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Abstract—Demand response, over the years, has emerged
as a key feature of smart grid. This paper investigates the
problem of optimal demand response of residential customer
equipped with smart loads, distributed storage and distributed
generation which together form distributed energy resources
(DER). A novel way of linking distributed storage i.e., battery
operation to real time prices via a price threshold is proposed
and incorporated in Mixed Integer Linear Programming (MILP)
formulation to optimally schedule smart loads and battery.
Simulation results validate that the price threshold constraint
is effective in optimizing the battery charging/discharging cycles
and MILP formulation optimally scheduled the loads for bill
reduction within scheduling requirements. Finally, to show how
distribut-ed generation coupled with smart loads and distributed
storage can further bring down energy costs, a comparison is
drawn for various scenarios of customer DER set up.

Index Terms—Day-Ahead Real Time Prices, Demand Re-
sponse, Distributed Generation, Distributed Storage, Mixed In-
teger Linear Programming, Smart Load.

I. INTRODUCTION

Electricity storage in huge quantities for use at a later time is

still a challenge. So, the traditional way to balance production

and consumption is to make generation follow demand at all

the time. As a result, the expensive plants set up to meet

the high peak demand, which occurs only few hours a year,

are underutilized. But, their maintenance and operation costs

reflect in tariff and tend to increase the customer bill. On the

other hand, electricity prices at times in a day are lower than

marginal cost of generation, but consumers lack incentives to

use electricity in those times. Demand Response (DR) helps

in addressing these issues by deferring investments on capital

intensive capacity addition or at least aids in buying time until

capacity already under construction comes up. It also helps

lower consumers electricity bill.

According to FERC [1], Demand Response is defined as

”Changes in electric use by demand-side resources from their

normal consumption patterns in response to changes in the

price of electricity or to incentives designed to induce lower

electricity use at times of potential peak load, high cost

periods, or when systems reliability is jeopardized”. Demand

response is of two types: Incentive based demand response

and Price based demand response. The former is suitable for

industrial and large commercial customers, whereas the latter

is popular with residential customers.

Since residential customers load form about 40% of the

total demand and given the time flexibility offered by smart

appliances in completing their tasks, energy consumption

scheduling algorithms for demand response from residential

customers have garnered much attention in recent times. A

group of residential customers load was scheduled using game

theory in [2] to reduce the peak to average ratio and individual

customers bill. To meet the same objectives and reduce the

waiting time of appliances, the authors in [3] employed price

prediction for customers on RTP to decide on demand response

for the subsequent hours. A demand response model consider-

ing customers utility (satisfaction) along with price prediction

was explored in [4]. Algorithms like Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO) approaches to develop

demand response algorithms for residential customers were

proposed in [5] and [6]. To overcome the problems of peak

rebound, measures like imposition of maximum load hourly

constraints and random scheduling among customers were

proposed in [7]. The residential load scheduling problem

was formulated as an Integer Linear Programming (ILP) in

[8], as Mixed Integer Linear Programming (MILP) in [9]

and as Mixed Integer Non-Linear Programming (MINLP)

in [10], [11], [12]. The benefits offered by optimization of

demand in conjunction with energy storage devices like battery

were highlighted in [13]. A parallel load optimization for

customers aggregated load in presence of renewable generation

or customers premises was proposed in [14].

Most of the these works concentrated only on optimizing

the load to reduce consumers bill safeguarding their comforts.

Only a few of these considered the presence of renewable

energy generation and battery storage, which is the ubiquitous

in the present context, but only as centralized ones either for

a group of customers in an area or as part of microgrids.

This paper attempts to solve the demand optimization problem

of residential dwelling considering it as a microgrid in itself

equipped not only with smart appliances but also Distributed

Storage (DS) and Distributed Generation (DG) installed in

their premises.
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The main contributions of this paper are as follows:

• Formulation of shifting and reduction of smart load

consumption, battery charging/discharging for demand

response as an MILP problem.

• Propose price threshold as a criteria to discharge battery

to take off load from grid during high price hours.

• Demonstration of role of customer owned distributed

generation in further reducing energy bill.

The rest of the paper is organized in the following manner.

The model of a smart home equipped with Distributed Energy

Resources is introduced in section II, formulation of MILP

problem to reduce electricity bill and shift consumption is done

in section III. The simulation results on a sample smart home

model are discussed in section IV and concluding remarks are

presented in section V.

II. MODELLING OF SMART HOME

Smart home equipped with smart loads, battery storage

and micro wind turbine and rooftop solar PV as distributed

generation is considered in this paper. A smart meter capable

of net metering is installed which communicates with the

utility using Advanced Metering Infrastructure (AMI). The

smart meter relays the 15 minute interval consumption data

to the utility and receives the day-ahead real time prices and

grid related emergency events notifications from the utility.

The smart meter communicates with an In-Home Display

(IHD) installed inside the home and relays the information

received from utility which the customer can view through

Graphical User Interface (GUI) of the IHD. Battery controller

and smart home appliances, categorized as uninterruptible,

interruptible and thermostatic loads, communicate with the

IHD over a Home Area Network (HAN). The proposed energy

consumption optimization program runs inside the IHD en-

abling it to function as an Energy Management System (EMS).

Battery controller and smart loads wirelessly communicate

with this IHD-cum-EMS over any of the HAN like Open ADR,

ZigBee SEP, Wi-Fi, IEEE 2030.5 etc., to transmit the energy

consumption information and receive the scheduled control

signals.

A. Smart loads

The loads installed in a typical home can be categorized as

unschedulable, schedulable and thermostatic loads based on

the scheduling flexibility they offer. An unschedulable load is

one which the user wants to run at his/ her discretion at any

time of the day. These loads typically run all day and are not

so power intensive devices e.g., refrigerator, oven, lighting,

television etc. So these devices are not scheduled to operate

at specific instances of the day. Schedulable appliances, smart

appliances which are DR ready, are required to perform

a specific job within a user-defined time frame and hence

operate only a few hours a day. These schedulable appliances

are further classified as interruptible, Ai, and uninterruptible

devices, Aui. Interruptible devices viz., electric vehicle (EV),

pool pump etc., demand certain fixed number of slots for oper-

ation, whereas uninterruptible devices viz., washing machine,

dishwasher need continuous fixed number of time slots to

complete the job.

The energy consumed by the schedulable loads usually do

not vary continuously with time, but draw a fixed amount of

power once they start and is assumed to remain constant for the

entire period of operation. So the EMS should decide on the

binary state of when to turn on and off the appliances based on

the prices received day ahead but not on the energy allocation

to them. This binary state, denoted by binary variable,yta, can

be linked to its energy consumption, xt
a, by,

xt
a =

(

1− yta
)

Emin + ytaEmax, ∀ a ∈ {Ai, Aui} (1)

Under the schedulable loads, the interruptible loads can

operate intermittently i.e., by breaking their operation when

grid prices are high but are bound to finish the job within

the user specified timeframe,T i
sh. Also, they are required to

complete the job in fixed number of slots, N , given by,

TStop
∑

t=TStart

yta = N

{

yta ∈ {0, 1},∀t ∈ T i
sh = {Tstart, ...., Tstop}

yta = 0, ∀t /∈ T i
sh

(2)

On the other hand, uninterruptible loads also once start

within the user specified time frame,T ui
sh, have to complete the

job in a fixed number of slots N , as given in (3) . But, they are

required to run continuously without breaking the operation for

those fixed number of slots. This uninterruptibility feature of

these devices can be modelled by the condition given in (4)

as,

TStop
∑

t=TStart

yta = N

{

yta ∈ {0, 1},∀t ∈ T ui
sh = {Tstart, ...., Tstop}

yta = 0, ∀t /∈ T ui
sh

(3)

if yta = 1 then yt+1
a > yta, ....., > y

t+(TStop−TStart)−1
a

> y
t+(TStop−TStart)−2
a ∀ t ∈ T ui

sh

(4)

Finally, thermostatically controlled loads, ATh, such as

ACs and water heaters participate in demand response and the

preferred loads for direct load control of utilities load man-

agement programs historically. The operation of thermostatic

loads can be emulated by the linear dynamic model,

T (t) = (1− α)T (t− 1) + αTa(t)− βxt
a ∀ a ∈ AT (5)

Where, β is positive for AC loads and negative for water

heater loads, T (t) is the hourly room temperature, Ta(t) is

hourly ambient temperature, α and β represent thermal appli-

ance characteristics and operating environment conditions. In

order to avoid inconvenience for customers lifestyle, the EMS

adjusts the room temperature, T (t), via the smart thermostat

between the customer-set comfort settings,

Tmin ≤ T (t) ≤ Tmax. (6)

B. Distributed Storage

Distributed energy storage technologies like Lithium-ion

batteries are emerging as grid supportive home storage system

for self- produced electricity. Due to the intermittent nature of

renewable energy sources, they can be used to store electricity



2017 IEEE Region 10 Symposium (TENSYMP)

and discharge to supply load during high electricity price

hours. Battery usage can be modelled to meet mainly two

requirements:

1) Maximum charging rate, r(t)max, and discharging rate,

r(t)min, given by,

r(t)
min

≤ r(t) ≤ r(t)
max

. (7)

2) Maximum storage capacity, given by
∑

t∈T

r(t) ≤ bmax. (8)

In order to effectively use the battery storage to mini-

mize the customers energy bill, the battery controller should

precharge the battery during the periods of low grid prices.

When the prices reach a Pthreshold, which is set by the

customer, the battery should discharge to supply the entire

the loads scheduled to be in operation during that hour. This

requirement can be modelled inside the EMS by,

r(t) ≥ 0, ∀ p(t) < Pthreshold, (9)

r(t) ≤ 0, ∀ p(t) ≥ Pthreshold, (10)
∑

a∈A

xt
a = r(t), ∀ p(t) ≥ Pthreshold. (11)

Conditions (7)-(11) not only ties the distributed storage

operation to grid through price signals but also optimizes the

charge/discharge cycles to secure the life of battery.

C. Distributed Generation

A future smart home customer can no longer be a consumer

but may evolve into prosumer through the installation of

distributed renewable generation like grid connected rooftop

solar PV and micro wind turbines. Utilities plans to increase

renewable energy generation to reduce carbon footprint and

decarbonize power sector and policy initiatives like net meter-

ing and gross metering etc. are encouraging this transforma-

tion.

1) Roof top solar PV: The amount of solar output, gpv(t),
from a solar PV is dependent on many factors but the irra-

diance and temperature at a given condition directly affect it.

So considering the model used in [9],

gpv(t) = J

{

ec
kc
(γ(t))2, 0 ≤ γ(t) ≤ kc
ec.γ(t), γ(t) > kc

(12)

Where, J is the number of solar cells in the panel, ec is the

efficiency of the cell, γ(t) is the solar irradiance in W/m2

and kc is critical irradiance point.

2) Wind Energy: The output of wind turbine, gw(t), is

highly dependent on wind velocity, a 20% change in wind

velocity changes the wind turbine output by 73%, which is

given by [9],

gw(t) =
1

2
ρAv(t)

3
Cp (13)

Where, ρ is the density of air (1.25 kg/m2), A is the swept

area of wind turbine in m2, v(t) is the hourly wind velocity

in m/s2, Cp is the Betz constant (max of 0.59).

III. PROBLEM FORMULATION

The energy consumption scheduling problem in order to

minimize customers bill can be modelled as an optimization

problem with the objective function given as,

min
yt
a,x

t
a,r(t)

∑

t∈T

∑

a∈A

p(t).
{

xt
a + yta + r(t) − g(t)

}

(14)

subject to the constraints (1) - (11).
Where xt

a denotes the energy consumption of thermo-

static loads, yta is the binary variable indicating the status

of schedulable appliances, r(t) denotes the battery charging

and discharging and g(t) is the sum of gpv(t) and gw(t).
The renewable energy generation sources considered here are

stochastic in nature whose generation cannot be dispatched or

controlled by the EMS. But, the amount of generation can

be predicted with the models considered in (12) and (13).

Here, it is assumed that they are prioritized to be consumed as

and when energy is generated from them. So, the EMS tries

to optimize the load and battery operation with the modified

objective function given as,

min
yt
a,x

t
a,r(t)

∑

t∈T

∑

a∈A

p(t).
{

xt
a + yta + r(t)

}

. (15)

But, in attempting to meet this objective, the EMS tries

to schedule all the loads to low price periods which may

give rise to peak rebounds or shifted peaks. To overcome this

peak rebound problem, a maximum hourly load constraint is

imposed on the schedulable load by the EMS given as,
∑

a∈A

xt
a = Et

max, ∀ a ∈ {Ai,Aui} . (16)

With the objective function formulated as in (15) and

including constraints (1)-(11) and (16) with the decision varia-

bles involving both binary and continuous variables, the above

optimization problem is a mixed integer linear programming

(MILP) problem. This optimization problem can be solved

using branch and bound method in any of the commercially

available optimization solvers such as in MATLAB, GAMS

or CPLEX packages to generate optimum schedules, tempera-

tures for smart loads and optimize charge/discharge cycles of

battery operation.

IV. SIMULATION RESULTS AND DISCUSSIONS

In order to demonstrate the effectiveness of the proposed en-

ergy consumption scheduling program, smart home equipped

with smart washing machine, dishwasher (uninterruptible

loads), electric vehicle (interruptible load), air conditioner and

water heater (thermostatic loads), distributed storage like Li-

ion battery and distributed generation like roof-top solar PV

and micro wind turbine is considered.
The day-ahead Real Time Prices are taken from [15]

and ambient temperatures are taken from [16]. The ratings,

preferred schedules of interruptible and uninterruptible loads,

comfort settings of thermostatic loads, and battery parameters

of distributed storage considered are given in Table I.
Assuming that the consumer remains faithful without over-

riding the preferred schedules and comfort settings, the smart
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TABLE I
RATINGS AND PREFERRED SCHEDULES OF SMART APPLIANCES AND

DISTRIBUTED STORAGE CONSIDERED

Uninterruptible loads

Appliance Rating
Operational

Slots

Preferred

Schedule

Washing Machine 1 kW 3 8am-12pm

Dish Washer 1.2 kW 4 8am-6pm

Interruptible loads

Electric Vehicle 3 kW 3 6pm-12am

Thermostatic loads

Appliance Comfort settings
Preferred

Schedule

Air Conditioner 700 F-790 F 12am-11pm

Water Heater 1300 F-1600 F 12am-11pm

Battery Parameters

b
max

r(t)max
r(t)min

10 6 -4

Fig. 1. Schedules for various smart appliances

loads optimally scheduled by the EMS using the MILP for-

mulation is shown in Fig. 1.

For interruptible loads, the EMS, on receipt of day-ahead

RTP, searches for possible combinations of N slots in the

users preferred timeframe whose sum of prices amount to the

lowest. Each interruptible load is scheduled to the respective

N slots thus found. A similar search for N consecutive slots in

the user preferred timeframe whose sum would be the lowest

is made for the uninterruptible loads. All the uninterruptible

loads are thus scheduled in the N consecutive slots found for

each of them. For thermostatic loads, the EMS dynamically

adjusts the hourly room temperatures within the user comfort

settings for the respective prices.

From Fig. 1, it can be seen that the schedulable and

thermostatic loads are scheduled to operate well within the

users preferred timeframes and comfort settings as mentioned

in Table I. The maximum hourly loading constraint imposed

by the EMS on schedulable loads avoided them operating all

Fig. 2. Battery charging/discharging cycles w.r.t. to real time prices

at the same period as can be seen in Fig. 1. This optimally

distributed the load along the scheduled time horizon and

effectively mitigated the occurrence of peaks getting shifted

to low price periods or the peak rebound condition. This

contributes to the peak shaving and load flattening objectives

of utility when aggregated loads of all other residences in an

area are considered.

The battery storage operation tied to grid through real time

prices is shown in Fig. 2. The price threshold, Pthreshold, a

criteria for discharging the battery is set as 2 Rs/kwh in the

simulation. This stimulated the battery controller, controlled

by EMS, charge the battery during price periods below this

threshold. Whenever the hourly prices reached Pthreshold, the

battery is discharged and took over all the load scheduled to

be in operation at that hour as can be seen from Fig 2. For a

consumer, from billing perspective, this means that the energy

consumed by loads during those hours is billed to the compar-

atively low price periods of battery charging. Moreover, it can

be seen be that not everyhour there is charging/discharging but

there are periods in between where battery operation is idle.

This optimized the charging/ discharging cycles and enables

the battery operate near to its warranted lifetime.

The wind speed data taken from [16] for the micro wind

turbine model, explained in section II, is shown in Fig. 3 and

other parameters of the model are taken as ρ = 1.25 kg/m2, r
= 1 m and Cp = 0.30. Similarly, the irradiance data taken from

[17] of a random day for inclusion in rooftop solar PV solar

model, explained in section II, is shown in Fig. 3 and other

parameters of the model are taken as J = 20, ec = 0.15 and

Kc = 1000. Using this data, the energy in KWh, predicted

to be generated from the models, is also shown in Fig3.

This energy produced from the renewables considered here

can be stored for later use or as assumed here, consumed as

and when generated by the loads scheduled to those hours.

The net energy at any hour when in excess, is assumed to be

exported to the grid via net-metering which further reduces
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Fig. 3. Predicted renewable generation

TABLE II
CUSTOMER DAILY TENTATIVE BILL UNDER VARIOUS SCENARIOS IN RS.

Only appliance

scheduling

Appliance scheduling

+ DS

Appliance scheduling

+ DS + DG

92.20 76.24 30.00

the customer bill.

Table II presents the tentative consumer daily bill obtained

by incorporating the proposed MILP demand response strategy

for various scenarios of customer DER set-up.

In the first scenario, in the absence of any DS and DG the

bill is due to only the smart appliaces operation shifted to low

price periods. In the second scenario, the reduction is because

battery charging at low price hours avoided consumption from

grid during hours that reached RTP threshold set in EMS.

Finally in third scenario, the large reduction in bill is due to

the consumption from DG and DS.

V. CONCLUSION

In this paper, the problem of optimal demand response from

residential dwelling equipped with resources such as smart

loads, distributed storage and distributed generation is studied

under the day-ahead real time pricing environment. MILP

is used to formulate the model to minimize the consumer’s

energy bill by adjusting and shifting the load demands to

low price hours, within the customers comfort settings and

scheduling requirements. This contributes in fulfilling the load

reduction and load shifting objectives of demand response. The

proposed approach to link the use of distributed storage to the

real time prices via a price threshold is found to be effective

in optimizing the charging/discharging cycles of the battery,

thereby ensuring further reduction in the customer bill. Finally,

a comparison of energy bill drawn for various scenarios of

customer DER set up presented shows that the maximum

reduction in energy cost for the customer is achieved when

demand response from smart loads and distributed storage is

coupled with distributed generation. This long term monetary

benefit encourages the customer to install DG despite the high

capital cost involved. The effects of aggregated DR for a

group of residential customers with DER setup on distribution

networks and their coordinated operation to benefit the system

as a whole are further being investigated by authors and will

be presented in future publications.
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