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Recommended Reading

» Biostatistics, A Foundation for Analysis in the Health Sciences,
W.W. Daniel and C.L. Cross (Chapter 9)

» Probability & Statistics for Engineers and Scientists R.E.Walpole,
R.H. Myers, S.L.Myers, K.Ye (Chapter 11)

» Engineering Biostatistics, An introduction using MATLAB and
WINBUGS, B.Vidakovic (2016) (Chapter 14)
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Regression and Correlation

Suppose we are interested in studying the relationship that may
exist between two or more continuous variables. Two popular
statistical techniques for doing so are:

> Regression analysis, which is used primarily for prediction.
The goal is to develop a model (linear or non-linear) that gives
the dependent variable Y as a function of the rest of variables.
Since the model is developed with the help of a single sample,
part of regression analysis is concerned with the validation of
the model before it is actually used for prediction.

> Correlation analysis, which is used to measure the strength
of the linear association between two continuous variables. It
can be used even when it is understood that the variables are
not related with a causal-effect relationship.
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Graphical Representation
Scatterplot: a simple way to visualize the relationship between two variables.
First, get a sample which comprises of n pairs (x;,yi) for i=1,...,n. Then
plot the pairs on the (x, y) 2-dimensional plane.
Example: A study investigated the relationship between noise exposure and
hypertension. The sample comprised of 20 pairs (x,y), where x is the level of
sound pressure (in decibels) and y is the blood pressure rise (in mm).
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Pearson’s Correlation Coefficient

Given a scatter plot for two variables it is easy to estimate the correlation
coefficient using Pearson’s formula.

. nd> o xi yi — (0 xi) (2 vi)
\/” Do Xk — (i Xi)z\/” Yo i — (o yi)?

This coefficient measures the strength of the linear relation between X and Y.
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For the Simple Linear Regression it is assumed that the dependent
variable Y is associated to the independent (or predictor) X with a
linear relation. The goal here is to express the relation using
information from a random sample. It is further assumed that the
relationship between the two variables cannot be perfectly defined
due to some inherent uncertainty which is embodied into the
model using an error term.

Simple Linear Regression Model

Y =050+ Pix+e

where

Bo = Y —intercept of the model

B1 = slope of the model

€ = random error in Y when X = x
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Assumptions behind theMSimpIe Linear Model

b

FIGURES.2.1 Representat on of the simie linear regrossion mods.

» Values of variable X can be considered as random or fixed at
specific levels

> At each level x; of X, it is assumed that Y follows a normal
distribution with mean py|x—,, and variance o2, the same for all
levels of X

» The regression line y = Bo + Elx is an estimate of the line
My x=x = Bo + Bix

which is the theoretical relation between X and Y
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Error term in the Simple Linear Model

The error term is defined as:

€=Y — fly|x=x

and describes the variability we observe in Y when X is fixed at a
certain level x.

Assumptions for the error term:
> ¢ follows the distribution of Y/, i.e. it is normally distributed
» Ele] =0 and V(e) = o2 for all levels of X

» If €; and ¢; are the error terms at two different levels of X, x;
and x;, we assume that Cov(ej,€;) = 0. As a result the
corresponding values of Y, Y; and Y] are also uncorrelated.
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Meaning of Regression Parameters

The parameters o and B; in the simple regression model are the
regression coefficients. Their meaning results from the fact that
the regression line gives the expected value of the dependent
variable Y when the predictor X takes a specific value x.

> [ is the slope of the line and as such it gives the change in
the mean of Y per unit increase in X.

» [g is the intercept of the line and gives the mean of Y at
X = 0. If the value X = 0 is not included in the scope of the
model, then we ignore the meaning of fp.
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Fitting a line

The most well known method for fitting a regression line to data is Least
Squares. According to LS we estimate By and (31 so that the sum of
squared deviations

n

Q(Bo: B1) =D _(vi — Bo — 1 x;)?

i=1

is minimized. The solution of the two resulting equations are:

5y Sl R —7) _ n ¥y (S ) (5 )

Z7=1(Xi - Xx)? n Z?:l Xi2 - (27:1 x;)?
Bo =y — p1%

and the regression equation: y = BO + le
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Fitting a least squares line — Example
Level of Sound Pressure vs Rise of Blood Pressure

D x=1656 > y; =86, Y x? =140176 Y xiy; = 7654, Y y? =494

9 = —10.1+0.174x;

Notes:
“Rise of Blood Pressure” vs “Sound Pressure level”

. - ” 1. The line passes through the point
i . (x =828,y =4.3)
i . s, * 2. It gives the mean value of Y for a
£ s v s given value of X
&3 + .
22 . For example: If someone is
N exposed to noise of 75 db we

@ ; dPrsssursalgvsl(illdscil:jsﬂ) w expect a rlse In b|00d presure Of
- : 2.94mm
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Analysis of Variance in Regression
Variation in Y: Total Sum of Squares (SST) = Y, (vi — ¥)?

SST can be analyzed in the Sum of Squares that is due to regression
(SSR) and the Sum of Squares that is due to error (SSE).

SST =SSR + SSE

n

S lyi—9)P= Z(f/i PP+ i —9)

i=1 i=1
> Note: SST = 32 (y; — 72 = L yf — 4 (Zyi)? and SSR = 2257 = )2 = B1 [T xivi — 3 (2 x) (2 )]

ANalysis Of VAriance (ANOVA) Table

Source DF SS MS

Regression 1 SSR  MSR=SSR/1
Error n-2 SSE MSE=SSE/n-2
Total n-1 SST
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Evaluation of the model fit

» Coefficient of Determination:

SSR

2
R ~ SST

It measures the proportion of variation in the dependent variable Y

that is shared with or explained by the independent variable X.

» Standard Error of the Estimate (or Standard Deviation of Residuals).'
SSE > lyi — 9i)?

°= n—2: n—2

It measures the variability we observe on the actual Y; values
compared to their corresponding predicted values Y;
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Testing the significance of the model
This is a hypothesis testing procedure (F test) and uses the data in
the sample to test whether the proposed model makes any sense.

» Null and Alternative Hypotheses:

H0:61:0VSH12,31750

» Statistical Control Function:

MSR  SSR/1

F= MISE = SSE/n—2

» Critical region:

Reject Hp at the « level of significance if F > Fu.1,n—2 (significant model);
otherwise if rejection of Hyp fails conclude that the model is not significant, i.e.
there may be no linear relationship between the two variables
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Evaluation of the model — Example

Model Sumrnarf
Adjusted R Std. Error of
Wode| R R Square Siuare the Estimate
1 8657 748 734 1,318

a. Predictors: (Constant), X (Noise level)
b. Dependent Variable: Y (Hypertension)

ANOVA®
Sum of
Madal Squares df Mean Square F Sig
1 Regression 92,934 1 62,934 53,502 ,0o0”
Residual 31,266 18 1,737
Total 124,200 148
a. DependentVariable: Y (Hypertension)
b. Predictors: (Constant), X (Noise level)
Coefficients”
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig Lower Bound [ UpperBound
1 (Constant) -10,132 1,895 -5,078 000 -14323 -5,940
X (Moise level) 74 024 865 7,314 ,000 124 224
a. DependentVariable: ¥ (Hypertension)
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Statistical Inference on the Regression Model!
Distribution of /31

N 1
ﬂl””(“" e —x))j ey
5;(%1[;1 ~ ty— where s(f1) = = oy and s = ,;SiEz

» Cl for f1: With 100(1 — «)% certainty
p1 € {31 + t1-a/2),n-2 5(/3’1)]
» Tests for B1: Ho: 1 =0 vs Hy : 81 # 0 (test for the slope)

test whether t = % ~ t,_o at a certain significance level «
1

Yn order to build conf. intervals and hypothesis tests for the regression model we
need the assumption of normality for the error term. 17/
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More Statistical Inference on the Regression Model
Distribution of /3,

Bo~N (5070 L ~N(0,1)

Bo — Bo
m = =
(e~ x)?) £
T\ "o, (%)
Bo — Bo A | xx [ SSE
29 ¢, wh = —— =T ands=4/——
s(o) 2 vhete s(fo) = nY i (6 —X)? anes n—2

» Cl for Bp: With 100(1 — )% certainty
Bo € [Bo + t1—a/2)in—2 5(30)}

» Tests for Bo: Ho : o = B3 vs Hy : Bo # B

A 0
test whether t = %l ~ t,_o at a certain significance level a
0
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The Regression Model in Action
Major goal for building regression models is estimation of mean values of
Y or prediction of values of Y when X takes a certain value xp. The
estimation and prediction can be done either with point estimates or with
interval estimates.
Let xp be a value for X for which we are interested in estimating the
mean value of Y. Then

» Point estimate: yo = by + bi1xg

» Confidence Interval for E(Yp):

(x0 — %)

YOit1a2n25 ~n /7 =5
(1=a/2) \/ ST R

» Prediction Interval for a new observation of Y:

(X0 — X)?

1
Vo £ t1—a/2):n— 1+ =m—7—"—5
yo (1 a/2),n 25\/ + n+ Z’ 1( X)2

19/24



Biostatistics- Regression -
LSimpIe Linear Regression Analysis

Estimation and Prediction — Example

Y (Hypertension)

Suppose we want (1) to estimate the mean blood pressure rise (for the whole
population) and (2) to predict the blood pressure rise (for any individual) when
the noise level is measured at 75, 85, or 95 decibels.

XNoiselevel | YF [ PRE1 | RES1 | sep1 | o1 | ume 1| o1 | uc 1|
] 75 2.94054 4842 2.20850 367251 07645 580457
] 85 468345 ,29933 4,05457 5,31232 1,84399 7,52290
! - S 4139 555669 729608 352408 9.32869

2 Linear = 0,748

red line: Regression line

green curves: 95% confidence intervals for

py|X = x

Blue curves: 95% prediction intervals for
Y when X = x

X (Noise level)
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Visualization in Regression

A celebrated classic example of the role of statistical graphics and residual
analysis in statistical modeling was created by Anscombe in 19732, He
constructed four quite different data sets (x;,y;), i =1, ..., 11 that share
the same descriptive statistics and linear regression fit y = Bo + le

Anscombe's Data
Observation x1 vl x2 ¥2 x3 v3 x4 v4
1 10 8.04 10 9.14 10 746 8 6.58
2 8 6.95 8 8.14 8 6.77 8 5.76
3 13 7.58 13 8.74 13 1274 8 771
4 9 8.81 9 8.77 9 7.11 8 8.84
5 11 833 11 9.26 11 7.81 8 847
6 14 9.96 14 81 14 8.84 8 7.04
7 6 724 6 6.13 6 6.08 8 525
8 4 4.26 4 31 4 5.39 19 125
9 12 10.84 12 9.13 12 8.15 8 5.56
10 7 482 7 726 7 6.42 8 791
11 5 568 5 474 5 573 8 6.89

Summary Statistics|
N 11 11 11 11 11 11 11 11
mean 9.00 7.50 9.00 |7.50091 9.00 7.50 9.00 7.50
SD 3.16 154 3.16 194 3.16 154 3.16 194

T 0.82 0.82 0.82 0.82

2Anscombe,F. Graphs in Statistical Analysis. American Statistician, 27, 17-21
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Fitting Lines in Anscombe Data
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ANOVA for Anscombe Data

ANOVA® ANOVA®
Sum of
bogel _ Saquares df | Wean Square | F EL Modsl Ss:l:”awuefs df | MeanSouare | F sig
1 Regression 27510 1 27810 | 17,990 002 1 Regression 27,500 1 27,500 | 17,966 ,002°
Residual 13763 9 1529 Residual 13,776 ] 1,531
Total 41273 10 Total 1,276 10
a.Dependent Variable: yi a. Dependent Variable: y2
b. Predictors: (Canstant), x1 b. Predictars: (Constant), x2
ANOVA® ANOVA®
Sum of
Mode! Squares df Mean Square F Sig Model SE};AE\EIE; df Mean Square F Sig
1 Regression 27,470 1 27470 | 17472 002 1 Regression 27 490 1 27,490 | 18,003 002*
Residual 13,756 g 1,528 Residual 13,742 g 1,527
Total 41,226 10 Total 41,03 10
a. Dependent variable: y3 a. Dependent Variable: y4
b. Predictors: (Gonstant), 3

b. Predictors: (Constant), x4

» All four datasets give the same regression line and the same ANOVA
table. So how can we evaluate the models?
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Residual Plots for Anscombe Data
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