
 

 

1 INTRODUCTION 

There is a great interest to improve energy manage-
ment in buildings considering the increasing price of 
fuel, and the global goal of reducing CO² output. 
Building Energy Management (BEM) aims at the ef-
fective and efficient usage of energy to maintain 
high building performance operation (Capehar et al. 
2008, p. 1). One of the current challenges in this 
domain is to optimise energy consumption, while 
considering occupant comfort (Metz 2007, p. 394).  

Building performance analysis emphasizes the 
measurement and assessment of various perform-
ance indicators covering the interests of owners, op-
erators, and occupants in aspects like energy, light-
ing, thermal comfort, and maintenance (Augenbroe 
& Park 2005).  

The continuous development of wired building 
automation systems and the current emerging of 
easy-to-integrate wireless solutions have increased 
the amount of available building performance data 
(Menzel et al. 2008) to evaluate these indicators. 
Traditional database management systems (DBMS) 
are nowadays used to store the building monitoring 
data. These DBMS lack the ability to create data ag-
gregations and do not support the analysis of build-
ing performance data to deliver reports and action-
able information (Lane 2007, p. 29). 

Modern approaches from computer science may 
simplify the building performance analysis. Data 
Warehouses (DW) adds data aggregation capabilities 
to databases to prepare and deliver reports for large 
data sets (Stackowiak et al. 2007). They also facili-
tate the use of modern analysis approaches such as 

Knowledge Discovery in Databases and Data Min-
ing (KDD) (Han & Kamber 2006, p. 35) to discover 
previously unknown characteristics, relationships, 
dependencies, or trends in data (Rob et al. 2008, p. 
744).  

The paper introduces a system that incorporates 
these two technologies to simplify the building per-
formance analysis. Data Warehouse technologies are 
used to aggregate building performance data and 
provide to users a fast and easy way to manually 
analyse it. This approach is demonstrated in Section 
2 for the energy consumption of a real building.  

Data mining approaches can be used to analyse 
patterns in building performance data, but also to 
train models (Section 3). This is presented during the 
evaluation of thermal comfort to identify rooms with 
low comfort in Section 4 using only room tempera-
ture sensors. The data mining process is introduced 
from building data sources, to data preparation and 
transformation, model building, testing, and scoring. 

The paper uses real data from the Environmental 
Research Institute (ERI 2002). The ERI is an en-
ergy-efficient building with many sustainable energy 
features such as solar panels, geothermal heat pumps 
and heat recovery systems. The ERI building is used 
by multiple research groups from biology, chemis-
try, as well as engineering. It also facilitates as a 
―Living Laboratory‖ to demonstrate smart building 
concepts. The mixed usage with office and labora-
tory spaces and the modern sustainable energy fea-
tures define a wide set of requirements for the build-
ing operator to optimize energy usage while 
maintaining steady occupant comfort. 
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2 DATA WAREHOUSE FOR ENERGY-
EFFICIENT BUILDING OPERATION 

Data Warehouses (DW) structure data in pre-
specified materialised views that are defined by di-
mensions and stored in cubes to support data aggre-
gation. 

For example, an operator wants to analyse the en-
ergy consumption of a building and needs to know 
when the most energy is used (time), where it is used 
(location), and by which tenant (organization). This 
use case specifies the dimensions of the data ware-
house respectively Time, Location, and Organiza-
tion. These dimensions are used to structure and ac-
cess the data in queries, for example: Give me the 
aggregated energy consumption of ―last year‖ (time) 
for the tenant ―IRUSE‖ (organization) in the ―ERI‖ 
(location). Such aggregation queries are predefined 
in cubes that are spanned by dimensions and the re-
sults are pre-computed in the data warehouse, thus 
allowing very fast access to such results. The multi-
dimensional data analysis concept and DW tech-
niques for building performance are further detailed 
in Ahmed et al. (2009). 

 

 
 
Figure 1. GUI for the building operator 
 

Figure 1 shows the GUI implemented for the ERI 
DW. The three energy consumption data categories 
that affect the operational costs are electricity (main 
power board meter), natural gas (boiler and labora-
tory meters) and water (mains water meter). They 
are selectable at the bottom of the GUI. This will be 
extended to support the ERI´s sustainable energy 
systems to allow a comparison of the energy intake. 

The operator uses the dimension categories to 
specify the data shown in the graph on the top right. 
The operator can select the energy consumption for 
a whole building, a specific zone (rooms), a tenant 
organization, or equipment. The calendar allows 
specifying the time dimension from years, to month, 
to single days. These dimensions enable the operator 
to easily analyse the building‘s energy consumption 
from top level (several years per building), down to 
the most detailed level (hourly per room). Due to the 
pre-computed queries defined by cubes, the data 

warehouse quickly responds with results if the op-
erator modifies a relevant query. 

3 DATA MINING CONCEPTS AND APPLICA-
TIONS 

Knowledge Discovery in Databases (KDD) and 
Data Mining (DM) involves processes to extract or 
mine knowledge from large amounts of data (Han & 
Kamber 2006, p. 5), providing implicit useful 
knowledge (Wang & Huang 2006) to address spe-
cific business problems. 

Data Mining approaches can usually be catego-
rised into descriptive and predictive algorithms. De-
scriptive algorithms on the one hand are used for 
exploratory data analysis to discover individual pat-
terns, such as associations, or clusters. Predictive al-
gorithms on the other hand focus on the creation of 
models that allow predicting observations from input 
data like classifications, regression models or neural 
networks. 

Data mining has been used extensively in the 
medical field to solve many problems, such as the 
association of genes to genetically inherited diseases 
(Perez-Iratxeta et al. 2002). In direct marketing, data 
mining is able to identify likely buyers of products, 
advertise and promote products (Ling & Li 1998), 
and for products placement in shopping centres, to 
identify items that are likely to be purchased to-
gether. Data mining has proved successful in reduc-
ing the cost of doing business, improving profits, 
and increasing service quality (Apte et al. 2002). In 
addition, data mining supports the construction of 
customers‘ personal profile from customer transac-
tional data (Adornavicius & Tuzhilin 2002) by the 
means of knowledge discovery in databases. 

In buildings and energy fields, data mining ap-
proaches, like neural networks, are used in modern 
building automation to identify usage scenarios 
(Lang et al. 2007), or to estimate the energy con-
sumption in residential buildings (Mihalakakou et al. 
2002), and tropical regions (Dong et al. 2005). Char-
acterisation of electric energy consumers was ac-
quired using data mining (Figueiredo et al. 2005). It 
was also used to analyse data collected from simula-
tions (Morbitzer et al. 2004), or wireless sensor net-
works (Wu & Clements-Croom 2007). 

Most of these studies focus on the energy con-
sumption of buildings, but few evaluate occupant re-
lated aspects of building performance like the ther-
mal comfort of occupants. One reason may be, that 
the thermal comfort is a complex measurement it-
self, depending, in the case of the Predicted Mean 
Vote (PMV), on the temperature, humidity, air ve-
locity, occupants clothing, etc. This requires com-
plex sensor equipment for data gathering, which is 
not reasonable in all rooms. Data Mining can help to 



 

 

solve such limitations with its predictive algorithms 
as this paper demonstrates.  

The objective is to analyse building performance 
data and room thermal comfort to evaluate heating 
and cooling systems efficiency. The data used in this 
research is the historical sensed data of the ERI. The 
ERI has air temperature sensors in each of its 70 
rooms, but possesses additional radiant temperature, 
humidity, and CO2 sensors in only four rooms. To 
evaluate the thermal comfort for all rooms the pre-
dictive models of data mining should be used as dis-
cussed in the next sections. 

4 MINING THE BUILDING PERFORMANCE 
DATA 

Figure 2 shows the mining process of the sensor data 
in the ERI building. This includes data acquisition 
(gathering) and preparation (data access, data sam-
pling, and data transformation), model building and 
evaluation (create model, test model, evaluate and 
interpret model), and Knowledge deployment 
(model apply) (Haberstroh 2008, pp. 9-12). All logi-
cal definitions and their physical implementation 
presented in this paper comply with Oracle Corpora-
tion Specifications for Oracle Data Miner (ODM) 
11g version 1 (Oracle 2008). 

 

Problem 

definition

Data gathering 

and preparations

Model building 

and evaluation

Knowledge 

deployment

• Data access

• Data sampling

• Data transformation

• Create model

• Test model

• Evaluate and 

interpret model

• Model apply

 
 
Figure 2. The process of mining the ERI sensed data stream. 

 

4.1 Problem definition in terms of Data Mining and 
Energy Management 

This section defines the problem from the energy 
management perspective, then converts this knowl-
edge into a data mining problem definition and 
shows the preliminary plan designed to solve it. 

As mentioned in Section 2, energy management 
is required to provide steady user comfort while re-
ducing energy consumption. Relevant stakeholders 
need to evaluate HVAC system efficiency and user 

comfort in order to accomplish this task, while keep-
ing the cost of this evaluation as low as possible. 

We approach this problem by classifying rooms 
based on their thermal comfort into hot, warm, 
slightly warm, neutral, slightly cool, cool, and cold. 
The classification is based on the Predicted Mean 
Vote (PMV) as standardized in the ISO 7730 (2005). 
A classification model is created based on 4 rooms 
that have the necessary sensors available as detailed 
in Section 4.2.3 This model is then applied to all 70 
rooms using only air temperature sensors to predict 
the comfort class. 

4.2 Data acquisition and preparations 

4.2.1 Data sources and volumes 
Data processing includes cleansing, integration, and 
transformation of the sensed data to assure high 
quality (Atzmüller 2007, p. 174). 

The data source for this research is a collection of 
storages of the ERI building performance data, as 
mentioned in Section 2. The ERI building is a 4500 
m² ―Living Laboratory‖ located on the campus of 
University Cork College, Ireland. It is equipped with 
multiple types of solar panels, geothermal heat 
pumps and an under floor heating system. Building 
Performance Data is provided by 180 wired sensors 
of the Building Management System. Additionally, a 
test bed for wireless sensors and actuators has been 
installed since April 2008 in three phases. Demon-
strator 0 has been operational since June 2008. Table 
1 shows the expected sensors data stream volume for 
the ERI building per year. 

 
Table 1. Expected data volumes in the ERI.  

Sensors Sampling Period Total records 

180 Wired 15 minutes 6,307,200 

80 Wireless  1 minutes 42,048,000 

Total Volume 48,355,200 

 
Currently, there are 190 sensors installed and 

working in the ERI building, with 13 different types 
of measurements, including indoor environment and 
outdoor weather conditions. These sensors are in-
stalled in 109 points in 94 rooms and spaces such as 
stairs way, and corridors. 

4.2.2 Data collection 
Data extracted and retrieved from the building‘s 
monitoring data sources is stored in a table with the 
attributes as listed in Table 2. These attributes are 
the predictors or the influences that are used to de-
tect the room comfort class. 

The data for building and testing the model used 
in Section 4.3 was collected for the period of 
08/02/2007 to 24/04/2009 and contains 933,235 re-
cords for four rooms in the ERI building.  



The data for scoring the model in Section 4.4 
represents the period of 13/10/2008 to 01/02/2009 
and contains 890,921 records for the air temperature 
and outdoor conditions for all rooms in the building. 

 
Table 2. The predictors.  

# Attribute Name Description 

1 MEASURE_ID A unique id to identify a 
sensor measure 

2 ROOM_ID A unique id to identify a 
room in the ERI 

3 ROOM_NAME A name to identify a 
room 

4 ROOM_SIZE The volume of a room 
5 ROOM_FLOOR Storey in which a room is 

located 
6 TIME_ID The time stamp of  sensor 

reading 
7 COMFORT_CLASS The predicted comfort 

class of  room 
8 ROOM_TEMPERATURE temperature measure in 

room 
9 OUT_TEMPERATURE Outside temperature  
10 OUT_HUMIDITY Outside humidity 
11 OUT_LIGHT Outside light 
12 OUT_TOTAL_RADIATION Outside total solar radia-

tion 
13 OUT_DIFFUSE_ RADIA-

TION 
Outside total diffuse solar 
radiation 

14 OUT_WIND_DIRECTION Wind direction 
15 OUT_WIND_SPEED Wind speed 
16 ROOM_RAD_TEMP

*
 Radiant Temperature 

17 ROOM_HUMIDITY
*
 Relative Humidity 

18 ROOM_CO2
*
 CO2 Concentration 

*
Available for 4 rooms and used only for computing the com-

fort class 

4.2.3 Data preparations and transformation 
This section shows the activity of modifying the 
values of some attributes and adding other values as 
required to present the appropriate data set for min-
ing. There is no methodology agreed upon to prepare 
data for the purpose of mining, but it usually tries to 
identify and remove outliers, fill null-values and re-
move noise in the data to improve model quality. 

First outliers are detected and removed. It has 
been found that the air temperature sensor in one 
room in the scoring data is broken and delivers read-
ings between -300°C and -200°C. Second, when the 
Building Management System is reset it sets all 
measurements to zero by default. Both outliers‘ 
sources were removed from the data leaving 933,235 
records for model building and 890,921 records for 
scoring. 

However, the biggest issue concerns approxi-
mately 90% of the records per measurement (lines 8-
18 in Table 2) that are NULL in the database. The 
reason for this is that the timestamps of the sensors 
are not synchronized and each sensor fills only its 
own column. Thus, when the air temperature sensor 
adds a value in the ROOM_TEMPERATURE col-
umn the other measurement columns (lines 9-18) are 

left empty. For data mining they need to be filled to 
allow the analysis of correlations. 

This is done by linearly interpolating each col-
umn over the timestamp for each room. Let us as-
sume for example the air temperature sensor in room 
G01 reads 20.0°C at 4:00pm and 15 minutes later 
21.5°C. The relative humidity sensor adds its value 
at 4:05pm to the database. For this timestamp the 
temperature in G01 can be linearly interpolated to 
20.5°C. This linear interpolation is implemented in 
JAVA for all continuous measurements in Table 2 
for building and scoring the model. 

As a last preparation step, the thermal comfort 
class needs to be computed for the data used for 
model building. The classification is based on the 
PMV, which is defined in the ISO 7730 and was im-
plemented in JAVA. The PMV value is not an un-
disputable thermal comfort measurement (Nicol & 
Parsons 2002, Pfafferott et al. 2007) and other ap-
proaches try to create more general models (Yao et 
al. 2009). Nevertheless, the PMV was selected for 
this example as it shows the complexity of thermal 
comfort evaluation and is established. Other thermal 
comfort measures can be analyzed in the same way. 
The PMV depends on the air temperature, radiant 
temperature, relative humidity, air velocity, as well 
as occupant‘s clothing and activity level. Readings 
for the air temperature, radiant temperature, and 
relative humidity are available for four rooms in the 
database. To compute the PMV, we assume constant 
air velocity of 0.1m/s, which is a representative 
mean value for naturally ventilated offices (Mou-
jalled 2008). At the activity level we assume office 
works with 1.2met. The clothing value is interpo-
lated depending on the outside temperature between 
1.0m

2
K/W (indoor winter clothing at 0°C) and 

0.5m
2
K/W (summer clothing at 30°C). 

 
Table 3. Comfort classes based on the PMV.  

Comfort Class Classification No. in 
Data 

Percentage 
in Data 

Hot 3.5 > PMV ≥ 2.5 0 0.0% 
Warm 2.5 > PMV ≥ 1.5 4 0.0% 
Slightly Warm 1.5 > PMV ≥ 0.5 8,948 1.0% 
Neutral  0.5 > PMV ≥ -0.5 772,072 82.7% 
Slightly Cool -0.5 > PMV ≥ -1.5 150,227 16.1% 
Cool -1.5 > PMV ≥ -2.5 1,984 0.2% 
Cold -2.5 > PMV ≥ -3.5 0 0.0% 
OutOfRange otherwise 0 0.0% 

 
The comfort class is assigned from the PMV 

value according to the classification in Table 3. The 
table lists also the resulting numbers of entries in 
each class. The distribution of the PMV and the 
room measurements are displayed in Figure 3 for 
comparison. The distributions of the PMV values are 
about the same for all four rooms. 

Figure 4 shows the results of the attribute impor-
tance analysis of the Oracle Data Miner run on the 
computed comfort classes for the model building 



 

 

data. Attribute Importance identifies the subset of at-
tributes relevant for classification using a Minimum 
Description Length Algorithm (Oracle 2008). It is 
obvious that the PMV and the related Percentage of 
Persons Dissatisfied (PPD) have the biggest influ-
ence on the comfort class. The air and radiant tem-
peratures are next in rank of importance. Other val-
ues are less important for the comfort classification. 

 

  
 
a) Room air temperature 

 
b) Room radiant temperature 
 

  
 
c) Room relative humidity. 

 
d) Room PMV. 

  
Figure 3. Histograms of various measures from 4 rooms.  
( - mean value;  - standard deviation; c95 – 95% confidence 
interval) 

 

 
 
Figure 4. Influences of the indoor measures in room comfort. 

 
This is relevant for the model building in the next 

step, as the PMV, PPD, radiance temperature, rela-
tive humidity, and CO2 are removed, as they are not 
available in the other rooms on which the model 
should be applied to. We assume that this is feasible, 
as the room radiance temperature is strongly corre-
lated to the room air temperature (compare Figure 3a 
and 3b, the room humidity is correlated to the out-
side humidity, and the clothing level was related to 
the outside temperature during the PMV computa-

tion. Several tests in the next section will show if 
this assumption is correct. 

4.3 Building and evaluating the comfort model 

Building a data mining model is the process of find-
ing the best algorithm or technique, by which the 
building sensed data is analysed and represented as 
patterns and rules (Harinath & Quinn 2006, p. 485).  

The following shows how to classify room com-
fort. This is an overview of building, testing, and 
scoring a classification model.  

Classification is a model or a classifier that is 
constructed to predict the categorical label of a room 
in a building (Han & Kamber 2006, p. 286). These 
classes are defined in Section 4.2.3. Classification 
mining function uses different algorithms such as 
decision trees, Naïve Bayes, and support vector ma-
chines.  

As the attributes in Table 2 are unconditional this 
makes Naïve Bayes the optimal algorithm (Fielding 
2007, p. 99) to detect room comfort in buildings in 
this case. Naïve Bayes is a probabilistic classifier 
that uses Bayesian theory. It simplifies the learning 
by assuming that the attributes in Table 2 are inde-
pendent (Abellan et al. 2007) given the room com-
fort class as the variable to classify. Decision trees 
and support vector machines resulted in poor mod-
els. 

In the setting phase to build the model, the cool 
label has been used as the preferred target value. 
Data split into two subsets of 60% and 40% for 
training and testing the models. The 40% is called a 
holdout sample or a test dataset. The sampling proc-
ess was disabled, as the model building time was ac-
ceptable for our data size. The model was tuned to-
wards a maximum average accuracy that creates a 
model that is good in predicting all labels (Huang et 
al. 2008). 

During the building process the model learns 
from the sensed data how to distinguish between 
comfort classes in order to predict the same classes 
when the model is applied to other rooms. The test 
metrics of ODM, which are detailed in the following 
sections, allow evaluation of the model‘s quality 
(Maimon & Rokach 2005, p. 1241). 

4.3.1 Predictive confidence 
Predictive confidence is a visual indication of the ef-
fectiveness of this model compared to a random 
guess of the rooms‘ comfort class. It is a validation 
of the ability of the model to generalize what it 
learned in a different data set (Fernández 2003, p. 
152). If the needle in Figure 5 points to the lowest 
point on left of the dial, then the model is no better 
than a random guess (Haberstroh 2008, p. 85). The 
comfort detection model developed in this study 
shows 85.28% predictive improvement over a ran-
dom guess in predicting rooms‘ comfort class. In 



comparison, a classification model taking also the 
rooms‘ humidity, CO2 and radiant temperature into 
account reaches a predictive confidence of 89.44%. 
If only the rooms‘ air temperature is used for classi-
fication, the predictive confidence reduces to 
74.75%. This shows on the one hand the high impor-
tance of the rooms‘ air temperature for the comfort 
class. On the other hand, this demonstrates also that 
the other values considered in this study, like outside 
measurements and room size, improve the model 
significantly. 
 

 
 
Figure 5. The predictive confidence of the model. 

 

4.3.2 Model accuracy 
Model accuracy shows the several interpretations 

of the fault detecting model ability in predicting the 
class when applied to the test data. 
 

 
 
Figure 6. Model accuracy and the confusion matrix. 

 
Figure 6 shows the model accuracy for the com-

fort classification. The table on the top shows the 
percentage of values correctly predicted per class. 
For example, there are 308,623 cases with a comfort 
class ‗neutral‘ and the model predicts 71.8% of them 

correct. The cost is an indication of damage done by 
incorrect prediction (Berry & Linoff 2004, p. 79), 
and it is a valuable metric for model comparisons. 
The displayed model was the best model we could 
develop, with the lowest cost of predicting rooms‘ 
comfort classes. 

The type of errors expected from this model is 
shown on the confusion matrix in the lower table in 
Figure 6. Actual (correct) values of the classes are 
represented by rows and compared against the pre-
dictions made by the model in columns. The num-
bers tell how many classes were correctly predicted 
or misinterpreted as another class. For example, the 
first row in Figure 6 indicates that, of the samples 
with the actual comfort class ‗cool‘, 709 cases were 
correctly predicted and 55 cases were predicted in-
correctly as ‗slightly cool‘.  

To interpret the confusion matrix, incorrect pre-
diction variations are usually placed next to the cor-
rect classes, i.e. the ‗neutral‘ class is either predicted 
incorrectly as ‗slightly cool‘ or ‗slightly warm‘. The 
rare classes ‗warm‘ and ‗cool‘ have a high percent-
age of correct prediction. The reason is probably that 
they are characterized by extreme air temperatures. 
However, the low number of samples do not allow 
generalisation in so far as the classes will also be de-
tected correctly in other data. As the building data 
contained no ‗hot‘ and ‗cold‘ cases the model will 
not be able to classify these classes. 

4.4 Knowledge deployment 

The created model can be applied to any building 

performance data that has the same structure and 

format, to predict the comfort class. The applying 

activity is sometimes referred to as scoring the 

model (Giovinazzo 2002, p. 168) that uses the model 

in a different data set to predict the classification.  

This is done for all 70 rooms excluding the room 

with the broken temperature sensor, which was 

cleaned out as explained in Section 4.2.3. The new 

model allows predicting the thermal comfort class 

based only on the rooms‘ air temperature and the 

buildings outside conditions. 

 

  
 
a) Room air temperature. 

 
b) Room PMV. 

Figure 7. Histograms of measures from all rooms. 



 

 

The distributions for the air temperature of these 

rooms and the predicted PMV values are shown in 

Figure 7. The mean air temperature () is 19.9°C 

and slightly lower than the 21.7°C for the four 

rooms‘ data used for model (see Figure 3a). The 

standard deviation increases from 1.6°C to 2.2°C as 

the added rooms increase the variance. This results 

in a broader PMV distribution in Figure 7b in com-

parison to Figure 3c, with significantly more 

‗slightly cool‘ and ‗cool‘ values. 
 

 
 
Figure 8. Sample of output table for applying the model. 

 
A sample of the output table of applying the 

model is displayed in Figure 8. The sample table 

shows each row with the identifier, prediction of the 

most likely class, the probability that this is the right 

guess; the cost of incorrect prediction, and the rank 

to categorize predictions. The room name was added 

to ease readability. 

The model estimates to make correct predictions 

with mean probabilities of 78%. The ‗neutral‘ label 

is usually predicted with 97% mean probability, 

‗slightly cool‘ with 76%, ‗slightly warm‘ with 21%, 

and ‗cool‘ and ‗warm‘ with 15% mean probability. 

The reason for this distribution is that the data used 

for building the model contained mostly cases for 

‗neutral‘, which increases the model quality for this 

case, but the lack of data for the other cases reduces 

their model quality. 

4.5 Knowledge gained and interpretation 

As a last step, the PMV distribution for a room was 
analysed to identify the rooms with an emphasis on 
not ‗neutral‘ comfort level. See Figure 9 for a loca-
tion of the rooms. 40 rooms out of 70 were identified  
as having mainly ‗slightly cool‘ comfort level, and 5 
rooms had a ‗cool‘ comfort level for more than 30% 
of the cases. Four of these five rooms are located at 
the south facade on ground level and three have ex-
terior doors. The ground floor has the highest num-

ber of rooms with ‗neutral‘ comfort. One room in 
the middle of the floor shows abnormal behaviour 
that should be investigated, as the room has more 
than 30% ‗cool‘ comfort level in contrast to its 
neighbour rooms. 

 

N

 
 
Figure 9. Comfort levels of the rooms. 

 
In general, the thermal comfort for the scored 

winter period was ‗slightly cool‘. The set point tem-
perature for all rooms was 20°C, which represents 
the mean temperature value as shown in Figure 7a. 
However, to provide a better thermal comfort, the 
set point should be higher. 

Office hours were not considered during the 
analysis. The mean air temperature varies in the 
scoring data by 1.5°C reaching the minimum of 
19.0°C at 2am and the maximum of 20.5°C at 4pm. 

5 CONCLUSION 

Two approaches were introduced to analyse building 
performance data for energy-efficient buildings.  

The data warehouse solution provides a single re-
pository for building performance data, creates so-
phisticated energy aggregations, and provides 
friendly user interfaces. 

The data mining model automates and eases 
evaluating building thermal comfort, while reducing 
the cost of monitoring equipment. The process from 
data acquisition, preparation, model building, to 
knowledge deployment was examined using real 
data from the ERI. The results show that the ap-
proach is feasible, but more data is needed to train 
the model for less frequent classes like ‗hot‘ and 
‗cold‘. 

Implementing data mining techniques to building 
sensed data will help in stabilising rooms‘ prefer-
ences while optimising energy usage. Therefore, the 
correlations between the building energy usage and 
thermal comfort will be further examined with a 



special focus on the sustainable energy sources of 
the ERI. Another future research topic will be the 
development of mining models for fault detection 
and diagnosis as well as mining models that consider 
human comfort feedback along with other influences 
in room states, such as the structural properties of 
the building and its geometrical specifications. The 
extensions of the ERI with a further 80 wireless sen-
sors will increase the data set for analysis and will 
also provide more validation data for this model. 
These solutions are used by the ITOBO (2007) pro-
ject to increase the value of energy-efficient smart 
buildings. 
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