is not an eigenvalue.
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20.

21.

22.

23.

24.
25.
26.

27.
28.

29.

10 Forms

(Compactness of the orthogonal group) Let (Ax)x>1 be a sequence of orthogo-
nal matrices in M, (R). Let af,kj) be the (i, j)-entry of Ay. Prove that there exists
a sequence of integers k; < k, < ... such that for all i, j € {1,2,...,n} the
sequence (affj?) )1>1 converges to some real number x;; and such that the matrix
X = [x;;]is an orthogonal matrix. Hint: use the classical fact from real analysis
that each sequence in [—1, 1] has a convergent subsequence.

Let A € M, (R) be a skew-symmetric matrix and let 7 : R” — R" be the map
X — AX. Prove that there is an orthonormal basis of R" with respect to which
the matrix of T is a block-diagonal matrix, in which each block is either the

—a
induction on n and Lemma 10.90, and argue as in the proof of Theorem 10.92.
Prove that if A € M, (R) is a skew-symmetric matrix, then det A > 0 and the
rank of A is even.

In the following problems we consider a finite dimensional vector space V'
over C endowed with a positive definite hermitian product ( , ) and associated
norm || ||. A linear map 7' : V — V is called unitary or an isometry if

(T(x).T(y) = (x.)

forall x,y € V. A matrix A € M,,(C) is called unitary if the associated linear
map C" — C" sending X to AX is unitary (where C" is endowed with its
standard hermitian product).

Prove that for a linear map 7 : V — V the following assertions are
equivalent:

. . 0 a .
zero matrix or a matrix of the form |: Oj| for some real number a. Hint: use

a) T is unitary.
b) We have ||T(x)|| = ||x|| forall x € V.
¢) T maps unit vectors (i.e., vectors of norm 1) to unit vectors.

Prove that a matrix A € M,,(C) is unitary if and only if A - A* = I, where
A* = "Ais the conjugate transpose of A (thus if A = [a;;] then A* = [a};]).
Prove that the inverse of a unitary matrix is a unitary matrix, and that the product
of two unitary matrices is a unitary matrix.

Prove that if A is a unitary matrix, then |det A| = 1.

Describe the diagonal and unitary matrices in M, (C).

Prove that for a matrix A € M, (C) the following assertions are equivalent:

a) A is unitary.

b) There is an orthonormal basis X1, ..., X, of C" (endowed with its standard
hermitian product) such that AX1, ..., AX, is an orthonormal basis of C".
¢) For any orthonormal basis X1, ..., X, of C" the vectors AX, ..., AX, form

an orthonormal basis of C".

Let T : V — V be a unitary linear transformation on V. Prove that there is an
orthogonal basis of V' consisting of eigenvectors of 7.
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10.8 The Spectral Theorem for Symmetric Linear
Transformations and Matrices

In this section we will prove the fundamental theorem concerning real symmetric
matrices or linear transformations. This classifies the symmetric linear transforma-
tions on an Euclidean space in the same way as Theorem 10.92 classifies orthogonal
transformations. We will then use this theorem to prove the rather amazing result
that any matrix A € M, (R) is the product of a symmetric positive matrix and of
an orthogonal matrix. This result, called the polar decomposition, is the matrix
analogue of the classical result saying that any complex number can be written as
the product of a nonnegative real number and of a complex number of magnitude 1.

We start by establishing a first fundamental property of real symmetric
matrices: their complex eigenvalues are actually real.

Theorem 10.98. Let A € M, (R) be a symmetric matrix. Then all roots of the
characteristic polynomial of A are real.

Proof. Let A be a root of the characteristic polynomial of A. Let us see A as a
matrix in M, (C). Since det(Al,, — A) = 0, there exists X € C" nonzero such that
AX = AX.Write X =Y +iZ for two vectors Y, Z € R" and write A = a + ib
for some real numbers a, b. The equality AX = AX becomes

AY +iAZ = (a+ib)(Y +iZ)=aY —bZ +i(aZ + DY)
and taking real and imaginary parts yields
AY =aY —bZ, AZ =aZ +bY (10.8)
Since A is symmetric, we have
(AY,Z) = (Y,AZ) (10.9)

By relation (10.8), the left-hand side of relation (10.9) is equal to a (Y, Z) —b|| Z||?,
while the right-hand side is equal to a(Y, Z) + b||Y ||>. We deduce that

2 2
b(IYII"+11Z]7) =0
and since at least one of Y, Z is nonzero (otherwise X = 0, a contradiction), we

deduce that b = 0 and A is real. |

We need one further preliminary remark before proving the fundamental theo-
rem:

Lemma 10.99. Let V be an euclidian space and let T : V. — V be a symmetric
linear transformation on V. Let W be a subspace of V which is stable under T.
Then
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a) W is also stable under T.
b) The restrictions of T to W and W+ are symmetric linear transformations on
these spaces.

Proof. This follows fairly easily from Problem 10.78, but we prefer to give a
straightforward argument.

a) Letx € W+ and y € W. Then

(T(x),y) =(x,T(y))

Now x € Wt and T(y) € T(W) C W, thus (x,T(y)) = 0and so T(W') C
W, which yields the desired result.
b) Let 7} be the restriction of 7" to W. For x, y € W we have

(T1(x).y) =(T(x).y) = (x. T(y)) = (x. T1(y)).

thus 7 is symmetric as linear map on W. The argument being identical for W+,
the lemma is proved. O

We are finally in good shape for the fundamental theorem of the theory of
symmetric linear transformations (or matrices), which shows that all such trans-
formations are diagonalizable in an orthonormal basis:

Theorem 10.100 (Spectral Theorem). Let V be an Euclidean space and let T :
V. — V be a symmetric linear transformation. Then there is an orthonormal basis
of V consisting of eigenvectors for T.

Proof. We will prove the theorem by strong induction on n = dim V. Everything
being clear when n = 1, suppose that the statement holds up to n — 1 and let us
prove it for n. So let V' be Euclidean with dim V' = n and let 7 be a symmetric
linear transformation on V. Let eq, . . ., e, be an orthonormal basis of V. The matrix
A of T in this basis is symmetric, hence it has a real eigenvalue A by Theorem 10.98
(and the fact that any matrix with real-or complex-entries has a complex eigenvalue).

Let W = ker(Aid — T') be the A-eigenspace of T. If W = V, then T = Aid and
SO ey, ..., e, is an orthonormal basis consisting of eigenvectors for 7. So assume
that dimW < n. We have V. = W @& W+ and T leaves stable W+, inducing
a symmetric linear transformation on this subspace (Lemma 10.99). Applying the
inductive hypothesis to the restriction of 7 to W+ we find an orthonormal basis
flJ-, ey fkl of W+ consisting of eigenvectors for 7. Choosing any orthonormal
basis fi,..., f; of W (consisting automatically of eigenvectors for T'), we obtain
an orthonormal basis f7, ...,fs,fll,...,ka- of V.= W @& W= consisting of
eigenvectors for 7. This finishes the proof of the theorem. O

If A € M,(R) is a symmetric matrix, then the linear transformation 7 : X +>
AX on V = R" is symmetric. Applying the previous theorem, we can find an
orthonormal basis of V' with respect to which the matrix of 7" is diagonal. Since the
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canonical basis of V is orthonormal and since the change of basis matrix between
two orthonormal bases is orthogonal (Remark 10.87), we obtain the following all-
important result:

Theorem 10.101. Let A € M,(R) be a symmetric matrix. There exists an
orthogonal matrix P € M, (R) such that PAP~" is diagonal (in particular A is
diagonalizable). In other words, there is an orthonormal basis of R" consisting in
eigenvectors of A.

The next result gives a very useful characterization of positive (respectively
positive definite) symmetric matrices:

Theorem 10.102. Let A € M, (R) be a symmetric matrix. Then the following
statements are equivalent:

a) A is positive

b) All eigenvalues of A are nonnegative.

c) A = B? for some symmetric matrix B € M, (R).
d) A = "B - B for some matrix B € M, (R).

Proof. Suppose that A is positive and that A is an eigenvalue of A, with eigenvector
v. Since Av = Av, we obtain

AVI? = (v, Av) = "vAv > 0,

thus A > 0. It follows that a) implies b).

Assume that b) holds and let Aq,..., A, be all eigenvalues of A, counted with
multiplicities. By assumption A; > 0 for all i € [1, n]. Moreover, by the spectral
theorem we can find an orthogonal matrix P such that PAP —1 = D, where D is the
diagonal matrix with entries A, ..., A,. Let D be the diagonal matrix with entries
Wi = +/A; andlet B = P~'D; P. Then B is symmetric, since P is orthogonal and
D, is symmetric:

'‘B="'pPD,'P'=pP7'DP.

Moreover, by construction B> = P~!'D?P = P~'DP = A. Thus c) holds.
It is clear that ¢) implies d). Finally, if d) holds, then for all X € R" we have

'XAX = ||BX|* >0

and so A is positive. O

The reader is invited to state and prove the corresponding theorem for positive
definite matrices.

After this hard work, we will take a break and see some nice applications of the
above theorems. The result established in the next problem is very important.
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Problem 10.103. a) Let 7" be a symmetric positive definite linear transformation
on an Euclidean space V. Prove that for all d > 2 there is a unique symmetric
positive definite linear transformation 7, such that Tf = T. Moreover, prove
that there is a polynomial P; € R[X] such that T; = P,(T).

b) Let A € M, (R) be a symmetric positive definite matrix. Prove that for all d >
2 there is a unique symmetric positive definite matrix A, such that Az = A.
Moreover, there is a polynomial P; € R[X] such that A; = P;(A).

Solution. Clearly part b) is a consequence of part a), so we focus on part a) only.
Let us establish the existence part first. Since 7' is symmetric and positive definite,
there are positive real numbers Aq, ..., A, and an orthonormal basis e1, ..., e, of V
such that T'(e;) = Aje; for 1 <i <n.Define Ty : V — V by Ty(e;) = 4/ A;e; for
1 <i < n and extend it by linearity. Then Tdd (e;) = (’/)k_,-de,- = die; = T(e;) for
1 <i <n.Thus Tf = T. Moreover, T, is symmetric and positive definite: indeed,
in the orthonormal basis ey, . . ., ¢4 the matrix of 7y is diagonal with positive entries.

Next, we prove that T, is a polynomial in 7'. It suffices to prove that there is a
polynomial P such that P(1;) = YA for 1 <i <n,asthen

P(T)(e;) = P(A)e; = v Aiep = Ty(e;),

thus P(T) = T,. In order to prove the existence of P, let us assume without loss of
generality that the different numbers appearing in the list Ay,..., A, are A1, ..., Ak
for some 1 < k < n. It is enough to construct a polynomial P such that P(A;) =
¢/A; for 1 <i < k. Simply take the Lagrange interpolation polynomial associated
with the data (A, ..., Ax) and &A1, ..., &/As.

Let us prove now that T is unique. Let S be a symmetric positive definite linear
transformation such that S¢ = T. Then S commutes with 7 = S?, thus it also
commutes with any polynomial in 7'. It follows from the previous paragraph that
S commutes with 7,. Since S and T, are diagonalizable and since they commute,
it follows that there is a basis fi,..., f;, of V in which the matrices of S and T,
are both diagonal, say D, and D,. Note that the entries ay, ...,a, and by, ..., b, of
D1, respectively D, are positive (since they are the eigenvalues of S and T;) and
they satisfy afl = bid for1 <i <n (since S¢ = Tdd = T). It follows that a; = b;
for1 <i <nandthen D; = D, and S = T,. Thus T} is unique. The problem is
solved. O

Remark 10.104. a) As the proof shows, the same result applies to symmetric
positive (but not necessarily positive definite) linear transformations and matrices
(of course, the resulting transformation 7}, respectively matrix Ay will also be
symmetric positive, but not necessarily positive definite).

b) We will simply write </7, respectively /A for the linear transformation T},
respectively matrix A, in the previous problem.

Consider now a matrix A € M, (R). The matrix ‘A - A is then symmetric and
positive. By the previous problem (and the remark following it), there is a unique
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symmetric positive matrix S = +/’A - A such that S> = 4 - A. Suppose now that
A is invertible, then S is invertible (because ‘A4 - A = S? is invertible) and so we
can define

U=A4S"".
Then, taking into account that .S is symmetric, we obtain
tU .U = ts—l tAAs—l — S—lsZs—l — In»

that is U is orthogonal. We have just obtained half of the following important

Theorem 10.105 (Polar Decomposition, Invertible Case). Let A € M, (R) be an
invertible matrix. There is a unique pair (S, U) with S a symmetric positive definite
matrix and U an orthogonal matrix such that A = US.

Proof. The existence part follows from the previous discussion, it remains to
establish the uniqueness of U and S. Suppose that A = US with U orthogonal
and S symmetric positive definite. Then

‘A-A=S'U-US =8>

and by the uniqueness part in Problem 10.103 we deduce that S = +/?A- A and
then U = AS~!. Hence U and S are unique. O

One may wonder what is happening when A = [a;;] is no longer invertible.
We will prove that we still have a decomposition A = US with U orthogonal and
S symmetric positive (not positive definite). The pair (S, U) is however no longer
unique (if A = O,, then A = UO, for any orthogonal matrix U). The existence
of the decomposition in the case when A is no longer invertible is rather tricky.
We will consider the matrices Ay = A + %I,,. There exists ko such that for all
k > ko the matrix Ay is invertible (because A has only finitely many eigenvalues).
By the previous theorem applied to A; we can find an orthogonal matrix Uj and a
symmetric positive definite matrix Sy such that

Ap = U Sk

Write U, = [ul(Jk)] and Sy = [sl(jk)] Since Uy, is orthogonal, the sum of squares of the

elements in each column of Uy equals 1, thus ul(jk) e [-1,1]foralli,j €{l,...,n}
and all k > k. By a classical result in real analysis, any sequence of numbers
between —1 and 1 has a convergent subsequence (this is saying that the interval
[—1, 1] is compact). Applying this result n? times (for each pairi, j € {1,2,...n})

we deduce the existence of a sequence kg < k; < ko < ... such that

. k
uij := lim ul(.jl)
=00
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exists for all i, j € {1,2,...,n}. We claim that the matrix U = [u;;] is orthogonal.
Indeed, passing to the limit in each entry of the equality ‘U, - Uy, = I, yields
'U -U = I,. Moreover, since

Sk, = Uklekl = tUszkl’

and since each (i, j)-entry of ‘U, converges (when [ — 00) to u;; and each

(i, j)-entry of Ay, converges (when | — o0) to a;;, we deduce that for all
i,j €{1,2,...,n} the sequence (Si(,/'q)

is symmetric and

) converges to some s;;, the matrix S = [s;;]

S="U-4,

thatis A = US. It remains to check that § is positive, but if X € R”, then passing
to the limit in the inequality ' XSy, X > 0 yields ‘XSX > 0, thus S is positive. All
in all, we have just proved the following:

Theorem 10.106 (Polar Decomposition, The General Case). Any matrix A €
M, (R) can be written as the product of an orthogonal matrix and of a symmetric
positive matrix.

Note that if A = US, then necessarily
"'4-4=5?

and so S = +/!A- A is uniquely determined. We call the eigenvalues of S the
singular values of A. For more information about these, see the problems section.
We end this section with a few other applications of the results seen so far.

Problem 10.107. Let V' be an Euclidean space and let 7 be a symmetric linear

transformation on V. Let A1, ..., A, be the eigenvalues of T'. Prove that
17 ()]l
= max |A;].
xev—toy |1x]] I<i<n
Solution. By renumbering the eigenvalues, we may assume that max; [A;| = |A,|.
Let ey, ..., e, be an orthonormal basis of V' in which T'(¢;) = A;e; for1 <i < n.

If x € V — {0}, we can write x = xje; + ... + x,e, for some real numbers x;, and
we have

T()C) = ilix,-e,-.

i=1
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Thus

Tl _

|||

since A7x? < A2x? for 1 <i < n. We conclude that

T
el
vev—{oy Xl
Since
T
LI
llen !l

we deduce that the previous inequality is actually an equality, which yields the
desired result. a

Problem 10.108. Find all nilpotent symmetric matrices A € M, (R).

Solution. If A is nilpotent, then all eigenvalues of A are 0. If A is moreover
symmetric, then it is diagonalizable and so it must be O,,. Thus only the zero matrix
is simultaneously symmetric and nilpotent. O

Problem 10.109. Let A be a symmetric matrix with real entries and suppose that
A = I, for some positive integer k. Prove that A% = I,,.

Solution. Since A is symmetric and has real entries, its complex eigenvalues are
actually real. Since they are moreover kth roots of unity, they must be 1. Thus all
eigenvalues of A2 are equal to 1. Since A2 is symmetric, it is diagonalizable, and
since all of its eigenvalues are 1, we must have A2 =1,. |

Problem 10.110. Let A € M, (R) be a symmetric positive matrix. Prove that
" 1
Vdet4 < —Tr(A).
n

Solution. det A and Tr(A) do not change if we replace A with any matrix similar
to it. Using the spectral theorem, we may therefore assume that A is diagonal. Since
A is positive, its diagonal entries a; := a;; are nonnegative numbers. It suffices
therefore to prove that

ay+a+...+a,

Jayay...a, <
n
for all nonnegative real numbers aj, ..., a,. This is the AM-GM inequality. Let us

recall the proof: the inequality is clear if one of the a;’s is 0. If all a; are positive, the
inequality is a consequence of the convexity of x > e* (more precisely of Jensen’s
inequality applied to Inay, ..., Ina,). O
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Problem 10.111. Let A = [a;;)] € M,(R) be a symmetric positive matrix with
eigenvalues A, ..., A,. Prove that if f : [0, 00) — R is a convex function, then

flaw) + flan) + ...+ flan) = fA) + ...+ f(A).

Solution. Since A is symmetric and positive, there is an orthogonal matrix P such
that A = PDP~!, where D is the diagonal matrix with diagonal entries A1, ..., A,.
Let P = [p;;], then the equality A = PD'P yields

n
ajj = Z Pikkkpjk-
k=1

Since P is orthogonal, we have Y ;_, pl.zk = 1 for all i, and since f is convex, we
deduce that

n n
flan) = f (Z pfkkk) <D P SO
k=1 k=1
Adding up these inequalities yields

Do fai) <D0 phfOa) =

i=1 i=1k=1

DAY P = f),
k=1 k=1

i=1

the last equality being again a consequence of the fact that P is orthogonal. The
result follows. o

Problem 10.112. Let A = [a;;] € M,(R) be a symmetric positive matrix. Prove
that

detA <anaxp...a,.

Solution. If det A = 0, then everything is clear, since a;; ="' e; Ae; > 0 for all i,
where ey, ..., e, is the canonical basis of R". So suppose that det A > 0, thus A is
positive definite. Then a;; > 0, since ¢; # 0.If A1, ..., A, are the eigenvalues of 4,
thendet A = A, ... A,, thus the inequality is equivalent to

n n
Z log A < Z log ay.
k=1 k=1

This follows from Problem 10.111 applied to the convex function f(x) = —logx.
a
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Problem 10.113 (Hadamard’s Inequality). Let A = [a;;] € M,(R) be an
arbitrary matrix. Prove that

|det A]> < ]‘[ iagj

i=1\j=1

Solution. We will apply Problem 10.112 to the matrix B = A’'A, which is
symmetric and positive. Note that det B = (det A)? and b;; = Z'}:l afj for all i.
The result follows therefore from Problem 10.112. |

10.8.1 Problems for Practice

1. Give an example of a symmetric matrix with complex coefficients which is not
diagonalizable.

2. Let T be a linear transformation on an Euclidean space V', and suppose that
V has an orthonormal basis consisting of eigenvectors of 7. Prove that T is
symmetric (thus the converse of the spectral theorem holds).

3. Consider the matrix

1 -2-2
A=|-21 =2
—2-21

a) Explain why A is diagonalizable in M3(R).
b) Find an orthogonal matrix P such that P~' AP is diagonal.

4. Find an orthogonal basis consisting of eigenvectors for the matrix

—26-3
A=-1] 6 32
326

5. Let A € M,(R) be a nilpotent matrix such that A’A = 'AA. Prove that A =
O, Hint: prove that B = A’ A is nilpotent.

6. Let A € M, (R) be a matrix. Prove that A’ A and ' AA are similar (in fact A and
" A are always similar matrices, but the proof of this innocent-looking statement
is much harder and requires Jordan’s classification theorem). Hint: both these
matrices are symmetric, hence diagonalizable.

7. Let A € M,,(R) be a symmetric matrix. Prove that

(Tr(A))?

rank(A4) > Tr(A2)

Hint: consider an orthonormal basis of eigenvectors for A4.
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8.

10.

1.

12.

13.

10 Forms

The entries of a matrix A € M,,(R) are between —1 and 1. Prove that
|det A| < n"/2.

Hint: use Hadamard’s inequality.

. Let A, B € M,(R) be matrices such that A4 = 'BB. Prove that there is

an orthogonal matrix U € M, (R) such that B = UA. Hint: use the polar
decomposition.

(The Courant-Fischer theorem) Let E be an Euclidean space of dimension n
and let p € [1,n] be an integer. Let T be a symmetric linear transformation on
E andlet Ay <... < A, be its eigenvalues.

a) Let ey, ..., e, be an orthonormal basis of £ such that T'(¢;) = A;e; for all

1 <i <nandlet F = Span(ey,...,e,). Prove that

max (T'(x),x) < A,.
X€
[lx[]=1

b) Let F be a subspace of E of dimension p. Prove that F' N Span(e,, ..., e,)
is nonzero and deduce that

max (T(x),x) = A,.

X€E
[lx[]=1
¢) Prove the Courant—Fischer theorem:
A, = min max (T(x),x),
P FCE x€F (7). x)
dim F=p ||x[|=1
the minimum being taken over all subspaces F' of E of dimension p.

Find all matrices A € M, (R) satisfying A’AA = I,,. Hint: start by proving that
any solution of the problem is a symmetric matrix.
Find all symmetric matrices A € M, (R) such that

A+ A%+ A% =31,.

Let A, B € M, (R) be symmetric positive matrices.

a) Let ey,...,e, be an orthonormal basis of R” consisting of eigenvectors of
B, say Be; = Aje;. Let u; = (Ae;, e;). Explain why A;, u; > 0 for all
and why

Tr(A) = Z/,L,' and Tr(AB) = Zkiui.
i=1

i=1
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14.

15.

16.

17.

18.

19.

b) Prove that
Tr(AB) < Tr(A) - Tr(B).

Let A = [a;;] € M,(R) be a symmetric matrix and let A;,..., A4, be its
eigenvalues (counted with multiplicities). Prove that

> =Y

ij=1 i=1

(Cholesky’s decomposition) Let A be a symmetric positive definite matrix in
M, (R). Prove that there is a unique upper-triangular matrix 7 € M, (R) with
positive diagonal entries such that

A='T-T.

Hint: for the existence part, consider the inner product (x, y); = (4Ax, y) on R”

(with ( , ) the canonical inner product on R"), apply the Gram—Schmidt process

to the canonical basis B of R” and to the inner product ( , ), and consider the

change of basis matrix from B to the basis given by the Gram—Schmidt process.

a) Let V be an Euclidean space and let 7' be a linear transformation on V. Let
Aty ..., A, be the eigenvalues of T* o T'. Prove that

TG _

xev—{oy |1xl l<i<n

b) Let V be an Euclidean space and let 7' be a symmetric linear transformation
onV.LetA; <... <A, be the eigenvalues of T. Prove that

(T(x).x) _

sup ———— = A,.
xeV—{0} || x][?

Let A, B € M,(R) be symmetric matrices. Define a map f : R — Rby: f(¢)
is the largest eigenvalue of A + ¢ B. Prove that f is a convex function. Hint: use
Problem 16.
Let T be a diagonalizable linear transformation on an Euclidean space V. Prove
that if 7 and T* commute, then T is symmetric.
Let V be the vector space of polynomials with real coefficients whose degree
does not exceed n, endowed with the inner product

1
(P,Q) = /0 P(x)Q(x)dx.
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20.

21.

22.

23.

10 Forms

Consider the map T : V' — V defined by

1
T(P)(X) :/0 (X +0)"P(t)dt.

a) Give a precise meaning to 7' (P)(X) and prove that T is a symmetric linear
transformation on V.

b) Let Py,..., P, be an orthonormal basis of V' consisting of eigenvectors for
T, with corresponding eigenvalues A, ..., A,. Prove that for all x,y € R
we have

(x+ )" =D M Pe(X)Pe(y).
k=0

Prove that if A, B are symmetric positive matrices in M, (R), then
det(A + B) > det A + det B.

a) Prove that if xi,...,x, are real numbers and Ay, ..., A, are positive real

numbers, then
n n n 2
i=1 i=1 i=1

b) Prove that if T is a symmetric and positive definite linear transformation on
an Euclidean space V, then for all x € V we have

(T(x), x) - (T~ (x), x) = [x][*.

a) Prove thatif Aq,..., A, are nonnegative real numbers, then

VA4+A) ... 0+ A) =14+ VA .. A,

Hint: check that the map f(x) = In(1 4 %) is convex on [0, c0) and use
Jensen’s inequality.
b) Let A € M, (R) be a symmetric positive definite matrix. Prove that

Vdet(I, + A) > 1 + Vdet A.

(Singular value decomposition) Let Ay, ..., A, be the singular values of 4 €
M, (R), counted with multiplicities (algebraic or geometric, it does not matter
since S is diagonalizable).
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24,

a) Prove the existence of orthonormal bases eq,...,e, and fi,..., f, of R”
such that Ae; = A; f; for 1 < i < n. Hint: let A = US be the polar
decomposition of A. Pick an orthonormal basis ey, ..., e, of R” such that
Se; = Aje; and set f; = Ue;.

b) Prove thatifey,...,e, and fi,..., f, are bases as in a), then for all X € R”
we have

n
AX =) Xi(X.e) fr.

i=1

We call this the singular value decomposition of A.

c) Letey,...,e, and f1,..., f, be orthonormal bases of R” giving a singular
value decomposition of A. Prove that the singular value decomposition of
A~ lis given by

n

A7'X = Z%(X,fj)ej.

j=1"7

d) Prove that two matrices A, Ay € M, (R) have the same singular values if
and only if there are orthogonal matrices U, U, such that

Ay, = U1 A1 Us.

e) Prove that A is invertible if and only if 0 is not a singular value of A.

f) Compute the rank of A in terms of the singular values of A.

g) Prove that A4 is an orthogonal matrix if and only if all of its singular values
are equal to 1.

The goal of this long exercise is to establish the analogues of the main results
of this section for hermitian spaces.

Let V' be a hermitian space, that is a finite dimensional C-vector space
endowed with a hermitian inner product ( , ). A linear transformation 7:V —V
is called hermitian if (7'(x), y) = (x, T(y)) forallx,y € V.

a) Let eq,...,e, be an orthonormal basis of V. Prove that T is hermitian if
and only if the matrix A of 7" with respect to ey, ..., e, is hermitian, that is
A = A* (recall that A* = "A).

From now on, until part e), we let T be a hermitian linear transformation

onV.

b) Prove that the eigenvalues of 7' are real numbers.

¢) Prove that if W is a subspace of V' stable under T, then W+ is also stable
under T, and the restrictions of 7 to W and W+ are hermitian linear
transformations on these subspaces.

d) Prove that there is an orthonormal basis of V' consisting of eigenvectors of 7'.
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e) Conversely, prove that if V' has an orthonormal basis consisting of eigenvec-
tors of 7" with real eigenvalues, then 7 is hermitian.

f) Prove that for any hermitian matrix A € M, (C) we can find a unitary matrix
P and a diagonal matrix D with real entries such that A = P~'DP.

g) Let T : V — V be any invertible linear transformation. Prove that there is a
unique pair (S, U) of linear transformations on V' such that H is hermitian
positive (i.e., H is hermitian and its eigenvalues are positive), U is unitary
andT =UoH.



Chapter 11
Appendix: Algebraic Prerequisites

Abstract This appendix recalls the basic algebraic structures that are needed in the
study of linear algebra, with special emphasis on permutations and polynomials.

Even though the main objects of this book are vector spaces and linear maps
between them, groups and polynomials naturally appear at several key moments
in the development of linear algebra. In this brief chapter we define these objects
and state the main properties that will be needed in the sequel. The reader is advised
to skip reading this chapter and return to it whenever reference to this chapter is
made.

11.1 Groups

Morally, a group is just a set in which one can multiply objects of the set (staying
in that set) according to some rather natural rules. Formally, we have the following
definition.

Definition 11.1. A group is a nonempty set G endowed withamap-: GxG — G
satisfying the following properties:

a) (associativity) For all a,b,c € G we have (a-b)-c =a-(b-c).

b) (identity) There is an element e € G suchthata-e = e-a = a foralla € G.

¢) (existence of inverses) For all ¢ € G thereis a~! € G such thata - a~! =
al-a=e.

If moreovera-b = b-a foralla,b € G, we say that the group G is commutative
or abelian.

Note that the element e of G is unique. Indeed, if ¢’ is another element with the
same properties, then e’ = ¢’ - e = e - ¢/ = e. We call e the identity element of G.
Secondly, the element ! is also unique, for if x is another element with the same
properties, then

x=x-e=x-(a-a)=x-a)-a'l=e-al=al

We call ¢! the inverse of a.

© Springer Science+Business Media New York 2014 483
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We will usually write ab instead of a - b. Moreover, if the group G is abelian, we
will usually prefer the additive notation a + b instead of ab and write O instead of
e, and —a instead of ™!,

Since the definition of a group is not restrictive, there is a huge amount of
interesting groups. For instance, all vector spaces (which we haven’t properly
defined yet, but which are the main actors of this book) are examples of commutative
groups. There are many other groups, which we will see in action further on: groups
of permutations of a set, groups of invertible linear transformations of a vector space,

the group of positive real numbers or the group of integers, etc.

11.2 Permutations

11.2.1 The Symmetric Group S,

Abijectivemap o : {1,2,...,n} — {1,2,...,n}is called a permutation of degree
n. We usually describe a permutation by a table

_ 1 2 ... n
o= (0(1) o2 ... o(n)) ’
where the second line represents the images of 1,2,...,n by o.
The set of all permutations of degree n is denoted by S,,. It is not difficult to see
that S, has n! elements: we have n choices for o (1), n — 1 choices for 6 (2) (as it can
be any element different from ¢ (1)),..., one choice for o(n), thusn-(n —1)-...-

1 = n! choices in total.
We denote by e the identity map sending k to k for 1 < k < n, thus

o — 12...n
“\12...n )"
The product ot of two permutations 0,7 € S, is defined as the composition
oot.Thusforalll <k <n

(07)(k) = o (z(k)).

Example 11.2. Let o, t € S, be the permutations given by

> — 1234 and 1= 1234
“\2341 “\3142)°
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o (1234 (1234 _ (1234
" \2341)\3142) \4213
> — 1234\ (1234 (1234
“\3142)\2341)  \1423

Since o and t are bijections, so is their composition and so ot € S,. The easy
proof of the following theorem is left to the reader.

Then

and

Theorem 11.3. Endowed with the previously defined multiplication, S, is a group
with n! elements.

Note that the inverse of a permutation with respect to multiplication is simply
its inverse as a bijective map (i.e., o~ is the unique map such that 0~ !(x) = y
whenever o (y) = x). For example, the inverse of permutation

12345
o =
24513

ol = 12345
“\41523)°

The previous Example 11.2 shows that we generally have o - 7 # 7 - 0, thus S,
is a non commutative group in general (actually for all n > 3, the groups S| and S,
being commutative). The group S, is called the symmetric group of degree n or
the group of permutations of degree n.

is the permutation

Problem 114. Let 0 € S, where n > 3. Prove thatif 0 -« = « - o for all
permutations o € S, theno = e.

Solution. Fixi € {1,2,...,n}and choose a permutation @ having i as unique fixed
point, for instance
o= 12...i—1ii+1...n
C\23.i4lii4+2...1)°
Since

o(i) =o(a@)) = a(a())

and 7 is the unique fixed point of &, we must have o (i) = i. As i was arbitrary, the
result follows.
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11.2.2 Transpositions as Generators of S,

The group S, has a special class of elements which have a rather simple structure
and which determine the whole group S, in the sense that any element of .S, is a
product of some of these elements. They are called transpositions and are defined
as follows.

Definition 11.5. Let i, j € {1,2,...,n} be distinct. The transposition (ij) is the
permutation o sending k to k for all k # i, j and for whicho (i) = j ando(j) = i.
Thus (ij ) exchanges i and j, while keeping all the other elements fixed.

It follows straight from the definition that a transposition 7 satisfies 7> = e and
so 77! = 7. Note also that the set {i, j } is uniquely determined by the transposition
(ij), since it is exactly the set of those k € {1,2,...,n} for which (ij)(k) # k.

Since there are
ny nn-—1)
2] 2

subsets with two elements of {1,2,...,n}, it follows that there are (’;) transposi-
tions. Let us prove now that the group §,, is generated by transpositions.

Theorem 11.6. Let n > 2. Any permutation o € S, is a product of transpositions.

Proof. For 0 € S, we let m, be the number of elements k € {1,2,...,n} for
which o (k) # k. We prove the theorem by induction on m,. If m, = 0, then
0 = e = (12)? and we are done.

Assume that m,; > 0 and that the statement holds for all permutations o € S,
with my, < mg,. Since m, > 0, there is i € {1,2,...,n} such that (i) # i.
Letj =0(i),t=(j)anda =ot.Let A = {k,a(k) # k}and B = {k,o(k) #
k}. Note thatif o(k) = k, then k # i and k # j, hence

alk) = (ot)k) =0o(t(k)) =0a(k) =k.

This shows that A C B. Moreover, we have A # B since j belongs to B but not to
A. It follows that m, < m,.

Using the induction hypothesis, we can write « as a product of transpositions.
Since 0 = at™! = ar, o itself is a product of transpositions and we are done.

Note that the proof of the theorem also gives an algorithm allowing to express a
given permutation as a product of transpositions. Let us see a concrete example. Let

> 12345
" \25413)°
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Since (1) = 2, we compute o - (12) in order to create a fixed point

o= o (12) = 12345\ (12345
e “\25413)\ 21345

(12345
S \52413)°
Because 0(1) = 5, we compute a; - (15) to create a new fixed point

0y = 01+ (15) = 12345 12345
SR “\52413)\52341
(12345
- \32415)°
Computing 0,(13) we obtain a new fixed point in the permutation

03:02(13):(12345)‘

42315

Now, observe that o3 = (14), thus o3 - (14) = e. We deduce that ¢ - (12) - (15) -
(13) - (14) = e and so

o = (14)(13)(15)(12).

11.2.3 The Signature Homomorphism

An inversion of a permutation o € S, is a pair (i, j) with 1 <i < j < n and
o (i) > o(j). Let Inv(o) be the number of inversions of o. Note that

—1
OEIHV(U)E%, o €S,

and these inequalities are optimal: Inv(e) = 0 and Inv(c) = "(”T_l) for

o — I 2 ...n
“\nn-1...1)°
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Example 11.7. The permutation
o= 123456
- \562143
has Inv(c) = 4+ 4+ 14 1 = 10 inversions, since (1) > o(3), (1) > o(4),

o(l) >0(5),0(1) >0(6),0(2) >0(3),012)>0c(4),c(2) >0(5),0(2) > a(6),
0(3) >0(4),0(5) > a(6).

We introduce now a fundamental map ¢ : S, — {—1, 1}, the signature.

Definition 11.8. The sign of a permutation o € S, is defined by
8(0) = (=)™,

If (o) = 1, then we say that ¢ is an even permutation and if (o) = —1, then we
say that ¢ is an odd permutation. Note that a transposition T = (ij) withi < j isan
odd permutation, as the number of inversionsof tis j —i +j—i—1=2(j —i)—1.

Here is the fundamental property of the signature map:

Theorem 11.9. The signature map € : S, — {—1, 1} is a homomorphism of groups,
Le., e(0107) = e(0y)e(0r) for all 61,0, € S,.

Without giving the formal proof of this theorem, let us mention that the key point
is the equality

o) —0a(/j)
s0) =[] —
s 11—
I<i<j=<n
for any o € S,. This follows rather easily from the definition of £(0) and can be
used to prove the multiplicative character of .

Remark 11.10. a) The signature is the unique nontrivial homomorphism S, —
{—1,1}. Indeed, let ¢ : S, — {—1, 1} be a surjective homomorphism of groups.
If y = (i,j) and 1, = (k,[) are two transpositions, then we can find o € S,
such that 7o = o1;0~! (indeed, it suffices to impose o (i) = k and o(j) = I).
Then ¢(13) = ¢(0)@(11)@(0)~" = @(1). Thus all transpositions of S, are sent
to the same element of {—1, 1}, which must be —1, as the transpositions generate
S, and ¢ is not the trivial homomorphism. Thus ¢(7) = —1 = &(tr) for all
transpositions and using again that the transpositions generate S,,, it follows that
Y =e.

b) Let o € S, be a permutation, and write 0 = 7,7, ... ¢, Where 1, 7o, . .., T} are
transpositions. This decomposition is definitely not unique, but the parity of k is
the same in all decompositions. This is definitely not an obvious statement, but it
follows easily from the previous theorem: for any such decomposition we must
have e(0) = ]_[f‘: Le(n) = (—=1)¥, thus the parity of k is independent of the
decomposition.
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11.3 Polynomials

Let F be a field, for instance R or C. The set F[X] of polynomials with coefficients
in X will play a key role in this chapter. In this section we recall, without proof, a
few basic facts about polynomials.

Any element P of F[X] can be uniquely written as a formal expression

P=ay+a X+...+a,X"

with ag,...,a, € F.If P # 0, then at least one of the coefficients ay,...,a, is
nonzero, and we may assume that a,, # 0. We then say that P has degree n (and
write deg P = n) and leading coefficient a,. By convention, the degree of the
zero polynomial is —oo. A fundamental property of polynomials with coefficients
in a field is the equality

deg(PQ) = deg P + deg Q

for all polynomials P,Q € F[X]. We say that P is unitary or monic if its
leading coefficient is 1. Polynomials of degree 0 or —oco are also called constant
polynomials.

Remark 11.11. Sometimes we will write P(X) instead of P for an element of
F[X], in order to emphasize that the variable is X .

The first fundamental result is the division algorithm:

Theorem 11.12. Let A, B € F[X] with B # 0. There is a unique pair (Q, R) of
elements of F[X] such that A = BQ + R and deg R < deg B.

The polynomials Q and R are called the quotient, respectively remainder of A
when divided by B. We say that B divides A if R = 0. We say that a polynomial
P € F[X] is irreducible if P is not constant, but cannot be written as the product
of two nonconstant polynomials. Thus all divisors of an irreducible polynomial are
either constant polynomials or constant times the given polynomial. For instance,
all polynomials of degree 1 are irreducible. For some special fields, these are the
only irreducible polynomials:

Definition 11.13. A field F is called algebraically closed if any irreducible
polynomial P € F[X] has degree 1.

An element ¢ € F is called a root of a polynomial P € F[X]if P(a) = 0.
In this case, the division algorithm implies the existence of a factorization

P=X-a)0Q
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for some polynomial Q € F[X]. Repeating this argument, we deduce that if
ai,a,...,ax € F are pairwise distinct roots of P, then we can write

P =(X—a1)(X—a2)...(X—ak)Q

for some polynomial Q € F[X]. Taking degrees, we obtain the following

Theorem 11.14. A nonzero polynomial P € F[X] of degree n has at most n
pairwise distinct roots in F.

Stated otherwise, if a polynomial of degree at most n vanishes at n + 1 distinct
points of F, then it must be the zero polynomial. The notion of irreducible
polynomial can also be expressed in terms of roots:

Theorem 11.15. A field F is algebraically closed if and only if any nonconstant
polynomial P € F[X] has a root in F. If this is the case, then any nonconstant
polynomial P € F[X] can be written as

P=cX—a)"...(X —ap)™
for some nonzero constant ¢ € F, some pairwise distinct elements ay, ..,ay of F

and some positive integers ny, ..., ng.

We call n; the multiplicity of the root @; of P. It is the largest positive integer m
for which (X — a;)™ divides P.
Finally, we state the fundamental theorem of algebra:

Theorem 11.16 (Gauss). The field C of complex numbers is algebraically closed.
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