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Ceramic investigation. How to perform statistical analyses. 

Abstract 

The aim of this article is to summarize and organize the statistical methodologies used for the 

statistical analysis towards ceramic investigation and in particular study of ceramic provenance. 

An update and review of all related methodologies is provided during the presentation of a 

typical statistical analysis. The presentation is given in a step-by-step process and emphasis is on 

interpretation of the intermediate and final results.  The analysis attempts to cover the following: 

 What issues to examine in a preliminary analysis 

 Data transformation 

 Cluster Analysis 

 Clustering assessment  

 Data dimension reduction methods as part of a clustering visualization and assessment 

 Outliers and small groups 

 Mixed-mode analysis 

 Cluster characterization and discriminating factors 

 Classification 

 

1. Introduction  

This paper is a part of a larger project, a series of papers, aiming to provide a guide to a researcher 

in the study of ceramic materials, ideally in every single stage of the study. Statistical methods in 

general are used throughout the process of an archaeological survey, from the initial stage of 

planning the survey and sampling until the stage of data collection. However, with the term 

statistical analysis in the title of this paper we focus on the last part of the survey, when the data 

have already been collected. In particular, we refer to the specific problem of analyzing the data 

obtained from an archaeological survey aiming to answer questions with respect to provenance, 

as a part of reconstruction of the past. Most of the statistical methodologies used for this 

problem fall within the branch of multivariate statistical analysis. This is due to the fact that the 

data collected for a provenance study in Archaeology consist of a multivariate data matrix, where 

the columns, i.e. the variables of the problem are in general correlated and a univariate study 

would be inadequate. Methods from multivariate statistical analysis would be in particular, data 

reduction methods, clustering and classification.     

Quantitative methods in Archaeology, in general, have a long history. It is widely accepted 

by the community of Archeology scientists that statistical theory can be a valuable tool, 

sometimes necessary, in order to plan and organize the survey, handle the volume of data 
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collected, verify or clarify scientific hypotheses and make statistical inference based on the data 

at hand.  First publications of statistical methods applied to problems in Archaeology appear the 

decade of 1960s (Binford, 1964) and more specific publications to provenance and multivariate 

statistical techniques appear in the mid of 1970s (Bieber et al., 1976). Baxter (2008) provides a 

thorough review on use of Mathematics and Statistics in the last fifty years in Archaeometry.  

The paper with title ‘The awful truth about statistics in Archaeology’ by D.H. Thomas in 1978 

is an indicator of the great expansion of statistical methodology used in Archaeology over the 

recent years before the date of its publication. The author although admits that undoubtedly 

statistical theory, when correctly used, can assist the researcher to efficiently and subjectively 

derive results on the archaeological questions, he discusses the misuses and in some cases abuses 

of Statistical techniques. The paper is organized in sections with titles ‘the good’, ‘the bad’ and 

‘the ungly’ presenting in each section from harmless to more serious mistakes in statistical 

analysis applied to Archaeology. It is mentioned that the instruction of his editor was to ‘shake 

things up in a pleasant way’ and the author definitely accomplished this purpose.  

Since then, Archaeological scientists have gain more experience in using quantitative tools, 

they are aware of the methodologies appropriate for their analysis, they are more educated and 

they have access to statistical/computer packages that can assist towards the implementation of 

such methodologies. This article does not attempt to present some new statistical methodologies 

–although a review on various choices in each case is given- but to provide some guidance with 

respect to the sequence of the steps an analysis and the implementation. The instruction of my 

editor was to present ‘a tutorial approach –solving problem oriented’ and my contribution to 

have ‘an educational character’. I hope this is accomplished. The paper although technical has 

kept Mathematics to a minimum and emphasis is on ‘how’, ‘why’ and ‘when’ we use each 

method.  

In particular, with respect to its content the article is organized as follows. In section 2, the 

issues we examine during a preliminary analysis are presented. Questions such as why a 

preliminary analysis is important and how we can use any conclusions made at this stage in the 

subsequent steps of the analysis, are answered. Section 3, is the main part of the paper, 

reviewing various approaches for clustering, illustrated in simulated data. Section 4 lists the tools 

and the steps the researcher can follow if he wishes to conduct an assessment of the clustering 

result(s). Within this section, as part of the clustering assessment, methods for data dimension 

reduction are also presented. Moreover, a presentation and proposed solution of special 

problems one has to deal with in cluster analysis, such as existence of outliers is given. In section 

6 a brief presentation of the classification problem and possible approaches is listed. Finally, a 

summary of the steps of the analysis is listed in the last section.   

2. Preliminary analysis. Data manipulation and transformation 

The data collection should normally be a part of a more general process which includes the 

questions of the research. These questions, the purpose of the research project, are set at an 
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early stage of this project and the data collection is adjusted so that the data at hand will include 

information sufficient for answering the questions. Moreover, the type of the data collected 

needs to be in accordance with the methods of data manipulation which are going to be used. 

Alternatively, the methods of analysis need to be adapted to the type of data that are meaningful 

for the purpose of the analysis.  

For example a key question in Archaeology is provenance. Are we able to identify which 

artifacts have common provenance and which differentiate from others? Is it possible to 

determine the factors which differentiate the distinct groups and learn from this process either 

with respect to the characterization of a source, or the technology used towards ceramic 

production? If provenance is the question of the analysis, data carrying information about the 

characteristics of an origin are necessary, such that the chemical composition. This will lead to a 

number of continuous variables in statistical terms, i.e. quantitative variables which can be 

measured on a scale and take infinite number of values. Those continuous variables will be the 

input data for a cluster analysis for example. Apart from chemical composition, other types of 

variables may be available, such as data collected from typology or microscopic study of the 

specimens. These variables will be categorical, nominal or ordinal. For example, variables taking 

values ‘yes’ or ‘no’ to the question if a certain mineral is present or not to a specimen, or variables 

taking values 1, 2, 3 and 4 where level 1 corresponds to the ‘no presence’ outcome, 2 to the 

outcome ‘few’, 3 for ‘moderate’ and 4 for ‘plenty’. If we assume that this type of data also carry 

information about the provenance, methods of clustering which accommodate categorical 

variables would be appropriate to pursue or methods solely dedicated for categorical data.     

The first stage of the analysis is to have the questions clearly stated. Moving to the numerical 

variables the preliminary analysis can include univariate summary statistics for each of the 

variables and univariate of bivariate plots for pairs. The preliminary analysis in general can give 

an idea of the data at hand. For example, range of values for a variable, shape of the distribution, 

existence of specimens with extreme values and possibly an obvious pattern, e.g a bi-modal 

distribution for one or more variables may suggest to the existence of two distinct groups. The 

preliminary analysis will not be sufficient to answer questions of the research project, but is 

essential and has an auxiliary role in the proceed analysis.  

More analytically, for continuous variables a preliminary analysis can include summary statistics, 

i.e. mean, variance, standard deviation, median, first and second quantile, minimum and 

maximum value. Graphs, such as histograms for univariate variables will give evidence for 

symmetry or not, existence of a long tail due to extreme high values on this variable for instance, 

bi-modality etc. Moreover, it will point out a specimen with extreme value on that particular 

variable, a fact that needs to explore further. For example, if a statistical method which assumes 

normality is going to be used, a transformation in the log-scale will be suggested before the 

analysis in the case of a long right tail at the variable distribution.  
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Scatter plots for pairs of variables will also provide similar information, but moreover will 

add information about the relation between the two variables. Ellipsoidal shape of a scatter plot 

instead of spherical will indicate significant level of correlation. An obvious pattern in the data 

with respect to distinct groups may also be apparent. However, as it is the case for any simple or 

complex statistical analysis with multivariate data, the difficulty is the number of variables 

available, usually they are too many, and the contradict information that they may contain. 

Moreover, by studying the variables one by one the part of information due to the correlations 

among the variables is left out. A bivariate analysis is definitely superior that a univariate study, 

but the number of possible pairs is even higher and a selection of informative pair or pairs is 

essential.  

As an example, we use simulated data for giving measurements on five chemical elements. 

The data set of total size 60 is comprised from three groups, where each group is generated using 

the lognormal distribution and parameters, i.e. means and covariance matrices differ among the 

three groups. Figure 1(a) plots a histogram of one of the element measurement. A long right tail 

is apparent and log transformation could transform the data producing a more symmetric plot 

allowing a symmetric model (e.g. normal distribution) to be assumed for the statistical 

methodology. Figure 1(b) is a scatter plot in two dimensions, plotting the measurements of two 

elements and using different symbols and colors for the three groups. From figures 1(a) and 1(b) 

we draw immediate results that the data presents heterogeneity, in particular high values in 

some of the variables and different type of correlation for at least two subsets of the data as 

indicated from the two selected variables in Fig. 1(b). However, this preliminary analysis does not 

form an analysis or enough evidence to draw any conclusions on certain structure regarding 

distinct groups in data.  
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Figure 1. (a) A Histogram of univariate measurements of one selected element. (b) A scatter plot of 

bivariate data set. Color and symbol shape correspond to the groups. 

 

Data Transformation   

Data transformation plays an important role in subsequent analysis. If provenance is the problem 

of interest, a method of multivariate statistics within the framework of clustering will be applied 

and any result of cluster analysis will be visualized through principal component analysis (PCA) or 

any other statistical multivariate technique aiming to data reduction. Performance of either 

clustering or data reduction techniques will depend on data transformation. For example, for 

PCA in particular, it is a fundamental result that if the data variable variances differ, the first 

components of a PCA analysis will be dominated from the variable(s) with large variance. This is 

against the PCA performance since the first components instead of explaining the majority of 

data heterogeneity will solely explain the variability that data present at one or two variables, 

the variable with dominant variances. 

For implementing cluster analysis, as seen in Section 3 analytically, both factors of data 

transformation and measure of distance will be essential for the analysis. Transformation of data 

primarily holds for continuous data in Archaeology, i.e. data resulting from the chemical 

composition of specimens. This analysis will provide us with a large number of variables, each 

one corresponding to one chemical element or their oxides. The measurements are either counts 

i.e. absolute measures or percentages out of 100% of weight. These data where the 

measurements for the set of variables sum to 100% for each sample are called fully 

compositional. Compositional data in general are called either the fully compositional or data 

that can be considered as a subset (with respect to variables) of fully compositional data.   
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Transformations usually implemented in analysis of Archaeometric data are (i) standardization 

or scale transformation in zero mean and variance one, (ii) log-transformation (iii) log and scale, 

(iv) log-ratio transformation for compositional data.  

In particular, standardization will be suggested, among other cases, for a PCA visualization as 

mentioned before, log-transformation will be appropriate and improve the performance of 

either a data reduction/visualization technique or a clustering method if the data present 

asymmetry.  It is proposed from the literature (see for example Bieber et al., 1976 and Bishop and 

Neff, 1989) logarithms to be taken with base 10. This transformation will result to a set of variables 

that will have nearly equal variances (a characteristic that standardization also guarantees) and 

variables measured in percentages or ppm are transformed to measurements which weight 

almost the same. Towards the implementation of log transformation special care is required for 

measurements that are zero.  

Zero measurement naturally results in compositional data when the measured value is below 

the detection threshold. A possible treatment in this case would be to substitute zero with the 

threshold or with a value 𝛼 smaller than the threshold (Beardah et al, 2003) or substitute zero 

with 𝛼/(𝑝 − 1) with 𝛼 a small number and 𝑝 the number of variables (Aitchison, 1986). Other 

proposal is to adjust the remaining variable measurements when a zero is replaced by 𝛼. More 

specifically if 𝑥𝑖𝑗 is the measurement of 𝑖 sample for the 𝑗 variable,  𝑥𝑖𝑗 is replaced with (𝑥𝑖𝑗 −

𝑎𝑥𝑖𝑗)/100 (see Pawlowsky-Glahn, 2002). Another approach is to impute those values based on 

the remaining measurements (see Palarea-Albaladejo et al. 2015). Most of the 

statistical/computational packages include imputation techniques.  

The log-ratio transformation is aiming to take into account the condition that compositional 

data have that they add up to a constant number. It is proposed by Aitchison (1986) and adopted 

by Buxeda I Garrigos (1999), Martin – Fernandez et al. (2015) and Pawlowsky-Glahn and Buccianti 

(2011) amongst others. If 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) is the vector of measurements of artefact 𝑖 for 

the set of 𝑝 variables, the log-ratio transformation of 𝑥𝑖𝑗 , (𝑗 = 1,2, … , 𝑝) is log (𝑥𝑖𝑗/𝑔(𝒙𝑖)) where 

𝑔(𝒙𝑖) = (𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑝)1/𝑝 (centered log-ratio transformation). The merit of the log-ratio 

transformation is that the condition which holds for the data have is taken into account. 

Transforming the data in log-ratio scale such way the distances among vectors are expressed in 

a geometry that represents better their relation. There is however a discussion in the literature 

for choosing log-ratio and simply standardize the data for compositional data. When using log-

ratio transformation an element with small absolute values, but relatively high variance is 

promoted in comparison to other elements with higher absolute presence and more relative to 

the question of the analysis, e.g. provenance. See Baxter (2001) and Baxter et al (2006) for some 

examples.   

Nevertheless, if a structure is apparent in the data, both transformation will suggest this 

same structure and differences caused by practical problems as mentioned or presence of 

outliers will need further examination. It is important at this stage to mention that a PCA plot, in 
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either transformation will not be a method to conclude about a certain structure in the data, 

even if this it is apparent. A clustering technique is the appropriate method to answer this 

question and PCA will only act complimentary to a clustering technique confirming the validity of 

a clustering result. Other methods for assessing a clustering technique are also available and a 

common practice is to reckon in all them. Moreover, a two dimensional PCA plot, based on the 

first two principal components will not count for the 100% of the data heterogeneity and 

therefore it can serve as a data visualization method, as the closest view of the data we can have 

in two dimensions, but yet it is not the complete information. Some theoretical and practical 

considerations on PCA are presented in section 3. 

Another practice would be to take ratios of variables instead of raw measurements in 

variables as an attempt to explain dilution and alleviate its effect. This dilution may be the result 

of different proportion of temper added to the paste towards the production of ceramic. The 

paste source may be the same, but different proportion of temper may result in different 

composition. One way to cancel out this effect if to work with ratios, i.e. instead of measurements 

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) for the 𝑖 artefact in elements 𝑝 elements, the ratios (𝑥𝑖1/𝑥𝑖𝑘, 𝑥𝑖2/𝑥𝑖𝑘, … , 𝑥𝑖𝑝/

𝑥𝑖𝑘)  can be used for the analysis, where 𝑥𝑖𝑘 is the measurement at a chosen element k. For a 

detailed discussion see Baxter (2001).  

 

 

3. Statistical methods for provenance 

Cluster Analysis (CA) is the most widely used method of multivariate statistical analysis in 

Archaeology (Baxter, 2008). It is a term to include any statistical method, now-days any machine 

learning as well, seeking for similarities among observations, based on a number of variables, and 

identify groups consisted of observations that have common characteristics. Those groups are 

called clusters. CA is applied to Archaeometric data in Archaeology aiming to identify artefacts 

that share common characteristics in composition and therefore make inference about these 

with respect to provenance, technology and draw subsequent conclusions on economic and 

social relation of past societies.  

A plethora of clustering techniques is available and this is in practice one of the reasons the 

task it can be challenging. CA is typically used when after a preliminary analysis of the data, we 

suspect that there is heterogeneity within the dataset and it cannot be assumed as a sample 

coming from a unique population. This can be apparent either from univariate or bivariate plots 

(Fig. 1), summary statistics or plotting the data using any data reduction technique (e.g. PCA) and 

detect some pattern in the data, e.g. bi-modality or different type of relation among observations 

(e.g. Fig 1b). Another charactering of CA that make the task challenging, is that no prior 

knowledge is of group membership is assumed. Any CA method is classified within the 

unsupervised statistical learning techniques. With ‘unsupervised’ we refer to the fact that there 
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is no prior information available to either assist towards the group formation or the 

assessment/comparison of clustering techniques.  

Moreover, the range of statistical methods available for CA varies with respect to the 

statistical assumptions they make, the complexity of the methodology and the computational 

demand. Most importantly, they may also vary in special characteristics, such as the effect of 

presence of outliers in clustering procedure and the properties they impose in resulting groups, 

e.g. some method impose spherical shape into clusters or they assume equal size groups. 

Therefore, for a scientist of Archaeology, or any other area, some knowledge of the theory behind 

each technique is recommended and in any case an exhaustive exploration of clustering 

techniques would be necessary before drawing any conclusions. Some literature in CA among 

others, are:  Everitt et al (2011), Baxter (2015) and Papageorgiou (2018). For a practical guide to 

implementation CA  see Kassambara (2017). 

The statistical clustering techniques are classified into four categories with respect to their 

approach towards the problem. Namely, the categories are: Hierarchical, optimization or 

partitioning, model based and density based. From those four categories hierarchical and 

partitioning methods are most often used in Archaeology mainly because of the ease in 

implementation and lack of statistical hypothesis they assume. Most of the statistical 

methodologies may handle both continuous and categorical data, but it is more common in 

Archaeology to use the chemical composition (continuous) data only for obtaining the groups 

and verify or compare those with the information available from categorical data, such as 

mineralogical data. The main reason why this is the case is that mineralogical data are less 

frequently recorded in a manner that invites quantitative analysis and they are considered semi-

quantitative. If quantitative discrete data are available, an analysis to the combined data, mixed-

mode as they called, is appropriate. A discussion on mixed-mode data analysis follow the 

presentation of the clustering techniques and methodologies with the relative references will be 

provided at this stage.  

 

Hierarchical Clustering  

Hierarchical clustering is an approach of clustering that is algorithmic and is based on distances 

or equivalently similarities that can be calculated among observations based on the set of 

variables that contribute to the analysis. There are two ‘symmetric’ ways to implement 

hierarchical clustering. The agglomerative, according which the algorithm initiates from the 

situation that each of the 𝑛 observations form a separate cluster and algorithm proceeds by 

merging observations until all observations are located in one single group and the divisible 

hierarchical clustering where the starting scenario is the inverse, i.e. all 𝑛 observations form a 

single group and the algorithm proceeds by repetitive partitions until all observations are 

separated. In both cases, the whole procedure, from the one extreme situation until the other, 
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is completed and we decide about the number of clusters and the observations’ cluster 

membership by inspection.   

Two factors determine the hierarchical method. (a) The distance measure and (b) the linkage 

method. Distance or dissimilarity measure for continuous variables, can be any distance metric. 

The distances between all possible pairs of observations are calculated using the same chosen 

metric. Assuming that the data matrix consists of measurements of 𝑛 observations on 𝑝 chemical 

elements, an 𝑛𝑥𝑝 matrix, calculating the distances among all possible pairs will lead to an 𝑛 × 𝑛 

symmetric matrix called dissimilarity matrix, usually denoted as 𝐷. Table 1 lists the most widely 

used distance metrics as a measure of dissimilarity for continuous variables. At each stage of the 

algorithm an updated dissimilarity matrix is calculated.  

 

 

 Measure Definition 

Euclidean 𝑑𝑖𝑗 = √(𝑥𝑖1 − 𝑥𝑗1)2 + (𝑥𝑖2 − 𝑥𝑗2)2 + ⋯ + (𝑥𝑖𝑝 − 𝑥𝑗𝑝)2 

Squared Euclidean  𝑑𝑖𝑗 = (𝑥𝑖1 − 𝑥𝑗1)2 + (𝑥𝑖2 − 𝑥𝑗2)2 + ⋯ + (𝑥𝑖𝑝 − 𝑥𝑗𝑝)2 

City block or 

Manhattan  𝑑𝑖𝑗 = |𝑥𝑖1 − 𝑥𝑗1| + |(𝑥𝑖2 − 𝑥𝑗2)| + ⋯ + |𝑥𝑖𝑝 − 𝑥𝑗𝑝| 

Minkowski  𝑑𝑖𝑗 = √(𝑥𝑖1 − 𝑥𝑗1)𝑚 + (𝑥𝑖2 − 𝑥𝑗2)𝑚 + ⋯ + (𝑥𝑖𝑝 − 𝑥𝑗𝑝)𝑚𝑚
 

Maximum or 

Chebyshev 
𝑑𝑖𝑗 = max

𝑘
|𝑥𝑖𝑘 − 𝑥𝑗𝑘| 

Pearson 
𝑑𝑖𝑗 = (1 − 𝜑𝑖𝑗)/2,  where 𝜑𝑖𝑗  is the Pearson correlation between 

data vectors 𝒙𝑖 and 𝒙𝑗. 

Table 1. Distance measures for continuous variables. 

Updating will be necessary as merging for example in agglomerative clustering will occur and 

the number of clusters will change.   Linkage is the method that the algorithm will use in 

calculations of distances among clusters or clusters and observations. Such calculations will arise 

at intermediate stages of the algorithm. If we further denote by 𝑥𝑖𝑚 the (𝑖, 𝑚) element of the 

data matrix , (𝑖 = 1,2, … , 𝑛 and 𝑚 = 1,2, … , 𝑝), i.e. the measurement of the 𝑖-th observation on 

the 𝑚-th chemical element, and 𝑑𝑖𝑗 the elements of matrix 𝐷, Table 2 lists the definition of the 

most frequently used in practice linkages. It is worth mentioning that all these definitions are 

relatively simple, therefore not time consuming, and they can be implemented in most of the 

statistical packages. At each step of the agglomerative algorithm, units or clusters that 

correspond to the smallest distance are merged. The adopted choices of both metric and linkage 

remain the same for all intermediate steps of the algorithm. 
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 Linkage Definition of inter-group distance of  groups A and B    

Single Linkage or Nearest 

Neighbor 
𝑑(𝐴, 𝐵) = min

𝑖∈𝐴
𝑗∈𝐵

𝑑(𝑖, 𝑗) 

Complete Linkage or 

Furthest Neighbor 

𝑑(𝐴, 𝐵) = max
𝑖∈𝐴
𝑗∈𝐵

𝑑(𝑖, 𝑗) 

Average Linkage 

𝑑(𝐴, 𝐵) = �̅�, where �̅� the average distance 

�̅� =
1

𝑛𝐴𝑛𝐵

∑ ∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐵𝑖∈𝐴

 

𝑛𝐴, 𝑛𝐵  the group sizes of A and B respectively.  

Centroid 

𝑑(𝐴, 𝐵) = 𝑑(�̅�(𝐴) − �̅�(𝐵)) 

where �̅�(A) is the point   

�̅�(𝐴) =
1

𝑛𝐴

(𝑥1(𝐴), 𝑥2(𝐴), … , 𝑥𝑝(𝐴)) 

 and called centroid of group A.  

Ward’s 

The increase in total error sum of squares (ESS) the merge of A and B will 

cause.  

If 𝑑𝑒 is the Euclidean distance, ESS of a group U with centroid �̅�(𝑈) is 

defined as 

𝐸𝑆𝑆(𝑈) = ∑ 𝑑𝑒(𝑥𝑖 − �̅�(𝑈))

𝑖∈𝑈

 

Table 2. Agglomerative linkages. 

Linkages listed in Table 2, have some properties it is useful to know, especially when assessing a 

clustering result. Single linkage is prone to the chaining phenomenon, a negative property where 

distant groups may be merged due to the existence of two neighbour measurements.  . On the 

other hand it useful in identifying outliers. Complete, average and ward’s methods are used more 

often in practice and they produce compact clusters. However, they all have problems in practice 

when ellipsoidal clusters occur in the data -a case quite common in Archaeometry.  

Hierarchical clustering has as a property that once a merging of two observations or groups 

occurred during an iteration this will remain until the end of the algorithm. From the practical 

point of view, towards the implementation of hierarchical clustering, choices on: data 

transformation as discussed in section 2, distance metric and linkage method have to be made. 

It is apparent that having more than one option for each one of the three factors the number of 

possible combinations is quite large.   

The sequence of hierarchy in merging or partitioning of a hierarchical clustering is 

represented graphically into a plot called dendrogram. The existing clustering, if any, will result 

by ‘cutting’ the dendrogram at a certain height. We illustrate the procedure using some simulated 

data. 

 

Example 1. This first example is consisted from a 95x9 data matrix. The data have been generated 

by assuming that there are three groups each one distributed by a lognormal distribution with 
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different sample sizes and parameters. The sample sizes for the three groups are 15, 20 and 40 

respectively.  

 

Using standardization as a transformation for the data Figure 2 presents the dendrograms 

for average and complete linkages. Different software packages may use different ways of 

presenting the dendrogram, but the idea is the same. The sequence of the hierarchical clustering 

algorithm is captured in one plot and based on that we would like to answer the question ‘how 

many clusters are in the data’?  Or in other words, at which height we need to ‘cut’ the tree? The 

suggested height, at which we cut the tree is where the compact branches of the dendrogram 

will remain intact. For example, for the dendrogram according to complete linkage in Figure 2, 

cutting the tree at height 6 would be sensible, as the three compact braches of the tree remain 

intact. Deciding the number of clusters or the height one cuts the tree is not always 

straightforward. There might be two different heights, equally possible, or none. Since the 

problem is unsupervised and true clustering is not available to compare with and conclude, the 

suggestion is to try all possible scenarios and assess each one of them.   

 

 

 
Figure 2. Dendrograms for the standardized simulated data using average and complete linkage 

 

Apart from the dendrogram which is available from a hierarchical clustering, a number of 

indices are available in the literature dedicated to suggest the optimal number of groups (Charrad 

et al, 2014). Figure 3 plots the bar plot of 30 available indices implemented to the simulated data 

under study under the Average Linkage. The number of groups equal to three is the dominant 

choice. 
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Figure 3. Optimal number of clusters for the simulated data under Average Linkage. 

 

Taking into account both dendrograms and indices, let’s assume that we decide to cut both 

trees at the height were the three braches would be suggested, e.g. height 4 for the average 

linkage and height 6 for the complete. Figure 4 plots the resulting clusters coloured using 

different colour for each cluster.  

 

  

Figure 4. Average and complete linkage dendrograms with the proposed clusters given in different colors.  
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Another category of clustering techniques is partitioning or optimization method (see Everitt et 

al, 2011). According to this approach the groups are formed applying a partition to the data into 

a certain number of groups, using an optimization criterion. There is no hierarchy associated to 

the group membership, as in hierarchical clustering, and number of groups in the data has to be 

known in advance. The most known method in this category is k-means which uses as 

optimization criterion the minimum sum squared error. K-means as a method is very popular in 

Archaeology.  

Baxter (2015) states that this popularity is mainly because it is readily understood, is 

perceived as being geared to archaeological needs, and was rendered accessible at a time when 

computational resources were limited compared to what is now available. Baxter in the same 

paper proposes variations of k-means method. This is because it is well established in the 

literature that k-means tends to produce spherical shape clusters and k-means is more 

appropriate for equally sized and spherical shape clusters (see Baxter 2015, Banfield and Raftery 

1993, Papageorgiou et al 2001 among others). This is not the case in Archaeometric data, 

especially for geochemical data collected for provenance studies, where ellipsoidal shape and 

unequal size clusters exist. Another disadvantage of k-means is the effect of the presence of 

outliers.  

Therefore, although popular, k-means may be used as one method, but needs to be cross 

examined with other techniques and check the validity of the proposed clustering. Within the 

framework of partitioning methods, k-medoids and Trimmed k-means are possible alternatives 

with improved behavior for both disadvantages of k-means method (Steinley, 2006).  

 

Model-Based methods 

Model-based clustering assumes a model, i.e. statistical distribution; to describe each distinct 

group in the data. The data matrix is assumed to be generated from a mixture of distributions 

and each component of the mixture captures one group. Fitting the mixture model to the data 

and estimating the parameters for every component will allow the scientist to identify the 

clusters and assign the observations to one of the resulting clusters based on the maximum 

posterior probability (see Banfield and Raftery, 1993). The estimation of parameters is 

implemented by Expectation Maximization (EM) algorithm, a computational statistical technique 

for deriving the maximum likelihood estimator. As a consequence, model-based clustering 

method is more demanding with respect to computational effort and it can be implemented via 

a statistical package. The computational demand and technical problems will be more intense as 

the dimension of the data observation is increase. The use of specialized statistical package to 

implement model-based cluster may be the reason for a limited use of model-based clustering in 

Archaeological applications.  

The advantages of model-based clustering are many. The probabilistic model that is assumed 

provides the framework to assume ellipsoidal, different size or different orientation clusters. It is 
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therefore more general and more appropriate for compositional data. Moreover, estimating the 

model parameters results to a fully defined probabilistic model and statistical inference is now 

feasible. Statistical tests for comparison the model fitting are available and can be used in order 

to decide the number of components, i.e. the number of clusters in the dataset. 

Other clustering methods, for example density-based methods, fuzzy clustering, kernel 

clustering are also available in the literature. Moreover, recent methods especially designed to 

cope with the presence of outliers, high dimensionality and large-scale data have also been 

proposed (Xu and Wunsch II, 2008).   

 

Example 1 (continued). K-means: Let us assume that as suggested from dendrograms in Figure 

2 and the majority of indices in Figure 3 the number of clusters is three. Implementing k-means 

with k=3 and using the same transformation for the data results into three quite different clusters 

in comparison with those in hierarchical and the true known origin since the data are simulated. 

More analytically, the first two clusters of 15 and 20 observations are merged to one cluster, and 

the third cluster of 40 observations is divided into two smaller.  

Model-based: Implementing model-based clustering without any prior information about the 

number of clusters in the data the optimal model based to BIC criterion was the model with three 

components and variable volume, shape and orientation. Figure 5 plots the BIC value for a range 

of number of components (one to nine) and a range of possible models. All seventy five 

observations are correctly assigned, i.e in complete agreement with the true origin. 

 

  
Figure 5. BIC criterion for model selection in model-based clustering.  
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4. Compare clustering results and assess their validity   

The clustering methods and possible modifications of each method, together with data 

transformation choices, lead to a great number of possible clustering. Clustering in general, is an 

unsupervised technique, meaning that the true classification is not known in advance and there 

is not available a labelling for the observations indicating the cluster they belong to. Lacking of 

this information, assessment of the plethora of possible clustering results that may be available 

for the same case study may be a very difficult task. The difficulty is to decide which clustering is 

more valid compared to others or which clustering is more valid in general and therefore more 

probable to represent the true classification. In this paragraph we focus on how we compare 

clustering results obtained from different methods or choices in implementation and secondly 

how we assess a specific clustering with respect to its validity. 

 

Correlation and Similarity Indices for clustering comparison.  

One way to compare two or more clustering with respect to their similarity is to calculate 

the correlation of the corresponding dendrograms. Cophenetic and Baker correlation coefficients 

are appropriate measures (Saraçli, S. et al. 2013). Adjusted Rand index (Hubert and Arabie, 1985) 

is a popular measure of clustering agreement and other indices used for the same purpose are: 

Rand, Fowlkes and Mallows, Wallace and Jaccard index (Gordon, 1998 and Shotwell, 2013). 

Adjusted Rand index is taking values from 0 to 1 and the closer to one is the better agreement 

between the two clustering results. Such measures are useful, especially when a large number of 

clustering techniques is considered because if the majority of some clusterings agree, then it is 

more probable this particular clustering to hold in reality.  

 

Example 1 (continued). Let us consider the two clustering results as presented in Figure 4, 

clustering from k-means with k=3 and clustering as suggested from the optimal model on model-

based clustering. Comparison between the two hierarchical methods produces 0.90 and 0.77 

Cophenetic and Baker correlation coefficients respectively. These results suggest that the two 

dendrograms are similar, but not dentical. This comparison can be extended to as many 

dendrograms are considered. Table 3 lists the adjusted Rand and Fowlkes and Mallows indices 

for the clusterings under consideration. Based on these coefficients we can conclude that 

hierarchical average and model-based clustering give almost identical result, complete is close, 

but bot identical to the first two, whereas k-means clustering has a relatively low degree of 

similarity with all other clustering results. In a real analysis situation, the list of clustering results 

under consideration is expected to be much longer than four. If one particular clustering is 

systematically apart from the majority, it would suggest that this clustering is weak. If on the 

contrary, a clustering is confirmed with its comparison with many others, in the sense of 

agreement, this clustering is a strong candidate.  
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 Adjusted Rand Fowlkes and Mallows 
 Average  Complete  k-means    Model- 

                                                      based  
Average  Complete  k-means    Model- 
                                                      based 

Average 
Complete 
k-means 
model-based  

1 
0.89            1 
0.46            0.46           1 
0.97            0.87           0.47             1 

1 
0.93            1 
0.66            0.66            1 
0.98            0.92           0.66             1 

Table 3. Adjusted Rand and Fowlkes-Mallows indices calculated for the four clustering results on 

simulated data.     

  

After calculating as many as possible correlation/similarity indices for the derived clusterings, 

we proceed with examining the source of disagreement. For the numerical example, if we 

calculate the classification table between the four examined clusterings using labels 1, 2 and 3 to 

denote the three clusters, Table 4 lists the results. The degree of similarity between Average and 

Complete hierarchical clusterings is explained because they only differ at the cluster membership 

of five observations. Average linkage classifies those in cluster 2, while complete linkage in cluster 

1. The data here are simulated and we know that three groups of sizes 15, 20 and 40 have been 

generated. It is easy to confirm here that average linkage agrees with the grouping as simulated. 

Model-based which scores high in similariry with hierarchical clusterings, differs with the Average 

linkage in classification of one out of seventy five observations. For k-means, the two smaller 

groups 1 and 2 are merged to one, and the third group of forty observations is split into two 

others. This is the more distant to the true clustering among the four proposals.  

 

 Complete 

1        2        3 

k-means 

1        2        3 

Model-based 

1        2        3 

                         1 

Average           2 

                         3 

15      0        0 

5       15       0 

0         0      40     

0       15       0 

0       20       0 

21       0      19     

14      1        0 

0       20       0 

0         0      40     

 

Table 4. Cluster membership comparison for average and complete linkage dendrograms.    

 

 

Internal and External cluster validation.  

Apart from comparing the clustering results to conclude on which classification is more 

dominant, a validation of a specific clustering would be valuable to assist in deciding which 

analysis is the analysis that produce trustworthy results, closer to reality. Clustering validation or 

assessment is not easy nor has a unique solution. Two approaches are proposed here as 

dominant for the problem. The first approach is based on specialized indices or measures that 
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measure the quality of clustering. Secondly, a graphical representation of a clustering result 

under consideration against the data may be used.  

Silhouette coefficient (Rousseeuw, 1987) is the most popular measure to assess the internal 

validity of a clustering. Silhouette coefficient is a measure which shows how well the objects lie 

within the clusters they are assigned to. The silhouette coefficient takes values from minus one 

to one and a value close to one corresponds to a well clustered observation whereas a negative 

value indicates the worst situation with respect to clustering.  

Example 1 (continued). Figure 6, plots the Silhouette coefficients for all the observations of 

the simulated dataset at Example 1, according to the clustering results presented in Figure 3.  The 

average score of Silhouette coefficient is higher for the Average Linkage (0.52) in comparison 

with Complete (0.49) indicating a relatively better clustering. Moreover the Silhouette coefficient 

for five observations according to complete linkage is negative, i.e. these observations are not 

well clustered. It is easy to verify that these are the same five observations that the two clustering 

results assign in different groups as listed in Table 4. The Silhouette coefficient for k-means 

method is 0.31, a lower value than 0.52 for the Average linkage, a fact that advocate for the 

inferior performance of k-means in this certain example.      

 

Figure 6. Silhouette coefficients for a three cluster result according to average and complete linkage.  

 
 Lambda-Wilk’s test is another statistic that in this context can provide a measure of 

compactness within each proposed cluster and how well clusters are separated from each other. 
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The smallest value for Lambda-Wilk’s test the better separation among the groups. For the data 

at Example 1,  Lambda-Wilk’s test for all considered methods are very small, within the range of 

0.02 to 0.05.  

 

The second approach towards the assessment of a clustering result is a graphical method. A 

clustering proposal is visualized by plotting the data using the labeling provided from the 

clustering. The plot can either give grounds to accept a clustering when this gives a sensible result 

when plotted, or on the contrary, it can be used to explain why a clustering result performs 

poorly. In order to plot a clustering result on data the need of a lower dimension coordinates 

system is required. For this reason, a technique of data dimension reduction is necessary and 

Principal Component Analysis is the most frequently used in Archaeometry.  

 

Principal Component Analysis  

Principal Component Analysis (PCA) (see for example Jolliffe, 2002 as a general reference and 

Rogers et al. 2016 for a practical guide) is a data transformation technique which exploits the 

correlation among the data variables, in order to construct a new set of variables, the Principal 

Components (PC) with some good properties. The first property is that the two data sets are 

equivalent with respect to the amount of information included as this measured from the total 

variability of the data points.  

The advantage of PCA is that the variability reconstruction is such that there are no 

correlations among the principal components, i.e. the new set of variables is uncorrelated which 

means that a univariate study of all variables will reveal all included information. Moreover, there 

is a hierarchy is Principal Components importance. The leading ones explain the majority of the 

total variability allowing us to retain only a subset of PCs and explain a significant percentage of 

the total variability based only on those PCs. Especially in applications, such as Archaeometry, 

that data variables are highly or moderately correlated, two or three of the leading PCs can 

explain a sufficient amount of the total data variability. Another characteristic of PCs is that they 

are linear combinations of the original variables. This very simple form of transformation enables 

the scientist to interpret the PCs with respect to the original variables. This is based on the 

loadings, as they called the coefficients of the linear combinations of PCs.   

Before applying PCA in archaeometric data, transformations as discussed in Section 2 will be 

necessary. If raw data are used, and not logged or log-ratio transformed the standardization of 

the data in zero mean and variance one will be needed. This is because if the variances among 

the data variable vary a lot, the leading PCs will be dominated from those with large variance. In 

this case the leading PCs will not explain the majority of the data set variability across all variables, 

but will explain the variability of the data with respect to the variables with large variance only. 

Especially in compositional data where the measurements for some oxides account around 50% 

of the total composition and for some trace elements the measurements are particles in millions 
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their corresponding variance will inevitably vary and standardization will be essential. If log 

transformation or log-ratio transformation results to a data set that the variables have 

comparable variances, a further standardization is not necessary, at least with respect to PCA 

performance. Another practical issue that may arise in PCA implementation is the presence of 

outliers. We discuss this issue at the dedicated to outliers paragraph as they affect not only PCA, 

but also cluster analysis performance.  

 

Example 1 (continued). Using the simulated data of Example 1, we apply PCA on the standardized 

data and the first PC explains 57.1% of the total variation, while the second 19.8%. A graph on 

the two first PC will combine 77% of the total variability of the original data. This is a vast amount 

of the variability of the original data and it could be extremely useful in visualization of a 

clustering result, but yet a remaining 23% may be informative as well. This is why a plot of the 

first against the third PC may be also needed to be checked. Figure 6 plots the simulated data of 

dimension nine, at a two dimensional space using the first two principal components. The PC 

analysis on standardized, log-transformed with basis 10 and log-ratio transformed data is plotted 

and observations are labeled with respect to the true origin, since the data are simulated.  

 

Figure 6. Data plotted in the first two PCs for standardized data (left) and log-ratio transformed data 

(right).  

 

To use PCA as a graphical way of clustering assessment, we plot all under consideration clustering 

results into the first two PCs. Figure 7 plots clusterings listed in Table 4. In practice this list may 

be quite long. It is easy in our working example to verify that Average linkage and model-based 

method propose a compact result that captures the heterogeneity. According to Complete 

linkage, five observations seem to have been misclassified and k-means produces the less 

sensible result because the very compact group at the right of the plot is separated into two 

smaller groups.   
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Figure 7. Clustering results from previous analysis on simulated data of Example1 plotted on the first two 

PCs.   

 

PCA can also be used for characterizing the derived provenance groups. This can be done by using 

the loadings of PCA with respect to the original data. For the example, the loadings for the first 

two PCs are given in Table 5. Graphically, the loadings together with a scatter plot of the 

observations into the two first principal components are plotted in a biplot. The biplot of the 

simulated data is plotted in Figure 8. By inspection of Table 5 and Figure 8, we conclude that, for 

example, measurements in group 1 are characterized by higher values in CaO, Na2O and BaO. Group 

2 is characterized by higher values in MgO,  MnO and K2O and at the same time lower values in 

Al2O3 and TiO2. The special characteristics of group 3, or in other words the factors which 

discriminate this group from the others is the high measurements in Al2O3 and TiO2. Figure 8 
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presents the box-plots of three selected chemical elements for the simulated dataset, using the labels of 

the group membership as derived from Average Linkage which coincides with the true clustering. It is 

apparent that these selected elements, among others, can play the role of discriminating factors of the 

three groups.  

 

 

 Al2O3   Fe2O3   MgO    CaO   Na2O    K2O   TiO2    MnO    BaO   

PC1       0.30    -0.39       -0.40    -0.22  -0.32     -0.42   0.32   -0.42  -0.04    

PC2 0.42     0.23      -0.22      0.52   0.40    -0.09   0.26   -0.04   0.46  

Table 5. Loadings of the first two PCs.    

 

              

Figure 8. Biplot of the first two PCs obtained from the simulated data of Example 1.  

 

 Summarizing, PCA can be used as a first graphical test to investigate and possibly detect chemical 

compositional structure in the data. If this is present a cluster analysis would be a sensible next 

step of the analysis. Labeling cannot be possible at this stage, but still a certain structure, if 

present, can be detected. This suspected structure can further pursued by a cluster analysis. 

Moreover, if a structure is present and coherent all possible transformations would be able to 

capture this. If a structure is suggested only with some data transformations usually means 

something.  
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PCA at a later stage of the analysis can be used for cluster validation and lastly, PCA can assist to 

derive conclusions on the special characteristics that each group possesses.  

 

 

 

Figure 8. Box-Plots of selected original measurement variables.  

 

Apart from PCA technique used as a data projection in to a lower dimension system of 

coordinates, other statistical learning or machine learning techniques can also be used. For 

example, factor analysis, multidimensional scaling.  

 

Categorical Data and Mixed-mode data 

 

Apart from the geochemical continuous data, other source of information leading to quantitative 

discrete data may also be available. Such information may result from petrographic 

examinations, e.g. optical microscopy examination of thin-sections.   

To accommodate this type of information in the analysis, if quantitative, one can proceed with 

two ways. The information provided from discrete data can be used complimentary. A cluster 

analysis based on continuous data can be conducted independently and a cross examination from 

groups suggested from the discrete data can be used as confirmation or explanation of the cluster 

findings obtained from the chemical information only. Alternatively, but less often used in 

practice, one can merge both types of variables to a single, integrated analysis, that takes into 

account both types of data continuous and discrete. This type of analysis is introduced in 

archaeological application from Baxter et al. (2008) with the name mixed-mode analysis. The 

merits of such analysis are that it is more informative and avoids the problem of contradictive 

results suggested from two separate cluster analysis.   

Baxter et al. (2008) methodology for the mixed-mode approach of the problem is based on 

a generalization of Gower coefficient of similarity and weighting the contribution of continuous 

and discrete data. This weighting aims to avoid the domination of binary data over the continuous 
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towards clustering. Papageorgiou and Moustaki (2005) propose latent class models as a model-

based method appropriate to answer the cluster problem while the input variables can be 

continuous, binary, categorical ordinal or nominal. They successfully implement this 

methodology to an Archaeological dataset. Recently, Androulakis et al 2018 proposed a model-

free approach for the mixed-mode problem based on a modification of Gower coefficient of 

similarity.  

However, although methodologies have proposed in the literature for dealing with the 

problem of different type of information adopting the integrated approach, in practice the use 

of this approach is limited. This is because special software, sometimes not freely available, is 

necessary or they are computational methods and therefore are demanding in technical and/or 

computational effort.  

 

  

Outliers 
 

Another characteristic of Archaeometric data is the presence of outliers, i.e. observations that 

deviate from the remaining sample. This may be due a deviate measurement of this observation 

in one or two variables, or a multivariate outlier where the difference of this measurement is 

more general and it may be due to an unexpected relation among the measured variables for this 

particular observation. For example, two or more variables may be strongly positively related, 

i.e. strong positive correlation, and the measurements on these variables indicate negative 

relation for a particular data point. If a plot of the data at these dimensions was possible, the bulk 

of data points would be expected to form an ellipsoidal (not spherical shape) due to the strong 

correlation, and the outliers would lie outside this ellipsoidal. Detection of univariate or 

multivariate outlier is essential for a statistical analysis because most of the methodologies 

presented in previous paragraphs are affected from the presence of outliers and their 

performance degenerate.      

Detection of univariate variables is relatively straightforward problem and univariate 

techniques, such as boxplots, histograms etc. can identify those outliers, or better extreme values 

on certain variables. Detection of multivariate outliers is however a more challenging problem 

and a number of approaches have been proposed in the literature (see Filzmoser et al. 2005 and 

Rousseeuw et al 1990 amongst others). The most commonly used technique to identify 

multivariate outliers in the literature is the Mahalanobis distance. Assuming a set of p-

dimensional observations 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2 … , 𝑥𝑖𝑝),   𝑖 = 1,2, … , 𝑛 Mahalanobis distance for 

observation 𝑖  is defined as  

𝑑𝑀(𝒙𝑖) = √(𝒙𝑖 − �̂�)′�̂�−1(𝒙𝑖 − �̂�) 
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where 𝝁, 𝜮 are the mean and variance covariance matrix of the theoretical population that has 

generated the sample and �̂�, �̂� are some estimates of those parameters based on the data. Usual 

estimates for 𝝁, 𝜮 are the sample mean and sample variance covariance matrix �̅�,  𝑺 respectively. 

If the population distribution is multivariate normal the distribution of 𝑑𝑀
2  can be proved to be 

chi-square with p degrees of freedom, 𝑋𝑝
2. Under this assumption any observation that has a 𝑑𝑀 

value at the outer, say 95% probability area, for the 𝑋𝑝
2 distribution is characterized as extreme 

and therefore outlier. Note that 𝑑𝑀 expression takes into account all measured variables, 

although the distribution is univariate, and therefore conclusions on multivariare outliers can be 

obtained. For example, if  𝑝 = 14 the cut-off point for a 95% confidence ellipsoidal is 𝑋14,0.95
2 =

23.68. According this measure, any data point 𝒙𝑖 for which the square of 𝑑𝑀(𝒙𝑖) is greater than 

23.68 is considered as outlier. 

However, estimates 𝒙,  𝑺 are sensitive to the presence of outliers themselves, or in statistical 

terminology, they are not robust as estimates when one or a small set of observations deviate 

from the rest. This has as a result Mahalanobis distance in turn to be affected from the presence 

of outliers. Since, its practicality as a measure, is essential when outliers are indeed present in 

the data, various modifications of Mahalanobis distance as a tool for outlier detection are 

proposed in the literature. Modifications are mainly consisted of using other, robust estimates, 

of 𝝁, 𝜮 instead of �̅� and 𝑺 (Rousseeuw and Van Zomeren, 1990).  

Once outliers are identified we proceed with the cluster analysis by keeping those special 

observations aside. A further examination of the set of outliers with respect to their compositions 

will possibly reveal the reason why they diverse from the remaining data set. Outliers may be 

quite important observations and meaningful in archaeological terms, but as far as the clustering 

problem is concerned they do not cluster with any of the existing groups and they will only 

confound any clustering technique. 

 

 

 

5. Classification   

Classification is a supervised multivariate technique and refers to the problem of classifying a 

new observation to one of the known identified groups in the data. It is an interesting problem 

in Archaeometry when a clustering at previous stage has been conducted and a number of groups 

corresponding to different origin have been established. If new samples, artifacts in this case, are 

available from another study classification will be the appropriate method to assign the new 

artifact or artifacts to one of the existing groups and consequently make conclusions about its 

origin.  

As in clustering, classification is a multivariate statistical problem and a number of 

approaches and techniques can be applied in this context. One approach is to consider the 
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problem at a probabilistic manner where either a prediction model is used to predict the 

classification category for the new observation or the probability for the unclassified 

observation to belong to each one of the existing groups is calculated and assignment is based 

on the maximum probability. Within this framework belong the methodologies of linear 

regression, logistic regression, multiple logistic regression methods, Bayes classifier and Naive 

classifier.  

Discriminant Analysis (DA) is another widely used technique for classification problem 

where the task is to construct a classification rule which discriminates the groups. The rule can 

be linear or quadratic leading to linear discriminant and quadratic discriminant analysis 

respectively. The resulting rule may also be useful to visualize the data in a lower dimension 

space than the original dimension of the data. This visualization can be considered as an 

alternative to PCA projection. PCA and DA utilize a different criterion according to which the 

components are constructed. In particular, DA takes into account the information of existed 

groups and DA components result as the projection of the original data which maximizes the 

between groups variation. Other classification techniques are the K nearest neighbor and 

classification trees.  James et al. (2013) is a reference book with emphasis the applications of 

the classification.  

We present here only an illustration of classification trees technique, because this is the 

less mathematical, no assumptions about the population distributions are required, it can 

accommodate both continuous and discrete data and most importantly the results are easy to 

interpret. A software is necessary, but the implementation is straight forward. 

 

Example 2. For this experiment we assume that the dataset consists of a 73x24 data matrix 

with ten variables to represent continuous variables of chemical measurements and 14 

variables as categorical, binary or ordinal. Three groups have been identified and labels ‘gr1’, 

‘gr2’ and ‘gr3’ have assigned to those groups.  

Applying a classification tree method on the data using the group label results to the tree 

plotted in Figure 9. From the 24 variables, only three variables corresponding to equal number 

of nodes are sufficient in order to construct a discriminant rule. The rule is apparent and 

written on each branch of the tree. For example is the new subject has measurement feldspar 

variable 2,4 or 6, the right branch is suggested where another test will follow with respect the 

value of the new subject in Na2O and more specifically if it less than 0.925 or not.  
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Figure 9. Classification tree.  

 

 

6. Conclusions 

 

Summarizing, we list the structure of the statistical analysis in steps. 

 

Step 1.  Run a preliminary analysis of the data, without any transformation, including 

univariate and bivariate study. Identify departure from normality, long tail for variables, 

outliers (univariate or multivariate using Mahalanobis distance) and possible structure in 

the data.  

Step 2 Data transformation. 

Step 3. Implement PCA to transformed data in order to (i) identify or confirm outliers 

located at step 1 and (ii) check if data (using all measured variables) suggest the existence 

of different groups. 

Step 4 If PCA gives grounds to a non-homogeneous dataset, implement cluster analysis 

by using various methods and ways of data transformations. Verify outlier indicated by PCA 

|
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TiO2 < 14.285

gr3
gr2 gr2

gr1

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



27 
 

or Mahalanobis distance and confirm with data inspection. Remove those and repeat 

cluster analysis. Identify clear groups, inference about these groups and justify the result. 

Set aside the distinct groups and repeat cluster analysis. 

Step 5. In the process of cluster analysis, comparison and assessment of the clustering 

results as proposed from various methods is performed.  

Step 6. For the compact groups of the analysis proceed with their characterization and 

determine the discriminating factors among groups.  

Step 7. If discrete data from microscopy study are also available and have a quantitative 

nature, a cluster analysis for this type of data can also be implemented and results with 

respect to clusters suggested can be seen in comparison with the clustering suggested from 

the continuous data.   

Step 8.  Mixed-mode cluster analysis is suggested if quantitative discrete data are also 

available. 

Step 9.   A classification analysis is appropriate when the aim is to classify a new subject, 

an artifact, into one of the existing identified groups.   

 

Closing this article, I would like to borrow a paragraph from Whallon (1984) that Baxter (2015) 

also uses as an introduction to chapter 11. The paragraph is “Archaeologists are ill-trained to, the 

rigorous and logical thought necessary form an informed use of quantitative methods, while the 

rare statisticians who have tried their hands at archaeology, typically have understood the nature 

of archaeological data, questions, and models only partially, vaguely, or incorrectly, so that their 

efforts are usually no better than the archaeologist’s own”. As mentioned in the Introduction 

section, Archaeologists now-days are more educated in using quantitative tools. However, 

interaction and collaboration between the archaeologist and the statistician are key components 

that cannot be substituted from technology and training. To my opinion any result is safe only 

when it can be confirmed from both sciences.   
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