

Descriptive Statistics, Sampling Distributions and Methods of Point Estimation

Polychronis Economou

BIOSTATISTICS – DATA ANALYTICS

Biomedical Engineering

Outline

1 Probability vs Statistics

2 Descriptive Statistics

3 Sampling Distributions

4 Statistical inference Point Estimation

Outline

1 Probability vs Statistics

2 Descriptive Statistics

3 Sampling Distributions

4 Statistical inference Point Estimation

Probability and Statistics

Probability & Statistics

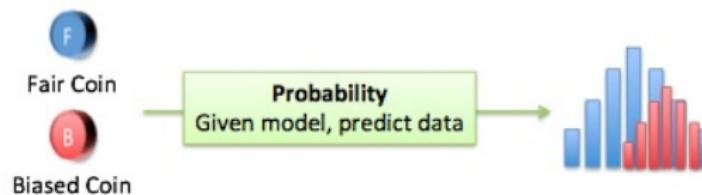
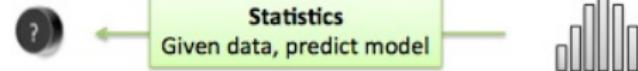


Chart taken from: <https://betterexplained.com/articles/a-brief-introduction-to-probability-statistics/>

Probability and Statistics

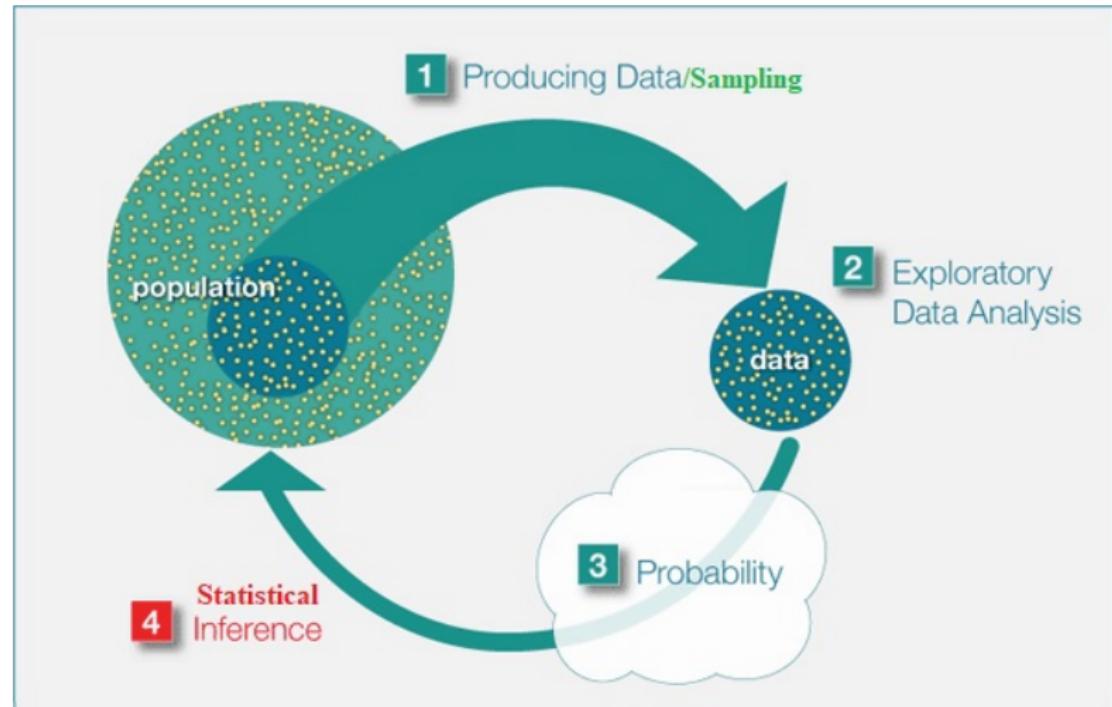


Chart taken from:

<https://bolt.mph.ufl.edu/6050-6052/unit-4/>

Population and sample

A **population** is a collection of people, items or events about which you want to make inferences.

Typically, the population is very large, making a census of all the units in the population impractical or impossible.

However, it is possible, to study a subset of the population. Such a subset is called “**sample**”.

The process of designing and obtaining a **representative sample** of a desired population requires care.

In what follows we will assume that our sample is a **random** (representative) **sample**.

Outline

① Probability vs Statistics

② Descriptive Statistics

③ Sampling Distributions

④ Statistical inference Point Estimation

Descriptive Statistics

Descriptive Statistics are the basis of the initial description of the data and the first step of a more extensive statistical analysis.

Descriptive statistics is the term given to the analysis of data that helps describe and summarize data in a meaningful way such that, for example, patterns might emerge from the data.

Univariate analysis

- **Central tendency**

- mean
- median
- mode
- quantiles
- ...

- **Dispersion**

- range
- interquartile range
- variance
- standard deviation
- ...

- **Distribution shape**

- skewness
- kurtosis
- ...

- **Graphical representation**

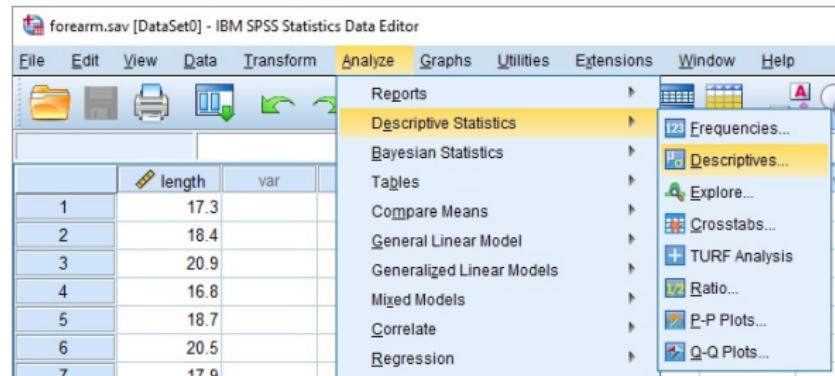
- bar charts
- histograms
- box plots
- ...

Bivariate or Multivariate analysis

- Cross-tabulations and contingency tables
- Graphical representation (for example scatterplots)
- Quantitative measures of dependence
- Descriptions of conditional distributions

Example – Univariate case

Measurements of the length of the forearm (in inches) made on 140 adult males.

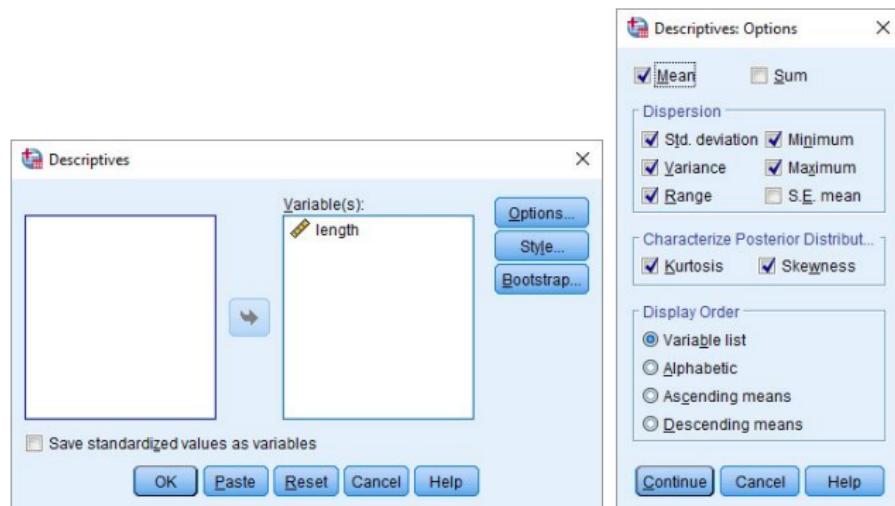


The screenshot shows the IBM SPSS Statistics Data Editor interface. The title bar reads "forearm.sav [DataSet0] - IBM SPSS Statistics Data Editor". The menu bar is visible with options: File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Extensions, Window, Help. The "Analyze" menu is currently open, displaying a list of statistical procedures. The "Descriptive Statistics" option is highlighted with a yellow box. Under "Descriptive Statistics", the "Descriptives..." option is also highlighted with a yellow box. To the left of the menu, a data table is visible with columns labeled "length" and "var". The data rows show values: 17.3, 18.4, 20.9, 16.8, 18.7, 20.5, and 17.0.

Reference: Pearson, K. and Lee, A. (1903),
On the laws of inheritance in man. I. Inheritance of physical characters.
Biometrika, 2, 357-462.

Example – Univariate case

Measurements of the length of the forearm (in inches) made on 140 adult males.



Example – Univariate case

Measurements of the length of the forearm (in inches) made on 140 adult males.

```
SAVE OUTFILE='F:\mathimata\Mathimata 2019-2020\Biomed\pointestimation\forearm.sav'  
/COMPRESSED.  
DESCRIPTIVES VARIABLES=length  
/STATISTICS=MEAN STDDEV VARIANCE RANGE MIN MAX KURTOSIS SKEWNESS.
```

Descriptives

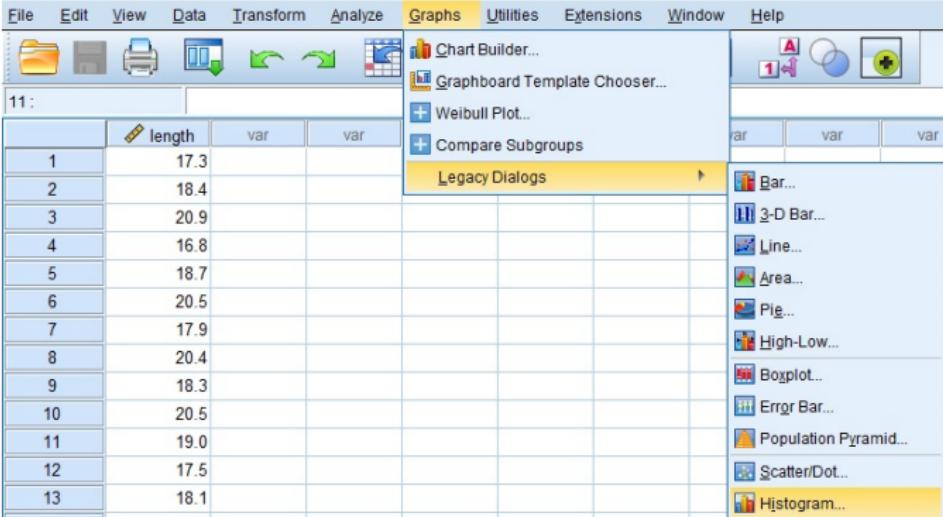
Descriptive Statistics

	N Statistic	Range Statistic	Minimum Statistic	Maximum Statistic	Mean Statistic	Std. Deviation Statistic	Variance Statistic	Skewness		Kurtosis	
length	140	5.3	16.1	21.4	18.802	1.1205	1.255	-.110	.205	-.400	.407
Valid N (listwise)	140										

Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

forearm.sav [DataSet0] - IBM SPSS Statistics Data Editor

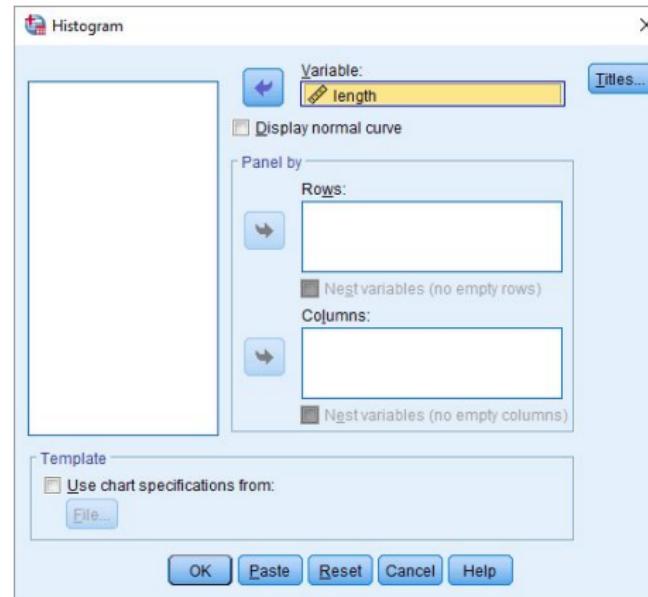


The screenshot shows the IBM SPSS Statistics Data Editor interface. The 'Graphs' menu is open, with 'Histogram...' highlighted in yellow. The data table below shows 14 rows of forearm length measurements.

	length	var	var
1	17.3		
2	18.4		
3	20.9		
4	16.8		
5	18.7		
6	20.5		
7	17.9		
8	20.4		
9	18.3		
10	20.5		
11	19.0		
12	17.5		
13	18.1		
14	17.1		

Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

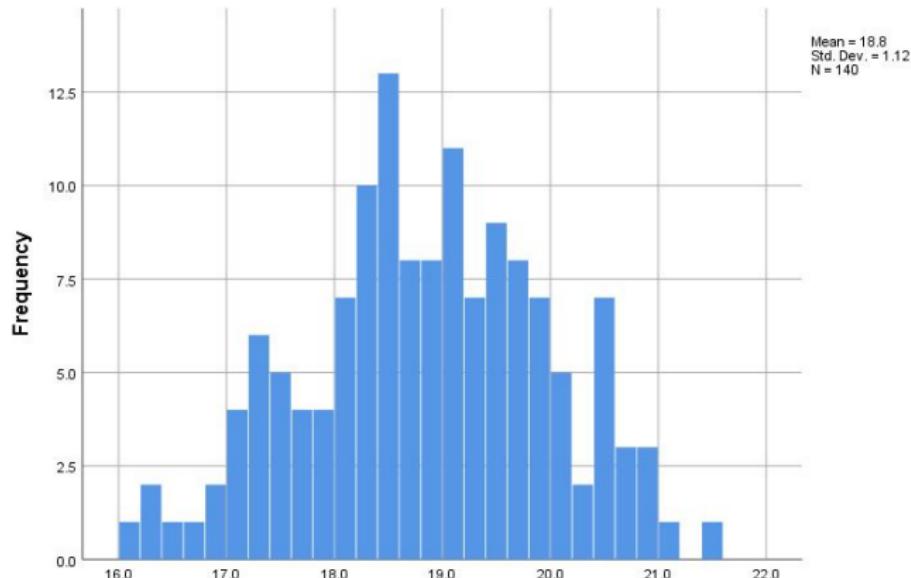


Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

GRAPH
/HISTOGRAM=length.

Graph



Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

forearm.sav [DataSet0] - IBM SPSS Statistics Data Editor

The screenshot shows the IBM SPSS Statistics Data Editor interface. The 'Graphs' menu is open, with the 'Legacy Dialogs' option highlighted. Under 'Legacy Dialogs', the 'Boxplot...' option is also highlighted. The data table contains 14 rows of forearm measurements.

	length	var	var
1	17.3		
2	18.4		
3	20.9		
4	16.8		
5	18.7		
6	20.5		
7	17.9		
8	20.4		
9	18.3		
10	20.5		
11	19.0		
12	17.5		
13	18.1		
14	17.1		

Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

The image shows two overlapping dialog boxes. The top dialog is titled "Define Simple Boxplot: Summaries of Separate Variables". It has a section "Boxes Represent:" with a box containing "length" and an "Options..." button. Below it is a "Label Cases by:" section with an empty box. Under "Panel by", there are "Rows:" and "Columns:" sections, each with an empty box and a "Nest variables (no empty rows)" checkbox. The bottom dialog is titled "Boxplot" and has a "Simple" icon selected. It has a section "Data in Chart Are:" with two radio buttons: "Summaries for groups of cases" (unchecked) and "Summaries of separate variables" (checked). At the bottom are "Define", "Cancel", and "Help" buttons. The "Define" button is highlighted with a blue border.

Example – Univariate case – Plots

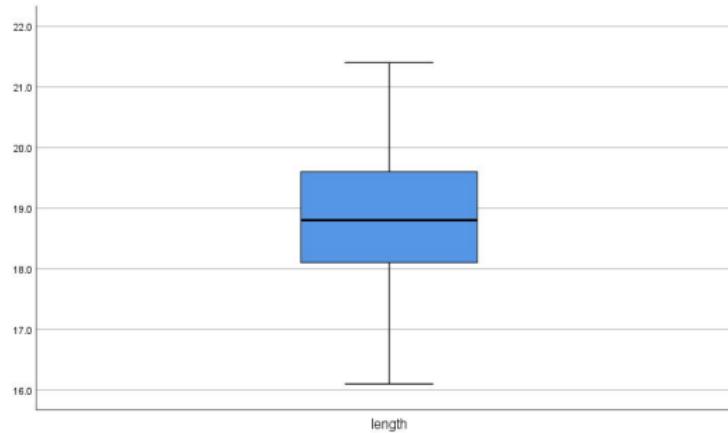
Measurements of the length of the forearm (in inches) made on 140 adult males.

```
EXAMINE VARIABLES=length  
/COMPARE VARIABLE  
/PLOT=BOXPLOT  
/STATISTICS=NONE  
/NOTOTAL  
/MISSING=LISTWISE.
```

Explore

Case Processing Summary

	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
length	140	100.0%	0	0.0%	140	100.0%



Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

forearms.sav [DataSet0] - IBM SPSS Statistics Data Editor

File Edit View Data Transform Analyze Graphs Utilities Extensions Window Help

Reports

Descriptive Statistics

Bayesian Statistics

Tables

Compare Means

General Linear Model

Generalized Linear Models

Mixed Models

Correlate

Regression

Nonlinear

length

1: var

1 17.3
2 18.4
3 20.9
4 16.8
5 18.7
6 20.5
7 17.9

P-P Plots

Variables: length

Test Distribution: Normal

Estimate from data

Location: 0

Scale: 1

Transform

Natural log transform

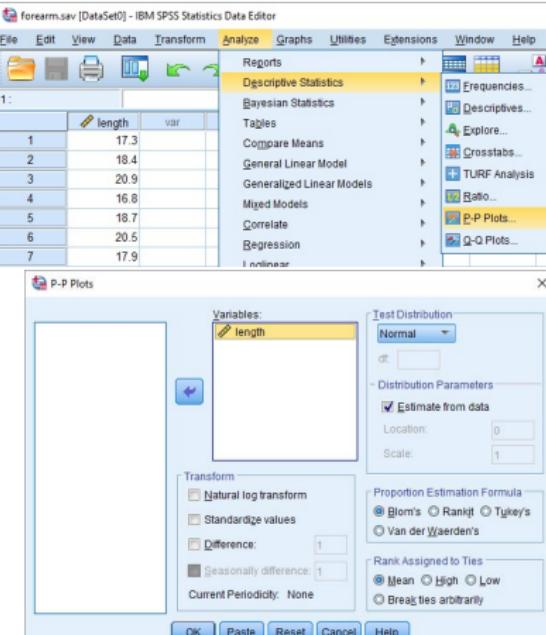
Standardize values

Difference: 1

Seasonally difference: 1

Current Periodicity: None

OK Paste Reset Cancel Help



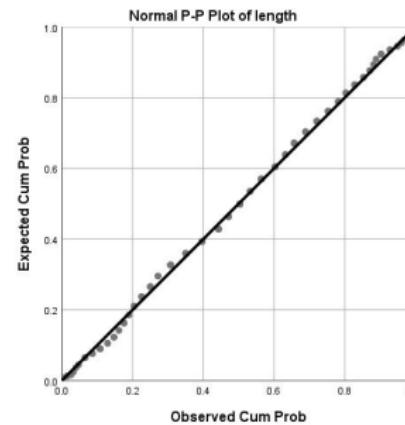
Example – Univariate case – Plots

Measurements of the length of the forearm (in inches) made on 140 adult males.

Estimated Distribution Parameters		
length		
Normal Distribution	Location	18.802
	Scale	1.1205

The cases are unweighted.

length



Example – Univariate case – Frequencies

T.W.I. (Tread Wear Indicator)

75 tyres

3 types of tyres

2 drivers

The image shows the SPSS Statistics Data Editor and the Frequencies dialog box. The Data Editor window displays a dataset with three variables: 'TWI' (Tread Wear Indicator), 'tire' (categorical variable with values 1, 2, 3, 4, 5, 6), and 'driver' (categorical variable with values 1.00, 9.66, 15.69, 1.13, 5.32, 3.96, 15.96). The 'Analyze' menu is open, and the 'Descriptive Statistics' option is selected, with 'Frequencies...' highlighted. The Frequencies dialog box shows 'TWI' in the 'Variable(s)' list and the 'Display frequency tables' checkbox is checked. The 'OK' button is highlighted.

Example – Univariate case – Frequencies

T.W.I. (Tread Wear Indicator)

FREQUENCIES VARIABLES=tire driver
/ORDER=ANALYSIS.

Frequencies

		Statistics	
N	Valid	tire	driver
		Missing	0

Frequency Table

		tire		
Valid	Frequency	Percent	Valid Percent	Cumulative Percent
1.00	25	33.3	33.3	33.3
2.00	27	36.0	36.0	69.3
3.00	23	30.7	30.7	100.0
Total	75	100.0	100.0	

		driver		
Valid	Frequency	Percent	Valid Percent	Cumulative Percent
.00	35	46.7	46.7	46.7
1.00	40	53.3	53.3	100.0
Total	75	100.0	100.0	

Descriptive Statistics,
Sampling
Distributions and
Methods of Point
Estimation

P. Economou

Probability vs
Statistics

Descriptive
Statistics

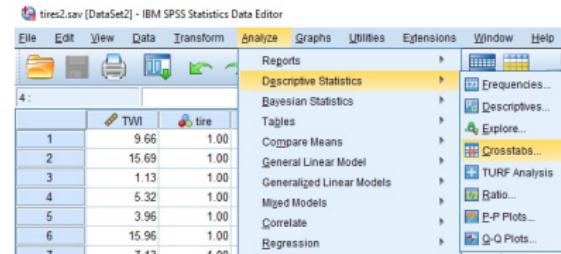
Sampling
Distributions

Statistical
inference

Point Estimation

Example – Bivariate case – Tabulate

T.W.I. (Tread Wear Indicator)

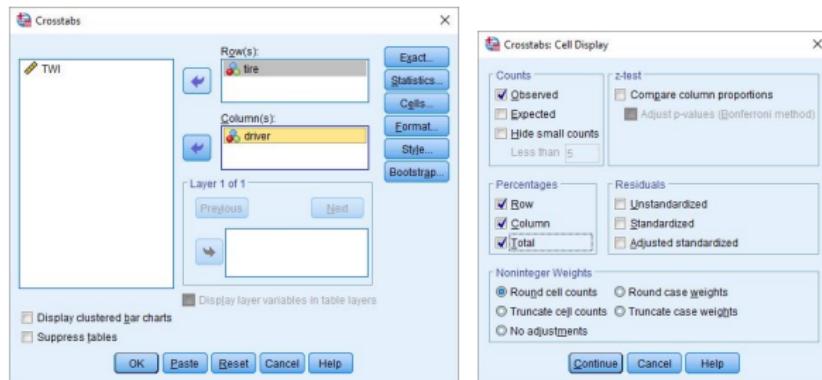


The screenshot shows the IBM SPSS Statistics Data Editor interface. The title bar indicates the file is 'tires2.sav [DataSet2] - IBM SPSS Statistics Data Editor'. The menu bar includes 'File', 'Edit', 'View', 'Data', 'Transform', 'Analyze', 'Graphs', 'Utilities', 'Extensions', 'Window', and 'Help'. The 'Analyze' menu is open, with 'Descriptive Statistics' highlighted in yellow. Under 'Descriptive Statistics', 'Grosstabs...' is also highlighted in yellow. A data table is visible in the foreground, showing six rows of data with columns labeled 'TWI' and 'tire'. The data is as follows:

	TWI	tire
1	9.66	1.00
2	15.69	1.00
3	1.13	1.00
4	5.32	1.00
5	3.96	1.00
6	15.96	1.00

Example – Bivariate case – Tabulate

T.W.I. (Tread Wear Indicator)



Example – Bivariate case – Tabulate

T.W.I. (Tread Wear Indicator)

```
CROSSTABS  
/TABLES=tire BY driver  
/FORMAT=AVALUE TABLES  
/CELLS=COUNT ROW COLUMN TOTAL  
/COUNT ROUND CELL.
```

Crosstabs

Case Processing Summary

	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
tire * driver	75	100.0%	0	0.0%	75	100.0%

tire * driver Crosstabulation

tire	1.00	driver		Total
		.00	1.00	
1.00	Count	12	13	25
	% within tire	48.0%	52.0%	100.0%
	% within driver	34.3%	32.5%	33.3%
	% of Total	16.0%	17.3%	33.3%
2.00	Count	11	16	27
	% within tire	40.7%	59.3%	100.0%
	% within driver	31.4%	40.0%	36.0%
	% of Total	14.7%	21.3%	36.0%
3.00	Count	12	11	23
	% within tire	52.2%	47.8%	100.0%
	% within driver	34.3%	27.5%	30.7%
	% of Total	16.0%	14.7%	30.7%
Total	Count	35	40	75
	% within tire	46.7%	53.3%	100.0%
	% within driver	100.0%	100.0%	100.0%
	% of Total	46.7%	53.3%	100.0%

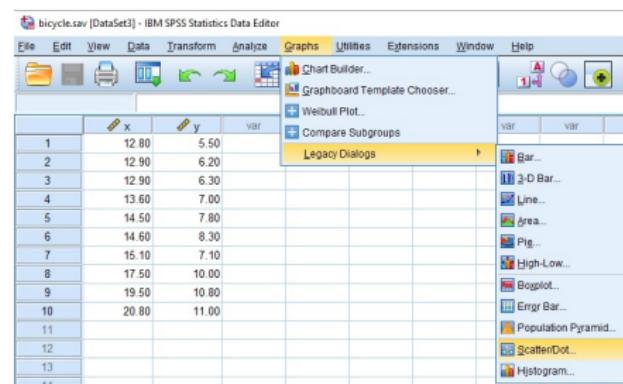
Example – Bivariate case

x: distance between bicycles and the center of the road

y: distance between bicycles and overtaking cars

x	12.8	12.9	12.9	13.6	14.5	14.6	15.1	17.5	19.5	20.8
y	5.5	6.2	6.3	7.0	7.8	8.3	7.1	10.0	10.8	11

Reference: Kroll, B.J. & Ramey, M.R. (1977). Effects of Bike Lanes on Driver and Bicyclist Behavior. *Journal of Transportation Engineering*, ASCE, 103 (2), pp. 243-256



Descriptive
Statistics,
Sampling
Distributions and
Methods of Point
Estimation

P. Economou

Probability vs
Statistics

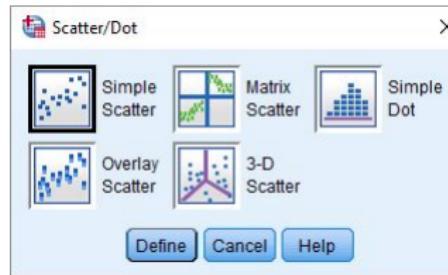
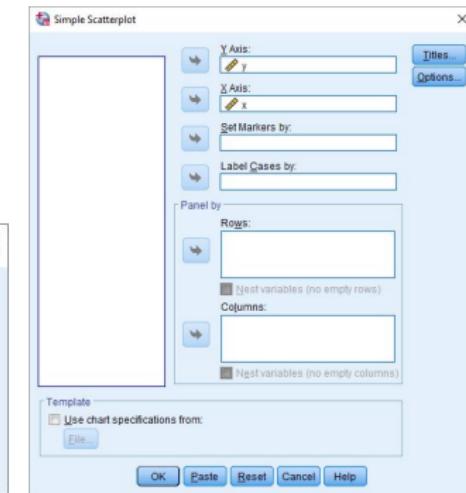
Descriptive
Statistics

Sampling
Distributions

Statistical
inference

Point Estimation

Example – Bivariate case

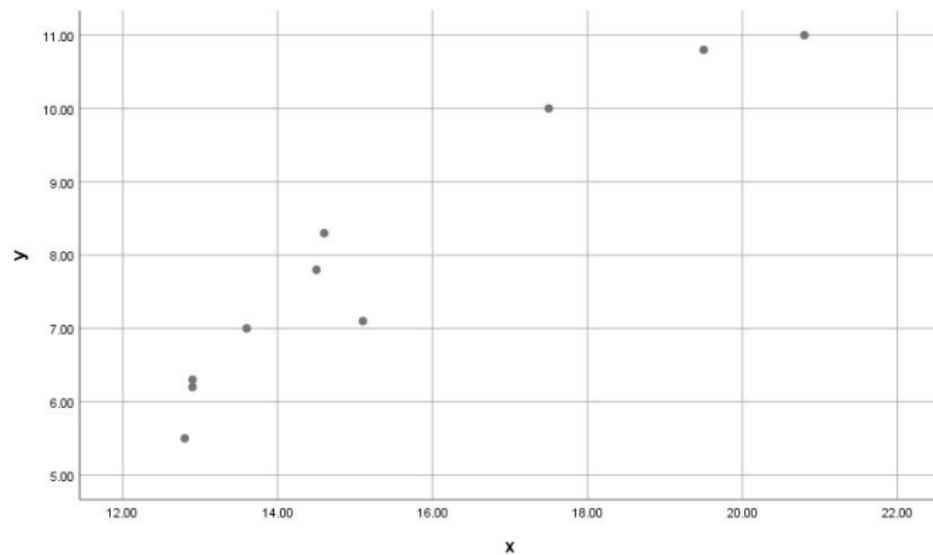


Example – Bivariate case

```
SAVE OUTFILE='F:\mathimata\Mathimata 2019-2020\Biomed\pointestimation\bicycle.sav'  
/COMPRESSED.  
GRAPH  
/SCATTERPLOT(BIVAR)=x WITH y  
/MISSING=LISTWISE.
```

Graph

[DataSet3] F:\mathimata\Mathimata 2019-2020\Biomed\pointestimation\bicycle.sav



Outline

① Probability vs Statistics

② Descriptive Statistics

③ Sampling Distributions

④ Statistical inference Point Estimation

Introduction

Before the data is collected, the observations X_1, X_2, \dots, X_n are considered to be random variables.

So, any function (or **statistic**) of the observations like

- the mean \bar{X}
- the variance S^2
- the $X_{(n)}$
- ...

is also a random variable.

→ Since every statistic is a random variable, it follows a distribution.

→ These distributions are called **sampling distributions**.

Notation

Population parameters

Greek letters: $\mu, \sigma^2, \delta, \dots$

Statistics

$T = T(X_1, X_2, \dots, X_n)$, $S = S(X_1, X_2, \dots, X_n) \dots$

Realization of statistics

Lowercase Latin letters: $x_1, x_2, \dots, x_n, t, \bar{x}, s \dots$

- **The corresponding random variables**

Uppercase Latin letters $(X_1, X_2, \dots, X_n, T, \bar{X}, S \dots)$

Sampling distribution of \bar{X}

The value we get for \bar{X} (the sample mean) depends on the sample chosen.

Since the sample is random, \bar{X} is a random variable!

As a random variable it follows a distribution.

→ It is natural to assume that \bar{X} would be close to μ (the population mean) but there will be some variability in \bar{X} before it is observed because we use random sampling to choose our sample of size n .

→ **The sampling distribution** of \bar{X}

- tells us what kind of values are likely to occur for \bar{X} .
- puts a probability distribution on the possible values for \bar{X} .

\bar{X} and S^2

Theorem

Let X_1, \dots, X_n be a random sample from a population with mean $\mu < +\infty$ and variance $\sigma^2 < +\infty$, then

- $E(\bar{X}) = \mu$

$$E(\bar{X}) = E \left(\sum_{i=1}^n \frac{X_i}{n} \right) = \sum_{i=1}^n \frac{1}{n} E(X_i) = \sum_{i=1}^n \frac{1}{n} \mu = \frac{n\mu}{n} = \mu$$

- $Var(\bar{X}) = \frac{\sigma^2}{n}$

$$Var(\bar{X}) = V \left(\sum_{i=1}^n \frac{X_i}{n} \right) = \sum_{i=1}^n \frac{1}{n^2} V(X_i) = \sum_{i=1}^n \frac{1}{n^2} \sigma^2 = \frac{n\sigma^2}{n^2} = \sigma^2/n$$

- $E(S^2) = \sigma^2$

* A statistic
 $T = T(X_1, \dots, X_n)$ is called
unbiased estimator of
the parameter θ , if $E(T) = \theta$.

Expected value of S^2

$$\begin{aligned} E(S^2) &= E\left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2\right) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \mu - \bar{X} + \mu)^2\right) \\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n \left((X_i - \mu)^2 - 2(X_i - \mu)(\bar{X} - \mu) + (\bar{X} - \mu)^2\right)\right) \\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \mu)^2 - 2(\bar{X} - \mu) \sum_{i=1}^n (X_i - \mu) + \sum_{i=1}^n (\bar{X} - \mu)^2\right) \\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \mu)^2 - 2(\bar{X} - \mu)(n\bar{X} - n\mu) + n(\bar{X} - \mu)^2\right) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2\right) \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E[(X_i - \mu)^2] - nE[(\bar{X} - \mu)^2] \right) = \frac{1}{n-1} \left(\sum_{i=1}^n \sigma^2 - n \frac{\sigma^2}{n} \right) = \frac{1}{n-1} (n\sigma^2 - \sigma^2) \\ &= \sigma^2 \end{aligned}$$

Central Limit Theorem

Suppose that X_1, X_2, \dots, X_n are independent and identically distributed with finite mean μ and variance σ^2 . If n is large enough, then

$$\bar{X} \sim N(\mu, \sigma^2/n) \quad \text{approximately}$$

See MATLAB file: *illustration_CLT.m*

Other sampling distributions

The Central Limit Theorem provides the sampling distribution of \bar{X} for any population for large enough samples.

There are cases although that we are not (only) interesting in \bar{X} .

In such cases the

- Student t-distribution
- Chi-squared distribution
- F-Ratio distribution

are useful choices to describe sampling distributions for interesting statistics like the

- \bar{X} when the population variance is unknown (Student t-distribution)
- S^2 (Chi-squared distribution)
- S_1^2/S_2^2 (F-Ratio distribution)

Beyond Central Limit Theorem

In many cases we want to make inference for a population parameter that is neither the mean nor the variance.

Example: The parameter λ of the exponential distribution

Recall that if $X \sim \text{Exp}(\lambda)$,
then $E(X) = 1/\lambda$ and $V(X) = 1/\lambda^2$.

Outline

① Probability vs Statistics

② Descriptive Statistics

③ Sampling Distributions

④ Statistical inference

Point Estimation

Statistical inference

Statistical inference is the process of drawing conclusions about a population or a scientific statement by analysis of data

The conclusion of a statistical inference is a statistical proposition such as

- parameter(s) estimation
- confidence intervals
- rejection (or not) of a hypothesis
- estimate of the relationship between two or more variables
- clustering or classification of data points into groups
-

Parameter(s) estimation

The term **parameter estimation** refers to the process of using sample data in order to estimate the parameter(s) of a probability distribution, such as the mean and standard deviation of a normal distribution.

The most commonly used estimators are

- the Method of Moments Estimator (MME)
- the Maximum Likelihood Estimators (MLE)
- the Least Square Method (LSM)

Method of moments estimator

Based on the assumption that sample moments provide GOOD ESTIMATES of the corresponding population moments.

The basic steps behind the method of moments are to

- ① equate the first sample moment about the origin

$$M_1 = \frac{1}{n} \sum x_i = \bar{X} \text{ to the first theoretical moment } E(X).$$

- ② equate the second sample moment about the origin

$$M_2 = \frac{1}{n} \sum x_i^2 \text{ to the second theoretical moment } E(X^2).$$

- ③ continue equating sample moments about the origin, M_k , with the corresponding theoretical moments $E(X^k)$, $k = 3, 4, \dots$ until the number of equations equals the number of parameters.

- ④ solve for the parameters.

Alternative: For $k \geq 2$ one could equate the sample moments about the mean with the corresponding theoretical moments about the mean.

Method of moments estimator – Example

The geometric distribution governs the number of trials needed to get the first success in a sequence of Bernoulli trials.

The probability density function is given by

$$g(x) = p(1 - p)^{x-1}, \quad x \in \mathbb{N}_+.$$

The mean of the distribution is $\mu = 1/p$.

Suppose now that $X = (X_1, X_2, \dots, X_n)$ is a random sample of size n from the geometric distribution with parameter p , then the method of moments estimator \tilde{p} of p is given by

$$\frac{1}{\tilde{p}} = \frac{1}{n} \sum X_i \quad (= \bar{X})$$

and so

$$\tilde{p} = \frac{1}{\bar{X}}.$$

Method of moments estimator

Pros

- Easy to compute and can be always calculated
- MME is consistent (i.e. converges in probability to the true value of the parameter)

Cons

- MME are usually not the “best estimators” available.

Maximum likelihood estimators

The idea behind the Maximum likelihood estimators is to find the values of the parameters θ which maximizes the likelihood of getting the data that we, in fact, observed.

Suppose we have a random sample $X = (X_1, X_2, \dots, X_n)$ for which the probability density (or mass) function of each X_i is $f(x_i; \theta)$. Then, the joint probability mass (or density) function of X_1, X_2, \dots, X_n denoted by $L(\theta)$ is given by

$$\begin{aligned} L(\theta) &= P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \\ &= f(x_1; \theta) \cdot f(x_2; \theta) \cdots f(x_n; \theta) \\ &= \prod_{i=1}^n f(x_i; \theta) \end{aligned}$$

The MLEs of θ are obtained by treating the likelihood function $L(\theta)$ as a function of θ , and find the value of θ that maximizes it or equivalently that maximizes the log-likelihood function

$$\ell(\theta) = \sum_{i=1}^n \log f(x_i; \theta)$$

Maximum likelihood estimators – Example

Under some regular conditions the number of blood donations can be described by a Poisson process with constant (over time) rate λ .

As a result the time between consecutive blood donations of an individual follows an exponential distribution while the time until the r^{th} blood donation follows a Gamma distribution with pdf

$$f(x; \lambda) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)}.$$

- The likelihood function is given by $L(\lambda) = \prod_{i=1}^n \frac{\lambda^r x_i^{r-1} e^{-\lambda x_i}}{\Gamma(r)}$.
- The log-likelihood function is given by

$$\ell(\lambda) = \sum_{i=1}^n (-x_i \lambda + (-1 + r) \log x_i + r \log \lambda - \log \Gamma(r))$$

- The MLE of λ is obtained by solving the equation $\frac{\partial \ell(\lambda)}{\partial \lambda} = 0$.
- The MLE $\hat{\lambda}$ of λ is given by $\hat{\lambda} = \frac{nr}{\sum x_i} = \frac{r}{\bar{x}}$.

Maximum likelihood estimators – Example

The following data represent the time (in days) until the 10th blood donation of an individual.

1723	1387	648	1099	858	1059	1714	2082	1417	826
853	737	793	774	594	919	1123	897	1160	837
1187	651	868	1088	2268	813	493	1090	1016	796
910	1382	1202	952	954	711	1230	1482	739	977
1166	481	599	640	744	1150	678	1022	1202	877
1002	1309	689	1240	1130	1148	589	1835	1434	521
1036	1074	800	1475	518	1451	827	708	968	1033
941	941	835	981	1738	996	1946	899	727	708
847	549	738	930	1270	1211	1227	1391	1759	408
835	1324	1323	1191	716	1262	1302	1336	906	1011

$$\bar{X} = 1039.03 \Rightarrow \hat{\lambda} = \frac{r}{\bar{X}} = \frac{10}{1039.03} \approx 0.0096$$

Interpretation: Given the observed data the MLE of λ is 0.0096 which implies that we expect (in average) 0.0096 donation per day, or equivalent 1.15492 (in average) blood donations every 4 months ($0.0096 \times 4 \times 30 = 1.15492$).

This also implies that the expected time between blood donations is $\frac{1039.03}{10} = 103.903$ days.

Maximum likelihood estimators

Pros

When sample size n is large ($n > 30$), MLE is

- unbiased (i.e. $E(\hat{\theta}) = \theta$)
- consistent (i.e. converges in probability to the true value of the parameter)
- normally distributed
- ...

As a result the MLEs are more useful in statistical inference and the most commonly used estimators.

Cons

- MLE can be highly biased for small samples
- In many cases the MLEs has no closed-form solution and we must use numerical methods in order to maximize the log-likelihood.

Least squares estimator

The method of least squares is a standard approach in regression analysis.

Although, it can also be used to estimate population parameters.

The objective consists of adjusting the parameters of a model function or distribution to best fit a data set. The least squares method finds the optimum values by minimizing

$$S = \sum_{i=1}^n (y_i - E(y_i))^2.$$

Least squares estimator - Example

Let X_1, \dots, X_n be a random sample from an $\text{Exp}(\lambda)$ population.
The least square estimator $\hat{\lambda}$ of λ is obtained by minimizing

$$S(\lambda) = \sum_{i=1}^n \left(x_i - \frac{1}{\lambda} \right)^2.$$

It is easy to show that

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^n x_i} = \frac{1}{\bar{X}}.$$

Reading

- Biostatistics, A Foundation for Analysis in the Health Sciences, W.W. Daniel and C.L. Cross

<http://docshare02.docshare.tips/files/22448/224486444.pdf>

Chapters 2, 5 and 6

- Probability & Statistics for Engineers and Scientists
R.E.Walpole, R.H. Myers, S.L.Myers, K.Ye

https://fac.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineers_and_scientists.pdf

Chapters 1, 8 and 9