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Confidence Intervals

Definition
Let X1, X5,..., X, a random sample and 6 an unknown parameter of the
population and 1 — a a probability. Then, the interval (/, u), where these
endpoints are values of the corresponding random variables L and U, for
which it holds

P(L<f<U)=1-a

is called 100(1 — a)% confidence interval for the parameter 6.
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Confidence Intervals

Definition

Let X1, X5,..., X, a random sample and 6 an unknown parameter of the
population and 1 — a a probability. Then, the interval (/, u), where these
endpoints are values of the corresponding random variables L and U, for
which it holds

P(L<f<U)=1-a

is called 100(1 — a)% confidence interval for the parameter 6.

1 — a: confidence level

» The 100(1 — a)% confidence interval provides an estimate of the
accuracy of the point estimator.
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» Error |[X — u

If X is used as an estimator of u, we can be 100(1 — a)% confident that

the error will not exceed o

Za/2%.
» Sample size

Let X be an estimator of z1, we are 100(1 — a)% confident that the error
will not exceed a specified amount € when the sample size is

n> <Za/20)2
- €
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t Distribution Table A.4 Critical Values of the t-Distribution

v 040 030 020 015 010 005 0.025
1 0325 0727 L1376 L963 3078 6314 12706

2 0280 0617 1061 13s6 1886 2920 1303

L 3 0217 0584 0978 1230 1638 2353 3182

4 0271 0569 0941 1190 153 2432 2,776

¢ 5 0267 055 0820 1136 1476 2015 2571

6 0265 055 0906 113 1440 1943 2447

70263 0549 0895  L119  Ld415 1895 2,365

8 0262 0516 0880 1108 1307 1860 2,306

9 0261 0543 0883 L0 1383 1833 2,262

10 0260 0542 0879 1093 1372 1812 2,228

110260 0510 0876 1088 1363 1796 2.201

A \ , w s 120250 0539 0873 1083 1356 L7s2 2179
N o 0 ! ¢ 13 0250 0538 0870 1079 13w 1771 2,160
14 0258 0537 0868 1076 1345 1761 2145

15 0258 053 0866 1074 1341 1753 2131

: 16 0258 0535 0865 1071 1337 1746 2120

i 17 0257 0531 0863 1069 1333 1740 2110

: 18 0257 0534 0862 1067 1330 1734 2,101

: 19 0257 0533 0861 1066 1328 1720 2003

i 20 0257 0533 0860 1061 132 172 2,086

! 21 0257 0532 089 1063 1323 1721 2,080

! 22 025 0532 0858 1061 1321 L7IT 207

! 23 0256 0532 0858 LOGD  L3l9 1714 2,069

! 24 0256 0531 0857 L0590 L3S L1711 2,064

T + 2 ' 25 0256 0531 0856 1058 1316 1708 2,060
26 0256 0531 086 1058 1315 1706 2,056

27 0256 0531 0855 1057 134 1703 2052

28 0256 0530 0855 1056 L33 1701 2018

20 0256 0530 085 1055 1311 1699 2.045

30 0256 0530 0834 1035 130 1697 2042

40 0255 0529 0851 1030 1303 1684 2021

60 0234 0527 084S 1045 1296 1671 2000

120 0254 04526 0845 LOL 1280 1658 1.980

oo 0.253 0.524 0.842 1.036 1.282 1.645 1.960
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Degrees of freedom

Although the sample size is n, the degrees of freedom of the random

g/_\/’% is n — 1. The degrees of freedom of t distribution are

determined by the degrees of freedom of the sample variance.

variable

»Why does the sample variance has n — 1 degrees of freedom?

— 2 . .
It is known that s = % In order to compute this quantity the
squares of the differences x; — X, x» — X,...,x, — X must be added. The

sum of these differences is equal to zero
(1 =X)+(x2=X)+...+(x, —X) =0.

Thus, if n — 1 values of these differences are known, the last one can be
computed. So, from the n differences, only the n — 1 can be changed
freely. The last one is related to the rest of them. For this reason the
sample variance has n — 1 degrees of freedom.



Example

» Scholastic Aptitude Test (SAT) mathematics scores of a random
sample of 25 high school seniors in the state of Texas are collected, and
the sample mean and standard deviation are found to be 501 and 112,
respectively. Find a 99% confidence interval on the mean SAT
mathematics score for seniors in the state of Texas.
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Sometimes, we are also interested in predicting the possible value of a
future observation Xj.

A prediction interval is an estimate of an interval
in which a future observation will fall, with a
certain probability, given what has already been observed
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Prediction Intervals

Sometimes, we are also interested in predicting the possible value of a
future observation Xj.

A natural point estimator of a new observation is X.

Xo— X ~N(0,0%(1+1))

/ 1 / 1
<)_<—Za/20' 14— )_<+Za/20' 1+>
n n
_ 1 _ 1
X = tnfl,a/25 1+ ;7 X+ tnfl.,a/Qs 1+ ;

» The Prediction Intervals are used for Outlier detection
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Tolerance Intervals

» One may be interested where the majority of the population falls.

» In this case, one must attempt to determine bounds that, in some
probability sense, " cover” values in a population.

» One method for establishing the desired bounds is to determine a
confidence interval on a fix proportion of the measurements.

» For example, 1 =+ z,/, - o covers exactly (1 —a)100% of the population
of observations.

» When p and o are unknown, tolerance limits are given by X = k - s
where k is determined such that one can assert with 100(1 — )%
confidence that the given limits contain at least the proportion 1 — a of
the measurements.



(n2 —1) 2%—1»/2

X —ks,X +ks|, k= >
n X::—l,a

With a confidence of 1 — a, the proportion 1 -y of
population measurements will fall between the lower
and upper bounds shown above.

This interval is called a (1 — y,1 — a)-tolerance interval.
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With a conﬁdence of 1 − α, the proportion 1 − γ of
population measurements will fall between the lower
and upper bounds shown above.
This interval is called a (1 − γ,1 − α)-tolerance interval.


Example

» Machine Quality: A machine produces metal pieces that are cylindrical in
shape. A sample of these pieces is taken and the diameters are found to be
1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. For all

computations, assume an approximately normal distribution.

(a) Find a 99% confidence interval on the mean diameter.

(b) Compute a 99% prediction interval on a measured diameter of a single

metal piece taken from the machine.

(c) Find the 99% tolerance limits that will contain 95% of the metal pieces
produced by this machine.
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Example

» Machine Quality: A machine produces metal pieces that are cylindrical in
shape. A sample of these pieces is taken and the diameters are found to be
1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. For all

computations, assume an approximately normal distribution.

(a) Find a 99% confidence interval on the mean diameter.

(b) Compute a 99% prediction interval on a measured diameter of a single

metal piece taken from the machine.

(c) Find the 99% tolerance limits that will contain 95% of the metal pieces
produced by this machine.

» Solution

The sample mean and standard deviation for the given data are X = 1.0056 and
s = 0.0246.

(a) (0.9781, 1.0331)

(b) (0.9186, 1.0926)

(c) (0.8937, 1.1175)



Solution: (a) The 99% confidence interval for the mean diameter is given by
7 % to.0055/v/n = 1.0056 = (3.355)(0.0246/3) = 1.0056 + 0.0275.
Thus, the 99% confidence bounds are 0.9781 and 1.0331.
(b) The 99% prediction interval for a future observation is given by
T + to.0055\/1 + 1/n = 1.0056 + (3.355)(0.0246)/1 + 1/9,

with the bounds being 0.9186 and 1.0926.
(¢) From Table A.7, forn =9, 1 -~ =0.99, and 1 — a = 0.95, we find & = 4.550
for two-sided limits. Hence, the 99% tolerance limits are given by

T + ks = 1.0056 + (4.550)(0.0246),

with the bounds being 0.8937 and 1.1175. We are 99% confident that the
tolerance interval from 0.8937 to 1.1175 will contain the central 95% of the
distribution of diameters produced.
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Let X1, X2,...,Xp and Y1, Ya,..., Yy random samples form two independent
populations with means px and py and variances 0)2( and a%, respectively.

» with known variance , ,
X an estimator of ux, Y an estimator of uy X ~ N (pux, UTX) Y ~ N(py, 67‘/)
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» with known variance , ,
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» with unknown variances, but equal 0% = 03 = o2
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The common variance o< is estimated by
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» with unknown variances, but equal 0% = 03 = o2
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The common variance o< is estimated by
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Confidence intervals for the difference
(1 — 2 of two independent populations

» with unknown variances and not equal 0% # o3

® m = n then

o [s2+s2 _  _ s2 + s?
<X_y_tv,a/2 v y:X—}/‘f‘tv,a/z v z

where v =2(n —1)

® m # m then

- - s2 st o_ s2 s
X_y_tv,a/2 ?+;,X_y+tv,a/2 ;"‘;

_ (sf/n+s§/m)2
(s /n)? n (s2 /m)?

n—1 m—1

(the value of v is rounded to the nearest integer)




Example

» A researcher wants to compare the mean gain in weight of some animals
using two different diets. The researcher gives diet A in 10 of the available
animals and diet B in 6 animals and he gets the following results:

A 113 135 91 104 135 107 152 97 145 129
B 126 73 102 110 79 104

Find a 95% confidence interval on the difference of the mean weight increase
by the two diets, under the assumption that the two populations are normally
distributed and have equal variances.
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Paired observations (xi,y;), i =1,2,...n

» We run a test on a new diet using n individuals, where x; is the weight
before and y; after going on the diet forms the information of the two samples.

» The differences d; = x; — y;,i = 1,..., n are considered.

These differences are the values of a random sample D;, ..., D, from a
population of differences that we shall assume to be normally distributed with
mean g = p1 — M2 and variance
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From the CLT, for large n,
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Confidence interval of the proportion p of
a population
Let x be the number of items with a specific characteristic in a sample of size
n. Then the proportion p of the population with the specific characteristic is

estimated by p = %

From the CLT, for large n,
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» A coin is tossed 100 times and 45 times are head. Find a 95% confidence

interval for the true proportion of head.
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