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Analysis of Variance



Introduction

Goal: To test the hypothesis

H0 : µ1 = µ2 = . . . = µk

where k is the number of independent populations

We can do all the possible tests in pairs.
In this case, the probability of Type I Error increases, i.e. the
possibility to obtain statistically significant differences when in fact
there are not.

For example if k = 10, there are 45 possible pairs for testing. By
using α = 5% in each of these tests, 0.05× 45 ≈ 2 tests may give
us statistically significant differences in means completely at
random.

I Thus, a new methodology is required.
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One-way ANOVA

H0 : µ1 = µ2 = · · · = µk vs H1 : at least one µi differs

I Yij i-th observation that belongs to j-th group, i = 1, . . . , nj and
j = 1, . . . , k

I Y·j =

nj∑
i=1

Yij the sum of observations of the j-th group.

I Y ·j =
1

nj

nj∑
i=1

Yij sample mean of j-th group

I Y·· =
k∑

j=1

nj∑
i=1

Yij the sum of all the observations

I Y ·· =
1

n

k∑
j=1

nj∑
i=1

Yij the sample mean, where n =
∑k

j=1 nj



One-way ANOVA

H0 : µ1 = µ2 = · · · = µk vs H1 : at least one µi differs

I Yij i-th observation that belongs to j-th group, i = 1, . . . , nj and
j = 1, . . . , k

I Y·j =

nj∑
i=1

Yij the sum of observations of the j-th group.

I Y ·j =
1

nj

nj∑
i=1

Yij sample mean of j-th group

I Y·· =
k∑

j=1

nj∑
i=1

Yij the sum of all the observations

I Y ·· =
1

n

k∑
j=1

nj∑
i=1

Yij the sample mean, where n =
∑k

j=1 nj



One-way ANOVA

Two sources of variability in the data:

I variation among observations within a population

I variation among populations that is due to the differences in the
characteristics of the population,

Part of the goal of the analysis of variance is to determine if the
differences among the k sample means are what we would expect
due to random variation alone or, rather, due to variation beyond
merely random effects.

I Assumptions
The k populations are independent and normally distributed with
means µ1, . . . , µk and common variance σ2
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One-way ANOVA

yij − y ·· = yij − y ·j + y ·j − y ··
I yij − y ·j variability within group
I y ·j − y ·· variability between groups .

I If the variability between groups is large and the variability within groups is
small, the null hypothesis must be rejected.
I If the variability between groups is small and the variability within groups is
large, the null hypothesis must not be rejected.

k∑
j=1

nj∑
i=1

(yij − y)2 =
k∑

j=1

nj∑
i=1

(yij − y ·j)
2 +

k∑
j=1

nj(y ·j − y ··)
2

where
I SST Total Sum of Squares
I SSW Sum of Squares Within group
I SSB Sum of Squares Between groups

MSW =
SSW

n − k
, MSB =

SSB

k − 1
,

F =
MSB

MSW
∼ Fk−1,n−k

Thus, at α% significance level, the hull hypothesis is rejected if F > Fk−1,n−k·a.
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One-way ANOVA

Variability Degrees of Freedom Sum of Squares Mean Square

Between groups k − 1
k∑

j=1

nj (y ·j − y ··)
2 = SSB

SSB

k − 1
= MSB

Within groups n − k
k∑

j=1

nj∑
i=1

(yij − y ·j )
2 = SSW

SSW

n − k
= MSW

Total n − 1
k∑

j=1

nj∑
i=1

(yij − y ··)
2 = SST

SST

n − 1
= MST

F =
MSB

MSW
∼ Fk−1,n−k

Reject H0 when F > Fk−1,n−k,a.



One-way ANOVA

I Homoscedasticity. Levene’s test is applied for testing the
equality of variances in the k populations which is a generalization
of the standard F-test for testing the equality of variances in two
populations.

I When the above assumptions are not valid, either the response
variable is transformed, or the corresponding nonparametric test,
named Kruskal Wallis test is applied.

I If H0 is rejected, i.e. if it is assumed that there is a statistically
significant difference between three or more groups, then it is
important to find between which groups there is difference.

I Bonferroni’s method. N tests are applied and the p−value is
readjusted to p′ = N p with the assumption that p′ ≤ 1.
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One-way ANOVA
22 patients who underwent heart surgery were divided into three groups.

I Group 1. Patients who were treated with a mixture of 50% nitrous oxide and 50%
oxygen for 24 hours.
I Group 2. Patients who were treated with a mixture of 50% nitrous oxide and 50%
oxygen Only during surgery.
I Group 3. Patients who were treated with a mixture of 35− 50% nitrous oxide and
50% oxygen for 24 hours.

In the following table the value of folic acid mg/l in erythrocytes of patients is
presented.

Patients Group 1 Group 2 Group 3
1 243 206 241
2 251 210 258
3 275 226 270
4 291 249 293
5 347 255 328
6 354 273
7 380 285
8 392 295
9 309

Do the patients of the three groups have the same mean level of folic acid mg/l in

their erythrocytes?



Βασικά παραγοντικά πειράματα

I Επίδραση δύο ή περισσοτέρων παραγόντων πάνω σε μία

μεταβλητή απόκρισης

I Γίνονται παρατηρήσεις της μεταβλητής απόκρισης πάνω σε

όλους τους συνδυασμούς των επιπέδων των παραγόντων

I Επιδράσεις στη μεταβλητή απόκρισης

• Κύριες επιδράσεις των παραγόντων
• Αλληλεπιδράσεις δύο ή περισσότερων παραγόντων

I Απλές γραφικές παραστάσεις

I Στατιστική συμπερασματολογία
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Παραγοντικά πειράματα

πειράματα στα οποία υπεισέρχονται δύο ή περισσότεροι

παράγοντες και όλα τα επίπεδα τους ενός παράγονται

συνδυάζονται με τα επίπεδα όλων των άλλων παραγόντων για

να παρατηρηθεί η μεταβλητή απόκρισης σε κάθε συνδυασμό.

I Παράδειγμα:
΄Εστω ότι έχουμε ένα παραγοντικό πείραμα με δύο παράγοντες, το

Μορφωτικό επίπεδό με 4 επίπεδα (αναλφάβητος, πρωτοβάθμια,

δευτεροβάθμια και τριτοβάθμια εκπαίδευση) και το ετήσιο εισόδημα

(< 10000 ευρώ, 10000− 20000 ευρώ και > 20000 ευρώ).

Σύνολο θεραπειών: 4× 3 = 12

I Μετράμε τη μεταβλητή απόκρισης μέσα σε κάθε μία από

αυτές τις θεραπείες.

I Μπορούμε να έχουμε μία ή περισσότερες παρατηρήσεις της

μεταβλητής απόκρισης μέσα σε κάθε θεραπεία.
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Είδη παραγόντων

I Σταθεροί: τα επίπεδα τους είναι συγκεκριμένα και είναι αυτά
για τα οποία ενδιαφερόμαστε.

Το ενδιαφέρον μας επικεντρώνεται στις μέσες τιμές της

απόκρισης που αντιστοιχεί στους συνδυασμούς αυτών των

επιπέδων

I Τυχαίοι: τα επίπεδα του παράγοντα που χρησιμοποιούνται
είναι ένα τυχαίο δείγμα από το σύνολο των δυνατών επιπέδων

του παράγοντα.

Το ενδιαφέρον μας επικεντρώνεται στην ανάλυση της διασποράς

της μεταβλητής απόκρισης σε επιμέρους όρους και στην εκτίμηση

των συνιστωσών της διασποράς που οφείλεται στις επιδράσεις

των παραγόντων.
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Κύριες επιδράσεις και αλληλεπιδράσεις

παραγόντων

I Επιδράσεις παραγόντων: Μέσες μεταβολές της απόκρισης που αντιστοιχούν σε
αλλαγές των θεραπειών.

΄Εστω ότι έχουμε ένα παραγοντικό πείραμα με δύο παράγοντες

Α (με α επίπεδα) και Β (με β επίπεδα) Σύνολο θεραπειών: α× β

I µij μέση απόκριση για το επίπεδο i του παράγοντα Α και το επίπεδο j του
παράγοντα Β.

I µi· =

∑β
j=1 µij

β
μέση απόκριση για το επίπεδο i του παράγοντα Α.

I µ·j =

∑α
i=1 µij

α
μέση απόκριση για το επίπεδο j του παράγοντα Β.

I µ =

∑α
i=1

∑β
j=1 µij

αβ
γενική μέση τιμη

I Κύριες επιδράσεις: Η επίδραση που έχει κάθε παράγοντας ξεχωριστά στην
απόκριση χωρίς να λαμβάνεται υπόψη η επίδραση των άλλων παραγόντων.

I I αi = µi· − µ, i = 1, . . . α κύρια επίδραση του παράγοντα Α.

I I βj = µ·j − µ, j = 1, . . . β κύρια επίδραση του παράγοντα Β.
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Δειγματικές μέσες τιμές

I ȳij· =
∑n

k=1 yijk
n

δειγματικός μέσος που αντιστοιχεί στη θεραπεία (i , j)
i = 1, . . . , α, j = 1, . . . , β

I ȳi·· =
∑β

j=1

∑n
k=1 yijk

nβ
δειγματικός μέσος των παρατηρήσεων του i επιπέδου

του παράγοντα Α i = 1, . . . , α.

I ȳ·j· =
∑α

i=1

∑n
k=1 yijk

nα
δειγματικός μέσος των παρατηρήσεων του j επιπέδου

του παράγοντα Β j = 1, . . . , β.

I ȳ··· =
∑α

i=1

∑β
j=1

∑n
k=1 yijk

nαβ
γενικός μέσος.

Δειγματικές κύριες επιδράσεις

III α̂i = ȳi·· − ȳ···, i = 1, · · ·α

III β̂j = ȳ·j· − ȳ···, j = 1, · · ·β

III
∑α

i=1 α̂i = 0,
∑β

j=1 β̂j = 0
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Αλληλεπιδράσεις

Κοινή επίδραση των παραγόντων πάνω στη μεταβλητή

απόκρισης

Χωρίς Συνεργατική Ανταγωνιστική

αλληλεπίδραση αλληλεπίδραση αλληλεπίδραση
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Αλληλεπιδράσεις

µij = µ+ αi + βj + (αβ)ij

(αβ)ij = µij − (µ+ αi + βj) = µij − µi · − µ·j + µ

αλληλεπίδραση του παράγοντα Α και Β στη θεραπεία (i , j).

I Δειγματική αλληλεπίδραση

ˆ(αβ)ij = ȳij · − (ȳ··· + α̂i + β̂j) = ȳij · − ȳi ·· − ȳ·j · + ȳ···
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ˆ(αβ)ij = 0, j = 1 . . . β
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j=1

ˆ(αβ)ij = 0, i = 1 . . . α
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α∑
i=1

ˆ(αβ)ij = 0, j = 1 . . . β

β∑
j=1

ˆ(αβ)ij = 0, i = 1 . . . α



Αλληλεπιδράσεις

µij = µ+ αi + βj + (αβ)ij

(αβ)ij = µij − (µ+ αi + βj) = µij − µi · − µ·j + µ

αλληλεπίδραση του παράγοντα Α και Β στη θεραπεία (i , j).

I Δειγματική αλληλεπίδραση
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Παραγοντικό πείραμα τριών παραγόντων

I Α, Β, C παράγοντες με α, β και c επίπεδα αντίστοιχα.

I Α, Β, C κύριες επιδράσεις

I ΑΒ, ΑC , ΒC αλληλεπιδράσεις πρώτης τάξης

I ΑΒC αλληλεπίδραση δεύτερης τάξης, αλληλεπίδραση μεταξύ όλων των
παραγόντων, ορίζεται με την βοήθεια α× β × c όρων

Πλεονεκτήματα παραγοντικών πειραμάτων

• γίνεται δυνατή η αποτίμηση των κοινών επιδράσεων δύο ή
περισσοτέρων παραγόντων, δηλαδή η αλληλεπίδραση τους.

• όλες οι παρατηρήσεις χρησιμοποιούνται για την εκτίμηση των
επιδράσεων των παραγόντων. Κάθε παρατήρηση δίνει πληροφορίες

για όλους τους παράγοντες που υπεισέρχονται στο πείραμα. Δεν

μένουν παρατηρήσεις ανεκμετάλλευτες στην τελική αποτίμηση των

κύριων επιδράσεων και αλληλεπιδράσεων

• Τα αποτελέσματα που εξάγονται από αυτά ισχύουν σε ένα μεγάλο
εύρος πειραματικών συνθηκών
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Συμπερασματολογία σε παραγοντικό

πείραμα πλήρους τυχαιοποίησης

yijk = µ+ αi + βj + (αβ)ik + εijk

i = 1, · · · , α, j = 1, · · · , β, k = 1, · · · , n
όπου εijk ∼ N(0, σ2) τυχαία σφάλματα,

α∑
i=1

αi = 0,

β∑
j=1

βj = 0

I yijk απόκριση που παρατηρείται στην k επανάληψη του πειράματος
για τη θεραπεία (i , j).

I µ γενικός μέσος
I αi κύρια επίδραση παράγονται Α, i = 1, · · · , α
I βj κύρια επίδραση παράγονται Β, j = 1, · · · , β
I (αβ)ij αλληλεπίδραση των παραγόντων Α και Β στη θεραπεία (i , j)
i = 1, · · · , α j = 1, · · · , β

(το παραπάνω πρότυπο γενικεύεται εύκολα για περισσότερους

παράγοντες)
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παράγοντες)



΄Ελεγχοι Υποθέσεων

I ΄Ελεγχος Υπόθεσης κύριων επιδράσεων παράγοντα Α

H0 : αi = 0, i = 1, . . . , α κατά H1 : τουλάχιστον ένα αi 6= 0

I ΄Ελεγχος Υπόθεσης κύριων επιδράσεων παράγοντα Β

H0 : βj = 0, j = 1, . . . , β κατά H1 : τουλάχιστον ένα βj 6= 0

I ΄Ελεγχος Υπόθεσης αλληλεπιδράσεων μεταξύ των παραγόντων Α
και Β

H0 : (αβ)ij = 0, i = 1, . . . , α, j = 1, . . . , β κατά H1 : τουλάχιστον ένα (αβ)ij 6= 0



Ανάλυση Διασποράς με δύο παράγοντες

α∑
i=1

β∑
j=1

n∑
k=1

(yijk − y ···)
2 = bn

α∑
i=1

(y i·· − y ···)
2 + an

β∑
j=1

(y ·j· − y ···)
2+

n
α∑
i=1

β∑
j=1

(y i·· − y i·· − y ·j· + y ···)
2 +

α∑
i=1

β∑
j=1

n∑
k=1

(yijk − y ij·)
2

SST = SSA + SSB + SSAB + SSE

Βαθμοί Ελευθερίας

αβn − 1 = (α− 1) + (β − 1) + (α− 1)(β − 1) + αβ(n − 1)



Ανάλυση Διασποράς με δύο παράγοντες

MSA =
SSA

α− 1
, MSB =

SSB

β − 1

MSA =
SSAB

(α− 1)(β − 1)
, MSE =

SSBE

αβ(n − 1)

F =
MSA

MSE
∼ Fα−1,αβ(n−1), F =

MSB

MSE
∼ Fβ−1,αβ(n−1)

F =
MSAB

MSE
∼ F(α−1)(β−1),αβ(n−1)

Άρα σε επίπεδο σημαντικότητας a απορρίπτουμε τη μηδενική υπόθεση αν
F > Fdfar ,αβ(n−1).

II Analyze → General Linear Model → Univariate



Ανάλυση Διασποράς με δύο παράγοντες

MSA =
SSA

α− 1
, MSB =

SSB

β − 1

MSA =
SSAB

(α− 1)(β − 1)
, MSE =

SSBE

αβ(n − 1)

F =
MSA

MSE
∼ Fα−1,αβ(n−1), F =

MSB

MSE
∼ Fβ−1,αβ(n−1)

F =
MSAB

MSE
∼ F(α−1)(β−1),αβ(n−1)
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Ανάλυση Διασποράς με δύο παράγοντες

Μεταβλητότητα Βαθμοί Άθροισμα Τετραγωνικός F−έλεγχοι
ελευθερίας τετραγώνων μέσος

Παράγοντας Α α− 1 SSA
SSA

α− 1
= MSA

MSA

MSE

Παράγοντας Β β − 1 SSB
SSB

β − 1
= MSB

MSB

MSE

Αλληλεπίδραση ΑΒ (α− 1)(β − 1) SSAB
SSAB

(α− 1)(β − 1)
= MSAB

MSAB

MSE

Σφάλματα (ΣΣΕ) αβ(n − 1) SSE
SSE

αβ(n − 1)
= MSE

Ολική αβn − 1 SST
SST

αβn − 1
= MST

F = MSA
MSE

∼ Fα−1,αβ(n−1) απορρίπτουμε την H0 όταν F > Fα−1,αβ(n−1).

F = MSB
MSE

∼ Fβ−1,αβ(n−1) απορρίπτουμε την H0 όταν F > Fβ−1,αβ(n−1).

F = MSAB
MSE

∼ F(α−1)(β−1),αβ(n−1) απορρίπτουμε την H0 όταν

F > F(α−1)(β−1),αβ(n−1).



Παραγοντικά πειράματα με σταθερούς

παράγοντες χωρίς επανάληψη (n = 1)

yij = µ+ αi + βj + (αβ)ij + εij , i = 1, · · · , α, j = 1, · · · , β,

όπου εij ∼ N(0, σ2) τυχαία σφάλματα.

I Δεν έχουμε μεταβλητότητα μέσα σε κάθε θεραπεία
I Μηδενίζονται οι βαθμοί ελευθερίας των σφαλμάτων

Δεν είναι δυνατή η συμπερασματολογία σε αυτό το πρότυπο αν

δεν υποθέσουμε ότι δεν υπάρχει αλληλεπίδραση μεταξύ των

παραγόντων Α και Β

yij = µ+ αi + βj + εij , i = 1, · · · , α, j = 1, · · · , β,
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Ανάλυση Διασποράς με δύο παράγοντες
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(α− 1)(β − 1)
= MSE

Ολική αβ − 1 SST
SST

αβ − 1
= MST

F = MSA
MSE
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Άσκηση

Ο υπεύθυνος ποιότητας μιας βιομηχανίας παραγωγής επίπλων

κουζίνας θέλησε να διερευνήσει το κατά πόσο η αντοχή των

συγκολλήσεων τύπου ΤΑΥ επηρεάζεται από τον τύπο του μίγματος

της κόλλας που χρησιμοποιείται για τις κολλήσεις καθώς και από τη

θερμοκρασία του μίγματος κατά τη διαδικασία της κόλλησης. Η

θερμοκρασία του μίγματος της κόλλας μπορεί να ρυθμιστεί με

ακρίβεια σε τρία διαφορετικά επίπεδα (50
oC , 60oC και 70oC ) με

χρήση ειδικού μηχανήματος συγκόλλησης που διαθέτει η βιομηχανία.

Ο υπεύθυνος θεωρεί πως πρέπει να ελέγξει και τους τέσσερις τύπους

μίγματος κόλλας που είναι διαθέσιμοι στην αγορά. Για το σκοπό αυτό

σχεδιάζει ένα πείραμα στο οποίο γίνονται συγκολλήσεις τύπου ΤΑΥ

για διάφορους συνδυασμούς μίγματος κόλλας και θερμοκρασίας

μίγματος και μετράται η δύναμη (σε Newton) που πρέπει να

εφαρμοστεί (κάθετα) στο ελεύθερο άκρο του οριζόντιου δοκού ώστε

να επέλθει η ρήξη του δεσμού που πραγματοποιήθηκε. Τα δεδομένα

του πειράματος δίνονται στον πίνακα που ακολουθεί.



Άσκηση



Άσκηση

1 Αναγνωρίστε το είδος του σχεδιασμού που χρησιμοποιήθηκε, τη

μεταβλητή απόκρισης, τους παράγοντες και το είδος των επιδράσεων

τους (σταθερές ή τυχαίες). Δώστε κατάλληλο πρότυπο για την

περιγραφή του προβλήματος και προσδιορίστε τις υποθέσεις που το

διέπουν (τις συνθήκες που πρέπει να ικανοποιούνται).

2 Να κατασκευάσετε τα διαγράμματα των κυρίων επιδράσεων των

παραγόντων καθώς και το διάγραμμα αλληλεπίδρασης αυτών. Στη

συνέχεια, να ερευνήσετε, μελετώντας τα διαγράμματα, αν υπάρχει

κάποια θερμοκρασία μίγματος με την οποία μεγιστοποιείται η δύναμη

που πρέπει να εφαρμοστεί ώστε να σπάσει η κόλληση (ανεξάρτητα

από τον τύπο της κόλλας που χρησιμοποιείται) ή αν υπάρχει κάποιος

τύπος κόλλας η χρήση του οποίου μεγιστοποιεί τη δύναμη που πρέπει

να εφαρμοστεί ώστε να σπάσει η κόλληση (ανεξάρτητα από τη

θερμοκρασία του μίγματος).

3 Να δώσετε τον πίνακα ανάλυσης διασποράς και να εντοπίσετε, σε

επίπεδο σημαντικότητας 1%, τις σημαντικές παραγοντικές επιδράσεις
αναφέροντας κάθε φορά ποια είναι η μηδενική υπόθεση που ελέγχετε.

Τέλος, κάνοντας γραφική ανάλυση των υπολοίπων, να ελέγξετε το

κατά πόσο μπορεί να θεωρηθεί ότι ισχύουν οι υποθέσεις του προτύπου.



Ερώτημα 1

Πρόκειται για παραγοντικό πείραμα δύο σταθερών παραγόντων με

τέσσερα επίπεδα ο ένας και τρία επίπεδα ο άλλος και συνολικά 12

θεραπείες. Για κάθε θεραπεία προκύπτει πως έχουν γίνει n = 4
επαναλήψεις, γεγονός που καθιστά το σχεδιασμό ισορροπημένο.

Παράγοντες: ο τύπος μίγματος κόλλας (με 4 επίπεδα) και η

θερμοκρασία του μίγματος κόλλας (με 3 επίπεδα)

Μεταβλητή απόκρισης: η δύναμη που ασκείται κάθετα στον

οριζόντιο δοκό μέχρι να «σπάσει» η κόλληση
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Chi-Square test



Goodness-of-fit test
I a test to determine if a population has a specified theoretical
distribution.
I H0 : The population has a specified theoretical distribution vs
I H1 : The population has NOT the specified theoretical
distribution

I The test is based on how good is the obtained fit between the
frequency of occurrence of observations in an observed sample and
the expected frequencies obtained from the hypothesized
distribution.

I For example, we consider the tossing of a die. We hypothesize
that the die is honest.

H0 : f (x) = 1
6 , x = 1, . . . , 6 vs H1 : not H0 :

The die is tossed 120 times and each outcome is recorded

x 1 2 3 4 5 6
observed 18 22 30 21 17 12
expected 20 20 20 20 20 20

Test at a 5% significant level if the dice is unbiased.
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Goodness-of-fit test

I The observed frequencies Oi

I Compute the expected frequencies under the null hypothesis.
IEi = npi
I I n : the sample size
I I pi : the probability of the value xi .

I Compute the quantity

X 2 =
k∑

i=1

(Oi − Ei )
2

Ei
∼ X 2

k−1 under H0

I If X 2 > X 2
k−1·α, then H0 is rejected at α% significant level.

I The decision criterion described here should not be used unless
each of the expected frequencies is greater or equal to 5.

I χ2 = (20−20)2

20
+ (22−20)2

20
+ (17−20)2

20
+ (18−20)2

20
+ (19−20)2

20
+ (24−20)2

20
= 1.7

I χ2
5,0.05 = 11.07
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Goodness-of-fit test

I Example
The level of noise in a village near to a racetrack is rated during a
race at a scale of 1-5 from all adult residents of the population.
The results of the responses of the people presented in the
following table.

Noise Level 1 2 3 4 5

Frequencies 90 88 85 104 128

At α = 5% significance level, test if there is a difference between
the percentage of responses of residents about how they experience
the noise level.



Goodness-of-fit test

I Example
The Weibull distribution with cumulative distribution function (cdf)

F (t) = 1− e−(t/β)α , t > 0

contains as a spacial case for α = 2 the Rayleigh distribution which is used to
describe the error in the determination of the location of an item by its
programmer. When the errors are analyzed in rectangular coordinate systems,
they are described by two independent normal distributions with mean 0 and
common standard deviation. A company that produces positioning devices,
argues that the determination error (in meters) of the location that a new
device presents when used in open area follows the Rayleigh distribution and at
50% of cases, the error is less than 0.832555 meters.
The following table presents the measurements of determination error (in
meters) of the location in a random sample of 66 selected users of the new
device.

Determining error <0.3 0.3-0.5 0.5-0.7 0.7-0.9 0.9-1.1 >1.1
Frequencies 6 8 11 12 10 19

Based on the above data, check the validity of the company’s claim.



Goodness-of-fit test
I When the X 2 test is applied to continuous variables, it is influenced by
the grouping of the data. So, X 2 goodness of fit test is preferred when
we have categorical variables with finite state space.

In SpSS, we cannot apply X 2 goodness of fit test to continuous variables.
In cases where continuous data is available, Kolmogorov - Smirnov test is
preferable where it is based on the empirical cumulative distribution
function.

I The X 2 test can be applied even when the parameters of the
population distribution are unknown. In this case the degrees of freedom
of the statistical test are reduced according to the number of parameters
under estimation.
The unknown parameters of the distribution are estimated by the
observations and in this case the test statistic has the following form

X 2 =
k∑

i=1

(Oi − Êi )
2

Êi

∼ X 2
k−1−r

and H0 is rejected when X 2 > Xk−1−r ,α
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Kolmogorov - Smirnov test

Empirical cumulative distribution function
Let x1, x2, . . . , xn be a random sample.

Fn(x) =

n∑
i=1

I (xi ≤ x)

n

If the sample is derived from the assumed distribution then the
empirical cumulative distribution function should not differ
significantly from the theoretical cdf.

It holds
P( lim

n→∞
|Fn(x)− F (x)| = 0) = 1, ∀x

Kolmogorov - Smirnov test is based on the observed differences of
Fn(x) and F (x).
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Kolmogorov - Smirnov test

D+
n = sup{Fn(x)− F (x)}

D−n = sup{F (x)− Fn(x)}

The test statistic is

D = sup{|Fn(x)− F (x)|}
= max{D+

n ,D
−
n }

It is based on the maximum observed difference of the theoretical
and the empirical cdf.



Kolmogorov - Smirnov test

Under H0, it holds

P(
√
n D < d) = 1− 2

∞∑
i=1

(−1)k−1e−2k2/d2

, 0 ≤ d ≤ 1

This is true for any theoretical distribution assumed.

H0 is rejected at significance level a if D > Dn,a where Dn,a the value of
the corresponding table.

I Kolmogorov - Smirnov test requires the theoretical distribution under
the null hypothesis to be fully determined.

I If the theoretical distribution is not known, its parameters are
estimated by the data. But in this case there are no tables to give the
critical values so simulations are needed to identify them.

Example:

Test if the observations given in the file KS1.sav come from the normal

distribution.
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Test of independence
The chi-square test can also be used to test the hypothesis of
independence of two variables of classification.

H0 The variables A and B are independent
H1 The variables A and B are dependent

B1 B1 · · · Bc

A1 O11 O12 · · · O1c

A2 O21 O22 · · · O2c

...
...

...
...

...
Ar Or1 Or2 · · · Orc

H0 The probability in the cell (i , j) is equal to the product of the
probabilities to be in the group i of the variable A and in group j of the
variable B

pij = pi· · p·j ∀i , j
H1 Not H0 i.e. pij 6= pi· · p·j , for at least one (i , j).

X 2 =
r∑

i=1

c∑
j=1

(Oij − Eij)
2

Eij
∼ X 2

(r−1)(c−1)
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Test of independence

Example:

The aeronautical aluminum alloy 2024-73 and 2024-74 are often
used in the fuselage and wings of the aircraft. During the repair of
250 damages in the fuselage and the wings of aircraft (a) the type
of aluminum alloy used to manufacture, and (b) the type of failure
were recorded.

failure

Alloy fatigue corrosion crash

2024 - 73 47 76 27
2024 - 74 41 42 17

Is the type of failure independent of the type of alloy?



Test of Homogeneity

I It can be used to test whether different populations have the
same percentage of people with the same characteristic

I r ≥ 2 populations are divided into c ≥ 2 groups based on some
characteristic and examine if the rate of each group is the same
across all populations.

H0 The percentage of each group is the same across all
populations

H1 The percentage of at least one group is not the same across all
populations



Test of Homogeneity

Example:

A telecommunication company has 5 factories that operate with the
same specifications. In order to check the company if there is not any
difference in the offered quality between the factories, it got a sample of
phones manufactured and submitted to check in order to see how many
of them are defective. The collected data are shown in the table below.

Factory defective, not defective
A 20 80
B 7 153
C 8 152
D 6 74
E 19 201

Test if the percentage of defective telephones is the same across the five
factories.



Test for several proportions

The chi-square statistic for testing homogeneity is also applicable
for testing the hypothesis that k binomial parameters have the
same value
H0 : p1 = p2 = · · · = pk

Samples 1 2 . . . k

successes x1 x2 . . . xk
failures n1 − x1 n2 − x2 . . . nk − xk

I Compute the quantity

X 2 =
∑ (oi − ei )

2

ei
∼ X 2

k−1 under H0

I If X 2 > X 2
k−1·α, then H0 is rejected at α% significance level.
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Nonparametric Tests



Sign Test

I H0 : δX − δY = 0 vs H1 : δX − δY 6= 0
Test the equality of the medians of two continuous dependent random
variables X and Y (paired samples)

Or equivalent

H0 p = 0.5 vs H1 p 6= 0.5

where p = P(X > Y ).
Let

n+ =
n∑

i=1

I (xi > yi ), n− =
n∑

i=1

I (xi < yi )

R = max{n+, n−}

Under H0, R ∼ B(n, 0.5) thus E (R) = n/2 Var(R) = n/4.
The probability P(R ≥ r) can be computed.

If n is large then under H0, R ∼ N (n/2, n/4)
In this case, the test statistic is

R − n/2− 0.5√
n/4

∼ N (0.1)
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Wilcoxon signed-rank test

I H0 : δX − δY = 0 vs H1 : δX − δY 6= 0

Wilcoxon signed-rank test step by step:
1. Compute the ranks of the absolute differences |xi − yi | ignoring the
cases where xi − yi = 0.
2. Compute the sums of the ranks Sp and Sn that correspond to positive
and negative differences respectively.
3. If the sample size n is large, then

Z =
min{Sn,Sp} − n(n+1)

4√√√√ n(n+1)(2n+1)
24 −

L∑
i=1

t3
i − ti

48

∼ N(0.1)

under H0.

L the number of cases that we have equal observations and ti the

number of observations with the same rank.
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Wilcoxon signed-rank test

Example

To evaluate the results of the retraining seminar in engineers, 35
engineers were randomly selected and asked to answer a series of
questions before and a month after the seminar. The scores are
presented in the file entitled seminar.sav.

Test if there is a difference in the median performance of engineers
before and after participation in the seminar.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.
2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.
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where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.
2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.
3. If ni ’s are large, i.e. ni > 5.

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) ∼ X 2

k−1

under H0.
In the case that they are observations with the same rank, the above quantity
is corrected as follows

H ′ =
H

1−
L∑

i=1

t2
i (ti − 1)

N2(N − 1)

where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.

2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.
3. If ni ’s are large, i.e. ni > 5.

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) ∼ X 2

k−1

under H0.
In the case that they are observations with the same rank, the above quantity
is corrected as follows

H ′ =
H

1−
L∑

i=1

t2
i (ti − 1)

N2(N − 1)

where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.
2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.

3. If ni ’s are large, i.e. ni > 5.

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) ∼ X 2

k−1

under H0.
In the case that they are observations with the same rank, the above quantity
is corrected as follows

H ′ =
H

1−
L∑

i=1

t2
i (ti − 1)

N2(N − 1)

where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.
2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.
3. If ni ’s are large, i.e. ni > 5.

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) ∼ X 2

k−1

under H0.

In the case that they are observations with the same rank, the above quantity
is corrected as follows

H ′ =
H

1−
L∑

i=1

t2
i (ti − 1)

N2(N − 1)

where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

I H0 : δX1 = δX2 = · · · = δXk and H1 not H0

Kruskal–Wallis Test step by step
1. Compute the ranks of the observations assuming the k samples as one.
2. Compute the sums of the ranks Ri , the number of observations ni in each
group and the quantity Ti = t3

i − ti in cases where they are observations with
the same rank where ti is the number of observations with the same rank.
3. If ni ’s are large, i.e. ni > 5.

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) ∼ X 2

k−1

under H0.
In the case that they are observations with the same rank, the above quantity
is corrected as follows

H ′ =
H

1−
L∑

i=1

t2
i (ti − 1)

N2(N − 1)

where L is the number of cases that we have equal observations.



Kruskal–Wallis Test

Example:
The file tires.sav displays the results of laboratory measurements
of the tread wear indicator (TWI) presenting the tires of three
different companies when used under the same conditions.

Test, at a significance level of 5%, if there are differences between
the tires of the three companies.



Run Test

I Randomness test

H0 The sample is random H1 The sample is not random

The random variable is of the form {0, 1}
− defective or not defective product.
− component type A or Type B
− a characteristic above or bellow a value

If the population is expressed by a binary variable then the sample is a
run sequence.

Definition: In a symbol sequence of at least two types of symbols, run is
called a sequence of the same symbol which is blocked by symbols of
other type. The number of symbols of the run is called the length of the
run.

If the random variable is continuous then the sample is a device of real
numbers, but it can be converted to a run sequence.

A symbol is associated with each sample depending on whether or not it is

greater than the median or the mean. Price equal to the median or the average

is omitted.
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Run Test

0, 0, 0, 1, 0, 1, 1, 0, . . .

H0 The sample is random H1 The sample is not random
If the sample is not random then there are trends expressed with symbol
accumulations and either the number of runs is small but their length is large, or there
are symbol recycling expressed by systematic variations of symbols and the number of
runs is very large.
So according to the above we reject the null hypothesis, if the number of runs is very
small or very large.
I Let R0 and R1 the number of 0 and 1 runs and n0 and n1 the number of the
corresponding symbols in the sample.
H0 is rejected at significance level α% if

P(R ≤ k1) = α/2 or P(R ≥ k2) = α/2

where R = R0 + R1,
k1 and k2 the corresponding values in the tables of this test.

µR = E(R) =
2n0n1

n0 + n1
+ 1

σ2
R = Var(R) =

2n0n1(2n0n2 − n0 − n2)

(n0 + n1)2(n0 + n2 − 1)

Z =
R − µR
σR

∼ N(0, 1)
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Run Test
I Example.
During a laboratory experiment, the friction coefficient between
two metals was measured. The results are presented in the
following table.

0.59 0.61 0.56 0.58 0.60 0.52 0.54
0.53 0.51 0.62 0.58 0.61 0.57 0.56
0.63 0.62 0.55 0.51 0.50 0.61 0.57
0.55 0.53 0.49 0.62 0.63 0.60 0.53

The head of the laboratory suspects that measurements shots were
not correct and therefore wants to examine whether the measures
can be considered random or not. With the help of the median,
test if there are significant indications at significance levels
a = 0.05% that the measurements can not be considered random.
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