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ABSTRACT 

 

 

Inertial wearable sensors constitute a booming industry. They are self contained, 

low powered and highly miniaturized. They allow for remote or self monitoring of health-

related parameters. When used to obtain 3-D position, velocity and orientation 

information, research has shown that it is possible to draw conclusion about issues such 

as fall risk, Parkinson disease and gait assessment. 

A key issues in extracting information from accelerometers and gyroscopes is the 

fusion of their noisy data to allow accurate assessment of the disease. This, so far, is an 

unsolved problem. Typically, a Kalman filter or its nonlinear, non-Gaussian version are 

implemented for estimating attitude – which in turn is critical for position estimation. 

However, sampling rates and large state vectors required make them unacceptable for the 

limited-capacity batteries of low-cost wearable sensors. 

The low-computation cost complementary filter has recently been re-emerging as 

the algorithm for attitude estimation. We employ it with a heuristic drift elimination 

method that is shown to remove, almost entirely, the drift caused by the gyroscope and 

hence generate a fairly accurate attitude and drift-eliminated position estimate. 

Inertial sensor data is obtained from the 10-axis SP-10C sensor, attached to a 

wearable insole that is inserted in the shoe. Data is obtained from walking in a structured 

indoor environment in Votey Hall. 

 

Keywords- enhanced heuristic drift elimination, indoor pedestrian tracking, zero-

velocity update, explicit complementary filter 
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 CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 Motivation 

Human localization is very valuable information required across many 

applications in the modern smart environment. The primary choice for almost all outdoor 

navigation need for either vehicles or persons is GPS, either a standalone GPS module 

like Garmin on vehicles or a mobile application installed on a smart cellphone. However, 

GPS is not available inside buildings because GPS signal is too weak to penetrate through 

building structures. Moreover, GPS localization accuracy that ranges within a few meters 

is not efficient for indoor environments. As to indoor localization, the industrialized 

practice is using Wi-Fi. But Wi-Fi localization has the drawback of poor accuracy in 

terms of indoor environment. The accuracy of Wi-Fi localization ranges within several 

meters, and depends totally on number of APs (Access Points) and Wi-Fi signal intensity 

which is vulnerable to varying building structures [1]. Wi-Fi localization also suffers 

from long convergence time to converge on a stable spot. Typical convergence time of 

Wi-Fi localization ranges from a few seconds to more than 20 seconds and depends on 

both the Wi-Fi signal and localization algorithm [2-3]. To overcome the problems of 

unavailability and unreliability of the conventional localization methods, one possible 

solution for indoor personnel positioning is based on Inertial Motion Units (IMUs). IMUs 

are self-contained, low power, highly miniaturized sensors that collect intrinsic motion 

information without any external references. IMUs comprise a 3-axes accelerometer and 

a 3-axes gyroscope, and sometimes a 3-axes magnetometer. For our experiment, we use 

the MPU9250, a 9 Degrees of Freedom (9DoF) IMU developed by InvenSense Inc. to 

track both the position and foot attitude of patients or pedestrians. 



 

2 

Wireless tracking in hospital is showing its necessity in recent years. With 

position tracking, we can keep patients and caregivers connected. With foot attitude 

estimation, we can monitor and record the walking patterns of patients who suffer from 

certain diseases that affect walking, such as Alzheimer’s, arthritis or club foot. Doctors 

can also use these measurements to make further treatment plans accordingly. This new 

application area would provide enormous benefits to patients in many situations 

including remote healthcare delivery to rural communities, real-time and continuous 

monitoring during rehabilitation after prosthetic joint replacement, prognosis of patients 

suffering with traumatic stress, neurocognitive and memory-related diseases. 

In order to obtain reliable and precise estimations of location and attitude, a light-

weighted yet equally efficient algorithm is desired so as to reduce errors and drift from 

inertial sensors and be able to run on a handheld device. 

 

1.2 MEMS IMU 

Inertial motion sensors typically contain three orthogonal accelerometers and 

three orthogonal gyroscopes, and sometimes three orthogonal magnetometer, measuring 

angular velocity, acceleration and magnetic field respectively. By processing signals 

from these devices it is possible to track the position and orientation of a device. Inertial 

motion sensors are the fundamental tools of pedestrian tracking. Their precision and 

reliability directly affects the quality of output.  
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Figure 1 Grades of MEMS gyroscopes 

 

In the development of the Hubble Scope by NASA, a set of gas-bearing 

gyroscopes were used. It was claimed as the most accurate gyroscope in the world by 

NASA. But while better performance comes with more sophisticated systems, each gas-

bearing gyro is as big as a suitcase, not factoring in the external power source.  

In aviation and naval navigation, especially submarine navigation, a 

comparatively very precise and expensive ring laser gyroscope with better than 0.001 

deg/hour bias uncertainty is used to capture the orientation data, which gives 

considerably reliable result. But like the gas-bearing gyroscope, a RLG (Ring Laser 

Gyroscope) has a diameter of over 50 cm. 

In the case of tracking pedestrians in a hospital, a low-cost sensor with limited 

size and power supply is required. Thus MEMS IMU is selected as the best suited sensor 

module for our purposes. 
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1.2.1. What is MEMS IMU? 

An inertial measurement unit (IMU) is an electronic device that measures and 

reports a craft's velocity and orientation using a combination of accelerometers and 

gyroscopes and sometimes also magnetometers. IMUs are typically used to maneuver 

aircraft, including unmanned aerial vehicles (UAVs), among many others. Also 

spacecraft, including satellites and landers.   

MEMS, which stands for Micro-Electro-Mechanical Systems, is the technology 

of very small devices; it merges at the nano-scale into nanoelectromechanical systems 

(NEMS) and nanotechnology. MEMS are made up of components between 1 to 100 

micrometers in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size 

from 20 micrometers to a millimeter (i.e. 0.02 to 1.0 mm). Only with MEMS technology 

can we make the IMU small enough to be attached to the foot of pedestrians.  

Figure 2 shows the size of the inertial module Sensoplex SP-10C used for 

collecting motion data in this project compared to a quarter dollar coin. MPU 9250 

developed by InvenSense Inc. is used as the motion sensor, which is a full 9DoF inertial 

sensor. It has accelerometer, gyroscope and compass on all three axes. It is integrated 

into the SP-10C module which converts the analogue output from MPU 9250 to digital, 

and provides various functions such as Bluetooth connection, data streaming and 

logging, and configurations available at a GUI software, the SP Monitor. The SP-10C is 

powered by a 5 volt battery which is of the same size as SP-10C. The SP-10C along with 

the battery are packed into a 3D-printed box just able to contain the sensor set. Finally, 

for our purpose, the 3D-printed box is super-glued onto an insole which has a rubber 
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bottom so that the insole doesn’t slip back and forth in the shoe. Figure 3 shows what the 

system looks like in practical use.  

 

Figure 2 Inertial motion unit SP-10C size 

Magnetic field in indoor environment is considerably complex and unpredictable. 

In hospitals, facilities such as MRIs strongly distort the magnetic field. Therefore the 

magnetometer was disabled in our project. Thus the position estimation algorithm is 

based on 6 Degrees of Freedom, without the aid of a compass. 
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Figure 3: Insole with SP-10C attached 

Figure 4 shows the experiment system setup. The insole with the inertial sensor 

is inserted in the shoe of a pedestrian. The inertial sensor serves as the BlueTooth slave 

while another sensor serves as the BlueTooth master, which is connected to the computer. 

The master sends commands such as start logging data, stop logging data or resetting 

sensors etc. via BlueTooth Low Energy (BLE) technology. The slave logs data in its 

RAM while the pedestrian is walking and sends back the data to BlueTooth master via 

BLE afterwards. The data is then stored as a csv file and ready to be fed into the 

MATLAB program. 
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Figure 4 Experiment system setup 

 

1.2.2 Drifts and Errors of MEMS IMU 

MEMS devices are extremely microscopic devices and are vulnerable to many 

factors. Their performance is generally considered poor in accuracy for certain 

applications because of drifting, which is the nature of inertial sensors and which is more 

severe in MEMS. In order to understand the errors and drift, an understanding of the 

design of MEMS IMU is necessary.  
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Figure 5 Design of MEMS accelerometer 

The MEMS accelerometer can be considered as a mass-spring system. Figure 5 

shows an illustration of a typical MEMS accelerometer on one axis. It is composed of 

movable proof mass with plates that is attached through a mechanical suspension system 

to a reference frame. When the object has an acceleration in the direction to which the 

spring is fixed, the plate moves and the spacing between the comb structure and adjacent 

outer fixed plates changes. By measuring the capacitance difference on each side of the 

plate, the deflection of the proof mass is calculated [4]. 

𝐶1 = 𝜀𝐴
1

𝑥1
= 𝜀𝐴

1

𝑑 + 𝑥
= 𝐶0 − 𝛥𝐶 

𝐶2 = 𝜀𝐴
1

𝑥2
= 𝜀𝐴

1

𝑑 − 𝑥
= 𝐶0 + 𝛥𝐶 
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So, 

𝐶2 − 𝐶1 = 2𝛥𝐶 = 2𝜀𝐴
𝑥

𝑑2 − 𝑥2
 

Measuring ∆C, one finds the displacement x by solving the nonlinear algebraic equation: 

𝛥𝐶𝑥2 + 𝜀𝐴𝑥 − 𝛥𝐶𝑑2 = 0 

We get, 

𝑥 ≈
𝑑2

𝜀𝐴
𝛥𝐶 = 𝑑

𝛥𝐶

𝐶0
 

Because it holds true that, 

(𝑉𝑥 + 𝑉0)𝐶1 + (𝑉𝑥 − 𝑉0)𝐶2 = 0 

Therefore we get voltage output Vx 

𝑉𝑥 = 𝑉0

𝐶2 − 𝐶1

𝐶2 + 𝐶1
=

𝑥

𝑑
𝑉0 

and thus we get the acceleration, 𝑎 

𝑎 =
𝑘𝑠

𝑚
𝑥 =

𝑘𝑠𝑑

𝑚𝑉0
𝑉𝑥 

We notice that in fact the accelerometer does not measure linear acceleration. It 

picks up forces applied on the proof mass and measure the displacement of the mass to 

calculate acceleration. The force of gravity is always picked up by the accelerometer and 

is taken as acceleration. An accurate attitude of the sensor has to be estimated in order to 

subtract the gravity factor on all three axes so as to obtain an estimate of linear 

acceleration. Otherwise small errors in the measurement of acceleration are integrated 

into progressively larger errors in velocity, which are compounded into still greater errors 

in position. Since the new position is calculated from the previous calculated position 
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and the measured acceleration and angular velocity, these errors accumulate roughly 

proportionally to the time since the initial position was input [5]. This is known as the 

notorious integration drift problem of inertial navigation system, which is greatly reduced 

using the approach proposed in this thesis. 

Therefore, the measurement of an accelerometer can be modeled as: 

𝑅(𝑡) = �̂� − 𝑔 + 𝑠𝑎(𝑡) + 𝑛𝑎(𝑡) 

where �̂�  represents the instantaneous linear acceleration, g represents gravitational 

acceleration, 𝑠𝑎(𝑡) and 𝑛𝑎(𝑡) stand for accelerometer bias and noise respectively. 

MEMS gyroscopes have different designs than the MEMS accelerometer. The 

underlying physical principle is that a vibrating object tends to continue vibrating in the 

original plane as its support rotates. This type of device is also known as a Coriolis 

vibratory gyro because when the plane of vibration is rotated, the response detected by 

the transducer results from the Coriolis term in its equations of motion ("Coriolis force"). 

A microgram of a MEMS vibratory gyroscope is as shown in Figure 6 below. 

 

Figure 6 Design of MEMS gyroscopes 
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Like the accelerometer, gyroscope also has the integration drift problem-small 

errors in the measurements are dramatically amplified by integration over time. However, 

gyroscopes suffer from another kind of drift. Gyroscopes are sensitive to changes in 

temperature, which brings about slow-changing deviations just like integration drift did 

for the accelerometer [6]. 

Therefore, the measurement of a MEMS gyroscope can be modeled as: 

𝛺𝑔
𝑏(𝑡) = 𝛺(𝑡) + 𝑠𝑔(𝑡) + 𝑛𝑔(𝑡) 

where 𝛺𝑔
𝑏(𝑡) is the gyroscope reading in sensor frame, 𝛺(𝑡) is the actual angular velocity 

in global frame, 𝑠𝑔(𝑡) and 𝑛𝑔(𝑡) represents gyroscope bias and high-frequency noise in 

gyroscope respectively. 

 

1.3 AHRS algorithm 

MEMS IMUs are vulnerable to various kinds of noise and errors. Accelerometers 

are extremely sensitive to attitude changing and impact forces while gyroscopes are 

sensitive to temperature changes and suffer from a slow-changing bias. To summarize, 

accelerometers have poor dynamic features and gyroscopes have poor static features. 

Therefore an AHRS (Attitude and Heading Reference System) algorithm is needed to 

fuse the data from different sensors to overcome the drawbacks of each of them and take 

the most reliable part from them respectively to give a best prediction of the actual status 

of the sensor. AHRS algorithm is the foundation of position estimation for the reason 

that gravity must be removed completely from the accelerometer to get linear 
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acceleration. Only then can the integration be done without being concerned about the 

drift. 

There are two main categories of AHRS algorithms. One is based on the Kalman 

filter and the other is based on the so-called complementary filter. 

 

1.3.1 Kalman Filter 

The Kalman filter is a powerful algorithm that takes a series of measurements that 

contain statistical noise and uncertainties over time, and produces an estimate of the 

status of the object that is more reliable than a single measurement. 

The Kalman filter consists of a two-step loop: updating and predicting as is 

illustrated in Figure 7. In the prediction step, the Kalman filter produces estimates of the 

current state variables, along with their uncertainties. In the update step, the Kalman filter 

takes the most recent set of measurements, compares it with the prediction, and updates 

the estimate with a weighted average coefficient K called Kalman gain. 

 

Figure 7 Update and predict functions of Kalman filter 
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In the 1-D situation, the discrete-time state space model of an inertial system is 

𝜃𝑘 = 𝜃𝑘−1 + 𝜔𝑘∆𝑡 

𝑧𝑘 = 𝑎𝑘 

where 𝜃𝑘 is the attitude estimation at time k, 𝜔𝑘 is the rotation rate output by gyroscope, 

𝑎𝑘  is the attitude angle calculated from accelerometer measurements and 𝑧𝑘  is the 

measurement at time k.  

So the state vectors become 

𝑥 = 𝜃,    𝑢 = 𝜔 

and the matrices 

𝐴 = 1,    𝐵 = ∆𝑡,    𝐻 = 1,    𝐾 = 𝐾0 

So the Kalman equations read 

�̂�𝑘
− = �̂�𝑘−1 + 𝜔𝑘∆𝑡 

�̂�𝑘 = (1 − 𝐾0)�̂�𝑘
− + 𝐾0𝑎𝑘 

These equations can be reformatted as 

�̂�𝑘 = 𝛼�̂�𝑘−1 + (1 − 𝛼)𝑎𝑘 + 𝛼𝜔𝑘∆𝑡 

where 

𝛼 = 1 − 𝐾0 

A number of AHRS algorithms are developed based on the Kalman filter. Pedro 

Neto et al. proposed a position estimation algorithm based on the Kalman filter to correct 

the yaw [7]. Figure 8 shows the block diagram of that implementation. 
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Figure 8 Linear Kalman filter based position tracking algorithm 

Carl Fischer et al. also proposed pedestrian tracking algorithm based on Kalman 

filter [8]. Flow chart is shown in Figure 9. 
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Figure 9 Flow chart of Carl Fischer's Kalman filter based implementation 

But a linear model of the Kalman filter does not give a satisfactory estimation of 

position because as is indicated in Section 1.2.2 drifts and errors of MEMS IMU, errors 
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and noise in MEMS IMU are non-linear and non-Gaussian respectively. And the linear 

Kalman filter with its Gaussian noise assumption is not saticfactory in this environment. 

Therefore non-linear Kalman filter based AHRS algorithms have been proposed 

and have many variations and implementations. V. Bistrovs and A. Kluga proposed a 

GPS aided extended Kalman filter AHRS algorithm [9]. Gabriele Ligorio et al. 

implemented the extended Kalman filter in a camera vision aided system [10]. 

Algorithms based on the Unscented Kalman filter was also proposed for aided INS [11]. 

These algorithms give comparatively good results, however, they have a number of 

disadvantages. They can be complicated to implement which is reflcted by the numerous 

solutions [22]. The linear regression iterations, which are fundamental to the Kalman 

process, demand sampling rates between 512 Hz [34] and 30 kHz [35] to be used for a 

human motion caption application, and that far exceeds the low-cost MEMS sensor used 

in this project which allows up to 180Hz for 6 DoF and 130 Hz for 9 DoF according to 

practice. Also, the nonlinear Kaman Filters are computationally expensive to execute for 

hand held devices.  

 

1.3.2 Complementary Filters 

Since Kalman filter’s time complexity is too heavy a burden for mobile devices, 

algorithms with much lower computational complexity and almost equally efficiency are 

getting more acceptance, such as the complementary filters proposed by Robert Mahony 

[12]. 

As is discussed above, accelerometers are sensitive to attitude changing and 

impact forces while gyroscopes are sensitive to temperature changes and suffer from 
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slow-changing bias. That means accelerometers have poor dynamic feature while gyros 

have poor static feature. The complementary filter takes this fact and make good use of 

each part. It fuses the accelerometer data and gyroscope data by first passing the 

accelerometer data through a 1st-order low pass filter, and then the gyroscope data 

through a 1st-order high pass filter, as is shown in Figure 10. Thus the complementary 

filter extracts the most reliable part of each sensor. Then a weighted average is taken 

from these two measurements.  

 

Figure 10 1-D complementary filter 

In the 1-D situation, the transfer function of complementary filter is: 

𝜃 =
1

1 + 𝑇𝑠
𝑎 +

𝑇𝑠

1 + 𝑇𝑠

1

𝑠
𝜔 =

𝑎 + 𝑇𝜔

1 + 𝑇𝑠
 

where T determines the filter cut-off frequency, 𝑎 represents the angle calculated from 

accelerometer outputs and ω represents angular rate from gyroscope readings.  Therefore 

1

𝑠
𝜔 represents the angle calculated from gyroscope. That means the complementary filter 

uses a cut-off frequency to make low-frequency estimation of attitude from 

accelerometer and high-frequency estimation from gyroscope, in other words, 

complementary filter fuses the long-term estimation from accelerometer and the short-
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term estimation from gyroscope. Thus accelerometer and gyroscope “complement” each 

other. 

Using backward difference yields 

1 + 𝑇𝑠 = (1 +
𝑇

𝛥𝑡
) −

𝑇

𝛥𝑡
𝑧−1 

Thus the final result is 

𝜃𝑘 = 𝛼(𝜃𝑘−1 + 𝜔𝑘∆𝑡) + (1 − 𝛼)𝑎𝑘 

where  

𝛼 =
𝑇

𝛥𝑡
/ (1 +

𝑇

𝛥𝑡
) 

So the result is reformulated as 

𝜃𝑘 = 𝛼𝜃𝑘−1 + (1 − 𝛼)𝑎𝑘 + 𝛼𝜔𝑘∆𝑡 

Notice that the transfer function of the complementary filter is identical to that of 

the Kalman Filter [40], in the form of 

𝜃𝑘 = 𝛼𝜃𝑘−1 + (1 − 𝛼)𝑎𝑘 + 𝛼𝜔𝑘∆𝑡 

That is to say that the angle is first advanced by integrating the rotation rate to 

give an updated angle and then filtered with 𝑎𝑘 to give an improved angle. Thus it can 

be concluded that in the attitude estimation scenario, a complementary filter is superior 

to a Kalman Filter because it leads to identical update function. However, the 

complementary filter cost much less computation. 

 

1.4 Thesis Structure 

The structure arrangement of this thesis is as follows: 
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Chapter 1 explains the problem and introduces background knowledge needed. 

Also basic noise modelling is given to demonstrate characteristics of MEMS inertial 

sensors. 

Chapter 2 introduces ways of representing rotation and explains the advantages 

of quaternion representation. It also gives basic calculation rules for quaternions. 

Chapter 3 discusses the importance of an AHRS algorithm for a pedestrian 

tracking system and describes the implementation of explicit complementary filters. 

Chapter 4 introduces zero velocity detection and update techniques, and evaluates 

its performance in the whole system. 

Chapter 5 proposes the Enhanced Heuristic Drift Elimination algorithm (EHDE), 

explains the algorithm and demonstrates the ability of EHDE. 

Chapter 6 reviews the techniques explained in previous chapters. It also explaines 

the mechanism of the algorithm from the top level. 

Chapter 7 concludes the thesis and suggests possible future work regarding 

magnetically aided system and compressive sensing possibilities. 

  



 

20 

CHAPTER 2: REPRESENTATION OF ROTATION 

In order to get an accurate foot attitude of a patient, and also for the purpose of 

subtracting gravity factors from the three axes of accelerometers to obtain linear 

acceleration, an accurate estimation of rotation is required. The AHRS algorithm is the 

core of the inertial navigation system. Therefore an appropriate representation of rotation 

that the AHRS algorithm is built on is desired. 

 

2.1 Rotations 

In the scenario of pedestrian tracking, there are three coordinate systems 

involved: the foot frame in which foot rotates and acceleration is described, the sensor 

frame in which the motion of sensor is described, and the global frame, also known as 

the earth frame, where linear acceleration and rate of rotation are presented. In our case, 

since the sensor is super-glued to the insole and the insole does not slip in the shoe, the 

sensor and the foot frame are the same. Hence the foot frame is ignored. The sensor frame 

and global frame are the two coordinates systems where sensor data is represented. 

Because all the data is picked up by the sensor, the data is represented in terms of the 

sensor frame. However for pedestrian tracking we care about position and that is 

referenced with regard to the earth frame. Accordingly, we have to rotate the data into 

earth frame. Also the AHRS algorithm depends a lot on which representation of rotation 

is chosen. That is why the representation of rotation is important.  
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Figure 11 Reference frames considered 

 

Figure 11 illustrates the two coordinate systems involved in this problem. The 

upperleft coordinate system denotes the earth frame. The coordinate system embedded 

in the shoe denotes the sensor frame as well as the foot fame. Rotation around X, Y and 

Z axis is called roll, pitch and yaw respectively.  

 

Figure 12 Euler angles 
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Euler Angles is the most intuitive way of representing orientation in Special 

Orthogonal Group SO(3). Euler angles are three angles corresponding to a sequence of 

three elemental rotations respectively i.e. rotations about the axes of a coordinate system. 

There are several ways to initialize a set of Euler angles. Proper Euler angles includes Z-

X-Z (angle of roation around Z axis, angle of rotation around X axis and angle of roation 

around Z axis again), X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y. There are also the Tait–

Bryan angles that includes X-Y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z. For example, 

Figure 12 shows the Z-X-Z situation, ϕ, θ, and ψ are the angles rotated around Z axis, X 

axis and Z axis again respectively. Its Euler angles are represented as 

𝑟𝑧𝑦𝑥 = (𝜙 𝜃 𝜓)𝑇 

If we convert that into the roation matrix, an arbitrary rotation in SO(3) looks 

like: 

𝑅𝑧𝑥𝑧(𝜙, 𝜃, 𝜓) = 𝑅𝑧(𝜓)𝑅𝑥(𝜃)𝑅𝑧(𝜙) 

= (
cosψ −sin ψ 0
sinψ cosψ 0

0 0 1
)(

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
)(

1 0 0
0 cos𝜙 −sin𝜙
0 sin 𝜙 cos𝜙

) 

= (
cosψ cos 𝜃 − sinψ cosψ sin 𝜃
sinψ cos 𝜃 cosψ sinψ sin 𝜃

− sin 𝜃 0 cos 𝜃

)(
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

) 

= (

cosψ cos 𝜃 − sinψ cos𝜙 + cosψ sin 𝜃 sin𝜙 sinψ sin𝜙 + cosψ sin 𝜃 cos𝜙
sinψ cos 𝜃 cosψ cos𝜙 + sinψ sin 𝜃 sin𝜙 −cosψ sin𝜙 + sinψ sin 𝜃 cos𝜙

− sin 𝜃 cos 𝜃 sin𝜙 cos 𝜃 cos𝜙
) 

Euler Angles suffer from a problem called the Gimbal Lock, which is the loss of 

one degree of freedom when two of the three axes aligned. That means, all three gimbals 

are still able to rotate freely about their own axes. But because two of the three gimbals 

axes were aligned, there is no gimbal available to accommodate rotation along one axis 
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of the earth frame. Although gimbal lock can be addressed through the accumulative 

matrix transformation method, the Euler Angles representation is computationally 

expensive. 

 

Figure 13 Axis and angle 

Axis and Angle is also a common representation in SO(3), as is illustrated in 

Figure 13. According to the Euler’s rotation theorem, any rotation 𝑅 ∈ 𝑆𝑂(3) , is 

equivalent to a rotation about a fixed axis, �̂� ∈ 𝑅3, through an angle 𝜃 ∈ [0,2𝜋). 

Thus, 

𝐴𝑥𝑖𝑠:    �̂� = (𝑥 𝑦 𝑧)      𝐴𝑛𝑔𝑙𝑒:    𝜃 

According to the Rodrigues’ rotation formula [37], the rotated vector is: 

�̂�𝑟𝑜𝑡 = (cos 𝜃)�̂� + (sin 𝜃)(�̂� × �̂�) + (1 − cos 𝜃)(�̂� ∙ �̂�)�̂� 

But this suffers from a distance preserving problem. To address this, we convert 

it into the rotation matrix form: 
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     𝛭(�̂�, 𝜃)

= [

cos 𝜃 + (1 − cos 𝜃)𝑥2 (1 − cos 𝜃)𝑥𝑦 − (sin𝜃)𝑧 (1 − cos 𝜃)𝑥𝑧 + (sin 𝜃)𝑦

(1 − cos 𝜃)𝑥𝑦 + (sin 𝜃)𝑧 cos 𝜃 + (1 − cos 𝜃)𝑦2 (1 − cos 𝜃)𝑦𝑧 − (sin 𝜃)𝑥

(1 − cos 𝜃)𝑥𝑧 − (sin 𝜃)𝑦 (1 − cos 𝜃)𝑦𝑧 + (sin 𝜃)𝑥 cos 𝜃 + (1 − cos 𝜃)𝑧2

] 

Nevertheless, these 3x3 rotation matrices are still too computationally expensive 

to implement. What is more, over a long series of computations, numerical errors can 

cause these matrices to be no longer orthogonal, and need to be orthogonalized from time 

to time. 

 

2.2 Quaternions 

A quaternion is a four-dimensional complex number [38] invented by Hamilton 

in 1843 with the form 

�̂� = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 

i, j and k in the definition of quaternion is very similar to i the in 2-D complex plane. 

They have the properties: 

𝑖𝑖 = 𝑗𝑗 = 𝑘𝑘 = 𝑖𝑗𝑘 = −1 

𝑖𝑗 = −𝑗𝑖 = 𝑘 

𝑗𝑘 = −𝑘𝑗 = 𝑖 

𝑘𝑖 = −𝑖𝑘 = 𝑗 

Multiplication of quaternions Q and P, denoted by ⊗, can be determined using 

the Hamilton rule, defined as: 

�̂� ⊗ �̂� = (𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3)(𝑝0 + 𝑖𝑝1 + 𝑗𝑝2 + 𝑘𝑝3) 

= (𝑝0𝑞0 − 𝒑 ∙ 𝒒, 𝑝0𝒒 + 𝑞0𝒑 + 𝒑 × 𝒒) 
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where 𝒒 = (𝑞1 𝑞2 𝑞3) and 𝒑 = (𝑝1 𝑝2 𝑝3), 𝒑 ∙ 𝒒  denotes the dot product of 𝒑  

and 𝒒 , 𝒑 × 𝒒  denotes the cross product of 𝒑  and 𝒒. 

The complex conjugate of a quaternion is defined as: 

�̂�∗ = (𝑞0 𝑞1 𝑞2 𝑞3)∗ = (𝑞0 −𝑞1 −𝑞2 −𝑞3) 

Consider the unit quaternions with definition: 

𝑛𝑜𝑟𝑚(�̂�) = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 

The identity quaternion is 

�̂� = (1 𝟎) 

Since 

�̂� ⊗ �̂�∗ = (𝑞0, 𝒒)(𝑞0, −𝒒) = (𝑞0𝑞0 − 𝒒2, 𝑞0𝒒 − 𝑞0𝒒 + 𝒒 × 𝒒) = (1, 𝟎) 

Therefore the inverse of a unit quaternion is: 

�̂�−1 = �̂�∗ = (𝑞0 −𝑞1 −𝑞2 −𝑞3) 

Or, we can say, for a non-unit quaternion, 

�̂�−1 =
�̂�∗

‖�̂�‖
2 

These properties of quaternions are proven to be useful to represent the 

orientation of a ridged body or coordinate frame in three-dimension space. Like the axis 

and angle representation, the quaternion used for representing rotation involves an axis 

about which there is a rotation, and the angle of rotation. 
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Figure 14 Quaternion representation 

An arbitrary orientation from frame B to frame A can be represented as a rotation 

of angle θ around an axis �̂� in frame A. The quaternion �̂�𝐵
𝐴 describing this rotation is 

defined as: 

�̂�𝐵
𝐴 = (𝑞0 𝑞1 𝑞2 𝑞3) 

= [cos
𝜃

2
(sin

𝜃

2
) �̂�] 

= (cos
𝜃

2
−𝑟𝑥sin

𝜃

2
−𝑟𝑦 sin

𝜃

2
−𝑟𝑧 sin

𝜃

2
) 
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where 𝑟𝑥, 𝑟𝑦, and 𝑟𝑧 represents the components of the unit vector �̂� in X, Y and Z axis of 

frame A respectively. 

The complex conjugate of �̂�𝐵
𝐴 , can be used to swap the relative frames described 

by �̂�𝐵
𝐴 , 

�̂�∗
𝐴
𝐵 = �̂�𝐵

𝐴 = (𝑞0 −𝑞1 −𝑞2 −𝑞3) 

describes the rotation around axis �̂� from frame A to frame B. 

The multiplication of quaternion is used to define the combination of two 

rotations. The first rotation is from frame A to frame B, described as �̂�𝐵
𝐴 , the second 

rotation is from frame B to frame C, described as �̂�𝐶
𝐵 . This can be represented by one 

quaternion �̂�𝐶
𝐴 , defined as: 

�̂�𝐶
𝐴 = �̂�𝐶

𝐵 ⊗ �̂�𝐵
𝐴  

Quaternion product is not commutative, that is,�̂� ⊗ �̂� ≠ �̂� ⊗ �̂�, 

We have,  

�̂� ⊗ �̂� = [𝑎0 𝑎1 𝑎2 𝑎3] ⊗ [𝑏0 𝑏1 𝑏2 𝑏3] 

= [

𝑎0𝑏0 − 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3

𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎2𝑏3 − 𝑎3𝑏2

𝑎0𝑏2 − 𝑎1𝑏3 + 𝑎2𝑏0 + 𝑎3𝑏1

𝑎0𝑏3 + 𝑎1𝑏2 − 𝑎2𝑏1 + 𝑎3𝑏0

]

𝑇

 

Since a 3D vector can be regarded as quaternion with the first element equal to 

zero, a 3D vector rotated around an axis for certain degrees can be simply defined by the 

multiplication of quaternions. 

Suppose a vector �̂� is rotated from frame A to frame B, then 

�̂�𝐵 = �̂�𝐵
𝐴 ⊗ �̂�𝐴 ⊗ �̂�∗

𝐴
𝐵  

where �̂�𝐴 and �̂�𝐵 represent �̂� in frame A and frame B respectively. 
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This is a nice and clean representation of rotation between two coordinates or for 

the orientation of vectors. It is easy to achieve in coding, and quaternions do not suffer 

from any of the drawbacks of a rotation matrix or Euler Angles. Thus quaternions are 

selected as the representation of rotation in this project. 
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CHAPTER 3: EXPLICIT COMPLEMENTARY FILTER 

Extensive research has been done in the field of attitude/orientation estimation 

filters over decades. Many filters have been implemented to achieve the goal of accurate 

attitude estimation, such as Kalman filter, extended Kalman filter [13], with a lot of 

variations, interlaced Kalman filter [14-16], particle filter [17-18], unscented filter [19-

20], orthogonal attitude filter [21], and so on. 

Conventional attitude or orientation estimation filters are computationally 

expensive and that makes them difficult to run in current low-expense mobile devices. 

So a low-cost AHRS algorithm but with equally efficient estimation is desired. Thus the 

complementary filters are developed. Complementary filters employ gyroscope data for 

high frequency attitude estimation because gyros have good dynamic features, and 

employ accelerometer data for low frequency attitude estimation because accelerometers 

have good static features.  

Gradient Descent based Complementary Algorithm (GDCA) proposed by 

Madgwick et al. [22] and Explicit Complementary Filter (ECF) proposed by Mahony et 

al. [23] are the latest advancement in complementary filters. Both techniques employ 

quaternion as the representation of rotation. While GDCA and ECF are both effective 

and novel approach in terms of low-cost attitude estimation, ECF has a bit of an edge 

over GDCA because of higher accuracy. ECF is most flexible with two adjustable gains 

compared to GDCA with only one [24], even though the time complexity of ECA is 25% 

more than that of GDCA [25]. 

In this paper, ECF is selected as the attitude estimation method with quaternion 

as the representation of rotation. 
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3.1 Sensor Noise Modelling 

3.1.1 Our Sensor 

The specific IMU we used in this work is MPU 9250 made by InvenSense Inc. 

[26] and the sensor module we used is the SP-10C developed by Sensoplex Inc. The SP-

10C features three 16-bit analog-to-digital converters (ADCs) for digitizing the 

gyroscope outputs, three 16-bit ADCs for digitizing the accelerometer outputs, and three 

16-bit ADCs for digitizing the magnetometer outputs. For precision tracking of both fast 

and slow motions, it features a user–programmable gyroscope full-scale range of ±250, 

±500, ±1000, and ±2000 °/sec (dps), a user–programmable accelerometer full-scale range 

of ±2g, ±4g, ±8g, and ±16g, and a magnetometer full-scale range of ±4800 μT [26-27]. 

Figure 15 shows the block diagram of SP-10C. It is powered by a 5 volt Li-ion 

rechargeable battery when not connected to a computer. Data can be streamed or logged 

via USB with the SP monitor running on the computer. The SP-10C can also be 

connected via Bluetooth Low Energy (BLE) wirelessly. In our experiment, two modules 

of SP-10C were involved. One is connected to a computer through a USB cable and 

serves as the Bluetooth master. The other one which does the data collection task is 

attached on the foot and serves as the Bluetooth slave. Once Bluetooth connection is set 

up, commands can be sent wirelessly from the master to the slave and response is sent 

back to master. During data streaming, data sampled at a user-defined frequency is sent 

back to the master in real time. While for data logging, once the “log data” command is 

received by the slave, the accelerometer and gyroscope start to sample the readings at a 

frequency of 180 Hz, which is empirically the maximum frequency that the sensors can 
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be sampled without data loss. Otherwise a few consecutive sets of data would be lost 

periodically due to limited bandwidth. Data is stored in the 32 MB flash memory 

temporarily. Once the slave receive the “stop logging” command, the CPU stops 

sampling the sensors and data is ready to be read out to computer either via Bluetooth or 

USB. 

 

Figure 15 System chart of SP-10C 

3.1.2 Gyroscope Noise Model 

Gyroscope measures the angular rate. However the main concern is the bias issue. 

It measures the rotation rate along with noise and bias about three orthogonally installed 

axis. For MEMS gyroscopes, temperature, impact force and other factors can cause 
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uncertain bias which is hard to model. For simplicity, the gyroscope measurement can be 

modelled as: 

𝛺𝑔
𝑠(𝑡) = 𝛺(𝑡) + 𝑠𝑔(𝑡) + 𝑛𝑔(𝑡) 

where 𝛺𝑔
𝑠(𝑡) is the gyroscope measurement in sensor frame, 𝛺(𝑡) is the actual angular 

rate, 𝑠𝑔(𝑡)  and 𝑛𝑔(𝑡)  denote the uncertain bias and noise in gyroscope reading 

respectively. 

 

3.1.3 Accelerometer Noise Model 

Theoretically, accelerometer measures instantaneous acceleration only. 

However, practically, as described in section 1.2.2 Drifts and Errors of MEMS IMU, a 

MEMS accelerometer picks up all the forces applied on the proof mass. The acceleration 

readings are calculated from the mass of the proof mass and force applied on it. 

Therefore, gravitational acceleration with some added bias and noise are mixed in the 

readings. So the accelerometer measurement can be modelled as: 

𝑅𝑎
𝑠(𝑡) = �̇� − 𝑔 + 𝑠𝑎

𝑠(𝑡) + 𝑛𝑎
𝑠 (𝑡) 

where 𝑅𝑎
𝑠(𝑡)  is the readings of accelerometers in sensor frame, �̇�  is the actual 

instantaneous linear acceleration, 𝑔 stands for the gravity, 𝑠𝑎
𝑠(𝑡) and 𝑛𝑎

𝑠 (𝑡) denote the 

uncertain bias and noise in accelerometer readings in sensor frame respectively. 

 

3.2 Explicit Complementary Filter 

We consider the attitude estimation problem first. The problem of obtaining good 

attitude estimation from readings of low-cost MEMS units, is characterized by high noise 

level and unstable additive bias. The filtering problem [39] is formulated as deterministic 
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observer kinematics posed directly on the special orthogonal group SO(3). The earliest 

complementary filter is the direct complementary filter as described in Section 1.2.2 

Drifts and Errors of MEMS IMU. This performs a low-pass filtering on a low-frequency 

attitude estimate from accelerometer data and a high-pass filtering on high-frequency 

attitude estimate from gyro data, and then fuses the high and low frequency estimates 

together to form a good estimate at all frequencies. Later a related complementary filter 

was proposed termed the passive complementary filter which was further developed to 

formulize the measurement errors. Finally the explicit complementary filter was 

introduced that gives fairly good estimation of attitude and only need accelerometer and 

gyro data. The block diagram of implementation of the Explicit Complemenatary Filter 

is shown in Figure 16. 

 

Figure 16 Block diagram of explicit complementary filter 

The algorithm can be summarized as the following steps: 

1. Initialization: the algorithm starts at assigning the quaternion an initial value, 

typically [1, 0, 0, 0] as the unit quaternion is used, meaning there is no rotation at this 

time. Sampling frequency, proportional gain kp and integral gain ki are defined as well. 
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2. Data input: one set of accelerometer data and gyro date is fed in and 

accelerometer data is normalized. 

3. Estimate gravity direction: estimate the direction of gravity using current 

quaternion q [39], 

𝑣 = [

2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞2𝑞3 + 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

4. Error calculation: error is calculated by taking the cross product of the 

estimated direction of gravity and the “true” direction of gravity. In the scenario 

considered in this paper, the inertial direction �̅� is the best estimation of gravity we can 

get. It is calculated from the accelerometer readings, 

�̅� =
�̂�

|�̂�|
 

So the error between the estimate of direction of gravity from gyroscope and that 

from the accelerometer is given by 

𝑒 = �̅� × 𝑣 

5. Data fusion: error is calculated to reduce bias in gyroscope data in the next 

loop. Error is applied as a feedback term with two adjustable coefficient: the proportional 

gain kp and the integral gain ki, which forms a PI controller, 

�̅�𝑏 = 𝛺𝑏 + 𝑘𝑝𝑒 + 𝑘𝑖 ∫𝑒 𝑑𝑡 

6. Compute rate of change of quaternion: according to differentiation formula of 

quaternion, we get, 

�̇̂� =
1

2
�̂� ⊗ 𝑝(�̅�𝑏) 

where 𝑝(�̅�𝑏) = (0, �̅�𝑏) and �̂� is the quaternion of last iteration 
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7. Estimate attitude: now that the differentiation of the quaternion in last iteration 

is calculated, simply integrate it and yield estimated quaternion, namely attitude. Then 

the quaternion of this iteration is normalized. 

Repeat: repeat from step 2 to start a new iteration and keep updating attitude. 

 

3.3 Results 

The AHRS algorithm only deals with attitude estimation issue, so we only 

observe rotation data here. Velocity and position results will be displayed and evaluated 

in Chapters 4 and 5. 

Data was taken while the object walked along the longer side of Votey Hall which 

took approximately 60 seconds (for the first 10 seconds remained stationary so the 

algorithm could converge on a stable state). The sampling frequency was 180 Hz.  

Figure 17 shows raw gyroscope data. 

 

Figure 17 Gyroscope data 
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As the legend shows, red line stands for gyroscope data on X axis, green for Y 

axis and blue for Z axis. It is obvious that the magnitude of data on Y axis is much larger 

than those on X and Z axes. This is reasonable since, as shown in Figure 11, the X axis 

of the sensor frame points to the front of the walker, Z axis points along the leg of the 

walker, and Y axis is perpendicular to the X-Z plane and go through the arch of foot. 

Therefore data on X axis represents roll, data on Z axis represents yaw and data on Y 

axis represents pitch. It is human nature that the foot rotates up and down around the 

ankle. So it is reasonable that angle of pitch is much larger than roll and yaw. 

At the start and the end of each step, the walker’s feet are stationary on the ground. 

Also the walker did not make any turns, so the attitude should converge to at least around 

zero at the end.  

First we observe the naive way of getting rotation: integrating gyroscope data 

over time.  

 

Figure 18 Integral of gyroscope data on X axis 
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Figure 19 Integral of gyroscope data on Y axis 

 

Figure 20 Integral of gyroscope data on Z axis 

Figure 18 to 20 show integral of angular rate over time on all three axes 

respectively. The gyroscope’s integration drift can be easily observed because the plots 
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do not converge to zero at the end. Drift on X axis is most severe. It drifted more than 

400 degrees in less than 50 seconds. Drifts on Y and Z axes are not that severe but are 

large enough to distort the true attitude. Also we can view from these graphs that the 

additive bias is unstable as the plots do not drift at a constant speed. Hence we need to 

consider bias removal methods to obtain correct estimation of attitude. 

Then we show the estimation of attitude output by ECF in the form of 

quaternions. 

 

Figure 21 Quaternion 

We can clearly see that curves are fairly straight and do not “drift”. However the 

quaternion representation is not an intuitive representation.  

To make the results more vivid, we create an arbitrary vector [0, 0, 1] in true 

attitude coordinates, and use the quaternion calculated above to rotate the vector and see 

its representation in the estimated attitude coordinates. Ideally, it should converge to 

where it started and not drift. 
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Figure 22 X coordinate 

 

Figure 23 Y coordinate 
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Figure 24 Z coordinate 

From the figures above we can see that drifts have been almost eliminated, 

readings on all three axes converged to where they started. The explicit complementary 

filter gives a fairly good estimate of attitude. 

Using these optimized estimated attitude data, physicians can become aware of 

how the foot tilts when a patient walks. This will permit diagnosis of certain diseases that 

affect walking or allow evaluation of how well the patient has recovered.  
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CHAPTER 4: ZERO VELOCITY UPDATE 

4.1 Pedestrian Dead Reckoning 

In navigation, pedestrian dead reckoning (PDR) is the process of estimating a 

pedestrian’s trajectory and position by using a previously determined or fixed position 

and advancing that position based upon known or estimated speeds or accelerations over 

time. 

Such a navigation system that tracks the location of a person is useful for finding 

and rescuing firefighters or other emergency first responders. As for example in our case, 

the caregivers can know the location of the patient that needs help immediately. It can 

also be employed in Location Based Services (LBS), mobile 3D audio and virtual reality 

applications. 

In the previous chapters, we saw that it was possible to obtain a satisfactory 

estimation of attitude using explicit complementary filters. An associated goal of this 

project is to obtain an estimation of location. The approach will be explained in Chapters 

4 to 6. 

 

4.2 Zero Velocity Update (ZUPT) 

Conventional personal dead reckoning systems detect steps using a pedometer or 

an accelerometer. Then it takes magnetometer data to detect which direction is the 

pedestrian facing. Whenever a step is detected, it moves the position estimation forward 

by one step length to that direction. The step length is usually calculated by a waist- or 

limb-mounted sensor that detect angle of limb swing [28]. Some systems even need input 

of a pedestrian’s height to presume his step length. For these systems, step length is an 
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average of previous detected steps. Therefore it suffers from lags and does not give 

satisfactory instantaneous position estimation. What is more, these systems always move 

the position estimate one step forward to the front; if the pedestrian steps sideways, the 

estimated position still goes to the front.  

In 1996, a DARPA (Defense Advanced Research Projects Agency) project 

proposed a method to detect steps using shoe-mounted sensors called zero-velocity 

update [29] (ZUPT), but the result was never published. The DARPA website denies 

public access. The first published research involving zero-velocity update was proposed 

by John Elwell [31]. Zero-velocity detection is a vital part in inertial navigation system. 

Because inertial sensors are subject to drift, if periods of stationarity is not detected from 

time to time, errors in acceleration would be integrated in to velocity and position that 

leads to drastic drift. Zero-velocity provides the required information to reset velocity 

[30].  

There are basically two approaches to detect zero velocity. One is using the 

knowledge of motion patterns of human to detect stance phase. Typically, such methods 

model walking as a repeating sequence of heel strike, stance, push off, and swing. These 

methods only work for walking and cannot detect movements like running, crawling or 

walking backward [30]. 

The second and more generic option utilizes data from inertial sensor alone. It 

assumes that when the sensor is stationary (reading is 0), velocity is zero and angular rate 

is 0 as well. One concern is that if the accelerometer is moving at a constant speed, the 

algorithm would misjudge the motion as stationary. But based on our practice, since the 

accelerometer is very sensitive to accelerations, or, forces, and also because walking is a 
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rather complex course of acceleration and deceleration, the detection of zero velocity 

never failed because of misjudgment. There are times that motion detection threshold 

was not set properly which led to misjudging. However this is a problem that can be 

easily avoided. 

 

4.3 Implementation 

The implementation is shown in Figure 25. 

 

Figure 25 Block diagram of ZUPT 

Step 1: calculate the l2 norm on accelerometer readings on all three axes to get 

the magnitude of acceleration.  

Step 2: pass the acceleration magnitude through a 1st order Butterworth low-pass 

filter to smooth out the data.  

Step 3: calculate the absolute value of filtered data. 

Step 4: pass the data through a 1st order Butterworth high-pass filter to remove 

DC value. 
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Step 5: decide if the current a(t) is larger than an empirically determined threshold 

ath, if yes, do nothing, if not, set corresponding v(t) to zero. Filtered acceleration data is 

thrown away because its only purpose is to detect stationary periods. 

Step 6: repeat from step 1 until all velocity data samples are updated. 

Step 7: combine the corrected v(t) during stationary periods and v(t) during non-

stationary periods together to yield zero-velocity updated v(t). 

Step 8: because only velocity in stationary periods is set to zero, the integral of 

constant still exist during non-stationary periods. Also, because in step 5, velocity is 

forced to zero according to the threshold, the velocity before and after the critical point 

would be discontinuous. Therefore the drift caused by integration must be removed. 

The way we remove integration drift of velocity is: first find the velocity 

difference between the start and end of a non-stationary periods, then divide that 

difference by the number of samples during this non-stationary period to get drift rate, 

after that multiply the drift rate with corresponding data index to get drift value at that 

certain point. Then subtract the drift from the previously calculated velocity to get linear 

velocity. 

 

 

4.4 Results 

First we observe the raw accelerometer data. Data was still taken during a straight 

walk along the longer side of Votey Hall on the third floor. The data is truncated to 35 

seconds since the acceleration data would seem too dense for a 60 seconds walk.  
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Figure 26 Raw accelerometer data 

As is indicated by the legend, red line stands for accelerometer reading on X axis 

and green line stands for reading on Y axis and blue line stands for reading on Z axis, all 

in sensor frame, unit is g (9.81m/s2). From the raw data graph we can make a few 

observations: 

First, before the commencement of walking, accelerometer reading on Z axis is 

much larger than those on X and Y axes which is reasonable because it measures 

acceleration force due to gravity.  

Secondly, we observe that data on X and Y axes are not aligned to 0 perfectly. 

This suggests that the sensor is not placed perfectly upright (aligned to the earth frame) 

in the shoe, so portions of gravity show up on X and Y axis, which is absolutely fine. 

Pedestrians do not have to wear the sensors perfectly upright which is also impossible. 

The discrepancy between the sensor frame and the earth frame can be compensated by 

the AHRS algorithm. 
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Thirdly, a few spikes can be easily observed in the data on the Z axis because of 

noise or impact forces or else. Spikes are harmful to zero-velocity update and can cause 

misjudgment. This is the reason accelerometer data must be passed through a low-pass 

filter to smooth out before being sent into the decision logic.  

What is more, there are pulses that can be easily recognized as each pulse 

represent a step. 

In Figure 27 the filtered accelerometer data as well as the detected stationary 

periods are shown. 

 

Figure 27 Filtered acceleration magnitude and stationary periods 

In this figure we can clearly see that DC value of the acceleration is removed so 

during the stationary periods, velocity is just about 0. And during non-stationary periods, 

the filtered acceleration magnitude never reached near zero. Thus using a threshold of 

ath=0.035 g, we can separate stationary and non-stationary periods vividly as is illustrated 

by the thick black line. 
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We first demonstrate the result without zero-velocity update. 

 

Figure 28 Velocity without ZUPT 

Figure 28 shows the velocity data without zero-velocity correction. Steps are still 

recognizable but we can vividly see the drift caused by 1st order integration of constant 

value. 
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Figure 29 Position without ZUPT 

Figure 29 shows the position result without zero-velocity correction. The position 

estimation drifts so drastically that we cannot even find ripples of steps in the curve. The 

position on Z axis drifted nearly 400 meters in 30 seconds. The results also demonstrated 

how little errors can cause huge drift after being integrated. 

That shows the necessity of ZUPT. The effect of ZUPT is evaluated and displayed 

in Figure 30. 
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Figure 30 Velocity with ZUPT 

Figure 30 shows the velocity estimation with ZUPT. We can see the graph is 

reasonably satisfactory. Three curves are aligned at zero during the stationary periods 

between pulses. Drift is eliminated and magnitude of velocity on each axis is reasonable, 

X being highest, Y and Z are low because the straight walk is basically along X axis (of 

sensor frame). 
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Figure 31 Position with ZUPT 

Figure 31 shows the position estimate of the 30 seconds of straight walk. We can 

see that drift is greatly reduced (a little still exists and can be observable in a long walk) 

and position curve is almost linear. We can also notice the “ripples” within the curves, 

and each one represents a step made by the walker. There is also one notable phenomena, 

linear displacement is not on X axis only, there is some on Y as well. This suggests that 

X axis on sensor frame points to positive Y axis a little bit. That is probably because 

sensor is not placed perfect upright or the walker is a little toe-out while walking. But 

this is not a vital issue because as long as the relative relationship among position points 

remains, we can correct this deviation anytime. 

This chapter showed the importance and implementation of zero-velocity update. 

It also gives another answer to the question: Why attach the sensor on shoes? That is to 

detect zero velocity and reduce drift. 
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CHAPTER 5: ENHANCED HEURISTIC DRIFT ELIMINATION 

5.1 Preliminary Results 

In previous chapters, quaternions and explicit complimentary filter were 

explained and evaluated. Also, the zero-velocity update method was introduced to reduce 

drift. Those two techniques comprise a basic functional pedestrian tracking algorithm. 

We first display and evaluate result of the ECF+ZUPT system, whose block diagram is 

shown in Figure 32. 

 

Figure 32 Preliminary Top Level Implementation 

In previous chapters, data shown was in short scale and simple movement e.g. 

straight line. That was for simplicity because long periods of data would seem too dense 

and thus not illustrative. Now we wish to evaluate the robustness and precision of the 

system. Data taken is over longer periods or in complex movement e.g. climbing stairs. 
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First we observe the result from a 3-minute walk around Votey Hall. The walker 

made a closed loop through the corridor inside Votey Hall. 

 

Figure 33 Plot of position data-Votey 

Figure 33 shows the position data plot of the result. We can conclude from this 

graph that even though drift has been greatly reduced by ECF and ZUPT, error still exists. 

The walker made a closed loop. So at the end of the walk, the three lines representing 

displacement on three axes should meet at the origin, (0 , 0 , 0). But they did not. Also 

we can see that drift on X and Y axes are almost eliminated because the blue line 

representing displacement on Z axis is very nearly flat. These two conclusions can also 

be seen in the trajectory of the walk as is shown below.  
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Figure 34 Trajectory of Votey top view 

 

Figure 35 Trajectory of Votey side view 

Figure 34 and 35 show the trajectory from top and side views. Figure 34 indicates 

that a small amount of drift still exists in yaw which will cause even severe results in 
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longer periods of walking. Figure 35 indicates that trajectory is mostly constrained in X-

Y plane, which is good.  

We also show another set of results come from a more complex motion pattern. 

Walker climbed from the first floor to second floor through the stairs at the west side of 

Votey Hall. 

 

Figure 36 Plot of position data-stairs 

Figure 36 shows the position data plot of the result. We can easily see the stairs 

by observing the Z line: first three steps are flat, then five steps going up, then two steps 

flat, then five steps going up again, then five steps flat. This position plot looks better 

than that of the previous one. The drift was observed from the trajectory plot. 
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Figure 37 Trajectory of stairs side view 
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Figure 38 Trajectory of stairs top view 

Figure 37 and 38 show trajectory views from side and top respectively. The side 

view looks all good, floor height of Votey is 3.6 meters and the trajectory agrees with 

that well. Problem happens in yaw drift again which can be seen in top view. There is an 

angle between the estimated corridors on the 2nd and 3rd floor. If the corridors were long 

enough the problem would be more obvious. 

Table 1 Error of preliminary system 

Data set Time(s) Steps Error(m) 

Around Votey 160 100 16 

Votey Stairs 33 21 0.8 
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The two sets of results showed that ECF+ZUPT is still not sufficient for such 

low-cost sensors. Drift must be removed from yaw. Therefore we introduce Heuristic 

Drift Elimination (HDE) and propose the Enhanced Heuristic Drift Elimination (EHDE) 

method. 

 

5.2 Heuristic Drift Elimination 

In order to remove bias and errors from MEMS gyroscopes, a method called 

Heuristic Drift Elimination (HDE) was proposed by Johann Borenstein and Lauro Ojeda 

in 2010 [32]. Like in zero-velocity update, when existing algorithms are not sufficient to 

correct drift, we make use of external facts to provide more information. ZUPT takes 

advantage of the fact that during walking, either of the feet undergo a repeating sequence 

of stop and move. HDE takes into consideration the fact that in most buildings, corridors 

are parallel or orthogonal to each other, HDE calls the directions of the corridors 

dominant directions. Therefore most of the time the walker walks in a straight line along 

one of the four dominant directions. In 2012, A.R. Jiménez et al. proposed a 

magnetically-aided HDE algorithm that works in more complex buildings [33]. These 

are the two most cited work in Heuristic Drift Elimination and are the latest 

advancements. 

 

5.3 Enhanced Heuristic Drift Elimination in 3D 

In this paper we propose a novel HDE algorithm that works in 3D and can 

completely remove gyro drift in structured, indoor environment. Compared to HDE by 

Johann Borenstein and Lauro Ojeda, our EHDE algorithm works on much cheaper 
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MEMS IMUs that cost only a few dollars each while Johann used a sensor called Nano 

IMU produced by Memsense Inc. that costs more than $1300. HDE also has the 

limitation in that it can create new azimuth error by matching the closest dominant 

direction if the pedestrian walks in various directions. Compared to A.R. Jiménez’s work, 

our EHDE can work without the aid of a compass. Also, both of the two HDE algorithms 

mentioned above do 2D drift elimination only while ours corrects gyro drifts in 3D. 

Implementation of EHDE is explained below. EHDE is mainly composed of three parts: 

pedestrian motion detection, dominant direction calculation and position update.  

 

5.3.1 Pedestrian Motion Detection 

In the beginning of drift elimination, EHDE takes the first five steps of the data 

and decides if the five steps are in a straight line. Since we use a low-cost MEMS IMU, 

gyroscope drifts really fast. So taking more steps would bring gyroscope errors in 

dominant direction calculation. Also large delays can appear. But if less steps were taken, 

motion detection is likely to be less accurate. According to our experiment, five steps 

provides a reliable and fairly accurate result.  

To decide whether the pedestrian is walking straight, we first calculate step 

vectors from position data. Then we take the first five steps and calculate the angles 

between adjacent two steps. If absolutes of all of the angles are less than a threshold, we 

say the pedestrian is walking straight. If not, the pedestrian is not walking in a straight 

line. 

If the pedestrian is not walking straight, EHDE does nothing. 
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If the pedestrian is walking in a straight line, EHDE moves to the next step, which 

is the dominant direction calculation. 

 

5.3.2 Dominant Direction Calculation 

Dominant direction calculation consists of two steps: the first step is to calculate 

the dominant directions’ projections on X-Y plane. The second step is to generate 

dominant directions in 3D space. 

Dominant direction projection is calculated from the five steps mentioned above. 

Five step vectors are calculated from 6 positions. We perform linear regression which 

fits a straight line based on perpendicular offset through the projections of the first 6 

positions on X-Y plane, as is shown in Figure 39. 

 

Figure 39 Position of previous 5 steps and current step 

We assume a straight line in X-Y plane with function: 𝑦 = 𝑎𝑥 as the dominant 

direction projection. 

The distance from the points to the straight line in Figure 39 is given by: 
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𝑑𝑖 =
|𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)|

√1 + 𝑏2
 

Therefore, the sum of the squares of the distances is: 

𝐷 = ∑ 𝑑𝑖
2

𝑘

𝑖=𝑘−5

 

Therefore coefficients a and b of the best fit line can be found by solving 

following equations: 

𝜕𝐷

𝜕𝑎
=

2

1 + 𝑏2
∑ (𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖))(−1)

𝑘

𝑖=𝑘−5

= 0 

𝜕𝐷

𝜕𝑏
=

2

1 + 𝑏2
∑ (𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖))(−𝑥𝑖) +

𝑘

𝑖=𝑘−5

∑
(𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖))

2
(−1)(2𝑏)

(1 + 𝑏2)2

𝑘

𝑖=𝑘−5

= 0 

We get, 

𝑎 = �̅� − 𝑏�̅� 

𝑏 = 𝐵 ± √𝐵2 + 1 

where 

𝐵 =
(∑ 𝑦𝑖

2𝑘
𝑖=𝑘−5 −

1
6 (∑ 𝑦𝑖

𝑘
𝑖=𝑘−5 )

2
) − (∑ 𝑥𝑖

2𝑘
𝑖=𝑘−5 −

1
6 (∑ 𝑥𝑖

𝑘
𝑖=𝑘−5 )

2
)

2(6𝑥𝑦̅̅ ̅ − ∑ 𝑥𝑖𝑦𝑖
𝑘
𝑖=𝑘−5 )

 

Thus we get the dominant direction’s projection [1, 𝑎] on the X-Y plane. 

To calculate dominant direction in 3D space there are two situations that need to 

be treated differently. Because floors in buildings are generally connected only by stairs 

or elevators, there is no possibility that a pedestrian gradually descends or ascends. 

Consequently only two situations are possible: walking horizontally or climbing stairs. 

Determination for 3D dominant direction is explained below. 
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A. Walker is walking on flat ground: Pass the absolute of the third element, 

namely, the vertical element on Z axis, of the current step vector through a threshold. If 

it is less than the threshold, we say the walker is walking on a flat ground. So dominant 

direction in 3D is [1 𝑎 0]. That is only the direction that the pedestrian faces initially, 

named XP (positive on X axis). We can easily calculate the other three dominant 

directions from XP, named YP (positive on Y axis), XN (negative on X axis), YN 

(negative on Y axis) respectively, according to the right hand coordinates rule.  

𝑌𝑁 = [1 −
1

𝑎
0] 

𝑋𝑁 = [−1 −𝑎 0] 

𝑌𝑃 = [−1
1

𝑎
0] 

B. Walker is walking up or down on stairs: If the absolute of the Z component of 

the current step vector is larger than the threshold, we determine that the walker is 

climbing stairs. In this situation, we maintain the XY coordinates of the dominant 

direction and tilt the dominant direction so that it has the same gradient as the current 

step.  

Suppose the current step is represented by vector: 

𝑠𝑡𝑒𝑝𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] 

So the gradient of the current step is:  

𝑔 =
𝑧𝑖

√𝑥𝑖
2 + 𝑦𝑖

2

 

Therefore, in order to maintain the gradient, dominant direction XP can be found 

simply by multiplying g with the norm of the first two elements of XP, that is: 
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𝑋𝑃 = [1 𝑎 𝑔 ∗ √12 + 𝑎2] = [
1 𝑎

𝑧𝑖√1 + 𝑎2

√𝑥𝑖
2 + 𝑦𝑖

2
] 

Similarly, the other three dominant directions are: 

𝑌𝑁 =

[
 
 
 

1 −
1

𝑎

𝑧𝑖
√1 + (

1
𝑎)

2

√𝑥𝑖
2 + 𝑦𝑖

2

]
 
 
 

 

𝑋𝑁 = [
−1 −𝑎

𝑧𝑖√1 + 𝑎2

√𝑥𝑖
2 + 𝑦𝑖

2
] 

𝑌𝑃 =

[
 
 
 

−1
1

𝑎

𝑧𝑖
√1 + (

1
𝑎)

2

√𝑥𝑖
2 + 𝑦𝑖

2

]
 
 
 

 

 

5.3.3 Position Update 

The final step of EDHE is position update. In this step, first EHDE calculates the 

heading difference between the current step and each dominant direction and see if the 

heading difference is less than a threshold. The threshold is kept small so that there is no 

crossover zone of the possible range around each dominant direction. Therefore the 

current step either falls into the possible range of one of the four dominant directions or 

none of them.  

If the current step doesn’t belong to any possible range of the dominant directions, 

EHDE does nothing.  

If the current step falls in one of the four dominant directions, do the follow: 
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Step 1: Calculate the quaternion HDEquat between the current step and the 

dominant direction. 

Step 2: Use HDEquat to rotate all the position points after and including the 

current step to the dominant direction. The reason to rotate all the points is that because 

we use a low-cost MEMS IMU, it drifts at a rather fast rate. If only one step vector is 

corrected once, the following steps is likely to drift to the possible zone of another 

dominant direction and that would bring about destructive consequences to drift 

elimination. By rotating the whole remaining trajectory we can correct the drift little by 

little. 

Step 3: Because quaternion rotation is not a rotation around a certain, it is a 

rotation of certain degrees around a fixed axis. So after the rotation, even though the 

remaining trajectory is parallel to the previous step, they are not continuous. So the last 

step has to subtract the difference between the two ends of the “breakpoint” to make the 

trajectory continuous. 

5.3.4 Block Diagram 

Block diagram of EHDE is shown in Figure 40. 
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Figure 40 Block diagram of EDHE 

From the block diagram we can see that EHDE only takes in position data and 

outputs updated position data. It is independent of the AHRS algorithm.  

The reasons for maintaining dominant direction only on X and Y axes and keep 

same gradient on Z axis are as follows: 

First, floor height varies from building to building, even within the same building. 

Therefore the system cannot tell whether it is drift. 

Secondly, situation may vary according to how a pedestrian walks. Suppose the 

height of one stair is h. If pedestrian steps out his foot with the sensor first when he starts 

to go upstairs, the height change is, h, 2h, 2h, 2h…but if he steps out his foot without the 

sensor first, the height change would be, 2h, 2h, 2h, 2h…This makes height change 

uncertain and so it is difficult to reduce height drift. 
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Thirdly, as we can see from the two sets of results in Section 5.1 Preliminary 

Results, drift on Z axis is negligible. Usually there are no more than 20 stairs between 

floors so if there is drift it is within an acceptable range. 

 

5.4 Results 

We observe the two sets of data used in Section 5.1 Preliminary Results but after 

the correction of EHDE. We put the two sets of data together to see the improvement of 

results. 

First we display the result of the closed loop around Votey output by EHDE. 

Figure 41 shows the position data plot. 

 

Figure 41 Plot of position data with EHDE for Votey walk 

Compared to Figure 33 in Section 5.1 Preliminary Results, we can see that drift 

is completely removed; the four segments are perfectly linear indicating the trajectory on 

four sides of Votey were exactly straight. We can also see that three lines almost go back 
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to where they started-the origin, this indicates that the pedestrian went back to where he 

started. 

Figure 42 and 43 show the top and side views of the trajectory. 

 

Figure 42 Trajectory of Votey walk top view 

 

Figure 43 Trajectory of Votey walk side view 

From Figure 42 we can see that the trajectory forms a perfect rectangle 

representing the corridor in Votey Hall. Walker started at [0, 0, 0]. The final point in 

position is [0.62, 0.37, 0], by calculating the norm of the final position vector, we can see 

that is only 0.72 meters away from the origin point. This is a 3 minute walk for about 150 
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meters. Taking the fact that the corridor has a width of about 2 meters in consideration, 

we can say this estimation is fairly satisfactory.  

From Figure 43 we can see that the trajectory is completely constrained in X-Y 

plane, the range of Z component is [0m, 0.2m] which matches the height of a person lifts 

his foot while walking. This is also a rather decent result for the sake of X-Y dominant 

direction. 

We can also evaluate the result at another angle by observing the heading 

difference to four dominant directions respectively. Figure 44 shows the plots of heading 

difference between the current direction and four dominant directions. 

 

Figure 44 Heading difference to four dominant directions 

According to the plots we can see that during the first segment, from the 1st 

sample to the 36th, heading difference to XP is almost zero, meaning that the direction 

the walker faced is XP. Difference to YN and YP is a little larger which equals π/4, that 

is, 90 degrees, and difference to the XN direction is the largest, π/2, that is, 180 degrees. 
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The reason why the plot jumps up and down is that we measure signed angles in right 

hand coordinates, therefore the angle between the current direction and dominant 

direction jumps between -180 degrees and 180 degrees back and forth. This is a good 

sign that proved the current direction is adjusted accurately. 

During the second segment, because the walker made a right turn, according to 

the right hand coordinates rule, now he faces the YN dominant direction. Therefore in 

this segment, difference to YN is the smallest and to YP is the largest. Also we notice 

the value jumps between 180 degrees and -180 degrees.  

Then we evaluate the error correction performance of EDHE. 

Table 2 Performance of EHDE in 2D walk 

 
Horizontal 

Error(m) 

Vertical 

Error(m) 

Execution 

Time(s) 

No EHDE 16 1.15 10.5 

After EHDE 0.7 0 11.3 

 

From Table 2 we can vividly view the power of EHDE. Vertical drift is eliminated 

and horizontal drift is reduced significantly. At the same time, complexity of the 

algorithm does not increase much, EHDE trades off 99% of the error with less than 10% 

more execution time. 

Next we observe the performance of EHDE in a more complex motion, climbing 

stairs. Data is same as the second set of data in section 5.1 Preliminary Results.  

Figure 45 shows the position output plot of EHDE. 
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Figure 45 Plot of position data with EHDE for stairs 

Position plot looks as decent as that before the process of EHDE. We can easily 

see the stairs by observing the Z line: first three steps are flat, then five steps going up, 

then two steps flat, then five steps going up again, then five steps flat. From trajectory 

plots we can observe minor errors. 

First we show a view of trajectory from a cornered view to get an intuitive image 

of the trajectory. 



 

70 

 

Figure 46 Trajectory of stairs cornered view 

Figure 47 and 48 show the top and side view of the trajectory for the stairs dataset. 
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Figure 47 Trajectory of stairs top view 

 

Figure 48 Trajectory of stairs side view 
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From the top view we can clearly view the difference between it and the one 

without EHDE drift elimination. With the correction of EHDE, the straight walk on the 

2nd and the 3rd floor aligned from top view, while before EHDE, there was a noticeable 

angle between the two straight walks. This suggests that angle error has been corrected 

by EHDE. 

From the side view we can see that trajectory on stairs is corrected to a straight 

line that is perpendicular to the flat corridors as well. 

In terms of error estimation, because we cannot tell precisely how far the walker 

walked on the 2nd floor and the 3rd floor, so as long as the two straight walks aligned from 

top view, we can determine the horizontal error is zero. With regard to vertical error, we 

measured the actual floor height of Votey Hall which is around 3.6 meters. We subtract 

the estimated height with actual floor height to get vertical error.  

Table 3 Performance of EHDE in 3D walk 

 
Horizontal 

Error(m) 

Vertical 

Error(m) 

Execution 

Time(s) 

No EHDE 0.8 0.02 4.3 

After EHDE 0 0.14 4.8 

 

For a short walk like this, statistics from a table is not very illustrative compared 

to the actual sight of the trajectory. Nevertheless, we can see the horizontal drift is 

completely removed. With respect to vertical error, the naive ECF+ZUPT algorithm 

already does a fairly good job, even though the 0.02m is partly because of coincidence 

that several errors got cancelled out during calculation. Still, EHDE presents reasonable 
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result with an error of merely 0.14m. Time complexity increased about 10% which is 

quite tolerable. 
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CHAPTER 6: TOTAL SYSTEM FRAMEWORK 

In this chapter, we review the whole system and explain the top level 

implementation that put ECF, ZUPT and EHDE to work together. We also present a 

UML diagram to show the inheritance relationship of the code. 

 

6.1 Top Level Implementation 

 

Figure 49 Block diagram of top level algorithm 

Flow chart of top level is as shown in Figure 49.  

Top level implementation consists of following steps: 

Step 1: pass accelerometer data and gyroscope data into explicit complementary 

filter, and the filter would output quaternions of the whole data series. The quaternions 

or their transformations into another representation of rotation can represent the attitude 
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that we desire. In the Matlab code, the quaternions are transformed into rotation matrix 

so as to generate a 3D trajectory monitor animation, which we have seen in the previous 

chapters.  

Step 2: use the quaternion calculated in step 1 to rotate the accelerometer data 

from sensor frame to Earth frame 

Step 3: integrate the acceleration in Earth frame from step 2 to get velocity in 

Earth frame 

Step 4: pass accelerometer data to the ZUPT filters (a 1st order Butterworth high-

pass and a 1st order Butterworth low-pass filter) to get the processed acceleration 

magnitude and detect stationary periods 

Step 5: use the stationary periods to zero update the velocity calculated in step 3 

to get ZUPTed velocity in Earth frame 

Step 6: Remove the drift during non-stationary periods due to integration 

Step 7: do integral on linear velocity calculated in step 6 to get position in Earth 

frame 

Step 8: pass position data in to EHDE to get drift eliminated position estimation 

is Earth frame. 

Thus we obtained drift eliminated displacement from step 8 and attitude 

estimation from step 1.  

Note that within each integral level there is drift reduction techniques. In 

acceleration level, we implemented ECF that use a PI controller to reduce gyro drift. In 

velocity level, we implemented ZUPT and another separate procedure to reduce integral 

drift of acceleration. In displacement level, we implemented the EHDE to eliminate drift 
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caused by tiny errors from two lower levels that integrated into huge drift. Hence, the 

total logic framework of the system can be expressed hierarchically as shown is Figure 

50.  

 

Figure 50 Hierarchical Diagram 

Only so can we get linear displacement using a low-cost sensor and a light-weight 

algorithm, this again proves how severe low-cost MEMS IMUs drift. 

 

6.2 UML diagram 

Figure 51 shows that UML diagram of Matlab code that used to implement the 

algorithm. A UML diagram is used to explain the inheritance relationship among 

different segments of Matlab code. 
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Figure 51 UML diagram 

All classes listed above inherit from the “handle” class. Handle class is the basic 

class that any class needs to inherit from, just like the abstract class in Java. 

DataBaseClass verifies if data file exists and opens the file. If files doesn’t exist 

it sends back an error message. If files exists it scans all the text inside the file. It mainly 

deals with file issues. 

TimeSeriesDataBaseClass inherits from DataBaseClass. It deals with timing 

issues like setting start time, stop time and sample rate. 

InertialAndMagneticDataBaseClass inherits from TimeSeriesDataBaseClass. It 

categorizes data scanned by DataBaseClass into three parts: accelerometer data, 

gyroscope data and magnetometer data. It also provides a public method to plot those 

data. 
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Finally, CalInertialAndMagneticDataClass inherits from InertialAndMagnetic-

DataBaseClass. It adds the property “sample rate” to data object. It also adds units as 

string variables to accelerometer, gyroscope and magnetometer data.   

On the other side, xIMUdataClass takes in a file and set up a data object with 

complete properties like sample rate, battery and thermometer data, date and time data 

and etc. 

AHRS is the explicit complementary filter that is already explained in Chapter 4. 

It has default public properties such as 𝑞 = [1 0 0 0], 𝑘𝑝 = 2, 𝑘𝑖 = 0, etc. It is also 

equipped with an important method called updateIMU which takes accelerometer and 

gyro data and update the q, and is the core of ECF. Therefore in the top level code, the 

updateIMU is called inside a loop, every time a new set of data is read in, updateIMU is 

called to update the quaternion.  

Finally the top level code calls the instances of the three classes to make the whole 

system running. 
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CHAPTER 7: CONSLUSION 

This thesis sets out to construct a low-cost MEMS IMU based position and foot 

attitude tracking solution that is applicable in hospitals to track patients and observe their 

walking patterns. And beyond that, this system has the potential to be used in firefighter 

search, indoor mapping etc. In accomplishing this goal this work seeks to build a light-

weight system that can overcome the serious drift issue of low cost inertial sensors. We 

also strive to present, in one unabridged work, a set of steps for navigation and tracking 

systems from theory to implementation. 

 

7.1 Contributions 

In total this thesis develops a complete and self-contained yet light-weighted 

system that implements several drift reduction techniques for inertial pedestrian tracking. 

This includes an explanation from design to principals of the inertial sensor we use, and 

a model for sensor noises. Also three drift elimination techniques were implemented 

within three integration levels respectively to push drift reduction to the limit. Also all 

test data is presented along with the algorithm, this is unique from the many 

implementations which “design” filters based on values that were tweaked in order to 

achieve results. 

According to the results presented, the EHDE drift elimination approach we 

proposed is able to eliminate the majority of drift in indoor and structured environment. 

It removes more than 95% of error with the tradeoff of 10% more time complexity which 

is fairly worthwhile.  
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7.2 Limitations 

Although the ECF+ZUPT+EDHE system works perfect in the experiments we 

made, it has some limitations: 

First, pedestrian has to start in a straight corridor along the dominant direction in 

order for the EDHE to compute dominant directions. But this is not a significant problem 

since dominant directions calculation can be initialized anytime or even input into the 

EDHE algorithm. 

Secondly, EHDE is likely to fail in a complex building or complex walking 

patterns such as a zigzag pattern. If EDHE cannot find the dominant direction for a long 

time, the drift during that period can totally deviate from the correct trajectory. This can 

be avoided theoretically if we use a compass as an extra source of data. But in hospitals, 

systems like MRI greatly distort the magnetic field that would make magnetically aided 

system work abnormally.  

 

7.3 Future Research 

Pedestrian tracking on a low-cost inertial sensor continues to remain an unsolved 

problem. Not much research has focused on this topic which means there is plenty of 

space to improve the system. 

First, as is indicated in section 7.2 Limitations, the ECF+ZUPT+EDHE system 

could fail in a complex environment or outdoors. A magnetically aided EDHE is an area 

of current research. Magnetometers do not drift over time and hopefully they can provide 

satisfactory results in a pure magnetic field environment. 
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Second, the hardware of the sensor is introduced in section 1.2.1 MEMS IMU, 

the SP-10C is powered by a 5 volts Li-ion battery. The lifetime of the battery is two days 

per complete charge for 1 hour, which may be troublesome in practical use. According 

to compressive sensing theory, most signals in real life are “sparse”, that is, most part of 

its spectrum contains little valuable data. The sparsity of a signal can be exploited to 

recover it from far fewer samples than required by the Shannon-Nyquist sampling 

theorem [36]. Therefore if we only sample the data-rich part, the number of samples 

would be greatly reduced. Less samples are transmitted and thus battery power is saved. 
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Appendix 

Top level code 

clear; 
close all; 
clc; 
addpath('Quaternions'); 
addpath('ximu_matlab_library'); 

  
tic; 
% ---------------------------------------------------------------------

---- 
% Select dataset (comment in/out) 

  
filePath = 'Datasets/aroundVotey'; 
startTime = 0; 
stopTime = 177; 

  
% filePath = 'Datasets/aroundVotey1stCorner'; 
% startTime = 0; 
% stopTime = 16.3; 

  
% filePath = 'Datasets/aroundVoteyStraight'; 
% startTime = 5; 
% stopTime = 35; 

  
% filePath = 'Datasets/outsideRecNoMag2'; 
% startTime = 0; 
% stopTime = 136; 

  
% filePath = 'Datasets/VoteyUpStairs'; 
% startTime = 0; 
% stopTime = 49.2; 

  
% filePath = 'Datasets/VoteyUpStairsStepByStep'; 
% startTime = 0; 
% stopTime = 60.9; 

  
% ---------------------------------------------------------------------

---- 
% Import data 

  
samplePeriod = 1/180; 
xIMUdata = xIMUdataClass(filePath, 'InertialMagneticSampleRate', 

1/samplePeriod); 
time = xIMUdata.CalInertialAndMagneticData.Time; 
gyrX = xIMUdata.CalInertialAndMagneticData.Gyroscope.X / 10; 
gyrY = xIMUdata.CalInertialAndMagneticData.Gyroscope.Y / 10; 
gyrZ = xIMUdata.CalInertialAndMagneticData.Gyroscope.Z / 10; 
accX = xIMUdata.CalInertialAndMagneticData.Accelerometer.X / 9.81; 
accY = xIMUdata.CalInertialAndMagneticData.Accelerometer.Y / 9.81; 
accZ = xIMUdata.CalInertialAndMagneticData.Accelerometer.Z / 9.81; 
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magX = xIMUdata.CalInertialAndMagneticData.Magnetometer.X; 
magY = xIMUdata.CalInertialAndMagneticData.Magnetometer.Y; 
magZ = xIMUdata.CalInertialAndMagneticData.Magnetometer.Z; 
clear('xIMUdata'); 

  
% ---------------------------------------------------------------------

---- 
% Manually frame data 

  
% startTime = 0; 
% stopTime = 10; 

  
indexSel = find(sign(time-startTime)+1, 1) : find(sign(time-

stopTime)+1, 1); 
time = time(indexSel); 
gyrX = gyrX(indexSel); 
gyrY = gyrY(indexSel); 
gyrZ = gyrZ(indexSel); 
accX = accX(indexSel); 
accY = accY(indexSel); 
accZ = accZ(indexSel); 
magX = magX(indexSel); 
magY = magY(indexSel); 
magZ = magZ(indexSel); 

  
% ---------------------------------------------------------------------

---- 
% Detect stationary periods 

  
% Compute accelerometer magnitude 
acc_mag = sqrt(accX.*accX + accY.*accY + accZ.*accZ); 

  
% HP filter accelerometer data 
filtCutOff = 0.0001; 
[b, a] = butter(1, (2*filtCutOff)/(1/samplePeriod), 'high'); 
acc_magFilt = filtfilt(b, a, acc_mag); 

  
% Compute absolute value 
acc_magFilt = abs(acc_magFilt); 

  
% LP filter accelerometer data 
filtCutOff = 5; 
[b, a] = butter(1, (2*filtCutOff)/(1/samplePeriod), 'low'); 
acc_magFilt = filtfilt(b, a, acc_magFilt); 

  
% Threshold detection 
stationary = acc_magFilt < 0.055; 

  

  
% ---------------------------------------------------------------------

---- 
% Plot data raw sensor data and stationary periods 
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figure('Position', [9 39 900 600], 'Number', 'off', 'Name', 'Sensor 

Data'); 
ax(1) = subplot(2,1,1); 
    hold on; 
    plot(time, gyrX, 'r'); 
    plot(time, gyrY, 'g'); 
    plot(time, gyrZ, 'b'); 
    title('Gyroscope'); 
    xlabel('Time (s)'); 
    ylabel('Angular velocity (^\circ/s)'); 
    legend('X', 'Y', 'Z'); 
    hold off; 
ax(2) = subplot(2,1,2); 
    hold on; 
    plot(time, accX, 'r'); 
    plot(time, accY, 'g'); 
    plot(time, accZ, 'b'); 
    plot(time, acc_magFilt, ':k'); 
    plot(time, stationary, 'k', 'LineWidth', 2); 
    title('Accelerometer'); 
    xlabel('Time (s)'); 
    ylabel('Acceleration (g)'); 
    legend('X', 'Y', 'Z', 'Filtered', 'Stationary'); 
    hold off; 
linkaxes(ax,'x'); 

  
% ---------------------------------------------------------------------

---- 
% Compute orientation 

  
quat = zeros(length(time), 4); 
AHRSalgorithm = AHRS('SamplePeriod', samplePeriod, 'Kp', 1, 'KpInit', 

1,'Ki',0); 

  
% Initial convergence 
initPeriod = 2; 
indexSel = 1 : find(sign(time-(time(1)+initPeriod))+1, 1); 
for i = 1:2000 
    AHRSalgorithm.UpdateIMU([0 0 0], [mean(accX(indexSel)) 

mean(accY(indexSel)) mean(accZ(indexSel))]); 
%     AHRSalgorithm.Update([0 0 0], [mean(accX(indexSel)) 

mean(accY(indexSel)) mean(accZ(indexSel))],[mean(magX(indexSel)) 

mean(magY(indexSel)) mean(magZ(indexSel))]); 
end 

  
% For all data 
for t = 1:length(time) 
    if(stationary(t)) 
        AHRSalgorithm.Kp = 0.5; 
    else 
        AHRSalgorithm.Kp = 0; 
    end 
    AHRSalgorithm.UpdateIMU(degtorad([gyrX(t) gyrY(t) gyrZ(t)]), 

[accX(t) accY(t) accZ(t)]); 
%     AHRSalgorithm.Update(degtorad([gyrX(t) gyrY(t) gyrZ(t)]), 

[accX(t) accY(t) accZ(t)],[magX(t) magY(t) magZ(t)]); 
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    quat(t,:) = AHRSalgorithm.Quaternion; 
end 

  
% ---------------------------------------------------------------------

---- 
% Compute translational accelerations 

  
% Rotate accelerations from sensor frame to Earth frame 
acc = [accX accY accZ]; 
acc = quaternRotate(acc, quaternConj(quat)); 

  

  
% % Remove gravity from measurements 
% acc = acc - [zeros(length(time), 2) ones(length(time), 1)];     % 

unnecessary due to velocity integral drift compensation 

  
% Convert acceleration measurements to m/s/s 
acc = acc * 9.81; 

  
% Plot translational accelerations 
figure('Position', [9 39 900 300], 'Number', 'off', 'Name', 

'Accelerations'); 
hold on; 
plot(time, acc(:,1), 'r'); 
plot(time, acc(:,2), 'g'); 
plot(time, acc(:,3), 'b'); 
title('Acceleration'); 
xlabel('Time (s)'); 
ylabel('Acceleration (m/s/s)'); 
legend('X', 'Y', 'Z'); 
hold off; 

  
% ---------------------------------------------------------------------

---- 
% Compute translational velocities 

  
acc(:,3) = acc(:,3) - 9.81; 

  
% Integrate acceleration to yield velocity 
vel = zeros(size(acc)); 
for t = 2:length(vel) 
    vel(t,:) = vel(t-1,:) + acc(t,:) * samplePeriod; 
    if(stationary(t) == 1) 
        vel(t,:) = [0 0 0];     % apply ZUPT update when foot 

stationary 
    end 
end 

  

  
% Compute integral drift during non-stationary periods 
velDrift = zeros(size(vel)); 
stationaryStart = find([0; diff(stationary)] == 1); 
stationaryEnd = find([0; diff(stationary)] == -1); 
for i = 1:numel(stationaryEnd) 
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    driftRate = vel(stationaryStart(i)-1, :) / (stationaryStart(i) - 

stationaryEnd(i)); 
    enum = 1:(stationaryStart(i) - stationaryEnd(i)); 
    drift = [enum'*driftRate(1) enum'*driftRate(2) enum'*driftRate(3)]; 
    velDrift(stationaryEnd(i):stationaryStart(i)-1, :) = drift; 
end 

  
% Remove integral drift 
vel = vel - velDrift; 

  
% vel = vel-vel; 

  
% Plot translational velocity 
figure('Position', [9 39 900 300], 'Number', 'off', 'Name', 

'Velocity'); 
hold on; 
plot(time, vel(:,1), 'r'); 
plot(time, vel(:,2), 'g'); 
plot(time, vel(:,3), 'b'); 
title('Velocity'); 
xlabel('Time (s)'); 
ylabel('Velocity (m/s)'); 
legend('X', 'Y', 'Z'); 
hold off; 

  
% ---------------------------------------------------------------------

---- 
% Compute translational position 

  
% Integrate velocity to yield position 
pos = zeros(size(vel)); 
for t = 2:length(pos) 
    pos(t,:) = pos(t-1,:) + vel(t,:) * samplePeriod;    % integrate 

velocity to yield position 
end 

  
toc; 

  
% get position of the first 5 steps 
first5X = pos(stationaryEnd(1:5),1); 
first5Y = pos(stationaryEnd(1:5),2); 
% use polyfit to calculate best fit straight line for the first five 

step and serve as X-Y dominant direction 
p = polyfit(first5X,first5Y,1); 

  
% Heuristic Drift Elimination 
step = zeros(length(stationaryEnd),3); 
headingDifferenceXP = zeros(length(step),1);  % heading difference 

between current step and dominant XP direction 
headingDifferenceYP = zeros(length(step),1);  % heading difference 

between current step and dominant YP direction 
headingDifferenceXN = zeros(length(step),1);  % heading difference 

between current step and dominant XN direction 
headingDifferenceYN = zeros(length(step),1);  % heading difference 

between current step and dominant YN direction 
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HDEquat = zeros(length(step),4); 

  
% start EHDE correction 

  
for i = 1:length(stationaryEnd) 
    % step calculated from position 
    step(i,:) = pos(stationaryStart(i),:) - pos(stationaryEnd(i),:); 
    % walking on flat floor 
    if abs(step(i,3)) < 0.2 
        fprintf('into plane correction.\n'); 

         
        % dominant direction in 3D determined 
        domDirXP = [1,p(1),0]; 
        domDirYN = [1,-1/p(1),0]; 
        domDirXN = [-1,-p(1),0]; 
        domDirYP = [-1,1/p(1),0]; 
        % heading difference between current step and each of four 

dominant directions 
        headingDifferenceXP(i) = getAngle(step(i,:),domDirXP); 
        headingDifferenceYP(i) = getAngle(step(i,:),domDirYP); 
        headingDifferenceXN(i) = getAngle(step(i,:),domDirXN); 
        headingDifferenceYN(i) = getAngle(step(i,:),domDirYN); 

         
        % determine which possible zone does current step fall into 
        if abs(headingDifferenceXP(i)) < 0.2 
            % calculate quaternion from current step to determined 

dominant direction 
            HDEquat(i,:) = calcQuat(step(i,:), domDirXP); 
            % rotate current step tp nearest dominant direction 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            fprintf('plane correction to XP made %dth iteration.\n',i); 
            % if not the first step, parallel move the remaining whole 

trajectory to the end of previous step 
            if i >= 2 
                pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
                pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
                pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
            end 
        elseif abs(headingDifferenceYP(i)) < 0.2 
            HDEquat(i,:) = calcQuat(step(i,:), domDirYP); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            fprintf('plane correction to YP made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
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            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        elseif abs(headingDifferenceXN(i)) < 0.2 
            HDEquat(i,:) = calcQuat(step(i,:), domDirXN); 
            fprintf('plane correction to XN made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        elseif abs(headingDifferenceYN(i)) < 0.2 
            HDEquat(i,:) = calcQuat(step(i,:), domDirYN); 
            fprintf('plane correction to YN made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        end 
    % if walking along stairs 
    elseif abs(step(i,3)) > 0.2 
        fprintf('into stair correction.\n'); 

         
        % dominant direction in 3D determined, gradient remained 
        domDirXP = [1,p(1),step(i,3) * norm([1,p(1)]) / 

norm(step(i,1:2))]; 
        domDirYN = [1,-1/p(1),step(i,3) * norm([1,-1/p(1)]) / 

norm(step(i,1:2))]; 
        domDirXN = [-1,-p(1),step(i,3) * norm([-1,p(1)]) / 

norm(step(i,1:2))]; 
        domDirYP = [-1,1/p(1),step(i,3) * norm([-1,1/p(1)]) / 

norm(step(i,1:2))]; 

         
        % heading difference between current step and each of four 

dominant directions 
        headingDifferenceXP(i) = getAngle(step(i,:),domDirXP); 
        headingDifferenceYP(i) = getAngle(step(i,:),domDirYP); 
        headingDifferenceXN(i) = getAngle(step(i,:),domDirXN); 
        headingDifferenceYN(i) = getAngle(step(i,:),domDirYN); 

         
        % determine which possible zone does current step fall into and 

correct current step to nearest dominant direction 
        if abs(headingDifferenceXP(i)) < 0.4 
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            HDEquat(i,:) = calcQuat(step(i,:), domDirXP); 
            fprintf('stair correction to XP made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        elseif abs(headingDifferenceYP(i)) < 0.4 
            HDEquat(i,:) = calcQuat(step(i,:), domDirYP); 
            fprintf('stair correction to YP made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        elseif abs(headingDifferenceXN(i)) < 0.4 
            HDEquat(i,:) = calcQuat(step(i,:), domDirXN); 
            fprintf('stair correction to XN made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        elseif abs(headingDifferenceYN(i)) < 0.4 
            HDEquat(i,:) = calcQuat(step(i,:), domDirYN); 
            fprintf('stair correction to YN made %dth iteration.\n',i); 
            pos(stationaryEnd(i):length(pos),:) = 

quaternRotate(pos(stationaryEnd(i):length(pos),:),HDEquat(i,:)); 
            pos(stationaryEnd(i):length(pos),1) = 

pos(stationaryEnd(i):length(pos),1) - ( pos(stationaryEnd(i),1) - 

pos(stationaryStart(i-1),1) ); 
            pos(stationaryEnd(i):length(pos),2) = 

pos(stationaryEnd(i):length(pos),2) - ( pos(stationaryEnd(i),2) - 

pos(stationaryStart(i-1),2) ); 
            pos(stationaryEnd(i):length(pos),3) = 

pos(stationaryEnd(i):length(pos),3) - ( pos(stationaryEnd(i),3) - 

pos(stationaryStart(i-1),3) ); 
        end 
    end 
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end 

  

  

  
% % calculate heading difference between curret step and previous step 

in right hand coordinate 
% headingBetweenSteps = zeros(length(step)-1,1); 
% for i = 1:length(headingBetweenSteps) 
%     headingBetweenSteps(i) = getAngle(step(i,:),step(i+1,:)); 
% end; 

  

  
% Plot translational position 
figure('Position', [9 39 900 600], 'Number', 'off', 'Name', 

'Position'); 
hold on; 
plot(time, pos(:,1), 'r'); 
plot(time, pos(:,2), 'g'); 
plot(time, pos(:,3), 'b'); 
title('Position'); 
xlabel('Time (s)'); 
ylabel('Position (m)'); 
legend('X', 'Y', 'Z'); 
hold off; 

  
% Plot quaternion 
figure; 
plot(quat); 
legend('1', '2', '3', '4'); 
% ---------------------------------------------------------------------

---- 
% Plot 3D foot trajectory 

  
% % Remove stationary periods from data to plot 
% posPlot = pos(find(~stationary), :); 
% quatPlot = quat(find(~stationary), :); 
posPlot = pos; 
quatPlot = quat; 

  
% Extend final sample to delay end of animation 
extraTime = 5; 
onesVector = ones(extraTime*(1/samplePeriod), 1); 
posPlot = [posPlot; [posPlot(end, 1)*onesVector, posPlot(end, 

2)*onesVector, posPlot(end, 3)*onesVector]]; 
quatPlot = [quatPlot; [quatPlot(end, 1)*onesVector, quatPlot(end, 

2)*onesVector, quatPlot(end, 3)*onesVector, quatPlot(end, 

4)*onesVector]]; 

  
toc; 

  
% Create 6 DOF animation 
SamplePlotFreq = 30; 
Spin = 50; 
SixDofAnimation(posPlot, quatern2rotMat(quatPlot), ... 
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                'SamplePlotFreq', SamplePlotFreq, 'Trail', 

'DotsOnly', ... 
                'Position', [9 39 1280 768], 'View', 

[(100:(Spin/(length(posPlot)-1)):(100+Spin))', 10*ones(length(posPlot), 

1)], ... 
                'AxisLength', 0.2, 'ShowArrowHead', false, ... 
                'Xlabel', 'X (m)', 'Ylabel', 'Y (m)', 'Zlabel', 'Z 

(m)', 'ShowLegend', false, ... 
                'CreateAVI', false, 'AVIfileNameEnum', true, 

'AVIfileName', '9Dof', 'AVIfps', ((1/samplePeriod) / SamplePlotFreq)); 

 

Explicit complementary filter implementation 

classdef AHRS < handle 

  
    %% Public properties 
    properties (Access = public) 
        SamplePeriod = 1/256; 
        Quaternion = [1 0 0 0];     % output quaternion describing the 

sensor relative to the Earth 
        Kp = 2;                     % proportional gain 
        Ki = 0;                     % integral gain 
        KpInit = 200;               % proportional gain used during 

initialisation 
        InitPeriod = 5;             % initialisation period in seconds 
        Error = [0 0 0]; 
    end 

  
    %% Private properties 
    properties (Access = private) 
        q = [1 0 0 0];              % internal quaternion describing 

the Earth relative to the sensor 
        IntError = [0 0 0]';        % integral error 
        KpRamped;                   % internal proportional gain used 

to ramp during initialisation 
    end 

  
    %% Public methods 
    methods (Access = public) 
        function obj = AHRS(varargin) 
            for i = 1:2:nargin 
                if  strcmp(varargin{i}, 'SamplePeriod'), 

obj.SamplePeriod = varargin{i+1}; 
                elseif  strcmp(varargin{i}, 'Quaternion') 
                    obj.Quaternion = varargin{i+1}; 
                    obj.q = quaternConj(obj.Quaternion); 
                elseif  strcmp(varargin{i}, 'Kp'), obj.Kp = 

varargin{i+1}; 
                elseif  strcmp(varargin{i}, 'Ki'), obj.Ki = 

varargin{i+1}; 
                elseif  strcmp(varargin{i}, 'KpInit'), obj.KpInit = 

varargin{i+1}; 
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                elseif  strcmp(varargin{i}, 'InitPeriod'), 

obj.InitPeriod = varargin{i+1};                     
                else error('Invalid argument'); 
                end 
                obj.KpRamped = obj.KpInit; 
            end; 
        end 
        function obj = Update(obj, Gyroscope, Accelerometer, 

Magnetometer) 
            quater = obj.Quaternion; % short name local variable for 

readability 

  
            % Normalise accelerometer measurement 
            if(norm(Accelerometer) == 0), return; end   % handle NaN 
            Accelerometer = Accelerometer / norm(Accelerometer);    % 

normalise magnitude 

  
            % Normalise magnetometer measurement 
            if(norm(Magnetometer) == 0), return; end    % handle NaN 
            Magnetometer = Magnetometer / norm(Magnetometer);   % 

normalise magnitude 

  
            % Reference direction of Earth's magnetic feild 
            h = quaternProd(quater, quaternProd([0 Magnetometer], 

quaternConj(quater))); 
            b = [0 norm([h(2) h(3)]) 0 h(4)]; 

             
            % Estimated direction of gravity and magnetic field 
            v = [2*(quater(2)*quater(4) - quater(1)*quater(3)) 
                 2*(quater(1)*quater(2) + quater(3)*quater(4)) 
                 quater(1)^2 - quater(2)^2 - quater(3)^2 + 

quater(4)^2]; 
            w = [2*b(2)*(0.5 - quater(3)^2 - quater(4)^2) + 

2*b(4)*(quater(2)*quater(4) - quater(1)*quater(3)) 
                 2*b(2)*(quater(2)*quater(3) - quater(1)*quater(4)) + 

2*b(4)*(quater(1)*quater(2) + quater(3)*quater(4)) 
                 2*b(2)*(quater(1)*quater(3) + quater(2)*quater(4)) + 

2*b(4)*(0.5 - quater(2)^2 - quater(3)^2)];  

  
            % Error is sum of cross product between estimated direction 

and measured direction of fields 
            e = cross(Accelerometer, v) + cross(Magnetometer, w);  

             
            obj.IntError = obj.IntError + e'; 
%             if(obj.Ki > 0) 
%                 obj.IntError = obj.IntError + e * obj.SamplePeriod;    
%             else 
%                 obj.IntError = [0 0 0]; 
%             end 

             
            % Apply feedback terms 
            Gyroscope = Gyroscope + obj.Kp * e + obj.Ki * 

obj.IntError';             

             
            % Compute rate of change of quaternion 
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            qDot = 0.5 * quaternProd(quater, [0 Gyroscope(1) 

Gyroscope(2) Gyroscope(3)]); 

  
            % Integrate to yield quaternion 
            quater = quater + qDot * obj.SamplePeriod; 
            obj.Quaternion = quater / norm(quater); % normalise 

quaternion 

             
            obj.Quaternion = obj.quaternConj(obj.Quaternion); 
        end 
        function obj = UpdateIMU(obj, Gyroscope, Accelerometer) 

  
            % Normalise accelerometer measurement 
            if(norm(Accelerometer) == 

0)                                            % handle NaN 
                warning(0, 'Accelerometer magnitude is zero.  Algorithm 

update aborted.'); 
                return; 
            else 
                Accelerometer = Accelerometer / 

norm(Accelerometer);                % normalise measurement 
            end 

  
            % Compute error between estimated and measured direction of 

gravity 
            v = [2*(obj.q(2)*obj.q(4) - obj.q(1)*obj.q(3)) 
                2*(obj.q(1)*obj.q(2) + obj.q(3)*obj.q(4)) 
                obj.q(1)^2 - obj.q(2)^2 - obj.q(3)^2 + 

obj.q(4)^2];                 % estimated direction of gravity 
            error = cross(v, Accelerometer'); 

             
%               % Compute ramped Kp value used during init period 
%             if(obj.KpRamped > obj.Kp) 
%                 obj.IntError = [0 0 0]'; 
%                 obj.KpRamped = obj.KpRamped - (obj.KpInit - obj.Kp) / 

(obj.InitPeriod / obj.SamplePeriod); 
%             

else                                                                    

% init period complete 
%                 obj.KpRamped = obj.Kp; 
                obj.IntError = obj.IntError + 

error;                                % compute integral feedback terms 

(only outside of init period) 
%             end 

  
            % Apply feedback terms 
            Ref = Gyroscope - (obj.Kp*error + obj.Ki*obj.IntError)'; 

  
            % Compute rate of change of quaternion 
            pDot = 0.5 * obj.quaternProd(obj.q, [0 Ref(1) Ref(2) 

Ref(3)]);          % compute rate of change of quaternion 
            obj.q = obj.q + pDot * 

obj.SamplePeriod;                                % integrate rate of 

change of quaternion 
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            obj.q = obj.q / 

norm(obj.q);                                            % normalise 

quaternion 

  
            % Store conjugate 
            obj.Quaternion = obj.quaternConj(obj.q); 
        end 
        function obj = Reset(obj) 
            obj.KpRamped = obj.KpInit;      % start Kp ramp-down 
            obj.IntError = [0 0 0]';        % reset integral terms 
            obj.q = [1 0 0 0];              % set quaternion to 

alignment    
        end    
%         function obj = StepDownKp(obj, Kp) 
%             obj.KpRamped = Kp; 
%             obj.Kp = Kp; 
%         end 
    end 

     
    %% Get/set methods    
    methods 
        function obj = set.Quaternion(obj, value) 
            if(norm(value) == 0) 
                error('Quaternion magnitude cannot be zero.'); 
            end 
            value = value / norm(value); 
            obj.Quaternion = value; 
            obj.q = obj.quaternConj(value); 
        end         
    end 

  
    %% Private methods 
    methods (Access = private) 
        function ab = quaternProd(obj, a, b) 
            ab(:,1) = a(:,1).*b(:,1)-a(:,2).*b(:,2)-a(:,3).*b(:,3)-

a(:,4).*b(:,4); 
            ab(:,2) = a(:,1).*b(:,2)+a(:,2).*b(:,1)+a(:,3).*b(:,4)-

a(:,4).*b(:,3); 
            ab(:,3) = a(:,1).*b(:,3)-

a(:,2).*b(:,4)+a(:,3).*b(:,1)+a(:,4).*b(:,2); 
            ab(:,4) = a(:,1).*b(:,4)+a(:,2).*b(:,3)-

a(:,3).*b(:,2)+a(:,4).*b(:,1); 
        end 
        function qConj = quaternConj(obj, q) 
            qConj = [q(:,1) -q(:,2) -q(:,3) -q(:,4)]; 
        end 
    end 
end 

 

xIMUdataClass 

classdef xIMUdataClass < handle 
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    %% Public properties 
    properties (SetAccess = private) 
        FileNamePrefix = ''; 
        ErrorData = []; 
        CommandData = []; 
        RegisterData = []; 
        DateTimeData = []; 
        RawBatteryAndThermometerData = []; 
        CalBatteryAndThermometerData = []; 
        RawInertialAndMagneticData = []; 
        CalInertialAndMagneticData = []; 
        QuaternionData = []; 
        RotationMatrixData = []; 
        EulerAnglesData = []; 
        DigitalIOdata = []; 
        RawAnalogueInputData = []; 
        CalAnalogueInputData = []; 
        PWMoutputData = []; 
        RawADXL345busData = []; 
        CalADXL345busData = []; 
    end 

  
    %% Public methods 
    methods (Access = public) 
        function obj = xIMUdataClass(varargin) 
            % Create data objects from files 
            obj.FileNamePrefix = varargin{1}; 
            dataImported = false; 
            try obj.ErrorData = ErrorDataClass(obj.FileNamePrefix); 

dataImported = true; catch e, end 
            try obj.CommandData = CommandDataClass(obj.FileNamePrefix); 

dataImported = true; catch e, end 
            try obj.RegisterData = 

RegisterDataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
            try obj.DateTimeData = 

DateTimeDataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
            try obj.RawBatteryAndThermometerData = 

RawBatteryAndThermometerDataClass(obj.FileNamePrefix); dataImported = 

true; catch e, end 
            try obj.CalBatteryAndThermometerData = 

CalBatteryAndThermometerDataClass(obj.FileNamePrefix); dataImported = 

true; catch e, end 
            try obj.RawInertialAndMagneticData = 

RawInertialAndMagneticDataClass(obj.FileNamePrefix); dataImported = 

true; catch e, end 
            try obj.CalInertialAndMagneticData = 

CalInertialAndMagneticDataClass(obj.FileNamePrefix); dataImported = 

true; catch e, end 
            try obj.QuaternionData = 

QuaternionDataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
            try obj.EulerAnglesData = 

EulerAnglesDataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
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            try obj.RotationMatrixData = 

RotationMatrixDataClass(obj.FileNamePrefix); dataImported = true; catch 

e, end 
            try obj.DigitalIOdata = 

DigitalIOdataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
            try obj.RawAnalogueInputData = 

RawAnalogueInputDataClass(obj.FileNamePrefix); dataImported = true; 

catch e, end 
            try obj.CalAnalogueInputData = 

CalAnalogueInputDataClass(obj.FileNamePrefix); dataImported = true; 

catch e, end 
            try obj.PWMoutputData = 

PWMoutputDataClass(obj.FileNamePrefix); dataImported = true; catch e, 

end 
            try obj.RawADXL345busData = 

RawADXL345busDataClass(obj.FileNamePrefix); dataImported = true; catch 

e, end 
            try obj.CalADXL345busData = 

CalADXL345busDataClass(obj.FileNamePrefix); dataImported = true; catch 

e, end 
            if(~dataImported) 
                error('No data was imported.'); 
            end 

  
            % Apply SampleRate from register data 
            try h = obj.DateTimeData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(67)); 

catch e, end 
            try h = obj.RawBatteryAndThermometerData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(68)); 

catch e, end 
            try h = obj.CalBatteryAndThermometerData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(68)); 

catch e, end 
            try h = obj.RawInertialAndMagneticData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(69)); 

catch e, end 
            try h = obj.CalInertialAndMagneticData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(69)); 

catch e, end 
            try h = obj.QuaternionData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(70)); 

catch e, end 
            try h = obj.RotationMatrixData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(70)); 

catch e, end 
            try h = obj.EulerAnglesData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(70)); 

catch e, end 
            try h = obj.DigitalIOdata; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(78)); 

catch e, end 
            try h = obj.RawAnalogueInputData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(80)); 

catch e, end 
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            try h = obj.CalAnalogueInputData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(80)); 

catch e, end 
            try h = obj.RawADXL345busData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(85)); 

catch e, end 
            try h = obj.CalADXL345busData; h.SampleRate = 

obj.SampleRateFromRegValue(obj.RegisterData.GetValueAtAddress(85)); 

catch e, end 

  
            % Apply SampleRate if specified as argument 
            for i = 2:2:(nargin) 
                if strcmp(varargin{i}, 'DateTimeSampleRate') 
                    try h = obj.DateTimeData; h.SampleRate = 

varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 'BattThermSampleRate') 
                    try h = obj.RawBatteryAndThermometerData; 

h.SampleRate = varargin{i+1}; catch e, end 
                    try h = obj.CalBatteryAndThermometerData; 

h.SampleRate = varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 

'InertialMagneticSampleRate') 
                    try h = obj.RawInertialAndMagneticData; 

h.SampleRate = varargin{i+1}; catch e, end 
                    try h = obj.CalInertialAndMagneticData; 

h.SampleRate = varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 'QuaternionSampleRate') 
                    try h = obj.QuaternionData; h.SampleRate = 

varargin{i+1}; catch e, end 
                    try h = obj.RotationMatrixData.SampleRate; 

h.SampleRate = varargin{i+1}; catch e, end 
                    try h = obj.EulerAnglesData; h.SampleRate = 

varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 'DigitalIOSampleRate') 
                    try h = obj.DigitalIOdata; h.SampleRate = 

varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 'AnalogueInputSampleRate') 
                    try h = obj.RawAnalogueInputData; h.SampleRate = 

varargin{i+1}; catch e, end 
                    try h = obj.CalAnalogueInputData; h.SampleRate = 

varargin{i+1}; catch e, end 
                elseif strcmp(varargin{i}, 'ADXL345SampleRate') 
                    try h = obj.RawADXL345busData; h.SampleRate = 

varargin{i+1}; catch e, end 
                    try h = obj.CalADXL345busData; h.SampleRate = 

varargin{i+1}; catch e, end 
                else 
                    error('Invalid argument.'); 
                end 
            end 
        end 
        function obj = Plot(obj) 
            try obj.RawBatteryAndThermometerData.Plot(); catch e, end 
            try obj.CalBatteryAndThermometerData.Plot(); catch e, end 
            try obj.RawInertialAndMagneticData.Plot(); catch e, end 
            try obj.CalInertialAndMagneticData.Plot(); catch e, end 
            try obj.QuaternionData.Plot(); catch e, end 



 

101 

            try obj.EulerAnglesData.Plot(); catch e, end 
            try obj.RotationMatrixDataClass.Plot(); catch e, end 
            try obj.DigitalIOdata.Plot(); catch e, end 
            try obj.RawAnalogueInputData.Plot(); catch e, end 
            try obj.CalAnalogueInputData.Plot(); catch e, end 
            try obj.RawADXL345busData.Plot(); catch e, end 
            try obj.CalADXL345busData.Plot(); catch e, end 
        end 
    end 

  
    %% Private methods 
    methods (Access = private) 
        function sampleRate = SampleRateFromRegValue(obj, value) 
            sampleRate = floor(2^(value-1)); 
        end 
    end 
end 

DataBaseClass 

classdef DataBaseClass < handle 

  
    %% Abstract public 'read-only' properties 
    properties (Abstract, SetAccess = private) 
        FileNameAppendage; 
    end 

  
    %% Public 'read-only' properties 
    properties (SetAccess = private) 
        NumPackets = 0; 
        PacketNumber = []; 
    end 

  
    %% Protected methods 
    methods (Access = protected) 
        function data = ImportCSVnumeric(obj, fileNamePrefix) 
            data = dlmread(obj.CreateFileName(fileNamePrefix), ',', 1, 

0); 
            obj.PacketNumber = data(:,1); 
            obj.NumPackets = length(obj.PacketNumber); 
        end 
        function data = ImportCSVmixed(obj, fileNamePrefix, 

fieldSpecifier) 
            fid = fopen(obj.CreateFileName(fileNamePrefix)); 
            fgets(fid);     % disregard column headings 
            data = textscan(fid, fieldSpecifier, 'Delimiter', ','); 
            fclose(fid); 
            obj.PacketNumber = data{1}; 
            obj.NumPackets = length(obj.PacketNumber); 
        end 
        function figName = CreateFigName(obj) 
            [pathstr, name , ext, versn] = 

fileparts(obj.FileNameAppendage); 
            figName = name(2:end); 
        end 
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    end 

  
    %% Private methods 
    methods (Access = private) 
        function fileName = CreateFileName(obj, fileNamePrefix) 
            fileName = strcat(fileNamePrefix, obj.FileNameAppendage); 
            if(~exist(fileName, 'file')) 
                error('File not found. No data was imported.'); 
            end 
        end 
    end 
end 

 

 

 

TimeSeriesDataBaseClass 

classdef TimeSeriesDataBaseClass < DataBaseClass 

  
    %% Abstract public 'read-only' properties 
    properties (Abstract, SetAccess = private) 
        FileNameAppendage; 
    end 

  
    %% Public 'read-only' properties 
    properties (SetAccess = private) 
        Time = []; 
        SamplePeriod = 0; 
    end 

  
    %% Public properties 
    properties (Access = public) 
        SampleRate = 0; 
        StartTime = 0; 
    end 

  
    %% Protected properties 
    properties (Access = protected) 
        TimeAxis; 
    end 

  
    %% Abstract public methods 
    methods (Abstract, Access = public) 
        Plot(obj); 
    end 

  
    %% Get/set methods 
    methods 
        function obj = set.SampleRate(obj, sampleRate) 
            obj.SampleRate = sampleRate; 
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            if(obj.SampleRate == 0) 
                obj.Time = []; 
                obj.TimeAxis = 'Sample'; 
            elseif(obj.NumPackets ~= 0) 
                obj.Time = (0:obj.NumPackets-1)' * (1/obj.SampleRate) + 

obj.StartTime; 
                obj.TimeAxis = 'Time (s)'; 
            end 
        end 
        function obj = set.StartTime(obj, startTime) 
            obj.StartTime = startTime; 
            obj.SampleRate = obj.SampleRate; 
        end 
        function samplePeriod = get.SamplePeriod(obj) 
            if(obj.SampleRate == 0) 
                samplePeriod = 0; 
            else 
                samplePeriod = 1 / obj.SampleRate; 
            end 
        end 
    end 
end 

 

InertialAndMagneticDataBaseClass 

classdef InertialAndMagneticDataBaseClass < TimeSeriesDataBaseClass 

  
    %% Abstract public 'read-only' properties 
    properties (Abstract, SetAccess = private) 
        FileNameAppendage; 
    end 

  
    %% Public 'read-only' properties 
    properties (SetAccess = private) 
        Gyroscope = struct('X', [], 'Y', [], 'Z', []); 
        Accelerometer = struct('X', [], 'Y', [], 'Z', []); 
        Magnetometer = struct('X', [], 'Y', [], 'Z', []); 
    end 

  
    %% Abstract protected properties 
    properties (Access = protected) 
        GyroscopeUnits; 
        AccelerometerUnits; 
        MagnetometerUnits; 
    end 

  
    %% Protected methods 
    methods (Access = protected) 
        function obj = Import(obj, fileNamePrefix) 
            data = obj.ImportCSVnumeric(fileNamePrefix); 
            obj.Gyroscope.X = data(:,2); 
            obj.Gyroscope.Y = data(:,3); 
            obj.Gyroscope.Z = data(:,4); 
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            obj.Accelerometer.X = data(:,5); 
            obj.Accelerometer.Y = data(:,6); 
            obj.Accelerometer.Z = data(:,7); 
            obj.Magnetometer.X = data(:,8); 
            obj.Magnetometer.Y = data(:,9); 
            obj.Magnetometer.Z = data(:,10); 
            obj.SampleRate = obj.SampleRate;    % call set method to 

create time vector 
        end 
    end 

  
    %% Public methods 
    methods (Access = public) 
        function fig = Plot(obj) 
            if(obj.NumPackets == 0) 
                error('No data to plot.'); 
            else 
                if(isempty(obj.Time)) 
                    time = 1:obj.NumPackets; 
                else 
                    time = obj.Time; 
                end 
                fig = figure('Name', obj.CreateFigName()); 
                ax(1) = subplot(3,1,1); 
                hold on; 
                plot(time, obj.Gyroscope.X, 'r'); 
                plot(time, obj.Gyroscope.Y, 'g'); 
                plot(time, obj.Gyroscope.Z, 'b'); 
                legend('X', 'Y', 'Z'); 
                xlabel(obj.TimeAxis); 
                ylabel(strcat('Angular rate (', obj.GyroscopeUnits, 

')')); 
                title('Gyroscope'); 
                hold off; 
                ax(2) = subplot(3,1,2); 
                hold on; 
                plot(time, obj.Accelerometer.X, 'r'); 
                plot(time, obj.Accelerometer.Y, 'g'); 
                plot(time, obj.Accelerometer.Z, 'b'); 
                legend('X', 'Y', 'Z'); 
                xlabel(obj.TimeAxis); 
                ylabel(strcat('Acceleration (', obj.AccelerometerUnits, 

')')); 
                title('Accelerometer'); 
                hold off; 
                ax(3) = subplot(3,1,3); 
                hold on; 
                plot(time, obj.Magnetometer.X, 'r'); 
                plot(time, obj.Magnetometer.Y, 'g'); 
                plot(time, obj.Magnetometer.Z, 'b'); 
                legend('X', 'Y', 'Z'); 
                xlabel(obj.TimeAxis); 
                ylabel(strcat('Flux (', obj.MagnetometerUnits, ')')); 
                title('Magnetometer'); 
                hold off; 
                linkaxes(ax,'x'); 
            end 
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        end 
    end 
end 

 

 

CalInertialAndMagneticDataClass 

classdef CalInertialAndMagneticDataClass < 

InertialAndMagneticDataBaseClass 

  
    %% Public 'read-only' properties 
    properties (SetAccess = private) 
        FileNameAppendage = '_CalInertialAndMag.csv'; 
    end 

  
    %% Public methods 
    methods (Access = public) 
        function obj = CalInertialAndMagneticDataClass(varargin) 
            fileNamePrefix = varargin{1}; 
            for i = 2:2:nargin 
                if  strcmp(varargin{i}, 'SampleRate'), obj.SampleRate = 

varargin{i+1}; 
                else error('Invalid argument.'); 
                end 
            end 
            obj.Import(fileNamePrefix); 

  
            % Set protected parent class variables 
            obj.GyroscopeUnits = '^\circ/s'; 
            obj.AccelerometerUnits = 'g'; 
            obj.MagnetometerUnits = 'G'; 
        end 
    end 
end 

 

 

Calculate quaternion between two vectors 

function quat = calcQuat(v1,v2) 
   a = cross(v1,v2); 
   b = acos(dot(v1,v2)/(norm(v1)*norm(v2))); 
   quat = [cos(b/2) a]; 
   k = sqrt((quat(2)^2 + quat(3)^2 + quat(4)^2)/(1-quat(1)^2)); 
   quat = [cos(b/2) a/k]; 
%    b = sqrt((norm(v1))^2 + (norm(v2))^2) + dot(v1,v2); 
%    quat = [b a]; 
%    quat = quat/norm(quat); 
end 
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Calculate signed angle in 3D right hand coordinates between two 

vectors 

function angle = getAngle(v1,v2) 
   a = dot(v1,v2); 
   b = norm(v1) * norm(v2); 

    

    
%    angle = acos(a/b); 
%    if angle > pi/2 
%        angle = pi-angle; 
%    end 

    

    
   temp = cross(v1,v2); 
   if temp(3)>0 
       angle = acos(a/b); 
   else  
       angle = -acos(a/b); 
   end 
end 

 

Calculate conjugate of a quaternion 

function qConj = quaternConj(q) 
    qConj = [q(:,1) -q(:,2) -q(:,3) -q(:,4)]; 
end 

 

 

Calculate product of two quaternions 

function ab = quaternProd(a, b) 
    ab(:,1) = a(:,1).*b(:,1)-a(:,2).*b(:,2)-a(:,3).*b(:,3)-

a(:,4).*b(:,4); 
    ab(:,2) = a(:,1).*b(:,2)+a(:,2).*b(:,1)+a(:,3).*b(:,4)-

a(:,4).*b(:,3); 
    ab(:,3) = a(:,1).*b(:,3)-

a(:,2).*b(:,4)+a(:,3).*b(:,1)+a(:,4).*b(:,2); 
    ab(:,4) = a(:,1).*b(:,4)+a(:,2).*b(:,3)-

a(:,3).*b(:,2)+a(:,4).*b(:,1); 
end 
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Use a quaternion to rotate a N×3 matrix 

function v = quaternRotate(v, q) 
    [row col] = size(v); 
    v0XYZ = quaternProd(quaternProd(q, [zeros(row, 1) v]), 

quaternConj(q)); 
    v = v0XYZ(:, 2:4); 
end 

  

 

 

Quaternion representation to rotation matrix 

function R = quatern2rotMat(q) 
    [rows cols] = size(q); 
    R = zeros(3,3, rows); 
    R(1,1,:) = 2.*q(:,1).^2-1+2.*q(:,2).^2; 
    R(1,2,:) = 2.*(q(:,2).*q(:,3)+q(:,1).*q(:,4)); 
    R(1,3,:) = 2.*(q(:,2).*q(:,4)-q(:,1).*q(:,3)); 
    R(2,1,:) = 2.*(q(:,2).*q(:,3)-q(:,1).*q(:,4)); 
    R(2,2,:) = 2.*q(:,1).^2-1+2.*q(:,3).^2; 
    R(2,3,:) = 2.*(q(:,3).*q(:,4)+q(:,1).*q(:,2)); 
    R(3,1,:) = 2.*(q(:,2).*q(:,4)+q(:,1).*q(:,3)); 
    R(3,2,:) = 2.*(q(:,3).*q(:,4)-q(:,1).*q(:,2)); 
    R(3,3,:) = 2.*q(:,1).^2-1+2.*q(:,4).^2; 
end 

  

 

Generate 3D animation 

function fig = SixDOFanimation(varargin) 

  
    %% Create local variables 

  
    % Required arguments 
    p = varargin{1};                % position of body 
    R = varargin{2};                % rotation matrix of body 
    [numSamples dummy] = size(p); 

  
    % Default values of optional arguments 
    SamplePlotFreq = 1; 
    Trail = 'Off'; 
    LimitRatio = 1; 
    Position = []; 
    FullScreen = false; 
    View = [30 20]; 
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    AxisLength = 1; 
    ShowArrowHead = 'on'; 
    Xlabel = 'X'; 
    Ylabel = 'Y'; 
    Zlabel = 'Z'; 
    Title = '6DOF Animation'; 
    ShowLegend = true; 
    CreateAVI = false; 
    AVIfileName = '6DOF Animation'; 
    AVIfileNameEnum = true; 
    fps = 30; 

  
    for i = 3:2:nargin 
        if  strcmp(varargin{i}, 'SamplePlotFreq'), SamplePlotFreq = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Trail') 
            Trail = varargin{i+1}; 
            if(~strcmp(Trail, 'Off') && ~strcmp(Trail, 'DotsOnly') && 

~strcmp(Trail, 'All')) 
                error('Invalid argument.  Trail must be ''Off'', 

''DotsOnly'' or ''All''.'); 
            end 
        elseif  strcmp(varargin{i}, 'LimitRatio'), LimitRatio = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Position'), Position = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'FullScreen'), FullScreen = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'View'), View = varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'AxisLength'), AxisLength = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'ShowArrowHead'), ShowArrowHead = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Xlabel'), Xlabel = varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Ylabel'), Ylabel = varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Zlabel'), Zlabel = varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'Title'), Title = varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'ShowLegend'), ShowLegend = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'CreateAVI'), CreateAVI = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'AVIfileName'), AVIfileName = 

varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'AVIfileNameEnum'), AVIfileNameEnum 

= varargin{i+1}; 
        elseif  strcmp(varargin{i}, 'AVIfps'), fps = varargin{i+1}; 
        else error('Invalid argument.'); 
        end 
    end; 

  
    %% Reduce data to samples to plot only 

  
    p = p(1:SamplePlotFreq:numSamples, :); 
    R = R(:, :, 1:SamplePlotFreq:numSamples) * AxisLength; 
    if(numel(View) > 2) 
        View = View(1:SamplePlotFreq:numSamples, :); 



 

109 

    end 
    [numPlotSamples dummy] = size(p); 

  
    %% Setup AVI file 

  
    aviobj = 

[];                                                                % 

create null object 
    if(CreateAVI) 
        fileName = strcat(AVIfileName, '.mp4'); 
        if(exist(fileName, 'file')) 
            

if(AVIfileNameEnum)                                                 % 

if file name exists and enum enabled 
                i = 0; 
                while(exist(fileName, 

'file'))                                  % find un-used file name by 

appending enum 
                    fileName = strcat(AVIfileName, sprintf('%i', i), 

'.mp4'); 
                    i = i + 1; 
                end 
            

else                                                                % 

else file name exists and enum disabled 
                fileName = 

[];                                                  % file will not be 

created 
            end 
        end 
        if(isempty(fileName)) 
            sprintf('MP4 file not created as file already exists.') 
        else 
            aviobj = VideoWriter(fileName,'MPEG-4'); 
            aviobj.FrameRate = fps; 
            open(aviobj); 
        end 
    end 

  
    %% Setup figure and plot 

  
    % Create figure 
    fig = figure('Number', 'off', 'Name', '6DOF Animation'); 
    if(FullScreen) 
        screenSize = get(0, 'ScreenSize'); 
        set(fig, 'Position', [0 0 screenSize(3) screenSize(4)]); 
    elseif(~isempty(Position)) 
        set(fig, 'Position', Position); 
    end 
    set(gca, 'drawmode', 'fast'); 
    lighting phong; 
    set(gcf, 'Renderer', 'zbuffer'); 
    hold on; 
    axis equal; 
    grid on; 
    view(View(1, 1), View(1, 2)); 
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    title(i); 
    xlabel(Xlabel); 
    ylabel(Ylabel); 
    zlabel(Zlabel); 

  
    % Create plot data arrays 
    if(strcmp(Trail, 'DotsOnly') || strcmp(Trail, 'All')) 
        x = zeros(numPlotSamples, 1); 
        y = zeros(numPlotSamples, 1); 
        z = zeros(numPlotSamples, 1); 
    end 
    if(strcmp(Trail, 'All')) 
        ox = zeros(numPlotSamples, 1); 
        oy = zeros(numPlotSamples, 1); 
        oz = zeros(numPlotSamples, 1); 
        ux = zeros(numPlotSamples, 1); 
        vx = zeros(numPlotSamples, 1); 
        wx = zeros(numPlotSamples, 1); 
        uy = zeros(numPlotSamples, 1); 
        vy = zeros(numPlotSamples, 1); 
        wy = zeros(numPlotSamples, 1); 
        uz = zeros(numPlotSamples, 1); 
        vz = zeros(numPlotSamples, 1); 
        wz = zeros(numPlotSamples, 1); 
    end 
    x(1) = p(1,1); 
    y(1) = p(1,2); 
    z(1) = p(1,3); 
    ox(1) = x(1); 
    oy(1) = y(1); 
    oz(1) = z(1); 
    ux(1) = R(1,1,1:1); 
    vx(1) = R(2,1,1:1); 
    wx(1) = R(3,1,1:1); 
    uy(1) = R(1,2,1:1); 
    vy(1) = R(2,2,1:1); 
    wy(1) = R(3,2,1:1); 
    uz(1) = R(1,3,1:1); 
    vz(1) = R(2,3,1:1); 
    wz(1) = R(3,3,1:1); 

  
    % Create graphics handles 
    orgHandle = plot3(x, y, z, 'k.'); 
    if(ShowArrowHead) 
        ShowArrowHeadStr = 'on'; 
    else 
        ShowArrowHeadStr = 'off'; 
    end 
    quivXhandle = quiver3(ox, oy, oz, ux, vx, wx,  'r', 

'ShowArrowHead', ShowArrowHeadStr, 'MaxHeadSize', 0.999999, 

'AutoScale', 'off'); 
    quivYhandle = quiver3(ox, oy, oz, uy, vy, wy,  'g', 

'ShowArrowHead', ShowArrowHeadStr, 'MaxHeadSize', 0.999999, 

'AutoScale', 'off'); 
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    quivZhandle = quiver3(ox, ox, oz, uz, vz, wz,  'b', 

'ShowArrowHead', ShowArrowHeadStr, 'MaxHeadSize', 0.999999, 

'AutoScale', 'off'); 

  
    % Create legend 
    if(ShowLegend) 
        legend('Origin', 'X', 'Y', 'Z'); 
    end 

     
    % Set initial limits 
    Xlim = [x(1)-AxisLength x(1)+AxisLength] * LimitRatio; 
    Ylim = [y(1)-AxisLength y(1)+AxisLength] * LimitRatio; 
    Zlim = [z(1)-AxisLength z(1)+AxisLength] * LimitRatio; 
    set(gca, 'Xlim', Xlim, 'Ylim', Ylim, 'Zlim', Zlim); 

     
    % Set initial view 
    view(View(1, :)); 

  
    %% Plot one sample at a time 

  
    for i = 1:numPlotSamples 

  
        % Update graph title 
        if(strcmp(Title, '')) 
            titleText = sprintf('Sample %i of %i', 1+((i-

1)*SamplePlotFreq), numSamples); 
        else 
            titleText = strcat(Title, ' (', sprintf('Sample %i of %i', 

1+((i-1)*SamplePlotFreq), numSamples), ')'); 
        end 
        title(titleText); 

  
        % Plot body x y z axes 
        if(strcmp(Trail, 'DotsOnly') || strcmp(Trail, 'All')) 
            x(1:i) = p(1:i,1); 
            y(1:i) = p(1:i,2); 
            z(1:i) = p(1:i,3); 
        else 
            x = p(i,1); 
            y = p(i,2); 
            z = p(i,3); 
        end 
        if(strcmp(Trail, 'All')) 
            ox(1:i) = p(1:i,1); 
            oy(1:i) = p(1:i,2); 
            oz(1:i) = p(1:i,3); 
            ux(1:i) = R(1,1,1:i); 
            vx(1:i) = R(2,1,1:i); 
            wx(1:i) = R(3,1,1:i); 
            uy(1:i) = R(1,2,1:i); 
            vy(1:i) = R(2,2,1:i); 
            wy(1:i) = R(3,2,1:i); 
            uz(1:i) = R(1,3,1:i); 
            vz(1:i) = R(2,3,1:i); 
            wz(1:i) = R(3,3,1:i); 
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        else 
            ox = p(i,1); 
            oy = p(i,2); 
            oz = p(i,3); 
            ux = R(1,1,i); 
            vx = R(2,1,i); 
            wx = R(3,1,i); 
            uy = R(1,2,i); 
            vy = R(2,2,i); 
            wy = R(3,2,i); 
            uz = R(1,3,i); 
            vz = R(2,3,i); 
            wz = R(3,3,i); 
        end 
        set(orgHandle, 'xdata', x, 'ydata', y, 'zdata', z); 
        set(quivXhandle, 'xdata', ox, 'ydata', oy, 'zdata', oz,'udata', 

ux, 'vdata', vx, 'wdata', wx); 
        set(quivYhandle, 'xdata', ox, 'ydata', oy, 'zdata', oz,'udata', 

uy, 'vdata', vy, 'wdata', wy); 
        set(quivZhandle, 'xdata', ox, 'ydata', oy, 'zdata', oz,'udata', 

uz, 'vdata', vz, 'wdata', wz); 

  
        % Adjust axes for snug fit and draw 
        axisLimChanged = false; 
        if((p(i,1) - AxisLength) < Xlim(1)), Xlim(1) = p(i,1) - 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if((p(i,2) - AxisLength) < Ylim(1)), Ylim(1) = p(i,2) - 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if((p(i,3) - AxisLength) < Zlim(1)), Zlim(1) = p(i,3) - 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if((p(i,1) + AxisLength) > Xlim(2)), Xlim(2) = p(i,1) + 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if((p(i,2) + AxisLength) > Ylim(2)), Ylim(2) = p(i,2) + 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if((p(i,3) + AxisLength) > Zlim(2)), Zlim(2) = p(i,3) + 

LimitRatio*AxisLength; axisLimChanged = true; end 
        if(axisLimChanged), set(gca, 'Xlim', Xlim, 'Ylim', Ylim, 

'Zlim', Zlim); end 
        drawnow; 

  
        % Adjust view 
        if(numel(View) > 2) 
            view(View(i, :)); 
        end 

  
        % Add frame to AVI object 
        if(~isempty(aviobj)) 
            frame = getframe(fig); 
            writeVideo(aviobj, frame); 
        end 

  
    end 

  
    hold off; 

  
    % Close AVI file 
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    if(~isempty(aviobj)) 
        close(aviobj); 
    end 

  
end 
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