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Goal: To draw conclusions about the population parameters from
experimental data.

Statistical Inference consists of those methods by which one makes
inference or generalization about a population.
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I Point estimation
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Interval estimation



Confidence Intervals

Definition

Let X1,X2, . . . ,Xn a random sample and θ an unknown parameter of the
population and 1− a a probability. Then, the interval (l , u), where these
endpoints are values of the corresponding random variables L and U, for
which it holds

P(L < θ < U) = 1− a

is called 100(1− a)% confidence interval for the parameter θ.

1− a : confidence level

I The 100(1− a)% confidence interval provides an estimate of the
accuracy of the point estimator.
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Confidence Interval for the mean µ of a
population

I Error |X̄ − µ|

If x̄ is used as an estimator of µ, we can be 100(1− a)% confident that
the error will not exceed

za/2
σ√
n
.

I Sample size

Let X̄ be an estimator of µ, we are 100(1− a)% confident that the error
will not exceed a specified amount ε when the sample size is

n ≥
(za/2σ

ε

)2
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Degrees of freedom

Although the sample size is n, the degrees of freedom of the random

variable X̄−µ
S/
√
n

is n − 1. The degrees of freedom of t distribution are

determined by the degrees of freedom of the sample variance.

IWhy does the sample variance has n − 1 degrees of freedom?

It is known that s2 =
∑

(xi−x̄)2

n−1 . In order to compute this quantity the
squares of the differences x1 − x̄ , x2 − x̄ , . . . , xn − x̄ must be added. The
sum of these differences is equal to zero

(x1 − x̄) + (x2 − x̄) + . . .+ (xn − x̄) = 0.

Thus, if n − 1 values of these differences are known, the last one can be
computed. So, from the n differences, only the n − 1 can be changed
freely. The last one is related to the rest of them. For this reason the
sample variance has n − 1 degrees of freedom.
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Example

I Scholastic Aptitude Test (SAT) mathematics scores of a random
sample of 25 high school seniors in the state of Texas are collected, and
the sample mean and standard deviation are found to be 501 and 112,
respectively. Find a 99% confidence interval on the mean SAT
mathematics score for seniors in the state of Texas.



Prediction Intervals

Sometimes, we are also interested in predicting the possible value of a
future observation X0.

A natural point estimator of a new observation is X̄ .

X0 − X̄ ∼ N (0, σ2
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I The Prediction Intervals are used for Outlier detection
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A prediction interval is an estimate of an interval
in which a future observation will fall, with a
certain probability, given what has already been observed
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Tolerance Intervals

I One may be interested where the majority of the population falls.

I In this case, one must attempt to determine bounds that, in some
probability sense, ”cover” values in a population.

I One method for establishing the desired bounds is to determine a
confidence interval on a fix proportion of the measurements.

I For example, µ± za/2 · σ covers exactly (1− a)100% of the population
of observations.

I When µ and σ are unknown, tolerance limits are given by x̄ ± k · s
where k is determined such that one can assert with 100(1− γ)%
confidence that the given limits contain at least the proportion 1− a of
the measurements.
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I When µ and σ are unknown, tolerance limits are given by x̄ ± k · s
where k is determined such that one can assert with 100(1− γ)%
confidence that the given limits contain at least the proportion 1− a of
the measurements.
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With a conﬁdence of 1 − α, the proportion 1 − γ of
population measurements will fall between the lower
and upper bounds shown above.
This interval is called a (1 − γ,1 − α)-tolerance interval.



Example

I Machine Quality: A machine produces metal pieces that are cylindrical in
shape. A sample of these pieces is taken and the diameters are found to be
1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. For all
computations, assume an approximately normal distribution.
(a) Find a 99% confidence interval on the mean diameter.
(b) Compute a 99% prediction interval on a measured diameter of a single
metal piece taken from the machine.
(c) Find the 99% tolerance limits that will contain 95% of the metal pieces
produced by this machine.

I Solution
The sample mean and standard deviation for the given data are x̄ = 1.0056 and
s = 0.0246.
(a) (0.9781, 1.0331)
(b) (0.9186, 1.0926)

(c) (0.8937, 1.1175)
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Confidence intervals for the difference
µ1 − µ2 of two independent populations

Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym random samples form two independent
populations with means µX and µY and variances σ2

X and σ2
Y respectively.

I with known variance
X̄ an estimator of µX , Ȳ an estimator of µY X̄ ∼ N (µX ,

σ2
X
n ), Ȳ ∼ N (µY ,

σ2
Y
m ),

X̄ − Ȳ ∼ N (µX − µY ,
σ2
X
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σ2
Y
m )
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√
σ2
X

n
+
σ2
Y

m

 = 1− a

x̄ − ȳ − za/2
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√
σ2
X

n
+
σ2
Y

m

 = 1− a

x̄ − ȳ − za/2
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Confidence intervals for the difference
µ1 − µ2 of two independent populations

I with unknown variances, but equal σ2
1 = σ2

2 = σ2

The common variance σ2 is estimated by

s2
p =

(n − 1)s2
x + (m − 1)s2

y

n + m − 2

X̄−Ȳ−(µX−µY )
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1
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+ 1
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X̄ − Ȳ − (µX − µY )

Sp

√
1
n

+ 1
m

< tn+m−2,a/2

 = 1− a

(
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x̄ − ȳ − tn+m−2,a/2sp

√
1

n
+

1

m
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Confidence intervals for the difference
µ1 − µ2 of two independent populations

I with unknown variances and not equal σ2
1 6= σ2

2

• m = n then(
x̄ − ȳ − tv,a/2
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x + s2
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Y
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m−1

(the value of v is rounded to the nearest integer)
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Example

I A researcher wants to compare the mean gain in weight of some animals
using two different diets. The researcher gives diet A in 10 of the available
animals and diet B in 6 animals and he gets the following results:

A 113 135 91 104 135 107 152 97 145 129
B 126 73 102 110 79 104

Find a 95% confidence interval on the difference of the mean weight increase

by the two diets, under the assumption that the two populations are normally

distributed and have equal variances.



Confidence interval of µ1 − µ2 of paired
samples

Paired observations (xi , yi ), i = 1, 2, . . . n

I We run a test on a new diet using n individuals, where xi is the weight
before and yi after going on the diet forms the information of the two samples.

I The differences di = xi − yi , i = 1, . . . , n are considered.
These differences are the values of a random sample D1, . . . ,Dn from a
population of differences that we shall assume to be normally distributed with
mean µd = µ1 − µ2 and variance
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Confidence interval of the proportion p of
a population

Let x be the number of items with a specific characteristic in a sample of size
n. Then the proportion p of the population with the specific characteristic is
estimated by p̂ = x

n
.

From the CLT, for large n,

p̂ ∼ N
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)
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
I A coin is tossed 100 times and 45 times are head. Find a 95% confidence

interval for the true proportion of head.
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Wilson score interval (better performance when p near 0 or 1)
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Confidence interval for the difference
p1 − p2 of two population

Let x1 and x2 be the number of the items with a specific characteristic in two
independent samples with sample sizes n and m respectively. The proportions p1 and
p2 with the specific characteristic are estimated with the quantities p̂1 = x1

n
and

p̂2 = x2
m

respectively.
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Confidence interval of the variance and
standard deviation of a population
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