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Recommended Reading

I Biostatistics, A Foundation for Analysis in the Health Sciences,
W.W. Daniel and C.L. Cross (Chapter 9)

I Probability & Statistics for Engineers and Scientists R.E.Walpole,
R.H. Myers, S.L.Myers, K.Ye (Chapter 11)

I Engineering Biostatistics, An introduction using MATLAB and
WINBUGS, B.Vidakovic (2016) (Chapter 14)
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Simple Linear Regression Analysis

Simple Regression Analysis
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Simple Linear Regression Analysis

Regression and Correlation

Suppose we are interested in studying the relationship that may
exist between two or more continuous variables. Two popular
statistical techniques for doing so are:

I Regression analysis, which is used primarily for prediction.
The goal is to develop a model (linear or non-linear) that gives
the dependent variable Y as a function of the rest of variables.
Since the model is developed with the help of a single sample,
part of regression analysis is concerned with the validation of
the model before it is actually used for prediction.

I Correlation analysis, which is used to measure the strength
of the linear association between two continuous variables. It
can be used even when it is understood that the variables are
not related with a causal-effect relationship.

4 / 24



Biostatistics- Regression -

Simple Linear Regression Analysis

Graphical Representation
Scatterplot: a simple way to visualize the relationship between two variables.

First, get a sample which comprises of n pairs (xi , yi ) for i = 1, . . . , n. Then
plot the pairs on the (x , y) 2-dimensional plane.

Example: A study investigated the relationship between noise exposure and
hypertension. The sample comprised of 20 pairs (x , y), where x is the level of
sound pressure (in decibels) and y is the blood pressure rise (in mm).
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Simple Linear Regression Analysis

Pearson’s Correlation Coefficient
Given a scatter plot for two variables it is easy to estimate the correlation
coefficient using Pearson’s formula.
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This coefficient measures the strength of the linear relation between X and Y .
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Simple Linear Regression Analysis

For the Simple Linear Regression it is assumed that the dependent
variable Y is associated to the independent (or predictor) X with a
linear relation. The goal here is to express the relation using
information from a random sample. It is further assumed that the
relationship between the two variables cannot be perfectly defined
due to some inherent uncertainty which is embodied into the
model using an error term.

Simple Linear Regression Model

Y = β0 + β1x + ε

where
β0 = Y−intercept of the model
β1 = slope of the model
ε = random error in Y when X = x
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Simple Linear Regression Analysis

Assumptions behind the Simple Linear Model

I Values of variable X can be considered as random or fixed at
specific levels

I At each level xi of X , it is assumed that Y follows a normal
distribution with mean µY |X=xi and variance σ2, the same for all
levels of X

I The regression line ŷ = β̂0 + β̂1x is an estimate of the line

µY |X=x = β0 + β1x

which is the theoretical relation between X and Y
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Simple Linear Regression Analysis

Error term in the Simple Linear Model

The error term is defined as:

ε = Y − µY |X=x

and describes the variability we observe in Y when X is fixed at a
certain level x .

Assumptions for the error term:

I ε follows the distribution of Y , i.e. it is normally distributed

I E [ε] = 0 and V (ε) = σ2 for all levels of X

I If εi and εj are the error terms at two different levels of X , xi
and xj , we assume that Cov(εi , εj) = 0. As a result the
corresponding values of Y , Yi and Yj are also uncorrelated.
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Simple Linear Regression Analysis

Meaning of Regression Parameters

The parameters β0 and β1 in the simple regression model are the
regression coefficients. Their meaning results from the fact that
the regression line gives the expected value of the dependent
variable Y when the predictor X takes a specific value x .

I β1 is the slope of the line and as such it gives the change in
the mean of Y per unit increase in X .

I β0 is the intercept of the line and gives the mean of Y at
X = 0. If the value X = 0 is not included in the scope of the
model, then we ignore the meaning of β0.
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Fitting a line

The most well known method for fitting a regression line to data is Least
Squares. According to LS we estimate β0 and β1 so that the sum of
squared deviations

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1 xi )
2

is minimized. The solution of the two resulting equations are:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

n
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i=1 xi yi − (
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i=1 yi )

n
∑n

i=1 x
2
i − (
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2

β̂0 =ȳ − β̂1x̄

and the regression equation: ŷ = β̂0 + β̂1x
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Fitting a least squares line – Example
Level of Sound Pressure vs Rise of Blood Pressure∑

xi = 1656
∑

yi = 86,
∑

x2
i = 140176

∑
xiyi = 7654,

∑
y2
i = 494

ŷi = −10.1 + 0.174xi

Notes:

1. The line passes through the point
(x = 82.8, y = 4.3)

2. It gives the mean value of Y for a
given value of X

For example: If someone is
exposed to noise of 75 db we
expect a rise in blood presure of
2.94mm

Estimate of the rise in the blood pressure when the sound pressure is
measured to be :
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Simple Linear Regression Analysis

Analysis of Variance in Regression
Variation in Y : Total Sum of Squares (SST) =

∑n
i=1(yi − ȳ)2

SST can be analyzed in the Sum of Squares that is due to regression
(SSR) and the Sum of Squares that is due to error (SSE).

SST =SSR + SSE
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2

I Note: SST =
∑

(yi − ȳ)2 =
∑

y2
i − 1

n
(
∑

yi )
2 and SSR =

∑
(ŷi − ȳ)2 = β̂1

[∑
xi yi − 1

n
(
∑

xi ) (
∑

yi )
]

ANalysis Of VAriance (ANOVA) Table

Source DF SS MS
Regression 1 SSR MSR=SSR/1
Error n-2 SSE MSE=SSE/n-2

Total n-1 SST
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Simple Linear Regression Analysis

Evaluation of the model fit

I Coefficient of Determination:

R2 =
SSR

SST

It measures the proportion of variation in the dependent variable Y
that is shared with or explained by the independent variable X .

I Standard Error of the Estimate (or Standard Deviation of Residuals):

s =

√
SSE

n − 2
=

√∑n
i=1(yi − ŷi )2

n − 2

It measures the variability we observe on the actual Yi values
compared to their corresponding predicted values Ŷi
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Testing the significance of the model
This is a hypothesis testing procedure (F test) and uses the data in
the sample to test whether the proposed model makes any sense.

I Null and Alternative Hypotheses:

H0 : β1 = 0 vs H1 : β1 6= 0

I Statistical Control Function:

F =
MSR

MSE
=

SSR/1

SSE/n − 2

I Critical region:

Reject H0 at the α level of significance if F > Fα;1,n−2 (significant model);
otherwise if rejection of H0 fails conclude that the model is not significant, i.e.
there may be no linear relationship between the two variables
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Evaluation of the model – Example
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Statistical Inference on the Regression Model1

Distribution of β̂1

β̂1 ∼ N

(
β1, σ

√
1∑n

i=1(xi − x̄)2

)
⇒ β̂1 − β1

σ
√

1∑n
i=1(xi−x̄)2

∼ N (0, 1)

β̂1 − β1

s(β̂1)
∼ tn−2 where s(β̂1) = s

√
1∑n

i=1(xi − x̄)2
and s =

√
SSE

n − 2

I CI for β1: With 100(1− α)% certainty

β1 ∈
[
β̂1 ± t(1−α/2),n−2 s(β̂1)

]
I Tests for β1: H0 : β1 = 0 vs H1 : β1 6= 0 (test for the slope)

test whether t = β̂1

s(β̂1)
∼ tn−2 at a certain significance level α

1In order to build conf. intervals and hypothesis tests for the regression model we
need the assumption of normality for the error term.
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More Statistical Inference on the Regression Model

Distribution of β̂0

β̂0 ∼ N

(
β0, σ

√ ∑
x2
i

n
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σ
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√ ∑
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i

n
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and s =

√
SSE

n − 2

I CI for β0: With 100(1− α)% certainty

β0 ∈
[
β̂0 ± t(1−α/2);n−2 s(β̂0)

]
I Tests for β0: H0 : β0 = β0

0 vs H1 : β0 6= β0
0

test whether t =
β̂0−β0

0

s(β̂0)
∼ tn−2 at a certain significance level α
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The Regression Model in Action
Major goal for building regression models is estimation of mean values of
Y or prediction of values of Y when X takes a certain value x0. The
estimation and prediction can be done either with point estimates or with
interval estimates.

Let x0 be a value for X for which we are interested in estimating the
mean value of Y . Then

I Point estimate: ŷ0 = b0 + b1x0

I Confidence Interval for E (Y0):

ŷ0 ± t(1−α/2);n−2 s

√
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

I Prediction Interval for a new observation of Y :

ŷ0 ± t(1−α/2);n−2 s

√
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2
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Estimation and Prediction – Example

Suppose we want (1) to estimate the mean blood pressure rise (for the whole
population) and (2) to predict the blood pressure rise (for any individual) when
the noise level is measured at 75, 85, or 95 decibels.

red line: Regression line

green curves: 95% confidence intervals for
µY |X = x

Blue curves: 95% prediction intervals for
Y when X = x
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Visualization in Regression
A celebrated classic example of the role of statistical graphics and residual
analysis in statistical modeling was created by Anscombe in 19732. He
constructed four quite different data sets (xi , yi ), i = 1, ..., 11 that share
the same descriptive statistics and linear regression fit ŷ = β̂0 + β̂1x

2
Anscombe,F. Graphs in Statistical Analysis. American Statistician, 27, 17-21
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Fitting Lines in Anscombe Data

22 / 24



Biostatistics- Regression -

Simple Linear Regression Analysis

ANOVA for Anscombe Data

I All four datasets give the same regression line and the same ANOVA
table. So how can we evaluate the models?
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Residual Plots for Anscombe Data
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