
Hidden Markov model

Jianxin Wu

LAMDA Group

National Key Lab for Novel Software Technology

Nanjing University, China

wujx2001@gmail.com

February 11, 2020

Contents

1 Sequential data and the Markov property 2
1.1 Various sequential data and models . . . . . . . . . . . . . . . . . 2
1.2 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Discrete time Markov chain . . . . . . . . . . . . . . . . . . . . . 6
1.4 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Three basic problems in HMM learning 10

3 α, β, and the evaluation problem 11
3.1 The forward variable and algorithm . . . . . . . . . . . . . . . . 12
3.2 The backward variable and algorithm . . . . . . . . . . . . . . . 14

4 γ, δ, ψ, and the decoding problem 16
4.1 γ and the independently decoded optimal states . . . . . . . . . . 16
4.2 δ, ψ, and the jointly decoded optimal states . . . . . . . . . . . . 17

5 ξ and learning HMM parameters 19
5.1 Baum–Welch: Updating λ as expected proportions . . . . . . . . 20
5.2 How to compute ξ . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Exercises 24

In this chapter, we will introduce the basic concepts in the hidden Markov
model (HMM) and a few important HMM learning algorithms.

1

http://cs.nju.edu.cn/wujx
http://lamda.nju.edu.cn


1 Sequential data and the Markov property

The hidden Markov model deals with sequential data, too. However, unlike in
the dynamic time warping, we do not assume the sequential data can be aligned.
In the HMM, the data are supposed to possess the Markov property. We will
first have a closer look at various types of sequential data, then introduce the
Markov property and HMM.

1.1 Various sequential data and models

Depending on their properties and our objectives, sequential data have been
modeled in different ways. As has been introduced, if the sequential data can
be aligned, dynamic time warping and other related algorithms (e.g., string
matching methods) can be applied to handle them.

However, there are many types of sequential data that cannot be aligned—
e.g., stock price data. A great many methods have been proposed to handle
sequential data. We introduce a small subset of these methods very briefly in
this section, but will avoid going into details.

If dependencies in the sequence are not long-term, it is possible to use short-
term history data to predict the next element in a sequence. For example, let
x1, x2, . . . , xt be an input sequence, and the objective is to predict xt+1 based
on the existing sequence. We can extract the most recent history data in a short
time period or time window, e.g.,

(xt−k+1, xt−k+2, . . . , xt)

is a time window with k readings in k time steps. Since we assume the depen-
dencies among sequential data have short range, a reasonably large k should
provide enough information to predict xt+1. In addition, since the size of the
time window is fixed (e.g., k), we can use all sorts of machine learning meth-
ods to predict xt+1 using the fixed length vector (xt−k+1, xt−k+2, . . . , xt). If a
linear relationship is considered, the moving average (MA) and autoregressive
(AR) models are two example models popularly used in statistical analysis of
time series (aka, sequential data), but different assumptions on noise and linear
relationships are utilized in these two models. AR and MA can be combined to
form the autoregressive-moving-average (ARMA) model.

Statistical models (e.g., ARMA) have been thoroughly analyzed, and many
theoretical results are available. However, linear relationships are usually insuffi-
cient to model sequential data, and the assumptions of these statistical methods
are often broken in the real world. We also want to deal with variable length
input in many situations, rather than a fixed length time window. The recurrent
neural network (RNN) can handle these complex situations.

Figure 1a shows a simple RNN architecture. At time step t, the input is a
vector xt, and the simple RNN also maintains a state vector st (which is updated
at every time step). The state vector is to be learned using the training data,
and is taught by the training data to encode useful knowledge for fulfilling the
learning objective included in the inputs till now: (x1,x2, . . . ,xt−1).

2



(a) Simple RNN

(b) RNN unfolded

� � � �

��� ��� �� �� 	
����

(c) RNN translation

Figure 1: A simple RNN hidden unit, its unfolded version, and its application
in language translation.

3



After observing xt, the hidden state vector should be updated at time t+ 1,
given the current state vector st and input xt. A simple RNN updates the state
using an affine transform and a nonlinear activation function, e.g.,

st+1 = f(Wxxt +Wsst + bs) , (1)

in which Wx, Ws, and bs are parameters of the affine transform, and f is the
nonlinear activation function (e.g., the logistic sigmoid function).

A simple RNN hidden unit may have an optional output vector ot. For
example, if we want to choose a word from a dictionary, one possible way is to
calculate Wost+bo to obtain a score for each word, in which Wo is a parameter
matrix, whose number of rows equals the number of words in the dictionary,
and bo is the bias parameter. Then, a softmax transformation will turn these
scores into a probability distribution, and we can sample from this distribution
to determine which word will be the output at time t.

The same hidden unit architecture (Figure 1a) is used for t = 1, 2, . . . , in
which the parameters remain unchanged but with different values of the input,
state, and output vectors. We can treat an RNN with T time steps as a network
with T layers: the hidden unit with the input, state, and output vectors for the
t-th time step is the t-th layer in the network. One way to understand its
data flow is to unfold these units along the time axis, as shown in Figure 1b.
After an RNN is unfolded, it can be viewed as a deep network with many layers.
Although these layers have different input, state, and output vectors, they share
the same set of parameter values (e.g., Wx, Ws, bs, Wo, and bo). Methods for
training deep neural networks (e.g., stochastic gradient descent) can be adopted
to learn the parameters of an RNN in the unfolded network.

One application of RNN is machine translation, which is illustrated in Fig-
ure 1c. Given one sentence in the source language (e.g., Chinese), an RNN
(with parameters already learned from training data) reads it in as a sequence
of words. No output is given before the sentence is completely read and pro-
cessed. After that, no input is needed for subsequent layers (time steps), and
the translation to the target language (e.g., English) is given by the output
nodes as another sequence of words.

Note that this figure is only for illustrative purposes. An RNN for real world
translation (or other tasks) will be much more complex. For example, when
long sequences are presented, a simple RNN will have difficulty in learning the
parameters due to a problem called the vanishing gradient or exploding gradient.
Also, a simple RNN is incapable of learning dependencies between inputs that
are far apart. More complex hidden recurrent units have been proposed to deal
with these difficulties—e.g., the Long-Short Term Memory (LSTM) hidden unit,
the Gated Recurrent Unit (GRU), and the Minimal Gated Unit (MGU).

1.2 The Markov property

The HMM, unlike RNNs, only handles data with the Markov property, which
is a property for some stochastic processes. A stochastic process (or random

4



process) is a sequence of ordered random variables, which can be treated as
the evolution of states of a random system over time. Hence, unlike the RNN,
which does not explicitly impose assumptions on the sequential data, the HMM
interprets the sequential data from a probabilistic point of view. If x1,x2, . . . ,xt
is a sequence, then each xi is considered as a random vector (or its instantiation).
We use x1:t as an abbreviation of the entire sequence.

Let xt be the coordinates of an autonomous driving car at time t, the precise
values of which are essential in autonomous driving. However, we do not have
a precise way to directly observe this variable. Some measurements that can
be directly observed at time t—e.g., GPS readings and the video frame taken
by a video camera—are collectively denoted by ot, which are useful for us to
estimate xt.

Uncertainty exists in the observations. The GPS readings are not robust,
and its coordinates may jump frequently even in a short time period. Cameras
can help reduce uncertainty in GPS readings, but scenes at different locations
may look alike (e.g., imagine driving in the Great Sandy desert in Australia or
the Taklamakan desert in Xinjiang, China). Hence, we need to use probabilistic
methods to handle such uncertainties—i.e., our estimate of xt is a distribution
(instead of a single value).

When we move on from time t− 1 to t, we can have an initial estimate of xt
based on 1) the distribution of xt−1; and, 2) the driving speed & direction of
the car (i.e., based on the dynamic model). After taking into account the new
observation ot, we can update our belief in xt based on these evidences. The
Kalman filter is one of the popular tools to estimate xt in this setup.1

More technical details of the Kalman filter can be found in Chapter 13. In
this chapter, we want to emphasize that in this stochastic process we have just
described, the estimation of xt only requires two things: xt−1 and ot—any
previous hidden state (x1:t−2) or previous observation (o1:t−1) is not needed at
all!

This is not surprising in our setup. Since xt−1 is a random vector, its
estimation is an entire distribution. If the probability estimate for xt−1 has
included all information in x1:t−2 and o1:t−1, we no longer need this so long
as we already estimated the distribution of xt−1. This kind of “memoryless”
property is called the Markov property , which states that the future evolution of
a stochastic process only depends on the current state, but not on any preceding
ones. It is obvious the Kalman filter makes the Markov assumption—i.e., the
Markov property is assumed in Kalman filtering.

We have used the natural numbers 1, 2, . . . to denote discrete time steps. A
discrete-time stochastic process satisfying the Markov property is known as a
Markov chain (also called the DTMC, discrete-time Markov chain).2

1Rudolf Emil Kalman, the primary co-inventor of this method, is an American electrical
engineer and mathematician.

2Both the Markov property and Markov chain are named after Andrey Andreyevich
Markov, a Russian mathematician. Markov’s inequality, which is reviewed in Chapter 2,
is also named after him.

5



��������

���	
�
�

���

�����

����

����

�����

���

���

����

����

(a) A DTMC example

(b) DTMC graphical model

Figure 2: A discrete-time Markov chain example and its graphical model illus-
tration.

1.3 Discrete time Markov chain

Figure 2a specifies the evolution of an example DTMC. It models a hypothetical
and overly simplified stock market. The random variable in consideration (X)
has three possible states: bull market, bear market, or stagnant market, which
are the three filled nodes. Arcs denote transitions between different states, and
numbers around arcs are the transition probabilities. For example, the arc from
the “Bull” node to itself means that a bull market has a 90% chance to remain
in the next time step (but also has a 7.5% probability to transit to a bear market
and 2.5% to a stagnant one).

If we ignore the transition probabilities and specific state symbols, the evo-
lution process can be succinctly depicted as the graphical model in Figure 2b.3

3A graphical model (or probabilistic graphical model) uses nodes to represent random vari-
ables and arcs to denote probabilistic dependence among nodes. Arcs are replaced by lines in

6



Note that random variables are considered observable in a DTMC, which are
drawn as filled circle nodes in graphical models.

SupposeX is discrete and hasN possible values, denoted by symbols S1, S2, . . . , SN .
To study how X evolves, we first need to observe X1 at the first time step. Be-
fore we observe its value, there is a prior distribution to specify X. We denote
the prior distribution by p(X1), and its p.m.f. is specified by a vector

π = (π1, π2, . . . , πN )T ,

with πi = Pr(X1 = Si), πi ≥ 0 (1 ≤ i ≤ N), and
∑N
i=1 πi = 1.

Because the evolution of X follows a DTMC, Xt only depends on Xt−1 but
not on X1:t−2. The transition from Xt−1 to Xt is stochastic (i.e., probabilistic),
fully specified by a state transition probability matrix A. A is an N ×N matrix,
with

Aij = Pr(Xt = Sj |Xt−1 = Si) . (2)

Because Xt must be one of the N states, we know∑N
j=1Aij = 1 for any 1 ≤ i ≤ N

Aij ≥ 0 for any 1 ≤ i, j ≤ N .
(3)

That is, every row of a transition matrix sums to 1. Hence, the numbers around
all arcs emitting from any node in Figure 2a should sum to 1 (e.g., 0.5 + 0.25 +
0.25 = 1 for the stagnant market node). We call a matrix satisfying these
constraints a stochastic matrix. More precisely, it is a right stochastic matrix.
A real matrix whose entries are non-negative and every column sums to one is
called a left stochastic matrix.

One key benefit of the Markov property is that it greatly reduces the model
complexity. If the Markov assumption is invalid, we need to estimate Xt using
all previous states X1:t−1. Hence, the parameters of p(Xt|X1:t−1) require N t

numbers to completely specify it. This exponential increase of model complexity
(aka, the curse of dimensionality) makes such a model intractable. Assuming A
remains constant in different time steps, the two parameters (π, A) fully specify
a DTMC because of the Markov assumption. Hence, we only need N2 − 1
numbers to specify the parameters of a DTMC (cf. problem 1.) For notational
simplicity, we use λ to denote the set of all parameters—i.e., λ = (π, A).

With a set of known parameters λ, we can generate a sequence for this
DTMC (i.e., simulating how X evolves or to sample from it). To generate a
sequence, we first sample from π and get an instantiation of X1, say X1 = Sq1 .
Then, we sample from the row corresponding to X1 (i.e., the q1-th row) in A and
get an instantiation of X2. The sampling process can continue for any number
of time steps, and can generate an arbitrary length sequence whose distribution
follows the DTMC.

undirected graphical models. The Markov chain and HMM are both conveniently represented
as graphical models. More complex graphical models and their inference algorithms are not
discussed in this introductory book because they are advanced topics. Graphical models are
important tools for learning and recognition.

7



1.4 Hidden Markov models

A sequence generated (sampled) from a DTMC only depends on probabilistic
transitions, which may generate strange sequences. For example, a series of
transitions “bull–bear–bull–bear” is possible to be sampled from the DTMC in
Figure 2a, but this sequence is in general unlikely if the unit of a time step is a
day instead of a year. In the autonomous driving car example, if observations ot
are not considered, we may find our car in Nanjing, China at time t (seconds),
but in New York city, USA at time t+ 1 (seconds), which is impossible because
teleportation has yet to be invented.

Observations are useful in dramatically reducing this kind of impossible or
unreasonable transition between states. The GPS readings may be off by 10
meters, but will not locate a car at a location in New York if the real location is in
Nanjing. A hidden Markov Model uses observations and states simultaneously:
the state is what we want to estimate (e.g., the car’s precise location) but is not
directly observable (i.e., is hidden); the observations can be observed, and we
can estimate the hidden states using these observations.

The hidden Markov model is illustrated in Figure 3 as a graphical model.
We use Qt to denote the state random variable at time t, and Ot the observation
random variable. To fully specify an HMM, we need the following five items:

• N : the number of possible states. We use N symbols S1, S2, . . . , SN to
denote them.

• M : the number of possible observations if we assume the observation is
discrete too. M is often determined by or derived from domain knowledge.
We use M symbols V1, V2, . . . , VM to denote possible observations. The
observation Ot only depends on Qt, but Qt does not depend on Ot. Hence,
HMM is a directed graphical model.

The observation in an HMM can be, e.g., a normal distribution or even
a GMM. In this book, we only focus on the simple scenario where the
observation is a discrete random variable.

• π: the prior (initial) state distribution. π = (π1, π2, . . . , πN ) and πi =
Pr(Q1 = Si).

• A: the state transition matrix. Aij = Pr(Qt = Sj |Qt−1 = Si) is the
probability of the next state being Sj if the current one is Si, 1 ≤ i, j ≤ N .
Note that we assume A does not change when t changes.

• B: the observation probability matrix. Instead of denoting one probability
as Bjk, we use bj(k) = Pr(Ot = Vk|Qt = Sj) to denote the probability of
the observation being Vk when the state is Sj , 1 ≤ j ≤ N , 1 ≤ k ≤ M .
And, we assume B does not change when t changes.

N and M determine the architecture or structure of a hidden Markov model.
π, A, and B are parameters of the HMM. For notational simplicity, we use

λ = (π, A,B)

8



Figure 3: The hidden Markov model.

to denote all the parameters of an HMM too. Although we can manually design
the state space for an HMM (or even manually set the values in A and B), it
is convenient to specify the structure (N and M) and let an HMM learn its set
of states and parameters from the training data.

The Markov property is translated in the HMM notation as

Pr(Qt|Q1:t−1, O1:t−1) = Pr(Qt|Qt−1) . (4)

for any t. HMM is a generative model. After the structure and parameters
are fixed, we can easily compute the joint probability of T hidden states q1:T

(where qt is the index of the state at time t, 1 ≤ qt ≤ N for 1 ≤ t ≤ T ) and T
observations o1:T (where ot is index of the observation at time t, 1 ≤ ot ≤M):

Pr(Q1 = Sq1 , O1 = Vo1 , · · · , QT = SqT , OT = VoT ) (5)

= πq1bq1(o1)Aq1q2bq2(o2)Aq2q3bq3(o3) · · ·AqT−1qT bqT (oT ) (6)

= πq1bq1(o1)

T∏
t=2

Aqt−1qtbqt(ot) . (7)

In other words, because of the conditional independence (Qt is conditionally
independent of Q1:t−2 and O1:t−1 if Qt−1 is known), the joint probability is the
product of a series of probabilities, whose computations never involve the joint
of more than two random variables. For notational simplicity, we abbreviate
the joint probability as Pr(q1:T , o1:T ).

Based on this joint probability mass function, we can sample from the HMM
to generate an arbitrary length sequence of hidden states and observations. To
generate a length T sequence, we use the following procedure:

1. t← 1

2. Sample Q1 = Sq1 from π

3. Sample the observation O1 = Vo1 using the p.m.f. which is in the q1-th
row of B

9



4. If the current time t = T , terminate; otherwise, sample the next state
Qt+1 = Sqt+1 using the p.m.f. that is in the qt-th row of A

5. Sample the observation Ot+1 = ot+1 using the p.m.f. that is in the qt+1-th
row of B

6. t← t+ 1, and go to line 4.

2 Three basic problems in HMM learning

There are three basic learning problems in HMMs, whose definitions follow that
in Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE, Vol 77, No. 2,
1989, pp. 257–286. In all these three problems, we assume the HMM structure
(i.e., N and M) has been fixed.

The first basic problem is to evaluate the probability of an observation se-
quence o1:T when the model parameters are fixed—i.e., to calculate Pr(o1:T |λ).
This evaluation problem, as will be shown soon, is relatively simple to solve
among the three basic problems. However, the evaluation problem has many
important applications in HMMs.

For example, given a fixed parameter set λ and two sequences o1:T and
o′1:T , the evaluated sequence probability will tell us which sequence has a higher
chance of being observed. Probably a more important usage of the evaluation
problem is model selection. If we have an observation sequence o1:T and two
sets of parameters λ1 and λ2 (which are, e.g., learned using different methods),
it is reasonable to conjecture the model with a larger probability of observing
this sequence is a better fit to the observations. Note that when we allow the
parameters λ to change, the probability of observing o1:T given parameters λ
is the likelihood of the parameters. Given a training sequence o1:T , maximum
likelihood estimation will find a parameter set that maximizes this likelihood
(which is the third basic problem).

The second basic problem is the decoding problem. When we are given a fixed
parameter set λ and an observation sequence o1:T , what is the best hidden state
sequence corresponding to these observations? As we have illustrated using
the autonomous driving car example, it is usually the hidden states (rather
than the observations) that are useful for an application. Hence, decoding an
optimal hidden state sequence from the observation sequence is a very important
problem in HMM learning.

However, it is not always easy to define what best or optimal means in the
decoding problem. As will be shown, different optimality criteria have been
proposed and different answers to the decoding problem will be given accord-
ingly. In addition to finding the best sequence of hidden states, the decoding
problem has other applications in HMM. For example, suppose we have learned
an HMM model with a large N , but the decoding procedure has found that
many symbols (in S1, S2, . . . , SN ) have never appeared in the decoded optimal
sequences. This fact suggests that N is too big for our problem at hand (i.e.,

10



many state symbols are wasted), and we may need to learn a new model with
a smaller N .

The third and final basic problem in HMM is to learn the optimal parameters
for an HMM. We have assumed the HMM model—i.e., the parameters λ =
(π, A,B)—have been given or assigned optimal values in the first two basic
problems. In real world applications, however, we have to learn these parameters
for ourselves.

As aforementioned, the basic idea is to find the parameters that have the
largest likelihood. That is, given N , M , and the training sequence o1:T , we want
to find the parameter set λ that maximize the likelihood function Pr(o1:T |λ).
Note that in this maximum likelihood estimation, λ is not a random vector.
Its appearance after the conditional probability symbol (“|”) is only to indicate
that the involved probability is computed using λ as the parameter values, and
to be consistent with notations in the literature.

The training data for HMM learning, however, is different from those in
methods we have seen (e.g., SVM). If T is large enough, one training sequence
o1:T might be sufficient to learn a good HMM model. Of course, we can also
use multiple training sequences to learn HMM parameters.

The key strategy for solving the first two basic problems is dynamic pro-
gramming, which we have experienced in the dynamic time warping method in
the previous chapter. The third basic HMM problem can be solved by using
the Expectation-Maximization (EM) algorithm. We will introduce the details
of the solutions to these problems in the rest of this chapter.

3 α, β, and the evaluation problem

Given N , M , λ, and o1:T , the evaluation problem tries to compute Pr(o1:T |λ).
The law of total probability gives a way to compute it, as

Pr(o1:T |λ) =
∑

q1:T∈Ω

Pr(o1:T , q1:T |λ) (8)

=
∑

q1:T∈Ω

Pr(o1:T |q1:T , λ) Pr(q1:T |λ) , (9)

in which Ω is the space of all possible sequences of hidden states. Note that
Pr(o1:T |q1:T , λ) means Pr(O1:T = Vo1:T |Q1:T = Sq1:T , λ). When the meaning is
obvious from the symbols and contexts, we will omit the random variable names
in equations.

It is obvious that

Pr(o1:T |q1:T , λ) =

T∏
t=1

Pr(ot|qt, λ) =

T∏
t=1

bqt(ot)

and

Pr(q1:T |λ) = πq1

T∏
t=2

Aqt−1qt .

11



In other words, in order to use the law of total probability to compute Pr(o1:T |λ),
we need to generate |Ω| sequences of hidden states and observations. Because
each state can take the values of N possible symbols and there are T time steps,
|Ω| = NT , which means Equation 9 is not tractable.

The complexity of Equation 9 comes from variations in the states Q1:T . Be-
cause the states are hidden, we have to enumerate all possibilities and compute
the expectation, which leads to the exponentially increasing complexity. How-
ever, the Markov assumption says that given Qt = Sqt , Qt+1 is independent of
Q1:t−1 and O1:t−1. In addition, Ot only depends on Qt. In other words, we can
divide the calculation Pr(o1:T |λ) into two smaller problems: Pr(o1:T−1|λ) and
Pr(oT |λ), and combine them by enumerating all possible states of QT−1 and QT
(whose complexity is N ×N = N2). Similarly, the calculation of Pr(o1:T−1|λ)
can be further divided into Pr(o1:T−2|λ) and Pr(oT−1|λ)—a typical dynamic
programming formulation!

3.1 The forward variable and algorithm

The law of total probability tells us

Pr(o1:T |λ) =

N∑
i=1

Pr(o1:T , QT = Si|λ) (10)

=

N∑
i=1

Pr(o1:T−1, QT = Si|λ)bi(oT ) , (11)

and then we need to compute Pr(o1:T−1, QT = Si|λ). Using the law of total
probability again, we have

Pr(o1:T−1, QT = Si|λ) (12)

=

N∑
j=1

Pr(o1:T−1, QT = Si, QT−1 = Sj |λ) (13)

=

N∑
j=1

Pr(o1:T−1, QT−1 = Sj |λ) Pr(QT = Si|o1:T−1, QT−1 = Sj , λ) (14)

=

N∑
j=1

Pr(o1:T−1, QT−1 = Sj |λ) Pr(QT = Si|QT−1 = Sj , λ) (15)

=

N∑
j=1

Pr(o1:T−1, QT−1 = Sj |λ)Aji . (16)

Note that in the above derivation, we have implicitly used conditional inde-
pendence among variables without a proof. In the exercise problems for this
chapter, we will describe the d-separation method that can precisely reveal such
conditional independence.

12



The recursion from T − 1 to T is not obvious yet. However, because

Pr(o1:T−1|λ) =

N∑
j=1

Pr(o1:T−1, QT−1 = Sj |λ) , (17)

if we can compute Pr(o1:T−1, QT−1 = Sj |λ) for all 1 ≤ j ≤ N , we can evaluate
Pr(o1:T−1|λ), and similarly Pr(o1:T |λ) for time T .

Hence, in a dynamic programming solution for the HMM evaluation problem,
the quantity to be evaluated is Pr(o1:t, Qt = Si|λ) for all 1 ≤ t ≤ T and
1 ≤ i ≤ N . The forward algorithm (or forward procedure) defines this quantity
as the forward variable αt(i):

αt(i) = Pr(o1:t, Qt = Si|λ) , (18)

which is the probability that at time t, the hidden state is Si and the observa-
tion history till time t is o1:t. The recursion between forward variables in two
consecutive time steps is:

αt+1(i) =

 N∑
j=1

αt(j)Aji

 bi(ot+1) , (19)

whose proof is easy by using Equations 12 and 16.
It is obvious that when t = 1, we have

α1(i) = πibi(o1) .

Hence, we can start the recursion from t = 1, and move from left to right (i.e., t
increases) until t = T (hence this method is called the forward algorithm). The
forward algorithm is described in Algorithm 1.

Algorithm 1 The forward algorithm

1: Initialization: α1(i) = πibi(o1), for all 1 ≤ i ≤ N
2: Forward recursion: For t = 1, 2, . . . , T − 2, T − 1 and all 1 ≤ i ≤ N ,

αt+1(i) =

 N∑
j=1

αt(j)Aji

 bi(ot+1)

3: Output:

P (o1:T |λ) =

N∑
i=1

αT (i) . (20)

It is obvious that the complexity of the forward algorithm is O(TN2), which
is efficient and much faster than NT . Dynamic programming has once again
proven itself to be an effective strategy in removing redundant computations.

13



3.2 The backward variable and algorithm

We can interpret the αt(i) variable as the following: one person stands at time t
and looks back; αt(i) is the probability of this person observing state symbol Si
and the history observation sequence o1:t. After obtaining αt(i), if this person
turns around and looks into the future, which information is still missing? We
have observed the state Qt = Si and observations o1:t, and still have to observe
ot+1:T ! Hence, the backward variable βt(i) is defined as

βt(i) = Pr(ot+1:T |Qt = Si, λ) , (21)

i.e., βt(i) is the probability of observing future output sequence ot+1:T if the
hidden state is Si at time t.

It is easy to derive the recursive relationship for βt(i), which is

βt(i) =

N∑
j=1

Aijbj(ot+1)βt+1(j) . (22)

It is obvious that the recursive updates move backward (i.e., use time t + 1
probabilities to calculate those at time t). Hence, the backward algorithm (the
backward procedure) must be initialized with t = T , and βT (i) is the probability
of observing nothing after time T given the current state QT = Si, which is 1.
Finally, we have

Pr(o1:T |λ) =

N∑
i=1

πibi(o1)β1(i) . (23)

The proofs of the above two equations are left as exercises. Putting these facts
together, we have come up with the backward algorithm in Algorithm 2.

Algorithm 2 The backward algorithm

1: Initialization: βT (i) = 1, for all 1 ≤ i ≤ N
2: Backward recursion: For t = T − 1, T − 2, . . . , 2, 1 and all 1 ≤ i ≤ N ,

βt(i) =

N∑
j=1

Aijbj(ot+1)βt+1(j)

3: Output:

Pr(o1:T |λ) =

N∑
i=1

πibi(o1)β1(i) . (24)

The forward and backward procedures must give the same answer because
they are computing the same probability. Figure 4 includes Matlab/Octave
code to evaluate Pr(o1:T |λ), whose results show that the forward and backward
algorithms indeed return the same answer to the evaluation problem.

14



iter = 1;

for iter = 1:1000

N = 3; % number of states

Pi = rand(1,N); Pi = Pi / sum(Pi); % prior distribution

A = rand(N,N); % state transition matrix

A(1,3) = 0; % cannot have a transition from state 1 to 3

for i=1:N A(i,:) = A(i,:) / sum(A(i,:)); end

M = 3; % number of outputs

B = rand(N,M); % output probability matrix

for i=1:N B(i,:) = B(i,:) / sum(B(i,:)); end

T = 5; % number of time steps

O = randi(M, 1, T); % outputs

Alpha = zeros (T, N); % alpha

Beta = ones (T, N); % beta

% Compute Alpha

Alpha (1,:) = Pi .* B(:, O(1))’;

for t = 2:T

Alpha(t,:) = (Alpha(t-1,:) * A) .* B(:,O(t))’;

end

% Compute Beta

for t = (T-1): -1:1

Beta(t,:) = A * (B(:,O(t+1)) .* Beta(t+1,:)’);

end

Gamma = Alpha .*Beta; % ( unnormalized ) gamma

% two ways to compute the sequence probablity

p1 = sum(Alpha(end ,:));

p2 = sum(Gamma (1 ,:));

assert(abs(p1-p2)<1e -12);

% can we find an invalid transition from state 1 to 3?

[~,I]=max(Gamma ’);

for i=1:T-1

if I(i)==1 && I(i+1)==3

disp([’1-->3 at iteration ’ num2str(iter) ’!’])

return

end

end

end

Figure 4: Sample code to compute α, β, and (unnormalized) γ variables. Note
that this code is only for illustrative purposes—it is not practical for solving
real world HMM problems.

15



However, the code in Figure 4 is listed only for illustrative purposes. When
T is a large number, the computed probability will be a very small number (e.g.,
< 10−400). Pr(o1:T |λ) may be smaller than the minimum floating point number
that can be represented by a float (single precision) or double (double pre-
cision) type in a computer system. Numerical errors (such as rounding errors)
will also quickly accumulate. Hence, implementing algorithms in hidden Markov
models is complex and tricky. We will not dive into HMM implementation de-
tails, but interested readers can refer to publicly available HMM implementation
source code such as the HTK package.4

4 γ, δ, ψ, and the decoding problem

Now we move on to the second basic problem: decoding. As we have discussed,
one major question is: given an observation sequence o1:T , what is the criterion
to determine the best (or optimal) hidden state sequence?

4.1 γ and the independently decoded optimal states

One straightforward idea is to use a simple criterion: find the maximum likeli-
hood state for each time step independently. That is, for any 1 ≤ t ≤ T , we can
compute Pr(Qt = Si|o1:T , λ) for all 1 ≤ i ≤ N , and set Qt to the one leading to
the maximum probability.

To solve this problem, we can define the γ variables as

γt(i) = Pr(Qt = Si|o1:T , λ) , (25)

and set
qt = arg max

1≤i≤N
γt(i) (26)

for all 1 ≤ t ≤ T . We can then decode the hidden state Qt as Sqt .
γt(i) is the probability of Qt being Si when we have observed the complete

observation sequence o1:T . In fact, we do not need to design a new algorithm
to compute this variable: it can be easily computed from αt(i) and βt(i).

Because O1:t and Ot+1:T are independent of each other if Qt is known, we
have

Pr(Qt = Si, o1:T |λ) = Pr(o1:t, ot+1:T |Qt = Si, λ) Pr(Qt = Si|λ) (27)

= Pr(o1:t|Qt = Si, λ) Pr(ot+1:T |Qt = Si, λ) Pr(Qt = Si|λ)
(28)

= Pr(ot+1:T |Qt = Si, λ) Pr(Qt = Si, o1:t|λ) (29)

=αt(i)βt(i) . (30)

Then, we can compute γt(i) as

γt(i) =
Pr(Qt = Si, o1:T |λ)

Pr(o1:T |λ)
(31)

4http://htk.eng.cam.ac.uk/

16

http://htk.eng.cam.ac.uk/


=
Pr(Qt = Si, o1:T |λ)∑N
j=1 Pr(Qt = Sj , o1:T |λ)

(32)

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

. (33)

To compute the γ variables, we can first set γt(i) = αt(i)βt(i), and then `1
normalize the γ values for every time step t. Note that we can find qt by finding
the maximum element in the unnormalized γ values (i.e., αt(i)βt(i)) without the
normalization, because the normalization constant Pr(o1:T |λ) will not change
the index of the largest γ value at time t.

One byproduct of this derivation is: now we have three equivalent ways
to solve the evaluation problem: using α, β, and αβ. Based on the above
derivation, we have

Pr(o1:T |λ) =

N∑
i=1

αt(i)βt(i) (34)

for any time t!
This criterion finds the best state for each time t independently, which may

lead to state sequences that should not appear. For example, in Figure 4, we
have set the transition probability from S1 to S3 as zero—i.e., this transition
must never happen. However, if we use γ to decode hidden states independently,
running that piece of code shows that this impossible transition indeed happens
in the decoded state sequences. Hence, this criterion (Equation 26) has serious
problems in some applications.

4.2 δ, ψ, and the jointly decoded optimal states

To eliminate impossible state transitions, one possible solution is to jointly de-
code the entire optimal state sequence:

q1:T = arg max
Q1:T

Pr(Q1:T |o1:T , λ) (35)

= arg max
Q1:T

Pr(Q1:T , o1:T |λ) . (36)

The key to its solution is once again dynamic programming. The recursive
relationship is as follows. Given o1:t, it is very useful if we know the optimal
paths for N subproblems:

max
Q1:t−1

Pr(Q1:t−1, o1:t, Qt = Si|λ), 1 ≤ i ≤ N .

These subproblems are similar to the objective in Equation 36, but with an
additional constraint Qt = Si for the i-th subproblem. We can solve at least
the following two problems using the answers to these N subproblems:

• The optimal state sequence till time t. If a subproblem i? has the largest
probability among all N subproblems, then the optimal parameter of this

17



subproblem (q1:t−1) plus qt = i? is the optimal hidden state sequence for
observations o1:t.

• The optimal q1:t+1 for o1:t+1 can be divided into three parts: q1:t−1, qt,
and qt+1. If an oracle tells us qt = i?, the q1:t−1 part can be found by
the i?-th subproblem. Because of the Markov assumption, we only need
to consider N possible transitions Sqt → Sqt+1 to decide which state is
optimal for Qt+1. Although we do not have access to an oracle, we can
try all N subproblems (i.e., i? = 1, 2, . . . , N), which is still tractable.

The objectives of these subproblems are denoted by a new variable

δt(i) = max
Q1:t−1

Pr(Q1:t−1, o1:t, Qt = Si|λ) . (37)

The recursive relationship is also obvious (by translating the above description
into mathematics):

δt+1(i) = max
1≤j≤N

(δt(j)Ajibi(ot+1)) , (38)

in which δt(j) is the probability of the j-th subproblem, Aji transits from Sj
(at time t) to Si (at time t + 1), and bi(ot+1) is the probability of observing
Vot+1

when the state is Si; i.e., δt(j)Ajibi(ot+1) is the probability of the optimal
state sequence when an oracle tells us Qt = Sj for an observation sequence
o1:t+1. This recursive relationship is a forward one. Hence, we should start the
recursion from t = 1.

After the δ variables are computed, it is easy to find qT , by

qT = arg max
1≤i≤N

δT (i) . (39)

According to Equation 38, if we know the optimal state at time t + 1 is qt+1,
we just need to find which j leads to the largest δt(j)Ajibi(ot+1); then Sj is the
optimal state for Qt. That is, we need to record the optimal transitions from
time t to t+1. Using ψt+1(i) to denote the optimal state at time t if the optimal
state is i at time t+ 1, we have

ψt+1(i) = arg max
1≤j≤N

(δt(j)Ajibi(ot+1)) (40)

= arg max
1≤j≤N

(δt(j)Aji) . (41)

The initialization should start at t = 1. According to the definition of the δ
variables, we have

δ1(i) = πibi(o1)

for 1 ≤ i ≤ N . Putting the initialization, recursion, and state tracking equa-
tions together, we get the Viterbi algorithm for decoding the optimal hidden

18



Algorithm 3 Viterbi decoding

1: Initialization: δ1(i) = πibi(o1), ψ1(i) = 0 for all 1 ≤ i ≤ N
2: Forward recursion: For t = 2, 3, . . . , T − 2, T − 1 and all 1 ≤ i ≤ N ,

δt+1(i) = max
1≤j≤N

(δt(j)Ajibi(ot+1)) , (42)

ψt+1(i) = arg max
1≤j≤N

(δt(j)Aji) . (43)

3: Output: The optimal state qT is determined by

qT = arg max
1≤i≤N

δT (i) , (44)

and the rest of the optimal path is determined by: for t = T−1, T−2, . . . , 2, 1

qt = ψt+1(qt+1) . (45)

states that is the solution of Equation 36. The Viterbi algorithm is shown in
Algorithm 3.5

Note that the initialization ψ1(i) = 0 is in fact not used at all in the Viterbi
algorithm. The complexity of Viterbi decoding is O(TN2).

Equations 42 and 43 involve the sum or maximization of several probabilities,
respectively. As δt(j) and Aji form two discrete distributions when j varies
from 1 to N , we can treat them as messages passing between Qt and Qt+1.
Message passing algorithms (such as sum-product and max-product) can solve
many inference problems in graphical models, with the forward, backward, and
Viterbi algorithms all as special cases in the message passing family.

5 ξ and learning HMM parameters

Given N , M , and a training sequence o1:T , to learn the optimal parameters
λ = (π, A,B) is the most difficult among the three basic problems. The classic
algorithm is called the Baum–Welch algorithm.6 Baum–Welch is a maximum
likelihood (ML) estimation algorithm, which maximizes the likelihood of λ for
the observation sequence o1:T :

λ? = arg max
λ

Pr(o1:T |λ) . (46)

Note that we assume only one training sequence is used, but the generalization
of Baum–Welch to multiple training sequences is easy to do.

5Andrew James Viterbi is an American electrical engineer and businessman. He is a co-
founder of Qualcomm Inc. He proposed the Viterbi decoding algorithm in 1967, but did not
patent it.

6This algorithm is named after Leonard Esau Baum and Lloyd Richard Welch, two Amer-
ican mathematicians.

19



Baum–Welch is an iterative algorithm. With initial (e.g., randomly initial-
ized or by clustering the training sequence) parameters λ(1), we can compute
its likelihood `(1) = Pr(o1:T |λ(1)). Then, we can find a new set of parameters
λ(2) such that its likelihood `(2) = Pr(o1:T |λ(2)) is higher than `(1) (or at least
the same). We can then move on to find the next set of better parameters λ(3),
λ(4) and so on, until the likelihood converges.

Baum–Welch is in fact a special case of the more general Expectation-
Maximization (EM) algorithm for maximum likelihood estimation. Hence, it
is guaranteed to converge to a local maximum of the likelihood function. For
more details of the EM algorithm, please refer to Chapter 14. In that chapter,
there is also an exercise problem that derives Baum–Welch updating equations
from the EM perspective.

5.1 Baum–Welch: Updating λ as expected proportions

The Baum–Welch algorithm uses a new variable ξ and a few simple equations to
update λ(r+1) based on λ(r), in which r is the iteration number. In this chapter,
we will ignore the proof that Baum–Welch always increases or keeps the same
likelihood. Instead, we will focus on the intuitions behind the ξ variables and
the updating equations.

The ξ variable involves three other values: t (the time) and (i, j), which are
state indexes:

ξt(i, j) = Pr(Qt = Si, Qt+1 = Sj |o1:T , λ) . (47)

ξt(i, j) is the conditional probability of the states for t and t+1 being Si and Sj ,
respectively, when the observation sequence o1:T is presented. In other words,
ξt(i, j) is the expected proportion of transition from Si (at time t) to Sj (at time
t+1). Based on this interpretation, it is natural to use ξt(i, j) (computed based
on the parameters λ(r)) to update the value for Aij in λ(r+1)!

For example, if there are 3 states {S1, S2, S3} and
∑T−1
t=1 ξt(2, 1) = 100, this

means there are 100 (expected) transitions from S2 to S1 in the entire training

sequence. Suppose
∑T−1
t=1 ξt(2, 2) = 150 and

∑T−1
t=1 ξt(2, 3) = 250. Then, it is

natural to update A21 as

100

100 + 150 + 250
= 0.2 ,

because this is the expected proportion of transitions from S2 to S1. Simi-
larly, A22 and A23 can be updated by their estimated proportion 0.3 and 0.5,
respectively. The same idea can be used to update π and B.

5.2 How to compute ξ

Using the definition of conditional probabilities, we have

ξt(i, j) Pr(o1:T |λ) = Pr(Qt = Si, Qt+1 = Sj , o1:T |λ) . (48)

20



Figure 5: Illustration of how to compute ξt(i, j). ()

Table 1: Summary of the variables in HMM learning.

Definition Recursion/Calculation

α αt(i) = Pr(o1:t, Qt = Si|λ) αt+1(i) =
(∑N

j=1 αt(j)Aji

)
bi(ot+1)

β βt(i) = Pr(ot+1:T |Qt = Si, λ) βt(i) =
∑N
j=1Aijbj(ot+1)βt+1(j)

γ γt(i) = Pr(Qt = Si|o1:T , λ) γt(i) = αt(i)βt(i)∑N
j=1 αt(j)βt(j)

δ
δt(i) =

max
Q1:t−1

Pr(Q1:t−1, o1:t, Qt = Si|λ) δt+1(i) = max
1≤j≤N

(δt(j)Ajibi(ot+1))

ξ
ξt(i, j) =

Pr(Qt = Si, Qt+1 = Sj |o1:T , λ)
ξt(i, j) =

αt(i)Aijbj(ot+1)βt+1(j)
N∑

i=1

N∑
j=1

αt(i)Aijbj(ot+1)βt+1(j)

21



Hence, we can find the probability Pr(Qt = Si, Qt+1 = Sj , o1:T |λ) and use
it to compute ξt(i, j). This probability can be factored into the product of
four probabilities: αt(i), Aij , bj(ot+1), and βt+1(j), as shown in Figure 5. For
convenience of reading, we listed the HMM variables in Table 1. Now we have

ξt(i, j) =
αt(i)Aijbj(ot+1)βt+1(j)

Pr(o1:T |λ)
. (49)

Because ξt(i, j) is a probability, we have
∑N
i=1

∑N
j=1 ξt(i, j) = 1; hence, we know

N∑
i=1

N∑
j=1

αt(i)Aijbj(ot+1)βt+1(j)

Pr(o1:T |λ)
= 1 , (50)

or in an equivalent form

Pr(o1:T |λ) =

N∑
i=1

N∑
j=1

αt(i)Aijbj(ot+1)βt+1(j) , (51)

for any 1 ≤ t ≤ T − 1. This equation provides yet another way to solve the
evaluation problem.

And, comparing the definition of γ and ξ, we immediately get (by the law
of total probability)

γt(i) =

N∑
j=1

ξt(i, j) . (52)

The parameters λ = (π, A,B) can be updated using γ and ξ.

• Since γ1(i) is the expected proportion of Q1 = Si, we can update πi using
γ1(i).

• The expected probability of transition from Si to Sj is ξt(i, j) at time t.
Hence, the expected number of transitions from Si to Sj in the training

sequence is
∑T−1
t=1 ξt(i, j), while

∑T−1
t=1 γt(i) is the expected number of

times any state is Si. Then, Aij , the probability of transiting from Si to
Sj , is the proportion of transitions Si → Sj in all transitions starting from
Si, i.e., ∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

.

• To updateB, we need to estimate two terms: the expected number of times
in hidden state Sj (

∑T
t=1 γt(j)); and the number of times the hidden state

is Sj and the observation is Vk at the same time (
∑T
t=1Jot = kKγt(j)), in

which J·K is the indicator function. Then, we can update bj(k) as the ratio
between these two terms.

Summarizing the results till now, we arrive at the Baum–Welch algorithm,
which is described in Algorithm 4.

22



Algorithm 4 The Baum–Welch algorithm

1: Initialize the parameters λ(1) (e.g., randomly)
2: r ← 1
3: while the likelihood has not converged do
4: Use the forward procedure to compute αt(i) for all t (1 ≤ t ≤ T ) and all

i (1 ≤ i ≤ N) based on λ(r)

5: Use the backward procedure to compute βt(i) for all t (1 ≤ t ≤ T ) and
all i (1 ≤ i ≤ N) based on λ(r)

6: Compute γt(i) for all t (1 ≤ t ≤ T ) and all i (1 ≤ i ≤ N) according to
the equation in Table 1

7: Compute ξt(i, j) for all t (1 ≤ t ≤ T − 1) and all i, j (1 ≤ i, j ≤ N)
according to the equation in Table 1

8: Update the parameters to λ(r+1)

π
(r+1)
i = γ1(i) 1 ≤ i ≤ N (53)

A
(r+1)
ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

1 ≤ i, j ≤ N (54)

b
(r+1)
j (k) =

∑T
t=1Jot = kKγt(j)∑T

t=1 γt(j)
1 ≤ j ≤ N, 1 ≤ k ≤M (55)

9: r ← r + 1
10: end while

23



Exercises

1. Suppose a DTMC models the evolution of a random variable X, which is
discrete and has N possible values (states). Show that we need N2 − 1
numbers to fully specify this DTMC.

2. Let A be the transition matrix of an HMM model. Prove Ak = A . . . A︸ ︷︷ ︸
k A’s

is

a right stochastic matrix for any positive integer k.

3. (Conditional independence) We say A and B are conditionally indepen-
dent given C, denoted as

A ⊥ B | C ,

if p(A,B|C) = p(A|C)p(B|C) always holds. A, B, and C can be dis-
crete or continuous and can be either single-variate or multivariate random
variables. In this problem, we use various simple probabilistic graphical
models in Figure 6 to illustrate the conditional dependence among sets of
variables.

In a directed graphical model, the arrows indicate direct dependencies—
one node depends on its parents (those who have edges pointing to it).
For example, Figure 6a says C depends on A, B depends on C, but A
depends on nothing—that is, the joint density can be factored as

p(A,B,C) = p(A)p(C|A)p(B|C) .

(a) For the simple case 1.1 in Figure 6a, prove that A ⊥ B | C.

(b) For the simple case 1.2 in Figure 6b, prove that A ⊥ B | C.

(c) For the simple case 2 in Figure 6c, prove that A ⊥ B | C.

(d) Case 3.1 in Figure 6d is a bit more delicate. Show that when C is not
observed, we have p(A,B) = p(A)p(B)—that is, A and B are independent.
However, when C is observed, A and B are not conditionally independent.
Try to find an intuitive example to explain this phenomenon.

This phenomenon is called explaining away . When two (or more) causes
can both cause the same effect, these causes become dependent on each
other after we observe that effect.

(e) Case 3.2, which is a variant of case 3.1, is shown in Figure 6e. Explain
intuitively the following fact: even if C is not observed, A and B become
dependent when any of C’s descendants is observed.

4. (d-separation) We have been quite sloppy in this chapter when dealing
with dependence or independence among variables in the hidden Markov
model. In this problem, we will introduce d-separation, an algorithm
that can precisely determine any conditional dependence or independence
in HMM. In fact, d-separation works well in Bayesian networks, a more

24



(a) Case 1.1

(b) Case 1.2

(c) Case 2

(d) Case 3.1 (e) Case 3.2

Figure 6: Various graphical model structures.

25



general class of probabilistic graphical models. HMM is an example of a
Bayesian network.

Let A, B, and C be three sets of random variables, which are denoted as
nodes in a directed probabilistic graphical model. A trail is an undirected
path (i.e., ignoring the arrow directions and without any loop) in the
graph. We say a trail is d-separated by Z if one or more of the following
three situations happen:

i. There is a directed chain and one of its middle nodes (i.e., excluding
the starting and the ending nodes) is in Z. Case 1.1 and 1.2 in Figure 6
are examples of such cases, but a directed chain can have more than three
nodes.

ii. There are nodes in the path that form a “common cause” (i.e., case
2 in Figure 6c) and the middle node is in Z.

iii. There are nodes in the path that form a “common effect” (i.e., case
3.1 or case 3.2 in Figure 6d and Figure 6e, respectively), and the middle
node is not in Z. Furthermore, none of the descendants of the middle
node is in Z. Note that the descendant of the middle node may not be in
the path.

Let u be a node in A and v be a node in B; let P be a trail that starts
with u and ends at v. The d-separation rule states that A ⊥ B | C if and
only if all P is d-separated by Z for an arbitrary such trail P .

Use the d-separation rule to decide whether the following statements con-
cerning Figure 7 are correct or not. Justify your answers.

(a) B ⊥ C | A
(b) C ⊥ D | F

5. Prove the joint distribution of an HMM model is correctly calculated by
Equation 7. (Hint: Mathematical induction is useful.)

6. Prove the following equations. (Hint: use d-separation to determine con-
ditional independence.)

(a) αt+1(i) =
(∑N

j=1 αt(j)Aji

)
bi(ot+1);

(b) βt(i) =
∑N
j=1Aijbj(ot+1)βt+1(j);

(c) Pr(o1:T |λ) =
∑N
i=1 πibi(o1)β1(i).

7. (n-step transition matrix) The transition matrix A can also be called a
one-step transition matrix, because Aij is the probability of transferring
from one state Si to another state Sj in one time step (though it is possible
that i = j). The n-step transition matrix A(n) is defined as

Aij(n) , Pr(Xt+n = Sj |Xt = Si) , (56)

26



Figure 7: Example of d-separation.

i.e., the probability of transferring from one state Si to another state Sj
in exactly n one-step transitions.

The Chapman–Kolmogorov equations state that

Aij(m+ n) =

N∑
k=1

Aik(m)Akj(n) , (57)

in which m and n are positive integers.

(a) Explain the meaning of the Chapman–Kolmogorov equations.

(b) Use the Chapman–Kolmogorov equations to find A(n), whose (i, j)-th
entry is Aij(n).

(c) Show that 1 ∈ RN (a vector of all ‘1’s) is an eigenvector of A(n) for
any positive integer n.

27


