

# Biostatistics

## - Regression -

Sophia Daskalaki

Dept. of Electrical & Computer Engineering  
✉: [sdask@upatras.gr](mailto:sdask@upatras.gr)      ☎: 2610-997810

## Recommended Reading

- ▶ *Biostatistics, A Foundation for Analysis in the Health Sciences*, W.W. Daniel and C.L. Cross (Chapter 9)
- ▶ *Probability & Statistics for Engineers and Scientists* R.E.Walpole, R.H. Myers, S.L.Myers, K.Ye (Chapter 11)
- ▶ *Engineering Biostatistics, An introduction using MATLAB and WINBUGS*, B.Vidakovic (2016) (Chapter 14)

# Simple Regression Analysis

## Regression and Correlation

Suppose we are interested in studying the relationship that may exist between two or more continuous variables. Two popular statistical techniques for doing so are:

- ▶ **Regression analysis**, which is used primarily for *prediction*. The goal is to develop a model (linear or non-linear) that gives the dependent variable  $Y$  as a function of the rest of variables. Since the model is developed with the help of a single sample, part of regression analysis is concerned with the validation of the model before it is actually used for prediction.
- ▶ **Correlation analysis**, which is used to *measure the strength of the linear association between two continuous variables*. It can be used even when it is understood that the variables are not related with a causal-effect relationship.

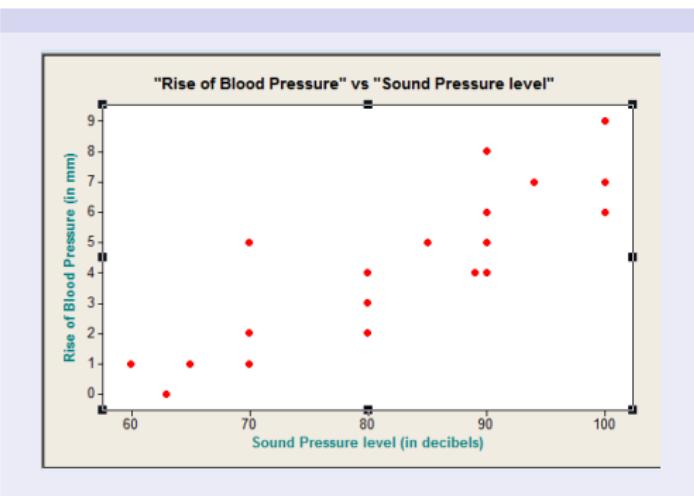
## Graphical Representation

*Scatterplot*: a simple way to visualize the relationship between two variables.

First, get a sample which comprises of  $n$  pairs  $(x_i, y_i)$  for  $i = 1, \dots, n$ . Then plot the pairs on the  $(x, y)$  2-dimensional plane.

*Example*: A study investigated the relationship between noise exposure and hypertension. The sample comprised of 20 pairs  $(x, y)$ , where  $x$  is the level of sound pressure (in *decibels*) and  $y$  is the blood pressure rise (in *mm*).

| X (Noise level) | Y (Hypertension) |
|-----------------|------------------|
| 60              | 1                |
| 63              | 0                |
| 65              | 1                |
| 70              | 2                |
| 70              | 5                |
| 70              | 1                |
| 80              | 4                |
| 90              | 6                |
| 80              | 2                |
| 80              | 3                |
| 85              | 5                |
| 89              | 4                |
| 90              | 6                |
| 90              | 8                |
| 90              | 4                |
| 90              | 5                |
| 94              | 7                |
| 100             | 9                |
| 100             | 7                |
| 100             | 6                |

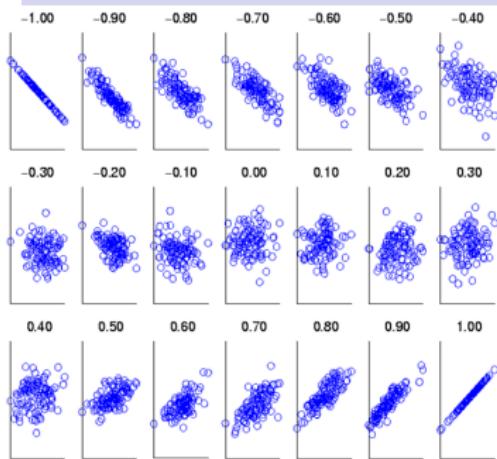
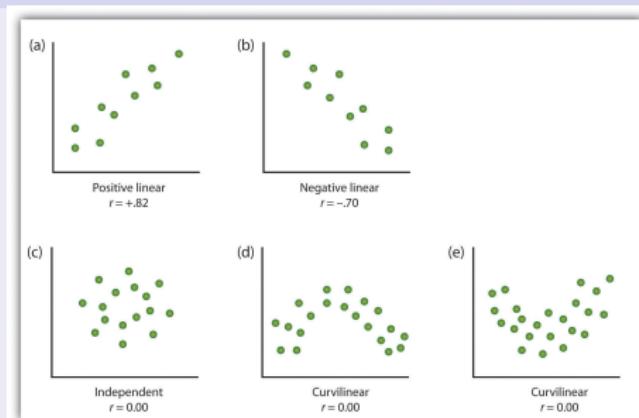


# Pearson's Correlation Coefficient

Given a scatter plot for two variables it is easy to estimate the *correlation coefficient* using *Pearson's formula*.

$$r = \frac{n \sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{\sqrt{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} \sqrt{n \sum_{i=1}^n y_i^2 - (\sum_{i=1}^n y_i)^2}}$$

This coefficient measures the *strength of the linear relation* between  $X$  and  $Y$ .



For the Simple Linear Regression it is assumed that the dependent variable  $Y$  is associated to the independent (or predictor)  $X$  with a linear relation. The goal here is to express the relation using information from a random sample. It is further assumed that the relationship between the two variables cannot be perfectly defined due to some inherent uncertainty which is embodied into the model using an error term.

### Simple Linear Regression Model

$$Y = \beta_0 + \beta_1 x + \epsilon$$

where

$\beta_0$  =  $Y$ -intercept of the model

$\beta_1$  = slope of the model

$\epsilon$  = random error in  $Y$  when  $X = x$

## Assumptions behind the Simple Linear Model

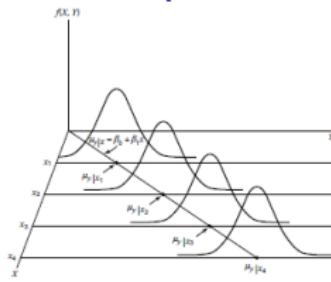


FIGURE 9.2.1 Representation of the simple linear regression model.

- Values of variable  $X$  can be considered as random or fixed at specific levels
- At each level  $x_i$  of  $X$ , it is assumed that  $Y$  follows a normal distribution with mean  $\mu_{Y|X=x_i}$  and variance  $\sigma^2$ , the same for all levels of  $X$
- The regression line  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$  is an estimate of the line

$$\mu_{Y|X=x} = \beta_0 + \beta_1 x$$

which is the theoretical relation between  $X$  and  $Y$

## Error term in the Simple Linear Model

The *error term* is defined as:

$$\epsilon = Y - \mu_{Y|X=x}$$

and describes the variability we observe in  $Y$  when  $X$  is fixed at a certain level  $x$ .

### Assumptions for the error term:

- ▶  $\epsilon$  follows the distribution of  $Y$ , i.e. it is normally distributed
- ▶  $E[\epsilon] = 0$  and  $V(\epsilon) = \sigma^2$  for all levels of  $X$
- ▶ If  $\epsilon_i$  and  $\epsilon_j$  are the error terms at two different levels of  $X$ ,  $x_i$  and  $x_j$ , we assume that  $Cov(\epsilon_i, \epsilon_j) = 0$ . As a result the corresponding values of  $Y$ ,  $Y_i$  and  $Y_j$  are also uncorrelated.

## Meaning of Regression Parameters

The parameters  $\beta_0$  and  $\beta_1$  in the simple regression model are the *regression coefficients*. Their meaning results from the fact that the regression line gives the expected value of the dependent variable  $Y$  when the predictor  $X$  takes a specific value  $x$ .

- ▶  $\beta_1$  is the slope of the line and as such it gives the change in the mean of  $Y$  per unit increase in  $X$ .
- ▶  $\beta_0$  is the intercept of the line and gives the mean of  $Y$  at  $X = 0$ . If the value  $X = 0$  is not included in the scope of the model, then we ignore the meaning of  $\beta_0$ .

## Fitting a line

The most well known method for fitting a regression line to data is *Least Squares*. According to LS we estimate  $\beta_0$  and  $\beta_1$  so that the sum of squared deviations

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

is minimized. The solution of the two resulting equations are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{n \sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

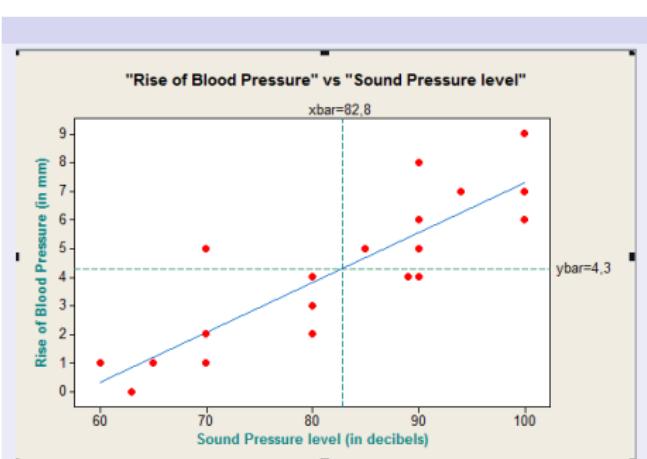
and the regression equation:  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

# Fitting a least squares line – Example

## *Level of Sound Pressure vs Rise of Blood Pressure*

$$\sum x_i = 1656 \quad \sum y_i = 86, \quad \sum x_i^2 = 140176 \quad \sum x_i y_i = 7654, \quad \sum y_i^2 = 494$$

$$\hat{y}_i = -10.1 + 0.174x_i$$



## Notes:

1. The line passes through the point  $(\bar{x} = 82.8, \bar{y} = 4.3)$
2. It gives the mean value of  $Y$  for a given value of  $X$

*For example:* If someone is exposed to noise of 75 db we expect a rise in blood pressure of 2.94mm

## Analysis of Variance in Regression

*Variation in Y:* Total Sum of Squares (SST) =  $\sum_{i=1}^n (y_i - \bar{y})^2$

SST can be analyzed in the Sum of Squares that is due to *regression* (SSR) and the Sum of Squares that is due to *error* (SSE).

$$SST = SSR + SSE$$

$$\sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

► **Note:**  $SST = \sum (y_i - \bar{y})^2 = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2$  and  $SSR = \sum (\hat{y}_i - \bar{y})^2 = \hat{\beta}_1 \left[ \sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i) \right]$

### ANalysis Of VAriance (ANOVA) Table

| Source     | DF  | SS  | MS          |
|------------|-----|-----|-------------|
| Regression | 1   | SSR | MSR=SSR/1   |
| Error      | n-2 | SSE | MSE=SSE/n-2 |
| Total      | n-1 | SST |             |

## Evaluation of the model fit

- ▶ *Coefficient of Determination:*

$$R^2 = \frac{SSR}{SST}$$

It measures the proportion of variation in the dependent variable  $Y$  that is shared with or explained by the independent variable  $X$ .

- ▶ *Standard Error of the Estimate (or Standard Deviation of Residuals):*

$$s = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}}$$

It measures the variability we observe on the actual  $Y_i$  values compared to their corresponding predicted values  $\hat{Y}_i$

## Testing the significance of the model

This is a hypothesis testing procedure (*F test*) and uses the data in the sample to test whether the proposed model makes any sense.

► *Null and Alternative Hypotheses:*

$$H_0 : \beta_1 = 0 \text{ vs } H_1 : \beta_1 \neq 0$$

► *Statistical Control Function:*

$$F = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/n - 2}$$

► *Critical region:*

Reject  $H_0$  at the  $\alpha$  level of significance if  $F > F_{\alpha;1,n-2}$  (significant model); otherwise if rejection of  $H_0$  fails conclude that the model is not significant, i.e. there may be no linear relationship between the two variables

## Evaluation of the model – Example

Model Summary<sup>b</sup>

| Model | R                 | R Square | Adjusted R Square | Std. Error of the Estimate |
|-------|-------------------|----------|-------------------|----------------------------|
| 1     | ,865 <sup>a</sup> | ,748     | ,734              | 1,318                      |

a. Predictors: (Constant), X (Noise level)

b. Dependent Variable: Y (Hypertension)

ANOVA<sup>a</sup>

| Model |            | Sum of Squares | df | Mean Square | F      | Sig.              |
|-------|------------|----------------|----|-------------|--------|-------------------|
| 1     | Regression | 92,934         | 1  | 92,934      | 53,502 | ,000 <sup>b</sup> |
|       | Residual   | 31,266         | 18 | 1,737       |        |                   |
|       | Total      | 124,200        | 19 |             |        |                   |

a. Dependent Variable: Y (Hypertension)

b. Predictors: (Constant), X (Noise level)

Coefficients<sup>a</sup>

| Model | Unstandardized Coefficients |            |       | t      | Sig. | 95,0% Confidence Interval for B |             |
|-------|-----------------------------|------------|-------|--------|------|---------------------------------|-------------|
|       | B                           | Std. Error | Beta  |        |      | Lower Bound                     | Upper Bound |
| 1     | (Constant)                  | -10,132    | 1,995 | -5,079 | ,000 | -14,323                         | -5,940      |
|       | X (Noise level)             | ,174       | ,024  |        |      | ,124                            | ,224        |

a. Dependent Variable: Y (Hypertension)

# Statistical Inference on the Regression Model<sup>1</sup>

## Distribution of $\hat{\beta}_1$

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \sigma \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}}\right) \Rightarrow \frac{\hat{\beta}_1 - \beta_1}{\sigma \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \sim \mathcal{N}(0, 1)$$

$$\frac{\hat{\beta}_1 - \beta_1}{s(\hat{\beta}_1)} \sim t_{n-2} \text{ where } s(\hat{\beta}_1) = s \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}} \text{ and } s = \sqrt{\frac{SSE}{n-2}}$$

- ▶ **CI for  $\beta_1$ :** With  $100(1 - \alpha)\%$  certainty  

$$\beta_1 \in \left[ \hat{\beta}_1 \pm t_{(1-\alpha/2), n-2} s(\hat{\beta}_1) \right]$$
- ▶ **Tests for  $\beta_1$ :**  $H_0 : \beta_1 = 0$  vs  $H_1 : \beta_1 \neq 0$  (*test for the slope*)

test whether  $t = \frac{\hat{\beta}_1}{s(\hat{\beta}_1)} \sim t_{n-2}$  at a certain significance level  $\alpha$

---

<sup>1</sup>In order to build conf. intervals and hypothesis tests for the regression model we need the assumption of normality for the error term.

## More Statistical Inference on the Regression Model

### Distribution of $\hat{\beta}_0$

$$\hat{\beta}_0 \sim \mathcal{N} \left( \beta_0, \sigma \sqrt{\frac{\sum x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}} \right) \Rightarrow \frac{\hat{\beta}_0 - \beta_0}{\sigma \sqrt{\frac{\sum x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}}} \sim \mathcal{N}(0, 1)$$

$$\frac{\hat{\beta}_0 - \beta_0}{s(\hat{\beta}_0)} \sim t_{n-2} \text{ where } s(\hat{\beta}_0) = s \sqrt{\frac{\sum x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}} \text{ and } s = \sqrt{\frac{SSE}{n-2}}$$

- ▶ CI for  $\beta_0$ : With  $100(1 - \alpha)\%$  certainty  

$$\beta_0 \in \left[ \hat{\beta}_0 \pm t_{(1-\alpha/2); n-2} s(\hat{\beta}_0) \right]$$
- ▶ Tests for  $\beta_0$ :  $H_0: \beta_0 = \beta_0^0$  vs  $H_1: \beta_0 \neq \beta_0^0$

test whether  $t = \frac{\hat{\beta}_0 - \beta_0^0}{s(\hat{\beta}_0)} \sim t_{n-2}$  at a certain significance level  $\alpha$

## The Regression Model in Action

Major goal for building regression models is *estimation of mean values of Y* or *prediction of values of Y* when *X* takes a certain value  $x_0$ . The estimation and prediction can be done either with *point estimates* or with *interval estimates*.

Let  $x_0$  be a value for *X* for which we are interested in estimating the mean value of *Y*. Then

- ▶ Point estimate:  $\hat{y}_0 = b_0 + b_1 x_0$
- ▶ Confidence Interval for  $E(Y_0)$ :

$$\hat{y}_0 \pm t_{(1-\alpha/2);n-2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

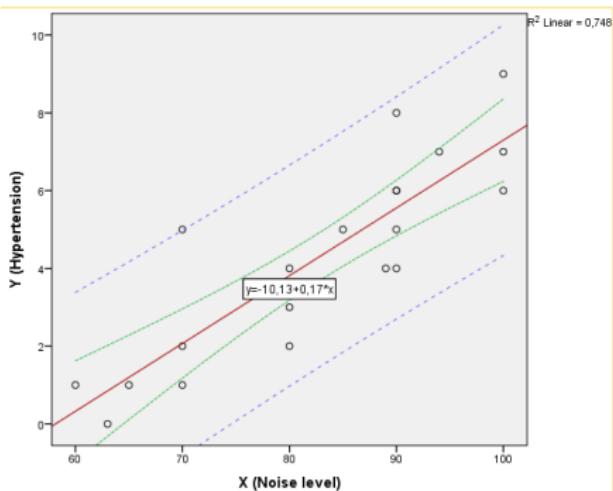
- ▶ Prediction Interval for a new observation of *Y*:

$$\hat{y}_0 \pm t_{(1-\alpha/2);n-2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

## Estimation and Prediction – Example

Suppose we want (1) to estimate the *mean* blood pressure rise (for the whole population) and (2) to predict the blood pressure rise (for any individual) when the noise level is measured at 75, 85, or 95 decibels.

| XNoiselevel | YHypertension | PRE_1   | RES_1 | SEP_1  | LMCI_1  | UMCI_1  | LICI_1  | UICI_1  |
|-------------|---------------|---------|-------|--------|---------|---------|---------|---------|
| 75          | .             | 2.94051 | .     | .34842 | 2.20850 | 3.67251 | .07645  | 5.80457 |
| 85          | .             | 4.68345 | .     | .29933 | 4.05457 | 5.31232 | 1.84399 | 7.52290 |
| --          | --            | --      | --    | .41396 | 5.55669 | 7.29608 | 3.52408 | 9.32869 |



red line: Regression line

green curves: 95% confidence intervals for  $\mu_Y | X = x$

Blue curves: 95% prediction intervals for  $Y$  when  $X = x$

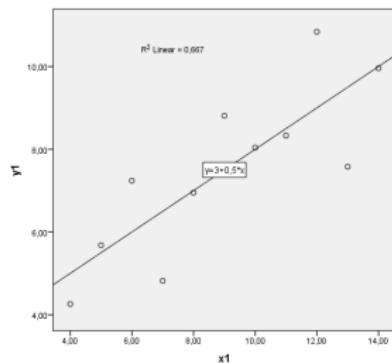
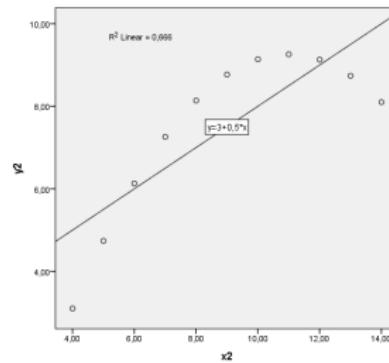
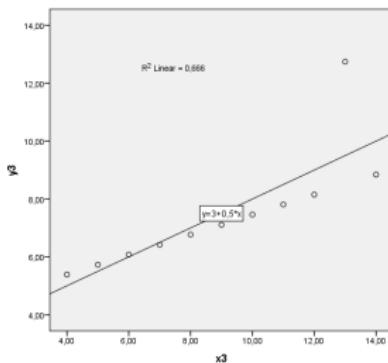
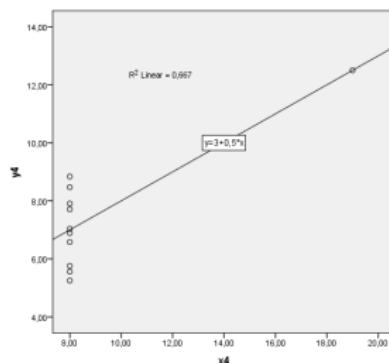
## Visualization in Regression

A celebrated classic example of the role of statistical graphics and residual analysis in statistical modeling was created by Anscombe in 1973<sup>2</sup>. He constructed four quite different data sets  $(x_i, y_i)$ ,  $i = 1, \dots, 11$  that share the same descriptive statistics and linear regression fit  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

| Anscombe's Data    |      |       |      |         |      |       |      |      |
|--------------------|------|-------|------|---------|------|-------|------|------|
| Observation        | x1   | y1    | x2   | y2      | x3   | y3    | x4   | y4   |
| 1                  | 10   | 8.04  | 10   | 9.14    | 10   | 7.46  | 8    | 6.58 |
| 2                  | 8    | 6.95  | 8    | 8.14    | 8    | 6.77  | 8    | 5.76 |
| 3                  | 13   | 7.58  | 13   | 8.74    | 13   | 12.74 | 8    | 7.71 |
| 4                  | 9    | 8.81  | 9    | 8.77    | 9    | 7.11  | 8    | 8.84 |
| 5                  | 11   | 8.33  | 11   | 9.26    | 11   | 7.81  | 8    | 8.47 |
| 6                  | 14   | 9.96  | 14   | 8.1     | 14   | 8.84  | 8    | 7.04 |
| 7                  | 6    | 7.24  | 6    | 6.13    | 6    | 6.08  | 8    | 5.25 |
| 8                  | 4    | 4.26  | 4    | 3.1     | 4    | 5.39  | 19   | 12.5 |
| 9                  | 12   | 10.84 | 12   | 9.13    | 12   | 8.15  | 8    | 5.56 |
| 10                 | 7    | 4.82  | 7    | 7.26    | 7    | 6.42  | 8    | 7.91 |
| 11                 | 5    | 5.68  | 5    | 4.74    | 5    | 5.73  | 8    | 6.89 |
| Summary Statistics |      |       |      |         |      |       |      |      |
| N                  | 11   | 11    | 11   | 11      | 11   | 11    | 11   | 11   |
| mean               | 9.00 | 7.50  | 9.00 | 7.50091 | 9.00 | 7.50  | 9.00 | 7.50 |
| SD                 | 3.16 | 1.94  | 3.16 | 1.94    | 3.16 | 1.94  | 3.16 | 1.94 |
| r                  | 0.82 |       | 0.82 |         | 0.82 |       | 0.82 |      |

<sup>2</sup> Anscombe, F. Graphs in Statistical Analysis. *American Statistician*, 27, 17-21

# Fitting Lines in Anscombe Data



# ANOVA for Anscombe Data

ANOVA<sup>a</sup>

| Model        | Sum of Squares | df | Mean Square | F      | Sig.              |
|--------------|----------------|----|-------------|--------|-------------------|
| 1 Regression | 27,510         | 1  | 27,510      | 17,990 | ,002 <sup>b</sup> |
| Residual     | 13,763         | 9  | 1,529       |        |                   |
| Total        | 41,273         | 10 |             |        |                   |

a. Dependent Variable: y1

b. Predictors: (Constant), x1

ANOVA<sup>a</sup>

| Model        | Sum of Squares | df | Mean Square | F      | Sig.              |
|--------------|----------------|----|-------------|--------|-------------------|
| 1 Regression | 27,500         | 1  | 27,500      | 17,966 | ,002 <sup>b</sup> |
| Residual     | 13,776         | 9  | 1,531       |        |                   |
| Total        | 41,276         | 10 |             |        |                   |

a. Dependent Variable: y2

b. Predictors: (Constant), x2

ANOVA<sup>a</sup>

| Model        | Sum of Squares | df | Mean Square | F      | Sig.              |
|--------------|----------------|----|-------------|--------|-------------------|
| 1 Regression | 27,470         | 1  | 27,470      | 17,972 | ,002 <sup>b</sup> |
| Residual     | 13,756         | 9  | 1,528       |        |                   |
| Total        | 41,226         | 10 |             |        |                   |

a. Dependent Variable: y3

b. Predictors: (Constant), x3

ANOVA<sup>a</sup>

| Model        | Sum of Squares | df | Mean Square | F      | Sig.              |
|--------------|----------------|----|-------------|--------|-------------------|
| 1 Regression | 27,490         | 1  | 27,490      | 18,003 | ,002 <sup>b</sup> |
| Residual     | 13,742         | 9  | 1,527       |        |                   |
| Total        | 41,232         | 10 |             |        |                   |

a. Dependent Variable: y4

b. Predictors: (Constant), x4

► All four datasets give the same regression line and the same ANOVA table. So how can we evaluate the models?

# Residual Plots for Anscombe Data

