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Introduction to Data Analysis

Statistics is a science that deals with designing experiments;
collecting, summarizing, and processing data; but most importantly
making inferences and aiding decisions in the presence of variability
and uncertainty.

Biostatistics refers to the application of statistical tools to data
derived from biological sciences and medicine

I Descriptive statistics

I Inferential statistics

I Experimental design

I Regression modeling and analysis

I Time Series analysis

I Survival analysis
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Introduction to Data Analysis

Data is the raw material for our work

Data can be quantitative (numbers) or qualitative (information)

Sources of Data:

I records (routinely kept)

I surveys (organized by someone)

I experiments (set up to collect measurements)

I external sources (published reports, data banks, research
literature, etc.)
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Introduction to Data Analysis

Variable is a characteristic we are interested in studying

A variable takes different values when observed in different subjects
and we are interested in understanding its variability

Types of Variables:

I Quantitative, when the characteristic can be measured

I Qualitative, when the characteristic categorize the subjects in
different categories. Then we are interested in the frequency
of each category.
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Introduction to Data Analysis

Population is a collection of entities, such as people, animals,
items, events, times, etc. for which we have interest, or a
collection of all existing attribute values of some natural
phenomenon, or the collection of all potential attribute values
when a process is involved.

A population can be finite or infinite

Sample is a subset (a portion) of a population that is selected with
the help of a process that guarantees randomness.

Samples may be obtained through a retrospective study, an
observational study, a survey using some questionnaire, or a
designed study where variables are monitored and controlled to
induce a cause/effect relationship.
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Introduction to Data Analysis

Descriptive Statistics (or Exploratory Data Analysis ) refers to
methodologies for approaching and summarizing experimental data.
It is based solely on sample data and provides tools that calculate
descriptive measures (e.g. sample mean and sample variance) and
others that visualize data (e.g. pie charts, histograms,
stem-and-leaf plots, box-and-whisker plots, scatter plots, etc.)

It is the first step prior to any further statistical analysis and
contributes significantly to the goal of statistics:

INFERENCE ABOUT THE POPULATION
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Introduction to Data Analysis

Statistical Inference refers to procedures by which we infer conclusions
about a population on the basis of information contained in a sample
drawn from that population.

For valid inferences we need scientific sampling techniques and there are
several ways of providing such samples. For example:

I Simple random sample: If all possible samples of size n have the
same chance of being selected. The sampling procedure can be
done with or without replacement.

I Systematic sampling: If the subjects in the sample are collected
from records in a systematic way. It is a common technique for
medical research.

I Stratified random sampling: If the population is grouped in different
groups (called strata) then it may be more useful to take random
samples from each stratum and combine them to a single sample.
In such a case the variability within each stratum should be less
than the variability across strata.
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Introduction to Data Analysis

Data Types: Data can be numerical or categorical

A measurement scale refers to the assignment of numbers to objects or
events according to a set of rules, so different rules give different scales.

1. Nominal scale: Used when objects are categorized to different
categories (e.g. male/female, Asian/Caucasian/Negroid/Australoid)

2. Ordinal scale: Used when objects are categorized to different
categories and categories can be ranked (e.g. child/adult/elderly, no
fever/low fever/high fever/very high fever)

Note: The distance between categories is not necessarily the same

3. Interval scale: Used when the characteristic of interest can be
measured with a scale where distance is well defined (e.g.
temperature, student scores) but the origin has no natural meaning.

4. Ratio scale: Used when zero point has the meaning of no existence
(e.g. height, length, age)
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Introduction to Data Analysis

The scientific method is a process by which scientific information is
collected, analyzed, and reported in order to produce unbiased and
replicable results. When applied then decisions and outcomes are based
on data, therefore it is an empirical approach.

A scientific method comprise four different stages:

1. Making observations: Observation leads to formulation of questions
that need to be answered.

2. Formulating a Hypothesis: A hypothesis is formulated either due to
observations made previously or due to background research and
literature review on the field of interest.

3. Designing an experiment: An experiment is designed to yield the
data necessary to test the hypotheses set previously. The data
should be consistent and reliable. The design of the experiment
depends on the type of data that need to be collected.

4. Conclusion: At the end of any scientific method conclusions should
be drawn regarding the hypotheses that were posed. However, such
a research is never conclusive and often require several replications.
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Notion of Probability

Review of Basic Probability Concepts

Theory of Probability provides the foundation for statistical inference
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Notion of Probability

Definition of Probability
There have been several attempts in defining the notion of probability.

I Subjective definition: based on somebody’s opinion

I Classical definition: P(A) = ν(A)
ν

I Limit of relative frequency: P(A) = limn→∞
n(A)
n

None can satisfy all requirements of a mathematically proper definition.

Basic terminology:
I Random Experiment
I Sample Space (Ω)
I Event
I Mutually Exclusive Events
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Notion of Probability

Notions from Set Theory

We can borrow notions from Set Theory to create new events.

I Union: A ∪ B, when at least one of A or B occurs

I Intersection: A ∩ B, when both A and B occur

I Complement of E : E c , when event E is not realized ( E c ∩ E = ∅ and

with respect to the sample space Ω: E c ∪ E = Ω)

I Difference: A− B or A ∩ Bc , when event A is realized but B is not.

I Symmetric Difference: A⊕ B or (A ∩ Bc) ∪ (Ac ∩ B), when exactly one

of A or B occur.
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Notion of Probability

Axiomatic Definition of Probability

Let Ω be the sample space of an experiment. We call probability a
function defined on the set of all subsets of Ω, the events, and
satisfy three axioms:

I For each event A it is true that P(A) ≥ 0

I P(Ω) = 1

I For each infinite sequence of mutually exclusive events
A1,A2, . . ., it is true that

P(∪∞i=1Ai ) =
∞∑
i=1

P(Ai )
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Notion of Probability

Important Results

1. P(∅) = 0

2. For each finite sequence of mutually exclusive events A1,A2, . . . ,An

P(∪n
i=1Ai ) =

n∑
i=1

P(Ai )

3. For every two subsets A and B where B ⊂ A it is true that

I P(B) ≤ P(A)

I P(A− B) = P(A)− P(B)

4. For each event A: P(A) ≤ 1

5. For each event A: P(Ac) = 1− P(A)

6. (Addition Rule) For any two events A and B:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Notion of Probability

More Important Results

For any n ≥ 2 events E1, E2, . . . , En:

1. (Generalization of Addition Rule)

P(
n⋃

i=1

Ei ) =
n∑

i=1

P(Ei )−
∑
i

∑
j

1≤i<j≤n

P(Ei ∩ Ej )

+
∑
i

∑
j

1≤i<j<k≤n

∑
k

P(Ei ∩ Ej ∩ Ek ) + . . .+ (−1)n−1P(
n⋂

i=1

Ei )

2. (Alternatively)

P(
n⋃

i=1

Ei ) = 1− P(
n⋂

i=1

E c
i )
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Notion of Probability

Odds of an event

Definition

Let A be an event and P(A) the probability of A taking place.
Then the odds of A are:

odds(A) =
P(A)

P(Ac)

Odds are alternative measures of the likelihood of events. Given
the odds of A we can write:

P(A) =
odds(A)

odds(A) + 1
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Conditional Probability

Conditional Probability

Definition

Let A and B be two random events of an experiment with
P(B) > 0. Then the probability of A occurring given that B has
already taken place is called conditional probability of A given B, it
is denoted as P(A|B) and is calculated as:

P(A|B) =
P(A ∩ B)

P(B)

Conditional Odds

Odds(A|B) =
P(A|B)

P(Ac |B)
=

P(A ∩ B)

P(Ac ∩ B)
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Conditional Probability

Product Rule and Independence

Product Rule
I P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

I P(E1 ∩ E2 ∩ . . .Ek) = P(E1)P(E2|E1) . . .P(Ek |E1 ∩ E2 ∩ . . .Ek−1)

Two events A and B, with P(A) > 0 and P(B) > 0, are called
independent iff

P(A ∩ B) = P(A) · P(B)

or equivalently

P(A|B) = P(A) and P(B|A) = P(B)

WATCH OUT:
Independent events is different than mutually exclusive events.
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Conditional Probability

Pairwise and Global Independence

Three events A, B and C with P(A) > 0, P(B) > 0 and
P(C ) > 0, are called pairwise independent iff

P(A ∩ B) = P(A) · P(B), P(A ∩ C ) = P(A) · P(C )

and P(B ∩ C ) = P(B) · P(C )

Note:

I If three events are pairwise independent this does not imply
that they are independent in totality.

I On the contrary three mutually exclusive events implies
exclusiveness in totality.
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Conditional Probability

Total Probability

Theorem

Let event A ⊂ Ω and H1, . . .Hn a sequence of n mutually exclusive
events that cover the sample space, i.e. H1 ∪ H2 ∪ . . .Hn = Ω and
P(Hi ) > 0. Then

P(A) =
n∑

i=1

P(A|Hi ) · P(Hi )

In other words:The rule of total probability expresses the
probability of A as the weighted average of its conditional
probabilities given the Hi ’s, which are mutually exclusive events
that partition Ω.
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Conditional Probability

Bayes Theorem

Theorem

Let event A ⊂ Ω and H1, . . .Hn a sequence of n mutually exclusive
events that cover the sample space. Suppose the conditional
probabilites P(A|Hi ), as well as the (prior) probabilities P(Hi ) are
known ∀i . Then we can write the (posterior) probabilities:

P(Hi |A) =
P(A|Hi )P(Hi )

P(A)
=

P(A|Hi )P(Hi )∑n
i=1 P(A|Hi ) · P(Hi )

Many applications in screening and diagnostic tests.
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Conditional Probability

Example
Suppose that a certain screening test, designed to identify subjects with a
specific disease, is successful 99.5% of the times if the subject carries the
disease. Moreover, let’s assume that the test gives falsely positive result
1% of the times for the subjects that do not carry the disease. If it is
known that only the 0.8% of the population carries the disease, find the
probability that a subject examined by the screening test (a) carries the
disease when the result is positive, and (b) does not carry the disease
when the result is negative.

Define the events:
D: the subject carries the disease, and Dc : the subject doesn’t carry the disease
T+: the test is positive, and T−: the test is negative

Then:
P(T+/D) = .995 and P(T−/Dc) = 1− P(T+/Dc) = .99

(a) P(D/T+) =??

(b) P(Dc/T−) =??
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Sensitivity, Specificity and Prediction Values

Sensitivity and Specificity

Suppose n subjects are randomly selected from a population which is
comprised by diseased (D) and non-diseased (Dc) persons. A diagnostic
test is applied to all subjects in the sample and the result is either
positive (T+) or negative (T−).

Disease (D) No Disease (Dc ) Total

Test Positive TP FP nT+ = TP + FP

Test Negative FN TN nT− = FN + TN

Total nD = TP + FN nDc = FP + TN n = nD + nDc = nT+ + nT−

e.g. Disease: breast cancer, Test: mammogram

Definitions

1. Sensitivity is the ratio of the true positives over the number of the
diseased subjects: Se = TP/(TP + FN) = TP/nD

2. Specificity is the ratio of the true negatives over the number of the
non diseased subjects: Sp = TN/(TN + FP) = TN/nDc
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Sensitivity, Specificity and Prediction Values

More measures in diagnostics
Besides Se and Sp a number of other measures are important and should
be monitored when diagnostic tests are designed. These are:

1. Positives Predictive Value: PPV = TP/(TP + FP) = TP/nT+

Proportion of true positives among all subjects with positive test.

2. Negatives Predictive Value: NPV = TN/(TN + FN) = TN/nT−

Proportion of true negatives among all subjects with negative test.

3. Likelihood Ratio Positive: LRP = Se
1−Sp .

It represents the extent by which a positive test result would
increase the likelihood of the disease

4. Likelihood Ratio Negative: LRN = 1−Se
Sp .

It represents the extent by which a negative test result would
increase the likelihood of no disease or rather would reduce the
likelihood of disease.
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Sensitivity, Specificity and Prediction Values

Example:

In a study about the diagnostic capability of a certain mammogram type
there were 96420 subjects (women above 40 yrs old). Among them 5401
had positive mammogram and 91019 had negative. The women were
further examined for breast cancer using routine screening and other
diagnostic techniques. 655 were actually diagnosed with breast cancer
out of which only 495 had positive mammogram. At the same time 4906
subjects that were not diagnosed with cancer had a positive
mammogram. If we can assume that the sample used in the study was
quite representative of all women above 40 yrs old calculate all relevant
measures to evaluate the diagnostic capability of this mammogram.

Disease (D) No Disease (Dc) Total
Test + 495 4906 5401
Test – 91019
Total 655 96420
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Sensitivity, Specificity and Prediction Values

Prevalence
If the sample in our study is representative of the population then all
previous formulas are working fine and in fact we can see that:

Se = Pr(T+|D), Sp = Pr(T−|Dc), PPV = Pr(D|T+), NPV = Pr(Dc |T−)

and LRP =
Pr(T+|D)

Pr(T+|Dc)
, LRN =

Pr(T−|D)

Pr(T−|Dc)

If the sample is not representative then one needs to know the prevalence.
Prevalence of a disease: probability that a randomly selected person from
the population will have the disease (i.e. prior probability).

The value of prevalence (Pre) influences heavily PPV and NPV , since by
Bayes:

PPV =
Se × Pre

Se × Pre + (1− Sp)× (1− Pre)

and

NPV =
Sp × (1− Pre)

Sp × (1− Pre) + (1− Se)× Pre
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Random Variables

Random Variables

Random Variable is any function X : Ω→ D ⊆ R

(Assigns arithmetic values to the results of a random experiment)

Types of random variables
I Discrete
I Continuous
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Random Variables

Discrete Random Variables

Probability Mass Function (PMF)

Let X be a discrete random variable. The function f (x):

f (x) = P(X = x), ∀x ∈ R

defined on R and values in [0, 1] is called probability mass
function (pmf) of X .

Any function f (x) can be pmf iff:

I f (x) ≥ 0 ∀x ∈ R, and

I
∑

x f (x) = 1
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Random Variables

Continuous Random Variables

Probability Density Function (PDF)

Let X be a continuous random variable. Then its probability
density function f (x) is a function defined on R with values also in
R and for each interval [a, b] ⊂ R we can write:

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx

Any function f (x) can be pdf iff:

I f (x) ≥ 0, ∀x ∈ R, and

I
∫∞
−∞ f (x)dx = 1
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Random Variables

Cumulative Distribution Function (CDF)

Let X be a random variable. Then its cumulative distribution
function F (x) is a function defined on R with values in [0, 1] so
that

F (x) = P(X ≤ x), ∀x ∈ R

Obviously:

I P(a < X ≤ b) = F (b)− F (a)

I P(X > x) = 1− F (x)
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Cumulative Distribution Function

Properties

1. Non-negative and non-decreasing in R
2. Right-continuous: limx→x+

0
F (x) = F (x0) (for discrete r.v.),

Continuous: limx→x0 F (x) = F (x0) (for continuous r.v.)

3. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

4. F (x) =
∑

u≤x f (u) (for discrete r.v.),

F (x) =
∫ x

−∞ f (u)du (for continuous r.v.)

5. f (x) = F (x)− F (x−) (for discrete r.v.),

f (x) = d
dx
F (x) (for continuous r.v.)
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Random Variables

Expected Value

I Let X be a random variable.Then

E (X ) = µX =


∑

x x f (x) if the r.v. X is discrete∫
x x f (x)dx if the r.v. X is continuous

I Let Y = g(X ) a function of the r.v. X . Then

E (Y ) = µY = E (g(X )) =


∑

x g(x)f (x) if X is discrete∫
x g(x)f (x)dx if X is continuous
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Expected Value (cont’d)

Properties

I E (a) = a

I E (X + b) = E (X ) + b

I E [X − µX ] = 0

I E (aX + b) = aE (X ) + b

I If X and Y are r.v. then E (X + Y ) = E (X ) + E (Y )

I If X and Y are independent r.v. then E (XY ) = E (X )E (Y )
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Random Variables

More Centrality Measures

Median Let X be a r.v. and F (x) its cdf

Median of X is called any real number δ for which

F (δ) = P(X ≤ δ) ≥ 1

2
≥ P(X < δ) = F (δ−)

The median of a random variable always exists; this is not true for
the mean.
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Random Variables

More Centrality Measures

Percentiles

Let X be a r.v., F (x) its cdf and let p a number in (0, 1). Then
any real value xp for which

F (x−p ) = P(X < xp) ≤ p ≤ P(X ≤ xp) = F (xp)

is called the p–percentile of X .

I Obviously, when X is continuous then a p–percentile is the
number xp that satisfies the equation F (xp) = p

I The percentile x0.5 is the median of X

I The points x0.25 and x0.75 are known as first and third
quartiles.
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Random Variables

Measures of Variability

Variance

Var(X ) = σ2 = E
(
(X − µ)2

)
=


∑

x(x − µ)2 · f (x) if X is a discrete r.v.∫
x(x − µ)2 · f (x)dx if X is a continuous r.v.

Standard Deviation
σ =
√
σ2

Coefficient of Variation
CV =

σ

µ
or

σ

µ
× 100%

I CV is just a number (unit-less)

I it gives the standard deviation as a fraction of the mean.
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Functions of random variables

Functions of random variables
Let X be a r.v. with known distribution and Y = g(X ) a function
of X , which is also a r.v. We are looking for the distribution of Y .
I If X is discrete then the probability of Y getting the value y

can be found from the probability of X getting all values x for
which g(x) = y .

I Let X be the number we get when a dice is rolled and
Y = X 2. Find the probability mass function of Y .

I Let X ∈ {−2, 0, 2} and f (−2) = 0.2, f (0) = 0.4, f (2) = 0.4.
Find the probability mass function of Y = X 2.

I If X is continuous, finding the distribution of Y = g(X ) is not
as easy.
I One approach is based on finding first the cdf of Y , using the

cdf of X and then, if needed, find the pdf by differentiation.
I If g(x) is monotone and differentiable then we can use the

following theorem.
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Functions of random variables

Change of Variable

Let X be a continuous r.v. with pdf fX (x) and let Y = g(X ) a
function of X. If the function y = g(x) is monotone and
differentiable in the area of all possible values of X , then its reverse
function x = g−1(y) exists and

fY (y) = fX (g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
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Multivariate Random Variables

In many occasions we are interested in studying jointly the
behavior of two or more random variables

Examples

I Suppose we study the cholesterol and sugar level in blood for
a given population.

I Studying air pollution in the center of a city we need to take
into account several variables, like carbon monoxide (CO),
nitrogen oxides (NO, NO2), Ozone (O3), Ammonia (NH3).
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Multivariate Random Variables

Joint Distribution Function
If X1, . . .Xn are random variables then we define the joint cumulative
distribution function as:

F (x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

Properties
I Non negative function ∀(x1, . . . , xn) ∈ Rn

I Non decreasing function for each xi , i = 1, . . . , n
I Right continuous for each xi , i = 1, . . . , n, i.e.

lim
xi→x+

i0

F (x1, . . . , xi+1, xi , xi+1, . . . , xn) = F (x1, . . . , xi+1, xi0, xi+1, . . . , xn)

I F (x1, . . . , xn) satisfies the following properties

I F (x1, . . . , xi−1,−∞, xi+1, . . . , xn) = limxi→−∞, F (x1, . . . , xn) = 0

I F (∞, . . . ,∞) = limx1→∞,...,xn→∞ F (x1, . . . , xn) = 1

I F (∞, . . . ,∞, xi ,∞, . . .∞) =
limx1→∞,...,xi−1→∞,xi+1→∞,...xn→∞ F (x1, . . . , xn) = FXi (xi ) = P(Xi ≤ xi )

(marginal cumulative distribution function of Xi ).
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limx1→∞,...,xi−1→∞,xi+1→∞,...xn→∞ F (x1, . . . , xn) =

FXi (xi ) = P(Xi ≤ xi )
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Multivariate Random Variables

Multivariate Discrete Random Variables

We define the joint probability mass function of r.v. X1,X2, . . . ,Xn
as:

f (x1, x2, . . . , xn) ≡ P(X1 = x1,X2 = x2, . . . ,Xn = xn), ∀(x1, x2, . . . , xn) ∈ Rn

We define as marginal probability mass function of Xi the
probability mass functions of Xi by itself, i.e.

fxi (x) =
∑
x1

∑
x2

. . .
∑
xi−1

∑
xi+1

. . .
∑
xn

f (x1, x2, . . . , xi−1, x , xi+1, . . . , xn) for i = 1, . . . , n
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Multivariate Random Variables

Bivariate Discrete Random Variables
I When the random variables are only two, X and Y , we then define

the Joint probability mass function as:

f (x , y) ≡ P(X = x ,Y = y), ∀(x , y) ∈ R2

I If the joint probability mass function of X ,Y is known, then the
marginal probability mass functions of X and Y , respectively can be
calculated as:

fX (x) ≡ P(X = x) =
∑
y

f (x , y) and fY (y) ≡ P(Y = y) =
∑
x

f (x , y)

I Moreover, the conditional probability mass function of X given that
Y = y can be calculated as:

fX |Y=y (x) =
f (x , y)

fY (y)
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Multivariate Random Variables

Multivariate continuous random variables
The joint probability density function for r.v. X1,X2, . . . ,Xn is a
function defined in Rn for which:

I f (x1, x2, . . . , xn) ≥ 0

I
∫∞
−∞

∫∞
−∞ . . .

∫∞
−∞ f (x1, x2, . . . , xn)dx1dx2 . . . dxn = 1

I For each area E of Rn the probability of observing the random
vector X = (X1,X2, . . . ,Xn) in E can be calculated as:

P(X ∈ E ) =

∫
x∈E

f (x)dx

Marginal probability density function

fxi (x) =

∫
x1

∫
x2

. . .

∫
xi−1

∫
xi+1

. . .

∫
xn

f (x1, x2, . . . , xi−1, x, xi+1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn
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Multivariate Random Variables

Independence of random variables

The r.v. X ,Y are called independent if one of the following
equivalent relations is true.

1. P(X ∈ E1,Y ∈ E2) = P(X ∈ E1)P(Y ∈ E2)

2. f (x , y) = f (x)f (y)

3. F (x , y) = F (x)F (y)

In general,
the r.v. X1,X2, . . . ,Xn are independent iff

f (x1, x2, . . . , xn) = f (x1)f (x2) . . . f (xn)
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Multivariate Random Variables

Expected Value

Expected value of any function of bivariate r.v.

E [h(X ,Y )] =


∑

x

∑
y h(x , y)f (x , y) if (X ,Y ) are discrete∫

x

∫
y
h(x , y)f (x , y)dxdy if (X ,Y ) are continuous

Conditional expected value of X given that Y = y ,

E (X |Y = y) =
∑
x

x · fX (x |y) =
∑
x

x · f (x , y)

fY (y)
if X is discrete

E (X |Y = y) =

∫
x

x · fX (x |y) =

∫
x

x · f (x , y)

fY (y)
if X is continuous
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Multivariate Random Variables

Conditional Variance

Conditional Variance of X given Y = y

Var(X |Y = y) = E (X 2|Y = y)− [E (X |Y = y)]2

where

E (X 2|Y = y) =
∑
x

x2 · fX (x |y) =
∑
x

x2 · f (x , y)

fY (y)
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Multivariate Random Variables

Covariance

Covariance is a parameter that measures the co-variability of two
r.v. X and Y .

Cov(X ,Y ) = E ((X − E (X ))(Y − E (Y )))

= E (XY )−E (X )E (Y )

If X and Y are independent r.v. then

Cov(X ,Y ) = 0

The opposite is not true!
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Multivariate Random Variables

Properties of Variance

I If α, β ∈ R then

Var(αX + β) = α2Var(X )

I If α, β ∈ R and (X ,Y ) a vector of r.v. jointly distributed then

Var(αX ± βY ) = α2Var(X ) + β2Var(Y )± 2αβCov(X ,Y )

I However, if the r.v. X and Y are independent, then

Var(αX ± βY ) = α2Var(X ) + β2Var(Y )
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Multivariate Random Variables

Correlation Coefficient

ρ =
Cov(X ,Y )

σXσY

Correlation coefficient is a parameter that measures the strength of
the linear relation that may exist between two r.v. X and Y

I ρ is a pure number and −1 ≤ ρ ≤ 1

I If ρ = 1 there is perfect positive correlation between X and Y

I If ρ = −1 there is perfect negative correlation between X and
Y

I If ρ = 0 then X and Y are uncorrelated

I If the r.v. X and Y are independent then ρ = 0
The opposite is not true!
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Multivariate Random Variables

Examples of Correlation Coefficient
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Multivariate Random Variables

More Examples of Correlation Coefficient
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Useful Distributions

Binomial Distribution
A r.v. X follows a binomial distribution with parameters n and p if
X counts the number of successes in n independent Bernoulli trials,
i.e. experiments that result to two possible outcomes: success or
failure, with p being the probability of success at each trial.

Probability mass function:

fX (x) = P(X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n

Expected Value and Variance:

E [X ] = np V [X ] = np(1− p)
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Useful Distributions

Binomial Distribution Graphs – n = 50, p =??

pdf: cdf:

Calculation of binomial probabilities becomes tedious when n is
very large.
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Useful Distributions

Poisson Distribution

A r.v. X follows a Poisson distribution with parameter λ if X
counts the number of occurrences of some random event in an
interval of time or space. The pmf of X is then given by:

Probability mass function:

fX (x) = P(X = x) =
e−λλx

x!
for x = 0, 1, 2, . . . ,

Expected Value and Variance:

E [X ] = λ V [X ] = λ
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Useful Distributions

Poisson Distribution Graph – λ =??

pdf:

For small values of λ Poisson distribution is asymmetric, but for
larger values it becomes symmetric.
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Useful Distributions

Poisson vs Binomial

A binomial distribution with large n and small p (practically, if n > 30
and np < 5) can be approximated by a Poisson with λ = np.

Binom(10,0.1) vs Poisson(1)

Binom(50,0.01) vs Poisson(0.5)
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Useful Distributions

Poisson Process
Let N(t) be the number of random events that take place in the
interval (0, t]. Then the set of r.v. {N(t), t > 0} is a Poisson
process with mean rate ν iff:

1. N(0) = 0

2. The number of random events that occur in an interval is
independent of the number of random events that occur in
any other non overlapping interval

3. For any interval (s, s + t) with s ≥ 0 and t ≥ 0, the number
of random events within this interval follows a Poisson
distribution with λ = νt

P [N(s + t)− N(s) = x ] =
e−νt(νt)x

x!
for x = 0, 1, 2, . . . ,
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Useful Distributions

Exponential Distribution

A r.v. X follows an exponential distribution with parameter λ if its
pdf is:

fX (x) =

{
λe−λx for x > 0
0 elsewhere

Expected Value and Variance:

E [X ] =
1

λ
V [X ] =

1

λ2
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Useful Distributions

Exponential Distribution – Memoryless Property

Any exponential r.v. X carries the memoryless property:

P(X > s + t|X > t) = P(X > s)

Proof:

P(X > t + s|X > t) =
P(X > t + s ∩ X > t)

P(X > t)
=

P(X > t + s)

P(X > t)

=
e−λ(t+s)

e−λt
= e−λs = P(X > s)

Out of all continuous distributions only exponential carries the
memoryless property.
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Useful Distributions

Exponential Distribution and Poisson Process

The exponential distribution is connected to a Poisson Process
since the times between sequential events are exponentially
distributed.

Let {N(t), t > 0} be a Poisson process with mean rate ν, then the
r.v. Ti , for i = 1, 2, ..., where Ti is the time between the (i − 1)-th
and i-th events, are independent and exponentially distributed with
parameter ν.

We conclude that in a Poisson Process the # of events in any
interval is distributed according to a Poisson distribution and the
times between sequential events is distributed according to an
exponential distribution.
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Useful Distributions

Normal Distribution

A r.v. X follows a normal distribution with parameter µ and σ if
its pdf is:

fX (x) =
1√
2πσ

e−
1

2σ2 (x−µ)2

for −∞ < x <∞

Expected Value and Variance:

E [X ] = µ V [X ] = σ2
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Useful Distributions

Normal Distribution Graph – µ =??, σ =??

pdf:
I symmetric around its mean µ.

I if µ = 0 and σ2 = 1 it is
called standard normal
distribution

I cdf cannot be written in
closed form

I use of tables for calculating
probabilities
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Useful Distributions

Standard Normal Distribution – Table

Φ(z) = P(Z ≤ z) =
∫ z
−∞

1√
2π

e
− x2

2 dx

66 / 67



Biostatistics- Probability Review -

Useful Distributions

Standardization of Normal Distribution
1. If a r.v. X is normally distributed with parameter µ and σ,

then Z = (X − µ)/σ has the standard normal distribution

2. Using the table for the standard normal distribution we can
calculate any probability for all normal distributions

P(a ≤ X ≤ b) = P

(
a− µ
σ
≤ X − µ

σ
≤ b − µ

σ

)
= P

(
a− µ
σ
≤ Z ≤ b − µ

σ

)
= Φ

(
b − µ
σ

)
− Φ

(
a− µ
σ

)
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