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Preface

This textbook is intended for an introductory followed by an advanced course in
linear algebra, with emphasis on its interactions with other topics in mathematics,
such as calculus, geometry, and combinatorics. We took a straightforward path to
the most important topic, linear maps between vector spaces, most of the time finite
dimensional. However, since these concepts are fairly abstract and not necessarily
natural at first sight, we included a few chapters with explicit examples of vector
spaces such as the standard n-dimensional vector space over a field and spaces of
matrices. We believe that it is fundamental for the student to be very familiar with
these spaces before dealing with more abstract theory. In order to maximize the
clarity of the concepts discussed, we included a rather lengthy chapter on 2 � 2

matrices and their applications, including the theory of Pell’s equations. This will
help the student manipulate matrices and vectors in a concrete way before delving
into the abstract and very powerful approach to linear algebra through the study of
vector spaces and linear maps.

The first few chapters deal with elementary properties of vectors and matrices
and the basic operations that one can perform on them. A special emphasis is
placed on the Gaussian Reduction algorithm and its applications. This algorithm
provides efficient ways of computing some of the objects that appear naturally in
abstract linear algebra such as kernels and images of linear maps, dimensions of
vector spaces, and solutions to linear systems of equation. A student mastering
this algorithm and its applications will therefore have a much better chance of
understanding many of the key notions and results introduced in subsequent
chapters.

The bulk of the book contains a comprehensive study of vector spaces and linear
maps between them. We introduce and develop the necessary tools along the way,
by discussing the many examples and problems proposed to the student. We offer a
thorough exposition of central concepts in linear algebra through a problem-based
approach. This is more challenging for the students, since they have to spend time
trying to solve the proposed problems after reading and digesting the theoretical
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material. In order to assist with the comprehension of the material, we provided
solutions to all problems posed in the theoretical part. On the other hand, at the
end of each chapter, the student will find a rather long list of proposed problems,
for which no solution is offered. This is because they are similar to the problems
discussed in the theoretical part and thus should not cause difficulties to a reader
who understood the theory.

We truly hope that you will have a wonderful experience in your linear algebra
journey.

Richardson, TX, USA Titu Andreescu
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Chapter 1
Matrix Algebra

Abstract This chapter deals with matrices and the basic operations associated with
them in a concrete way, paving the path to a more advanced study in later chapters.
The emphasis is on special types of matrices and their stability under the described
operations.

Keywords Matrices • Operations • Invertible • Transpose • Orthogonal
• Symmetric matrices

Before dealing with the abstract setup of vector spaces and linear maps between
them, we find it convenient to discuss some properties of matrices. Matrices are a
very handy way of describing linear phenomena while being very concrete objects.
The goal of this chapter is to define these objects as well as some basic operations
on them.

Roughly, a matrix is a collection of “numbers” displayed in some rectangular
board. We call these “numbers” the entries of the matrix. Very often, these “num-
bers” are simply rational, real, or more generally complex numbers. However, these
choices are not always adapted to our needs: in combinatorics and computer science,
one works very often with matrices whose entries are residue classes of integers
modulo prime numbers (especially modulo 2 in computer science), while other
areas of mathematics work with matrices whose entries are polynomials, rational
functions, or more generally continuous, differentiable, or integrable functions.
There are rules allowing to add and multiply matrices (if suitable conditions on the
size of the matrices are satisfied), if the set containing the entries of these matrices
is stable under these operations. Fields are algebraic structures specially designed to
have such properties (and more. . . ), and from this point of view they are excellent
choices for the sets containing the entries of the matrices we want to study.

The theory of fields is extremely beautiful and one can write a whole series of
books on it. Even the basics can be fairly difficult to digest by a reader without some
serious abstract algebra prerequisites. However, the purpose of this introductory
book is not to deal with subtleties related to the theory of fields, so we decided
to take the following rather pragmatic approach: we will only work with a very
explicit set of fields in this book (we will say which ones in the next paragraphs), so
the reader not familiar with abstract algebra will not need to know the subtleties of

© Springer Science+Business Media New York 2014
T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__1

1



2 1 Matrix Algebra

the theory of fields in the sequel. Of course, the reader familiar with this theory will
realize that all the general results described in this book work over general fields.

In most introductory books of linear algebra, one works exclusively over the
fields R and C of real numbers and complex numbers, respectively. They are indeed
sufficient for essentially all applications of matrices to analysis and geometry, but
they are not sufficient for some interesting applications in computer science and
combinatorics. We will introduce one more field that will be used from time to time
in this book. This is the field F2 with two elements 0 and 1. It is endowed with
addition and multiplication rules as follows:

0C 0 D 0; 0C 1 D 1C 0 D 1; 1C 1 D 0

and

0 � 0 D 0 � 1 D 1 � 0 D 0; 1 � 1 D 1:

We do not limit ourselves exclusively to R and C since a certain number of issues
arise from time to time when working with general fields, and this field F2 allows
us to make a series of remarks about this issues. From this point of view, one can
see F2 as a test object for some subtle issues arising in linear algebra over general
fields.

Important convention: in the remainder of this book, we will work exclu-
sively with one of the following fields:

• the field Q of rational numbers
• the field R of real numbers.
• the field C of complex numbers.
• The field with two elements F2 with addition and multiplication rules

described as above.

We will assume familiarity with each of the sets Q, R and C as well as the
basic operations that can be done with rational, real, or complex numbers (such as
addition, multiplication, or division by nonzero numbers).

We will reserve the letter F for one of these fields (if we do not want to
specify which one of the previous fields we are working with, we will simply say
“Let F be a field”).

The even more pragmatic reader can take an even more practical approach and
simply assume that F will stand for R or C in the sequel.
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1.1 Vectors, Matrices, and Basic Operations on Them

Consider a field F . Its elements will be called scalars.

Definition 1.1. Let n be a positive integer. We denote by F n the set of n-tuples
of elements of F . The elements of F n are called vectors and are denoted either in
row-form X D .x1; : : : ; xn/ or in column-form

X D

2
6664

x1
x2
:::

xn

3
7775 :

The scalar xi is called the i th coordinate ofX (be it written in row or column form).

The previous definition requires quite a few clarifications. First of all, note that
if we want to be completely precise we should call an element of F n an n-vector
or n-dimensional vector, to make it apparent that it lives in a set which depends
on n. This would make a lot of statements fairly cumbersome, so we simply call the
elements of F n vectors, without any reference to n. So .1/ is a vector in F 1, while
.1; 2/ is a vector in F 2. There is no relation whatsoever between the two exhibited
vectors, as they live in completely different sets a priori.

While the abuse of notation discussed in the previous paragraph is rather easy
to understand and accept, the convention about writing vectors either in row or in
column form seems strange at first sight. It is easily understood once we introduce
matrices and basic operations on them, as well as the link between matrices and
vectors, so we advise the reader to take it simply as a convention for now and make

no distinction between the vector .v1; : : : ; vn/ and the vector

2
6664

v1
v2
:::

vn

3
7775. We will see later

on that from the point of view of linear algebra the column notation is more useful.
The zero vector in F n is denoted simply 0 and it is the vector whose coordinates

are all equal to 0. Note that the notation 0 is again slightly abusive, since it does
not make apparent the dependency on n: the 0 vector in F 2 is definitely not the
same object as the zero vector in F 3. However, this will (hopefully) not create any
confusion, since in the sequel the context will always make it clear which zero vector
we consider.

Definition 1.2. Let m; n be positive integers. An m � n matrix with entries in F
is a rectangular array
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A D

2
6664

a11 a12 : : : a1n
a21 a22 : : : a2n
:::

:::
: : :

:::

am1 am2 : : : amn

3
7775 :

The scalar aij 2 F is called the .i; j /-entry of A. The column-vector

Cj D

2
6664

a1j
a2j
:::

amj

3
7775

is called the j th column of A and the row-vector

Li D Œai1; ai2; : : : ; ain�

is called the i th row of A. We denote byMm;n.F / the set of allm�nmatrices with
entries in F .

Definition 1.3. A square matrix of order n with entries in F is a matrix A 2
Mn;n.F /. We denote by Mn.F / the set Mn;n.F / of square matrices of order n.

We can already give an explanation for our choice of denoting vectors in two
different ways: a m � n matrix can be seen as a family of vectors, namely its rows.
But it can also be seen as a family of vectors given by its columns. It is rather natural
to denote rows ofA in row-form and columns ofA in column-form. Note that a row-
vector in F n can be thought of as a 1 � n matrix, while a column-vector in F n can
be thought of as a n � 1 matrix. From now on, whenever we write a vector as a row
vector, we think of it as a matrix with one row, while when we write it in column
form, we think of it as a matrix with one column.

Remark 1.4. If F1 � F are fields, then we have a natural inclusion Mm;n.F1/ �
Mm;n.F /: any matrix with entries in F1 is naturally a matrix with entries in F . For
instance the inclusions Q � R � C, induce inclusions of the corresponding sets of
matrices, i.e.

Mm;n.Q/ � Mm;n.R/ � Mm;n.C/:

Whenever it is convenient, matrices in Mm;n.F / will be denoted symbolically
by capital letters A;B;C; : : : or by Œaij �; Œbij �; Œcij �; : : : where aij ; bij ; cij ; : : :

respectively, represent the entries of the matrices.

Example 1.5. a) The matrix Œaij � 2 M2;3.Q/, where aij D i 2 C j is given by

A D
�
2 3 4

5 6 7

�
:
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b) The matrix

A D

2
664

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

3
775

can also be written as the matrix A D Œaij � 2 M4.Q/ with aij D i C j � 1.

Remark 1.6. Two matrices A D Œaij � and B D Œbij � are equal if and only if they
have the same size (i.e., the same number of columns and rows) and aij D bij for
all pairs .i; j /.

A certain number of matrices will appear rather constantly throughout the book
and we would like to make a list of them. First of all, we have the zerom�nmatrix,
that is the matrix all of whose entries are equal to 0. Equivalently, it is the matrix
all of whose rows are the zero vector in F n, or the matrix all of whose columns are
the zero vector in Fm. This matrix is denoted Om;n or, if the context is clear, simply
0 (in this case, the context will make it clear that 0 is the zero matrix and not the
element 0 2 F ).

Another extremely important matrix is the unit (or identity) matrix In 2
Mn.F /, defined by

In D

2
6664

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

3
7775

with entries

ıij D
�
1 if i D j

0 if i ¤ j

Among the special but important classes of matrices that we will have to deal
with quite often in the sequel, we mention:

• The diagonal matrices. These are square matrices A D Œaij � such that aij D 0

unless i D j . The typical shape of a diagonal matrix is therefore

2
6664

a1 0 : : : 0

0 a2 : : : 0
:::
:::
: : :

:::

0 0 : : : an

3
7775 :
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• The upper-triangular matrices. These are square matrices A D Œaij � whose
entries below the main diagonal are zero, that is aij D 0 whenever i > j . Hence
the typical shape of an upper-triangular matrix is

A D

2
6664

a11 a12 : : : a1n
0 a22 : : : a2n
:::

:::
: : :

:::

0 0 : : : ann

3
7775 :

Of course, one can also define lower-triangular matrices as those square matrices
whose entries above the main diagonal are zero.

We will deal now with the basic operations on matrices. Two matrices of the
same size m � n can be added together to produce another matrix of the same size.
The addition is done component-wise. The re-scaling of a matrix by a scalar is done
by multiplying each entry by that scalar. The obtained matrix has the same size as
the original one. More formally:

Definition 1.7. Let A D Œaij � and B D Œbij � be matrices inMm;n.F / and let c 2 F
be a scalar.

a) The sum AC B of the matrices A and B is the matrix

AC B D Œaij C bij �:

In fully expanded form

2
6664

a11 a12 a13 : : : a1n
a21 a22 a23 : : : a2n
:::

:::
:::
: : :

:::

am1 am2 am3 : : : amn

3
7775C

2
6664

b11 b12 b13 : : : b1n
b21 b22 b23 : : : b2n
:::

:::
:::
: : :

:::

bm1 bm2 bm3 : : : bmn

3
7775 D

2
6664

a11 C b11 a12 C b12 a13 C b13 : : : a1n C b1n
a21 C b21 a22 C b22 a23 C b23 : : : a2n C b2n

:::
:::

:::
: : :

:::

am1 C bm1 am2 C bm2 am3 C bm3 : : : amn C bmn

3
7775 :

b) The re-scaling of A by c is the matrix

cA D Œcaij �:

Remark 1.8. a) We insist on the fact that it does not make sense to add two
matrices if they do not have the same size.
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b) We also write �A instead of .�1/A, thus we write A�B instead of AC .�1/B ,
if A and B have the same size.

Example 1.9. We have

2
4
1 1 0 0

0 1 1 0

0 0 1 1

3
5C

2
4
0 1 2 3

1 2 3 4

2 3 4 5

3
5 D

2
4
1 2 2 3

1 3 4 4

2 3 5 6

3
5

but

2
4
1 1 0 0

0 1 1 0

0 0 1 1

3
5C I3

does not make sense.
As another example, we have

2
4
1 1 0 0

0 1 1 0

0 0 1 1

3
5C

2
4
0 1 1 1

0 0 1 1

0 0 0 1

3
5 D

2
4
1 2 1 1

0 1 2 1

0 0 1 2

3
5

in M3;4.R/.
On the other hand, we have the following equality in M3;4.F2/

2
4
1 1 0 0

0 1 1 0

0 0 1 1

3
5C

2
4
0 1 1 1

0 0 1 1

0 0 0 1

3
5 D

2
4
1 0 1 1

0 1 0 1

0 0 1 0

3
5 :

As we observed in the previous section, we can think of column-vectors in F n as
n � 1 matrices, thus we can define addition and re-scaling for vectors by using the
above definition for matrices. Explicitly, we have

2
6664

x1
x2
:::

xn

3
7775C

2
6664

y1
y2
:::

yn

3
7775 WD

2
6664

x1 C y1
x2 C y2

:::

xn C yn

3
7775

and for a scalar c 2 F

c

2
6664

x1
x2
:::

xn

3
7775 D

2
6664

cx1
cx2
:::

cxn

3
7775 :
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Similarly, we can define operations on row-vectors by thinking of them as matrices
with only one row.

Remark 1.10. a) Again, it makes sense to add two vectors if and only if they
have the same number of coordinates. So it is nonsense to add a vector in F 2

and a vector in F 3.
b) Similarly, we let �X be the vector .�1/X and, if X; Y 2 F n, we let X � Y D
X C .�Y /.
The following result follows from the basic properties of addition and multipli-

cation rules in a field. We leave the formal proof to the reader.

Proposition 1.11. For any matrices A;B;C 2 Mm;n.F / and any scalars ˛; ˇ 2 F
we have

(A1) .AC B/C C D AC .B C C/ (associativity of the addition);
(A2) AC B D B C A (commutativity of the addition);
(A3) ACOm;n D Om;n C A D A (neutrality of Om;n);
(A4) AC .�A/ D .�A/C A D Om;n (cancellation with the opposite matrix).
(S1) .˛ C ˇ/A D ˛AC ˇA (distributivity of the re-scaling over scalar sums);
(S2) ˛.AC B/ D ˛AC ˛B (distributivity of the re-scaling over matrix sums);
(S3) ˛.ˇA/ D .˛ˇ/A (homogeneity of the scalar product);
(S4) 1A D A (neutrality of 1).

Since vectors in F n are the same thing as n � 1 matrices (or 1 � n matrices,
according to our convention of representing vectors), the previous proposition
implies that the properties (A1)–(A4) and (S1)–(S4) are also satisfied by vectors
in F n. Of course, this can also be checked directly from the definitions.

Definition 1.12. The canonical basis (or standard basis) of F n is the n-tuple of
vectors .e1; : : : ; en/, where

e1 D

2
666664

1

0

0
:::

0

3
777775
; e2 D

2
666664

0

1

0
:::

0

3
777775
; : : : ; en D

2
666664

0

0

0
:::

1

3
777775
:

Thus ei is the vector in F n whose i th coordinate equals 1 and all other coordinates
are equal to 0.

Remark 1.13. Observe that the meaning of ei depends on the context. For example,

if we think of e1 as the first standard basis vector in F 2 then e1 D
�
1

0

�
, but if we

think of it as the first standard basis vector in F 3 then e1 D
2
4
1

0

0

3
5. It is customary not
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to introduce extra notation to distinguish such situations but to rely on the context
in deciding on the meaning of ei .

The following result follows directly by unwinding definitions:

Proposition 1.14. Any vector v 2 F n can be uniquely written as

v D x1e1 C x2e2 C : : :C xnen

for some scalars x1; : : : ; xn 2 F . In fact, x1; : : : ; xn are precisely the coordinates
of v.

Proof. If x1; : : : ; xn are scalars, then by definition

x1e1 C x2e2 C : : :C xnen D

2
666664

x1
0

0
:::

0

3
777775

C

2
666664

0

x2
0
:::

0

3
777775

C : : :C

2
666664

0

0

0
:::

xn

3
777775

D

2
666664

x1
x2
x3
:::

xn

3
777775
:

The result follows. ut
We have similar results for matrices:

Definition 1.15. Let m; n be positive integers. For 1 � i � m and 1 � j � n

consider the matrixEij 2 Mm;n.F / whose .i; j /-entry equals 1 and all other entries
are 0.

The mn-tuple .E11; : : : ; E1n; E21; : : : ; E2n; : : : ; Em1; : : : ; Emn/ is called the
canonical basis (or standard basis) of Mm;n.F /.

Proposition 1.16. Any matrix A 2 Mm;n.F / can be uniquely expressed as

A D
mX
iD1

nX
jD1

aijEij

for some scalars aij . In fact, aij is the .i; j /-entry of A.

Proof. As in the proof of Proposition 1.14, one checks that for any scalars xij 2 F
we have

mX
iD1

nX
jD1

xijEij D

2
6664

x11 x12 : : : x1n
x21 x22 : : : x2n
:::

:::
: : :

:::

xm1 xm2 : : : xmn

3
7775 ;

which yields the desired result. ut
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Example 1.17. Let us express the matrix A D
2
4
1 1 0 0

0 1 1 0

0 0 2 2

3
5 in terms of the canonical

basis. We have

A D E11 CE12 CE22 CE23 C 2E33 C 2E34:

1.1.1 Problems for Practice

1. Write down explicitly the entries of the matrix A D Œaij � 2 M2;3.R/ in each of
the following cases:

a) aij D 1
iCj�1 .

b) aij D i C 2j .
c) aij D ij .

2. For each of the following pairs of matrices .A;B/ explain which of the matrices
A C B and A � 2B make sense and compute these matrices whenever they do
make sense:

a) A D
2
4
1 2 0 0

0 1 3 0

0 0 1 2

3
5 and B D

2
4
1 1 1 1

0 1 1 1

0 0 2 1

3
5.

b) A D �
1 1 0 0

�
and B D �

1 1 0
�
.

c) A D
2
4
3 1 0

�1 �1 1
2 0 5

3
5 and B D

2
4

�2 1 0

4 �1 1
6 4 3

3
5.

3. Consider the vectors

v1 D

2
666664

1

�2
3

1

4

3
777775
; v2 D

2
666664

2

2

�1
4

3

3
777775
:

What are the coordinates of the vector v1 C 2v2?

4. Express the matrix A D
2
4
3 1 0 �4
7 �1 1 �2
8 9 5 �3

3
5 in terms of the canonical basis of

M3;4.R/.
5. Let .Eij /1�i�2;1�j�3 be the canonical basis of M2;3.R/. Describe the entries of

the matrix E11 � 3E12 C 4E23.
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6. Let F be a field.

a) Prove that if A;B 2 Mn.F / are diagonal matrices, then AC cB is a diagonal
matrix for any c 2 F .

b) Prove that the same result holds if we replace diagonal with upper-triangular.
c) Prove that any matrix A 2 Mn.F / can be written as the sum of an upper-

triangular matrix and of a lower-triangular matrix. Is there a unique such
writing?

7. a) How many distinct matrices are there in Mm;n.F2/?
b) How many of these matrices are diagonal?
c) How many of these matrices are upper-triangular?

1.2 Matrices as Linear Maps

In this section we will explain how to see a matrix as a map on vectors. Let F be
a field and let A 2 Mm;n.F / be a matrix with entries aij . To each vector X D2
6664

x1
x2
:::

xn

3
7775 2 F n we associate a new vector AX 2 Fm defined by

AX D

2
6664

a11x1 C a12x2 C : : :C a1nxn
a21x1 C a22x2 C : : :C a2nxn

:::

am1x1 C am2x2 C : : :C amnxn

3
7775 :

We obtain therefore a map F n ! Fm which sends X to AX .

Example 1.18. The map associated with the matrix

A D
2
4
1 1 0 0

1 1 1 0

0 0 1 1

3
5 2 M3;4.R/

is the map f W R4 ! R3 defined by

f

0
BB@

2
664

x

y

z
t

3
775

1
CCA D A �

2
664

x

y

z
t

3
775 D

2
4

x C y

x C y C z
z C t

3
5 :
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In terms of row-vectors we have

f .x; y; z; t / D .x C y; x C y C z; z C t /:

Remark 1.19. Consider the canonical basis e1; : : : ; en of F n. Then by definition for
all 1 � i � n

Aei D Ci D

2
6664

a1i
a2i
:::

ami

3
7775 ;

the i th column of A. In general, if X D

2
6664

x1
x2
:::

xn

3
7775 2 F n is any vector, then

AX D x1C1 C x2C2 C : : :C xnCn;

as follows directly from the definition of AX .

The key properties of this correspondence are summarized in the following:

Theorem 1.20. For all matrices A;B 2 Mm;n.F /, all vectors X; Y 2 F n and all
scalars ˛; ˇ 2 F we have

a) A.˛X C ˇY / D ˛AX C ˇAY .
b) .˛AC ˇB/X D ˛AX C ˇBX .
c) If AX D BX for all X 2 F n, then A D B .

Proof. Writing A D Œaij �, B D Œbij �, and X D

2
6664

x1
x2
:::

xn

3
7775, Y D

2
6664

y1
y2
:::

yn

3
7775, we have

˛AC ˇB D Œ˛aij C ˇbij � and ˛X C ˇY D

2
6664

˛x1 C ˇy1
˛x2 C ˇy2

:::

˛xn C ˇyn

3
7775.

a) By definition, the i th coordinate of A.˛X C ˇY / is

nX
jD1

aij .˛xj C ˇyj / D ˛

nX
jD1

aij xj C ˇ

nX
jD1

aij yj :
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The right-hand side is the i th coordinate of ˛AX C ˇAY , giving the desired
result.

b) The argument is identical: the equality is equivalent to

nX
jD1

.˛aij C ˇbij /xj D ˛

nX
jD1

aij xj C ˇ

nX
jD1

bij xj

which is clear.
c) By hypothesis we have Aei D Bei , where e1; : : : ; en is the canonical basis of
F n. Then Remark 1.19 shows that the i th column of A equals the i th column of
B for 1 � i � n, which is enough to conclude that A D B . ut
We obtain therefore an injective map A 7! .X 7! AX/ from Mm;n.F / to the set

of maps ' W F n ! Fm which satisfy

'.˛X C ˇY / D ˛'.X/C ˇ'.Y /

for all X; Y 2 F n and ˛; ˇ 2 F . Such a map ' W F n ! Fm is called linear. Note
that a linear map necessarily satisfies '.0/ D 0 (take ˛ D ˇ D 0 in the previous
relation), hence this notion is different from the convention used in some other areas
of mathematics (in linear algebra a map '.X/ D aX C b is usually referred to as
an affine map).

The following result shows that we obtain all linear maps by the previous
procedure:

Theorem 1.21. Let ' W F n ! Fm be a linear map. There is a unique matrix
A 2 Mm;n.F / such that '.X/ D AX for all X 2 F n.

Proof. The uniqueness assertion is exactly part c) of the previous theorem, so let us
focus on the existence issue. Let ' W F n ! Fm be a linear map and let e1; : : : ; en be
the canonical basis of F n. Consider the matrix A whose i th column Ci equals the
vector '.ei / 2 Fm. By Remark 1.19 we have Aei D Ci D '.ei / for all 1 � i � n.

If X D

2
6664

x1
x2
:::

xn

3
7775 2 F n is an arbitrary vector, then X D x1e1 C : : :C xnen, thus since

' is linear, we have

'.X/ D '.x1e1 C : : :C xnen/ D x1'.e1/C : : :C xn'.en/ D
x1C1 C : : :C xnCn D AX;

the last equality being again a consequence of Remark 1.19. Thus '.X/ D AX for
all X 2 F n and the theorem is proved. ut
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We obtain therefore a bijection between matrices in Mm;n.F / and linear
maps F n ! Fm.

Example 1.22. Let us consider the map f W R4 ! R3 defined by

f .x; y; z; t / D .x � 2y C z; 2x � 3z C t; t � x/:

What is the matrix A 2 M3;4.R/ corresponding to this linear map? By Remark 1.19,
we must have f .ei / D Ci , where e1; e2; e3; e4 is the canonical basis of R4 and
C1; C2; C3; C4 are the successive columns of A. Thus, in order to find A, it suffices
to compute the vectors f .e1/; : : : ; f .e4/. We have

f .e1/ D f .1; 0; 0; 0/ D .1; 2;�1/; f .e2/ D f .0; 1; 0; 0/ D .�2; 0; 0/;
f .e3/ D f .0; 0; 1; 0/ D .1;�3; 0/; f .e4/ D f .0; 0; 0; 1/ D .0; 1; 1/:

Hence

A D
2
4
1 �2 1 0

2 0 �3 1
�1 0 0 1

3
5 :

In practice, one can avoid computing f .e1/; : : : ; f .e4/ as we did before: we look
at the first coordinate of the vector f .x; y; z; t /, that is x � 2y C z. We write it
as 1 � x C .�2/ � y C 1 � z C 0 � t and this gives us the first row of A, namely�
1 �2 1 0 �. Next, we look at the second coordinate of f .x; y; z; t / and write it as

2 � x C 0 � y C .�3/ � z C 1 � t , which gives the second row
�
2 0 �3 1 � of A. We

proceed similarly with the last row.

1.2.1 Problems for Practice

1. Describe the linear maps associated with the matrices

2
4
1 �3 2 0
2 1 4 1

�1 5 0 1

3
5 ;

�
3 1

�2 4
�
;

�
1 1 0 0

2 �3 2 5
�
:

2. Consider the map f W R3 ! R4 defined by

f .x; y; z/ D .x � 2y C 2z; y � z C x; x; z/:

Prove that f is linear and describe the matrix associated with f .
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3. a) Consider the map f W R2 ! R2 defined by

f .x; y/ D .x2; y2/:

Is this map linear?
b) Answer the same question with the field R replaced with F2.

4. Consider the map f W R2 ! R2 defined by

f .x; y/ D .x C 2y; x C y � 1/:

Is the map f linear?

5. Consider the matrix A D
2
4
1 �2 2 0
2 0 4 1

�1 1 0 1

3
5. Describe the image of the vector v D

2
664

1

1

2

2

3
775 through the linear map attached to A.

6. Give an example of a map f W R2 ! R which is not linear and for which

f .av/ D af .v/

for all a 2 R and all v 2 R2.

1.3 Matrix Multiplication

Let us consider now three positive integers m; n; p and A 2 Mm;n.F /, B 2
Mn;p.F /. We insist on the fact that the number of columns n of A equals the
number of rows n of B . We saw in the previous section that A and B define natural
maps

'A W F n ! Fm; 'B W F p ! F n;

sending X 2 F n to AX 2 Fm and Y 2 F p to BY 2 F n.
Let us consider the composite map

'A ı 'B W F p ! Fm; .'A ı 'B/.X/ D 'A.'B.X//:

Since 'A and 'B are linear, it is not difficult to see that 'A ı 'B is also linear. Thus
by Theorem 1.21 there is a unique matrix C 2 Mm;p.F / such that

'A ı 'B D 'C :

Let us summarize this discussion in the following fundamental:
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Definition 1.23. The product of two matrices A 2 Mm;n.F / and B 2 Mn;p.F /

(such that the number of columns n of A equals the number of rows n of B) is the
unique matrix AB 2 Mm;p.F / such that

A.BX/ D .AB/X

for all X 2 F p .

Remark 1.24. Here is a funny thing, which shows that the theory developed so far is
coherent: consider a matrix A 2 Mm;n.F / and a vector X 2 F n, written in column-
form. As we said, we can think of X as a matrix with one column, i.e., a matrix
QX 2 Mn;1.F /. Then we can consider the productA QX 2 Mm;1.F /. Identifying again
Mm;1.F / with column-vectors of length m, i.e., with Fm, A QX becomes identified
with AX , the image of X through the linear map canonically attached to A. In
other words, when writing AX we can either think of the image of X through the
canonical map attached to A (and we strongly encourage the reader to do so) or
as the product of the matrix A and of a matrix in Mn;1.F /. The result is the same,
modulo the natural identification between column-vectors and matrices with one
column.

The previous definition is a little bit abstract, so let us try to compute explicitly
the entries of AB in terms of the entries aij of A and bij of B . Let e1; : : : ; ep
be the canonical basis of F p . Then .AB/ej is the j th column of AB by
Remark 1.19. Let C1.A/; : : : ; Cn.A/ and C1.B/; : : : ; Cp.B/ be the columns of A
and B respectively. Using again Remark 1.19, we can write

A.Bej / D ACj .B/ D b1jC1.A/C b2jC2.A/C : : :C bnjCn.A/:

Since by definition A.Bej / D .AB/ej D Cj .AB/, we obtain

Cj .AB/ D b1jC1.A/C b2jC2.A/C : : :C bnjCn.A/ (1.1)

We conclude that

.AB/ij D ai1b1j C ai2b2j C : : :C ainbnj (1.2)

and so we have established the following

Theorem 1.25 (Product Rule). Let A D Œaij � 2 Mm;n.F / and B D Œbij � 2
Mn;p.F /. Then the .i; j /-entry of the matrix AB is

.AB/ij D
nX

kD1
aikbkj :

Of course, one could also take the previous theorem as a definition of the product
of two matrices. But it is definitely not apparent why one should define the product
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in such a complicated way: for instance a very natural way of defining the product
would be component-wise (i.e., the .i; j /-entry of the product should be the product
of the .i; j /-entries in A and B), but this naive definition is not useful for the
purposes of linear algebra. The key point to be kept in mind is that for the purposes
of linear algebra (and not only), matrices should be thought of as linear maps,
and the product should correspond to the composition of linear maps.

Example 1.26. a) If A D
�
a11 a12
a21 a22

�
and B D

�
b11 b12
b21 b22

�
are matrices in M2.F /,

then AB exists and

AB D
�
a11b11 C a12b21 a11b12 C a12b22
a21b11 C a22b21 a21b12 C a22b22

�
:

b) If

A D
2
4
a11 a12
a21 a22
a31 a32

3
5 and B D

�
b11 b12
b21 b22

�

then the product AB is defined and it is the 3 � 2 matrix

AB D
2
4
a11b11 C a12b21 a11b12 C a12b22
a21b11 C a22b21 a21b12 C a22b22
a31b11 C a32b21 a31b12 C a32b22

3
5

The product BA is not defined since B 2 M2;2.F / and A 2 M3;2.F /.
c) Considering

A D
2
4
1 �1
2 0

�1 3

3
5 and B D

��1 2
�3 1

�

we get

AB D
2
4
2 1

�2 4
�8 1

3
5

d) Take A;B 2 M2.C/, where

A D
�
1 0

0 0

�
and B D

�
0 0

2 0

�
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Then, both products AB and BA are defined and we have

AB D
�
0 0

0 0

�
D O2 and BA D

�
0 0

2 0

�
:

This last example shows two important things:

• multiplication of matrices (even in M2.F /) is not commutative, i.e., generally
AB ¤ BAwhenAB and BA both make sense (this is the case ifA;B 2 Mn.F /,
for instance).

• There are nonzero matrices A;B whose product is 0: for instance in this example
we have A ¤ O2, B ¤ O2, but AB D O2.

Definition 1.27. Two matrices A;B 2 Mn.F / commute if

AB D BA:

One has to be very careful when using algebraic operations on matrices, since
multiplication is not commutative in general. For instance, one uses quite often
identities such as

.aC b/2 D a2 C 2ab C b2; .aC b/.a � b/ D a2 � b2

for elements of a field F . Such identities are (in general) no longer true if a; b are
matrices and they should be replaced by the following correct identities

.AC B/2 D A2 C AB C BAC B2; .AC B/.A � B/ D A2 �AB C BA � B2:

We see that the previous identities (which hold for elements of a field) hold for A
and B if and only if A and B commute.

Matrix multiplication obeys many of the familiar arithmetical laws apart from
the commutativity property. More precisely, we have the following:

Proposition 1.28. Multiplication of matrices has the following properties

1) Associativity: we have .AB/C D A.BC/ for all matrices A 2 Mm;n.F /, B 2
Mn;p.F /, C 2 Mp;q.F /.

2) Compatibility with scalar multiplication: we have ˛.AB/ D .˛A/B D A.˛B/

if ˛ 2 F , A 2 Mm;n.F / and B 2 Mn;p.F /

3) Distributivity with respect to addition: we have

.AC B/C D AC C BC if A;B 2 Mm;n.F / and C 2 Mn;p.F /;

and

D.AC B/ D DACDB if A;B 2 Mm;n.F / and D 2 Mp;m.F /:
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All these properties follow quite easily from Definition 1.23 or Theorem 1.25. Let
us prove for instance the associativity property (which would be the most painful
to check by bare hands if we took Theorem 1.25 as a definition). It suffices (by
Theorem 1.21) to check that for all X 2 F q we have

..AB/C /X D .A.BC//X:

But by definition of the product we have

..AB/C /X D .AB/.CX/ D A.B.CX//

and

.A.BC//X D A..BC/X/ D A.B.CX//;

and the result follows. One could also use Theorem 1.25 and check by a rather
painful computation that the .i; j /-entry in .AB/C equals the .i; j /-entry in
A.BC/, by showing that they are both equal to

X
k;l

aikbklclj :

All other properties of multiplication stated in the previous proposition are
proved in exactly the same way and we leave it to the reader to fill in the details.

Remark 1.29. Because of the associativity property we can simply write ABCD
instead of the cumbersome ..AB/C /D, which also equals .A.BC//D or
A.B.CD//. Similarly, we define the product of any number of matrices. When
these matrices are all equal we use the notation

An D A � A � : : : � A;

with n factors in the right-hand side. This is the nth power of the matrix A. Note
that it only make sense to define the powers of a square matrix! By construction we
have

An D A � An�1:

We make the natural convention that A0 D In for any A 2 Mn.F /. The reader
will have no difficulty in checking that In is a unit for matrix multiplication, in the
sense that

A � In D A and Im � A D A if A 2 Mm;n.F /:
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We end this section with a long list of problems which illustrate the concepts
introduced so far.

Problem 1.30. Let A.x/ 2 M3.R/ be the matrix defined by

A.x/ D
2
4
1 x x2

0 1 2x

0 0 1

3
5 :

Prove that A.x1/A.x2/ D A.x1 C x2/ for all x1; x2 2 R.

Solution. Using the product rule given by Theorem 1.25, we obtain

A.x1/A.x2/ D
2
4
1 x1 x

2
1

0 1 2x1
0 0 1

3
5
2
4
1 x2 x

2
2

0 1 2x2
0 0 1

3
5

D
2
4
1 x2 C x1 x

2
2 C 2x1x2 C x21

0 1 2x2 C 2x1
0 0 1

3
5 D

2
4
1 x1 C x2 .x1 C x2/

2

0 1 2.x1 C x2/

0 0 1

3
5 :

By definition, the last matrix is simply A.x1 C x2/. ut
The result established in the following problem is very useful and constantly used

in practice:

Problem 1.31. a) Prove that the product of two diagonal matrices is a diagonal
matrix.

b) Prove that the product of two upper-triangular matrices is upper-triangular.
c) Prove that in both cases the diagonal entries of the product are the product of the

corresponding diagonal entries.

Solution. a) Let A D Œaij � and B D Œbij � be two diagonal matrices in Mn.F /. Let
i ¤ j 2 f1; : : : ; ng. Using the product rule, we obtain

.AB/ij D
nX

kD1
aikbkj :

We claim that aikbkj D 0 for all k 2 f1; 2; : : : ; ng, thus .AB/ij D 0 for all
i ¤ j and AB is diagonal. To prove the claim, note that since i ¤ j , we have
i ¤ k or j ¤ k. Thus either aik D 0 (since A is diagonal) or bkj D 0 (since B
is diagonal), thus in all cases aikbkj D 0 and the claim is proved.

b) Let A D Œaij � and B D Œbij � be upper-triangular matrices in Mn.F /. We want to
prove that .AB/ij D 0 for all i > j . By the product rule,

.AB/ij D
nX

kD1
aikbkj ;
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thus it suffices to prove that for all i > j and all k 2 f1; 2; : : : ; ng we have
aikbkj D 0. Fix i > j and k 2 f1; 2; : : : ; ng and suppose that aikbkj ¤ 0, thus
aik ¤ 0 and bkj ¤ 0. Since A and B are upper-triangular, we deduce that i � k

and k � j , thus i � j , a contradiction.
c) Again, using the product rule we compute

.AB/ii D
nX

kD1
aikbki :

Assume that A and B are upper-triangular (which includes the case when they
are both diagonal). If aikbki is nonzero for some k 2 f1; 2; : : : ; ng, then i � k

and k � i , thus k D i . We conclude that

.AB/ii D aiibi i

and the result follows. ut
Problem 1.32. A matrix A 2 Mn.R/ is called right stochastic if all entries are
nonnegative real numbers and the sum of the entries in each row equals 1. We
define the concept of left stochastic matrix similarly by replacing the word row
with column. Finally, a matrix is called doubly stochastic if it is simultaneously
left and right stochastic.

a) Prove that the product of two left stochastic matrices is a left stochastic matrix.
b) Prove that the product of two right stochastic matrices is a right stochastic matrix.
c) Prove that the product of two doubly stochastic matrices is a doubly stochastic

matrix.

Solution. Note that c) is just the combination of a) and b). The argument for proving
b) is identical to the one used to prove a), thus we will only prove part a) and
leave the details for part b) to the reader. Consider thus two left stochastic matrices
A;B 2 Mn.R/, say A D Œaij � and B D Œbij �. Thus aij � 0, bij � 0 for all
i; j 2 f1; 2; : : : ; ng and moreover the sum of the entries in each column of A or B
is 1, which can be written as

nX
kD1

aki D 1;

nX
kD1

bki D 1

for i 2 f1; 2; : : : ; ng. Note that by the product rule

.AB/ij D
nX
lD1

ailblj

is nonnegative for all i; j 2 f1; 2; : : : ; ng. Moreover, the sum of the entries of AB
in the i th column is
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nX
kD1
.AB/ki D

nX
kD1

0
@

nX
jD1

akj bj i

1
A D

nX
jD1

 
nX

kD1
akj bj i

!

D
nX

jD1
bj i �

 
nX

kD1
akj

!
D

nX
jD1

bj i � 1 D
nX

jD1
bj i D 1;

where we used once the fact that A is left stochastic (so that
Pn

kD1 akj D 1 for all
j ) and once the fact that B is stochastic (hence

Pn
jD1 bj i D 1 for all i ). The result

follows. ut
Problem 1.33. Let .Eij /1�i;j�n be the canonical basis of Mn.F /. Prove that if
i; j; k; l 2 f1; 2; : : : ; ng, then

EijEkl D ıjkEil ;

where ıjk equals 1 if j D k and 0 otherwise.

Solution. We use the product rule: let u; v 2 f1; 2; : : : ; ng, then

.EijEkl /uv D
nX

wD1
.Eij /uw.Ekl /wv:

Now .Eab/cd is zero unless a D c and b D d , and it is equal to 1 if the previous
two equalities are satisfied. Thus .Eij /uw.Ekl /wv is zero unless i D u; j D w and
k D w, l D v. The last equalities can never happen if j ¤ k, so if j ¤ k, then
.EijEkl /uv D 0 for all u; v 2 f1; 2; : : : ; ng. We conclude that EijEkl D 0 when
j ¤ k.

Assuming now that j D k, the previous discussion yields .EijEkl /uv D 1 if
u D i and v D l , and it equals 0 otherwise. In other words,

.EijEkl /uv D .Eil /uv

for all u; v 2 f1; 2; : : : ; ng. Thus EijEkl D Eil in this case, as desired. ut
Problem 1.34. Let .Eij /1�i;j�n be the canonical basis of Mn.F /. Let i; j 2
f1; 2; : : : ; ng and consider a matrix A D Œaij � 2 Mn.F /.

a) Prove that

AEij D

2
6664

0 0 : : : a1i 0 : : : 0

0 0 : : : a2i 0 : : : 0
:::
:::
:::

:::

0 0 : : : ani 0 : : : 0

3
7775 ;

the only possibly nonzero entries being in the j th column.
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b) Prove that

EijA D

2
6666666664

0 0 : : : 0
:::

:::
:::

:::

aj1 aj2 : : : ajn
0 0 : : : 0
:::

:::
:::

:::

0 0 : : : 0

3
7777777775

;

the only possibly nonzero entries being in the i th row.

Solution. a) Write

A D
nX

k;lD1
aklEk;l :

Using Problem 1.33, we can write

AEi;j D
nX

k;lD1
aklEk;lEi;j D

nX
k;lD1

akl ıi;lEk;j

D
nX

kD1
akiEk;j D a1iE1;j C a2iE2;j C : : :C aniEn;j :

Coming back to the definition of the matrices E1j ; : : : ; En;j , the result follows.
b) The proof is identical and left to the reader.

ut
Problem 1.35. Prove that a matrix A 2 Mn.F / commutes with all matrices in
Mn.F / if and only if A D cIn for some scalar c 2 F .

Solution. If A D cIn for some scalar c 2 F , then AB D cB and BA D cB for all
B 2 Mn.F /, hence AB D BA for all matrices B 2 Mn.F /. Conversely, suppose
that A commutes with all matrices B 2 Mn.F /. Then A commutes with Eij for all
i; j 2 f1; 2; : : : ; ng. Using Problem 1.34 we obtain the equality

2
6664

0 0 : : : a1i 0 : : : 0

0 0 : : : a2i 0 : : : 0
:::
:::
:::

:::

0 0 : : : ani 0 : : : 0

3
7775 D

2
6666666664

0 0 : : : 0
:::

:::
:::

:::

aj1 aj2 : : : ajn
0 0 : : : 0
:::

:::
:::

:::

0 0 : : : 0

3
7777777775

:
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If i ¤ j , considering the .j; j /-entry in both matrices appearing in the previous
equality yields aji D 0, thus aij D 0 for i ¤ j and A is diagonal. Contemplating
again the previous equality yields aii D ajj for all i; j and so all diagonal entries
of A are equal. We conclude that A D a11In and the problem is solved. ut
Problem 1.36. Find all matrices A 2 M3.C/ which commute with the matrix

A D
2
4
1 0 0

0 2 0

0 0 3

3
5 :

Solution. Let B D Œbij � be a matrix commuting with A. Using the product rule, we
obtain

AB D
2
4
1 0 0

0 2 0

0 0 3

3
5 �

2
4
b11 b12 b13
b21 b22 b23
b31 b32 b33

3
5 D

2
4
b11 b12 b13
2b21 2b22 2b23
3b31 3b32 3b33

3
5

and

BA D
2
4
b11 b12 b13
b21 b22 b23
b31 b32 b33

3
5 �

2
4
1 0 0

0 2 0

0 0 3

3
5 D

2
4
b11 2b12 3b13
b21 2b22 3b23
b31 2b32 3b33

3
5 :

Comparing the equality AB D BA yields

b12 D b13 D b21 D b23 D b31 D b32 D 0

and conversely if these equalities are satisfied, then AB D BA. We conclude that

the solutions of the problem are the matrices of the form B D
2
4
b11 0 0

0 b22 0

0 0 b33

3
5, that

is the diagonal matrices. ut
Problem 1.37. A 3 � 3 matrix A 2 M3.R/ is called circulant if there are real
numbers a; b; c such that

A D
2
4
a b c

c a b

b c a

3
5 :

a) Prove that the sum and product of two circulant matrices is a circulant matrix.
b) Prove that any two circulant matrices commute.
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Solution. Let A D
2
4
a b c

c a b

b c a

3
5 and B D

2
4
x y z
z x y
y z x

3
5 be two circulant matrices.

a) Note that

AC B D
2
4
aC x b C y c C z
c C z aC x b C y

b C y c C z aC x

3
5

is a circulant matrix. Using the product rule we compute

AB D
2
4

u v w
w u v
v w u

3
5 ;

where

u D ax C bz C cy; v D ay C bx C cz; w D az C by C cx:

Thus AB is also a circulant matrix.
b) Similarly, using the product rule we check that

BA D
2
4

u v w
w u v
v w u

3
5 D AB:

ut
Problem 1.38. If A;B 2 Mn.C/ are matrices satisfying

A2 D B2 D .AB/2 D In;

prove that A and B commute.

Solution. Multiplying the relation ABAB D In by A on the left and by B on the
right, we obtain

A2BAB2 D AB:

By assumption, the left-hand side equals InBAIn D BA, thus BA D AB . ut
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1.3.1 Problems for Practice

1. Consider the matrices

A D �
1 2 3

�
and B D

2
4
4

5

6

3
5 :

Which of the products AB and BAmake sense? For each product which makes
sense, compute the entries of the product.

2. Consider the matrices

A D
2
4
1 1 1

0 1 1

0 0 1

3
5 and B D

2
4
0 1 1

1 1 0

0 0 1

3
5

in M3.F2/. Compute AB and BA.
3. Consider the matrices

A D
2
4
1 0 2

3 �1 0
1 1 1

3
5 ; B D

2
4
0 1

2 �1
1 0

3
5 :

Which of the productsA2;AB;BA;B2 makes sense? Compute all products that
make sense.

4. Let A D
�
1 3

2 1

�
.

a) Find all matrices B 2 M2.C/ which commute with A.
b) Find all matrices B 2 M2.C/ for which AB C BA is the zero matrix.

5. Determine all matrices A 2 M2.R/ commuting with the matrix

�
1 2

3 4

�
:

6. Let G be the set of matrices of the form 1p
1�x2

�
1 x

x 1

�
with x 2 .�1; 1/. Prove

that the product of two elements of G is an element of G.

7. (matrix representation of C) Let G be the set of matrices of the form

�
a �b
b a

�

with a; b 2 R.

a) Prove that the sum and product of two elements of G is in G.
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b) Consider the map f W G ! C defined by

f

��
a �b
b a

��
D aC ib:

Prove that f is a bijective map satisfying f .A C B/ D f .A/C f .B/ and
f .AB/ D f .A/f .B/ for all A;B 2 G.

c) Use this to compute the nth power of the matrix

�
a �b
b a

�
.

8. For any real number x let

A.x/ D
2
4
1 � x 0 x

0 1 0

x 0 1 � x

3
5 :

a) Prove that for all real numbers a; b we have

A.a/A.b/ D A.aC b � 2ab/:

b) Given a real number x, compute A.x/n.

9. Compute A20, where

A D
2
4
1 0 0

0 2 0

0 0 3

3
5 :

10. a) Give a detailed proof, by induction on k, for the binomial formula: if
A;B 2 Mn.F / commute then

.AC B/k D
kX

jD0

 
k

j

!
Ak�jBj :

b) Give a counterexample to the binomial formula if we drop the hypothesis
that A and B commute.

11. a) Let

B D
2
4
0 0 1

0 0 �1
1 1 0

3
5 :

Prove that B3 D O3.
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b) Let a be a real number. Using part a) and the binomial formula, compute An

where

A D
2
4
1 0 a

0 1 �a
a a 1

3
5 :

12. Let

A D
2
4
1 0 1

�1 1 1
2

0 0 1

3
5 :

a) Prove that .A � I3/3 D O3.
b) Compute An for all positive integers n, by using part a) and the binomial

formula.

13. a) Prove that the matrix

A D
2
4
1 1 0

0 1 1

0 0 1

3
5

satisfies .A � I3/3 D O3.
b) Compute An for all positive integers n.

14. a) Prove that the matrix

A D
2
4
2 3 4

4 2 0

�3 0 2

3
5

satisfies .A � 2I3/3 D O3.
b) Compute An for all positive integers n.

15. Suppose that A 2 Mn.C/ is a diagonal matrix whose diagonal entries are
pairwise distinct. Let B 2 Mn.C/ be a matrix such that AB D BA. Prove
that B is diagonal.

16. A matrix A 2 Mn.R/ is called a permutation matrix if each row and column
of A has an entry equal to 1 and all other entries equal to 0. Prove that the
product of two permutation matrices is a permutation matrix.

17. Consider a permutation � of 1; 2; : : : ; n, that is a bijective map

� W f1; 2; : : : ; ng ! f1; 2; : : : ; ng:
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We define the associated permutation matrix P� as follows: the .i; j /-entry of
P� is equal to 1 if i D �.j / and 0 otherwise.

a) Prove that any permutation matrix is of the formP� for a unique permutation
� .

b) Deduce that there are nŠ permutation matrices.
c) Prove that

P�1 � P�2 D P�1ı�2

for all permutations �1; �2.
d) Given a matrix B 2 Mn.F /, describe the matrices P�B and BP� in terms

of B and of the permutation � .

1.4 Block Matrices

A sub-matrix of a matrix A 2 Mm;n.F / is a matrix obtained from A by deleting
rows and/or columns of A (note that A itself is a sub-matrix of A). A matrix can be
partitioned into sub-matrices by drawing horizontal or vertical lines between some
of its rows or columns. We call such a matrix a block (or partitioned) matrix and
we call the corresponding sub-matrices blocks.

Here are a few examples of partitioned matrices:

2
4
1 2 3

0 1 2

0 0 1

3
5 ;

"
1 2

3 4

#
;

2
4
0 1 0 0

1 1 1 1

1 1 2 3

3
5 :

We can see a partitioned matrix as a “matrix of matrices”: the typical shape of a
partitioned matrix A of size m � n is

A D

2
6664

A11 A12 : : : A1k
A21 A22 : : : A2k
:::

:::
:::

:::

Al1 Al2 : : : Alk

3
7775 ;

where Aij is a matrix of size mi � nj for some positive integers m1; : : : ; ml and
n1; : : : ; nk with m1 Cm2 C : : :Cml D m and n1 C n2 C : : :C nk D n. If l D k,
we call the blocks A11; : : : ; Akk the diagonal blocks and we say that A is block
diagonal if all blocks of A but the diagonal ones are zero. Thus a block diagonal
matrix is of the form



30 1 Matrix Algebra

A D

2
6664

A11 0 : : : 0

0 A22 : : : 0
:::

:::
:::

:::

0 0 : : : Akk

3
7775 :

An important advantage is given by the following rules for addition and
multiplication of block matrices (which follow directly from the rules of addition
and multiplication by matrices; we warn however the reader that the proof of the
multiplication rule is quite involved from a notational point of view!):

• If

A D

2
6664

A11 A12 : : : A1k
A21 A22 : : : A2k
:::

:::
:::

:::

Al1 Al2 : : : Alk

3
7775 and B D

2
6664

B11 B12 : : : B1k
B21 B22 : : : B2k
:::

:::
:::

:::

Bl1 Bl2 : : : Blk

3
7775

with Aij and Bij of the same size for all i; j (so the rows and columns of B and
A are partitioned in the same way), then

AC B D

2
6664

A11 C B11 A12 C B12 : : : A1k C B1k
A21 C B21 A22 C B22 : : : A2k C B2k

:::
:::

:::
:::

Al1 C Bl1 Al2 C Bl2 : : : Alk C Blk

3
7775 :

• If

A D

2
6664

A11 A12 : : : A1k
A21 A22 : : : A2k
:::

:::
:::

:::

Al1 Al2 : : : Alk

3
7775 ; B D

2
6664

B11 B12 : : : B1r
B21 B22 : : : B2r
:::

:::
:::

:::

Bk1 Bk2 : : : Bkr

3
7775

are m � n, respectively n � p partitioned matrices, with Aij of size mi � nj and
Bij of size ni � pj , then

AB D

2
6664

C11 C12 : : : C1r
C21 C22 : : : C2r
:::

:::
:::

:::

Cl1 Cl2 : : : Clr

3
7775 ;
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where

Cij D
kX

uD1
AiuBuj :

1.4.1 Problems for Practice

If A D Œaij � 2 Mm1;n1.F / and B 2 Mm2;n2.F / are matrices, the Kronecker
product or tensor product of A and B is the matrix A ˝ B 2 Mm1m2;n1n2.F /

defined by

A˝ B D

2
6664

a11B a12B : : : a1;n1B

a21B a22B : : : a2;n1B
:::

:::
:::

:::

am1;1B am1;2B : : : am1;n1B

3
7775 :

1. Compute the Kronecker product of the matrices

A D
2
4
0 1 0

1 0 0

0 0 1

3
5 and B D

�
2 1

1 �1
�
:

2. Do we always have A˝ B D B ˝ A?
3. Check that Im ˝ In D Imn.
4. Prove that if A1 2 Mm1;n1.F /, A2 2 Mn1;r1 .F /, B1 2 Mm2;n2.F / and B2 2
Mn2;r2 .F /, then

.A1 ˝ B1/ � .A2 ˝ B2/ D .A1A2/˝ .B1B2/:

5. Prove that if A 2 Mm.F / and B 2 Mn.F / then

A˝ B D .A˝ In/ � .Im ˝ B/:

1.5 Invertible Matrices

Let n be a positive integer. We say that a matrix A 2 Mn.F / is invertible or non-
singular if there is a matrix B 2 Mn.F / such that

AB D BA D In:
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Such a matrix B is then necessarily unique, for if C is another matrix with the same
properties, we obtain

C D In � C D .BA/C D B.AC/ D BIn D B:

The matrix B is called the inverse of A and denoted A�1.
Let us establish a few basic properties of invertible matrices:

Proposition 1.39. a) If c is a nonzero scalar, then cIn is invertible.
b) If A is invertible, then so is A�1, and .A�1/�1 D A.
c) If A;B 2 Mn.F / are invertible, then so is AB and

.AB/�1 D B�1A�1:

Proof. a) The matrix c�1In is an inverse of the matrix cIn.
b) LetB D A�1, thenBA D AB D In, showing thatB is invertible, with inverseA.
c) By assumption A�1 and B�1 exist, so the matrix C D B�1A�1 makes sense. We

compute

.AB/C D ABB�1A�1 D AInA
�1 D AA�1 D In

and similarly

C.AB/ D B�1A�1AB D B�1InB D B�1B D In;

showing that AB is invertible, with inverse C .
ut

Remark 1.40. a) One should be careful when computing inverses of products of
matrices, for the formula .AB/�1 D A�1B�1 is not correct, unless A and B
commute. We will have

.ABC/�1 D C�1B�1A�1

and not A�1B�1C�1 in general. Thus the inverse of the product equals the
product of the inverses in the reverse order.

b) By the proposition, invertible matrices are stable under product, but they are
definitely not stable under addition: the matrices In and �In are invertible, but
their sum On is not invertible (as OnA D On ¤ In for any matrix A 2 Mn.F /).

The set of invertible matrices plays an extremely important role in linear algebra,
so it deserves a definition and a special notation:

Definition 1.41. The set of invertible matrices A 2 Mn.F / is called the general
linear group and denoted GLn.F /.
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Unfortunately, with the tools introduced so far it is illusory to hope to understand
the fine properties of the general linear group GLn.F /. Once we develop the theory
of linear algebra from the point of view of vector spaces and linear transformations,
we will have a much more powerful theory that will make it easier to understand
invertible matrices. Just to give a hint of the difficulty of the theory, try to prove by
bare hands that if A;B 2 Mn.F / satisfy AB D In, then A is invertible. The key
point is proving that this equality forces BA D In, but this is definitely not trivial
simply by coming back to the multiplication of matrices! In subsequent chapters we
will develop a theory of determinants which allows a much cleaner characterization
of invertible matrices. Also, in subsequent chapters we will describe an algorithm,
based on operations on the rows of a matrix, which gives an efficient way of solving
the following problem: given a square matrix A, decide whether A is invertible and
compute its inverse ifA is invertible. This problem is not easy to solve with the tools
we have introduced so far.

Problem 1.42. Consider the matrix A D
2
4
0 1 0

1 0 0

0 0 1

3
5. Is the matrix A invertible? If

this is case, compute A�1.

Solution. Since we don’t have any strong tools at our disposal for the moment, let

us use brute force and look for a matrix

2
4
a b c

x y z
u v w

3
5 such that

2
4
0 1 0

1 0 0

0 0 1

3
5 �

2
4
a b c

x y z
u v w

3
5 D I3:

The left-hand side equals

2
4
x y z
a b c

u v w

3
5, so this last matrix should be equal to I3. This

gives a unique solution x D b D w D 1 and all other variables are equal to 0. We
conclude that A is invertible and

A�1 D
2
4
0 1 0

1 0 0

0 0 1

3
5 :

ut
It is clear that the method used to find the inverse of A in the previous problem is

not efficient and quickly becomes very painful even for 3 � 3 matrices. We will see
later on a much more powerful approach, but we would like to present yet another
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method, which can be fairly useful in some situations (especially when the matrix
has some nice symmetry properties or if it has many zeros).

Consider a matrix A 2 Mn.F / and a vector b 2 F n. Assume that we can always
solve the system AX D b with X 2 F n and that it has a unique solution. Then one
can prove (we will see this in a later chapter, so we will take it for granted in this
chapter) that A is invertible and so the solution of the system is given by X D A�1b
(multiply the relation AX D b by A�1). On the other hand, assume that we are
able to solve the system by hand, then we have a description of X in terms of the
coordinates of b. Thus we will know explicitly A�1b for all vectors b 2 F n and this
is enough to find A�1. In practice, the resolution of the system will show that

A�1b D

2
6664

c11b1 C c12b2 C : : :C c1nbn
c21b1 C c22b2 C : : :C c2nbn

:::

cn1b1 C c22b2 C : : :C cnnbn

3
7775

for some scalars cij , independent of b1; : : : ; bn. Letting b be the i th vector of the
canonical basis of F n, the left-hand side A�1b is simply the i th column of A�1,
while the right-hand side is the i th column of the matrix Œcij �. Since the two sides
are equal and this for all i , we conclude that

A�1 D Œcij �:

Note that once the system is solved, it is very easy to write the matrix A�1 directly
by looking at the expression of A�1b. Namely, if the first coordinate of A�1b is
c11b1 C c12b2 C : : : C c1nbn, then the first row of A�1 is .c11; c12; : : : ; c1n/. Of
course, the key part of the argument is the resolution of the linear system AX D b,
and this will be discussed in a subsequent chapter. We will limit therefore ourselves
in this chapter to rather simple systems, which can be solved by hand without any
further theory.

Let us see a few concrete examples:

Problem 1.43. Compute the inverse of the matrix A in the previous problem using
the method we have just described.

Solution. Given a vector b D
2
4
b1
b2
b3

3
5 2 F 3, we try to solve the system AX D b,

with X D
2
4
x1
x2
x3

3
5. The system can be written as

x2 D b1; x1 D b2; x3 D b3;
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or equivalently

x1 D b2; x2 D b1; x3 D b3:

Since this system has a solution for all b 2 F 3, we deduce that A is invertible and
that for all b 2 F 3 we have

A�1b D X D
2
4
x1
x2
x3

3
5 D

2
4
b2
b1
b3

3
5 :

The first coordinate of A�1b is b2, thus the first row of A�1 is .0; 1; 0/, the second
coordinate of A�1b is b1 so the second row of A�1 is .1; 0; 0/. Finally, the third
coordinate of A�1b is b3, so the third row of A�1 is .0; 0; 1/. We conclude that

A�1 D
2
4
0 1 0

1 0 0

0 0 1

3
5 :

ut
Problem 1.44. Consider the matrix

A D

2
664

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

3
775 :

Prove that A is invertible and compute A�1.

Solution. Again, given a vector b D

2
664

b1
b2
b3
b4

3
775 2 F 4 we try to solve the system

AX D b with X D

2
664

x1
x2
x3
x4

3
775. The system can be written

8̂
<̂
ˆ̂:

x1 C x2 C x3 C x4 D b1
x2 C x3 C x4 D b2
x3 C x4 D b3
x4 D b4
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and can be solved rather easily: the last equation gives x4 D b4. Subtracting the last
equation from the third one yields x3 D b3 � b4, then subtracting the third equation
from the second one yields x2 D b2 � b3 and finally x1 D b1 � b2. Thus the system
always has solutions and so A is invertible, with

A�1b D X D

2
664

x1
x2
x3
x4

3
775 D

2
664

b1 � b2
b2 � b3
b3 � b4
b4

3
775 :

The first coordinate of A�1b being b1 � b2, we deduce that the first row of A is�
1 �1 0 0 �. Similarly, the coordinate b2 � b3 gives the second row of A namely�
0 1 �1 0 �, and so on. We end up with

A�1 D

2
664

1 �1 0 0

0 1 �1 0

0 0 1 �1
0 0 0 1

3
775 :

ut
Problem 1.45. Let n be a positive integer. Find the inverse of the matrix

2
666664

1 2 3 : : : n

0 1 2 : : : n � 1
0 0 1 : : : n � 2
:::
:::
::: : : :

:::

0 0 0 : : : 1

3
777775
:

Solution. Let A be the matrix whose inverse we are trying to compute. Given a
vector b 2 Rn with coordinates b1; b2; : : : ; bn, let us try to solve the system AX D
b. This system is equivalent to

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

x1 C 2x2 C 3x3 C : : :C nxn D b1
x2 C 2x3 C : : :C .n � 1/xn D b2

:::

xn�1 C 2xn D bn�1
xn D bn

In principle one can easily solve it by starting with the last equation and
successively determining xn; xn�1; : : : ; x1 from the equations of the system. To
make our life simpler, we subtract the second equation from the first, the third
equation from the second,. . . , the nth equation from the n � 1th equation. We end



1.5 Invertible Matrices 37

up with the equivalent system

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

x1 C x2 C x3 C : : :C xn D b1 � b2
x2 C x3 C : : :C xn D b2 � b3

:::

xn�1 C xn D bn�1 � bn
xn D bn:

Subtracting again consecutive equations yields

x1 D b1 � 2b2 C b3; x2 D b2 � 2b3 C b4; : : : ; xn�1 D bn�1 � 2bn; xn D bn:

Since the system AX D b always has solutions, we deduce that A is invert-
ible. Moreover, the system is equivalent to A�1b D X and the expressions of
x1; x2; : : : ; xn give us the rows of A�1: x1 D b1 � 2b2 C b3 shows that the first
row of A�1 equals .1;�2; 1; 0; : : : ; 0/,. . . , xn�1 D bn�1 � 2bn shows that the next-
to-last row is .0; 0; : : : ; 0; 1;�2/ and finally the last row of A�1 is .0; 0; : : : ; 1/.
Thus

A�1 D

2
666664

1 �2 1 0 : : : 0 0

0 1 �2 1 : : : 0 0
:::
:::

::: : : :
:::
:::
:::

0 0 0 0 : : : 1 �2
0 0 0 0 : : : 0 1

3
777775
:

ut
Problem 1.46. Let A;B 2 Mn.F / be matrices such that AB D BA. Prove that if
A is invertible, then A�1B D BA�1.

Solution. Multiply the relation AB D BA on the left by A�1 and on the right by
A�1. We obtain

A�1ABA�1 D A�1BAA�1:

Since A�1A D In, the left-hand side equals BA�1. Since AA�1 D In, the right-
hand side equals A�1B . Thus A�1B D BA�1, as desired. ut
Problem 1.47. Prove that a diagonal matrix A 2 Mn.F / is invertible if and only
if all its diagonal entries are nonzero. Moreover, if this is the case, then A�1 is also
diagonal.
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Solution. Let A D Œaij � 2 Mn.F / be a diagonal matrix. If B D Œbij � 2 Mn.F / is
an arbitrary matrix, let us compute AB . Using the product rule, we have

.AB/ij D
nX

kD1
aikbkj :

We have aik D 0 for k ¤ i , since A is diagonal. Thus

.AB/ij D aiibij

and similarly

.BA/ij D ajj bij :

Suppose now that aii ¤ 0 for all i 2 f1; 2; : : : ; ng and consider the diagonal
matrix B with diagonal entries bii D 1

ai i
. Then the formulae in the previous

paragraph yield AB D BA D In, thus A is invertible and A�1 D B is diagonal.
Conversely, suppose that A is invertible and diagonal, thus we can find a matrix

B such that AB D BA D In. Thus for all i 2 f1; : : : ; ng we have

1 D .In/i i D .AB/ii D aii bi i ;

hence aii ¤ 0 for all i and so all diagonal entries of A are nonzero. ut
Sometimes, it can be very easy to prove that a matrix A is invertible and to

compute its inverse, if we know that A satisfies some algebraic equation. For
instance, imagine that we knew that

A3 C 3AC In D On:

Then A3 C 3A D �In, which can be written as

A � .�A2 � 3In/ D In:

On the other hand, we also have

.�A2 � 3In/ � A D �A3 � 3A D In;

thus A is invertible and A�1 D �A2 � 3In. In general, a similar argument shows
that if A 2 Mn.C/ satisfies an equation of the form

adA
d C ad�1Ad�1 C : : :C a0In D 0
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for some complex numbers a0; : : : ; ad with a0 ¤ 0, then A is invertible and

A�1 D �
�
ad

a0
Ad�1 C ad�1

a0
Ad�2 C : : :C a1

a0
In

�
:

Of course, it is totally mysterious how to find such an algebraic equation satisfied
by A in general, but we will see much later how to naturally create such equations
(this will already require a lot of nontrivial theory!).

We discuss below two more such examples.

Problem 1.48. Consider the matrix

A D
2
4
1 2 1

2 1 3

3 0 �1

3
5 :

a) Check that

A3 � A2 � 8A � 18I3 D O3:

b) Deduce that A is invertible and compute A�1.

Solution. a) We compute brutally, using the product rule

A2 D
2
4
1 2 1

2 1 3

3 0 �1

3
5 �

2
4
1 2 1

2 1 3

3 0 �1

3
5 D

2
4
8 4 6

13 5 2

0 6 4

3
5

and

A3 D
2
4
1 2 1

2 1 3

3 0 �1

3
5 �

2
4
8 4 6

13 5 2

0 6 4

3
5 D

2
4
34 20 14

29 31 26

24 6 14

3
5 :

It follows that

A3 � A2 � 18I3 D
2
4
8 16 8

16 8 24

24 0 �8

3
5 D 8A

and the result follows.
b) We can write the identity in a) as follows:

A.A2 � A � 8I3/ D 18I3
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or equivalently

A � 1
18
.A2 � A � 8I3/ D I3:

Similarly, we obtain

1

18
.A2 � A � 8I3/ � A D I3

and this shows that A is invertible and

A�1 D 1

18
.A2 � A � 8I3/ D 1

18

2
4

�1 2 5

11 �4 �1
�3 6 �3

3
5 :

ut
Problem 1.49. Let n > 1 be an integer and let

� D e
2i�
n D cos

2�

n
C i sin

2�

n
:

Let Fn be the Fourier matrix of order n, whose .j; k/-entry is �.j�1/.k�1/ for 1 �
j; k � n.

a) Let Fn be the matrix whose .j; k/-entry is the complex conjugate of the .j; k/-
entry of Fn. Prove that

Fn � Fn D Fn � Fn D nIn:

b) Deduce that Fn is invertible and compute its inverse.

Solution. a) Let j; k 2 f1; 2; : : : ; ng and let us use the product rule to compute

.Fn � Fn/jk D
nX
lD1
.Fn/jl � .Fn/lk D

nX
lD1

�.j�1/.l�1/ � �.l�1/.k�1/ D
nX
lD1

�.j�1/.l�1/�.l�1/.k�1/;

the last equality being a consequence of the fact that � D ��1. Thus

.Fn � Fn/jk D
nX
lD1

�.l�1/.j�k/ D
n�1X
lD0
.�j�k/l :
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The last sum is the sum of a geometric progression with ratio �j�k . If j D k,
then �j�k D 1, so the sum equals n, since each term is equal to 1 in this case. If
j ¤ k, then �j�k ¤ 1 and we have

n�1X
lD0
.�j�k/l D 1 � .�j�k/n

1 � �j�k D 1 � .�n/j�k

1 � �j�k D 0;

the last equality being a consequence of the formula �n D 1. We conclude that
.Fn � Fn/jk equals n when j D k and equals 0 otherwise. It follows that

Fn � Fn D nIn:

The equality Fn � Fn D nIn is proved is exactly the same way and we leave the
details to the reader.

b) By part a) we can write

Fn � 1
n
Fn D 1

n
Fn D In;

which plainly shows that Fn is invertible and

F �1
n D 1

n
Fn: ut

1.5.1 Problems for Practice

1. Find the inverse of the matrix

A D
�
1 2

3 4

�
:

2. For which real numbers x is the matrix

A D
�
1 x

2 3

�

invertible? For each such x, compute the inverse of A.
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3. Is the matrix

A D
2
4
1 0 1

0 1 1

1 1 0

3
5 2 M3.F2/

invertible? If so, compute its inverse.
4. Same problem with the matrix

A D
2
4
1 0 1

0 1 1

0 1 0

3
5 2 M3.F2/:

5. Consider the matrix

A D

2
666664

1 2 3 4 5

0 1 2 3 4

0 0 1 2 3

0 0 0 1 2

0 0 0 0 1

3
777775

2 M5.R/:

Prove that A is invertible and compute its inverse.
6. Consider the matrix

A D

2
664

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

3
775 :

a) Compute the inverse of A by solving, for each b 2 R4, the system AX D b.
b) Prove that A2 D 3I4 C 2A. Deduce a new way of computing A�1.

7. Let A be the matrix

A D
2
4
3 �1 2

5 �2 3

�1 0 �1

3
5 :

a) Check that A3 D O3.
b) Compute .I3 C A/�1.
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8. Let n be a positive integer. Find the inverse of the n�nmatrix A whose entries
on or above the main diagonal are equal to 1 and whose entries (strictly) below
the main diagonal are zero.

9. Consider the matrices

A D

2
664

0 1 0 0

�1 0 0 0

0 0 0 �1
0 0 1 0

3
775 ; B D

2
664

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775

and

C D

2
664

0 0 0 1

0 0 �1 0
0 1 0 0

�1 0 0 0

3
775

and let H be the set of all matrices of the form aA C bB C cC C dI4, with
a; b; c; d real numbers.

a) Prove that A2 D B2 D C2 D �I4 and

BC D �CB D A; CA D �AC D B; AB D �BA D C:

b) Prove that the sum and product of two elements of H is an element of H.
c) Prove that all nonzero elements of H are invertible.

10. Let A;B 2 Mn.R/ such that

AC B D In and A2 C B2 D On:

Prove that A and B are invertible and that

.A�1 C B�1/n D 2nIn

for all positive integers n.
11. Let A 2 Mn.R/ be an invertible matrix such that

A�1 D In � A:

Prove that

A6 � In D On:
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12. Let A 2 Mn.R/ be a matrix such that A2 D �A, where � is a real number with
� ¤ �1. Prove that

.In C A/�1 D In � 1

�C 1
A:

13. Recall that a permutation matrix is a matrix A 2 Mn.C/ such that every row
and column of A contains one entry equal to 1 and all other entries are 0. Prove
that a permutation matrix is invertible and that its inverse is also a permutation
matrix.

14. Suppose that an upper-triangular matrix A 2 Mn.C/ is invertible. Prove that
A�1 is also upper-triangular.

15. Let a; b; c be positive real numbers, not all of them equal and consider the
matrix

A D

2
66666664

a 0 b 0 c 0

0 a 0 c 0 b

c 0 a 0 b 0

0 b 0 a 0 c

b 0 c 0 a 0

0 c 0 b 0 a

3
77777775
:

Prove that A is invertible. Hint: A�1 is a matrix of the same form as A (with
a; b; c replaced by suitable real numbers x; y; z).

1.6 The Transpose of a Matrix

Let A 2 Mm;n.F / be a m � n matrix. The transpose of A is the matrix tA (also
denoted asAT ) obtained by interchanging the rows and columns ofA. Consequently
tA is a n � m matrix, i.e., tA 2 Mn;m.F /. It is clear that t In D In. Note that if
A D Œaij �, then tA D Œaj i �, that is

.tA/ij D Aji (1.3)

Example 1.50. a) The transpose of the matrix

2
4
1 2 3

0 �1 �2
3 4 5

3
5 is the matrix

2
4
1 0 3

2 �1 4
3 �2 5

3
5.
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b) The transpose of the matrix

�
1 2 3 4

0 1 2 3

�
is the matrix

2
664

1 0

2 1

3 2

4 3

3
775.

The following proposition summarizes the basic properties of the operation A !
tA on Mm;n.F /.

Proposition 1.51. The transpose operation has the following properties:

1) t . tA/ D A for all A 2 Mm;n.F /.
2) t .AC B/ D tAC tB for all A;B 2 Mm;n.F /;
3) t .cA/ D c tA if c 2 F is a scalar and A 2 Mm;n.F /.
4) t .AB/ D tB tA if A 2 Mm;n.F / and B 2 Mn;p.F /;
5) t .Ak/ D . tA/k if A 2 Mn.F / and k is a positive integer;
6) If the matrix A is invertible, then tA is also invertible and

. tA/�1 D t .A�1/I

Proof. Properties 1), 2), and 3) are immediate from the definition of the transpose
of a matrix (more precisely from relation (1.3)). Let us prove (4). First, note that
tB 2 Mp;n.F / and tA 2 Mn;m.F /, thus tB �t Amakes sense. Next, if A D Œaij � and
B D Œbjk�, we have

. t .AB//ki D .AB/ik D
nX

jD1
aij bjk D

nX
jD1

. tB/kj .
tA/j i D . tB tA/ki ;

thus t .AB/ D tBtA.
Property 5) follows by induction on k, using property 4. Finally, property 6) also

follows from 4), since

In D t In D t .A � A�1/ D t .A�1/tA

and similarly tA � t .A�1/ D In. ut
It follows from the previous proposition that the transpose operation leaves the

general linear group GLn.F / invariant, that is tA 2 GLn.F / whenever A 2
GLn.F /.

Problem 1.52. Let X 2 F n be a vector with coordinates x1; : : : ; xn, considered as
a matrix in Mn;1.F /. Prove that for any matrix A 2 Mn.F / we have

tX. tA � A/X D
nX
iD1
.ai1x1 C ai2x2 C : : :C ainxn/

2:
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Solution. First of all, we use Proposition 1.51 to obtain

tX. tA � A/X D tX tAAX D t .AX/ � AX:

Write now

Y D AX D

2
6664

a11x1 C : : :C a1nxn
a21x1 C : : :C a2nxn

:::

an1x1 C : : :C annxn

3
7775 D

2
6664

y1
y2
:::

yn

3
7775 :

Then

t Y � Y D �
y1 y2 : : : yn

� �

2
6664

y1
y2
:::

yn

3
7775

and using the product rule for matrices, we obtain that the last quantity equals y21 C
: : :C y2n. We conclude that

tX. tA � A/X D t Y � Y D y21 C : : :C y2n D
nX
iD1
.ai1x1 C ai2x2 C : : :C ainxn/

2:

ut
There are three types of special matrices that play a fundamental role in linear

algebra and that are related to the transpose operation:

• The symmetric matrices. These are matrices A 2 Mn.F / for which tA D A

or equivalently aij D aji for all i; j . They play a crucial role in the theory
of quadratic forms and euclidean spaces (for the latter one choose F D R),
and a whole chapter will be devoted to their subtle properties. For example, all
symmetric matrices of order 2 and 3 are of the form

�
a b

b c

�
; a; b; c 2 F and

2
4
a b c

b d e

c e f

3
5 ; a; b; c; d; e; f 2 F:

• The orthogonal matrices. These are matrices A 2 GLn.F / for which

A�1 D tA:



1.6 The Transpose of a Matrix 47

They also play a fundamental role in the theory of euclidean spaces, since these
matrices correspond to isometries of such spaces. They will also be extensively
studied in the last chapter of the book.

• The skew-symmetric (or antisymmetric) matrices. These are matrices for which

AC tA D On;

that is tA D �A. These matrices are related to alternating forms. They satisfy
aij D �aji for all i; j . Thus 2aii D 0. If F 2 fQ;R;Cg, then this last equality
forces aii D 0 for all i . Thus the diagonal elements of a skew-symmetric matrix
are in this case equal to 0. On the other hand, over a field F such as F2 (the
field with two elements), the condition 2aii D 0 does not give any information
about the element aii , since for any x 2 F2 we have 2x D 0. Actually, over such a
field there is no difference between symmetric and skew-symmetric matrices! All
skew-symmetric matrices of order 2 and 3 over the field C of complex numbers
are of the following form:

�
0 a

�a 0
�
; a 2 C and

2
4
0 a b

�a 0 c

�b �c 0

3
5 ; a; b; c 2 C:

Proposition 1.53. All matrices in the following statements are square matrices of
the same size. Prove that

1) The sum of a matrix and its transpose is a symmetric matrix. The difference of a
matrix and its transpose is a skew-symmetric matrix.

2) The product of a matrix and its transpose is a symmetric matrix.
3) Any power of a symmetric matrix is symmetric.
4) An even power of a skew-symmetric matrix is symmetric. An odd power of a

skew-symmetric matrix is skew-symmetric.
5) If A is invertible and symmetric, then A�1 is symmetric.
6) If A is invertible and skew-symmetric, then A�1 is skew-symmetric.

Proof. 1) If A is a matrix, then t .A Ct A/ D tA Ct .tA/ D tA C A D A Ct A,
thus ACt A is symmetric. Similarly, t .A �t A/ D tA � A D �.A �t A/, thus
A �t A is skew-symmetric.

2) We have t .AtA/ D t .tA/tA D AtA, thus AtA is symmetric.
3) and 4) follow from the equality .tA/n D t .An/, valid for any matrix A and any
n � 1.

5) and 6) follow from the equality t .A�1/ D .tA/�1, valid for any invertible
matrix A. ut
We end this section with a rather long list of problems that illustrate the ideas

introduced in this section.
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Problem 1.54. Describe the symmetric matrices A 2 Mn.F / which are simultane-
ously upper-triangular.

Solution. Let A D Œaij � be a symmetric and upper-triangular matrix. By definition
aij D 0whenever i > j (sinceA is upper-triangular) and moreover aij D aji for all
i; j 2 f1; 2; : : : ; ng. We conclude that aij D 0whenever i ¤ j , that isA is diagonal.
Conversely, any diagonal matrix is clearly symmetric and upper-triangular. Thus the
answer of the problem is: the diagonal matrices. ut
Problem 1.55. How many symmetric matrices are there in Mn.F2/?

Solution. By definition, each entry of a matrix A D Œaij � 2 Mn.F2/ is equal to 0
or 1, and A is symmetric if and only if aij D aji for all i; j 2 f1; 2; : : : ; ng. Thus a
symmetric matrix A is entirely determined by the choice of the entries above or on
the main diagonal, that is the entries aij with 1 � i � j � n. Moreover, for any
choice of these entries, we can construct a symmetric matrix by defining aij D aji
for i > j . For each pair .i; j /with 1 � i � j � nwe have two choices for the entry
aij (either 0 or 1). Since there are nC 	

n
2


 D n.nC1/
2

such pairs .i; j / (n pairs with

i D j and
	
n
2


 D n.n�1/
2

pairs with i < j ) and since the choices are independent,

we deduce that the number of symmetric matrices in Mn.F2/ is 2
n.nC1/

2 . ut
Problem 1.56. a) Describe the diagonal matrices A 2 Mn.R/ which are skew-

symmetric.
b) Same question, but replacing R with F2.

Solution. a) Let A D Œaij � 2 Mn.R/ be a diagonal skew-symmetric matrix. Since
A is diagonal, all entries away from the main diagonal are zero. Also, since AC
tA D 0, we have

aii C aii D 0

for all i 2 f1; 2; : : : ; ng, by noticing that A and tA have the same diagonal
entries. We conclude that 2aii D 0 and so aii D 0 for all i 2 f1; 2; : : : ; ng. Thus
A D On is the unique diagonal skew-symmetric matrix in Mn.R/.

b) As in part a), a matrix A D Œaij � 2 Mn.F2/ is diagonal and skew-symmetric
if and only if it is diagonal and its diagonal entries aii (for 1 � i � n) satisfy
2aii D 0. However, any element x of F2 satisfies 2x D 0, thus the condition
2aii D 0 is automatic. We conclude that any diagonal matrix A 2 Mn.F2/ is
skew-symmetric! ut

Problem 1.57. A matrix A 2 Mn.R/ has a unique nonzero entry in each row and
column, and that entry equals 1 or �1. Prove that A is orthogonal.

Solution. Let A D Œaij �. We need to prove that A�1 D tA, that is A � tA D In and
tA � A D In. Fix i; j 2 f1; 2; : : : ; ng. Then the .i; j /-entry of A � tA is

.A � tA/ij D
nX

kD1
aikajk:



1.6 The Transpose of a Matrix 49

Assume that aikajk is nonzero for some k 2 f1; 2; : : : ; ng, thus both aik and ajk
are nonzero. If i ¤ j , this means that A has at least two nonzero entries in column
k, which is impossible. Thus if i ¤ j , then aikajk D 0 for all k 2 f1; 2; : : : ; ng and
consequently the .i; j /-entry of A � tA is 0.

On the other hand, if i D j , then

.A � tA/ij D
nX

kD1
a2ik:

Now, by assumption the i th row of A consists of one entry equal to 1 or �1, and
all other entries are 0. Since

Pn
kD1 a2ik is simply the sum of squares of the entries

in the i th row, we deduce that
Pn

kD1 a2ik D 1 and so .A � tA/ij D 1 for i D j . We
conclude that A � tA D In. The reader will have no problem adapting this argument
in order to prove the equality tA � A D In. ut
Remark 1.58. In particular all such matrices are invertible, a fact which is definitely
not obvious. Moreover, it is very easy to compute the inverse of such a matrix:
simply take its transpose!

Problem 1.59. Prove that any matrixA 2 Mn.C/ can be expressed in a unique way
as B C C , where B is symmetric and C is skew-symmetric.

Solution. If A D B C C with B symmetric and C skew-symmetric, then
necessarily tA D B � C , thus

B D 1

2
.AC tA/ and C D 1

2
.A � tA/:

Conversely, choosing B and C as in the previous relation, they are symmetric,
respectively skew-symmetric (by the previous proposition) and they add up to A.

ut
Problem 1.60. The matrix A D

�
1 3

2 2

�
is the difference of a symmetric matrix B

and of a skew-symmetric matrix C . Find B .

Solution. By assumption we have A D B �C with tB D B and tC D �C . Thus

tA D t .B � C/ D tB � tC D B C C:

We conclude that

AC tA D .B � C/C .B C C/ D 2B
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and so

B D 1

2
.AC tA/ D 1

2

��
1 3

2 2

�
C
�
1 2

3 2

��

D 1

2

�
2 5

5 4

�
D
�
1 5
2

5
2
2

�
:

ut
Problem 1.61. a) Let A 2 Mn.R/ be a matrix such that tA � A D On. Prove that
A D On.

b) Does the result in part a) hold if we replace R with C?

Solution. a) Let A D ŒAij �. By the product rule for matrices, the .i; i/-entry of
tA � A is

. tA � A/ii D
nX

kD1
. tA/ikAki D

nX
kD1

A2ki :

Since tA � A D On, we conclude that for all i 2 f1; 2; : : : ; ng we have

nX
kD1

A2ki D 0:

Since the square of a real number is nonnegative, the last equality forces Aki D 0

for all k 2 f1; 2; : : : ; ng. Since i was arbitrary, we conclude that A D 0.
b) The result does no longer hold. Let us look for a symmetric matrix A 2 M2.C/

such that tA � A D O2, that is A2 D O2. Since A is symmetric, we can write

A D
�
a b

b d

�

for some complex numbers a; b; d . Now

A2 D
�
a b

b d

�
�
�
a b

b d

�
D
�
a2 C b2 b.aC d/

b.aC d/ b2 C d2

�
:

So we look for complex numbers a; b; d which are not all equal to 0 and for
which

a2 C b2 D 0; b.aC d/ D 0; b2 C d2 D 0:
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It suffices to ensure that aC d D 0 and a2 C b2 D 0. For instance, one can take
a D i , b D 1, d D �i .

ut
Remark 1.62. We could have also used Problem 1.52 in order to solve part a).
Indeed, for any X 2 Rn we have tX. tA � A/X D 0 and so

nX
iD1
.ai1x1 C ai2x2 C : : :C ainxn/

2 D 0

for any choice of real numbers x1; : : : ; xn. Since the sum of squares of real numbers
equals 0 if and only if all these numbers are equal to 0, we deduce that

ai1x1 C : : :C ain D 0

for all i 2 f1; 2; : : : ; ng and all real numbers x1; : : : ; xn. Thus AX D 0 for all
X 2 Rn and then A D On.

1.6.1 Problems for Practice

1. Consider the matrices

A D
�
1 1

2 1

�
; B D

�
3 1

4 2

�
:

Compute each of the following matrices:

a) A � tB .
b) B � tA.
c) .AC 2 tB/.B C 2 tA/.

2. Let � 2 R and let

A D
�

cos � � sin �
sin � cos �

�
:

a) Prove that A is orthogonal.
b) Find all values of � for which A is symmetric.
c) Find all values of � for which A is skew-symmetric.

3. Which matrices A 2 Mn.F2/ are the sum of a symmetric matrix and of a skew-
symmetric matrix?
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4. Write the matrix

A D
2
4
1 2 3

2 3 4

3 4 5

3
5

as the sum of a symmetric matrix and of a skew-symmetric matrix with real
entries.

5. All matrices in the following statements are square matrices of the same size.
Prove that

a) The product of two symmetric matrices is a symmetric matrix if and only if
the two matrices commute.

b) The product of two antisymmetric matrices is a symmetric matrix if and only
if the two matrices commute.

c) The product of a symmetric and a skew-symmetric matrix is skew-
symmetric if and only if the two matrices commute.

6. We have seen that the square of a symmetric matrix A 2 Mn.R/ is symmetric.
Is it true that if the square of a matrix A 2 Mn.R/ is symmetric, then A is
symmetric?

7. Consider the map ' W M3.R/ ! M3.R/ defined by

'.A/ D tAC 2A:

Prove that ' is linear, that is

'.cAC B/ D c'.A/C '.B/

for all A;B 2 M3.R/ and all c 2 R.
8. Let A 2 Mn.R/ be a matrix such that A � tA D On. Prove that A D On.
9. Find the skew-symmetric matrices A 2 Mn.R/ such that A2 D On.

10. Let A1; : : : ; Ak 2 Mn.R/ be matrices such that

tA1 � A1 C : : :C tAk � Ak D On:

Prove that A1 D : : : D Ak D On.
11. a) Let A 2 M3.R/ be a skew-symmetric matrix. Prove that there exists a

nonzero vector X 2 R3 such that AX D 0.
b) Does the result in part a) remain true if we replace M3.R/ with M2.R/?

12. Describe all upper-triangular matrices A 2 Mn.R/ such that

A � tA D tA � A:



Chapter 2
Square Matrices of Order 2

Abstract The main topic of this chapter is a detailed study of 2 � 2 matrices and
their applications, for instance to linear recursive sequences and Pell’s equations.
The key ingredient is the Cayley–Hamilton theorem, which is systematically used in
analyzing the properties of these matrices. Many of these properties will be proved
in subsequent chapters by more advanced methods.

Keywords Cayley–Hamilton • Trace • Determinant • Pell’s equation
• Binomial equation

In this chapter we will study some specific problems involving matrices of order
two and to make things even more concrete, we will work exclusively with matrices
whose entries are real or complex numbers. The reason for doing this is that in this
case one can actually perform explicit computations which might help the reader
become more familiar with the material introduced in the previous chapter. Also,
many of the results discussed in this chapter in a very special context will later
on be generalized (very often with completely different methods and tools!). We
should however warn the reader from the very beginning: studying square matrices
of order 2 is very far from being trivial, even though it might be tempting to believe
the contrary.

A matrix A 2 M2.C/ is scalar if it is of the form zI2 for some complex number
z. One can define the notion of scalar matrix in full generality: if F is a field and
n � 1, the scalar matrices are precisely the matrices of the form cIn, where c 2 F
is a scalar.

2.1 The Trace and the Determinant Maps

We introduce now two fundamental invariants of a 2 � 2 matrix, which will be
generalized and extensively studied in subsequent chapters for n � n matrices:

© Springer Science+Business Media New York 2014
T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__2

53
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Definition 2.1. Consider a matrix A D
�
a11 a12
a21 a22

�
2 M2.C/. We define

• the trace of A as

Tr.A/ D a11 C a22:

• the determinant of A as

detA D a11a22 � a12a21:

We also write

detA D
ˇ̌
ˇ̌a11 a12
a21 a22

ˇ̌
ˇ̌

for the determinant of A.
We obtain in this way two maps

Tr; det W M2.C/ ! C

which essentially govern the theory of 2 � 2 matrices. The following proposition
summarizes the main properties of the trace map. The second property is absolutely
fundamental. Recall that tA is the transpose of the matrix A.

Proposition 2.2. For all matrices A;B 2 M2.C/ and all complex numbers z 2 C
we have

(a) Tr.AC zB/ D Tr.A/C zTr.B/.
(b) Tr.AB/ D Tr.BA/.
(c) Tr. tA/ D Tr.A/.

Proof. Properties (a) and (c) are readily checked, so let us focus on property
(b). Write

A D
�
a11 a12
a21 a22

�
and B D

�
b11 b12
b21 b22

�
:

Then

AB D
�
a11b11 C a12b21 a11b12 C a12b22
a21b11 C a22b21 a21b12 C a22b22

�
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and

BA D
�
b11a11 C b12a21 b11a12 C b12a22
b21a11 C b22a21 b21a12 C b22a22:

�
:

Thus

Tr.AB/ D a11b11 C a22b22 C a12b21 C a21b12 D Tr.BA/:

�

Remark 2.3. The map Tr W M2.C/ ! C is not multiplicative, i.e., generally
Tr.AB/ ¤ Tr.A/Tr.B/. For instance Tr.I2 � I2/ D Tr.I2/ D 2 and Tr.I2/ � Tr.I2/ D
2 � 2 D 4 ¤ 2.

Let us turn now to properties of the determinant map:

Proposition 2.4. For all matrices A;B 2 M2.C/ and all complex numbers ˛ we
have

(1) det.AB/ D detA � detB;
(2) det tA D detA;
(3) det.˛A/ D ˛2 detA.

Proof. Properties (2) and (3) follow readily from the definition of a determinant.
Property (1) will be checked by a painful direct computation. Let

A D
�
a b

c d

�
; B D

�
x y

z t

�
:

Then

AB D
�
ax C bz ay C bt

cx C d z cy C dt

�

and so

det.AB/ D .ax C bz/.cy C dt/ � .cx C d z/.ay C bt/ D

acxy C adxt C bcyz C bd zt � acxy � bcxt � adyz � bd zt D

xt.ad � bc/ � yz.ad � bc/ D .ad � bc/.xt � yz/ D detA � detB;

as desired. �

Problem 2.5. Let A 2 M2.R/ such that

det.AC 2I2/ D det.A � I2/:
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Prove that

det.AC I2/ D det.A/:

Solution. Write A D
�
a b

c d

�
. The condition becomes

ˇ̌
ˇ̌aC 2 b

c d C 2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌a � 1 b

c d � 1
ˇ̌
ˇ̌

or equivalently

.aC 2/.d C 2/ � bc D .a � 1/.d � 1/ � bc:

Expanding and canceling similar terms, we obtain the equivalent relation aCdD�1.
Using similar arguments, the equality det.A C I2/ D detA is equivalent to .a C
1/.d C 1/ � bc D ad � bc, or aC d D �1.The result follows. ut

2.1.1 Problems for Practice

1. Compute the trace and the determinant of the following matrices

A D
�
1 2

2 1

�
; A D

��3 6

2 �4
�
; A D

�
1 0

1 0

�
:

2. Let A D
�
1 2

3 4

�
. Compute the determinant of A7.

3. The trace of A 2 M2.C/ equals 0. Prove that the trace of A3 also equals 0.
4. Prove that for all matrices A 2 M2.C/ we have

detA D .Tr.A//2 � Tr.A2/

2
:

5. Prove that for all matrices A;B 2 M2.C/ we have

det.AC B/ D detAC detB C Tr.A/ � Tr.B/ � Tr.AB/:

6. Let f W M2.C/ ! C be a map with the property that for all matrices A;B 2
M2.C/ and all complex numbers z we have

f .AC zB/ D f .A/C zf .B/ and f .AB/ D f .BA/:
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(a) Consider the matrices

E11 D
�
1 0

0 0

�
; E12 D

�
0 1

0 0

�
; E21 D

�
0 0

1 0

�
; E22 D

�
0 0

0 1

�

and define xij D f .Eij /. Check that E12E21 D E11 and E21E12 D E22, and
deduce that x11 D x22.

(b) Check that E11E12 D E12 and E12E11 D O2, and deduce that x12 D 0.
Using a similar argument, prove that x21 D 0.

(c) Conclude that there is a complex number c such that

f .A/ D c � Tr.A/

for all matrices A.

2.2 The Characteristic Polynomial and the Cayley–Hamilton
Theorem

Let A 2 M2.C/. The characteristic polynomial of A is by definition the
polynomial denoted det.XI2 � A/ and defined by

det.XI2 � A/ D X2 � Tr.A/X C detA:

We note straight away that AB and BA have the same characteristic polynomial
for all matrices A;B 2 M2.C/, since AB and BA have the same trace and the
same determinant, by results established in the previous section. In particular, if P
is invertible, then A and PAP�1 have the same characteristic polynomial.

The notation det.XI2 � A/ is rather suggestive, and it is indeed coherent, in the
sense that for any complex number z, if we evaluate the characteristic polynomial of
A at z, we obtain precisely the determinant of the matrix zI2 � A. More generally,
we have the following very useful:

Problem 2.6. For any two matrices A;B 2 M2.C/ there is a complex number u
such that

det.AC zB/ D detAC uz C detB � z2

for all complex numbers z. If A;B have integer/rational/real entries, then u is
integer/rational/real.
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Solution. Write A D
�
a b

c d

�
and B D

�
˛ ˇ

� ı

�
. Then

det.AC zB/ D
ˇ̌
ˇ̌aC z˛ b C zˇ
c C z� d C zı

ˇ̌
ˇ̌ D

.aCz˛/.dCzı/�.bCzˇ/.cCz�/ D z2.˛ı�ˇ�/Cz.aıCd˛�ˇc��b/Cad�bc:

Since ˛ı � ˇ� D detB and ad � bc D detA, the result follows. �

In other words, for any two matrices A;B 2 M2.C/ we can define a quadratic
polynomial det.ACXB/ which evaluated at any complex number z gives det.AC
zB/. Moreover, det.A C XB/ has constant term detA and leading term B , and if
A;B have rational/integer/real entries, then this polynomial has rational/integer/real
coefficients. Before moving on, let us practice some problems to better digest these
ideas.

Problem 2.7. Let U; V 2 M2.R/. Using the polynomial det.U CXV /, prove that

det.U C V /C det.U � V / D 2 detU C 2 detV:

Solution. Write

f .X/ D det.XV C U/ D detV �X2 CmX C detU;

for some m 2 R. Then

det.U C V /C det.U � V / D f .1/C f .�1/ D

.detV CmC detU/C .detV �mC detU/ D 2.detU C detV /:

�

Problem 2.8. Let A;B 2 M2.R/. Using the previous problem, prove that

det.A2 C B2/C det.AB C BA/ � 0:

Solution. As suggested, we use the identity

det.U C V /C det.U � V / D 2 detU C 2 detV:

from Problem 2.7, and take U D A2 C B2, V D AB C BA. Thus

det.A2 C B2 C AB C BA/C det.A2 C B2 � AB � BA/
D 2 det.A2 C B2/C 2 det.AB C BA/:
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As A2 CB2 CAB CBA D .ACB/2 and A2 CB2 �AB �BA D .A�B/2, we
obtain

2 det.A2 C B2/C 2 det.AB C BA/ D det.AC B/2 C det.A � B/2 � 0:

�

Problem 2.9. Let A;B 2 M2.R/. Using the polynomial

f .X/ D det.I2 C AB C x.BA � AB//;

prove that

det

�
I2 C 2AB C 3BA

5

�
D det

�
I2 C 3AB C 2BA

5

�
:

Solution. As suggested, consider the polynomial of degree at most 2

f .X/ D det.I2 C AB C x.BA � AB//:

We need to prove that f

�
2

5

�
D f

�
3

5

�
. We claim that f .X/ D f .1�X/, which

clearly implies the desired result. The polynomial g.X/ D f .X/ � f .1 � X/ has
degree at most 1 and satisfies g.0/ D g.1/ D 0. Indeed, we have

g.0/ D f .0/ � f .1/ D det.I2 C AB/ � det.I2 C BA/ D 0;

since AB and BA have the same characteristic polynomial. Also, g.1/ D f .1/ �
f .0/ D 0. Thus g must be the zero polynomial and the result follows. �

We introduce now another crucial tool in the theory of matrices, which will
be vastly generalized in subsequent chapters to n � n matrices (using completely
different ideas and techniques).

Definition 2.10. The eigenvalues of a matrix A 2 M2.C/ are the roots of its
characteristic polynomial, in other words they are the complex solutions 	1; 	2 of
the equation

det.tI2 � A/ D t 2 � Tr.A/t C detA D 0:

Note that

	1 C 	2 D Tr.A/ and 	1	2 D detA;

i.e., the trace is the sum of the eigenvalues and the determinant is the product
of the eigenvalues. Indeed, by definition of 	1 and 	2 the characteristic polynomial
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is .X � 	1/.X � 	2/, and identifying the coefficients of X and X0 D 1 yields the
desired relations.

The following result is absolutely fundamental for the study of square
matrices of order 2.

Theorem 2.11 (Cayley–Hamilton). For any A 2 M2.C/ we have

A2 � Tr.A/ � AC .detA/ � I2 D O2:

Proof. Write A D
�
a b

c d

�
, then a direct computation shows that

A2 D
�
a2 C bc b.aC d/

c.aC d/ d2 C bc

�
:

Letting x D Tr.A/, we obtain

A2 � Tr.A/ � AC .detA/ � I2 D
�
a2 C bc bx

cx d2 C bc

�
�
�
ax bx

cx dx

�

C
�
ad � bc 0

0 ad � bc
�

D
�
a2 C ad � ax 0

0 d2 C ad � dx
�

D 0;

since a2Cad�axDa.aCd�x/D0 and similarly d2Cad�dxDd.aCd�x/D0.
ut

Remark 2.12. (a) In other words, the matrix A is a solution of the characteristic
equation

det.tI2 � A/ D t 2 � Tr.A/t C detA D 0:

(b) Expressed in terms of the eigenvalues 	1 and 	2 of A, the Cayley–Hamilton
theorem can be written either

A2 � .	1 C 	2/AC 	1	2 � I2 D O2 (2.1)

or equivalently

.A � 	1 � I2/.A � 	2 � I2/ D O2: (2.2)

Both relations are extremely useful when dealing with square matrices of order 2,
and we will see many applications in subsequent sections.
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Problem 2.13. LetA 2 M2.C/ have eigenvalues 	1 and 	2. Prove that for all n � 1

we have

Tr.An/ D 	n1 C 	n2:

Deduce that 	n1 and 	n2 are the eigenvalues of An.

Solution. Let xn D Tr.An/. Multiplying relation (2.1) by An and taking the
trace yields

xnC2 � .	1 C 	2/xnC1 C 	1	2xn D 0:

Since x0 D 2 and x1 D Tr.A/ D 	1 C 	2, an immediate induction shows that
xn D 	n1 C 	n2 for all n.

For the second part, let z1; z2 be the eigenvalues of An. By definition, they are the
solutions of the equation t 2 � Tr.An/t C det.An/ D 0. Since det.An/ D .detA/n D
	n1	

n
2 and Tr.An/ D 	n1 C 	n2 , the previous equation is equivalent to

t 2 � .	n1 C 	n2/t C 	n1	
n
2 D 0 or .t � 	n1/.t � 	n2/ D 0:

The result follows. �

Problem 2.14. Let A 2 M2.C/ be a matrix with Tr.A/ ¤ 0. Prove that a matrix
B 2 M2.C/ commutes with A if and only if B commutes with A2.

Solution. Clearly, if BA D AB , then BA2 D A2B , so assume conversely that
BA2 D A2B . Using the Cayley–Hamilton theorem, we can write this relation as

B.Tr.A/A � detA � I2/ D .Tr.A/A � detA � I2/B

or

Tr.A/.BA � AB/ D O2:

Since Tr.A/ ¤ 0, we obtain BA D AB , as desired. �

Problem 2.15. Prove that for any matrices A;B 2 M2.R/ there is a real number ˛
such that .AB � BA/2 D ˛I2.

Solution. Let X D AB �BA. Since Tr.X/ D Tr.AB/� Tr.BA/ D 0, the Cayley–
Hamilton theorem yields X2 D � detXI2 and so we can take ˛ D � detX . �

Problem 2.16. Let X 2 M2.R/ be a matrix such that det.X2 C I2/ D 0. Prove that
X2 C I2 D O2.

Solution. We have det.XCiI2/ D 0 or det.X�iI2/ D 0, and since det.X�iI2/ D
det.X C iI2/, we deduce that det.X C iI2/ D 0 D det.X � iI2/. If X D

�
a b

c d

�
,
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the relation det.X C iI2/ D 0 is equivalent to .a C i/.d C i/ � bc D 0, i.e.,
ad � bc D 1 and a C d D 0. Thus detX D 1 and T r.X/ D 0 and we conclude
using the Cayley–Hamilton theorem. �

An important consequence of the Cayley–Hamilton theorem is the following
result (which can of course be proved directly by hand).

Theorem 2.17. A matrix A 2 M2.C/ is invertible if and only if detA ¤ 0. If this is
the case, then

A�1 D 1

detA
.Tr.A/ � I2 � A/:

Proof. Suppose that A is invertible. Then taking the determinant in the equality
A � A�1 D I2 we obtain

detA � detA�1 D det I2 D 1;

thus detA ¤ 0.
Conversely, suppose that detA ¤ 0 and define

B D 1

detA
.Tr.A/ � I2 � A/:

Then using the Cayley–Hamilton theorem we obtain

AB D 1

detA
.Tr.A/ � A � A2/ D 1

detA
� detAI2 D I2

and similarly BA D I2. Thus A is invertible and A�1 D B . �

Remark 2.18. One can also check directly that if detA ¤ 0, then A is invertible, its
inverse being given by

A�1 D 1

detA

�
a22 �a12

�a21 a11

�
:

Problem 2.19. Let A;B 2 M2.C/ be two matrices such that AB D I2. Then A is
invertible and B D A�1. In particular, we have BA D I2.

Solution. Since AB D I2, we have detA � detB D det.AB/ D 1, thus detA ¤ 0.
The previous theorem shows that A is invertible. Multiplying the equality AB D I2
by A�1 on the left, we obtain B D A�1. Finally, BA D A�1A D I2. �

A very important consequence of the previous theorem is the following charac-
terization of eigenvalues:

Theorem 2.20. If A 2 M2.C/ and z 2 C, then the following assertions are
equivalent:
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(a) z is an eigenvalue of A;
(b) det.zI2 � A/ D 0.
(c) There is a nonzero vector v 2 C2 such that Av D zv.

Proof. By definition of eigenvalues, (a) implies (b). Suppose that (b) holds and let
B D A � zI2. The assumption implies that detB D 0 and so b11b22 D b12b21. We
need to prove that we can find x1; x2 2 C not both zero and such that

b11x1 C b12x2 D 0 and b21x1 C b22x2 D 0:

If b11 ¤ 0 or b12 ¤ 0, choose x2 D b11 and x1 D �b12, so suppose that b11 D 0 D
b12. If one of b21; b22 is nonzero, choose x1 D �b22 and x2 D b21, otherwise choose
x1 D x2 D 1. Thus (b) implies (c).

Suppose now that (c) holds. Then A2v D zAv D z2v and using relation (2.1) we
obtain

.z2 � Tr.A/z C detA/v D 0:

Since v ¤ 0, this forces z2 � Tr.A/z C detA D 0 and so z is an eigenvalue of A.
Thus (c) implies (a) and the theorem is proved. �

Problem 2.21. Let A 2 M2.C/ have two distinct eigenvalues 	1; 	2. Prove that we
can find an invertible matrix P 2 GL2.C/ such that

A D P

�
	1 0

0 	2

�
P�1:

Solution. By the previous theorem, we can find two nonzero vectors X1 D
�
x11
x21

�

and X2 D
�
x12
x22

�
such that AXi D 	iXi .

Consider the matrix P D
�
x11 x12
x21 x22

�
whose columns are X1;X2. A simple

computation shows that the columns of AP are 	1X1 and 	2X2, which are the

columns of P

�
	1 0

0 	2

�
, thus AP D P

�
	1 0

0 	2

�
. It remains to see that if 	1 ¤ 	2,

then P is invertible (we haven’t used so far the hypothesis 	1 ¤ 	2).
Suppose that detP D 0, thus x11x22 D x21x12. This easily implies that the

columns ofP are proportional, say the second columnX2 is ˛ times the first column,
X1. Thus X2 D ˛X1. Then

	2X2 D AX2 D ˛AX1 D ˛	1X1 D 	1X2;

forcing .	1 � 	2/X2 D 0. This is impossible as both 	1 � 	2 and X2 are nonzero.
The problem is solved. �



64 2 Square Matrices of Order 2

Problem 2.22. Solve in M2.C/ the following equations

(a) A2 D O2.
(b) A2 D I2.
(c) A2 D A.

Solution. (a) Let A be a solution of the problem. Then detA D 0 and the Cayley–
Hamilton relation reduces to Tr.A/A D 0. Taking the trace yields Tr.A/2 D 0,
thus Tr.A/ D 0. Conversely, if detA D 0 and Tr.A/ D 0, then the Cayley–
Hamilton theorem shows that A2 D O2. Thus the solutions of the problem are
the matrices

A D
�
a b

c �a
�
; with a; b; c 2 C and a2 C bc D 0:

(b) We must have detA D ˙1 and, by the Cayley–Hamilton theorem, I2 �
Tr.A/AC detAI2 D O2. If detA D 1, then Tr.A/A D 2I2 and taking the trace
yields Tr.A/2 D 4, thus Tr.A/ D ˙2. This yields two solutions, A D ˙I2.
Suppose that detA D �1. Then Tr.A/A D O2 and taking the trace gives
Tr.A/ D 0. Conversely, any matrix A with Tr.A/ D 0 and detA D �1 is a
solution of the problem (again by Cayley–Hamilton). Thus the solutions of the
equation are

˙I2 and A D
�
a b

c �a
�
; a; b; c 2 C; a2 C bc D 1:

(c) If detA ¤ 0, then multiplying by A�1 yields A D I2. So suppose that detA D
0. The Cayley–Hamilton theorem yields A � Tr.A/A D O2. If Tr.A/ ¤ 1, this
forces A D O2, which is a solution of the problem. Thus if A ¤ O2; I2, then
detA D 0 and Tr.A/ D 1. Conversely, all such matrices are solutions of the
problem (again by Cayley–Hamilton). Thus the solutions of the problem are

O2; I2 and A D
�
a b

c 1 � a
�
; a; b; c 2 C; a2 C bc D a:

�

Problem 2.23. LetA 2 M2.C/ be a matrix. Prove that the following statements are
equivalent:

(a) Tr.A/ D detA D 0.
(b) A2 D O2.
(c) Tr.A/ D Tr.A2/ D 0.
(d) There exists n � 2 such that An D O2.

Solution. Taking the trace of the Cayley–Hamilton theorem, we see that Tr.A2/ D
Tr.A/2 � 2 detA. From this it is clear that (a) and (c) are equivalent.



2.2 The Characteristic Polynomial and the Cayley–Hamilton Theorem 65

The implication (a) implies (b) is just an application of the Cayley–Hamilton
theorem. The implication (b) implies (d) is obvious. Thus we need only show (d)
implies (a). If An D O2 for some n � 2, then clearly detA D 0. Thus the Cayley–
Hamilton theorem reads A2 D Tr.A/A. Iterating this an immediate induction gives
An D Tr.A/n�1A, hence O2 D Tr.A/n�1A. Taking the trace of this identity gives
0 D Tr.A/n and hence Tr.A/ D 0. �

Problem 2.24. Find all matrices X 2 M2.R/ such that X3 D I2.

Solution. We must have .detX/3 D 1 and so detX D 1 (since detX 2 R). Letting
t D Tr.X/, the Cayley–Hamilton theorem and the given equation yield

I2 D X3 D X.tX � I2/ D t .tX � I2/ �X D .t2 � 1/X � tI2:

If t 2 ¤ 1, then the previous relation shows that X is scalar and since X3 D I2, we
must have X D I2. If t 2 D 1, then the previous relation gives t D �1. Conversely,
any matrixX 2 M2.R/with Tr.X/ D �1 and detX D 1 satisfiesX2CXCI2 D O2
and so also X3 D I2. We conclude that the solutions of the problem are

I2 and

�
a b

c �1 � a
�
; a; b; c 2 R; a2 C aC bc D �1:

�

2.2.1 Problems for Practice

1. Let A;B 2 M2.R/ be commuting matrices. Prove that

det.A2 C B2/ � 0:

Hint: check that A2 C B2 D .AC iB/.A � iB/.
2. Let A;B 2 M2.R/ be such that AB D BA and det.A2 C B2/ D 0: Prove

that detA D detB . Hint: use the hint of the previous problem and consider the
polynomial det.ACXB/.

3. Let A;B;C 2 M2.R/ be pairwise commuting matrices and let

f .X/ D det.A2 C B2 C C2 C x.AB C BAC CA//:

(a) Prove that f .2/ � 0. Hint: check that

A2 C B2 C C2 C 2.AB C BAC CA/ D .AC B C C/2:
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(b) Prove that f .�1/ � 0. Hint: denote X D A � B and Y D B � C and
check that

A2 C B2 C C2 � .AB C BC C CA/ D
�
X C 1

2
Y

�2
C
 p

3

2
Y

!2
:

Next use the first problem.
(c) Deduce that

det.A2 C B2 C C2/C 2 det.AB C BC C CA/ � 0:

4. Let A;B 2 M2.C/ be matrices with Tr.AB/ D 0. Prove that .AB/2 D .BA/2.
Hint: use the Cayley–Hamilton theorem.

5. Let A be a 2 � 2 matrix with rational entries with the property that

det.A2 � 2I2/ D 0:

Prove that A2 D 2I2 and detA D �2: Hint: use the fact that A2 � 2I2 D
.A � p

2I2/.AC p
2I2/ and consider the characteristic polynomial of A.

6. Let x be a positive real number and let A 2 M2.R/ be a matrix such that
det.A2 C xI2/ D 0. Prove that

det.A2 C AC xI2/ D x:

7. Let A;B 2 M2.R/ be such that det.AB � BA/ � 0: Consider the polynomial

f .X/ D det.I2 C .1 �X/AB CXBA/:

(a) Prove that f .0/ D f .1/.
(b) Deduce that

det.I2 C AB/ � det

�
I2 C 1

2
.AB C BA/

�
:

8. Let n � 3 be an integer. Let X 2 M2.R/ be such that

Xn CXn�2 D
�
1 �1

�1 1

�
:

(a) Prove that detX D 0. Hint: show that det.X2 C I2/ D 0.
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(b) Let t be the trace of X . Prove that

tn C tn�2 D 2:

(c) Find all possible matrices X satisfying the original equation.

9. Let n � 2 be a positive integer and let A;B 2 M2.C/ be two matrices such that
AB ¤ BA and .AB/n D .BA/n. Prove that .AB/n D ˛I2 for some complex
number ˛.

10. Let A;B 2 M2.R/ and let n � 1 be an integer such that Cn D I2, where
C D AB � BA. Prove that n is even and C4 D I2. Hint: use Problem 2.15.

2.3 The Powers of a Square Matrix of Order 2

In this section we will use the Cayley–Hamilton theorem to compute the powers of a
given matrixA 2 M2.C/. Let 	1 and 	2 be the eigenvalues ofA. The discussion and
the final result will be very different according to whether 	1 and 	2 are different
or not.

Let us start with the case 	1 D 	2 and consider the matrix B D A � 	1I2. Then
the Cayley–Hamilton theorem in the form of relation (2.2) yields B2 D O2, thus
Bk D O2 for k � 2. Using the binomial formula we obtain

An D .B C 	1I2/
n D

nX
kD0

 
n

k

!
	n�k
1 Bk D 	n1I2 C n	n�1

1 B:

Let us assume now that 	1 ¤ 	2 and consider the matrices

B D A � 	1I2 and C D A � 	2I2:

Relation (2.2) becomes BC D O2, or equivalently B.A�	2I2/ D O2. Thus BA D
	2B , which yields BA2 D 	2BA D 	22B and by an immediate induction BAn D
	n2B for all n. Similarly, the relation BC D O2 yields CAn D 	n1C for all n. Taking
advantage of the relation C � B D .	1 � 	2/I2, we obtain

.	1 � 	2/An D .C � B/An D CAn � BAn D 	n1C � 	n2B:

Thus

An D 1

	1 � 	2 .	
n
1C � 	n2B/:

All in all, we proved the following useful result, in which we change notations:
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Theorem 2.25. Let A 2 M2.C/ and let 	1; 	2 be its eigenvalues.

(a) If 	1 ¤ 	2, then for all n � 1 we have An D 	n1B C 	n2C , where

B D 1

	1 � 	2 .A � 	2I2/ and C D 1

	2 � 	1 .A � 	1I2/:

(b) If 	1 D 	2, then for all n � 1 we have An D 	n1B C n	n�1
1 C , where B D I2

and C D A � 	1I2.

Problem 2.26. Compute An, where A D
�
1 3

�3 �5
�
:

Solution. As Tr.A/ D �4 and detA D 4, the eigenvalues of A are solutions of the
equation t 2 C 4t C 4 D 0, thus 	1 D 	2 D �2 are the eigenvalues of A. Using the
previous theorem, we conclude that for any n � 1 we have

An D .�2/nI2 C n.�2/n�1.AC 2I2/ D .�2/n�1
�
3n � 2 3n

�3n �3n � 2
�
:

�

Though the exact statement of the previous theorem is a little cumbersome, the
basic idea is very simple. If one learns this idea, then one can compute An easily.
Keep in mind that when computing powers of a 2�2matrix, one starts by computing
the eigenvalues of the matrix (this comes down to solving the quadratic equation
t 2 � Tr.A/t C detA D 0). If the eigenvalues are equal, say both equal to 	, then
B WD A� 	I2 satisfies B2 D O2 and so one computes An by writing A D B C 	I2
and using the binomial formula. On the other hand, if the eigenvalues are different,
say 	1 and 	2, then there are two matrices B;C such that for all n we have

An D 	n1B C 	n2C:

One can easily find these matrices without having to learn the formulae by heart:
if the previous relation holds for all n � 0, then it certainly holds for n D 0 and
n D 1. Thus

I2 D B C C; A D 	1B C 	2C:

This immediately yields the matrices B and C in terms of I2; A and 	1; 	2.
Moreover, we see that they are of the form xI2 C yA for some complex numbers
x; y. Combining this observation with Theorem 2.25 yields the following useful

Corollary 2.27. For any matrix A 2 M2.C/ there are sequences .xn/n�0, .yn/n�0
of complex numbers such that

An D xnAC ynI2

for all n � 0.
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One has to be careful that the sequences .xn/n�0 and .yn/n�0 in the previous
corollary are definitely not always characterized by the equality An D xnAC ynI2
(this is however the case if A is not scalar). On the other hand, Theorem 2.25 shows
that we can take

xn D 	n1 � 	n2
	1 � 	2 and yn D 	1	

n
2 � 	2	n1
	1 � 	2

when 	1 ¤ 	2, and, when 	1 D 	2

xn D n	n�1
1 and yn D �.n � 1/	n1:

Problem 2.28. Letm; n be positive integers and let A;B 2 M2.C/ be two matrices
such that AmBn D BnAm. If Am and Bn are not scalar, prove that AB D BA.

Solution. From Corollary 2.27 we have

Ak D xkAC ykI2 and Bk D ukB C vkI2; k � 0;

where .xk/k�0, .yk/k�0, .uk/k�0, .vk/k�0 are sequences of complex numbers. Since
Am and Bn are not scalar matrices it follows that xm ¤ 0 and un ¤ 0. The relation
AmBn D BnAm is equivalent to

.xmAC ymI2/.unB C vnI2/ D .unB C vnI2/.xmAC ymI2/

i.e.

xmun.AB � BA/ D O2:

Hence AB D BA. �

Problem 2.29. Let t 2 R and let

At D
�

cos t � sin t
sin t cos t

�
:

Compute Ant for n � 1.

Solution. We offer three ways to solve this problem. The first is to follow the usual
procedure: compute the eigenvalues of At and then use the general Theorem 2.25.
Here the eigenvalues are eit and e�i t and it is not difficult to deduce that

Ant D
�

cosnt � sinnt
sinnt cosnt

�
:
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Another argument is as follows: an explicit computation shows that At1Ct2 D
At1At2 , thus

Ant D At � At � : : : � At D AtCtC:::Ct D Ant :

Finally, one can also argue geometrically: At is the matrix of a rotation of angle
t , thus Ant is the matrix of a rotation of angle nt . �

2.3.1 Problems for Practice

1. Consider the matrix

A D
�
2 3

3 2

�
:

(a) Let n be a positive integer. Prove the existence of a unique pair of integers
.xn; yn/ such that

An D xnAC ynI2:

(b) Compute limn!1 xn
yn

.

2. Given a positive integer n, compute the nth power of the matrix

A D
�
1 �1
1 1

�
:

3. Let a; b be real numbers and let n be a positive integer. Compute the nth power

of the matrix

�
a b

0 a

�
.

4. Let x be a real number and let

A D
�

cos x C sin x 2 sin x
� sin x cos x � sin x

�
:

Compute An for all positive integers n.

2.4 Application to Linear Recurrences

In this section we present two classical applications of the theory developed in
the previous section. Let a; b; c; d; x0; y0 be complex numbers and consider two
sequences .xn/n�0 and .yn/n�0 recursively defined by
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�
xnC1 D axn C byn
ynC1 D cxn C dyn; n � 0

(2.3)

We would like to find the general terms of the two sequences in terms of the initial
data a; b; c; d; x0; y0 and n.

The key observation is that the system can be written in matrix form as follows

�
xnC1
ynC1

�
D
�
a b

c d

� �
xn
yn

�
i.e.

�
xnC1
ynC1

�
D A

�
xn
yn

�
; n � 0;

where A D
�
a b

c d

�
is the matrix of coefficients. An immediate induction yields

�
xn
yn

�
D An

�
x0
y0

�
; n � 0; (2.4)

and so the problem is reduced to the computation of An, which is solved by
Theorem 2.25.

Let us consider a slightly different problem, also very classical. It concerns
second order linear recurrences with constant coefficients. More precisely, we fix
complex numbers a; b; x0; x1 and look for the general term of the sequence .xn/n�0
defined recursively by

xnC1 D axn C bxn�1; n � 1; (2.5)

We can easily reduce this problem to the previous one by denoting yn D xn�1 for

n � 1 and y0 D 1

b
.x1 � ax0/ if b ¤ 0 (which we will assume from now on, since

otherwise the problem is very simple from the very beginning). Indeed, relation
(2.5) is equivalent to the following system

�
xnC1 D axn C byn
ynC1 D xn

; n � 0:

As we have already seen, finding xn and yn (or equivalently xn) comes down to
computing the powers of the matrix of coefficients

A D
�
a b

1 0

�
:

The characteristic equation of this matrix is 	2 � a	 � b D 0. If 	1 and 	2 are the
roots of this equation, then Theorem 2.25 yields the following:



72 2 Square Matrices of Order 2

� If 	1 ¤ 	2, then we can find constants u; v such that

xn D u	n1 C v	n2

for all n. These two constants are easily determined by imposing

x0 D u C v and x1 D u	1 C v	2

and solving this linear system in the unknowns u; v.
� If 	1 D 	2, then we can find constants u; v such that for all n � 0

xn D .unC v/	n1;

and u and v are found from the initial conditions by solving x0 D v and x1 D
.u C v/	1.

Problem 2.30. Find the general terms of .xn/n�0, .yn/n�0 if

�
xnC1 D xn C 2yn
ynC1 D �2xn C 5yn; n � 0;

and x0 D 1, y0 D 2.

Solution. The matrix of coefficients is A D
�
1 2

�2 5
�

, with characteristic equation

	2 � 6	C 9 D 0 and solutions 	1 D 	2 D 3. Theorem 2.25 yields (after a simple
computation)

An D 3nI2 C n3n�1
��2 2

�2 2
�

D
�
.3 � 2n/3n�1 2n3n�1

�2n3n�1 .3C 2n/3n�1
�

Combined with x0 D 1 and y0 D 2, we obtain

xn D .2nC 3/3n�1 and yn D 2.nC 3/3n�1; n � 0:

�

Problem 2.31. Find the limits of sequences .xn/n�0 and .yn/n�0, where

�
xnC1 D .1 � ˛/xn C ˛yn
ynC1 D ˇxn C .1 � ˇ/yn;

and ˛; ˇ are complex numbers with j1 � ˛ � ˇj < 1.
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Solution. The matrix of coefficients is

A D
�
1 � ˛ ˛

ˇ 1 � ˇ
�

and one easily checks that its eigenvalues are 	1 D 1 and 	2 D 1�˛�ˇ. Note that
j	2j < 1, in particular 	2 ¤ 1. Letting

B D 1

	1 � 	2 .A � 	2I2/ D 1

˛ C ˇ

�
ˇ ˛

ˇ ˛

�
;

Theorem 2.25 gives the existence of an explicit matrix C such that

An D 	n1B C 	n2C D B C 	n2C:

Since j	2j < 1, we have limn!1 	n2 D 0 and the previous relation shows that
limn!1An D B .

Since

�
xn
yn

�
D An

�
x0
y0

�
, we conclude that xn and yn are convergent sequences,

and if l1; l2 are their limits, then

�
l1
l2

�
D B

�
x0
y0

�
:

Taking into account the explicit form of B , we obtain

lim
n!1 xn D lim

n!1yn D ˇx0 C ˛y0

˛ C ˇ
:

�

2.4.1 Problems for Practice

1. Find the general term of the sequence .xn/n�0 defined by x1 D 1, x2 D 0 and for
all n � 1

xnC2 D 4xnC1 � xn:

2. Consider the sequence .xn/n�0 defined by x0 D 1, x1 D 2 and for all n � 0

xnC2 D xnC1 � xn:

Is this sequence periodical? If so, find its minimal period.
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3. Find the general terms of the sequences .xn/n�0 and .yn/n�0 satisfying x0 D
y0 D 1, x1 D 1, y1 D 2 and

xnC1 D 2xn C 3yn

5
; ynC1 D 2yn C 3xn

5
:

4. A sequence .xn/n�0 satisfies x0 D 2, x1 D 3 and for all n � 1

xnC1 D p
xn�1xn:

Find the general term of this sequence (hint: take the logarithm of the recurrence
relation).

5. Consider a map f W .0;1/ ! .0;1/ such that

f .f .x// D 6x � f .x/

for all x > 0. Let x > 0 and define a sequence .zn/n�0 by z0 D x and znC1 D
f .zn/ for n � 0.

(a) Prove that

znC2 C znC1 � 6zn D 0

for n � 0.
(b) Deduce the existence of real numbers a; b such that

zn D a � 2n C b � .�3/n

for all n � 0.
(c) Using the fact that zn > 0 for all n, prove that b D 0 and conclude that

f .x/ D 2x for all x > 0.

2.5 Solving the Equation Xn D A

Consider a matrix A 2 M2.C/ and an integer n > 1. In this section we will explain
how to solve the equation Xn D A, with X 2 M2.C/.

A first key observation is that for any solution X of the equation we have

AX D XA:

Indeed, this is simply a consequence of the fact that Xn �X D X �Xn. We will need
the following very useful:
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Proposition 2.32. Let A 2 M2.C/ be a non-scalar matrix. If X 2 M2.C/
commutes with A, then X D ˛I2 C ˇA for some complex numbers ˛; ˇ.

Proof. Write A D
�
a b

c d

�
and X D

�
x y

z t

�
. The equality AX D XA is equivalent,

after an elementary computation, to

bz D cy; ay C bt D bx C dy; cx C d z D az C ct;

or

bz D cy; .a � d/y D b.x � t /; c.x � t / D z.a � d/:

If a ¤ d , set ˇ D x�t
a�d . Then z D cˇ, y D bˇ and ˇa � x D ˇd � t . We deduce

that X D ˛I2 C ˇA, where ˛ D �ˇaC x D �ˇd C t .
Suppose that a D d . If x ¤ t , the previous relations yield b D c D 0 and so A is

scalar, a contradiction. Thus x D t and bz D cy. Moreover, one of b; c is nonzero
(as A is not scalar), say b (the argument when c ¤ 0 is identical). Setting ˇ D y

b

and ˛ D x � ˇa yields X D ˛I2 C ˇA.
�

Let us come back to our original problem, solving the equation Xn D A. Let 	1
and 	2 be the eigenvalues of A. We will discuss several cases, each of them having
a very different behavior.

Let us start with the case 	1 ¤ 	2. By Problem 2.21, we can then write A D
P

�
	1 0

0 	2

�
P�1 for some P 2 GL2.C/. Since AX D XA and A is not scalar, by

Proposition 2.32 there are complex numbers a; b such that X D aI2 C bA. Thus

X D P

�
aC b	1 0

0 aC b	2

�
P�1:

The equation Xn D A is then equivalent to

�
.aC b	1/

n 0

0 .aC b	2/
n

�
D
�
	1 0

0 	2

�
:

It follows that a C b	1 D z1 and a C b	2 D z2, where zn1 D 	1 and zn2 D 	2, and

X D P

�
z1 0
0 z2

�
P�1. Hence

Proposition 2.33. Let A 2 M2.C/ be a matrix with distinct eigenvalues 	1; 	2. Let

P 2 GL2.C/ be a matrix such that A D P

�
	1 0

0 	2

�
P�1. Then the solutions of the
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equation Xn D A are given by X D P

�
z1 0
0 z2

�
P�1, where z1 and z2 are solutions

of the equations tn D 	1 and tn D 	2 respectively.

Let us deal now with the case in which A is not scalar, but has equal eigenvalues,
say both eigenvalues equal 	. Then the matrix B D A � 	I2 satisfies B2 D O2 (by
the Cayley–Hamilton theorem) and we have A D B C 	I2. Now, since AX D XA

and A is not scalar, we can write X D cI2 C dA for some complex numbers c; d
(Proposition 2.32). Since A D B C 	I2, it follows that we can also write X D
aI2 C bB for some complex numbers a; b. Since B2 D O2, the binomial formula
and the given equation yield

A D Xn D .aI2 C bB/n D anI2 C nan�1bB:

Since A D B C 	I2, we obtain

B C 	I2 D nan�1bB C anI2:

Since B is not scalar (as A itself is not scalar), the previous relation is equivalent to

1 D nan�1b and 	 D an:

This already shows that 	 ¤ 0 (as the first equation shows that a ¤ 0), so if 	 D 0

(which corresponds to A2 D O2) then the equation has no solution. On the other
hand, if 	 ¤ 0, then the equation an D 	 has n complex solutions, and for each of
them we obtain a unique value of b, namely b D 1

nan�1 . We have just proved the
following

Proposition 2.34. Suppose that A 2 M2.C/ is not scalar, but both eigenvalues of
A are equal to some complex number 	. Then

(a) If 	 D 0, the equationXn D A has no solutions for n > 1, and the only solution
X D A for n D 1.

(b) If 	 ¤ 0, then the solutions of the equation Xn D A are given by

X D aI2 C 1

nan�1 .A � 	I2/;

where a runs over the n solutions of the equation zn D 	.

Finally, let us deal with the case whenA is scalar, sayA D cI2 for some complex
number c. If c D 0, then Xn D O2 has already been solved, so let us assume that
c ¤ 0. Consider a solution X of the equation Xn D cI2 and let 	1; 	2 be the
eigenvalues of X . Then 	n1 D 	n2 D c. We have two possibilities:
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• Either 	1 ¤ 	2, in which case X has distinct eigenvalues and so (Problem 2.21)

we can write X D P

�
	1 0

0 	2

�
P�1 for some invertible matrix P . Then Xn D

P

�
	n1 0

0 	n2

�
P�1 and this equals cI2 since 	n1 D 	n2 D c. The conclusion is that

for each pair .	1; 	2/ of distinct solutions of the equation tn D c we obtain a

whole family of solutions, namely the matrices X D P

�
	1 0

0 	2

�
P�1 for some

invertible matrix P .
• Suppose that 	1 D 	2 and let Y D X � 	1I2, then Y 2 D O2 and the equation
Xn D cI2 is equivalent to .Y C	1I2/

n D cI2. Using again the binomial formula
and the equality Y 2 D O2, we can rewrite this equation as

	n1I2 C n	n�1
1 Y D cI2:

Since 	n1 D c and 	1 ¤ 0 (as c ¤ 0), we deduce that necessarily Y D O2 and so
X D 	1I2, with 	1 one of the n complex solutions of the equation tn D c. Thus
we obtain n more solutions this way.

We can unify the previous two possibilities and obtain

Proposition 2.35. If c ¤ 0 is a complex number, the solutions in M2.C/ of the
equation Xn D cI2 are given by

X D P

�
x 0

0 y

�
P�1 (2.6)

where x; y are solutions (not necessary distinct) of the equation zn D c, and P 2
GL2.C/ is arbitrary.

Problem 2.36. Let t 2 .0; �/ be a real number and let n > 1 be an integer. Find all
matrices X 2 M2.R/ such that

Xn D
�

cos t � sin t
sin t cos t

�
:

Solution. With the notations of Problem 2.29, we need to solve the equation Xn D
At . Let X be a solution, then XAt D AtX D XnC1. Writing X D

�
a b

c d

�
, the

relation XAt D AtX yields b sin t D �c sin t and �a sin t D �d sin t , thus a D d

and c D �b. Hence X D
�
a �b
b a

�
. Next, since Xn D At , we have

.detX/n D detXn D detAt D 1;
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and since detX D a2 C b2 � 0, we deduce that a2 C b2 D 1. Thus we can
write a D cos x and b D sin x for some real number x. Then X D Ax and the
equation Xn D At is equivalent (thanks to Problem 2.29) to Anx D At . This is
further equivalent to nx D t C 2k� for some integer k. It is enough to restrict to
k 2 f0; 1; : : : ; n�1g. We conclude that the solutions of the problem are the matrices

Xk D
�

cos tk � sin tk
sin tk cos tk

�
;

where tk D t C 2k�

n
, k D 0; 1; : : : ; n � 1. �

Problem 2.37. Let A D
�
a �b
b a

�
2 M2.R/. Prove that the following statements

are equivalent:

(1) An D I2 for some positive integer n;
(2) a D cos r� , b D sin r� for some rational number r .

Solution. If a D cos. k
n
�/ and b D sin. k

n
�/ for some n � 1 and k 2 Z, then

Problem 2.29 yields A2n D I2, thus (2) implies (1).
Assume now that (1) holds. Then .detA/n D detAn D 1 and since detA D

a2 C b2 � 0, we must have detA D 1, that is a2 C b2 D 1. Thus we can find t 2 R
such that a D cos t and b D sin t . Then A D At and by Problem 2.29 we have
I2 D An D Ant . This forces cos.nt/ D 1 and so t is a rational multiple of � . The
problem is solved. �

2.5.1 Problems for Practice

1. Let n > 1 be an integer. Prove that the equation

Xn D
�
0 1

0 0

�

has no solutions in M2.C/.
2. Solve in M2.C/ the binomial equation

X4 D
��1 �2
1 2

�
:

3. Let n > 1 be an integer. Prove that the equation

Xn D
�
3 �1
0 0

�

has no solutions in M2.Q/.
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4. Find all matrices X 2 M2.R/ such that

X3 D
�
4 3

�3 �2
�
:

5. Find all matrices A;B 2 M2.C/ such that

AB D O2 and A5 C B5 D O2:

6. Solve in M2.R/ the equation

Xn D
�
7 �5

�15 12
�
:

7. Solve in M2.R/ the equation

Xn D
��6 �2
21 7

�
:

2.6 Application to Pell’s Equations

Let D > 1 be an integer which is not a perfect square. The diophantine equation,
called Pell’s equation

x2 �Dy2 D 1 (2.7)

has an obvious solution .1; 0/ in nonnegative integers. A well-known but nontrivial
result (which we take for granted) is that this equation also has nontrivial solutions
(i.e., different from .0; 1/).

In this section we explain how the theory developed so far allows finding all
solutions of the Pell equation once we know the smallest nontrivial solution. Let SD
be the set of all solutions in positive integers to the Eq. (2.7) and let .x1; y1/ be the
fundamental solution, i.e., the solution in SD for which the first component x1 is
minimal among the first components of the elements of SD .

If x; y are positive integers, consider the matrix

A.x;y/ D
�
x Dy

y x

�
;

so that .x; y/ 2 SD if and only if detA.x;y/ D 1. Elementary computations yield the
fundamental relation

A.x;y/ � A.u;v/ D A.xuCDyv;xvCyu/ (2.8)
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Passing to determinants in (2.8) we obtain the multiplication principle:

if .x; y/; .u; v/ 2 SD; then .xu CDyv; xv C yu/ 2 SD:

It follows from the multiplication principle that if we write

An.x1;y1/ D
�
xn Dyn
yn xn

�
; n � 1;

then .xn; yn/ 2 SD for all n. The sequences xn and yn are described by the recursive
system

�
xnC1 D x1xn CDy1yn
ynC1 D y1xn C x1yn; n � 1

(2.9)

consequence of the equality AnC1
.x1;y1/

D A.x1;y1/A
n
.x1;y1/

. Moreover, Theorem 2.25
gives explicit formulae for xn and yn in terms of x1; y1; n: the characteristic equation
of matrix A.x1;y1/ is

	2 � 2x1	C 1 D 0

with 	1;2 D x1 ˙
q
x21 � 1 D x1 ˙ y1

p
D, and Theorem 2.25 yields, after an

elementary computation of the matrices B;C involved in that theorem
8̂
ˆ̂<
ˆ̂̂:

xn D 1

2
Œ.x1 C y1

p
D/n C .x1 � y1

p
D/n�

yn D 1

2
p
D
Œ.x1 C y1

p
D/n � .x1 � y1

p
D/n�; n � 1:

(2.10)

Note that relation (2.10) also makes sense for n D 0, in which case it gives the
trivial solution .x0; y0/ D .1; 0/.

Theorem 2.38. All solutions in positive integers of the Pell equation x2�Dy2 D 1

are described by the formula (2.10), where .x1; y1/ is the fundamental solution of
the equation.

Proof. Suppose that there are elements in SD which are not covered by formula
(2.10), and among them choose one .x; y/ for which x is minimal. Using the
multiplication principle, we observe that the matrix A.x;y/A

�1
.x1;y1/

generates a
solution in integers .x0; y0/, where

�
x0 D x1x �Dy1y
y0 D �y1x C x1y

We claim that x0; y0 are positive integers. This is clear for x0, as x >
p
Dy and x1 >p

Dy1, thus x1x > Dy1y. Also, x1y > y1x is equivalent to x21.x
2�1/ > x2.x21�1/
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or x > x1, which holds because .x1; y1/ is a fundamental solution and .x; y/ is
not described by relation (2.10) (while .x1; y1/ is described by this relation, with
n D 1). Moreover, since A.x0;y0/A.x1;y1/ D A.x;y/, we have x D x0x1 CDy0y1 > x0
and y D x0y1 C y0x1 > y0. By minimality, .x0; y0/ must be of the form (2.10), i.e.,
A.x;y/A

�1
.x1;y1/

D Ak.x1;y1/ for some positive integer k. Therefore A.x;y/DAkC1
.x1;y1/

, i.e.,
.x; y/ is of the form (2.10), a contradiction. �

Problem 2.39. Find all solutions in positive integers to Pell’s equation

x2 � 2y2 D 1:

Solution. The fundamental solution is .x1; y1/ D .3; 2/ and the associated matrix is

A.3;2/ D
�
3 4

2 3

�

The solutions .xn; yn/n�1 are given by An.3;2/, i.e.

8̂
ˆ̂<
ˆ̂̂:

xn D 1

2
Œ.3C 2

p
2/n C .3 � 2p2/n�

yn D 1

2
p
2
Œ.3C 2

p
2/n � .3 � 2p2/n�:

�

We can extend slightly the study of the Pell equation by considering the more
general equation

ax2 � by2 D 1 (2.11)

where we assume that ab is not a perfect square (it is not difficult to see that if ab is
a square, then the equation has only trivial solutions). Contrary to the Pell equation,
this Eq. (2.11) does not always have solutions (the reader can check that the equation
3x2 � y2 D 1 has no solutions in integers by working modulo 3).

Define the Pell resolvent of (2.11) by

u2 � abv2 D 1 (2.12)

and let Sa;b be the set of solutions in positive integers of Eq. (2.11). Thus S1;ab is the
set denoted Sab when considering the Pell equation (it is the set of solutions of the
Pell resolvent). If x; y; u; v are positive integers consider the matrices

B.x;y/ D
�
x by

y ax

�
; Au;v D

�
u abv
v u

�
;

the second matrix being the matrix associated with the Pell resolvent equation.
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An elementary computation shows that

B.x;y/A.u;v/ D B.xuCbyv;axvCyu/;

Passing to determinants in the above relation and noting that .x; y/ 2 Sa;b if and
only if detB.x;y/ D 1, we obtain the multiplication principle:

if .x; y/ 2 Sa;b and .u; v/ 2 Sab; then .xu C byv; axv C yu/ 2 Sa;b;

i.e., the product B.x;y/A.u;v/ generates the solution .xu C byv; axv C yu/ of (2.11).
Using the previous theorem and the multiplication principle, one easily obtains the
following result, whose formal proof is left to the reader.

Theorem 2.40. Assume that Eq. (2.11) is solvable in positive integers, and let
.x0; y0/ be its minimal solution (i.e., x0 is minimal). Let .u1; v1/ be the fundamental
solution of the resolvent Pell equation (2.14). Then all solutions .xn; yn/ in positive
integers of Eq. (2.11) are generated by

B.xn;yn/ D B.x0;y0/A
n
.u1;v1/; n � 0 (2.13)

It follows easily from (2.13) that

�
xn D x0un C by0vn
yn D y0un C ax0vn; n � 0

(2.14)

where .un; vn/n�1 is the general solution to the Pell resolvent equation.

Problem 2.41. Solve in positive integers the equation

6x2 � 5y2 D 1:

Solution. This equation is solvable and its minimal solution is .x0; y0/ D .1; 1/.
The Pell resolvent equation is u2 � 30v2 D 1, with fundamental solution .u1; v1/ D
.11; 2/. Using formulae (2.14) and then (2.10), we deduce that the solutions in
positive integers are .xn; yn/n�1, where

8̂
ˆ̂̂<
ˆ̂̂̂
:

xn D 6C p
30

12
.11C 2

p
30/n C 6 � p

30

12
.11 � 2p30/n

yn D 5C p
30

12
.11C 2

p
30/n C 5 � p

30

12
.11 � 2p30/n:

�
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2.6.1 Problems for Practice

1. A triangular number is a number of the form 1C 2C : : :C n for some positive
integer n. Find all triangular numbers which are perfect squares.

2. Find all positive integers n such that nC1 and 3nC1 are simultaneously perfect
squares.

3. Find all integers a; b such that a2 C b2 D 1C 4ab.
4. The difference of two consecutive cubes equals n2 for some positive integer n.

Prove that 2n � 1 is a perfect square.
5. Find all triangles whose sidelengths are consecutive integers and whose area is

an integer.



Chapter 3
Matrices and Linear Equations

Abstract This chapter introduces and studies the reduced row-echelon form of
a matrix, and applies it to the resolution of linear systems of equations and the
computation of the inverse of a matrix. The approach is algorithmic.

Keywords Linear systems • Homogeneous Systems • Row-echelon form •
Gaussian reduction

The resolution of linear systems of equations is definitely one of the key motivations
of linear algebra. In this chapter we explain an algorithmic procedure which allows
the resolution of linear systems of equations, by performing some simple operations
on matrices. We consider this problem as a motivation for the introduction of
basic operations on the rows (or columns) of matrices. A much deeper study of
these objects will be done in later chapters, using a more abstract (and much more
powerful) setup. We will fix a field F in the following discussion, which the reader
might take R or C.

3.1 Linear Systems: The Basic Vocabulary

A linear equation in the variables x1; : : : ; xn is an equation of the form

a1x1 C : : :C anxn D b;

where a1; : : : ; an; b 2 F are given scalars and n is a given positive integer. The
unknowns x1; : : : ; xn are supposed to be elements of F .

A linear system in the variables x1; : : : ; xn is a family of linear equations,
usually written as

8̂
<̂
ˆ̂:

a11x1C a12x2 C : : :C a1nxn D b1
a21x1C a22x2 C : : :C a2nxn D b2

: : :

am1x1Cam2x2 C : : :Camnxn D bm

(3.1)

© Springer Science+Business Media New York 2014
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Here a11; a12; : : : ; amn and b1; : : : ; bm are given scalars. There is a much shorter
notation for the previous system, using matrices and vectors: denoting X the
(column) vector with coordinates x1; : : : ; xn, A the matrix Œaij �1�i�m;1�j�n, and b
the (column) vector whose coordinates are b1; : : : ; bm, the system can be rewritten as

AX D b: (3.2)

Finally, we can rewrite the system in terms of vectors: if C1; : : : ; Cn are the
columns of the matrixA, seen as vectors in Fm (written in column form), the system
is equivalent to

x1C1 C x2C2 C : : :C xnCn D b: (3.3)

Definition 3.1. (a) The linear system (3.1) is called homogeneous if b1 D : : : D
bm D 0.

(b) The homogeneous linear system associated with the system (3.2) is the system
AX D 0.

Thus a homogeneous system is one of the form AX D 0 for some matrix A. For
the resolution of linear systems, homogeneous systems play a crucial role, thanks to
the following proposition, which shows that solving a general linear system reduces
to finding one solution and then solving a homogeneous linear system.

Proposition 3.2 (Superposition Principle). Let A 2 Mm;n.F / and b 2 Fm. Let
S � F n be the set of solutions of the homogeneous linear system AX D 0. If the
system AX D b has a solution X0, then the set of solutions of this system isX0CS .

Proof. By assumption AX0 D b. Now the relation AX D b is equivalent to AX D
AX0, or A.X�X0/ D 0. Thus a vectorX is a solution of the system AX D b if and
only if X �X0 is a solution of the homogeneous system AY D 0, i.e., X �X0 2 S .
This is equivalent to X 2 X0 C S . �

Definition 3.3. A linear system is called consistent if it has at least one solution. It
is called inconsistent if it is not consistent, i.e., it has no solution.

Let us introduce a final definition for this section:

Definition 3.4. (a) Two linear systems are equivalent if they have exactly the
same set of solutions.

(b) Let A;B be matrices of the same size. If the systems AX D 0 and BX D 0 are
equivalent, we write A 	 B .

Remark 3.5. (a) Typical examples of inconsistent linear systems are

�
x1 D 0

x1 D 1
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or

�
x1 � 2x2 D 1

2x2 � x1 D 0

(b) Note that homogeneous systems are always consistent: any homogeneous
system has an obvious solution, namely the vector whose coordinates are all
equal to 0. We will call this the trivial solution. It follows from Proposition 3.2
that if the systemAX D b is consistent, then it has a unique solution if and only
if the associated homogeneous system AX D 0 has only the trivial solution.

3.1.1 Problems for Practice

1. For which real numbers a is the system

�
x1 C 2x2 D 1

3x1 C 6x2 D a

consistent? Solve the system in this case.
2. Find all real numbers a and b for which the systems

�
x1 C 2x2 D 3

�x1 C 3x2 D 1

and

�
x1 C ax2 D 2

�x1 C 2x2 D b

are equivalent.
3. Let a; b be real numbers, not both equal to 0.

(a) Prove that the system

�
ax1 C bx2 D 0

�bx1 C ax2 D 0

has only the trivial solution.
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(b) Prove that for all real numbers c; d the system

�
ax1 C bx2 D c

�bx1 C ax2 D d

has a unique solution and find this solution in terms of a; b; c; d .

4. Let A 2 M2.C/ be a matrix and consider the homogeneous system AX D 0.
Prove that the following statements are equivalent:

(a) This system has only the trivial solution.
(b) A is invertible.

5. Let A and B be n�nmatrices such that the system ABX D 0 has only the trivial
solution. Show that the system BX D 0 also has only the trivial solution.

6. Let C and D be n � n matrices such that the system CDX D b is consistent for
every choice of a vector b in Rn. Show that the system CY D b is consistent for
every choice of a vector b in Rn.

7. Let A 2 Mn.F / be an invertible matrix with entries in a field F . Prove that for
all b 2 F n the system AX D b is consistent (the converse holds but the proof is
much harder, see Theorem 3.25).

3.2 The Reduced Row-Echelon form and Its
Relevance to Linear Systems

Consider a matrix A with entries in a field F . If R is a row of A, say R is zero if all
entries in row R are equal to 0. If R is nonzero, the leading entry of R or the pivot
of R is the first nonzero entry in that row. We say that A is in reduced row-echelon
form if A has the following properties:

(1) All zero rows of A are at the bottom of A (so no nonzero row can lie below a
zero row).

(2) The pivot in a nonzero row is strictly to the right of the pivot in the row above.
(3) In any nonzero row, the pivot equals 1 and it is the only nonzero element in its

column.

For instance, the matrix In is in reduced row-echelon form, and so is the matrix
On. The matrix

A D
2
4
1 �2 0 �1
0 0 1 1

0 0 0 0

3
5 (3.4)
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is in reduced row-echelon form, but the slightly different matrix

B D
2
4
1 �2 1 �1
0 0 1 1

0 0 0 0

3
5

is not in reduced row-echelon form, as the pivot for the second row is not the only
nonzero entry in its column.

What is the relevance of this very special form of matrices with respect to the
original problem, consisting in solving linear systems of equations? We will see
in the next sections that any matrix can be put (in an algorithmic way) in reduced
row-echelon form and that this form is unique. Also, we will see that if Aref is the
reduced row-echelon form of A, then the systems AX D 0 and Aref X D 0 are
equivalent. Moreover, it is very easy to solve the system Aref X D 0 since Aref is
in reduced row-echelon form.

Example 3.6. Let us solve the systemAX D 0, whereA is the reduced row-echelon
matrix given in relation (3.4). The system is

�
x1 � 2x2 � x4 D 0

x3 C x4 D 0

We can simply express x3 D �x4 and x1 D 2x2 C x4, thus the general solution of
the system is

.2aC b; a;�b; b/

with a; b 2 F .

In general, consider a matrix A which is in reduced row-echelon form and let
us see how to solve the system AX D 0. The only meaningful equations are those
given by the nonzero rows of A (recall that all zero rows of A are at the bottom).
Suppose that the i th row of A is nonzero for some i and let the pivot of that row be
in column j , so that the pivot is aij D 1. The i th equation of the linear system is
then of the form

xj C
nX

kDjC1
aikxk D 0:

We call xj the pivot variable of the row Li . So to each nonzero row we associate a
unique pivot variable. All the other variables of the system are called free variables.
One solves the system starting from the bottom, by successively expressing the pivot
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variables in terms of free variables. This yields the general solution of the system,
in terms of free variables, which can take any value in F . If y1; : : : ; ys are the free
variables, then the solutions of the system will be of the form

X D

2
664

b11y1 C b12y2 C : : :C b1sys
b21y1 C b22y2 C : : :C b2sys

: : :

bn1y1 C bn2y2 C : : :C bnsys

3
775

for some scalars bij . This can also be written as

X D y1

2
664

b11
b21
: : :

bn1

3
775C : : :C ys

2
664

b1s
b2s
: : :

bns

3
775 :

We call

Y1 D

2
664

b11
b21
: : :

bn1

3
775 ; : : : ; Ys D

2
664

b1s
b2s
: : :

bns

3
775

the fundamental solutions of the system AX D 0. The motivation for their name is
easy to understand: Y1; : : : ; Ys are solutions of the systemAX D 0which “generate”
all other solutions, in the sense that all solutions of the system AX D 0 are obtained
by all possible linear combinations of Y1; : : : ; Ys (corresponding to all possible
values that the free variables y1; : : : ; ys can take).

Example 3.7. Let us consider the matrix in reduced row-echelon form

A D

2
666664

1 1 0 0 �1 0 2

0 0 1 0 3 0 1

0 0 0 1 0 0 �1
0 0 0 0 0 1 0

0 0 0 0 0 0 0

3
777775

and the associated homogeneous linear system AX D 0. This can be written as

8̂
<̂
ˆ̂:

x1 C x2 � x5 C 2x7 D 0

x3 C 3x5 C x7 D 0

x4 � x7 D 0

x6 D 0
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The pivot variables are x1; x3; x4; x6, as the pivots appear in columns 1; 3; 4; 6. So
the free variables are x2; x5; x7. Next, we solve the system starting with the last
equation and going up, at each step expressing the pivot variables in terms of free
variables. The last equation gives x6 D 0. Next, we obtain x4 D x7, then x3 D
�3x5 � x7 and x1 D �x2 C x5 � 2x7. Thus

X D

2
6666666664

�x2 C x5 � 2x7
x2

�3x5 � x7
x7
x5
0

x7

3
7777777775

D x2 �

2
6666666664

�1
1

0

0

0

0

0

3
7777777775

C x5 �

2
6666666664

1

0

�3
0

1

0

0

3
7777777775

C x7 �

2
6666666664

�2
0

�1
1

0

0

1

3
7777777775

:

The three column vectors appearing in the right-hand side are the fundamental
solutions of the systemAX D 0. All solutions of the system are given by all possible
linear combinations of the three fundamental solutions.

The number of fundamental solutions of the system AX D 0 is the total
number of variables minus the number of pivot variables. We deduce that the system
AX D 0 has the unique solution X D 0 if and only if there are no free variables,
or equivalently every variable is a pivot variable. This is the same as saying that
the number of pivot variables equals the number of columns of A. Combining these
observations with the superposition principle (Proposition 3.2) we obtain the very
important:

Theorem 3.8. (a) A homogeneous linear system having more variables than
equations has nontrivial solutions. If the field containing the coefficients of the
equations is infinite (for instance R or C), then the system has infinitely many
solutions.

(b) A consistent linear system AX D b having more variables than equations has
at least 2 solutions and, if the field F is infinite (for instance F D R or F D C),
then it has infinitely many solutions.

We turn now to the fundamental problem of transforming a matrix into a reduced
row-echelon form matrix. In order to solve this problem we introduce three types of
simple operations that can be applied to the rows of a matrix. We will see that one
can use these operations to transform any matrix into a reduced row-echelon form
matrix. These operations have a very simple motivation from the point of view of
linear systems: the most natural operations that one would do in order to solve a
linear system are:

• multiplying an equation by a nonzero scalar;
• adding a multiple of an equation to a second (and different) equation;
• interchanging two equations.
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Note that these operations are reversible: for example, the inverse operation of
multiplication of an equation by a nonzero scalar a is multiplication of that equation
by the inverse of a. It is therefore clear that by performing any finite sequence
of such operations on a linear system we obtain a new linear system which has
precisely the same set of solutions as the original one (i.e., a new linear system
which is equivalent to the original one). These operations on equations of the system
can be seen as operations on the matrix associated with the system. More precisely:

Definition 3.9. An elementary operation on the rows of a matrix A (or elemen-
tary row operation) is an operation of one of the following types:

(1) row swaps: interchanging two rows of the matrix A.
(2) row scaling: multiplying a row of A by a nonzero scalar.
(3) transvection: replacing a row L by LC cL0 for some scalar c and some row L0

of A, different from L.

The previous discussion shows that if A is a matrix and B is obtained from
A by a sequence of elementary row operations, then A 	 B , where we recall
(Definition 3.4) that this simply means that the systems AX D 0 and BX D 0

are equivalent.
Corresponding to these operations, we define elementary matrices:

Definition 3.10. A matrix A 2 Mn.F / is called an elementary matrix if it is
obtained from In by performing exactly one elementary row operation.

Note that elementary matrices have the same number of rows and columns. There
are three types of elementary matrices:

(1) Transposition matrices: those obtained from In by interchanging two of its rows.
(2) Dilation matrices: those obtained from In by multiplying one of its rows by a

nonzero scalar.
(3) Transvection matrices: those obtained from In by adding to a row a multiple of

a second (and different) row.

A simple, but absolutely crucial observation is the following:

Proposition 3.11. Let A 2 Mm;n.F / be a matrix. Performing an elementary row
operation on A is equivalent to multiplying A on the left by the elementary matrix
corresponding to that operation.

Proof. If E is any m � m matrix and A 2 Mm;n.F /, then the i th row of EA is
ei1L1 C ei2L2 C : : :C eimLm, where L1; : : : ; Lm are the rows of A and eij are the
entries of E. The result follows readily from the definitions. �

We now reach the most important theorem of this chapter: it is one of the
most important theorems in linear algebra, since using it we will obtain algorithmic
ways of solving many practical problems, concerning linear systems, invertibility of
matrices, linear independence of vectors, etc.
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Theorem 3.12. Any matrix A 2 Mm;n.F / can be put into a reduced row-echelon
form by performing elementary row operations on its rows.

Proof. The proof is algorithmic. Start with any matrix A and consider its first
column. If it is zero, then pass directly to the next column. Suppose that the first
column C1 is nonzero and consider the first nonzero entry, say it is ai1. Then
interchange rows L1 and Li (if i D 1 we skip this operation), so in the new matrix
we have a nonzero entry x in position .1; 1/. Multiply the first row by 1=x to obtain
a new matrix, in which the entry in position .1; 1/ is 1. Using transvections, we can
make all entries in the first column below the .1; 1/ entry equal to 0: for i � 2

subtract bi1 times the first row, where bi1 is the entry in position .i; 1/. Thus after
some elementary row operations we end up with a matrix B whose first column is
either 0 or has a pivot in position .1; 1/ and zeros elsewhere.

Next, we move to the second column C2 of this new matrix B . If every entry
below b12 is zero, go directly to the third column of B . Suppose that some entry
below b12 is nonzero. By possibly swapping the second row and a suitable other row
(corresponding to the first nonzero entry below b12), we may assume that b22 ¤ 0.
Multiply the second row by 1=b22 so that the entry in position .2; 2/ becomes 1.
Now make the other entries in the second column zero by transvections. We now
have pivots equal to 1 in the first and second columns. Needless to say, we continue
this process with each subsequent column and we end up with a matrix in reduced
row-echelon form. �

Remark 3.13. The algorithm used in the proof of the previous theorem is called
Gaussian reduction or row-reduction.

By combining the Gaussian reduction theorem (Theorem 3.12) and Proposi-
tion 3.11 we obtain the following result, which will be constantly used in the next
section:

Proposition 3.14. For any matrix A 2 Mm;n.F / we can find a matrix B 2 Mm.F /

which is a product of elementary matrices, such that Aref D BA.

Remark 3.15. In order to find the matrixB in practice, the best way is to row-reduce
the matrix ŒAjIm� if A is m � n. The row-reduction will yield the matrix ŒAref jB�,
as the reader can check.

Example 3.16. Let us perform the Gaussian reduction on the matrix

A D

2
664

0 1 2 3 4

�1 0 1 2 3

0 1 1 1 1

3 1 �1 0 2

3
775 2 M4;5.R/:

The first nonzero entry in column C1 appears in position .2; 1/ and equals �1, so
we swap the first and second rows, then we multiply the new first row by �1 to get
a pivot equal to 1 in the first row. We end up with the matrix
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A1 D

2
664

1 0 �1 �2 �3
0 1 2 3 4

0 1 1 1 1

3 1 �1 0 2

3
775 :

We make zeros elsewhere in the first column, by subtracting three times the first row
from the last row. The new matrix is

A2 D

2
664

1 0 �1 �2 �3
0 1 2 3 4

0 1 1 1 1

0 1 2 6 11

3
775 :

Since we are done with the first column, we go on to the second one. The entry
in position .2; 2/ is already equal to 1, so we don’t need to swap rows or to scale
them. Thus we make directly zeros elsewhere in the second column, so that the only
nonzero entry is the 1 in position .2; 2/. For this, we subtract the second row from
the third and the fourth. The new matrix is

A3 D

2
664

1 0 �1 �2 �3
0 1 2 3 4

0 0 �1 �2 �3
0 0 0 3 7

3
775 :

We next consider the third column. The first nonzero entry below the entry in
position .2; 3/ is �1, so we multiply the third row by �1 and then make the 1
in position .3; 3/ the only nonzero entry in that column by transvections. We end
up with

A4 D

2
664

1 0 0 0 0

0 1 0 �1 �2
0 0 1 2 3

0 0 0 3 7

3
775 :

We repeat the procedure with the fourth column: we multiply the last row by 1=3
(so that the first nonzero entry below the one in position .3; 4/ becomes 1 our pivot)
and then make the entry in position .4; 4/ the only nonzero entry in its column by
transvections. The final matrix is the reduced row-echelon form of A, namely

A5 D

2
664

1 0 0 0 0

0 1 0 0 1=3

0 0 1 0 �5=3
0 0 0 1 7=3

3
775 :
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Problem 3.17. Solve the homogeneous linear system AX D 0, where A is the
matrix from the previous example.

Solution. The systems AX D 0 and Aref X D 0 being equivalent, it suffices to
solve the latter system. The pivot variables are x1; x2; x3; x4 and the free variable is
x5. The system Aref X D 0 is given by

8̂
<̂
ˆ̂:

x1 D 0

x2 C x5
3

D 0

x3 � 5
3
x5 D 0

x4 C 7
3
x5 D 0

The resolution is then immediate and gives the solutions

.0;�1
3
t;
5

3
t;�7

3
t; t/; t 2 R: ut

3.2.1 Problems for Practice

1. Find the reduced row-echelon form of the matrix with real entries

A D
2
4
1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

3
5 :

2. Implement the Gaussian reduction algorithm on the matrix

A D

2
664

0 2 1 1 2

1 1 0 2 1

�3 1 1 0 2
1 1 1 1 1

3
775 :

3. Determine the fundamental solutions of the homogeneous linear system of
equations AX D 0, where A is the matrix

A D
2
4
1 �2 1 0

�2 4 0 2

�1 2 1 2

3
5 :
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4. (a) Write the solutions of the homogeneous system of equations AX D 0 in
parametric vector form, where

A D
2
4
1 0 3

0 1 �1
�1 1 �4

3
5 :

(b) Find a solution to the system for which the sum of the first two coordi-
natesis 1.

5. Solve the homogeneous system

8<
:
x C 2y � 3z D 0

2x C 5y C 2z D 0

3x � y � 4z D 0

6. Show that the homogeneous system of equations AX D 0 has nontrivial
solutions, where

A D

2
664

2 �1 3 1

1 0 2 2

3 1 7 0

1 2 4 �1

3
775 :

Then determine a matrix B of size 4 � 3 obtained from A by erasing one of its
columns such that the system BY D 0 has only the trivial solution.

7. Let n > 2 be an integer. Solve in real numbers the linear system

x2 D x1 C x3

2
; x3 D x2 C x4

2
; : : : ; xn�1 D xn�2 C xn

2
:

3.3 Solving the System AX D b

Consider a linear system AX D b with A 2 Mm;n.F / and b 2 Fm, in the variables
x1; : : : ; xn, which are the coordinates of the vector X 2 F n. In order to solve
this system, we consider the augmented matrix .Ajb/ obtained by adding to the
matrix A a new column (at the right), given by the coordinates of the vector b.
Elementary row operations on the equations of the system come down to elementary
row operations on the augmented matrix, thus in order to solve the system we can
first transform .Ajb/ into its reduced row-echelon form by the Gaussian reduction
algorithm, then solve the new (much easier) linear system. The key point is the
following easy but important observation:
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Proposition 3.18. Consider the linear system AX D b. Suppose that the matrix
.A0jb0/ is obtained from the augmented matrix .Ajb/ by a sequence of elementary
row operations. Then the systems AX D b and A0X D b0 are equivalent, i.e., they
have exactly the same set of solutions.

Proof. As we have already noticed, performing elementary row operations on .Ajb/
comes down to performing elementary operations on the equations of the system
AX D b, and these do not change the set of solutions, as they are reversible. �

We now reach the second fundamental theorem of this chapter, the existence and
uniqueness theorem.

Theorem 3.19. Assume that .Ajb/ has been brought to a reduced row-echelon form
.A0jb0/ by elementary row operations.

(a) The system AX D b is consistent if and only if .A0jb0/ does not have a pivot in
the last column.

(b) If the system is consistent, then it has a unique solution if and only if A0 has
pivots in every column.

Proof. (a) Assume that .A0jb0/ has a pivot in the last column. If the pivot appears
in row i , then the i th row of .A0jb0/ is of the form .0; : : : ; 0; 1/. Thus among the
equations of the system A0X 0 D b0 we have the equation 0x0

1 C : : :C 0x0
n D 1,

which has no solution. Thus the system A0X 0 D b0 has no solution and so the
system AX D b is not consistent.

Conversely, suppose that .A0jb0/ does not have a pivot in the last column.
Say A0 has pivots in columns j1 < : : : < jk � n and call xj1 ; : : : ; xjk the pivot
variables, and all other variables the free variables. Give the value 0 to all free
variables, getting in this way a system in the variables xj1 ; : : : ; xjk . This system
is triangular and can be solved successively from the bottom, by first finding
xjk , then xjk�1

,. . . , then xj1 . In particular, the system has a solution and so the
system AX D b is consistent.

(b) Since we can give any value to the free variables, the argument in the second
paragraph of the proof of (a) shows that the solution is unique if and only if
there are no free variables, or equivalently if and only if A0 has a pivot in every
column. ut

For simplicity, assume that F D R, i.e., the coefficients of the equations of the
linear system AX D b are real numbers. In order to find the number of solutions
of the system, we proceed as follows. First, we consider the augmented matrix
ŒAjb� and perform the Gaussian reduction on it to reach a matrix ŒA0jb0�. If this
new matrix has a row of the form .0; 0; : : : ; 0; jc/ for some nonzero real number c,
then the system is inconsistent. If this is not the case, then we check whether every
column of A0 has a pivot. If this is the case, then the system has a unique solution.
If not, then the system has infinitely many solutions.
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Problem 3.20. Let us consider the matrix

A D
2
4
1 2 2

0 1 1

2 4 4

3
5 :

Given a vector b 2 R3, find a necessary and sufficient condition in terms of the
coordinates of b such that the system AX D b is consistent.

Solution. The augmented matrix of the system is

ŒAjb� D
2
4
1 2 2 b1
0 1 1 b2
2 4 4 b3

3
5 :

In order to obtain its row-reduction, we subtract twice the first row from the third
one, and in the new matrix we subtract twice the second row from the first one. We
end up with

ŒAjb� 	
2
4
1 0 0 b1 � 2b2
0 1 1 b2
0 0 0 b3 � 2b1

3
5 :

By the previous theorem, the system AX D b is consistent if and only if this last
matrix has no pivot in the last column, which is equivalent to b3 D 2b1. �

Using the fact that for two matrices A;B differing by a sequence of elementary
row operations the systems AX D 0 and BX D 0 are equivalent, we can give a
proof of the uniqueness of the reduced row-echelon form of a matrix. The following
simple and elegant proof of this nontrivial theorem is due to Thomas Yuster.1

Theorem 3.21. The reduced row-echelon form of a matrix is unique.

Proof. The proof goes by induction on the number n of columns of the matrix
A 2 Mm;n.F /. The result being clear for n D 1, assume that n > 1 and that
the result holds for n � 1. Let A 2 Mm;n.F / and let A0 be the matrix obtained
from A by deleting the nth column. Suppose that B and C are two distinct reduced
row-echelon forms of A. Since any sequence of elementary row operations bringing
A to a reduced row-echelon form also bring A0 to a reduced row-echelon form,
by applying the induction hypothesis we know that B and C differ in the nth
column only.

Let j be such that bjn ¤ cjn (such j exists by the previous paragraph and the
assumption that B ¤ C ). If X is a vector such that BX D 0, then CX D 0 (as

1See the article “The reduced row-echelon form of a matrix is unique: a simple proof”, Math.
Magazine, Vol. 57, No 2, Mar 1984, pp. 93–94.
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the systems BX D 0 and CX D 0 are equivalent to the system AX D 0), so that
.B�C/X D 0. SinceB and C differ in the nth column only, the j th equation of the
system .B � C/X D 0 reads .bjn � cjn/xn D 0 and so xn D 0 whenever BX D 0

or CX D 0. It follows that xn is not a free variable for B and C and thus B and C
must have a pivot in the nth column. Again, since B and C only differ in the last
column and since they are in reduced row-echelon form, the row in which the pivot
in the last column appears is the same for B and C . Since all other entries in the
last column of B and C are equal to 0 (as B and C are in reduced echelon form),
we conclude that B and C have the same nth column, contradicting the fact that
bjn ¤ cjn. Thus B D C and the inductive step is completed, proving the desired
result.

�

3.3.1 Problems for Practice

1. Write down the solution set of the linear system

8<
:
x1 �3x2 �2x3 D �5

x2 �x3 D 4

�2x1 C3x2 C7x3 D �2

in parametric vector form.
2. Let A be a matrix of sizem�n and let b and c be two vectors in Rm such that the

system AX D b has a unique solution and the system AX D c has no solution.
Explain why m > n must hold.

3. Find a necessary and sufficient condition on the coordinates of the vector b 2 R4

for the system AX D b to be consistent, where

A D

2
664

3 �6 2 �1
�2 4 1 3

0 0 1 1

1 �2 1 0

3
775 :

4. Find x; y; z and w so that

�
x 3

y 4

� �
1 �1
z w

�
D
�
0 0

0 0

�

Find one solution with x positive and one with x negative.
5. Explain why a linear system of 10 equations in 11 variables cannot have a unique

solution.
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6. Find all possible values for h and k such that the system with augmented matrix

�
1 2 j h
2 k j 12

�

has

(a) a unique solution.
(b) infinitely many solutions.
(c) no solution.

7. For what value of s is the vector v1 D .s;�7;�6/ a linear combination of the
vectors v2 D .1; 0;�1/ and v3 D .1;�7;�4/?

8. Let a; b be real numbers. Solve in real numbers the system

8̂
<̂
ˆ̂:

x C y D a

y C z D b

z C t D a

t C x D b

3.4 Computing the Inverse of a Matrix

Recall that a matrix A 2 Mn.F / is invertible if there is a matrix B such that
AB D BA D In. Such a matrix is then unique and is called the inverse of A and
denoted A�1. A fundamental observation is that elementary matrices are invertible,
which follows immediately from the fact that elementary row operations on matrices
are reversible (this also shows that the inverse of an elementary matrix is still an
elementary matrix). For instance, if a matrix E is obtained from In by exchanging
rows i and j , then E�1 is obtained from In by doing the same operation that is
E�1 D E. Also, if E is obtained by adding 	 times row j to row i in In, then E�1
is obtained by adding �	 times row j to row i in In. Due to its importance, let us
state this as a proposition:

Proposition 3.22. Elementary matrices are invertible and their inverses are also
elementary matrices.

Here is an important consequence of the previous proposition and
Proposition 3.14.

Theorem 3.23. For a matrix A 2 Mn.F / the following statements are equiva-
lent:

(a) A is invertible.
(b) Aref D In.
(c) A is a product of elementary matrices.
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Proof. First, let us note that any product of elementary matrices is invertible,
since any elementary matrix is invertible and since invertible matrices are stable
under product. This already proves that (c) implies (a). Assume that (a) holds. By
Proposition 3.14 and our initial observation, we can find an invertible matrix B
such that Aref D BA. Since A is invertible, so is BA and so Aref is invertible. In
particular, all rows in Aref are nonzero (it is easy to see that if Aref has an entire
row consisting of zeros, then Aref C is never equal to In) and so Aref has n pivots,
one in each column. Since moreover Aref is in reduced row-echelon form, we must
have Aref D In. Thus (b) holds.

Finally, if (b) holds, then by Proposition 3.14 we can find a matrix B which is a
product of elementary matrices such that BA D In. By the previous proposition B
is invertible and B�1 is a product of elementary matrices. Since BA D In, we have
A D B�1BA D B�1 and so A is a product of elementary matrices. Thus (b) implies
(c) and the theorem is proved. �

The following proposition expresses the solutions of the system AX D b when
A is an invertible matrix. Of course, in order to make this effective, one should have
an algorithm allowing one to compute A�1. We will see such an algorithm (based
again on row-reduction) later on (see the discussion following Corollary 3.26).

Proposition 3.24. If A 2 Mn.F / is invertible, then for all b 2 F n the system
AX D b has a unique solution, namely X D A�1b.

Proof. Let X be a solution of the system. Multiplying the equality AX D b on the
left by A�1 yields A�1.AX/ D A�1b. Since

A�1.AX/ D .A�1A/X D InX D X;

we conclude that X D A�1b, thus the system has at most one solution. To see that
this is indeed a solution, we compute

A.A�1b/ D .AA�1/b D Inb D b:

�

It turns out that the converse is equally true, but much trickier. In fact, we have
the fundamental:

Theorem 3.25. Let A 2 Mn.F / be a matrix. The following statements are
equivalent:

(a) A is invertible
(b) For all b 2 F n the system AX D b has a unique solution X 2 F n.
(c) For all b 2 F n the system AX D b is consistent.

Proof. We have already proved that (a) implies (b). It is clear that (b) implies (c),
so let us assume that (c) holds. Let Aref be the reduced row-echelon form of A. By
Proposition 3.14 we can find a matrix B which is a product of elementary matrices
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(thus invertible) such that Aref D BA. We deduce that the system Aref X D Bb

has at least one solution for all b 2 F n (indeed, if AX D b, then Aref X D BAX D
Bb). Now, for any b0 2 F n we can find b such that b0 D Bb, by taking b D B�1b0.
We conclude that the system Aref X D b is consistent for every b 2 F n. But then
any row of Aref must be nonzero (if row i is zero, then choosing any vector b
with the i th coordinate equal to 1 yields an inconsistent system) and, as in the first
paragraph of the proof of Theorem 3.23 we obtain Aref D In. Using Theorem 3.23
we conclude that A is invertible and so (a) holds. The theorem is proved. �

Here is a nice and nontrivial consequence of the previous theorem:

Corollary 3.26. Let A;B 2 Mn.F / be matrices.

(a) If AB D In, then A is invertible and B D A�1.
(b) If BA D In, then A is invertible and B D A�1.

Proof. (a) For any b 2 F n the vector X D Bb satisfies AX D A.Bb/ D
.AB/b D b, thus the system AX D b is consistent for every b 2 F n. By
the previous theorem, A is invertible. Multiplying the equality AB D In on the
left by A�1 we obtain B D A�1AB D A�1, thus B D A�1.

(b) By part (a), we know that B is invertible and A D B�1. But then A itself is
invertible and A�1 D B , since by definition B � B�1 D B�1 � B D In. ut

The previous corollary gives us a practical way of deciding whether a square
matrix A is invertible and, if this is the case, computing its inverse. Indeed, A
is invertible if and only if we can find a matrix X such that AX D In, as then
X D A�1. The equation AX D In is equivalent to n linear systems: AX1 D e1,
AX2 D e2,. . . , AXn D en, where ei is the i th column of In and Xi denotes the i th
column of X . We already know how to solve linear systems, using the reduced row
echelon form, so this gives us a practical way of computing X (if at least one of
these systems is inconsistent, then A is not invertible).

In practice, one can avoid solving n linear systems by the following
trick: instead of considering n augmented matrices ŒAjei �, consider only one
augmented matrix ŒAjIn�, in which we add the matrix In to the right of A (thus
ŒAjIn� has 2n columns). Thus we solve simultaneously the n linear systems we
are interested in by enlarging the augmented matrix! Now find the reduced
row-echelon form ŒA0jX� of this n � 2n matrix ŒAjIn�. If A0 is different from In,
thenA is not invertible. IfA0 D In, then the inverse ofA is simply the matrixX .

Example 3.27. Consider the matrix

A D

2
664

1 2 2 2

2 1 2 2

2 2 1 2

1 2 2 2

3
775 2 M4.R/:

We will try to see whether the matrix A is invertible and, if this is the case, compute
its inverse. Consider the augmented matrix B D ŒAjI4� and let us find its reduced
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row-echelon form using Gaussian reduction. Subtracting twice the first row from
each of the second, third, and fourth row of B , we end up with

B1 D

2
664

1 2 2 2 1 0 0 0

0 �3 �2 �2 �2 1 0 0
0 �2 �3 �2 �2 0 1 0
0 �2 �2 �3 �2 0 0 1

3
775 :

Multiply the second row by �1=3. In the new matrix, add twice the second row to
the third and fourth row. We end up with

B2 D

2
664

1 2 2 2 1 0 0 0

0 1 2
3

2
3

2
3

� 1
3
0 0

0 0 � 5
3

� 2
3

� 2
3

� 2
3
1 0

0 0 � 2
3

� 5
3

� 2
3

� 2
3
0 1

3
775 :

Multiply the third row by � 3
5
. In the new matrix add 2=3 times the third row to

the fourth one, then multiply the fourth row by �5=7. Continuing the Gaussian
reduction in the usual way, we end up (after quite a few steps which are left to the
reader) with the matrix

2
664

1 0 0 0 � 5
7

2
7

2
7

2
7

0 1 0 0 2
7

� 5
7

2
7

2
7

0 0 1 0 2
7

2
7

� 5
7

2
7

0 0 0 1 2
7

2
7

2
7

� 5
7

3
775 :

This shows that A is invertible and

A�1 D

2
664

� 5
7

2
7

2
7

2
7

2
7

� 5
7

2
7

2
7

2
7

2
7

� 5
7

2
7

2
7

2
7

2
7

� 5
7

3
775 :

Let us take a closer look at this example, with another proof (this proof works
in general when the coefficients of the matrix have sufficient symmetry). Let us
consider solving the system AX D Y . This can be written

8̂
<̂
ˆ̂:

x1 C 2x2 C 2x3 C 2x4 D y1
2x1 C x2 C 2x3 C 2x4 D y2
2x1 C 2x2 C x3 C 2x4 D y3
2x1 C 2x2 C 2x3 C x4 D y4
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We can easily solve this system by introducing

S D x1 C x2 C x3 C x4:

Then the equations become

2S � xi D yi ; 1 � i � 4:

Thus xi D 2S � yi . Taking into account that

S D x1 C x2 C x3 C x4 D

.2S � y1/C .2S � y2/C .2S � y3/C .2S � y4/ D 8S � .y1 C y2 C y3 C y4/;

we deduce that

S D y1 C y2 C y3 C y4

7

and so

x1 D �5
7
y1 C 2

7
y2 C 2

7
y3 C 2

7
y4

and similarly for x2; x3; x4. This shows that for any choice of Y 2 R4 the system
AX D Y is consistent. Thus A is invertible and the solution of the system is given
by X D A�1Y . If the first row of A�1 is .a; b; c; d/, then

x1 D ay1 C by2 C cy3 C dy4:

But since we know that

x1 D �5
7
y1 C 2

7
y2 C 2

7
y3 C 2

7
y4

and since y1; y2; y3; y4 are arbitrary, we deduce that

a D �5
7
; b D c D d D 2

7
:

In this way we can find the matrix A�1 and, of course, we obtain the same result
as before (but the reader will have noticed that we obtain this result with much less
effort!).
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3.4.1 Problems for Practice

1. Is the matrix

A D
2
4
1 2 3

�1 �2 �4
0 1 1

3
5

invertible? If so, compute its inverse.
2. For which real numbers x is the matrix

A D
2
4
1 x 1

0 1 x

1 0 1

3
5

invertible? For any such number x, compute the inverse of A.
3. Let x; y; z be real numbers. Compute the inverse of the matrix

A D
2
4
1 x y

0 1 z
0 0 1

3
5 :

4. Determine the inverse of the matrix

A D

2
6664

n 1 1 : : : 1

1 n 1 : : : 1
:::
:::
:::
: : :

:::

1 1 1 : : : n

3
7775 2 Mn.R/:

5. Let a be a real number. Determine the inverse of the matrix

A D

2
666666664

1 0 0 : : : 0 0

a 1 0 : : : 0 0

a2 a 1 : : : 0 0
:::

:::
:::

: : :
:::
:::

an�2 an�3 an�4 : : : 1 0
an�1 an�2 an�3 : : : a 1

3
777777775

2 Mn.R/:



Chapter 4
Vector Spaces and Subspaces

Abstract In this chapter we formalize and generalize many of the ideas
encountered in the previous chapters, by introducing the key notion of vector
space. The central focus is a good theory of dimension for vector spaces spanned
by finitely many vectors. This requires a detailed study of spanning and linear
independent families of vectors in a vector space.

Keywords Vector space • Vector subspace • Span • Linearly independent set
• Dimension • Direct sum • Basis

In this chapter we formalize and generalize many of the ideas encountered in the
previous chapters, by introducing the key notion of vector space. It turns out that
many familiar spaces of functions are vector spaces, and developing an abstract
theory of vector spaces has the advantage of being applicable to all these familiar
spaces simultaneously. A good deal of work is required in order to define a good
notion of dimension for vector spaces, but once the theory is developed, a whole
family of nontrivial tools are at our disposal and can be used for a deeper study of
vector spaces.

In all this chapter we fix a field F 2 fQ;R;C;F2g, which the reader might want
to take R or C, for simplicity. The elements of F are called scalars.

4.1 Vector Spaces-Definition, Basic Properties and Examples

We refer the reader to the appendix on algebraic preliminaries for the notion of
group and commutative group (we will recall below everything we need, anyway).
Let us simply recall that a commutative group .V;C/ is a set V endowed with an
addition rule C W V � V ! V , denoted .v;w/ ! v C w, and satisfying natural
identities (which are supposed to mimic the properties of addition on integers,
rational numbers, real numbers, etc.). We are now ready to introduce a fundamental
definition, that of a vector space over a field F . The prototype example to keep in
mind is F n (n being any positive integer), which has already been introduced in the
first chapter.

© Springer Science+Business Media New York 2014
T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__4
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Definition 4.1. A vector space over F or an F -vector space is a commutative
group .V;C/ endowed with a map F � V ! V , called scalar multiplication and
denoted .a; v/ ! a � v such that for all a; b 2 F and u; v 2 V we have

a) a � .v C w/ D a � v C a � w and .aC b/ � v D a � v C b � v.
b) 1 � v D v.
c) .ab/ � v D a � .b � v/.

The elements of V are called vectors.

Remark 4.2. 1) We usually write av instead of a � v.
2) By definition, a vector space over F is nonempty!

Before giving quite a few examples of vector spaces we will make the definition
more explicit and then try to explain different ways of understanding a vector space.

Thus a vector space over F is a set V , whose elements are called vectors, in
which two operations can be performed

• addition, taking two vectors v;w and returning a vector v C w
• scalar multiplication, taking a scalar c 2 F and a vector v 2 V , and returning the

vector cv.

Moreover, the following properties/rules should hold:

1) addition is commutative: v C w D w C v for all vectors v;w 2 V .
2) addition is associative: .u C v/C w D u C .v C w/ for all vectors u; v;w 2 V .
3) addition has an identity: there is a vector 0 2 V such that 0C v D v C 0 D v for

all v 2 V .
4) there are additive inverses: for all v 2 V there is a vector w 2 V such that

v C w D 0.
5) We have 1v D v for all v 2 V .
6) For all scalars a; b 2 F and all v 2 V we have .ab/v D a.bv/.
7) Scalar multiplication is additive: for all scalars a 2 F and all v;w 2 V we have
a.v C w/ D av C aw.

8) scalar multiplication distributes over addition: for all scalars a; b 2 F and all
v 2 V we have .aC b/v D av C bv.

One can hardly come up with a longer definition of a mathematical object, but
one has to understand that most of the imposed conditions are natural and fairly
easy to check. Actually, most of the time we will not even bother checking these
conditions since they will be apparent on the description of the space V and its
operations. The key point is that we simply want to add vectors and multiply them
by scalars without having too many difficulties.

Remark 4.3. An important observation is that the addition C W V ! V is an
internal operation, while the scalar multiplication � W F � V ! V is an external
operation.

Let us make a few simple, but important remarks concerning the previous rules.
First of all, one should be careful to distinguish the scalar 0 2 F and the vector
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0 2 V which is the identity for the addition rule. Of course, they are denoted in
exactly the same way, but they live in quite different worlds, so that there should
not be any risk of confusion. Next, since addition is associative, we will not bother
writing ..u C v/C w/C z, but simply u C v C w C z.

Now let us focus a little bit on property 4. So let us start with any vector v 2 V .
Property 4 ensures the existence of a vector w 2 V for which v C w D 0. A natural
question is whether such a vector is unique. The answer is positive (and this holds
in any group): suppose that w0 is another such vector. Then using properties 2
(associativity) and 3 we obtain

w D w C 0 D w C .v C w0/ D .w C v/C w0 D 0C w0 D w0:

Thus w is uniquely determined by v, and we will denote it as �v.
Another natural question is whether this vector �v coincides with the vector

.�1/v obtained by multiplying v by the scalar �1. Since mathematical definitions
are (usually) coherent, one expects that the answer is again positive, which is the
case. Indeed, on the one hand properties 5 and 8 yield

.�1/v C v D .�1/v C 1v D .�1C 1/v D 0v

and on the other hand property 8 gives

0v C 0v D .0C 0/v D 0v:

Adding �0v to the previous relation we obtain 0v D 0, thus

0v D 0; .�1/v D �v

for all v 2 V . There are a lot of such formulae which can be obtained by
simple algebraic manipulations straight from the definitions. Again, we will simplify
notations and write v � w for v C .�w/.

In the proof that 0v D 0 we used a trick which deserves to be glorified since it is
very useful:

Proposition 4.4 (Cancellation law). Let V be a vector space over F .

a) If v C u D w C u for some u; v;w 2 V , then v D w.
b) If au D av for some v;w 2 V and some nonzero a 2 F , then u D v.

Proof. a) We have

v D vC0 D vC.u�u/ D .vCu/�u D .wCu/�u D wC.u�u/ D wC0 D w;

hence v D w, as desired.
b) Similarly, we have

u D 1 � u D .a�1a/u D a�1.au/ D a�1.av/ D .a�1a/v D 1 � v D v: �
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It is now time to see some concrete vector spaces. We have already encountered
quite a few in previous chapters. Let us explain why. Let us fix a field F .

First, the field F itself is a vector space over F . Indeed, addition and multi-
plication on F satisfy all properties 1–8 by definition of a field! Note here that
scalar multiplication coincides with the multiplication in F . The zero vector 0 in F
coincides with the natural unit for addition in F .

Another very important class of vector spaces over F occurs as follows: let K
be a field containing F . Then K is a vector space over F , for essentially the same
reasons as in the previous paragraph. Important examples of this situation are Q �
R, R � C, Q � C. Thus R is a vector space over Q, C is a vector space over R, C
is a vector space over Q.

Next, consider a positive integer n and recall that F n is the set of n-tuples of

elements of F , written in column form, X D

2
664

x1
x2
: : :

xn

3
775. We add two such vectors

component-wise and we re-scale them by scalars in F component-wise

2
664

x1
x2
: : :

xn

3
775C

2
664

y1
y2
: : :

yn

3
775 D

2
664

x1 C y1
x2 C y2
: : :

xn C yn

3
775 and c

2
664

x1
x2
: : :

xn

3
775 D

2
664

cx1
cx2
: : :

cxn

3
775 :

It is not difficult to check that properties 1–8 are all satisfied: they all follow from
the corresponding properties of addition and multiplication inF , since all operations
are defined component-wise. Thus F n is a vector space for these two operations. Its

zero vector 0 is the vector

2
664

0

0

: : :

0

3
775 having all coordinates equal to 0.

Consider next the set V D Mm;n.F / of m � n matrices with entries in F , where
m; n are given positive integers. Recall that addition and scalar multiplication on V
are defined component-wise by

Œaij �C Œbij � D Œaij C bij � and cŒaij � D Œcaij �

for matrices Œaij �; Œbij � 2 V and scalars c 2 F . Again, all properties 1 � �8 follow
from the corresponding properties of the operations in F . The zero vector in V is
the matrix Om;n all of whose entries are equal to 0.

We consider now function spaces. In complete generality, let X be any
nonempty set and consider the set V D FX of functions f W X ! F . We can
define addition and scalar multiplication on V by the rules

.f C g/.x/ D f .x/C g.x/ and .cf /.x/ D cf .x/
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–0.5

0
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x

Fig. 4.1 The functions f .x/ D x2, g.x/ D 1� 2x and their sum .f C g/.x/ D x � 2x C 1

for c 2 F and x 2 X . Then V is a vector space over F , again thanks to the fact that
all operations are induced directly from the corresponding operations in F . The zero
vector 0 of V is the map 0 W X ! F sending every x 2 X to 0 2 F . Note that for
X D f1; 2; : : : ; ng we recover the space F n: giving a map f W f1; 2; : : : ; ng ! F

is the same as giving a n-tuple of elements of F (namely the images of 1; 2; : : : ; n),
that is an element of F n.

One can impose further natural properties on the maps f W X ! F and still
get vector spaces, contained in FX . For instance, consider the set CŒ0; 1� of real-
valued continuous functions on the interval Œ0; 1�. Thus an element of CŒ0; 1� is a
continuous map f W Œ0; 1� ! R. The addition and scalar multiplication are inherited
from those on the vector space RŒ0;1� of all real-valued maps on Œ0; 1�. For example,
if f .x/ D x2 and g.x/ D 1 � 2x, then .f C g/.x/ D x2 � 2x C 1, for all x in the
interval Œ0; 1� (see Fig. 4.1).

As another example, the function f given by f .x/ D sin 5�x and its re-scaling
� 3
2
f are depicted in Fig. 4.2.
The key point is that the sum of two continuous maps is still a continuous map,

and if f is continuous and c is a real number, then cf is also continuous. This
ensures that the addition and scalar multiplication laws are well defined on CŒ0; 1�.
They satisfy all properties 1–8, since these properties are already satisfied on the
larger space RŒ0;1�. Then CŒ0; 1� is itself a vector space over R, contained in RŒ0;1�.
This is an example of vector subspace of a vector space, a crucial notion which will
be introduced and studied at length in the sequel.

There is nothing special about the interval Œ0; 1�: for each interval I we obtain a
vector space of continuous real-valued maps on I . If the real numbers are replaced
with complex numbers, we obtain a corresponding vector space of complex-valued
continuous maps on I .
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Fig. 4.2 The function f .x/ D sin 5�x and its re-scaling by a factor of � 3
2

In fact, there are many other function spaces: we could consider the vector space
of piecewise continuous functions, differentiable functions, bounded functions,
integrable functions, etc, as long as any two functions in such a space add up to
another function in the same space and re-scaling of a function in the space is
another function in the space. The possibilities are endless.

Let us consider now another very important class of vector spaces, namely spaces
of polynomials. Consider the set RŒX� of polynomials in one variable and having
real coefficients. This set is a vector space over R. Recall that the addition and re-
scaling of polynomials are done coefficient-wise, so the fact that RŒX� is a vector
space over R follows directly from the fact that R itself is a field. The zero vector in
RŒX� is the zero polynomial (i.e., the polynomial all of whose coefficients are 0).

The vector space RŒX� contains a whole bunch of other vector spaces over R: for
each nonnegative integer n consider the set RnŒX� of polynomials in RŒX� whose
degree does not exceed n. For example the polynomials
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1CX2;
3

4
X C �X2; 1 �X �X3

are all in R3ŒX�, only the first two are in R2ŒX� and none of them is in R1ŒX�. Since
the sum of two polynomials of degree at most n is a polynomial of degree at most
n, and since deg.cP / � n for any real number c and any P 2 RnŒX�, we deduce
that RnŒX� is stable under the addition and scalar multiplication defined on RŒX�,
thus it forms itself a vector space over R. To be completely explicit, any polynomial
in RnŒX� can be written in the form

a0 C a1X C a2X
2 C � � � C anX

n

where ai , 0 � i � n, are real numbers, and then

.a0 C a1X C � � � C anX
n/C .b0 C b1X C � � � C bnX

n/

D .a0 C b0/C .a1 C b1/X C � � � C .an C bn/X
n

and for c 2 F

c.a0 C a1X C � � � C anX
n/ D .ca0/C .ca1/X C � � � C .can/X

n:

4.1.1 Problems for Practice

1. Consider the set V D R2 endowed with an addition rule defined by

.x; y/C .x0; y0/ D .x C x0; y C y0/

and with a multiplication rule by elements 	 of R as follows

	 � .x; y/ D .2x; 0/:

Is V endowed with these operations a vector space over R?
2. Define an operation C� on .0;1/ by

aC� b D ab

for a; b 2 .0;1/, and an external multiplication by real numbers as follows

a �� b D ba

for a 2 R; b 2 .0;1/. Does .0;1/ endowed with this new addition and scalar
multiplication become a vector space over R?
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3. (Complexification of a real vector space) Let V be a vector space over R. Let VC

be the product V � V (this is the set of ordered pairs .x; y/ of elements of V )
endowed with the following addition rule

.x; y/C .x0; y0/ D .x C x0; y C y0/:

Also, for each complex number z D a C ib, consider the “multiplication by
z rule”

z � .x; y/ WD .ax � by; ay C bx/

on VC. Prove that VC endowed with these operations becomes a C-vector space
(this space is called the complexification of the vector space V ).

4.2 Subspaces

We have already seen in the previous subsection a lot of subspaces of concrete vector
spaces. In this section we formalize the concept of vector subspace of a given vector
space and then study some of its basic properties.

Definition 4.5. Let V be an F -vector space. A subspace of V is a nonempty subset
W of V which is stable under the operations of addition and scalar multiplication:
v C w 2 W and cv 2 W for all v;w 2 W and c 2 F .

Example 4.6. Let V be the vector space over R of all maps f W R ! R. Then the
following sets V1; V2; V3; V4 are subspaces over R.

I) V1 D ff 2 V j f is a continuous function on Rg.
II) V2 D ff 2 V j f is a differentiable function on Rg.

III) V3 D ff 2 V j f is an integrable function on the interval Œa; b�;
where a; b 2 Rg.

IV) V4 D ff 2 V j there exists � 2 R such that jf .x/j � �; 8 x 2 Rg.

The previous definition invites a whole series of easy observations, which are
however very useful in practice.

Remark 4.7. 1. First, note that a vector subspace of a vector space must contain
the zero vector. Indeed, sayW is a vector subspace of V . SinceW is nonempty,
there is v 2 W , but then 0 D 0v 2 W . Thus if a subset W of a vector space
V does not contain the zero vector, then this subset W has no chance of being a
vector subspace of V .

2. Next, a key observation is that if W is a subspace of V , then W becomes itself
an F -vector space, by restricting the operations in V to W . Indeed, since
properties 1–8 in the definition of a vector space are satisfied in V , they are
automatically satisfied in the subsetW of V . This was essentially implicitly used
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(or briefly explained) in the previous section, where many examples of vector
spaces were constructed as vector subspaces of some standard vector spaces.

3. In practice, one can avoid checking two conditions (stability under addition and
under scalar multiplication) by checking only one: v C cw 2 W whenever v;w 2
W and c 2 F . More generally, a nonempty subset W of V is a vector subspace
if and only if

av C bw 2 W

for all a; b 2 F and v;w 2 W . We deduce by induction on n that if W
is a vector subspace of V and w1; : : : ;wn 2 W and c1; : : : ; cn 2 F , then
c1w1 C : : :C cnwn 2 W .

4. Another very important observation is the stability under arbitrary intersec-
tions of vector subspaces. More precisely, if .Wi /i2I is a family of subspaces of
V , then

W WD \i2IWi

is again a subspace of V . Indeed, W is nonempty because it contains 0 (as any
subspace of V contains 0) and clearly W is stable under addition and scalar
multiplication, since each Wi has this property.

Problem 4.8. Consider the vector space V D R3 over R and the subsets V1; V2
defined by

V1 D f.x; y; z/ 2 R3 j x C y C z D 1g
V2 D f.x; y; z/ 2 R3 j x C 2y C z >

p
2g:

Which (if either) of these is a subspace of V ?

Solution. Neither V1 nor V2 contain .0; 0; 0/, thus they are not subspaces of V . �

Problem 4.9. Let V D R3 and

U D f.x; y; z/ 2 R3 j x2 C y2 C z2 � 1g:

Is U a subspace of V ?

Solution. U is not a subspace of V , since the vector u D .1; 0; 0/ belongs to U , but
the vector 2u D .2; 0; 0/ does not belong to U . �

Problem 4.10. Determine if W is a subspace of V where

(a) V D CŒ0; 1� and W consists in those functions f in V for which f .0/ D 0.
(b) V D CŒ0; 1� and W consists in those functions f in V for which f .1/ D 1.
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(c) V D CŒ0; 1� and W consists in those functions f in V for which

Z 1

0

f .x/ dx D 0:

(d) V D CŒ0; 1� and W consists in those functions f in V for which

Z 1

0

f .x/ dx D 1:

(e) V is the space of three times differentiable functions on Œ0; 1� andW consists in
those functions in V whose third derivative is 0.

Solution. a) If f .0/ D 0 and g.0/ D 0, then .f C cg/.0/ D 0 for all c 2 R, and
f C cg is a continuous map. Thus W is a subspace of V .

b) W does not contain the zero element of V (which is the constant map equal to
0), thus W is not a subspace of V .

c) If f; g 2 W , then for all c 2 R the map f C cg is continuous and

Z 1

0

.f C cg/.x/dx D
Z 1

0

f .x/dx C c

Z 1

0

g.x/dx D 0;

thus f C cg 2 W . It follows that W is a subspace of V .
d) W does not contain the zero map in V , thus it is not a subspace of V .
e) If f; g are three times differentiable and the third derivative is 0, then f Ccg has

the same property for all real numbers c, since .f C cg/.3/ D f .3/ C cg.3/. Thus
W is a subspace of V (consisting actually of polynomial functions of degree at
most 2). �

Problem 4.11. Let U and V be the sets of vectors

U D f .x1; x2/ j x1; x2 � 0 g and V D f .x1; x2/ j x1x2 � 0 g

in R2.

(a) Show that U is closed under addition.
(b) Show that V is closed under re-scaling.
(c) Show that neither U nor V is a subspace of R2.

Solution. It is clear that U is stable under addition, since nonnegative real numbers
are closed under addition. To see that V is closed under re-scaling, consider a scalar
c and v D .x1; x2/ in V . Then cv D .cx1; cx2/ and .cx1/.cx2/ D c2x1x2 � 0

because c2 � 0 and x1x2 � 0.
U is not a subspace of R2 as v D .1; 1/ 2 U but �v D .�1/v … U . V

is not a subspace of R2 since v1 D .2; 2/ 2 V , v2 D .�1;�3/ 2 V , but
v1 C v2 D .1;�1/ … V . �
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The union of two subspaces W1;W2 of V is almost never a subspace of V , as
the following problem shows.

Problem 4.12. Let V be a vector space over a field F and let V1; V2 be subspaces
of V . Prove that the union of V1; V2 is a subspace of V if and only if

V1 
 V2 or V2 
 V1:

Solution. If V1 
 V2 (resp. V2 
 V1), then V1 [ V2 D V2 (resp. V1 [ V2 D V1).
Therefore in both cases V1 [ V2 is a subspace of V .

Conversely, suppose that V1 [ V2 is a subspace of V . If V1 � V2, then we are
done, so suppose that this is not the case. Thus we can find v 2 V1 which does not
belong to V2. We will prove that V2 � V1.

Take any vector x 2 V2. Since V1 [ V2 is a subspace of V containing x and v,
it contains their sum x C v. Thus x C v 2 V1 or x C v 2 V2. If x C v 2 V2, then
v D .x C v/ � x 2 V2, since V2 is a subspace of V . This contradicts the choice
of v, thus we must have x C v 2 V1. Since v 2 V1, we also have �v 2 V1 and so
x D .x C v/� v 2 V1. Thus any element of V2 belongs to V1 and we have V2 � V1,
as desired. �

We now define a very important operation on subspaces of an F -vector space:

Definition 4.13. Let W1;W2; : : : ;Wn be subspaces of a vector space V . Their sum
W1 CW2 C : : :CWn is the subset of V consisting of all vectors w1 C w2 C : : :C wn
with w1 2 W1; : : : ;wn 2 Wn.

One could extend the previous definition to an arbitrary family .Wi /i2I of
subspaces of V . In this case

P
i2I Wi consists of all sums

P
i2I wi with wi 2 Wi

for all i 2 I and all but finitely many of the vectors wi are zero, so that the sumP
i2I wi has only finitely many nonzero terms and thus makes sense, even if I if

infinite. In practice we will however deal with finite collections of subspaces. The
following result also holds for infinite families of vector subspaces, but in the sequel
we prefer to focus on finite families, for simplicity.

Proposition 4.14. IfW1;W2; : : : ;Wn are subspaces of a vector space V , thenW1C
W2 C : : :CWn is a subspace of V .

Proof. Let us denote for simplicity S D W1 C W2 C : : : C Wn. Let s; s0 2 S and
let c be a scalar. It remains to prove that s C cs0 2 S . By definition, we can find
w1; : : : ;wn and w0

1; : : : ;w
0
n such that wi ;w0

i 2 Wi for 1 � i � n and

s D w1 C w2 C : : :C wn; s0 D w0
1 C w0

2 C : : :C w0
n:

Then

s C cs0 D w1 C w2 C : : :C wn C c.w0
1 C w0

2 C : : :C w0
n/ D

w1 C w2 C : : :C wn C cw0
1 C cw0

2 C : : :C cw0
n D .w1 C cw0

1/C : : :C .wn C cw0
n/:
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Since Wi is a subspace of V and since wi ;w0
i 2 Wi , it follows that wi C cw0

i 2 Wi

for all 1 � i � n. The previous displayed formula expresses therefore s C cs0 as a
sum of vectors in W1; : : : ;Wn and shows that s C cs0 2 S . This finishes the proof
that S is a subspace of V . �

Problem 4.15. Prove that W1 C W2 C : : : C Wn is the smallest subspace of V
containing all subspaces W1; : : : ;Wn.

Solution. It is clear thatW1C : : :CWn containsW1;W2; : : : ;Wn, since each vector
wi ofWi can be written as 0C0C: : :C0CwiC0C: : :C0 and 0 2 W1\: : :\Wn. We
need to prove that if W is any subspace of V which contains each of the subspaces
W1; : : : ;Wn, thenW containsW1CW2C: : :CWn. Take any vector v ofW1C: : :CWn.
By definition, we can write v D w1 C w2 C : : : C wn for some vectors wi 2 Wi .
SinceW containsW1; : : : ;Wn, it contains each of the vectors w1; : : : ;wn. And since
W is a subspace of V , it must contain their sum, which is v. We proved that any
element of W1 C : : :CWn belongs to W , thus W1 C : : :CWn � W and the result
follows. �

We now introduce a second crucial notion, that of direct sum of subspaces:

Definition 4.16. LetW1;W2; : : : ;Wn be subspaces of a vector space V . We say that
W1;W2; : : : ;Wn are in direct sum position if the equality

w1 C w2 C : : :C wn D 0

with w1 2 W1; : : : ;wn 2 Wn forces w1 D w2 D : : : D wn D 0.

There are quite a few different ways of expressing this condition. Here is one
of them:

Proposition 4.17. Subspaces W1; : : : ;Wn of a vector space V are in direct sum
position if and only if every element ofW1 CW2 C : : :CWn can be uniquely written
as a sum w1 C : : :C wn with w1 2 W1; : : : ;wn 2 Wn.

Proof. Suppose thatW1; : : : ;Wn are in direct sum position and take an element v of
W1 C : : :CWn. By definition we can express v D w1 C : : :C wn with wi 2 Wi for
all 1 � i � n. Suppose that we can also write v D w0

1 C : : :C w0
n with w0

i 2 Wi . We
need to prove that wi D w0

i for all 1 � i � n. Subtracting the two relations yields

0 D v � v D .w1 � w0
1/C .w2 � w0

2/C : : :C .wn � w0
n/:

Let ui D wi � w0
i . Since Wi is a subspace of V , we have ui 2 Wi . Moreover,

u1 C : : : C un D 0. Since W1; : : : ;Wn are in direct sum position, it follows that
u1 D : : : D un D 0, and so wi D w0

i for all 1 � i � n, which is what we needed.
Conversely, suppose every element ofW1CW2C� � �CWn can be written uniquely

as a sum of elements of W1; : : : ;Wn. Then 0 D 0 C 0 C � � � 0 must be the unique
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decomposition of 0. Thus whenever w1 2 W1, w2 2 W2; : : : ;wn 2 Wn satisfy
w1 C w2 C � � � C wn D 0, we have w1 D w2 D � � � D wn D 0. Thus W1; : : : ;Wn are
in direct sum position. �

Finally, we make another key definition:

Definition 4.18. a) We say that a vector space V is the direct sum of its subspaces
W1;W2; : : : ;Wn and write

V D W1 ˚W2 ˚ : : :˚Wn

if W1;W2; : : : ;Wn are in direct sum position and V D W1 CW2 C : : :CWn.
b) If V1; V2 are subspaces of a vector space V , we say that V2 is a complement (or

complementary subspace) of V1 if V1 ˚ V2 D V .

By the previous results, V D W1˚ : : :˚Wn if and only if every vector v 2 V can
be uniquely written as a sum w1 C w2 C : : :C wn, with wi 2 Wi for all i . Hence, if
V1; V2 are subspaces of V , then V2 is a complement of V1 if and only if every vector
v 2 V can be uniquely expressed as v D v1 C v2 with v1 2 V1 and v2 2 V2.

The result of the following problem is extremely useful in practice.

Problem 4.19. Prove that V2 is a complement of V1 if and only if V1CV2 D V and
V1 \ V2 D f0g.

Solution. Assume that V2 is a complement of V1, thus V D V1˚V2 and each v 2 V
can be uniquely written as the sum of an element of V1 and an element of V2. This
clearly implies that V1CV2 D V . If v 2 V1\V2, then we can write v D vC0 D 0Cv
and by uniqueness v D 0, thus V1 \ V2 D f0g.

Conversely, assume that V1 \ V2 D f0g and V1 C V2 D V . The second relation
implies that each vector of V is the sum of a vector in V1 and one in V2. Assume that
v 2 V can be written both v1C v2 and v0

1C v0
2 with v1; v0

1 2 V1 and v2; v0
2 2 V2. Then

v1 � v0
1 D v0

2 � v2. Now the left-hand side belongs to V1 while the right-hand side
belongs to V2, thus they both belong to V1 \ V2 D f0g and so v1 D v0

1 and v2 D v0
2,

giving the desired uniqueness result. �

Example 4.20. 1. The vector space V D R2 is the direct sum of its subspaces
V1 D f.x; 0/ j x 2 Rg and V2 D f.0; y/ j y 2 Rg. Indeed, any .x; y/ 2 R2 can
be uniquely in the form .a; 0/C .0; b/, via a D x and b D y.

2. Let V D Mn.R/ be the vector space of n � n matrices with real entries. If V1
and V2 are the subspaces of symmetric, respectively skew-symmetric matrices,
then V D V1 ˚ V2. Indeed, any matrix A 2 V can be uniquely written as the
sum of a symmetric matrix and a skew-matrix matrix: the only way to have A D
B C C with B symmetric and C skew-symmetric is via B D 1

2
.A C tA/ and

C D 1
2
.A � tA/.

3. Let V be the vector space of all real-valued maps on R. Let V1 (respectively
V2) be the subspace of V consisting in even (respectively odd) functions. Recall
that a map f W R ! R is even (respectively odd) if f .x/ D f .�x/ for all
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x (respectively f .�x/ D �f .x/ for all x). Then V D V1 ˚ V2. Indeed, for
any map f , the only way to write f D g C h with g even and h odd is via
g.x/ D f .x/Cf .�x/

2
and h.x/ D f .x/�f .�x/

2
.

Problem 4.21. Let V be the space of continuous real-valued maps on Œ�1; 1� and let

V1 D ff 2 V j
Z 1

�1
f .t/dt D 0g

and V2 be the subset of V consisting of constant functions.

a) Prove that V1; V2 are subspaces of V .
b) Prove that V D V1 ˚ V2.

Solution. a) If f1; f2 are in V1 and c 2 R, then cf1 C f2 is continuous and

Z 1

�1
.cf1 C f2/.t/dt D c

Z 1

�1
f1.t/dt C

Z 1

�1
f2.t/dt D 0;

thus cf1 C f2 2 V1 and V1 is a subspace of V . It is clear that V2 is a subspace
of V .

b) By the previous problem, we need to check that V1\V2 D f0g and V D V1CV2.
Assume that f 2 V1\V2, thus f is constant and

R 1
�1 f .t/dt D 0. Say f .t/ D c

for all t 2 Œ�1; 1�, then

0 D
Z 1

�1
f .t/dt D 2c;

thus c D 0 and f D 0. This shows that V1 \ V2 D f0g.
In order to prove that V D V1 C V2, let f 2 V and let us try to write f D c C g

with c a constant and g 2 V1. We need to ensure that

Z 1

�1
g.t/dt D 0;

that is

Z 1

�1
.f .t/ � c/dt D 0:

It suffices therefore to take

c D 1

2

Z 1

�1
f .t/dt

and g D f � c. �
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4.2.1 Problems for Practice

1. Show that none of the following sets of vectors is a subspace of R3:

(a) The set U of vectors x D .x1; x2; x3/ such that x21 C x22 C x23 D 1.
(b) The set V of vectors in R3 all of whose coordinates are integers.
(c) The set W of vectors in R3 that have at least one coordinate equal to 0.

2. Determine if U is a subspace of M2.R/, where

(a) U is the set of 2 � 2 matrices such that the sum of the entries in the first
column is 0.

(b) U is the set of 2� 2 matrices such that the product of the entries in the first
column is 0.

3. Is R a subspace of the C-vector space C?
4. Let V be the set of all periodic sequences of real numbers. Is V a subspace of

the space of all sequences of real numbers?
5. Let V be the set of vectors .x; y; z/ 2 R3 such that x.y2 C z2/ D 0. Is V a

subspace of R3?
6. Let V be the set of twice differentiable functions f W R ! R such that for all
x we have

f 00.x/C x2f 0.x/ � 3f .x/ D 0:

Is V a subspace of the space of all maps f W R ! R?
7. Let V be the set of differentiable functions f W R ! R such that for all x we

have

f 0.x/ � f .x/2 D x:

Is V a subspace of the space of all maps f W R ! R?
8. a) Is the set of bounded sequences of real numbers a vector subspace of the

space of all sequences of real numbers?
b) Answer the same question if instead of bounded sequences we consider

monotonic sequences.
9. Let V be the set of all sequences .xn/n�0 of real numbers such that

xnC2 C nxnC1 � .n � 1/xn D 0

for all n � 0. Prove that V is a subspace of the space of all sequences of real
numbers.

10. Let V be the space of all real-valued maps on R and let W be the subset of V
consisting of maps f such that f .0/C f .1/ D 0.

a) Check that W is a subspace of V .
b) Find a subspace S of V such that V D W ˚ S .
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11. Let V be the space of continuously differentiable maps f W R ! R and let
W be the subspace of those maps f for which f .0/ D f 0.0/ D 0. Let Z be
the subspace of V consisting of maps x 7! ax C b, with a; b 2 R. Prove that
V D W ˚Z.

12. Let V be the space of convergent sequences of real numbers. Let W be the
subset of V consisting of sequences converging to 0 and let Z be the subset of
V consisting of constant sequences. Prove or disprove that W;Z are subspaces
of V and W ˚Z D V .

13. (Quotient space) Let V be a vector space over F and letW � V be a subspace.
For a vector v 2 V , let Œv� D fv C w W w 2 W g. Note that Œv1� D Œv2� if
v1 � v2 2 W . Define the quotient space V=W to be fŒv� W v 2 V g. Define
an addition and scalar multiplication on V=W by Œu� C Œv� D Œu C v� and
aŒv� D Œav�. Prove that the addition and multiplication above are well defined
and V=W equipped with these operations is a vector space.

14. Let F 2 fR;Cg and let V be a nonzero vector space over F . Suppose that V
is the union of finitely many subspaces of V . Prove that one of these subspaces
is V .

4.3 Linear Combinations and Span

Let V be a vector space over a field F and let v1; v2; : : : ; vn be vectors in V . By
definition, V contains all vectors c1v1 C : : : C cnvn, with c1; : : : ; cn 2 F . The
collection of all these vectors plays a very important role in the sequel and so
deserves a formal definition:

Definition 4.22. Let v1; v2; : : : ; vn be vectors in a vector space V over F .

a) A vector v 2 V is a linear combination of v1; v2; : : : ; vn if there are scalars
c1; c2; : : : ; cn 2 F such that

v D c1v1 C c2v2 C : : :C cnvn (4.1)

b) The span of v1; : : : ; vn is the subset of V consisting in all linear combinations of
v1; v2; : : : ; vn. It is denoted Span.v1; v2; : : : ; vn/.

Example 4.23. 1) The span Span.v/ of a single vector v in Rm consists in all re-
scaled copies of v (we also say all scalar multiples of v). Using the geometric
interpretation of vectors in R2 (or R3), if v ¤ 0 then Span.v/ is represented by
the line through the origin in the direction of the vector v.

2) Let e1 D .1; 0; 0/ and e2 D .0; 1; 0/. Then

x1e1 C x2e2 D .x1; x2; 0/:
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Since x1 and x2 are arbitrary we see that Span.e1; e2/ consists in all vectors in R3

whose third coordinate is 0. This is the x1x2-plane in R3. In general, if two vectors
v1 and v2 in R3 are not collinear, then their span is the unique plane through the
origin that contains them.

Problem 4.24. Show that the vector .1; 1; 1/ cannot be expressed as a linear
combination of the vectors

v1 D .1; 0; 0/; v2 D .0; 1; 0/ and v3 D .1; 1; 0/:

Solution. An arbitrary linear combination

x1v1 C x2v2 C x3v3 D .x1 C x3; x2 C x3; 0/

of v1, v2 and v3 has 0 as the third coordinate, and so cannot be equal to .1; 1; 1/. �

More generally, let us consider the following practical problem: given a family
of vectors v1; v2; : : : ; vk in F n and a vector v 2 F n, decide whether this vector is a
linear combination of v1; : : : ; vk , that is v 2 Span.v1; : : : ; vk/. Consider the n � k

matrix A whose columns are v1; : : : ; vk . Saying that v 2 Span.v1; : : : ; vk/ is the
same as saying that we can find x1; : : : ; xk 2 F such that v D x1v1 C : : : C xkvk ,
or equivalently the system AX D v is consistent (and then x1; : : : ; xk are given
by the coordinates of X ). Since we have a practical way of deciding whether this
system is consistent (via row-reduction of the augmented matrix ŒAjv�), we see that
we have an algorithmic solution to the previous problem. Of course, we can solve
the previous problem via this method, too.

Problem 4.25. Consider the vectors v1 D .1; 0; 1; 2/, v2 D .3; 4; 2; 1/ and v3 D
.5; 8; 3; 0/. Is the vector v D .1; 0; 0; 0/ in the span of fv1; v2; v3g? What about the
vector w D .4; 4; 3; 3/?

Solution. In order to solve this problem, we use the method described above.
Namely, we consider the matrix

A D

2
664

1 3 5

0 4 8

1 2 3

2 1 0

3
775 :

We want to know if the system AX D v is consistent. The row-reduction of the
augmented matrix ŒAjv� is

ŒAjv� 	

2
664

1 0 �1 0
0 1 2 0

0 0 0 1

0 0 0 0

3
775 :
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Looking at the third row in the matrix appearing in the right-hand side, we see that
the system is not consistent, thus v is not in the span of fv1; v2; v3g.

For the vector w, we use the same method. The row-reduction of the augmented
matrix ŒAjw� is now

ŒAjw� 	

2
664

1 0 �1 1
0 1 2 1

0 0 0 0

0 0 0 0

3
775

which shows that the system is consistent and so w is in the span of fv1; v2; v3g. If we
want to explicitly find the linear combination of v1; v2; v3 giving w, all we need is to
solve the system

2
664

1 0 �1
0 1 2

0 0 0

0 0 0

3
775 �

2
4
x1
x2
x3

3
5 D

2
664

1

1

0

0

3
775 :

This yields without any problem x1 D x3 C 1 and x2 D 1� 2x3. Thus we can write

w D .1C x3/v1 C x2v2 C .1 � 2x3/v3
and this for any choice of x3. We can take for instance x3 D 0 and obtain w D
v1 C v2. �

The following result is easily proved, but explains the importance of the notion
of span:

Proposition 4.26. Let V be a vector space over F and let v1; v2; : : : ; vn 2 V .
Then

a) Span.v1; v2; : : : ; vn/ is the intersection of all subspaces of V which contain
v1; v2; : : : ; vn.

b) Span.v1; v2; : : : ; vn/ is the smallest vector subspace of V which contains
v1; v2; : : : ; vn.

Proof. Since an arbitrary intersection of vector subspaces is a vector subspace, part
a) implies part b), so we will focus on the proof of part a).

First, let us prove that Span.v1; v2; : : : ; vn/ is contained in every vector subspace
W of V that contains v1; v2; : : : ; vn. This will imply that Span.v1; v2; : : : ; vn/ is
contained in the intersection of all such subspaces W . Or, since W is a subspace of
V and since v1; v2; : : : ; vn 2 W , we also have c1v1 C c2v2 C : : :C cnvn 2 W for all
scalars c1; c2; : : : ; cn 2 F . ThusW contains all linear combinations of v1; v2; : : : ; vn,
i.e., it contains Span.v1; v2; : : : ; vn/.
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It remains to see that Span.v1; v2; : : : ; vn/ is a vector subspace of V (as it contains
v1; v2; : : : ; vn, this will imply that it contains the intersection of vector subspaces
containing v1; v2; : : : ; vn). So let x; y 2 Span.v1; v2; : : : ; vn/ and c 2 F a scalar.
Since x; y are linear combinations of v1; v2; : : : ; vn, we can write x D a1v1Ca2v2C
: : : C anvn and y D b1v1 C b2v2 C : : : C bnvn for some scalars a1; : : : ; an and
b1; : : : ; bn. Then

x C cy D .a1 C cb1/v1 C .a2 C cb2/v2 C : : :C .an C cbn/vn

is also a linear combination of v1; v2; : : : ; vn, thus it belongs to Span.v1; v2; : : : ; vn/.
The result follows. �

Remark 4.27. It follows from the previous proposition and Problem 4.15 that

Span.v1; v2; : : : ; vn/ D
nX
iD1

F vi ;

where F vi is the subspace of V consisting in all multiples cvi of vi (equivalently,
F vi D Span.vi /).

We can extend slightly the previous definition and results by considering arbitrary
subsets of V :

Definition 4.28. Let S be a subset of V .

a) Span.S/ is the subset of V consisting in all linear combinations c1v1 C c2v2 C
: : : C cnvn, where v1; v2; : : : ; vn is a finite subset of S and c1; c2; : : : ; cn are
scalars.

b) We say that S is a spanning set or generating set for V if Span.S/ D V .

Example 4.29. 1) Consider the space V D F n and the canonical basis

e1 D

2
666664

1

0

0

: : :

0

3
777775
; e2 D

2
666664

0

1

0

: : :

0

3
777775
; : : : ; en D

2
666664

0

0

0

: : :

1

3
777775
:

Then e1; : : : ; en is a spanning set for F n, since any vector X D

2
666664

x1
x2
x3
: : :

xn

3
777775

can be

written X D x1e1 C x2e2 C : : :C xnen.
2) Similarly, consider the space V D Mm;n.F / ofm�nmatrices with entries in F .

If Eij is the matrix in V having the .i; j /-entry equal to 1 and all other entries 0,
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then the family .Eij /1�i�m;1�j�n is a spanning family for V , since any matrix
A D Œaij � can be written

A D
mX
iD1

nX
jD1

aijEij :

3) In the space RnŒX� of polynomials with real coefficients and degree bounded by
n, the family 1;X; : : : ; Xn is spanning.

Similarly, one can prove (or deduce from the previous proposition) that for an
arbitrary subset S of V , the set Span.S/ is the smallest vector subspace of V which
contains S . Note the very useful

if S1 � S2 then Span.S1/ � Span.S2/: (4.2)

Indeed, Span.S2/ is a vector subspace containing S2, thus also S1, hence it contains
Span.S1/. Alternatively, this follows from the fact that any linear combination of
finitely many elements of S1 is also a linear combination of finitely many elements
of S2. It follows from relation (4.2) that any subset of V containing a spanning
set for V is a spanning set for V .

Row-reduction is also very useful in understanding Span.v1; : : : ; vk/, when
v1; : : : ; vk 2 F n. Indeed, consider the k�nmatrixAwhose rows are the coordinates
of the vectors v1; : : : ; vk in the canonical basis of F n. Performing elementary
operations on the rows of A does not affect the span of the set of its rows, hence
Span.v1; : : : ; vk/ is precisely the span of the rows of Aref , where we recall that
Aref is the reduced row-echelon form of A (of course, it suffices to consider only
the nonzero rows of Aref ). This gives in practice a quite manageable form of
Span.v1; : : : ; vk/.

Example 4.30. Consider the vectors v1 D .1; 2; 3; 4/, v2 D .3; 1; 2; 1/ and
v3 D .1; 2; 1; 2/ in R4. We would like to obtain a simple description of V D
Span.v1; v2; v3/.

Consider the matrix

A D
2
4
1 2 3 4

3 1 2 1

1 2 1 2

3
5

whose first row is given by the coordinates 1; 2; 3; 4 of v1 with respect to the
canonical basis of R4, and similarly for the second and third row (replacing v1 with
v2 and v3 respectively). Row-reduction yields

Aref D
2
4
1 0 0 � 3

5

0 1 0 4
5

0 0 1 1

3
5 :
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Thus

V D Span..1; 0; 0;�3
5
/; .0; 1; 0;

4

5
/; .0; 0; 1; 1//

and this is the same as the set of vectors

w D .a; b; c;�3
5
aC 4

5
b C c/

with a; b; c 2 R.

4.3.1 Problems for Practice

1. Find at least three different ways to express the matrix

B D
�
2 �1

�2 1

�

as a linear combination of the matrices

A1 D
�
1 1

�1 �1
�
; A2 D

�
1 �1

�1 1

�
and A3 D

�
1 0

�1 0
�
:

2. Show that the vector .1; 1; 1/ cannot be expressed as a linear combination of

a1 D .1;�1; 0/; a2 D .1; 0;�1/ and a3 D .0; 1;�1/:

3. Let W be the subset of Rn consisting of those vectors whose sum of coordinates
equals 0. Let Z be the span of .1; 1; : : : ; 1/ in Rn. Prove or disprove that
W ˚Z D Rn.

4. Let P be the span of .1; 1; 1/ and .1; 1;�1/ in R3, and let D be the span of
.0; 1;�1/. Is it true that P ˚D D R3?

5. One of the vectors b1 D .3;�7;�6/ and b2 D .0; 2; 4/ is in the plane spanned
by the vectors v1 D .1; 0;�1/ and v2 D .1;�7;�4/. Determine which one and
write it as linear combination of the vectors v1 and v2. Also, prove that the other
vector is not in the plane spanned by v1 and v2.

6. Let V be the vector space of real-valued maps on R and let fn (respectively gn)
be the map sending x to cosnx (respectively cosn.x/). Prove or disprove that

Span.ffnjn � 0g/ D Span.fgnjn � 0g/:



128 4 Vector Spaces and Subspaces

4.4 Linear Independence

Consider some vectors v1; v2; : : : ; vn in a vector space V over F , and a vector v in
Span.v1; v2; : : : ; vn/. By definition, there are scalars c1; c2; : : : ; cn such that

v D c1v1 C c2v2 C : : :C cnvn:

There is nothing in the definition of the span that requires c1; c2; : : : ; cn in relation
(4.2) to be unique.

Problem 4.31. Let v1; v2; v3 be three vectors in Rn such that 3v1 C v2 C v3 D 0

and let v D v1 C v2 � 2v3. Find infinitely many different ways to write v as a linear
combination of v1; v2; v3.

Solution. Let ˛ be an arbitrary real number. Re-scaling both sides of the equal-
ity 3v1 C v2 C v3 D 0 by ˛ and adding the corresponding relation to the
equality v D v1 C v2 � 2v3 yields

v D .3˛ C 1/v1 C .˛ C 1/v2 C .˛ � 2/v3:
Thus each value of ˛ provides a different way to write v as a linear combination of
v1; v2; v3. �

Suppose now that a vector v can be written as v D a1v1 C a2v2 C : : :C anvn. If
b1; b2; : : : ; bn are scalars such that we also have v D b1v1 C b2v2 C : : :C bnvn, then
subtracting the two relations we obtain

0 D .a1 � b1/v1 C .a2 � b2/v2 C : : :C .an � bn/vn:
Thus we would be able to conclude that a1; a2; : : : ; an are unique if the equation
(with z1; : : : ; zn 2 F )

z1v1 C z2v2 C : : :C znvn D 0

would force z1 D : : : D zn D 0. As we said above, this is not always the case: take
for instance n D 1, v1 D 0, then a1v1 D 0 for any choice of the scalar a1. On the
other hand, vectors v1; : : : ; vn having the uniqueness property play a fundamental
role in linear algebra and they also deserve a formal definition:

Definition 4.32. a) Vectors v1; v2; : : : ; vn in some vector space V are linearly
dependent if there is a relation

c1v1 C c2v2 C : : :C cnvn D 0

for which at least one of the scalars c1; c2; : : : ; cn is nonzero.
b) Vectors v1; v2; : : : ; vn in the vector space V are linearly independent if when-

ever we have scalars a1; a2; : : : ; an with a1v1 C a2v2 C � � � C anvn D 0, then
a1 D a2 D � � � D an D 0.
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Example 4.33. In all situations considered in example 4.29, the corresponding
generating family is also linearly independent.

Before going on to more abstract things, let us consider the following very
concrete problem: given some vectors v1; : : : ; vk in F n (take for simplicity FDR),
decide whether they are linearly independent. We claim that this problem can be
solved algorithmically in a fairly simple way. Indeed, we need to know if we can
find x1; : : : ; xk 2 F , not all equal to 0 and such that

x1v1 C : : :C xkvk D 0:

Let A be the n� k matrix whose columns are given by the coordinates of v1; : : : ; vk
with respect to the canonical basis of F n. Then the previous relation is equivalent to
AX D 0, whereX is the column vector with coordinates x1; : : : ; xk . Thus v1; : : : ; vk
are linearly independent if and only if the homogeneous linear system AX D 0

has a nontrivial solution. We know that this problem can be solved algorithmically,
via the row-reduction algorithm: let Aref be the reduced row-echelon form of
A. If there is a pivot in every column of Aref , then v1; : : : ; vk are linearly
independent, otherwise they are not. Thus the original problem can also be solved
algorithmically. Also, note that since every homogeneous linear system with more
variables than equations has a nontrivial solution, we deduce that if we have more
than n vectors in F n, then they are never linearly independent! Thus sometimes
we can solve the original problem with absolutely no effort, simply by counting the
number of vectors we are given!

Problem 4.34. Consider the vectors v1 D .1; 2; 3; 4; 5/, v2 D .2; 3; 4; 5; 1/, v3 D
.1; 3; 5; 7; 9/, v4 D .3; 5; 7; 9; 1/ in R5. Are these vectors linearly independent? If
the answer is negative, give a nontrivial linear dependency relation between these
vectors.

Solution. We consider the matrix

A D

2
666664

1 2 1 3

2 3 3 5

3 4 5 7

4 5 7 9

5 1 9 1

3
777775
:

Row-reduction yields

Aref D

2
666664

1 0 0 �2
0 1 0 2

0 0 1 1

0 0 0 0

0 0 0 0

3
777775
:
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Since there is no pivot in the last column, the vectors v1; v2; v3; v4 are linearly
dependent.

To find a nontrivial linear dependency relation, we solve the system AX D 0,
which is equivalent to the system Aref X D 0. This system is further equivalent to

x1 D 2x4; x2 D �2x4; x3 D �x4:

Taking x4 D 1 (we can take any nonzero value we like), we obtain the dependency
relation

2v1 � 2v2 � v3 C v4 D 0: �

Problem 4.35. Show that the 4 vectors

v1 D .2; 1; 3; 1/; v2 D .�1; 0; 1; 2/; v3 D .3; 2; 7; 4/; v4 D .1; 2; 0;�1/

are linearly dependent, and find three of them that are linearly independent.

Solution. Row reduction yields

2
664

2 �1 3 1

1 0 2 2

3 1 7 0

1 2 4 �1

3
775 	

2
664

1 0 2 0

0 1 1 0

0 0 0 1

0 0 0 0

3
775 :

Thus the 4 vectors are dependent. Eliminating the vector v3 (the one that does
not have a pivot in its column) yields the linearly independent set of vectors
fv1; v2; v4g. �

One may argue that the above definition is a little bit restrictive in the sense that
it only deals with finite families of vectors. If we had an infinite family .vi /i2I of
vectors of V , we would not be able to give a meaning to the infinite sum

P
i2I civi

for any choice of the scalars ci . However, if all but finitely many of the scalars ci
were 0, then the previous sum would be a finite sum and would thus make sense. So
one can extend the previous definition by saying that the family .vi /i2I is linearly
dependent if one can find scalars .ci /i2I such that all but finitely many are 0, not all
of them are 0 and

P
i2I civi D 0. Equivalently, and perhaps easier to understand,

an arbitrary family is linearly dependent if there is a finite subfamily which
is linearly dependent. A family of vectors is linearly independent if any finite
subfamily is linearly independent. Thus, a (possibly infinite) set L is linearly
independent if whenever we have distinct elements l1; : : : ; ln 2 L and scalars
a1; a2; : : : ; an with a1l1 C a2l2 C � � � C anln D 0, then a1 D a2 D � � � D an D 0.
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Remark 4.36. We note the following simple but extremely useful facts:

a) A subfamily of a linearly independent family is linearly independent. Indeed,
let .vi /i2I be a linearly independent family and let J be a subset of I . Assume
that .vi /i2J is linearly dependent, thus (by definition) we can find a finite linearly
dependent subfamily vi1 ; : : : ; vin with i1; : : : ; in 2 J . But i1; : : : ; in 2 I , thus
vi1 ; : : : ; vin is a finite linearly dependent subfamily of the linearly independent
family .vi /i2I , contradiction.

b) If two vectors in a family of vectors are equal, then this family is automat-
ically linearly dependent. Indeed, say vector v appears at least twice in the
linearly independent family .vi /i2I . Then by part a), the subfamily v; v should
be linearly independent. But this is absurd, since an obvious nontrivial linear-
dependency relation is 1 � v C .�1/v D 0.

Problem 4.37. Let V be the vector space of all real-valued maps on R. Prove that
the maps x ! jx � 1j, x ! jx � 2j,. . . , x ! jx � 10j are linearly independent.

Solution. Let fi .x/ D jx � i j for 1 � i � 10 and suppose that

a1f1 C a2f2 C : : :C a10f10 D 0

for some real numbers a1; : : : ; a10. Suppose that some ai is nonzero. Dividing by
ai , we obtain that fi is a linear combination of f1; : : : ; fi�1; fiC1; : : : ; f10. But
f1; : : : ; fi�1; fiC1; : : : ; f10 are all differentiable at i , hence fi is also differentiable
at i . This is obviously wrong, hence ai D 0 for all 1 � i � 10, and the result
follows. �

One can relate the notions of span and that of being linearly dependent, as the
following proposition shows. It essentially says that a set v1; v2; : : : ; vn is linearly
dependent if and only if one of the vectors v1; : : : ; vn is a linear combination
of the other vectors. Note that we used the word set and not family, that is in the
above statement we assume that v1; : : : ; vn are pairwise distinct (as we observed at
the end of the previous paragraph, if two vectors are equal among v1; : : : ; vn, then
the family v1; : : : ; vn is automatically linearly dependent).

Proposition 4.38. Let S be a set of vectors in some vector space V . Then S is
linearly dependent if and only if there is v 2 S such that v 2 Span.S n fvg/.
Proof. We deal separately with each implication. First, suppose that S is linearly
dependent. By definition, this means that we can find finitely many vectors
v1; v2; : : : ; vn 2 S and some scalars a1; a2; : : : ; an, not all 0, such that

a1v1 C a2v2 C : : :C anvn D 0:

Note that v1; : : : ; vn are pairwise distinct, since the elements of S are assumed to be
pairwise distinct.
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Since not all scalars are 0, there is i 2 f1; 2; : : : ; ng such that ai ¤ 0. Dividing
the previous equality by ai , we obtain

a1

ai
v1 C : : :C ai�1

ai
vi�1 C vi C aiC1

ai
viC1 C : : :C an

ai
vn D 0;

hence

vi D �a1
ai

v1 � : : : � ai�1
ai

vi�1 � aiC1
ai

viC1 � : : : � an

ai
vn:

We deduce that vi belongs to the span of v1; : : : ; vi�1; viC1; : : : ; vn, which is
contained in the span of S n fvig, as fv1; : : : ; vi�1; viC1; : : : ; vng � S n fvig. This
proves one implication.

Next, suppose that there is v 2 S such that v 2 Span.S n fvg/. That means that
we can find v1; v2; : : : ; vn 2 S n fvg and scalars a1; a2; : : : ; an such that

v D a1v1 C a2v2 C : : :C anvn

But then

1 � v C .�a1/v1 C : : :C .�an/vn D 0

and the vectors v; v1; : : : ; vn are linearly dependent. Since v … fv1; : : : ; vng, it follows
that S has a finite subset which is linearly dependent and so S is linearly dependent.
The result follows. �

The following rather technical and subtle result (the Steinitz exchange lemma)
is the fundamental theorem in the basic theory of vector spaces. We will deduce
from it a lot of very nontrivial results, which will help building the theory of finite
dimensional vector spaces.

Theorem 4.39 (Exchange lemma). Let L D fv1; v2; : : : ; vng and S D
fw1;w2; : : : ;wmg be two finite subsets of a vector space V , with L linearly
independent and S a spanning set. Then n � m and we can find vectors s1; : : : ; sm�n
in S such that L [ fs1; s2; : : : ; sm�ng is a spanning set.

Proof. The result will be proved by induction on n. There is nothing to be proved
when n D 0, so assume that the result holds for n and let us prove it for nC1. Since
v1; v2; : : : ; vnC1 are linearly independent, so are v1; v2; : : : ; vn by Remark 4.36. Thus
by the inductive hypothesis we already have n � m and the existence of vectors
s1; : : : ; sm�n such that fv1; : : : ; vn; s1; : : : ; sm�ng is a spanning set. In particular, we
can express vnC1 as a linear combination

vnC1 D a1v1 C : : :C anvn C b1s1 C : : :C bm�nsm�n:
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If m D n, then the previous relation can be written

vnC1 D a1v1 C : : :C anvn

and contradicts the hypothesis that v1; v2; : : : ; vn are linearly independent. Thus
m ¤ n and since n � m, we must have nC 1 � m. The same argument also proves
that at least one of b1; b2; : : : ; bm�n is nonzero. Permuting the vectors s1; : : : ; sm�n,
we may assume that b1 ¤ 0. Dividing the relation

vnC1 D a1v1 C : : :C anvn C b1s1 C : : :C bm�nsm�n

by b1 and rearranging terms yields

s1 D �a1
b1

v1 � : : : � an

bn
vn C 1

b1
vnC1 � : : : � bm�n

b1
sm�n

which shows that s1 2 Span.v1; : : : ; vn; vnC1; s2; : : : ; sm�n/. Thus

V D Span.v1; : : : ; vn; s1; : : : ; sm�n/ � Span.v1; : : : ; vn; vnC1; s2; : : : ; sm�n/

and L [ fs2; : : : ; sm�ng is a spanning set, which is exactly what we needed. �

Remark 4.40. One can slightly refine the previous theorem by no longer assuming
that L is finite (but still assuming that S is finite). Indeed, any subset of L is still
linearly independent. Hence Theorem 4.39 shows that any finite subset ofL has size
at most m and hence L is finite and has size n � m.

4.4.1 Problems for Practice

1. Are the vectors

v1 D .1; 2; 1/; v2 D .�3; 4; 5/; v3 D .0; 2;�3/

linearly independent in R3?
2. Consider the vectors

v1 D .1; 2; 1; 3/; v2 D .1;�1; 1;�1/; v3 D .3; 0; 3; 1/

in R4.

a) Prove that v1; v2; v3 are not linearly independent.
b) Express one of these vectors as a linear combination of two other vectors.
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3. Let V be the vector space of polynomials with real coefficients whose degree
does not exceed 3. Are the following vectors

1C 3X CX2; X3 � 3X C 1; 3X3 �X2 �X � 1

linearly independent in V ?
4. Let V be the space of all real-valued maps on R.

a) If a1 < : : : : < an are real numbers, compute

lim
x!1

nX
iD1

e.ai�an/x:

b) Prove that the family of maps .x 7! eax/a2R is linearly independent in V .

5. Let V be the space of all maps ' W Œ0;1/ ! R. For each a 2 .0;1/ consider
the map fa 2 V defined by

fa.x/ D 1

x C a
:

a) Let a1 < : : : < an be positive real numbers and suppose that ˛1; : : : ; ˛n are
real numbers such that

nX
iD1

˛ifai .x/ D 0

for all x � 0. Prove that for all real numbers x we have

nX
iD1

˛i �
Y
j¤i
.x C aj / D 0:

By making suitable choices of x, deduce that ˛1 D : : : D ˛n D 0.
b) Prove that the family .fa/a>0 is linearly independent in V .

6. Consider V D R, seen as vector space over F D Q.

a) Prove that 1;
p
2;

p
3 is a linearly independent set in V . Hint: if a; b; c are

rational numbers such that aC b
p
2C c

p
3 D 0, check that a2 C 2ab

p
2C

2b2 D 3c2.
b) Prove that the set of numbers lnp, where p runs over the prime numbers, is

linearly independent in V .
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7. a) If m; n are nonnegative integers, compute

Z 2�

0

cos.mx/ cos.nx/dx:

b) Deduce that the maps x 7! cosnx, with n nonnegative integer, form a linearly
independent set in the space of all real-valued maps on R.

8. Let v1; v2; : : : ; vn be linearly independent vectors in Rn. Is it always the case that
v1; v1 C v2; : : : ; v1 C v2 C : : :C vn are linearly independent?

4.5 Dimension Theory

We are now ready to develop the dimension theory of vector spaces. For general
vector spaces, this is rather subtle, but we will stick to finite dimensional vector
spaces, for which the arguments are rather elementary consequences of the subtle
exchange lemma proved in the last section. We fix a field F and all vector spaces in
this section will be over F .

Definition 4.41. A vector space V is called finite dimensional if it has a finite
spanning set.

Thus V is finite dimensional if we can find a finite family of vectors
v1; v2; : : : ; vn 2 V such that all vectors in V are linear combinations of
v1; v2; : : : ; vn. For instance, the spaces F n, Mm;n.F / and RnŒX� are finite
dimensional, by example 4.29. However, not all vector spaces are finite dimensional
(actually most of them are not).

Problem 4.42. Prove that the vector space V of all polynomials with real coeffi-
cients is not a finite dimensional R-vector space.

Proof. Suppose that V has a finite spanning set, so there are polynomials
P1; : : : ; Pn 2 V such that V D Span.P1; : : : ; Pn/. Let d be the maximum of
deg.P1/; : : : ; deg.Pn/. Since all Pi have degree at most d , so does any linear
combination of P1; : : : ; Pn. It follows that any vector in V has degree at most d ,
which is certainly absurd since XdC1 has degree greater than d . �

We would like to define the dimension of a finite dimensional vector space. This
should be an invariant of the vector space and should correspond to the geometric
picture (you might prefer to take F D R for a better geometric intuition): a line
(namely F ) should have dimension 1, a plane (i.e., F 2) should have dimension 2, in
general F n should have dimension n. Before stating and proving the main result, let
us introduce a crucial definition and practice some problems to get a better feeling
about it.

Definition 4.43. A basis of a vector space V is a subset of V which is linearly
independent and spanning.
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For instance, the generating families appearing in example 4.29 are all bases of
the corresponding vector spaces (this explains why we called them canonical bases
in previous chapters!).

Problem 4.44. Given the matrix

A D
�
2 0

0 3

�
2 M2.R/;

find a basis of the subspace U of M2.R/ defined by

U D fX 2 M2.R/ j XA D AXg:

Solution. Consider a square matrix X D
�
a1 a2
a3 a4

�
. Then X 2 U if and only if

XA D AX , which can be rewritten as

�
2a1 3a2
2a3 3a4

�
D
�
2a1 2a2
3a3 3a4

�
:

This equality is equivalent to a2 D a3 D 0. Thus

U D f
�
a1 0

0 a4

�
ja1; a4 2 Rg;

and so a basis of U is given by the matrices X1 D
�
1 0

0 0

�
and X2 D

�
0 0

0 1

�
(it is

not difficult to check that X1 and X2 are linearly independent). �

Problem 4.45. Determine a basis of the subspace U of R4, where

U D f.a; b; c; d/ 2 R4 j aC b D 0; c D 2dg:

Solution. Since b D �a and c D 2d , we can write

U D f.a;�a; 2d; d/ja; d 2 Rg D fav1 C dv2ja; d 2 Rg;

where v1 D .1;�1; 0; 0/ and v2 D .0; 0; 2; 1/. Thus v1; v2 form a generating family
for U . Moreover, they are linearly independent, since the relation av1 C dv2 D 0 is
equivalent to .a;�a; 2d; d/ D .0; 0; 0; 0/ and forces a D d D 0. We conclude that
a basis of U is given by v1 and v2. �

Problem 4.46. Consider the subspaces U; V of R4 defined by

U D f.x; y; z;w/ 2 R4 j y C z C w D 0g
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and

V D f.x; y; z;w/ 2 R4 j x D �y; z D 2wg:

Find a basis for each of the subspaces of U; V and U \ V of R4.

Solution. Expressing w in terms of y and z, we obtain

U D f.x; y; z;�y � z/jy; z 2 Rg D fxu1 C yu2 C zu3jx; y; z 2 Rg;

where u1 D .1; 0; 0; 0/, u2 D .0; 1; 0;�1/ and u3 D .0; 0; 1;�1/. Let us see whether
u1; u2; u3 are linearly independent. The equality xu1 C yu2 C zu3 D 0 is equivalent
to .x; y; z;�y � z/ D .0; 0; 0; 0/ and forces x D y D z D 0. Thus u1; u2; u3 are
linearly independent and therefore they form a basis of U .

Let us deal now with V . Clearly

V D f.�y; y; 2w;w/jy;w 2 Rg D fyv1 C wv2jy;w 2 Rg;

where v1 D .�1; 1; 0; 0/ and v2 D .0; 0; 2; 1/. As above, v1 and v2 are linearly
independent, since the relation yv1 C wv2 D 0 is equivalent to .�y; y; 2w;w/ D
.0; 0; 0; 0/ and forces y D w D 0. Thus v1; v2 form a basis of V .

Finally, a vector .x; y; z;w/ 2 R4 belongs to U \ V if and only if

x D �y; z D 2w; y C z C w D 0:

This is equivalent to x D 3w, z D 2w and y D �3w, or

.x; y; z;w/ D .3w;�3w; 2w;w/ D w.3;�3; 2; 1/:

Thus .3;�3; 2; 1/ forms a basis of U \ V . �

Problem 4.47. Consider the space V of functions f W R ! R spanned by the
functions in B D f1; x 7! sin.2x/; x 7! cos.2x/g.

a) Prove that B forms a basis of V .
(b) Prove that x 7! sin2.x/ is a function in V and write it as a linear combination of

elements of B .

Solution. a) We need to prove that the vectors in B are linearly independent. In
other words, we need to prove that if a; b; c are real numbers such that

aC b sin.2x/C c cos.2x/ D 0

for all real numbers x, then a D b D c D 0. Taking x D 0 we obtain aCc D 0,
then taking x D �=2 yields a�c D 0. Thus a D c D 0. Finally, taking x D �=4

yields b D 0.
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b) For all x 2 R we have

cos.2x/ D 2 cos2.x/ � 1 D 2.1 � sin2.x// � 1 D 1 � 2 sin2.x/;

thus

sin2.x/ D 1 � cos.2x/

2
:

We deduce that x 7! sin2.x/ is in V and the previous formula expresses it as a
linear combination

sin2.x/ D 1

2
� 1C 0 � sin.2x/ � 1

2
cos.2x/:

�

Let us prove now the first fundamental result regarding dimension theory of
vector spaces.

Theorem 4.48. Let V be a finite dimensional vector space. Then

a) V contains a basis with finitely many elements.
b) Any two bases of V have the same number of elements (in particular any basis

has finitely many elements).

Proof. a) Among all finite spanning sets S of V (we know that there is at least one
such set) consider a setB with the smallest possible number of elements. We will
prove thatB is a basis. By our choice,B is a spanning set, so all we need to prove
is that B is linearly independent. If this is not the case, then Proposition 4.38
yields the existence of a vector v 2 B such that v 2 Span.B n fvg/. It follows
that B n fvg is also a spanning set. This contradicts the minimality of B and
shows that B is indeed linearly independent.

b) Let B be a basis with finitely many elements, say n. Let B 0 be another basis of
V . ThenB 0 is a linearly independent set andB is a spanning set with n elements,
thus by Remark 4.40 B 0 is finite, with at most n elements. This shows that any
basis has at most n elements. But now we can play the following game: say B 0
has d elements. We saw that d � n. We exchange B and B 0 in the previous
argument, to get that any basis has at most d elements, thus n � d . It follows
that n D d and so all bases have the same number of elements. �

The previous theorem allows us to make the following:

Definition 4.49. Let V be a finite dimensional vector space. The dimension dimV

of V is the number of elements of any basis of V .

Example 4.50. a) Consider the vector space F n. Its canonical basis e1; : : : ; en is a
basis of F n with n elements, thus dimF n D n.
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b) Consider the space F ŒX�n of polynomials with coefficients in F , whose degree
does not exceed n. A basis of F ŒX�n is given by 1;X; : : : ; Xn, thus

dimF ŒX�n D nC 1:

c) Consider the vector space Mm;n.F / of m� n matrices with entries in F . A basis
of this vector space is given by the elementary matrices Eij with 1 � i � m and
1 � j � n (the canonical basis of Mm;n.F /). It follows that

dimMm;n.F / D mn:

Problem 4.51. Find a basis as well as the dimension of the subspace

V D f.a; 2a/ j a 2 Rg � R2:

Solution. By definition V is the linear span of the vector .1; 2/, since .a; 2a/ D
a.1; 2/. Since .1; 2/ ¤ .0; 0/, we deduce that a basis of V is given by .1; 2/ and
dimV D 1. �

The second fundamental theorem concerning dimension theory is the following:

Theorem 4.52. Let V be a vector space of dimension n < 1. Then

a) Any linearly independent set in V has at most n elements.
b) Any spanning set in V has at least n elements.
c) If S is a subset of V with n elements, then the following assertions are

equivalent:

i) S is linearly independent
ii) S is a spanning set

iii) S is a basis of V .

Proof. Fix a basis B of V . By definition, B has n elements.

a) Since B is a spanning set with n elements, the result follows directly from
Remark 4.40.

b) Let S be a spanning set and suppose that S has d < n elements. Since B is
linearly independent, Theorem 4.39 yields n � d , a contradiction.

c) Clearly iii) implies i) and ii). It suffices therefore to prove that each of i) and ii)
implies iii). Suppose that S is linearly independent. By Theorem 4.39 we can
add n � n D 0 vectors to S so that the new set is a spanning set. Clearly the
new set is nothing more than S , so S is a spanning set and thus a basis (since by
assumption S is linearly independent).

Now suppose that S is a spanning set and that S is not linearly independent.
By Proposition 4.38 we can find v 2 S such that v 2 Span.S n fvg/. Then S n fvg
is a spanning set with n � 1 elements, contradicting part b). Thus S is linearly
independent and a basis of V . �



140 4 Vector Spaces and Subspaces

The following problems are all applications of the previous theorem.

Problem 4.53. Prove that the set U , where

U D f.1; 1; 1/; .1; 2; 1/; .2; 1; 1/g

is a basis of R3.

Solution. Let v1 D .1; 1; 1/, v2 D .1; 2; 1/ and v3 D .2; 1; 1/. Since dim R3 D 3,
it suffices to prove that v1; v2; v3 are linearly independent. Suppose that x; y; z 2 R
satisfy

xv1 C yv2 C zv3 D 0:

This can be written as

8<
:
x C y C 2z D 0

x C 2y C z D 0

x C y C z D 0

Combining the first and the last equation yields z D 0, and similarly, combining the
second and the last equation yields y D 0. Coming back to the first equation, we
also find x D 0, and the result follows. �

Problem 4.54. Determine a basis of R3 that includes the vector v D .2; 1; 1/.

Solution. Let e1; e2; e3 be the canonical basis of R3. Then v D 2e1 C e2 C e3. It
follows that e3 belongs to the span of v; e1; e2, thus the span of v; e1; e2 is R3. Thus
v; e1; e2 form a basis of R3, since dim R3 D 3 (of course, one can also check directly
that v; e1; e2 are linearly independent). �

Problem 4.55. Let RnŒX� be the vector space of polynomials with real coefficients
whose degree does not exceed n. Prove that if P0; P1; : : : ; Pn 2 RnŒX� satisfy
degPk D k for 0 � k � n, then P0; P1; : : : ; Pn form a basis of RnŒX�.

Solution. Since dim RnŒX� D n C 1, it suffices to prove that P0; P1; : : : ; Pn are
linearly independent. Suppose that a0; a1; : : : ; an 2 R are not all zero and

a0P0 C a1P1 C : : :C anPn D 0:

Let j be the largest index for which aj ¤ 0. Then by hypothesis a0P0 C a1P1 C
: : :C ajPj has degree exactly j , which contradicts the fact that this polynomial is
the zero polynomial (since ajC1 D : : : D an D 0 and a0P0 C : : :C anPn D 0) and
that the zero polynomial has degree �1. �

Problem 4.56. Let P 2 RŒX� be a polynomial. Prove that the following assertions
are equivalent:

a) P.n/ is an integer for all integers n.
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b) There are integers n and a0; : : : ; an such that

P.X/ D
nX

kD0
ak
X.X � 1/ : : : .X � k C 1/

kŠ
;

with the convention that the first term in the sum equals a0.

Solution. Let Pk D X.X�1/:::.X�kC1/
kŠ

, with P0 D 1. It is not difficult to see
that Pk.Z/ � Z (as the values of Pk at all integers are, up to a sign, binomial
coefficients). This makes it clear that b) implies a).

Suppose that a) holds and let d D degP . Since degPk D k for 0 � k � d ,
Problem 4.55 yields real numbers a0; a1; : : : ; ad such thatP D a0P0Ca1P1C: : :C
adPd . We need to prove that a0; : : : ; ad are actually integers. But by hypothesis

P.m/ D a0 C
 
m

1

!
a1 C

 
m

2

!
a2 C : : :

 
m

m � 1

!
am�1 C am

are integers, for m D 0; : : : ; d . Using the relation

am D P.m/ �
 
a0 C

 
m

1

!
a1 C

 
m

2

!
a2 C : : :

 
m

m � 1

!
am�1

!

it is easy to prove by induction on j that a0; : : : ; aj are integers for 0 � j � d .
Thus a0; : : : ; an are all integers and the problem is solved. �

Before moving on to another fundamental theorem, let us stop and try to explain
how to solve a few practical problems. First, consider some vectors v1; : : : ; vk
in Rn and consider the problem of deciding whether this is a basis of Rn. By the
previous results, this is the case if and only if k D n and v1; : : : ; vk are linearly
independent. This is equivalent to saying that k D n and Aref D In. We see that we
have an algorithmic solution for our problem.

Consider now the problem: given v1; : : : ; vk in Rn, decide whether they span
Rn. To solve this problem, we consider the matrix A whose rows are given by the
coordinates of the vectors v1; : : : ; vk with respect to the canonical basis of Rn. We
row-reduce A and obtain its reduced echelon-form Aref . Then v1; : : : ; vk span Rn if
and only if the rows of Aref span Rn. This is the case if and only if Aref has a pivot
in every column.

Next, consider the following trickier problem: given some vectors v1; : : : ; vk in
Rn, find a subset of fv1; : : : ; vkg which forms a basis of Rn. Of course, if v1; : : : ; vk
do not span Rn, then the problem has no solution (and we can test this using the
procedure described in the previous paragraph). Assume now that v1; : : : ; vk span
Rn. Let A be the matrix whose columns are given by the coordinates of v1; : : : ; vk
in the canonical basis of Rn. We leave it to the reader to convince himself that those
vectors vi corresponding to columns of A containing a pivot form a basis of Rn.
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Example 4.57. Consider the vectors v1 D .1; 0;�1; 0/, v2 D .0; 1;�1; 1/, v3 D
.2; 3;�12;�1/, v4 D .1; 1; 1; 1/, v5 D .1;�1; 0;�1/. We would like to find a
subset of these vectors which gives a basis of R4. Let us check first whether they
span R4. For that, we consider the matrix

A D

2
666664

1 0 �1 0

0 1 �1 1

2 3 �12 �1
1 1 1 1

1 �1 0 �1

3
777775
:

The row-reduction is

Aref D

2
666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

3
777775

and it has pivots in every column, thus v1; : : : ; v5 span R4.
Now, to solve the original problem, we consider the matrix

A0 D

2
664

1 0 2 1 1

0 1 3 1 �1
�1 �1 �12 1 0

0 1 �1 1 �1

3
775

whose columns are the coordinates of v1; v2; v3; v4; v5. Its row-reduction is

A0
ref D

2
664

1 0 0 0 1
3

0 1 0 0 � 2
3

0 0 1 0 0

0 0 0 1 � 1
3

3
775 :

The columns containing pivots are the first four, so v1; v2; v3; v4 form a basis of R4.
Note that we could have read whether v1; : : : ; v5 span R4 directly on A0, without

the need to introduce the matrix A. Indeed, it suffices to check that A0 has a pivot in
every row, which is the case.

Problem 4.58. Let S be the set

S D
8<
:

2
4
1

�2
0

3
5 ;
2
4
0

1

2

3
5 ;
2
4

�5
6

�8

3
5 ;
2
4
1

�2
1

3
5
9=
; :
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a) Show that S spans the space R3 and find a basis for R3 contained in S .
b) What are the coordinates of the vector c D .1; 1; 1/ with respect to the basis

found in a)?

Solution. a) Consider the matrix

A D
2
4
1 0 �5 1

�2 1 6 �2
0 2 �8 1

3
5 :

Its row-reduction is

Aref D
2
4
1 0 �5 0
0 1 �4 0
0 0 0 1

3
5 :

Since A has a pivot in each row, the columns of A span R3, thus S spans R3.
Considering the pivot columns ofA, we also deduce that a subset of S that forms

a basis of R3 consists of

2
4
1

�2
0

3
5,

2
4
0

1

2

3
5 and

2
4
1

�2
1

3
5.

b) Since

2
4
1 0 1 j 1

�2 1 �2 j 1
0 2 1 j 1

3
5 	

2
4
1 0 0 j 6
0 1 0 j 3
0 0 1 j �5

3
5 ;

the coordinates of c with respect to this basis given by the last column of the
matrix above, namely 6; 3;�5. �

Theorem 4.59. Let V be a finite dimensional vector space and letW be a subspace
of V . Then

a) W is finite dimensional and dimW � dimV . Moreover, we have equality if and
only if W D V .

b) Any basis of W can be extended to a basis of V .

Proof. Let n D dimV .

a) If S is any linearly independent set in W , then S is a linearly independent
set in V and so S has at most n elements by part a) of Theorem 4.52. Note
that if we manage to prove that W is finite dimensional, then the previous
observation automatically implies that dimW � n (as any basis of W is a
linearly independent set in W ). Suppose that W is not finite dimensional. Since
W is nonzero, we can choose w1 2 W nonzero. Since fw1g is not a spanning
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set for W , we can choose w2 2 W not in the span of w1. Assuming that
we constructed w1; : : : ;wk , simply choose any vector wkC1 in W but not in
the span of w1; : : : ;wk . Such a vector exists, since by assumption the finite
set fw1; : : : ;wkg is not a spanning set for W . By construction, w1; : : : ;wk are
linearly independent for all k. Thus w1; : : : ;wnC1 is a linearly independent set
with more than n elements in W , which is absurd. Thus W is finite dimensional
and dimW � n.

We still have to prove that dimW D n implies W D V . Let B be a basis
of W . Then B has n elements and is a linearly independent set in V . By part c)
of Theorem 4.52 B is a spanning set for V , and since it is contained in W , we
deduce that W D V .

b) Let d D dimW � n and let B be a basis of W . Let B 0 be a basis of V . By
Theorem 4.39 applied to the linearly independent set B in V and to the spanning
setB 0 in V , we can add n�d elements toB to make it a spanning set. This set has
n elements and is a spanning set, thus it is a basis of V (part c) of Theorem 4.52)
and contains B . This is exactly what we needed. �

The following result is very handy when estimating the dimension of a sum of
subspaces of a given vector space.

Theorem 4.60 (Grassmann’s formula). IfW1;W2 are subspaces of a finite dimen-
sional vector space V , then

dimW1 C dimW2 D dim.W1 CW2/C dim.W1 \W2/:

Proof. Let m D dimW1, n D dimW2 and k D dim.W1 \ W2/. Let B D
fv1; : : : ; vkg be a basis of W1 \ W2. Since W1 \ W2 is a subspace of both W1

and W2, Theorem 4.59 yields bases B1, B2 of W1 and W2 which contain B . Say
B1 D fv1; : : : ; vk; u1; : : : ; um�kg and B2 D fv1; : : : ; vk;w1; : : : ;wn�kg. We will
prove that the family

S D fv1; : : : ; vk; u1; : : : ; um�k;w1; : : : ;wn�kg

is a basis of W1 CW2, and so

dim.W1 CW2/ D k Cm � k C n � k D mC n � k;

as desired.
We start by proving that S is a spanning set for W1 C W2. Let x be any vector

in W1 CW2. By definition we can write x D x1 C x2 with x1 2 W1 and x2 2 W2.
Since B1 and B2 are spanning sets for W1 and W2, we can write

x1 D a1v1 C : : :C akvk C b1u1 C : : :C bm�kum�k
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and

x2 D c1v1 C : : :C ckvk C d1w1 C : : :C dn�kwn�k

for some scalars ai ; bj ; cl ; dr . Then

x D .a1Cc1/v1C: : :C.akCck/vkCb1u1C: : :Cbm�kum�kCd1w1C: : :Cdn�kwn�k

is in the span of S . Since x was arbitrary inW1CW2, it follows that S spansW1CW2.
Finally, let us prove that S is a linearly independent set inW1CW2. Suppose that

a1v1 C : : :C akvk C b1u1 C : : :C bm�kum�k C c1w1 C : : :C cn�kwn�k D 0

for some scalars ai ; bj ; cl . Then

a1v1 C ::C akvk C b1u1 C : : :C bm�kum�k D �.c1w1 C : : :C cn�kwn�k/:

The left-hand side belongs to W1 and the right-hand side belongs to W2, hence both
sides belong toW1\W2, and so they are linear combinations of v1; : : : ; vk . Thus we
can write

a1v1 C : : :C akvk C b1u1 C : : :C bm�kum�k D d1v1 C : : :C dkvk

for some scalars d1; : : : ; dk . Writing the previous relation as

.a1 � d1/v1 C : : :C .ak � dk/vk C b1u1 C : : :C bm�kum�k D 0

and using the fact that v1; : : : ; vk; u1; : : : ; um�k are linearly independent, it follows
that a1 D d1; : : : ; ak D dk and b1 D : : : D bm�k D 0. By symmetry we also obtain
c1 D : : : D cn�k D 0. Then a1v1 C : : :C akvk D 0 and since v1; : : : ; vk are linearly
independent, we conclude that a1 D : : : D ak D 0. Thus all scalars ai ; bj ; cl are 0
and S is a linearly independent set. This finishes the proof of the theorem. �

Remark 4.61. Suppose that W1;W2 are subspaces of a finite dimensional vector
space V , such that V D W1 ˚ W2. If B1 and B2 are bases for W1 and W2, then
B1 [ B2 is a basis for V . This follows from the proof of the previous theorem, or it
can simply be checked by unwinding definitions. More generally, if a vector space
V is the direct sum of subspaces W1; : : : ;Wn and Bi is a basis for Wi (1 � i � n),
then B1 [ : : :[Bn is a basis for V . We leave this as an easy exercise for the reader.

Problem 4.62. Let V1; V2; : : : ; Vk be subspaces of a finite dimensional vector
space V . Prove that

dim.V1 C V2 C : : :C Vk/ � dimV1 C dimV2 C : : :C dimVk:
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Solution. It suffices to prove the result for k D 2, as then an immediate induction
on k yields the result in general (noting that V1 C V2 C : : : C Vk D .V1 C V2/ C
V3 C : : :C Vk for k � 3). But for k D 2 this follows from

dim.V1 C V2/ D dimV1 C dimV2 � dim.V1 \ V2/ � dimV1 C dimV2: �

Problem 4.63. Let V be a finite dimensional vector space over a field F . Let U;W
be subspaces of V . Prove that V D U ˚W if and only if V D U CW and

dimV D dimU C dimW:

Solution. If V D U ˚W , then clearly V D U CW and we can obtain a basis of
V by patching a basis of U and one of W , so dimV D dimU C dimW . Suppose
now that V D U C W and dimV D dimU C dimW . We need to prove that
U \W D f0g. But

dim.U \W / D dimU C dimW � dim.U CW / D dimV � dimV D 0;

thus U \W D 0. �

4.5.1 Problems for Practice

1. Do the following two sets of vectors span the same subspace of R3?

X D f .1; 1; 0/; .3; 2; 2/ g and Y D f .7; 3; 8/; .1; 0; 2/; .8; 3; 10/ g

2. The set S consists in the following 5 matrices:

�
1 0

0 0

�
;

�
1 1

0 0

�
;

�
0 0

1 1

�
;

�
1 0

�1 0
�
;

�
0 0

1 0

�
:

(a) Determine a basis B of M2.R/ included in S .

(b) Write

�
1 2

3 4

�
as a linear combination of elements of B .

3. Let e1; e2; e3; e4 be the canonical basis of R4 and consider the vectors

v1 D e1 C e4; v2 D e3; v3 D e2; v4 D e2 C e4:

a) Are the subspaces Span.v1; v2/ and Span.v3; v4/ in direct sum position?
b) Are the subspaces Span.v1; v2; v3/ and Span.v4/ in direct sum position?
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4. Let V be the set of polynomials f with real coefficients of degree not exceeding
4 and such that f .1/ D f .�1/ D 0.

a) Prove that V is a subspace of the space of all polynomials with real
coefficients.

b) Find a basis of V and its dimension.

5. Let V be the set of vectors .x; y; z; t / 2 R4 such that x D z and y D t .

a) Prove that V is a subspace of R4.
b) Give a basis and the dimension of V .
c) Complete the basis found in b) to a basis of R4.

6. Consider the set V of vectors .x1; x2; x3; x4/ 2 R4 such that

x1 C x3 D 0 and x2 C x4 D 0:

a) Prove that V is a subspace of R4.
b) Give a basis and the dimension of V .
c) Let W be the span of the vectors .1; 1; 1; 1/, .1;�1; 1;�1/ and .1; 0; 1; 0/.

Give a basis ofW and find V CW and V \W (you are asked to give a basis
for each of these spaces).

7. A set of three linearly independent vectors can be chosen among

u D .1; 0;�1/; v D .2; 1; 1/ w D .4; 1;�1/; and x D .1; 1; 1/:

(a) Determine such a set and show that it is indeed linearly independent.
(b) Determine a nontrivial dependence relation among the four given vectors.

8. Exactly one of the vectors b1 D .7; 2; 5/ and b2 D .7; 2;�5/ can be written as
a linear combination of the column vectors of the matrix

A D
2
4
1 0 3

1 1 4

0 1 1

3
5 :

Determine which one and express it as a linear combination of the column
vectors of A.

9. Let V be the set of matrices A 2 Mn.C/ for which aij D 0 whenever i � j is
odd.

a) Prove that V is a subspace of Mn.C/ and that the product of two matrices
in V belongs to V .

b) Find the dimension of V as C-vector space.
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10. Let V be the set of matrices A 2 Mn.R/ such that

anC1�i;nC1�j D aij

for i; j 2 Œ1; n�.
a) Prove that V is a subspace of Mn.R/.
b) Find the dimension of V as R-vector space.

11. Find all real numbers x for which the vectors

v1 D .1; 0; x/; v2 D .1; 1; x/; v3 D .x; 0; 1/

form a basis of R3.
12. Let Pk D Xk.1 � X/n�k . Prove that P0; : : : ; Pn is a basis of the space of

polynomials with real coefficients, whose degree does not exceed n.
13. Let V be a vector space of dimension n over F2. Prove that for all d 2 Œ1; n�

the following assertions hold:

a) There are .2n � 1/.2n � 2/ : : : .2n � 2d�1/ d -tuples .v1; : : : ; vd / in V d such
that the family v1; : : : ; vd is linearly independent.

b) There are .2n � 1/.2n � 2/ : : : .2n � 2n�1/ invertible matrices in Mn.F2/.
c) There are

.2n � 1/.2n�1 � 1/ : : : .2n�dC1 � 1/
.2d � 1/.2d�1 � 1/ : : : .2 � 1/

subspaces of dimension d in V .



Chapter 5
Linear Transformations

Abstract While the previous chapter dealt with individual vector spaces, in this
chapter we focus on the interaction between two vector spaces by studying linear
maps between them. Using the representation of linear maps in terms of matrices,
we obtain some rather surprising results concerning matrices, which would be
difficult to prove otherwise.

Keywords Linear maps • Kernel • image • Projection • Symmetry • Stable
subspace • Change of basis • Matrix • Rank

The goal of this chapter is to develop the theory of linear maps between vector
spaces. In other words, while the previous chapter dealt with basic properties of
individual vector spaces, in this chapter we are interested in the interactions between
two vector spaces. We will see that one can understand linear maps between finite
dimensional vector spaces in terms of matrices and, more importantly and perhaps
surprisingly at first sight, that we can study properties of matrices using linear maps
and properties of vector spaces that were established in the previous chapter.

5.1 Definitions and Objects Canonically Attached
to a Linear Map

Unless stated otherwise, all vector spaces will be over a field F , which the reader
can take R or C. In the previous chapter we defined and studied the basic properties
of vector spaces. In this chapter we will deal with maps between vector spaces.
We will not consider all maps, but only those which are compatible with the
algebraic structures on vector spaces, namely addition and scalar multiplication.
More precisely:

Definition 5.1. Let V;W be vector spaces over F . A linear map (or linear
transformation or homomorphism) between V and W is a map T W V ! W

satisfying the following two properties:
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T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__5

149
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1) T .v1 C v2/ D T .v1/C T .v2/ for all vectors v1; v2 2 V , and
2) T .cv/ D cT .v/ for all v 2 V and all scalars c 2 F .

The reader will notice the difference between this definition and the definition
of linear maps in other parts of mathematics: very often in elementary algebra or in
real analysis when we refer to a linear map we mean a map f W R ! R of the form
f .x/ D ax C b for some real numbers a; b. Such a map is a linear map from the
point of view of linear algebra if and only if b D 0 (we refer to the more general
maps x ! ax C b as affine maps in linear algebra).

In practice, instead of checking separately that T respects addition and scalar
multiplication, it may be advantageous to prove directly that

T .v1 C cv2/ D T .v1/C cT .v2/

for all vectors v1; v2 2 V and all scalars c 2 F .

Problem 5.2. If T W V ! W is a linear transformation, then T .0/ D 0 and
T .�v/ D �T .v/ for all v 2 V .

Solution. Since T is linear, we have

T .0/ D T .0C 0/ D T .0/C T .0/

thus T .0/ D 0. Similarly,

T .�v/ D T ..�1/v/ D .�1/T .v/ D �T .v/: �

Example 5.3. a) If V is a vector space over F and c 2 F is a scalar, then the map
T W V ! V sending v to cv is linear (this follows from the definition of a vector
space). For c D 0 we obtain the zero map, which we simply denote 0, while
for c D 1 we obtain the identity map, denoted id. In general, linear maps of the
form v ! cv for some scalar c 2 F are called scalar linear maps.

b) Consider the vector space V D RŒX� of polynomials with real coefficients
(we could allow coefficients in any field). The map T W V ! V sending P
to its derivative P 0 is linear, as follows immediately from its definition. Note
that if degP � n, then degP 0 � n, thus the map T restricts to a linear map
T W RnŒX� ! RnŒX� for all n (recall that RnŒX� is the vector subspace of V
consisting of polynomials whose degree does not exceed n).

c) The map T W R2 ! R defined by T .x; y/ D xyC1 is not linear, since T .0; 0/ D
1 ¤ 0 (by Problem 5.2). Similarly, the map T W R2 ! R2 defined by T .x; y/ D
.x; y C 1/ is not linear.

d) Consider the vector space V of continuous real-valued maps on Œ0; 1�. Then the
map T W V ! R sending f 2 V to

R 1
0
f .x/dx is linear. This follows from

properties of integration.
e) Consider the trace map Tr W Mn.F / ! F defined by
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Tr.A/ D a11 C a22 C : : :C ann if A D Œaij �:

By definition of the operations in Mn.F /, this map is linear. It has the extremely
important property that

Tr.AB/ D Tr.BA/

for all matrices A;B . Indeed, one checks using the product rule that both terms
are equal to

Pn
i;jD1 aij bj i .

f) In the chapter devoted to basic properties of matrices, we saw that any matrix
A 2 Mm;n.F / defines a linear map F n ! Fm via X ! AX . We also
proved in that chapter that any linear map T W F n ! Fm comes from a
unique matrix A 2 Mm;n.F /. For example, the map T W R3 ! R2 defined
by T .x1; x2; x3/ D .x1; x2/ for all x1; x2; x3 2 R is linear and associated with

the matrix A D
�
1 0 0

0 1 0

�
. The linear maps T W F n ! Fm are exactly the maps

T .x1; : : : ; xn/ D .a11x1 C : : :C a1nxn; : : : ; am1x1 C : : :C amnxn/

with aij 2 F .
g) We introduce now a fundamental class of linear transformations: projections

onto subspaces. Suppose that V is a vector space over a field F and that W1;W2

are subspaces of V such that V D W1 ˚W2. The projection onto W1 along W2

is the map p W V ! W1 defined as follows: for each v 2 V , p.v/ is the unique
vector in W1 for which v � p.v/ 2 W2. This makes sense, since by assumption v
can be uniquely written as v1 C v2 with v1 2 W1 and v2 2 W2, and so necessarily
p.v/ D v1. It may not be apparently clear that the map p is linear, but this is
actually not difficult: assume that v; v0 2 V and let w D p.v/ and w0 D p.v0/.
Then w;w0 2 W1 so w C w0 2 W1, and

.v C v0/ � .w C w0/ D .v � w/C .v0 � w0/ 2 W2;

so by definition

p.v C v0/ D w C w0 D p.v/C p.v0/:

We leave it to the reader to check that p.av/ D ap.v/ for v 2 V and a 2 F ,
using a similar argument. Note that p.v/ D v for all v 2 W1, but p.v/ D 0 for
all v 2 W2. In general, we call a linear map T W V ! V a projection if there is
a decomposition V D W1 ˚W2 such that T is the projection onto W1 along W2.

h) Assume that we are in the situation described in g). We will define a
second fundamental class of linear maps namely symmetries with respect to
subspaces. More precisely, for any decomposition V D W1 ˚W2 of V into the
direct sum of two subspaces W1;W2 we define the symmetry s W V ! V with
respect to W1 along W2 as follows: take a vector v 2 V , write it v D w1 C w2
with w1 2 W1 and w2 2 W2, and set
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s.v/ D w1 � w2:

Again, it is not difficult to check that s is a linear map. Note that s.v/ D v
whenever v 2 W1 and s.v/ D �v whenever v 2 W2. Note that if F D F2,
then s is the identity map, since �v D v for all v 2 V if V is a vector space
over F2. In general a linear map T W V ! V is called a symmetry if there is a
decomposition V D W1 ˚ W2 such that T is the symmetry with respect to W1

along W2.

Suppose that T W V ! V is a linear transformation. If W is a subspace of V ,
there is no reason to have T .W / � W . However, the subspacesW with this property
play an absolutely crucial role in the study of linear maps and deserve a special name
and a definition. They will be extensively used in subsequent chapters dealing with
deeper properties of linear maps.

Definition 5.4. Let T W V ! V be a linear map on a vector space V . A subspace
W of V is called stable under T or T -stable if T .W / � W .

Problem 5.5. Consider the map T W R2 ! R2 sending .x1; x2/ to .x2;�x1/. Find
all subspaces of R2 which are stable under T .

Solution. Let W be a subspace of R2 which is stable under T . Since R2 and f0g
are obviously stable under T , let us assume that W ¤ f0g;R2. Then necessarily
dimW D 1, that is W D Rv for some nonzero vector v D .x1; x2/. Since W is
stable under T , there is a scalar c 2 R such that T .v/ D cv, that is .x2;�x1/ D
.cx1; cx2/. We deduce that x2 D cx1 and �x1 D cx2 D c2x1. Thus .c2 C 1/x1 D 0

and since c 2 R, we must have x1 D 0 and then x2 D 0, thus v D 0, a contradiction.
This shows that the only subspaces stable under T are R2 and f0g. �

Remark 5.6. The result of the previous problem is no longer the same if we replace
R by C. In this new situation the line spanned by .1; i/ 2 C2 is stable under T .

If W is a stable subspace, then T restricts to a linear map T W W ! W . For
instance, one-dimensional stable subspaces (i.e., lines in V stable under T ) will be
fundamental objects associated with linear transformations on finite dimensional
vector spaces. The following exercise studies those linear maps T for which every
line is a stable subspace.

Problem 5.7. Let V be a vector space over some field F and let T W V ! V be
a linear transformation. Suppose that all lines in V are stable subspaces under T .
Prove that there is a scalar c 2 F such that T .x/ D cx for all x 2 V .

Solution. Let x 2 V be nonzero and consider the line L D Fx spanned by x.
By hypothesis T .L/ � L, thus we can find a scalar cx such that T .x/ D cx � x. We
want to prove that we can choose cx independently of x.

Suppose that x and y are linearly independent (in particular nonzero). Then
x C y ¤ 0 and the equality T .x C y/ D T .x/C T .y/ can be written

cxCy � .x C y/ D cx � x C cy � y
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or equivalently

.cxCy � cx/ � x C .cxCy � cy/ � y D 0:

This forces cxCy D cx D cy . Next, suppose that x and y are nonzero and linearly
dependent. Thus y D ax for some nonzero scalar a. Then T .y/ D aT .x/ can
be written cy � y D acx � x or equivalently cy � y D cx � y and forces cx D cy .
Thus as long as x; y are nonzero vectors of V , we have cx D cy . Letting c be the
common value of cx (when x varies over the nonzero vectors in V ) yields the desired
result. �

Let V and W be vector spaces over F and let us denote Hom.V;W / the set of
linear transformations between V andW . It is a subset of the vector spaceM.V;W /
of all maps f W V ! W . Recall that the addition and scalar multiplication in
M.V;W / are defined by

.f C g/.v/ D f .v/C g.v/; .cf /.v/ D cf .v/

for f; g 2 M.V;W /, c 2 F and v 2 V .

Proposition 5.8. Let V;W be vector spaces. The set Hom.V;W / of linear trans-
formations between V and W is a subspace of M.V;W /.

Proof. We need to prove that the sum of two linear transformations is a linear
transformation and that cT is a linear transformation whenever c is a scalar and
T is a linear transformation. Both assertions follow straight from the definition of a
linear transformation. �

We introduce now a fundamental definition:

Definition 5.9. The kernel (or null space) of a linear transformation T W V ! W is

kerT D fv 2 V; T .v/ D 0g:

The image (or range) Im.T / of T is the set

Im.F / D fT .v/jv 2 V g � W:

The following criterion for injectivity is extremely useful and constantly used
when dealing with linear maps.

Proposition 5.10. If T W V ! W is a linear transformation, then T is injective if
and only if kerT D f0g.
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Proof. Since T .0/ D 0, it is clear that kerT D f0g if T is injective. Conversely,
assume that kerT D f0g. If T .v1/ D T .v2/, then

T .v1 � v2/ D T .v1/ � T .v2/ D 0;

thus v1 � v2 2 kerT and so v1 D v2. Thus T is injective. �

Problem 5.11. Find the dimension of the kernel of the linear map determined by
the matrix

A D
2
4
1 �2 1 0

�1 2 1 2

�2 4 0 2

3
5 2 M3;4.R/:

Solution. Let T be the corresponding linear map, so that

T .x1; x2; x3; x4/ D .x1 � 2x2 C x3;�x1 C 2x2 C x3 C 2x4;�2x1 C 4x2 C 2x4/:

A vector x D .x1; : : : ; x4/ belongs to ker.T / if and only

8<
:

x1 � 2x2 C x3 D 0

�x1 C 2x2 C x3 C 2x4 D 0

�2x1 C 4x2 C 2x4 D 0

The matrix associated with this system is A and row-reduction yields

Aref D
2
4
1 �2 0 �1
0 0 1 1

0 0 0 1

3
5 :

Thus the previous system is equivalent to
�
x1 � 2x2 � x4 D 0

x3 C x4 D 0

We conclude that

ker.T / D f.x1; x2; 2x2 � x1; x1 � 2x2/jx1; x2 2 Rg:
The last space is the span of the vectors v1 D .1; 0;�1; 1/ and v2 D .0; 1; 2;�2/
and since they are linearly independent (as x1v1 C x2v2 D 0 is equivalent to
.x1; x2; 2x2 � x1; x1 � 2x2/ D .0; 0; 0; 0/ and so to x1 D x2 D 0), it follows that
dim kerT D 2. �

Problem 5.12. Give a basis for the kernel of the linear map T W R3 ! R3 given by

T .x; y; z/ D .x � 2y C z; 2x � 3y C z; x C y � 2z; 3x � y � 2z/:
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Solution. We need to find those .x; y; z/ for which T .x; y; z/ D 0, in other words
we need to solve the system

8̂
<̂
ˆ̂:

x � 2y C z D 0

2x � 3y C z D 0

x C y � 2z D 0

3x � y � 2z D 0

The matrix of this homogeneous system is

A D

2
664

1 �2 1

2 �3 1

1 1 �2
3 �1 �2

3
775

and row-reduction yields

Aref D

2
664

1 0 �1
0 1 �1
0 0 0

0 0 0

3
775 :

Thus the system is equivalent to
�
x � z D 0

y � z D 0

and its solutions are given by .x; x; x/ with x 2 R. In other words,

Ker.T / D f.x; x; x/jx 2 Rg
and a basis is given by the vector .1; 1; 1/. �

Problem 5.13. LetA D
�
1 1

1 1

�
and let T W M2.R/ ! M2.R/ be the map defined by

F.X/ D AX:

(a) Prove that F is a linear transformation.
(b) Find the dimension of ker.F / and a basis for ker.F /.

Solution. (a) For any two matrices X and Y in M2.R/ and any scalar c we have

F.X C cY / D A.X C cY / D AX C cAY D F.X/C cF.Y /;

thus F is a linear transformation.
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(b) We need to find the dimension and a basis of the space of matrices that are
solutions of the matrix equation AX D 0. This equation is equivalent to

�
x11 C x21 x12 C x22
x11 C x21 x12 C x22

�
D
�
0 0

0 0

�

or x21 D �x11 and x22 D �x12. Thus

ker.F / D f
�
x11 x12

�x11 �x12
�

jx11; x12 2 Rg:

This last space is clearly two-dimensional, with a basis given by

�
1 0

�1 0
�

and

�
0 1

0 �1
�
:

�

Proposition 5.14. If T W V ! W is a linear transformation, then kerT and Im.T /
are subspaces of V , respectively W . Moreover, kerT is stable under T , and if
V D W then Im.T / is stable under T .

Proof. Let v1; v2 in kerT and let c 2 F . We need to prove that v1 C cv2 2 kerT .
Indeed,

T .v1 C cv2/ D T .v1/C cT .v2/ D 0C c � 0 D 0:

Similarly, if w1;w2 2 Im.T /, then we can write w1 D T .v1/ and w2 D T .v2/ for
some v1; v2 2 V . Then

w1 C cw2 D T .v1/C cT .v2/ D T .v1 C cv2/ 2 Im.T /

for all scalars c 2 F , thus Im.T / is a subspace of W .
It is clear that Im.T / is stable under T if V D W . To see that kerT is stable

under T , take v 2 kerT , so that T .v/ D 0. Then T .T .v// D T .0/ D 0, thus
T .v/ 2 kerT and so kerT is stable. �

The following problem gives a characterization of projections as those linear
maps T for which T ı T D T .

Problem 5.15. Let V be a vector space over a field F and let T W V ! V be a
linear map on V . Prove that the following statements are equivalent:

a) T is a projection
b) We have T ı T D T .

Moreover, if this is the case, then kerT ˚ Im.T / D V .
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Solution. Assume that a) holds and let us prove b). Assume that T is the projection
onto W1 along W2 for some decomposition V D W1 ˚ W2. Take v 2 V and write
v D w1Cw2 with w1 2 W1 and w2 2 W2. Then T .v/ D w1 and T .T .v// D T .w1/ D
w1, hence T .T .v// D T .v/ for all v 2 V and so T ı T D T and b) holds.

Assume now that T ı T D T and let us prove b). We start by proving that
kerT ˚ Im.T / D V . Suppose that v 2 kerT \ Im.T /, so that v D T .w/ for some
w 2 V , and T .v/ D 0. We deduce that

0 D T .v/ D T .T .w// D T .w/

hence v D T .w/ D 0 and kerT \ Im.T / D f0g. Next, let v 2 V and put v1 D
v � T .v/ and v2 D T .v/. Clearly v D v1 C v2 and v2 2 Im.T /. Moreover,

T .v1/ D T .v � T .v// D T .v/ � T .T .v// D 0

and so v1 2 kerT . Hence v 2 kerT C Im.T / and kerT ˚ Im.T / D V holds.
SetW1 D Im.T / andW2 D kerT . By assumption V D W1˚W2 and T .v/ 2 W1

for all v 2 W . It suffices therefore to prove that v � T .v/ 2 W2 for all v 2 V , as this
implies that T is the projection onto W1 along W2. But v � T .v/ 2 W2 if and only
if T .v � T .v// D 0, that is T .v/ D T 2.v/, which follows from our assumption that
b) holds. Note that the last statement of the problem has already been proved. �

Remark 5.16. We have a similar statement for symmetries assuming that F 2
fQ;R;Cg (so we exclude F D F2). Namely, if V is a vector space over F and
T W V ! V is a linear map, then the following statements are equivalent:

a) T is a symmetry.
b) T ı T D id, the identity map of V (sending every vector of V to itself).

Moreover, if this is the case then V D Ker.T � id/˚ Ker.T C id/.

5.1.1 Problems for practice

In the next problems F is a field.

1. Let f W C ! C be a R-linear map. Prove the existence of complex numbers
a; b such that f .z/ D az C bz for all z 2 C.

2. Consider the map f W R4 ! R3 defined by

f .x1; x2; x3; x4/ D .x1 C x2 C x3 C x4; 2x1 C x2 � x3 C x4; x1 � x2 C x3 � x4/:

a) Prove that f is a linear map.
b) Give a basis for the kernel of f .
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3. Let V be the space of polynomials with real coefficients whose degree does not
exceed 3, and let the map f W V ! R4 be defined by

f .P / D .P.0/; P.1/; P.�1/; P.2//:

a) Prove that f is a linear map.
b) Is f injective?

4. Let n be a positive integer and let V be the space of real polynomials whose
degree does not exceed n. Consider the map

f W V ! V; f .P.X// D P.X/C .1 �X/P 0.X/;

where P 0.X/ is the derivative of P .

a) Explain why f is a well-defined linear map.
b) Give a basis for the kernel of f .

5. Find all subspaces of R2 which are stable under the linear transformation

T W R2 ! R2; T .x; y/ D .x C y;�x C 2y/:

6. Let V be the space of polynomials with real coefficients whose degree does not
exceed n. Let T be the linear transformation on V sending P to its derivative.
Find all subspaces of V which are stable under T .

7. Let T W RŒX� ! RŒX� be the map defined by

T .P.X// D P.X/ � 2.X2 � 1/P 00.X/:

a) Prove that T is a linear map.
b) Prove that for all n � 0, the space of polynomials with real coefficients

whose degree does not exceed n is stable under T .

8. Let V be a vector space over a field F and let T1; : : : ; Tn W V ! V be linear
transformations. Prove that

n\
iD1

kerTi 
 ker

 
nX
iD1

Ti

!
:

9. Let V be a vector space over a field F and let T1; T2 W V ! V be linear
transformations such that T1 ı T2 D T1 and T2 ı T1 D T2. Prove that
kerT1 D kerT2.

10. Let V be a vector space over F and let T W V ! V be a linear transformation
such that

kerT D kerT 2 and ImT D ImT 2:
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Prove that

V D kerT ˚ ImT:

11. For each of the following maps T W R3 ! R3, check that T is linear and then
check whether ker.T / and Im.T / are in direct sum position.

a) T .x; y; z/ D .x � 2y C z; x � z; x � 2y C z/.
b) T .x; y; z/ D .3.x C y C z/; 0; x C y C z/.

12. Let f W R ! R be a map such that f .x C y/ D f .x/ C f .y/ for all real
numbers x; y. Prove that f is a linear map of Q-vector spaces between R and
itself.

13. (Quotient space) Let V be a finite dimensional vector space over F and let
W � V be a subspace. For a vector v 2 V , let

Œv� D fv C w W w 2 W g:
Note that Œv1� D Œv2� if v1 � v2 2 W . Define the quotient space V=W to be
fŒv� W v 2 V g. Define an addition and scalar multiplication on V=W by Œu� C
Œv� D Œu C v� and aŒv� D Œav�. We recall that the addition and multiplication
above are well defined and V=W equipped with these operations is a vector
space.

a) Show that the map � W V ! V=W defined by �.v/ D Œv� is linear with
kernel W .

b) Show that dim.W /C dim.V=W / D dim.V /.
c) Suppose U � V is any subspace with W ˚ U D V . Show that �jU W U !
V=W is an isomorphism, i.e., a bijective linear map.

d) Let T W V ! U be a linear map, let W � kerT be a subspace of V , and
� W V ! V=W be the projection onto the quotient space. Show that there is
a unique linear map S W V=W ! U such that T D S ı � .

5.2 Linear Maps and Linearly Independent Sets

The following result relates linear maps and notions introduced in the previous
chapter: spanning sets, linearly independent sets. In general, if T W V ! W is
linear, it is not true that the image of a linearly independent set in V is linearly
independent inW (think about the zero linear map). However, if T is injective, then
this is the case, as the following proposition shows (dealing also with the analogous
result for spanning sets).

Proposition 5.17. Let T W V ! W be a linear transformation.

a) If T is injective and if L is a linearly independent set in V , then T .L/ WD
fT .l/; l 2 Lg is a linearly independent set in W .
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b) If T is surjective and if S is a spanning set in V , then T .S/ is a spanning set
in W .

c) If T is bijective and if B is a basis in V , then T .V / is a basis in W .

Proof. Part c) is simply a combination of a) and b), which we prove separately.

a) Suppose we have

c1T .l1/C � � � C cnT .ln/ D 0

for some scalars c1; : : : ; cn. The previous relation can be written as T .c1l1C� � �C
cnln/ D 0, thus c1l1 C � � � C cnln 2 ker T . Since T is injective, we deduce that
c1l1 C � � � C cnln D 0. Hence c1 D c2 D � � � D cn D 0. Thus T .L/ is linearly
independent.

b) Let w 2 W . Since T is surjective, there is v 2 V such that T .v/ D w. Since S
is a spanning set in V , we can write v as a linear combination of some elements
s1; : : : ; sn of S , say v D c1s1 C : : :C cnsn for some scalars c1; : : : ; cn. Then

w D T .v/ D T .c1s1 C : : :C cnsn/ D c1T .s1/C : : :C cnT .sn/:

Thus w is in the span of T .s1/; : : : ; T .sn/, thus in the span of T .S/. Since w 2 W
was arbitrary, the result follows. �

The following corollary is absolutely fundamental (especially part c)). It follows
easily from the previous proposition and the rather subtle properties of finite
dimensional vector spaces discussed in the previous chapter.

Corollary 5.18. Let V and W be finite dimensional vector spaces and let
T W V ! W be a linear transformation.

a) If T is injective, then dimV � dimW .
b) If T is surjective, then dimV � dimW .
c) If T is bijective, then dimV D dimW .

Proof. Again, part c) is a consequence of a) and b). For a), let B be a basis of V
and let v1; : : : ; vn be its elements. By Proposition 5.17 T .v1/; : : : ; T .vn/ are linearly
independent vectors in W . Thus dimW � n D dimV .

The argument for b) is similar, since Proposition 5.17 implies that the vectors
T .v1/; : : : ; T .vn/ form a spanning set for W , thus n � dimW . �

We can sometimes prove the existence of a linear map T without having to
explicitly write down the value of T .x/ for each vector x in its domain: if the domain
is finite dimensional (this hypothesis is actually unnecessary), it suffices to give the
images of the elements in a basis of the domain. More precisely:

Proposition 5.19. Let V;U be vector spaces over a field F . Let fv1; v2; : : : ; vng be
a basis of V and let fu1; u2; : : : ; ung be any set of vectors in U . Then there is a
unique linear transformation T W V ! U such that

T .v1/ D u1; T .v2/ D u2; : : : ; T .vn/ D un:
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Proof. We start by proving the uniqueness. Suppose that we have two linear
transformations T; T 0 W V ! U such that T .vi / D T 0.vi / D ui for 1 � i � n. Then
T � T 0 is a linear transformation which vanishes at v1; : : : ; vn. Thus ker.T � T 0/,
which is a subspace of V , contains the span of v1; : : : ; vn, which is V . It follows that
T D T 0.

Let us prove existence now. Take any vector v 2 V . Since v1; : : : ; vn form a basis
of V , we can uniquely express v as a linear combination v D a1v1 C : : : C anvn
for some scalars a1; : : : ; an 2 F . Define T .v/ D a1u1 C : : :C anun. By definition
T .vi / D ui for all i , and it remains to check that T is a linear transformation. Let
v; v0 2 V and let c be a scalar. Write v D a1v1C: : :Canvn and v0 D b1v1C: : :Cbnvn
for some scalars ai ; bj 2 F . Then

v C cv0 D .a1 C cb1/v1 C : : :C .an C cbn/vn;

thus

T .v C cv0/ D .a1 C cb1/u1 C : : :C .an C cbn/un D

.a1u1 C : : :C anun/C c.b1u1 C : : :C bnun/ D T .v/C cT .v0/;

which proves the linearity of T and finishes the proof. �

Problem 5.20. Find a linear transformation T W R3 ! R4, whose image is the
linear span of the set of vectors

f.1; 2; 1; 1/; .3; 1; 5; 2/g:

Solution. Let e1 D .1; 0; 0/, e2 D .0; 1; 0/ and e3 D .0; 0; 1/ be the standard basis
of R3. Let v1 D .1; 2; 1; 1/ and v2 D .3; 1; 5; 2/. By Proposition 5.19 there is a
linear transformation T W R3 ! R4 such that

T .e1/ D v1; T .e2/ D v2; T .e3/ D 0:

The image of T is precisely the set of linear combinations of T .e1/, T .e2/ and
T .e3/, and this is clearly the span of v1; v2.

We note that T is very far from being unique: we could have taken T .e3/ D v2
for instance (there are actually lots of linear maps with the desired property). �

Problem 5.21. Let

v1 D .1; 0; 0/; v2 D .1; 1; 0/; v3 D .1; 1; 1/

and let T W R3 ! R2 be a linear transformation such that

T .v1/ D .3; 2/; T .v2/ D .�1; 2/; T .v3/ D .0; 1/:

Compute the value of T .5; 3; 1/.
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Solution. We look for scalars a; b; c such that

.5; 3; 1/ D av1 C bv2 C cv3;

as then, by linearity,

T .5; 3; 1/ D aT .v1/C bT .v2/C cT .v3/:

The equality

.5; 3; 1/ D av1 C bv2 C cv3;

is equivalent to

.5; 3; 1/ D .a; 0; 0/C .b; b; 0/C .c; c; c/ D .aC b C c; b C c; c/:

Thus c D 1, b C c D 3 and aC b C c D 5, which gives

c D 1; b D 2; a D 2:

It follows that

T .5; 3; 1/ D 2T .v1/C 2T .v2/C T .v3/ D .6; 4/C .�2; 4/C .0; 1/ D .4; 9/: �

Remark 5.22. One can easily check that v1; v2; v3 form a basis of R3, thus such a
map exists by Proposition 5.19.

Problem 5.23. Determine the linear transformation T W R3 ! R3 such that

T .1; 0; 1/ D .1; 0; 0/; T .0; 1; 1/ D .0; 1; 0/; T .0; 0; 1/ D .1; 1; 1/:

Solution. We start with an arbitrary vector v D .x1; x2; x3/ and look for scalars
k1; k2; k3 such that

v D k1.1; 0; 1/C k2.0; 1; 1/C k3.0; 0; 1/:

If we find such scalars, then

T .v/ D k1T .1; 0; 0/C k2T .0; 1; 1/C k3T .0; 0; 1/ D

.k1; 0; 0/C .0; k2; 0/C .k3; k3; k3/ D .k1 C k3; k2 C k3; k3/:

The equality

v D k1.1; 0; 1/C k2.0; 1; 1/C k3.0; 0; 1/
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is equivalent to

.x1; x2; x3/ D .k1; k2; k1 C k2 C k3/

or

k1 D x1; k2 D x2; k3 D x3 � x1 � x2:

Thus for all .x1; x2; x3/ 2 R3

T .x1; x2; x3/ D .k1 C k3; k2 C k3; k3/ D .x3 � x2; x3 � x1; x3 � x1 � x2/: �

5.2.1 Problems for practice

1. Describe the linear transformation T W R3 ! R3 such that

T .0; 1; 1/ D .1; 2; 3/; T .1; 0; 1/ D .1;�1; 2/

and

T .1; 1; 0/ D .�1;�1;�1/:

2. Is there a linear map T W R2 ! R2 such that

T .1; 1/ D .1; 2/; T .1;�1/ D .�1; 2/; T .2; 3/ D .1; 2/‹

3. Find all real numbers x for which there is a linear map T W R3 ! R3 such that

T .1; 1; 1/ D .1; x; 1/; T .1; 0;�1/ D .1; 0; 1/

and

T .�1;�1; 0/ D .1; 2; 3/; T .1;�1;�1/ D .1; x;�2/:

4. Find a linear map T W R4 ! R3 whose image is the span of the vectors
.�1;�1;�1/ and .1; 2; 3/.

5. a) Let V be the space of polynomials with real coefficients whose degree does
not exceed 3. Find all positive integers n for which there is a bijective linear
map between V and Mn.R/.

b) Answer the same question if the word bijective is replaced with injective.
c) Answer the same question if the word bijective is replaced with surjective.
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5.3 Matrix Representation of Linear Transformations

We have already seen in the chapter devoted to matrices that all linear maps
T W F n ! Fm are described by matrices A 2 Mm;n.F /. We will try to extend
this result and describe linear maps F W V ! W between finite dimensional
vector spaces V;W in terms of matrices. The description will not be canonical,
we will need to fix bases in V and W . All vector spaces in this section are finite
dimensional over F .

It will be convenient to introduce the following definition:

Definition 5.24. A linear transformation T W V ! W is called an isomorphism of
vector spaces or invertible if it is bijective. In this case we write V ' W (the map
T being understood).

Problem 5.25. Let T W V ! W be an isomorphism of vector spaces. Prove that its
inverse T �1 W W ! V is an isomorphism of vector spaces.

Solution. The map T �1 is clearly bijective, with inverse T . We only need to check
that T �1 is linear, i.e.

T �1.w1 C cw2/ D T �1.w1/C cT �1.w2/

for all vectors w1;w2 2 W and all scalars c 2 F . Let v1 D T �1.w1/ and v2 D
T �1.w2/. Then T .v1/ D w1 and T .v2/ D w2, thus

T �1.w1 C cw2/ D T �1.T .v1/C cT .v2// D T �1.T .v1 C cv2// D v1 C cv2;

as needed. �

It turns out that we can completely classify finite dimensional nonzero vector
spaces up to isomorphism: for each positive integer n, all vector spaces of
dimension n are isomorphic to F n. More precisely:

Theorem 5.26. Let n be a positive integer and let V be a vector space of dimension
n over F . If B D .e1; : : : ; en/ is a basis, then the map iB W F n ! V sending
.x1; : : : ; xn/ to x1e1 C x2e2 C : : :C xnen is an isomorphism of vector spaces.

Proof. It is clear that iB is linear and by definition of a basis it is bijective. The result
follows. �

Remark 5.27. Conversely, if T W V ! W is an isomorphism of vector spaces, then
necessarily dimV D dimW . This is Corollary 5.18 (recall that we only work with
finite dimensional vector spaces).

Thus the choice of a basis in a vector space of dimension n allows us to identify
it with F n. Consider now a linear map T W V ! W and suppose that dimV D n

and dimW D m. Choose bases BV D .v1; : : : ; vn/ and BW D .w1; : : : ;wm/ in V
and W , respectively. By the previous theorem we have isomorphisms

iBV W F n ! V; iBW W Fm ! W:
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We produce a linear map ' by composing the maps iBV W F n ! V , T W V ! W

and i�1BW W W ! Fm:

'T W F n ! Fm; 'T D i�1BW ı T ı iBV :

Since 'T is a linear map between F n and Fm it is uniquely described by a matrix
A 2 Mm;n.F /. This is the matrix of T with respect to the bases BV and BW .
It highly depends on the two bases, so we prefer to denote it MatBW ;BV .T /. We put
BW (i.e., the basis on the target of T ) before BV (the basis at the source of T ) in
the notation of the matrix for reasons which will be clear later on. When V D W

and we fix a basis B of V , we write MatB.T / instead of MatB;B.T /, the matrix of
T with respect to the basis B both at the source and target of T .

The previous construction looks rather complicated, but it is very natural: we
have a parametrization of linear maps between F n and Fm by matrices, and we can
extend it to a description of linear maps between V and W by identifying V with
F n and W with Fm, via the choice of bases in V and W . Note the fundamental
relation

iBW .AX/ D T .iBV .X// if X 2 F n and A D MatBW ;BV .T /: (5.1)

Taking for X a vector in the canonical basis of F n, we can make everything
completely explicit: let e1; : : : ; en be the canonical basis of F n and f1; : : : ; fm the
canonical basis of Fm. If A D Œaij �, then by definition Aei D a1if1 C : : :C amifm,
thus for X D ei we have

iBW .AX/ D iBW .a1if1 C a2if2 C : : :C amifm/

D a1iw1 C a2iw2 C : : :C amiwm

On the other hand, iBV .ei / D vi , thus relation (5.1) is equivalent to the fundamental
and more concrete relation

T .vi / D a1iw1 C a2iw2 C : : :C amiwm: (5.2)

In other words:

Proposition 5.28. Let T W V ! W be a linear transformation and let BV D
.v1; : : : ; vn/; BW D .w1; : : : ;wm/ be bases in V and W . Then column j of
MatBW ;BV .T / 2 Mm;n.F / consists in the coordinates of T .vi / with respect to the
basis BW . In other words, if MatBW ;BV .T / D Œaij � then for all 1 � i � n we have

T .vi / D
mX
jD1

aj iwj :
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Problem 5.29. Find the matrix representation of the linear transformation T W
R3 ! R3 defined by

T .x; y; z/ D .x C 2y � z; y C z; x C y � 2z/

with respect to the standard basis of R3.

Solution. Let e1 D .1; 0; 0/, e2 D .0; 1; 0/, e3 D .0; 0; 1/ be the standard basis
of R3. Then

T .e1/ D T .1; 0; 0/ D .1; 0; 1/ D 1e1 C 0e2 C 1e3

T .e2/ D T .0; 1; 0/ D .2; 1; 1/ D 2e1 C 1e2 C 1e3

T .e3/ D T .0; 0; 1/ D .�1; 1;�2/ D �1e1 C 1e2 � 2e3:

Thus the matrix representation of T with respect to the standard basis is

2
4
1 2 �1
0 1 1

1 1 �2

3
5 :

�

Problem 5.30. Let Pn be the vector space of polynomials with real coefficients, of
degree less than n. A linear transformation T W P3 ! P5 is given by

T .P.X// D P.X/CX2P.X/

a) Find the matrix of this transformation with respect to the basis B D f1;X C
1;X2 C 1g of P3 and the standard basis C D f1;X;X2;X3;X4g of P5.

b) Show that T is not onto and it is injective.

Solution. a) We need to find the coordinates of T .1/, T .X C 1/ and T .X2 C 1/

with respect to the basis C . We have

T .1/ D 1CX2 D 1 � 1C 0 �X C 1 �X2 C 0 �X3 C 0 �X4;

T .XC1/ D XC1CX2.XC1/ D 1CXCX2CX3 D 1�1C1�XC1�X2C1�X3C0�X4;

T .X2C1/ D X2C1CX2.X2C1/ D 1C2X2CX4 D 1�1C0�XC2�X2C0�X3CX4:

It follows that the required matrix is
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2
666664

1 1 1

0 1 0

1 1 2

0 1 0

0 0 1

3
777775
:

b) Since dimP5 D 5 > dimP3 D 3, T cannot be onto. To prove that T is
injective, it suffices to check that ker.T / D 0. But if P 2 ker.T /, then
P.X/CX2P.X/ D 0, thus .1C X2/P.X/ D 0. Since 1C X2 ¤ 0, it follows
that P.X/ D 0 and so ker.T / D 0. �

Problem 5.31. Let V be the space of polynomials with real coefficients whose
degree does not exceed n, a fixed positive integer. Consider the map

T W V ! V; T .P.X// D P.X C 1/:

(a) Prove that T is an invertible linear transformation.
(b) What are the matrices of T and T �1 with respect to the basis 1;X; : : : ; Xn of V ?

Solution. a) It is not difficult to see that T is a linear transformation, for if P1; P2
are vectors in V and c is a scalar, we have

T ..P1 C cP2/.X// D .P1 C cP2/.X C 1/ D P1.X C 1/C cP2.X C 1/

D T .P1.X//C cT .P2.X//:

Next, to see that T is invertible it suffices to prove that T is bijective. We can
easily find the inverse of T by solving the equation P.X C 1/ D Q.X/. This is
equivalent toP.X/ D Q.X�1/, thus the inverse of T is given by T �1.P.X// D
P.X � 1/.

b) For 0 � j � n the binomial formula yields

T .Xj / D .X C 1/j D
jX
iD0

 
j

i

!
Xi

and

T �1.Xj / D .X � 1/j D
jX
iD0
.�1/j�i

 
j

i

!
Xi :

Thus if A D Œaij � and B D Œbij � are the matrices of T , respectively T �1 with
respect to the basis 1;X; : : : ; Xn, we have (with the standard convention that	
n
k


 D 0 for n < k)

aij D
 
j

i

!
; bij D .�1/j�i

 
j

i

!
:

�
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Remark 5.32. Since T and T �1 are inverse to each other, the product of the matrices
A and B is the identity matrix In. We invite the reader to use this in order to prove
the following combinatorial identity:

nX
jD0

.�1/k�j
 
j

i

! 
k

j

!
D ıi;k;

where the right-hand side equals 1 if i D k and 0 otherwise.

The next result follows formally from the fundamental bijection between linear
maps F n ! Fm and matrices in Mm;n.F /. Recall that Hom.V;W / is the vector
space of linear maps T W V ! W .

Theorem 5.33. Let BV ;BW be bases in two (finite-dimensional) vector
spaces V;W . The map T ! MatBW ;BV .T / sending a linear transformation
T W V ! W to its matrix with respect to BV and BW is an isomorphism of
vector spaces

Hom.V;W / ' Mm;n.F /:

Proof. Let '.T / D MatBW ;BV .T /. It is clear from Proposition 5.28 that ' is
a linear map from Hom.V;W / to Mm;n.F /. It is moreover injective, since if
'.T / D 0, Proposition 5.28 yields T .vi / D 0 for all i , thus kerT contains
Span.v1; : : : ; vn/ D V and T D 0. To see that ' is surjective, start with any matrix
A D Œaij � 2 Mm;n.F /. It induces a linear transformation 'A W F n ! Fm defined by
X ! AX . By construction, the linear transformation T D iBW ı 'A ı i�1BV satisfies
'.T / D A. More concretely, since v1; : : : ; vn is a basis of V , there is a unique linear
map T W V ! W such that

T .vi / D
mX
jD1

aj iwj

for all 1 � i � n (Proposition 5.19). By Proposition 5.28 we have MatBW ;BV D A

and we are done. �

Recall that dimMm;n.F / D mn, a basis being given by the canonical basis
.Eij /1�i�m;1�j�n. The theorem and Remark 5.27 yield

dim Hom.V;W / D dimV � dimW:

We conclude this section with some rather technical issues, but which are
absolutely fundamental in the theory of linear transformations. First, we want to
understand the link between the matrix of a composition T ı S of linear maps and
the matrices of T and S . More precisely, fix two linear maps T W V ! W and
S W W ! U and set m D dimV , n D dimW , p D dimU . Also, fix three bases
BU ;BV and BW in U; V;W respectively. Let us write for simplicity

A D MatBU ;BW .S/ and B D MatBW ;BV .T /:
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Corresponding to BU ;BV ; BW we have isomorphisms

iBV W Fm ! V; iBW W F n ! W; iBU W F p ! U

and by definition of A;B we have (relation (5.1))

iBW .BX/ D T .iBV .X//; X 2 Fm; iBU .AY / D S.iBW .Y //; Y 2 F p:

Applying S to the first relation and then using the second one, we obtain forX 2 Fm

S ı T .iBV .X// D S.iBW .BX// D iBU .ABX/:

This last relation and the definition of MatBU ;BV .S ı T / show that

MatBU ;BV .S ı T / D A � B:

In other words, composition of linear transformations comes down to multipli-
cation of matrices or formally

Theorem 5.34. Let T W V ! W and S W W ! U be linear transformations
between finite-dimensional vector spaces and let BU ;BV ; BW be bases of U; V
and W , respectively. Then

MatBU ;BV .S ı T / D MatBU ;BW .S/ � MatBW ;BV .T /:

A less technical corollary which will be constantly used is the following:

Corollary 5.35. Let T1; T2 W V ! V be linear transformations on a finite
dimensional vector space V and let B be a basis of V . Then

MatB.T1 ı T2/ D MatB.T1/ � MatB.T2/:

Problem 5.36. Let V be the space of polynomials with real coefficients whose
degree does not exceed 2. Consider the maps

T W R3 ! V; T .a; b; c/ D aC 2bX C 3cX2

and

S W V ! M2.R/; S.aC bX C cX2/ D
�

a aC b

a � c b

�
:

We consider the basis B1 D .1;X;X2/ of V , the canonical basis B2 of R3 and the
canonical basis B3 D .E11; E12; E21; E22/ of M2.R/.

a) Check that T and S are linear maps.
b) Write down the matrices of T and S with respect to the previous bases.
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c) Find the matrix of the composition S ı T with respect to the previous bases.
d) Compute explicitly SıT , then find directly its matrix with respect to the previous

bases and check that you obtain the same result as in c).

Solution. a) Let u be a real number and let .a; b; c/ and .a0; b0; c0/ be vectors in R3.
Then

T .u.a; b; c/C .a0; b0; c0// D T .au C a0; bu C b0; cu C c0/

D .au C a0/C 2.bu C b0/X C 3.cu C c0/X2 D

u.aC 2bX C 3cX2/C .a0 C 2b0X C 3c0X2/ D uT .a; b; c/C T .a0; b0; c0/;

thus T is linear. One checks similarly that S is linear.
b) We start by computing the matrix MatB1;B2.T / of T with respect to B1 and B2.

Let B2 D .e1; e2; e3/ be the canonical basis of R3, then

T .e1/ D T .1; 0; 0/ D 1 D 1 � 1C 0 �X C 0 �X2;

T .e2/ D T .0; 1; 0/ D 2X D 0 � 1C 2 �X C 0 �X2;

T .e3/ D T .0; 0; 1/ D 3X2 D 0 � 1C 0 �X C 3 �X2;

hence

MatB1;B2.T / D
2
4
1 0 0

0 2 0

0 0 3

3
5 :

Similarly, we compute

S.1/ D
�
1 1

1 0

�
D 1 �E11 C 1 �E12 C 1 �E21 C 0 �E22;

S.X/ D
�
0 1

0 1

�
D 0 �E11 C 1 �E12 C 0 �E21 C 1 �E22;

S.X2/ D
�
0 0

�1 0
�

D 0 �E11 C 0 �E12 C .�1/ �E21 C 0 �E22;

hence

MatB3;B1.S/ D

2
664

1 0 0

1 1 0

1 0 �1
0 1 0

3
775 :
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c) Using the theorem, we obtain

MatB3;B2.S ı T / D MatB3;B1.S/ � MatB1;B2.T /

D

2
664

1 0 0

1 1 0

1 0 �1
0 1 0

3
775 �

2
4
1 0 0

0 2 0

0 0 3

3
5 D

2
664

1 0 0

1 2 0

1 0 �3
0 2 0

3
775 :

d) We compute

.S ı T /.a; b; c/ D S.T .a; b; c/ D S.aC 2bX C 3cX2/ D
�

a aC 2b

a � 3c 2b

�
:

Next,

.S ı T /.e1/ D
�
1 1

1 0

�
D 1 �E11 C 1 �E12 C 1 �E21 C 0 �E22;

.S ı T /.e2/ D
�
0 2

0 2

�
D 0 �E11 C 2 �E12 C 0 �E21 C 2 �E22

and

.S ı T /.e3/ D
�
0 0

�3 0
�

D 0 �E11 C 0 �E12 C .�3/ �E21 C 0 �E22

and so the matrix of S ı T is

MatB3;B2.S ı T / D

2
664

1 0 0

1 2 0

1 0 �3
0 2 0

3
775 ;

which coincides of course with the one obtained in part c). �

Problem 5.37. Let A 2 Mn.F / and let T W F n ! F n be the linear map sending X
to AX . Prove that A is invertible if and only if T is bijective.

Solution. If A is invertible, let B 2 Mn.F / be such that AB D BA D In. Let
S W F n ! F n be the mapX ! BX . Then S ıT has associated matrix (with respect
to the canonical basis in F n) BA D In, thus S ıT D Id. Similarly, T ıS D id, thus
T is bijective.

Next, suppose that T is bijective and let B be the matrix of T �1 with respect
to the canonical basis. Then AB is the matrix of T ı T �1 D id with respect to
the canonical basis, thus AB D In. Similarly BA D In and A is invertible with
inverse B . �
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Next, suppose that we have a linear map T W V ! W , with a given matrixAwith
respect to two bases B1; C1 of V;W respectively. Let us choose two new bases B2; C2
of V;W respectively. We would like to understand the matrix of T with respect to
the new bases. To answer this, we need to introduce an important object:

Definition 5.38. Let V be a vector space and let B D .v1; : : : ; vn/ and B 0 D
.v0
1; : : : ; v

0
n/ be two bases of V . The change of basis matrix from B to B 0 is the

matrix P D Œpij � whose columns are the coordinates of the vectors v0
1; : : : ; v

0
n when

expressed in the basis B . Thus

v0
j D p1j v1 C : : :C pnj vn

for 1 � j � n.

Problem 5.39. Consider the vectors

v1 D .1; 2/; v2 D .1; 3/:

a) Prove that B0 D .v1; v2/ is a basis of R2.
b) Find the change of basis matrix from B0 to the canonical basis of R2.

Solution. a) It suffices to check that v1 and v2 are linearly independent. If av1 C
bv2 D 0 for some real numbers a; b, then

.a; 2a/C .b; 3b/ D .0; 0/

thus

aC b D 0; 2aC 3b D 0:

Replacing b D �a in the second equation yields a D b D 0.
b) Let B D .e1; e2/ be the canonical basis. We need to express e1; e2 in terms of

v1; v2. Let us look for a; b such that

e1 D av1 C bv2:

Equivalently, we want

aC b D 1; 2aC 3b D 0:

This has the unique solution a D 3; b D �2, thus

e1 D 3v1 � 2v2:

Similarly, we obtain

e2 D �v1 C v2:
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The coordinates 3;�2 of e1 when written in base B0 yield the first column of the
change of basis matrix, and the coordinates �1; 1 of e2 when written in base B0
yield the second column, thus the change of basis matrix is

P D
�
3 �1

�2 1

�
:

�

Problem 5.40. Let V;B;B 0; P be as above. Consider a vector v 2 V and let X and
X 0 be the column vectors representing the coordinates of v with respect to the bases
B and B 0. Prove that X D PX 0.

Solution. Indeed, by definition we have

v D x1v1 C : : :C xnvn D x0
1v

0
1 C : : :C x0

nv0
n;

thus
nX

kD1
xkvk D

nX
jD1

x0
j v0
j D

nX
jD1

x0
j

nX
kD1

pkj vk

D
nX

kD1
.

nX
jD1

pkj x
0
j /vk D

nX
kD1
.PX 0/kvk

and since v1; : : : ; vn are linearly independent, it follows that X D PX 0. �

Remark 5.41. The previous definition and problem are always a source of confusion
and trouble, so let us insist on the following issue: the change of basis matrix from
B to B 0 expresses B 0 in terms of B , however (and this is very important in practice)
as the problem shows, the change of basis matrix takes coordinates with respect to
B 0 to coordinates with respect to B . Thus we have a change of direction.

We also write MatB.B 0/ for the change of basis matrix from B to B 0. A simple
but very important observation is that

MatB.B
0/ D MatB;B0.idV /;

as follows directly from Proposition 5.28. Using this observation and Theorem 5.34,
we deduce that for any bases B;B 0; B 00 of V we have

MatB.B
0/ � MatB0.B 00/ D MatB.B

00/:

Since MatB.B/ D In for any basis B , we deduce that

MatB.B
0/ � MatB0.B/ D In:

Thus the change of basis matrix is invertible and its inverse is simply the change
of basis matrix for the bases B 0; B .
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Problem 5.42. Consider the families of vectors B D .v1; v2; v3/;B0 D .w1;w2;w3/,
where

v1 D .0; 1; 1/; v2 D .1; 0; 1/; v3 D .1; 1; 0/

and

w1 D .1; 1;�1/; w2 D .1; 0;�1/; w3 D .�1;�1; 0/:

a) Prove that B and B0 are bases of R3.
b) Find the change of basis matrix P from B to B0 going back to the definition of P .
c) Find the change of basis matrix P using the canonical basis of R3 and the

previous theorem.

Solution. a) To prove that B is a basis, we find the reduced row-echelon form of
the matrix

A D
2
4
0 1 1

1 0 1

1 1 0

3
5

using row-reduction. This yields

Aref D I3

and so v1; v2; v3 are linearly independent, hence a basis of R3. We proceed
similarly with w1;w2;w3.

b) First, we use the definition of P : the columns of P are the coordinates of
w1;w2;w3 when expressed in the basis B. First, we try to express

w1 D av1 C bv2 C cv3 D .b C c; aC c; aC b/

which gives

b C c D 1; aC c D 1; aC b D �1;

with the solution

a D �1
2

D b; c D 3

2
:

Thus

w1 D �1
2

v1 � 1

2
v2 C 3

2
v3
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and the first column of P is

2
4

� 1
2

� 1
2
3
2

3
5. Similar arguments yield

w2 D �v1 C v3;

hence the second column of P is

2
4

�1
0

1

3
5 and finally w3 D �v3, thus the third

column of P is

2
4
0

0

�1

3
5. We conclude that

P D
2
4

� 1
2

�1 0

� 1
2
0 0

3
2

1 �1

3
5 :

c) Let B00 D .e1; e2; e3/ be the canonical basis of R3. We want to find MatB.B 0/
and we write it as

MatB.B0/ D MatB.B00/ � MatB00.B0/ D .MatB00.B//�1 � MatB00.B0/:

Next, by definition

MatB00.B/ D
2
4
0 1 1

1 0 1

1 1 0

3
5 ; MatB00.B0/ D

2
4
1 1 �1
1 0 �1

�1 �1 0

3
5 :

Next, using either the row-reduction algorithm or by solving the system2
4
0 1 1

1 0 1

1 1 0

3
5X D b, one computes

2
4
0 1 1

1 0 1

1 1 0

3
5

�1

D
2
4

� 1
2

1
2

1
2

1
2

� 1
2

1
2

1
2

1
2

� 1
2

3
5

and finally

P D
2
4

� 1
2

1
2

1
2

1
2

� 1
2

1
2

1
2

1
2

� 1
2

3
5 �

2
4
1 1 �1
1 0 �1

�1 �1 0

3
5 D

2
4

� 1
2

�1 0

� 1
2
0 0

3
2

1 �1

3
5 :

Without any miracle, we obtain the same result as in part b)! �

Similar arguments give the following fundamental:
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Theorem 5.43. Let T W V ! W be a linear map and let B1;B2 be two bases of V ,
C1; C2 two bases of W . If P D MatC1.C2/ and Q D MatB1.B2/ are the change of
basis matrices, then

MatC2;B2.T / D P�1MatC1;B1.T /Q:

Proof. By Theorem 5.34 we have

PMatC2;B2.T / D MatC1;C2.idW / � MatC2;B2.T / D MatC1;B2.T /

and similarly

MatC1;B1.T /Q D MatC1;B1.T /MatB1;B2.idV / D MatC1;B2.T /:

Thus

PMatC2;B2.T / D MatC1;B1.T /Q

and the result follows by multiplying on the left by the invertible matrix P . �

Here is a different proof which has the advantage that it also shows us how to
recover the rather complicated formula in the previous theorem (experience shows
that it is almost impossible to learn this formula by heart). It assumes familiarity
with the result of Problem 5.40 (which is however much easier to remember!).

Write A1 for the matrix of T with respect to B1; C1 and A2 for the matrix of T
with respect toB2; C2. Start with a vector v in V and writeX1,X2 for its coordinates
with respect to B1 and B2 respectively. By Problem 5.40 we have X1 D QX2. Let
Y1; Y2 be the coordinates of T .v/ with respect to C1 and C2 respectively. Again by
Problem 5.40 we have Y1 D PY2. On the other hand, by definition of A1 and A2
we have A1X1 D Y1 and A2X2 D Y2. Since P and Q are invertible, we obtain
X2 D Q�1X1 and so

A1X1 D Y1 D PY2 D PA2X2 D PA2Q
�1X1:

Since this holds for every v 2 V (equivalently, for any X1), we deduce that
A1 D PA2Q

�1 and so A2 D P�1AQ.
While the previous results are quite a pain in the neck to state and remember,

the following special case is absolutely fundamental and rather easy to remember
(or reprove)

Corollary 5.44. Let T W V ! V be a linear transformation on a finite dimensional
vector space V and let B;B 0 be bases of V . If P is the change of basis matrix from
B to B 0, then

MatB0.T / D P�1MatB.T /P:
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Here is how one should recover this result in case of doubt: write Xv, X 0
v for the

column vectors representing the coordinates of v 2 V with respect to B;B 0. Then

XT.v/ D MatB.T /X; X 0
T .v/ D MatB0.T /X 0

and by Problem 5.40 we have Xv D PX 0
v and XT.v/ D PX 0

T .v/. Thus Combining
these relations yields

PMatB0.T / D MatB.T /P;

both being equal to PX 0
T .v/. Multiplying by P�1 yields the desired result.

Problem 5.45. Consider the matrix

A D
2
4
2 �1 0

�2 1 �2
1 1 3

3
5

and let T W R3 ! R3 be the associated linear transformation, thus T .X/ D AX for
all X 2 R3. Consider the vectors

v1 D
2
4
1

1

�1

3
5 ; v2 D

2
4
1

0

�1

3
5 ; v3 D

2
4
1

�1
0

3
5 :

a) Prove that v1; v2; v3 form a basis of R3 and compute the matrix of T with respect
to this basis.

b) Find the change of basis matrix from the canonical basis to the basis .v1; v2; v3/.
c) Compute An for all positive integers n.

Solution. a) It suffices to check that v1; v2; v3 are linearly independent. If a; b; c are
real numbers such that av1 C bv2 C cv3 D 0, we obtain

aC b C c D 0; a � c D 0; �a � b D 0:

The first and third equations yield c D 0, then the second one gives a D 0 and
finally b D 0. Thus v1; v2; v3 are linearly independent and hence they form a
basis. Another method for proving this is as follows: consider the matrix whose
columns are the vectors v1; v2; v3 are use row-reduction to bring this matrix to its
reduced row-echelon form. We end up with I3 and this shows that v1; v2; v3 is a
basis of R3.

To compute the matrix of T with respect to the new basis, we simply express
each of the vectors T .v1/; T .v2/; T .v3/ in terms of v1; v2; v3. We have

T .v1/ D Av1 D
2
4
1

1

�1

3
5 D v1;
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then

T .v2/ D Av2 D
2
4
2

0

�2

3
5 D 2v2

and

T .v3/ D Av3 D
2
4
3

�3
0

3
5 D 3v3:

We conclude that the matrix of T with respect to the basis .v1; v2; v3/ is

B D
2
4
1 0 0

0 2 0

0 0 3

3
5 :

b) Call the change of basis matrix P . By definition, the columns of P consist of the
coordinates of v1; v2; v3 with respect to the canonical basis of R3. Thus

P D
2
4
1 1 1

1 0 �1
�1 �1 0

3
5 :

c) The matrix of T with respect to .v1; v2; v3/ is, thanks to the change of matrix
formula, equal to P�1AP . Combining this observation with part a), we deduce
that

P�1AP D
2
4
1 0 0

0 2 0

0 0 3

3
5 :

Raising this equality to the nth power and taking into account that .P�1AP /n D
P�1AnP (this follows easily by induction on n) yields

P�1AnP D
2
4
1 0 0

0 2n 0

0 0 3n

3
5 :

It follows that

An D P

2
4
1 0 0

0 2n 0

0 0 3n

3
5P�1:
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We can easily compute P�1 either by expressing the vectors of the canonical
basis in terms of v1; v2; v3, or by solving the system PX D b. We end up with

P�1 D
2
4
1 1 1

�1 �1 �2
1 0 1

3
5 :

Finally,

An D P

2
4
1 0 0

0 2n 0

0 0 3n

3
5P�1 D

2
4
1 � 2n C 3n 1 � 2n 1 � 2nC1 C 3n

1 � 3n 1 1 � 3n
2n � 1 2n � 1 2nC1 � 1

3
5 :

�

Problem 5.46. Let T W R3 ! R3 be the linear map defined by

T .x; y; z/ D .2x C y � z; y; x C y/:

Let e1; e2; e3 be the canonical basis of R3 and let

v1 D e1 C e3; v2 D �e1 C e2; v3 D e1 C e2 C e3:

a) Prove that .v1; v2; v3/ is a basis of R3.
b) Find the matrix of T with respect to this basis.

Solution. a) In order to prove that .v1; v2; v3/ is a basis of R3, it suffices to check
that they are linearly independent. If

av1 C bv2 C cv3 D 0;

for some real numbers a; b; c, then

.a � b C c/e1 C .b C c/e2 C .aC c/e3 D 0:

Since e1; e2; e3 are linearly independent, this forces

a � b C c D 0; b C c D 0; aC c D 0:

The first and third equations yield b D 0, then c D 0 and a D 0. Thus .v1; v2; v3/
is a basis of R3. Another method for proving this is as follows: consider the
matrixAwhose columns are the coordinates of v1; v2; v3 when expressed in terms
of the canonical basis, that is

A D
2
4
1 �1 1
0 1 1

1 0 1

3
5 :
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Row-reduction yields Aref D I3 and the result follows.
b) We compute

T .v1/ D T .1; 0; 1/ D .1; 0; 1/ D v1;

then

T .v2/ D T .�1; 1; 0/ D .�1; 1; 0/ D v2

and finally

T .v3/ D T .1; 1; 1/ D .2; 1; 2/:

To conclude, we need to express the vector .2; 1; 2/ in terms of v1; v2; v3. We look
therefore for a; b; c such that

.2; 1; 2/ D av1 C bv2 C cv3

or equivalently

.2; 1; 2/ D .a � b C c; b C c; aC c/:

Solving the corresponding linear system yields

a D 1; b D 0; c D 1:

Thus T .v3/ D v1 C v3 and so the matrix of T with respect to .v1; v2; v3/ is

B D
2
4
1 0 1

0 1 0

0 0 1

3
5 :

�

Motivated by the previous corollary, we introduce the following fundamental
definition:

Definition 5.47. Two matrices A;B 2 Mn.F / are called similar or conjugate if
there exists P 2 GLn.F / such that B D P�1AP . Equivalently, they are similar if
they represent the same linear transformation of V D F n in possibly two different
bases.

It is an easy exercise for the reader to prove that similarity is an equivalence
relation on Mn.F /, that is

• any matrix A is similar to itself.
• If A is similar to B , then B is similar to A.
• If A is similar to B and B is similar to C , then A is similar to C .
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One of the most fundamental problems in linear algebra is the classification of
matrices up to similarity. In fact, the main goal of the next chapters is to prove that
suitable matrices are similar to rather simple matrices: we dedicate a whole chapter
to matrices similar to diagonal and upper-triangular ones, and we will see in the last
chapter that any symmetric matrix with real entries is similar to a diagonal matrix.

5.3.1 Problems for practice

1. Let B D .e1; e2/ be the canonical basis of R2 and let B0 D .f1; f2/, where

f1 D e1 C e2; f2 D e1 C 2e2:

a) Prove that B0 is a basis of R2.
b) Find the change of basis matrix P from B to B0, as well as its inverse.
c) Let T be the linear transformation on R2 whose matrix with respect to the

basis B (both on the source and target of R2) is A D
�
1 �1
2 �3

�
. Find the matrix

of T with respect to the bases B0 on the target and B on the source.

2. Consider the matrix

A D
2
4
17 �28 4
12 �20 3
16 �28 5

3
5

and the associated linear map T W R3 ! R3 defined by T .X/ D AX .

a) Find a basis B1 of the kernel of T .
b) Let V be the kernel of T � id, where id is the identity map on R3. Give a basis

B2 of V .
c) Prove that V ˚ ker.T / D R3.
d) Find the matrix of T with respect to the basis B1 [ B2 of R3.

3. Let B D .v1; v2; v3/, where

v1 D
2
4
1

0

2

3
5 ; v2 D

2
4

�1
1

0

3
5 ; v3 D

2
4
1

2

3

3
5

and let B0 D .w1;w2;w3/, where

w1 D
2
4
2

0

1

3
5 ; w2 D

2
4

�3
�2
�4

3
5 ; w3 D

2
4

�2
�3
�4

3
5 :
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a) Prove that B and B0 are both bases of R3.
b) Find the change of basis matrix P from B to B0 as well as its inverse P�1.
c) Consider the linear transformation T W R3 ! R3 whose matrix with respect

to the basis B (both on the source and target of T ) is

2
4
1 0 4

0 1 0

�2 0 1

3
5. Find the

matrix of T with respect to B0 (both on the source and target of T ).

4. Let V be a vector space over a field F , of dimension n. Let T W V ! V be a
projection (recall that this is a linear map such that T ı T D T ).

a) Prove that V D Ker.T /˚ Im.T /.

b) Prove that there is a basis of V in which the matrix of T is

�
Ii 0

0 On�i

�
for

some i 2 f0; 1; : : : ; ng.

5. Let V be a vector space over C or R, of dimension n. Let T W V ! V be a
symmetry (that is a linear transformation such that T ı T D id is the identity
map of V ).

a) Prove that V D ker.T � id/˚ ker.T C id/.
b) Deduce that there is i 2 Œ0; n� and a basis of V such that the matrix of T with

respect to this basis is

�
Ii 0

0 �In�i

�
.

6. Let T be the linear transformation on R3 whose matrix with respect to the
canonical basis is

A D
2
4

�1 1 1

�6 4 2

3 �1 1

3
5 :

a) Check that A2 D 2A.
b) Deduce that T .v/ D 2v for all v 2 Im.T /.
c) Prove that ker.T / and Im.T / are in direct sum position in R3.
d) Give bases for ker.T / and Im.T /, and write the matrix of T with respect

to the basis of R3 deduced by patching the two bases of ker.T / and Im.T /
respectively.

7. Let A D
�
1 2

2 1

�
and consider the map T W M2.C/ ! M2.C/ defined by

T .B/ D AB � BA:

a) Prove that T is linear.
b) Find the matrix of T with respect to the canonical basis of M2.C/.
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8. Let V be the vector space of polynomials with complex coefficients whose
degree does not exceed 3. Let T W V ! V be the map defined by T .P / D
P CP 0. Prove that T is linear and find the matrix of T with respect to the basis
1;X;X2;X3 of V .

9. a) Find the matrix with respect to the canonical basis of the map which projects
a vector v 2 R3 to the xy-plane.

b) Find the matrix with respect to the canonical basis of the map which sends a
vector v 2 R3 to its reflection with respect to the xy-plane.

c) Let � 2 R. Find the matrix with respect to the canonical basis of the
map which sends a vector v 2 R2 to its rotation through an angle � ,
counterclockwise.

10. Let V be a vector space of dimension n over F . A flag in V is a family of
subspaces V0 � V1 � : : : � Vn such that dimVi D i for all i 2 Œ0; n�. Let
T W V ! V be a linear transformation. Prove that the following statements are
equivalent:

a) There is a flag V0 � : : : � Vn in V such that T .Vi / � Vi for all i 2 Œ0; n�.
b) There is a basis of V with respect to which the matrix of T is upper-triangular.

11. Prove that the matrices

A D

2
664

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

3
775 and B D

2
664

1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1

3
775

are similar.

5.4 Rank of a Linear Map and Rank of a Matrix

In this section we discuss a very important numerical invariant associated with a
linear transformation and to a matrix: its rank. All vector spaces over the field F
will be assumed to be finite dimensional in this section.

Definition 5.48. Let V;W be finite dimensional vector spaces over F . The rank of
a linear map T W V ! W is the integer

rank.T / D dim Im.T /:

Let us try to understand more concretely the previous definition. Let T W V ! W

be a linear transformation and let v1; : : : ; vn be a basis of V . Then the elements of
Im.T / are of the form T .v/ with v 2 V . Since v1; : : : ; vn span V , each v 2 V can
be written v D x1v1 C : : :C xnvn with xi 2 F , and

T .v/ D T .x1v1 C : : :C xnvn/ D x1T .v1/C : : :C xnT .vn/:



184 5 Linear Transformations

Thus T .v1/; : : : ; T .vn/ is a spanning set for Im.T / and

rank.T / D dim Span.T .v1/; : : : ; T .vn//:

Since we have already seen an algorithmic way of computing the span of a finite
family of vectors (using row-reduction, see the discussion preceding Example 4.30),
this gives an algorithmic way of computing the rank of a linear transformation.
More precisely, pick a basis w1; : : : ;wm of W and express each of the vectors
T .v1/; : : : ; T .vn/ as linear combinations of w1; : : : ;wm. Consider the matrix A

whose rows are the coordinates of T .v1/; : : : ; T .vn/ when expressed in the basis
w1; : : : ;wm of W . Performing elementary operations on the rows of A does not
change the span of T .v1/; : : : ; T .vn/, so that rank.T / is the dimension of the span
of the rows of Aref , then reduced row-echelon form of A. On the other hand, it is
very easy to compute the last dimension: by definition of the reduced row-echelon
form, the dimension of the span of the rows of Aref is precisely the number of
nonzero rows in Aref or, equivalently, the number of pivots in Aref . Thus

rank.T / D number of nonzero rows of Aref D number of pivots in Aref :

Let us see two concrete examples:

Problem 5.49. Compute the rank of the linear map T W R3 ! R4 defined by

T .x; y; z/ D .x C y C z; x � y; y � z; z � x/:

Solution. We let v1; v2; v3 be the canonical basis of R3 and compute

T .v1/ D T .1; 0; 0/ D .1; 1; 0;�1/;
thus the first row of the matrix A in the previous discussion is .1; 1; 0;�1/. We do
the same with v2; v3 and we obtain

A D
2
4
1 1 0 �1
1 �1 1 0

1 0 �1 1

3
5 :

Using row-reduction we compute

Aref D
2
4
1 0 0 0

0 1 0 �1
0 0 1 �1

3
5

and we deduce that

rank.T / D 3: �



5.4 Rank of a Linear Map and Rank of a Matrix 185

Problem 5.50. Let V be the space of polynomials with real coefficients of degree
not exceeding 3, and let T W V ! V be the linear map defined by

T .P.X// D P.X C 1/ � P.X/:
Find rank.T /.

Solution. We start by choosing the canonical basis 1;X;X2;X3 of V and
computing

T .1/ D 0; T .X/ D X C 1 �X D 1; T .X2/ D .X C 1/2 �X2 D 1C 2X

and

T .X3/ D .X C 1/3 �X3 D 1C 3X C 3X2:

The matrix A in the previous discussion is

A D

2
664

0 0 0 0

1 0 0 0

1 2 0 0

1 3 3 0

3
775

and row-reduction yields

Aref D

2
664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3
775 :

There are three pivots, thus

rank.T / D 3: �

We turn now to a series of more theoretical exercises, which establish some other
important properties of the rank of a linear map. In all problems below we assume
that the vector spaces appearing in the statements are finite dimensional.

Problem 5.51. Let T W V ! W be a linear map. Prove that

rank.T / � min.dimV; dimW /:

Solution. Since Im.T / � W , we have rank.T / � dimW . As we have already
seen, if v1; : : : ; vn is a basis of V , then Im.T / is spanned by T .v1/; : : : ; T .vn/, thus

rank.T / � n D dimV:

The result follows by combining the two inequalities. �
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Problem 5.52. Let T1 W U ! V and T2 W V ! W be linear maps. Prove that

rank.T2 ı T1/ � min.rank.T1/; rank.T2//:

Solution. The image of T2 ı T1 is included in that of T2, thus rank.T2 ı T1/ �
rank.T2/. Next, we consider the restriction T 0

2 of T2 to Im.T1/, obtaining a linear
map T 0

2 W Im.T1/ ! W whose image clearly equals that of T2 ı T1. Applying
Problem 5.51 to T 0

2 we obtain

rank.T2 ı T1/ D rank.T 0
2/ � dim.Im.T1// D rank.T1/;

and the result follows. �

Problem 5.53. Let T1; T2 W V ! W be linear transformations. Prove that

jrank.T1/ � rank.T2/j � rank.T1 C T2/ � rank.T1/C rank.T2/:

Solution. We have Im.T1 C T2/ � Im.T1/C Im.T2/ and so

rank.T1 C T2/ � dim.Im.T1/C Im.T2// �

dim Im.T1/C dim Im.T2/ D rank.T1/C rank.T2/;

establishing the inequality on the right. On the other hand, we clearly have Im.T2/ D
Im.�T2/, thus rank.T2/ D rank.�T2/. Applying what we have already proved, we
obtain

rank.T1 C T2/C rank.T2/ D rank.T1 C T2/C rank.�T2/ � rank.T1/;

thus rank.T1 C T2/ � rank.T1/ � rank.T2/. We conclude using the symmetry in T1
and T2. �

Problem 5.54. Prove that if S1 W U ! V , T W V ! W and S2 W W ! Z are linear
maps such that S1; S2 are bijective, then

rank.S2TS1/ D rank.T /:

Solution. Since S1 is bijective, we have

.TS1/.U / D T .S1.U // D T .V / D Im.T /:

Since S2 is bijective, it realizes an isomorphism between .TS1/.U / and
S2..TS1/.U //, thus these two spaces have the same dimension. We conclude
that

rank.T / D dim Im.T / D dim.TS1/.U / D

D dimS2..TS1/.U // D dim.S2TS1/.U / D rank.S2TS1/:

Note that we only used the injectivity of S1 and the surjectivity of S2. �
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We will now prove the first fundamental theorem concerning the rank of a
linear map:

Theorem 5.55 (The Rank-Nullity Theorem). Let V;W be vector spaces over a
field F and let T W V ! W be a linear transformation. If V is finite-dimensional,
then

dim kerT C rank.T / D dimV: (5.3)
Proof. Let n D dimV and let r D dim kerT . Since kerT is a subspace of V , we
have r � n, in particular r < 1. We need to prove that dim ImT D n � r .

Let v1; : : : ; vr be a basis of kerT and extend it to a basis v1; : : : ; vn of V . We will
prove that T .vrC1/; : : : ; T .vn/ form a basis of Im.T /, which will yield the desired
result.

Let us start by proving that T .vrC1/; : : : ; T .vn/ are linearly independent.
Suppose that arC1; : : : ; an are scalars in F such that

arC1T .vrC1/C : : :C anT .vn/ D 0:

This equality can be written as T .arC1vrC1 C : : : C anvn/ D 0, or equivalently
arC1vrC1 C : : :C anvn 2 kerT . We can therefore write

arC1vrC1 C : : :C anvn D b1v1 C : : :C brvr

for some scalars b1; : : : ; br 2 F . But since v1; : : : ; vn form a basis of V , the last
relation forces arC1 D : : : D an D 0 and b1 D : : : D br D 0, proving that
T .vrC1/; : : : ; T .vn/ are linearly independent.

Next, we prove that T .vrC1/; : : : ; T .vn/ span Im.T /. Let x 2 Im.T /. By
definition, there is v 2 V such that x D T .v/. Since v1; : : : ; vn span V , we can find
scalars a1; : : : ; an 2 F such that v D a1v1 C : : :C anvn. Since v1; : : : ; vr 2 kerT ,
we obtain

x D T .v/ D
nX
iD1

aiT .vi / D
nX

iDrC1
aiT .vi / 2 Span.T .vrC1/; : : : ; T .vn//:

This finishes the proof of the theorem. �

Corollary 5.56. Let V be a finite-dimensional vector space over a field F and
let T W V ! V be a linear transformation. Then the following assertions are
equivalent:

a) T is injective.
b) T is surjective.
c) T is bijective.

Proof. Suppose that a) holds. Then the rank-nullity theorem and the fact that
kerT D 0 yield dim Im.T / D dimV . Since Im.T / is a subspace of the finite-
dimensional vector space V and dim Im.T / D dimV , we deduce that Im.T / D V

and so T is surjective, thus b) holds.
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Suppose now that b) holds, thus dim Im.T / D dimV . The rank-nullity theorem
yields dim kerT D 0, thus kerT D 0 and then T is injective. Since it is also
surjective by assumption, it follows that c) holds. Since c) clearly implies a), the
result follows. �

Remark 5.57. Without the assumption that V is finite dimensional, the previous
result no longer holds: one can find linear transformations T W V ! V which are
injective and not surjective, and linear transformations which is surjective and not
injective. Indeed, let V be the space of all sequences .xn/n�0 of real numbers and
define two maps T1; T2 W V ! V by

T1.x0; x1; : : :/ D .x1; x2; : : :/; T2.x0; x1; : : :/ D .0; x0; x1; : : :/:

Then T1 is surjective but not injective, and T2 is injective but not surjective.

Problem 5.58. Let A and B be n�nmatrices such that AB is invertible. Show that
both A and B are invertible.

Solution. Let T1 W F n ! F n and T2 W F n ! F n be the linear maps associated
with A and B respectively (so T1.X/ D AX and T2.X/ D BX ). Then AB is the
matrix of the linear map T1 ı T2 with respect to the canonical basis of F n (both
on the source and on the target). Since AB is invertible, we deduce that T1 ı T2 is
bijective, hence T2 is injective and T1 is surjective. But an injective or surjective
linear transformation on a finite dimensional vector space is automatically bijective.
Thus T1 and T2 are both bijective and the result follows from Problem 5.37. �

Problem 5.59. Let A;B 2 Mn.C/ satisfy AB D In. Prove that BA D In.

Solution. By the previous problem,A andB are invertible. Multiplying the relation
AB D In on the right by A�1 yields B D A�1. Thus BA D A�1A D In. �

Problem 5.60. Show that if A and B are square matrices in Mn.C/ with AB D
AC B , then AB D BA.

Solution. The condition AB D AC B implies .A � In/.B � In/ D In. Therefore
A� In and B � In are mutually inverse and .B � In/.A� In/ D In, which implies
BA D AC B D AB . �

Problem 5.61. Let T W R3 ! R3 be the linear transformation defined by

T .x; y; z/ D .x � y; 2x � y � z; x � 2y C z/:

Find the kernel of T and the rank of T .

Solution. In order to find the kernel of T , we need to find those x; y; z 2 R3 such
that

x � y D 0; 2x � y � z D 0; x � 2y C z D 0:
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The first equation gives x D y, the second one z D x and so x D y D z, which
satisfies all equations. It follows that the kernel of T is the subspace f.x; x; x/jx 2
R3g, which is precisely the line spanned by the vector .1; 1; 1/.

Next, then rank of T can be determined from the rank-nullity theorem:

3 D dim R3 D dim kerT C rank.T / D 1C rank.T /;

thus rank.T / D 2. �

We turn now to the analogous concept for matrices

Definition 5.62. Let A 2 Mm;n.F /. The rank of A is the integer rank.A/ defined
as the rank of the linear map F n ! Fm sending X to AX (i.e., the canonical linear
map attached to A).

Remark 5.63. We can restate the results established in Problems 5.51, 5.52, 5.53,
and 5.54 in terms of matrices as follows:

a) rank.A/ � min.m; n/ if A 2 Mm;n.F /.
b) jrank.A/ � rank.B/j � rank.A C B/ � rank.A/ C rank.B/ for all A;B 2
Mm;n.F /.

c) rank.PAQ/ D rank.A/ for all P 2 GLm.F /, A 2 Mm;n.F / and Q 2 GLn.F /.
That is, the rank of a matrix does not change if we multiply it (on the left or
on the right) by invertible matrices.

d) rank.AB/ � min.rank.A/; rank.B// for A 2 Mm;n.F / and B 2 Mn;p.F /.

Of course, we can also make the definition very concrete: let A 2 Mm;n.F / and
let e1; e2; : : : ; en be the canonical basis of F n. Write ' W F n ! Fm for the linear
map X ! AX canonically attached to A. By the previous discussion Im.'/ is the
span of '.e1/; : : : ; '.en/. Now, if C1; : : : ; Cn are the columns of A, seen as column
vectors in Fm, then by definition '.ei / D Ci for all i . We conclude that the image
of ' is the span of C1; : : : ; Cn.

Let us summarize the previous discussion in an important

Theorem 5.64. Let A 2 Mm;n.F / and let C1; C2; : : : ; Cn 2 Fm be its columns.
Then

rank.A/ D dim Span.C1; C2; : : : ; Cn/:

So, following the previous discussion, we obtain the following algorithm for
computing the rank of A: consider the transpose tA of A (thus the columns of
A become rows in the new matrix) and bring it to its reduced row-echelon form.
Then count the number of nonzero rows or equivalently the number of pivots.
This is the rank of A. We will see later on (see Problem 5.70) that the trick of
considering the transpose of A is actually not necessary: A and tA have the same
rank. Of course, we can also avoid considering the transpose matrix and instead
using column operations on A.
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Problem 5.65. Compute the rank of the matrix

A D

2
666664

�1 1 0 1

2 2 1 0

0 2 �1 �1
1 1 1 �2
1 3 �1 1

3
777775
:

Solution. Following the previous discussion we bring the matrix

tA D

2
664

�1 2 0 1 1

1 2 2 1 3

0 1 �1 1 �1
1 0 �1 �2 1

3
775

to its reduced row-echelon form by row-reduction

. tA/ref D

2
664

1 0 0 0 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 �1

3
775 :

Since there are 4 nonzero rows, we deduce that

rank.A/ D 4: �

Problem 5.66 (Sylvester’s Inequality). Prove that for all A;B 2 Mn.F / we have

rank.AB/ � rank.A/C rank.B/ � n:

Solution. Consider V D F n and the linear transformations T1; T2 W V ! V

sending X to AX , respectively BX . We need to prove that

rank.T1 ı T2/ � rank.T1/C rank.T2/ � dimV:

By the rank-nullity theorem we know that

rank.T1/ � dimV D � dim kerT1;

thus it suffices to prove that

rank.T2/ � rank.T1 ı T2/ � dim kerT1:
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Let W D T2.V / D Im.T2/ and let T 0
1 W W ! V be the restriction of T1 toW . Then

using again the rank-nullity theorem, we obtain

rank.T1 ı T2/ D dimT1.W / D rank.T 0
1/

D dimW � dim kerT 0
1:

Now dimW D rank.T2/, so we are reduced to proving that

dim kerT 0
1 � dim kerT1:

This is clear, as kerT 0
1 D kerT1 \W � kerT1. �

Problem 5.67. Let A 2 M3;2.R/ and B 2 M2;3.R/ be matrices such that

AB D
2
4
0 �1 �1

�1 0 �1
1 1 2

3
5 :

a) Check that .AB/2 D AB and that AB has rank 2.
b) Prove that BA is invertible.
c) Prove that .BA/3 D .BA/2 and deduce that BA D I2.

Solution. a) One checks using the product rule that the matrix

X D
2
4
0 �1 �1

�1 0 �1
1 1 2

3
5

satisfies X2 D X . Next, one computes the rank of X by computing the reduced
row-echelon form of tX :

. tX/ref D
2
4
1 0 �1
0 1 �1
0 0 0

3
5 :

Since there are two pivots, AB D X has rank 2.
b) Using Remark 5.63, we obtain

rank.BA/ � rank.A.BA/B/ D rank..AB/2/ D rank.AB/ D 2:

On the other hand, BA is a 2 � 2 matrix, thus necessarily rank.BA/ D 2 and so
BA is invertible.
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c) Since .AB/2 D AB , we have

B.AB/2A D B.AB/A D .BA/2:

The left-hand side equals .BA/3 and so .BA/3 D .BA/2. Since BA is invertible,
it follows that BA D I2 and the problem is solved. �

The second fundamental theorem concerning rank is the following:

Theorem 5.68. Let A 2 Mm;n.F / and let 0 � r � min.m; n/. Then rank.A/ D
r if and only if there are matrices P 2 GLm.F / and Q 2 GLn.F / such that
A D PJrQ, where

Jr D
�
Ir 0

0 0

�
2 Mm;n.F /:

Proof. If A D PJrQ, then by part c) of Remark 5.63 we have rank.A/ D rank.Jr /.
The linear map associated with Jr is .x1; : : : ; xn/ ! .x1; : : : ; xr /, and its image
is F r , which has dimension r , thus rank.Jr / D r . This proves one implication.

Assume now that rank.A/ D r and let T W F n ! Fm be the linear map sending
X to AX , so that A is the matrix of T with respect to the canonical bases of F n

and Fm. Thanks to Theorem 5.43, it suffices to prove that we can find two bases
B1;B2 of F n; F m respectively such that the matrix of T with respect to B1;B2
is Jr . In order to construct B1 and B2, we start with a basis e1; : : : ; en�r of kerT
(note that dim kerT D n � r by the rank-nullity theorem) and we complete it to a
basis e1; : : : ; en of F n. Let fi D T .en�rCi / for 1 � i � r . We claim that f1; : : : ; fr
is a basis of Im.T /. Since dim Im.T / D r , it suffices to see that f1; : : : ; fr span
Im.T /. But any x 2 Im.T / can be written x D T .a1e1 C : : : C anen/ and since
T .ej / D 0 for 1 � j � n � r , we have

x D an�rC1f1 C : : :C anfr 2 Span.f1; : : : ; fr /;

proving the claim (this argument has already been used in the last paragraph of the
proof of the rank-nullity theorem).

Complete now f1; : : : ; fr to a basis f1; : : : ; fm of Fm. Call B1 D
.en�rC1; : : : ; en; e1; : : : ; er / and B2 D .f1; : : : ; fm/. Then by construction the
matrix of T with respect to B1, B2 is Jr and the theorem is proved. �

Corollary 5.69. Let A;B 2 Mm;n.F /. Then rank.A/ D rank.B/ if and only if
there are matrices P 2 GLm.F / and Q 2 GLn.F / such that B D PAQ.

Proof. If B D PAQ with P;Q invertible, then the result follows from part
c) of Remark 5.63. Assume that rank.A/ D rank.B/ D r , then by the previous
theorem we can write A D P1JrQ1 and B D P2JrQ2 for invertible matrices
P1; P2;Q1;Q2. Setting P D P2P

�1
1 and Q D Q�1

1 Q2 we obtain B D PAQ. �
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Problem 5.70. Prove that for all A 2 Mm;n.F / we have

rank.A/ D rank. tA/:

Solution. Say A has rank r and write A D PJrQ with P 2 GLm.F /
and Q 2 GLn.F /. Then tA D tQ tJr

tP and since tP; tQ are invertible,
we have rank. tA/ D rank. tJr /. Since t Jr D Jr , we conclude that
rank. tA/ D rank.A/ D r . �

Problem 5.71. Let A 2 Mn.C/. Find, as a function of A, the smallest integer r
such that A can be written as a sum of r matrices of rank 1.

Solution. For all matrices X; Y 2 Mn.C/ we have

rank.X C Y / � rank.X/C rank.Y /

thus if A D A1 C � � � C As with rank.Ai / D 1, then

rank.A/ D rank

 
sX
iD1

Ai

!
�

sX
iD1

rank.Ai / D s:

We will prove that we can write A as a sum of rank.A/ matrices of rank 1, which
will imply that the answer of the problem is rank.A/. Indeed, if A has rank k, write
A D PJkR for some P;R 2 GLn.C/. Thus A D A1 C A2 C � � � C Ak , where
Ai D PEiiQ and Eii is the matrix having all entries 0 except for entry .i; i/, which
is 1. Clearly Ai has rank 1 (since P;Q are invertible and Eii has rank 1). �

Problem 5.72. Let A 2 Mn.F / have rank r 2 Œ1; n � 1�. Prove that there exist
B 2 Mn;r .F /; C 2 Mr;n.F / with

rank.B/ D rank.C / D r;

such that A D BC:

Solution. Write A D PJrQ; where P;Q are invertible n � n matrices. Note that

choosing B1 D
�
Ir
0

�
2 Mn;r .F / and C1 D �

Ir 0
� 2 Mr;n.F / we have Jr D B1C1

and B1; C1 both have rank r . But then

xA D PJrQ D .PB1/.C1Q/

and B D PB1 2 Mn;r .F /, C D C1Q 2 Mr;n.F / both have rank r , since P;Q are
invertible (Remark 5.63). The problem is solved. �

Problem 5.73. Let A D Œaij � 2 Mn.C/ be a matrix of rank 1. Prove that there exist
complex numbers x1; x2; : : : ; xn; y1; y2; : : : ; yn such that aij D xiyj for all integers
1 � i; j � n:
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Solution. According to the previous problem there exist two matrices

B 2 Mn;1.C/ ; C 2 M1;n.C/

so that A D BC: If

B D

0
BB@

x1
x2
: : :

xn

1
CCA ; C D .y1 y2 : : : yn/ ;

then

A D

0
BB@

x1
x2
: : :

xn

1
CCA � .y1 y2 : : : yn/ D

0
BB@

x1y1 x1y2 : : : x1yn
x2y1 x2y2 : : : x2yn
: : : : : : : : : : : :

xny1 xny2 : : : xnyn

1
CCA :

�

5.4.1 Problems for practice

1. a) Find the rank of the linear transformation

T W R3 ! R3; T .x; y; z/ D .x � y; y � z; z � x/:

b) Answer the same question with R replaced with F2.
2. Let T be the linear transformation on R3 whose matrix with respect to the

canonical basis is

A D
2
4
1 2 1

0 1 �1
1 1 1

3
5 :

Find a basis of Im.T / and ker.T /, and compute the rank of T .
3. Compute the rank of the matrices

A D
2
4
1 1 1 �2
0 1 �3 4

2 2 2 �4

3
5 ; B D

2
666664

0 1 1 3

1 1 1 1

2 1 1 �4
2 2 2 2

3 2 2 �3

3
777775
:
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4. Let A;B 2 M3.F / be two matrices such that AB D O3. Prove that

min.rank.A/; rank.B// � 1:

5. Let A 2 M3.C/ be a matrix such that A2 D O3.

a) Prove that A has rank 0 or 1.
b) Deduce the general form of all matrices A 2 M3.C/ such that A2 D O3.

6. Find the rank of the matrix A D Œcos.i � j /�1�i;j�n.
7. a) Let V be an n-dimensional vector space over F and let T W V ! V be a

linear transformation. Let T j be the j -fold iterate of T (so T 2 D T ı T ,
T 3 D T ı T ı T , etc). Prove that

Im.T n/ D Im.T nC1/:

Hint: check that if Im.T j / D Im.T jC1/ for some j , then Im.T k/ D
Im.T kC1/ for k � j .

b) Let A 2 Mn.C/ be a matrix. Prove that An and AnC1 have the same rank.
8. Let A 2 Mn.F / be a matrix of rank 1. Prove that

A2 D Tr.A/A:

9. Let A 2 Mm.F / and B 2 Mn.F /. Prove that

rank

�
A 0

0 B

�
D rank.A/C rank.B/:

10. Prove that for any matrices A 2 Mn;m.F / and B 2 Mm.F / we have

rank

�
In A

0 B

�
D nC rank.B/:

11. Let n > 2 and let A D Œaij � 2 Mn.C/ be a matrix of rank 2. Prove the existence
of real numbers xi ; yi ; zi ; ti for 1 � i � n such that for all i; j 2 f1; 2; : : : ; ng
we have

aij D xiyj C zi tj :

12. Let A D 	
aij


1�i;j�n ; B D 	

bij


1�i;j�n be complex matrices such that

aij D 2i�j � bij
for all integers 1 � i; j � n: Prove that rankA D rankB:
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13. Let A 2 Mn.C/ be a matrix such that A2 D A, i.e., A is the matrix of a
projection. Prove that

rank.A/C rank.In � A/ D n:

14. Let n > k and let A1; : : : ; Ak 2 Mn.R/ be matrices of rank n � 1. Prove
that A1A2 : : : Ak is nonzero. Hint: using Sylvester’s inequality prove that
rank.A1 : : : Aj / � n � j for 1 � j � k.

15. Let A 2 Mn.C/ be a matrix of rank at least n� 1. Prove that rank.Ak/ � n� k
for 1 � k � n. Hint: use Sylvester’s inequality.

16. a) Prove that for any matrix A 2 Mn.R/ we have

rank.A/ D rank. tAA/:

Hint: ifX 2 Rn is a column vector such that tAAX D 0, write tX tAAX D
0 and express the left-hand side as a sum of squares.

b) Let A D
�
1 i

i �1
�

. Find the rank of A and tAA and conclude that part a) of

the problem is no longer true if R is replaced with C.
17. Let A be an m � n matrix with rank r . Prove that there is an m � m matrix B

with rank m � r such that BA D Om;n.
18. (Generalized inverses) LetA 2 Mm;n.F /. A generalized inverse ofA is a matrix

X 2 Mn;m.F / such that AXA D A.

a) If m D n and A is invertible, show that the only generalized inverse of A
is A�1.

b) Show that a generalized inverse of A always exists.
c) Give an example to show that the generalized inverse need not be unique.



Chapter 6
Duality

Abstract After an in-depth study of duality for finite dimensional vector spaces,
we prove Jordan’s classification result of nilpotent transformations on a finite
dimensional vector space. We also explain how to describe vector subspaces by
equations using hyperplanes.

Keywords Duality • Dual basis • Linear form • Hyperplane • Orthogonal

This chapter focuses on a restricted class of linear maps between vector spaces,
namely linear maps between a vector space and the field of scalars (seen as a vector
space of dimension 1 over itself). Such linear maps are called linear forms on the
vector space. Even though the whole chapter might look rather formal at first sight,
the study of linear forms (known as duality) on finite dimensional vector spaces
is very important and yields a lot of surprising properties. For instance, we will
use duality to prove a famous result due to Jordan which completely classifies the
nilpotent linear transformations on a finite dimensional vector space. This is one
of the most important results in linear algebra! We will also use duality in the last
chapter, in a more geometric context.

6.1 The Dual Basis

We fix a field F in the sequel. The reader may take F 2 fR;Cg if he/she prefers.

Definition 6.1. The dual V � of a vector space V over F is the set of linear maps
l W V ! F , endowed with the structure of a vector space over F by defining

.l1 C l2/.v/ D l1.v/C l2.v/ and .cl/.v/ D cl.v/

for l1; l2; l 2 V �, v1; v2; v 2 V and c 2 F .

We leave to the reader the immediate verification of axioms of a vector space,
which show that V � is indeed a vector space over F when endowed with the
previous operations. An element l of V � is called a linear form on V . These objects

© Springer Science+Business Media New York 2014
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are not very mysterious: assume for instance that V D F n and let e1; : : : ; en be the
canonical basis. Then for all .x1; : : : ; xn/ 2 V we have

l.x1; : : : ; xn/ D l.x1e1C: : :Cxnen/ D x1l.e1/C: : :Cxnl.en/ D a1x1C: : :Canxn;

where ai D l.ei / 2 F . Conversely, any map of the form .x1; : : : ; xn/ 7! a1x1 C
: : : C anxn is a linear form on Rn. In general, if V is a finite dimensional vector
space and e1; : : : ; en is a basis of V , then the linear forms on V are precisely those
maps l W V ! F of the form

l.x1e1 C : : :C xnen/ D a1x1 C : : :C anxn

with a1; : : : ; an 2 F .
By definition we have a canonical map

V � � V ! F; .l; v/ 7! l.v/:

We also denote this map as .l; v/ 7! hl; vi and call it the canonical pairing between
V and its dual. Unwinding definitions, we obtain the useful formulae

hcl1 C l2; vi D chl1; vi C hl2; vi; and hl; cv1 C v2i D chl; v1i C hl; v2i:

The canonical pairing is a key example of a bilinear form, a topic which will be
studied in much greater depth in subsequent chapters.

Each vector v 2 V gives rise to a natural linear form

evv W V � ! F; l 7! l.v/

on V �, obtained by evaluating linear forms at v. We obtain therefore a map


 W V ! V ��; 
.v/ D evv;

called the canonical biduality map. Note that by definition

h
.v/; li D hl; vi

for all linear forms l on V and all vectors v 2 V . A fundamental property of the
biduality map is that it is always injective. In other words, if v is a nonzero vector
in V , then we can always find a linear form l on V such that l.v/ ¤ 0. The proof
of this rather innocent-looking statement uses the existence of bases for general
vector spaces, so we prefer to take the following theorem for granted: we will see in
short time that the biduality map is an isomorphism when V is finite dimensional,
with an easy proof, and this is all we will need in this book.
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Theorem 6.2. For any vector space V over F , the canonical biduality map 
 W
V ! V �� is injective.

Before moving on, let us introduce a useful and classical notation, called the
Kronecker symbol:

Definition 6.3. If i; j are integers, we let ıij D 1 if i D j and ıij D 0 if i ¤ j .

Let us assume now that V is finite dimensional, of dimension n � 1 and let
us consider a basis e1; e2; : : : ; en of V . If v is a vector in V , then we can write
v D x1e1 C : : :C xnen for some scalars x1; : : : ; xn which are uniquely determined.
Define the i th coordinate form by

e�
i W V ! F; e�

i .v/ D xi if v D x1e1 C : : :C xnen:

Thus by definition for all v 2 V we have

v D
nX
iD1

e�
i .v/ei ;

or equivalently

v D
nX
iD1

he�
i ; viei :

Note that for all 1 � i; j � n we have

e�
i .ej / D ıij :

We are now ready to state and prove the first fundamental result of this chapter:

Theorem 6.4. Let V be a vector space of dimension n � 1 and let e1; : : : ; en be a
basis of V . Then the coordinate forms e�

1 ; : : : ; e
�
n form a basis of V � as vector space

over F .

Proof. Let us check first that e�
i is an element of V �, i.e., that e�

i is linear. But if
x D x1e1 C : : :C xnen and y D y1e1 C : : :C ynen, and if c 2 F is a scalar, then

x C cy D .x1 C cy1/e1 C : : :C .xn C cyn/en;

thus

e�
i .x C cy/ D xi C cyi D e�

i .x/C ce�
i .y/;

so e�
i is linear.
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Next, let us prove that e�
1 ; : : : ; e

�
n are linearly independent. Suppose that

c1; : : : ; cn 2 F are scalars such that

c1e
�
1 C : : :C cne

�
n D 0:

Evaluating at ei yields

c1he�
1 ; ei i C : : :C cnhe�

n ; ei i D 0:

The left-hand side equals

nX
jD1

cj he�
j ; ei i D

nX
jD1

cj ıij D ci :

Thus ci D 0 for all i and so e�
1 ; : : : ; e

�
n are linearly independent.

Finally, let us prove that e�
1 ; : : : ; e

�
n are a generating family for V �. Let l 2 V �

be an arbitrary linear form. If v D x1e1 C : : :C xnen is a vector in V , then linearity
of l gives

hl; vi D x1hl; e1i C : : :C xnhl; eni D hl; e1ihe�
1 ; vi C : : :C hl; enihe�

n ; vi

D hhl; e1ie�
1 C hl; e2ie�

2 C : : :C hl; enie�
n ; vi;

showing that

l D hl; e1ie�
1 C hl; e2ie�

2 C : : :C hl; enie�
n :

Thus l belongs to the span of e�
1 ; : : : ; e

�
n , which finishes the proof of the theorem. �

Remark 6.5. The proof shows that for any l 2 V � we have the useful relation

l D hl; e1ie�
1 C hl; e2ie�

2 C : : :C hl; enie�
n :

This is the “dual” relation of the tautological relation

v D
nX
iD1

he�
i ; viei ;

valid for all v 2 V .

The previous theorem explains the following:

Definition 6.6. If e1; : : : ; en is a basis of a vector space V over F , we call
e�
1 ; : : : ; e

�
n the dual basis of e1; : : : ; en. It is uniquely characterized by the prop-

erty that

e�
i .ej / D ıij for all 1 � i; j � n:

A crucial consequence of the previous theorem is the following:
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Corollary 6.7. For all finite dimensional vector spaces V over F we have

dimV D dimV �:

Moreover, the canonical biduality map 
 W V ! V �� is an isomorphism of vector
spaces over F .

Proof. The first part is clear from the previous theorem and the fact that all bases
in a finite dimensional vector space have the same number of elements, namely the
dimension of the space. To prove that 
 is an isomorphism, it suffices to prove that 

is injective, since

dimV D dimV � D dimV ��;

as follows from what we have already proved.
So suppose that 
.v/ D 0, which means that hl; vi D 0 for all l 2 V �. Let

e1; : : : ; en be a basis of V . Then he�
i ; vi D 0 for all 1 � i � n, and since

v D
nX
iD1

he�
i ; viei ;

we obtain v D 0, establishing therefore the injectivity of 
. �

Remark 6.8. Conversely, one can prove that if the biduality map is an isomorphism,
then V is finite dimensional. In other words, the biduality map is never an
isomorphism for an infinite dimensional vector space!

Recall that RnŒX� is the vector space of polynomials with real coefficients
whose degree does not exceed n.

Problem 6.9. Let V D RnŒX�. It is easy to see that the maps P 7! P .k/.0/

(where P .i/ is the i th derivative of P ) are elements of V �. Express the dual basis of
1;X; : : : ; Xn in terms of these maps.

Solution. Let ei D Xi 2 V and let e�
0 ; : : : ; e

�
n be the dual basis. By definition

e�
i .ej / D ıij . Thus for all P D a0 C a1X C : : :C anX

n 2 V we have

e�
i .P / D ai D 1

iŠ
P .i/.0/:

Thus e�
i is the linear form given by P 7! 1

iŠ
P .i/.0/. �

The following problem gives a beautiful and classical application of the ideas
developed so far:

Problem 6.10 (Lagrange Interpolation). Let V D RnŒX� and let x0; : : : ; xn be
pairwise distinct real numbers. For 0 � i � n define

Li.X/ D
Y

0�j�n
j¤i

X � xj
xi � xj :
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a) Show that

Li.xj / D ıij for all 1 � i; j � n:

b) Prove that L0; : : : ; Ln form a basis of V .
c) Describe the dual basis of L0; : : : ; Ln.
d) Prove Lagrange’s interpolation formula: for all P 2 V we have

P D
nX
iD0

P.xi /Li :

e) Prove that for any b0; : : : ; bn 2 R we can find a unique polynomial P 2 V

with P.xi / D bi for 0 � i � n. This polynomial P is called the Lagrange
interpolation polynomial associated with b0; : : : ; bn.

Solution. a) By construction we have Li.xj / D 0 for j ¤ i . On the other hand,

Li.xi / D
Y

0�j�n
j¤i

xi � xj
xi � xj D 1;

thus

Li.xj / D ıij :

b) Since dimV D nC 1 (a basis being given by 1;X; : : : ; Xn), it suffices to check
that L0; : : : ; Ln are linearly independent. Suppose that a0L0 C : : :C anLn D 0

for some scalars a0; : : : ; an. Evaluating this equality at xi and using part a) yields

0 D
nX

jD0
ajLj .xi / D

nX
jD0

aj ıij D ai

for all 0 � i � n, thus L0; : : : ; Ln are linearly independent.
c) By definition of the dual basis and by part a), we have

L�
i .Lj / D ıij D ıj i D Lj .xi /

for all i; j . Fix i 2 f0; : : : ; ng. Since L�
i .Lj / D Lj .xi / for all 0 � j � n and

since L0; : : : ; Ln span V , we deduce that

L�
i .P / D P.xi / for all P 2 V:

d) By definition of the dual basis

P D
nX
iD0

hL�
i ; P iLi :

By part c) we have hL�
i ; P i D P.xi /, which yields the desired result.
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e) It suffices to take P D Pn
iD0 biLi in order to prove the existence part. For

uniqueness, if Q 2 V also satisfies Q.xi / D bi for 0 � i � n, it follows that
P � Q is a polynomial whose degree does not exceed n and which has at least
nC 1 distinct roots, thus P �Q D 0 and P D Q.

�

Problem 6.11. Let x0; : : : ; xn 2 Œ0; 1� be pairwise distinct and let V D RnŒX�.

a) Prove that the mapl W V ! R defined by

l.P / D
Z 1

0

P.x/dx

is a linear form on V .
b) Using the previous problem, prove that there is a unique nC1-tuple .a0; : : : ; an/

of real numbers such that
Z 1

0

P.x/dx D
nX
iD0

aiP.xi /

for all P 2 V .

Solution. a) This is a direct consequence of basic properties of integral calculus.
b) We use the result and notations of the previous problem, which establishes that
L�
0 ; : : : ; L

�
n is a basis of V �, and L�

i .P / D P.xi / for all P 2 V . Thus saying
that

Z 1

0

P.x/dx D
nX
iD0

aiP.xi /

for all P 2 V is equivalent to saying that

I.P / D
nX
iD0

aiL
�
i .P /

for all P 2 V , in other words

I D
nX
iD0

aiL
�
i

as elements of V �. Since L�
0 ; : : : ; L

�
n is a basis of V �, the existence and

uniqueness of a0; : : : ; an is clear. �

Let us consider now the following practical problem: given a basis v1; : : : ; vn
of Rn, express the dual basis v�

1 ; : : : ; v
�
n in terms of the dual basis e�

1 ; : : : ; e
�
n of the

canonical basis of Rn. To do so, write

vi D
nX

jD1
aj i ej and v�

i D
nX

jD1
bj i e

�
j :
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Note that in practice we have an easy access to the matrix A D Œaij �: its columns are
precisely the coordinates of v1; : : : ; vn with respect to the canonical basis e1; : : : ; en
of Rn. We are interested in finding B D Œbij �. Using the identity v�

i .vj / D ıij , we
obtain

ıij D v�
i .vj / D

nX
kD1

bki e
�
k .vj / D

nX
kD1

bki �
nX
lD1

alj e
�
k .el /

D
nX

kD1

nX
lD1

alj bki ıkl D
nX

kD1
akj bki D . tB � A/ij :

Since this holds for all i; j , we deduce that

tB � A D In; i:e:; B D tA�1:

Thus in practice we need to compute A�1 (via row-reduction on the matrix .AjIn/)
and take the transpose!

Problem 6.12. Let e�
1 ; e

�
2 ; e

�
3 be the dual basis of the canonical basis of R3. Express

in terms of e�
1 ; e

�
2 ; e

�
3 the dual basis of the basis of R3 consisting in

v1 D
2
4

�3
2

1

3
5 ; v2 D

2
4

�1
1

1

3
5 ; v3 D

2
4
0

�2
3

3
5 :

Solution. We leave to the reader to check that v1; v2; v3 form a basis of R3, using
row-reduction on the matrix A whose columns are v1; v2; v3. Using row-reduction
on .AjI3/, one obtains

A�1 D 1

7

2
4

�5 �3 �2
8 9 6

�1 �2 1

3
5 :

With the above notations

B D 1

7

2
4

�5 8 �1
�3 9 �2
�2 6 1

3
5

and then

v�
1 D �5

7
e�
1 � 3

7
e�
2 � 2

7
e�
3 ;

v�
2 D 8

7
e�
1 C 9

7
e�
2 C 6

7
e�
3 ;

v�
3 D �1

7
e�
1 � 2

7
e�
2 C 1

7
e�
3 :

�
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Consider now the following inverse problem: given a basis f1; : : : ; fn of V �,
is there always a basis e1; : : : ; en of V whose dual basis is f1; : : : ; fn? If so, how
to find such a basis?

Let us start with any basis v1; : : : ; vn of V (we know that dimV D n since we
know that dimV � D n). Of course, in practice the choice of v1; : : : ; vn will be the
natural one (for instance if V D Rn then we will take for v1; : : : ; vn the canonical
basis, if V D Rn�1ŒX�, we will take for v1; : : : ; vn the basis 1;X; : : : ; Xn�1, etc).
Define a matrix

A D Œaij �; aij D fi .vj /:

This will be known in practice. On the other hand, we are looking for a basis
e1; : : : ; en of V such that e�

i D fi , that is

fi .ej / D ıij

for 1 � i; j � n. We are therefore looking for an invertible matrix B such that
setting

ei D
nX

jD1
bj ivj ;

these vectors satisfy the previous relations. Well, these relations are equivalent to

ıij D fi .ej / D
nX

kD1
bkj fi .vk/ D

nX
kD1

bkj aik D .AB/ij ;

that is

AB D In:

In other words, e1; : : : ; en exist if and only if the matrix A is invertible, and then
e1; : : : ; en are uniquely determined by

B D A�1:

It is however not clear that the matrix A is invertible. This is however the case, as
the following theorem shows:

Theorem 6.13. Let v1; : : : ; vn be a basis of V and let f1; : : : ; fn be a basis of V �.
The matrix A D Œaij � with aij D fi .vj / is invertible. Consequently (thanks to the
above discussion) for any basis f1; : : : ; fn of V � there is a unique basis e1; : : : ; en
of V whose dual basis is f1; : : : ; fn.
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Proof. Assume that A is not invertible. We can thus find a nonzero vector X 2 F n

with coordinates x1; : : : ; xn such that AX D 0. Thus for all j 2 f1; 2; : : : ; ng we
have

0 D
nX
iD1

aj ixi D
nX
iD1

fj .vi /xi D fj .

nX
iD1

xivi /:

The vector v D x1v1 C : : :C xnvn is therefore nonzero (since v1; : : : ; vn are linearly
independent and X ¤ 0) and we have

f1.v/ D : : : D fn.v/ D 0:

Since f1; : : : ; fn is a spanning set for V �, we deduce that l.v/ D 0 for all l 2 V �.
Thus v is a nonzero vector in the kernel of the biduality map V ! V ��, which was
however shown to be an isomorphism. This contradiction shows that A is invertible
and finishes the proof. �

In practice, it is helpful to know that a converse of the theorem holds:

Theorem 6.14. Let V be a vector space of dimension n over a field F . If the matrix
A D Œaij � with aij D fi .vj / is invertible for some v1; : : : ; vn 2 V and some
f1; : : : ; fn 2 V �, then v1; : : : ; vn form a basis of V and f1; : : : ; fn form a basis
of V �.

Proof. Suppose that v1; : : : ; vn are linearly independent, say x1v1 C : : :C xnvn D 0

for some x1; : : : ; xn 2 F , not all equal to 0. Applying fj to this relation, we obtain

0 D fj .x1v1 C : : :C xnvn/ D aj1x1 C : : :C ajnxn

for all j 2 f1; 2; : : : ; ng, thus AX D 0, where X 2 F n has coordinates x1; : : : ; xn,
contradicting that A is invertible. Thus v1; : : : ; vn are linearly independent and since
dimV D n, they form a basis of V .

Similarly, if f1; : : : ; fn were linearly dependent, we could find a nontrivial
dependency relation x1f1 C : : : C xnfn D 0, which evaluated at each vi would
yield

nX
iD1

aij xi D 0;

that is tAX D 0 and tA would not be invertible, a contradiction. �

Problem 6.15. Consider the following linear forms on R3:

l1.x; y; z/ D xC2yC3z; l2.x; y; z/ D 2xC3yCz; l3.x; y; z/ D 3xCyC2z:

a) Prove that l1; l2; l3 form a basis of the dual of R3.
b) Find the basis of R3 whose dual basis is l1; l2; l3.
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Solution. a) Consider the canonical basis e1; e2; e3 of R3 and the matrix

A D Œli .ej /� D
2
4
1 2 3

2 3 1

3 1 2

3
5 :

This matrix is invertible, as one easily shows using row-reduction. It follows from
the previous theorem that l1; l2; l3 form a basis of the dual of R3.

b) We compute the inverse of A using row-reduction. We obtain

A�1 D 1

18

2
4

�5 1 7

1 7 �5
7 �5 1

3
5 :

Using the previous discussion, we read the desired basis v1; v2; v3 of R3 on the
columns of A�1:

v1 D 1

18

2
4

�5
1

7

3
5 ; v2 D 1

18

2
4
1

7

�5

3
5 ; v3 D 1

18

2
4
7

�5
1

3
5 :

�

Problem 6.16. Let V D R2ŒX� and, for P 2 V , set

l1.P / D P.1/; l2.P / D P 0.1/; l3.P / D
Z 1

0

P.x/dx:

a) Prove that l1; l2; l3 is a basis of V �.
b) Find a basis e1; e2; e3 of V whose dual basis is l1; l2; l3.

Solution. a) It is not difficult to check that l1; l2; l3 are linear forms on V . In order
to prove that they form a basis of V �, we will use the previous theorem. Namely,
we consider the canonical basis v1 D 1, v2 D X and v3 D X2 of V and the
matrix

A D Œli .vj /�:

Noting that if P D aX2 C bX C c then

l1.P / D aC b C c; l2.P / D 2aC b; l3.P / D a

3
C b

2
C c;

we deduce that
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A D
2
4
1 1 1

0 1 2

1 1
2
1
3

3
5 :

One easily checks using row-reduction that A is invertible and by the previous
theorem l1; l2; l3 form a basis of V �.

b) Using the method discussed before Theorem 6.13, we see that we have to
compute the matrix B D A�1. Row-reduction yields

B D A�1 D
2
4

�2 1
2

3

6 �2 �6
�3 3

2
3

3
5 :

Moreover, using that method we deduce that

e1 D �2v1 C 6v2 � 3v3 D �2C 6X � 3X2;

e2 D 1

2
v1 � 2v2 C 3

2
v3 D 1

2
� 2X C 3

2
X2;

e3 D 3v1 � 6v2 C 3v3 D 3 � 6X C 3X2:

�

6.1.1 Problems for Practice

In the following problems we let RnŒX� be the space of polynomials with real
coefficients whose degree does not exceed n.

1. Find the dual basis of the basis of R3 consisting of

v1 D .1;�1; 0/; v2 D .0; 0; 1/; v3 D .1; 1; 1/:

2. Consider the linear forms on R3

l1.x; y; z/ D 2xC 4y C z; l2.x; y; z/ D 4xC 2y C 3z; l3.x; y; z/ D xC y:

a) Prove that l1; l2; l3 form a basis of the dual of R3.
b) Find the basis of R3 whose dual basis is l1; l2; l3.

3. Let V be a finite dimensional vector space over a field F . Prove that for all
x ¤ y 2 V we can find a linear form l on V such that l.x/ ¤ l.y/.

4. Define P0 D 1 and, for k � 1,

Pk.X/ D X.X � 1/ : : : .X � k C 1/:



6.1 The Dual Basis 209

Also, let fk W RnŒX� ! R be the map defined by fk.P / D P.k/.

a) Prove that P0; : : : ; Pn is a basis of RnŒX�.
b) Prove that f0; : : : ; fn is a basis of RnŒX�

�.
c) Let .P �

0 ; : : : ; P
�
n / be the dual basis of .P0; : : : ; Pn/. Express P �

k in terms of
f0; : : : ; fn.

5. Let a ¤ b be real numbers and for k 2 f0; 1; 2g set

Pk.X/ D .X � a/k.X � b/2�k:

a) Prove that P0; P1; P2 form a basis of R2ŒX�.
b) Let c D aCb

2
and, for ˛ 2 fa; b; cg, let f˛ W R2ŒX� ! R be the map defined

by f˛.P / D P.˛/. Prove that fa; fb; fc form a basis of R2ŒX�
�.

c) Express the dual basis P �
0 ; P

�
1 ; P

�
2 in terms of the basis fa; fb; fc .

6. For i � 0 let fi W R2ŒX� ! R be the map defined by

fi .P / D
Z 1

0

xiP.x/dx:

a) Prove that f0; f1; f2 form a basis of R2ŒX�
�.

b) Find a basis of R2ŒX� whose dual basis is f0; f1; f2.

7. Let V be the vector space of all sequences .xn/n�0 of real numbers such that

xnC2 D xnC1 C xn

for all n � 0.

a) Prove that V has dimension 2.
b) Let l0; l1 W V ! R be the linear forms sending a sequence .xn/n�0 to x0,

respectively x1. Find the basis e0; e1 of V whose dual basis is l0; l1.

8. Let X be a finite set and let V be the space of all maps ' W X ! F . For each
x 2 X , consider the map lx W V ! F sending f to f .x/. Prove that the family
.lx/x2X is a basis of V �.

9. Let l be a linear form on RnŒX� and let k 2 Œ0; n� be an integer. Prove that the
following statements are equivalent:

a) We have l.XkP / D 0 for all polynomials P 2 Rn�kŒX�.
b) There are real numbers ˛0; : : : ; ˛k�1 such that for all P 2 RnŒX�

l.P / D
k�1X
iD0

˛iP
.i/.0/:
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10. a) Let a0; : : : ; an be pairwise distinct real numbers. Prove that there is a unique
n C 1-tuple of real numbers .b0; : : : ; bn/ such that for any P 2 RnŒX� we
have

P.0/C P 0.0/ D
nX

kD0
bkP.ak/:

b) Find such numbers b0; : : : ; bn for n D 2, a0 D 1, a1 D 2 and a2 D 3.
11. Prove Simpson’s formula: for all P 2 R2ŒX�

Z b

a

P.x/dx D b � a
6

�
P.a/C 4P

�
aC b

2

�
C f .b/

�
:

12. a) Let l1; l2 be nonzero linear forms on some nonzero vector space V over R.
Prove that we can find v 2 V such that l1.v/l2.v/ is nonzero.

b) Generalize this to any finite number of nonzero linear forms.
13. Let V;W be vector spaces. Prove that .V �W /� is isomorphic to V � �W �.

6.2 Orthogonality and Equations for Subspaces

Let V be a vector space over a field F , let l be a linear form on V and v 2 V . We say
that l and v are orthogonal if

hl; vi D 0; i.e. l.v/ D 0; or equivalently v 2 ker l:

If S is any subset of V , we let

S? D fl 2 V �j hl; vi D 0 8v 2 Sg
be the orthogonal of S . These are the linear forms on V which vanish on S , or
equivalently on the span of S (by linearity). Thus

S? D Span.S/?:

Note that S? is a subspace of V �, since if l1 and l2 vanish on S , then so does
l1 C cl2 for all scalars c 2 F .

Similarly, if S is a subset of V �, we let

S? D fv 2 V j hl; vi D 0 8l 2 Sg

be the orthogonal of S . The elements of S? are the vectors killed by all linear
forms in S , thus

S? D
\
l2S

ker l:
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This makes it clear that S? is a subspace of V , as intersection of the subspaces
.ker l/l2S of V . Again, by linearity we have

S? D .Span.S//?

for all S � V �.
In practice, finding the orthogonal of a subset of a finite dimensional vector space

or of its dual comes down to solving linear systems, problem which can be easily
solved using row-reduction for instance. Indeed, let V be a finite dimensional vector
space over F and let S be a set of vectors in V . Finding S? comes down to finding
those linear forms l on V vanishing on each element of S . Let e1; : : : ; en be a basis
of V , then a linear form l on V is of the form

l.x1e1 C : : :C xnen/ D a1x1 C : : :C anxn

for some a1; : : : ; an 2 F . Writing each element s 2 S with respect to the basis
e1; : : : ; en yields

s D ˛s1e1 C : : :C ˛snen

for some scalars ˛si . Then l 2 S? if and only if

a1˛s1 C : : :C an˛sn D 0

for all s 2 S . This is a linear system in a1; : : : ; an, but the reader will probably
be worried that it may have infinitely many equations (if S is infinite). This is
not a problem, since as we have already seen S? D .Span.S//? and Span.S/ is
finite dimensional (since a subspace of V ), thus by choosing a basis of Span.S/ say
s1; : : : ; sk , we reduce the problem to solving the system

a1˛sj 1 C : : :C an˛sj n D 0

for 1 � j � k. The discussion is similar if we want to compute the orthogonal of a
subset of V �.

Let us see some concrete examples:

Problem 6.17. Consider the subspace W of R3 defined by

W D f.x; y; z/ 2 R3j x C y C z D 0g:

Give a basis of the orthogonal W ? of W .

Solution. By definition, a linear form l on R3 belongs to W ? if and only if
l.x; y; z/ D 0 whenever x C y C z D 0. In other words,

l.x; y;�x � y/ D 0 for all x; y 2 R;
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which can be written as

xl.1; 0;�1/C yl.0; 1;�1/ D 0:

Thus l 2 W ? if and only if

l.1; 0;�1/ D l.0; 1;�1/ D 0:

Now, a linear form l on R3 is of the form

l.x; y; z/ D ax C by C cz;

where a; b; c are real numbers. Thus l 2 W ? if and only if

a � c D 0; b � c D 0;

or equivalently a D b D c. It follows that the linear form

l0.x; y; z/ D x C y C z

is a basis of W ?. �

Problem 6.18. Let S D fv1; v2; v3g � R4, where

v1 D .1; 0; 1; 0/; v2 D .0; 1; 1; 0/; v3 D .�1; 1; 0; 1/:

Describe S? by giving a basis of this space.

Solution. A linear form l on R4 is of the form

l.x; y; z; t / D ax C by C cz C dt;

where a; b; c; d are real numbers. The condition l 2 S? is equivalent to

l.v1/ D l.v2/ D l.v3/ D 0:

Thus l 2 S? if and only if a; b; c; d are solutions of the system
8<
:

aC c D 0

b C c D 0

�aC b C d D 0

This system can be solved without difficulty: the first and second equations give
a D b D �c and the third equation yields d D 0, thus the solutions of the system
are f.u; u;�u; 0/ju 2 Rg. The corresponding linear forms are

lu.x; y; z; t / D u.x C y � z/;
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hence a basis of S? is given by

l1.x; y; z; t / D x C y � z:

�

Problem 6.19. Consider the set S D fl1; l2g where

l1.x; y; z/ D 2x C 3y � z; l2.x; y; z/ D x � 2y C z:

Find a basis for S?.

Solution. A vector .x; y; z/ is in S? if and only if

l1.x; y; z/ D l2.x; y; z/ D 0;

that is

�
2x C 3y � z D 0

x � 2y C z D 0

Solving the system yields

y D �3x; z D �7x:

Thus a basis of S? is given by .1;�3;�7/. �

Let us continue with an easy, but important theoretical exercise.

Problem 6.20. a) If S1 � S2 are subsets of V or of V �, then S?
2 � S?

1 .
b) If S is a subset of V or V �, then S � .S?/?.

Solution. a) Suppose that S1; S2 are subsets of V . If l 2 S?
2 , then l vanishes on S2.

Since S1 � S2, it follows that l vanishes on S1 and so l 2 S?
1 . Thus S?

2 � S?
1 .

Suppose that S1; S2 are subsets of V �. If v 2 S?
2 , then all elements of S2

vanish at v. Since S1 � S2, it follows that all elements of S1 vanish at v and so
v 2 S?

1 . The result follows.
b) Suppose that S � V and let v 2 S . We need to prove that if l 2 S?, then

hl; vi D 0, which is clear by definition! Similarly, if S � V � and l 2 S , we need
to prove that hl; vi D 0 for all v 2 S?, which is again clear. �

Remark 6.21. While it is tempting to believe that the inclusion in part b) of the
problem is actually an equality, this is completely false: .S?/? is a subspace of
V or V �, while S has no reason to be a subspace of V or V � (it was an arbitrary
subset). Actually, we will see that the inclusion is an equality if S is a subspace
of V or V � when V is finite dimensional.



214 6 Duality

The fundamental theorem concerning duality of vector spaces is the following:

Theorem 6.22. Let V be a finite dimensional vector space over F . Then for all
subspaces W of V or V � we have

dimW C dimW ? D dimV:

Proof. Let n D dimV . Let W be a subspace of V , of dimension m � n, and
let e1; : : : ; em be a basis of W , completed to a basis e1; : : : ; en of V . We need to
prove that dimW ? D n � m. Let e�

1 ; : : : ; e
�
n be the dual basis of V � associated

with e1; : : : ; en. We will prove that e�
mC1; : : : ; e�

n is a basis of W ?, which will
prove the equality dimW ? D n � m. First, notice that e�

mC1; : : : ; e�
n belong to

W ?, since e�
j vanishes at e1; : : : ; em for all m < j � n, thus it vanishes on

W D Span.e1; : : : ; em/.
Since e�

mC1; : : : ; e�
n form a subfamily of the linearly independent family

e�
1 ; : : : ; e

�
n , it suffices to prove that they span W ?. Let l 2 W ?, so that l vanishes

on W . Using Remark 6.5, we obtain

l D
nX

iDmC1
hl; ei ie�

i 2 Span.e�
mC1; : : : ; e�

n /

and the proof of the equality dimW ? D n �m is finished.
Suppose now that W is a subspace of V �. By definition W ? consists of vectors

v 2 V such that hl; vi D 0 for all l 2 W . Let 
 W V ! V �� be the canonical biduality
map. The equality hl; vi D 0 is equivalent to h
.v/; li D 0. Thus v 2 W ? if and only
if 
.v/ 2 .V �/� vanishes on W . Since 
 is an isomorphism and since the space of
g 2 .V �/� which vanish on W has dimension dimV � � dimW D dimV � dimW

by the first paragraph, we conclude that dimW ? D dimV � dimW , finishing the
proof of the theorem. �

Let us also mention the following very important consequence of the previous
theorem: we can recover a subspace in a finite dimensional vector space (or its dual)
from its orthogonal:

Corollary 6.23. Let V be a finite dimensional vector space over F and let W be a
subspace of V or V �. Then .W ?/? D W .

Proof. By Problem 6.20 we have an inclusion W � .W ?/?. By the previous
theorem

dim.W ?/? D dimV � dimW ? D dimW:

Thus we must have .W ?/? D W . �

The previous result allows us to give equations for a subspace W of a finite
dimensional vector space V over F . Indeed, let n D dimV and p D dimW , thus
dimW ? D n�p by the previous theorem. Let l1; : : : ; ln�p be a basis ofW ?. Then
by the previous corollary

W D .W ?/? D fv 2 V j l1.v/ D : : : D ln�p.v/ D 0g:
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If e1; : : : ; en is a fixed basis of V , the linear form li is of the form

li .x1e1 C : : :C xnen/ D ai1x1 C ai2x2 C : : :C ainxn

for some aij 2 F . We deduce that

W D fx1e1 C : : :C xnen 2 V j ai1x1 C : : :C ainxn D 0 for all 1 � i � n�pg;

in other words W can be defined by n � p equations, which are linearly inde-
pendent (since l1; : : : ; ln�p form a basis of W and thus are linearly independent).
Moreover, one can actually write down explicitly these equations if we know the
coefficients aij , in other words if we can find a basis of W ?. But if W is given,
then we have already explained how to compute W ?, and we also know how to
compute a basis of a given vector space, thus all the previous steps can actually be
implemented in practice (we will see a concrete example in a few moments).

Conversely, if l1; : : : ; ln�p are linearly independent linear forms on V , then

Z D fv 2 V j l1.v/ D : : : D ln�p.v/ D 0g

is a vector subspace of V of dimension p, since

Z D .Span.l1; : : : ; ln�p//?;

thus by Theorem 6.22

dimZ D n � dim Span.l1; : : : ; ln�p/ D n � .n � p/ D p:

We can summarize the previous discussion in the following fundamental:

Theorem 6.24. Let V be a vector space of dimension n over a field.

a) If W is a subspace of V of dimension p, then we can find linearly independent
linear forms l1; : : : ; ln�p on V such that

W D fv 2 V j l1.v/ D : : : D ln�p.v/ D 0g:

We say that l1.v/ D : : : D ln�p.v/ D 0 are equations of W (of course, there are
many possible equations for W !).

b) Conversely, if l1; : : : ; ln�p are linearly independent linear forms on V , then

W D fv 2 V j l1.v/ D : : : D ln�p.v/ D 0g

is a subspace of dimension p of V .

With the above notations, the case p D n � 1 is particularly important and
deserves a
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Definition 6.25. Let V be a finite dimensional vector space over F . A subspaceW
of V is called a hyperplane if

dimW D dimV � 1:

For instance, the hyperplanes in R2 are the subspaces of dimension 1, i.e., the
lines. On the other hand, the hyperplanes in R3 are the subspaces of dimension 2,
i.e., planes spanned by two linearly independent vectors (this really corresponds to
the geometric intuition). There are several possible definitions of a hyperplane and
actually the previous one, though motivated by the previous theorem, is not the most
natural one since it does not say anything about the case of infinite dimensional
vector spaces. The most general and useful definition of a hyperplane in a (not
necessarily finite dimensional) vector space V over F is that of a subspace W
of V of the form ker l , where l is a nonzero linear form on V . In other words,
hyperplanes are precisely the kernels of nonzero linear forms. Of course, this
new definition is equivalent to the previous one in the case of finite dimensional
vector spaces (for instance, by the rank-nullity theorem or by the previous theorem).
It also shows that the hyperplanes in F n are precisely the subspaces of the form

H D f.x1; : : : ; xn/ 2 F nj a1x1 C : : :C anxn D 0g
for some nonzero vector .a1; : : : ; an/ 2 F n. In general, if e1; : : : ; en is a basis of V ,
then the hyperplanes in V are precisely the subspaces of the form

H D fv D x1e1 C : : :C xnen 2 V j a1x1 C : : :C anxn D 0g:
Notice that if H is a hyperplane in a finite dimensional vector space, then H? has
dimension 1, thus it is a line in V .

We say that hyperplanes H1; : : : ;Hp are linearly independent if they are the
kernels of a linearly independent family of linear forms. The previous theorem can
be rewritten as:

Theorem 6.26. a) Any subspace of dimension p in a vector space of dimension n
is the intersection of n � p linearly independent hyperplanes of V .

b) Conversely, the intersection of n�p linearly independent hyperplanes in a vector
space of dimension n is a subspace of dimension p.

We end this section with two concrete problems:

Problem 6.27. Let W be the subspace of R4 spanned by the vectors

v1 D .1; 1;�1; 0/ and v2 D .�1; 2;�1; 1/:
Find equations for W .

Solution. Here V D R4 and e1; e2; e3; e4 is the canonical basis of V . As the
discussion above shows, the problem comes down to finding a basis of W ?. Now
W ? consists in those linear forms

l.x; y; z; t / D ax C by C cz C dt
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which vanish on v1 and v2, i.e., such that

aC b � c D 0; �aC 2b � c C d D 0:

We obtain

c D aC b; d D aC c � 2b D 2a � b

and so

l.x; y; z; t / D ax C by C .aC b/z C .2a � b/t

D a.x C z C 2t/C b.y C z � t /:

We deduce that a basis of W ? is given by

l1.x; y; z; t / D x C z C 2t and l2.x; y; z; t / D y C z � t:

As we have already seen above, we have

W D fv 2 V j l1.v/ D l2.v/ D 0g D

f.x; y; z; t / 2 R4j x C z C 2t D y C z � t D 0g

and l1.v/ D l2.v/ D 0 are equations for W . �

Problem 6.28. Let V D R3ŒX�. Write the vector subspace ofW spanned by 1CX

and 1 �X CX3 as the intersection of 2 linearly independent hyperplanes.

Solution. Consider the canonical basis

e1 D 1; e2 D X; e3 D X2; e4 D X3

of V and

v1 D 1CX D e1 C e2; v2 D 1 �X CX3 D e1 � e2 C e4:

WritingW D Span.v1; v2/ as the intersection of 2 linearly independent hyperplanes
is equivalent to finding two equations defining W , say l1.v/ D l2.v/ D 0, as then

W D H1 \H2; where Hi D ker li :

Thus we are reduced to finding a basis l1; l2 of W ?. A linear form l on V is of
the form

l.x1e1 C x2e2 C x3e3 C x4e4/ D ax1 C bx2 C cx3 C dx4
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for some real numbers a; b; c; d . This linear form belongs to W ? if and only if
l.v1/ D l.v2/ D 0, which is equivalent to

aC b D a � b C d D 0:

This gives b D �a and d D �2a, that is

l.x1e1 C : : :C x4e4/ D a.x1 � x2 � 2x4/C cx3:

We deduce that a basis l1; l2 of W ? is given by

l1.x1e1 C : : :CX4e4/ D x1 � x2 � 2x4; l2.x1e1 C : : :C x4e4/ D x3

and so W is the intersection of two linearly independent hyperplanes

H1 D ker l1 D faC bX C cX2 C dX3 2 V j a � b � 2d D 0g

and

H2 D ker l2 D faC bX C cX2 C dX3 2 V j c D 0g:

�

6.2.1 Problems for Practice

1. Consider the linear forms

l1.x; y/ D x � 2y; l2.x; y/ D 2x C 3y

on R2. Give a basis of S?, where S D fl1; l2g.
2. Give a basis of S?, where S consists of the linear forms

l1.x; y; z/ D x C y � z; l2.x; y; z/ D 2x � 3y C z; l3.x; y; z/ D 3x � 2y

on R3.
3. Find a basis of W ?, where

W D f.x; y; z; t / 2 R4jx C 2y C z � t D 0g:

4. Let S D f.v1; v2; v3/g, where

v1 D .0; 1; 1/; v2 D .1; 1; 0/; v3 D .3; 5; 2/:

Describe S?.
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5. Give equations for the subspace of R4 spanned by

v1 D .1;�2; 2;�1/; v2 D .�1; 0; 4;�2/:

6. a) Find the dimension p of the subspace W of R4 spanned by

v1 D .1; 2;�2; 1/; v2 D .�1; 2; 0;�3/; v3 D .0; 4;�2;�2/:

b) Write W as an intersection of 4 � p linearly independent hyperplanes.
c) Can we write W as the intersection of 3 � p hyperplanes?

7. Let V D Mn.R/ and for each A 2 V consider the map

lA W V ! R; LA.B/ D AB:

a) Prove that lA 2 V � for all A 2 V .
b) Prove that the map

V ! V �; A 7! lA

is a bijective linear map (thus an isomorphism of vector spaces).
c) Let Sn and An be the subspaces of V consisting of symmetric, respectively

skew-symmetric matrices. Prove that

S?
n D flAjA 2 Ang and A?

n D flAjA 2 Sng:

8. Let V be the space of polynomials with real coefficients and let W be the
subspace of V � spanned by the linear forms .ln/n�0, where ln.P / D P .n/.0/.
Prove that W ? D f0g, but W ¤ V �. Thus if W is a subspace of V �, we do not
always have .W ?/? D W (this is the case if V is finite dimensional, or, more
generally, if W is finite dimensional).

9. Let l be a linear form on Mn.R/ such that

l.AB/ D l.BA/

for all A;B 2 Mn.R/. Let .Eij /1�i;j�n be the canonical basis of Mn.R/.

a) Prove that l.E11/ D : : : D l.Enn/. Hint: for i ¤ j EijEji D Eii and
EjiEij D Ejj .

b) Prove that l.Eij / D 0 for i ¤ j . Hint: EiiEij D Eij and EijEii D On.
c) Deduce that there is a real number c such that

l.A/ D c � Tr.A/ for all A 2 Mn.R/:

10. Using the previous problem, determine the span of the set of matrices of the
form AB�BA, withA;B 2 Mn.R/ (hint: consider the orthogonal of the span).
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11. Let V be a vector space and let W1;W2 be subspaces of V or V �. Prove that

.W1 CW2/
? D W ?

1 \W ?
2 :

12. Let V be a finite dimensional vector space and let W1 and W2 be subspaces of
V . Prove that

.W1 \W2/
? D W ?

1 CW ?
2 :

Hint: use the previous problem and Corollary 6.23.
13. LetW1;W2 be complementary subspaces in a finite dimensional vector space V

over a field F . Prove that W ?
1 and W ?

2 are complementary subspaces in V �.
14. LetH1;H2 be distinct hyperplanes in a vector space V of dimension n � 2 over

R. Find dim.H1 \H2/.
15. Prove that a nonzero finite dimensional vector space over R is not the union of

finitely many hyperplanes.
16. Prove that the hyperplanes in Mn.R/ are precisely the subspaces of the form

fX 2 Mn.R/j Tr.AX/ D 0g

for some nonzero matrix A 2 Mn.R/.
17. LetW be a subspace of dimension p in a vector space V of dimension n. Prove

that the minimal number of hyperplanes whose intersection is W is n � p.
18. Let V be a finite dimensional vector space and let l; l1; : : : ; ln 2 V � be linear

forms. Prove that l 2 Span.l1; : : : ; ln/ if and only if \n
iD1 ker li � ker l .

6.3 The Transpose of a Linear Transformation

Let V;W be vector spaces over a field F and let T W V ! W be a linear
transformation. For each l 2 W � we can consider the composite l ı T W V ! F ,
which is a linear form on V . We obtain therefore a map

t T W W � ! V �; tT .l/ D l ı T:

In terms of the canonical pairing between V and V �, and between W and W �,
we have

h t T .l/; vi D hl; T .v/i

for all l 2 W � and v 2 V . We call t T the transpose of the linear transformation T .
If V and W are finite dimensional, the following theorem completely elucidates

the map t T :
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Theorem 6.29. Let T W V ! W be a linear transformation between finite
dimensional vector spaces and let B and B0 be two bases of V and W respectively.
If A is the matrix of T with respect to B and B0, then the matrix of t T W W � ! V �
with respect to the dual bases of B0 and B is tA.

Proof. Let B D .v1; : : : ; vn/ and B0 D .w1; : : : ;wm/. Write A D Œaij � and let
B D Œbij � be the matrix of t T with respect to the bases w�

1 ; : : : ;w
�
m and v�

1 ; : : : ; v
�
n .

By definition we have

T .vi / D
mX
jD1

aj iwj ; 81 � i � n

and

t T .w�
i / D

nX
kD1

bkiv
�
k ; 81 � i � m:

Fix 1 � i � m and write the last equality as

nX
kD1

bkiv
�
k D w�

i ı T:

Evaluating at vj , with j 2 Œ1; n� arbitrary, we obtain

nX
kD1

bkiv
�
k .vj / D

nX
kD1

bki ıkj D bji

and

w�
i .T .vj // D w�

i .

mX
lD1

aljwl / D
mX
lD1

alj ıil D aij :

Comparing the two expressions yields

aij D bji for all i; j;

which is exactly saying that B D tA. �

The following problems establish basic properties of the correspondence
T ! t T . For linear maps between finite dimensional vector spaces, they follow
immediately from the previous theorem and properties of the transpose map on
matrices that we have already established in the first chapter. If we want to deal with
arbitrary vector spaces, we cannot use these results. Fortunately, the results are still
rather easy to establish in full generality.
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Problem 6.30. Prove that for all linear transformations T1; T2 W V ! W and all
scalars c 2 F we have

t .T1 C cT2/ D t T1 C c tT2:

Solution. We need to prove that if l is a linear form on W , then

l ı .T1 C cT2/ D l ı T1 C cl ı T2:
This follows from the fact that l is linear. �

Problem 6.31. a) Let T1 W V1 ! V2 and T2 W V2 ! V3 be linear transformations.
Prove that

t .T2 ı T1/ D t T1 ı t T2:

b) Deduce that if T W V ! V is an isomorphism, then so is t T W V � ! V �, and
. tT /�1 D t .T �1/.

Solution. a) Let l be a linear form on V3. Then

t .T2 ı T1/.l/ D l ı .T2 ı T1/ D .l ı T2/ ı T1 D
t T1.l ı T2/ D t T1.

tT2.l// D t T1 ı t T2.l/:

The result follows.
b) Since T is an isomorphism, there is a linear transformation T �1 such that T ı
T �1 D T �1 ıT D id. Using part a) and the obvious equality t id D id, we obtain

t T ı t .T �1/ D id D t .T �1/ ıt T;

from where the result follows. �

Problem 6.32. Let T W V ! W be a linear transformation and let 
V W V ! V ��,

W W W ! W �� be the canonical biduality maps. Prove that


W ı T D t . tT / ı 
V :

Solution. Let v 2 W , then

t . tT / ı 
V .v/ D t . tT /.evv/ D evv ı t T:

The last map sends l 2 W � to

evv ı t T .l/ D evv.l ı T / D .l ı T /.v/ D l.T .v//

D evT .v/.l/ D 
W .T .v//.l/:
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Thus

t .tT / ı 
V .v/ D evv ı t T D 
W .T .v//

for all v 2 V , which is exactly the desired equality. �

The following technical but very important result makes the link between the
transpose operation and orthogonality. This allows us to use the powerful results
established in the previous section.

Theorem 6.33. Let T W V ! W be a linear transformation between finite
dimensional vector spaces. We have

ker. tT / D .Im.T //?; kerT D .Im. tT //?

and

Im. tT / D .kerT /?; Im.T / D .ker. tT //?:

Proof. By definition we have

ker. tT / D fl 2 W �j l ı T D 0g D fl 2 W �j l.T .v// D 08 v 2 V g

D fl 2 W �j l.w/ D 08 w 2 Im.T /g D .Im.T //?:

Similarly, we have

.Im. tT //? D fv 2 V j t T .l/.v/ D 08 l 2 W �g

D fv 2 V j l.T .v// D 08 l 2 W �g D fv 2 V jT .v/ D 0g D kerT:

Note that we could have also deduced this second result by using the already
established equality ker. tT / D .Im.T //?, applying it to t T and using the previous
problem (and the fact that 
V and 
W are isomorphisms).

Using what we have already established and the fact that our spaces are finite
dimensional (thus we can use Corollary 6.23), we obtain

.kerT /? D ..Im. tT //?/? D Im. tT /:

We proceed similarly for the equality Im.T / D .ker. tT //?. �

The previous theorem allows us to give a new proof of the classical but nontrivial
result that a matrix and its transpose have the same rank:

Problem 6.34. a) Let T W V ! W be a linear transformation between finite
dimensional vector spaces. Prove that T and t T have the same rank.

b) Prove that if A 2 Mm;n.F /, then A and its transpose have the same rank.
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Solution. Using Theorem 6.29, we see that b) is simply the matrix translation of a).
In order to prove part a), we use Theorem 6.33, which yields

rank. tT / D dim.Im. tT // D dim.kerT /?:

By Theorem 6.22 and the rank-nullity theorem, the last expression equals

dimV � dim kerT D dim Im.T / D rank.T /:

The result follows.
�

6.3.1 Problems for Practice

In the next problems we fix a field F .

1. Consider the linear map

T W R3 ! R2; T .x; y; z/ D .x � 2y C 3z; x � y C z/:

Let e�
1 ; e

�
2 be the dual basis of R2. Find the coordinates of the vector t T .e�

1 �
e�
2 ; e

�
1 C e�

2 / with respect to the dual basis of the canonical basis of R3.
2. Find the matrix of t T with respect to the dual base of the canonical base of R3,

knowing that

T .x; y; z/ D .x � 2y C 3z; 2y � z; x � 4y C 3z/:

3. Let T W V ! W be a linear transformation between finite dimensional vector
spaces over F . Prove that

a) T is injective if and only if t T is surjective.
b) T is surjective if and only if t T is injective.

4. Let T W V ! V be a linear transformation on a finite dimensional vector space
V over F , and let W be a subspace of V . Prove that W is stable under T if and
only if W ? is stable under t T .

5. Find all planes of R3 which are invariant under the linear transformation

T W R3 ! R3; T .x; y; z/ D .x � 2y C z; 0; x C y C z/:

6. Let V be a finite dimensional vector space and let T W V ! V be a linear
transformation such that any hyperplane of V is stable under T . Prove that T is
a scalar times the identity (hint: prove that any line in V � is stable under t T ).
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6.4 Application to the Classification of Nilpotent Matrices

In this section we will use the results established in the previous sections to give a
simple proof of a beautiful and extremely important theorem of Jordan. This will be
used later on to completely classify matrices inMn.C/ up to similarity. Actually, the
proof will be split into a series of (relatively) easy exercises, many of them having
their own interest. We will work over an arbitrary field F in this section, but the
reader may assume that F D R or C if he/she wants.

We have seen several important classes of matrices so far: diagonal, upper-
triangular, symmetric, orthogonal, etc. It is time to introduce another fundamental
class of matrices and linear transformations:

Definition 6.35. a) Let V be a vector space over F and let T W V ! V be a linear
transformation. We say that T is nilpotent if T k D 0 for some k � 1, where
T k D T ıT ı : : : ıT (k times). The smallest such positive integer k is called the
index of T . Thus if k is the index of T , then T k D 0 but T k�1 ¤ 0.

b) A matrix A 2 Mn.F / is called nilpotent if Ak D On for some k � 1. The
smallest such positive integer k is called the index of A.

If V is a finite dimensional vector space over F , if B is a basis of V and if T W
V ! V is a linear transformation whose matrix with respect to B is A 2 Mn.F /,
then the matrix of T k with respect to B is Ak . It follows that T is nilpotent if and
only if A is nilpotent, and in this case the index of T equals the index of A.
In particular, any matrix similar to a nilpotent matrix is nilpotent and has the same
index. This can also be proved directly using matrix manipulations: ifA is nilpotent,
P is invertible, and B D PAP�1, then an easy induction shows that

Bk D PAkP�1

for all k � 1, thus Bk D On if and only if Ak D On, establishing the previous
statement.

Problem 6.36. Let T1; T2 be two linear transformations on a vector space V and
assume that T1 ı T2 D T2 ı T1. If T1; T2 are nilpotent, then so are T1 ı T2 and
T1 C T2.

Solution. Say T k11 D 0 and T k22 D 0 for some k1; k2 � 1. Then T k1 D T k2 D 0

where k D k1 C k2. Since T1 and T2 commute, we obtain

.T1 ı T2/k D T k1 ı T k2 D 0

and

.T1 C T2/
2k D

2kX
iD0

 
2k

k

!
T 2k�i
1 T i2 :
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For each 0 � i � k we have T 2k�i
1 D 0 and for each i 2 Œk C 1; 2k� we have

T i2 D 0. Thus T 2k�i
1 T i2 D 0 for all 0 � i � 2k and so .T1CT2/

2k D 0, establishing
that T1 C T2 is nilpotent. �

Remark 6.37. 1) Similarly (and actually a consequence of the problem), the
sum/product of two nilpotent commuting matrices is a nilpotent matrix.

2) The result of the previous problem is no longer true if we don’t assume that

T1 and T2 commute: the matrices

�
0 1

0 0

�
and

�
0 0

1 0

�
are nilpotent, but their sum is

not nilpotent, also the matrices

�
0 1

0 0

�
and

�
1 �1
1 �1

�
are nilpotent, but their product

is not nilpotent.
3) It follows from 2) that the nilpotent matrices in Mn.F / do not form a vector

subspace of Mn.F /. A rather challenging exercise for the reader is to prove that
the vector subspace of Mn.F / spanned by the nilpotent matrices is precisely the
set of matrices of trace 0.

The result established in the following problem is very important:

Problem 6.38. a) Let T W V ! V be a nilpotent transformation of index k

and let v 2 V be a vector such that T k�1.v/ ¤ 0. Prove that the family
.v; T .v/; : : : ; T k�1.v// is linearly independent in V .

b) Deduce that if V is finite dimensional then the index of any nilpotent transfor-
mation on V does not exceed dimV .

c) Prove that if A 2 Mn.F / is nilpotent, then its index does not exceed n.

Solution. a) Suppose that

a0v C a1T .v/C : : :C ak�1T k�1.v/ D 0 (6.1)

for some scalars a0; : : : ; ak�1. Applying T k�1 to this relation and taking into
account that T j D 0 for j � k yields

a0T
k�1.v/C 0C : : :C 0 D 0;

and since T k�1.v/ ¤ 0, we obtain a0 D 0. Applying now T k�2 to relation
(6.1) gives a1T k�1.v/ D 0 and then a1 D 0. Continuing by induction yields
a0 D : : : D ak�1 D 0 and the result follows.

b) Suppose that T is nilpotent on V , of index k. Part a) shows that V contains a
linearly independent family with k elements, thus dimV � k and we are done.

c) This follows from b) applied to V D F n and the linear map T W V ! V sending
X to AX (using the discussion preceding the problem, which shows that A and
T have the same index). �

Using the previous problem, we are ready to introduce a fundamental kind of
nilpotent matrix: Jordan blocks. This is the goal of the next problem:



6.4 Application to the Classification of Nilpotent Matrices 227

Problem 6.39. Let T W V ! V be a nilpotent linear transformation on index k on
a vector space, let v 2 V and let

W D Span.v; T .v/; : : : ; T k�1.v//:

a) Prove that W is stable under T .
b) Prove that if T k�1.v/ ¤ 0, then T k�1.v/; T k�2.v/; : : : ; T .v/; v form a basis of
W (thus dimW D k) and the matrix of the linear transformation T W W ! W

with respect to this basis is

Jk D

2
666664

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

3
777775
:

This matrix is called a Jordan block of size k (note that J1 D O1, the 1 � 1

matrix with one entry equal to 0).

Solution. a) Any element of W is of the form

w D a0v C a1T .v/C : : :C ak�1T k�1.v/:

Since T k.v/ D 0, we have

T .w/ D a0T .v/C : : :C ak�2T k�1.v/ 2 W;

thus W is stable under T .
b) If T k�1.v/ ¤ 0, part a) of the previous problem shows that T k�1.v/; : : : ; T .v/; v

is a linearly independent family and since it also spans W , it is a basis of W .
Moreover, since T k.v/ D 0 and

T .T i .v// D T iC1.v/

for k � 2 � i � 0, it is clear that the matrix of T W W ! W with respect to this
basis is Jk . �

The main theorem concerning nilpotent linear transformations on finite
dimensional vector spaces is the following beautiful:

Theorem 6.40 (Jordan). Let V be a finite dimensional vector space over a field F
and let T W V ! V be a nilpotent linear transformation. Then there is a basis of V
with respect to which the matrix of T is of the form
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A D

2
6664

Jk1 0 : : : 0

0 Jk2 : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd

3
7775

for some sequence of positive integers k1 � k2 � : : : � kd with

k1 C : : :C kd D n:

Moreover, the sequence .k1; : : : ; kd / is uniquely determined.

We can restate the previous theorem in terms of matrices:

Theorem 6.41 (Jordan). Any nilpotent matrix A 2 Mn.F / is similar to a block-

diagonal matrix

2
6664

Jk1 0 : : : 0

0 Jk2 : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd

3
7775 for a unique sequence of positive integers

.k1; : : : ; kd / with k1 � k2 � : : : � kd and

k1 C k2 C : : :C kd D n:

The matrix

2
6664

Jk1 0 : : : 0

0 Jk2 : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd

3
7775 is called the Jordan normal (or canonical) form

of A or T .
The next series of problems is devoted to the proof of this theorem. We will start

with the uniqueness of the sequence .k1; : : : ; kd /. The proof, given in the next three
problems, will also show how to compute explicitly these integers and therefore how
to find in practice the Jordan normal form of a nilpotent matrix.

Problem 6.42. Let T be the linear transformation on F n associated with the Jordan
block Jn. Prove that for all 1 � k � n � 1 we have

rank.T k/ D n � k
and deduce that

rank.J kn / D n � k
for 1 � k � n � 1.

Solution. If e1; : : : ; en is the canonical basis of F n, then

T .e1/ D 0; T .e2/ D e1; T .e3/ D e2; : : : ; T .en/ D en�1:
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In other words, T .ei / D ei�1 for 1 � i � n, with the convention that e0 D 0.
We deduce that T 2.ei / D T .ei�1/ D ei�2 for 1 � i � n, with e�1 D 0.
An immediate induction yields

T j .ei / D ei�j

for 1 � j � n � 1 and 1 � i � n, with er D 0 for r � 0. Thus

Im.T j / D Span.e1; e2; : : : ; en�j /

and this space has dimension n � j , which yields

rank.T k/ D n � k

for 1 � k � n� 1. The second part is an immediate consequence of the first part. �

Problem 6.43. Suppose that A 2 Mn.F / is similar to

2
6664

Jk1 0 : : : 0

0 Jk2 : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd

3
7775 :

Let Nj be the number of terms equal to j in the sequence .k1; : : : ; kd /. Prove that
for all 1 � j � n

rank.Aj / D NjC1 C 2NjC2 C : : :C .n � j /Nn:

Solution. If A1; : : : ; Ad are square matrices, then

rank

0
BBB@

2
6664

A1 0 : : : 0

0 A2 : : : 0
:::

:::
: : :

:::

0 0 : : : Ad

3
7775

1
CCCA D rank.A1/C : : :C rank.Ad /;

as the reader can easily check by using the fact that the rank of a matrix is the
dimension of the span of its column set. Since similar matrices have the same rank,
we deduce that for all j � 1 we have

rank.Aj / D rank

0
BBBB@

2
66664

J
j

k1
0 : : : 0

0 J
j

k2
: : : 0

:::
:::
: : :

:::

0 0 : : : J
j

kd

3
77775

1
CCCCA

D
dX
iD1

rank.J jki /:
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By the previous problem, rank.J jki / equals ki � j if j � ki and 0 otherwise. Thus,
since Nt is the number of indices i for which ki D t , we have

dX
iD1

rank.J jki / D
X
t�j

X
kiDt

rank.J jt /

D
X
t�j

Nt � .t � j / D NjC1 C 2NjC2 C : : :C .n � j /Nn:
�

Problem 6.44. Prove that if k1 � : : : � kd and k0
1 � : : : � k0

d 0 are sequences of

positive integers adding up to n and such that A D

2
6664

Jk1 0 : : : 0

0 Jk2 : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd

3
7775 is similar

to B D

2
66664

Jk0
1
0 : : : 0

0 Jk0
2
: : : 0

:::
:::
: : :

:::

0 0 : : : Jk0
d 0

3
77775

, then these sequences are equal. This is the uniqueness

part of Jordan’s theorem.

Solution. Let Nj be the number of terms equal to j in the sequence .k1; : : : ; kd /,
and define similarly N 0

j for the sequence .k0
1; : : : ; k

0
d 0/. We are asked to prove that

Nj D N 0
j for 1 � j � n.

Since A and B are similar, Aj and Bj are similar for all j � 1, thus they have
the same rank. Using the previous problem, we deduce that

NjC1 C 2NjC2 C : : :C .n � j /Nn D N 0
jC1 C 2N 0

jC2 C : : :C .n � j /N 0
n

for j � 1. Setting j D n � 1 gives Nn D N 0
n, then setting j D n � 2 and using

Nn D N 0
n givesNn�1 D N 0

n�1. Continuing this way yieldsNj D N 0
j for 2 � j � n.

We still need to prove that N1 D N 0
1, but this follows from

N1 C 2N2 C : : :C nNn D N 0
1 C 2N 0

2 C : : :C nN 0
n D n;

since

k1 C : : :C kd D k0
1 C : : :C k0

d 0 D n:
�

Remark 6.45. The previous two problems show how to compute the sequence
.k1; : : : ; kd / in practice. Namely, we are reduced to computingN1; : : : ; Nn. For this,
we use the relations

rank.Aj / D NjC1 C 2NjC2 C : : :C .n � j /Nn
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for 1 � j � n (it suffices to take j � k if A has index k, noting that the previous
relation for j D k already yields NkC1 D : : : D Nn D 0). These determine
completely N2; : : : Nn. To find N1, we use the relation

N1 C 2N2 C : : :C nNn D n:

Example 6.46. As a concrete example, consider the matrix

A D

2
664

1 �1 1 2

1 �1 1 2

0 0 �2 4
0 0 �1 2

3
775 :

One can easily check that this matrix is nilpotent: we compute using the product
rule

A2 D

2
664

0 0 �4 8
0 0 �4 8
0 0 0 0

0 0 0 0

3
775

and then A3 D O3, using again the product rule. Thus A is nilpotent of index k D 3.
It follows that N4 D 0 and

N1 C 2N2 C 3N3 D 4:

Next, it is easy to see that the rank of A is 2, since the first and second rows are
identical, the last row is half the third row, and the first and third row are linearly
independent. Thus

2 D rank.A/ D N2 C 2N3 C 3N4 D N2 C 2N3

Next, it is clear that A2 has rank 1, thus

1 D rank.A2/ D N3 C 2N4 D N3:

It follows that

N1 D 1; N2 D 0; N3 D 1; N4 D 0

and so the Jordan normal form of A is
2
664

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3
775 :
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The uniqueness part of Jordan’s theorem being proved, it remains to prove the
existence part, which is much harder. The basic idea is however not very surprising:
we work by strong induction on dimV , the case dimV D 1 being clear (as then
T D 0). Assume that the result holds for dimV < n and let us consider the case
dimV D n. We may assume that T ¤ 0, otherwise we are done. Let k1 D k be the
index of T and let v 2 V such that T k�1.v/ ¤ 0. By Problem 6.39, the subspace

W D Span.v; T .v/; : : : ; T k�1.v//

is invariant under T , which acts on it as the matrix Jk on F k . Moreover, dimW D k.
If k D n, then we are done. If not, we look for a complementary subspaceW 0 ofW
which is stable under T . If we could find such a spaceW 0, then we could apply the
inductive hypothesis to the map T W W 0 ! W 0 (note that its index does not exceed
k1) and find a basis of W 0 in which the matrix of T has the desired form. Patching
the basis T k�1.v/; : : : ; T .v/; v and this basis of W 0 would yield the desired basis of
V and would finish the inductive proof. The key difficulty is proving the existence
of W 0. This will be done in the two problems below.

Problem 6.47. a) Prove that if A 2 Mn.F / is nilpotent, then tA is nilpotent and
has the same index as A.

b) Suppose that V is a finite dimensional vector space over F . Prove that if T W
V ! V is nilpotent, then t T W V � ! V � is also nilpotent and has the same
index as T .

Solution. a) For all k � 1 we have

. tA/k D t .Ak/;

thus . tA/k D On if and only if Ak D On. The result follows.
b) Let B be a basis of V and let B� be the dual basis of B. IfA is the matrix of T with

respect to B, then the matrix of t T with respect to B� is tA, by Theorem 6.29.
The result follows now from part a).

We can also prove this directly as follows: if k � 1, then . tT /k D 0 if and
only if . tT /k.l/ D 0 for all l 2 V �, equivalently l ı T k D 0 for all l 2 V �.
This can be written as: for all v 2 V and all l 2 V � we have l.T k.v// D 0.
Now, the assertion that l.T k.v// D 0 for all l 2 V � is equivalent to T k.v/ D 0,
by injectivity of the biduality map V ! V ��. Thus . tT /k D 0 if and only if
T k D 0, and this even when V is infinite dimensional. In other words, part b)
holds in all generality (but the proof requires the injectivity of the map V ! V ��,
which is difficult and was not given for infinite dimensional vector spaces). �

Problem 6.48. Let T W V ! V be a nilpotent transformation of index k on a finite
dimensional vector space V and let v 2 V be such that T k�1.v/ ¤ 0. We denote for
simplicity S D t T W V � ! V � and we recall that S is nilpotent of index k by the
previous problem.

a) Explain why we can find a linear form l 2 V � such that

l.T k�1.v// ¤ 0:
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b) Prove that the orthogonal W 0 of

Z D Span.l; S.l/; : : : ; Sk�1.l// � V �

is stable under T .
c) Prove that dimW 0 C dimW D dimV .
d) Deduce that W 0 ˚W D V , thus W 0 is a complementary subspace of W , stable

under T . This finishes the proof of Jordan’s theorem!

Solution. a) This is a direct consequence of the injectivity (and actually bijectivity
since our space is finite dimensional) of the biduality map V ! V ��.

b) Let us try to understand concretely the spaceZ?. A vector x is inZ? if and only
if Sj .l/.x/ D 0 for 0 � j � k � 1. Since S D T �, we have

Sj .l/.x/ D .l ı T j /.x/ D l.T j .x//;

thus

Z? D fx 2 V j l.T j .x// D 0 for all 0 � j � k � 1g:

Now let x 2 Z? and let us prove that T .x/ 2 Z?, i.e., that

l.T j .T .x/// D 0

for 0 � j � k � 1, or equivalently l.T j .x// D 0 for 1 � j � k. This is clear
for 1 � j � k � 1, since x 2 Z?, and it is true for j D k since by assumption
T k D 0.

c) By Theorem 6.22 we have

dim.W 0/ D dim.Z?/ D dimV � � dimZ D dimV � dimZ:

It suffices therefore to prove that dimZ D dimW . Now dimW D k by
Problem 6.39, and dimZ D k by the same problem applied to V �, S (which
is nilpotent of index k) and l (note that Sk�1.l/ D l ı T k�1 ¤ 0 since
l.T k�1.v// ¤ 0). Thus dimW 0 C dimW D dimV .

d) By part c) it suffices to prove that W 0 \W D f0g. Let w 2 W and write

w D a0v C a1T .v/C : : :C ak�1T k�1.v/

for some scalars a0; : : : ; ak�1. Suppose that w 2 W 0, thus w 2 Z?, that is
l.T j .w// D 0 for 0 � j � k � 1. Taking j D k � 1 and using the fact that
T m D 0 for m � k yields

a0l.T
k�1.v// D 0:



234 6 Duality

Since l.T k�1.v// ¤ 0, we must have a0 D 0. Taking j D k � 2 gives similarly
a1l.T

k�1.v// D 0 and so a1 D 0. Continuing like this we obtain a0 D : : : D
ak�1 D 0 and so w D 0. This finishes the solution of the problem. �

6.4.1 Problems for Practice

In the problems below F is a field.

1. Let T W V ! V be a linear transformation on a finite dimensional vector space
such that for all v 2 V there is a positive integer k such that T k.v/ D 0. Prove
that T is nilpotent.

2. Let V be the space of polynomials with real coefficients and let T W V ! V be
the map sending a polynomial to its derivative. Prove that for all v 2 V there is
a positive integer k such that T k.v/ D 0, but T is not nilpotent.

3. Describe the possible Jordan normal forms for a nilpotent matrix A 2 M4.F /.
4. Find, up to similarity, all nilpotent 3 � 3 matrices with real entries.
5. A nilpotent matrix A 2 M5.C/ satisfies rank.A/ D 3 and rank.A2/ D 1. Find

its Jordan normal form.
6. a) Prove that the matrix

A D
2
4
3 1 3

2 0 2

�3 �1 �3

3
5

is nilpotent and find its index.
b) Find the Jordan normal form of A.

7. Find the Jordan normal form of the matrix

A D
2
4

�1 1 0

1 1 2

1 �1 0

3
5 :

8. Consider the matrix

A D

2
664

3 �1 1 �7
9 �3 �7 �1
0 0 4 �8
0 0 2 �4

3
775 :

a) Prove that A is nilpotent.
b) Find its Jordan normal form.
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9. Describe up to similarity all matrices A 2 Mn.F / such that A2 D On.
10. Let A 2 Mn.F / be a nilpotent matrix. Prove that A has index n if and only if

rank.A/ D n � 1.
11. Let A 2 Mn.F / be a nilpotent matrix, say Ak D On for some k � 1. Prove that

In C xA is invertible for all x 2 F and

.In C xA/�1 D In � xAC x2A2 � : : :C .�1/k�1xk�1Ak�1:

12. (Fitting decomposition) Let V be a finite dimensional vector space over a field
F and let T W V ! V be a linear transformation. Write

N D
[
k�1

kerT k; I D
\
k�1

Im.T k/:

a) Prove that N and I are subspaces of V , stable under T .
b) Prove that there exists n such that N D kerT n and I D Im.T n/.
c) Deduce that V D N ˚ I .
d) Prove that the restriction of T to N is nilpotent and the restriction of T

to I is invertible. We call this decomposition V D N ˚ I the Fitting
decomposition of T .

e) Prove that if V D V1 ˚ V2 is a decomposition of V into subspaces stable
under T and such that T jV1 is nilpotent and T jV2 is invertible, then V1 D N

and V2 D I .

13. Find the Fitting decomposition of the matrix

A D
��1 2
�2 4

�
:

Do the same with the matrix

A D
��2 1
�4 2

�
:



Chapter 7
Determinants

Abstract This rather technical chapter is devoted to the study of determinants
of matrices and linear transformations. These are introduced and studied via
multilinear maps. The present chapter is rich in examples, both numerical and
theoretical.

Keywords Determinant • Multilinear map • Laplace expansion • Cofactor

This rather technical chapter is devoted to the study of determinants of matrices
and linear transformations. We have already seen in the chapter devoted to square
matrices of order 2 that determinants are absolutely fundamental in the study of
matrices. The advantage in that case is that many key properties of the determinant
can be checked by easy computations, while this is no longer the case for general
matrices: it is actually not even clear what the analogue of the determinant should
be for n � n matrices.

The definition of the determinant of a matrix is rather miraculous at first sight,
so we spend a large part of this chapter explaining why this definition is natural
and motivated by the study of multilinear forms (which will also play a key role
in the last chapter of this book). Once the machinery is developed, the proofs of
the main properties of the determinants are rather formal, while they would be very
painful if one had to manipulate the brutal definition of a determinant as polynomial
expression of the entries of the matrix.

Permutations play a key role in this chapter, so the reader not familiar with
them should start by reading the corresponding section in the appendix dealing
with algebraic preliminaries. The most important thing for us is that the set Sn of
permutations of f1; 2; : : :; ng is a group of order nŠ with respect to the composition
of permutations, and there is a nontrivial homomorphism " W Sn ! f�1; 1g, the
signature.

© Springer Science+Business Media New York 2014
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Approach, DOI 10.1007/978-0-8176-4636-3__7
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7.1 Multilinear Maps

Let V1; V2; : : :; Vd andW be vector spaces over a field F (the reader might prefer to
take R or C in the sequel).

Definition 7.1. A map f W V1 � : : : � Vd ! W is called multilinear if for all
i 2 f1; 2; : : :; dg and all v1 2 V1; : : :; vi�1 2 Vi�1; viC1 2 ViC1; : : :; vd 2 Vd the
map

Vi ! W; vi 7! f .v1; v2; : : :; vd /

is linear.

Let us see what the condition really says in a few simple cases. First, if d D 1,
then it simply says that the map f W V1 ! W is linear. Secondly, if d D 2, the
condition is that x 7! f .a; x/ and x 7! f .x; b/ are linear for all a 2 V1 and b 2
V2. Such maps are also called bilinear and they will be studied rather extensively
in the last chapter of the book. If d D 3, the condition is that x 7! f .a; b; x/,
x 7! f .a; x; c/ and x 7! f .x; b; c/ should be linear for all a 2 V1; b 2 V2 and
c 2 V3.

There is a catch with the previous definition: one might naively believe that a
multilinear map is the same as a linear map f W V1 � : : : � Vd ! W . This is
definitely not the case: consider the map f W R2 ! R sending .x; y/ to xy. It is
bilinear since for all a the map x 7! ax is linear, but the map f is not linear, since

f ..1; 0//C f ..0; 1// D 0 ¤ f ..1; 0/C .0; 1// D 1:

One can develop a whole theory (of tensor products) based on this observation, and
the reader will find the basic results of this theory in a series of exercises at the end
of this section (see the problems for practice section).

Though one can develop a whole theory in the general setting introduced before,
we will specialize to the case V1 D V2 D : : : D Vd and we will simply call this
space V . Multilinear maps f W V d ! W will also be called d -linear maps. The
next problem gives an important recipe which yields d -linear forms from linear
forms.

Problem 7.2. Let f1; f2; : : :; fd W V ! K be linear forms and consider the map

f W V d ! K; .x1; : : :; xd / 7! f1.x1/: : :fd .xd /:

Prove that f is d -linear.

Solution. If i 2 f1; : : :; dg and x1 2 V1; : : :; xi�1 2 Vi�1; xiC1 2 ViC1; : : :; xd 2
Vd , then the map xi 7! f .x1; : : :; xd / is simply the map xi 7! afi .xi / where
a D Q

j¤i fj .xj / is a scalar. Since fi is a linear form, so is afi , thus xi 7! afi .xi /

is a linear map and the result follows. �
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Not all d -linear forms are just products of linear forms:

Problem 7.3. Prove that the map f W .R2/2 ! R given by

f ..x1; x2/; .y1; y2// D x1y1 C x2y2

is 2-linear, but is not a product of two linear maps, i.e., we cannot find linear maps
l1; l2 W R2 ! R such that f .x; y/ D l1.x/l2.y/ for all x; y 2 R2.

Solution. If x1 and x2 are fixed, then it is not difficult to see that the map
.y1; y2/ 7! x1y1 C x2y2 is linear. Similarly, if y1; y2 are fixed, then the map
.x1; x2/ 7! x1y1 C x2y2 is linear. Thus f is 2-linear. Assume by contradiction that
f .x; y/ D l1.x/l2.y/ for two linear maps l1; l2 W R2 ! R and for all x D .x1; x2/

and y D .y1; y2/ in R2. It follows that we can find real numbers a D l1.1; 0/,
b D l1.0; 1/, c D l2.1; 0/ and d D l2.0; 1/ such that

x1y1 C x2y2 D .ax1 C bx2/.cy1 C dy2/

for all x1; y1; x2; y2 2 R. We cannot have .a; b/ D .0; 0/, so assume without loss of
generality that b ¤ 0. Taking x2 D � ax1

b
we obtain

x1y1 D ax1

b
y2

for all real numbers x1; y1; y2. This is plainly absurd and the result follows. �

Let us consider now a d -linear form f W V d ! W and a permutation � 2 Sd .
We define a new map �.f / W V d ! W by

�.f /.x1; : : :; xd / D f .x�.1/; : : :; x�.d//:

It follows easily from the definition of d -linear maps that �.f / is also a d -
linear map. Moreover, for all �; � 2 Sd and all d -linear maps f we have the crucial
relation (we say that the symmetric group Sd acts on the space of d -linear forms)

.��/.f / D �.�.f // (7.1)

Indeed, by definition we have

.��/.f /.x1; : : :; xd / D f .x�.�.1//; : : :; x�.�.d///

while1

�.�.f //.x1; : : :; xd / D �.f /.x�.1/; : : :; x�.d// D f .x�.�.1//; : : :; x�.�.d///:

1Note that setting yi D x�.i/, we have y�.i/ D x�.�.i//.
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Recall (see the appendix on algebraic preliminaries for more details on permu-
tations) that there is a special map " W Sd ! f�1; 1g, the signature. The precise
definition is

".�/ D
Y

1�i<j�n

�.i/ � �.j /
i � j :

This map " is multiplicative, that is

".��/ D ".�/ � ".�/

for all �; � 2 Sd . Recall that a transposition is a permutation � for which there are
integers i ¤ j 2 f1; 2; : : :; dg such that �.i/ D j , �.j / D i and �.k/ D k for
all k ¤ i; j . In this case we write � D .i; j /. We note that ".�/ D �1 for any
transposition � . We also recall that any permutation is a product of transpositions.

We introduce now two fundamental classes of d -linear maps:

Definition 7.4. Let f W V d ! W be a d -linear map.

a) We say that f is antisymmetric if �.f / D ".�/f for all � 2 Sd .
b) We say that f is alternating if f .x1; x2; : : :; xd / D 0 whenever
x1; x2; : : :; xd 2 V are not pairwise distinct.

The two definitions look quite different, but most of the time they are equivalent.
There are however some subtleties related to the field F , as the following problems
show. However, the reader should keep in mind that over fields such as the real,
rational, or complex numbers there is no difference between alternating and
antisymmetric d -linear maps.

Problem 7.5. Prove that an alternating d -linear map f W V d ! W is
antisymmetric.

Solution. Since any permutation is a product of transpositions and since " is
multiplicative, relation (7.1) reduces the problem to proving that �.f / D �f for
any transposition � D .i; j /, with i < j . Consider arbitrary vectors x1; x2; : : :; xd
and note that

f .x1; : : :; xi�1; xi C xj ; xiC1; : : :; xj�1; xi C xj ; xjC1; : : :; xd / D 0

since f is alternating. Using the d -linearity of f , the previous relation can be
written

f .x1; : : :; xi ; : : :; xi ; : : :; xd /C f .x1; : : :; xj ; : : :; xj ; : : :xd /C

f .x1; : : :; xj ; : : :; xi ; : : :; xd /C f .x1; : : :; xd / D 0:
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Using again the fact that f is alternating, it follows that the first two terms in the
above sum are zero and we obtain the desired result, noting that the third term is
�.f /.x1; : : :; xd /. �

Problem 7.6. Suppose that F 2 fQ;R;Cg. Prove that an antisymmetric d -linear
map f W V d ! W (with V;W vector spaces overF ) is alternating. Thus over such a
field F there is no difference between antisymmetric and alternating d -linear maps.

Solution. Suppose that x1; : : :; xd are not pairwise distinct, say xi D xj for some
i < j . Consider the transposition � D .i; j /. Since f is antisymmetric and
".�/ D �1, we deduce that �.f / D �f . Evaluating this equality at .x1; : : :; xd /
yields

f .x1; : : :; xi ; : : :; xj ; : : :; xd / D �f .x1; : : :; xj ; : : :; xi ; : : :; xd /:

But since xi D xj , the previous relation can be written

2f .x1; : : :; xd / D 0:

Since F 2 fQ;R;Cg, the previous relation yields f .x1; : : :; xd / D 0 (note that this
would be completely wrong if we had F D F2, see also the example below). Thus
f is alternating. �

Example 7.7. Bad things happen when F D F2. Let f W F 2 ! F be the
multiplication map, that is f .x; y/ D xy. It is clearly bilinear and it is not
alternating, since f .1; 1/ D 1 ¤ 0. On the other hand, f is antisymmetric. Indeed,
we only need to check that f .x; y/ D �f .y; x/, or equivalently 2xy D 0. This
holds since 2 D 1C 1 D 0.

A natural question is: how to construct antisymmetric or alternating d -linear
maps? The following problem shows that starting with any d -linear map f we can
obtain an antisymmetric one by taking a weighted average of the values �.f /. This
will play a crucial role in the next section, when defining the determinant of a family
of vectors.

Problem 7.8. Let f W V d ! W be a d -linear map. Prove that

A.f / WD
X
�2Sd

".�/�.f /

is an antisymmetric d -linear map.

Solution. It is clear that A.f / is a d -linear map, since it is a linear combination of
d -linear maps. Let � 2 Sd and let us prove that �.A.f // D ".�/A.f /. Note that by
relation (7.1) we have

�.A.f // D
X
�2Sd

".�/�.�.f // D
X
�2Sd

".�/.��/.f /:
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Thus, using the fact that ".�/".�/ D ".��/, we obtain

".�/�.A.f // D
X
�2Sd

".��/.��/.f /:

Note that the map � 7! �� is a permutation of Sd (its inverse being simply � 7!
��1� ), thus the last sum equals

P
�2Sd ".�/�.f / D A.f /. We conclude that

".�/�.A.f // D A.f /

and the result follows, since ".�/�1 D ".�/. �

A crucial property of alternating d -linear forms, which actually characterizes
them, is

Theorem 7.9. Let f W V d ! W be an alternating d -linear form. If x1;
x2; : : :; xd 2 V are linearly dependent, then f .x1; x2; : : :; xd / D 0.

Proof. Since x1; : : :; xd are linearly dependent, some xi lies in the span of
.xj /j¤i , say

xi D
X
j¤i

aj xj

for some scalars aj . Then using the d -linearity of f , we obtain

f .x1; : : :; xd / D
X
j¤i

aj f .x1; : : :; xi�1; xj ; xiC1; : : :; xd /:

As f is alternating, each of the terms f .x1; : : :; xi�1; xj ; xiC1; : : :; xd / is zero, since
x1; : : :; xi�1; xj ; xiC1; : : :; xd are not pairwise distinct. Thus f .x1; : : :; xd / D 0. �

7.1.1 Problems for Practice

Let F be a field and let V1; : : :; Vd be finite dimensional vector spaces over F .
We define the tensor product V1 ˝ : : :˝ Vd of V1; : : :; Vd as the set of multilinear
maps f W V �

1 � : : : � V �
d ! F , where V �

i is the dual of Vi .

1. Check that V1 ˝ : : : ˝ Vd is a vector subspace of the vector space of all maps
f W V �

1 � : : : � V �
d ! F .

2. If vi 2 Vi for all 1 � i � d , define a map v1 ˝ : : :˝ vd W V �
1 � : : :�V �

d ! F by

.v1 ˝ : : :˝ vd /.f1; : : :; fd / D f1.v1/f2.v2/: : :fd .vd /

for fi 2 V �
i .
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a) Prove that v1 ˝ : : :˝ vd 2 V1 ˝ : : :˝ Vd (elements of V1 ˝ : : :˝ Vd of the
form v1 ˝ : : :˝ vd are called pure tensors).

b) Is the map V1� : : :�Vd ! V1˝ : : :˝Vd sending .v1; : : :; vd / to v1˝ : : :˝vd
linear? Is it multilinear?

c) Is every element of V1 ˝ : : :˝ Vd a pure tensor?

3. For each 1 � i � d let .ei;j /1�j�ni be a basis of Vi . Let .e�
i;j /1�j�ni be the

associated dual basis of V �
i .

a) Prove that for any f 2 V1 ˝ : : :˝ Vd we have

f D
n1X
j1D1

: : :

ndX
jdD1

f .e�
1;j1
; : : :; e�

d;jd
/e1;j1 ˝ : : :˝ ed;jd :

b) Prove that the family of pure tensors e1;j1˝: : :˝ed;jd , where 1 � j1 � n1,. . . ,
1 � jd � nd forms a basis of V1 ˝ : : :˝ Vd .

c) Prove that

dim.V1 ˝ : : :˝ Vd / D dimV1 � : : : � dimVd :

4. Prove that V1 ˝ : : : ˝ Vd has the following universal property: for any vector
space W over F and any multilinear map f W V1 � : : : � Vd ! W there is a
unique linear map g W V1 ˝ : : :˝ Vd ! W such that

g.v1 ˝ : : :˝ vd / D f .v1; : : :; vd /

for all vi 2 Vi , 1 � i � d .
5. Prove that there is an isomorphism .V1 ˝ V2/ ˝ V3 ! V1 ˝ V2 ˝ V3 sending
.v1 ˝ v2/˝ v3 to v1 ˝ v2 ˝ v3 for all v1 2 V1; v2 2 V2; v3 2 V3.

6. Prove that there is an isomorphism V �
1 ˝ V �

2 ! .V1 ˝ V2/
�.

7. Prove that there is an isomorphism V �
1 ˝ V2 ! Hom.V1; V2/ sending f1 ˝ v2 to

the map v1 7! f1.v1/v2 for all f1 2 V �
1 and v2 2 V2. We recall that Hom.V1; V2/

is the vector space of linear maps between V1 and V2.

7.2 Determinant of a Family of Vectors, of a Matrix,
and of a Linear Transformation

Let V be a vector space over F , of dimension n � 1. Let .v1; v2; : : :; vn/ be an
n-tuple of vectors in V forming a basis of V . The order of v1; v2; : : :; vn will be
very important in the sequel, so one should not consider only the set fv1; : : :; vng,
but the n-tuple .v1; : : :; vn/.
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Consider the dual basis v�
1 ; : : :; v

�
n of the dual space V �. Recall that v�

i is the
linear form on V such that

v�
i .x1v1 C : : :C xnvn/ D xi

for all x1; : : :; xn 2 F . That is, v�
i .v/ is the i th coordinate of v when expressed as a

linear combination of v1; : : :; vn.
By Problem 7.2 the map

f W V n ! F; .x1; : : :; xn/ ! v�
1 .x1/: : :v

�
n.xn/

is a n-linear form. By Problem 7.8, the map

A.f / W V n ! F; A.f /.x1; : : :; xn/ D
X
�2Sn

".�/f .x�.1/; : : :; x�.n//

is an antisymmetric n-linear form.

Definition 7.10. Let f be as above and let x1; : : :; xn 2 V . We call
A.f /.x1; : : :; xn/ the determinant of x1; : : :; xn with respect to .v1; : : :; vn/ and
denote it det.v1;:::;vn/.x1; : : :; xn/.

Remark 7.11. 1) By definition we have

det.v1;:::;vn/.x1; : : :; xn/ D
X
�2Sn

".�/v�
1 .x�.1//: : :v

�
n.x�.n//: (7.2)

In other words, if we write

xi D
nX

jD1
aj ivj

for some scalars aji 2 F (which we can always do, since v1; : : :; vn is a basis
of V ), then

det.v1;:::;vn/.x1; : : :; xn/ D
X
�2Sn

".�/a1�.1/ � : : : � an�.n/:

2) We claim that det.v1;:::;vn/.v1; : : :; vn/ D 1. Indeed, suppose that v�
1 .v�.1//: : :

v�
n.v�.n// is a nonzero term appearing in the right-hand side of relation (7.2).

Then v�
i .v�.i// is nonzero for all i 2 Œ1; n�, which forces �.i/ D i for all i .

Thus the only nonzero term appearing in the right-hand side of (7.2) is the one
corresponding to � D id, which is clearly equal to 1. This proves the claim.

3) The geometric interpretation of the determinant is as follows: consider F D R
and let e1; e2; : : :; en be the canonical basis of Rn. If x1; x2; : : :; xn are vectors in
Rn, we write det.x1; x2; : : :; xn/ instead of det.e1;e2;:::;en/.x1; x2; : : :; xn/. We can
associate to the vectors x1; x2; : : :; xn the parallelepiped

P.x1; x2; : : :; xn/ D fa1x1 C a2x2 C : : :C anxnja1; : : :; an 2 Œ0; 1�g:
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For instance, if xi D ei for all i , then the associated parallelepiped is the
hypercube Œ0; 1�n. The geometric interpretation of det.x1; x2; : : :; xn/ is given by
the fundamental equality

j det.x1; x2; : : :; xn/j D vol.P.x1; x2; : : :; xn//;

the volume being taken here with respect to the Lebesgue measure on Rn (this is
the usual area/volume when n D 2/n D 3).

Example 7.12. Consider the vector space V D F 2 over F and let e1; e2 be the

canonical basis of V . For any vectors x1 D
�
a

b

�
and x2 D

�
c

d

�
in V we have

det.e1;e2/.x1; x2/ D ad � bc:

For instance

det.e1;e2/

��
1

2

�
;

�
3

4

��
D 4 � 2 � 3 D �2:

Here is the first big theorem concerning determinants:

Theorem 7.13. Let v1; : : :; vn be a basis of a vector space V over F . The
determinant map det.v1;:::;vn/ W V d ! F with respect to this basis is n-linear and
alternating.

Proof. Denote f D det.v1;:::;vn/. By Definition 7.10 and the discussion preceding it
we know that f is n-linear and antisymmetric. If F 2 fQ;R;Cg, then Problem 7.6
shows that f is alternating. Let us give a proof which works for any field F (the
reader interested only in fields such as R, C, Q may skip the following technical
proof).

Let x1; : : :; xn 2 V and suppose that they are not pairwise distinct, say xi D xj
for some i < j . Let � D .i; j /, a transposition and let An be the set of even
permutations in Sn, that is those permutations � for which ".�/ D 1. Since ".��/ D
".�/".�/ D �".�/ for all � 2 Sn, we deduce that Sn D An [ �An (disjoint union)
and using formula (7.2) we can write

f .x1; : : :; xn/ D
X
�2An

v�
1 .x�.1//: : :v

�
n.x�.n// �

X
�2An

v�
1 .x��.1//: : :v

�
n.x��.n//:

We claim that x��.k/ D x�.k/ for all k and � 2 An, which clearly shows that
f .x1; : : :; xn/ D 0. The claim is clear if �.k/ … fi; j g, as then ��.k/ D �.k/.
Suppose that �.k/ D i , then ��.k/ D j and the claim comes down to xj D xi ,
which holds by assumption. The argument being similar for �.k/ D j , the theorem
is proved. �
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The second big theorem in the theory of determinants and multilinear maps is the
following:

Theorem 7.14. Let .v1; : : :; vn/ be an n-tuple of vectors of V , forming a basis of V .
If f W V n ! F is any alternating n-linear form, then

f D f .v1; : : :; vn/ � det.v1;:::;vn/

Proof. Let x1; : : :; xn be vectors in V and write

xi D ai1v1 C ai2v2 C : : :C ainvn

for some scalars aij . By part 1) of Remark 7.11 we have

det.v1;:::;vn/.x1; : : :; xn/ D
X
�2Sn

".�/a1�.1/: : :an�.n/:

On the other hand, repeatedly using the n-linearity of f , we can write

f .x1; : : :; xn/ D f .a11v1 C : : :C a1nvn; x2; : : :; xn/ D
nX
iD1

a1if .vi ; x2; : : :; xn/

D
nX

i;jD1
a1ia2j f .vi ; vj ; x3; : : :; xn/ D : : : D

nX
i1;:::;inD1

a1i1a2i2 : : :aninf .vi1 ; : : :; vin /:

Now, since f is alternating, we have f .vi1 ; : : :; vin / D 0 unless i1; : : :; in are
pairwise distinct, i.e., unless there is a permutation � 2 Sn such that �.k/ D ik
for 1 � k � n. We conclude that

f .x1; : : :; xn/ D
X
�2Sn

a1�.1/: : :an�.n/f .v�.1/; : : :; v�.n//:

Since f is antisymmetric (by Problem 7.5 and the alternating property of f ), we
can further rewrite the last equality as

f .x1; : : :; xn/ D
X
�2Sn

".�/a1�.1/: : :an�.n/f .v1; : : :; vn/ D

det.v1;:::;vn/.x1; : : :; xn/f .v1; : : :; vn/;

and the result follows. �

Let us record two important consequences of Theorem 7.14

Corollary 7.15. Let V be a vector space of dimension n � 1. The vector space of
n-linear alternating forms f W V n ! F has dimension 1.
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Proof. Consider a basis v1; : : :; vn of V and let f D det.v1;:::;vn/. By Theorem 7.13,
the map f is an alternating n-linear form. By part 2) of Remark 7.11 we have
f .v1; : : :; vn/ D 1, thus f is nonzero. On the other hand, Theorem 7.14 shows
that any alternating n-linear form differs by a scalar from det.v1;:::;vn/. The result
follows. �

Corollary 7.16. Given a basis v1; v2; : : :; vn of a vector space V over F , there is a
unique n-linear alternating form f W V n ! F such that f .v1; v2; : : :; vn/ D 1. This
form is given by f D det.v1;v2;:::;vn/.

Proof. Uniqueness follows directly from Theorem 7.14. The existence has already
been established during the proof of the last corollary. �

Theorem 7.14 can also be used to establish a criterion to decide when a family
of vectors forms a basis of a finite dimensional vector space: it all comes down to
computing determinants, and we will see quite a few methods to compute them in
the next sections (however, in practice it the method explained before Problem 4.34
and based on row-reduction is the most efficient one).

Corollary 7.17. Let V be a vector space of dimension n over F and let
x1; x2; : : :; xn 2 V . The following assertions are equivalent:

a) x1; x2; : : :; xn form a basis of V (or, equivalently, they are linearly independent).
b) For any basis v1; v2; : : :; vn we have

det.v1;v2;:::;vn/.x1; x2; : : :; xn/ ¤ 0:

c) There is a basis v1; v2; : : :; vn such that

det.v1;v2;:::;vn/.x1; x2; : : :; xn/ ¤ 0:

Proof. Suppose that a) holds and let v1; : : :; vn be a basis of V . By Theorem 7.14
applied to f D det.x1;:::;xn/ we have

det.x1;:::;xn/.x1; : : :; xn/ D det.x1;:::;xn/.v1; : : :; vn/ � det.v1;:::;vn/.x1; : : :; xn/:

By Remark 7.11 the left-hand side is 1, thus both factors in the right-hand side are
nonzero, establishing b). It is clear that b) implies c), so assume that c) holds and
let us prove a). Since dimV D n, it suffices to check that x1; x2; : : :; xn are linearly
independent. If this is not the case, we deduce from Theorems 7.14 and 7.9 that
det.v1;v2;:::;vn/.x1; x2; : : :; xn/ D 0, a contradiction. �

Problem 7.18. Let V be a finite dimensional F -vector space, let e1; : : :; en be a
basis of V and let T W V ! V be a linear transformation. Prove that for all
v1; : : :; vn 2 V we have

nX
iD1

det.v1; : : :; vi�1; T .vi /; viC1; : : :; vn/ D Tr.T / � det.v1; : : :; vn/;
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where all determinants are computed with respect to the basis e1; : : :; en and where
Tr.T / is the trace of the matrix of T with respect to the basis e1; : : :; en.

Solution. Consider the map

' W V n ! F; '.v1; : : :; vn/ D
nX
iD1

det.v1; : : :; vi�1; T .vi /; viC1; : : :; vn/:

This map is a sum of n-linear maps, thus it is n-linear. Moreover, it is
alternating. Indeed, assume for example that v1Dv2. Then det.v1; : : :; vi�1; T .vi /;
viC1; : : :; vn/D0 for i > 2 and

det.T .v1/; v2; : : :; vn/C det.v1; T .v2/; : : :; vn/ D

det.T .v1/; v1; v3; : : :; vn/C det.v1; T .v1/; v3; : : :; vn/ D 0;

since the determinant is antisymmetric.
Since the space of n-linear alternating forms on V is one-dimensional, it follows

that we can find a scalar ˛ 2 F such that

'.v1; : : :; vn/ D ˛ det.v1; : : :; vn/

for all v1; : : :; vn. Choose v1 D e1; : : :; vn D en and let A D Œaij � be the matrix of
T with respect to e1; : : :; en. Then the right-hand side equals ˛, while the left-hand
side equals

nX
iD1

det.e1; : : :; ei�1;
nX

jD1
aj i ej ; eiC1; : : :; en/ D

nX
iD1

nX
jD1

aj i det.e1; : : :; ei�1; ej ; eiC1; : : :; en/ D
nX
iD1

ai i ;

the last equality being a consequence of the fact that the determinant map is
alternating. Since

Pn
iD1 ai i D Tr.T /, we conclude that ˛ D Tr.T / and we are

done. �

Remark 7.19. Tr.T / is actually independent of the choice of the basis e1; : : :; en
and it is called the trace of T . To prove the independence with respect to the choice
of the basis, we need to prove that for all A 2 Mn.F / and all P 2 GLn.F / we have

Tr.A/ D Tr.PAP�1/:

By a fundamental property of the trace map (which the reader can check without
any difficulty) we have

Tr.AB/ D Tr.BA/
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for all matrices A;B 2 Mn.F /. Thus

Tr.PAP�1/ D Tr..PA/P�1/ D Tr.P�1.PA// D Tr..P�1P /A/ D Tr.A/:

Consider a vector space V of dimension n � 1 and a linear transformation
T W V ! V . If f W V n ! F is an n-linear form, then one can easily check that

• the map

Tf W V n ! F; .x1; : : :; xn/ 7! f .T .x1/; : : :; T .xn//

is also an n-linear form.
• If f is alternating, then so is Tf .

Using these observations, we will prove the following fundamental theorem:

Theorem 7.20. Let V be a vector space of dimension n � 1 over F . For any linear
transformation T W V ! V there is a unique scalar detT 2 F such that

f .T .x1/; T .x2/; : : :; T .xn// D detT � f .x1; x2; : : :; xn/ (7.3)

for all n-linear alternating forms f W V n ! F and all x1; x2; : : :; xn 2 V .

Proof. Fix a basis v1; v2; : : :; vn of V and denote f0 D det.v1;:::;vn/. By Theorem 7.13
and Remark 7.11 f0 is n-linear, alternating and we have f0.v1; : : :; vn/ D 1.

Since .x1; : : :; xn/ ! f0.T .x1/; : : :; T .xn// is n-linear and alternating, it must
be a scalar multiple of f0, thus we can find detT 2 F such that

f0.T .x1/; : : :; T .xn// D detT � f0.x1; : : :; xn/
for all x1; : : :; xn 2 V . Since any n-linear alternating form f is a scalar multiple
of f0 (Corollary 7.15), it follows that relation (7.3) holds for any such map f
(since by definition of detT it holds for f0), which establishes the existence part
of the theorem. Uniqueness is much easier: if relation (7.3) holds for all f and all
x1; : : :; xn, choosing f D f0 and xi D vi for all i yields

detT D f0.T .v1/; : : :; T .vn//;

which clearly shows that detT is unique. �

Definition 7.21. The scalar detT is called the determinant of the linear transfor-
mation T .

Note that the end of the proof of Theorem 7.20 gives an explicit formula

detT D det.v1;:::;vn/.T .v1/; : : :; T .vn// (7.4)

and this for any choice of the basis v1; : : :; vn of V . In particular, the right-hand side
is independent of the choice of the basis!
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Moreover, this allows us to express detT in terms of the matrix AT of T with
respect to the basis v1; : : :; vn. Recall that AT D Œaij � with

T .vi / D
nX

jD1
aj ivj :

Following the proof of Theorem 7.14 (i.e., using the fact that det.v1;:::;vn/ is n-linear
and alternating, thus antisymmetric), we obtain

det.v1;:::;vn/.T .v1/; : : :; T .vn// D
X
�2Sn

".�/a1�.1/: : :an�.n/:

The right-hand side is expressed purely in terms of the matrix AT , which
motivates the following:

Definition 7.22. If A D Œaij � 2 Mn.F /, we define its determinant by

detA D
X
�2Sn

".�/a1�.1/: : :an�.n/: (7.5)

We also write detA as

ˇ̌
ˇ̌
ˇ̌
ˇ̌

a11 a12 : : : a1n
a21 a22 : : : a2n
: : : : : : : : : : : :

an1 an2 : : : ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

Problem 7.23. Prove that the determinant of a diagonal matrix is the product of
diagonal entries of that matrix. In particular det In D 1.

Solution. Let A D Œaij � be a diagonal n � n matrix. Then

detA D
X
�2Sn

".�/a1�.1/: : :an�.n/:

Consider a nonzero term in the previous sum, corresponding to a permutation � . We
have ai�.i/ ¤ 0 for all i 2 f1; 2; : : :; ng and sinceA is diagonal, thus forces �.i/ D i

for all i 2 f1; 2; : : :; ng. It follows that the only possibly nonzero term in the above
sum is the one corresponding to the identity permutation, which equals a11: : :ann,
hence

detA D a11: : :ann;

as desired. �
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Let us come back to our original situation: we have a vector space V over F , a
linear transformation T W V ! V , a basis v1; : : :; vn of V and the matrix AT of T
with respect to this basis. The previous discussion gives

detT D detAT (7.6)

Note that the left-hand side is completely intrinsic to T by Theorem 7.20, in
particular it is independent of the choice of v1; : : :; vn. On the other hand, the matrix
AT certainly depends on the choice of the basis v1; : : :; vn. The miracle is that while
AT depends on choices, its determinant does not! Let us glorify this observation,
since this is a very important result:

Theorem 7.24. IfA 2 Mn.F /, then detA D det.PAP�1/ for any invertible matrix
P 2 GLn.F /. In other words, similar matrices have the same determinant.

We can turn this discussion upside down: start now with any matrix A 2 Mn.F /

and let T W F n ! F n be the linear transformation sending X 2 F n to AX . Then
A is the matrix of T with respect to the canonical basis e1; : : :; en of F n and the
previous discussion shows that detA D detT . We deduce from Theorem 7.20 that

f .AX1;AX2; : : :; AXn/ D detA � f .X1; : : :; Xn/

for all n-linear alternating forms f W .F n/n ! F .

7.2.1 Problems for Practice

1. Check that the general definition of the determinant of a matrix matches the
definition of the determinant of a matrix A 2 M2.C/ as seen in the chapter
concerned with square matrices of order 2.

2. Recall that a permutation matrix is a matrix A 2 Mn.R/ having precisely one
nonzero entry in each row and column, and this nonzero entry is equal to 1.
Prove that the determinant of a permutation matrix is equal to 1 or �1.

3. Let A D Œaij � 2 Mn.C/ and let B D Œ.�1/iCj aij � 2 Mn.C/. Compare detA
and detB .

4. Generalize the previous problem as follows: let z be a complex number and let
A D Œaij � 2 Mn.C/ and B D ŒziCj aij � 2 Mn.C/. Express detB in terms of
detA and z.

5. (The Wronskian) Let f1; f2; : : :; fn be real-valued maps on some open interval
I of R. Assume that each of these maps is differentiable at least n � 1

times. For x 2 I let W.f1; : : :; fn/.x/ be the determinant of the matrix A D
Œf

.j�1/
i .x/�1�i;j�n, where f .j /

i is the j th derivative of fi (with the convention

that f .0/
i D fi ). The map x 7! W.f1; : : :; fn/.x/ is called the Wronskian of

f1; : : :; fn.
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a) Take n D 2 and f1.x/ D eax , f2.x/ D ebx for two real numbers a; b.
Compute the Wronskian of f1; f2.

b) Prove that if f1; : : :; fn are linearly dependent, then

W.f1; : : :; fn/ D 0:

6. Consider a matrix-valued map A W I ! Mn.R/, A.t/ D Œaij .t/�, where aij W
I ! R are differentiable maps on some open interval I of R. Let Bk be the
matrix obtained by replacing all entries in the kth row of A by their derivatives.
Prove that for all t 2 I

det.A.t// D
nX

kD1
det.Bk.t//:

In the next problems V is a vector space of dimension n � 1 over a field
F 2 fR;Cg. If p is a nonnegative integer, we let ^pV � be the vector space of
all p-linear alternating forms ! W V p D V � : : :�V ! F , with the convention
that ^0V D F .

7. Prove that ^pV � D 0 for p > n.
8. Prove that if W is a finite dimensional vector space over F and if f W V ! W

is a linear map, then f induces a linear map f � W ^pW � ! ^pV � defined by

f �.!/.v1; : : :; vp/ D !.f .v1/; : : :; f .vp//:

9. Prove that if g W W ! Z is a linear map from W to another finite dimensional
vector space Z over F , then

.g ı f /� D f � ı g�

as maps ^pZ� ! ^pV �.
If ! 2 ^pV � and � 2 ^qV �, we define the exterior product !^� of ! and

� as the map ! ^ � W V pCq ! F defined by

.!^�/.v1; : : :; vpCq/D 1

pŠqŠ

X
�2SpCq

".�/!.v�.1/; : : :; v�.p//��.v�.pC1/; : : :; v�.pCq//:

10. Prove that ! ^ � 2 ^pCqV �.
11. Prove that

! ^ � D .�1/pq� ^ !:

12. Check that for all !1 2 ^pV �, !2 2 ^qV � and !3 2 ^rV � we have

.!1 ^ !2/ ^ !3 D !1 ^ .!2 ^ !3/:
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We define !1 ^ !2 ^ : : : ^ !r by induction on r as follows:

!1 ^ : : : ^ !r D .!1 ^ !2 ^ : : : ^ !r�1/ ^ !r :

13. Check that for all !1; : : :; !p 2 V � D ^1V � and all v1; : : :; vp 2 V we have

.!1 ^ : : : ^ !p/.v1; : : :; vp/ D det.!i .xj //:

The right-hand side is by definition the determinant of the matrix A D
Œ!i .xj /� 2 Mp.F /.

14. Prove that !1; : : :; !p 2 V � D ^1V � are linearly independent if and only if

!1 ^ !2 ^ : : : ^ !p ¤ 0:

15. Let !1; : : :; !n be a basis of V . Prove that the family .!i1^: : :^!ip /1�i1<:::<ip�n
forms a basis of ^pV � and deduce that

dim ^pV � D
 
n

p

!
WD nŠ

pŠ.n � p/Š :

7.3 Main Properties of the Determinant of a Matrix

We reach now the heart of this chapter: establishing the main properties of the
determinant map that was introduced in the previous section. We have fortunately
developed all the necessary theory to be able to give clean proofs of all important
properties of determinants.

A first very important result is the homogeneity of the determinant map: if
we multiply all entries of a matrix A 2 Mn.F / by a scalar 	 2 F , then the
determinant gets multiplied by 	n.

Proposition 7.25. We have det.	A/ D 	n detA for all A 2 Mn.F / and all 	 2 F .

Proof. Write A D Œaij �, then 	A D Œ	aij �, hence by definition

det.	A/ D
X
�2Sn

".�/.	a1�.1// � : : : � .	an�.n// D

X
�2Sn

".�/	na1�1 � : : : � an�.n/ D 	n � detA;

as desired. �

Problem 7.26. Prove that for any A 2 Mn.C/ we have

det.A/ D detA;

where the entries of A are the complex conjugates of the entries of A.
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Solution. Let A D Œaij �, then A D Œaij � and so

det.A/ D
X
�2Sn

".�/a1�.1/ � : : : � an�.n/ D

X
�2Sn

".�/a1�.1/: : :an�.n/ D
X
�2Sn

".�/a1�.1/: : :an�.n/ D detA:

�

The main property of the determinant is its multiplicative character.

Theorem 7.27. For all linear transformations T1; T2 on a finite dimensional vector
space V we have

det.T1 ı T2/ D detT1 � detT2:

Proof. Let v1; : : :; vn be a basis of V . By Theorem 7.20 we have

det.T1 ı T2/ D det.v1;:::;vn/.T1.T2.v1//; : : :; T1.T2.vn///

D detT1 � det.v1;:::;vn/.T2.v1/; : : :; T2.vn//:

Relation (7.4) shows that

det.v1;:::;vn/.T2.v1/; : : :; T2.vn// D detT2:

Combining these two equalities yields the desired result. �

Combining the previous theorem and relation (7.6) we obtain the following
fundamental theorem, which would be quite a pain in the neck to prove directly
from the defining relation (7.5).

Theorem 7.28. For all matrices A;B 2 Mn.F / we have

det.AB/ D detA � detB:

Proof. Let V D F n and let T1 W V ! V be the linear transformation sending
X 2 V to AX . Define similarly T2 replacing A by B . If S is a linear transformation
on V , let AS be the matrix of S with respect to the canonical basis of V D F n.
Then A D AT1 , B D AT2 and AB D AT1ıT2 . The result follows directly from the
previous theorem and relation (7.6). �

Problem 7.29. An invertible matrix A 2 Mn.R/ has the property that both A and
A�1 have integer entries. Prove that detA 2 f�1; 1g.
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Solution. We have A � A�1 D In, so using the fact that the determinant is
multiplicative and that det In D 1 (which follows straight from the definition of
the determinant of a matrix), we obtain

1 D det In D det.A � A�1/ D detA � det.A�1/:

Next, recalling the definition of the determinant of a matrix, we notice that if all
entries of the matrix are integers, then the determinant of the matrix is an integer
(since it is obtained by taking sums and differences of products of the entries of the
matrix). Since A and A�1 have by hypothesis integer entries, it follows that detA
and detA�1 are two integers, whose product equals 1. Thus detA is a divisor of 1
and necessarily detA 2 f�1; 1g. �

Remark 7.30. A much more remarkable result is the following kind of converse:
suppose that A 2 Mn.R/ is a matrix with integer entries. If detA 2 f�1; 1g,
then A�1 has integer entries. This is fairly difficult to prove with the tools we have
introduced so far! The reader might try to do the case n D 2, which is not so difficult.

We can use the previous theorem and Corollary 7.17 to obtain a beautiful
characterization of invertible matrices. The result is stunningly simple to state.

Theorem 7.31. A matrix A 2 Mn.F / is invertible if and only if detA ¤ 0.

Proof. Suppose that A is invertible, so there is a matrix B 2 Mn.F / such that
AB D BA D In. Taking the determinant yields detA � detB D 1, thus detA ¤ 0.

Conversely, suppose that detA ¤ 0 and let e1; : : :; en be the canonical basis of
F n, and C1; : : :; Cn 2 F n the columns of A. Then detA D det.e1;:::;en/.C1; : : :; Cn/
is nonzero, thus by Corollary 7.17 the vectors C1; : : :; Cn are linearly independent.
This means that the linear map ' W F n ! F n sending X to AX is injective, and
so invertible. Let  be its inverse and let B be the matrix of  in the canonical
basis of F n. The equalities ' ı  D  ı ' D id yield AB D BA D In, thus A is
invertible. �

Problem 7.32. Let A and B be invertible n � n matrices with real entries, where n
is an odd positive integer. Show that AB C BA is nonzero.

Solution. Suppose thatABCBA D On, thusAB D �BA. Taking the determinant,
we deduce that

det.AB/ D .�1/n detBA D � detBA:

On the other hand, det.AB/ D detA detB D det.BA/, thus the previous equality
yields 2 detA detB D 0. This contradicts the hypothesis thatA andB are invertible.

ut
Problem 7.33. Let A and B be two square matrices with real coefficients. If A and
B commute, prove that

det.A2 C B2/ � 0:
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Solution. Since A and B commute, we have

A2 C B2 D .AC iB/.A � iB/:

Thus

det.A2 C B2/ D det.AC iB/ det.A � iB/:

But using Problem 7.26 we obtain

det.A � iB/ D det.AC iB/ D det.AC iB/;

thus

det.A2 C B2/ D j det.AC iB/j2 � 0;

as desired. �

Problem 7.34. Let n be an odd integer and let A;B 2 Mn.R/ be matrices such that
A2 C B2 D On. Prove that AB � BA is not invertible.

Solution. Consider the equality

.AC iB/.A � iB/ D A2 C B2 C i.BA � AB/ D i.BA � AB/:

Taking the determinant yields

det.AC iB/ det.A � iB/ D in det.BA � AB/:

Suppose that det.AB�BA/ ¤ 0 and note that since A;B have real entries, we have
by Problem 7.26

det.A � iB/ D det.AC iB/ D det.AC iB/

and so

j det.AC iB/j2 D in det.BA � AB/:

Since det.AB � BA/ is nonzero, we deduce that in is real, contradicting the
hypothesis that n is odd. Thus

det.AB � BA/ D 0

and the result follows. �
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Remark 7.35. An alternate solution goes as follows. Note that we have

.AC iB/.A � iB/ D A2 C B2 C i.BA � AB/ D i.BA � AB/

and

.A � iB/.AC iB/ D A2 C B2 � i.BA � AB/ D �i.BA � AB/:

Since

det..AC iB/.A � iB// D det.AC iB/ det.A � iB/ D det..A � iB/.AC iB//;

and n is odd, we conclude that

in det.BA � AB/ D .�i/n det.BA � AB/ D �in det.BA � AB/

and hence det.BA � AB/ D 0.

Problem 7.36. Let p; q be real numbers such that the equation x2 C px C q D 0

has no real solutions. Prove that if n is odd, then the equationX2CpXCqIn D On
has no solution in Mn.R/.

Solution. Suppose that X2 CpX CqIn D On for some X 2 Mn.R/. We can write
this equation as

�
X C p

2
In

�2 D p2 � 4q
4

In:

Taking the determinant, we deduce that

�
p2 � 4q

4

�n
D
�

det
�
X C p

2
In

��2 � 0:

This is impossible, since by assumption p2 < 4q and n is odd. �

Another important property of the determinant of a matrix is its behavior with
respect to the transpose operation. Recall that if A D Œaij � 2 Mn.F /, then its
transpose tA is the matrix defined by tA D Œaj i �.

Theorem 7.37. For all matrices A 2 Mn.F / we have

detA D det. tA/:

Proof. By formula (7.5) applied to tA we have

det. tA/ D
X
�2Sn

".�/a�.1/1: : :a�.n/n:
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For any permutation � we have

a�.1/1: : :a�.n/n D a1��1.1/: : :an��1.n/;

since ai��1.i/ D a�.j /j with j D ��1.i/ (and when i runs over f1; 2; : : :; ng, so
does j ). Using this relation and the observation that ".��1/ D ".�/�1 D ".�/, we
obtain2

det. tA/ D
X
�2Sn

".��1/a1��1.1/: : :an��1.n/ D

D
X
�2Sn

".�/a1�.1/: : :an�.n/ D detA:

The result follows. �

Problem 7.38. Let A be a skew-symmetric matrix (recall that this means that
AC tA D On) of odd order with real or complex coefficients. Prove that det.A/ D 0.

Solution. By hypothesis we have tA D �A. Since det.A/ D det. tA/, it follows
that

det.A/ D det. tA/ D det.�A/ D .�1/n det.A/ D � det.A/:

Thus det.A/ must be 0. �

Problem 7.39. Let A be a matrix of odd order. Show that

det.A � tA/ D 0:

Solution. We have

t .A � tA/ D tA � t . tA/ D tA � A D �.A � tA/;

thus the matrix A � tA is skew-symmetric and its determinant must be 0 by
Problem 7.38. �

Problem 7.40. Let a1; : : :; an and b1; : : :; bn be complex numbers. Compute the
determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

a1 C b1 b1 : : : b1
b2 a2 C b2 : : : b2
: : : : : : : : : : : :

bn bn : : : an C bn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

2Note that when � runs over Sn, so does ��1.
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Solution. Let A be the matrix whose determinant we need to evaluate. We have

detA D det. tA/

and the columns of tA are the vectors a1e1 C b1v; : : :; anen C bnv, where e1; : : :; en
is the canonical basis of Cn and v is the vector all of whose coordinates are equal
to 1. We deduce that3

det. tA/ D det.a1e1 C b1v; : : :; anen C bnv/:

Using the fact that the determinant map is multilinear and alternating, we obtain

det. tA/D det.a1e1; : : :; anen/C
nX
iD1

det.a1e1; : : :; ai�1ei�1; biv; aiC1eiC1; : : :; anen/:

Indeed, note that det.x1; : : :; xn/ D 0 if at least two of the vectors x1; : : :; xn are
multiples of v. We conclude that

det. tA/ D a1: : :an C
nX
iD1

a1: : :ai�1biaiC1: : :an det.e1; : : :; ei�1; v; eiC1; : : :; en/:

Since v D e1 C : : : C en and the determinant map is multilinear and alternating,
we have

det.e1; : : :; ei�1; v; eiC1; : : :; en/ D det.e1; : : :; en/ D 1

for all i . We conclude that

detA D a1: : :an C
nX
iD1

bi �
Y
k¤i

ak:

�

Recall that a matrix A 2 Mn.F / is called upper-triangular if all entries of A
below the main diagonal are 0, that is aij D 0 whenever i > j . Similarly, A is
called lower-triangular if all entries above the main diagonal are 0, that is aij D 0

whenever i < j . The result of the following computation is absolutely crucial:
the determinant of an upper-triangular or lower-triangular square matrix is
simply the product of the diagonal entries. One can hardly underestimate the
power of this innocent-looking statement.

3We simply write det instead of det.e1;:::;en/.
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Theorem 7.41. If A D Œaij � 2 Mn.F / is upper-triangular or lower triangular,
then

detA D
nY
iD1

ai i :

Proof. The argument being identical in the lower-triangular case, let us assume that
A is upper-triangular. Consider a nonzero term ".�/a1�.1/: : :an�.n/ appearing in the
right-hand side of formula (7.4). Then each ai�.i/ is nonzero and so necessarily
i � �.i/ for all i . But since

Pn
iD1 i D Pn

iD1 �.i/ (as � is a permutation), all
the previous inequalities must be equalities. Thus � is the identity permutation and
the corresponding term is a11: : :ann. Since all other terms are 0, the theorem is
proved. �

Problem 7.42. For 1 � i; j � n we let aij be the number of common positive
divisors of i and j , and we let bij D 1 if j divides i , and bij D 0 otherwise.

a) Prove that A D B � tB , where A D Œaij � and B D Œbij �.
b) What can you say about the shape of the matrix B?
c) Compute detA.

Solution. a) Let us fix i; j 2 f1; 2; : : :; ng and compute, using the product rule

.B � tB/ij D
nX

kD1
bikbjk:

Consider a nonzero term bikbjk in the previous sum. Since bik and bjk are
nonzero, k must divide both i and j , that is k is a common positive divisor
of i and j . Conversely, if k is a common positive divisor of i and j , then
bik D bjk D 1. We deduce that the only nonzero terms in the sum are those
corresponding to common positive divisors of i and j , and each such nonzero
term equals 1. Thus .B � tB/ij is the number of common positive divisors of
i and j , which by definition of A is simply aij . Since i; j were arbitrary, we
deduce that A D B � tB .

b) If i < j are between 1 and n, then certainly j cannot divide i and so bij D 0.
Thus bij D 0 whenever i < j , which means that B is lower-triangular. We can
say a little more: since i divides i for all i 2 f1; 2; : : :; ng, we have bii D 1, thus
all diagonal terms of B are equal to 1.

c) Since the determinant is multiplicative and since detB D det. tB/, we have
(using part a))

detA D det.B � tB/ D .detB/2:

We can now use part b) and the previous theorem to conclude that detB D 1

and so

detA D 1: ut
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The next theorem (which can be very useful in practice) would also be quite
painful to prove directly by manipulating the complicated expression defining the
determinant of a matrix. The theory of alternating multilinear forms makes the proof
completely transparent.

Theorem 7.43 (Block-Determinants). Let A 2 Mn.F / be a matrix given in block
form

A D
�
B D

Oq;p C

�
;

where B 2 Mp.F /, C 2 Mq.F / (with p C q D n) and D 2 Mp;q.F /. Then

detA D detB � detC:

Proof. Consider the map

' W .F p/p ! F; '.X1; : : :; Xp/ D
ˇ̌
ˇ̌ X D

Oq;p C

ˇ̌
ˇ̌ ;

where X 2 Mp.F / is the matrix with columns X1; : : :; Xp . The determinant map
on .F n/n (with respect to the canonical basis of F n) being linear with respect to
each variable, ' is p-linear. Moreover, ' is alternating: if Xi D Xj for some i ¤ j ,

then columns i and j in the matrix

�
X D

Oq;p C

�
are equal and so this matrix has

determinant 0.
Now, applying Theorem 7.14 to the canonical basis of F p , we obtain

'.X/ D
ˇ̌
ˇ̌ X D

Oq;p C

ˇ̌
ˇ̌ D detX �

ˇ̌
ˇ̌ Ip D

Oq;p C

ˇ̌
ˇ̌

for all X 2 Mp.F /. The same game played with the q-linear alternating form Y !ˇ̌
ˇ̌ Ip D

Oq;p Y

ˇ̌
ˇ̌ yields

ˇ̌
ˇ̌ Ip D

Oq;p Y

ˇ̌
ˇ̌ D detY �

ˇ̌
ˇ̌ Ip D

Oq;p Iq

ˇ̌
ˇ̌ :

Thus

detA D detB detC

ˇ̌
ˇ̌ Ip D

Oq;p Iq

ˇ̌
ˇ̌ D detB detC;

the last equality being a consequence of the fact that the matrix

�
Ip D

Oq;p Iq

�
is upper-

triangular with diagonal entries equal to 1, thus its determinant equals 1. �
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Problem 7.44. Let A 2 Mn.C/ and let T W Mn.C/ ! Mn.C/ be the map defined
by T .X/ D AX . Find the determinant of T .

Solution. Let .Eij /1�i;j�n be the canonical basis of Mn.C/. Note that

T .Eij / D AEij D
nX

kD1
akiEkj ;

as shows a direct inspection of the product AEij . We deduce that the matrix of
T with respect to the basis E11; : : :; En1; E12; : : :; En2; : : :; E1n; : : :; Enn is a block-
diagonal matrix with n diagonal blocks equal to A. It follows from Theorem 7.43
that

detT D .detA/n:

�

7.3.1 Problems for Practice

1. A 5� 5 matrix A with real entries has determinant 2. Compute the determinant
of 2A;�3A;A2, �A3, . tA/2.

2. Prove that the determinant of an orthogonal matrix A 2 Mn.R/ equals �1 or 1.
We recall that A is orthogonal if A � tA D In.

3. a) A matrix A 2 Mn.R/ satisfies A3 D In. What are the possible values of
detA?

b) Answer the same question with R replaced by C.
c) Answer the same question with R replaced by F2.

4. Prove that for all A 2 Mn.R/ we have

det.A � tA/ � 0:

5. If A D Œaij � 2 Mn.C/, define A� D Œaj i � 2 Mn.C/.

a) Express det.A�/ in terms of detA.
b) Prove that det.A � A�/ � 0.

6. Let T be a linear transformation on a finite dimensional vector space V .
Suppose that V D V1 ˚ V2 for some subspaces V1; V2 which are stable under
T . Let T1; T2 be the restrictions of T to V1; V2. Prove that

detT D detT1 � detT2:

7. The entries of a matrixA 2 Mn.R/ are equal to �1 or 1. Prove that 2n�1 divides
detA.
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8. Prove that for any matrix A 2 Mn.R/ we have

a) det.A2 C In/ � 0.
b) det.A2 C AC In/ � 0.

9. Prove that if A;B 2 Mn.R/ are matrices which commute, then

det.A2 C AB C B2/ � 0:

10. Let A;B;C 2 Mn.R/ be pairwise commuting matrices. Prove that

det.A2 C B2 C C2 � AB � BC � CA/ � 0:

Hint: express A2 CB2 CC2 �AB �BC �CA simply in terms of the matrices
X D A � B and Y D B � C .

11. Let A 2 Mn.C/ and consider the matrix

B D
�
In A

A In

�
:

a) Prove that detB D det.In � A/ � det.In C A/. Hint: start by proving the
equality

�
In A

A In

�
D
�
In On
A In � A2

�
�
�
In A

On In

�
:

b) If B is invertible, prove that In �A2 is invertible and compute the inverse of
B in terms of A and the inverse of In � A2.

12. Prove that for all matrices A;B 2 Mn.R/ we have

ˇ̌
ˇ̌A �B
B A

ˇ̌
ˇ̌ D j det.AC iB/j2:

13. Let A;B 2 Mn.R/ be matrices such that A2 C B2 D AB and AB � BA is
invertible.

a) Let j D e
2i�
3 , so that j 2 C j C 1 D 0. Check that

.AC jB/.AC j�1B/ D j.BA � AB/:
b) Prove that n is a multiple of 3.

14. (Matrices differing by a rank one matrix) Let A 2 GLn.F / be an invertible
matrix and v;w 2 Mn;1.F / be vectors thought of as n � 1 matrices.

a) Show that

det.A � v � tw/ D det.A/.1 � twA�1v/;
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where we think of the 1 � 1 matrix twA�1v as a scalar.
Hint. One way to prove this formula is to justify the block matrix formula

�
1 � twA�1v tw

0 A

�
�
�
1 0

A�1v In

�
D
�
1 tw
v A

�
D
�
1 0

v In

�
�
�
1 tw
0 A � v � tw

�
:

b) If furthermore twA�1v ¤ 1, show that

.A � v � tw/�1 D A�1 C 1

1 � twA�1v
A�1v � twA�1:

15. (Determinants of block matrices) Let X 2 Mn.F / be a matrix given in block
form

X D
�
A B

C D

�
;

whereA 2 Mp.F /,B 2 Mp;q.F /,C 2 Mq;p.F /,D 2 Mq.F /, and pCq D n.
If A is invertible, show that

det.X/ D det.A/ det.D � CA�1B/:

Hint. Generalize the block matrix formula from the preceding problem.
16. (Smith’s determinant) For 1 � i; j � n let xij be the greatest common

divisor of i and j . The goal of this problem is to compute detX , where
X D Œxij �1�i;j�n.

Let ' be Euler’s totient function (i.e., '.1/ D 1 and, for n � 2, '.n/ is
the number of positive integers less than n and relatively prime to n). Define
yij D '.j / if j divides i , and yij D 0 otherwise. Also, let bij D 1 if j divides
i and 0 otherwise.

a) Prove that X D Y tB , where Y D Œyij � and B D Œbij �.
b) Prove that

detX D '.1/'.2/: : :'.n/:

7.4 Computing Determinants in Practice

If n D 2, then S2 contains only the permutations

�
1 2

1 2

�
and

�
1 2

2 1

�
, hence we get
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ˇ̌
ˇ̌a11 a12
a21 a22

ˇ̌
ˇ̌ D a11a22 � a12a21;

a formula which we have extensively used in the chapter devoted to square matrices
of order 2. The value of the determinant of a matrix of order two may be remembered
by the array

ˇ̌
ˇ̌
ˇ̌
a11 a12

&%
a21 a22

ˇ̌
ˇ̌
ˇ̌

�

C

D a11a22 � a12a21

If n D 3, then S3 contains six permutations:

�
1 2 3

1 2 3

�
;

�
1 2 3

3 1 2

�
;

�
1 2 3

2 3 1

�
;

�
1 2 3

3 2 1

�
;

�
1 2 3

1 3 2

�
;

�
1 2 3

2 1 3

�
:

The first three permutations are even and the last three are odd. In this case we get

ˇ̌
ˇ̌
ˇ̌
a11 a12 a13
a21 a22 a23
a31 a32 a33

ˇ̌
ˇ̌
ˇ̌ D a11a22a33 C a13a21a32 C a12a23a31

� a13a22a31 � a11a23a32 � a12a21a33
The value of the determinant of order three may be remembered using a particular

scheme similar to that used for determinants of order two:

a11 a12 a13 a11 a12
Ÿ Ÿ% Ÿ% %

a21 a22 a23 a21 a22
� &� &� &

a31 a32 a33 a31 a32

D a11a22a33 C a13a21a32

C a12a23a31 � a13a22a31
� a11a23a32 � a12a21a33

i.e., the first two columns of the determinant are repeated at its right, the products of
the three elements along the arrows running downward and to the right are noted as
well as the negative of the products of the three elements along the arrows running
upward and to the right. The algebraic sum of these six products is the value of the
determinant.
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For example, applying this scheme we get

1 4 0 1 4

Ÿ Ÿ% Ÿ% %
�1 2 1 �1 2

� &� &� &
2 0 1 2 0

D .2/C 8 � 0 � 0 � 0 � .�4/ D 14

Problem 7.45. Compute the determinant

ˇ̌
ˇ̌
ˇ̌
1 2 3

2 �3 5

3 1 �2

ˇ̌
ˇ̌
ˇ̌ :

Solution. Using the rule described above, we obtain

ˇ̌
ˇ̌
ˇ̌
1 2 3

2 �3 5

3 1 �2

ˇ̌
ˇ̌
ˇ̌ D 6C 30C 6C 27 � 5C 8 D 72:

�

Problem 7.46. Consider the invertible matrix

A D
2
4
2 1 1

1 1 1

1 1 2

3
5 :

Find the determinant of the inverse of A.

Solution. It is useless to compute A�1 explicitly in order to solve the problem.
Indeed, since A � A�1 D I3, we have detA � det.A�1/ D 1 and so

det.A�1/ D 1

detA
:

It suffices therefore to compute detA. Now, using the previous rule, we obtain

detA D 4C 1C 1 � 1 � 2 � 2 D 1:

Thus

det.A�1/ D 1:

�
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No such easy rules exist for matrices of size at least 4. In practice, the following
properties of the determinant allow computing a large quantity of determinants
(the elements R1;R2; : : :; Rn below are the rows of the matrix whose determinant
we are asked to compute or study).

1. If every element of a row of a determinant of order n is multiplied by the scalar
	, then the value of the determinant is multiplied by 	.

2. If two rows of a determinant are interchanged, then the determinant gets
multiplied by �1. More generally, we have the following formula where � is
any permutation in Sn

det

2
6664

R�.1/
R�.2/
:::

R�.n/

3
7775 D ".�/ det

2
6664

R1
R2
:::

Rn

3
7775 :

3. Adding a scalar multiple of a row of a determinant to another row does not
change the value of the determinant: for j ¤ k and 	 2 F we have

det

2
6666664

R1
:::

Rj C 	Rk
:::

Rn

3
7777775

D det

2
6664

R1
R2
:::

Rn

3
7775

4. A very useful property is that the determinant of an upper (or lower) triangular
matrix is simply the product of its diagonal entries.

Note that the operations involved are the elementary row operations studied in
Chap. 3. This gives us a practical way of computing determinants, known as the
Gaussian elimination algorithm for determinants: start with the matrix A whose
determinant we want to evaluate and perform Gaussian reduction in order to bring
it to its reduced row-echelon form. This will require several elementary operations
on the rows of the matrix A, which come down to multiplying A by a sequence of
elementary matrices E1; : : :; Ek on the left. Thus at the end we obtain

E1E2: : :EkA D Aref ;

where Aref is the reduced row-echelon form of A. Taking determinants gives

det.E1/ � det.E2/ � : : : � detEk � detA D detAref :

Since Aref is upper-triangular, its determinant is simply the product of its diagonal
entries (in particular if some diagonal entry equals 0, then detA D 0). Also, the
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previous rules 1–3 allow us to compute very easily each of the factors detE1,
detE2,. . . , detEk . We can neglect those matrices Ei which correspond to transvec-
tions, as their determinant is 1. Next, ifEi corresponds to multiplication of a row by
a scalar 	, then detEi D 	, and ifEi corresponds to a permutation of two rows, then
detEi D �1. Thus, in practice we simply follow the Gaussian reduction to bring
the matrix to its reduced row-echelon form, and keep in mind to multiply at each
step the value of the determinant by the corresponding constant, which depends on
the operation performed as explained before.

Remark 7.47. a) Note that since det. tA/ D detA for all A 2 Mn.F /, all previous
properties referring to rows of a matrix (or determinant) still hold when the word
row is replaced with the word column.

b) For any particular problem an intelligent human being can probably do better
than the naive Gaussian elimination. The most likely way is by being oppor-
tunistic to produce more zeroes in the matrix with carefully placed row and/or
column operations. Two more systematic ways are:

• If there is some linear dependence among the columns (or rows) then the
determinant vanishes, which gives an early exit to the algorithm. Note that
this is the case if a column (or row) consists entirely of zeros, or if there are
two equal columns or two equal rows.

• Since we can easily compute the determinant of an upper-triangular matrix,
we do not need to fully reduce, just get down to a triangular matrix.

c) There are some extra rules one could exploit (they are however more useful in
theoretical questions):

• If a column is decomposed as the sum of two column vectors, then the
determinant is the sum of the corresponding two determinants, i.e.

det
�
c1 c2 : : : c

0
k C c00

k : : : cn
�

D det
�
c1 c2 : : : c

0
k : : : cn

�C det
�
c1 c2 : : : c

00
k : : : cn

�
:

A similar statement applies to rows.
• If A 2 Mn.C/, then the determinant of the conjugate matrix of A equals the

conjugate of determinant of A, i.e.

detA D detA:

• For A;B 2 Mn.F / we have

det.A � B/ D detA � detB:

• If A 2 Mn.F / and 	 2 F , then

det.	A/ D 	n detA:
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Problem 7.48. Prove that for all real numbers a; b; c we have
ˇ̌
ˇ̌
ˇ̌
1 1 1

a b c

b C c c C a aC b

ˇ̌
ˇ̌
ˇ̌ D 0:

Solution. Adding the second row to the third row yields
ˇ̌
ˇ̌
ˇ̌
1 1 1

a b c

b C c c C a aC b

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

1 1 1

a b c

aC b C c aC b C c aC b C c

ˇ̌
ˇ̌
ˇ̌ :

Since the third row is proportional to the first row, this last determinant vanishes. �

Problem 7.49. Let a; b; c be complex numbers. By computing the determinant of
the matrix

A D
2
4
a b c

b c a

c a b

3
5

in two different ways, prove that

a3 C b3 C c3 � 3abc D .aC b C c/.a2 C b2 C c2 � ab � bc � ca/:

Solution. First, we can compute detA using the rule described in the beginning of
this section. We end up with

detA D �abc C abc C abc � a3 � b3 � c3 D �.a3 C b3 C c3 � 3abc/:

On the other hand, we can add all columns to the first column and obtain

detA D
ˇ̌
ˇ̌
ˇ̌
aC b C c b c

aC b C c c a

aC b C c a b

ˇ̌
ˇ̌
ˇ̌ D .aC b C c/

ˇ̌
ˇ̌
ˇ̌
1 b c

1 c a

1 a b

ˇ̌
ˇ̌
ˇ̌ :

The last determinant can be computed using the rule described in the beginning of
the section. We obtain
ˇ̌
ˇ̌
ˇ̌
1 b c

1 c a

1 a b

ˇ̌
ˇ̌
ˇ̌ D bc C ab C ca � c2 � a2 � b2 D �.a2 C b2 C c2 � ab � bc � ca/:

Thus

detA D �.aC b C c/.a2 C b2 C c2 � ab � bc � ca/:
Comparing the two expressions for detA yields the desired result. �
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Problem 7.50. Prove that
ˇ̌
ˇ̌
ˇ̌
b1 C c1 c1 C a1 a1 C b1
b2 C c2 c2 C a2 a2 C b2
b3 C c3 c3 C a3 a3 C b3

ˇ̌
ˇ̌
ˇ̌ D 2

ˇ̌
ˇ̌
ˇ̌
a1 b1 c1
a2 b2 c2
a3 b3 c3

ˇ̌
ˇ̌
ˇ̌

for all real numbers a1; a2; a3; b1; b2; b3; c1; c2; c3.

Solution. Performing the indicated operations on the corresponding matrices, we
have the following chain of equalities:

ˇ̌
ˇ̌
ˇ̌
b1 C c1 c1 C a1 a1 C b1
b2 C c2 c2 C a2 a2 C b2
b3 C c3 c3 C a3 a3 C b3

ˇ̌
ˇ̌
ˇ̌
C1!C1�C2DDDDDD

ˇ̌
ˇ̌
ˇ̌
b1 � a1 c1 C a1 a1 C b1
b2 � a2 c2 C a2 a2 C b2
b3 � a3 c3 C a3 a3 C b3

ˇ̌
ˇ̌
ˇ̌

C1!C1�C3DDDDDD
ˇ̌
ˇ̌
ˇ̌
�2a1 c1 C a1 a1 C b1
�2a2 c2 C a2 a2 C b2
�2a3 c3 C a3 a3 C b3

ˇ̌
ˇ̌
ˇ̌ D �2

ˇ̌
ˇ̌
ˇ̌
a1 c1 C a1 a1 C b1
a2 c2 C a2 a2 C b2
a3 c3 C a3 a3 C b3

ˇ̌
ˇ̌
ˇ̌

C2!C2�C1DDDDDD
C3!C3�C1

�2
ˇ̌
ˇ̌
ˇ̌
a1 c1 b1
a2 c2 b2
a3 c3 b3

ˇ̌
ˇ̌
ˇ̌ D 2

ˇ̌
ˇ̌
ˇ̌
a1 b1 c1
a2 b2 c2
a3 b3 c3

ˇ̌
ˇ̌
ˇ̌ :

The result follows. �

Remark 7.51. An alternate and shorter solution to the previous problem is to note
that

2
4
b1 C c1 c1 C a1 a1 C b1
b2 C c2 c2 C a2 a2 C b2
b3 C c3 c3 C a3 a3 C b3

3
5 D

2
4
a1 b1 c1
a2 b2 c2
a3 b3 c3

3
5 �

2
4
0 1 1

1 0 1

1 1 0

3
5 :

Problem 7.52. Compute detA, where x1; : : :; xn are real numbers and

A D

2
664

1C x1 x2 x3 : : : xn
x1 1C x2 x3 : : : xn
: : :

x1 x2 x3 : : : 1C xn

3
775 :

Solution. We start by adding all the other columns to the first column, and factoring
out 1C x1 C : : :C xn. We obtain

detA D .1C x1 C : : :C xn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x2 : : : xn
1 1C x2 : : : xn
: : : : : : : : : : : :

1 x2 : : : 1C xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:
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In this new determinant, from each row starting with the second we subtract the first
row. We end up with

detA D .1C x1 C x2 C : : :C xn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x2 : : : xn
0 1 : : : 0

: : : : : : : : : : : :

0 0 : : : 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

The last determinant is that of an upper-triangular matrix with diagonal entries equal
to 1, thus it equals 1. We conclude that

detA D 1C x1 C x2 C : : :C xn:
�

Problem 7.53. Let A D Œaij � 2 Mn.R/ be the matrix defined by

aij D
�
nC 1; if i D j

1; if i ¤ j:

Compute detA.

Solution. The matrix A can be written in the form

A D

2
6664

nC 1 1 : : : 1

1 nC 1 : : : 1
:::

:::
:::

:::

1 1 : : : nC 1

3
7775 :

Adding all columns of A to the first column we obtain

detA D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

2n 1 : : : 1

2n nC 1 : : : 1
:::

:::
:::

:::

2n 1 : : : nC 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 : : : 1

1 nC 1 : : : 1
:::

:::
:::

:::

1 1 : : : nC 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
:

The last determinant can be computed by subtracting the first column from each
of the other columns, and noting that the resulting matrix is lower-triangular.
We obtain

detA D 2n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 : : : 1

1 nC 1 : : : 1
:::

:::
:::

:::

1 1 : : : nC 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 : : : 0

1 n : : : 0
:::
:::
:::
:::

1 0 : : : n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2n.1 � n � n : : : n/ D 2n � nn�1 D 2nn:

�
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Remark 7.54. The previous two problems are special cases of Problem 7.40.

Problem 7.55. Prove that for all real numbers a; b; c

ˇ̌
ˇ̌
ˇ̌
cos2 a sin2 a cos 2a
cos2 b sin2 b cos 2b
cos2 c sin2 c cos 2c

ˇ̌
ˇ̌
ˇ̌ D 0:

Solution. We have

ˇ̌
ˇ̌
ˇ̌
cos2 a sin2 a cos 2a
cos2 b sin2 b cos 2b
cos2 c sin2 c cos 2c

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
cos2 a � sin2 a sin2 a cos 2a
cos2 b � sin2 b sin2 b cos 2b
cos2 c � sin2 c sin2 c cos 2c

ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
cos 2a sin2 a cos 2a
cos 2b sin2 b cos 2b
cos 2c sin2 c cos 2c

ˇ̌
ˇ̌
ˇ̌ D 0:

The result follows. �

Problem 7.56. Let A 2 Mn.R/.

a) Show that if n2 � nC 1 entries in A are equal to 0, then det.A/ D 0.
b) Show that one can choose A such that detA ¤ 0 and A has n2 � n C 1 equal

entries.
c) Show that if n2 � nC 2 entries in A are equal, then det.A/ D 0.

Solution. a) We claim that the matrix A has a column consisting entirely of zeros,
which implies detA D 0. Indeed, if each column of A has at most n � 1 zeros,
then A has at most n.n�1/ zero entries in total. This contradicts the hypothesis.

b) Consider the matrix A whose elements off the main diagonal are equal to 1
and the diagonal entries are 1; 2; : : :; n. Then n2 � nC 1 entries are equal to 1,
but detA ¤ 0. Indeed, subtracting the first row from each subsequent row yields
an upper-triangular matrix with nonzero diagonal entries, thus invertible.

c) If n2 � n C 2 entries in A are equal (say to some number a), then there are at
most n� 2 entries of A that are not equal to a. Thus at most n� 2 columns of A
contain an entry which is not equal to a. Said differently, at least 2 columns
of A have all entries a. But then A has two equal columns and det.A/ D 0. �

Problem 7.57 (The Vandermonde Determinant). Let a1; a2; : : : ; an be complex
numbers. Prove that the determinant of the matrix A D Œa

j�1
i �1�i;j�n (where if

necessary we interpret 00 as being 1) equals

det.A/ D
Y

1�i<j�n
.aj � ai /:
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Solution. Starting from the right-hand side and working left subtract a1 times each
column from the column to its right. This gives

detA D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 0 � � � 0 0

1 .a2 � a1/ .a2 � a1/a2 � � � .a2 � a1/an�3
2 .a2 � a1/an�2

2

1 .a3 � a1/ .a3 � a1/a3 � � � .a3 � a1/an�3
3 .a3 � a1/an�2

3
:::

:::
:::

: : :
:::

:::

1 .an � a1/ .an � a1/an � � � .an � a1/an�3
n .an � a1/an�2

n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.a2 � a1/ .a2 � a1/a2 � � � .a2 � a1/an�3
2 .a2 � a1/an�2

2

.a3 � a1/ .a3 � a1/a3 � � � .a3 � a1/an�3
3 .a3 � a1/an�2

3
:::

:::
:::

: : :
:::

.an � a1/ .an � a1/an � � � .an � a1/an�3
n .an � a1/an�2

n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
:

Factoring out ak � a1 from row k gives

detA D
nY

jD2
.aj � a1/ �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 a2 � � � an�3
2 an�2

2

1 a3 � � � an�3
3 an�2

3
:::
:::
: : :

:::
:::

1 an � � � an�3
n an�2

n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
:

This last determinant is of the same form as the original matrix, but of a smaller
size, hence we are done using an easy induction on n. �

Problem 7.58 (The Cauchy Determinant). Let a1; : : :; an and b1; : : :; bn be com-
plex numbers such that ai C bj ¤ 0 for 1 � i; j � n. Prove that the determinant of
the matrix A D Œ 1

aiCbj � equals

detA D
Q
1�i<j�n.aj � ai /.bj � bi /Qn

i;jD1.ai C bj /
:

Solution. Subtracting the last column from each of the first n�1 columns and using
the identity

1

ai C bj
� 1

ai C bn
D bn � bj
.ai C bj /.ai C bn/

to factor a bn � bj out of the j -th column and a 1
aiCbn out of the i -th row yields

detA D .bn � b1/ � � � .bn � bn�1/
.a1 C bn/ � � � .an C bn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1
a1Cb1

1
a1Cb2 � � � 1

a1Cbn�1
1

1
a2Cb1

1
a2Cb2 � � � 1

a2Cbn�1
1

:::
:::

: : :
:::

:::
1

anCb1
1

anCb2 � � � 1
anCbn�1

1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
:
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Similarly, subtracting the last row from each of the first n � 1 rows in the matrix
appearing in the last equality and pulling out common factors, we obtain

detA D
Qn�1
iD1.bn � bi /.an � ai /Qn

iD1.ai C bn/
Qn�1
iD1.an C bi /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1
a1Cb1

1
a1Cb2 : : : 1

a1Cbn�1
0

1
a2Cb1

1
a2Cb2 : : : 1

a2Cbn�1
0

:::
:::

: : :
:::

1
an�1Cb1

1
an�1Cb2 : : :

1
an�1Cbn�1

0

1 1 : : : 1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

Hence

detA D
Qn�1
iD1.bn � bi /.an � ai /Qn

iD1.ai C bn/
Qn�1
iD1.an C bi /

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1
a1Cb1

1
a1Cb2 : : : 1

a1Cbn�1
1

a2Cb1
1

a2Cb2 : : : 1
a2Cbn�1

:::
:::

: : :
:::

1
an�1Cb1

1
an�1Cb2 : : :

1
an�1Cbn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
;

which allows us to conclude by induction on n, the last determinant being of the
same form, but of smaller dimension. �

Another useful tool for computing determinants is the Laplace expansion.
Consider a matrix A 2 Mn.F / with entries aij . The minor of aij is the determinant
Mij of the matrix obtained from A by deleting row i and column j . The cofactor
of aij is Cij D .�1/iCjMij .

Example 7.59. The minor of a23 in

ˇ̌
ˇ̌
ˇ̌
�2 �1 0

1 2 3

4 0 �2

ˇ̌
ˇ̌
ˇ̌

is

M23 D
ˇ̌
ˇ̌�2 �1
4 0

ˇ̌
ˇ̌ D 4

and the cofactor of a23 is C23 D .�1/2C3M23 D �4.

The cofactors play a key role, thanks to the following theorem, which shows that
the computation of a determinant of order n may be reduced to the computation of
n determinants of order n � 1. If we use properties 1)–11) of determinants and we
create some zeros on the kth line, then we only need the cofactors corresponding to
the nonzero elements of this line, i.e., combining these methods we can reduce the
volume of computations.
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Theorem 7.60 (Laplace Expansion). Let A D Œaij � 2 Mn.F / be a matrix and let
Ci;j be the cofactor of aij .

a) (expansion with respect to column j ) For each j 2 f1; 2; : : :; ng we have

detA D
nX
iD1

aij Cij :

b) (expansion with respect to row i ) For each i 2 f1; 2; : : :; ng we have

detA D
nX

jD1
aij Cij :

Proof. We will prove only part a), the argument being similar for part b) (alter-
natively, this follows from a) using that the determinant of a matrix equals the
determinant of its transpose). Fix j 2 f1; 2; : : :; ng, let B D .e1; : : :; en/ be the
canonical basis of F n and let C1; : : :; Cn 2 F n be the columns of A, so that
Ck D Pn

iD1 aikei for all k. We deduce that

detA D detB.C1; ::; Cn/ D detB.C1; : : :; Cj�1;
nX
iD1

aij ei ; CjC1; : : :; Cn/

D
nX
iD1

aij detB.C1; : : :; Cj�1; ei ; CjC1; : : :; Cn/:

It remains to see that Xij WD detB.C1; : : :; Cj�1; ei ; CjC1; : : :; Cn/ equals Cij , the
cofactor of aij . By a series of n � j column interchanges, we can put the j th
column of the determinant Xij in the last position, and by a sequence of n � i

row interchanges we can put the i th row in the last position. We end up with

Xij D .�1/n�iCn�j

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 : : : a1;j�1 a1;jC1 : : : a1n 0
:::

:::
:::

: : :
:::

:::

an1 : : : an;j�1 an;jC1 : : : ann 0
ai1 : : : ai;j�1 ai;jC1 : : : ai;n 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
:

The last determinant is precisely Cij , thanks to Theorem 7.43. The result follows,
since .�1/n�iCn�j D .�1/iCj . �

Example 7.61. Expanding with respect to the first row, we obtain

ˇ̌
ˇ̌
ˇ̌
a11 a12 a13
a21 a22 a23
a31 a32 a33

ˇ̌
ˇ̌
ˇ̌ D a11

ˇ̌
ˇ̌a22 a23
a32 a33

ˇ̌
ˇ̌ � a12

ˇ̌
ˇ̌a21 a23
a31 a33

ˇ̌
ˇ̌C a13

ˇ̌
ˇ̌a21 a22
a31 a32

ˇ̌
ˇ̌
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Problem 7.62. Let

A D

2
664

1 1 1 1

1 1 1 �3
2 2 �2 �2
3 �1 �1 �1

3
775 :

Compute
(a) det.A/ (b) det.AtA/. (c) det.AC A/. (d) det.A�1/.

Solution. (a) Subtracting the second row from the first and expanding with respect
to the first row yields

detA D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

0 0 0 4

1 1 1 �3
2 2 �2 �2
3 �1 �1 �1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �4
ˇ̌
ˇ̌
ˇ̌
1 1 1

2 2 �2
3 �1 �1

ˇ̌
ˇ̌
ˇ̌ :

In the new determinant, subtract twice the first row from the second one, and
add the first row to the last one. We obtain

detA D �4
ˇ̌
ˇ̌
ˇ̌
1 1 1

0 0 �4
4 0 0

ˇ̌
ˇ̌
ˇ̌ :

Expanding with respect to the last row yields

detA D �4 � 4 � .�4/ D 64:

(b) Since the determinant map is multiplicative and detA D det.tA/, we obtain

det.AtA/ D detA � det.tA/ D .detA/2 D 642 D 4096:

(c) We have

det.AC A/ D det.2A/ D 24 � det.A/ D 16 � 64 D 1024:

(d) Finally,

det.A�1/ D 1

det.A/
D 1

64
:

�

Problem 7.63. Let A D Œaij � 2 Mn.R/ be a matrix with nonnegative entries such
that the sum of the entries in each row does not exceed 1. Prove that j detAj � 1.

Solution. We will prove the result by induction on n, the case n D 1 being clear.
Assume that the result holds for n � 1 and let A be a matrix as in the statement of
the problem. For 1 � i � n let Ai be the matrix obtained by deleting the first row
and column i from A. Then
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detA D
nX
iD1
.�1/iC1a1i detAi ;

and by the inductive hypothesis applied to eachAi we have j detAi j � 1. We deduce
that

j detAj �
nX
iD1

a1i j detAi j �
nX
iD1

a1i � 1

and the result follows. �

We have already seen that a matrix A 2 Mn.F / is invertible if and only if
detA ¤ 0. It turns out that we can actually compute the inverse of the matrix A by
computing certain determinants. Before doing that, let us introduce a fundamental
definition:

Definition 7.64. Let A 2 Mn.F / be a square matrix with entries in F . The
adjugate matrix adj.A/ is the matrix whose .i; j /-entry is the cofactor Cji of aji .
Thus adj.A/ is the transpose of the matrix whose .i; j /-entry is the cofactor Cij
of aij .

We have the fundamental result:

Theorem 7.65. If A 2 Mn.F / has nonzero determinant, then

A�1 D 1

detA
adj.A/:

Proof. It suffices to prove that A � adj.A/ D detA �In. Using the multiplication rule,
this comes down to checking that

nX
jD1

Ck;j ai;j D detA � ıik

for all 1 � i; k � n, where ıik equals 1 if i D k and 0 otherwise.
If k D i , this follows by Laplace expansion of detA with respect to the i th row,

so suppose that k ¤ i and consider the matrix A0 obtained from A by replacing its
kth row with a copy of the i th row, so that rows i and k in A0 coincide, forcing
detA0 D 0. Using the Laplace expansion in A0 with respect to the kth row and
taking into account that the cofactors involved in the expression do not change when
going from A to A0 (as only the kth row of A is modified), we obtain

0 D detA0 D
nX

jD1
aij Ck;j

and the result follows. �
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The previous theorem does not give a practical way of computing the inverse of
a matrix (this involves computing too many determinants), but it is very important
from a theoretical point of view: for instance, it says that the entries of A�1 are
rational functions of the entries of A (in particular they are continuous functions
of the entries of A if A has real or complex coefficients). The practical way
of computing the inverse of a matrix has already been presented in the chapter
concerning linear systems and operations on matrices, so we will not repeat the
discussion here.

7.4.1 Problems for Practice

1. Let x be a real number. Compute in two different ways the determinant

ˇ̌
ˇ̌
ˇ̌
x 1 1

1 x 1

1 1 x

ˇ̌
ˇ̌
ˇ̌ :

2. Let a; b; c be real numbers. Compute the determinant

ˇ̌
ˇ̌
ˇ̌
a � b � c 2a 2a

2b b � c � a 2b

2c 2c c � a � b

ˇ̌
ˇ̌
ˇ̌ :

3. Let x be a real number. Compute the determinant

ˇ̌
ˇ̌
ˇ̌

cos x 0 sin x
0 1 0

� sin x 0 cos x

ˇ̌
ˇ̌
ˇ̌ :

4. Let a; b; c be real numbers. Compute the determinant

ˇ̌
ˇ̌
ˇ̌
aC 1 b C 1 c C 1

b C c aC c aC b

1 1 1

ˇ̌
ˇ̌
ˇ̌ :

5. Let a; b; c be real numbers. Find a necessary and sufficient condition for the
vanishing of the following determinant

ˇ̌
ˇ̌
ˇ̌
.aC b/2 a2 b2

a2 .aC c/2 c2

b2 c2 .b C c/2

ˇ̌
ˇ̌
ˇ̌ :
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6. Let x; y; z be real numbers. By considering the matrices

2
4
0 y z
z x 0
y 0 x

3
5 and

2
4
0 z y
y x 0

z 0 x

3
5, compute the determinant

ˇ̌
ˇ̌
ˇ̌
y2 C z2 xy zx
xy z2 C x2 yz
xz yz x2 C y2

ˇ̌
ˇ̌
ˇ̌ :

7. Let x; y; z be real numbers. Compute
ˇ̌
ˇ̌
ˇ̌
1 cos x sin x
1 cos.x C y/ sin.x C y/

1 cos.x C z/ sin.x C z/

ˇ̌
ˇ̌
ˇ̌ :

8. Compute det.A/, where A is the n � n matrix

A D

2
664

�1 1 1 : : : 1

1 �1 1 : : : 1
: : :

1 1 1 : : : �1

3
775 :

9. Let a; b; c; d be real numbers and consider the matrices

A D

2
664

a b c d

b a d c

c d a b

d c b a

3
775 ; B D

2
664

1 1 1 1

1 1 �1 �1
1 �1 �1 1

1 �1 1 �1

3
775 :

a) Compute detB .
b) By considering the matrix AB , compute detA.

10. Let a be a real number. Prove that for n � 3 we have Dn D aDn�1 � Dn�2,
where

Dn D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a 1 0 0 : : : : : : : : : 0

1 a 1 0 : : : : : : : : : 0

0 1 a 1 : : : : : : : : : 0

0 0 1 a : : : : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

0 0 0 0 : : : 1 a 1

0 0 0 0 : : : 0 1 a

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

is the determinant of an n � n matrix.
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11. Let a; b; c 2 R and x D a2 C b2 C c2, y D ab C bc C ca. Prove that

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x x x

1 x C y x C y 2x

1 2x x C y x C y

1 x C y 2x x C y

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D .a3 C b3 C c3 � 3abc/2:

12. Compute detA in each of the following cases:

(a) ai;j D min.i; j /, for i; j D 1; : : : ; n.
(b) ai;j D max.i; j /, for i; j D 1; : : : ; n.
(c) ai;j D ji � j j, for i; j D 1; : : : ; n.

13. Let n � 2 and let A D Œaij � 2 Mn.R/ be the matrix defined by

aij D
�
0; if i D j

1; if i ¤ j:

a) Compute detA.
b) Prove that

A�1 D 2 � n
n � 1In C 1

n � 1A:

14. Let n � 3 and let A be the n� n matrix whose .i; j /-entry is aij D cos 2�.iCj /
n

for i; j 2 Œ1; n�. Find det.In C A/.
15. Let A be a matrix of order 3.

(a) If all the entries in A are 1 or �1 show that det.A/ must be even integer and
determine the largest possible value of det.A/.

(b) If all the entries in A are 1 or 0, determine the largest possible value of
det.A/.

16. Let n > 2 and let x1; : : :; xn be real numbers. Compute the determinant of the
matrix whose entries are sin.xi C xj / for 1 � i; j � n.

17. Let A 2 Mn.R/ be the matrix whose .i; j /-entry is aij D 1
iCj . Prove that

detA D .1Š2Š: : :; nŠ/4

.nŠ/21Š2Š: : :.2n/Š
:

Hint: use the Cauchy determinant.
18. Let V be the space of polynomials with real coefficients whose degree does

not exceed n. Compute the determinant of the linear transformation T sending
P 2 V to P C P 0.



7.4 Computing Determinants in Practice 281

19. Prove that any matrix A 2 Mn.R/ with determinant 1 is a product of matrices
of the form In C 	Eij , with i ¤ j 2 Œ1; n� and 	 2 R. Hint: use elementary
operations on rows and columns.

20. Let A be an invertible matrix with integer coefficients. Prove that A�1 has
integer entries if and only if detA 2 f�1; 1g.

21. Let A;B 2 Mn.R/ be matrices with integer entries such that A;A C B; : : :;

AC 2nB are invertible and their inverses have integer entries. Prove that AC
.2nC1/B has the same property. Hint: prove first the existence of a polynomial
P with integer coefficients such that P.x/ D det.AC xB/ for all x 2 R.

22. Let A;B 2 Mn.C/ be matrices which commute. We want to prove that the
adjugate matrices adj.A/ and adj.B/ also commute.

a) Prove the desired result when A and B are invertible.
b) By considering the matrices A C 1

k
In and B C 1

k
In for k ! 1, prove the

desired result in all cases.

23. Let A 2 Mn.C/, with n � 2. Prove that

det.adj.A// D .detA/n�1:

Hint: start by proving the result when A is invertible, then in order to prove the
general case consider the matrices AC 1

k
In for k ! 1.

24. (Dodgson condensation) Consider a 3 � 3 matrix

A D
2
4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3
5 :

View this matrix as being composed of four 2� 2matrices (overlapping at a22).
Form a 2 � 2 matrix by taking the determinants of these four 2 � 2 matrices�
NW NE

SW SE

�
. Show that

ˇ̌
ˇ̌NW NE

SW SE

ˇ̌
ˇ̌ D a22 det.A/:

25. (Dodgson condensation, continued) Choose your favorite 4�4matrixA D Œaij �

with a22; a23; a32; a33, and a22a33 � a23a32 all nonzero.

a) Compute det.A/.
b) View A as being composed of a 3 � 3 array of overlapping 2 � 2 matrices

and compute the determinants of these 9 matrices. Write them in a 3 � 3

matrix B . View this 3 � 3 matrix as being composed of four overlapping
2� 2 matrices. For each compute the determinant and divide by the entry of
A the four had in common. Write the results in a 2 � 2 matrix C . Take the
determinant of C and divide it by the central entry of B (the one common to
the four determinants that make up C ). Compare your result to the result of
part (a).



282 7 Determinants

Remark. This method of computing a determinant, due to Charles Dodgson,
a.k.a. Lewis Carroll, extends to higher dimensions. It is best visualized if you
imagine filling a pyramidal array of numbers. We start with an .nC1/� .nC1/

array of all ones and we lay the n � n matrix whose determinant we want in
the layer above, with each entry of A sitting between four of the ones. At each
stage, we fill the next layer by computing the determinant of the 2 � 2 matrix
formed by the four touching cells in the layer below and dividing by the entry
two layer down directly below the cell. (Thus at the first stage there is a division
by 1 that we neglected to mention above.) When you are done, the entry at
the top of the pyramid will be the determinant. (There is a slight complication
here. Following this procedure naively might result in dividing by zero. This is
fixable, but makes the algorithm less pretty.)

7.5 The Vandermonde Determinant

If A 2 Mn.F /, by definition

detA D
X
�2Sn

".�/a1�.1/a2�.2/: : :an�.n/

is a polynomial expression in the entries of the matrix A. This suggests using
properties of polynomials (such as degree, finiteness of the number of roots. . . ) for
studying determinants. This is a very fruitful idea and we will sketch in this section
how it works.

We start with an absolutely fundamental computation, that of Vandermonde
determinants. These determinants play a crucial role in almost all aspects of
mathematics. We have already given a proof of the next theorem in Problem 7.57.
Here we give a different proof.

Theorem 7.66. Let F be a field and let x1; : : :; xn 2 F . Then

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : x
n�1
1

1 x2 : : : x
n�1
2

: : : : : : : : : : : :

1 xn : : : x
n�1
n

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D
Y

1�i<j�n
.xj � xi /:

Proof. We will prove the statement by induction on n, the cases n D 1 and n D 2

being left to the reader. Assume that the result holds for n�1 (and for any choice of
x1; : : :; xn�1) and let x1; : : :; xn 2 F . If two of these elements are equal, the result is
clear: the determinant we want to compute has two equal columns, so must vanish.
So assume that x1; : : :; xn are pairwise distinct and consider the polynomial
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P.X/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x1 : : : xn�1
1

1 x2 : : : xn�1
2

: : : : : : : : : : : :

1 xn�1 : : : xn�1
n�1

1 X : : : Xn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:

Expanding with respect to the last row, we see that

P.X/ D Xn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : xn�2
1

1 x2 : : : xn�2
2

: : : : : : : : : : : :

1 xn�1 : : : xn�2
n�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
C an�2Xn�2 C : : :

for some an�2; : : :; a0 2 F . Thus by the inductive hypothesis the leading coefficient
of P is

Q
1�i<j�n�1.xj � xi / ¤ 0.

Let i 2 Œ1; n� 1�. Taking X D xi , we obtain a determinant with two equal rows,
which must therefore vanish. It follows that P.x1/ D : : : D P.xn�1/ D 0. Since P
has degree n � 1, leading coefficient

Q
1�i<j�n�1.xj � xi / and vanishes at n � 1

distinct points x1; : : :; xn�1, we deduce that

P.X/ D
Y

1�i<j�n�1
.xj � xi / �

n�1Y
iD1
.X � xi /:

Plugging in X D xn yields the desired result. �

Remark 7.67. We call the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : x
n�1
1

1 x2 : : : x
n�1
2

: : : : : : : : : : : :

1 xn : : : x
n�1
n

ˇ̌
ˇ̌
ˇ̌
ˇ̌

the Vandermonde deter-

minant associated with x1; : : :; xn. It follows from the previous theorem that
the Vandermonde determinant associated with x1; : : :; xn is nonzero if and only
if x1; : : :; xn are pairwise distinct. Vandermonde determinants are ubiquitous in
mathematics and are closely related to the following fundamental problem: “for
distinct complex numbers x1; : : : ; xn and arbitrary complex numbers b1; : : : ; bn,
find a polynomial P.X/ of degree at most n� 1 such that P.xi / D bi .” Written out
as a linear system for the coefficients ai of P yields the equation Va D b, where b is
the column vector whose coordinates are the bi ’s and V is the Vandermonde matrix
associated with x1; : : :; xn (thus detV is the Vandermonde determinant associated
with x1; : : :; xn). The fact that the Vandermonde determinant is nonzero is equivalent
to this problem having a unique solution. The unique solution of this problem
(known as Lagrange interpolation) is given by

P.X/ D
nX
iD1

bi
Y
j¤i

X � xj
xi � xj :
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Problem 7.68. Let a; b; c be nonzero real numbers. Prove that

ˇ̌
ˇ̌
ˇ̌
a2 b2 c2

c2 a2 b2

ac ab bc

ˇ̌
ˇ̌
ˇ̌ D .a2 � bc/.b2 � ca/.c2 � ab/:

Solution. Dividing all entries of the first column by a2, all entries of the second
column by b2, and all entries of the third column by c2, we obtain

ˇ̌
ˇ̌
ˇ̌
a2 b2 c2

c2 a2 b2

ac ab bc

ˇ̌
ˇ̌
ˇ̌ D .abc/2

ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 1	
c
a


2 	 a
b


2 	 b
c


2
c
a

a
b

b
c

ˇ̌
ˇ̌
ˇ̌
ˇ

D �.abc/2
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 1
c
a

a
b

b
c	

c
a


2 	 a
b


2 	 b
c


2

ˇ̌
ˇ̌
ˇ̌
ˇ
:

We recognize a Vandermonde determinant associated with c
a
; a
b
; b
c
, thus we can

further write

ˇ̌
ˇ̌
ˇ̌
a2 b2 c2

c2 a2 b2

ac ab bc

ˇ̌
ˇ̌
ˇ̌ D �.abc/2

�
b

c
� c

a

�
�
�
b

c
� a

b

�
�
�a
b

� c

a

�
:

We have

b

c
� c

a
D �c

2 � ab
ac

and similar identities obtained by permuting a; b; c. We conclude that

ˇ̌
ˇ̌
ˇ̌
a2 b2 c2

c2 a2 b2

ac ab bc

ˇ̌
ˇ̌
ˇ̌ D .a2 � bc/.b2 � ca/.c2 � ab/:

�

Problem 7.69. Let F be a field and let x1; : : :; xn 2 F . Compute

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : x
n�2
1 xn1

1 x2 : : : x
n�2
2 xn1

: : : : : : : : : : : :

1 xn : : : x
n�2
n xnn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:
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Solution. Write

P.X/ D .X � x1/: : :.X � xn/ D Xn C an�1Xn�1 C : : :C a1X C a0

for some scalars a0; : : :; an 2 F , with an�1 D �.x1 C : : : C xn/. Next, add to
the last column the first column multiplied by a0, the second column multiplied by
a1,. . . , the n � 1th column multiplied by an�2. The value of the determinant does
not change, and since

xni C an�2xn�2
i C : : :C a0 D �an�1xn�1

i ;

we deduce that

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : x
n�2
1 xn1

1 x2 : : : x
n�2
2 xn1

: : : : : : : : : : : :

1 xn : : : x
n�2
n xnn

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �an�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 x1 : : : x
n�2
1 xn�1

1

1 x2 : : : x
n�2
2 xn�1

1

: : : : : : : : : : : :

1 xn : : : x
n�2
n xn�1

n

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D .

nX
iD1

xi /
Y

1�i<j�n
.xj � xi /;

the last equality being a consequence of Theorem 7.66. �

Remark 7.70. An alternate solution is to remark that the desired determinant is the
coefficient of Xn�1 in the Vandermonde determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x1 � � � xn1
:::
:::
: : :

:::

1 xn � � � xnn
1 X � � � Xn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D
Y

1�i<j�n
.xj � xi / �

nY
kD1
.X � xk/:

Problem 7.71. Let P0; : : :; Pn�1 be monic polynomials with complex coefficients
such that degPi D i for 0 � i � n � 1 (thus P0 D 1). If x1; : : :; xn 2 C, compute

ˇ̌
ˇ̌
ˇ̌
ˇ̌

P0.x1/ P1.x1/ : : : Pn�1.x1/
P0.x2/ P1.x2/ : : : Pn�1.x2/
: : : : : : : : : : : :

P0.xn/ P1.xn/ : : : Pn�1.xn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

Solution. Let A be the matrix whose determinant we want to compute and let us
write

Pi.X/ D Xi C ci;i�1Xi�1 C : : :C ci;0
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for some complex numbers cij . The matrix A is then equal to

2
6664

1 x1 x
2
1 : : : x

n�1
1

1 x2 x
2
2 : : : x

n�1
2

:::
:::
:::
: : :

1 xn x
2
n : : : x

n�1
n

3
7775 �

2
6664

1 c1;0 c2;0 : : : cn;0
0 1 c2;1 : : : cn;1
:::
:::

:::
: : :

0 0 0 : : : 1

3
7775 :

Since the second matrix is upper-triangular with diagonal entries equal to 1, its
determinant equals 1. Using Theorem 7.66, we deduce that

ˇ̌
ˇ̌
ˇ̌
ˇ̌

P0.x1/ P1.x1/ : : : Pn�1.x1/
P0.x2/ P1.x2/ : : : Pn�1.x2/
: : : : : : : : : : : :

P0.xn/ P1.xn/ : : : Pn�1.xn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D
Y

1�i<j�n
.xj � xi /:

�

Problem 7.72. For 0 < k < n compute detA, where

A D

2
6664

1k 2k 3k : : : .nC 1/k

2k 3k 4k : : : .nC 2/k

:::
:::

:::
: : :

:::

.nC 1/k .nC 2/k .nC 3/k : : : .2nC 1/k

3
7775 :

Solution. Consider the matrix

Ax D

2
6664

1k 2k 3k : : : nk .x C 1/k

2k 3k 4k : : : .nC 1/k .x C 2/k

:::
:::

:::
: : :

:::
:::

.nC 1/k .nC 2/k .nC 3/k : : : .2n/k .x C nC 1/k

3
7775

obtained from A by modifying its last column. Then p.x/ D det.Ax/ is a
polynomial in the variable x, whose degree is at most k < n. Indeed, expanding
the determinant of Ax with respect to the last column shows that p.x/ is a linear
combination of .x C 1/k; : : :; .x C nC 1/k , each of which has degree k.

Next, observe that p vanishes at 0; 1; : : :; n� 1, since when x 2 f0; 1; : : :; n� 1g
the matrix Ax has two equal columns, thus det.Ax/ D 0. Since degp < n and p
has at least n distinct roots, it follows that p is the zero polynomial. In particular
p.n/ D 0, hence the determinant to be evaluated is 0. �
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7.5.1 Problems for Practice

1. Given real numbers a; b; c, compute the determinant

ˇ̌
ˇ̌
ˇ̌
b C c aC c aC b

b2 C c2 a2 C c2 a2 C b2

b3 C c3 a3 C c3 a3 C b3

ˇ̌
ˇ̌
ˇ̌ :

2. Let a; b; c be real numbers. Compute

ˇ̌
ˇ̌
ˇ̌
aC b ab a2 C b2

b C c bc b2 C c2

c C a ca c2 C a2

ˇ̌
ˇ̌
ˇ̌ :

3. Let z1; : : :; zn be pairwise distinct complex numbers. Let fi W R ! C be the
map x 7! ezi x . Prove that f1; : : :; fn are linearly independent over C. Hint: if
˛1f1C : : :C˛nfn D 0, take successive derivatives of this relation and evaluate
at x D 0.

4. a) Prove that for any positive integer n there is a polynomial Tn of degree n
such that

Tn.cos x/ D cosnx

for all real numbers x. This polynomial Tn is called the nth Chebyshev
polynomial. For instance, T1.X/ D X , T2.X/ D 2X2 � 1.

b) Let x1; : : :; xn be real numbers. Using part a), compute the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 cos.x1/ cos.2x1/ : : : cos..n � 1/x1/
1 cos.x2/ cos.2x2/ : : : cos..n � 1/x2/
: : : : : : : : : : : :

1 cos.xn/ cos.2xn/ : : : cos..n � 1/xn/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

5. Let x1; : : :; xn; y1; : : :; yn be complex numbers and let k 2 Œ0; n � 1�. Compute
the determinant of the n � n matrix whose .i; j /-entry is .xi C yj /

k . Hint:
use the binomial formula and write the matrix of the product of two simpler
matrices, of Vandermonde type.

6. Let a0; a1; : : :; an�1 be complex numbers and consider the matrix

A D

2
664

a0 a1 a2 : : : an�1
an�1 a0 a1 : : : an�2
: : :

a1 a2 a3 : : : a0

3
775

obtained by cyclic permutations of the first row.
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a) Let z D e
2i�
n and consider the matrix B D Œz.i�1/.j�1/�1�i;j�n. Compute the

matrix AB .
b) Deduce that

detA D
nY

kD1

0
@
n�1X
jD0

aj zj.k�1/
1
A :

7. Consider the “curve” C D f.1; t; t 2; : : :; tn�1/jt 2 Cg in Cn, where n is a
positive integer. Prove that any n pairwise distinct points of C form a basis
of Cn.

8. Using Vandermonde’s determinant, prove that we cannot find finitely many
maps fi ; gj W R ! R such that

exy D
nX
iD1

fi .x/gi .y/

for all x; y 2 R.
9. Let z1; z2; : : :; n be complex numbers such that

z1 C z2 C : : :C zn D z21 C z22 C : : :C z2n D : : : D zn1 C zn2 C : : :C znn D 0:

Prove that z1 D z2 D : : : D zn D 0.
10. Prove that there exists an infinite set of points

: : : ; P�3; P�2; P�1; P0; P1; P2; P3; : : :

in the plane with the following property: for any three distinct integers a; b; and
c, points Pa, Pb , and Pc are collinear if and only if aC bC c D 2014. Hint: let
Pn be the point with coordinates .x; x3/, where x D n � 2014

3
.

7.6 Linear Systems and Determinants

In this section we will use determinants to make a more refined study of linear
systems. Before doing that, we will show that the computation of the rank of a
matrix A 2 Mm;n.F / can be reduced to the computation of a certain number of
determinants. This will be very important for applications to linear systems, but is
not very useful in practice, since it is more practical to compute the rank of a matrix
by computing its reduced echelon form (by definition of this form, the rank of A is
simply the number of pivots).

LetA 2 Mm;n.F / be a matrix. Recall that a sub-matrix ofA is a matrix obtained
by deleting a certain number of rows and columns of A.
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Theorem 7.73. Let A 2 Mm;n.F / be a matrix of rank r . Then

a) There is an invertible r � r sub-matrix in A.
b) For k > r , any k � k sub-matrix of A is not invertible.

In other words, the rank of A is the largest size of an invertible sub-matrix of A.

Proof. Let A D Œaij � and let C1; : : :; Cn be the columns of A, so that

r D dim Span.C1; : : :; Cn/:

Let d be the largest size of an invertible sub-matrix of A. We will prove separately
the inequalities d � r and r � d .

We start by proving the inequality r � d . LetB be an invertible d�d sub-matrix
of A. Permuting the rows and columns of A (which does not change its rank), we
may assume that B consists in the first d rows and columns of A. Then C1; : : :; Cd
are linearly independent (as any nontrivial linear relation between C1; : : :; Cd would
induce a nontrivial relation between the columns of B , contradicting the fact that B
is invertible). But then

r D dim Span.C1; : : :; Cn/ � dim Span.C1; : : :; Cd / D d:

Let us prove now that r � d . By definition of r , we know that we can find r
columns of A which form a basis of the space generated by the columns of A. Let B
be the m � r matrix obtained by deleting all other columns of A except for these r .
Then B has rank r . But then tB also has rank r (because a matrix and its transpose
have the same rank), thus the space generated by the rows of B has dimension r .
In particular, we can find r rows of B which are linearly independent. The sub-
matrix obtained from B by deleting all other rows except for these r is an invertible
r � r sub-matrix of A, thud d � r . �

Problem 7.74. Let v1; : : :; vp 2 F n be vectors and let A 2 Mn;p.F / be the matrix
whose columns are v1; : : :; vp . Prove that v1; : : :; vp are linearly independent if and
only if A has a p � p invertible sub-matrix.

Solution. v1; : : :; vp are linearly independent if and only if they form a basis of
Span.v1; : : :; vp/ or equivalently if dim Span.v1; : : :; vp/ D p. Finally, this is further
equivalent to rank.A/ D p. The result follows then directly from the previous
theorem. �

Problem 7.75. Consider the vectors

v1 D .1; x; 0; 1/; v2 D .0; 1; 2; 1/; v3 D .1; 1; 1; 1/ 2 R4:

Prove that for any choice of x 2 R4 the vectors v1; v2; v3 are linearly independent.
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Solution. The matrix whose columns are v1; v2; v3 is

A D

2
664

1 0 1

x 1 1

0 2 1

1 1 1

3
775 :

By Problem 7.74 v1; v2; v3 are linearly independent if and only if A has a 3 � 3
invertible sub-matrix. Such a matrix is obtained by deleting one row of A. Deleting
the second row yields a sub-matrix whose determinant is

ˇ̌
ˇ̌
ˇ̌
1 0 1

0 2 1

1 1 1

ˇ̌
ˇ̌
ˇ̌ D �1;

thus the corresponding sub-matrix is invertible and the result follows. �

Thanks to the previous results, we can make a detailed study of linear systems.
Consider the linear system

8̂
<̂
ˆ̂:

a11x1C a12x2 C : : :C a1nxn D b1
a21x1C a22x2 C : : :C a2nxn D b2

: : :

am1x1Cam2x2 C : : :Camnxn D bm

with A D Œaij � 2 Mm;n.F /, b D

2
664

b1
b2
: : :

bm

3
775 2 Fm a given vector and unknowns

x1; : : :; xn. Let X D

2
664

x1
x2
: : :

xn

3
775 and let C1; : : :; Cn be the columns of A. Then the

system can be written as

AX D b or x1C1 C : : :C xnCn D b:

The first fundamental theorem of linear systems is the following:

Theorem 7.76 (Rouché–Capelli). Consider the linear system above and let
ŒA; b� 2 Mm;nC1.F / be the matrix obtained by adding a rightmost column to A,
equal to b. Then
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a) The system is consistent4 if and only if rank.A/ D rankŒA; b�.
b) Assume that the system is consistent and let X0 be a solution of it. Let Sh be the

set of solutions of the associated homogeneous system.5 Then the set of solutions
of the original system is fX0CX jX 2 Shg and Sh is a vector space of dimension
n � rank.A/ over F .

Proof. a) The system being equivalent to b D x1C1 C : : :C xnCn, it is consistent
if and only if b is a linear combination of C1; : : :; Cn, which is equivalent
to b 2 Span.C1; : : :; Cn/. This is further equivalent to Span.C1; : : :; Cn/ D
Span.C1; : : :; Cn; b/ and finally

dim Span.C1; : : :; Cn/ D dim Span.C1; : : :; Cn; b/:

By definition, the left-hand side equals rank.A/ and the right-hand side equals
rankŒA; b�. The result follows.

b) By Proposition 3.2 we know that the set of solutions of the system is fX0 C
X jX 2 Shg. It remains to prove that Sh is of dimension n � rank.A/. But the
corresponding homogeneous system can be written AX D 0, thus its set of
solutions is the kernel of the map T sending X 2 F n to AX 2 Fm. By the
rank-nullity theorem we deduce that

dimSh D n � dim Im.T / D n � rank.A/

and the theorem is proved. �

Let us take for simplicity F D R or F D C (the same argument will apply to
any infinite field). It follows from the previous theorem that we have the following
possibilities:

• the system has no solution. This happens precisely whenA and ŒA; b� do not have
the same rank.

• the system has exactly one solution, which happens if and only if A has rank
exactly n, or equivalently its columns are linearly independent.

• the system has more than 1 solution, and then it has infinitely many solutions.
More precisely, the solutions depend on n � rank.A/ parameters.

Here is an important consequence of the previous results:

Theorem 7.77. Let A 2 Mm;n.F / and let F1 be a field containing F . Consider the
linear system AX D 0. If it has a nontrivial solution in F n

1 , then it has a nontrivial
solution in F n.

Proof. Since the system has nontrivial solutions in F n
1 , A has rank r < n seen as

element of Mm;n.F1/. But Theorem 7.73 shows that the rank of A seen as element
of Mm;n.F1/ or Mm;n.F / is the same, thus using again the previous discussion we
deduce that the system has nontrivial solutions in F n. �

4Recall that this simply means that the system has at least one solution.
5This is the system AX D 0, i.e., it has the same unknowns, but b is equal to 0.
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To make a deeper study of the linear system AX D b, assume that it is consistent
and that A has rank r (therefore ŒA; b� also has rank r). By Theorem 7.73 the matrix
A has an invertible r � r sub-matrix. By permuting the equations and the unknowns
of the system, we may assume that the sub-matrix consisting in the first r rows and
columns of A is invertible. Then x1; : : :; xr are called the principal unknowns and
the first r equations of the system are called the principal equations. All other
equations can be deduced from the first r , so separating the principal and non-
principal unknowns yields the equivalent system

8̂
<̂
ˆ̂:

a11x1Ca12x2 C : : :C a1rxr D b1 � a1;rC1xrC1 � : : : � a1nxn
a21x1Ca22x2 C : : :Ca2rxr D b2 � a2;rC1xrC1 � : : : � a2nxn

: : :

ar1x1Car2x2 C : : :C arrxr D br � ar;rC1xrC1 � : : : � arnxn
This a Cramer system, that is the number of unknowns (which are x1; : : :; xr )

equals the number of equations and the matrix of the system (which is Œaij �1�i;j�r )
is invertible. This kind of system has a unique solution, which can be expressed in
terms of some determinants, as the following theorem shows:

Theorem 7.78. Let A D Œaij �1�i;j�n be an invertible matrix in Mn.F /, let b D2
664

b1
b2
: : :

bn

3
775 2 F n be a given vector and consider the systemAX D b with the unknowns

x1; : : :; xn. Then the system has a unique solution

X D A�1b

and we have for all i 2 Œ1; n�

xi D 
i



;

where 
 D detA and 
i is the determinant of the matrix obtained from A by
replacing the i th column with the vector b.

Proof. It is clear that the system AX D b is equivalent to X D A�1b and so it has
a unique solution. To prove the second part, let e1; : : :; en be the canonical basis of
F n and write det instead of det.e1;:::;en/. If C1; : : :; Cn are the columns of A, then by
definition


i D det.C1; : : :; Ci�1; b; CiC1; : : :; Cn/:

Since AX D b, we have x1C1 C : : : C xnCn D b. Since det is multilinear and
alternating, we obtain
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i D det.C1; : : :; Ci�1;
nX

jD1
xjCj ; CiC1; : : :; Cn/ D

nX
jD1

xj det.C1; : : :; Ci�1; Cj ; CiC1; : : :; Cn/ D xi det.C1; : : :; Ci�1; Ci ; CiC1; : : :; Cn/

D xi detA D xi
:

The result follows. �

Finally, we want to give another criterion for consistency. Recall that
A 2 Mm;n.F / is the matrix of the system, that we assume rank.A/ D r and
(by permuting the unknowns and the equations) that the r � r sub-matrix of A
consisting in the first r rows and columns of A is invertible.

Theorem 7.79. Under the previous hypotheses, the system AX D b 2 Fm is
consistent if and only if for all k 2 Œr C 1;m� we have


k D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

a11 a12 : : : a1r b1
a21 a22 : : : a2r b2
: : : : : : : : : : : :

ar1 ar2 : : : arr br
ak1 ak2 : : : akr bk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 0:

Proof. If the system is consistent, then b is a linear combination of C1; : : :; Cn,
so the last column of the matrix defining 
k is a linear combination of the other
columns, thus 
k D 0 and for all k 2 Œr C 1;m�.

Conversely, assume that all determinants 
k are 0. Note that it makes sense to
define 
k for k � r by the same formula, and it is clear that we still have 
k D 0

for k � r (as the corresponding matrix has two equal rows). Expanding 
k with
respect to its last row and denoting 
rC1;1; : : :; 
rC1;r the corresponding cofactors
(which are independent of k) we obtain


rC1;1ak1 C � � � C
rC1;rakr C det.aij /1�i;j�rbk D 0;

for all k and so


rC1;1C1 C : : :C
rC1;rCr C det.aij /1�i;j�rb D 0:

Since det.aij /1�i;j�r ¤ 0 by assumption, this shows that b 2 Span.C1; : : :; Cr/ and
so b is a linear combination of the columns of A, which means that the system is
consistent. �
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Let us see a few examples of explicit resolutions of linear systems using the
above ideas. Actually for the first one the method of reduced echelon form is much
more practical than the following. We strongly suggest the reader to compare the
two methods.

Problem 7.80. a) Solve in real numbers the system

8<
:
x1 C 3x2 � 5x3 D 4

x1 C 4x2 � 8x3 D 5

�3x1 � 7x2 C 9x3 D 6

b) Solve the system

8<
:

x1 C 3x2 � 5x3 D 4

x1 C 4x2 � 8x3 D 7

�3x1 � 7x2 C 9x3 D �6

Solution. a) The matrix of the system is

A D
2
4
1 3 �5
1 4 �8

�3 �7 9

3
5

and one easily computes detA D 0. Thus the system is not a Cramer system.
Looking at the sub-matrix of A consisting in the first two rows and columns, we
see that it is invertible. It follows that A has rank 2. The system is consistent if
and only if

rank

2
4
1 3 �5 4
1 4 �8 5

�3 �7 9 6

3
5 D 2:

This means that all matrices obtained from this matrix by deleting one column
have determinant 0. But one easily checks that the matrix obtained by deleting
the second column is invertible, thus the system is not consistent and thus it has
no solution.

b) The matrix of the system is the same. The system is consistent if and only

if all matrices obtained by deleting one column from

2
4
1 3 �5 4

1 4 �8 7

�3 �7 9 �6

3
5 have

determinant 0. One easily checks that this is the case, thus the system will have
infinitely many solutions. The principal unknowns are x1; x2 and the system is
equivalent to

x1 C 3x2 D 5x3 C 4; x1 C 4x2 D 8x3 C 7
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and can be solved using Cramer’s formulae or directly. One finds

x2 D 3x3 C 3; x1 D �4x3 � 5:
We conclude that the solutions of the system are given by .�4t � 5; 3t C 3; t/

with t 2 R. �

Problem 7.81. Let a; b; c be given real numbers. Solve the linear system

8<
:
.b C c/x C by C cz D 1

ax C .c C a/y C cz D 1

ax C by C .aC b/z D 1

�

Solution. The matrix of the system is

A D
2
4
b C c b c

a aC c c

a b aC b

3
5

and a brutal computation left to the reader shows that

detA D 4abc:

We consider therefore two cases.
If abc ¤ 0 the system is a Cramer system with a unique solution given by

Cramer’s formulae

x D

ˇ̌
ˇ̌
ˇ̌
1 b c

1 aC c c

1 b aC b

ˇ̌
ˇ̌
ˇ̌

4abc
; y D

ˇ̌
ˇ̌
ˇ̌
b C c 1 c

a 1 c

a 1 aC b

ˇ̌
ˇ̌
ˇ̌

4abc
; z D

ˇ̌
ˇ̌
ˇ̌
b C c b 1

a aC c 1

a b 1

ˇ̌
ˇ̌
ˇ̌

4abc
:

In order to compute x explicitly, we subtract b times the first column from the
second one, and c times the first column from the third one, ending up with

x D

ˇ̌
ˇ̌
ˇ̌
1 0 0

1 aC c � b 0

1 0 aC b � c

ˇ̌
ˇ̌
ˇ̌

4abc
D .aC c � b/.aC b � c/

4abc

and we similarly obtain

y D .b C c � a/.b C a � c/
4abc

; z D .aC c � b/.b C c � a/
4abc

:
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In the second case we have abc D 0, that is A is not invertible. The system is
consistent if and only if

rank.A/ D rank

2
4
b C c b c 1

a aC c c 1

a b aC b 1

3
5 :

While one can follow the discussion given in this chapter, it is much easier to deal
with this case as follows: say without loss of generality that a D 0. The system
becomes

8<
:
.b C c/x C by C cz D 1

c.y C z/ D 1

b.y C z/ D 1

It is clear from the second and third equations that if the system is consistent, then
necessarily b D c and b is nonzero. So if b ¤ c or bc D 0, then the system has
no solution in this case. Assume therefore that b D c is nonzero. The system is
equivalent to

�
b.2x C y C z/ D 1

b.y C z/ D 1

making it clear that x D 0 and y C z D 1
b

. In this case the solutions of the system
are given by .0; y; 1

b
� y/ with y 2 R. �

Problem 7.82. Let n be an integer greater than 1. Solve the linear system
8̂
<̂
ˆ̂:

x1C x2 C : : :C xn D 1

x1C 2x2 C : : :C nxn D 0

: : :

x1C2n�1x2 C : : :Cnn�1xn D 0

Solution. The matrix of the system is

A D

2
6664

1 1 1 : : : 1 1

1 2 3 : : : n � 1 n
:::

:::
:::

: : :
:::

:::

1 2n�1 3n�1 : : : .n � 1/n�1 nn�1

3
7775

and it is invertible as its determinant is a Vandermonde determinant.
Therefore the system is a Cramer system and we have

xi D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 : : : 1 1 1 : : : 1

1 2 : : : i � 1 0 i C 1 : : : n

: : : : : : : : : : : :

1 2n�1 : : : .i � 1/n�1 0 .i C 1/n�1 : : : nn�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

detA
:
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The numerator of the previous fraction is the Vandermonde determinant attached
to 1; 2; : : :; i � 1; 0; i C 1; : : :; n, while the denominator is the Vandermonde deter-
minant attached to 1; 2; : : :; i � 1; i; i C 1; : : :; n. Recalling that the Vandermonde
determinant attached to x1; : : :; xn equals

Q
1�i<j�n.xj � xi / and canceling similar

factors in the numerator and denominator, we end up with

xi D
Qi�1
jD1.0 � j /Qn

kDiC1 kQi�1
jD1.i � j /Qn

kDiC1.k � i/ D .�1/i�1 .i � 1/ŠnŠ
.i � 1/Ši Š.n � i/Š

D .�1/i�1 nŠ

i Š.n � i/Š D .�1/i�1
 
n

i

!

and so for i 2 Œ1; n�

xi D .�1/i�1
 
n

i

!
:

�

Remark 7.83. An alternate solution goes as follows: write P.T / D Pn
kD1 xkT k .

Then the first equation reads P.1/ D 1 and the rest read P .k/.1/ D 0 for
k D 1; : : : ; n � 1. Since we also have P.0/ D 0 by construction, we see that the
unique solution is P.T / D 1 � .1 � T /n from which we read off the coefficients
xk D .�1/k�1	n

k



.

Problem 7.84. Let a1; : : :; an; b1; : : :; bn be pairwise distinct complex numbers
such that ai C bj ¤ 0 for all i; j 2 Œ1; n�. Find all complex numbers x1; : : :; xn
such that for all i 2 Œ1; n� we have

nX
jD1

xj

ai C bj
D 1:

Solution. The determinant of the associated matrix is a Cauchy determinant and
equals (by Problem 7.58)

detA D
Q
1�i<j�n.aj � ai /.bj � bi /Q

i;j2Œ1;n�.ai C bj /
¤ 0:

Thus the system has at most one solution. One could in principle argue as in the
previous problem to find this solution, but there is a much more elegant (and very
useful) technique that we prefer to present. Consider the rational function

F.X/ D
nX

jD1

xj

X C bj
:
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The system is equivalent to F.a1/ D : : : D F.an/ D 1. Write

F.X/ D P.X/

Q.X/
; Q.X/ D .X C b1/: : :.X C bn/

for some polynomial P , and notice that degP � n � 1. The system becomes
P.aj / D Q.aj / for 1 � j � n. Since Q � P is a monic polynomial of degree n
vanishing at a1; : : :; an and since a1; : : :; an are pairwise distinct, we deduce that the
system is equivalent to

Q.X/ � P.X/ D
nY

kD1
.X � ak/:

The conclusion is that x1; : : :; xn is a solution of the system if and only if

nX
jD1

xj

X C bj
D
Qn
kD1.X C bk/ �Qn

kD1.X � ak/Qn
kD1.X C bk/

:

In order to find each xj , we multiply the previous relation byXCbj and then make
X tend to �bj . We deduce that

xj D lim
x!�bj

Qn
kD1.X C bk/ �Qn

kD1.X � ak/Q
k¤j .X C bk/

D .�1/n�1
Qn
kD1.ak C bj /Q
k¤j .bk � bj / :

It follows that the system has a unique solution, given by

xj D .�1/n�1
Qn
kD1.ak C bj /Q
k¤j .bk � bj / :

�

7.6.1 Problems for Practice

1. Let A 2 Mn.C/ and let B D adj.A/ be the adjugate matrix.

a) Prove that if A is invertible, then so is B .
b) Prove that if A has rank n � 1, then B has rank 1.
c) Prove that if A has rank at most n � 2, then B D On.

2. Using the previous result, find all matrices A 2 Mn.C/ which are equal to their
adjugate matrix. Hint: the case n D 2 is special.
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3. Let a; b be complex numbers and consider the matrix A 2 Mn.C/ whose
diagonal entries are all equal to a, and such that all other entries of A are equal
to b.

a) Compute detA.
b) Find the rank of A (you will need to distinguish several cases, according to

the values of a and b).

4. Find real numbers a; b; c such that for all polynomials P with real coefficients
and whose degree does not exceed 2 we have

Z 1

0

P.x/dx D aP.0/C bP.
1

2
/C cP.1/:

5. Given real numbers a; b; c; u; v;w, solve the linear system

8<
:
ax � by D u
by � cz D v
cz � ax D w

6. Given a real number a, solve the linear system

8̂
<
:̂

x
1Ca C y

1C2a C z
1C3a D 1

x
2Ca C y

2C2a C z
2C3a D 1

x
3Ca C y

3C2a C z
3C3a D 1

7. Let Sa be the linear system

8<
:
x � 2y C z D 1

3x C 2y � 2z D 2

2x � y C az D 3

a) Find all real numbers a for which the system has no solution.
b) Find all real numbers a for which the system has a unique solution.
c) Find all real numbers a for which the system has infinitely many solutions.

8. Given real numbers a; b; c; d , solve the linear system

8<
:

x C y C z D 1

ax C by C cz D d

a2x C b2y C c2z D d2
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9. Given real numbers a; b; c; d; ˛, solve the linear system

8̂
<̂
ˆ̂:

.1C ˛/x C y C z C t D a

x C .1C ˛/y C z C t D b

x C y C .1C ˛/z C t D c

x C y C z C .1C ˛/t D d

10. Find the necessary and sufficient condition satisfied by real numbers a; b; c for
the system

8<
:
x � a.y C z/ D 0

y � b.x C z/ D 0

z � c.x C y/ D 0

to have a nontrivial solution.
11. Let a; b; c be pairwise distinct real numbers. Solve the system

8<
:
x C ay C a2z D a3

x C by C b2z D b3

x C cy C c2z D c3

12. Let a; b be complex numbers. Solve the linear system

8̂
<̂
ˆ̂:

ax C y C z C t D 1

x C ay C z C t D b

x C y C az C t D b2

x C y C z C at D b3:



Chapter 8
Polynomial Expressions of Linear
Transformations and Matrices

Abstract From a theoretical point of view, this chapter is the heart of the book.
It uses essentially all results established before to prove a great deal of surprising
results concerning matrices. This chapter makes heavy use of basic properties of
polynomials which are used to study the eigenvalues and eigenvectors of matrices.

Keywords Minimal polynomial • Characteristic polynomial • Eigenvalue
• Eigenvectors

From a theoretical point of view, we reach now the heart of the book. In this chapter
we will use everything we have developed so far to study linear maps and matrices.
To each matrix (or linear transformation of a finite dimensional vector space) we
will associate two polynomials, the minimal and the characteristic polynomial. They
are not enough to characterize the matrix up to similarity, but they give lots of
nontrivial information about the matrix. We also associate a collection of scalars
called eigenvalues of the matrix (if the field of scalars is C, the eigenvalues are
simply the roots of the characteristic polynomial) and a collection of subspaces
indexed by the eigenvalues and called eigenspaces. An in-depth study of these
objects yields many deep theorems and properties of matrices.

In this chapter we will make heavy use of basic properties of polynomials. We
recalled them in the appendix concerning algebraic prerequisites, and we strongly
advise the reader to make sure that he is familiar with these properties before starting
reading this chapter. We fix a field F (the reader will not loose anything assuming
that F is either R or C).

8.1 Some Basic Constructions

Let V be a vector space over a field F , and let T W V ! V be a linear
transformation. We define a sequence .T i /i�0 of linear transformations of V by
the rule

T 0 D id; T iC1 D T ı T i

© Springer Science+Business Media New York 2014
T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__8
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for i � 0, where id denotes the identity map (sending every vector v to v). In other
words, T i is the i th iterate of T , for instance

T 3.v/ D T .T .T .v///

for all v 2 V .
If P D a0 Ca1X C : : :CanX

n 2 F ŒX� we define a linear transformation P.T /
of V by

P.T / WD a0T
0 C a1T

1 C : : :C anT
n:

The following result follows easily by unwinding definitions. We will use it
constantly from now on, without further reference, thus the reader may want to
take a break and check that he can actually prove it.

Proposition 8.1. If P1; P2 2 F ŒX� and T is a linear transformation of V , then

a) P1.T /C P2.T / D .P1 C P2/.T /.
b) P1.T / ı P2.T / D .P1P2/.T /.

We warn the reader that we do not have P.T1/ C P.T2/ D P.T1 C T2/ and
P.T1/ ı P.T2/ D P.T1 ı T2/ in general. For instance, take P.X/ D X2 and
T1 D T2 D id, then

P.T1/C P.T2/ D 2id ¤ 4id D .T1 C T2/
2:

We invite the reader to find a counterexample for the equality P.T1/ ı P.T2/ D
P.T1 ı T2/.
Definition 8.2. The F -algebra generated by the linear transformation T is the set

F ŒT � D fP.T /; P 2 F ŒX�g:

The following result follows directly from the previous proposition:

Proposition 8.3. For all x; y 2 F ŒT � and c 2 F we have x C cy 2 F ŒT � and
x ıy 2 F ŒT �. Thus F ŒT � is a subspace of the space of linear transformations on V ,
which is stable by composition of linear transformations.

Actually, the reader can easily check that F ŒT � is the smallest subspace of the
space of linear transformations on V which contains id, T and is closed under
composition of linear transformations.

All previous constructions and results have analogues for matrices. Namely, if
A 2 Mn.F / is a square matrix of order n with coefficients in F , we have the
sequence .Ai /i�0 of successive powers of A, and we define for P D a0 C a1X C
: : :C anX

n 2 F ŒX�
P.A/ WD a0In C a1AC : : :C anA

n:

We have P.A/ � Q.A/ D .PQ/.A/ for all polynomials P;Q and all matrices A.
The algebra generated by A is defined by

F ŒA� D fP.A/; P 2 F ŒX�g:
It is a subspace of Mn.F / which is stable under multiplication of matrices.
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Remark 8.4. If A is the matrix of some linear transformation T of V in some basis
of V , then P.A/ is the matrix of P.T / in that basis.

Problem 8.5. a) Let A;B 2 Mn.F / be matrices, with B invertible. Prove that for
any P 2 F ŒX� we have

P.BAB�1/ D BP.A/B�1:

b) Prove that if A;B 2 Mn.F / are similar matrices, then P.A/ and P.B/ are
similar matrices for all P 2 F ŒX�.

Solution. a) Suppose first that P.X/ D Xk for some k � 1, we need to prove that
.BAB�1/k D BAkB�1. But using that B�1B D In several times, we obtain

.BAB�1/k D BAB�1BAB�1: : :BAB�1

D BA2B�1BAB�1: : :BAB�1 D : : : D BAkB�1:

In general, write P.X/ D a0 C a1X C : : :C akX
k , then

P.BAB�1/ D
kX
iD0

ai .BAB
�1/i D

kX
iD0

aiBA
iB�1

D B.

kX
iD0

aiA
i /B�1 D BP.A/B�1

and the problem is solved.
b) Write A D CBC�1 for some invertible matrix C . Then by part a)

P.A/ D P.CBC�1/ D CP.B/C�1;

thus P.A/ and P.B/ are similar. �

8.1.1 Problems for Practice

1. Prove Proposition 8.1.
2. Let

A D
2
4

�1 1 1

1 �1 1

�2 2 �3

3
5 :

Compute P.A/, where P.X/ D X3 �X C 1.
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3. Let a; b; c be real numbers and let

A D
2
4
0 �b c

a 0 �c
�a b 0

3
5 :

Compute P.A/, where

P.X/ D X.X2 C ab C bc C ca/:

4. Prove that the matrix

A D
2
4
2 0 1

�4 0 �2
�4 0 �2

3
5

is nilpotent.
5. Let A 2 Mn.F / be a symmetric matrix. Prove that for all P 2 F ŒX� the matrix
P.A/ is symmetric.

6. Let A 2 Mn.F / be a diagonal matrix. Prove that for all P 2 F ŒX� the matrix
P.A/ is diagonal.

7. Let A 2 Mn.F / be an upper-triangular matrix. Prove that for all P 2 F ŒX� the
matrix P.A/ is upper-triangular.

8. Let V be the vector space of smooth functions f W R ! R and let T W V ! V

be the linear transformation sending f 2 V to its derivative f 0. Can we find a
nonzero polynomial P 2 RŒX� such that P.T / D 0?

8.2 The Minimal Polynomial of a Linear
Transformation or Matrix

Let V be a finite dimensional vector space over F , say of dimension n � 1. We
will be concerned with the following problem: given a linear transformation T
of V , describe the polynomials P 2 F ŒX� for which P.T / D 0. Note that we
can also ask the dual question: given a polynomial P 2 F ŒX�, describe the linear
transformations T for whichP.T / D 0. This is more difficult to answer, and solving
this problem actually requires the resolution of the first problem.

So let us start with a linear transformation T of V and consider the set

I.T / D fP 2 F ŒX�; P.T / D 0g:
A key observation is that I.T / is not reduced to f0g. Indeed, the space of
linear transformations on V has dimension n2, thus the linear transformations
id; T; T 2; : : :; T n

2
cannot be linearly independent. Thus we can find a0; : : :; an2 not

all 0 such that

a0id C a1T C : : :C an2T
n2 D 0

and then a0 C a1X C : : :C an2X
n2 is a nonzero element of I.T /.
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Theorem 8.6. There is a unique monic (nonzero) polynomial �T 2 I.T / such that
I.T / is the set of multiples of �T in F ŒX�, i.e.

I.T / D �T � F ŒX�:

Proof. Proposition 8.1 implies that I.T / is a subspace of F ŒX� and thatPQ 2 I.T /
whenever P 2 I.T / and Q 2 F ŒX�. Indeed,

.PQ/.T / D P.T / ıQ.T / D 0 ıQ.T / D 0:

The discussion preceding Theorem 8.6 shows that I.T / ¤ 0. Let P be a nonzero
polynomial of smallest degree in I.T /. Dividing P by its leading coefficient (the
new polynomial is still in I.T / and has the same degree as P ), we may assume that
P is monic. By the first paragraph, all multiples of P belong to I.T /. Conversely,
let S be an element of I.T / and write S D QP C R with Q;R 2 F ŒX� and
degR < degP . Note that R D S �QP 2 I.T / since I.T / is a subspace of F ŒX�
and S;QP 2 I.T /. If R ¤ 0, then since degR < degP we obtain a contradiction
with the minimality of P . Thus R D 0 and P divides S . It follows that I.T / is
precisely the set of multiples of P and so we can take �T D P .

Finally, we need to prove that �T is unique. If S had the same properties, then
S would be a multiple of �T and �T would be a multiple of S . Since they are both
monic, they must be equal. �

Definition 8.7. The polynomial �T is called the minimal polynomial of T .

Due to its importance, let us stress again the properties of the minimal
polynomial �T :

• it is monic and satisfies �T .T / D 0.
• For any polynomial P 2 F ŒX�, we have P.T / D 0 if and only if �T

divides P .

The whole theory developed above applies verbatim to matrices: if
A 2 Mn.F /, there is a unique monic polynomial �A 2 F ŒX� with the following
properties:

• �A.A/ D On and
• If P 2 F ŒX�, then P.A/ D On if and only if �A divides P .

Remark 8.8. If P is a polynomial and A is a matrix (or a linear transformation)
satisfying P.A/ D On, we will sometimes say that P kills A or that A is killed
by P . Thus the polynomials killing A are precisely the multiples of the minimal
polynomial of A.

The discussion preceding Theorem 8.6 shows that we can find a nonzero
polynomial P of degree not exceeding n2 such that P.T / D 0. Since �T divides P ,
it follows that deg�T � n2. This bound is fairly weak and the goal of the next
sections is to introduce a second polynomial canonically associated with T , the
characteristic polynomial of T . This will be monic of degree n and will also vanish
when evaluated at T . This will yield the inequality deg�T � n, which is essentially
optimal.
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Let us give a few examples of computations of minimal polynomials:

Example 8.9. Let F be a field. All matrices below are supposed to have entries
in F .

a) The minimal polynomial of the matrix On is clearly �On D X . More generally,
the minimal polynomial of the scalar matrix cIn is X � c.

b) Consider some elements d1; : : :; dn 2 F and a diagonal matrix A D Œaij �, with
aii D di . The elements d1; : : :; dn are not necessarily pairwise distinct, so let
us assume that di1 ; : : :; dik is the largest collection of pairwise distinct elements
among d1; : : :; dn. Note that for any polynomial Q 2 F ŒX� the matrix Q.A/
is simply the diagonal matrix with diagonal entries Q.d1/; : : :;Q.dn/. Thus
Q.A/ D On if and only if Q.di / D 0 for 1 � i � n. This happens if and
only if Q.di1/ D : : : D Q.dik / D 0. Since di1 ; : : :; dik are pairwise distinct, this
is further equivalent to .X � di1/: : :.X � dik / j Q. Thus the minimal polynomial
of A is

�A.X/ D .X � di1/: : :.X � dik /:

In particular, we see that d1; : : :; dn are pairwise distinct if and only if �A has
degree n, in which case �A D Qn

iD1.X � di /.
c) Suppose that F D R and that a matrixA 2 Mn.F / satisfiesA2CIn D On. What

is the minimal polynomial �A of A? For sure it divides X2 C 1, since X2 C 1

vanishes at A. The only monic nonconstant divisor of X2 C 1 in RŒX� is X2 C 1

itself, thus necessarily �A D X2 C 1.
d) With the tools introduced so far it is not easy at all to compute the minimal

polynomial of a given matrix. We will introduce in the next sections another
polynomial (called the characteristic polynomial of the matrix) which can be
directly computed (via the computation of a determinant) from the matrix and
which is always a multiple of the minimal polynomial. This makes the compu-
tation of the minimal polynomial much easier: one computes the characteristic
polynomial P of the matrix, then looks at all possible monic divisorsQ of P and
checks which one kills the matrix and has the smallest degree. We will see later
on that one does not really need to check all possible divisors, which makes the
computation even more rapid.

Problem 8.10. Let T be a linear transformation on a finite dimensional F -vector
space V and let V D V1 ˚ V2 be a decomposition of V into subspaces which
are stable under T . Let P;P1; P2 be the minimal polynomials of T; T jV1 and T jV2
respectively. Prove that P is the least common multiple of P1 and P2.

Solution. LetQ be the least common multiple of P1 and P2. Since P kills T , it also
kills T jV1 and T jV2 , thus it is a multiple of P1 and P2. It follows that Q divides P .
In order to prove that P divides Q, it suffices to prove that Q kills T . But since
Q is a multiple of P1 and P1 kills T jV1 , it follows that Q kills T jV1 . Similarly, Q
kills T jV2 . Since V D V1 ˚ V2, we deduce that Q kills T and the result follows. �
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A natural and rather subtle problem is the following: suppose that A 2 Mn.Q/ is
a matrix with rational entries. We can definitely see A as a matrix with real entries,
i.e., as an element of Mn.R/ or as a matrix with complex entries, i.e., as an element
of Mn.C/. Thus we can attach to A three minimal polynomials! Fortunately, the
following theorem shows that the three polynomials are actually one and the same:
the minimal polynomial of a matrix does not depend on the field containing the
entries of the matrix:

Theorem 8.11. Let F1 � F2 be two fields and let A 2 Mn.F1/. Then the minimal
polynomial ofA seen as element ofMn.F1/ and that ofA seen as element ofMn.F2/

coincide.

Proof. Let �1 be the minimal polynomial of A 2 Mn.F1/ and �2 that of
A 2 Mn.F2/. Since F1ŒX� � F2ŒX�, the polynomial �1 belongs to F2ŒX� and
kills A, thus it must be a multiple of �2. In other words, �2 divides �1. Let
di D deg�i . It suffices to prove that d2 � d1 and for this it suffices to prove that
there is a nonzero polynomial P 2 F1ŒX� of degree at most d2 which vanishes at A
(as such a polynomial is necessarily a multiple of �1). By hypothesis, we know that
we have a relation

a0In C a1AC : : :C ad2A
d2 D On

with ai 2 F2 (namely the coefficients of �2). This is equivalent to n2 linear
homogeneous equations in the unknowns a0; : : :; ad2 . The coefficients of these
equations are entries of the matrices In; A; : : :; Ad2 , so they belong to F1. So we have
a linear homogeneous system with coefficients in F1 and having a nontrivial solution
in F2. Then it automatically has a nontrivial solution in F1 (by Theorem 7.77),
giving the desired polynomial P . �

We end this section with a series of problems related to the pointwise minimal
polynomial. Let V be a finite dimensional vector space over a field F and let
T W V ! V be a linear transformation with minimal polynomial �T . For x 2 V ,
consider

Ix D fP 2 F ŒX�jP.T /.x/ D 0g:
Note that the sum and difference of two elements of Ix is still in Ix .

Problem 8.12. Prove that there is a unique monic polynomial �x 2 F ŒX� such that
Ix is the set of multiples of �x in F ŒX�. Moreover, �x divides �T .

Solution. We may assume that x ¤ 0. Note that �T 2 Ix , since �T .T / D 0. Let
�x be the monic polynomial of smallest degree which belongs to Ix . We will prove
that Ix D �xF ŒX�.

First, if P 2 �xF ŒX�, then P D �xQ for some Q 2 F ŒX� and

P.T /.x/ D Q.T /.�x.T /.x// D Q.T /.0/ D 0;

thus P 2 Ix . This shows that �xF ŒX� � Ix .
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Conversely, let P 2 Ix and, using the division algorithm let P D Q�x C R for
some polynomials Q;R 2 F ŒX� such that degR < deg�x . Assume that R ¤ 0.
Since P and Q�x belong to Ix (the second one by the previous paragraph), we
deduce that R 2 Ix . Let a be the leading coefficient of R, then 1

a
R is a monic

polynomial belonging to Ix and with degree less than that of �x , a contradiction.
Thus R D 0 and �x divides P , finishing the solution. �

Problem 8.13. Let T be a linear transformation on a finite dimensional vector
space V over F , where F is an arbitrary field.

a) Prove that if �T D P kQ with k � 1, P 2 F ŒX� irreducible and Q relatively
prime to P , then we can find x 2 V such that �x D P k .

b) Prove that if x1; x2 2 V are such that �x1 and �x2 are relatively prime, then
�x1Cx2 D �x1�x2 .

c) Conclude that there is always a vector x 2 V such that �x D �T .

Solution. a) Suppose on the contrary that �x ¤ P k for all x 2 V . Let x 2 V .
Then by hypothesis .P kQ/.T /.x/ D 0. Hence v D Q.T /.x/ lies in the kernel
of P k.T / and so �v divides P k . Since �v ¤ P k and P is irreducible, �v divides
P k�1 and so P k�1.T /.v/ D 0, that is .P k�1Q/.T /.x/ D P k�1.T /.v/ D 0. But
since x was arbitrary, this means �T jP k�1Q, a contradiction.

b) Let P1 D �x1 and P2 D �x2 , and let P D P1P2. Since P is a multiple of both
P1 and P2, we deduce that P.T / vanishes at both x1 and x2, thus it vanishes at
x1 C x2 and so �x1Cx2 j P .

On the other hand, �x1Cx2.T /.x1 C x2/ D 0, thus

.P1�x1Cx2/.T /.x1/C .P1�x1Cx2/.T /.x2/ D 0:

The first term in the sum is 0, since P1.T /.x1/ D 0, thus the second term must be
0, which means that �x2 D P2 j P1�x1Cx2 . Since P1 and P2 are relatively prime,
it follows that P2 divides �x1Cx2 and by symmetry P1 also divides �x1Cx2 . Using
again that P1 and P2 are relatively prime, we conclude that P D P1P2 divides
�x1Cx2 . Combining this with the divisibility �x1Cx2 j P and using that �x1Cx2
and P are both monic, the result follows.

c) Consider the decomposition �T D P
k1
1 : : :P

kr
r of �T into irreducible polynomi-

als. Here P1; : : :; Pr are pairwise relatively prime irreducible polynomials and
ki are positive integers. By part a) we can find xi 2 V such that �xi D P

ki
i .

Applying successively part b), we obtain

�x1C:::Cxr D �x1: : :�xr D P
k1
1 : : :P

kr
r D �T

and so we can take x D x1 C : : :C xr .
�

Problem 8.14. Let Vx be the span of x; T .x/; T 2.x/; : : :. Prove that Vx is a
subspace of V of dimension deg�x , stable under T .
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Solution. It is clear that Vx is a subspace of V , stable under T . Let d D deg�x .
We will prove that x; T .x/; : : :; T d�1.x/ form a basis of Vx , which will yield the
desired result.

Suppose first that a0x C a1T .x/ C : : : C ad�1T d�1.x/ D 0 for some scalars
a0; : : :; ad�1, not all of them equal to 0. The polynomial P D a0 C a1X C : : : C
ad�1Xd�1 is then nonzero and belongs to Ix (i.e., P.T /.x/ D 0). Thus P is a
multiple of �x , which is impossible as it is nonzero and its degree is less than that
of �x . Thus x; T .x/; : : :; T d�1.x/ are linearly independent over F .

Let W be the span of x; T .x/; : : :; T d�1.x/. We claim that W is stable under T .
It suffices to check that T d .x/ belongs to W . But since �x.T /.x/ D 0 and �x is
monic of degree d , we know that there are scalars b0; : : :; bd�1 such that

T d .x/C bd�1T d�1.x/C : : :C b0x D 0:

This relation shows that T d .x/ is a linear combination of x; T .x/; : : :; T d�1.x/ and
so it belongs to W .

Now, since W is stable under T and contains x, it must contain all T k.x/ for
k � 0, thus W must also contain Vx . It follows that x; T .x/; : : :; T d�1.x/ is a
generating subset of Vx and the proof is finished, since we have already shown that
this set is linearly independent. �

8.2.1 Problems for Practice

1. Compute the minimal polynomial of the following matrices:

A D
�
2 3

�4 2
�
; A D

2
4
0 1 0

1 0 0

0 0 1

3
5 ; A D

2
4
1 2 3

0 1 2

0 0 1

3
5 :

2. Compute the minimal polynomial of the matrixA 2 Mn.R/ all of whose entries
are equal to 1.

3. Let A 2 Mn.C/. Prove that

dim Span.In; A;A
2; : : :/ D deg�A:

4. Find a matrix A 2 M2.R/ whose minimal polynomial is

a) X2 � 3X C 2.
b) X2.
c) X2 C 1.

5. Let V be a finite dimensional vector space over F and let T W V ! V be an
invertible linear transformation. Prove that T �1 2 F ŒT �.



310 8 Polynomial Expressions of Linear Transformations and Matrices

6. For which positive integers n can we find a matrix A 2 Mn.R/ whose minimal
polynomial is X2 C 1?

7. Compute the minimal polynomial of the projection/symmetry of Cn onto a
subspace along a complementary subspace.

8. Let T W Mn.C/ ! C be the map sending a matrix to its transpose. Find the
minimal polynomial of T .

9. Let T W Mn.C/ ! C be the map sending a matrix A D Œaij � to the matrix
A D Œaij �, where z is the complex conjugate of z. Find the minimal polynomial
of T .

10. Describe the minimal polynomial of a matrix A 2 Mn.C/ of rank 1.

8.3 Eigenvectors and Eigenvalues

Let V be a vector space over a field F and let T be a linear transformation of V .
In this section we will be interested in those 	 2 F for which 	 � id � T is not
invertible. The following definition is fundamental.

Definition 8.15. An eigenvalue of T is a scalar 	 2 F such that 	 � id � T

is not invertible. An eigenvector of T corresponding to the eigenvalue 	 (or
	-eigenvector) is any nonzero element of the space ker.	 � id � T /, which is called
the eigenspace corresponding to 	 (or the 	-eigenspace).

Thus a 	-eigenvector v is by definition nonzero and satisfies

T .v/ D 	v;

and the 	-eigenspace consists of the vector 0 and all 	-eigenvectors.
We have the analogous definition for matrices:

Definition 8.16. Let A 2 Mn.F / be a square matrix. A scalar 	 2 F is called an
eigenvalue of A if there is a nonzero vector X 2 F n such that AX D 	X . In this
case, the subspace

ker.	In � A/ WD fX 2 F nj AX D 	 �Xg

is called the 	-eigenspace of A.

It is an easy but important exercise for the reader to check that the two
definitions are compatible, in the following sense: let V be finite dimensional and
let T W V ! V be a linear transformation. Choose any basis of V and let A be the
matrix of T with respect to this basis. Then the eigenvalues of T are exactly the
eigenvalues of A.
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Example 8.17. Consider the matrix A D
�
0 �1
1 0

�
. Let us find the eigenvalues and

the eigenspaces of A, if we consider A as a matrix with complex entries. Let 	 be
an eigenvalue and let X be a nonzero vector such that AX D 	X . If x1; x2 are the
coordinates of X , the condition AX D 	X is equivalent to the equations

�x2 D 	x1; x1 D 	x2:

We deduce that

�x2 D 	2x2:

If x2 D 0, then x1 D 0 and X D 0, a contradiction. Thus x2 ¤ 0 and necessarily
	2 D �1, that is 	 2 f�i; ig. Conversely, i and �i are both eigenvalues, since we
can choose x2 D 1 and x1 D 	 as a solution of the previous system. Actually the
	-eigenspace is given by

ker.	I2 � A/ D f.	x2; x2/jx2 2 Cg

and it is the line spanned by v D .	; 1/ 2 C2. Thus seen as a complex matrix, A has
two eigenvalues ˙i , and the eigenspaces are the lines spanned by .i; 1/ and .�i; 1/.

We see now A as a matrix with real entries and we ask the same question.
Letting 	 2 R be an eigenvalue and X an eigenvector as above, the same
computations yield

.	2 C 1/x2 D 0:

Since 	 is real, 	2 C 1 is nonzero and so x2 D 0, then x1 D 0 and X D 0. The
conclusion is that seen as a matrix with real entries, A has no eigenvalue, thus
no eigenspace. This example shows that eigenvalues and eigenspaces are very
sensitive to the field of scalars.

Given a matrixA 2 Mn.F /, how can we find its eigenvalues and its eigenspaces?
The first part is much harder than the second one. Indeed, finding eigenspaces is
equivalent to solving linear systems of the form AX D 	X , which is not (too)
difficult. On the other hand, finding eigenvalues comes down to solving polynomial
equations, which is quite hard (but can be done approximately with the help of a
computer as long as we are not interested in exact formulae). In practice (and for
reasonably sized matrices) we use the following fundamental observation in order
to compute eigenvalues:

Proposition 8.18. A scalar 	 2 F is an eigenvalue of A 2 Mn.F / if and only if

det.	In � A/ D 0:

Proof. 	In � A is not invertible if and only if its determinant vanishes. The result
follows. �
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Let us come back to our problem of computing the eigenvalues of a matrix. If we
know that

A D

2
664

a11 a12 : : : a1n
a21 a22 : : : a2n
: : : : : : : : : : : :

an1 an2 : : : ann

3
775

where aij 2 F for i; j D 1; 2; : : : ; n, then the proposition says that we can find the
eigenvalues of A by solving the polynomial equation

ˇ̌
ˇ̌
ˇ̌
ˇ̌

	 � a11 �a12 : : : �a1n
�a21 	 � a22 : : : �a2n
: : : : : : : : : : : :

�an1 �an2 : : : 	 � ann

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0

in F . This is a polynomial equation of degree n. If the degree is greater than 4, there
is no general solution in terms of radicals (of course, there are instances in which
one can solve the equations in terms of radicals, but most of the time this will not
happen).

Example 8.19. Let us find the eigenvalues of A D
2
4
1 0 0

0 0 �1
0 1 0

3
5. We start by

simplifying the equation
ˇ̌
ˇ̌
ˇ̌
	 � 1 0 0

0 	 1

0 �1 	

ˇ̌
ˇ̌
ˇ̌ D 0:

Expanding with respect to the first column and doing the computations, we obtain
the equivalent equation

.	 � 1/.	2 C 1/ D 0:

Next, we recall that eigenvalues are sensitive to the field of scalars. Since nothing
was said about the field of scalars in this problem, we consider two cases. If we take
the field of scalars to be C, then the eigenvalues are 1;˙i , which are the complex
solutions of the equation .	 � 1/.	2 C 1/ D 0. If the field of scalars is R, then the
only eigenvalue of A is 1.

Remark 8.20. Let us mention two important and interesting consequences of
Proposition 8.18 and the discussion following it:

• For any matrixA 2 Mn.F /,A and its transpose tA have the same eigenvalues.
Indeed, for 	 2 F we have

det.	In � tA/ D det. t .	In � A// D det.	In � A/;
thus det.	In � A/ D 0 if and only if det.	In � tA/ D 0.



8.3 Eigenvectors and Eigenvalues 313

• Any matrix A 2 Mn.F / has finitely many eigenvalues, since they are all
solutions of a polynomial equation of degree n, namely det.	In � A/ D 0.
Actually, since a polynomial of degree n has at most n distinct roots, we deduce
that any matrix A 2 Mn.F / has at most n eigenvalues.

We can restate part of the previous remark in terms of linear transformations:

Corollary 8.21. Let V be a finite dimensional vector space over F and let T W
V ! V be a linear transformation. Then T has only finitely many (actually at most
dimV ) distinct eigenvalues.

Remark 8.22. On the other hand, a linear transformation on an infinite dimensional
vector space may very well have infinitely many eigenvalues. Consider for instance
the space V of all smooth functions f W R ! R, and consider the map T W V ! V

sending f to its derivative. Then fa W x 7! eax is an eigenvector with eigenvalue a
for all a 2 R, thus any real number is an eigenvalue for T .

The following important problem shows that it is very easy to describe the
eigenvalues of an upper-triangular matrix:

Problem 8.23. Let A D Œaij � be an upper-triangular matrix in Mn.F /. Prove that
the eigenvalues of A are precisely its diagonal elements.

Solution. By definition, 	 2 F is an eigenvalue of A if and only if 	In � A is
not invertible. The matrix 	In � A is also upper-triangular, with diagonal elements
	�aii . But an upper-triangular matrix is invertible if and only if its diagonal entries
are nonzero (because its determinant equals the product of the diagonal entries by
Theorem 7.41). The result follows.

Problem 8.24. Find the eigenvalues of A6, where

A D

2
664

1 3 5 7

0 1
10
3 6

0 0 0 4

0 0 0 2

3
775 2 M4.R/:

Solution. It is useless to compute explicitly A6: by the product rule for matrices,
the product of two upper-triangular matrices A D Œaij � and B D Œbij � is an
upper-triangular matrix with diagonal entries aii bi i . It follows that A6 is an upper-
triangular matrix with diagonal entries 1; 1=106; 0; 64. By the previous problem,
these are also the eigenvalues of A6. �

The next important result says that eigenvectors corresponding to different
eigenvalues are linearly independent.

Theorem 8.25. Let 	1; : : :; 	k be pairwise distinct eigenvalues of a linear transfor-
mation T . Then the 	i -eigenspaces of T are in direct sum position.
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Proof. By definition, we need to prove that if T .vi / D 	ivi and v1 C : : :C vk D 0,
then v1 D : : : D vk D 0. We will prove this by induction on k. The result is clear
when k D 1, so assume that it holds for k � 1 and let us prove it for k. We have

0 D T .v1 C : : :C vk/ D T .v1/C : : :C T .vk/ D 	1v1 C : : :C 	kvk;

which combined with the relation 	kv1 C : : :C 	kvk D 0 yields

0 D .	k � 	1/v1 C : : :C .	k � 	k�1/vk�1 D 0:

The inductive hypothesis implies that .	k � 	i /vi D 0 for 1 � i < k. Since
	k ¤ 	i , this forces vi D 0 for 1 � i < k. But then automatically vk D 0, since
v1 C : : :C vk D 0. The inductive step being proved, the problem is solved. �

Problem 8.26. Let 	 be an eigenvalue of a linear map T W V ! V , where V is a
vector space over F and let P be a polynomial with coefficients in F . Prove that
P.	/ is an eigenvalue of P.T /.

Solution. The hypothesis yields the existence of a nonzero vector v 2 V such that
T .v/ D 	v. By induction, we obtain T k.v/ D 	kv for k � 1. Indeed, if T k.v/ D
	kv, then

T kC1.v/ D T .T k.v// D T .	kv/ D 	kT .v/ D 	kC1v:

We deduce that if P.X/ D anX
n C : : :C a1X C a0, then

P.T /.v/ D anT
n.v/C : : :C a1T .v/C a0v

D an	
nv C : : :C a0v D P.	/v

and so P.	/ is an eigenvalue of P.T /. �

The following consequence of the previous problem is very useful in practice:

Problem 8.27. Let A 2 Mn.C/ be a matrix and let P 2 CŒX� be a polynomial
such that P.A/ D On. Prove that any eigenvalue 	 of A satisfies P.	/ D 0.

Solution. By the previous problem, P.	/ is an eigenvalue of P.A/ D On. Since 0
is the only eigenvalue of On, we deduce that P.	/ D 0. �

In particular, we obtain the following:

Theorem 8.28. Let T W V ! V be a linear transformation on a finite-dimensional
vector space V over F . Then the eigenvalues of T are precisely the roots in F of
the minimal polynomial �T of T .

Proof. Since �T .T / D 0, the previous problem shows that all eigenvalues of T
are roots of �T . Conversely, let 	 2 F be a root of �T and assume that 	 is not
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an eigenvalue of T . Thus T � 	id is invertible. Since �T .	/ D 0, we can write
�T .X/ D .X � 	/Q.X/ for some Q 2 F ŒX�. Since �T .T / D 0, we deduce that

.T � 	id/ ıQ.T / D 0:

As T � 	id is invertible, the last relation is equivalent to Q.T / D 0. Hence �T
divides Q, which is absurd. The problem is solved. �

The next problem is a classical result, which gives rather interesting bounds on
the eigenvalues of a matrix.

Problem 8.29 (Gershgorin Discs). Let A D Œaij � 2 Mn.C/ be a matrix and let

Ri D
X
1�j�n
j¤i

jaij j:

a) Prove that if jaii j > Ri for all i , then A is invertible.
b) Deduce that any eigenvalue of A belongs to the set

n[
iD1

fz 2 Cjjz � aii j � Rig:

c) Give a geometric interpretation of the result established in part b).

Solution. a) Suppose that A is not invertible, thus we can find a nonzero vector
X 2 Cn, with coordinates x1; x2; : : :; xn, such that AX D 0. Let i be an index
such that

jxi j D max
1�j�n jxj j:

The i th equation of the linear system AX D 0 reads

ai1x1 C ai2x2 C : : :C ainxn D 0;

or equivalently

aiixi D �
X
j¤i

aij xj :

Using the triangular inequality, i.e., jz1 C : : :C znj � jz1j C : : :C jznj, valid for
all complex numbers z1; : : :; zn), we deduce that

jaii jjxii j D j
X
j¤i

aij xj j �
X
j¤i

jaij jjxj j:



316 8 Polynomial Expressions of Linear Transformations and Matrices

Since jxj j � jxi j for all j , we can further write

jaii jjxi j �
X
j¤i

jaij jjxi j D Ri jxi j:

Note that xi ¤ 0, since otherwise jxj j � jxi j D 0 for all j , thus xj D 0 for
all j , contradicting the fact that X ¤ 0. Thus we can divide by jxi j the previous
inequality and obtain

jaii j � Ri ;

which contradicts the assumption of the problem. Hence A is invertible.
b) Let 	 be an eigenvalue of A and let B D A � 	In. Write B D Œbij �, with
bij D aij when i ¤ j and bii D aii � 	. Since B is not invertible, part a)
ensures the existence of an index i such that jbii j � P

i¤j jbij j. This can be also
written as

jaii � 	j � Ri

and shows that

	 2
n[
iD1

fz 2 Cjjz � aii j � Rig:

c) The set fz 2 Cjjz�aii j � Rig is the closed disc centered at aii and having radius
Ri . Thus part b) says that the eigenvalues of A are located in a union of discs
centered at the diagonal entries of A and whose radii are R1,. . . ,Rn. �

Remark 8.30. Consider

Ci D
X
j¤i

jaji j:

Applying the result established before to tA (which has the same eigenvalues as A)
we obtain that the eigenvalues of A are also located in

n[
iD1

fz 2 Cjjz � aii j � Cig:

8.3.1 Problems for Practice

1. Find the eigenvalues and the eigenvectors of the matrix

A D
2
4
1 1 0

0 2 1

0 0 1

3
5 2 M3.C/:
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2. Let V be the set of matrices A 2 M2.C/ with the property that

�
1

2

�
is an

eigenvector of A. Prove that V is vector subspace of M2.C/ and give a basis
for V .

3. Let e1; e2; e3; e4 be the standard basis of C4 and consider the set V of those
matrices A 2 M4.C/ with the property that e1; e2 are both eigenvectors of A.
Prove that V is a vector subspace of M4.C/ and compute its dimension.

4. Find all matrices A 2 M3.C/ for which the vector

2
4
1

2

3

3
5 is an eigenvector with

eigenvalue 2.
5. Find the eigenvalues of the matrix A 2 Mn.R/ all of whose entries are equal

to 2.

6. Find all real numbers x for which the matrix A D
�
1 x

2 1

�
2 M2.R/ has

a) two distinct eigenvalues.
b) no eigenvalue.

7. Let V be the space of all polynomials with real coefficients. Let T be the linear
transformation on V sending P.X/ to P.1 � X/. Describe the eigenvalues of
T . Hint: what is T ı T ?

8. A matrix A 2 Mn.R/ is called stochastic if aij � 0 for all i; j 2 Œ1; n� andPn
jD1 aij D 1 for all i 2 Œ1; n�.

a) Prove that 1 is an eigenvalue of any stochastic matrix.
b) Prove that any complex eigenvalue 	 of a stochastic matrix satisfies j	j � 1.

9. Consider the map T W RŒX� ! RŒX� sending a polynomial P.X/ to P.3X/.

a) Prove that T is a bijective linear transformation, thus its inverse T �1 exists
and is linear.

b) Find the eigenvalues of T .
c) Deduce that there is no polynomial P 2 RŒX� such that

T �1 D P.T /:

10. Let A;B 2 Mn.C/ be matrices such that

AB � BA D B:

a) Prove that ABk � BkA D kBk for all k � 1.
b) Deduce that B is nilpotent. Hint: consider the eigenvalues of the map T W
Mn.C/ ! Mn.C/ given by T .X/ D AX �XA.
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11. Let V be the space of continuous real-valued maps on Œ0; 1�. Define a map
T W V ! V by

T .f /.x/ D
Z 1

0

min.x; t/f .t/dt

for f 2 V .

a) Justify that T is well defined and a linear transformation on V .
b) Is V finite dimensional?
c) Find the eigenvalues and describe the corresponding eigenspaces of T .

12. Let V be the space of polynomials with real coefficients whose degree does not
exceed n and let T W V ! V be the map defined by

T .P / D P.X/ � .1CX/P 0.X/:

a) Explain why T is a linear transformation on V .
b) Find the eigenvalues of T .

13. Let V be the space of all sequences .xn/n�1 of real numbers. Let T be the
map which associates to a sequence .xn/n�1 the sequence whose general term
is x1C2x2C:::Cnxn

n2
(for n � 1).

a) Prove that T is a linear transformation on V .
b) Find the eigenvalues and the corresponding eigenspaces of T .

14. Let V be the vector space of polynomials with real coefficients and let
T W V ! V be the map sending a polynomial P to

T .P / D .X2 � 1/P 00.X/CXP 0.X/:

a) Prove that T is a linear map.
b) What are the eigenvalues of T ?

15. a) Let A 2 Mn.C/ be a matrix with complex entries, let P 2 CŒX� be a
nonconstant polynomial and let � be an eigenvalue of P.A/. Prove that there
is an eigenvalue 	 of A such that P.	/ D � (this gives a converse of the
result proved in Problem 8.26 for matrices with complex entries). Hint: factor
the polynomial P.X/�� as c

Qd
iD1.X�zi / for some nonzero constant c and

some complex numbers z1; : : :; zd , and prove that at least one of the matrices
A � z1In; : : :; A � zd In is not invertible.

b) By considering the matrix A D
�
0 �1
1 0

�
, prove that the result established in

part a) is false if we replace C with R.
c) Suppose that a positive real number 	 is an eigenvalue of A2, where A 2
Mn.R/ is a matrix. Prove that

p
	 or �p

	 is an eigenvalue of A.
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16. Let A 2 Mn.R/ be a matrix and let

B D
�
0 A

A 2A

�
:

Express the eigenvalues of B in terms of those of A.
17. Consider the matrix

A D

2
666664

2 �1 0 : : : 0 0 0

�1 2 �1 : : : 0 0 0
:::

:::
::: : : :

:::
:::

:::

0 0 0 : : : �1 2 �1
0 0 0 : : : 0 �1 2

3
777775

2 Mn.C/:

Prove that the eigenvalues of A are 4 sin2
�

j�

2nC2
�

for 1 � j � n.

8.4 The Characteristic Polynomial

We saw in the previous section that finding the eigenvalues of a matrix A 2 Mn.F /

comes down to solving the polynomial equation

det.	In � A/ D 0

in F . In this section we will study in greater detail the polynomial giving rise to this
equation.

By construction, the determinant of a matrix is a polynomial expression with
integer coefficients in the entries of that matrix. The following theorem refines this
observation a little bit.

Theorem 8.31. Consider two matrices A;B 2 Mn.F /. There is a polynomial
P 2 F ŒX� such that for all x 2 F we have

P.x/ D det.xAC B/:

Denoting this polynomial P.X/ D det.XAC B/, we have

det.XAC B/ D det.A/Xn C ˛n�1Xn�1 C : : :C ˛1X C detB

for some polynomial expressions ˛1; : : :; ˛n�1 with integer coefficients in the entries
of A and B .



320 8 Polynomial Expressions of Linear Transformations and Matrices

Proof. Define P by

P.X/ D
X
�2Sn

".�/.a1�.1/X C b1�.1//: : :.an�.n/X C bn�.n//:

It is clear on the definition that P is a polynomial whose coefficients are polynomial
expressions with integer coefficients in the entries of A and B . It is also clear that
P.x/ D det.xAC B/ for x 2 F . The constant term is given by plugging in X D 0

and thus equals detB . Moreover, for each � 2 Sn we have

".�/.a1�.1/X C b1�.1//: : :.an�.n/X C bn�.n// D ".�/a1�.1/: : :an�.n/X
n C : : :;

all terms but the first in the right-hand side having degree at most n � 1. Taking the
sum over � , we see that P.X/ starts with detA � Xn, all other terms having degree
at most n � 1. The result follows. �

It follows from the theorem that if A;B have integer (respectively rational)
entries, then det.XAC B/ has integer (respectively rational) coefficients.

Armed with the previous results, we introduce the following

Definition 8.32. The characteristic polynomial of the matrix A 2 Mn.F / is the
polynomial �A 2 F ŒX� defined by

�A.X/ D det.X � In � A/:

Problem 8.33. Find the characteristic polynomial and the eigenvalues of the matrix

A D

2
664

0 1 0 0

2 0 �1 0
0 7 0 6

0 0 3 0

3
775 2 M4.R/:

Solution. We compute using Laplace expansion with respect to the first row

�A.X/ D det.XI4 � A/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X �1 0 0

�2 X 1 0

0 �7 X �6
0 0 �3 X

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

X

ˇ̌
ˇ̌
ˇ̌
X 1 0

�7 X �6
0 �3 X

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌
�2 1 0

0 X �6
0 �3 X

ˇ̌
ˇ̌
ˇ̌ D

X.X3 � 11X/ � 2.X2 � 18/ D X4 � 13X2 C 36:
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In order to find the eigenvalues of A, we need to find the real solutions of the
equation

x4 � 13x2 C 36 D 0:

Letting y D x2 we obtain the quadratic equation

y2 � 13y C 36 D 0

with solutions y1 D 4 and y2 D 9. Solving the equations x2 D 4 and x2 D 9 yields
the eigenvalues ˙2;˙3 of A. �

Problem 8.34. Find the characteristic polynomial and the eigenvalues of the matrix

A D
2
4
0 1 1

1 0 1

1 1 1

3
5 2 M3.F2/:

Solution. We will constantly use that �1 D 1 in F2. We obtain

�A.X/ D det.XI3 � A/ D det.XI3 C A/ D
ˇ̌
ˇ̌
ˇ̌
X 1 1

1 X 1

1 1 X C 1

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
1CX 0 1

1CX X C 1 1

0 X X C 1

ˇ̌
ˇ̌
ˇ̌ :

the equality being obtained by adding the second column to the first one and the
third column to the second one. Now

ˇ̌
ˇ̌
ˇ̌
1CX 0 1

1CX X C 1 1

0 X X C 1

ˇ̌
ˇ̌
ˇ̌ D

.X C 1/

ˇ̌
ˇ̌
ˇ̌
1 0 1

1 X C 1 1

0 X X C 1

ˇ̌
ˇ̌
ˇ̌ D .X C 1/.X C 1/2 D .X C 1/3:

Thus

�A.X/ D .X C 1/3

and consequently the unique eigenvalue of A is 1. �

In the following more theoretical exercises, we will

• compute the characteristic polynomial for a rather large class of matrices: upper-
triangular, nilpotent, companion matrices, etc.

• establish a few basic properties of the characteristic polynomial which turn out
to be important in practice or in theoretical problems.
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For upper-triangular matrices the characteristic polynomial can be read off
directly from the diagonal entries:

Problem 8.35. Let A D Œaij � be an upper-triangular matrix (so that aij D 0

whenever i > j ). Prove that

�A.X/ D
nY
iD1
.X � aii /:

Solution. The matrixXIn�A is again upper-triangular, with diagonal entries equal
to X � aii . The result follows directly from Theorem 7.41.

�

Recall that tA is the transpose of the matrix A.

Problem 8.36. Prove that A and tA have the same characteristic polynomial when
A 2 Mn.F /.

Solution. Indeed t .XIn � A/ D XIn � tA. Since a matrix and its transpose have
the same determinant (Theorem 7.37), we have

�A.X/ D det.XIn � A/ D det.t .XIn � A// D det.XIn � tA/ D �tA.X/;

as desired. �

Problem 8.37. Prove that the characteristic polynomial �A of A is of the form

�A.X/ D Xn � Tr.A/Xn�1 C : : :C .�1/n detA:

Solution. Let us come back to the definition

det.X � In � A/ D
X
�2Sn

".�/.Xı1�.1/ � a1�.1//: : :.Xın�.n/ � an�.n//:

A brutal expansion shows that

.Xı1�.1/ � a1�.1//: : :.Xın�.n/ � an�.n// D Xn

nY
iD1

ıi�.i/�

Xn�1
nX

jD1
.
Y
k¤j

ık�.k//aj�.j / C : : ::

Note that
Qn
iD1 ıi�.i/ is nonzero only for the identity permutation, in which case

it equals 1. This already shows that �A.X/ is monic of degree n. It is clear that
its constant term is �A.0/ D det.�A/ D .�1/n detA (all these results also follow
straight from Theorem 8.31).
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Next, if j 2 f1; 2; : : :; ng, then
Q
k¤j ık�.k/ is nonzero only when �.k/ D k

for all k ¤ j , but then automatically �.j / D j (as � is a permutation) and so �
is the identity permutation. Thus the coefficient of Xn�1 is nonzero in .Xı1�.1/ �
a1�.1//: : :.Xın�.n/ � an�.n// if and only if � is the identity permutation, in which
case this coefficient equals �Pn

jD1 ajj D �Tr.A/. This shows that the coefficient
of Xn�1 in �A.X/ is �Tr.A/. �

Problem 8.38. Let A 2 Mn.F / be a nilpotent matrix.

a) Prove that

�A.X/ D Xn:

b) Prove that Tr.Ak/ D 0 for all k � 1.

Solution. a) Note that by definition there is a positive integer k such thatAk D On.
Then

XkIn D XkIn � Ak D .XIn � A/.Xk�1In CXk�2AC : : :C Ak�1/:

Taking determinants yields

Xnk D �A.X/ � det.Xk�1In C : : :C Ak�1/:

The right-hand side is the product of two polynomials (again by the polynomial
nature of the determinant). We deduce that �A.X/ divides the monomial Xnk .
Since moreover �A.X/ is monic of degree n (by Problem 8.37), it follows that
�A.X/ D Xn.

b) Replacing A with Ak (which is also nilpotent), we may assume that k D 1. We
need to prove that Tr.A/ D 0. But by part a) �A.X/ D Xn, thus the coefficient
of Xn�1 in �A.X/ is 0. By the previous problem, this coefficient equals �Tr.A/,
thus Tr.A/ D 0. �

The following computation will play a fundamental role in the next section,
which deals with the Cayley–Hamilton theorem. It also shows that any monic
polynomial of degree n with coefficients in F is the characteristic polynomial of
some matrix in Mn.F /.

Problem 8.39. Let a0; a1; : : :; an�1 2 F and let

A D

2
666664

0 0 0 : : : 0 a0
1 0 0 : : : 0 a1
0 1 0 : : : 0 a2
: : : : : : : : : : : :

0 0 0 : : : 1 an�1

3
777775
:
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Prove that

�A D Xn � an�1Xn�1 � : : : � a0:

Solution. Let P D Xn � an�1Xn�1 � : : : � a1X � a0. Consider the matrix

B D XIn � A D

2
666664

X 0 0 : : : 0 �a0
�1 X 0 : : : 0 �a1
0 �1 X : : : 0 �a2
: : : : : : : : : : : :

0 0 0 : : : �1 X � an�1

3
777775
:

Adding to the first row ofB the second row multiplied byX , the third row multiplied
by X2,. . . , the nth row multiplied by Xn�1 we obtain the matrix

C D

2
666664

0 0 0 : : : 0 P

�1 X 0 : : : 0 �a1
0 �1 X : : : 0 �a2
: : : : : : : : : : : :

0 0 0 : : : �1 X � an�1

3
777775
:

We have �A D detB D detC and, expanding detC with respect to the first row,
we obtain

detC D .�1/nC1P �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�1 X : : : 0

0 �1 : : : 0
: : : : : : : : : : : :

0 0 : : : �1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D .�1/nC1P.�1/n�1 D P;

observing that the matrix whose determinant we need to evaluate is upper-triangular
with diagonal entries �1. The result follows. �

Recall that two matrices A;B 2 Mn.F / are called similar if they represent the
same linear transformation of F n in possibly different bases of this F -vector space.
Equivalently, A and B are similar if there is P 2 GLn.F / such that B D PAP�1,
i.e., they are conjugated by an invertible matrix. A fundamental property is that
the characteristic polynomial is invariant under similarity of matrices. More
precisely:

Theorem 8.40. Two similar matrices have the same characteristic polynomial.

Proof. Suppose that A and B are similar, thus we can find an invertible matrix
P 2 Mn.F / such that B D PAP�1. Note that

XIn � B D XPP�1 � PAP�1 D P.XIn � A/P�1:
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Now, we will take for granted that the determinant is still defined and multiplicative
for matrices with entries in F ŒX� (recall that F ŒX� is the set of polynomials in
one variable with coefficients in F ). The existence is easy, since one can simply
define in the usual way

detA D
X
�2Sn

".�/a1�.1/: : :an�.n/

for a matrix A D Œaij � with entries in F ŒX�. The fact that the determinant is
multiplicative is trickier (the hardest case being the case when F is a finite field)
and we will take it for granted.

Consider then P;XIn�A;XIn�B as matrices with entries in F ŒX�. The inverse
of P inMn.F / is also an inverse of P inMn.F ŒX�/, thus P is invertible considered
as a matrix inMn.F ŒX�/. The multiplicative character of the determinant map yields

�B.X/ D det.XIn � B/ D det.P / � det.XIn � A/ � det.P /�1

D det.XIn � A/ D �A.X/;

as desired. �

Problem 8.41. Prove that if A;B 2 Mn.F /, then AB and BA have the same
characteristic polynomial. You may assume for simplicity that F D R or F D C.

Solution. If A is invertible, then AB and BA are similar, as

AB D ABAA�1 D A.BA/A�1:

The previous theorem yields the result in this case.
Suppose now that A is not invertible. As A has only finitely many eigenvalues

(Corollary 8.21) and since F is infinite, there are infinitely many 	 2 F such that
A	 WD 	 � In � A is invertible. By the first paragraph for all such 	 we have

det.A	B/ D det.BA	/:

This can be written as

det.	B � AB/ D det.	B � BA/:

Both sides are polynomials in 	. Since they agree on infinitely many values of 	,
these polynomials are equal. In particular, they agree on 	 D 0, which is exactly the
desired result. �

Remark 8.42. The previous proof crucially uses the fact that F is infinite. The same
result is true if F D F2 (or more generally any field), but the proof requires more
tools from algebra.

The previous theorem shows that the following definition makes sense.
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Definition 8.43. Let V be a finite dimensional F -vector space. The characteristic
polynomial �T of the linear transformation T of V is the characteristic polynomial
of the matrix of T in any basis.

Problem 8.44. Let T W R3 ! R3 be the linear transformation defined by

T .x1; x2; x3/ D .x1 � 2x2 C x3; x2 � x3; x1/:

Compute the characteristic polynomial of T .

Solution. The matrix of T with respect to the canonical basis is

A D
2
4
1 �2 1

0 1 �1
1 0 0

3
5 :

Thus

�T .X/ D �A.X/ D
ˇ̌
ˇ̌
ˇ̌
X � 1 2 �1
0 X � 1 1

�1 0 X

ˇ̌
ˇ̌
ˇ̌ D

.X � 1/
ˇ̌
ˇ̌X � 1 1

0 X

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ 2 �1
X � 1 1

ˇ̌
ˇ̌ D X3 � 2X2 � 1:

�

Problem 8.45. Let T W V ! V be a linear transformation on a finite dimensional
vector space and let W be a subspace of V which is stable under T . Let T1 be the
restriction of T to W . Prove that �T1 divides �T .

Solution. Choose a basis w1; : : :;wk of W and complete it to a basis
w1; : : :;wk; vkC1; : : :; vn of V . Since W is stable under T the matrix of T

with respect to the basis w1; : : :;wk; vkC1; : : :; vn is of the form

�
A �
0 B

�
, where

A 2 Mk.F / is the matrix of T1 with respect to w1; : : :;wk . Using properties of
block-determinants (more precisely Theorem 7.43) we obtain

�T .X/ D �A.X/ � �B.X/

and the result follows. �

The previous problem allows us to make the precise link between characteristic
polynomial and eigenspaces: by construction the eigenvalues of a matrix can be
recovered as the roots in F of the characteristic polynomial, but it is not clear
how to deal with their possible multiplicities. Actually, there are two different (and
important) notions of multiplicity:
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Definition 8.46. Let T W V ! V be a linear transformation on a finite dimensional
vector space V over F and let 	 2 F be an eigenvalue of T .

a) The geometric multiplicity of 	 is the dimension of the F -vector space Ker.	 �
id � T /.

b) The algebraic multiplicity of 	 is the multiplicity of 	 as a root of the
characteristic polynomial �T of T (i.e., the largest integer j such that .X � 	/j

divides �T .X/).

Of course, we have similar definitions for the multiplicities of an eigenvalue of a
matrix: if A 2 Mn.F / and 	 2 F is an eigenvalue of A, the algebraic multiplicity
of 	 is the multiplicity of 	 as a root of �A, while the geometric multiplicity of 	 is
dim Ker.	In � A/. A good exercise for the reader is to convince himself that if A
is the matrix of a linear transformation T with respect to any basis of V , then the
corresponding multiplicities of 	 for A and for T are the same.

Remark 8.47. The algebraic multiplicity and the geometric multiplicity are not

always equal: consider the matrix A D
�
0 1

0 0

�
. It has 0 as an eigenvalue with

geometric multiplicity 1: indeed the system AX D 0 is equivalent to x2 D 0, thus
Ker.A/ is the line spanned by the first vector of the canonical basis of F 2. On the
other hand, the characteristic polynomial of A is �A.X/ D X2, thus the algebraic
multiplicity of 0 is 2. If the algebraic multiplicity of an eigenvalue 	 coincides
with its geometric multiplicity, we will simply refer to this common value as the
multiplicity of 	.

Problem 8.48. Consider the matrix

A D
2
4
8 �1 �5

�2 3 1

4 �1 �1

3
5 2 M3.R/:

a) Find the characteristic polynomial and the eigenvalues of A.
b) For each eigenvalue 	 of A, find the algebraic and the geometric multiplicity

of 	.

Solution. a) Adding the second and third column to the first one yields

�A.X/ D
ˇ̌
ˇ̌
ˇ̌
X � 8 1 5

2 X � 3 �1
�4 1 X C 1

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
X � 2 1 5

X � 2 X � 3 �1
X � 2 1 X C 1

ˇ̌
ˇ̌
ˇ̌

D .X � 2/
ˇ̌
ˇ̌
ˇ̌
1 1 5

1 X � 3 �1
1 1 X C 1

ˇ̌
ˇ̌
ˇ̌ :
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To compute the last determinant, subtract the first row from the second and the
third row, then expand with respect to the first column. We obtain in the end

�A.X/ D .X � 2/.X � 4/2:

The eigenvalues of A are the real roots of �A, thus they are 2 and 4.
b) Since �A.X/ D .X � 2/.X � 4/2, it follows that 2 has algebraic multiplicity
1 and 4 has algebraic multiplicity 2. To find the geometric multiplicity of 2, we
determine the 2-eigenspace by solving the system AX D 2X . The reader will
check without difficulty that the system is equivalent to x D y D z (where
x; y; z are the coordinates of X ), thus the 2-eigenspace is one-dimensional and
the geometric multiplicity of the eigenvalue 2 is 1 (we could have done this
without any computation if we knew the theorem below). For the eigenvalue
4, we proceed similarly by solving the system AX D 4X . An easy computation
shows that the system is equivalent to y D �x and z D x, thus the 4-eigenspace
is also one-dimensional and so the geometric multiplicity of the eigenvalue 4 is
also 1. �

As we have already seen, algebraic multiplicity and geometric multiplicity are
not the same thing. The next result gives however precious information concerning
the link between the two notions.

Theorem 8.49. Let A 2 Mn.F / and let 	 2 F be an eigenvalue of A. Then the
geometric multiplicity of 	 does not exceed its algebraic multiplicity. In particular,
if the algebraic multiplicity of 	 is 1, then its geometric multiplicity equals 1.

Proof. Let V D F n and let T be the linear map on V attached to A. Let W D
ker.	In�A/ D ker.	id�T /. ThenW is stable under T , thus by Problem 8.45 (and
letting T jW be the restriction of T to W ) �T jW divides �T . On the other hand, T jW
is simply multiplication by 	 on W , thus

�T jW .X/ D .X � 	/dimW :

It follows that .X � 	/dimW divides �A.X/ D �T .X/ and the result follows. �

The result established in the next problem is very important in applications:

Problem 8.50. Let A 2 Mn.C/ be a matrix with complex entries. Let Sp.A/ be the
set of eigenvalues of A (we call Sp.A/ the spectrum of A) and, for 	 2 Sp.A/, let
m	 be the algebraic multiplicity of 	.

a) Explain the equality of polynomials

�A.X/ D
Y

	2Sp.A/

.X � 	/m	:
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b) Prove that

Tr.A/ D
X

	2Sp.A/

m		:

In other words, the trace of a complex matrix is the sum of its eigenvalues,
counted with their algebraic multiplicities.

c) Prove that

detA D
Y

	2Sp.A/

	m	;

that is the determinant of a matrix is the product of its eigenvalues, counted
with their algebraic multiplicities. �

Solution. a) It is clear by definition of algebraic multiplicities that
Q
	2Sp.A/.X �

	/m	 divides �A.X/ (this holds for a matrix with coefficients in any field).
To prove the opposite divisibility (which allows us to conclude since both
polynomials are monic), we will crucially exploit the fact that the matrix has
complex entries and that C is algebraically closed. In particular, we know that �A
splits in CŒX� into a product of linear factors X � z. Any such z is an eigenvalue
of A, since det.zIn �A/ D 0. Hence z 2 Sp.A/ and by definition its multiplicity
as root of �A.X/ is mz. The result follows.

b) The coefficient of Xn�1 in
Q
	2Sp.A/.X � 	/m	 is �P	2Sp.A/ m		. On the other

hand, the coefficient of Xn�1 in �A equals �Tr.A/ by Problem 8.37. The result
follows from a).

c) Taking X D 0 in the equality established in a) and using the fact that �A.0/ D
.�1/n detA and that

P
	2Sp.A/ m	 D n, we obtain

.�1/n detA D �A.0/ D
Y

	2Sp.A/

.�	/m	 D .�1/n
Y

	2Sp.A/

	m	:

The result follows by dividing by .�1/n. �

Remark 8.51. If we replace C with R or Q the result is completely false: it may even

happen that Sp.A/ is empty! Indeed, consider for instance the matrix A D
�
0 �1
1 0

�
.

Here is a nice application of the previous problem.

Problem 8.52. a) Let A 2 Mn.R/ be a matrix such that

A2 � 3AC 2In D 0:

Prove that detA 2 f1; 2; 4; : : ::; 2ng.
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b) Let k 2 f1; 2; 4; : : :; 2ng. Construct a matrix A 2 Mn.R/ such that A2 � 3A C
2In D 0 and detA D k.

Solution. a) By Problem 8.27 for any complex eigenvalue 	 of A we have
	2�3	C2 D 0, that is .	�1/.	�2/ D 0. It follows that each complex eigenvalue
of A is either 1 or 2. Since detA is the product of all complex eigenvalues of A
(counted with their algebraic multiplicities), the result follows.

b) Write k D 2p with p 2 f0; 1; : : :; ng. Then a diagonal matrix A having p
diagonal entries equal to 2 and the other diagonal entries equal to 1 is a solution
of the problem. �

8.4.1 Problems for Practice

1. Find the characteristic polynomial and the eigenvalues of the matrix

A D
2
4
3 0 �1
2 4 2

�1 0 3

3
5 2 M3.R/:

2. Find the characteristic polynomial and the eigenvalues of the matrix

A D

2
664

1 1 0 0

0 1 0 1

1 0 1 0

0 0 1 1

3
775 2 M4.F2/:

3. a) Give an example of a matrix A 2 M4.R/ whose characteristic polynomial
equals X4 �X3 C 1.

b) Is there a matrix A 2 M3.Q/ whose characteristic polynomial equals X3 �p
2? Give an example of such a matrix in M3.R/.

4. For each of the matrices below, compute its characteristic and minimal polyno-
mial

a)

A D
��1 �3
2 1

�

b)

A D
2
4
1 0 0

0 2 0

1 0 3

3
5
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Then find their eigenvalues and the corresponding eigenspaces, by considering
these matrices as matrices with rational entries. Then do the same by consider-
ing these matrices as matrices with real (and finally with complex) entries.

5. Let n � 2 and let

A D

2
666664

1 2 2 : : : 2 2

2 1 2 : : : 2 2

2 2 1 : : : 2 2

: : : : : : : : : : : :

2 2 2 : : : 2 1

3
777775

2 Mn.R/:

a) Compute the minimal polynomial and the characteristic polynomial of A.
b) Describe the eigenvalues of A and the corresponding eigenspaces.

6. a) Let A 2 Mn.R/ be the matrix associated with the projection of Rn

onto a subspace W along a complementary subspace of W . Compute the
characteristic polynomial of A in terms of n and dimW .

b) Answer the same question assuming that A is the matrix associated with the
symmetry with respect to a subspace W along a complementary subspace
of W .

7. Consider the following three 5 � 5 nilpotent matrices

A D

2
666664

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

3
777775
; B D

2
666664

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
777775
; C D

2
666664

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

3
777775
:

Since these matrices are nilpotent they all have characteristic polynomial
�A.X/ D �B.X/ D �C .X/ D X5.

a) Compute the minimal polynomials of these matrices and use them to show
that A is not similar to either B or C .

b) Compute the dimensions of the kernels of these matrices and use them to
show that B is not similar to A or C .

8. Let A 2 Mn.R/ be a matrix such that A3 C In D 0. Prove that Tr.A/ is an
integer.

9. Prove that any matrix A 2 Mn.R/ is the sum of two invertible matrices.
10. Let A 2 Mn.C/ be an invertible matrix. Prove that for all x ¤ 0 we have

�A�1 .x/ D xn

�A.0/
�A.1=x/:
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11. Let A D Œaij � 2 Mn.C/ and let A D Œaij � be the matrix whose entries are the
complex-conjugates of the entries ofA. Prove that the characteristic polynomial
of AA has real coefficients. Hint: use the fact that AA and AA have the same
characteristic polynomial.

12. Let A 2 Mn;p.C/ and B 2 Mp;n.C/.

a) Prove the following identities for x 2 C
�
xIn A

B Ip

�
�
�
In On;p

�B Ip

�
D
�
xIn � AB A

Op;n Ip

�

and
�
In On;p

�B xIp

�
�
�
xIn A

B Ip

�
D
�
xIn A

Op;n xIp � BA
�
:

b) Deduce that

Xq�AB.X/ D Xp�BA.X/:

13. Let A and B be matrices in M3.C/. Show that

det.AB � BA/ D 1

3
TrŒ.AB � BA/3�:

Hint: if a; b; c are the eigenvalues of AB � BA, prove that a C b C c D 0 and
then that

a3 C b3 C c3 D 3abc:

14. Prove that for all A;B 2 Mn.C/

deg.det.XAC B// � rank.A/:

Hint: if r is the rank of A, start by reducing the problem to the case A D�
Ir 0

0 0

�
2 Mn.C/.

15. Let A, B , C and D be square matrices in Mn.C/ and let

M D
�
A B

C D

�
2 M2n.C/:

a) Assume that DC D CD and that D is invertible. Check the identity

�
A B

C D

�
�
�
D On

�C In

�
D
�
AD � BC B

On D

�
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and deduce that

detM D det.AD � BC/:

b) Assume that DC D CD, but not necessarily that D is invertible. Prove that

detM D det.AD � BC/:

Hint: consider the matrix Dx D xIn CD with x 2 C.
c) By considering the matrices

A D
�
1 0

1 1

�
; B D

�
1 0

0 1

�
; C D

�
1 0

0 0

�
; D D

�
0 1

0 0

�
;

prove that the result in part b) no longer holds if we drop the hypothesis
CD D DC .

16. a) Find two matrices A;B 2 M4.R/ with the same characteristic and minimal
polynomial, but which are not similar.

b) Can we find two such matrices in M2.R/?
17. Let A D Œaij � 2 Mn.C/ and let sk be the sum of all k � k principal minors of A

(thus s1 is the sum of the diagonal entries of A, that is Tr.A/, while sn is detA).
Prove that

�A.X/ D Xn � s1Xn�1 C s2X
n�2 � : : :C .�1/nsn:

Hint: use the multilinear character of the determinant map.
18. Let V D Mn.R/ and consider the linear transformation T W V ! V defined by

T .A/ D �AC Tr.A/ � In:
a) Prove that V is the direct sum of the eigenspaces of T .
b) Compute the characteristic polynomial of T .

19. Let V D Mn.R/ and consider the linear transformation T W V ! V sending A
to tA. Find the characteristic polynomial of T . Hint: what is T ı T ?

8.5 The Cayley–Hamilton Theorem

We now reach a truly beautiful result: any matrix is killed by its characteristic
polynomial. Recall that �A denotes the characteristic polynomial of A 2 Mn.F /.
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Theorem 8.53 (Cayley–Hamilton). For all matrices A 2 Mn.F / we have

�A.A/ D On:

In other words, if �A.X/ D Xn C an�1Xn�1 C : : :C a0, then

An C an�1An�1 C : : :C a1AC a0In D On:

There are quite a few (at least 30. . . ) different proofs of this result, nei-
ther of them being straightforward. The reader should therefore start by finding
the error in the following classical, but unfortunately wrong argument: since
�A.X/ D det.XIn � A/, we have

�A.A/ D det.AIn � A/ D det.A � A/ D det.On/ D 0:

Before moving to the rather technical proofs of the previous theorem, we take a
break and focus on some applications:

Problem 8.54. Let A 2 Mn.F /. Prove that the minimal polynomial of A divides
the characteristic polynomial of A.

Solution. Since �A annihilates A by the Cayley–Hamilton theorem, it follows that
�A divides �A.

�

Problem 8.55. Let A 2 Mn.F / be an invertible matrix. Prove that there are scalars
a0; : : :; an�1 2 F such that

A�1 D a0In C a1AC : : :C an�1An�1:

Solution. The characteristic polynomial ofA is of the formXnCbn�1Xn�1C: : :C
b1X C b0, with b0 D .�1/n detA nonzero. By the Cayley–Hamilton theorem

An C bn�1An�1 C : : :C b1AC b0In D On:

Multiplying by 1
b0
A�1 we obtain

1

b0
An�1 C bn�1

b0
An�2 C : : :C b1

b0
In C A�1 D On:

Thus we can take

a0 D �b1
b0
; a1 D �b2

b0
; : : :; an�1 D � 1

b0
:

�



8.5 The Cayley–Hamilton Theorem 335

Problem 8.56. Let A 2 Mn.C/ be a matrix. Prove that the following statements
are equivalent:

a) A is nilpotent (recall that this means that Ak D On for some k � 1).
b) The characteristic polynomial of A is Xn.
c) An D On.
d) The minimal polynomial of A is of the form Xk for some k � 1.

Solution. The fact that a) implies b) follows directly from part a) of Problem 8.38.
That b) implies c) is a direct consequence of the Cayley–Hamilton theorem. If c)
holds, then Xn kills A, thus the minimal polynomial of A divides Xn and is monic,
thus necessarily of the form Xk for some k � 1, proving that c) implies d). Finally,
since the monic polynomial of A kills A, it is clear that d) implies a). �

We will give two proofs of the Cayley–Hamilton theorem in this section. Neither
of them really explains clearly what is happening (the second one does a much better
job than the first proof from this point of view), but with the technology we have
developed so far, we cannot do any better. We will see later on a much better proof,1

which reduces (via a subtle but very useful density argument) the theorem to the
case of diagonal matrices (which is immediate).

Let us give now the first proof of the Cayley–Hamilton theorem. Let A 2 Mn.F /

and let B D XIn�A 2 Mn.K/, whereK D F.X/ is the field of rational fractions2

in the variable X , with coefficients in F . Consider the adjugate matrix C D adj.B/
of B . Its entries are given by determinants of .n � 1/ � .n � 1/-matrices whose
entries are polynomials of degree � 1 in X . Thus each entry of C is a polynomial
of degree at most n � 1 in X , with coefficients in F . Let

cij D c
.0/
ij C c

.1/
ij X C : : :C c

.n�1/
ij Xn�1

be the .i; j /-entry of C , with c.0/ij ; : : :; c
.n�1/
ij 2 F . Let C .k/ be the matrix whose

entries are the c.k/ij . Then

C D C .0/ C C .1/X C : : :C C .n�1/Xn�1:

Next, recall that

B � C D B � adj.B/ D detB � In D �A.X/ � In:
Thus we have

.XIn � A/ � .C .0/ C C .1/X C : : :C C .n�1/Xn�1/ D �A.X/ � In:

1Which unfortunately works only when F � C, even though one can actually deduce the theorem
from this case.
2An element of K is a quotient A

B
, where A;B 2 F ŒX� and B ¤ 0.
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Writing �A.X/ D XnCun�1Xn�1C: : :Cu0 2 F ŒX�, the previous equality becomes

�AC .0/ C .C .0/ �AC .1//X C .C .1/ �AC .2//X C : : :C .C .n�2/ �AC .n�1//Xn�1

CC .n�1/Xn D u0In C u1InX C : : :C un�1InXn�1 C InX
n:

Identifying coefficients yields

�AC .0/ D u0In; C .0/ � AC .1/ D u1In; : : :;

C .n�2/ � AC .n�1/ D un�1In; C .n�1/ D In:

Dealing with these relations by starting with the last one and working backwards
yields

C .n�1/ D In; C .n�2/ D AC un�1In; C .n�3/ D A2 C un�1AC un�2In

and an easy induction gives

C .n�j�1/ D Aj C un�1Aj�1 C : : :C un�j In:

In particular

C .0/ D An�1 C un�1An�2 C : : :C u1In:

Combining this with the relation �AC .0/ D u0In finally yields

An C un�1An�1 C : : :C u0In D On;

that is �A.A/ D On.
As the reader can easily observe, though rather long, the proof is fairly elemen-

tary and based on very simple manipulations. It is not very satisfactory however,
since it does not really show why the theorem holds.

We turn now to the second proof of the Cayley–Hamilton theorem. We will
actually prove the following result, which is clearly equivalent (via the choice of
a basis) to the Cayley–Hamilton theorem.

Theorem 8.57. Let V be a finite dimensional vector space over F and let
T W V ! V be a linear map. Then �T .T / D 0.

Proof. The idea is to reduce the problem to linear maps for which we can compute
easily �T . The details are a little bit more complicated than this might suggest. . .

Fix an x 2 V . If m is a nonnegative integer, let

Wm D Span.T 0.x/; T 1.x/; : : : ; T m.x//:
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Note that W0 � W1 � : : : � V and that dimWm � dimWmC1 � dimV for all
m � 0. Hence there must be some least m such that dimWm�1 D dimWm. Since
Wm�1 D Wm, we must haveWm�1 D Wm, in other words T m.x/ lies in the subspace
Wm�1 and we can write T m.x/ as a linear combination of T k.x/ for 0 � k < m, say

T m.x/ D
m�1X
kD0

akT
k.x/:

Note that this implies Wm�1 is stable under T . Since m is minimal, the vectors
T 0.x/; : : : ; T m�1.x/ must be linearly independent (a linear dependence among
them would express a lower iterate as a linear combination of earlier iterates).
Therefore they are a basis of Wm�1 and with respect to this basis the matrix of
T1 D T jWm�1 is

A D

2
666664

0 0 0 � � � 0 a0
1 0 0 � � � 0 a1
0 1 0 � � � 0 a2
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 1 am�1

3
777775
:

The characteristic polynomial of this matrix was computed in Problem 8.39 and it
equals Xm � am�1Xm�1 � � � � � a0. Hence

�T1.T /.x/ D T m.x/ �
m�1X
kD0

akT
k.x/ D 0:

By Problem 8.45, since Wm�1 is T -stable, the characteristic polynomial �T1 of T
restricted to Wm�1 divides �T . Therefore �T .T /.x/ D 0. Since x was arbitrary, we
conclude that �T .T / vanishes when applied to any vector, that is, it is the zero linear
map. �

8.5.1 Problems for Practice

1. Prove that for any A D Œaij � 2 M3.C/ we have

A3 � Tr.A/ � A2 C Tr.adjA/ � A � det A � I3 D 0:

2. Let A 2 M3.R/ be a matrix such that

Tr.A/ D Tr.A2/ D 0:

Prove that A3 D ˛I3 for some real number ˛.
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3. Let A;B 2 M3.C/ be matrices such that the traces of AB and .AB/2 are both 0.
Prove that .AB/3 D .BA/3.

4. Let A;B;C 2 Mn.C/ be matrices such that AC D CB and C ¤ On.

a) Prove that for all polynomials P 2 CŒT � we have

P.A/C D CP.B/:

b) By choosing a suitable polynomial P and using the Cayley–Hamilton
theorem, deduce that A and B have a common eigenvalue.

5. Let A;B 2 Mn.C/ be matrices such that .AB/n D On. Prove that .BA/n D On.
Hint: prove first that .BA/nC1 D On, then use Problem 8.56.

6. Let A 2 Mn.C/ be a matrix such that A and 3A are similar. Prove that An D
On. Hint: similar matrices have the same characteristic polynomial. Also use
Problem 8.56.

7. Let A 2 Mn.C/. Prove that An D On if and only if Tr.Ak/ D 0 for all k � 1.
Hint: to establish the harder direction, prove that all eigenvalues of A must be 0
and use Problem 8.56.

8. Let V be a vector space of dimension n over a field F and let T W V ! V be
a linear transformation. The goal of this problem is to prove that the following
assertions are equivalent:

i) There exists a vector x 2 V such that x; T .x/; : : :; T n�1.x/ forms a basis
of V .

ii) The minimal polynomial and the characteristic polynomial of T coincide.

a) Assume that i) holds. Use Problem 8.14 to prove that deg�T � n and
conclude that ii) holds using the Cayley–Hamilton theorem.

b) Assume that ii) holds. Using Problems 8.13 and 8.14, explain why we can
find x 2 V such that x; T .x/; T 2.x/; : : : span V . Conclude that i) holds.

9. Let n � 1 and let A;B 2 Mn.Z/ be matrices with integer entries. Suppose
that detA and detB are relatively prime. Prove that we can find matrices
U; V 2 Mn.Z/ such that AU C BV D In.



Chapter 9
Diagonalizability

Abstract The main focus is on diagonalizable matrices, that is matrices similar to
a diagonal one. We completely characterize these matrices and use this to complete
the proof of Jordan’s classification theorem for arbitrary matrices with complex
entries. Along the way, we prove that diagonalizable matrices with complex entries
are dense and use this to give a clean proof of the Cayley–Hamilton theorem.

Keywords Diagonalizable • Trigonalizable • Jordan block • Jordan’s
classification

In this chapter we will apply the results obtained in the previous chapter to study
matrices which are as close as possible to diagonal ones. The diagonal matrices are
fairly easy to understand and so are matrices similar to diagonal matrices. These
are called diagonalizable matrices and play a fundamental role in linear algebra.
For instance, we will prove that diagonalizable matrices form a dense subset of
Mn.C/ (i.e., any matrix in Mn.C/ can be approximated to arbitrary precision with
a diagonalizable matrix) and we will use this result to give a very simple proof
of the Cayley–Hamilton theorem over C, by reducing it to the case of diagonal
matrices (which is trivial). Also, we will prove that any matrix A 2 Mn.C/ is
the commuting sum of a nilpotent and of a diagonalizable matrix, showing once
more the importance of diagonalizable (and nilpotent) matrices. We then use the
classification of nilpotent matrices obtained in the chapter concerned with duality to
prove the general form of Jordan’s theorem, classifying all matrices inMn.C/ up to
similarity. Along the way, we give applications to the resolution of linear differential
equations (of any order) with constant coefficients, as well as to linear recurrence
sequences.

A large part of the chapter is devoted to finding intrinsic properties and
characterizations of diagonalizable matrices. In this chapter F will be a field, but
the reader will not loose anything by assuming that F is either R or C.
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9.1 Upper-Triangular Matrices, Once Again

Recall that a matrix A D Œaij � 2 Mn.F / is called upper-triangular if aij D 0

whenever i > j , that is all entries of A below the main diagonal are zero. We have
already established quite a few results about upper-triangular matrices, which make
this class of matrices rather easy to understand. For instance, we have already seen
that the upper-triangular matrices form a vector subspace ofMn.F / which is closed
under multiplication. Moreover, it is easy to compute the eigenvalues of an upper-
triangular matrix: simply look at the diagonal entries! It is therefore easy to compute
the characteristic polynomial of such a matrix: if A D Œaij � is an upper-triangular
matrix, then its characteristic polynomial

�A.X/ D
nY
iD1
.X � aii /:

Before dealing with diagonalizable matrices, we will focus on the trigonalizable
ones, i.e., matrices A 2 Mn.F / which are similar to an upper-triangular matrix. We
will need an important definition:

Definition 9.1. A polynomial P 2 F ŒX� is split over F if it is of the form

P.X/ D c.X � a1/ : : : .X � an/

for some scalars c; a1; : : : ; an 2 F (not necessarily distinct).

For instance,X2C1 is not split over R since it has no real root, but it is split over
C, sinceX2C1 D .XCi/.X�i/. On the other hand, the polynomialX2�3XC2 is
split over R, since it factors as .X�1/.X�2/. It is pointless to look for a polynomial
in CŒX� which is not split, due to the following amazing theorem of Gauss:

Theorem 9.2 (The Fundamental Theorem of Algebra). Any polynomial
P 2 CŒX� is split over C.

This theorem is usually stated as: C is an algebraically closed field, that is any
nonconstant polynomial equation with complex coefficients has at least one complex
solution. The previous theorem is actually equivalent to this usual version of Gauss’
theorem (and it is a good exercise for the reader to prove the equivalence of these
two statements).

By the previous discussion, the characteristic polynomial of an upper-triangular
matrix is split over F . Since the characteristic polynomials of two similar matrices
are equal, we deduce that the characteristic polynomial of any trigonalizable matrix
is split over F .

Problem 9.3. Give an example of a matrix A 2 M2.R/ which is not trigonalizable
in M2.R/.
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Solution. Since the characteristic polynomial of a trigonalizable matrix is split
over R, it suffices to find a matrix A 2 M2.R/ whose characteristic polynomial
is not split over R. Consider the matrix

A D
�
0 1

�1 0
�
:

Its characteristic polynomial is X2 C 1, which is not split over R. Thus A is not
trigonalizable in M2.R/. ut

The following fundamental theorem gives an intrinsic characterization of trigo-
nalizable matrices.

Theorem 9.4. Let A 2 Mn.F / be a matrix. Then the following assertions are
equivalent:

a) The characteristic polynomial of A is split over F .
b) A is similar to an upper-triangular matrix in Mn.F /.

Proof. The discussion preceding the theorem shows that b) implies a). We will
prove the converse by induction on n. It is clearly true for n D 1, so assume that
n � 2 and that the statement holds for n � 1.

Choose a root 	 2 F of the characteristic polynomial �A of A (we can do it,
thanks to the hypothesis that �A is split over F ), and choose a nonzero vector v 2 F n

such that Av D 	v. Since v ¤ 0, we can complete v1 to a basis v1; : : : ; vn of
V D F n. The matrix of the linear transformation T attached to A with respect to
the basis v1; : : : ; vn is of the form

�
	 �
0 B

�

for some B 2 Mn�1.F /. Thus we can find an invertible matrix P1 such that

P1AP
�1
1 D

�
	 �
0 B

�

for some B 2 Mn�1.F /. Since similar matrices have the same characteristic
polynomial, we obtain

�A.X/ D �P1AP�1
1
.X/ D .X � 	/�B.X/;

the last equality being a consequence of Theorem 7.43. It follows that �B is split
over F . Since B 2 Mn�1.F /, we can apply the inductive hypothesis and find
an invertible matrix Q 2 Mn�1.F / such that QBQ�1 is upper-triangular. Let

P2 D
�
1 0

0 Q

�
, then P2 2 Mn.F / is invertible (again by Theorem 7.43 we have

detP2 D detQ ¤ 0) and
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P2.P1AP
�1
1 /P�1

2 D
�
	 �
0 QBQ�1

�

is upper-triangular. Setting P D P2P1, the matrix PAP�1 is upper-triangular, as
desired. ut

Combining the previous two theorems, we obtain the following very important
result:

Corollary 9.5. For any matrix A 2 Mn.C/ we can find an invertible matrix
P 2 Mn.C/ and an upper-triangular matrix T 2 Mn.C/ such that A D PTP�1.
Thus any matrix A 2 Mn.C/ is trigonalizable in Mn.C/.

Proof. By Gauss’ theorem the characteristic polynomial �A of A is split over C.
The result follows from Theorem 9.4. ut

As a beautiful application of Corollary 9.5, let us give yet another proof of the
Cayley–Hamilton theorem for matrices in Mn.C/ (the result applies of course to
matrices in Mn.Q/ or Mn.R/). Recall that this theorem says that �A.A/ D On for
any matrix A 2 Mn.C/, where �A is the characteristic polynomial of A. We will
prove this in two steps: first, we reduce to the case when A is upper-triangular, then
we prove the theorem in this case by a straightforward argument.

Let A 2 Mn.C/ be a matrix and let P be an invertible matrix such that the matrix
T D PAP�1 is upper-triangular. We want to prove that �A.A/ D On, but

�A.A/ D �A.P
�1TP / D P�1�A.T /P D P�1�T .T /P;

the last equality being a consequence of the fact that A and T are similar, thus have
the same characteristic polynomial. Hence it suffices to prove that �T .T / D On, in
other words, we may and will assume that A is upper-triangular.

Let e1; : : : ; en be the canonical basis of Cn and consider the polynomials

Qk.X/ D
kY
iD1
.X � aii /;

so that Qn D �A (since A is upper-triangular). We claim that Qk.A/ei D 0 for
1 � i � k and for all 1 � k � n. Accepting this for a moment, it follows that
Qn.A/ei D 0 for all 1 � i � n, that is �A.A/ei D 0 for all 1 � i � n, which is
exactly saying that �A.A/ D On.

It remains to prove the claim, and we will do this by induction on k. If k D 1, we
need to check that Q1.A/e1 D 0, that is .A� a11In/e1 D 0, or equivalently that the
first column of A�a11In is zero, which is clear since A is upper-triangular. Assume
now that Qk.A/ei D 0 for 1 � i � k, and let us prove that QkC1.A/ei D 0 for
1 � i � k C 1. If 1 � i � k, then Qk.A/ei D 0 yields

QkC1.A/ei D .A � akC1;kC1In/Qk.A/ei D 0:
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If i D k C 1, then

QkC1.A/ei D Qk.A/.A � akC1;kC1In/ei D

Qk.A/.Aei � akC1;kC1ei / D �
kX
iD1

ai;kC1Qk.A/ei D 0;

since Qk.A/ei D 0 for 1 � i � k. The inductive step is established and the claim
is proved.

Problem 9.6. Let A 2 Mn.C/ and let Q 2 CŒX� be a polynomial. If the
characteristic polynomial of A equals

Qn
iD1.X � 	i /, prove that the characteristic

polynomial of Q.A/ equals
Qn
iD1.X �Q.	i //.

Solution. By the previous corollary we can write A D PTP�1 for some
P 2 GLn.C/ and some upper-triangular matrix T . The characteristic polynomial
of T is the same as that of A, and it is also equal to

Qn
iD1.X � ti i / if T D Œtij �.

Thus the diagonal entries of T are 	1; : : : ; 	n (up to a permutation). Next, Q.A/ D
PQ.T /P�1 and the characteristic polynomial ofQ.A/ is the same as that ofQ.T /.
But Q.T / is again upper-triangular, with diagonal entries Q.	1/; : : : ;Q.	n/, so

�Q.A/ D �Q.T / D
nY
iD1
.X �Q.	i //:

ut
Problem 9.7. Let A 2 Mn.C/ have eigenvalues 	1; : : : ; 	n (counted with their
algebraic multiplicities). Prove that for all Q 2 CŒX� we have

detQ.A/ D
nY
iD1

Q.	i /; Tr.Q.A// D
nX
iD1

Q.	i /:

Solution. Simply combine the previous problem with Problem 8.50. ut

9.1.1 Problems for Practice

1. For each of the following matrices decide whether A is trigonalizable over R or
not:

a) A D
2
4
1 2 1

3 2 2

0 1 1

3
5.

b) A D
�
1 4

2 5

�
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2. Find all real numbers x for which the matrix A D
�
x 1

x � 1 2C x

�
is trigonaliz-

able in M2.R/.
3. Find an upper-triangular matrix which is similar to the matrix

�
1 2

3 2

�
:

4. Find an upper-triangular matrix which is similar to the matrix

2
4
1 0 0

2 1 0

3 2 1

3
5 :

5. A matrixA 2 M3.C/ has eigenvalues 1; 2;�1. Find the trace and the determinant
of A3 C 2AC I3.

6. Let A 2 Mn.F / be a matrix. Prove that A is nilpotent if and only if A is similar
to an upper-triangular matrix all of whose diagonal entries are 0.

7. Let A;B 2 Mn.C/ be matrices such that AB D BA.

a) Prove that each eigenspace of B is stable under the linear transformation
attached to A.

b) Deduce that A and B have a common eigenvector.
c) Prove by induction on n that there is an invertible matrix P such that PAP�1

and PBP�1 are both upper-triangular.

8. Let A;B 2 Mn.C/ be two matrices. Recall that the Kronecker or tensor product
of A and B is the matrix A˝ B 2 Mn2.C/ defined by

A˝ B D

2
6664

a11B a12B : : : a1nB

a21B a22B : : : a2nB
:::

::: : : :
:::

an1B an2B : : : annB

3
7775 :

We recall that

.A˝ B/ � .A0 ˝ B 0/ D .AA0/˝ .BB 0/

for all matrices A;A0; B; B 0 2 Mn.C/.

a) Consider two invertible matrices P;Q such that P�1AP and Q�1BQ are
upper-triangular. Prove that .P ˝ Q/�1.A ˝ B/.P ˝ Q/ is also upper-
triangular and describe its diagonal entries in terms of the eigenvalues of A
and B .
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b) Deduce that if

�A.X/ D
nY
iD1
.X � 	i / and �B.X/ D

nY
iD1
.X � �i/

then

�A˝B.X/ D
nY
iD1

nY
jD1

.X � 	i�j /:

9.2 Diagonalizable Matrices and Linear Transformations

Diagonal matrices are fairly easy to understand and study. In this section we study
those matrices which are as close as possible to being diagonal: the matrices
which are similar to a diagonal matrix. We fix a field F . All vector spaces will
be considered over F and will be finite-dimensional.

Definition 9.8. a) A matrix A 2 Mn.F / is called diagonalizable if it is similar to
a diagonal matrix in Mn.F /.

b) A linear transformation T W V ! V on a vector space V is called diagonalizable
if its matrix in some basis of V is diagonal.

Thus a matrix A 2 Mn.F / is diagonalizable if and only if we can write

A D PDP�1

for some invertible matrixP 2 Mn.F / and some diagonal matrixD D Œdij � 2 Mn.F /.
Note that any matrix which is similar to a diagonalizable matrix is itself
diagonalizable. In particular, if T is a diagonalizable linear transformation, then
the matrix of T with respect to any basis of V is still diagonalizable (but not
diagonal in general).

We can give a completely intrinsic characterization of diagonalizable linear
transformations, with no reference to a choice of basis or to matrices:

Theorem 9.9. A linear transformation T W V ! V on a vector space V is
diagonalizable if and only if there is a basis of V consisting of eigenvectors of T .

Proof. Suppose that T is diagonalizable. Thus there is a basis v1; : : : ; vn of V such
that the matrix A of T with respect to this basis is diagonal. If .ai i /1�i�n are the
diagonal entries of A, then by definition T .vi / D aiivi for all 1 � i � n, thus
v1; : : : ; vn is a basis of V consisting of eigenvectors for T .

Conversely, suppose that there is a basis v1; : : : ; vn of V consisting of eigen-
vectors for T . If T .vi / D divi , then the matrix of T with respect to v1; : : : ; vn is
diagonal, thus T is diagonalizable. ut
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Remark 9.10. One can use these ideas to find an explicit way to diagonalize a
matrix A. If A 2 Mn.F / is diagonalizable, then we find a basis of V D F n

consisting of eigenvectors and we let P be the matrix whose columns are this
basis. Then P�1AP D D is diagonal and A D PDP�1.

Remark 9.11. Suppose that A is diagonalizable and write A D PDP�1 for some
diagonal matrix D and some invertible matrix P .

a) The characteristic polynomials of A and D are the same, since A and D are
similar. We deduce that

nY
iD1
.X � dii / D �A.X/:

In particular, the diagonal entries of D are (up to a permutation) the eigenvalues
of A (counted with algebraic multiplicities). This is very useful in practice.

b) Let 	 be an eigenvalue of A. Then the algebraic multiplicity of 	 equals the
number of indices i 2 Œ1; n� for which dii D 	 (this follows from a)). On
the other hand, the geometric multiplicity of 	 as eigenvalue of A or D is the
same (since X 7! P�1X induces an isomorphism between Ker.	In � A/ and
Ker.	In � D/, thus these two spaces have the same dimension). But it is not
difficult to see that the geometric multiplicity of 	 as eigenvalue of D is the
number of indices i 2 Œ1; n� for which dii D 	, since the system DX D 	X is
equivalent to the equations .di i � 	/xi D 0 for 1 � i � n. We conclude that for
a diagonalizable matrix, the algebraic multiplicity of any eigenvalue equals
its geometric multiplicity.

Problem 9.12. Show that

A D
�
1 a

0 1

�

is not diagonalizable when a ¤ 0.

Solution. Suppose that A is diagonalizable and write A D PDP�1 with P

invertible and D diagonal. Since A is upper-triangular with diagonal entries equal
to 1, we deduce that the eigenvalues of A are equal to 1. By the previous remark
the diagonal entries of D must all be equal to 1 and so D D In. But then
A D PInP

�1 D In, a contradiction. ut
Problem 9.13. Prove that the only nilpotent and diagonalizable matrixA 2 Mn.F /

is the zero matrix.

Solution. Suppose that A is diagonalizable and nilpotent and write A D PDP�1.
By Problem 8.38 and the previous remark we obtain

Xn D �A.X/ D
nY
iD1
.X � dii /:

Thus dii D 0 for all i and then D D On and A D POnP
�1 D On. ut
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The study of diagonalizable matrices is more involved than that of trigonalizable
ones. Before proving the main theorem characterizing diagonalizable matrices, we
will prove a technical result, which is extremely useful in other situations as well
(the reader will find two more beautiful applications of this result in the next
section).

Let k > 1 be an integer and let P1; : : : ; Pk pairwise relatively prime polynomials
in F ŒX�. Denote P D P1 : : : Pk the product of these k polynomials.

Problem 9.14. LetQi D P
Pi

. Prove thatQ1; : : : ;Qk are relatively prime, i.e., there
is no nonconstant polynomial Q dividing all Q1; : : : ;Qk .

Solution. Suppose there is an irreducible polynomial Q that divides Qi for all i .
Since QjQ1 D P2 � � �Pk , we deduce that Q divides Pj for some j 2 f2; : : : ; kg.
But since Q divides Qj , it also divides Pi for some i ¤ j , contradicting that Pi
and Pj are relatively prime. ut

Note that it is definitely not true that Q1; : : : ;Qk are themselves pairwise
relatively prime: if k > 2, then both Q1 and Q2 are multiples of Pk .

The technical result we need is the following:

Theorem 9.15. Suppose that T is a linear transformation on some F -vector space
V (not necessarily finite dimensional). Then for any pairwise relatively prime
polynomials P1; : : : ; Pk 2 F ŒX� we have

kerP.T / D
kM
iD1

kerPi.T /;

where P D P1P2 : : : Pk .

Proof. Consider the polynomials Qi D P
Pi

as in the previous problem. Since

they are relatively prime, Bezout’s lemma1 yields the existence of polynomials
R1; : : : ; Rk such that

Q1R1 C : : :CQkRk D 1 (9.1)

Since Pi divides P , it follows that kerPi.T / � kerP.T / for all i 2 Œ1; k�. On
the other hand, take x 2 kerP.T / and let xi D .QiRi /.T /.x/. Then relation (9.1)
shows that

x D x1 C x2 C : : :C xk:

1This lemma says that if A;B 2 F ŒX� are relatively prime polynomials, then we can find
polynomials U; V 2 F ŒX� such that AU C BV D 1. This easily yields the following more
general statement: if P1; : : : ; Pk are polynomials whose greatest common divisor is 1, then we can
find polynomials U1; : : : ; Uk such that U1P1 C : : :C UkPk D 1.
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Moreover, Pi.T /.xi / D .PiQiRi /.T /.x/ and PiQiRi is a multiple of P . Since
x 2 kerP.T / � ker.PiQiRi /.T /, it follows that xi 2 kerPi.T /, and since
x D x1 C : : :C xk , we conclude that

kerP.T / D
kX
iD1

kerPi.T /:

It remains to prove that if xi 2 kerPi.T / and x1 C : : : C xk D 0, then xi D 0

for all i 2 Œ1; k�. We have

Q1.T /.x1/CQ1.T /.x2/C : : :CQ1.T /.xk/ D 0:

But Q1.T /.x2/ D : : : D Q1.T /.xk/ D 0, since Q1 is a multiple of P2; : : : ; Pk
and P2.T /.x2/ D : : : D Pk.T /.xk/ D 0. Thus Q1.T /.x1/ D 0 and similarly
Qj .T /.xj / D 0 for 1 � j � k. But then

x1 D .R1Q1/.T /.x1/C : : :C .RkQk/.T /.xk/ D 0

and similarly we obtain x2 D : : : D xk D 0. The theorem is proved. ut
We are now ready to prove the fundamental theorem concerning diagonalizable

linear transformations.

Theorem 9.16. Let V be a finite dimensional vector space over F and let
T W V ! V be a linear transformation. The following assertions are equivalent:

a) T is diagonalizable.
b) There is a polynomial P 2 F ŒX� which splits over F and has pairwise distinct

roots, such that P.T / D 0.
c) The minimal polynomial �T of T splits over F and has pairwise distinct roots.
d) Let Sp.T / � F be the set of eigenvalues of T . Then

M
	2Sp.T /

ker.T � 	 � id/ D V:

Proof. We start by proving that a) implies b). Choose a basis in which T is
represented by the diagonal matrix D. Let P be the polynomial whose roots are
the distinct diagonal entries of D. Then P.T / is represented by the diagonal matrix
P.D/ with entries P.dii / D 0. Thus P.T / D 0.

That b) implies c) is clear since the minimal polynomial of T will divide P and
hence it splits over F , with distinct roots.

That c) implies d) is just Theorem 9.15 applied to P the minimal polynomial of
T and Pi its linear factors.

Finally, to see that d) implies a), write Sp.T / D f	1; : : : ; 	kg and choose a basis
v1; : : : ; vn of V obtained by patching a basis of ker.T � 	1 � id/, followed by a basis
of ker.T �	2 � id/, : : : , followed by a basis of ker.T �	k � id/. Then v1; : : : ; vn form
a basis of eigenvectors of T , thus a) holds by Theorem 9.9. ut
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Remark 9.17. a) If T is a diagonalizable linear transformation, then example 8.9
shows that the minimal polynomial of T is

�T .X/ D
Y

	2Sp.T /

.X � 	/;

the product being taken all eigenvalues of T , counted without multiplicities.
Taking the same product, but counting multiplicities (algebraic or geometric, they
are the same) of eigenvalues this time, we obtain the characteristic polynomial
of T .

b) If T is any linear transformation on a finite dimensional vector space V , then T
is diagonalizable if and only if the sum of the dimensions of the eigenspaces of
T equals dimV , i.e.,

X
	2Sp.T /

dim ker.T � 	 � id/ D dimV:

Indeed, this follows from the theorem and the fact that the subspaces ker.T�	�id/
are always in direct sum position.

c) Suppose that T is diagonalizable. For each 	 2 Sp.T / let �	 be the projection
on the subspace ker.T � 	 � id/. Then

T D
X

	2Sp.T /

	�	:

This follows from ˚	2Sp.T / ker.T � 	 � id/ D V and the fact that if

v D
X

	2Sp.T /

v	 with v	 2 ker.T � 	 � id/;

then

T .v/ D
X

	2Sp.T /

T .v	/ D
X

	2Sp.T /

	v	 D
X

	2Sp.T /

	�	.v/:

Due to its importance, we will restate the previous theorem in terms of matrices:

Theorem 9.18. Let A 2 Mn.F /. Then the following assertions are equivalent:

a) A is diagonalizable in Mn.F /.
b) If Sp.A/ is the set of eigenvalues of A, then

M
	2Sp.A/

ker.	In � A/ D F n:

c) The minimal polynomial �A of A is split over F , with pairwise distinct roots.
d) There is a polynomial P 2 F ŒX� which is split over F , with pairwise distinct

roots and such that P.A/ D On.
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In the following problems the reader will have the opportunity to check the
comprehension of the various statements involved in the previous theorem.

Problem 9.19. Explain why the matrixAwith real entries is diagonalizable in each
of the following two cases.

(a) The matrix A has characteristic polynomial

X3 � 3X2 C 2X:

(b)

A D

2
666664

1 0 0 0 0

0 3 0 0 0

0 0 4 0 0

0 0 0 3 2

0 0 0 1 4

3
777775
:

Solution. (a) We have

X3 � 3X2 C 2X D X.X2 � 3X C 2/ D X.X � 1/.X � 2/;
which is split, with distinct roots. Since this polynomial kills A (by the Cayley–
Hamilton theorem), the result follows from the implication “b) implies a)”
in Theorem 9.16. We can also argue directly, as follows: if v1; v2; v3 are
eigenvectors corresponding to the eigenvalues 0; 1; 2, then v1; v2; v3 are linearly
independent (since the eigenvalues are distinct) and thus must form a basis
of R3. Thus A is diagonalizable (by Theorem 9.9 and the discussion preceding
it).

(b) We have

�A.X/ D det.XI5 � A/ D .X � 1/.X � 3/.X � 4/Œ.X � 3/.X � 4/ � 2�

D .X�1/.X�3/.X�4/.X2�7XC10/ D .X�1/.X�2/.X�3/.X�4/.X�5/:
This polynomial is split with distinct roots, so the same argument as in part a)
yields the result. ut

Problem 9.20. Consider the matrix

A D
2
4
0 1 0

0 0 1

1 0 0

3
5 :

a) Is A diagonalizable in M3.C/?
b) Is A diagonalizable in M3.R/?
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Solution. One easily finds that the characteristic polynomial of A is �A.X/ D
X3�1. This polynomial is split with distinct roots in CŒX�, thus A is diagonalizable
in M3.C/. On the other hand, A is not diagonalizable in M3.R/, since its
characteristic polynomial does not split in RŒX�. ut
Problem 9.21. Let

A D
2
4

�7 �16 4

6 13 �2
12 16 1

3
5 2 M3.R/

(a) Prove that 	 D 5 is an eigenvalue of A.
(b) Diagonalize A, if possible.

Solution. (a) We have

A � 5I D
2
4

�12 �16 4

6 8 �2
12 16 �4

3
5

and the last row is the opposite of the first row. Thus A � 5I is not invertible
and 5 is an eigenvalue of A.

(b) We take advantage of part a) and study the 5-eigenspace of A. This is described
by the system of equations

8<
:

�12x � 16y C 4z D 0

6x C 8y � 2z D 0

12x C 16y � 4z D 0

As we have already remarked in part a), the first and the third equations are
equivalent. The system is then equivalent (after dividing the first equation by 4
and the second one by 2) to

��3x � 4y C z D 0

3x C 4y � z D 0

Again, the first and second equations are equivalent. Thus the 5-eigenspace is

ker.A � 5I / D f.x; y; 3x C 4y/jx; y 2 Rg
and this is a two-dimensional vector space, with a basis given by

v1 D .1; 0; 3/; v2 D .0; 1; 4/:

We deduce that 5 has algebraic multiplicity at least 2. Since the sum of the
complex eigenvalues of A equals the trace of A, which is �7 C 13 C 1 D 7, we
deduce that �3 is another eigenvalue of A, and the corresponding eigenspace is a
line. Solving the system AX D �3X yields the solution .�2; 1; 2/. We deduce that
a diagonalization of A is given by
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A D
2
4
1 0 �2
0 1 1

3 4 2

3
5
2
4
5 0 0

0 5 0

0 0 �3

3
5
2
4
1 0 �2
0 1 1

3 4 2

3
5

�1

: ut

Problem 9.22. Consider the matrix

A D
2
4
0 1 0

�4 4 0
�2 1 2

3
5 2 M3.R/:

Is this matrix diagonalizable?

Solution. We start by computing the characteristic polynomial

�A.X/ D
ˇ̌
ˇ̌
ˇ̌
X �1 0

4 X � 4 0

2 �1 X � 2

ˇ̌
ˇ̌
ˇ̌ D .X � 2/

ˇ̌
ˇ̌X �1
4 X � 4

ˇ̌
ˇ̌ D

.X � 2/.X2 � 4X C 4/ D .X � 2/3:
Thus 2 is an eigenvalue of A with algebraic multiplicity 3. If A is diagonalizable,
then 2 would have geometric multiplicity 3, that is Ker.A � 2I3/ would be three
dimensional and A D 2I3. Since this is certainly not the case, it follows that A is
not diagonalizable. ut
Problem 9.23. Find all values of a 2 R for which the matrix

A D
2
4
2 1 �2
1 a �1
1 1 �1

3
5 2 M3.R/

is diagonalizable.

Solution. As usual, we start by computing the characteristic polynomial �A.X/
of A. Adding the first column to the third one, then subtracting the first row from
the third one, we obtain

�A.X/ D
ˇ̌
ˇ̌
ˇ̌
X � 2 �1 2

�1 X � a 1

�1 �1 X C 1

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
X � 2 �1 X

�1 X � a 0
1 �X 0 0

ˇ̌
ˇ̌
ˇ̌ D X.X � 1/.X � a/:

If a … f0; 1g, then �A.X/ is split with distinct roots and since it kills A (by the
Cayley–Hamilton theorem), we deduce that A is diagonalizable.
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Suppose that a D 0, thus 0 is an eigenvalue of A with algebraic multiplicity 2.
Let us find its geometric multiplicity, which comes down to solving the system
AX D 0. This system reads to

8<
:
2x1 C x2 � 2x3 D 0

x1 � x3 D 0

x1 C x2 � x3 D 0

and its solutions are .x1; 0; x1/ with x1 2 R. As this space is one dimensional, we
deduce that the geometric multiplicity of 0 is 1 and so A is not diagonalizable.

If a D 1, a similar argument shows that 1 is an eigenvalue with algebraic
multiplicity 2 and with geometric multiplicity 1, thus A is not diagonalizable. All in
all, the answer of the problem is: all a 2 R n f0; 1g. ut
Problem 9.24. Diagonalize, if possible, the matrix

A D
2
4
4 0 �2
2 5 4

0 0 5

3
5 2 M3.R/

Solution. We start by computing the characteristic polynomial of A:

ˇ̌
ˇ̌
ˇ̌
X � 4 0 2

�2 X � 5 �4
0 0 X � 5

ˇ̌
ˇ̌
ˇ̌ D .X � 5/

ˇ̌
ˇ̌X � 4 0

�2 X � 5
ˇ̌
ˇ̌ D .X � 4/.X � 5/2:

We deduce that A has two eigenvalues, namely 4 with algebraic multiplicity 1
and 5 with algebraic multiplicity 2. Next, we study separately the corresponding
eigenspaces. Since 4 has algebraic multiplicity 1, we already know that the 4-
eigenspace will be a line. To find it, we write the condition AX D 4X as the system

8<
:

4x � 2z D 4x

2x C 5y C 4z D 4y

5z D 4z

This system can easily be solved: the last equation gives z D 0, the first one becomes
tautological and the second one gives y D �2x. Thus the 4-eigenspace is the line
spanned by v1 D .1;�2; 0/.

Next, we study the 5-eigenspace. Write the equation AX D 5X as the system

8<
:

4x � 2z D 5x

2x C 5y C 4z D 5y

5z D 5z
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The last equation is tautological. The first equation gives x D �2z and the second
one becomes then tautological. Thus the solutions of the system are .�2z; y; z/ D
y.0; 1; 0/ C z.�2; 0; 1/ with y; z 2 R2. We deduce that the 5-eigenspace is two-
dimensional, with a basis given by v2 D .0; 1; 0/ and v3 D .�2; 0; 1/.

Since the sum of the dimensions of the eigenspaces equals 3 D dim R3, we
deduce that A is diagonalizable and v1; v2; v3 form a basis of eigenvectors. The
matrix P whose columns are the coordinates of v1; v2; v3 with respect to the
canonical basis is

P D
2
4
1 0 �2

�2 1 0

0 0 1

3
5 :

We have

A D PDP�1; with D D
2
4
4 0 0

0 5 0

0 0 5

3
5 : ut

We end this section with some more theoretical exercises.

Problem 9.25. Let T be a diagonalizable linear transformation on a finite dimen-
sional vector space V over a field F . Let W be a subspace of V which is stable
under T . Prove that T jW W W ! W is diagonalizable.

Solution. Since T W V ! V is diagonalizable, there is a polynomial P 2 F ŒX� of
the form P D .X � 	1/ : : : .X � 	k/ with 	1; : : : ; 	k 2 F pairwise distinct, such
that P.T / D 0. Since P.T /.v/ D 0 for all v 2 V , we have P.T /.w/ D 0 for all
w 2 W . Thus P.T jW / D 0 and so T jW is diagonalizable by Theorem 9.16. ut

The result established in the next problem is very useful in many situations.

Problem 9.26. Let V be a finite dimensional vector space over a field F and let
T1; T2 W V ! V be linear transformations of V . Prove that if T1 and T2 commute,
then any eigenspace of T2 is stable under T1.

Solution. Let 	 2 F be an eigenvalue of T2 and let E	 D ker.	 � id � T2/ be the
corresponding eigenspace. If v 2 E	, then T2.v/ D 	v, thus

T2.T1.v// D T1.T2.v// D T1.	v/ D 	T1.v/

and so T1.v/ 2 E	. The result follows. ut
Problem 9.27. Let V be a finite dimensional vector space over a field F and let
T1; T2 W V ! V be diagonalizable linear transformations of V . Prove that T1 and
T2 commute if and only if they are simultaneously diagonalizable.
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Solution. Suppose first that T1 and T2 are simultaneously diagonalizable. Thus
there is a basis B of V in which the matrices of T1 and T2 are diagonal, say D1

and D2. We clearly have D1D2 D D2D1, thus the matrices of T1 ı T2 and T2 ı T1
coincide in this basis and so T1 ı T2 D T2 ı T1.

Conversely, suppose that T1 and T2 commute. Let 	1; : : : ; 	k be the distinct
eigenvalues of T1 and let Wi D ker.T1 � 	i / be the corresponding eigenspaces.
Since T1 is diagonalizable, we have V D W1 ˚ : : : ˚ Wk . Since T1 and T2
commute, T2 leaves each Wi invariant by Problem 9.26. Since T2 is diagonalizable,
so is its restriction to Wi , by Problem 9.25. Thus there is a basis Bi of Wi

consisting of eigenvectors for T2jWi . Consider the basis B 0 consisting of all vectors
in B1 [ : : : [ Bk . Then B 0 consists of eigenvectors for both T1 and T2 (this is clear
for T2, and holds for T1 since T1 acts on Wi by the scalar 	i ). Thus the matrices of
T1 and T2 in the basis B 0 are both diagonal and the result follows. ut
Problem 9.28. Let A be an invertible matrix with complex coefficients and let
d � 1. Prove that A is diagonalizable if and only if Ad is diagonalizable. What
happens if we don’t assume that A is invertible?

Solution. Suppose thatA is diagonalizable, thus there is an invertible matrixP such
that PAP�1 is a diagonal matrix. Then .PAP�1/d D PAdP�1 is also a diagonal
matrix, henceAd is diagonalizable. This implication does not require the hypothesis
that A is invertible.

Suppose now that Ad is diagonalizable and that A is invertible. Since Ad is diag-
onalizable and invertible, its minimal polynomial is of the form .X�	1/ : : : .X�	k/
with 	1; : : : ; 	k pairwise distinct and nonzero. Consider the polynomial P.X/ D
.Xd �	1/ : : : .Xd �	k/. Since each of the polynomials Xd �	1; : : : ; Xd �	k has
pairwise distinct roots and since these polynomials are pairwise relatively prime,
their product P has pairwise distinct roots. Since P.A/ D 0, we deduce that A is
diagonalizable.

Finally, if we only assume that Ad is diagonalizable and A is not invertible, then
one of the eigenvalues of A is 0. Hence one of the factors of the matrix P.X/ above
becomes Xd . Since this does not have distinct roots the proof breaks down. Indeed
A need not be diagonalizable in this case. For instance, consider the matrix A D�
0 1

0 0

�
. This matrix satisfies A2 D 0, thus A2 is certainly diagonalizable. However,

A is not diagonalizable. Indeed, if this was the case, thenAwould necessarily be the
zero matrix, since its eigenvalues are all 0. Hence for the more difficult implication
one cannot drop the hypothesis that A is invertible. ut
Problem 9.29. Let A be a matrix with real entries such that A3 D A2.

a) Prove that A2 is diagonalizable.
b) Find A if its trace equals the number of columns of A.

Solution. a) The hypothesis yields A4 D A3 D A2, thus .A2/2 D A2. It follows
that A2 is killed by the polynomial X.X � 1/, which has pairwise distinct and
real roots. Thus A2 is diagonalizable.
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b) Let n be the number of columns of A. The trace of A equals n, and this is also the
sum of the complex eigenvalues of A, counted with their algebraic multiplicities.
By hypothesis each eigenvalue 	 satisfies 	3 D 	2, thus 	 2 f0; 1g. Since the
n eigenvalues add up to n, it follows that all of them are equal to 1. Thus all
eigenvalues of A2 are 1 and using part a) we deduce that A2 D In. Combining
this with the hypothesis yields A � In D In and then A D In, which is the unique
solution of the problem.

ut
Problem 9.30. Let A1 2 Mp.F / and A2 2 Mq.F / and let

A D
�
A1 0

0 A2

�
2 MpCq.F /:

Prove that A is diagonalizable if and only if A1 and A2 are diagonalizable.

Solution. If P 2 F ŒX� is a polynomial, then

P.A/ D
�
P.A1/ 0

0 P.A2/

�
:

If A is diagonalizable, then we can find a polynomial P which splits over F into a
product of distinct linear factors and which kills A. By the previous formula, P also
kills A1 and A2, which must therefore be diagonalizable.

Suppose now that A1 and A2 are diagonalizable, thus we can find polynomials
P1, P2 which split over F into products of distinct linear factors and which kill A1
andA2 respectively. LetP be the least common multiple ofP1 andP2. ThenP splits
into a product of distinct linear factors and killsA, which is therefore diagonalizable.

An alternative solution is based on the study of eigenspaces of A. Namely, it is
not difficult to see that for any 	 2 F we have

ker.A � 	IpCq/ D ker.A1 � 	Ip/˚ ker.A2 � 	Iq/:

Now a matrix X 2 Mn.F / is diagonalizable if and only if ˚	2F ker.X � 	In/ D
F n, from where the result follows easily. ut

9.2.1 Problems for Practice

1. a) Diagonalize the matrix

A D
��1 2
4 1

�

in M2.C/.
b) Do the same by considering A as an element of M2.R/.
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2. For each matrixA below, decide ifA is diagonalizable. Explain your reasoning.
IfA is diagonalizable, find an invertible matrix P and a diagonal matrixD such
that P�1AP D D.

(a)

A D
2
4
5 0 0

0 5 0

1 0 5

3
5 2 M3.R/

(b)

A D
2
4
3 0 0

0 5 0

1 0 5

3
5 2 M3.R/

3. a) Let a1; : : : ; an be complex numbers and let A D Œaiaj �1�i;j�n 2 Mn.C/.
When is A diagonalizable?

b) Let a1; : : : ; an be real numbers and let A D Œaiaj �1�i;j�n 2 Mn.R/. When
is A diagonalizable?

4. Let A be the n � n matrix all of whose entries are equal to 1. Prove that A 2
Mn.R/ is diagonalizable and find its eigenvalues.

5. Compute the nth power of the matrix

A D
2
4
1 3 3

3 1 3

3 3 1

3
5 :

Hint: diagonalize A.
6. Find all differentiable maps x; y; z W R ! R such that x.0/ D 1, y.0/ D 0,

z.0/ D 0 and

x0 D y C z; y0 D x C z; z0 D x � 3y C 4z:

Hint: the matrix A D
2
4
0 1 1

1 0 1

1 �3 4

3
5 has an eigenvalue equal to �1. Use this to

diagonalize A. How is this related to the original problem?
7. Let V be a finite dimensional vector space over C and let T W V ! V be a

linear transformation.

a) Prove that if T is diagonalizable, then T 2 is diagonalizable and
kerT D kerT 2.

b) Prove that if T 2 is diagonalizable and kerT D kerT 2, then T is
diagonalizable.
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8. Let A;B 2 Mn.F / be matrices such that A is invertible and AB is diagonal-
izable. Prove that BA is also diagonalizable. What happens if we don’t assume
that A is invertible?

9. Find all matrices A 2 M3.R/ such that

A2 D
2
4
9 0 0

1 4 0

1 1 1

3
5 :

Hint: start by diagonalizing the matrix

2
4
9 0 0

1 4 0

1 1 1

3
5 and prove that any solution of

the problem is diagonalizable and commutes with this matrix.
10. Let A 2 Mn.C/ be a matrix such that Ad D In for some positive integer d .

Prove that

a) A is diagonalizable with eigenvalues d th roots of unity.
b) Deduce that

dim ker.A � In/ D 1

d

dX
iD1

Tr.Ai /:

11. Let F be an arbitrary family of diagonalizable matrices inMn.C/. Suppose that
AB D BA for all A;B 2 F . Prove that there is an invertible matrix P such
that PAP�1 is diagonal for all A 2 F . Hint: proceed by induction on n and use
Problem 9.26 and the arguments in the solution of Problem 9.27.

12. (Functions of a diagonalizable matrix) Let A 2 Mn.F / be a diagonalizable
matrix with A D PDP�1 and D diagonal with diagonal entries dii . Let f W
F ! F be any function and let f .D/ be the diagonal matrix with .i; i/ entry
f .dii /. Define f .A/ D Pf .D/P�1.

a) Prove that f .A/ is well defined. That is, if we diagonalize A in a different
way, we will get the same matrix f .A/. (Hint: there is a polynomial p with
p.dii / D f .dii /.)

b) Prove that if A is diagonalizable over F D R and m is odd, then there is a
diagonalizable matrix B with Bm D A.

13. Let A;B 2 Mn.R/ be diagonalizable matrices such that

AB5 D B5A:

Write B D PDP�1 with P invertible and D diagonal.

a) Let C D P�1AP . Prove that CD5 D D5C .
b) Prove that CD D DC . Hint: use the injectivity of the map x ! x5 (x 2 R).
c) Deduce that AB D BA.
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14. Let A 2 Mn.C/ and let B D
�
A A

0 A

�
2 M2n.C/.

a) Prove that for all P 2 CŒX� we have

P.B/ D
�
P.A/ AP 0.A/
0 P.A/

�
:

b) Deduce that B is diagonalizable if and only if A D On.

15. Find all matrices A 2 Mn.R/ such that A5 D A2 and the trace of A equals n.
Hint: prove that all complex eigenvalues of A are equal to 1 and then that A is
diagonalizable in Mn.C/.

16. Let A;B 2 Mn.R/ be diagonalizable matrices such that A5 D B5. Prove that
A D B . Hint: use problems 13 and 9.27.

17. Let V be a finite dimensional C-vector space and let T W V ! V be a linear
transformation such that any subspace of V which is stable under T has a
complement which is stable under T . Prove that T is diagonalizable.

18. Let V be a finite dimensional vector space over some field F and let T W V !
V be a diagonalizable linear transformation on V . Let C.T / be the set of linear
transformations S W V ! V such that S ı T D T ı S .

a) Prove that a linear transformation S W V ! V belongs to C.T / if and only
if S leaves invariant each eigenspace of T .

b) Let m	 be the algebraic multiplicity of the eigenvalue 	 of T . Prove that
C.T / is an F -vector space of dimension

P
	 m

2
	, the sum being taken over

all eigenvalues 	 of T .
c) Suppose that the eigenvalues of T are pairwise distinct. Prove that

id; T; T 2; : : : ; T n�1 form a basis of C.T / as F -vector space.

9.3 Some Applications of the Previous Ideas

In this section we would like to come back to the technical result given by
Theorem 9.15 and give some further nice applications of it. First of all, we will apply
it to the resolution of linear differential equations with constant coefficients.

Consider the following classical problem in real analysis: given complex num-
bers a0; a1; : : : ; an�1 and an open interval I in R, find all smooth functions f WI!C
such that

f .n/.x/C an�1f .n�1/.x/C : : :C a1f
0.x/C a0f .x/ D 0 (9.2)

for all x 2 I . Here f .i/ is the i th derivative of f .
It follows from elementary calculus that any solution of Eq. (9.2) is smooth,

i.e., infinitely differentiable. Let V be the space of smooth functions f W I ! C.
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Note that V is an infinite dimensional vector space over C, but we had no finiteness
assumption in Theorem 9.15, so we can use it for this vector space. Consider the
linear transformation T sending a map f in V to its derivative

T W V ! V; T .f / D f 0:

Then T k.f / D f .k/ for all k � 0, thus solving Eq. (9.2) is equivalent to finding
kerP.T /, where

P.X/ D Xn C an�1Xn�1 C : : :C a0

is the characteristic polynomial of Eq. (9.2). Since we work over the complex
numbers, we can factor

P.X/ D
dY
iD1
.X � zi /

ki

for some positive integers k1; : : : ; kd and some pairwise distinct complex numbers
z1; : : : ; zd . By Theorem 9.15 we have

kerP.T / D
dM
iD1

ker.T � zi � id/ki

so it suffices to understand ker.T � z � id/k , where z is a complex number and k is a
positive integer. Let g 2 V be the map

g.x/ D ezx;

so that g0 D zg. Then for any f 2 V we have

.T � z � id/.fg/ D .fg/0 � zfg D f 0g;

thus by an immediate induction

.T � z � id/k.fg/ D f .k/g:

Take h 2 ker.T � z � id/k and let f D h=g (note that g has no complex zero). Then
the previous computation gives f .k/ D 0, that is f is a polynomial map of degree
less than k. Conversely, the same computation shows that any such f gives rise to
an element of ker.T � z � id/k (if multiplied by g). We conclude that ker.T � z � id/k

consists of the maps x 7! g.x/P.x/, with P a polynomial of degree � k � 1 with
complex coefficients, a basis of ker.T �z � id/k being given by the maps x 7! xj ezx ,
where 0 � j � k � 1.



9.3 Some Applications of the Previous Ideas 361

Putting everything together, we obtain the following:

Theorem 9.31. Let a0; : : : ; an�1 be complex numbers and write

Xn C an�1Xn�1 C : : :C a0 D
dY
iD1
.X � zi /

ki :

a) The complex-valued solutions of the differential equation

f .n/ C an�1f .n�1/ C : : :C a1f
0 C a0f D 0

are the maps of the form

x 7! f .x/ D
dX
iD1

ezi xPi .x/;

where Pi is a polynomial with complex coefficients whose degree does not exceed
ki � 1.

b) The set of complex-valued solutions of the previous differential equation is a
vector space of dimension n D k1 C : : :C kd over C, a basis being given by the
maps x 7! xj ezi x , where 1 � i � d and 0 � j < ki .

We consider now the discrete analogue of the previous problem, namely linear
recurrence sequences. Let a0; : : : ; ad�1 be complex numbers and consider the set
S of sequences .xn/n�0 of complex numbers such that

xnCd D a0xn C a1xnC1 C : : :C ad�1xnCd�1

for all n � 0.
First of all, it is clear that an element of S is uniquely determined by its first d

terms x0; : : : ; xd�1. In other words, the map

S ! Cd ; .xn/n�0 7! .x0; x1; : : : ; xd�1/;

which is clearly linear, is bijective and so an isomorphism of vector spaces. We
deduce that

dimS D d:

We would like to describe explicitly the elements of S . We proceed as above,
by working in the big space V of all sequences .xn/n�0 of complex numbers and
considering the shift map

T W V ! V; T ..xn/n�0/ D .xnC1/n�0:
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Note that T is clearly a linear map and that

T k..xn/n�0/ D .xnCk/n�0:

It follows that

S D kerP.T /; where P.X/ D Xd � ad�1Xd�1 � : : : � a0
is the characteristic polynomial of the recurrence relation. As before, factorizing

P.T / D
pY
iD1
.X � zi /

ki

we obtain using Theorem 9.15 that

S D
pM
iD1

ker.T � zi � id/ki

and so the problem is reduced to understanding the space ker.T � z � id/k where z is
a complex number and k is a positive integer.

Let us start with the case z D 0, i.e., understanding kerT k . We have
T k..xn/n�0/ D 0 if and only if xnCk D 0 for all n � 0, i.e., the sequence
x0; x1; : : : becomes the zero sequence starting with index k. A basis of kerT k is
given by the sequences x.0/; : : : ; x.k�1/, where x.j / is the sequence whose j th term
is 1 and all other terms 0.

Assume now that z ¤ 0. Let x D .xn/n�0 be any sequence in V and define a new
sequence y D .yn/n�0 by

yn D xn

zn

for n � 0. One can easily check by induction on j that

.T � z � id/j .x/ D .znCj .T � id/j .y/n/n�0;

where .T � id/j .y/n is the nth component of the sequence .T � id/j .y/. It follows
that

x 2 ker.T � z � id/k if and only if y 2 ker.T � id/k:

We are therefore reduced to understanding Ker.T � id/k . If k D 1, a sequence
x D .xn/n�0 is in Ker.T � id/k if and only if xnC1 � xn D 0 for n � 0, i.e., x is a
constant sequence. If k D 2, a sequence x D .xn/n�0 is in Ker.T � id/k if and only
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if .T � id/.x/ is a constant sequence, i.e., the sequence .xnC1 � xn/n�0 is constant,
that is x is an arithmetic sequence or equivalently

xn D anC b

for some complex numbers a; b. In general, we have

Proposition 9.32. If k is a positive integer, then ker.T � id/k is the set of sequences
of the form

xn D a0 C a1nC : : :C ak�1nk�1

with a0; : : : ; ak�1 2 C, a basis of it being given by the sequences

x.j / D .nj /n�0

for 0 � j � k � 1 (with the convention that 00 D 1).

Proof. It suffices to prove that the sequences x.0/; : : : ; x.k�1/ form a basis of
ker.T � id/k .

First, we prove that x.0/; : : : ; x.k�1/ are linearly independent. Indeed, if not, then
we can find complex numbers u0; : : : ; uk�1, not all 0, such that for all n � 0

u0 C u1nC : : :C uk�1nk�1 D 0:

The polynomial u0Cu1XC : : :Cuk�1Xk�1 is then nonzero and has infinitely many
roots, a contradiction.

Next, we prove that x.j / 2 ker.T � id/k for 0 � j � k � 1, by induction on k.
This is clear for k D 1, and assuming that it holds for k � 1, it suffices (thanks to
the inductive hypothesis and the inclusion ker.T � id/k�1 � ker.T � id/k) to check
that x.k�1/ 2 ker.T � id/k , or equivalently that

.T � id/x.k�1/ D ..nC 1/k�1 � nk�1/n�0 2 ker.T � id/k�1:

But the binomial theorem shows that ..nC1/k�1�nk�1/n�0 is a linear combination
of x.0/; : : : ; x.k�2/, which all belong to ker.T � id/k�1 by the inductive hypothesis,
hence the inductive step is proved.

To conclude, it suffices to prove that dim ker.T � id/k � k for all k, which we
do again by induction on k. This has already been seen for k D 1, and if it holds for
k � 1, then the rank-nullity theorem applied to the map

T � id W ker.T � id/k ! ker.T � id/k�1

yields

dim ker.T � id/k � dim ker.T � id/C dim ker.T � id/k�1:
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Now dim ker.T � id/ � 1 and by induction dim ker.T � id/k�1 � k � 1, hence
dim ker.T � id/k � k and the inductive step is completed. The proposition is finally
proved. ut

We can now put everything together and the previous discussion yields the
following beautiful:

Theorem 9.33. Let a0; : : : ; ad�1 be complex numbers. Consider the polynomial

P.X/ D Xd � ad�1Xd�1 � : : : � a0 D
pY
iD1
.X � zi /

ki

and assume for simplicity that a0 ¤ 0, so that all zi are nonzero.
Let S be the set of sequences .xn/n�0 of complex numbers such that

xnCd D a0xn C a1xnC1 C : : :C ad�1xnCd�1

for all n � 0.

a) A sequence .xn/n�0 is in S if and only if there are polynomials Qi with complex
coefficients, of degree not exceeding ki � 1, such that for all n

xn D Q1.n/z
n
1 C : : :CQp.n/z

n
p:

b) S is a vector space of dimension d over C, a basis being given by the sequences
.zni n

j /1�i�p;0�j<ki .

We promised that we will use the ideas developed in this chapter to give a
very natural and simple proof of the Cayley–Hamilton theorem for matrices with
complex entries. It is now time to honor our promise! We will need some topological
preliminaries, however. . .

A sequence of matrices .Ak/k�0 in Mn.C/ converges to a matrix A 2 Mn.C/
(which we denote by Ak ! A) if for all i; j 2 Œ1; n� the sequence with general
term the .i; j /-entry of Ak converges (as a sequence of complex numbers) to the
.i; j /-entry of A. Equivalently, the sequence .Ak/k�0 converges to A if for all " > 0
we have

max
1�i;j�n j.Ak/ij � Aij j < "

for all k large enough (depending on "). We leave it to the reader to check that if
Ak ! A and Bk ! B , then Ak C Bk ! A C B and Ak � Bk ! A � B . Finally,
a subset S of Mn.C/ is dense in Mn.C/ if for any matrix A 2 Mn.C/ there is a
sequence of elements of S which converges to A. That is, any matrix in Mn.C/ is
the limit of a suitable sequence of matrices in S .

The following fundamental result makes the importance of diagonalizable
matrices fairly clear.
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Theorem 9.34. The set of diagonalizable matrices in Mn.C/ is dense in Mn.C/.
In other words, any matrix A 2 Mn.C/ is the limit of a sequence of diagonalizable
matrices.

Proof. Suppose first that T is an upper-triangular matrix with entries tij . Consider
the sequence Tk of matrices, where all entries of Tk except the diagonal ones are
equal to the corresponding entries in T , and for which the diagonal entries of Tk are
ti i C 1

ki
. Clearly, limk!1 Tk D T . We claim that if k is large enough, then Tk is

diagonalizable. It suffices to check that the eigenvalues of Tk are pairwise distinct.
But since Tk is upper-triangular, its eigenvalues are the diagonal entries. Thus it
suffices to check that for k large enough the numbers t11 C 1

k
; t22 C 1

k2
; : : : ; tnn C 1

kn

are pairwise distinct, which is clear.
Now let A 2 Mn.C/ be an arbitrary matrix. By Corollary 9.5 we can write

A D PTP�1 for some invertible matrix P and some upper-triangular matrix T .
By the previous paragraph, there is a sequenceDk of diagonalizable matrices which
converges to T . Then D0

k WD PDkP
�1 is a sequence of diagonalizable matrices

which converges to A. Thus any matrix is a limit of diagonalizable matrices and the
theorem is proved. ut
Remark 9.35. a) We can restate the theorem as follows: given any matrix A D
Œaij � 2 Mn.C/ and any " > 0, we can find a diagonalizable matrix B D Œbij � 2
Mn.C/ such that

max
1�i;j�n jaij � bij j < ":

b) This result is completely false over the real numbers: the diagonalizable matrices
in Mn.R/ are not dense in Mn.R/. The reason is that the characteristic polyno-
mial of a diagonalizable matrix is split. One can prove that if limn!1An D A

andAn is diagonalizable for all n, then the characteristic polynomial ofA is split.
Conversely, if this happens, then A is trigonalizable in Mn.R/ and the proof of
the previous theorem easily yields that A is a limit of diagonalizable matrices
in Mn.R/. We deduce that the trigonalizable matrices in Mn.R/ are precisely
the limits of sequences of diagonalizable matrices in Mn.R/. In other words, a
matrix A 2 Mn.R/ is trigonalizable if and only if it can be approximated to any
precision by a diagonalizable matrix in Mn.R/.

Using the previous theorem, we can give a very simple and natural proof of the
Cayley–Hamilton theorem.

Theorem 9.36 (Cayley–Hamilton). For any matrixA 2 Mn.C/we have �A.A/ D
On, that is A is annihilated by its characteristic polynomial.

Proof. If A is diagonal, the result is clear: if a1; : : : ; an are the diagonal entries of
A, then �A.X/ D .X � a1/ : : : .X � an/ and clearly this polynomial annihilates A
(since it vanishes at a1; : : : ; an).
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Next, suppose that A is diagonalizable. Thus we can write A D PDP�1 for an
invertible matrix P and a diagonal matrix D. Since A and D are similar, we have
�A D �D . So we need to check that �D.A/ D On. But

�D.A/ D �D.PDP
�1/ D P�D.D/P

�1 D On;

the last equality being a consequence of the first paragraph and the equality
�D.PDP

�1/ D P�D.D/P
�1 being a consequence of linearity and of the equality

.PDP�1/k D PDkP�1 for all k � 0.
Finally, let A 2 Mn.C/ be arbitrary. By Theorem 9.34 there is a sequence

.Ak/k�1 of diagonalizable matrices such that Ak ! A. The coefficients of �Ak
are polynomial expressions in the coefficients of Ak and since limk!1Ak D A, it
follows that the coefficient of Xd in �Ak converges to the coefficient of Xd in �A
for all d � n. Now write

�Ak .X/ D a0.k/Ca1.k/XC : : :Can.k/X
n; �A.X/ D a0Ca1XC : : :CanX

n:

By the previous paragraph we know that

a0.k/In C a1.k/Ak C : : :C an.k/A
n
k D On

for all k. Passing to the limit and using the fact that Aik ! Ai and ai .k/ ! ai for
all i � 0 , we deduce that

�A.A/ D a0In C a1AC : : :C anA
n D

lim
k!1.a0.k/In C a1.k/Ak C : : :C an.k/A

n
k/ D On;

finishing the proof of the theorem. ut
Remark 9.37. a) The second half of the proof of the previous theorem essentially

proves that if a polynomial equation on Cn2 holds on a dense subset, then it holds
everywhere. The reader is strongly advised to convince himself that he can adapt
the argument to prove this very useful result.

b) In fact by using some deep facts from algebra one can show that the Cayley–
Hamilton theorem for the field C just proven implies the Cayley–Hamilton
theorem over an arbitrary field. One first needs to know that one can choose
n2 elements xij of C such that there is no polynomial equation with integer
coefficients (in n2 variables) satisfied by the xij (this is a generalization of a
transcendental number which is a number that satisfies no polynomial equation
with integer coefficients). Then since the Cayley–Hamilton theorem holds for the
matrix with entries xij , we conclude that each coefficient of the Cayley–Hamilton
theorem gives a polynomial identity in n2 indeterminates which holds over the
integers. Second, one needs to know that for any field F and any n2 elements aij
of F there is a morphism (a map respecting addition and multiplication) from
ZŒx11; : : : ; xnn� to F taking xij to aij . Thus each coefficient also vanishes in F
for the matrix A D .aij / and the Cayley–Hamilton theorem holds for F .
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We will end this chapter by explaining how we can combine the ideas seen so far
with Jordan’s Theorems 6.40 and 6.41 to obtain a classification up to similarity of
all matrices A 2 Mn.C/ (Theorems 6.40 and 6.41 classified nilpotent matrices up
to similarity).

Suppose that V is a finite dimensional vector space over a field F and that T W
V ! V is a trigonalizable linear transformation on V . Recall that this is equivalent
to saying that the characteristic polynomial of T is split over F . For instance, if
F D C, then any linear transformation on V is trigonalizable. Let

�T .X/ D
dY
iD1
.X � 	i /ki

be the factorization of the characteristic polynomial of T , with 	1; : : : ; 	d 2
F pairwise distinct and k1; : : : ; kd positive integers. Thus ki is the algebraic
multiplicity of the eigenvalue 	i .

By the Cayley–Hamilton theorem �T .T / D 0, thus Theorem 9.15 yields

V D
dM
iD1

ker.T � 	i � id/ki :

We call the subspace

Ci D ker.T � 	i � id/ki

the characteristic subspace of 	i . Note that the 	i -eigenspace is a subspace of Ci
and that the previous relation can be written as

V D
dM
iD1

Ci :

Since T commutes with .T � 	i � id/ki , T leaves invariant Ci D ker.T � 	i � id/ki ,
thus each characteristic subspace Ci is stable under T .

Let Ti be the restriction of T � 	i � id to Ci . By definition, T kii D 0, thus Ti is a
nilpotent transformation on Ci , of index not exceeding ki . Thus Ti is classified up
to similarity by a Jordan matrix, that is there is a basis Bi of Ci in which the matrix
of Ti is

2
6664

Jk1;i 0 : : : 0

0 Jk2;i : : : 0
:::

:::
: : :

:::

0 0 : : : Jkri ;i

3
7775
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for a sequence k1;i � : : : � kri ;i of positive integers adding up to dimCi . We recall
that

Jk D

2
666664

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

3
777775

is the Jordan block of size k.

Definition 9.38. If 	 2 F , we let

Jn.	/ D 	 � In C Jn 2 Mn.F /

the Jordan block of size n associated with 	.

The previous discussion naturally leads to

Theorem 9.39 (Jordan). Let T W V ! V be a trigonalizable linear transforma-
tion on a finite dimensional vector space. Then there is a basis of V in which the
matrix of T is of the form

2
6664

Jk1.	1/ 0 : : : 0

0 Jk2.	2/ : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd .	d /

3
7775

for some positive integers k1; : : : ; kd adding up to n and some 	1; : : : ; 	d 2 F .

Proof. With notations as above, we found a basis Bi of Ci in which the matrix of
the restriction of T to Ci is JdimCi .	i /. Patching these bases Bi yields a basis of V
in which the matrix of T has the desired form. ut

We can restate the previous theorem in terms of matrices:

Theorem 9.40 (Jordan). Any trigonalizable matrix A 2 Mn.F / is similar to a
matrix of the form

2
6664

Jk1.	1/ 0 : : : 0

0 Jk2.	2/ : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd .	d /

3
7775

for some positive integers k1; : : : ; kd adding up to n and some 	1; : : : ; 	d 2 F .
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The story isn’t quite finished: we would like to know when two block-diagonal
matrices as in the theorem are similar, in other words we would like to know if
	1; : : : ; 	d and k1; : : : ; kd are determined by the similarity class of the matrix

2
6664

Jk1.	1/ 0 : : : 0

0 Jk2.	2/ : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd .	d /

3
7775 : (?)

Suppose that A is a matrix similar to the matrix (?). Then the characteristic
polynomial of A is

�A.X/ D
dY
iD1

�Jki .	i /.X/:

Now, since Jn is nilpotent we have �Jn.X/ D Xn and so

�Jn.	/.X/ D .X � 	/n:
It follows that

�A.X/ D
dY
iD1
.X � 	i /ki

and so necessarily 	1; : : : ; 	d are all eigenvalues ofA. Note that we did not assume
that 	1; : : : ; 	d are pairwise distinct, thus we cannot conclude from the previous
equality that k1; : : : ; kd are the algebraic multiplicities of the eigenvalues of A. This
is not true in general: several Jordan blocks corresponding to a given eigenvalue
may appear. The problem of uniqueness is completely solved by the following:

Theorem 9.41. Suppose that a matrix A 2 Mn.F / is similar to
2
6664

Jk1.	1/ 0 : : : 0

0 Jk2.	2/ : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd .	d /

3
7775

for some positive integers k1; : : : ; kd adding up to n and some 	1; : : : ; 	d 2 F .
Then

a) Each 	i is an eigenvalue of A.
b) For each eigenvalue 	 of A and each positive integer m, the number of Jordan

blocks Jm.	/ among Jk1.	1/; : : : ; Jkd .	d / is

Nm.	/ D rank.A � 	In/mC1 � 2rank.A � 	In/m C rank.A � 	In/m�1

and depends only on the similarity class of A.



370 9 Diagonalizability

Proof. We have already seen part a). The proof of part b) is very similar to the
solution of Problem 6.43. More precisely, let B D A � 	In and observe that Bm is

similar to

2
6664

.Jk1.	1/ � 	Ik1/m 0 : : : 0

0 .Jk2.	2/ � 	Ik2/m : : : 0
:::

:::
: : :

:::

0 0 : : : .Jkd .	d / � 	Ikd /m

3
7775, thus

rank.Bm/ D
dX
iD1

rank.Jki .	i / � 	Iki /m:

Now, the rank of .Jn.	/ � �In/m is

• n if 	 ¤ �, as in this case

Jn.	/ � �In D Jn C .	 � �/In
is invertible,

• n �m for 	 D � and m � n, as follows from Problem 6.42.
• 0 for 	 D � and m > n, as J nn D On.

Hence, if Nm.	/ is the number of Jordan blocks Jm.	/ among Jk1.	1/; : : : ; Jkd
.	d /, then

rank.Bm/ D
X
	iD	
ki�m

.ki �m/C
X
	i¤	

ki ;

then subtracting these relations for m � 1 and m yields

rank.Bm�1/ � rank.Bm/ D
X
	iD	
ki�m

1

and finally

rank.Bm�1/ � 2rank.Bm/C rank.BmC1/ D .rank.Bm�1/ � rank.Bm//�
.rank.Bm/ � rank.BmC1// D

X
	iD	
kiDm

1 D Nm.	/;

as desired. ut
Note that if an eigenvalue 	 has algebraic multiplicity 1, then there is a single

Jordan block attached to 	, and it has size 1.
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Example 9.42. Consider the matrix

A D

2
666664

1 0 0 0 2

0 0 1 0 0

0 0 0 0 0

0 1 0 0 0

�1 0 0 0 �2

3
777775
:

We compute �A.X/ by expanding det.XI5 � A/ with respect to the third row
and obtain (using again an expansion with respect to the second row in the new
determinant)

�A.X/ D X

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X � 1 0 0 �2
0 X 0 0

0 �1 X 0

1 0 0 X C 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D X2

ˇ̌
ˇ̌
ˇ̌
X � 1 0 2

0 X 0

1 0 X C 2

ˇ̌
ˇ̌
ˇ̌

D X3

ˇ̌
ˇ̌X � 1 �2

1 X C 2

ˇ̌
ˇ̌ D X4.X C 1/:

The eigenvalue �1 has algebraic multiplicity 1, thus there is a single Jordan
block associated with this eigenvalue, of size 1. Let us deal now with the eigenvalue
0, which has algebraic multiplicity 4. LetNm be the number of Jordan blocks of size
m associated with this eigenvalue. By the previous theorem

N1 D rank.A2/ � 2rank.A/C 5;

N2 D rank.A3/ � 2rank.A2/C rank.A/

and so on. One easily checks that A has rank 3. Next, one computes

A2 D

2
666664

�1 0 0 0 �2
0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1 0 0 0 2

3
777775
; A3 D

2
666664

1 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�1 0 0 0 �2

3
777775
:

Note that A2 has rank 2 (it is apparent that a basis of the space spanned by its rows
is given by the first and fourth row) and A3 has rank 1. Thus

N1 D 2 � 2 � 3C 5 D 1;

thus there is one Jordan block of size 1 and

N2 D 1 � 2 � 2C 3 D 0;
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thus there is no Jordan block of size 2. Since the sum of the sizes of the Jordan
blocks associated with the eigenvalue 0 is 4, and since we already know that there
is a block of size 1 and no block of size 2, we deduce that there is one block of size
3 and so the Jordan canonical form of A is

2
666664

�1 0 0 0 0
0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

3
777775
:

9.3.1 Problems for Practice

1. Given a real number ! and two real numbers a; b, find all twice differentiable
functions f W R ! R satisfying f .0/ D a, f 0.0/ D b and

f
00 C !2f D 0

2. Find all smooth functions f W R ! R such that f .0/D1, f 0.0/D0, f 00.0/D0
and

f
000 C f

00 C f 0 C f D 0:

3. Let V be a finite dimensional F -vector space and let T W V ! V be a linear
transformation such that T 3 D id.

a) Prove that V D Ker.T � id/˚ Ker.T 2 C T C id/.
b) Prove that

rank.T � id/ D dim Ker.T 2 C T C id/:

c) Deduce that

V D Ker.T � id/˚ Im.T � id/:

4. Describe the sequences .xn/n�0 of complex numbers such that

xnC4 C xnC3 � xnC1 � xn D 0

for all n � 0.
5. Find the Jordan canonical form of the matrix
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A D
2
4
1 0 �3
1 �1 �6

�1 2 5

3
5 :

6. Compute the Jordan canonical form of the matrix

A D

2
664

1 1 0 0

0 1 2 0

0 0 1 0

0 0 0 2

3
775 :

7. Consider the matrix

A D

2
66666664

0 1 1 0 0 0

0 0 0 2 1 0

0 0 0 0 1 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777775
:

a) Prove that A3 D O3 and find the characteristic polynomial of A.
b) Find the Jordan canonical form of A.

8. What are the possible Jordan forms of a matrix whose characteristic polynomial
is .X � 1/.X � 2/2?

9. Consider a matrix A2M6.C/ of rank 4 whose minimal polynomial is X.X � 1/
.X � 2/2.
a) What are the eigenvalues of A?
b) Is A diagonalizable?
c) What are the possible forms of the Jordan canonical form of A?

10. Prove that any matrix similar to a matrix of the form

2
6664

Jk1.	1/ 0 : : : 0

0 Jk2.	2/ : : : 0
:::

:::
: : :

:::

0 0 : : : Jkd .	d /

3
7775

is trigonalizable (this is a converse to Jordan’s theorem).
11. a) What is the minimal polynomial of Jn.	/ when 	 2 C and n � 1?

b) Explain how we can compute the minimal polynomial of a matrix in terms
of its Jordan canonical form.
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12. Prove that two matrices A;B 2 Mn.C/ are similar if and only if P.A/ and
P.B/ have the same rank for all polynomials P 2 CŒX�.

13. Use Jordan’s theorem to prove that any matrix A 2 Mn.C/ is similar to its
transpose.

14. a) Prove that if A 2 Mn.C/ is similar to 2A, then A is nilpotent.
b) Use Jordan’s theorem to prove that if A 2 Mn.C/ is nilpotent then A is

similar to 2A.
15. Let T W V ! V be a trigonalizable linear transformation on a finite dimensional

vector space V over a field F . Let

�T .T / D
dY
iD1
.X � 	i /ki

be the factorization of its characteristic polynomial and let

Ci D ker.T � 	i � id/ki

be the characteristic subspace of 	i .

a) Prove that ker.T � 	i � id/k D Ci for all k � ki . Hint: use Theorem 9.15 to
show that V D ker.T � 	i � id/k ˚ ˚j¤iCj , then take dimensions.

b) Prove that

dimCi D ki :

Hint: consider the matrix of T with respect to a basis of V obtained by
patching a basis of Ci and a basis of a complementary subspace of Ci . What
is its characteristic polynomial?

c) Prove that the smallest positive integer k for which

ker.T � 	i � id/k D Ci

is the multiplicity of 	i as root of the minimal polynomial of T .

16. (The Dunford–Jordan decomposition) a) Using Jordan’s theorem, prove that any
trigonalizable linear transformation T W V ! V on a finite dimensional vector
space is the sum of a diagonalizable and of a nilpotent transformation, the two
transformations commuting with each other.

b) State the result obtained in a) in terms of matrices.
b) Conversely, prove the sum of a nilpotent and of a diagonalizable transforma-

tions which commute with each other is trigonalizable.

17. (More on the Dunford–Jordan decomposition) Let T W V ! V be a
trigonalizable linear transformation with

�T .T / D
dY
iD1
.X � 	i /ki
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as in Problem 15. Let Ci be the characteristic subspace of the eigenvalue 	i .
We define the 	i -spectral projection �	i as the projection of V onto Ci along
˚j¤iCj . Thus by definition if v 2 V is written as v1 C : : :C vd with vi 2 Ci ,
then

�	i .v/ D ci :

a) Use the proof of Theorem 9.15 to show that

�	i 2 F ŒT �:

b) Let

D D
dX
iD1

	i � �	i :

Prove that D is a diagonalizable linear transformation on V, that NDT�D
is nilpotent and N ı D D D ı N . Thus D;N give a Dunford–Jordan
decomposition of T .

c) Prove that D and N are in F ŒT �.
d) Deduce from part c) that if D0 is diagonalizable, N 0 is nilpotent, D0 and N 0

commute and D0 C N 0 D T , then D0 D D and N 0 D N . In other words,
the pair .D;N / in the Jordan–Dunford decomposition is unique.

e) Find the Dunford–Jordan decomposition of the matrices

A D
2
4

�1 1 0

0 �1 1

0 0 �1

3
5 B D

2
4
1 1 0

0 1 1

0 0 1

3
5 ; C D

2
4
1 0 �3
1 �1 �6

�1 2 5

3
5 :



Chapter 10
Forms

Abstract This chapter has a strong geometrical flavor. It starts with a discussion
of bilinear and quadratic forms and uses this to introduce Euclidean spaces and
establish their main geometric properties. This is in turn applied to linear algebra,
leading to a classification of symmetric and orthogonal matrices with real entries.

Keywords Quadratic form • Bilinear form • Polar form • Euclidean space
• Inner-product • Positive-definite matrix • Orthogonal projection
• Gram–Schmidt algorithm

The goal of this last chapter is to make a rather detailed study of Euclidean spaces
over the real numbers. Euclidean spaces make the link between linear algebra,
geometry and analysis. They are therefore of fundamental importance. The geo-
metric insight they offer also reveals unexpected and deep properties of symmetric
and orthogonal matrices. Thus on the one hand proving the fundamental theorems
concerning Euclidean spaces will use essentially everything we have developed so
far, so this is also an opportunity to see real applications of linear algebra, on the
other hand the geometry of Euclidean spaces helps discovering and proving many
interesting properties of matrices! Among the important topics discussed in this
chapter, we mention: basic properties of bilinear and quadratic forms, orthogonality
and inequalities in Euclidean spaces, orthogonal projections and their applications
to minimization problems, orthogonal bases and their applications, for instance
to Fourier analysis, the classification of isometries (i.e., linear transformations
preserving distance) of an Euclidean space, the classification of symmetric matrices,
and its applications to matrix inequalities, norms, etc. In all this chapter we work
with the field F D R of real numbers. Many exercises (left to the reader) are devoted
to the analogous theory over the field of complex numbers.

© Springer Science+Business Media New York 2014
T. Andreescu, Essential Linear Algebra with Applications: A Problem-Solving
Approach, DOI 10.1007/978-0-8176-4636-3__10
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10.1 Bilinear and Quadratic Forms

We have already introduced the notion of d -linear form on a vector space in the
chapter devoted to determinants. We will be concerned with a special case of this
notion, and for the reader’s convenience we will give the detailed definition in this
special case:

Definition 10.1. Let V be a vector space over R. A bilinear form on V is a map
b W V � V ! R such that

• For all x 2 V the map b.x; �/ W V ! R sending v to b.x; v/ is linear.
• For all y 2 V the map b.�; y/ W V ! R sending v to b.v; y/ is linear.

The bilinear form b is called symmetric if b.x; y/ D b.y; x/ for all x; y 2 V .

Remark 10.2. If x1; : : : ; xn 2 V; y1; : : : ; ym 2 V and a1; : : : ; an; c1; : : : ; cm 2 R,
then for any bilinear form b on V we have

b.

nX
iD1

aixi ;

mX
jD1

cj yj / D
nX
iD1

mX
jD1

ai cj b.xi ; yj / (10.1)

In particular, if V is finite dimensional and if e1; : : : ; en is a basis of V , then b is
uniquely determined by its values at the pairs .ei ; ej / with 1 � i; j � n (i.e., if
b; b0 are bilinear forms on V and b.ei ; ej / D b0.ei ; ej / for all 1 � i; j � n, then
b D b0).

Example 10.3. a) If a1; : : : ; an are real numbers and V D Rn, then setting for x D
.x1; : : : ; xn/ and y D .y1; : : : ; yn/

b.x; y/ D a1x1y1 C : : :C anxnyn

yields a symmetric bilinear form on V . The choice a1 D : : : D an D 1 is
particularly important and in this case we call b the canonical inner product
on Rn.

b) Consider the space V of continuous, real-valued functions on Œ�1; 1�. Then

b.f; g/ D
Z 1

�1
f .x/g.x/dx

is a symmetric bilinear form on V , as the reader can easily check.
c) Let V be the space Mn.R/ of n � n matrices with real entries, and consider the

map b W V � V ! R defined by

b.A;B/ D Tr.AB/:
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Then b is a symmetric bilinear form on V . A slightly different and more
commonly used variant is

b0.A;B/ D Tr.A tB/:

The reason why b0 is preferred to b is that one can easily check that if A D Œaij �

and B D Œbij �, then

b0.A;B/ D
nX

i;jD1
aij bij ;

that is if we identify V D Rn2 via the canonical basis of V , then b0 becomes
identified with the canonical inner product on Rn2 .

d) Let V be the space of sequences .xn/n�1 of real numbers for which
P

n�1 x2n is
a convergent series. Define

b.x; y/ D
X
n�1

xnyn

for x D .xn/n�1 and y D .yn/n�1 in V . Note that the series
P

n�1 xnyn
converges since it converges absolutely. Indeed, we have .jxnj � jynj/2 � 0

which can be written as

jxnynj � x2n C y2n
2

and by assumption the series with general term x2nCy2n
2

converges. One can easily
check that b is a symmetric bilinear form on V .

e) Let V be the space of polynomials with real coefficients and, for P;Q 2 V ,
define

b.P;Q/ D
X
n�1

P.n/Q.n/

2n
:

Note that the series converges absolutely, since nk=2n D O.1=n2/ for all k � 1.
Then b is a symmetric bilinear form.

It follows easily by unwinding definitions that the set of all bilinear forms on V is
naturally a vector subspace of the vector space of all maps V � V ! R. Moreover,
the subset of symmetric bilinear forms is a subspace of the space of all bilinear
forms on V . To any bilinear form b one can attach a map of one variable

q W V ! R; q.x/ D b.x; x/:
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This is called the quadratic form attached to b. Let us formally define quadratic
forms:

Definition 10.4. A quadratic form on V is a map q W V ! R for which there is a
bilinear form b W V � V ! R such that q.x/ D b.x; x/ for all x 2 V .

A natural question is whether the bilinear form b attached to a quadratic form
as in the previous definition is uniquely determined by the quadratic form. So the
question is whether we can have two different bilinear forms b1; b2 such that

b1.x; x/ D b2.x; x/

for all x. Stated differently, is there a nonzero bilinear form b such that b.x; x/ D 0

for all x 2 V ? The answer is yes: consider the bilinear form b W R2 � R2 ! R
defined by

b..x1; y1/; .x2; y2// D x1y2 � x2y1:
Clearly this is a nonzero bilinear form and b.x; x/ D 0 for all x. On the other hand,
if we further impose that b should be symmetric, then we have uniqueness, as
shows the following fundamental:

Theorem 10.5. For any quadratic form q W V ! R there is a unique symmetric
bilinear form b W V � V ! R such that q.x/ D b.x; x/ for all x 2 V . It is
determined by the polarization identity

b.x; y/ D q.x C y/ � q.x/ � q.y/
2

:

Proof. Fix a quadratic form q W V ! R. By hypothesis we can find a bilinear (but
not necessarily symmetric) form B such that q.x/ D B.x; x/ for all x 2 V . Define
a map b W V � V ! R by

b.x; y/ D q.x C y/ � q.x/ � q.y/
2

:

We claim that b is a symmetric bilinear form and b.x; x/ D q.x/. By definition,
we have

b.x; y/ D B.x C y; x C y/ � B.x; x/ � B.y; y/
2

:

Since B is bilinear, we can write

B.x C y; x C y/ D B.x; x/C B.x; y/C B.y; x/C B.y; y/:

Thus

b.x; y/ D B.x; y/C B.y; x/

2
:



10.1 Bilinear and Quadratic Forms 381

This makes it clear that b.x; x/ D B.x; x/ D q.x/ and that b.x; y/ D b.y; x/ for
all x; y 2 V . It remains to see that b is bilinear. But for fixed x the maps B.x; �/ and
B.�; x/ are linear (since B is bilinear), thus so is the map

b.x; �/ D B.x; �/C B.�; x/
2

:

Similarly, b.�; x/ is linear for all x 2 V , establishing that b is bilinear and proving
the claim.

Let us now show that b is unique. If b0 is another bilinear symmetric form such
that b0.x; x/ D q.x/ for all x, then a computation as in the previous paragraph gives

q.x C y/ D b0.x C y; x C y/ D

b0.x; x/C 2b0.x; y/C b0.y; y/ D q.x/C q.y/C 2b0.x; y/;

thus necessarily b0.x; y/ D b.x; y/ for all x; y, that is b0 D b. ut
Definition 10.6. If b is attached to q as in the previous theorem, we call b the polar
form of q.

Example 10.7. a) Consider the space V D Rn and the map q W Rn ! R defined by

q.x1; : : : ; xn/ D x21 C : : :C x2n:

Then q is a quadratic form and its polar form is

b..x1; : : : ; xn/; .y1; : : : ; yn// D x1y1 C : : :C xnyn:

Indeed, let us compute for x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/

q.x C y/ � q.x/ � q.y/
2

D
Pn

iD1.xi C yi /
2 �Pn

iD1 x2i �Pn
iD1 y2i

2

D
nX
iD1

xiyi :

The map .x; y/ 7! Pn
iD1 xiyi being bilinear and symmetric, it follows on the

one hand that q is a quadratic form and on the other hand that b is its polar form.
b) Consider the space V of continuous real-valued maps on Œ0; 1� and define q W
V ! R by

q.f / D
Z 1

0

f .x/2dx:



382 10 Forms

To see that q is a quadratic form and to find the polar form of f , we compute

q.fCg/ � q.f / � q.g/
2

D
R 1
0
.f .x/Cg.x//2dx � R 1

0
f .x/2dx� R 1

0
g.x/2dx

2

D
Z 1

0

f .x/g.x/dx:

Since the map b defined by b.f; g/ D R 1
0
f .x/g.x/dx is bilinear and symmetric,

it follows that q is a quadratic form with polar form b.
c) As a counter-example, consider the map q W R2 ! R defined by

q.x; y/ D x2 C 2y2 C 3x:

We claim that q is not a quadratic form. Indeed, otherwise letting b its polar form
we would have

b..x; y/; .x; y// D x2 C 2y2 C 3x

for all x; y 2 R2. Replacing x by �x and y by �y and taking into account that
b is bilinear, we obtain

x2 C 2y2 C 3x D b..x; y/; .x; y// D b.�.x; y/;�.x; y// D

b..�x;�y/; .�x;�y// D x2 C 2y2 � 3x;

thus 6x D 0 and this for all x 2 R, which is plainly absurd.

The previous theorem establishes therefore a bijection between quadratic
forms and symmetric bilinear forms: any symmetric bilinear form b determines
a quadratic form x 7! b.x; x/, and any quadratic form determines a symmetric
bilinear form, namely its polar form.

Problem 10.8. Let q be a quadratic form on V , with polar form b.

a) Prove that for all x; y 2 V

b.x; y/ D q.x C y/ � q.x � y/
4

:

b) (Parallelogram law) Prove that for all x; y 2 V

q.x C y/C q.x � y/ D 2.q.x/C q.y//:
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c) (Pythagorean theorem) Prove that for all x; y 2 V we have b.x; y/ D 0 if and
only if

q.x C y/ D q.x/C q.y/:

Solution. a) By the polarization identity we have

q.x C y/ D q.x/C q.y/C 2b.x; y/

and (noting that q.�y/ D q.y/ and b.x;�y/ D �b.x; y/)
q.x � y/ D q.x/C q.y/ � 2b.x; y/:

Subtracting the two previous relations yields the desired result.
b) It suffices to add the two relations established in the proof of part a).
c) This follows directly from the polarization identity. ut

Let us try to understand the quadratic forms on Rn. If q is a quadratic form on
Rn with polar form b, and if e1; : : : ; en is the canonical basis of Rn, then for all
x D x1e1 C : : :C xnen 2 Rn we have, using Remark 10.2

q.x1; : : : ; xn/ D b.x1e1 C : : :C xnen; x1e1 C : : :C xnen/ D
nX

i;jD1
b.ei ; ej /xixj D

nX
i;jD1

aij xixj ;

with aij D b.ei ; ej /. Notice that since b.ei ; ej / D b.ej ; ei /, we have aij D aji ,
thus any quadratic form q on Rn can be written

q.x1; : : : ; xn/ D
nX

i;jD1
aij xixj D

nX
iD1

ai ix
2
i C 2

X
1�i<j�n

aij xixj ;

with A D Œaij � a symmetric matrix.
Conversely, if A D Œaij � is any matrix in Mn.R/ (not necessarily symmetric),

then the map

q W Rn ! R; q.x1; : : : ; xn/ D
nX

i;jD1
aij xixj

is a quadratic form on Rn, with polar form

b..x1; : : : ; xn/; .x
0
1; : : : ; x

0
n// D

nX
i;jD1

aij .xix
0
j C xj x

0
i /

2
:
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We leave this as an easy exercise for the reader. Notice that

q.x/ D
nX

i;jD1
aij xixj D

nX
i;jD1

bij xixj ;

with

bij D aij C aji

2
;

and the matrix B D Œbij � is symmetric.
There is another natural way of constructing quadratic forms on Rn: pick real

numbers ˛1; : : : ; ˛r and linear forms l1; : : : ; lr on Rn, and set

q.x/ D ˛1l1.x/
2 C : : :C ˛r lr .x/

2:

Then q is a quadratic form on Rn, with associated polar form given by

b.x; y/ D
rX
iD1

˛i li .x/li .y/;

as the reader can easily check. The following amazing result due to Gauss says that
we obtain in this way all quadratic forms on Rn. Moreover, Gauss described an
algorithm which allows us to write a given quadratic form q in the form

q D ˛1l
2
1 C : : :C ˛r l

2
r ;

with l1; : : : ; lr linearly independent linear forms. This algorithm will be described
in the (long) proof of the following theorem.

Theorem 10.9 (Gauss). Let q be a quadratic form on V D Rn. There are real
numbers ˛1; : : : ; ˛r and linearly independent linear forms l1; : : : ; lr 2 V � such that
for all x 2 V

q.x/ D ˛1l1.x/
2 C : : :C ˛r lr .x/

2:

Before giving the proof of the theorem, let us make some further remarks on the
statement. Of course, we may assume that ˛i ¤ 0 for 1 � i � r , otherwise simply
delete the corresponding term ˛i l

2
i . Let I be the set of those i for which ˛i > 0 and

let J be the set of those i for which ˛i < 0. Then

q.x/ D
X
i2I
.
p
˛i li /

2.x/ �
X
i2J
.
p�˛i li /2.x/
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and defining

Li D p
˛i li if i 2 I and Li D p�˛i li if i 2 J;

we obtain

q D
X
i2I

L2i �
X
i2J

L2i :

Moreover, since l1; : : : ; lr are linearly independent, so are L1; : : : ; Lr . In other
words, we can refine the previous theorem by asking that ˛i 2 f�1; 1g for all i .
One can prove that the number of elements of I , J , as well as the number r are
uniquely determined by q (this is Sylvester’s inertia theorem). The pair .jI j; jJ j/
consisting in the number of elements of I and J is called the signature of q. We
call jI j C jJ j D r the rank of q (we will see another interpretation of r later on,
which will also explain its name).

We will start now the algorithmic proof of Theorem 10.9, by induction on n. For
n D 1 we can write q.x1/ D ˛1x

2
1 , where x1 2 R and ˛1 D q.1/ 2 R, so the result

holds.
Assume now that the result holds for n � 1. We can write

q.x1; : : : ; xn/ D
nX
iD1

ai ix
2
i C 2

X
1�i<j�n

aij xixj

for some scalars aij 2 R. We will discuss two cases:

• There is i 2 f1; 2; : : : ; ng such that aii ¤ 0. Without loss of generality, we may
assume that ann ¤ 0. We consider q.x1; : : : ; xn/ as a quadratic polynomial in the
variable xn and complete the square, to obtain

q.x1; : : : ; xn/ D annx
2
nC2

 
n�1X
iD1

ainxi

!
xnC

n�1X
iD1

ai ix
2
i C2

X
1�i<j�n�1

aij xixj D

ann

 
xn C

n�1X
iD1

ain

ann
xi

!2
�ann

 
n�1X
iD1

ain

ann
xi

!2
C

n�1X
iD1

ai ix
2
i C2

X
1�i<j�n�1

aij xixj

D ann

 
xn C

n�1X
iD1

ain

ann
xi

!2
C q0.x1; : : : ; xn�1/;

where q0 is a quadratic form on Rn�1. By induction, we can write

q0.x1; : : : ; xn�1/ D
rX
iD1

˛iLi .x1; : : : ; xn�1/2
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for some linearly independent linear forms Li in x1; : : : ; xn�1. Defining

lrC1.x1; : : : ; xn/ D xn C
n�1X
iD1

ain

ann
xi ; ˛rC1 D ann

and

li .x1; : : : ; xn/ D Li.x1; : : : ; xn�1/

for 1 � i � r we obtain

q.x/ D
rC1X
iD1

˛i li .x/
2

for all x 2 V and the inductive step is finished (we leave it to the reader to check
that l1; : : : ; lrC1 are linearly independent).

• All aii D 0. If all aij D 0, then q D 0 and the result is clear. If not, without loss
of generality we may assume that an�1;n ¤ 0. We use the identity

axy C bx C cy D a

�
xy C b

a
x C c

a
y

�
D a

�
x C c

a

��
y C b

a

�
� bc

a

to rewrite

q.x1; : : : ; xn/ D 2an�1;nxn�1xn C 2

n�2X
iD1

ainxixn

C2
n�2X
iD1

ai;n�1xixn�1 C 2
X

1�i<j�n�2
aij xixj D

2an�1;n

 
xn�1 C

n�2X
iD1

ai;n

an�1;n
xi

!
�
 
xn C

n�2X
iD1

ai;n�1
an�1;n

xi

!
C q0.x1; : : : ; xn�2/

for some quadratic form q0 on Rn�2. Applying the inductive hypothesis, we can
write

q0.x1; : : : ; xn�2/ D
rX
iD1

˛iLi .x1; : : : ; xn�2/2

for some linearly independent linear forms Li of x1; : : : ; xn�2, as well as some
scalars ˛i . Using the identity
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ab D .aC b/2 � .a � b/2
4

;

we obtain

2an�1;n

 
xn�1 C

n�2X
iD1

ai;n

an�1;n
xi

!
�
 
xn C

n�2X
iD1

ai;n�1
an�1;n

xi

!
D

an�1;n
2

.lrC1.x1; : : : ; xn/2 � lrC2.x1; : : : ; xn/2/;

where

lrC1.x1; : : : ; xn/ D xn�1 C xn C
n�2X
iD1

ai;n C ai;n�1
an�1;n

xi ;

and

lrC2.x1; : : : ; xn/ D xn�1 � xn C
n�2X
iD1

ai;n � ai;n�1
an�1;n

xi :

All in all, setting

˛rC1 D �˛rC2 D an�1;n
2

we have

q.x/ D
rC2X
iD1

˛i li .x/
2:

We leave it to the reader to check that l1; : : : ; lrC2 are linearly independent. This
finishes the proof of Theorem 10.9.

Problem 10.10. Implement the algorithm described in the previous proof in each
of the following cases:

a) q is the quadratic form on R3 defined by

q.x; y; z/ D xy C yz C zx:

b) q is the quadratic form on R3 defined by

q.x; y; z/ D .x � y/2 C .y � z/2 C .z � x/2:
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Solution. a) With the notations of the previous proof, we have aii D 0 for 1 � i �
3, thus we are in the second case of the above proof. We focus on the nonzero
term yz and we write

q.x; y; z/ D .y C x/.z C x/ � x2:

Next, using the identity

ab D .aC b/2 � .a � b/2
4

we obtain

.y C x/.z C x/ D .2x C y C z/2 � .y � z/2

4
:

We conclude that

q.x; y; z/ D 1

4
.2x C y C z/2 � 1

4
.y � z/2 � x2

and one easily checks that the linear forms 2x C y C z; y � z and x are linearly
independent.

b) It is tempting to say that q is already written in the desired form, but the problem
is that the linear forms x � y, y � z, and z � x are not linearly independent (they
add up to 0). Therefore we write (by brutal expansion)

q.x; y; z/ D .x � y/2 C .y � z/2 C .z � x/2 D

2.x2 C y2 C z2 � xy � yz � zx/:

We are in the first case of the previous proof, so we focus on the term x2 and try
to complete the square:

q.x; y; z/ D 2

�
x � y C z

2

�2
� .y C z/2

2
C 2y2 C 2z2 � 2yz D

2

�
x � y C z

2

�2
C 3y2 C 3z2 � 6yz

2
D 2

�
x � y C z

2

�2
C 3

2
.y � z/2

and we easily check that the linear forms x � yCz
2

and y � z are linearly
independent. ut
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10.1.1 Problems for Practice

1. Prove that the map

b W R2 � R2 ! R; b..x; y/; .z; t // D xt � yz

is a bilinear form on R2. Describe the associated quadratic form.
2. Consider the map q W R4 ! R,

q.x; y; z; t / D xy C 2z2 C tx � t 2:

a) Prove that q is a quadratic form and find its polar form.
b) Implement Gauss’ algorithm and write q in the form

Pr
iD1 ˛i l2i with real

numbers ˛i and linearly independent linear forms li .
c) What is the signature of q?

3. Use Gauss’ algorithm to write each of the following quadratic forms asPr
iD1 ˛i l2i with linearly independent linear forms l1; : : : ; lr and scalars

˛1; : : : ; ˛r .

a) q.x; y; z/ D .x � 2y C z/2 � .x � y/2 C z2.
b) q.x; y; z/ D .x � 2y C z/2 C .y � 2z C x/2 � .z � 2x C y/2.
c) q.x; y; z; t / D xy C yz C zt C tx.
d) q.x; y; z/ D x2 C xy C yz C zx.

For each of these quadratic forms, find its signature and its rank.
4. a) If q is a quadratic form on Rn, is it true that fx 2 Rnjq.x/ D 0g is a vector

subspace of Rn?
b) Describe geometrically fx 2 Rnjq.x/ D 0g if q.x; y/ D x2 � 2y2,

if q.x; y/ D x2 C y2 and finally if q.x; y; z/ D x2 C y2 � z2.
5. Which of the following maps are quadratic forms:

a) q W R3 ! R, q.x; y; z/ D x2 C y3 C z2.
b) q W R4 ! R, q.x; y; z; t / D xt � z2 C zt � y.
c) q W R4 ! R, q.x; y; z; t / D .x C z/.y C t /?

6. Let V be the space of continuous real-valued maps on Œ�1; 1� and consider the
map b W V � V ! R defined by

b.f; g/ D
Z 1

�1
.1 � t 2/f .t/g.t/dt C f 0.1/g0.1/:

a) Prove that b is a symmetric bilinear form on V .
b) If q is the associated quadratic form, find those f 2 V for which q.f / D 0.
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7. Let b be a bilinear form on a vector space V over R. The kernel of b is the set
ker b defined by

ker b D fx 2 V jb.x; y/ D 0 8y 2 V g:

a) Prove that ker b is a vector subspace of V .
b) Find the kernel of the polar form of the quadratic form q.x; y; z/ D xy C
yz C zx on R3.

8. If b is a bilinear form on a vector space V over R, is it true that f.x; y/ 2
V � V jb.x; y/ D 0g is a vector subspace of V � V ?

9. Let V D Mn.R/ and consider the map q W V ! V defined by

q.A/ D Tr. tAA/C .Tr.A//2:

Prove that q is a quadratic form on V and describe its polar form.
One can define bilinear forms over C, but they do not have all the properties

one desires. Instead it is standard to take sesquilinear forms (sesqui- meaning
one-and-a-half).

Definition. Let V be a vector space over C. A sesquilinear form on V is a map
' W V � V ! C such that

i) For all x 2 V the map '.x; �/ W V ! C sending y to '.x; y/ is linear.
ii) For all y 2 V the map '.�; y/ W V ! C sending x to the complex conjugate
'.x; y/ of '.x; y/ 2 C is linear.

The sesquilinear form ' is called conjugate symmetric or hermitian if
'.x; y/ D '.y; x/ for all x; y 2 V .

In the next problems V is a C-vector space.
10. Prove that the set S.V / of sesquilinear forms on V is a vector subspace of the

C-vector space of all maps  W V � V ! C.
11. Prove that the set H.V / of hermitian sesquilinear forms on V is a vector

subspace of the R-vector space S.V /. Is H.V / a C-vector subspace of S.V /?
12. Prove that we have a direct-sum decomposition of R-vector spaces

S.V / D H.V /˚ iH.V /:

13. Let ' be a hermitian sesquilinear form on V and consider the map ˚ W V ! C
defined by

˚.x/ D '.x; x/:

A map ˚ W V ! C of this form is called a hermitian quadratic form and if
˚.x/ D '.x; x/ for all x 2 V , we call the hermitian sesquilinear form ' the
polar form of ˚ .
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a) Prove that ˚.x/ 2 R for all x 2 V .
b) Prove that ˚.ax/ D jaj2˚.x/ for all a 2 C and x 2 V .
c) Prove that for all x; y 2 V we have

˚.x C y/ D ˚.x/C ˚.y/C 2Re.'.x; y//:

d) Deduce the polarization identity

˚.x C y/ � ˚.x � y/C i.˚.x C iy/ � ˚.x � iy// D 4'.y; x/:

Conclude that the polar form of a quadratic hermitian form is unique.
e) Prove the parallelogram law

˚.x C y/C ˚.x � y/ D 2.˚.x/C ˚.y//:

14. Let V D Cn and consider the map ˚ W V ! R defined by

˚.x1; : : : ; xn/ D jx1j2 C jx2j2 C : : :C jxnj2

for all .x1; : : : ; xn/ 2 Cn. Prove that ˚ is a hermitian quadratic form and find
its polar form.

15. Let V be the space of continuous maps f W Œ0; 1� ! C. Answer the same
questions as in the previous problem for the map ˚ W V ! R defined by

˚.f / D
Z 1

0

jf .t/j2dt:

16. Prove the complex analogue of Gauss’ theorem: if ˚ is a hermitian quadratic
form on Cn, then we can find ˛1; : : : ; ˛r 2 f�1; 1g and linearly independent
linear forms l1; : : : ; lr on Cn such that for all x 2 Cn

˚.x1; : : : ; xn/ D
rX
iD1

˛i jli .x/j2:

10.2 Positivity, Inner Products, and the Cauchy–Schwarz
Inequality

A fundamental notion in the theory of bilinear and quadratic forms is that of
positivity:

Definition 10.11. a) A symmetric bilinear form b W V � V ! R is called positive
if b.x; x/ � 0 for all x 2 V . We say that b is positive definite if b.x; x/ > 0 for
all nonzero vectors x 2 V .
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b) A quadratic form q on V is called positive (or positive definite) if its polar form
is positive (or positive definite). Thus q is positive if q.x/ � 0 for all x 2 V , and
positive definite if moreover we have equality only for the zero vector.

Problem 10.12. Which of the following quadratic forms are positive? Which ones
are positive definite?

a) q.x; y; z/ D xy C yz C zx.
b) q.x; y; z/ D x2 C 2.y � z/2 C 3.z � x/2.
c) q.x; y; z/ D x2 C y2 C z2 � xy � yz � zx.

Solution. a) We have to check whether xy C yz C zx � 0 for all real numbers
x; y; z. This is definitely not the case, since taking z D 0 we would have xy � 0

for all x; y 2 R, which is definitely absurd. Thus q is not positive, and thus not
positive definite either.

b) It is clear that q.x; y; z/ � 0 for all x; y; z 2 R, since q.x; y; z/ is a sum of
squares of real numbers. Thus q is positive. To see whether q is positive definite,
we need to investigate when q.x; y; z/ D 0. This forces

x D y � z D z � x D 0

and then x D y D z D 0. Thus q is positive definite.
c) We observe that

q.x; y; z/ D .x � y/2 C .y � z/2 C .z � x/2
2

� 0

for all x; y; z 2 R, thus q is positive. Notice that q is not positive definite, since
q.1; 1; 1/ D 0, but .1; 1; 1/ ¤ .0; 0; 0/. ut
We introduce now another fundamental concept, which will be constantly used

in the sequel:

Definition 10.13. a) An inner product on a R-vector space V is a symmetric
positive definite bilinear form on V .

b) An Euclidean space is a finite dimensional R-vector space V endowed with an
inner product.

We warn the reader that some authors do not impose that an Euclidean space
is finite dimensional. When dealing with inner products and Euclidean spaces, the
notation hx; yi is preferred to b.x; y/ (where b is the inner product on V ). If h ; i is
an inner product on V , we let

jjxjj D
p

hx; xi

and we call jjxjj the norm of x (the reason for this name will be given a bit later).
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Remark 10.14. a) If V is an Euclidean space, then any subspace W of V is
naturally an Euclidean space, when endowed with the restriction of the inner
product on V to W : note that this restriction is still an inner product on W , by
definition.

b) Rn endowed with the canonical inner product

h.x1; : : : ; xn/; .y1; : : : ; yn/i D x1y1 C x2y2 C : : :C xnyn

is an Euclidean space. We leave it to the reader to check this assertion.

Problem 10.15. Let n be a positive integer and let V be the space of polynomials
with real coefficients whose degree does not exceed n. Prove that

hP;Qi D
nX
iD0

P.i/Q.i/

defines an inner product on V .

Solution. First, it is clear that for any P the map Q 7! hP;Qi is linear, and
similarly for any Q the map P 7! hP;Qi is linear. Next, we have

hP;P i D
nX
iD0

P.i/2

and the last quantity is clearly nonnegative. Finally, assume that hP;P i D 0 for
some P 2 V . Then

Pn
iD0 P.i/2 D 0, which forces P.i/ D 0 for all 0 � i � n.

Thus P has at least nC1 distinct roots and since degP � n, we deduce that P D 0.
The result follows. ut
Problem 10.16. Let V be the space of continuous real-valued maps on Œa; b�

(where a < b are fixed real numbers). Prove that the map h ; i defined by

hf; gi D
Z b

a

f .x/g.x/dx

is an inner product on V .

Solution. It is easy to see that h ; i is a symmetric bilinear form, it remains to check
that it is positive definite. Since f 2 is a continuous nonnegative map, we have

hf; f i D
Z b

a

f .x/2dx � 0:
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Suppose that hf; f i D 0 and that f is nonzero. Thus there is x0 2 .a; b/ such that
f .x0/ ¤ 0. By continuity we can find " > 0 such that .x0 � "; x0 C "/ � Œa; b� and
jf .x/j � " for x 2 .x0 � "; x0 C "/. It follows that

hf; f i �
Z x0C"

x0�"
"2dx D 2"3 > 0

and the result follows. ut
Problem 10.17. Let V be the space of smooth functions f W Œ0; 1� ! R such that
f .0/ D f .1/ D 0. Prove that

hf; gi D �
Z 1

0

.f .x/g00.x/C f 00.x/g.x//dx

defines an inner product on V .

Solution. Using integration by parts, we obtain

hf; gi D �.fg0 C f 0g/j10 C 2

Z 1

0

f 0.x/g0.x/dx D 2

Z 1

0

f 0.x/g0.x/dx:

The last formula makes it clear that h ; i is a symmetric bilinear form on V .
It remains to see that it is positive definite. We have

hf; f i D 2

Z 1

0

.f 0.x//2dx � 0;

with equality if and only if (by the previous problem) f 0.x/ D 0 for all x. This
last condition is equivalent to saying that f is constant. But since f vanishes by
assumption at 0, if f if constant then it must be the zero map. Thus hf; f i D 0

implies f D 0, which yields the desired result. ut
The fundamental result concerning positive symmetric bilinear forms is the

Theorem 10.18 (Cauchy–Schwarz Inequality). Let b W V � V ! R be a
symmetric bilinear form and let q be its associated quadratic form.

a) If b is positive, then for all x; y 2 V we have

b.x; y/2 � q.x/q.y/:

b) If moreover b is positive definite and if b.x; y/2 D q.x/q.y/ for some x; y 2 V ,
then x and y are linearly dependent.

Proof. a) Consider the map F W R ! R given by

F.t/ D q.x C ty/:
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Note that since b is bilinear and symmetric, we have

F.t/ D b.x C ty; x C ty/ D b.x; x/C b.x; ty/C b.ty; x/C b.ty; ty/

D q.x/C tb.x; y/C tb.x; y/C t 2b.y; y/ D q.x/C 2tb.x; y/C t 2q.y/:

Thus F.t/ is a quadratic polynomial function with leading coefficient q.y/ � 0.
Moreover, since b is positive, we have F.t/ � 0 for all t 2 R. It follows that the
discriminant of F is nonpositive, that is

4b.x; y/2 � 4q.x/q.y/ � 0:

But this is precisely the desired inequality (after division by 4).
b) Suppose that b is positive definite and that b.x; y/2 D q.x/q.y/. We may assume

that y ¤ 0, so that q.y/ > 0. Thus with the notations used in the proof of part a),
the discriminant of F is 0. It follows that F has a unique real root, say t . Then
q.xCty/ D 0 and since q is positive definite, this can only happen if xCty D 0.
Thus x and y are linearly dependent. ut
The following result is a direct consequence of the previous theorem, but it is of

fundamental importance:

Corollary 10.19. If V is a vector space over R endowed with an inner product
h ; i, then for all x; y 2 V we have

jhx; yij � jjxjj � jjyjj:

Example 10.20. a) Let V D Rn be endowed with the canonical inner product.
The inequality jhx; yij � jjxjj � jjyjj can be re-written (after squaring) as

.x1y1 C : : :C xnyn/
2 � .x21 C : : :C x2n/.y

2
1 C : : :C y2n/:

b) Let V be the space of continuous real-valued maps on Œa; b�, where a < b are
real numbers. The map h ; i W V � V ! R defined by

hf; gi D
Z b

a

f .x/g.x/dx

is an inner product on V (see Problem 10.16) and the inequality in the corollary
becomes (after squaring)

 Z b

a

f .x/g.x/dx

!2
�
 Z b

a

f .x/2dx

!
�
 Z b

a

g.x/2dx

!
:
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Let V be a vector space over R, endowed with an inner product h ; i. By the
previous corollary we have

�1 � hu; vi
kukkvk � 1 for all u; v 2 V � f0g:

Thus there exists a unique angle � 2 Œ0; �� satisfying

cos � D hu; vi
kukkvk :

We define this angle � to be the angle between the vectors u; v.
An important consequence of the Cauchy–Schwarz inequality is

Theorem 10.21 (Minkowski’s Inequality). Let V be a vector space over R and
let q be a positive quadratic form on V . Then for all x; y 2 E we have

p
q.x/C

p
q.y/ �

p
q.x C y/:

Proof. Squaring the inequality we obtain the equivalent one

q.x/C q.y/C 2
p
q.x/q.y/ � q.x C y/:

Letting b be the polar form of q, the polarization identity yields

q.x C y/ D q.x/C q.y/C 2b.x; y/:

Comparing this equality and the previous inequality, we obtain the equivalent form

p
q.x/q.y/ � b.x; y/;

which, squared, is exactly the Cauchy–Schwarz inequality. ut
Consider now an inner product h ; i on some R-vector space V . Recall that we

defined

jj � jj W V ! R; jjxjj D
p

hx; xi:

Since an inner product is positive definite, we see that jjxjj � 0 for all x, with
equality if and only if x D 0. Also, since an inner product is a bilinear form, we
have jjaxjj D jajjjxjj for all a 2 R. Finally, Minkowski’s inequality yields

jjx C yjj � jjxjj C jjyjj

for all x; y 2 V . We call this inequality the triangle inequality.
A map jj � jj W V ! R satisfying the following properties:

• jjvjj � 0 for all v 2 V , with equality if and only if v D 0.
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• jjavjj D jaj � jjvjj for all v 2 V and a 2 R.
• jjv C wjj � jjvjj C jjwjj for all v;w 2 V
is called a norm on V . This explains why we called jjxjj the norm of x.

Minkowski’s inequality shows that any inner product on a vector space V over
R naturally endows the space V with a norm jj � jj. We can use this norm to define a
distance d W V � V ! RC by

d.u; v/ D jju � vjj:

One can check (see the exercise section) that for all u; v;w 2 V we have

d.u; v/C d.v;w/ � d.u;w/:

This construction is of fundamental importance, since it allows us to do analysis
on V as we do it on R. Note that if V D Rn with n � 3, endowed with its
canonical inner product, then the distance obtained as above is really the Euclidean
distance that we are used with on the line, in the plane and in three-dimensional
space. For instance, the distance between the points .1; 1/ and .2; 3/ is

d..1; 1/; .2; 3// D
p
.1 � 2/2 C .1 � 3/2 D p

5;

and this really corresponds to the geometric distance between these two points in
the plane.

10.2.1 Practice Problems

In the following problems, whenever the inner product on Rn is not specified, it is
implicitly assumed that we consider the canonical inner product on Rn, defined by

h.x1; : : : ; xn/; .y1; : : : ; yn/i D x1y1 C x2y2 C : : :C xnyn:

1. Let V be an R-vector space endowed with an inner product h ; i. Recall that
the distance between two points x; y 2 V is

d.x; y/ D
p

hx � y; x � yi:

Prove the triangle inequality

d.x; y/C d.y; z/ � d.x; z/

for all x; y; z 2 V .
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2. a) What is the distance between the vectors u D .1; 1; 1/ and v D .1; 2; 3/ in
R3?

b) What are their respective norms?
c) What is the angle between u and v?

3. Find the angle between the vectors u D .1; 2/ and v D .1;�1/ in R2.
4. Find the vectors v of norm 1 in R3 such that the angle between v and .1; 1; 0/

is �
4

.
5. Among all vectors of the form .1; x; 2; 1/ with x 2 R, which vector is at

smallest distance from .0; 1; 1; 1/?
6. Find all values of ˛ 2 R for which the map h ; i W R4 � R4 ! R defined by

h.x1; x2; x3; x4/; .y1; y2; y3; y3/i D ˛x1y1 C 2x2y2 C .1 � ˛/x3y3 C x4y4

is an inner product.
7. Prove that if f W Œa; b� ! R is a continuous map, then

 Z b

a

f .t/dt

!2
� .b � a/

Z b

a

f .t/2dt:

8. a) Prove that if x1; : : : ; xn are positive real numbers, then

.x1 C x2 C : : :C xn/ �
�
1

x1
C 1

x2
C : : :C 1

xn

�
� n2:

When do we have equality?
b) Prove that if f W Œa; b� ! .0;1/ is a continuous map, then

Z b

a

f .t/dt �
Z b

a

1

f .t/
dt � .b � a/2:

When do we have equality?
9. Let f W Œ0; 1� ! RC be a continuous map taking nonnegative values and let

xn D
Z 1

0

tnf .t/dt:

Prove that for all n; p � 0

xnCp � p
x2n � p

x2p:

10. Let V be a C-vector space and let ˚ be a hermitian quadratic form on V .
Assume that˚ is positive definite, i.e.,˚.x/ > 0 for all nonzero vectors x 2 V .
Let ' be the polar form of ˚ .
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a) Prove the Cauchy–Schwarz inequality: for all x; y 2 V we have

j'.x; y/j2 � ˚.x/˚.y/;

with equality if and only if x; y are linearly dependent.
b) Prove Minkowski’s inequality: for all x; y 2 V we have

p
˚.x/C

p
˚.y/ �

p
˚.x C y/:

11. Prove that there is no inner product h ; i on the space V of continuous real-
valued maps on Œ0; 1� such that for all f 2 V we have

hf; f i D sup
x2Œ0;1�

f .x/2:

Hint: the parallelogram law.

10.3 Bilinear Forms and Matrices

From now on we will focus only on finite dimensional vector spaces V over R.
We have already seen that we can describe linear transformations on V in terms of
matrices. We would like to have a similar description for bilinear forms.

Definition 10.22. Consider a basis e1; : : : ; en of V , and let b be a symmetric
bilinear form on V . The matrix of b with respect to the basis e1; : : : ; en is the
matrix .b.ei ; ej //1�i;j�n.

b) If q is a quadratic form on V , the matrix of q with respect to the basis
e1; : : : ; en is the matrix of its polar form with respect to e1; : : : ; en.

Theorem 10.23. Let V be a finite dimensional vector space and let e1; : : : ; en
be a basis of V . Sending a symmetric bilinear form to its matrix with respect to
e1; : : : ; en establishes an isomorphism of R-vector spaces between the vector space
of symmetric bilinear forms on V and the vector space of symmetric matrices in
Mn.R/.

Proof. It is clear that if A is the matrix of b and A0 is the matrix of b0, then cACA0
is the matrix of cb C b0 for all scalars c 2 R. Also, since b is symmetric, we have
b.ei ; ej / D b.ej ; ei /, thus the matrix of b is symmetric. Thus sending a symmetric
bilinear form b to its matrix A with respect to e1; : : : ; en induces a linear map '
from symmetric bilinear forms on V to symmetric matrices A 2 Mn.R/.

Injectivity of the map ' follows directly from Remark 10.2, so it remains to prove
that ' is surjective. Start with any symmetric matrix A D Œaij �. If x D x1e1 C : : :C
xnen and y D y1e1 C : : :C ynen are vectors in V , define

b.x; y/ D
nX

i;jD1
aij xiyj :
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It is easy to see that b is a symmetric bilinear form whose matrix in the basis
e1; : : : ; en is precisely A. ut

A natural question is the following: what is explicitly the inverse of the
isomorphism given by the previous theorem? Fortunately, this has already been
answered during the proof: it is the map sending a symmetric matrix A D Œaij �

to the bilinear form b defined by

b.x1e1 C : : :C xnen; y1e1 C : : :C ynen/ D
nX

i;jD1
aij xiyj :

This formula does not come out of nowhere, but it is imposed by Remark 10.2.
Also, note that the right-hand side of the previous equality can be written as tXAY ,
where X; Y are the column vectors whose coordinates are x1; : : : ; xn, respectively
y1; : : : ; yn. Here we consider tX as a 1 � n matrix and of Y as a n � 1 matrix,
so that tXAY is a 1 � 1 matrix, that is a real number. We obtain the following
characterization of the matrix of b with respect to the basis e1; : : : ; en.

Theorem 10.24. Let e1; e2; : : : ; en be a basis of V and let b be a symmetric bilinear
form on V . The matrix of b with respect to e1; : : : ; en is the unique symmetric matrix
A 2 Mn.R/ such that

b.x; y/ D tXAY

for all vectors x; y 2 V (where X; Y are the column vectors whose coordinates are
those of x; y with respect to e1; : : : ; en).

Remark 10.25. Keep the hypotheses and notations of the previous theorem and
discussion. If q is the quadratic form attached to b, then

q.x1e1 C : : :C xnen/ D tXAX D
nX

i;jD1
aij xixj D

nX
iD1

ai ix
2
i C 2

X
1�i<j�n

aij xixj ;

the last equality being a consequence of the equality aij D aji for i < j . The
presence of the factor 2 is quite often a source of errors when dealing with the link
between quadratic forms and matrices. Indeed, it is quite tempting (and this happens

quite often!) to say that the quadratic form associated with the matrix A D
�
0 1

1 0

�
is

q.x1; x2/ D x1x2;

which is wrong: the quadratic form associated with A is

q.x1; x2/ D 2x1x2:
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An even more common mistake is to say that the matrix associated with the
quadratic form

q.x; y; z/ D xy C yz C zx

on R3 is

2
4
0 1 1

1 0 1

1 1 0

3
5. Actually, the correct matrix is

2
4
0 1
2
1
2

1
2
0 1
2

1
2
1
2
0

3
5, since the polar form

of q is the bilinear form b defined by

b..x; y; z/; .x0; y0; z0// D x0y C y0x C x0z C z0x C y0z C z0y
2

:

Armed with Theorem 10.24, it is not difficult to understand how the matrix of
a bilinear form varies when we vary the basis. More precisely, consider two bases
e1; : : : ; en and e0

1; : : : ; e
0
n of V and let A;A0 be the matrices of a symmetric bilinear

form b with respect to these bases. If x D x1e1 C : : :Cxnen D x0
1e

0
1 C : : :Cx0

ne
0
n is

a vector in V , let X (respectively X 0) be the column vector whose coordinates are
x1; : : : ; xn (respectively x0

1; : : : ; x
0
n). Then

b.x; y/ D tXAY D tX 0A0Y 0:

Letting P be the change of basis matrix from e1; : : : ; en to e0
1; : : : ; e

0
n (recall that

the columns of P are the coordinates of e0
1; : : : ; e

0
n when expressed in terms of

e1; : : : ; en), we have

X D PX 0; Y D PY 0:

It follows that

tX 0A0Y 0 D b.x; y/ D tXAY D t .PX 0/APY 0 D t .X 0/ tPAPY 0

and we obtain the following

Theorem 10.26. Suppose that a symmetric bilinear form b has matrix A with
respect to a basis e1; : : : ; en of V . Let e0

1; : : : ; e
0
n be another basis of V and let

P be the change of basis matrix from e1; : : : ; en to e0
1; : : : ; e

0
n. Then the matrix of b

with respect to e0
1; : : : ; e

0
n is

A0 D tPAP:

The previous theorem suggests the following

Definition 10.27. Two symmetric matrices A;B 2 Mn.R/ are called congruent
if they are the matrices of some symmetric bilinear form in two bases of F n.
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Equivalently, A and B are congruent if there is an invertible matrix P 2 Mn.F /

such that B D tPAP .

By definition, the congruence relation is an equivalence relation on the set of
symmetric matrices A 2 Mn.R/, that is:

• any matrix A is congruent to itself (this is clear).
• If A is congruent to B , then B is congruent to A: indeed, if B D tPAP , then
A D t .P�1/BP�1.

• IfA is congruent toB andB is congruent to C , thenA is congruent to C . Indeed,
if B D tPAP and C D tQBQ, then C D t .PQ/A.PQ/.

Note that two congruent matrices have the same rank. This allows us to define
the rank of a symmetric bilinear form as the rank of its matrix in any basis of
the surrounding space (the previous discussion shows that it is independent of the
choice of the basis). Note that we cannot define the determinant of a symmetric
bilinear form in a similar way: if A and B are congruent matrices, then it is not true
that detA D detB . All we can say is that if B D tPAP , then

detB D det. tP / detA detP D detA � .detP /2;

thus detA and detB differ by the square of a nonzero real number. In particular,
they have the same sign. The discriminant of a symmetric bilinear form is defined
to be the sign of the determinant of its matrix in a basis of the surrounding space
(it is independent of the choice of the basis).

The fundamental theorem concerning the congruence relation is the following
consequence of Theorem 10.9:

Theorem 10.28 (Gauss). Any symmetric matrix A 2 Mn.R/ is congruent to a
diagonal matrix.

Proof. Consider the associated quadratic form q on V D Rn

q.X/ D tXAX; i:e:; q.x1; : : : ; xn/ D
nX

i;jD1
aij xixj :

By Theorem 10.26, it suffices to prove the existence of a basis of Rn with respect to
which the matrix of q is diagonal (as then A will be congruent to the corresponding
diagonal matrix).

By Theorem 10.9 we know that we can find real numbers ˛1; : : : ; ˛r and linearly
independent linear forms l1; : : : ; lr 2 V � such that

q.X/ D
rX
iD1

˛i li .X/
2
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for all X 2 V . Complete the family .l1; : : : ; lr / to a basis .l1; : : : ; ln/ of V �.
By Theorem 6.13 there is a basis .e1; : : : ; en/ of V whose dual basis is .l1; : : : ; ln/.
Thus, if X D x1e1 C : : :C xnen 2 V , then

q.X/ D
rX
iD1

˛i li .X/
2 D

rX
iD1

˛ix
2
i ;

so that the matrix of q with respect to the basis .e1; : : : ; en/ is the diagonal matrix
D with diagonal entries ˛1; : : : ; ˛r . ut
Remark 10.29. The proof also shows the following interesting fact: if q is a
quadratic form on Rn with polar form b, then we can find a basis f1; : : : ; fn of
Rn such that

b.fi ; fj / D 0 for all 1 � i ¤ j � n:

Such a basis is called a q-orthogonal basis of Rn. We can even impose that q.fi / 2
f�1; 0; 1g for all 1 � i � n. Indeed, as in the above proof we can write

q.X/ D
rX
iD1

˛i li .X/
2

and by the discussion following Theorem 10.9 we can even ensure that ˛i 2 f�1; 1g
for all 1 � i � r . If e1; : : : ; en is a basis as in the above proof, then

q.X/ D
rX
iD1

˛ix
2
i

for X D x1e1 C : : :C xnen, thus

b.X; Y / D
nX
iD1

˛ixiyi

with ˛i D 0 for r < i � n. It follows that we can take fi D ei for 1 � i � n.

We introduce one more definition before ending this section:

Definition 10.30. A symmetric matrix A 2 Mn.R/ is called positive if tXAX � 0

for all X 2 Rn. It is called positive definite if tXAX > 0 for all nonzero vectors
X 2 Rn.

In other words, A D Œaij � is positive (respectively positive definite) if and only
if the quadratic form associated with A, namely .x1; : : : ; xn/ ! Pn

i;jD1 aij xixj , is
positive (respectively positive definite). Any symmetric positive definite matrix A
gives rise to an inner product h ; iA on Rn, defined by

hX; Y iA D hX;AY i D tXAY;

where h ; i is the canonical inner product on Rn.
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Note that if A is positive then letting e1; : : : ; en be the canonical basis of Rn,
we have

aii D t eiAei � 0;

and if A is positive definite then the inequality is strict. Also, note that any matrix
congruent to a positive (respectively positive definite) symmetric matrix is itself
positive (respectively positive definite), since

tX. tPAP /X D t .PX/A.PX/:

Problem 10.31. Let A 2 Mn.R/ be any matrix.

a) Prove that tAA is symmetric and positive.
b) Prove that tAA is positive definite if and only if A is invertible.

Solution. Note that

t . tAA/ D tA � t . tA/ D tAA;

thus tAA is symmetric. Next, for all X 2 Rn we have

tX. tAA/X D t .AX/.AX/ D jjAX jj2 � 0;

with equality if and only if AX D 0. Both a) and b) follow from these observations
(and the fact that A is invertible if and only if AX D 0 implies X D 0). ut
Remark 10.32. The same result holds with A tA instead of tAA.

Remarkably, the converse of the result established in the previous problem holds:

Theorem 10.33. Any symmetric positive matrixA 2 Mn.R/ can be written as tBB

for some matrix B 2 Mn.R/.

Proof. We use Gauss’ Theorem 10.28. By that theorem, there is an invertible
matrix P such that tPAP D D is a diagonal matrix. By the discussion preceding
Problem 10.31 we know that D itself is positive and its diagonal coefficients dii
are nonnegative. Hence we can write D D tD1D1 for a diagonal matrix D1 whose
diagonal entries are

p
dii . But then

A D tP�1DP�1 D tP�1 tD1D1P
�1 D tBB;

with B D D1P
�1. ut

Problem 10.34. Let .V; h ; i/ be an Euclidean space and let v1; : : : ; vn be a family
of vectors in V . Let A 2 Mn.R/ be the Gram matrix of the family, i.e., the matrix
whose .i; j /-entry is hvi ; vj i.
a) Prove that A is symmetric positive.
b) Prove that A is positive definite if and only if v1; : : : ; vn are linearly independent.
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Solution. Again, it is clear that A is symmetric. For all x1; : : : ; xn 2 R we have

nX
i;jD1

aij xixj D
nX

i;jD1
xixj hvi ; vj i D

nX
iD1

xi �
nX

jD1
hvi ; xj vj i D

nX
iD1

hxivi ;
nX

jD1
xj vj i D jj

nX
iD1

xivi jj2 � 0;

with equality if and only if
Pn

iD1 xivi D 0. The result follows. ut
Problem 10.35. Let n � 1 and let A D Œaij � 2 Mn.R/ be defined by aij D
min.i; j /. Prove that A is symmetric and positive definite.

Solution. It is clear that the matrix is symmetric. Note that we can write

min.i; j / D
X

k�i;k�j
1:

Doing so and interchanging orders of summation, we see that

nX
iD1

nX
jD1

min.i; j /xixj D
nX

kD1

nX
iDk

nX
jDk

xixj D
nX

kD1

 
nX
iDk

xi

!2
:

This last expression is clearly nonnegative, and it equals 0 if and only if

x1 C � � � C xn D 0; x2 C � � � C xn D 0; : : : ; xn D 0:

Subtracting each equation from the one before it, we see that the unique solution is
x1 D x2 D � � � D xn D 0, which shows that the matrix is positive definite.

An alternative argument is to note that

min.i; j / D
Z 1

0

fi .x/fj .x/dx;

where fi .x/ D 1 for x 2 Œ0; i � and fi .x/ D 0 for x > i (i.e., fi is the
characteristic function of the interval Œ0; i �). It follows that A is the Gram matrix
of the family f1; : : : ; fn, thus it is symmetric and positive. Since f1; : : : ; fn are
linearly independent (in the space of integrable functions on Œ0;1/), it follows that
A is positive definite (all this uses Problem 10.34).

Yet another argument is to note that A D tBB where B is the upper triangular
matrix all of whose nonzero coefficients are equal to 1. Since B is invertible, we
deduce that A is positive definite by Problem 10.31. ut
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10.3.1 Problems for Practice

1. Consider the map q W R3 ! R defined by

q.x; y; z/ D .x C 2y C 3z/2 C .y C z/2 � .y � z/2:

a) Prove that q is a quadratic form and find its polar form b.
b) Is q positive definite?
c) Give the matrix of q with respect to the canonical basis of R3.
d) Consider the vectors

v1 D .2; 0; 0/; v2 D .�5; 1; 1/; v3 D .1; 1;�1/:

Prove that .v1; v2; v3/ is a basis of R3 and find the matrix of b with respect
to this basis.

2. Consider the map q W R3 ! R defined by

q.x; y; z/ D x.x � y C z/ � 2y.y C z/:

a) Prove that q is a quadratic form and find its polar form b.
b) Find the matrix of q with respect to the canonical basis of R3.
c) Find those vectors v 2 R3 such that b.v;w/ D 0 for all vectors w 2 R3.

3. Consider the quadratic form q on R3 defined by

q.x; y; z/ D 2x.x C y � z/C y2 C z2:

a) Find the matrix of q with respect to the canonical basis of R3.
b) Write q in the form

Pr
iD1 ˛i l2i with l1; : : : ; lr linearly independent linear

forms.
c) Find the rank, signature, and discriminant of q.
d) Find a q-orthogonal basis of R3 and give the matrix of q with respect to this

basis.

4. Is the matrix A D Œaij � 2 Mn.R/ with aij D i � j positive? Is it positive
definite?

5. a) Prove that a symmetric positive definite matrix is invertible.
b) Prove that a symmetric positive matrix is positive definite if and only if it is

invertible.
6. All entries but the diagonal ones of the matrix A 2 Mn.R/ are equal to �1,

while all diagonal entries are equal to n�1. IsA positive? Is it positive definite?
7. Prove that any symmetric positive matrix A 2 Mn.R/ is the Gram matrix of a

family of vectors v1; : : : ; vn 2 Rn. Hint: use Theorem 10.33.
8. Let V be a R-vector space endowed with an inner product h ; i and let x1; : : : ; xn

be vectors in V . The Gram determinant of x1; : : : ; xn, denoted G.x1; : : : ; xn/
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is by definition the determinant of the Gram matrix Œhxi ; xj i�1�i;j�n. Prove that
x1; : : : ; xn is linearly independent if and only if G.x1; : : : ; xn/ ¤ 0.

9. Compute the Gram determinant of the vectors

x1 D .1; 2; 1/; x2 D .�1;�1; 2/; x3 D .1; 0;�1/

in R3. Are they linearly independent?
10. Prove that the matrix A D Œ 1

iCj �1�i;j�n is symmetric and positive (hint: what

is
R 1
0
t iCj�1dt?).

11. Let A D Œaij � 2 Mn.R/ be a matrix such that aij D 1 for i ¤ j , and aii > 1

for all i 2 Œ1; n�. Prove that A is symmetric and positive definite.
12. Let n be a positive integer. Consider the space V of polynomials of degree at

most n with real coefficients. Define a map

b W V � V ! R; b.P;Q/ D
Z 1

0

tP.t/Q0.t/dt;

where Q0 is the derivative of Q.

a) Prove that b is a bilinear form on V . Is it symmetric?
b) Let q be the quadratic form attached to b, so that q.x/ D b.x; x/. Find the

matrix of q with respect to the basis 1;X; : : : ; Xn of V .

13. In this long problem we establish the link between sesquilinear maps and
matrices, extending thus the results of this section to finite dimensional
C-vector spaces. Let V be a finite dimensional C-vector space and let B D
.e1; : : : ; en/ be a basis of V . Recall that S.V / is the set of sesquilinear forms
on V .

a) Let ' 2 S.V / be a sesquilinear form on V . The matrix of ' with respect to
B is the matrix A D Œaij � 2 Mn.C/ where aij D '.ei ; ej / for 1 � i; j � n.
Prove that for all vectors x; y 2 V we have

'.x; y/ D X�AY;

where X; Y are the column vectors whose coordinates are the coordinates of
x; y with respect to B, and X� D tX is the row vector whose coordinates
are the complex conjugates of the coordinates of x with respect to B.

b) Prove that A is the unique matrix having the property stated in a).
c) Prove that the map sending ' 2 S.V / to its matrix with respect to B is an

isomorphism of C-vector spaces between S.V / and Mn.C/.
d) Let ' 2 S.V / and let A be its matrix with respect to B. Prove that '

is hermitian if and only if A satisfies A D tA. Such a matrix is called
conjugate symmetric or hermitian. We usually write A� instead of tA,
so a matrix A is hermitian if and only if A D A�.
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e) Let B0 be another basis of V and let P be the change of basis matrix from
B to B0. If x; y 2 V , let X; Y (respectively X 0; Y 0) be the column vectors
whose coordinates are the coordinates of x; y with respect to B (respectively
B0). Prove that if A (respectively A0) is the matrix of ' with respect to B
(respectively B0), then

A0 D P �AP:

f) A hermitian matrix A 2 Mn.C/ is called positive (respectively positive
definite) ifX�AX � 0 for allX 2 Cn (respectively if moreoverX�AX ¤ 0

for X ¤ 0). Prove that for any matrix B 2 Mn.C/ the matrices B�B and
BB� are hermitian positive, and they are hermitian positive definite if and
only if B is invertible.

g) Prove that any hermitian positive matrix A can be written as BB� for some
matrix B 2 Mn.C/.

10.4 Duality and Orthogonality

Let b be a symmetric bilinear form on a vector space V over R (for now we don’t
assume that V is finite dimensional). For each y 2 V the map x ! b.x; y/ is by
definition linear, thus it is a linear form on V . Letting V � be the dual of V , we obtain
therefore a map

'b W V ! V �; 'b.y/.x/ D b.x; y/:

Since for all x 2 V the map y ! b.x; y/ is linear, it follows that 'b is a linear map.

Problem 10.36. Suppose that V is finite dimensional and let e1; : : : ; en be a basis
of V . Let e�

1 ; : : : ; e
�
n be the dual basis1 of e1; : : : ; en. Prove that the matrix of 'b

with respect to the bases e1; : : : ; en and e�
1 ; : : : ; e

�
n is the matrix of b in the basis

e1; : : : ; en.

Solution. For x D x1e1 C : : :C xnen 2 V we have

'b.ei /.x/ D b.x; ei / D x1b.e1; ei /C : : :C xnb.en; ei /

D b.e1; ei /e
�
1 .x/C : : :C b.en; ei /e

�
n .x/:

Thus

'b.ei / D b.e1; ei /e
�
1 C : : :C b.en; ei /e

�
n :

1Recall that e�
i .ej / D 1iDj , where 1iDj equals 1 if i D j and 0 otherwise.
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The result follows. ut
The following result, though very simple, is very useful:

Theorem 10.37 (Riesz’s Representation Theorem). If V is an Euclidean (thus
finite dimensional) space with inner product h ; i, then the map 'h ; i W V ! V � is
an isomorphism. In other words, for any linear map l W V ! R there is a unique
vector v 2 V such that l.x/ D hv; xi for all x 2 V .

Proof. Since dimV D dimV �, it suffices to prove that 'h ; i is injective. Assume
that 'h ; i.x/ D 0 for some x 2 V . Then by definition hx; yi D 0 for all y 2 V , in
particular hx; xi D 0. But then jjxjj2 D 0, where jj � jj is the norm associated with
the inner product, and so x D 0. ut

Let V be again an arbitrary vector space over R and let b be a symmetric bilinear
form on V .

Definition 10.38. a) Two vectors x; y 2 V are called orthogonal (with respect to
b) if b.x; y/ D 0.

b) The orthogonal S? of a subset S of V is the set of vectors v 2 V which are
orthogonal to each element of S .

c) Two subsets S; T of V are called orthogonal if S � T ?, that is any element of
S is orthogonal to any element of T .

Remark 10.39. Suppose that h ; i is an inner product on V , with associated norm
jj � jj (thus jjxjj D phx; xi). Then vectors x; y 2 V are orthogonal if and only if

jjx C yjj2 D jjxjj2 C jjyjj2:

This is the Pythagorean theorem and follows directly from the polarization identity

jjx C yjj2 D jjxjj2 C 2hx; yi C jjyjj2:

Coming back to the general case, note that b.x; y/ D 0 is equivalent to
'b.y/.x/ D 0, i.e., x and the linear form 'b.y/ are orthogonal in the sense of
duality. This allows us to use the results we have already established in the chapter
concerned with duality to obtain information about symmetric bilinear forms. As a
consequence, we obtain the following fundamental:

Theorem 10.40. Let V be an Euclidean space and letW be a subspace of V . Then
W ? ˚W D V , in particular

dimW ? C dimW D dimV:

Moreover, .W ?/? D W .

We can slightly refine the following theorem by allowing infinite dimensional
ambient spaces and finite dimensional subspaces therein.
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Theorem 10.41. Let V be any R-vector space endowed with an inner product and
let W be a finite dimensional subspace of V . Then

W ˚W ? D V and W ?? D W:

Proof. Let h ; i be the inner product on V , with associated norm jj � jj. We start by
proving that W ˚W ? D V . If x 2 W \W ?, then hx; xi D 0, that is jjxjj2 D 0,
and so x D 0. Thus W \W ? D f0g. We still need to prove that W CW ? D V , so
let x 2 V be arbitrary and consider the map f W W ! R defined by f .y/ D hx; yi.
Then f is a linear form onW . SinceW is an Euclidean space (for the inner product
inherited from the one on V ), by Theorem 10.37 there is a unique z 2 W such that
f .y/ D hz; yi for all y 2 W . We deduce that hx � z; yi D 0 for all y 2 W , thus
x � z 2 W ?. Since z 2 W , we conclude that x 2 W CW ? and the result follows.

It remains to prove that W ?? D W . By definition W is contained in W ??,
so let x 2 W ??. By the result established in the previous paragraph we can write
x D y C z with y 2 W and z 2 W ?. Since x 2 W ??, we have hx; zi D 0, thus
hy; zi C jjzjj2 D 0. But y 2 W and z 2 W ?, thus hy; zi D 0 and so jjzjj2 D 0, then
z D 0 and finally x D y 2 W . ut
Remark 10.42. The hypothesis that W is finite dimensional is crucial in the
previous theorem. Indeed, consider the following situation: V is the space of
continuous real-valued maps on Œ0; 1� and W is the subspace consisting of maps
f such that f .0/ D 0. Endow V with the inner product given by

hf; gi D
Z 1

0

f .x/g.x/dx:

Then the orthogonalW ? ofW is reduced to f0g, thus we do not haveW ˚W ? D V

or W ?? D W . To prove that W ? D f0g, let f 2 W ?. Note that the map g defined
by g.x/ D xf .x/ belongs to W and so hf; gi D 0. This can be written as

Z 1

0

xf .x/2dx D 0:

Since the map x 7! xf .x/2 is continuous, nonnegative, and with average 0, it is the
0 map and so f .x/ D 0 for all x 2 .0; 1�. By continuity, we deduce that f D 0.

The previous theorem has quite a lot of important applications in analysis, in
particular concerning minimization problems. We will see a few examples in the
sequel, but before that we introduce two very important definitions.

Definition 10.43. Let V be a R-vector space endowed with an inner product. Let
W be a finite dimensional subspace of V . By Theorem 10.41 we have V D W ˚
W ?. The orthogonal projection onto W is the projection pW W V ! W onto W
along W ?. In other words, for x 2 V pW .x/ is the unique vector in W such that
x � pW .x/ 2 W ?.



10.4 Duality and Orthogonality 411

Remark 10.44. Simply by definition we have

pW .x/C pW?.x/ D x

for all x 2 V and all subspaces W of V . This can be very useful in practice, since it
might be easier to compute the orthogonal projection onto W ? than that onto W .

Example 10.45. Endow R3 with the canonical inner product. Let W D f.0; 0; a3/ j
a3 2 Rg. Then the orthogonal complement W ? is

W ? D f.a1; a2; 0/ j a1; a2 2 Rg:

Note that W is the Cartesian z-axis and W ? is the Cartesian xy-plane. The orthog-
onal projection PW of R3 onto W is the map

PW W R3 ! R3; PW .x; y; z/ D .0; 0; z/:

Problem 10.46. Let

v1 D .1;�1; 0; 0/ and v2 D .1; 0;�1; 0/:

Find the matrix of the orthogonal projection of R4 onto W D Span.v1; v2/.

Solution. Let v 2 R4 and write pW .v/ D av1 C bv2 for some real numbers a; b.
Since v � pW .v/ is orthogonal to W , we have

hv � .av1 C bv2/; v1i D hv � .av1 C bv2/; v2i D 0;

which can also be written, taking into account that

jjv1jj2 D 2; jjv2jj2 D 2; hv1; v2i D 1;

as

2aC b D hv; v1i; aC 2b D hv; v2i:

Solving the system yields

a D hv; 2v1 � v2
3

i; b D hv; 2v2 � v1
3

i:

Since

2v1 � v2
3

D
�
1

3
;�2
3
;
1

3
; 0

�
;

2v2 � v1
3

D
�
1

3
;
1

3
;�2
3
; 0

�
;
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we can easily compute the values pW .e1/; : : : ; pW .e4/, where e1; : : : ; e4 is the
canonical basis of R4. More precisely, we obtain for v D v1 that a D 1

3
and b D 1

3
,

thus

pW .e1/ D v1 C v2
3

D
�
2

3
;�1
3
;�1
3
; 0

�
;

and similar arguments yield

pW .e2/ D �2v1 C v2
3

D
�

�1
3
;
2

3
;�1
3
; 0

�
;

pW .e3/ D v1 � 2v2
3

D
�

�1
3
;�1
3
;
2

3
; 0

�

and finally

pW .e4/ D 0 � v1 C 0 � v2 D .0; 0; 0; 0/:

We conclude that the desired matrix is

A D

2
664

2
3

� 1
3

� 1
3
0

� 1
3

2
3

� 1
3
0

� 1
3

� 1
3

2
3
0

0 0 0 0

3
775 : ut

Definition 10.47. Let V be an Euclidean space. A linear map p W V ! V is called
an orthogonal projection if there is a subspaceW of V such that p is the orthogonal
projection onto W .

The next theorem describes orthogonal projections as solutions to minimization
problems. The result is absolutely fundamental:

Theorem 10.48. Let V be a R-vector space with an inner product h ; i and with
associated norm jj � jj. Let W be a finite dimensional subspace of V and let v 2 V .
Then pW .v/ is the element of W at smallest distance from v, i.e.

jjv � pW .v/jj D min
x2W jjx � vjj:

Moreover, pW .v/ is the unique element of W with this property.

Proof. Let x 2 W and apply the Pythagorean theorem (Remark 10.39; observe that
x � pW .v/ 2 W and v � pW .v/ 2 W ?) to obtain

jjx � vjj2 D jj.x � pW .v//C .pW .v/ � v/jj2 D

jjx � pW .v/jj2 C jjpW .v/ � vjj2 � jjpW .v/ � vjj2:
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This shows that jjx � vjj � jjpW .v/� vjj for al v 2 V and yields the first part of the
theorem. For the second part, note that equality holds in the first offset equation if
and only if x D pW .v/. This finishes the proof of the theorem. ut
Definition 10.49. With the notations of Theorem 10.48, we define the distance
from v to W as

d.v;W / D jjv � pW .v/jj D min
x2W jjx � vjj:

Problem 10.50. Let V be a R-vector space endowed with an inner product h ; i and
let W be a finite dimensional subspace of V . Let x1; : : : ; xn be a basis of W and let
v 2 V . Prove that

d.v;W /2 D G.v; x1; : : : ; xn/

G.x1; : : : ; xn/
;

where G.x1; : : : ; xn/ D det.hxi ; xj i/ is the Gram determinant of the family
x1; : : : ; xn.

Solution. Write pW .v/ D a1x1 C : : : C anxn for some real numbers a1; : : : ; an.
By definition

d.v;W /2 D jjv � pW .v/jj2 D hv � pW .v/; vi D jjvjj2 � hv; pW .v/i;

thus

d.v;W /2 C a1hv; x1i C : : :C anhv; xni D jjvjj2:

Since

hv; xi i D hv � pW .v/; xi i C hpW .v/; xi i D hpW .v/; xi i

D a1hx1; xi i C a2hx2; xi i C : : :C anhxn; xi i;

we deduce that d.v;W /2 and a1; : : : ; an are solutions of the linear system in the
unknowns t0; : : : ; tn

8̂
<̂
ˆ̂:

t0 C t1hv; x1i C : : : C tnhv; xni D jjvjj2
t1hx1; x1i C t2hx1; x2i C : : : C tnhx1; xni D hv; x1i

: : :

t1hx1; xni C t2hx2; xni C : : : C tnhxn; xni D hv; xni

The result follows then straight from Cramer’s rule. ut
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Problem 10.51. Consider the vectors

v1 D

2
664

3

1

�1
1

3
775 ; v2 D

2
664

1

�1
1

�1

3
775 and b D

2
664

3

1

5

1

3
775 :

Find the distance from b to the space W D Span.v1; v2/.

Solution. We start by finding the orthogonal projection of b on W by writing

b D pW .b/C u

with hu; v1i D hu; v2i D 0. Writing pW .b/ D ˛v1 C ˇv2 we obtain

˛jjv1jj2 C ˇhv1; v2i D hb; v1i

and

˛hv1; v2i C ˇjjv2jj2 D hb; v2i;

which reduces to

12˛ D 6; 4ˇ D 6:

We deduce that

pW .b/ D 1

2
v1 C 3

2
v2 D

2
664

3

�1
1

�1

3
775

and so

d.b;W / D jjb � pW .b/jj D
p
.3 � 3/2 C .1 � .�1//2 C .5 � 1/2 C .1 � .�1//2 D p

24:

Of course, one can also use the previous exercise, by computing (exercise left to
the reader) G.v1; v2/ D 48 and G.b; v1; v2/ D 32 � 36, then

d.b;W / D
s
G.b; v1; v2/

G.v1; v2/
D p

24:
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However, we strongly advise the reader to redo every time the argument explained
in the first part of the solution. ut
Problem 10.52. Let n be a positive integer and let V be the vector space of
polynomials with real coefficients whose degree does not exceed n. For P;Q 2 V

define

hP;Qi D
Z 1

0

P.x/Q.x/e�xdx:

a) Explain why h ; i is a well-defined inner product on V .
b) Find

min
a1;:::;an2R

Z 1

0

.1C a1x C : : :C anx
n/2e�xdx:

Solution. a) The definition makes sense, since xke�x is integrable on Œ0;1/ for
all k � 0. More precisely, we have the following classical result, which follows
easily by induction on k combined with integration by parts

Z 1

0

e�xxkdx D kŠ:

It is easy to see that h ; i is indeed an inner product: it is clearly symmetric
and bilinear, and we have

hP;P i D
Z 1

0

P.x/2e�xdx � 0:

If the last quantity equals 0, then so does
R 1
0
e�xP.x/2dx � R1

0
e�xP.x/2dx.

Since x 7! e�xP.x/2 is continuous, nonnegative, and with average value 0 on
Œ0; 1�, it must be the zero map, thus P vanishes on Œ0; 1� and so P D 0 (because
P is a polynomial). This proves the claim that h ; i is an inner product.

b) LetW be the span ofX;X2; : : : ; Xn, thenW is a subspace of V and the problem
asks us to find

inf
P2W jj1C P jj2 D d.�1;W /2:

We know that the minimum value is attained when P is the orthogonal projection
of �1 on W . This is characterized by hP C 1;Qi D 0 for all Q 2 W , or
equivalently hP C 1;Xki D 0 for all 1 � k � n. Using the identity

Z 1

0

e�xxkdx D kŠ
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and writing P D a1X C : : :C anX
n, we can rewrite the condition as

kŠC
nX
iD1

ai .k C i/Š D 0 or 1C
nX
iD1

ai .k C 1/ : : : .k C n/ D 0:

Thus the polynomialQ D 1CPn
iD1 ai .XC1/ : : : .XCi/ vanishes at 1; 2; : : : ; n

and since it has degree n and leading coefficient an, we must have

Q D an.X � 1/ : : : .X � n/:

We need to evaluate

d.�1;W /2 D jj1C P jj2 D h1C P; 1i D 1C
nX
iD1

ai i Š D Q.0/ D .�1/nnŠan:

Taking X D �1 in the equality

1C
nX
iD1

ai .X C 1/ : : : .X C n/ D an.X � 1/ : : : .X � n/

yields

1 D an.�1/n.nC 1/Š:

We conclude that the answer of the problem is

.�1/nnŠan D nŠ � 1

.nC 1/Š
D 1

nC 1
: ut

10.4.1 Problems for Practice

Whenever it is not specified, the inner product on Rn is the canonical one.

1. Let

x1 D
2
4
1

3

�2

3
5 ; x2 D

2
4
6

4

2

3
5 and b D

2
4
4

�2
�3

3
5 :

Find the distance from b to the plane spanned by x1 and x2.
2. Determine the orthogonal projection of b D .2; 1; 1/ on the subspace spanned

by .1; 1; 1/ and .1; 0; 1/.
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3. Let W be the subspace of R4 spanned by w D .1;�1; 1;�1/. Find the
orthogonal projection of b D .3; 0; 3;�2/ on the orthogonal complement W ?.

4. Consider the vector space V of continuous real-valued maps on Œ0; 1�, with the
inner product defined by

hf; gi D
Z 1

0

f .x/g.x/dx:

Determine which of the functions f .x/ D x and g.x/ D x3 is closer (with
respect to the distance associated with the norm induced by the inner product)
to the function h.x/ D x2.

5. a) Let V be an Euclidean space and let T1; T2 be orthogonal projections such
that T1ıT2 is a projection. Prove that T1ıT2 D T2ıT1. Hint: use Problem 14.

b) Does this result remain true if we no longer assume that T1 and T2 are
orthogonal projections, but only projections?

6. Let a1; : : : ; an be real numbers, not all of them equal to 0. Let H be the set of
vectors .x1; : : : ; xn/ 2 Rn such that a1x1 C : : :C anxn D 0. Find the matrix of
the orthogonal projection onto H with respect to the canonical basis of Rn.

7. Let V be the vector space of polynomials with real coefficients whose degree
does not exceed n. If P D Pn

iD0 aiXi 2 V and Q D Pn
iD0 biXi 2 V , define

hP;Qi D
nX
iD0

aibi :

Let H be the subspace of polynomials in V vanishing at 1. Compute d.X;H/.
8. Let V be the set of polynomials with real coefficients and degree not exceeding
3. Find

min
P2V

Z �

��
jP.x/ � sin xj2:

9. Find the vector in Span..1; 2; 1/; .�1; 3;�4// which is closest (with respect to
the Euclidean norm) to the vector .�1; 1; 1/.

10. Let v1 D .0; 1; 1; 0/, v2 D .1;�1; 1;�1/ in R4. Let W be the span of v1; v2.

a) Find the matrix of the orthogonal projection of R4 onto W with respect to
the canonical basis of R4.

b) Compute the distance from .1; 1; 1; 1/ to W .

11. Let V be the space of smooth real-valued maps on Œ0; 1�, endowed with

hf; gi D
Z 1

0

f .x/g.x/dx C
Z 1

0

f 0.x/g0.x/dx:
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a) Prove that h ; i is an inner product on V .
b) Let W1 be the subspace of V consisting of maps f vanishing at 0 and 1.

LetW2 be the subspace of V consisting of maps f such that f 00 D f . Prove
that W1 ˚W2 D V and that W1 and W2 are orthogonal to each other.

c) Describe the orthogonal projection of V onto W2.

12. Let .V; h ; i/ be an Euclidean space and let f W V ! V be a map such that
hf .x/; yi D hx; f .y/i for all x; y 2 V . Prove that f is linear.

13. Let V be an Euclidean space and let T W V ! V be a linear map such that T 2 D
T , i.e., T is a projection. Prove that the following statements are equivalent:

a) T is an orthogonal projection.
b) For all x; y 2 V we have hT .x/; yi D hx; T .y/i.

14. Let V be an Euclidean space and let T be a linear transformation on V such
that T 2 D T , i.e., T is a projection.

a) Suppose that T is an orthogonal projection. Using the Pythagorean theorem,
prove that for all x 2 V we have

jjT .x/jj � jjxjj:

b) Conversely, suppose that jjT .x/jj � jjxjj for all x 2 V . Prove that hx; yi D
0 for x 2 kerT and y 2 Im.T / (hint: use that jjT .x C cy/jj2 � jjx C cyjj2
for all real numbers c) and deduce that T is an orthogonal projection.

10.5 Orthogonal Bases

Let V be a vector space over R endowed with an inner product .x; y/ 7! hx; yi,
with associated norm jj � jj (recall that jjxjj D phx; xi for all x 2 V ).

Definition 10.53. a) A family .vi /i2I of vectors in V is called orthogonal if

hvi ; vj i D 0 for all i ¤ j 2 I:

It is called orthonormal if moreover jjvi jj D 1 for all i 2 I . Thus the vectors in
an orthonormal family of V have norm 1 and are pairwise orthogonal.

b) An orthogonal basis of V is a basis of V which is an orthogonal family.
c) An orthonormal basis of V is a basis which is an orthonormal family.

Note that the canonical basis of Rn is an orthonormal basis of Rn with respect
to the canonical inner product on Rn. In the following two exercises the reader will
find two other very important examples of orthonormal families.

Problem 10.54. Let x0; : : : ; xn be pairwise distinct real numbers and consider the
space V of polynomials with real coefficients and degree not exceeding n, endowed
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with

hP;Qi D
nX
iD0

P.xi /Q.xi /:

Prove that h ; i is an inner product on V and that the family .Li /0�i�n where

Li.X/ D
Y

0�k�n
k¤i

X � xk
xi � xk

is an orthonormal family in V .

Solution. Clearly h ; i is a symmetric bilinear form on V and for all P 2 V we
have

hP;P i D
nX
iD0

P.xi /
2 � 0;

with equality if and only if P.xi / D 0 for 0 � i � n. Since x0; : : : ; xn are pairwise
distinct and since degP � n, it follows that necessarily P D 0 and so h ; i is an
inner product on V .

To prove the second assertion, let i ¤ j 2 f0; : : : ; ng and let us compute

hLi ; Lj i D
nX

kD0
Li .xk/Lj .xk/:

Now, by construction we have

Li.xj / D ıij ;

where ıij D 0 if i ¤ j and 1 otherwise. Thus

hLi ; Lj i D
nX

kD0
ıikıjk:

If i ¤ j , then ıikıjk D 0 for 0 � k � n, thus hLi ; Lj i D 0. If i D j , then
ıikıjk D 0 for k ¤ i and 1 for k D i , thus hLi ; Li i D 1 and the result follows. ut
Problem 10.55. Let V be the space of continuous 2�-periodic maps f W R ! R,
endowed with the inner product

hf; gi D
Z �

��
f .x/g.x/dx:
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Let cn; sn 2 V be the maps defined by

cn.x/ D cos.nx/; sn.x/ D sin.nx/:

Prove that the family

F D
�

1p
2�


 [�
1p
�
cnjn � 1


 [�
1p
�
snjn � 1




is an orthonormal family in V .

Solution. To simplify notations a little bit, let C0 D 1p
2�

and for n � 1

Cn D 1p
�
cn; Sn D 1p

�
sn:

Clearly

jjC0jj2 D
Z �

��
1

2�
dx D 1:

Next,

jjCnjj2 D
Z �

��
1

�
cos2.nx/dx D 1

�

Z �

��
1C cos.2nx/

2
dx D 1;

since
Z �

��
cos.px/dx D 0 8 p 2 Z� (10.2)

(a primitive of cos.px/ is 1
p

sin.px/ and this vanishes at � and ��). Similarly, we
obtain that jjSnjj D 1, by using the identity

sin2.nx/ D 1 � cos.2nx/

2
:

Thus jjvjj D 1 for all v 2 F .
It remains to check that elements of F are pairwise orthogonal. That C0 is

orthogonal to Cn and Sn for all n � 1 follows from relation (10.2) and its analogue

Z �

��
sin.px/ D 0; 8 p 2 Z (10.3)
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Next, we check that Cn and Cm are orthogonal for m ¤ n. This follows from the
identity

cos.nx/ cos.mx/ D cos..m � n/x/C cos..mC n/x/

2

and relation (10.2). Similarly, the fact that Sn and Sm are orthogonal for n ¤ m is a
consequence of the relations

sin.nx/ sin.mx/ D cos..m � n/x/ � cos..mC n/x/

2

and (10.2). Finally, the fact that Sn and Cm are orthogonal for n;m � 1 follows
from relations

sin.nx/ cos.mx/ D sin..mC n/x/C sin..n �m/x/
2

and (10.3). ut
A fundamental property of orthonormal families is that they are linearly

independent. More precisely

Proposition 10.56. Let V be a vector space over R endowed with an inner product.
Then any orthogonal family .vi /i2I of nonzero vectors inE is linearly independent.

Proof. Suppose that
P

i2I aivi D 0 for some scalars ai 2 R, such that all but
finitely many of them are 0. For j 2 I we have

hvj ;
X
i2I

aivi i D 0:

By bilinearity, the left-hand side equals

X
i2I

ai hvj ; vi i D aj jjvj jj2;

the last equality being a consequence of the fact that .vi /i2I is orthogonal. We
deduce (thanks to the hypothesis that vj ¤ 0 for all j ) that aj D 0 for all j 2 I

and the result follows. ut
The following result is a direct consequence of the previous proposition:

Corollary 10.57. An orthogonal family of nonzero vectors in an Euclidean space
of dimension n has at most n elements. Moreover, it has n elements if and only
if it is an orthogonal basis. In particular, an orthonormal family of n vectors in
an n-dimensional Euclidean space is automatically an orthonormal basis of that
space.
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When we have an orthonormal basis e1; : : : ; en of an Euclidean space V , it is
rather easy to write down the coordinates of a vector v 2 V with respect to this
basis: these coordinates are simply hv; ei i for 1 � i � n. More precisely, we have
the very important formula

v D
nX
iD1

hv; ei iei (10.4)

called the Fourier decomposition of v with respect to the orthonormal basis
e1; : : : ; en. In order to prove formula (10.4), write

v D
nX
iD1

xi ei

for some real numbers xi and observe that

hv; ej i D
nX
iD1

hxiei ; ej i D
nX
iD1

xi hei ; ej i D xj

for all 1 � j � n.
Let us come back for a moment to the setup and notations of Problem 10.54.

Recall that we proved in that problem that the polynomials

Li.X/ D
Y

0�k�n
k¤i

X � xk
xi � xk

for 0 � i � n form an orthonormal family in the space V of polynomials with real
coefficients and degree at most n, endowed with the inner product defined by

hP;Qi D
nX
iD0

P.xi /Q.xi /:

Since dimV D nC1 and since the family .Li /0�i�n is orthonormal (Problem 10.54)
and has n C 1 elements, Corollary 10.57 shows that this family is an orthonormal
basis of V . Moreover, for each P 2 V the Fourier decomposition of P becomes

P D
nX
iD0

hP;Li iLi :

Note that

hP;Li i D
nX

kD0
P.xk/Li .xk/ D P.xi /;
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since Li.xk/ D 0 for i ¤ k and 1 for i D k. We obtain in this way Lagrange’s
interpolation formula: for all polynomials P of degree at most n we have

P D
nX
iD0

P.xi /Li D
nX
iD0

P.xi /
Y

0�k�n
k¤i

X � xk
xi � xk :

Let us do now the same thing starting with Problem 10.55. Let Tn be the space
of trigonometric polynomials of degree at most n. By definition,

Tn D Span.c0; c1; : : : ; cn; s1; : : : ; sn/;

where we recall that

ck.x/ D cos.kx/; sk.x/ D sin.kx/:

Thus an element of Tn is a continuous 2�-periodic map of the form

x 7! a0 C
nX

kD1
.ak cos.kx/C bk sin.kx//

with ak; bk 2 R. By Problem 10.55 the family

Fn D
�

1p
2�


 [�
1p
�
ckj 1 � k � n


 [�
1p
�
skj 1 � k � n




is orthonormal with respect to the inner product

hf; gi D
Z �

��
f .x/g.x/dx

on Tn. This family is therefore linearly independent in Tn and by definition it spans
Tn, hence it is an orthonormal basis of Tn. If f W R ! R is any continuous
2�-periodic map, we call the sum

Sn.f / D
X
g2Fn

hf; gig

the nth partial Fourier series of f . A small calculation shows that we can also
write

Sn.f /.x/ D a0.f /

2
C

nX
kD1

.ak.f / cos.kx/C bk.f / sin.kx// ;
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where

am.f / D 1

�

Z �

��
f .x/ cos.mx/dx; bm.f / D 1

�

Z �

��
f .x/ sin.mx/dx

and the mth Fourier coefficients of f .
We can also rewrite the previous results in terms of the complex Fourier

coefficients

cm.f / D 1

2�

Z �

��
f .x/e�imxdx

of f . These are usually referred to simply as the Fourier coefficients of f . A nice
exercise for the reader consists in checking that the partial Fourier series can also be
expressed as

Sn.f /.x/ D
nX

kD�n
ck.f /e

ikx;

by first checking that for m � 0

cm.f / D am.f / � ibm.f /
2

:

Note that relation (10.4) says that

f D Sn.f / if f 2 Tn;

but of course we do not have f D Sn.f / for any continuous 2�-periodic function
f . One may wonder what is the actual relationship between f and the partial
Fourier series of f . The naive guess would be that

lim
n!1Sn.f /.x/ D f .x/

for every continuous 2�-periodic map f W R ! R. This is not true, but there are
many situations in which this is actually true: a deep theorem in Fourier analysis
due to Dirichlet says that if f and its derivative are piecewise continuous, then for
all x we have

lim
n!1Sn.f /.x/ D f .xC/C f .x�/

2
;

where f .xC/ and f .x�/ are the one-sided limits of f at x. Thus if moreover f is
continuous, we do have

lim
n!1Sn.f /.x/ D f .x/;
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which we can write as

f .x/ D
X
k2Z

ck.f /e
ikx D a0.f /

2
C

1X
kD1

.ak.f / cos.kx/C bk.f / sin.kx// :

Orthogonal bases are extremely useful in practice, as we can easily compute
orthogonal projections and distances once we have at our disposal an orthogonal
basis of the space we are interested in. More precisely, we have the following very
useful

Theorem 10.58. Let V be a vector space over R endowed with an inner product
h ; i and let W be a finite dimensional subspace of V . Let v1; : : : ; vn be an
orthogonal basis of W . Then for all v 2 V we have

pW .v/ D
nX
iD1

hv; vi i
jjvi jj2 vi :

Proof. Let us write v D pW .v/ C u, with u 2 W ?, that is hu; vi i D 0 for all
i 2 Œ1; n�. Letting pW .v/ D ˛1v1 C : : :C ˛nvn and using the fact that v1; : : : ; vn is
an orthogonal family, we obtain

0 D hu; vi i D hv; vi i � hpW .v/; vi i

D hv; vi i �
nX

jD1
˛j hvj ; vi i D hv; vi i � ˛i jjvi jj2:

It follows that

˛i D hv; vi i
jjvi jj2

and the theorem is proved. ut
We can say quite a bit more. The inequality in the theorem below is called

Bessel’s inequality.

Theorem 10.59. Let V be a vector space over R endowed with an inner product
h ; i, and let W be a finite dimensional subspace of V . If v1; : : : ; vn is an
orthonormal basis of W , then for all v 2 V we have

pW .v/ D
nX
iD1

hv; vi i � vi
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and

d.v;W /2 D jjv �
nX
iD1

hv; vi i � vi jj2 D jjvjj2 �
nX
iD1

hv; vi i2:

In particular we have

nX
iD1

hv; vi i2 � jjvjj2:

Proof. The formula for pW .v/ is a direct consequence of the previous theorem.
Next, using the Pythagorean theorem

jjvjj2 D jjv � pW .v/jj2 C jjpW .v/jj2:

On the other hand, since v1; : : : ; vn is an orthonormal basis, we have

jjpW .v/jj2 D jj
nX
iD1

hv; vi i � vi jj2 D

nX
i;jD1

hhv; vi ivi ; hv; vj ivj i D
nX

i;jD1
hv; vi i � hv; vj i � hvi ; vj i D

nX
i;jD1

ıi;j hv; vi i � hv; vj i D
nX
iD1

hv; vi i2:

Combining these equalities yields

d.v;W /2 D jjv �
nX
iD1

hv; vi i � vi jj2 D jjvjj2 �
nX
iD1

hv; vi i2:

Finally, since d.v;W /2 � 0, the last inequality is a direct consequence of the
previous formula. ut
Remark 10.60. Let V be a vector space over R endowed with an inner product and
let .vi /i2I be an orthogonal family. If .ai /i2I are real numbers, all but finitely many
being equal to 0, then

jj
X
i2I

aivi jj2 D
X
i2I

a2i jjvi jj2:
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In particular, if .vi /i2I is an orthonormal family, then

jj
X
i2I

aivi jj2 D
X
i2I

a2i :

This can be proved in the same way as the previous theorem: we have

jj
X
i2I

aivi jj2 D h
X
i2I

aivi ;
X
j2I

aj vj i D

X
i;j2I

aiaj hvi ; vj i D
X
i2I

a2i hvi ; vi i D
X
i2I

a2i jjvi jj2;

since the family is orthogonal. Note that the algebraic operations are allowed since
we assumed that all but finitely many of the ai ’s are zero, thus we never manipulate
infinite sums.

Remark 10.61. Let us come back to the discussion preceding the previous theorem.
If f W R ! R is a continuous 2�-periodic map, we deduce from that discussion
and the previous theorem that Sn.f / (the nth partial Fourier series of f ) is the
orthogonal projection of f on the space Tn of trigonometric polynomials of degree
at most n and that

X
g2Fn

hf; gi2 � jjf jj2 D
Z �

��
f .x/2dx:

This can be rewritten in terms of the Fourier coefficients am.f /; bm.f / of f as

a0.f /
2

2
C

nX
kD1
.ak.f /

2 C bk.f /
2/ � 1

�

Z �

��
f .x/2dx:

Since this holds for all n, we deduce that the series

X
k�1
.ak.f /

2 C bk.f /
2/

converges and

a0.f /
2

2
C

1X
kD1
.ak.f /

2 C bk.f /
2/ � 1

�

Z �

��
f .x/2dx:

The convergence of the previous series yields

lim
n!1 an.f / D lim

n!1 bn.f / D 0;
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a nontrivial result known as the Riemann–Lebesgue theorem. On the other hand,
one can prove (this is the famous Plancherel theorem) that the previous inequality
is actually an equality, that is for all continuous 2�-periodic maps f we have

a0.f /
2

2
C

1X
kD1
.ak.f /

2 C bk.f /
2/ D 1

�

Z �

��
f .x/2dx:

The proof is beyond the scope of this book. A good exercise for the reader is to
convince himself that Plancherel’s theorem can be rewritten as

X
k2Z

jck.f /j2 D 1

2�

Z �

��
f .x/2dx;

where we recall that

ck.f / D 1

2�

Z �

��
f .x/e�ikxdx:

Plancherel’s theorem also holds for functions f W R ! R which are piecewise
continuous and 2�-periodic.

Problem 10.62. a) Determine an orthogonal basis of R3 containing the vector
w D .1; 2;�1/.

b) Let W be the subspace of R3 spanned by w. Find the projection of v D .1; 2; 1/

onto the orthogonal complement of W .

Solution. a) We look for an orthogonal basis w; v1; v2 of R3. In particular v1; v2
should be an orthogonal basis of .Rw/?. A vector v D .x; y; z/ belongs to .Rw/?
if and only if

0 D hv;wi D x C 2y � z:

Thus we must have

v1 D .x1; y1; x1 C 2y1/; v2 D .x2; y2; x2 C 2y2/

for some real numbers x1; x2; y1; y2. Moreover, we should have hv1; v2i D 0

and v1; v2 should be nonzero: this automatically implies that v1; v2 are linearly
independent (because hv1; v2i D 0) and so they form a basis of .Rw/?.
The condition hv1; v2i D 0 is equivalent to

x1x2 C y1y2 C .x1 C 2y1/.x2 C 2y2/ D 0:
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We see that we have lots of choices: to keep things simple we choose x1C2y1 D
0, for instance y1 D 1 and x1 D �2. Then the condition becomes �2x2Cy2 D 0,
so we choose x2 D 1 and y2 D 2. This gives

v1 D .�2; 1; 0/; v2 D .1; 2; 5/:

We insist that this is only one of the many possible answers of the problem.
b) As we have already seen in part a), the orthogonal complement of W is exactly

Span.v1; v2/ and an orthogonal basis of W ? is given by v1; v2. Applying the
previous theorem yields

pW?.v/ D hv; v1i
jjv1jj2 v1 C hv; v2i

jjv2jj2 v2

D 1

3
v2 D .

1

3
;
2

3
;
5

3
/:

We could have done this in a much easier way as follows: instead of computing
pW?.v/ we compute first pW .v/. Now an orthogonal basis ofW is given by w, thus

pW .v/ D hv;wi
jjwjj2 w D 4

6
w D .

2

3
;
4

3
;�2
3
/:

Next, we have

pW?.v/ D v � pW .v/ D .
1

3
;
2

3
;
5

3
/: ut

The previous results concerning orthonormal bases show rather clearly the
crucial role played by these objects. Yet, we avoided a natural and very important
question: can we always find an orthonormal basis? The answer is given by the
following fundamental theorem. We do not give its proof right now since we will
prove a much stronger result in just a few moments.

Theorem 10.63. Any Euclidean space has an orthonormal basis.

The following theorem refines Theorem 10.63 and gives an algorithmic con-
struction of an orthonormal basis of an Euclidean space starting with an arbitrary
basis of the corresponding vector space. It is absolutely fundamental:

Theorem 10.64 (Gram–Schmidt). Let v1; : : : ; vd be linearly independent vectors
in a vector space V over R (not necessarily finite dimensional), endowed with an
inner product h ; i. Then there is a unique orthonormal family e1; : : : ; ed in V with
the property that for all k 2 Œ1; d � we have

Span.e1; : : : ; ek/ D Span.v1; : : : ; vk/ and hek; vki > 0:
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Proof. We will prove the theorem by induction on d . Let us start with the case
d D 1. Suppose that e1 is a vector satisfying the conditions imposed by the theorem.
Since e1 2 Rv1, we can write e1 D 	v1 for some real number 	. Then he1; v1i D
	jjv1jj2 is positive, thus 	 > 0. Next, jje1jj D 1, thus j	j D 1

jjv1jj and so necessarily

	 D 1
jjv1jj and e1 D 1

jjv1jj v1. Conversely, this vector satisfies the desired properties,
which proves the theorem when d D 1.

Assume now that d � 2 and that the theorem holds for d � 1. Let v1; : : : ; vd be
linearly independent vectors in V . By the inductive hypothesis we know that there
is a unique orthonormal family e1; : : : ; ed�1 satisfying the conditions of the theorem
with respect to the family v1; : : : ; vd�1. It suffices therefore to prove that there is a
unique vector ed such that e1; : : : ; ed satisfies the conditions of the theorem with
respect to v1; : : : ; vd , that is such that

jjed jj D 1; hed ; ei i D 0 81 � i � d � 1;

and

Span.e1; : : : ; ed / D Span.v1; : : : ; vd /:

Assume first that ed is such a vector. Then

ed 2 Span.e1; : : : ; ed / D Span.v1; : : : ; vd / D Rvd C Span.v1; : : : ; vd�1/

D Rvd C Span.e1; : : : ; ed�1/:

Thus we can write

ed D 	vd C
d�1X
iD1

ai ei

for some real numbers 	; a1; : : : ; ad�1. Then for all i 2 Œ1; d � 1� we have (since
e1; : : : ; ed�1 is an orthonormal family)

0 D hed ; ei i D 	hvd ; ei i C
d�1X
jD1

aj hej ; ei i D 	hvd ; ei i C ai ;

thus ai D �	hvd ; ei i are uniquely determined if 	 is so. Next, we have

ed D 	.vd �
d�1X
iD1

hvd ; ei iei /:
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Note that z WD vd � Pd�1
iD1 hvd ; ei iei is nonzero, since otherwise vd 2

Span.e1; : : : ; ed�1/ D Span.v1; : : : ; vd�1/, contradicting the hypothesis that
v1; : : : ; vd are linearly independent. Now jjed jj D 1 forces j	j D 1

jjzjj , and the
condition hed ; vd i > 0 shows that the sign of 	 is uniquely determined and is
actually positive:

hed ; vd i D hed ; ed
	

C
d�1X
iD1

hvd ; ei iei i D 1

	
:

We deduce that 	 is uniquely determined by

	 D 1

jjzjj
and the uniqueness follows.

Conversely, we can define 	 D 1
jjzjj and ed D 	z. The previous computations

show that ed satisfies all required properties and this proves the existence part and
finishes the proof of the inductive step. ut
Remark 10.65. a) Let us try to understand the proof geometrically (i.e., let us give

a less computational and more conceptual proof of the theorem). Assuming
that we constructed e1; : : : ; ed�1, we would like to understand how to construct
ed . This vector ed must be orthogonal to e1; : : : ; ed�1 and it must belong
to W D Span.v1; : : : ; vd /. It follows that ed must be in the orthogonal of
Span.e1; : : : ; ed�1/ D Span.v1; : : : ; vd�1/. However

dim Span.v1; : : : ; vd�1/? D dim Span.v1; : : : ; vd / � dim Span.v1; : : : ; vd�1/

D d � .d � 1/ D 1;

thus ed is uniquely determined up to a scalar. Since we further want ed to be of
norm 1, this pins down ed up to a sign. Finally, the condition that hed ; vd i > 0

determines uniquely the sign and so determines uniquely ed .
b) Part a) (and the proof of the theorem also) gives the following algorithm,

known as the Gram–Schmidt process, which constructs e1; : : : ; ed starting from
v1; : : : ; vd . Set f1 D v1 and e1 D f1

jjf1jj , then assuming that we constructed
f1; : : : ; fk�1 and e1; : : : ; ek�1, let

fk D vk �
k�1X
iD1

hvk; ei iei ; and ek D fk

jjfkjj :

That is, at each step we subtract from vk its orthogonal projectionPk�1
iD1hvk; ei iei onto Span.e1; : : : ; ek�1/ and obtain in this way fk . Then
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we normalize fk to get ek . Note that in practice it can be very useful to
observe that we can compute jjfkjj via

jjfkjj2 D hfk; vki:

This formula follows from the fact that vk D fk C Pk�1
iD1hvk; ei iei and ei is

orthogonal to fk for 1 � i � k � 1.

Example 10.66. Let us consider the vectors

v1 D .1; 1; 1/; v2 D .0; 2; 1/; v3 D .3; 1; 3/ 2 R3:

An easy computation shows that the determinant of the matrix whose columns
are v1; v2; v3 is nonzero, thus v1; v2; v3 are linearly independent. Let us follow the
Gram–Schmidt process and find the corresponding orthonormal basis of R3. We set

f1 D v1; e1 D v1
jjv1jj D v1p

3
D .

1p
3
;
1p
3
;
1p
3
/:

Next, set

f2 D v2 � hv2; e1ie1 D v2 � p
3e1 D v2 � .1; 1; 1/ D .�1; 1; 0/

and

e2 D f2

jjf2jj D f2p
2

D .� 1p
2
;
1p
2
; 0/:

Finally, set

f3 D v3 � hv3; e1ie1 � hv3; e2ie2 D

v3 � 7p
3
e1 C p

2e2 D .3; 1; 3/ � .7
3
;
7

3
;
7

3
/C .�1; 1; 0/

D .�1
3
;�1
3
;
2

3
/

and

e3 D f3

jjf3jj D 1p
6
.�1;�1; 2/:
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Problem 10.67. Let V be the space of polynomials with real coefficients whose
degree does not exceed 2, endowed with the inner product defined by

hP;Qi D
Z 1

�1
P.x/Q.x/dx:

Find the orthonormal basis of V obtained by applying the Gram–Schmidt process
to the basis 1;X;X2 of V .

Solution. We start with v1 D 1, v2 D X and v3 D X2 and apply the Gram–Schmidt
process. We obtain

jjv1jj D p
2; e1 D 1p

2
;

then

f2 D v2 � hv2; 1p
2

i 1p
2

D X � 1

2

Z 1

�1
xdx D X

and

jjf2jj2 D hf2; v2i D
Z 1

�1
x2dx D 2

3
;

thus

e2 D f2

jjf2jj D
r
3

2
X:

Finally,

f3 D v3 � hv3; 1p
2

i 1p
2

� hv3;
r
3

2
Xi
r
3

2
X

D X2 � 1

2

Z 1

�1
x2dx � 3

2
.

Z 1

�1
x3dx/X D X2 � 1

3

and

jjf3jj2 D hf3; v3i D
Z 1

�1
x2.x2 � 1

3
/dx D 8

45
:

Hence

e3 D f3

jjf3jj D 3X2 � 1
2

r
5

2
:
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Hence the answer is

1p
2
;

r
3

2
X;

3X2 � 1
2

r
5

2
: ut

The following problem is a generalization of the previous one. It is much more
challenging and represents an introduction to the beautiful theory of orthogonal
polynomials.

Problem 10.68 (Legendre’s Polynomials). Let n � 1 and let V be the space of
polynomials with real coefficients whose degree does not exceed n, endowed with
the inner product

hP;Qi D
Z 1

�1
P.x/Q.x/dx:

Let Ln be the nth derivative of .X2 � 1/n.

a) Prove that L0; : : : ; Ln is an orthogonal basis of V .
b) Compute jjLkjj.
c) What is the orthonormal basis of V obtained by applying the Gram–Schmidt

process to the canonical basis 1;X; : : : ; Xn of V ?

Solution. For j 2 Œ0; n� let Pj D .X2 � 1/j and note that �1 and 1 are roots
with multiplicity j of Pj . It follows that for k 2 Œ0; j �, �1 and 1 and roots with

multiplicity j � k of P .k/
j (kth derivative of Pj ). If P 2 V , we deduce from this

observation and integration by parts that for j � 1

hLj ; P i D
Z 1

�1
P
.j /
j .x/P.x/dx D P

.j�1/
j .x/P.x/j1�1�

Z 1

�1
P
.j�1/
j .x/P 0.x/dx D �

Z 1

�1
P
.j�1/
j .x/P 0.x/dx

and repeating this argument gives

hLj ; P i D .�1/k
Z 1

�1
P
.j�k/
j .x/P .k/.x/dx

for k 2 Œ0; j � and P 2 V . Taking j D k yields the fundamental relation

hLk; P i D .�1/k
Z 1

�1
.x2 � 1/kP .k/.x/dx D

Z 1

�1
.1 � x2/kP .k/.x/dx (10.5)

for k 2 Œ0; n� and P 2 V .
It is now rather easy to deal with the problem.
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a) For j < k we have by relation (10.5)

hLk;Lj i D
Z 1

�1
.1 � x2/kL.k/j .x/dx:

Since degLj D j , we have L.k/j D 0 and so hLk;Lj i D 0, proving that
L0; : : : ; Ln is an orthogonal family.

b) By definition Ln has degree n and

L.n/n .X/ D ..X2 � 1/n/.2n/ D .X2n/.2n/ D 2n.2n � 1/ : : : 1 D .2n/Š:

We deduce from relation (10.5) that

hLn;Lni D .2n/Š

Z 1

�1
.1 � x2/ndx D 2.2n/Š

Z 1

0

.1 � x2/ndx:

Let

In D
Z 1

0

.1 � x2/ndx

and observe that an integration by parts yields

In D x.1 � x2/nj10 �
Z 1

0

x.1 � x2/n�1.�2x/ D 2n

Z 1

0

x2.1 � x2/n�1dx

D 2n

Z 1

0

.1 � .1 � x2//.1 � x2/n�1dx D 2n.In�1 � In/;

thus

.2nC 1/In D 2nIn�1:

Taking into account that I0 D 1 we obtain

In D
nY
iD1

Ii

Ii�1
D

nY
iD1

2i

2i C 1
D 2nnŠ

1 � 3 � : : : � .2nC 1/
D 4nnŠ2

.2nC 1/Š
:

Finally

jjLnjj2 D hLn;Lni D 2.2n/ŠIn D 22nC1nŠ2

2nC 1
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and

jjLnjj D
r

2

2nC 1
2nnŠ:

c) Let Qk D LkjjLk jj . Then by part a) the family Q0; : : : ;Qn is orthonormal in V and
since dimV D nC 1, it follows that Q0; : : : ;Qn is an orthonormal basis of V .
Moreover, we have degQk D degLk D k for k 2 Œ0; n�, which easily implies
that

Span.Q0; : : : ;Qk/ D Span.X0; : : : ; Xk/

for k 2 Œ0; n�. Finally,

hXk;Qki D hXk;Lki
jjLkjj D

R 1
0
L
.k/

k .1 � x2/kdx
jjLkjj > 0;

since we have already seen that L.k/k is a positive real number. We conclude
that Q0; : : : ;Qn is obtained from 1;X; : : : ; Xn by applying the Gram–Schmidt
process. ut

10.5.1 Problems for Practice

1. Apply the Gram–Schmidt algorithm to the vectors

v1 D .1; 2;�2/; v2 D .0;�1; 2/; v3 D .�1; 3; 1/:

2. Consider the vector space V of polynomials with real coefficients and degree
not exceeding 2, endowed with the inner product defined by

hP;Qi D
Z 1

0

xP.x/Q.x/dx:

Apply the Gram–Schmidt algorithm to the vectors 1;X;X2.
3. Consider the map h ; i W R3 � R3 ! R defined by

h.x1; x2; x3/; .y1; y2; y3/i D .x1 C x2 C x3/.y1 C y2 C y3/C

.x2 C x3/.y2 C y3/C x3y3:

a) Check that this defines an inner product on R3.
b) Applying the Gram–Schmidt algorithm to the canonical basis of R3, give an

orthonormal basis for R3 endowed with this inner product.
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4. Find an orthogonal basis of R4 containing the vector .1; 2;�1;�2/.
5. (TheQR factorization) LetA 2 Mm;n.R/ be a matrix with linearly independent

columns C1; : : : ; Cn. Let W be the span of C1; : : : ; Cn, a subspace of Rm.

a) Prove that there is a matrix Q 2 Mm;n.R/ whose columns are an orthonor-
mal basis of W , and there is an upper-triangular matrix R 2 Mn.R/ with
positive diagonal entries such that

A D QR:

Hint: the columns ofQ are the result of applying the Gram–Schmidt process
to the columns of A.

b) Prove that the factorization A D QR with Q;R matrices as in part a) is
unique.

6. Using the Gram–Schmidt process, find the QR factorization of the matrix

A D
2
4
2 3 5

0 4 6

0 0 7

3
5 :

7. Find the QR factorization of the matrix

A D
2
4
1 2

2 1

1 3

3
5 :

8. Describe the QR factorization of an upper-triangular matrix A 2 Mn.R/.
9. If f W R ! R is a continuous 2�-periodic function, we denote

cn.f / D 1

2�

Z �

��
f .x/e�inxdx:

a) Prove that if f is continuously differentiable, then for all n 2 Z we have

cn.f
0/ D in � cn.f /:

b) Deduce that under the assumptions of a) we have

lim
n!1ncn.f / D 0
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and

X
n2Z

n2jcn.f /j2 < 1:

Hint: use the Riemann–Lebesgue theorem and Bessel’s inequality, as well as
part a).

c) Prove that if f; g W R ! R are continuous 2�-periodic maps such that
cn.f / D cn.g/ for all n 2 Z, then f D g. Hint: use Plancherel’s theorem
for the function f � g.

10. Consider the 2�-periodic function f W R ! R such that f .0/ D f .�/ D 0,
f .t/ D 0 for t 2 .0; �/ and f is odd, i.e., f .�x/ D �f .x/ for all x.

a) Explain why such a map exists, plot its graph and show that it is piecewise
continuous.

b) Compute its Fourier coefficients am.f / and bm.f / for all m � 0.
c) Using Plancherel’s theorem, deduce Euler’s famous identity

X
n�0

1

.2nC 1/2
D �2

8
:

d) Deduce from part c) the even more famous Euler’s identity

1X
nD1

1

n2
D �2

6
:

11. Consider the 2�-periodic function f W R ! R such that f .t/ D t 2 for t 2
Œ��; ��.
a) Compute the Fourier coefficients of f .
b) Using Plancherel’s theorem, prove the following identity

1X
nD1

1

n4
D �4

90
:

12. Let E be an Euclidean space, let e1; : : : ; en be an orthonormal basis of E and
let T be a linear transformation on E. Prove that

Tr.T / D
nX
iD1

hT .ei /; ei i:

13. Let V be an Euclidean space and let T be a linear transformation on V such
that Tr.T / D 0. Let e1; : : : ; en be an orthonormal basis of V .
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a) Prove that one can find i; j 2 f1; 2; : : : ; ng such that hT .ei /; ei i and
hT .ej /; ej i have opposite signs. Hint: use Problem 12.

b) Check that the map f W Œ0; 1� ! R defined by

f .t/ D hT .tei C .1 � t /ej /; tei C .1 � t /ej i

is continuous and that f .0/f .1/ � 0.
c) Conclude that there is a nonzero vector x 2 E such that

hT .x/; xi D 0:

d) Finally, prove by induction on n that there is an orthogonal basis of V in
which the diagonal entries of the matrix of T are all equal to 0.

14. Let V be an Euclidean space of dimension n, let e1; : : : ; en be an orthonormal
basis of V and let T W V ! V be an orthogonal projection. Show that

rank.T / D
nX
iD1

jjT .ei /jj2:

15. Let V be an Euclidean space of dimension n and let e1; : : : ; en be nonzero
vectors in V such that for all x 2 V we have

nX
kD1

hek; xi2 D jjxjj2:

a) Compute the orthogonal of Span.e1; : : : ; en/ and deduce that e1; : : : ; en is a
basis of V .

b) By choosing x D ei , prove that jjei jj � 1 for all 1 � i � n.
c) By choosing x 2 Span.e1; : : : ; ei�1; eiC1; : : : ; en/?, prove that jjei jj D 1 for

all 1 � i � n.
d) Conclude that e1; : : : ; en is an orthonormal basis of V .

16. (Hermite’s polynomials) Let n be a positive integer and let V be the space of
polynomials with real coefficients whose degree does not exceed n, endowed
with

hP;Qi D
Z 1

0

P.t/Q.t/e�t dt:

a) Explain why h ; i is well defined and an inner product on V .
b) Define hk D .Xke�X/.k/eX for k � 0. What are the coefficients of hk?
c) Prove that for all k 2 Œ0; n� and all P 2 V we have

hP; hki D .�1/k
Z 1

0

P .k/.t/tke�t dt:
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d) Prove that h0; : : : ; hn is an orthogonal basis of V .
e) Prove that jjhkjj D kŠ for k 2 Œ0; n�.

17. (Chebyshev’s polynomials) Let n be a positive integer and let V be the space
of real polynomials with degree not exceeding n, endowed with

hP;Qi D
Z 1

�1
P.t/Q.t/p
1 � t 2 dt:

a) Explain why h ; i makes sense and defines an inner product on V .
b) Prove that for each k � 0 there is a unique polynomial Tk (the kth

Chebyshev polynomial) such that Tk.cos x/ D cos kx for all x 2 R.
c) Prove that T0; : : : ; Tn is an orthogonal basis of V .
d) Find jjTkjj for k 2 Œ0; n�.

18. (Cross-product) Let V be an Euclidean space of dimension n � 3 and
let .e1; : : : ; en/ be a fixed orthonormal basis. If v1; : : : ; vn 2 V , write
det.v1; : : : ; vn/ instead of det.e1;:::;en/.v1; : : : ; vn/.

a) Let v1; : : : ; vn�1 2 V . Prove the existence of a unique vector v1^: : :^vn�1 2
V such that for all v 2 V

det.v1; : : : ; vn�1; v/ D hv; v1 ^ : : : ^ vn�1i (10.6)

We call this vector v1 ^ : : : ^ vn�1 the cross-product of v1; : : : ; vn�1.
b) Prove that v1 ^ : : : ^ vn�1 is orthogonal to v1; : : : ; vn�1.
c) Prove that v1; : : : ; vn�1 are linearly dependent if and only if

v1 ^ : : : ^ vn�1 D 0:

d) Let vj D Pn
iD1 aij ei . By choosing v D ei in (10.6) prove that

v1 ^ : : : ^ vn�1 D
nX
iD1
.�1/n�i
i � ei ;

where 
i is the determinant of the .n � 1/ � .n � 1/ matrix obtained from
Œaij � (i.e., the matrix whose columns are v1; : : : ; vn�1) by deleting the i th
row. In particular, if n D 3 check that

2
4

u1
u2
u3

3
5 ^

2
4

v1
v2
v3

3
5 D

2
4

u2v3 � u3v2
u3v1 � u1v3
u1v2 � u2v1

3
5 :
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e) Prove that if f1; : : : ; fn is an orthonormal basis of V , then det.f1; : : : ; fn/ 2
f�1; 1g. We say that f1; : : : ; fn is positive or positively oriented (with
respect to .e1; : : : ; en/) if det.f1; : : : ; fn/ D 1.

f) Prove that if v1; : : : ; vn�1 is an orthonormal family, then v1; : : : ; vn�1; v1 ^
: : : ^ vn�1 is a positive orthonormal basis.

19. Let v1; : : : ; vn�1 be linearly independent vectors in a Euclidean space V of
dimension n � 3. Let H be the hyperplane spanned by v1; : : : ; vn�1.

a) Prove that for all v 2 V we have

pH.v/ D v � hv1 ^ : : : ^ vn�1; vi
jjv1 ^ : : : ^ vn�1jj2 .v1 ^ : : : ^ vn�1/

and

d.v;H/ D jhv; v1 ^ : : : ^ vn�1ij
jjv1 ^ : : : ^ vn�1jj :

b) Prove that

H D fv 2 V j hv; v1 ^ : : : ^ vn�1i D 0g:

20. In this problem V is an Euclidean space of dimension 3.

a) (Lagrange’s formula) Prove that for all x; y 2 V we have

hx; yi2 C jjx ^ yjj2 D jjxjj2 � jjyjj2:

b) Prove that if � is the angle between x and y, then

jjx ^ yjj D jjxjj � jjyjj � j sin � j:

21. This exercise develops the theory of orthogonal bases over the complex
numbers. Let V be a finite dimensional vector space over C, endowed with a
hermitian inner product h ; i, i.e., a hermitian sesquilinear form h ; i W V �V !
C such that hx; xi > 0 for all nonzero vectors x 2 V . Such a space is called a
hermitian space. Two vectors x; y 2 V are orthogonal if hx; yi D 0. Starting
with this definition, one defines the notion of orthogonal/orthonormal family
and orthogonal/orthonormal basis as in the case of vector spaces over R.

a) Prove that an orthogonal family consisting of nonzero vectors is linearly
independent, and deduce that if dimV D n, then an orthonormal family
consisting of n vectors is an orthonormal basis of V .
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b) Let e1; : : : ; en be an orthonormal basis of V and let x D x1e1 C : : :C xnen
and y D y1e1 C : : :C ynen be two vectors in V . Prove that

hx; yi D x1y1 C : : :C xnyn

and

jjxjj2 D jx1j2 C : : :C jxnj2:

c) State and prove a version of the Gram–Schmidt process in this context.
d) Prove that there is an orthonormal basis of V .
e) Prove that any orthonormal family in V can be completed to an orthonormal

basis of V .
f) LetW be a subspace of V and let w1; : : : ;wk be an orthonormal basis ofW .

i) Prove that W ˚W ? D V and .W ?/? D W .
ii) The orthogonal projection pW of V onto W is the projection of V onto W

along W ?. Prove that for all v 2 V

pW .v/ D
kX
iD1

hwi ; viwi

and

jjv � pW .v/jj D min
w2W jjv � wjj:

10.6 The Adjoint of a Linear Transformation

Let .V; h ; i/ be an Euclidean space (the condition that V is finite dimensional will be
crucial in this section, so we insist on it). Let T W V ! V be a linear transformation.
For all y 2 V , the map x 7! hT .x/; yi is a linear form on V . It follows from
Theorem 10.37 that there is a unique vector T �.y/ 2 V such that

hT .x/; yi D hT �.y/; xi D hx; T �.y/i

for all x 2 V . We obtain in this way a map T � W V ! V , uniquely characterized by
the condition

hT .x/; yi D hx; T �.y/i

for all x; y 2 V . It is easy to see that T � is itself linear and we call T � the adjoint
of T . All in all, we obtain the following
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Theorem 10.69. Let .V; h ; i/ be an Euclidean space. For each linear transforma-
tion T W V ! V there is a unique linear transformation T � W V ! V , called the
adjoint of T , such that for all x; y 2 V

hT .x/; yi D hx; T �.y/i:

As the following problem shows, the previous result fails rather badly if we don’t
assume that V is finite dimensional:

Problem 10.70. Let V be the space of continuous real-valued maps on Œ0; 1�,
endowed with the inner product

hf; gi D
Z 1

0

f .t/g.t/dt:

Prove that the linear transformation T sending f to the constant map equal to f .0/
has no adjoint.

Solution. Suppose that T has some adjoint T �. LetW D kerT , that is the subspace
of maps f with f .0/ D 0. Fix g 2 V . Since

hT .f /; gi D hf; T �.g/i

for all f; g 2 V , we deduce that hT �.g/; f i D 0 for all f 2 W . Applying this to
the function f given by x 7! xT �.g/.x/ which is in W , we conclude that

hT �.g/; f i D
Z 1

0

x.T �.g/.x//2dx D 0:

Since x 7! x.T �.g/.x//2 is continuous, nonnegative, and with average equal to 0,
it is the zero map, thus T �.g/ vanishes on .0; 1� and then on Œ0; 1� by continuity.
We conclude that T �.g/ D 0 for all g 2 V , thus hT .f /; gi D 0 for all f; g 2 V

and finally T .f / D 0 for all f 2 V . Since this is clearly absurd, the problem is
solved. ut

Note that for all x; y 2 V we have

hy; T .x/i D hT .x/; yi D hx; T �.y/i D hT �.y/; xi D hy; .T �/�.x/i

It follows that T .x/ � .T �/�.x/ D 0 and so

.T �/� D T;

which we write as

T �� D T:
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Thus the map T ! T � is an involution of the space of linear transformations on
V . The fixed points of this involution are called symmetric or self-adjoint linear
transformations. They will play a fundamental role in this chapter. More precisely,
we introduce the following definitions:

Definition 10.71. Let .V; h ; i/ be an Euclidean space. A linear transformation T W
V ! V is called symmetric or self-adjoint if T � D T and alternating or skew-
symmetric if T � D �T .

In the next problems the reader will have the opportunity to find quite a few
different characterizations and/or properties of self-adjoint and alternating linear
transformations.

Problem 10.72. Let .V; h ; i/ be an Euclidean space and let T W V ! V be a linear
transformation. Let e1; : : : ; en be an orthonormal basis and let A be the matrix of
T with respect to e1; : : : ; en. Prove that the matrix of T � with respect to e1; : : : ; en
is tA. Thus T is symmetric if and only if A is symmetric, and T is alternating if
and only if A is skew-symmetric (be careful to the hypothesis that e1; : : : ; en is
an orthonormal basis, nor just any basis!).

Solution. Let B D Œbij � be the matrix of T � with respect to e1; : : : ; en, thus for all
i 2 Œ1; n� we have

T �.ei / D
nX

kD1
bki ek:

Since

hT .ei /; ej i D hei ; T �.ej /i

and T .ei / D Pn
kD1 aki ek , and since the basis is orthonormal we obtain

hT .ei /; ej i D
nX

kD1
aki hek; ej i D aji

and

hei ; T �.ej /i D
nX

kD1
bkj hei ; eki D bij :

We conclude that bij D aji for all i; j 2 Œ1; n�, and the result follows. ut
Problem 10.73. Prove that any two distinct eigenspaces of a symmetric linear
transformation are orthogonal.
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Solution. Let 	1; 	2 be different eigenvalues of T and let x; y be nonzero vectors
in V such that T .x/ D 	1x and T .y/ D 	2y. Since T is symmetric we have

hT .x/; yi D hx; T .y/i:

The left-hand side equals 	1hx; yi, while the right-hand side equals 	2hx; yi. Since
	1 ¤ 	2, it follows that hx; yi D 0 and the result follows. ut
Problem 10.74. Let n be a positive integer and let V be the space of polynomials
with real coefficients whose degree does not exceed n, endowed with the inner
product defined by

hP;Qi D
Z 1

�1
P.x/Q.x/dx:

Prove that the linear transformation T WV ! V sending P to 2XP 0.X/C.X2 � 1/

P 00.X/ is symmetric.

Solution. Since the maps P 7! P 0 and P 7! P 00 are linear, it follows that T is a
linear transformation (note that T .P / belongs to V since degXP 0 � degP � n

and deg.X2 � 1/P 00 � degP � n). In order to prove that T is symmetric, we need
to prove that

hT .P /;Qi D hP; T .Q/i

for all polynomials P;Q 2 V . Note that using the product rule for derivatives, we
can write

T .P / D ..X2 � 1/P 0/0:

Hence integration by parts gives

hT .P /;Qi D
Z 1

�1
..x2 � 1/P 0.x//0Q.x/ dx D

Z 1

�1
.1 � x2/P 0.x/Q0.x/ dx:

Note that this last expression is symmetric in P and Q, so it also equals
hT .Q/; P i D hP; T .Q/i. Thus T is symmetric. ut
Problem 10.75. Let V be an Euclidean space and let T W V ! V be a linear
transformation.

a) Prove that T is alternating if and only if hT .x/; xi D 0 for all x 2 V .
b) Prove that if this is the case, then the only possible real root of the characteristic

polynomial of T is 0.
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Solution. a) Suppose that T is alternating, thus T C T � D 0. Then for all x 2 V

we have

hT .x/; xi D hx; T �.x/i D hx;�T .x/i D �hT .x/; xi;
thus hT .x/; xi D 0.

Conversely, suppose that hT .x/; xi D 0 for all x 2 V . Thus for all x; y 2 V
we have

0 D hT .x C y/; x C yi D hT .x/C T .y/; x C yi D

hT .x/; xi C hT .x/; yi C hx; T .y/i C hT .y/; yi D

hT .x/; yi C hT �.x/; yi D h.T C T �/.x/; yi:
Thus .T C T �/.x/ is orthogonal to V and thus it equals 0, and this holds for all
x 2 V . It follows that T is alternating.

b) Suppose that 	 is a real root of the characteristic polynomial of T . Thus there is
a nonzero vector x 2 V such that T .x/ D 	x. Then

	jjxjj2 D h	x; xi D hT .x/; xi D 0;

and so 	 D 0. ut
Problem 10.76. Let V be an Euclidean space and let e1; : : : ; en be a basis of V .
Prove that the map T W V ! V defined by

T .x/ D
nX

kD1
hek; xiek

is a symmetric linear transformation on V . Is T positive? Is it positive definite?

Solution. Note that x 7! hek; xi is a linear map for all 1 � k � n (by definition of
an inner product). It follows that T itself is a linear transformation of V . In order to
check that T is symmetric, we need to prove that

hT .x/; yi D hx; T .y/i
for all x; y 2 V . Using the bilinearity of h ; i, we obtain

hT .x/; yi D h
nX

kD1
hek; xiek; yi D

nX
kD1

hek; xi � hek; yi:

A similar computation yields

hx; T .y/i D hx;
nX

kD1
hek; yieki D

nX
kD1

hek; xi � hek; yi;

establishing therefore the desired equality and proving that T is symmetric.
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Notice that the previous computations also give

hT .x/; xi D
nX

kD1
hek; xi2:

The last sum is nonnegative since it is a sum of squares of real numbers. It follows
that T is positive. Moreover, if hT .x/; xi D 0, then the previous argument yields
hek; xi D 0 for all 1 � k � n. Thus x is orthogonal to Span.e1; : : : ; en/ D V and
so x D 0. It follows that T is positive definite. ut
Problem 10.77. Let T be a linear transformation on an Euclidean space V . Prove
that the following statements are equivalent:

a) For all x 2 V we have jjT .x/jj D jjT �.x/jj.
b) For all x; y 2 V we have hT .x/; T .y/i D hT �.x/; T �.y/i.
c) T � and T commute.

Such a linear transformation T is called normal. Note that symmetric as well as
alternating linear transformations are normal.

Solution. Suppose that a) holds. Using the polarization identity twice and the
linearity of T and T �, we obtain

hT .x/; T .y/i D jjT .x C y/jj2 � jjT .x/jj2 � jjT .y/jj2
2

D

jjT �.x C y/jj2 � jjT �.x/jj2 � jjT �.y/jj2
2

D hT �.x/; T �.y/i:

Thus b) holds.
Suppose now that b) holds. For all x; y 2 V we have

h.T ı T � � T � ı T /.x/; yi D hT .T �.x//; yi � hT �.T .x//; yi

D hT �.x/; T �.y/i � hy; T �.T .x//i D hT .x/; T .y/i � hT .y/; T .x/i D 0:

Thus .T ı T � � T � ı T /.x/ D 0 for all x 2 V , that is T and T � commute and so
c) holds.

Finally, suppose that c) holds. Then

jjT .x/jj2 D hT .x/; T .x/i D hx; T �.T .x//i D

hx; T .T �.x//i D hT .T �.x//; xi D hT �.x/; T �.x/i D jjT �.x/jj2;

thus jjT .x/jj D jjT �.x/jj for all x 2 V and so a) holds. The problem is solved. ut



448 10 Forms

Problem 10.78. Let T be a normal linear transformation on an Euclidean space V .
Prove that if V1 is a subspace of V which is stable under T , then V ?

1 is also stable
under T .

Solution. The result is clear if V1 D 0 or V1 D V , so assume that this is not the case.
Choose an orthonormal basis e1; : : : ; en of V obtained by patching an orthonormal
basis of V1 and an orthonormal basis of V ?

1 . Since V1 is stable under T , the matrix

of T with respect to e1; : : : ; en is of the form M D
�
A B

0 C

�
for some matrices

A;B;C . Since T and T � commute, we have
�
A B

0 C

�
�
�
tA 0
tB tC

�
D
�
tA 0
tB tC

�
�
�
A B

0 C

�
:

In particular, we must have C tC D tBB C tCC . Thus

Tr. tBB/ D Tr.C tC / � Tr. tCC / D 0;

which can be written as
P

i;j b
2
ij D 0, where B D Œbij �. We deduce that bij D 0 for

all i; j , that is B D 0. But then it is clear that V ?
1 is stable under T . ut

10.6.1 Problems for Practice

1. Let V be an Euclidean space and let T be a linear transformation on V . Prove
that kerT � ı T D kerT . Hint: if x 2 kerT � ı T , compute jjT .x/jj2.

2. Let T be a symmetric linear transformation of an Euclidean space V . Prove that
V D Im.T /˚ kerT and that Im.T / and kerT are orthogonal.

3. Prove that if T is a normal endomorphism of an Euclidean space V , then

kerT D kerT �:

4. Prove that if T is a linear transformation on an Euclidean space V , then

detT D detT �:

5. Prove that if T is a linear transformation on an Euclidean space V , then

ker.T �/ D Im.T /?; Im.T �/ D .kerT /?:

6. Let V be an Euclidean space and let v 2 V be a vector with jjvjj D 1. Prove
that if k is a real number, then the map

T W V ! V; T .x/ D x C khx; viv

is a symmetric linear transformation on V .
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7. Let V be the space of polynomials with real coefficients whose degree does not
exceed n and consider the map h ; i W V � V ! R defined by

hP;Qi D
Z 1

�1

r
1 � x
1C x

P.x/Q.x/dx:

a) Explain why h ; i is well defined and an inner product on V .
b) Prove that the map T W V ! V defined by

T .P.X// D .X2 � 1/P 00.X/C .2X C 1/P 0.X/

is a self-adjoint linear transformation on V .

8. Prove that if a; b are real numbers, then the linear transformation

T W R2 ! R2; T .x; y/ D .ax C by;�bx C ay/

is normal.
9. Let V be an Euclidean space of dimension 2 and let T W V ! V be a normal

linear transformation. Let A be the matrix of T with respect to an orthonormal
basis of V . Prove that either T is symmetric or

A D
�
a b

�b a
�

for some real numbers a; b.
10. Let P 2 GLn.R/ be an invertible matrix and let E D Mn.R/ endowed with the

inner product given by

hA;Bi D Tr.AtB/:

Find the adjoint of the linear transformation T W E ! E sending A to PAP�1.
11. Let V be an Euclidean space and let T be a linear transformation on V such

that jjT .x/jj � jjxjj for all x 2 V .

a) Prove that jjT �.x/jj � jjxjj for all x 2 V .
b) Prove that ker.T � id/ D ker.T � � id/.
c) Deduce that V is the orthogonal direct sum of ker.T � id/ and Im.T � id/.

12. Let V be a hermitian space, that is a finite dimensional vector space over C
endowed with a hermitian inner product h ; i W V � V ! C.

a) Prove that for any linear transformation T W V ! V there is a unique linear
transformation T � W V ! V (called the adjoint of T ) such that for all
x; y 2 V

hx; T .y/i D hT �.x/; yi:
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Be careful that the left-hand side is no longer equal to hT .y/; xi, but rather
hT .y/; xi.

b) Prove that the map T 7! T � is a linear involution on the space of linear
transformations on V , such that for all S; T

.S ı T /� D T � ı S�:

c) Prove that T is invertible if and only if T � is invertible, and then

.T �/�1 D .T �1/�:

d) If e1; : : : ; en is an orthonormal basis of V and if A is the matrix of T with
respect to this basis, prove that the matrix of T � is A� WD tA. We say that
T is self-adjoint or hermitian if T D T �.

e) Prove that any orthogonal projection is a hermitian linear transformation.
f) Prove that kerT � D .Im.T //? and Im.T �/ D .kerT /?.
g) Prove that if T is hermitian, then the orthogonal of a subspace stable under
T is also stable under T .

10.7 The Orthogonal Group

Let V1; V2 be Euclidean spaces with inner products h ; i1 and h ; i2, and with
corresponding norms jj � jj1 and jj � jj2.
Definition 10.79. An isometry (or isomorphism of Euclidean spaces) between
V1 and V2 is an isomorphism of R-vector spaces T W V1 ! V2 such that for all
x; y 2 V1

hT .x/; T .y/i2 D hx; yi1:

Thus an isometry is a bijective linear map which is compatible with the inner
products on V1 and V2. The following exercise gives an equivalent formulation of
this compatibility:

Problem 10.80. Let V1 and V2 be as above and let T W V1 ! V2 be a linear
transformation. Prove that the following statements are equivalent:

a) For all x; y 2 V1 we have

hT .x/; T .y/i2 D hx; yi1:

b) For all x 2 V1 we have jjT .x/jj2 D jjxjj1.
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Solution. If a) holds, then taking y D x we obtain

jjT .x/jj22 D jjxjj21
and so jjT .x/jj2 D jjxjj1, showing that b) holds.

If b) holds, then the polarization identity and the linearity of T yield

hT .x/; T .y/i2 D jjT .x/C T .y/jj22 � jjT .x/jj22 � jjT .y/jj22
2

D

jjT .x C y/jj22 � jjT .x/jj22 � jjT .y/jj22
2

D jjx C yjj21 � jjxjj21 � jjyjj21
2

D hx; yi1;

finishing the solution. ut
Remark 10.81. If T is a linear transformation as in the previous problem, then T is
automatically injective: if T .x/ D 0, then jjT .x/jj2 D 0, thus jjxjj1 D 0 and then
x D 0.

Definition 10.82. a) Let V be an Euclidean space. A linear transformation T W
V ! V is called orthogonal if T is an isometry between V and V . In other
words, T is orthogonal if T is bijective and for all x; y 2 V

hT .x/; T .y/i D hx; yi:

Note that the bijectivity of T is a consequence of the last relation, thanks to
the previous remark. Thus T is orthogonal if and only if T preserves the inner
product.

b) A matrix A 2 Mn.R/ is called orthogonal if

A tA D In:

The equivalence between the first and last point in the following problem implies
the following compatibility of the previous definitions: let A 2 Mn.R/ and endow
Rn with its canonical inner product. Then A is orthogonal if and only if the linear
transformation X 7! AX on Rn is orthogonal. Also, by the previous problem a
linear map T on V is orthogonal if and only if jjT .x/jj D jjxjj for all x 2 V . Hence
A is orthogonal if and only if

jjAX jj D jjX jj

for all X 2 Rn, where jj � jj is the norm associated with the canonical inner product
on Rn, that is

jj.x1; : : : ; xn/jj D
q
x21 C : : :C x2n:
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Example 10.83. A very important class of orthogonal transformations/matrices is
given by orthogonal symmetries. Namely, consider an Euclidean space V and a
subspace W . Then V D W ˚W ?, so we can define the symmetry sW with respect
to W along W ?. Recall that if v 2 V is written as v D w C w? with w 2 W and
w? 2 W ?, then

sW .v/ D w � w?;

so that sW fixes pointwise W1, and �sW fixes pointwise W ?.
In order to see that sW is an orthogonal transformation, it suffices to check that

jjsW .v/jj D jjvjj for all v 2 V , or equivalently

jjw � w?jj D jjw C w?jj

for all .w;w?/ 2 W � W ?. But by the Pythagorean theorem the squares of both
sides are equal to jjwjj2 C jjw?jj2, whence the result.

Orthogonal symmetries can be easily recognized among orthogonal maps: they
are precisely the self-adjoint orthogonal transformations, that is their matrices in an
orthonormal basis of the space are simultaneously symmetric and orthogonal. The
point is that an orthogonal matrix A is symmetric if and only if A2 D In, since
A � tA D In.

Let us come back to the general context of an orthogonal matrix A 2 Mn.R/ and
analyze a little bit the relation

A tA D In:

Using the product rule and denoting R1; : : : ; Rn the rows of A, we see that the
previous equality is equivalent to

hRi ;Rj i D 0 if i ¤ j; jjRi jj2 D 1; 1 � i � n;

in other words A is orthogonal if and only if its rows R1; : : : ; Rn form an
orthonormal basis of Rn. Also, notice that A is orthogonal if and only if tA is
orthogonal, thus we have just proved the following:

Theorem 10.84. Let A 2 Mn.R/ be a matrix and endow Rn with the canonical
inner product, with associated norm jj�jj. The following statements are equivalent:

a) A is orthogonal.
b) The rows of A form an orthonormal basis of Rn.
c) The columns of A form an orthonormal basis of Rn.
d) For all X 2 Rn we have

jjAX jj D jjX jj:
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Problem 10.85. Let V be an Euclidean space and let T W V ! V be a linear
transformation. Prove that the following assertions are equivalent:

a) T is orthogonal.
b) We have hT .x/; T .y/i D hx; yi for all x; y 2 V .
c) For all x 2 V we have jjT .x/jj D jjxjj.
d) T � ı T D Id.

Solution. By definition a) implies b), which is equivalent to c) by Problem 10.80.
If b) holds, then

hT � ı T .x/ � x; yi D hy; T �.T .x//i � hx; yi D hT .x/; T .y/i � hx; yi D 0

for all x; y 2 V , thus T �.T .x// D x for all x 2 V and d) follows. It remains to
see that d) implies a). It already implies that T is bijective, with inverse T �, so it
suffices to see that b) holds. Since b) is equivalent to c) by Problem 10.80, it suffices
to check that c) holds. Or

jjT .x/jj2 D hT .x/; T .x/i D hx; T �.T .x//i D hx; xi D jjxjj2

for all x 2 V , which yields c). ut
We can also characterize orthogonal linear transformations in terms of their effect

on orthonormal bases, as the following problem shows:

Problem 10.86. Let V be an Euclidean space and let T W V ! V be a linear
transformation. Then the following statements are equivalent:

a) T is orthogonal.
b) For any orthonormal basis e1; : : : ; en of V , the vectors T .e1/; : : : ; T .en/ form an

orthonormal basis of V .
c) There is an orthonormal basis e1; : : : ; en of V such that T .e1/; : : : ; T .en/ is an

orthonormal basis of V .

Solution. Suppose that a) holds and let e1; : : : ; en be an orthonormal basis of V .
Then for all i; j 2 Œ1; n� we have

hT .ei /; T .ej /i D hei ; ej i D 1iDj :

It follows that T .e1/; : : : ; T .en/ is an orthonormal family, and since it has n D
dimV elements, we deduce that it is an orthonormal basis of V . Thus a) implies b),
which clearly implies c).

Suppose that c) holds. Let x 2 V and write x D x1e1 C : : : C xnen. Since
T .e1/; : : : ; T .en/ and e1; : : : ; en are orthonormal bases of V , we have

jjT .x/jj2 D jjx1T .e1/C : : :C xnT .en/jj2 D x21 C : : :C x2n D jjxjj2:
Thus jjT .x/jj D jjxjj for all x 2 V , and T is orthogonal (by the previous problem).

ut
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Remark 10.87. The previous problem has the following very useful consequence:
let e1; : : : ; en be an orthonormal basis of V and let e0

1; : : : ; e
0
n be another basis of V .

Let P be the change of basis matrix from e1; : : : ; en to e0
1; : : : ; e

0
n. Then e0

1; : : : ; e
0
n

is orthonormal if and only if P is orthogonal. We leave the details of the proof to
the reader.

Theorem 10.88. The set of orthogonal linear transformations on an Euclidean
space V forms a group under composition. In more concrete terms, the composi-
tion of two orthogonal transformations is an orthogonal transformation, and the
inverse of an orthogonal transformation is an orthogonal transformation.

Proof. If T1; T2 are orthogonal linear transformations, then T1 ı T2 is a linear
transformation and

jjT1 ı T2.x/jj D jjT1.T2.x//jj D jjT2.x/jj D jjxjj
for all x 2 V thus T1 ı T2 is an orthogonal linear transformation on V by
Problem 10.85. Similarly, we prove that the inverse of an orthogonal transformation
is an orthogonal transformation. The result follows. ut

The group O.V / of orthogonal transformations (or isometries) of V is called the
orthogonal group of V . It is the group of automorphisms of the Euclidean space V
and plays a crucial role in understanding the space V .

Problem 10.89. Let V be an Euclidean space and let T be an orthogonal linear
transformation on V . Let W be a subspace of V which is stable under T .

a) Prove that T .W / D W and T .W ?/ D W ?.
b) Prove that the restriction of T to W (respectively W ?) is an orthogonal linear

transformation on W (respectively W ?).

Solution. a) This follows easily from Problems 10.85 and 10.78, but for the
reader’s convenience we give a direct argument. Since T maps W into W by
assumption and since T jW is injective (because T is injective on V ), it follows
that T jW W W ! W is surjective, thus T .W / D W . The same argument reduces
the proof of the equality T .W ?/ D W ? to that of the inclusion T .W ?/ � W ?.
Let x 2 W ? and y 2 W . We want to prove that hT .x/; yi D 0. But T is
orthogonal, so T � D T �1 (Problem 10.85) and so

hT .x/; yi D hx; T �1.y/i:
Since W is stable under T �1, we obtain T �1.y/ 2 W , and since x 2 W ?, we
must have hx; T �1.y/i D 0. Thus hT .x/; yi D 0 and we are done.

b) Let T1 be the restriction of T toW . Using Problem 10.85 we obtain for all x 2 W
jjT1.x/jj D jjT .x/jj D jjxjj;

thus using Problem 10.85 again we obtain that T1 is an orthogonal linear map on
W . The argument for W ? being identical, the problem is solved. ut
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We will now classify the orthogonal transformations of an Euclidean space in
terms of simple transformations. The proof requires two preliminary results, which
are themselves of independent interest.

Lemma 10.90. Let V be an Euclidean space and let T be a linear transformation
on V . Then there is a line or a plane in V which is stable under T .

Proof. The minimal polynomial of T is a polynomial P with real coefficients. If it
has a real root, it follows that T has an eigenvalue and so the line spanned by an
eigenvector for that eigenvalue is stable under T . Suppose that P has no real root.
Let z be a complex root of P . Then since P has real coefficients, z is also a root of P
and soQ D .X � z/.X � z/ divides P . Moreover,Q.T / is not invertible, otherwise
P
Q

would be a polynomial of smaller degree killing T . Thus there is a nonzero vector

x 2 V such that Q.T /.x/ D 0. This can be written as T 2.x/ C aT .x/C bx D 0

for some real numbers a; b. It follows that the space generated by x and T .x/ is a
plane which is stable under T , and the lemma is proved. ut
Lemma 10.91. Let V be a two-dimensional Euclidean space and let T be an
orthogonal transformation on V with no real eigenvalue. Then there is an orthonor-
mal basis of V with respect to which the matrix of T is of the form

R� D
�

cos � � sin �
sin � cos �

�
:

Proof. Let e1; e2 be an arbitrary orthonormal basis of V and write T .e1/ D ae1 C
be2 for some real numbers a; b. Since

a2 C b2 D jjT .e1/jj2 D jje1jj2 D 1;

we can find a real number � such that a D cos � and b D sin � . The orthogonal of
T .e1/ is given by the line R.� sin �e1Ccos �e2/. Since hT .e1/; T .e2/i D he1; e2i D
0, we deduce that T .e2/ 2 R.� sin �e1 C cos �e2/ and so

T .e2/ D c.� sin �e1 C cos �e2/

for some real number c. Since

jjT .e2/jj D jje2jj D 1;

we deduce that jcj D 1 and so c 2 f�1; 1g. It remains to exclude the case c D �1.
But if c D �1, then the matrix of T with respect to e1; e2 is

A D
�

cos � sin �
sin � � cos �

�
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and one can easily check that its characteristic polynomial is X2 � 1, which has real
roots. It follows that if c D �1, then T has a real eigenvalue, contradiction. The
result follows. ut

We are now ready for the proof of the fundamental theorem classifying orthogo-
nal linear transformations on an Euclidean space:

Theorem 10.92. Let V be an Euclidean space and let T be an orthogonal
transformation on V . Then we can find an orthonormal basis of V with respect
to which the matrix of T is of the form

A D

2
666664

Ip 0 : : : 0 0

0 �Iq : : : 0 0

0 0 R�1 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 R�k

3
777775

where �1; : : : ; �k are real numbers and

R� D
�

cos � � sin �
sin � cos �

�
:

Proof. We will prove the result by induction on dimV . If dimV D 1, then
everything is clear, since we must have T D ˙id. Assume now that dimV D n � 2

and that the result is known in dimension at most n � 1.
Suppose that T has a real eigenvalue 	 and let e1 be an eigenvector. Then

j	jjje1jj D jj	e1jj D jjT .e1/jj D jje1jj;

thus 	 2 f�1; 1g. Let W D Re1, then W is stable under T , hence W ? is stable
under T (because T is orthogonal). Moreover, the restriction of T to W ? is still
an orthogonal transformation, since we have jjT .x/jj D jjxjj for all x 2 V ,
thus also for all x 2 W ?. By the inductive hypothesis, W ? has an orthonormal
basis e2; : : : ; en with respect to which the matrix of T restricted to W ? is of the
right shape (i.e., as in the statement of the theorem). Adding the vector e1jje1jj and
possibly permuting the resulting orthonormal basis e1jje1jj ; e2; : : : ; en of V yields an
orthonormal basis with respect to which the matrix of T has the desired shape.

Assume now that T has no real eigenvalue. By Lemma 10.90 we can find
two dimensional subspace V of T stable under T . Since T is orthogonal, the
space W ? is also stable under T , and the restrictions of T to W and W ? are
orthogonal transformations on these spaces. By the inductive hypothesis W ? has
an orthonormal basis e3; : : : ; en with respect to which the matrix of T jW? is
block-diagonal, with blocks of the form R�i . By Lemma 10.91 the space W has an
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orthonormal basis e1; e2 with respect to which the matrix of T jW is of the form R� .
Then the matrix of T with respect to e1; : : : ; en has the desired shape. The theorem
is proved. ut

We can also rewrite the previous theorem purely in terms of matrices:

Corollary 10.93. Let A 2 Mn.R/ be an orthogonal matrix. There is an orthogonal
matrix P 2 Mn.R/, integers p; q; k such that p C q C 2k D n and real numbers
�1; : : : ; �k such that

A D P�1

2
666664

Ip 0 : : : 0 0

0 �Iq : : : 0 0

0 0 R�1 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 R�k

3
777775
P:

Remark 10.94. a) The determinant of the matrix
2
666664

Ip 0 : : : 0 0

0 �Iq : : : 0 0

0 0 R�1 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 R�k

3
777775

is .�1/q 2 f�1; 1g, since detR�i D 1 for 1 � i � k. It follows that

detT 2 f�1; 1g
for any orthogonal transformation T on V . Equivalently, detA 2 f�1; 1g for any
orthogonal matrix A 2 Mn.R/. Of course, we can prove this directly, without
using the previous difficult theorem: since A � tA D In and det. tA/ D detA, we
deduce that

1 D det.A � tA/ D det.A/2;

thus detA 2 f�1; 1g.
An isometry T with detT D 1 is called a positive isometry, while an

isometry T with detT D �1 is called a negative isometry. Geometrically,
positive isometries preserve the orientation of the space, while negative ones
reverse the orientation.

We can use the previous remark to define the notion of oriented orthonormal
basis of V . Fix an orthonormal basis B D .e1; : : : ; en/ of V . If B0 D .f1; : : : ; fn/

is another orthonormal basis of V , then the change of basis matrix P from B to
B0 is orthogonal, thus detP 2 f�1; 1g. We say that B0 is positive or positively
oriented (with respect to B) if detP D 1, and negative or negatively oriented
(with respect to B) if detP D �1. If V D Rn is endowed with the canonical
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inner product, then we always take for B the canonical basis, so we simply say
that an orthonormal basis is positive or negative if it is positive or negative with
respect to the canonical basis of Rn.

b) The characteristic polynomial of the matrix
2
666664

Ip 0 : : : 0 0

0 �Iq : : : 0 0

0 0 R�1 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 R�k

3
777775

is

.X � 1/p � .X C 1/q �
kY
iD1
.X2 � 2 cos �iX C 1/:

Notice that the complex roots of the polynomial X2 � 2 cos �X C 1 are ei� and
e�i� , and they have absolute value 1. We deduce from the previous theorem that
if 	 is a complex root of the characteristic polynomial of an orthogonal matrix,
then j	j D 1. In other words, all complex eigenvalues of an orthogonal matrix
have absolute value 1. This can also be proved directly, but the proof is trickier
than the one that detA 2 f�1; 1g for an orthogonal matrix A.

Let us try to study the orthogonal group in small dimension, by starting in
dimension 2. We could use the previous theorem, but we prefer to give direct
arguments in this case, since everything can be done by hand in a fairly simple and
explicit way. So, let us try to understand orthogonal matrices A 2 M2.R/. Consider
a matrix

A D
�
a b

c d

�

satisfying A � tA D I2. We know by the previous discussion that detA 2 f�1; 1g
(recall that this is immediate from the relation A � tA D I2). Therefore, it is natural
to consider two cases:

• detA D 1. In this case the inverse of A is simply

A�1 D
�
d �b
�c a

�

and since A is orthogonal we have A�1 D tA, giving a D d and b D �c, that is

A D
�
a �c
c a

�
:
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Moreover, we have a2 C c2 D 1, thus there is a unique real number � 2 .��; ��
such that a D cos � and c D sin � . Therefore

A D R� D
�

cos � � sin �
sin � cos �

�
:

The corresponding linear transformation T W R2 ! R2 (sending X to AX ) is
given by

T .x; y/ D .cos �x � sin �y; sin �x C cos �y/

and geometrically this is the rotation of angle � . A simple computation shows
that

R�1 �R�2 D R�1C�2 D R�2 �R�1 (10.7)

for all real numbers. In particular, all rotations commute with each other.
An important consequence of this observation is that the matrix of T with respect
to any positive orthonormal basis of R2 is still R� (since the change of basis
matrix from the canonical basis to this new positive orthonormal basis is still a
rotation, thus it commutes with R� ). Similarly, one checks that the matrix of T
with respect to any negative orthonormal basis of R2 is R�� . The formula (10.7)
also shows that it is very easy to find the angle of the composite of two rotations:
simply add their angles and subtract a suitable multiple of 2� to bring this angle
in the interval .��; ��.

• detA D �1. Now the inverse of A is

��d b

c �a
�

, thus the condition A�1 D tA

yields d D �a and b D c. Also, we have a2 C b2 D 1, thus there is a unique
real number � 2 .��; �� such that a D cos � and b D sin � . Then

A D S� WD
�

cos � sin �
sin � � cos �

�
:

Note that S� is symmetric and orthogonal, thus S2� D I2 and the corresponding
transformation T W R2 ! R2

T .x; y/ D .cos �x C sin �y; sin �x � cos �y/

is an orthogonal symmetry. In order to find the line with respect to which T is
an orthogonal symmetry, it suffices to solve the system AX D X . An easy
computation left to the reader shows that the system is equivalent to

sin

�
�

2

�
� x D cos

�
�

2

�
� y
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and so the line AX D X is spanned by the vector

e1 D
�

cos

�
�

2

�
; sin

�
�

2

��
:

Note that the orthogonal of this line is spanned by the vector

e2 D
�

� sin

�
�

2

�
; cos

�
�

2

��
;

and the vectors e1; e2 form a positive orthonormal basis of R2 in which the matrix

of T is

�
1 0

0 �1
�

.

One can easily check that

S�1 � S�2 D R�1��2 ;

thus the composite of two orthogonal symmetries is a rotation (this was actually
clear from the beginning, since the product of two matrices of determinant �1 is a
matrix with determinant 1). Similarly, one checks that

S�1R�2 D S�1��2 ; R�1S�2 D S�1C�2 ;

thus the composite of a rotation and an orthogonal symmetry is an orthogonal
symmetry (this was also clear for determinant reasons).

All in all, the previous discussion gives

Theorem 10.95. Let A 2 M2.R/ be an orthogonal matrix.

a) If detA D 1, then

A D R� D
�

cos � � sin �
sin � cos �

�

for a unique real number � 2 .��; ��, and the corresponding linear transfor-
mation T on R2 is the rotation of angle � . Any two such matrices commute and
the matrix of T in any positive orthonormal basis of R2 is R� .

b) If detA D �1, then

A D S� D
�

cos � sin �
sin � � cos �

�

for a unique real number � 2 .��; ��. The matrix A is symmetric and the
corresponding linear transformation on R2 is the orthogonal symmetry with
respect to the line spanned by

	
cos

	
�
2



; sin

	
�
2




.
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Let us consider now the more complicated case dimV D 3. Here it is no
longer easy to do explicit computations, so we will use Theorem 10.92 and our
understanding of the case dimV D 2 in order to understand the case dimV D 3.

Recall the integers p; q; k from Theorem 10.92. Since

p C q C 2k D 3;

we see that necessarily p ¤ 0 or q ¤ 0. We can also prove this directly, observing
that the characteristic polynomial of T has degree 3, thus it has a real root and so
T has a real eigenvalue, which is necessarily equal to �1 or 1 since it has absolute
value 1.

Replacing T with �T , we exchange the roles of p and q. For simplicity, let us
assume that p � 1, i.e., T has at least one fixed point v. Then T fixes the line
D spanned by v, and induces an isometry on the plane P orthogonal to D. This
isometry is classified by Theorem 10.95, which deals with isometries of a plane.
Thus we reduced the case dimV D 3 to the case dimV D 2. We can be a little bit
more explicit, by discussing the following cases:

• Either T or �T is the identity map. This case is not very interesting.
• We have dim ker.T � id/ D 2. If e2; e3 is an orthonormal basis of the plane

ker.T � id/, completed to an orthonormal basis e1; e2; e3 of V , then T fixes
pointwise Span.e2; e3/ and leaves invariant the line spanned by e1. Thus the

matrix of T with respect to e1; e2; e3 is of the form

2
4
	 0 0

0 1 0

0 0 1

3
5 for some real

number 	, which is necessarily �1 (it must be �1 or 1 since the matrix must
be orthogonal, and it cannot be 1 as otherwise T D id). We deduce that T is
the orthogonal symmetry with respect to the plane ker.T � id/. Notice that
detT D �1 in this case (i.e., T is a negative isometry).

• We have dim ker.T �id/ D 1, thus ker.T �id/ is the line spanned by some vector
e1 of norm 1. Complete e1 to a positive orthonormal basis e1; e2; e3 of V D R3.
For instance, one can simply find a vector e2 of norm 1 orthogonal for e1, and if

e1 D
2
4

u1
u2
u3

3
5 and e2 D

2
4

v1
v2
v3

3
5 ;

set

e3 D e1 ^ e2 WD
2
4

u2v3 � u3v2
u3v1 � u1v3
u1v2 � u2v1

3
5 :
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The isometry that T induces on Span.e2; e3/ has no fixed point (since all fixed
points of T are on the line spanned by e1), thus it is a rotation of angle � for a
unique real number � 2 .��; ��. The matrix of T with respect to e1; e2; e3 is

R� WD
2
4
1 0 0

0 cos � � sin �
0 sin � cos �

3
5 :

We say that T is the rotation of angle � around the axis Re1. Note that detT D
1, that is T is a positive isometry. Also, note that the angle � satisfies

1C 2 cos � D Tr.A/;

but this relation does not uniquely characterize the angle � (since �� is also
a solution of that equation). In order to find � , it remains to find sin � . In order to
do that, one checks that

det.e1;e2;e3/.e1; e2; T .e2// D
ˇ̌
ˇ̌
ˇ̌
1 0 0

0 1 cos �
0 0 sin �

ˇ̌
ˇ̌
ˇ̌ D sin �:

• Finally, assume that ker.T � id/ D f0g. One possibility is that T D �id. Assume
that T ¤ �id. Since either T or �T have a fixed point (this follows from the fact
that p or q is nonzero, i.e., that T has a real eigenvalue, which must be ˙1) and
since T has no fixed point, it follows that �T has a fixed point. Let e1 be a vector
of norm 1 which is fixed by �T , thus T .e1/ D �e1. Complete e1 to a positive
orthonormal basis e1; e2; e3 of V , then arguing as in the previous case we deduce
that the matrix of T with respect to e1; e2; e3 is

2
4

�1 0 0

0 cos � � sin �
0 sin � cos �

3
5 D R� �

2
4

�1 0 0
0 1 0

0 0 1

3
5

for some � 2 .��; ��. Thus T is the composite of a rotation of angle � and
of an orthogonal symmetry with respect to the orthogonal of the axis of the
rotation. Also, notice that detT D �1, thus T is a negative isometry.

We can also slightly change the point of view and discuss the situation in
terms of matrices. Consider an orthogonal matrixA 2 M3.R/ and the associated
linear transformation T W V ! V sending X to AX , where V D R3 is endowed
with the canonical inner product. We exclude the trivial cases A D ˙I3.
In order to study the isometry T , we first check whether T is a positive or
negative isometry by computing detT D detA.

Assume first that T is positive, i.e., detA D 1. We then check whether A
is symmetric, i.e., A D tA. Let us consider two cases:
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• If A is symmetric, then A2 D I3 (since A is orthogonal and symmetric) and so
T is an orthogonal symmetry. We claim that T is the orthogonal symmetry
with respect to a line. Indeed, since A2 D I3, all eigenvalues of A are �1 or 1.
Moreover, they are not all equal since we excluded the cases A D ˙I3, and their
product is 1, since detA D 1. Thus one eigenvalue is 1 and the other 2 are equal
to �1. It follows that the matrix of T with respect to some orthonormal basis

e1; e2; e3 of R3 is

2
4
1 0 0

0 �1 0

0 0 �1

3
5 and T is the orthogonal symmetry with respect

to the line spanned by e1. To find this line, we compute ker.A� I3/ by solving
the system AX D X . A basis v of the space of solutions of this system will span
the line we are looking for.

• IfA is not symmetric, thenA is a rotation of angle � for a unique � 2 .��; ��.
We find the axis of the rotation by solving the system AX D X : if Ae1 D e1
for some unit vector e1, then the axis of the rotation is spanned by e1. To find
the angle of the rotation, we start by using the relation

1C 2 cos � D Tr.A/; (?)

which pins down � up to a sign. Next, we choose any vector e2 of norm 1

orthogonal to e1 and we set e3 D e1^e2. Then e1; e2; e3 is a positive orthonormal
basis of R3 and det.e1;e2;e3/.e1; e2; Ae2/ gives sin � , which then determines �
uniquely. Notice that in practice it suffices to find the sign of the determinant
of the vectors e1; e2; Ae2 with respect to the canonical basis of R3, as this
sign gives the sign of sin � , which in turn determines � uniquely thanks to
relation (?).

Assume now that T is negative, i.e., detA D �1. Then �T is positive, thus the
previous discussion applies to �T .

Let us see two concrete examples:

Problem 10.96. a) Prove that

A D 1

3

2
4

�1 2 2

2 �1 2

2 2 �1

3
5

is an orthogonal matrix.
b) Describe the isometry of R3 defined by A, i.e., the map T W R3 ! R3 given by
T .X/ D AX .

Solution. a) Using the product rule, one easily checks that A � tA D I3, thus A is
orthogonal. Alternatively, one checks that the columns (or rows) of A form an
orthonormal family.

b) First, we check whether T is a positive or negative isometry by computing detA.
An easy computation shows that detA D 1, so T is a positive isometry. Since
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A is symmetric, we deduce from the above discussion that A is the orthogonal
symmetry with respect to a line. To find this line, we solve the system AX D X .
If x; y; z are the coordinates of X , the system is equivalent to

8<
:

�x C 2y C 2z D 3x

2x � y C 2z D 3y

2x C 2y � z D 3z

and has the solution x D y D z. Thus T is the orthogonal symmetry with respect
to the line spanned by .1; 1; 1/. ut

Problem 10.97. Prove that the matrix

A D 1

3

2
4
2 2 1

�2 1 2

1 �2 2

3
5

is orthogonal and study the associated isometry of R3.

Solution. One easily checks either that A � tA D I3 or that the rows of A form an
orthonormal family. Next, one computes detA D 1, thus the associated isometry T
is positive. Since A is not symmetric, it follows that T is a rotation. To find its axis,
we solve the system AX D X , which is equivalent to

8<
:
2x C 2y C z D 3x

�2x C y C 2z D 3y

x � 2y C 2z D 3z

and then to

x D z; y D 0:

Thus the axis of the rotation is spanned by the vector

2
4
1

0

1

3
5. We normalize it to make

it have norm 1, thus we consider instead the vector

e1 D 1p
2

2
4
1

0

1

3
5 ;

which spans the axis of T .
Let � be the angle of the rotation, so that

1C 2 cos � D Tr.A/ D 5

3
;
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thus

cos � D 1

3
:

It remains to find the sign of sin � . For that, we choose a unit vector orthogonal to
e1, say

e2 D
2
4
0

1

0

3
5

and compute the sign of

det.e1; e2; Ae2/ D 1

3
p
2

ˇ̌
ˇ̌
ˇ̌
1 0 2

0 1 1

1 0 �2

ˇ̌
ˇ̌
ˇ̌ D � 4

3
p
2
< 0;

thus sin � < 0 and finally

� D � arccos
1

3
: ut

10.7.1 Problems for Practice

1. Prove the result stated in Remark 10.87.
2. a) Prove that the matrix

A D
�

3
5

4
5

� 4
5
3
5

�

is orthogonal.
b) Describe the isometry T W R2 ! R2 sending X to AX : is it positive or

negative? If it is a rotation, describe the angle, if it is a symmetry describe
the line with respect to which T is the orthogonal symmetry.

3. a) Prove that each of the following matrices is orthogonal

2
4
0 0 1

1 0 0

0 1 0

3
5 ; 1

3

2
4
1 2 2

2 1 �2
2 �2 1

3
5 ;

2
4
1 0 0

0 0 �1
0 �1 0

3
5 :

b) If A is one of these matrices, describe the isometry T W R3 ! R3 sending X
to AX (for instance, if T is a rotation then you will need to find the axis and
the angle of the corresponding rotation).
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4. Prove that the matrix

A D 1

7

2
4
2 �6 3

�6 �3 �2
3 �2 �6

3
5

is orthogonal and study the associated isometry of R3.
5. Find the matrix of the rotation of angle �

3
around the line spanned by .1; 1; 1/.

6. Let V be an Euclidean space and let T W V ! V be a linear map. Prove that T
is orthogonal if and only if jjT .x/jj D 1 whenever jjxjj D 1.

7. a) Describe all orthogonal matrices A 2 Mn.R/ having integer entries.
b) How many such matrices are there?

8. a) Describe the matrices in Mn.R/ which are simultaneously diagonal and
orthogonal.

b) Describe the matrices in Mn.R/ which are simultaneously upper-triangular
and orthogonal.

9. Let V be an Euclidean space. Recall that if W is a subspace of V , then sW
denotes the orthogonal symmetry with respect to W , that is the symmetry with
respect to W along W ?.

a) Let v be a vector in V with jjvjj D 1 and let H D .Rv/? be its orthogonal.
Prove that for all x 2 V we have

sH .x/ D x � 2hv; xiv:

b) Let v1; v2 2 V be vectors in V with the same norm. Prove that there is a
hyperplane H of V such that sH .v1/ D v2.

10. Find the matrix (in the canonical basis of R3) of the orthogonal symmetry of
R3 with respect to the line spanned by .1; 2; 3/.

11. Find the matrix (in the canonical basis of R3) of the orthogonal symmetry of
R3 with respect to the plane spanned by .1; 1; 1/ and .0; 1; 0/.

12. Let V be a three-dimensional Euclidean space and let r be a rotation on V and
s an orthogonal symmetry. Prove that s ı r ı s is a rotation and describe its axis
and its angle in terms of those of r .

13. Let V be a three-dimensional Euclidean space. When does a rotation of V
commute with an orthogonal symmetry of V ?

14. Let A D Œaij � 2 Mn.R/ be an orthogonal matrix. Prove that

n �
nX

i;jD1
jaij j � n

p
n:

Hint: the sum of squares of the elements in each row is 1. For the inequality on
the right use the Cauchy–Schwarz inequality.
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15. Let A D Œaij � 2 Mn.R/ be an orthogonal matrix.

a) Let X be the vector in Rn all of whose coordinates are equal to 1. Compute
hX;AXi, where h ; i is the standard inner product on Rn.

b) Prove that

j
nX

i;jD1
aij j � n:

16. Let v 2 Rn be a nonzero vector. Find all real numbers k for which the linear
map T W Rn ! Rn defined by

T .x/ D x C khx; viv

is an isometry.
17. Let V be an Euclidean space and let T W V ! V be a linear transformation

such that hT .x/; T .y/i D 0 whenever hx; yi D 0.

a) Let x; y be vectors of norm 1 in V . Compute hx C y; x � yi.
b) Prove that there is a nonnegative real number k such that for all x 2 V

jjT .x/jj D kjjxjj:

Hint: if jjxjj D jjyjj D 1, show that jjT .x/jj D jjT .y/jj using part a) and
the hypothesis.

c) Prove that there is an orthogonal transformation S on V such that T D kS .

18. Let V D Mn.R/ be endowed with the inner product

hA;Bi D Tr. tAB/:

Let A 2 V . Prove that the following statements are equivalent:

a) A is orthogonal
b) The linear transformation T W V ! V sending B to AB is orthogonal.

19. (Cayley transform)

a) Let A 2 Mn.R/ be a skew-symmetric matrix. Prove that InCA is invertible.
Hint: if AX D �X , compute hAX;Xi in two different ways.

b) Prove that if A 2 Mn.R/ is skew-symmetric, then .In �A/.In CA/�1 is an
orthogonal matrix which does not have �1 as eigenvalue.

c) Conversely, prove that if B is an orthogonal matrix not having �1 as
eigenvalue, then we can find a skew-symmetric matrix A such that B D
.In � A/.In C A/�1.

d) Prove that the map A 7! .In�A/.InCA/�1 induces a bijection between the
skew-symmetric matrices in Mn.R/ and the orthogonal matrices in Mn.R/
for which �1 is not an eigenvalue.
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20. (Compactness of the orthogonal group) Let .Ak/k�1 be a sequence of orthogo-
nal matrices inMn.R/. Let a.k/i;j be the .i; j /-entry of Ak . Prove that there exists
a sequence of integers k1 < k2 < : : : such that for all i; j 2 f1; 2; : : : ; ng the
sequence .a.kl /i;j /l�1 converges to some real number xij and such that the matrix
X D Œxij � is an orthogonal matrix. Hint: use the classical fact from real analysis
that each sequence in Œ�1; 1� has a convergent subsequence.

21. Let A 2 Mn.R/ be a skew-symmetric matrix and let T W Rn ! Rn be the map
X ! AX . Prove that there is an orthonormal basis of Rn with respect to which
the matrix of T is a block-diagonal matrix, in which each block is either the

zero matrix or a matrix of the form

�
0 a

�a 0
�

for some real number a. Hint: use

induction on n and Lemma 10.90, and argue as in the proof of Theorem 10.92.
22. Prove that if A 2 Mn.R/ is a skew-symmetric matrix, then detA � 0 and the

rank of A is even.
In the following problems we consider a finite dimensional vector space V

over C endowed with a positive definite hermitian product h ; i and associated
norm jj jj. A linear map T W V ! V is called unitary or an isometry if

hT .x/; T .y/i D hx; yi
for all x; y 2 V . A matrix A 2 Mn.C/ is called unitary if the associated linear
map Cn ! Cn sending X to AX is unitary (where Cn is endowed with its
standard hermitian product).

23. Prove that for a linear map T W V ! V the following assertions are
equivalent:

a) T is unitary.
b) We have jjT .x/jj D jjxjj for all x 2 V .
c) T maps unit vectors (i.e., vectors of norm 1) to unit vectors.

24. Prove that a matrix A 2 Mn.C/ is unitary if and only if A � A� D In, where
A� D tA is the conjugate transpose of A (thus if A D Œaij � then A� D Œaj i �).

25. Prove that the inverse of a unitary matrix is a unitary matrix, and that the product
of two unitary matrices is a unitary matrix.

26. Prove that if A is a unitary matrix, then j detAj D 1.
27. Describe the diagonal and unitary matrices in Mn.C/.
28. Prove that for a matrix A 2 Mn.C/ the following assertions are equivalent:

a) A is unitary.
b) There is an orthonormal basis X1; : : : ; Xn of Cn (endowed with its standard

hermitian product) such that AX1; : : : ; AXn is an orthonormal basis of Cn.
c) For any orthonormal basisX1; : : : ; Xn of Cn the vectorsAX1; : : : ; AXn form

an orthonormal basis of Cn.

29. Let T W V ! V be a unitary linear transformation on V . Prove that there is an
orthogonal basis of V consisting of eigenvectors of T .
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10.8 The Spectral Theorem for Symmetric Linear
Transformations and Matrices

In this section we will prove the fundamental theorem concerning real symmetric
matrices or linear transformations. This classifies the symmetric linear transforma-
tions on an Euclidean space in the same way as Theorem 10.92 classifies orthogonal
transformations. We will then use this theorem to prove the rather amazing result
that any matrix A 2 Mn.R/ is the product of a symmetric positive matrix and of
an orthogonal matrix. This result, called the polar decomposition, is the matrix
analogue of the classical result saying that any complex number can be written as
the product of a nonnegative real number and of a complex number of magnitude 1.

We start by establishing a first fundamental property of real symmetric
matrices: their complex eigenvalues are actually real.

Theorem 10.98. Let A 2 Mn.R/ be a symmetric matrix. Then all roots of the
characteristic polynomial of A are real.

Proof. Let 	 be a root of the characteristic polynomial of A. Let us see A as a
matrix in Mn.C/. Since det.	In � A/ D 0, there exists X 2 Cn nonzero such that
AX D 	X . Write X D Y C iZ for two vectors Y;Z 2 Rn and write 	 D a C ib

for some real numbers a; b. The equality AX D 	X becomes

AY C iAZ D .aC ib/.Y C iZ/ D aY � bZ C i.aZ C bY /

and taking real and imaginary parts yields

AY D aY � bZ; AZ D aZ C bY (10.8)

Since A is symmetric, we have

hAY;Zi D hY;AZi (10.9)

By relation (10.8), the left-hand side of relation (10.9) is equal to ahY;Zi�bjjZjj2,
while the right-hand side is equal to ahY;Zi C bjjY jj2. We deduce that

b.jjY jj2 C jjZjj2/ D 0

and since at least one of Y;Z is nonzero (otherwise X D 0, a contradiction), we
deduce that b D 0 and 	 is real. ut

We need one further preliminary remark before proving the fundamental theo-
rem:

Lemma 10.99. Let V be an euclidian space and let T W V ! V be a symmetric
linear transformation on V . Let W be a subspace of V which is stable under T .
Then
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a) W ? is also stable under T .
b) The restrictions of T to W and W ? are symmetric linear transformations on

these spaces.

Proof. This follows fairly easily from Problem 10.78, but we prefer to give a
straightforward argument.

a) Let x 2 W ? and y 2 W . Then

hT .x/; yi D hx; T .y/i:

Now x 2 W ? and T .y/ 2 T .W / � W , thus hx; T .y/i D 0 and so T .W ?/ �
W ?, which yields the desired result.

b) Let T1 be the restriction of T to W . For x; y 2 W we have

hT1.x/; yi D hT .x/; yi D hx; T .y/i D hx; T1.y/i;

thus T1 is symmetric as linear map on W . The argument being identical for W ?,
the lemma is proved. ut
We are finally in good shape for the fundamental theorem of the theory of

symmetric linear transformations (or matrices), which shows that all such trans-
formations are diagonalizable in an orthonormal basis:

Theorem 10.100 (Spectral Theorem). Let V be an Euclidean space and let T W
V ! V be a symmetric linear transformation. Then there is an orthonormal basis
of V consisting of eigenvectors for T .

Proof. We will prove the theorem by strong induction on n D dimV . Everything
being clear when n D 1, suppose that the statement holds up to n � 1 and let us
prove it for n. So let V be Euclidean with dimV D n and let T be a symmetric
linear transformation on V . Let e1; : : : ; en be an orthonormal basis of V . The matrix
A of T in this basis is symmetric, hence it has a real eigenvalue 	 by Theorem 10.98
(and the fact that any matrix with real-or complex-entries has a complex eigenvalue).

Let W D ker.	id � T / be the 	-eigenspace of T . If W D V , then T D 	id and
so e1; : : : ; en is an orthonormal basis consisting of eigenvectors for T . So assume
that dimW < n. We have V D W ˚ W ? and T leaves stable W ?, inducing
a symmetric linear transformation on this subspace (Lemma 10.99). Applying the
inductive hypothesis to the restriction of T to W ? we find an orthonormal basis
f ?
1 ; : : : ; f

?
k of W ? consisting of eigenvectors for T . Choosing any orthonormal

basis f1; : : : ; fs of W (consisting automatically of eigenvectors for T ), we obtain
an orthonormal basis f1; : : : ; fs; f ?

1 ; : : : ; f
?
k of V D W ˚ W ? consisting of

eigenvectors for T . This finishes the proof of the theorem. ut
If A 2 Mn.R/ is a symmetric matrix, then the linear transformation T W X 7!

AX on V D Rn is symmetric. Applying the previous theorem, we can find an
orthonormal basis of V with respect to which the matrix of T is diagonal. Since the
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canonical basis of V is orthonormal and since the change of basis matrix between
two orthonormal bases is orthogonal (Remark 10.87), we obtain the following all-
important result:

Theorem 10.101. Let A 2 Mn.R/ be a symmetric matrix. There exists an
orthogonal matrix P 2 Mn.R/ such that PAP�1 is diagonal (in particular A is
diagonalizable). In other words, there is an orthonormal basis of Rn consisting in
eigenvectors of A.

The next result gives a very useful characterization of positive (respectively
positive definite) symmetric matrices:

Theorem 10.102. Let A 2 Mn.R/ be a symmetric matrix. Then the following
statements are equivalent:

a) A is positive
b) All eigenvalues of A are nonnegative.
c) A D B2 for some symmetric matrix B 2 Mn.R/.
d) A D tB � B for some matrix B 2 Mn.R/.

Proof. Suppose that A is positive and that 	 is an eigenvalue of A, with eigenvector
v. Since Av D 	v, we obtain

	jjvjj2 D hv; Avi D tvAv � 0;

thus 	 � 0. It follows that a) implies b).
Assume that b) holds and let 	1; : : : ; 	n be all eigenvalues of A, counted with

multiplicities. By assumption 	i � 0 for all i 2 Œ1; n�. Moreover, by the spectral
theorem we can find an orthogonal matrix P such that PAP�1 D D, whereD is the
diagonal matrix with entries 	1; : : : ; 	n. Let D1 be the diagonal matrix with entries
�i D p

	i and let B D P�1D1P . Then B is symmetric, since P is orthogonal and
D1 is symmetric:

tB D tPD1
tP�1 D P�1D1P:

Moreover, by construction B2 D P�1D2
1P D P�1DP D A. Thus c) holds.

It is clear that c) implies d). Finally, if d) holds, then for all X 2 Rn we have

tXAX D jjBX jj2 � 0

and so A is positive. ut
The reader is invited to state and prove the corresponding theorem for positive

definite matrices.
After this hard work, we will take a break and see some nice applications of the

above theorems. The result established in the next problem is very important.
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Problem 10.103. a) Let T be a symmetric positive definite linear transformation
on an Euclidean space V . Prove that for all d � 2 there is a unique symmetric
positive definite linear transformation Td such that T dd D T . Moreover, prove
that there is a polynomial Pd 2 RŒX� such that Td D Pd.T /.

b) Let A 2 Mn.R/ be a symmetric positive definite matrix. Prove that for all d �
2 there is a unique symmetric positive definite matrix Ad such that Add D A.
Moreover, there is a polynomial Pd 2 RŒX� such that Ad D Pd.A/.

Solution. Clearly part b) is a consequence of part a), so we focus on part a) only.
Let us establish the existence part first. Since T is symmetric and positive definite,
there are positive real numbers 	1; : : : ; 	n and an orthonormal basis e1; : : : ; en of V
such that T .ei / D 	iei for 1 � i � n. Define Td W V ! V by Td .ei / D d

p
	iei for

1 � i � n and extend it by linearity. Then T dd .ei / D d
p
	i
d
ei D 	iei D T .ei / for

1 � i � n. Thus T dd D T . Moreover, Td is symmetric and positive definite: indeed,
in the orthonormal basis e1; : : : ; ed the matrix of Td is diagonal with positive entries.

Next, we prove that Td is a polynomial in T . It suffices to prove that there is a
polynomial P such that P.	i / D d

p
	i for 1 � i � n, as then

P.T /.ei / D P.	i /ei D d
p
	iei D Td .ei /;

thus P.T / D Td . In order to prove the existence of P , let us assume without loss of
generality that the different numbers appearing in the list 	1; : : : ; 	n are 	1; : : : ; 	k
for some 1 � k � n. It is enough to construct a polynomial P such that P.	i / D
d
p
	i for 1 � i � k. Simply take the Lagrange interpolation polynomial associated

with the data .	1; : : : ; 	k/ and d
p
	1; : : : ;

d
p
	k .

Let us prove now that Td is unique. Let S be a symmetric positive definite linear
transformation such that Sd D T . Then S commutes with T D Sd , thus it also
commutes with any polynomial in T . It follows from the previous paragraph that
S commutes with Td . Since S and Td are diagonalizable and since they commute,
it follows that there is a basis f1; : : : ; fn of V in which the matrices of S and Td
are both diagonal, sayD1 andD2. Note that the entries a1; : : : ; an and b1; : : : ; bn of
D1, respectively D2 are positive (since they are the eigenvalues of S and Td ) and
they satisfy adi D bdi for 1 � i � n (since Sd D T dd D T ). It follows that ai D bi
for 1 � i � n and then D1 D D2 and S D Td . Thus Td is unique. The problem is
solved. ut
Remark 10.104. a) As the proof shows, the same result applies to symmetric

positive (but not necessarily positive definite) linear transformations and matrices
(of course, the resulting transformation Td , respectively matrix Ad will also be
symmetric positive, but not necessarily positive definite).

b) We will simply write d
p
T , respectively d

p
A for the linear transformation Td ,

respectively matrix Ad in the previous problem.

Consider now a matrix A 2 Mn.R/. The matrix tA � A is then symmetric and
positive. By the previous problem (and the remark following it), there is a unique
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symmetric positive matrix S D p
tA � A such that S2 D tA �A. Suppose now that

A is invertible, then S is invertible (because tA � A D S2 is invertible) and so we
can define

U D AS�1:

Then, taking into account that S is symmetric, we obtain

tU � U D tS�1 tAAS�1 D S�1S2S�1 D In;

that is U is orthogonal. We have just obtained half of the following important

Theorem 10.105 (Polar Decomposition, Invertible Case). Let A 2 Mn.R/ be an
invertible matrix. There is a unique pair .S; U / with S a symmetric positive definite
matrix and U an orthogonal matrix such that A D US .

Proof. The existence part follows from the previous discussion, it remains to
establish the uniqueness of U and S . Suppose that A D US with U orthogonal
and S symmetric positive definite. Then

tA � A D S tU � US D S2

and by the uniqueness part in Problem 10.103 we deduce that S D p
tA � A and

then U D AS�1. Hence U and S are unique. ut
One may wonder what is happening when A D Œaij � is no longer invertible.

We will prove that we still have a decomposition A D US with U orthogonal and
S symmetric positive (not positive definite). The pair .S; U / is however no longer
unique (if A D On, then A D UOn for any orthogonal matrix U ). The existence
of the decomposition in the case when A is no longer invertible is rather tricky.
We will consider the matrices Ak D A C 1

k
In. There exists k0 such that for all

k > k0 the matrix Ak is invertible (because A has only finitely many eigenvalues).
By the previous theorem applied to Ak we can find an orthogonal matrix Uk and a
symmetric positive definite matrix Sk such that

Ak D UkSk:

Write Uk D Œu.k/ij � and Sk D Œs
.k/
ij �. Since Uk is orthogonal, the sum of squares of the

elements in each column of Uk equals 1, thus u.k/ij 2 Œ�1; 1� for all i; j 2 f1; : : : ; ng
and all k > k0. By a classical result in real analysis, any sequence of numbers
between �1 and 1 has a convergent subsequence (this is saying that the interval
Œ�1; 1� is compact). Applying this result n2 times (for each pair i; j 2 f1; 2; : : : ng)
we deduce the existence of a sequence k0 < k1 < k2 < : : : such that

uij WD lim
l!1 u.kl /ij
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exists for all i; j 2 f1; 2; : : : ; ng. We claim that the matrix U D Œuij � is orthogonal.
Indeed, passing to the limit in each entry of the equality tUkl � Ukl D In yields
tU � U D In. Moreover, since

Skl D U�1
kl
Akl D tUklAkl ;

and since each .i; j /-entry of tUkl converges (when l ! 1) to uj i and each
.i; j /-entry of Akl converges (when l ! 1) to aij , we deduce that for all

i; j 2 f1; 2; : : : ; ng the sequence .s.kl /ij /l converges to some sij , the matrix S D Œsij �

is symmetric and

S D tU � A;

that is A D US . It remains to check that S is positive, but if X 2 Rn, then passing
to the limit in the inequality tXSklX � 0 yields tXSX � 0, thus S is positive. All
in all, we have just proved the following:

Theorem 10.106 (Polar Decomposition, The General Case). Any matrix A 2
Mn.R/ can be written as the product of an orthogonal matrix and of a symmetric
positive matrix.

Note that if A D US , then necessarily

tA � A D S2

and so S D p
tA � A is uniquely determined. We call the eigenvalues of S the

singular values of A. For more information about these, see the problems section.
We end this section with a few other applications of the results seen so far.

Problem 10.107. Let V be an Euclidean space and let T be a symmetric linear
transformation on V . Let 	1; : : : ; 	n be the eigenvalues of T . Prove that

sup
x2V�f0g

jjT .x/jj
jjxjj D max

1�i�n j	i j:

Solution. By renumbering the eigenvalues, we may assume that maxi j	i j D j	nj.
Let e1; : : : ; en be an orthonormal basis of V in which T .ei / D 	iei for 1 � i � n.
If x 2 V � f0g, we can write x D x1e1 C : : :C xnen for some real numbers xi , and
we have

T .x/ D
nX
iD1

	ixi ei :
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Thus

jjT .x/jj
jjxjj D

sPn
iD1 	2i x2iPn
iD1 x2i

� j	nj

since 	2i x
2
i � 	2nx

2
i for 1 � i � n. We conclude that

sup
x2V�f0g

jjT .x/jj
jjxjj � j	nj:

Since

jjT .en/jj
jjenjj D j	nj;

we deduce that the previous inequality is actually an equality, which yields the
desired result. ut
Problem 10.108. Find all nilpotent symmetric matrices A 2 Mn.R/.

Solution. If A is nilpotent, then all eigenvalues of A are 0. If A is moreover
symmetric, then it is diagonalizable and so it must beOn. Thus only the zero matrix
is simultaneously symmetric and nilpotent. ut
Problem 10.109. Let A be a symmetric matrix with real entries and suppose that
Ak D In for some positive integer k. Prove that A2 D In.

Solution. Since A is symmetric and has real entries, its complex eigenvalues are
actually real. Since they are moreover kth roots of unity, they must be ˙1. Thus all
eigenvalues of A2 are equal to 1. Since A2 is symmetric, it is diagonalizable, and
since all of its eigenvalues are 1, we must have A2 D In. ut
Problem 10.110. Let A 2 Mn.R/ be a symmetric positive matrix. Prove that

n
p

detA � 1

n
Tr.A/:

Solution. detA and Tr.A/ do not change if we replace A with any matrix similar
to it. Using the spectral theorem, we may therefore assume that A is diagonal. Since
A is positive, its diagonal entries ai WD aii are nonnegative numbers. It suffices
therefore to prove that

n
p
a1a2 : : : an � a1 C a2 C : : :C an

n

for all nonnegative real numbers a1; : : : ; an. This is the AM-GM inequality. Let us
recall the proof: the inequality is clear if one of the ai ’s is 0. If all ai are positive, the
inequality is a consequence of the convexity of x 7! ex (more precisely of Jensen’s
inequality applied to ln a1; : : : ; ln an). ut
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Problem 10.111. Let A D Œaij � 2 Mn.R/ be a symmetric positive matrix with
eigenvalues 	1; : : : ; 	n. Prove that if f W Œ0;1/ ! R is a convex function, then

f .a11/C f .a22/C : : :C f .ann/ � f .	1/C : : :C f .	n/:

Solution. Since A is symmetric and positive, there is an orthogonal matrix P such
that A D PDP�1, whereD is the diagonal matrix with diagonal entries 	1; : : : ; 	n.
Let P D Œpij �, then the equality A D PDtP yields

aij D
nX

kD1
pik	kpjk:

Since P is orthogonal, we have
Pn

kD1 p2ik D 1 for all i , and since f is convex, we
deduce that

f .aii / D f

 
nX

kD1
p2ik	k

!
�

nX
kD1

p2ikf .	k/:

Adding up these inequalities yields

nX
iD1

f .ai i / �
nX
iD1

nX
kD1

p2ikf .	k/ D

nX
kD1

f .	k/

nX
iD1

p2ik D
nX

kD1
f .	k/;

the last equality being again a consequence of the fact that P is orthogonal. The
result follows. ut
Problem 10.112. Let A D Œaij � 2 Mn.R/ be a symmetric positive matrix. Prove
that

detA � a11a22 : : : ann:

Solution. If detA D 0, then everything is clear, since aii Dt eiAei � 0 for all i ,
where e1; : : : ; en is the canonical basis of Rn. So suppose that detA > 0, thus A is
positive definite. Then aii > 0, since ei ¤ 0. If 	1; : : : ; 	n are the eigenvalues of A,
then detA D 	1 : : : 	n, thus the inequality is equivalent to

nX
kD1

log	k �
nX

kD1
log akk:

This follows from Problem 10.111 applied to the convex function f .x/ D � log x.
ut
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Problem 10.113 (Hadamard’s Inequality). Let A D Œaij � 2 Mn.R/ be an
arbitrary matrix. Prove that

j detAj2 �
nY
iD1

0
@

nX
jD1

a2ij

1
A :

Solution. We will apply Problem 10.112 to the matrix B D AtA, which is
symmetric and positive. Note that detB D .detA/2 and bii D Pn

jD1 a2ij for all i .
The result follows therefore from Problem 10.112. ut

10.8.1 Problems for Practice

1. Give an example of a symmetric matrix with complex coefficients which is not
diagonalizable.

2. Let T be a linear transformation on an Euclidean space V , and suppose that
V has an orthonormal basis consisting of eigenvectors of T . Prove that T is
symmetric (thus the converse of the spectral theorem holds).

3. Consider the matrix

A D
2
4
1 �2 �2

�2 1 �2
�2 �2 1

3
5 :

a) Explain why A is diagonalizable in M3.R/.
b) Find an orthogonal matrix P such that P�1AP is diagonal.

4. Find an orthogonal basis consisting of eigenvectors for the matrix

A D 1

7

2
4

�2 6 �3
6 3 2

�3 2 6

3
5 :

5. Let A 2 Mn.R/ be a nilpotent matrix such that A tA D tAA. Prove that A D
On. Hint: prove that B D A tA is nilpotent.

6. Let A 2 Mn.R/ be a matrix. Prove that AtA and tAA are similar (in fact A and
tA are always similar matrices, but the proof of this innocent-looking statement
is much harder and requires Jordan’s classification theorem). Hint: both these
matrices are symmetric, hence diagonalizable.

7. Let A 2 Mn.R/ be a symmetric matrix. Prove that

rank.A/ � .Tr.A//2

Tr.A2/
:

Hint: consider an orthonormal basis of eigenvectors for A.
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8. The entries of a matrix A 2 Mn.R/ are between �1 and 1. Prove that

j detAj � nn=2:

Hint: use Hadamard’s inequality.
9. Let A;B 2 Mn.R/ be matrices such that tAA D tBB . Prove that there is

an orthogonal matrix U 2 Mn.R/ such that B D UA. Hint: use the polar
decomposition.

10. (The Courant–Fischer theorem) Let E be an Euclidean space of dimension n
and let p 2 Œ1; n� be an integer. Let T be a symmetric linear transformation on
E and let 	1 � : : : � 	n be its eigenvalues.

a) Let e1; : : : ; en be an orthonormal basis of E such that T .ei / D 	iei for all
1 � i � n and let F D Span.e1; : : : ; ep/. Prove that

max
x2FjjxjjD1

hT .x/; xi � 	p:

b) Let F be a subspace of E of dimension p. Prove that F \ Span.ep; : : : ; en/
is nonzero and deduce that

max
x2FjjxjjD1

hT .x/; xi � 	p:

c) Prove the Courant–Fischer theorem:

	p D min
F�E

dimFDp
max
x2FjjxjjD1

hT .x/; xi;

the minimum being taken over all subspaces F of E of dimension p.

11. Find all matrices A 2 Mn.R/ satisfying AtAA D In. Hint: start by proving that
any solution of the problem is a symmetric matrix.

12. Find all symmetric matrices A 2 Mn.R/ such that

AC A3 C A5 D 3In:

13. Let A;B 2 Mn.R/ be symmetric positive matrices.

a) Let e1; : : : ; en be an orthonormal basis of Rn consisting of eigenvectors of
B , say Bei D 	iei . Let �i D hAei ; ei i. Explain why 	i ; �i � 0 for all i
and why

Tr.A/ D
nX
iD1

�i and Tr.AB/ D
nX
iD1

	i�i :
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b) Prove that

Tr.AB/ � Tr.A/ � Tr.B/:

14. Let A D Œaij � 2 Mn.R/ be a symmetric matrix and let 	1; : : : ; 	n be its
eigenvalues (counted with multiplicities). Prove that

nX
i;jD1

a2ij D
nX
iD1

	2i :

15. (Cholesky’s decomposition) Let A be a symmetric positive definite matrix in
Mn.R/. Prove that there is a unique upper-triangular matrix T 2 Mn.R/ with
positive diagonal entries such that

A D t T � T:

Hint: for the existence part, consider the inner product hx; yi1 D hAx; yi on Rn

(with h ; i the canonical inner product on Rn), apply the Gram–Schmidt process
to the canonical basis B of Rn and to the inner product h ; i1, and consider the
change of basis matrix from B to the basis given by the Gram–Schmidt process.

16. a) Let V be an Euclidean space and let T be a linear transformation on V . Let
	1; : : : ; 	n be the eigenvalues of T � ı T . Prove that

sup
x2V�f0g

jjT .x/jj
jjxjj D max

1�i�n
p
	i :

b) Let V be an Euclidean space and let T be a symmetric linear transformation
on V . Let 	1 � : : : � 	n be the eigenvalues of T . Prove that

sup
x2V�f0g

hT .x/; xi
jjxjj2 D 	n:

17. Let A;B 2 Mn.R/ be symmetric matrices. Define a map f W R ! R by: f .t/
is the largest eigenvalue of AC tB . Prove that f is a convex function. Hint: use
Problem 16.

18. Let T be a diagonalizable linear transformation on an Euclidean space V . Prove
that if T and T � commute, then T is symmetric.

19. Let V be the vector space of polynomials with real coefficients whose degree
does not exceed n, endowed with the inner product

hP;Qi D
Z 1

0

P.x/Q.x/dx:
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Consider the map T W V ! V defined by

T .P /.X/ D
Z 1

0

.X C t /nP.t/dt:

a) Give a precise meaning to T .P /.X/ and prove that T is a symmetric linear
transformation on V .

b) Let P0; : : : ; Pn be an orthonormal basis of V consisting of eigenvectors for
T , with corresponding eigenvalues 	0; : : : ; 	n. Prove that for all x; y 2 R
we have

.x C y/n D
nX

kD0
	kPk.x/Pk.y/:

20. Prove that if A;B are symmetric positive matrices in Mn.R/, then

det.AC B/ � detAC detB:

21. a) Prove that if x1; : : : ; xn are real numbers and 	1; : : : ; 	n are positive real
numbers, then

 
nX
iD1

	ix
2
i

!
�
 

nX
iD1

	�1
i x

2
i

!
�
 

nX
iD1

x2i

!2
:

b) Prove that if T is a symmetric and positive definite linear transformation on
an Euclidean space V , then for all x 2 V we have

hT .x/; xi � hT �1.x/; xi � jjxjj4:

22. a) Prove that if 	1; : : : ; 	n are nonnegative real numbers, then

n
p
.1C 	1/ : : : .1C 	n/ � 1C n

p
	1 : : : 	n:

Hint: check that the map f .x/ D ln.1 C ex/ is convex on Œ0;1/ and use
Jensen’s inequality.

b) Let A 2 Mn.R/ be a symmetric positive definite matrix. Prove that

n
p

det.In C A/ � 1C n
p

detA:

23. (Singular value decomposition) Let 	1; : : : ; 	n be the singular values of A 2
Mn.R/, counted with multiplicities (algebraic or geometric, it does not matter
since S is diagonalizable).
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a) Prove the existence of orthonormal bases e1; : : : ; en and f1; : : : ; fn of Rn

such that Aei D 	ifi for 1 � i � n. Hint: let A D US be the polar
decomposition of A. Pick an orthonormal basis e1; : : : ; en of Rn such that
Sei D 	iei and set fi D Uei .

b) Prove that if e1; : : : ; en and f1; : : : ; fn are bases as in a), then for all X 2 Rn

we have

AX D
nX
iD1

	i hX; ei ifi :

We call this the singular value decomposition of A.
c) Let e1; : : : ; en and f1; : : : ; fn be orthonormal bases of Rn giving a singular

value decomposition of A. Prove that the singular value decomposition of
A�1 is given by

A�1X D
nX

jD1

1

	j
hX; fj iej :

d) Prove that two matrices A1;A2 2 Mn.R/ have the same singular values if
and only if there are orthogonal matrices U1; U2 such that

A2 D U1A1U2:

e) Prove that A is invertible if and only if 0 is not a singular value of A.
f) Compute the rank of A in terms of the singular values of A.
g) Prove that A is an orthogonal matrix if and only if all of its singular values

are equal to 1.

24. The goal of this long exercise is to establish the analogues of the main results
of this section for hermitian spaces.

Let V be a hermitian space, that is a finite dimensional C-vector space
endowed with a hermitian inner product h ; i. A linear transformation T WV!V

is called hermitian if hT .x/; yi D hx; T .y/i for all x; y 2 V .

a) Let e1; : : : ; en be an orthonormal basis of V . Prove that T is hermitian if
and only if the matrix A of T with respect to e1; : : : ; en is hermitian, that is
A D A� (recall that A� D tA).

From now on, until part e), we let T be a hermitian linear transformation
on V .

b) Prove that the eigenvalues of T are real numbers.
c) Prove that if W is a subspace of V stable under T , then W ? is also stable

under T , and the restrictions of T to W and W ? are hermitian linear
transformations on these subspaces.

d) Prove that there is an orthonormal basis of V consisting of eigenvectors of T .
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e) Conversely, prove that if V has an orthonormal basis consisting of eigenvec-
tors of T with real eigenvalues, then T is hermitian.

f) Prove that for any hermitian matrix A 2 Mn.C/ we can find a unitary matrix
P and a diagonal matrix D with real entries such that A D P�1DP .

g) Let T W V ! V be any invertible linear transformation. Prove that there is a
unique pair .S; U / of linear transformations on V such that H is hermitian
positive (i.e., H is hermitian and its eigenvalues are positive), U is unitary
and T D U ıH .



Chapter 11
Appendix: Algebraic Prerequisites

Abstract This appendix recalls the basic algebraic structures that are needed in the
study of linear algebra, with special emphasis on permutations and polynomials.

Even though the main objects of this book are vector spaces and linear maps
between them, groups and polynomials naturally appear at several key moments
in the development of linear algebra. In this brief chapter we define these objects
and state the main properties that will be needed in the sequel. The reader is advised
to skip reading this chapter and return to it whenever reference to this chapter is
made.

11.1 Groups

Morally, a group is just a set in which one can multiply objects of the set (staying
in that set) according to some rather natural rules. Formally, we have the following
definition.

Definition 11.1. A group is a nonempty setG endowed with a map � W G�G ! G

satisfying the following properties:

a) (associativity) For all a; b; c 2 G we have .a � b/ � c D a � .b � c/.
b) (identity) There is an element e 2 G such that a � e D e � a D a for all a 2 G.
c) (existence of inverses) For all a 2 G there is a�1 2 G such that a � a�1 D
a�1 � a D e.

If moreover a �b D b �a for all a; b 2 G, we say that the groupG is commutative
or abelian.

Note that the element e of G is unique. Indeed, if e0 is another element with the
same properties, then e0 D e0 � e D e � e0 D e. We call e the identity element of G.
Secondly, the element a�1 is also unique, for if x is another element with the same
properties, then

x D x � e D x � .a � a�1/ D .x � a/ � a�1 D e � a�1 D a�1:

We call a�1 the inverse of a.
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We will usually write ab instead of a � b. Moreover, if the group G is abelian, we
will usually prefer the additive notation a C b instead of ab and write 0 instead of
e, and �a instead of a�1.

Since the definition of a group is not restrictive, there is a huge amount of
interesting groups. For instance, all vector spaces (which we haven’t properly
defined yet, but which are the main actors of this book) are examples of commutative
groups. There are many other groups, which we will see in action further on: groups
of permutations of a set, groups of invertible linear transformations of a vector space,
the group of positive real numbers or the group of integers, etc.

11.2 Permutations

11.2.1 The Symmetric Group Sn

A bijective map � W f1; 2; : : : ; ng ! f1; 2; : : : ; ng is called a permutation of degree
n. We usually describe a permutation by a table

� D
�

1 2 : : : n

�.1/ �.2/ : : : �.n/

�
;

where the second line represents the images of 1; 2; : : : ; n by � .
The set of all permutations of degree n is denoted by Sn. It is not difficult to see

that Sn has nŠ elements: we have n choices for �.1/, n�1 choices for �.2/ (as it can
be any element different from �.1/),. . . , one choice for �.n/, thus n � .n � 1/ � : : : �
1 D nŠ choices in total.

We denote by e the identity map sending k to k for 1 � k � n, thus

e D
�
1 2 : : : n

1 2 : : : n

�
:

The product �� of two permutations �; � 2 Sn is defined as the composition
� ı � . Thus for all 1 � k � n

.��/.k/ D �.�.k//:

Example 11.2. Let �; � 2 S4 be the permutations given by

� D
�
1 2 3 4

2 3 4 1

�
and � D

�
1 2 3 4

3 1 4 2

�
:
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Then

� � � D
�
1 2 3 4

2 3 4 1

��
1 2 3 4

3 1 4 2

�
D
�
1 2 3 4

4 2 1 3

�

and

� � � D
�
1 2 3 4

3 1 4 2

��
1 2 3 4

2 3 4 1

�
D
�
1 2 3 4

1 4 2 3

�

Since � and � are bijections, so is their composition and so �� 2 Sn. The easy
proof of the following theorem is left to the reader.

Theorem 11.3. Endowed with the previously defined multiplication, Sn is a group
with nŠ elements.

Note that the inverse of a permutation with respect to multiplication is simply
its inverse as a bijective map (i.e., ��1 is the unique map such that ��1.x/ D y

whenever �.y/ D x). For example, the inverse of permutation

� D
�
1 2 3 4 5

2 4 5 1 3

�

is the permutation

��1 D
�
1 2 3 4 5

4 1 5 2 3

�
:

The previous Example 11.2 shows that we generally have � � � ¤ � � � , thus Sn
is a non commutative group in general (actually for all n � 3, the groups S1 and S2
being commutative). The group Sn is called the symmetric group of degree n or
the group of permutations of degree n.

Problem 11.4. Let � 2 Sn, where n � 3. Prove that if � � ˛ D ˛ � � for all
permutations ˛ 2 Sn, then � D e.

Solution. Fix i 2 f1; 2; : : : ; ng and choose a permutation ˛ having i as unique fixed
point, for instance

˛ D
�
1 2 : : : i � 1 i i C 1 : : : n

2 3 : : : i C 1 i i C 2 : : : 1

�
:

Since

�.i/ D �.˛.i// D ˛.�.i//

and i is the unique fixed point of ˛, we must have �.i/ D i . As i was arbitrary, the
result follows.
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11.2.2 Transpositions as Generators of Sn

The group Sn has a special class of elements which have a rather simple structure
and which determine the whole group Sn, in the sense that any element of Sn is a
product of some of these elements. They are called transpositions and are defined
as follows.

Definition 11.5. Let i; j 2 f1; 2; : : : ; ng be distinct. The transposition .ij / is the
permutation � sending k to k for all k ¤ i; j and for which �.i/ D j and �.j / D i .
Thus .ij / exchanges i and j , while keeping all the other elements fixed.

It follows straight from the definition that a transposition � satisfies �2 D e and
so ��1 D � . Note also that the set fi; j g is uniquely determined by the transposition
.ij /, since it is exactly the set of those k 2 f1; 2; : : : ; ng for which .ij /.k/ ¤ k.
Since there are

 
n

2

!
D n.n � 1/

2

subsets with two elements of f1; 2; : : : ; ng, it follows that there are
	
n
2



transposi-

tions. Let us prove now that the group Sn is generated by transpositions.

Theorem 11.6. Let n � 2. Any permutation � 2 Sn is a product of transpositions.

Proof. For � 2 Sn we let m� be the number of elements k 2 f1; 2; : : : ; ng for
which �.k/ ¤ k. We prove the theorem by induction on m� . If m� D 0, then
� D e D .12/2 and we are done.

Assume that m� > 0 and that the statement holds for all permutations ˛ 2 Sn
with m˛ < m� . Since m� > 0, there is i 2 f1; 2; : : : ; ng such that �.i/ ¤ i .
Let j D �.i/, � D .ij / and ˛ D �� . Let A D fk; ˛.k/ ¤ kg and B D fk; �.k/ ¤
kg. Note that if �.k/ D k, then k ¤ i and k ¤ j , hence

˛.k/ D .��/.k/ D �.�.k// D �.k/ D k:

This shows that A � B . Moreover, we have A ¤ B since j belongs to B but not to
A. It follows that m˛ < m� .

Using the induction hypothesis, we can write ˛ as a product of transpositions.
Since � D ˛��1 D ˛� , � itself is a product of transpositions and we are done.

Note that the proof of the theorem also gives an algorithm allowing to express a
given permutation as a product of transpositions. Let us see a concrete example. Let

� D
�
1 2 3 4 5

2 5 4 1 3

�
:
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Since �.1/ D 2, we compute � � .12/ in order to create a fixed point

�1 D � � .12/ D
�
1 2 3 4 5

2 5 4 1 3

��
1 2 3 4 5

2 1 3 4 5

�

D
�
1 2 3 4 5

5 2 4 1 3

�
:

Because �1.1/ D 5, we compute �1 � .15/ to create a new fixed point

�2 D �1 � .15/ D
�
1 2 3 4 5

5 2 4 1 3

��
1 2 3 4 5

5 2 3 4 1

�

D
�
1 2 3 4 5

3 2 4 1 5

�
:

Computing �2.13/ we obtain a new fixed point in the permutation

�3 D �2.13/ D
�
1 2 3 4 5

4 2 3 1 5

�
:

Now, observe that �3 D .14/, thus �3 � .14/ D e. We deduce that � � .12/ � .15/ �
.13/ � .14/ D e and so

� D .14/.13/.15/.12/:

11.2.3 The Signature Homomorphism

An inversion of a permutation � 2 Sn is a pair .i; j / with 1 � i < j � n and
�.i/ > �.j /. Let Inv.�/ be the number of inversions of � . Note that

0 � Inv.�/ � n.n � 1/
2

; � 2 Sn;

and these inequalities are optimal: Inv.e/ D 0 and Inv.�/ D n.n�1/
2

for

� D
�
1 2 : : : n

n n � 1 : : : 1
�
:
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Example 11.7. The permutation

� D
�
1 2 3 4 5 6

5 6 2 1 4 3

�

has Inv.�/ D 4 C 4 C 1 C 1 D 10 inversions, since �.1/ > �.3/, �.1/ > �.4/,
�.1/ > �.5/, �.1/ > �.6/, �.2/ > �.3/, �.2/ > �.4/, �.2/ > �.5/, �.2/ > �.6/,
�.3/ > �.4/, �.5/ > �.6/.

We introduce now a fundamental map " W Sn ! f�1; 1g, the signature.

Definition 11.8. The sign of a permutation � 2 Sn is defined by

".�/ D .�1/Inv.�/:

If ".�/ D 1, then we say that � is an even permutation and if ".�/ D �1, then we
say that � is an odd permutation. Note that a transposition � D .ij /with i < j is an
odd permutation, as the number of inversions of � is j �iCj �i�1 D 2.j �i/�1.

Here is the fundamental property of the signature map:

Theorem 11.9. The signature map " W Sn ! f�1; 1g is a homomorphism of groups,
i.e., ".�1�2/ D ".�1/".�2/ for all �1; �2 2 Sn.

Without giving the formal proof of this theorem, let us mention that the key point
is the equality

".�/ D
Y

1�i<j�n

�.i/ � �.j /
i � j

for any � 2 Sn. This follows rather easily from the definition of ".�/ and can be
used to prove the multiplicative character of � .

Remark 11.10. a) The signature is the unique nontrivial homomorphism Sn !
f�1; 1g. Indeed, let ' W Sn ! f�1; 1g be a surjective homomorphism of groups.
If �1 D .i; j / and �2 D .k; l/ are two transpositions, then we can find � 2 Sn
such that �2 D ��1�

�1 (indeed, it suffices to impose �.i/ D k and �.j / D l).
Then '.�2/ D '.�/'.�1/'.�/

�1 D '.�1/. Thus all transpositions of Sn are sent
to the same element of f�1; 1g, which must be �1, as the transpositions generate
Sn and ' is not the trivial homomorphism. Thus '.�/ D �1 D ".�/ for all
transpositions and using again that the transpositions generate Sn, it follows that
' D ".

b) Let � 2 Sn be a permutation, and write � D �1�2 : : : �k , where �1; �2; : : : ; �k are
transpositions. This decomposition is definitely not unique, but the parity of k is
the same in all decompositions. This is definitely not an obvious statement, but it
follows easily from the previous theorem: for any such decomposition we must
have ".�/ D Qk

iD1 ".�i / D .�1/k , thus the parity of k is independent of the
decomposition.
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11.3 Polynomials

Let F be a field, for instance R or C. The set F ŒX� of polynomials with coefficients
in X will play a key role in this chapter. In this section we recall, without proof, a
few basic facts about polynomials.

Any element P of F ŒX� can be uniquely written as a formal expression

P D a0 C a1X C : : :C anX
n

with a0; : : : ; an 2 F . If P ¤ 0, then at least one of the coefficients a0; : : : ; an is
nonzero, and we may assume that an ¤ 0. We then say that P has degree n (and
write degP D n) and leading coefficient an. By convention, the degree of the
zero polynomial is �1. A fundamental property of polynomials with coefficients
in a field is the equality

deg.PQ/ D degP C degQ

for all polynomials P;Q 2 F ŒX�. We say that P is unitary or monic if its
leading coefficient is 1. Polynomials of degree 0 or �1 are also called constant
polynomials.

Remark 11.11. Sometimes we will write P.X/ instead of P for an element of
F ŒX�, in order to emphasize that the variable is X .

The first fundamental result is the division algorithm:

Theorem 11.12. Let A;B 2 F ŒX� with B ¤ 0. There is a unique pair .Q;R/ of
elements of F ŒX� such that A D BQCR and degR < degB .

The polynomials Q and R are called the quotient, respectively remainder of A
when divided by B . We say that B divides A if R D 0. We say that a polynomial
P 2 F ŒX� is irreducible if P is not constant, but cannot be written as the product
of two nonconstant polynomials. Thus all divisors of an irreducible polynomial are
either constant polynomials or constant times the given polynomial. For instance,
all polynomials of degree 1 are irreducible. For some special fields, these are the
only irreducible polynomials:

Definition 11.13. A field F is called algebraically closed if any irreducible
polynomial P 2 F ŒX� has degree 1.

An element a 2 F is called a root of a polynomial P 2 F ŒX� if P.a/ D 0.
In this case, the division algorithm implies the existence of a factorization

P D .X � a/Q
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for some polynomial Q 2 F ŒX�. Repeating this argument, we deduce that if
a1; a2; : : : ; ak 2 F are pairwise distinct roots of P , then we can write

P D .X � a1/.X � a2/ : : : .X � ak/Q

for some polynomial Q 2 F ŒX�. Taking degrees, we obtain the following

Theorem 11.14. A nonzero polynomial P 2 F ŒX� of degree n has at most n
pairwise distinct roots in F .

Stated otherwise, if a polynomial of degree at most n vanishes at nC 1 distinct
points of F , then it must be the zero polynomial. The notion of irreducible
polynomial can also be expressed in terms of roots:

Theorem 11.15. A field F is algebraically closed if and only if any nonconstant
polynomial P 2 F ŒX� has a root in F . If this is the case, then any nonconstant
polynomial P 2 F ŒX� can be written as

P D c.X � a1/n1 : : : .X � ak/nk

for some nonzero constant c 2 F , some pairwise distinct elements a1; ::; ak of F
and some positive integers n1; : : : ; nk .

We call ni the multiplicity of the root ai of P . It is the largest positive integerm
for which .X � ai /m divides P .

Finally, we state the fundamental theorem of algebra:

Theorem 11.16 (Gauss). The field C of complex numbers is algebraically closed.
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