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To My Parent and Eve Limin



Preface

The preparation of this book began nine years ago. As I was at the Univer-
sity of Applied Science Lausitz and planed my sabbatical in 1998, the idea of
preparing a textbook on model-based fault diagnosis technique was born. I
discussed with Prof. P. M. Frank about it and found a remarkable resonance.
He invited me to spend my sabbatical in his institute and to work on the book.
At that time, the model- and observer-based fault diagnosis technique became
attractive and received enhanced attention both in the academic community
and in industry. After the pioneering work in the 80’s, which led to the es-
tablishment of observer and parity space based fault diagnosis framework, the
major topics in the 90’s focused on the advanced unknown input decoupling
technique and robustness issues. Inspired by this trend and based on my Ph.D.
work in Duisburg, I have, during March to September 1999 in Duisburg, pro-
visionally completed the draft on the design of observer and parity relation
based residual generators, the unknown input decoupling technique, fault iso-
lation schemes and on the discussion about the robustness issues. They build
the core of Chapters 5 - 7 and 13 of this book.

Unfortunately, this work was interrupted by my engagement as vice-
president of the University of Applied Science Lausitz 1999 - 2000. Due to
my move to the University of Duisburg in 2001 and the time consuming ac-
tivity as the coordinator of the European research project IFATIS during
2002 - 2005, the break became longer and longer. On the other side, review-
ing the progress in the model-based, in particular, in the observer-based fault
diagnosis technique in the last years, I have to say that this break has also
a unexpected positive side. In the past decade, the development of model-
based fault diagnosis technique was rapid and highly dynamic. Driven by the
industrial demands for high reliability and safety on the one side and fully
developed robust control theory on the other side, extensive and comprehen-
sive research and development activities at universities and in industry have
been dedicated to the model- and observer-based fault diagnosis technique.
Advanced observer-based fault diagnosis schemes and new solutions to the
robustness problems have been published in the leading journals in the field
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of control theory and engineering, new research lines like the integrated de-
sign of control and fault diagnosis systems or the fault tolerant control have
emerged, and successful applications in major industrial sectors have been
reported. Today, model-based fault diagnosis is a part of control engineering
and advanced control theory. A glance at the recent publications in journals
and monographs on this topic reveals that it is one of the most vital research
areas in the control community. Chapters 7 - 11 and 14 cover a wide range of
the recent research topics of the observer-based fault diagnosis technique, in-
cluding residual generator design with enhanced robustness against unknown
inputs and model uncertainties, residual evaluation in the statistical and norm
based frameworks and observer-based fault identification schemes. A further
positive aspect of the break is that the distance to my early work, the activity
in the European project IFATIS and the recent cooperation with the automo-
tive industry enable and motivate me to re-view the underlying ideas of the
observer-based fault diagnosis technique and the associated design schemes
under a different aspect. In this book, critical notes on the application of
observer-based fault diagnosis technique are included and a new design strat-
egy is proposed in Chapter 12. Thanks to the European project IFATIS and
the industrial cooperation, my research group is involved in different bench-
mark studies. They enable me to include five benchmark systems in Chapter
3 and to use them in the subsequent chapters to illustrate the design schemes
and algorithms.

As a response to the increasing demands of industry for control engineers
equipped with basic knowledge of model-based fault diagnosis and fault tol-
erant systems, a course entitled Fault Diagnosis and Fault Tolerant Systems
is offered in the Department of Electrical Engineering and Information Tech-
nology at the University of Duisburg-Essen since 2002. It is a core course for
the students of the master programs Automatic Control as well as Control
and Information Systems. The draft of this book serves as the textbook for
this course. It is also used in the seminar on Advanced Observer-based Fault
Diagnosis Technique for the Ph.D. students in our institute. To help the stu-
dents and the readers to understand the motivation and the original ideas of
applying the advanced control theory to addressing the fault diagnosis prob-
lems, control theoretical preliminaries are integrated into the chapters where
needed. If possible, they are described in the context of model-based fault di-
agnosis. It is remarkable that the main results and methods described in this
book are presented in form of algorithms that enable the students and readers
to check the theoretical results via short programs. Some of these algorithms
are integrated into a MATLAB based FDI-Toolbox being available in our in-
stitute. This book is so structured that it can also be used as a self-study
book for engineers working with automatic control and mechatronic systems.

This book would not be possible without valuable support from many
people. First, I would like to thank my wife and colleague, Eve Limin. It seems
unusual. But, she is the person who influences my thinking at most, at least in
the past two decades in working with fault diagnosis. As a holder of numerous
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patents on the model-based fault diagnosis systems in vehicles, she helps me
to understand the practical side of the model-based fault diagnosis and to
learn the link between the fault diagnosis theory and the engineering world.
A lot of ideas and methods in this book are traced back to her contributions.

I would especially like to thank Prof. Paul M. Frank, my respectful mentor.
He paved me the way to the "fault diagnostic" world and opened me the door
to a wonderful scientific community. I thank him for his influence on my
research and his valuable support in preparing this book.

I appreciate it very much to be able to work with wonderful colleagues
in the different phases of my "fault diagnostic" life. During my Ph.D. study
in Duisburg 1987 - 1992, I found in Jiirgen Wiinnenberg an excellent and
most talented colleague who was full of new ideas and developed the first un-
known input observer scheme for the fault diagnosis purpose. In Senftenberg,
at the University of Applied Science Lausitz, I have been successfully work-
ing with Torsten Jeinsch and Mario Sader in numerous industrial research
projects, with Maiying Zhong on the robustness issues in the model-based
fault diagnosis and with Hao Ye on the time-frequency domain properties of
the observer and parity space based methods. In the past six years in Duis-
burg, I have found in Ping Zhang a valuable co-worker who is equipped with
excellent mathematical and control theoretical skills. She has helped me to
understand and solve some complex problems in dealing with model-based
fault diagnosis. I am indebted to all of them for their great contributions to
this book.

I would like to thank my Ph.D. students for their valuable contribution to
the benchmark study. They are Abdul Qayyum Khan and Yongqgiang Wang
(inverted pendulum), Muhammad Abid and Amol Naik (three-tank-system),
Ibrahim Al-Salami, Jedsada Saijai, Wei Chen and Stefan Schneider (vehicle
lateral dynamic system), Wei Li (DC motor), Alethya Salas and Alejandro Ro-
driguez (electrohydraulic servo-actuator). In addition, I would like to express
my gratitude to Amol Naik for the extensive editorial corrections and Stefan
Schneider for his valuable support in setting up the LATEX environment. I
am also grateful to the technical staffs and secretary for their support.

Finally, I want to give an answer to one question that may arise (a typical
formulation in such a book): Who has motivated me to continue the work on
the book? It is Mrs. Hestermann-Beyerle from Springer-Verlag. On one occa-
sion, she learned my previous work with lecture notes on model-based fault
diagnosis and proposed the idea for this book. Thanks to her encouragement,
I have re-started with this book project in May of this year. Without her
constant support in the past months, it would be difficult for me to complete
this book. I am greatly indebted to her and her colleagues for the valuable
help.

Duisburg,
December 2007 Steven X. Ding
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1

Introduction

Associated with the increasing demands for higher system performance and
product quality on the one side and more cost efficiency on the other side, the
complexity and the automation degree of technical processes are continuously
growing. This development calls for more system safety and reliability. Today,
one of the most critical issues surrounding the design of automatic systems is
the system reliability and dependability.

A traditional way to improve the system reliability and dependability is
to enhance the quality, reliability and robustness of individual system com-
ponents like sensors, actuators, controllers or computers. Even so, a fault-free
system operation cannot be guaranteed. Process monitoring and fault diag-
nosis are hence becoming an ingredient of a modern automatic control system
and often prescribed by authorities.

Originated in the early 70’s, the model-based fault diagnosis technique
has developed remarkably since then. Its efficiency in detecting faults in a
system has been demonstrated by a great number of successful applications in
industrial processes and automatic control systems. Today, model-based fault
diagnosis systems are fully integrated into vehicle control systems, robots,
transport systems, power systems, manufacturing processes, process control
systems, just to mention some of the application sectors.

Although developed for different purposes by means of different techniques,
all model-based fault diagnosis systems are common in the explicit use of a
process model, based on which algorithms are implemented for processing data
that are on-line collected and recorded during the system operation.

The major difference between the model-based fault diagnosis schemes
lies in the form of the adopted process model and particular in the applied
algorithms. There exists an intimate relationship between the model-based
fault diagnosis technique and the modern control theory. Furthermore, due to
the on-line requirements on the implementation of the diagnosis algorithms,
powerful computer systems are usually needed for a successful fault diagnosis.
Thus, besides the technological and economic demands, the rapid development
of the computer technology and the control theory is another main reason why
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the model-based fault diagnosis technique is nowadays accepted as a powerful
tool to solve fault diagnose problems in technical processes.

Among the existing model-based fault diagnosis schemes, the so-called
observer-based technique has received much attention since 90’s. This tech-
nique has been developed in the framework of the well-established advanced
control theory, where powerful tools for designing observers, for efficient and
reliable algorithms for data processing aiming at reconstructing process vari-
ables, are available. The focus of this book is on the observer-based fault
diagnosis technique and the related topics.

1.1 Basic concepts of fault diagnosis technique

The overall concept of fault diagnosis consists in the following three essential
tasks:

o [ault detection: detection of the occurrence of faults in the functional units
of the process, which lead to undesired or intolerable behavior of the whole
system
Fault isolation: localization (classification) of different faults
Fault analysis or identification: determination of the type, magnitude and
cause of the fault.

A fault diagnosis system, depending on its performance, is called FD (for
fault detection) or FDI (for fault detection and isolation) or FDIA (for fault
detection, isolation and analysis) system, whose outputs are correspondingly
alarm signals to indicate the occurrence of the faults or classified alarm sig-
nals to show which fault has occurred or data of defined types providing the
information about the type or magnitude of the occurred fault.

The model-based fault diagnosis technique is a relatively young research
field in the classical engineering domain technical fault diagnosis, its devel-
opment is rapid and currently receiving considerable attention. In order to
explain the essential ideas behind the model-based fault diagnosis technique,
we first give a rough classification of the technical fault diagnosis technique, as
sketched in Fig.1.1, and briefly review some traditional fault diagnosis schemes
and their relationships to the model-based technique.

e Hardware redundancy based fault diagnosis: The core of this scheme, as
shown in Fig.1.2, consists in the reconstruction of the process compo-
nents using the identical (redundant) hardware components. A fault in
the process component is then detected if the output of the process com-
ponent is different from the one of its redundancy. The main advantage
of this scheme is its high reliability and the direct fault isolation. The
use of redundant hardware results in, on the other hand, high costs and
thus the application of this scheme is only restricted to a number of key
components.
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Fig. 1.1 Classification of fault diagnosis methods
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Fig. 1.2 Schematic description of the hardware redundancy scheme

Signal processing based fault diagnosis: On the assumption that certain
process signals carry information about the faults of interest and this infor-
mation is presented in form of symptoms, a fault diagnosis can be achieved
by a suitable signal processing. Typical symptoms are time domain func-
tions like magnitudes, arithmetic or quadratic mean values, limit values,
trends, statistical moments of the amplitude distribution or envelope, or
frequency domain functions like spectral power densities, frequency spec-
tral lines, ceptrum, etc. The signal processing based schemes are mainly
used for those processes in the steady state, and their efficiency for the
detection of faults in dynamic systems, which are of a wide operating
range due to the possible variation of input signals, is considerably lim-
ited. Fig.1.3 illustrates the basic idea of the signal processing schemes.
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process input process output
process >
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Fig. 1.3 Schematic description of the signal processing based scheme

o Plausibility test: As sketched in Fig.1.4, the plausibility test is based on
the check of some simple physical laws under which a process component
works. On the assumption that a fault will lead to the loss of the plausi-
bility, checking the plausibility will then provide us with the information
about the fault. The plausibility test is limited in its efficiency for detecting
faults in a complex process or for isolating faults.

input component / output
subsystem
check of physical Hold: fault-free
laws Not hold: fault

Fig. 1.4 Schematic description of the plausibility test scheme

The intuitive idea of the model-based fault diagnosis technique is to re-
place the hardware redundancy by a process model which is implemented in
the software form on a computer. A process model is a quantitative or a qual-
itative description of the process dynamic and steady behavior, which can be
obtained using the well-established process modelling technique. In this way,
we are able to reconstruct the process behavior on-line, which, associated with
the concept of hardware redundancy, is called software redundancy concept.
Software redundancies are also called analytical redundancies.

Similar to the hardware redundancy schemes, in the framework of the
software redundancy concept the process model will run in parallel to the
process and be driven by the same process inputs. It is reasonable to expect
that the re-constructed process variables delivered by the process model will
well follow the corresponding real process variables in the fault-free operating
states and show an evident derivation by a fault in the process. In order
to receive this information, a comparison of the measured process variables
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(output signals) with their estimates delivered by the process model will then
be made. The difference between the measured process variables and their
estimates is called residual. Roughly speaking, a residual signal carries the
most important message for a successful fault diagnosis:

if residual # 0 then fault, otherwise fault-free.

The procedure of creating the estimates of the process outputs and building
the difference between the process outputs and their estimates is called resid-
ual generation. Correspondingly, the process model and the comparison unit
build the so-called residual generator, as shown in Fig.1.5.

process input process output
»{ process >
e --_I I-------------------------------------'
: : i '
1 . H . .. 1
E process __’6_5%’ res1du?11 dec1s‘10n IR knowledge
i > model H i processing > loglc ! of faults
H
i i H
H ! :
i i !

Model based fault diagnosis system

Fig. 1.5 Schematic description of the model-based fault diagnosis scheme

Residual generation can also be considered as an extended plausibility test,
where the plausibility is understood as the process input-output behavior and
modelled by an input-output process description. As a result, the plausibility
check can be replaced by a comparison of the real process outputs with their
estimates.

Since no technical process can be modelled exactly and there often exist un-
known disturbances, in the residual signal the fault message is corrupted with
model uncertainties and unknown disturbances. Moreover, fault isolation and
identification require an additional analysis of the generated residual to distin-
guish the effects of different faults. A central problem with the application of
model-based fault diagnosis technique can be expressed as filtering/extracting
the needed information about the faults of interests from the residual signals.
To this end, two different strategies have been developed:

e designing the residual generator to achieve a decoupling of the fault of
interests from the other faults, unknown disturbances and model uncer-
tainties
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e extracting the information about the fault of interests from the residual
signals by means of post-processing of the residuals. This procedure is
called residual evaluation.

The first strategy has been intensively followed by many of the research
groups working on model-based fault diagnosis technique. One of the central
schemes in this area is the so-called observer-based fault diagnosis technique,
which is also the focus of this book. The basic idea behind the development of
the observer-based fault diagnosis technique is to replace the process model
by an observer which will deliver reliable estimates of the process outputs as
well as to provide the designer with the needed design freedom to achieve the
desired decoupling using the well-established observer theory.

In the framework of residual evaluation, the application of the signal
processing schemes is the state of the art. Among a number of evaluation
schemes, the statistical methods and the so-called norm based evaluation are
the most popular ones which are often applied to achieve optimal post-
processing of the residual generated by an observer. These two evaluation
schemes are common in that both of them create a bound, the so-called thresh-
old, regarding to all possible model uncertainties, unknown inputs and the
faults of no interests. Exceeding the threshold indicates a fault in the process
and will release an alarm signal.

Integrated application of the both strategies, as shown in Fig.1.3 as well
as in Fig.1.5, marks the state of the art of the model and observer-based fault
diagnosis technique.

1.2 Historical development and some relevant issues

The study on model-based fault diagnosis began in the early 1970s. Strongly
stimulated by the newly established observer theory at that time, the first
model-based fault detection method, the so-called failure detection filter, was
proposed by Beard and Jones. Since then, the model-based FDI theory and
technique went through a dynamic and rapid development and is currently
becoming an important field of automatic control theory and engineering.
As shown in Fig.1.6, in the first twenty years, it was the control community
that made the decisive contribution to the model-based FDI theory, while
in the last decade, the trends in the FDI theory are marked by enhanced
contributions from

e the computer science community with knowledge and qualitative based
methods as well as the computational intelligent techniques

e the applications, mainly driven by the urgent demands for highly reliable
and safe control systems in the automotive industry, in the aerospace area,
in robotics as well as in large scale, networked and distributed plants and
processes.
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Fig. 1.6 Sketch of the historic development of model-based FDI theory

In the first decade of the short history of the model-based FDI tech-
nique, various methods were developed. During that time the framework of
the model-based FDI technique had been established step by step. In his
celebrated survey paper in Automatica 1990, Frank summarized the major
results achieved in the first fifteen years of the model-based FDI technique,
clearly sketched its framework and classified the studies on model-based fault
diagnosis into

e observer-based methods
e parity space methods and
e parameter identification based methods.

In the early 90’s, great efforts have been made to establish relationships
between the observer and parity relation based methods. Several authors from
different research groups, in parallel and from different aspects, proven that
the parity space methods lead to certain types of observer structures and
are therefore structurally equivalent to the observer-based ones, even though
the design procedures differ. From this viewpoint, it is reasonable to include
the parity space methodology in the framework of the observer-based FDI
technique. The interconnections between the observer and parity space based
FDI residual generators and their useful application to the FDI system design
and implementation build one of the central topics of this book. It is worth to
point out that both observer-based and parity space methods only deal with
residual generation problems.

In the framework of the parameter identification based methods, fault de-
cision is performed by an on-line parameter estimation, as sketched in Fig.1.7.
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In the 90’s, there was an intensive discussion on the relationships between the
observer and parameter estimation FDI schemes. Comparisons between these
two schemes have been made on different benchmarks. These efforts lead to
a now widely accepted point of view that both schemes have advantages and
disadvantages in different respects, and there are arguments for and against
each scheme.

process input rocess output
»  process P Ll
process
parameter parameteL pOSt' knowledge
' eStimatOr estimates’ processing > of the fault

Fig. 1.7 Schematic description of the parameter identification scheme

It is interesting to notice that the discussion at that time was based on
the comparison between an observer as residual generator and an parameter
estimator. In fact, from the viewpoint of the FDI system structure, observer
and parameter estimation FDI schemes are more or less common in resid-
ual generation but significantly different in residual evaluation. The residual
evaluation integrated into the observer-based FDI system is performed by a
feedforward computation of the residual signals, as shown in Fig.1.5, while a
recursive algorithm is used in the parameter estimation methods to process
the residual signals aiming at a parameter identification and the resulted pa-
rameter estimates are further fed back to the residual generator, as illustrated
in Fig.1.8. Viewing from this aspect, the parameter identification based fault
diagnosis system is structured in a feedback closed-loop, and in against the
observer-based FD system is open-loop structured.

rocess input rocess output
d % process P i
y.
. parameter
» residual residual par'ameter estimates, | pOSt-. knowledge
»| generator estimator | processing Pof the fault

Fig. 1.8 An alternative view of the parameter identification scheme

The application of the well-developed adaptive observer theory to the fault
detection and identification in the recent decade is the result of a reasonable
combination of the observer-based and parameter identification FDI schemes.



1.3 Notes and references 11

The major difference between the adaptive observer-based and parameter
identification FDI schemes lies in the residual generation. In other words, the
adaptive observer-based FDI schemes differ from the regular observer-based
ones in the way of residual evaluation.

In this book, our focus in on the residual generation and evaluation issues
in the framework of the observer and parity space based strategies. Besides of
the introduction of basic ideas, special attention will be paid to those schemes
and algorithms which are devoted to the analysis, design and synthesis of FDI
systems.

1.3 Notes and references

To author’s knowledge, the first book on the model-based fault diagnosis tech-
nique with a strong focus on the observer and parity space based FDI schemes
was published 1989 by Patton et al. [116]. For a long time, it was the only
reference book in this area and has made a decisive contribution to the early
development of the model-based FDI technique.

The next two monographs, published by Gertler in 1998 [64] and by Chen
and Patton in 1999 [21], address different issues of the model-based FDI tech-
nique. While [64] covers a wide spectrum of the model-based FDI technique,
[21] is dedicated to the robustness issues in dealing with the observer-based
FDI schemes. There are numerous books that deal with model-based FDI
methods in part, for instance [10, 13, 69] or address a special topic in the
framework of the model-based fault diagnosis technique like [100, 133]. In two
recent books by Patton et al. [117] and Isermann [81], the latest results on
model-based FDI technique achieved in the last decade are well presented.

In the last three decades, numerous survey papers have been published.
We divide them into three groups, corresponding to the different development
phases of the model-based FDI technique, and give some representative ones
from each group:

e introduction and establishment of the observer, parity space and parameter
identification based FDI schemes [50, 67, 79, 146]
robustness issues [51, 52, 55, 114]
nonlinear, adaptive FDI schemes, application of computational intelligence
[53, 90, 140].

Representative study on the relationships between the observer and parity
relation based methods can be found, for instance, in [28, 62, 74]. For the com-
parison study on parameter identification and observer-based FDI schemes the
reader is referred to [1, 26, 63].
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Basic ideas, major issues and tools in the
observer-based FDI framework

In this chapter, we shall review the historical development of the observer-
based FDI technique, the major issues and tools in its framework and roughly
highlight the topics addressed in this book.

2.1 On the observer-based residual generator framework

The core of the model-based fault diagnosis scheme shown in Fig.1.5 is a
process model running parallel to the process. Today, it would be quite natural
for anyone equipped with knowledge of the advanced control theory to replace
the process model by an observer, in order to, for instance, increase the ro-
bustness against the model uncertainties, disturbances and deliver an optimal
estimate of the process output. But, thirty years ago, the first observer-based
FDI system proposed by Beard and Jones marked a historical milestone in
the development of the model-based fault diagnosis. The importance of their
contribution lies not only in the application of observer theory, a hot research
topic at that time in the area of the advanced control theory, to the residual
generation, but also in the fact that their work built the fundament for the
observer-based FDI framework and opened FDI community the door to the
advanced control theory. Since that time, progress of the observer-based FDI
technique is closely coupled with the development of the advanced control
theory. Nowadays, the observer-based FDI technique is an active field in the
area of control theory and engineering.

Due to the close relation to the observer study, the major topics for the
observer-based residual generator design are quite similar to those concerning
the observer design, including

e observer/residual generator design approaches
e reduced order observer/residual generator design and
e minimum order observer/residual generator design.
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The major tools for the study of these topics are the linear system theory
and linear observer theory. A special research focus is on the solution of the
so-called Luenberger equations.

In this book, Chapter 5 will address those topics.

It is well-known that system observability is an important prerequisite
for the design of a state observer. In the early development stage of the
observer-based FDI technique, system observability was considered as a nec-
essary structural condition for the observer construction. It has often been
overlooked that diagnostic observers (i.e. observers for the residual generation
or diagnostic purpose) are different from the well-known state observers and
therefore deserve particular treatment. The wide use of the state observers for
the diagnostic purpose misled some researchers to the erroneous opinion that
for the application of the observer-based FDI schemes the state observability
and knowledge of the state space theory would be indispensable. In fact, one
of the essential differences between the state observer and diagnostic observer
is that the latter is primarily an output observer rather than a state observer
often used for control purposes.

Another misunderstanding of the observer-based FDI schemes is concern-
ing the role of the observer. Often, the observer-based FDI system design is
understood as the observer design and the FDI system performance is evalu-
ated by the observer performance. It leads to an over-weighted research focus
on the observer-based residual generation and less interests in studying the
residual evaluation problems. In fact, the most important role of the observer
in an FDI system is to make the generated residual signals independent of the
process input signals and process initial conditions. The additional degree of
design freedom can then be used, for instance, for the purpose of increasing
system robustness.

2.2 Unknown input decoupling and fault isolation issues

Several years after the first observer-based FDI schemes have been proposed,
it was recognized that such FDI schemes can only work satisfactorily if the
model used describes the process perfectly. Motivated by it and coupled with
the development of the unknown input decoupling control methods in the
80’s, study on the observer-based generation of the residuals decoupled from
unknown inputs received strong attention in the second half of the 80’s. The
idea behind the unknown input decoupling strategy is simple and clear: if the
generated residual signals are independent of not only the inputs and initial
conditions but also the unknown inputs, then they can be directly used as a
fault indicator. Using the unknown input observer technique, which was still
in its developing phase at that time, Wiinnenberg and Frank proposed the
first unknown input residual generation scheme 1987. inspired and driven by
this promising work, unknown input decoupling residual generation became
one of the mostly addressed topics in the observer-based FDI framework in a
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very short time. Since then, a great number of methods have been developed.
Even today, this topic is still receiving considerable research attention. An im-
portant aspect of the study on unknown input decoupling is that it stimulated
the study on the robustness issues in the model-based FDI.

During the study on the unknown input decoupling FDI, it was recognized
that the fault isolation problem can also be formulated as a number of un-
known input decoupling problems. For this purpose, faults are, in different
combinations, clustered into the faults of interests and faults of no interests
which are then handled as unknown inputs. If it is possible to design a bank
of residual generators that solves unknown input decoupling FDI for each
possible combination, a fault isolation is then achieved.

Due to its duality to the unknown input decoupling FDI in an extended
sense, the decoupling technique developed in the advanced linear control the-
ory in the 80’s offers one major tool for the FDI study. In this framework,
there are numerous approaches, e.g. the eigenvalue and eigenstructure assign-
ment scheme, matrix pencil method, geometric method, just to mention some
of them.

In this book, Chapter 6 is dedicated to the unknown input decoupling
issues, while Chapter 13 to the fault isolation study.

Already at this early stage, we would like to call reader’s attention to
the difference between the unknown input observer scheme and the unknown
input residual generation scheme. As mentioned in the last section, the core
of an observer-based residual generator is an output observer whose existence
conditions are different (less strict) from the ones for a (state) unknown input
observer.

We would also like to give a critical comment on the original idea of the
unknown input decoupling scheme. FDI problems deal, in their core, with a
trade-off between the robustness against unknown inputs and the fault de-
tectability. The unknown input decoupling scheme only focuses on the un-
known inputs without explicitly considering the faults. As a result, the un-
known input decoupling is generally achieved at the cost of the fault de-
tectability. In Chapters 7 and 12, we shall discuss this problem and propose an
alternative way of applying the unknown input decoupling solutions to achieve
an optimal trade-off between the robustness and detectability.

2.3 Robustness issues in the observer-based FDI
framework

From today’s viewpoint, application of the robust control theory to the
observer-based FDI should be a logical step following the study on the un-
known input decoupling FDI. Historical development shows however a some-
what different picture. The first work on the robustness issues was done in
the parity space framework. In their pioneering work, Chow and Willsky as
well as Lou et al. proposed a performance index for the optimal design of
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parity vectors if a perfect unknown input decoupling is not achievable due
to the strict existence conditions. A couple of years later, in 1989 and 1991,
Ding and Frank proposed the application of the Ho and H., optimization
technique, a central research topic in the area of control theory between the
80’s and early 90’s, to the observer-based FDI system design. Preceding to
this work, a parametrization of (all) linear time invariant residual genera-
tors was achieved by Ding and Frank 1990, which builds, analogous to the
well-known Youla-parametrization of all stabilization controllers, the basis of
further study in the Ho, framework. Having recognized that the Ho, norm
is not a suitable expression for the fault sensitivity, Ding and Frank in 1993
and Hou and Patton in 1996 proposed to use the minimum singular value of
a transfer matrix to describe the fault sensitivity and gave the first solutions
in the Ho framework. Study on this topic builds one of the mainstreams in
the robust FDI framework.

Also in the H, framework, transforming the robust FDI problems into the
so-called Model-Matching-Problem (MMP), a standard problem formulation
in the Hy framework, provides an alternative FDI system design scheme.
This work has been particularly driven by the so-called integrated design of
feedback controller and (observer-based) FDI system, and the achieved results
have also been applied for the purpose of fault identification, as described in
Chapter 14.

Stimulated by the recent research efforts on robust control of uncertain
systems, study on the FDI in uncertain systems is receiving increasing atten-
tion in this decade. Remarkable progress in this study can be observed, since
the so-called LMI (linear matrix inequality) technique is becoming more and
more popular in the FDI community.

For the study on the robustness issues in the observer-based FDI frame-
work, H technique, including the so-called factorization technique, MMP
solutions, and the LMI techniques are the most important tools.

In this book, Chapters 7 and 8 are devoted to those topics.

Although the above-mentioned studies lead generally to an optimal de-
sign of a residual generator under a cost function that expresses a trade-off
between the robustness against unknown inputs and the fault detectability,
the optimization is achieved regarding to some norm of the residual genera-
tor. In this design procedure, well known in the optimal design of feedback
controllers, neither the residual evaluation nor the threshold computations are
taken into account. As a result, the FDI performance of the overall system, i.e.
the residual generator, evaluator and threshold, might be poor. This problem,
which makes the FDI system design different from the controller design, will
be addressed in Chapter 12.
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2.4 On the parity space FDI framework

Although they are based on the state space representation of dynamic systems,
the parity space FDI schemes are significantly different from the observer-
based FDI methods in

e the mathematical description of the FDI system dynamics,
e and associated with it, also in the solution tools.

In the parity space FDI framework, residual generation, the dynamics
of the residual signals regarding to the faults and unknown inputs are pre-
sented in form of algebraic equations. Hence, most of the problem solutions
are achieved in the framework of linear algebra. This not only brings with the
advantages that (a) the FDI system designer is not required to have rich knowl-
edge of the advanced control theory for the application of the parity space FDI
methods (b) the most computations can be completed without complex and
involved mathematical algorithms, but also provides the researchers with a
valuable platform, at which new FDI ideas can be easily realized and tested.
In fact, a great number of FDI methods and ideas have been first presented in
the parity space framework and later extended to the observer-based frame-
work. The performance index based robust design of residual generators is a
representative example.

Motivated by these facts, we devote throughout this book much attention
to the parity space FDI framework. The associated methods will be presented
either parallel to or combined with the observer-based FDI methods. Com-
prehensive comparison studies build also a focus.

2.5 Residual evaluation and threshold computation

Despite of the fact that an FDI system consists of a residual generator, a
residual evaluator together with a threshold and a decision maker, in the
observer-based FDI framework, studies on the residual evaluation and thresh-
old computation have only been occasionally published. There exist two major
residual evaluation strategies. The statistic testing is one of them, which is
well established in the framework of statistical methods Another one is the
so-called norm based residual evaluation. Besides of less on-line calculation,
the norm based residual evaluation allows a systematic threshold computation
using well-established robust control theory.

The concept of norm based residual evaluation was initiated by Emami-
naeini et al. in a very early development stage of the model-based fault di-
agnosis technique. In their pioneering work, Emami-naeini et al. proposed to
use the root-mean-square (RMS) norm for the residual evaluation purpose
and derived, based on the residual evaluation function, an adaptive threshold,
also called threshold selector. This scheme has been applied to detect faults in
dynamic systems with disturbances and model uncertainties. Encouraged by
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this promising idea, researchers have applied this concept to deal with residual
evaluation problems in the H., framework, where the £o norm is adopted as
the residual evaluation function.

The original idea behind the residual evaluation is to create such a (phys-
ical) feature of the residual signal that allows a reliable detection of the fault.
The L5 norm measures the energy level of a signal and can be used for the
evaluation purpose. In practice, also other kinds of features are used for the
same purpose, for instance the absolute value in the so-called limit monitoring
scheme. In our study, we shall also consider various kinds of residual evalu-
ation functions, besides of the L5 norm, and establish valuable relationships
between those schemes widely used in practice, like limit monitoring, trends
analysis etc.

The mathematical tools for the statistic testing and norm based evaluation
are different. The former is mainly based on the application of statistical
methods, while for the latter the functional analysis and robust control theory
are the mostly used tools.

In this book, we shall in Chapters 9 and 10 address both the statistic test-
ing and norm based residual evaluation and threshold computation methods.
In addition, a combination of these two methods will be presented in Chapter
11.

2.6 FDI system synthesis and design

In applications, an optimal trade-off between the false alarm rate (FAR) and
fault detection rate (FDR), instead of the one between the robustness and
sensitivity, is of primary interest in designing an FDI system. FAR and FDR
are two concepts that are originally defined in the statistic context. In their
work in 2000, Ding et al. have extended these two concepts to characterize the
FDI performance of an observer-based FDI system in the context of a norm
based residual evaluation.

In Chapter 12, we shall revise the FDI problems from the viewpoint of the
trade-off between FAR and FDR. In this context, the FDI performance of the
major residual generation methods presented in Chapters 6-8 will be checked.
We shall concentrate ourselves on two design problems: (a) given an allowable
FAR, find an FDI system so that FDR is maximized (b) given an FDR, find
an FDI system to achieve the minimum FAR.

2.7 Notes and references
As mentioned above, linear algebra and matrix theory, linear system theory,

robust control theory, statistical methods and currently the LMI technique
build the major tools for our study throughout this book. Among the great
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number of available books on these topics, we would like to mention the fol-
lowing representative ones:

e matrix theory: [58]

e linear system theory: [19, 87|

e robust control theory: [49, 160]
e LMI technique: [14]

e statistical methods: [10, 93].

Below are the references for the pioneering works mentioned in this chap-
ter:

e the pioneering contributions by Beard and Jones that initiated the observer-
based FDI study [11, 86]

e the first work of designing unknown input residual generator by Wiinnen-
berg and Frank [149]

e the first contributions to the robustness issues in the parity space frame-
work by Chow and Willsky, Lou et al., [23, 98], and in the observer-based
FDI framework by Ding and Frank [37, 39, 43] as well as Hou and Patton
[75]
the norm based residual evaluation initiated by Emami-naeini et al. [48]
the FDI system synthesis and design in the norm based residual evaluation
framework by Ding et al. [31].
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Modelling of technical systems

The objective of this chapter is to model a class of dynamic systems, which
consist of a process, also known as plant, actuators and sensors for the control
and supervision purposes, and may be, during their operation, disturbed, as
schematically sketched in Fig. 3.1. Our major objective of addressing mod-
elling issues is to describe nominal and faulty system behavior.

. measurement
disturbances ———— noises
process
(plant) sensors
actuators >_) > output

input——»

3% faults % faults 3% faults

Fig. 3.1 Schematic description of the systems under consideration

We shall first give a brief review of mathematical models for linear dynamic
systems, including

input-output description
state space representation
different forms of models with disturbances and model uncertainties as
well as
e models that describe influences of faults.

These model forms are essential for the subsequent studies in the latter
chapters.

Coprime factorization is a technique that bridges the system modelling and
system analysis, synthesis in the advanced control theory. As one of the key
tools for our study, coprime factorization will be frequently used throughout
this book. This motivates us to address this topic in a separate section.

We shall moreover deal with modelling of faults in a closed loop feed-
back control system, which is of a special interest for practical applications.
A further focus of this chapter is on the introduction of five technical and
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laboratory processes that will not only be used to illustrate the application
of those model forms for the FDI purpose but also serve as benchmarks used
throughout this book.

3.1 Description of nominal system behavior

Depending on the process dynamics and modelling aims, different system
model types can be used for the purpose of process description, among them
the linear time invariant (LTI) system is the simplest and mostly used. In this
book, we call disturbance-free and fault-free systems nominal and suppose
that the nominal systems are LTI.

There are two standard mathematical representations for LTT systems: the
transfer matrix and the state space description. Below, they will be briefly
introduced.

Roughly speaking, a transfer matrix is an input-output description of the
dynamic behavior of an LTI system in the frequency domain. Throughout
this book, notation G, (p) € LH™*** will be used for presenting the transfer
matrix from input vector u € R** to output vector y € R™, i.e.

y(p) = Gyu(p)u(p). (3.1)

It is assumed that Gy, (p) is a proper real-rational matrix. We use p to denote
either the complex variable s of Laplace transform for continuous time signals
or the complex variable z of z-transform for discrete time signals.

Remark 3.1 The results presented in this book generally hold for both contin-
wous and discrete time systems except that the type of the system is specified.
In that case, time variable t and complex variable s will be used for continu-
ous time signal and systems, while time variable k and complex variable z for
discrete time signals and systems.

The standard form of the state description of a continuous time LTI system
is given by

K-
—~
~+
~—
Il

Az(t) + Bu(t), z(0) = xo (3.2)
y(t) = Cz(t) + Du(t) (3.3)

while for a discrete time LTT system we used

z(k+1) = Az(k) + Bu(k),z(0) = o (3.4)
y(k) = Cx(k) + Du(k) (3.5)
where z € R" is called the state vector, xy the initial condition of the system,

u € R the input vector and y € R™ the output vector. Matrices A, B, C, D
are appropriately dimensioned real constant matrices.



3.2 Coprime factorization technique 23

Remark 3.2 Considering that our subsequent study in the latter chapters will
be carried out in the framework of linear system theory and thus be generally
independent of the signal type, we shall use continuous time model to present
the state space descriptions except that the signal type is specified. Also, for the
sake of simplicity we shall drop out variable t so far no confusion is caused.

State space model (3.2)-(3.3) can be either directly achieved by modelling
or derived based on transfer matrix Gy, (p). The latter is called a state space
realization of Gy, (p) = C(sI — A)™'B + D and denoted by

(3.6)

Gyulp) = (A, B,C, D) ot Gyu(p) = [A B } .

CD

In general, we assume that (A4, B, C, D) is a minimal realization of G, (p).

3.2 Coprime factorization technique

Coprime factorization of a transfer matrix gives a further system represen-
tation form which will be intensively used in our subsequent study. Roughly
speaking, coprime factorization over RH ., is to factorize a transfer matrix
into two stable and coprime transfer matrices.

Definition 3.1 Two transfer matrices M(p), N(p) in RHoo are called left
coprime over RHoo if there exist two transfer matrices X (p) and Y (p) in
RHoso such that R
(o) R X (p)]

M(p) N - =1 3.7

(1) X)) |50 7
Similarly, two transfer matrices M (p), N(p) in RHeo are right coprime over
RHoo if there exist two matrices Y (p), X (p) such that

X0 vo)] [ N2 | =1 (:5)

Let G(p) be a proper real-rational transfer matrix. The so-called left co-
prime factorization (LCF) of G(p) is a factorization of G(p) into two stable and
coprime matrices which will play a key role in designing residual generators.
To complete the notation, we also introduce the right coprime factorization
(RCF), which is however only occasionally applied in our study.

Definition 3.2 G(p) = M~ (p)N(p) with the left coprime pair (M(p), N(p))

over RHoo is called LCF of G(p). Similarly, RCF of G(p) is defined by
G(p) = N(p)M~L(p) with the right coprime pair (M (p), N(p)) over RHso.
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It follows from (3.7) and (3.8) that transfer matrices

) 5] | |

are respectively right and left invertible in RH o
Below, we present a lemma that provides us with a state space com-

putation algorithm of (]\Z(p)7 N(p)) ,(M(p), N(p)) and the associated pairs
(X(0), 7 () and (X(p),Y ().

Lemma 3.1 Suppose G(p) is a proper real-rational transfer matriz with state
space realization (A, B,C, D), and it is stabilizable and detectable. Let F and
L be so that A+ BF and A — LC are both stable, and define

M(p) = (A— LC,—L,C,I),N(p)=(A— LC,B—LD,C,D)  (3.9)
M(p) = (A+ BF,B,F,I),N(p) = (A+ BF,B,C + DF,D)  (3.10)
X(p) = (A+BF L,C+ DF,I),Y(p) = (A+ BF,—L,F,0)  (3.11)
X(p) = (A—LC,—(B—LD),F,I),Y(p) = (A— LC,—L, F,0).(3.12)

Then
G(p) = M~ (p)N(p) = N(p) M~ (p) (3.13)

are the LCF and RCF of G(p), respectively. Moreover, the so-called Bezout
identity given below is satisfied

Al EIR T R

~N(p) M(p)
In the textbooks on robust control theory, the reader can find the feedback
control interpretation of the RCF. For our purpose, we would like to give an
observer interpretation of the LCF and the associated computation algorithm

for (M (p), N (p))
Introduce a state observer

=At+Bu+L(y—9),5=C&+ Du

with an observer gain L that ensures the observer stability. Consider output
estimation error 7 = y — y. It turns out

y(p) — (p) = (C (b = A)" B+ D) u(p)-
C (pI = A~ (L (y(p) — §(p)) + Bu(p)) — Du(p) <
(1+C =7 L) o) = 30) = 0 y(») — 3(p) = 0.

On the other side,
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y(p) = i(p) = (1= C(pI = A+ LC) " L) y(p)
- (C (pl — A+ LO) " (B - LD) + D) u(p).

It becomes evident that

M(p)y(p) = N(p)u(p) = 0 <= y(p) =M " (p)N(p)u(p)
< G(p) = M~ (p)N(p).

In fact, the output estimation error is the so-called residual signal.

3.3 Representations of disturbed systems

In practice, environmental disturbances, unexpected changes within the tech-
nical process under observation as well as measurement and process noises are
often modelled as unknown input vectors. We denote them by d, v or n and
integrate them into input-output model (3.1) or state space model (3.2)-(3.3)
as follows

e input-output model

y(p) = Gyu(p)u(p) + Gya(p)d(p) + Gy (p)v(p) (3.15)

where Gyq(p) is known and called disturbance transfer matrix, d € R*
represents a deterministic unknown input vector, v € RF a steady sto-
chastic process which is assumed to be, if no additional remark is made, a
white, normal distributed noise vector with zero mean and variance matrix
XY, =diag(oy,, - ,04, ). We use the notation v € N'(0,%,).

e state space representation

&= Ax+ Bu+ Eqd+n,y=Cx+ Du+ Fyd+v (3.16)

with Ey, Fy being constant matrices of compatible dimensions, d € RF¢ is
again a deterministic unknown input vector, n € N'(0, 2,),v € N (0, 2,).

3.4 Representations of system models with model
uncertainties

Model uncertainties refer to the difference between the system model and the
reality. It can be caused, for instance, by changes within the process or in
the environment around the process. Representing model uncertainties is a
research topic that is receiving more and more attention. In this book, we
restrict ourselves to the following standard representations.

Consider an extension of system model (3.1) given by
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y(p) = Gayu(p)u(p) + Gaya(p)d(p) (3.17)

where the subscript A indicates model uncertainties. The model uncertainties
can be represented either by an additive perturbation

G a,yu(p) = Gyu(p) + Wi(p) AWa(p) (3.18)

or in the multiplicative form

Gayu(p) = (I + Wi(p)AWa(p)) Gyu(p) (3.19)

where Wi (p), Wa(p) are some known transfer matrices and A is unknown and
bounded by & (A) < 64, where & (-) denotes the maximum singular value of
a matrix.

Among a number of expressions for model uncertainties in the state space
representations, we consider an extended form of (3.2)-(3.3) given by

i = Az + Bu+ Eyd,y = Cx + Du+ Fyd (3.20)
A=A+ AAB=B+ AB,C=C + AC (3.21)
D:D+AD,Ed:Ed+AE,Fd:Fd+AF (3.22)

where the model uncertainties AA, AB, AC, AD, AE and AF belong to one
of the the following three types:

e norm bounded type

{AA AB AE} _ [E

AC AD AF F] At) (G H T (3.23)

where E, F,G,H,J are known matrices of appropriate dimensions and
A(t) is unknown but bounded by
g(A)<da

It is worth mentioning that (3.20)-(3.22) with norm bounded uncertainty
(3.23) can also be written as
&= Ax+ Bu+ FEqd+ Ep,y = Cx + Du+ Fgd+ Fp (3.24)
¢=Gz+Hu+Jd+Kp,p=AqA=(I+AK)""A (3.25)

on the assumption that (I + AK) is invertible.
e polytopic type

AA AB AE] _ A1 By E, Ay By E,
{ACADAF]_CO{{ClDlFJ""’[OZDIFI]} (8:26)

where A;, B;,C;, D;, E; F;,i =1,--- |1, are known matrices of appropriate
dimensions and Co {-} denotes a convex set defined by
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A1 By By A; B E

CO{{ClDlFI}""’{C’IDle]} (3.27)

! l

A; B; E; )
B Zlﬂi [Ci D; Fj 726i =LA 200=1,,1
e stochastically uncertain matrices
!
AA AB AFE A; B; E;

[AC AD AF] - Z; ([C D; F} pi(k)> (3.28)

with known matrices A;, B;,C;, D;, E;, F;, 1 = 1,---1, of appropriate di-
mensions. p*' (k) = [p1(k) - -+ pi(k) | represents model uncertainties and is
expressed as a stochastic process with

p(k) = E(p(k)) = 0,E (p(k)p" (k) = diag(o1,-- ,01)

where E(a) = @ denotes the mean of variable a and o;,4 = 1,---1, are
known. It is further assumed that p(0),p(1),---, are independent and
x(0), u(k), d(k) are independent of p(k).

Remark 3.3 Note that model (3.20)-(3.21) with polytopic uncertainty (3.27)
can also be written as

! ! l
T = <Zﬂi(A+Ai)>$+ (Zﬁi(BJrBi))qu (Zﬁi(Ed+Ei)>d

li=1 li=1 li=1
l l l
y= (Zﬁi <C+01->> z + (Zﬁi <D+Dz—>> u+ (Zm (Fd+Fi)> d.
li=1 li=1 li=1

It is a polytopic system.

3.5 Modelling of faults

There exist a number of ways to model faults, among them the extension of
model (3.15) to

y(p) = Gyu(p)u(p) + Gya(p)d(p) + Gyr(p) f(p) (3.29)

is a widely used one, where f € R¥/ is a unknown vector that represents all
possible faults and will be zero in the fault-free case, Gy ¢(p) € LH is a known
transfer matrix. Throughout this book, f is assumed to be a deterministic time
function. No further assumption on it is made, provided that the type of the
fault is not specified.

Suppose that a minimal state space realization of (3.29) is given by
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& =Ax + Bu+ Eqd+ Ef f (3.30)
y=Ca+Du+ Fyd+ Fs f (3.31)

with known matrices Ey, Fy. Then we have
Gyr(p) = Fy +C(pI — A)' By (3.32)

It becomes evident that Ey, Fy indicate the place where a fault occurs and
its influence on the system components. As shown in Fig. 3.1, we divide the
faults into three categories:

e sensor faults fg: these are faults that directly act on the process measure-
ment
actuator faults f4: these faults cause changes in the actuator
process faults fp: they are used to indicate malfunctions within the
process.

Sensor faults can be modelled by setting Fy = I, i.e.
y=Czx+ Du+ Fyd+ fs (3.33)
while actuator faults by setting £y = B, Fy = D, i.e.
t=Ax+B(u+ fa)+ Eqd,y=Cx + D (u+ fa) + Fyd. (3.34)

Depending on their type and location, process faults can be modelled by
E; = Ep and Fy = Fp for some Ep, Fp. For a system with sensor, actuator
and process faults, we define

fa
f=1|fp|,Bf=[BEp0],Ff=[DFpl] (3.35)
fs

and apply (3.30)-(3.31) to represent the system dynamics.

Due to the way how they affect the system dynamics, the faults described
by (3.30)-(3.31) are called additive faults. It is very important to note that the
occurrence of an additive fault will not affect the system stability, independent
of if a feedback control loop is integrated into the system under observation.
Typical additive faults met in practice are, for instance, offset in sensors and
actuators or drift in sensors. The former can be described by a constant, while
the latter by a ramp.

In practice, malfunctions in the process or in the sensors and actuators
often cause changes in the model parameters. They are called multiplicative
faults and generally modelled in terms of parameter changes. They can be
described by extending (3.20)-(3.22) to

= (A+ AAp)z + (B + ABr)u+ E4d (3.36)
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where AAp, ABp, ACr, ADF represent the multiplicative faults in the plant,
actuators and sensors, respectively. It is assumed that

lA lB

i=1 i=1
le lp

ACp =Y Cibo,, ADp =y Difip, (3-39)
i=1 =1

where

4 A“Z: 17 alAvBivi: 17 ,lB,Ci,i: 17 7lC7 and Dlvl: 17 7ZD7
are known and of appropriate dimensions

L] 9Ai,i = 1,~°~,lA,6'Bi,i = 1,'“,13,901.,2' = 1,'~',lc, and QDi,i =
1,---,lp, are unknown time functions

Multiplicative faults are characterized by their (possible) direct influence
on the system stability. This fact is evident for the faults described by AAp.
In case that state feedback or observer-based state feedback control laws are
adopted, we can also see that ABp, ACr, ADp would affect the system sta-

bility.
Introducing

qyn = GFSC+HFU,fM :AF(t)qM (340)

_I’I'LX'I'?,_ [ 0 T
1, 0
G — nXxn 7H _
F 0 F Iy, <k,

| 0 | L Tk ke

Ap(t) = diag <9A1]n><n7"' 204, Inxn, 0B, Lk, xky s ﬂBlek-uxku)
Er = [A1 o Ay, By BZB] JFp = [01 oo Ciy Dy -+ DZD]

we can rewrite (3.36)-(3.37) into

i=Ax+ Bu+ Eqd + Er fu (3.41)
y = Cx+ Du+ Fyd+ Frf. (3.42)

In this way, the multiplicative faults are modelled as additive faults. Also for
this reason, the major focus of our study in this book will be on the detection
and identification of additive faults. But, the reader should keep in mind that
far is a function of the state and input variable of the system and thus will
affect the system stability.
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3.6 Modelling of faults in closed loop feedback control
systems

Model-based fault diagnosis systems are often embedded in closed loop feed-
back control systems. Due to the closed loop structure with an integrated
controller that brings the system in general robustness against changes in the
system, special attention has been paid to the topic of fault detection in feed-
back control loops. In this section, we consider modelling issues for a standard
control loop with sensor, actuator and process faults, as sketched in Fig. 3.2.

o]
prefilter fA—> process 5
W, (feedforward U_,| actuators sensors z
controller)

controller

Fig. 3.2 Strcture of a standard control loop with faults

Suppose that the process with sensors and actuators is described by (3.16).
Denote the control objective by z, reference signal by w, the prefilter by I'(s)
and the control law by

v(p) = K(p)y(p)-

For the sake of simplifying the problem formulation, we only consider additive
faults. The overall system model with sensor, actuator and process faults is
then given by

&= Az + B (u+ fa) + Ead + Epfp (3.43)
y=Cr+ D(u+ fa)+ Fad+ fs + Fpfp (3.44)
u(p) = K(p)y(p) + I'(p)w(p). (3.45)

Depending on the signal availability and requirements on the realization of
FDI strategy, there are two different ways of modelling the system.

In the framework of the so-called open loop FDI, it is assumed that input
and output vectors u and y are available. For the FDI purpose, the so-called
open loop model (3.43)-(3.44) can be used, which contains all information
needed for detecting the faults. Note that this open loop model is identical
with the one introduced in the last section.

In practice, it is often the case that u is not available. For instance, if the
control loop is a part of a large scaled system and located remotely from the
supervision station, where the higher level controller and FDI unit are located,
the reference signal w, instead of process input signal u, is usually available
for the FDI purpose. In those cases, the so-called closed loop FDI strategy can
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be applied. The closed loop FDI strategy is based on the closed loop model
with w and y as input and output signals respectively. The nominal system
behavior of the closed loop is described by

y(p) = Gyuw(P)w(p), Gyuw(p) = (I — Guu(p)K(p)) ' Gyu(p)(p)  (3.46)
Gyu(p) =D +C(pI —A)'B

The overall system model with the faults and disturbances is given by

Y(p) = Gyuw(P)w(p) + Gya,c(p)d(p) + Gysa.c1(p)fa(p)
+Gytrct(P)Fr(P) + Gygo.ca(P) 5 (p) (3.47)
Cac(p) = (I = Gy @)K (p) " (Fut- C (0 = 4)™" Ea)
Gypaa(®) = (I = Gyu®)Kp) " (D+C (oI~ 4)7' B)
Cysra®) = (I = G K ()~ (Fp+c<pf A Ep)
Gyss,a(p) = (I = Guu(P)K(p)) ™"

From the viewpoint of residual generation, which utilizes the nominal
model, it may be of additional advantage to adopt the closed loop FDI strat-
egy. It is known in control theory that by means of some advanced control
strategy the dynamics of the closed loop system, Gy, (p), may be well mod-
elled in a form easy for further handling. For instance, using a decoupling
controller will result in a diagonal G, (p), which may reduce an MIMO (mul-
tiple input, multiple output) system into a number of (decoupled) SISO (single
input, single output) ones.

3.7 Benchmark examples

In this section, five benchmark examples will be introduced. They will be
used to illustrate the modelling schemes described in the previous sections
and serve subsequently as benchmark systems in the forthcoming chapters.

3.7.1 Speed control of a DC motor

DC (Direct Current) motor converts electrical energy into mechanical energy.
Below, the laboratory DC motor control system DR300 will be briefly de-
scribed.

Model of DC motor

Fig. 3.3 gives a schematic description of a DC motor, which consists of
an electrical part and a mechanical part. Define the loop current I4 and the
armature frequency {2 as state variables, the terminal voltage U4 as input
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O——{—_ 0000

Machine
U, M,

ol
T

Fig. 3.3 Schematic description of a DC motor

and the (unknown) load M, as disturbance, we have the following state space
description

[If?‘] {é? g_f] [%} + {ﬁ]%ﬁ[ 0 :|ML (3.48)

as well as the transfer function
_ 1
o JR JTAR
co (1 R evier LI evTer 32)
RA(14Tys L
_ A(JR A )JT — ML(S)vTA:R_A
A AlvA
Ky Co (1+KMC¢3+ AGES ) A

Q(s) Ua(s) (3.49)

where the parameters given in (3.48) and (3.49) are summarized in Table 3.1.

Table 3.1 Parameters of laboratory DC motor DR300

Parameter Symbol| Value Unit
Total Inertia J 62.75 |V/Upm
Voltage constant Co [6.27-10°|V/Upm
Motor constant Ku 0.06 Nm/A
Armature Inductance La 0.003 H
Resistance Ra 3.13 Ohm
Tacho output voltage Kr 5.107% |[V/Upm
Tacho filter time constant Tr 5 ms

Models of DC motor control system

For the purpose of speed control, cascade control scheme is adopted with
a speed control loop and a current control loop. As sketched in Fig. 3.4, the
DC motor together with the current control loop will be considered as the
plant that is regulated by a PI speed controller.

The plant dynamics can be approximately described by
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Q-Controller 1,-Controller M,
Q. Ly ~ U, ~ 1/R, 1, K M M, A Q
- 7 i 1+7T,s M s
Ky
K,
1+T,s
Tacho
Fig. 3.4 Structure of DC motor control system
y(s) = Gyu(s)uls) + Gya(s)d(s) (3.50)
8.75 31.07
G7 u = K G1 = T T T A A N
yu(s) (14 1.225s)(1 + 0.03s)(1 + 0.005s) () s(1+ 0.005s)

with y = Uppeqs (voltage delivered by the Tacho) as output, u = I,.f as input
and d = My, as disturbance.
With a PI speed controller set to be

u(s) = K(s)(w(s) — y(s)), K(s) = 1.6& (3.51)

where w(s) = 2,.f(s), the closed loop model is given by
y(s) = Gyu(s)w(s) + Gya,c(s)d(s) (3.52)

a ( ) 14.00

wlS) =

y s(1+ 0.035)(1 + 0.0055) + 14.00
31.07(1 + 0.03s

Gyd,cl(s) = ( )

(14 0.035)(1 + 0.005s) + 14.00°

Modelling of faults
Three faults will be considered:

an additive actuator fault f4
an additive fault in Tacho fg1 and
a multiplicative fault in Tacho fg2 € [—1,0].

Based on (3.50), we have the open loop structured overall system
model

y(s) = Gyu(s)u(s) + Gya(s)d(s) + Gyra(s)fa + Gygs, (5)fs1 + Ay(s) fs2
(3.53)

Gyra(s) = Gyu(s), Ay(s) = (Gyu(s)u(s) + Gya(s)d(s)) .
The closed loop model can be achieved by extending (3.52) to

Y(5) = Gyu(s)w(s) + Gya.ci(s)d(s) + Gypa.ci(s)fals)
+Gyfsr,ai(8)fs1(5) + Ayer(s) (3.54)
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8.75s
(14 1.225s) (s(1 + 0.03s)(1 4 0.005s) + 14.00)
s(1+0.03s)(1 + 0.005s)
1+ 0.03s)(1 + 0.005s) + 14.00

Aya(s) = (1+ Gyu()K (s)fs2) " (Gyu(s)w(s) + Gyaa(s)d(s)) fs
— (Gyuw(s)w(s) + Gya.a(s)d(s)).

GyfA,cl(S) =

Gyfanl(s) = S(

3.7.2 Inverted pendulum control system

Inverted pendulum is a classical laboratory system that is widely used in the
education of control theory and engineering. Below is a brief introduction
to the laboratory pendulum system LIP100 that is schematically sketched in
Fig.3.5.

((t) 7

8
1 }(\\\ ° <\// X

3 5

u = input
voltage

O
O—-

Fig. 3.5 Schematic description of an inverted pendulum

The inverted pendulum system consists of a cart (pos. 6 in Fig.3.5) that
moves along a metal guiding bar (pos.5). An aluminum rod (pos.9) with a
cylindrical weight (pos.7) is fixed to the cart by an axis. The cart is connected
by a transmission belt (pos.4) to a drive wheel (pos.3). The wheel is driven
by a current controlled direct current motor (pos.2) which delivers a torque
proportional to the acting control voltage us such that the cart is accelerated.
This system is nonlinear and consists of four state variables:

the position of the cart r (marked by 6 in Fig.3.5)
the velocity of the cart r

the angle of the pendulum @ as well as

the angle velocity P.

Among the above state variables, r is measured by means of a circular coil
potentiometer that is fixed to the driving shaft of the motor, 7 by means of
the tacho generator that is also fixed to the motor and @ by means of a layer
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potentiometer fixed to the pivot of the pendulum. The system input « is the
acting control voltage us that generates force F' on the cart.

Nonlinear system model

The following nonlinear model describes the dynamics of the inverted pen-
dulum:

7= B(P) (a32 sin @ cos ® + assr + azad cos D + aszd? sind + bgF) (3.55)

é = B(P) (a42 Sin @ + ay37 cos P + a44¢ + a45§i52 cos@sin® + by F cos @)

(3.56)
where
2 1
B(P) = <1—|— 5 sm@)
01
a Ngg a OF, a NC a ecC a MNg
32 = T X0 9,433 = T35 U34 = 755,435 = S5 042 = 5
N§ N§ Ng, Ng Ng
a F.N a MC a N? b e b N
43 = 79 A44 = T /75,45 = 75,03 = 55,04 = T 775
Ng Niy Ng N§ N§

The parameters are given in Table 3.2.

Disturbances

There are two types of frictions in the system that may considerably af-
fect the system dynamics. Theses are Coulomb friction and static friction,
described by

Coulomb friction : F, = —|F¢|sgn(r)
c e . —uk,,r=0
static friction : Fyp = { gﬂ" 20
To include their effects in the system model, F is extended to

Foum =F+d

with d being a unknown input.
Linear model
After a linearization at operating point

r=1,7r=00=0,6=0

and a normalization with

T niir
T2 | TLQQ@
I3 n337;

T4 7144@
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we have the following (linear) state space model of the inverted pendulum

& =Ax+ Bu+ Eqd,y = Cx +v (3.57)
[0 0 —1.95 0 0

Ao 0 0 0 10 | | o0

~ 1 0—0.12864 —1.9148 —0.0082 | 7~ | —6.1343

|0 21.4745  26.31 —0.1362 84.303
(1000

C=10100|,E;=B,u=KsF,veN(0,X)
(0010

where v denotes the measurement noise.
It is worth noting that linear model (3.57) is valid under the following
conditions:

e |F| <20N
° |T‘| <0.5m
|6] < 10°.

Discrete time model
By a discretization of model (3.57) with a sampling time 7" = 0.03 sec, we
obtain the following discrete time model

xz(k + 1) = Agz(k) + Bau(k) + Eqqd(k),y(k) = Cx(k) + v(k) (3.58)

1 0.0001125 —0.05685 8.174e — 006 0.005288
Ay = 0 1.01 0.01162  0.03003 By = Eyy— 0.03723

0 —0.00384 0.9441 —0.0002962 |’ —0.1792

0 0.6434 0.768 1.005 2.461

LCF of the nominal model

To illustrate the coprime factorization technique introduced in Subsection
3.2, we derive below an LCF for model (3.57). It follows from Lemma 3.1 that
for the purpose of an LCF of (3.57) the so-called observer gain matrix L should
be selected that ensures the stability of A — LC. Using the pole assignment
method with the desired poles s; = —6.0,s0 = —6.5,s3 = —7.0,84 = —7.5, L
is chosen equal to

6.9983 —0.0025 —1.9544
—0.2552 13.7523 —13.2474

L= —0.4027 0.0192 11.9981
3.5602 64.3490 —158.1113
which gives
—6.9983 0.0025  0.0044 0
A—LC = 0.2552 —13.7523 13.2474 1.0000

0.4027 —0.1478 —13.9131 —0.0082
—3.5602 —42.8760 184.4213 —0.1362
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As a result, the LCF of system (3.57) is given by

Gyu(s) = C (sI — A" B = M;(s)Nu(s)
My(s)=1—-C (s —A+LC) ' L,Ny(s)=C (sl — A+ LC)" "' B.

Table 3.2 Parameters of laboratory pendulum system LIP100

Constant|Numerical value| Unit
K, 2.6 N/V
nii 14.9 V/m
sy —5227 V/rad
n33 -7.64 Vs/m
Na4 -52.27 Vs/rad
Mo 3.2 Kg
My 0.329 Kg
M 3.529 Kg

ls 0.44 m

© 0.072 Kgm?

N 0.1446 Kgm
NG, 0.23315 Kg*>m?

N?/Ng, 0.0897
F. 6.2 Kg/s
C 0.009 Kgm?®/s

Model uncertainty

Recall that linear model (3.57) has been achieved by a linearization at an
operating point. The linearization error will cause uncertainties in the model
parameters. Taking into account it, model (3.57) is extended to

t=(A+AA)z+ (B+ AB)u+ (Eq+ AE)d,y = Cz 4+ v (3.59)
[AA AB AE] = EA(t)[G H H]
00
0100 0
E= |00 A@ = |42 Qs Az | o o610 5= |32
10 Aagy Aagy Aagy
01 0001 0

7 (A(t)) < 1.7221.

Modelling of faults
Additive sensor and actuator faults are considered. To model them, (3.57)
and (3.58) are respectively extended to
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t=Ax+Bu+Eqd+ E;f,y=Cx+ Frf +v (3.60)
xz(k+1) = Agz(k) + Bau(k) + Eqad(k) + Eq f (k) (3.61)
y(k) = Ca(k) + Fyf(s) + v(k)
Ef=[B000],Ey=[Bs000]

fl fA

0100
Fr=|0010],f= ;2 = ;Sl
0001 3 52
fa fs3

Closed loop model
An observer-based state feedback controller with a disturbance compen-
sation is integrated into LIP100 control system, which consists of

e an observer

z
d

which delivers an estimate for « and d respectively,
e a state feedback controller with a disturbance compensator

_{ﬁﬁﬂ[§}+3u+L@C@ (3.62)

w=—-Ki—d+Vw (3.63)
where the observer, feedback gains L, K and the prefilter V are respectively

6.9983 —0.0025 —1.9544
—0.2552 13.7523 —13.2474

} = | —0.4027 0.0192 11.9981
3.5602 64.3490 —158.1113

0.4596 —0.2586 —7.7164
K= [—2.1000 2.2151 3.8604 0.4819] ,V=-21.

_ | L
L{Lz

The overall system dynamics is described by

@ [A-BK BK E;]| [« 0]
éx | = 0 A-LiCEq| |e. |+ |0]|d+ (3.64)
éd L 0 _LQC 0 €q 1
[ B 0 Ey
0| Vw+ |—Li|v+ | (Ef— LiFy) | f
0 —Lo —LyFy
y=Cx+v+Fyf. (3.65)

3.7.3 Three tank system

Three tank system sketched in Fig.3.6 has typical characteristics of tanks,
pipelines and pumps used in chemical industry and thus often serves as bench-
mark process in laboratories for process control. The three tank system intro-
duced in here is a laboratory setup DTS200.
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Fig. 3.6 DTS200 setup

Nonlinear model
Applying the incoming and outgoing mass flows under consideration of
Torricellies law, the dynamics of DTS200 is modelled by

Ahy = Q1 — Qi3, ARy = Qa2 + Q32 — Qa20, Ahz = Q13 — Q32
Q13 = arsizsgn(hi — hs)\/2g|h1 — hs|
Q32 = assazsgn(hs — ha)/2g|hs — ha|, Q20 = a2s0+/2ghs

where

Q1, Q2 are incoming mass flow
Q;j is the mass flow from the i-th tank to the j-th tank
h;i(t),i = 1,2,3, are the water level of each tank and measured.

The parameters are given in Table 3.3.

Linear model

After a linearization at operating point h; = 45c¢m, ho = 15¢m and hs =
30cm, we have the following linear (nominal) model

& = Az + Bu,y = Czx (3.66)
hy 0 —0.0085 0 0.0085
r=y= |hy|,u= {Ql] VA= 0  —0.00195 0.0084
hs 2 0.0085 0.0084 —0.0169
0.0065 0 100
B=10 0.0065|,C= 1010
0 0 001

Model uncertainty
We consider the model uncertainty caused by the linearization and model
it into
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Table 3.3 Parameters of DTS200

Parameters Symbol |Value|Unit

cross section area of tanks|A 154 [em?

cross section area of pipes|siz2 523, S0|0.5 em?

max. height of tanks Hoax 62 cm?

max. flow rate of pump 1 [Q1,,.. 100 [em?/sec

max. flow rate of pump 2 [Q2,,.. 100 [cm®/sec

coeff. of flow for pipe 1 a1 0.46

coeff. of flow for pipe 2 az 0.60

coeff. of flow for pipe 3 as 0.45
t=(A+ AA)xz + Bu,y = Cx, AA= A(t)H (3.67)

A(t) 0 0 —0.0085 0 0.0085

At) = 0 Ax(t) 0 JH = 0 —0.00195 0.0084

0 0 As(t) 0.0085 0.0084 —0.0169

o (A(t)) < 1.3620.

Modelling of faults
Three types of faults are considered in this benchmark system:

component faults: leaks in the three tanks, which can be modelled as ad-
ditional mass flows out of tanks,

0A1 v 2_gh1, 0,42\/ 2gh2,0A3\/ 29h3

where 64,,64, and 4, are unknown and depend on the size of the leaks
component faults: pluggings between two tanks and in the letout pipe by
tank 2, which cause changes in (013, Q32 and QQ2¢ and thus can be modelled
by

0.a,a15135g0(h1 — h3)\/2g|h1 — hs|,0a5a35035g0n(hs — ha)\/2g]hs — hal,
04502501/ 2ghs

where 04,,04,,04, € [-1,0] and are unknown

sensor faults: three additive faults in the three sensors, denoted by f1, fo

and f3
actuator faults: faults in pumps, denoted by f4 and f5.

They are modelled as follows

t=(A+AAp)x+Bu+ E;f,y=Cx+ Fsf (3.68)
6 —0.0214 0 0 0 0 0
AAp =" Aiba,, A 0 00|,4,=[00.03710
i=1 0 00 0 0 O
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00 0 ~0.0085 0 0.0085
As =100 0 Ay = 0 0 0
00 -0.0262 0.0085 0 —0.0085
0 0 0 0 0 0 f1
As = (0001110 |, Ag = | 0—0.0084 0.0084 |, f=|:
0 0 0 0 0.0084 —0.0084 1,

Ep=[0 B] € R®® Fy = [I3x3 0] € R**®.

Closed loop model
In DTS200, a nonlinear controller is implemented which leads to a full
decoupling of the three tank system into

e two linear subsystems of the first order and
e a nonlinear subsystem of the first order.

This controller can be schematically described as follows:

ur = Q1= Qi3+ A(arihy + v (w1 — hy)) (3.69)
ug = Q2 = Q20 — Q32 + A (az2hy + v (w2 — hy)) (3.70)

where ai1,a29 < 0, v1,vy represent two prefilters and wi,ws are reference
signals. The nominal closed loop model is

T (@11 —v1) 2y
iy | = (ag2 —v2) 2 (3.71)
i‘g ay1s13sgn(x1—x3)\/2g|x1 —x3|—agsazsgn(rs—x2)\/2g|x3—x2|

A

U1 0 w
+ 10 vy I: 1:|
00|L"

while the linearized closed loop model with the faults is given by

a1l — U1 0 0 v1 0

T = 0 a9 — V2 0 x + 0 (%) |:1w1)1:| +AAF.Z‘+E_Iff
0.0085 0.0084 —0.0169 00 2
0.0085 0 —0.0085 f
+| 0 —0.0028 0.0084 | | fol|,y=Cx+Fsf (3.72)
0 0 0 s
~ a1 — v 0 00.0065 0
Er = 0 aze —v2 0 0 0.0065

0 0 0 0 0
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3.7.4 Vehicle lateral dynamic system

In today’s vehicles, lateral dynamic models are widely integrated into control
and monitoring systems. The so-called one-track model, also called bicycle
model, is the simplest form amongst the existing lateral dynamic models,
which is, due to its low demand for the on-line computation, mostly imple-
mented in personal cars.

y

&
Center of

N >
. 1 [ (ﬁ Ay
transient H ; i

Fig. 3.7 Kinematics of one-track model

One-track model is derived on the assumption that the vehicle is simplified
as a whole mass with the center of gravity on the ground, which can only move
in x axis, y axis, and yaw around z axis. The kinematics of one-track model is
schematically sketched in Fig. 3.7. It has been proven that one-track model can
describe the vehicle dynamic behavior very well, when the lateral acceleration
under 0.4g on normal dry asphalt roads. Further assumptions for one-track
model are:

e the height of center of gravity is zero, therefore the four wheels can be
simplified as front axle and rear axle
small longitudinal acceleration, v, ~ 0, and no pitch and roll motion
the equations of motion are described according to the force balances and
torque balances at the center of gravity

e linear tire model,

F, = Caa (3.73)

where Fj is the lateral force, C\ is the cornering stiffness, o is the side
slip angle
e small angles simplification

{aH =—B+lgye

Uref

ay  =—f+0 — vy
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The reader is referred to Table 3.4 for all variables and parameters used
above and below.

Nominal model

Let vehicle side slip angle 8 and yaw rate r be the state variables and
steering angle ¢7 the input variable, the state space presentation of the one-
track model is given by

. X
st 2] 7] s -
T2 r
_Clyv+Can  luCom—lvClhy 1 o
A _ MUref TYL’Uze . _ MUrer
T | uCan=IlvCly  13CLy+l}Can T | WwCly
I, I Vpey I,

Typically, a lateral acceleration sensor (a,) and a yaw rate sensor (r) are
integrated in vehicles and available, for instance, in ESP (electric stabilization
program). The sensor model is given by

_ ChvACan lCam—lvCly oy
C = m MUref ’D = m .
0 1 0

Below are the one-track model and the sensor model for v,y = 50 m/s

—3.0551 —0.9750 1.12

A= [29.8597 —3.4196] B = {40.9397] (8.76)
1527568 1.2493 56

il I R kil

By a sampling time of 0.1sec., we have the following discrete time model
z(k +1) = Agz(k) + Bau(k),y(k) = Cx(k) + Du(k)

where for v,y =50 m/s

0.6333 —0.0672] By— {—0-0653} , (3.77)

Aa = {2.0570 0.6082 3.4462

Disturbances

In model (3.74)-(3.75), the influences of road bank angle c,, vehicle body
roll angle ¢ and roll rate p. have not been taken into account. Moreover, sen-
sor noises are inevitable. Generally, sensor noises can be modelled as steady
stochastic process with zero mean Gaussian distribution. But, in vehicle sys-
tems, the variance or standard variance of sensor noises cannot be modelled
as constant, since at different driving situations, the sensor noises are not
only caused by the sensor own physical or electronic characteristic, but also
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Table 3.4 Parameter of the one-track model

Physical constant | Value Unit Explanation
g 9.80665 [m/sz] gravity constant
Vehicle parameters
ir 18.0 -] steering transmission ratio
mp 1630 kg rolling sprung mass
MNR 220 kg non-rolling sprung mass
m mr+myr| [kg total mass
ly 1.52931 m distance from the CG to the front axle
ly 1.53069 m distance from the CG to the rear axle
I. 3870 [[kg-m?]| moment of inertia about the z-axis
Uref [km/h] vehicle longitude velocity
B [rad] vehicle side slip angle
r [rad/s] vehicle yaw rate
07, [rad] vehicle steering angle
Cuv 103600 |[[N/rad] front tire cornering stiffness
Con 179000 rear tire cornering stiffness

Table 3.5 Typical sensor noise of vehicle lateral dynamic control systems

Sensor Test condition Unit |Standard
variation o
Yaw rate  |Nominal value [°/s] 0.2
Drive on the asphalt, even, dry road 0.2
surface
Drive on the uneven road 0.3
Brake (ABS) on the uneven road 0.9
lateral Nominal value [m/s*]]0.05
acceleration
Drive on the asphalt, even, dry road 0.2
surface
Drive on the uneven road 1.0
Brake (ABS) on the uneven road 24

strongly disturbed by the vibration of vehicle chassis. In Table 3.5, typical
sensor data are listed.

To include the influences of the above-mentioned disturbances, model
(3.74)-(3.75) is extended to

2 =Ax+ Bu+ Eg4d,y=Cx+ Du+ Fyd+ v (3.78)
_ g . Yy mpgh -
ey O + MUy $r+ moper P 100
d= %(Z)R _ LZ‘_Z_p ;Ed =
T, 1. 010
Yy
ZoR

001 Ta, 0
R [008]wen(o]7 2]).
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Model uncertainties
Below, major model parameter variations are summarized:

o Vehicle reference velocity v,.: the variation of longitudinal vehicle veloc-
ity is comparably slow, so it can be considered as a constant during one
observation interval

e Vehicle mass: when the load of vehicle varies, accordingly the vehicle spring
mass and inertia will be changed. Especially the load variation are very
large for the truck, but for the personal car, comparing to large total mass,
the change caused by the number of passengers can be neglected normally

e Vehicle cornering stiffness C,,: Cornering stiffness is the change in lateral
force per unit slip angle change at a specified normal load in the linear
range of tire. Remember that the derivation of one track model is based
on (3.73). Actually, the tire cornering stiffness C,, depends on road-tire
friction coefficient, wheel load, camber, toe-in, wheel pressure etc. In some
studies, it is assumed, based on the stiffness of steering mechanism (steer-
ing column, gear, etc.), that

Cor = kC, . (3.79)

In our benchmark study, we only consider the parameter changes caused
by C, and assume that

C!, =103600 + AC,v, AC,y € [—10000, 0] is a random number and
Con = kC', k= 1.7278.

As a result, we have the following system model:

i=(A+AA)z+ (B+ AB)u+ Eyd (3.80)
y=(C+AC)z+ (D+ AD)u+ Fyd+v

MVUye muv2 MUye
[AA AB] = AC,.v TR !
klg—ly _ ly+kly Ly

_ 1+k klg—ly 1 ‘|

I, I Vpey I,
_ 14k klg—=lv i:|

e AD]:ACW[ R

Modelling of faults
Three additive faults are considered in the benchmark:

e fault in lateral acceleration sensor, which can also be a constant or a ramp
and denoted by f;

e fault in yaw rate sensor, which can be a constant or a ramp and denoted
by fa

e fault in steering angle measurement, which would be a constant and de-
noted by fs. It is worth to remark that in practice a fault in the steering
angle measurement is also called sensor fault.
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Table 3.6 Typical sensor faults

Sensor faults
Offset Ramp
Yaw rate +2° /s, £5° /s, £10° /s|£ 10° /s/ min
Lateral acceleration|+ 2 m/s*, + 5 m/s” +4m/s?/s, £ 10 m/s?/s
Steering angle + 15° ,4+ 30° -

In Table 3.6, technical data of the above-mentioned faults are given.
Based on (3.78), the one-track model with the above-mentioned sensor
faults can be described by

&t =Ar+Bu+ Eqd+ Eff,y=Cx+ Du+ Fqd+v+Frf (3.81)

fi
E;=[0B] € R¥P Fy = [Lxa D], f=| f2

fs

3.7.5 Electrohydraulic Servo-actuator

In this subsection, we briefly introduce a linear model of electrohydraulic
servo-actuator (EHSA) which is used in aileron control.

Nominal model

The state space representation of the EHSA considered in our benchmark
study is given by

y'sv
Lp
T = A:EJrBu,y:Cm,:E: Ysv ;u:isiny: |:Ap:| (382)
Ap Tp
Tp
_stvwsv 0 _wzv 0 0 ksvwz,,
0 Shgte 0 S 0" 00010
A= 1 0 0 0 0|,B=] 0 702[00001}
0 _24p 26, 4 0
CH CH
0 1 0 0 0 0

where the physical meanings as well as their values of the process variables
and parameters are given in Table 3.7.
Substituting these values into matrices A, B gives

—884.67 0 —3.06 x 10° 0 0
0  —3.6244 x 10* 0 12.19 x 10~* —26.28
A= 1 0 0 0 0
0 —3.29 x 1019 5.02 x 102 0 0
0 1 0 0 0
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Table 3.7 Technical data of the EHSA used in the benchmark study

Symbol Description Value Unit
Ap Piston area 8.5348 x 1072 | m?
By Servovalve orifice coefficient | 406.84 x 10~ gmjv
0 Command input [—25, 25] °
dsw Damping factor [0.7,0.8] -
dy Damping actuator 2.2 x 10° NmTSZ
E Bulk modulus elasticity 6895 x 10° o]
fo Viscose friction 11711 A;f
Fr, External air loads f(0) N
Imax Max. input current 0.008 A
iso Input current [“imaz; Imax) | A
kp Controller gain 2.88 4
kso Servovalve gain 0.111125 =
M. Aerodynamic hinge moment 3680 N-m
myp Piston mass 7 kg
DA, DB Chamber A, B pressure [0, ps] Pa
ps Supply pressure 205 x 10° Pa
pr Tank pressure 5 x 10° Pa
PV System pressure 200 x 10° Pa
Th Reduced moment arm 0.09 m
Vb Dead volume 3.2458 x 102 | m®
W Cut-off frequency (60, 88] Hz
T4 Desired piston position [Tmin, Tmaz] | M
Tmaz Max. extension movement | 38.1 x 10~° m
Tmin Max. retraction movement [—37.96 x 10~3| m
Tp Piston position [Tmin, Tmaz] | M
Tpmas Max. velocity 0.11 -
Ymaz Max. spool movement 0.889 x 1073 [ m
Ysv Servovalve position [—Ymaz, Ymaz]| m
3.3973 x 10*
0
B = 0
0
0

LCF of the nominal model
Below, we briefly describe the application of the LCF methods introduced
in Subsection 3.2 to model (3.82). The eigenvalues of matrix A are

s1 = —35101, 80 = —1143.1, s3 = —442.3 + 331.7j
sy = —442.3 — 331.7§, s5 = 0.0.

To construct M(s), N(s), an observer gain matrix L has been selected:
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—9.2418 x 107° 3.0326 x 103
1.6676 x 10~2 7.1992 x 104

L= 5.6 x 107 —19.116
3.2451 x 10*  —1.02 x 10'2
—1.8795 x 10~7 1.262 x 103

which results in the following eigenvalues of matrix A — LC' :

s1 = —38611, 50 = —1257.4, 53 = —486.5 + 364.95
54 = —486.5 — 364.97, s5 = —30000.

Disturbance and model uncertainty
Typical disturbance that affects the EHSA is the external air loads FT..
The uncertainty due to the linearization can be described by

00 000
04; 000 3
AA=100 0 00],|A ] <1.0097 x 10*[N],|Az| < 1.144 x 1073 {m—]
00 A00 5
00 000

This kind of uncertainty is of the polytopic type because they build a convex
set depending on different operating points. In our benchmark study, it is
assumed that

AAZCO{Al,“- ,Ag}

corresponding to 9 operating points. The values of Aj, Ay in each operating
point are given in Table 3.8.

Table 3.8 Polytopic uncertainties

A Ay
493.25 | 1.144 x 10~°
7580.3 | 0.858 x 103
10097 | 0.572 x 1073
6419.2 | 0.286 x 103

0 0
—6419.2|—0.286 x 1073
—10097[—0.572 x 10~ 3
—7580.3|—0.858 x 1073
—493.25/—-1.144 x 1073

O| O[S OY |0 D] ] =

Integrating the influences of Fr,, AA into (3.82) yields
t=(A+AA)z+ Bu+ Eqd,y = Cx (3.83)
T
Ea=[0-55000] =[0-0.1429000]" ,d = F.

mp
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Modelling of faults
Different kinds of faults will be considered in the benchmark study. These
include

e Failures inside the EHSA: The faults that may occur in the EHSA are
divided into two groups,
— faults that degrade the dynamics of the EHSA. This kind of faults are
multiplicative faults and will affect parameters in system matrices A
and B. They are represented by

dsowsoy 0 wey 00 Wsy
0 0 000 0
AAp = A104,, A1 = 0 0 800 J,ABp=| 0 |#65p
0 & ¢=~00 0
0 0 000 0

O, = 04,.

— faults that cause undesired movement of the control surface. Denoted
by f1, this kind of faults can be represented as an additive fault affecting
the system input ig,.

e additive sensor faults, denoted by f> and fs.

As a result, we have the following model to described the system dynamics
when some of the above-mentioned faults occur:

t=(A+AAp)x+ (B+ ABr)u+ Eff + Eqd,y = Cx + F¢f (3.84)

fi
f: f2 ,Ef:[BOO],Ff:[OIQXQ:I,fle[*l,O].
f3

3.8 Notes and references

In this chapter, we have introduced different model forms for the presenta-
tion of linear dynamic systems, which are fundamental for the subsequent
study. We suppose that the nominal systems considered in this book are LTI.
Modelling LTI systems by means of a state space representation or transfer
matrices is standard in the modern control theory. The reader is referred to
[19, 87] for more details.

Modelling disturbances and system uncertainties is essential in the frame-
work of robust control theory. In [49, 160, 161] the reader can find excellent
background discussion, basic modelling schemes as well as the needed math-
ematical knowledge and available tools for this purpose.
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In the framework of model-based fault diagnosis, it is the state of the art
that modelling of faults is realized in an analogous way to the modelling of
disturbances and uncertainties.

Coprime factorization technique is a standard tool in the framework of
linear system and robust control theory for the system representation. In
[49, 160, 161], the interested reader can find well-structured and detailed de-
scription about this topic.

To illustrate the application of the introduced system modelling technique,
five laboratory and technical systems have been briefly studied. The first three
systems, DC motor DR200, inverted pendulum LIP100 and three tank system
DTS200, are laboratory set-ups produced by AMIRA. To author’s knowledge,
they can be found in many laboratories for automatic control across the world.
It is worth mentioning that three tank system DTS200 and inverted pendulum
LIP100 are two benchmark processes that are frequently used in FDI study.
There have been a number of invited sessions dedicated to the benchmark
study on these two systems at some major international conferences. For the
technical details of these three systems, the interested reader is referred to
the practical instructions, [3] for DTS200, [4] for LIP100 and [5] for DR200.
[104] is an excellent textbook for the study on vehicle lateral dynamics. The
one-track model presented in this chapter is an extension of the standard one
given in [104], which has been used for a benchmark study in the European
project IFATIS [99]. A detailed description of EHSA is given in [128].

Another motivation for introducing these five systems is that they will
serve as benchmarks for illustrating the applications of our study in the forth-
coming chapters.
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Structural fault detectability, isolability and
identifiability

Corresponding to the major tasks in the FDI framework, the concepts of
fault detectability, isolability and identifiability are introduced to describe
the structural properties of a system from the FDI point of view. Gener-
ally speaking, we distinguish the structural fault detectability, isolability and
identifiability from the performance based fault detectability, isolability and
identifiability. For instance, the structural fault detectability is expressed in
terms of the signature of the faults on the system without any reference to the
FDI system used, while the performance based one refers to the conditions
under which a fault can be detected using some kind of FDI systems. Study
on structural fault detectability, isolability and identifiability plays a central
role in the structural analysis for the construction of a technical process and
for the design of an FDI system.

In this chapter, we shall introduce the concepts of structural fault de-
tectability, isolability and identifiability, study their checking criteria and il-
lustrate the major results using the benchmark examples.

4.1 Structural fault detectability

In the literature, one can find a number of definitions of fault detectability,
introduced under different aspects. Moreover, there are some significant differ-
ences regarding to additive and multiplicative faults. One of these differences
is that a multiplicative fault may cause changes in the system structure. In
order to give a unified definition which is valid both for additive and multi-
plicative faults, we first specify our intension of introducing the concept of
structural fault detectability.

First, structural fault detectability should be understood as a structural
property of the system under consideration, which describes how a fault af-
fects the system behavior. It should be expressed independent of the system
input variables, disturbances as well as model uncertainties. Secondly, fault
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detectability should indicate if a fault would cause changes in the system out-
put. Finally, the structural fault detectability should be independent of the
type and the size of the fault under consideration.

Bearing these in mind, we adopt an intuitive definition of fault detectability
which says: a fault is detectable if its occurrence, independent of its size and
type, would cause a change in the nominal behavior of the system output. To
define it more precisely, we assume that

e the following system model is under consideration

t=(A+ AAp)z + (B+ ABp)u+ E¢ f (4.1)
y=(C+ACr)x+ (D + ADp)u+ F¢f (4.2)

where, as introduced in Chapter 3, Gy, (p) = D + C(pI — A)~' B repre-
sents the nominal system dynamics, f € R¥s the additive fault vector and
AAp, ABp, ACp, ADp the multiplicative faults given by

lA lB
AAp =) Aiba,,ABp =) _ Bibp, (4.3)
i=1 1=1
le lp
i=1 i=1

e a fault is understood as a scalar variable, either 0; € {64,,05,,0c,,0D,}
or f;, and unifiedly denoted by &,.

Definition 4.1 Given system (4.1)-(4.2). A fault &; is said structurally de-
tectable if for some u

9y
9%

Equation (4.5) is the mathematical description of a change in the system
output caused by the occurrence of a fault (from zero to a time function dif-
ferent from zero), independent of its size and type. A fault becomes detectable
if this change is not constantly zero. In other words, it should differ from zero
at least at some time instant and for some system input.

The following theorem provides us with a necessary and sufficient condition
for the detectability of additive and multiplicative faults.

Theorem 4.1 Given system (4.1)-(4.2), then

e an additive fault f; is detectable if and only if
C(pl — A)" Eyf, + Fy, #0 (4.6)

with Ey,, Fy, denoting the i-th column of matrices Ey, Fy respectively,
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o a multiplicative fault 04, is detectable if and only if
C(pI — A)~'A;(pI — A)"'B#0 (4.7)

o a multiplicative fault O, is detectable if and only if
C(sI—A)"B;#0 (4.8)

o o multiplicative fault Oc, is detectable if and only if
Ci(sI —A)'B+£0 (4.9)

o a multiplicative fault Op, is detectable if and only if
D; #0. (4.10)

Proof. While the proof of (4.6), (4.8)-(4.10) is straightforward and is thus
omitted here, we just check (4.7). It turns out
dy oxr 0% Or

—cC _4 A,
90, 90, 00, “ao. T

It yields

0 - _
c (80y 0., _0> = C(pl — A)" Ai(pI — A)"'Bu(s)
with £ denoting the Laplace transform (z-transform in the discrete time case)
Hence, for some u,t, aeA loa, =07 0 if and only if (4.7) holds. O

It can be easily seen from Theorem 4.1 that

e an additive fault is structurally detectable as far as the transfer function
from the fault to the system output is not zero
a multiplicative fault 0p, is always structurally detectable
the structural detectability of multiplicative faults 0p, and 0, can be
interpreted as input observability and output controllability respectively
e a multiplicative fault 4, will cause essential changes in the system struc-
ture.

Also, it follows from Theorem 4.1 that we can estimate the changes in the
system output caused by the different types of the faults. To this end, suppose
that the faults occur at time instant ty and their size is small at beginning,
then

e in case of additive fault f;:

Ay(t) = CAx + Fy, f; (4.11)
dAx

Tl = AAx + Ey, fi, Az (to) =0
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e in case of multiplicative fault 6 4,

_oy(t) ., Ox
Ay(t) ~ 0.4 ‘eAi:() Oa, = 039,4,. 04, (4.12)
d ([ Oz Ox ox
a ( 89&_) g+ At s, =0, g (t0) =0
where z |9, o satisfies
& = Az + Bu

e in case of multiplicative fault 6p,

t) Ox

), _
d ( Ox Ox Oz
— | =— ) =A——+ Biu, =——(to) =
@ (aaB) a0, T Bt gy, () =0
e in case of a multiplicative fault ¢,
Ay(t) ~ ay—(t)ec. = Ciz(t)0c,, & = Ax + Bu (4.14)
e, ‘
e in case of multiplicative fault 0p,
t
Ayt~ 200 Doy, (4.15)

= 90,
Comparing (4.11) with (4.12)-(4.15) makes it evident that

e detecting additive faults can be realized independent of the system input,
and

e multiplicative faults can only be detected if u(t) # 0. In another word,
exciting signal is needed for a successful fault detection.

We see that transfer matrices
C(pl — A)""Ey, + Fyi,C(pI — A)"' Ai(pl — A)7'B,
C(pI — A)7'B;,Ci(pI — A)™'B, D;

give a structural description of the influences of the faults on the system
output. For this reason and also for our subsequent study on fault isolability
and idenfiability, we introduce the following definition.

Definition 4.2 Given system (4.1)-(4.2). Transfer matrices
C(pI = A)7'Ey, + Fyi,C(pl — A)7' Ai(pl — A)™'B,
C(pl — A)"'B;,Ci(pI — A)™'B, D;

are called fault transfer matrices and denoted by Gy, (p), Go,, (p), Gop, (D),
Goc, (p) and Gy, (p) respectively, or in general by Ge, (p).
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Example 4.1 To illustrate the results in this section, we consider three tank
system DTS200 given in Subsection 3.7.3. The fault transfer matrices of the
five additive faults are respectively

1 0
C(sI — A 'Ep +Fp, = |0],C(sI = A)'Ep, + Fp, = | 1
10 K
rA r 0.00655+4-0.0002
0 (5240.04495+0.0005)
C(sI — A 'Ep, + Fp, = | 0| ,C(sI — A 'Ey, + Fy, = 0
1] L (s2+0.091}(1)90£-1+0.0005)

i 0

C(sI —A)'Ep, + Fp, = (522}%932535?#%98505)

L (sz+0.0(31£g£—i1-0.0005)

It is evident that these five faults are detectable. As to the multiplicative faults,
we have the following fault transfer matrices

C(sI —A)~'A (s - A)~'B

52 4+0.0364s 0
0.0001 0
0.0085s + 0.0002 0

~ —0.0214(0.00655% 4 0.0002s)
(83 +0.0449s2 + 0.0005s)2

C(sI — A"t Ay(sI — A 'B
0 0.0001

0 s2 + 0.0254s + 0.0001
0 0.0084s + 0.0001

~0.0371(0.00655 4 0.0002s)
~ (3 + 0.044952 + 0.00055)2

C(sI — A)"'A3(sI — A)~'B

0.0085s +0.0002  0.0085s + 0.0002
0.00000262

= 004052 050005 | 0.0084s+0.0001  0.0084s + 0.0001

(57 40044952 +0.00055)% | 22 102805 + 0.0002 52 + 0.0280s -+ 0.0002 |

C(sI — A)"tAy(sI — A)~'B

—0.001s? 0.0555% + 0.002s2
T (£ 10 0(12803 082 Soo5mz | 018 +0.00257 —6.55% — 0.215” —0.00257
(8 + 0. s< + 0. S) _—0-183 —0.002s2 6.5s* + 0.22753 +0.003s |

C(sI — A)"'As(sI — A 'B

0 0.0001
0 s% +0.0254s + 0.0001
0 0.0084s + 0.0001

~0.0111(0.0065s% + 0.0002s)
(83 +0.0449s2 + 0.00055)2

C(sI —A) "' Ag(sI — A)™'B

—0.001s2 0.055s3 + 0.0025s2
= 0.0000084 0.1s% +0.0025> —6.55* — 0.21s% — 0.002s2
(s 4 0.0449s2 4 0.0005s)2
) ) —0.1s% — 0.0025% 6.55% + 0.227s% + 0.003s

As a result, all these multiplicative faults are detectable.
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4.2 Excitations and sufficiently excited systems

In this section, we briefly address the issues with excitation signals, which are,
as shown above, needed for detecting multiplicative faults. Let G¢, (p) be the
fault transfer matrix of a multiplicative fault and satisfy

rank (Ge,(p)) = k(> 0)
then we can find a x-dimensional subspace Uezc ¢, so that for all u € Ueze,e,

Ge,(p)u(p) # 0.

From the viewpoint of fault detection, subspace Ueyc,e, contains all possible
input signals that can be used to excite a detection procedure.

Definition 4.3 Let G¢,(p) be the fault transfer matriz of multiplicative fault
&
Uegee, = {u | Ge,(p)u(p) # 0} (4.16)

1s called excitation subspace with respect to &;.

Mathematically, we can express the fact that detecting an additive fault,
say &,, is independent of exciting signals by defining

uea;c,fi = {U S Rk“} .
In this way, we generally say that

Definition 4.4 System (4.1)-(4.2) is sufficiently excited regarding to a fault
& if
U € Uppere,.- (4.17)

With this definition, we can reformulate the definition of the fault de-
tectability more precisely.

Definition 4.5 Given system (4.1)-(4.2). A fault &; is said structurally de-

tectable if for u € Uege ¢,
9
9€;
Remark 4.1 In this book, the rank of a transfer matriz is understood as the
so-called mormal rank if no additional specification is given.

g,=0 d&; # 0. (4.18)
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4.3 Structural fault isolability

4.3.1 Concept of structural fault isolability

For the sake of simplicity, we first study a simplified form of fault isolability
problem, namely distinguishing the influences of two faults. An extension to
the isolation of multiple faults will then be done in a straightforward manner.

Consider system model (4.1)-(4.2) and suppose that the faults under con-
sideration are detectable. We say any two faults, §;,{;,7 # j, are isolable if the
changes in the system output caused by these two faults are distinguishable.
This fact can also be equivalently expressed as: any simultaneous occurrence of
these two faults would lead to a change in the system output. Mathematically,
we give the following definition.

Definition 4.6 Given system (4.1)-(4.2). Any two detectable faults, & =
[fi §j]T,i # J, are isolable, when for u € Ueyzc e, muemgj

9
8_12 le—o d€ £ 0 (4.19)

It is worth mentioning that detecting a fault in a disturbed system requires
distinguishing the fault from the disturbances. This standard fault detection
problem can also be similarly formulated as an isolation problem for two faults.

In a general case, we say that a group of faults are isolable if any simulta-
neous occurrence of these faults would lead to a change in the system output.
Define a fault vector .

£=1& &

which includes [ structurally detectable faults to be isolated.

(4.20)

Definition 4.7 Given system (4.1)-(4.2). The faults in fault vector & are
!

isolable, when for all v € () Uepe,e,
i=1

1=

0
9 leo 6 £0. (4.21)

We would like to call reader’s attention on the similarity between the
isolability of additive faults and the so-called input observability which is
widely used for the purpose of input reconstruction. Consider system

t=Ax+ Esf,y=Cax+ Fsf,x(0) =0.

It is called input observable, when y(¢) = 0 implies f(¢) = 0. Except the
assumption on initial condition x (0), the physical meanings of the isolability
of additive faults and input observability are equivalent.
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4.3.2 Fault isolability conditions

With the aid of the concept of fault transfer matrices, we now derive existence
conditions for the structural fault isolability.

Theorem 4.2 Given system (4.1)-(4.2), then any two faults with fault trans-
fer matrices G, (p), Ge,(p),i # j, are structurally isolable if and only if

rank [Ge,(p) Ge,(p) | = rank (Ge, (p)) + rank (ng (p)) . (4.22)

Proof. It follows from (4.11)-(4.15) that the changes in the output caused by
§i» &, can be respectively written as

L7 (Ge,(p)zi(p) , L7 <Gg_7. (p)z; (p))
where
Zi(p) = L(dfl) for 51 = fi or Zl(p) =L (dgzu(t)) for 51 € {eAweBwecweDi}

with u € Uezee, N L{wc,gj. Since

le= od€+ le=0 d§;
J

351 35

it holds that if £ is not isolable, then

> [Ge,(p) Ge,(p) ] {ZZ((P))

rank [ Ge,(p) Ge, (p)] < rank (Ge,(p)) + rank (ng (p))

o de = 0<:>£(ay

The theorem is thus proven. 0O

An extension of the above theorem to a more general case with a fault
vector £ = [5 10 € Z]T is straightforward and hence its proof is omitted.

Corollary 4.1 Given system (4.1)-(4.2), then & with fault transfer matriz

Ge(p) = [Ge,(p) -+ Ge, ()]

is structurally isolable if and only if

rank (Ge(p Zrank Ge.(p (4.23)
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In order to get a deeper insight into the results given in Theorem 4.2 and
Corollary 4.1, we study some special cases often met in practice.

Suppose that the faults in fault vector £ = [&; -+ & ] T are additive faults.
Then the following result is evident.

Corollary 4.2 Given system (4.1)-(4.2) and assume that £;,i = 1,---,1 <
k¢ are additive faults. Then, these l faults are isolable if and only if

rank (Ge(p)) = L. (4.24)

This result reveals that, to isolate [ different faults, we need at least an [-
dimensional subspace in the measurement space spanned by the fault transfer
matrix. Considering that rank (G¢(p)) < min{m,{} with m as the number of
the sensors, we have the following claim which is very easy to check and thus
useful for the practical application.

Claim. The additive faults are isolable only if the number of the faults is not
larger than the number of the sensors.

Denote the minimal state space realization of G¢(p) by
Ge(p) = C (pI — A)" E¢ + F.

Check condition (4.24) can be equivalently expressed in terms of the matrices
of the state space description.

Corollary 4.3 Given system (4.1)-(4.2) and assume that £;,i = 1,--- ,1 <
k¢, are additive faults. Then these l faults are isolable if and only if

rank [A pl Eﬁ}

o pl=ntl (4.25)

Proof. The proof becomes evident by noting that
A—pl Be| [(A=pD)~" (pI — A)" Ee]| _
C F 0 1 N
I — pI Eg
C(A—p)™' C(pI — A)"" B¢ + Fy C F

0
mnk([A CpI?E)HA pl)~ (pIz}l)_lEg]>

— rank {A

0
C’(A—p[) C(A—p1)1E§+F5]

=n+rank (C(Apr)_lEngFg).

= rank [
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Recall that for additive faults the fault isolability introduced in Definition
4.7 is identical with the concept of input observability known and intensively
studied in the literature, we would like to extend our study

to find out alternative conditions for checking conditions (4.24) or (4.25)
to compare them with the results known in the literature and
to gain a deeper insight into the isolability of additive faults, which will
be helpful for some subsequent studies in the latter chapters.

To simplify our study, we first consider G¢(p) = C (pI — A)fl E¢. It follows
from Cayley-Hamilton Theorem that

C(pl — A)" Eg (Z Sip"” ) B = <Z ai(p) A 1) B
(4.26)

(Z)(p) = det (pI—A) :pn +a1pn71 _|_a2pn72 +--tap—1p+an
Si:SiflA—i_aiflI;Sl 21’2227 ,n

ar(p) =p" tap" T+ a1, 1(p) =p+ar,an(p) =1

which can be rewritten into

CE¢
1 1 CAE&
C(pl —A)  E¢= M [Ch(p)f az(p)] -+ Oén(P)I] . - (427)
CAnilEg
It is obvious that if
CE¢
CAE;
rank . <l
CAn_lEé
then there exists a u which yields
CE¢
CAFE; .
) u=0=C(pl—-A)  Eru=0.
CAnflEE
Thus,
CE¢
CAE;
rank . =1 (4.28)

CAn_lEg
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builds a necessary condition for the fault isolability. We would like to call
reader’s attention that (4.28) is not a sufficient condition for the fault isola-
bility. To see it, we consider a special case with m =1,m <1 <n and (C, A)
being observable, i.e.

c
CA

rank . =n.
CA"1

It immediately becomes clear that (4.28) is satisfied. But, the system is, due
to m < [, not isolable, as can be seen from Corollary 4.2.

Remark 4.2 We would like to point out that (4.28) is claimed as a necessary
and sufficient condition for the input observability in some publications, which
18, as shown above, not correct.

Below, we shall derive some sufficient conditions on the assumption that
m > [ and (4.28) holds. Note that the orders (highest power) of «;(p),i =
1,---,n, given in (4.26) are different . If for some j € {1, - ,n}

rank (CA'™'E¢) =1 (4.29)

then (4.27) can be rewritten into

_ 1 i )
CpI - A)"Ee=— oI+ > alp)Qi | CA'E;
¢(p) ey
i=1,i#j
where Q; € R™*™ i =1,--- ,n,i # j, are some matrices. Considering that

rank | oj(p)I + Z ai(p)Qi | =m > 1, rank (CAjflEg) =1
i=1,i#]

we finally have
rank (C (pl — A" EE) =1.

This proves the following theorem.

Theorem 4.3 Given C (pI — A)™" E¢ as defined in (4.26) with m > | and
satisfying (4.28). Assume that for some j € {1,--- ,n}, rank (CAT71E¢) = 1.
Then

rank (C (pI — A" Eg) =1l

In the framework of linear system theory, CA*E¢,i = 0,1, , are called
Markov matrices. Theorem 4.3 provides us with a sufficient condition for
checking the isolability of additive faults by means of Markov matrices.
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It is interesting to note that according to (4.26) C (pI — A)~" E¢ can also
be rewritten into

C(pl — A) " E: = (4.30)
CE; 0 - 0 7
IR Ip
[an—ll ceeagd ]] C‘éllEf C.EE . :
0

CAn_lEg CAn_QEg cee CE& Ipnil
This form is important in studying various algebraic properties of the so-called
parity space methods.

In a similar manner like the proof of Theorem 4.3, we are able to prove
the following theorem that gives an alternative sufficient condition for the
isolability.

Theorem 4.4 Given C(prA)_lEg. Let I} = CS;Ee,i = 1,--- ,n, and
assume that for some j € {1,--- ,n}

rank (Ij) =1 (4.31)
then rank (C (pI — A Eg) =1.

The above discussion and the results given in Theorems 4.3 and 4.4 can
be easily extended to the general form of system model C' (pI — A)_1 Ee+ Fr.
To this end, we extend the state space description as follows

NI
y=[C F] {ﬂ =C7,7 = {ﬂ . (4.33)

It is easy to prove that given C (pI — A)™" E¢ + F¢ condition (4.28) can then
be equivalently written as

CEg
CAE; Fe
. CEg )
rank =~ Tn = rank ) =1 4.34
CA"E; : (
CAnilEE
_C’An-‘rl—lE_l5 |
while conditions (4.29) and (4.31) respectively as
~ D15\ _ rank (Fg) =1, if j =1
rank (CA Eg) - {rank (C’AJ_QEg) =, ifje{2,--- ,n+1} (4.35)
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0
rank (I;) =1,j € {0, ,n}, To = [anl -+ a1 T I] 0 —F  (4.36)
Fe
S -
) 0
Iy = [anI 11l - a1l I] Fe ,je{l,---,n}. (4.37)
CF;
_CAiilEE_

We now review the conditions for the structural fault isolability of mul-
tiplicative faults. Although Corollary 4.1 holds for both additive and multi-
plicative faults, the forms of the faults matrices of multiplicative faults reveal
that isolating multiplicative faults may demand more sensors. To illustrate it,
we first take a multiplicative process fault as an example. Remember that in
this case the fault transfer matrix is C'(pI — A)~'A;(pI — A)~!B, which can
be written as

AA; 0
C(pI —A)'A;(pI —A)™'B=|0 A B
co 0

In the worst case, this multiplicative process fault can span a subspace with
dimension equaling to

rank (C(pI — A)"'A;(pI — A)"'B) = min{m, k,} == k.

To isolate such a (single) fault, we need at least k sensors.

As to multiplicative sensor and actuator faults, it seems that their fault
transfer matrices, C;(pl — A)~'B, C(pI — A)~!B;, would span a lower dimen-
sional subspace, for instance in case that

rank (C;) = 1,rank (B;) = 1.

On the other side, if those faulty sensors and actuators are embedded in a
feedback control loop, for instance with © = Ky, then they will cause change
in the eigendynamics of the closed loop system. In another word, they will
affect the system performance like a multiplicative process fault. Again, to
isolate these faults, additional number of sensors are demanded.

In practice, in particular in systems with integrated feedback control loops,
it is often the case that the system input keeps constant or changes slowly
over a relatively long time interval. On the assumption of a constant vector
u, we introduce the concept of weak isolability of multiplicative faults.
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Definition 4.8 Given system (4.1)-(4.2) and let
01
0= :
0
with multiplicative faults 0;,1 = 1,--- 1. 0 is called weakly isolable, if for all

l
constant vector u € () Uexe,0,
i=1

0
=5 lo=o d0 £ 0.

The theorem given below follows directly from Corollary 4.1 and the defi-
nition of weak isolability of multiplicative faults.

Theorem 4.5 Given system (4.1)-(4.2) and let

61

o=
0,

be a multiplicative fault vector with fault transfer matriz

Go(p) = [Go,(p) - Go,(p)]-

l
Then, 6 is weakly isolable if and only if for all constant vector u € () Uexe,0,
i=1

rank [Gg, (p)u - -+ Go,(p)u] = 1.

Comparing the results given in Corollary 4.1 and the above theorem makes
it evident that the existence condition for a weak isolability of multiplicative
faults can be remarkably released.

Example 4.2 Consider again three tank system DTS200. It is evident that
it is impossible to isolate all eleven faults, since we only have three sensors.
However, if we are able to divide the faults into different groups and assume
that faults from only one group can occur simultaneously, then a fault isolation
becomes possible. For instance, if we divide the additive faults into two groups,
a group with the sensor faults and a group with the actuator faults, then we
have, using the fault transfer matrices given in the last section,

rank {ASI Egb} =6

C F,

and
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A—SIEg .
rank{ C ng5
where
100
E: =0,F;,. =]010 ,Ega’:[EﬂEfE)],Fga:O.
001

Thus, it follows from Corollary 4.2 that these additive faults are isolable on the
above assumption. As for the multiplicative faults, it follows from Corollary
4.1 that a group of three faults is generally not isolable. In fact, if it is assumed
that the sixz multiplicative faults are divided into three groups with (a) group
1: 61,05 (b) group 2: 03,04 (c) group 3: 05,06, then using the fault transfer
matrices given in the last section, we are able to prove that these faults are
isolable.

4.4 Structural fault identifiability

Roughly speaking, the concept of structural fault identifiability is understood
as a characterization of system structure that is essential to reconstruct faults
from the system output. From the mathematical viewpoint, fault identifia-
bility characterizes the mapping from the system output to the faults under
consideration. If this mapping is unique, then the faults are identifiable. Usu-
ally, we intend to express this mapping in terms of the model from the faults
to the system output, then the structural fault identifiability is equivalent to
the model invertibility. Motivated by this fact, we introduce the concept of
structural fault identifiability in terms of, different from the structural fault
detectability and isolability, fault transfer matrices.

Definition 4.9 Given system (4.1)-(4.2) and let
Ge(p) = [Ge,(p) -+ Ge,(p)]

be the fault transfer matrix of fault vector £ = [51 RS ]T . & is called struc-
turally identifiable if Ge(p) is invertible and its inverse is stable and causal.

Note that the requirements on the stability and causality of the inverse of
Ge(p) is an expression for the realizability of inversing G¢(p). It is evident that
without these two requirements, the structural fault identifiability would be
equivalent to the structural fault isolability. In another word, the structural
fault isolability is a necessary condition for the faults to be identifiable.

To understand the idea behind the definition of structural fault identifi-
ability, we now consider different types of faults respectively. Let f(p) be a
vector of additive faults with fault transfer matrix G¢(p). As shown in (4.11),
the change of y(p) caused by f(p) can be written as
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Ay(p) = G¢(p)f(p)-

If G¢(p) is invertible and its inverse is stable and causal, then it is possible to
reconstruct f(p) based on the relation

f(p) = G7H(p) Ay(p). (4.38)

Thus, fault vector f is structurally identifiable. For a multiplicative fault 6,
we have

Ay(p> = GeBi (p)’c (u(t)eBl)

with Gy, (p) = C (pI — A)™! B;. According to Definition 4.9, the structural
idenfiability of 05, means it is possible to reconstruct u(t)fp, based on

L(u(t)0p,) = Gg, (D) Ay(p) := By, (p)- (4.39)

Since system input u(t) is generally on-line available, an identification of the
fault 6p, can be achieved using the relation

05, = (uT (t)yu(t)) " uT (t)By, (t) for u(t) # 0. (4.40)
Analog to (4.39) and (4.40), we have the relations
L (u(t)0c,) = Gq,. (p)Ay(p) := By, () (4.41)
Oc, = (uT(Du(t)) " u”(£)B,,, () for u(t) # 0
L (u(t)0p,) = D; ' Ay(p) = By,,, () (4.42)

Op, = (uT(Hyu(t) " uT ()8, (1) for u(t) £ 0

for multiplicative faults ¢, and 6p,, respectively. Again, we can see that
identifying a multiplicative fault requires not only the invertibility of the fault
transfer matrix but also a sufficient excitation.

As to a multiplicative fault 6 4,, remember that the change in y caused by
04, can only be approximated by

Ay(p) = Go, ()L (u(t)0a,),Go,, (p) = C(pI — A)~"Ai(pl — A)~'B
in case of a small §4,. In general, we have

Oz ox

d [ Ox
b= (A+ Aifa )z + Bu, Ay(t) = C22 g, |
00 4,

It is evident that an identification of 4, would become very difficult.
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Example 4.3 Consider three tank system DTS200 with the fault transfer ma-
trices derived in Example 4.1. Since Vs

rank [A—SI 0 ]

C  I3xs

the inverse of the transfer matriz of the sensor faults is stable and causal.
According to Definition 4.9, these faults are identifiable. In against, the ad-
ditive actuator faults and the multiplicative process faults are not structurally
identifiable.

4.5 Notes and references

Due to their important role in the FDI study, much attention has been de-
voted to the concepts of fault detectability and isolability. In the beginning
phase, fault detectability and isolability have been often defined in terms of
the performance of the FDI systems used. Differently, in most of the recent
publications on this topic, fault detectability and isolability are expressed in
terms of the structural properties of the system under consideration. In or-
der to distinguish these two different ways of defining fault detectability and
isolability, we have adopted the notation structural fault detectability and
isolability to underline the original idea behind the introduction of these two
concepts. They are used to indicate the structural properties of the system
under consideration from the FDI viewpoint.

Definitions of (structural) fault detectability and isolability can be found
in all recently published books, see for instance [13, 21, 64, 117]. The inter-
ested reader may wonder about many different definitions of (structural) fault
detectability and isolability. One may also notice that most of these definitions
are related to the additive faults. It is one of our motivations to define struc-
tural fault detectability and isolability both for additive and multiplicative
faults unifiedly.

A confusion by the definition of fault detectability and isolability is caused
by way of defining faults. In some publications, a fault is also understood as a
vector. In this case, fault detectability requires a full (column) rank of the fault
transfer matrix to ensure that the occurrence of any fault would cause changes
in the system output. On the other side, this definition yields a conflict with
the fault isolability defined on the assumption that a fault is a scalar variable
and a fault vector represents a number of faults. For this reason, it has been
adopted in our study that a fault is understood as a scalar variable. In our
view, this definition fits real applications well. It also allows a unified handling
of additive and multiplicative faults.

In [76], the concept of input observability has been introduced, which has
been, in its original study, motivated by the input identification problem.
Due to its close relation to the FDI problems, this concept has been lately
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reformulated as fault detectability for additive faults, see for instance [96]. As
pointed out above and shown in Subsection 4.3.2, the input observability is
identical with the fault isolability defined in our study. We would like to call
attention of the interested reader that in Subsection 4.3.2 we have corrected
some wrong results on the existence conditions for the input observability.



Part 11

Residual generation



5

Basic residual generation methods

The objective of this chapter is to establish a framework and to lay founda-
tions for the study on model-based residual generation. We shall address the
concepts of analytical redundancy and residual generation on the assumption
of a perfect system model, as sketched in Fig. 5.1, and introduce a general
description form of model-based redundancy and residual generators. On this
basis, tasks of designing and constructing model-based residual generators will
be formulated.
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Fig. 5.1 Schematic description of the object addressed in Chapter 5

Three types of residual generators including

fault detection filter (FDF)
diagnostic observer (DO)
parity relation based residual generator (PRRG)

will be presented and studied. Main attention is paid to
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e the implementation and design forms of these residual generators,
e characterization of the solutions and
e interconnections among the different types of residual generators.

5.1 Analytical redundancy

The concept analytical redundancy stands generally for an analytical recon-
struction of quantities or parts of the system under monitoring. For our pur-
pose of residual generation, known as a comparison between system measure-
ments and their redundancy, the analytical redundancy is understood as a
reconstruction of the measured quantities of the system under consideration.

Consider the following nominal model that describes the transfer behavior
of the system or a part of the system under monitoring,

y(p) = Gyu(p)u(p) (5.1)

where y(p) represents the measured variable, for which a redundancy will be
established, and u(p) a process variable that may be the process input or
even a measured variable. A natural and in practice often applied method to
reconstruct y(p) is an on-line parallel simulation of input-output relationship
(5.1)

9(p) = Gyu(p)u(p)

where §(p) stands for an estimate of y(p) and is called analytical or software
redundancy. Although this kind of redundancy promises a simple on-line im-
plementation and seems easy to be understood, the scheme of generating
redundancy is of a property that makes a direct application of this approach
often impossible, at least theoretically and in many practical cases: The dy-
namics of the estimation error is identical with the one of the system, i.e.
Gyu(p). In order to show what this means and which consequence this prop-
erty has, consider the influences of the system initial states and system model
uncertainty on the residual signal. To this end, the system model (5.1) is
extended to

y(p) = Gyu(p)u(p) + C(pI — A)~'z(0) + Ay(p) (5.2)

to include the process initial states 2(0) and model uncertainty Ay(p), where
the state space realization of Gy, (p) is assumed to be (A, B,C, D). It turns
out

r(p) = y(p) = §(p) = C(pI — A)~'z(0) + Ay(p) (5.3)

which means, in other words,

e the variation of r(t) from zero caused by z(0) # 0 disappears only when the
process u(p) is stable (i.e. A is stable), and even in this case the convergent
rate exclusively depends on the position of the eigenvalues of A in the real
part of the complex plane
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e the influence of the model uncertainty is not suppressed.

As a result, the reconstructed variable may strongly differ from its original
one (the measured one).

From the viewpoint of control engineering, the reason for the above-
mentioned problems is evidently traced back to the so-called open-loop struc-
ture. A known solution is, therefore, to modify the structure of system (5.1)
in such a way that a feedback loop is included. A reasonable and typical form
of such a modification is given by

9(p) = Gyu(p)u(p) + L(p) (y(p) — 9(p)) - (5.4)

In comparison with the open-loop structured system (5.1), we see that the
added term L(p) (y(p) — 9(p)) acts as a correction on 7(p) that ensures a
limited variation of §(p) from y(p). This system is closed-loop structured and
is of, by a suitable choice of the feedback matrix L(p), the properties required
for a redundancy system:

L. r(p) = y(p) — 4(p) = 0 for all u(p) (5.5)
II. tlim (y(t) — g(t)) for all z(0) (5.6)
II1. The convergent rate is arbitrarily assignable (5.7)
IV. the influence of Ay(p) is suppressed. (5.8)
We now consider how to choose L(p).
It follows from (5.2) and (5.4) that
y(p) = §(p) = Gyu(p)u(p) + C(pI — A)~'2(0) + Ay(p)
—Gyu(p)u(p) — L(p)(y(p) = 4(p)) (5.9)

and furthermore
(I +L(p) (y(p) — 4(p)) = CpI — A)~'2(0) + Ay(p).
Do a left coprime factorization of C(pI — A)~! (see Section 3.2),
CpI—A) ' =(I—C(pI —A+LC)"'L) " C(pI — A+ LC) ™!

with L ensuring A — LC stable. Recall our task is to select L(p) so that (5.5)-
(5.8) are fulfilled. To this end, we have to, knowing from linear system theory,
cancel the poles of transfer function matrix C(pI — A)~!, which are obviously
the zeros of matrix I — C'(pI — A+ LC)~'L. Setting

I+L(p)=(I-C(pI—A+LC)"'L)""
and noting the following equality

(I-C(pI —A+LC) ‘L) ' =I+C(pI — A)'L (5.10)
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give
I+L(p)=1+C(pl —A) 'L = L(p) =C(pl — A)"'L. (5.11)
Substituting (5.11) into (5.9) yields
y(p) —4(p) = C(pl — A+ LC) 'x(0) + (I — C(pI — A+ LC)~'L) Ay(p).

On the assumption that (C, A) is observable, by choosing L suitably we can
arbitrarily assign the poles of C(pI — A+ LC)~! and simultaneously suppress
the influence of Ay(p).

It is evident that system (5.4) with L(p) given by (5.11) satisfies condi-
tions (5.4)-(5.8). However, a slight modification is needed such that (5.4) is
presented in a suitable form for the on-line implementation. We do the fol-
lowing calculations:

9(p) = Gyu(p)u(p )+C(pI*A)’1L(y(p)*ﬁ(p)) =
(I+C pI A)7'L) §(p) = Gyu(p)u(p) + C(pI — A)~" Ly(p)

and thus

9(p) = (D +C(pI — A+ LC)" (B — LD)) u(p)
+C(pI — A+ LC) ' Ly(p). (5.13)

During the above calculations, Lemma 3.1 and (5.10) have been used. With
the aid of these relations, (5.13) can be brought into a compact form

9(p) = Nu(p)u(p) — (Mu(p) — Dy(p) (5.14)

with M, (p), Ny(p) denoting an LCF of Gy (p), i.e. Gyu(p) = M (p)Nu(p).

(5.14) describes a dynamic system whose input is u(p), y(p) and output an
estimate of y(p). This system is stable and will converge to y(p), independent
of u(p), z(0), with an arbitrarily assignable velocity.

Let’s transform (5.13) into the state space

&= A+ Bu+ L(y — C& — Du) (5.15)
9 =Cz% + Du. (5.16)

Its similarity to the well known state observer becomes evident. We call there-
fore system (5.14) or equivalently (5.15)-(5.16) output observer. As an estimate
for y(p), 4(p) and the associated algorithm are also called soft- or virtual sen-
sor.

We summarize the main results of this section into a theorem.

Theorem 5.1 Given a transfer function matriz Gy, (p) € R™*Fu with the
state space realization (A, B, C, D), then signal §(p) delivered by system (5.14)
or equivalently (5.15)-(5.16) reconstructs y(p) in the sense of (5.5)-(5.8).
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The output observer builds the core of a residual generator. As will be
shown in the next section, residual generator design can be reduced to the
construction of an output observer.

Remark 5.1 The original idea of using system model to construct redun-
dancy and residual signals goes back to the works by Beard and Jones, in
which a state observer in a quite similar form to (5.15)-(5.16) was used for
the purpose of the output reconstruction. Since then, this approach is widely
and successfully used in dealing with FDI problems under the name observer-
based approach and has now become one of most powerful techniques in the
field of model-based fault diagnosis. Unfortunately, the expression observer-
based approach often leads to the misunderstanding that a state observer is
necessary. This is also the reason why we have paid much attention to the
introduction of analytical redundancy construction using process input-output
relationship.

We would like to conclude this section with the following comments:

e What we need for the residual generation is the input-output behaviors of
the process under consideration.

e The state observer form (5.15)-(5.16) provides us with a numerical solution
for the purpose of creating analytical redundancy. It is not the only solution
and, in some cases, also not the best one.

e The use of the state observer form (5.15)-(5.16) is based on the assump-
tion that Gy, (p) has the state space realization (A4, B, C, D). Known from
the linear system theory, it means that only observable and controllable
parts of the process are taken into account. From the viewpoint of resid-
ual generation, the system observability and controllability are in fact not
necessary for the use of the so-called observer-based FDI scheme.

5.2 Residuals and parameterization of residual
generators

In the context of FDI study, a residual signal is understood as an indicator for
the possible faults. The most important characteristic features of a residual,

r(p), are

I tlirgo r(t) = 0 for all u(t),z(0) and Ay(t) =0 (5.17)
1. 7(p) = Grs(p)f(p), Grs(p) # 0. (5.18)

Using the output observer (5.14) we are able to generate a residual simply by
a comparison of §(p) with y(p):

r(p) = y(p) — 9(p) = Mu(P)y(p) — Nu(p)u(p). (5.19)
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On the other hand, we know that a signal constructed by e.g. R(p) (y(p) — 9(p)),
where R(p) # 0 is some matrix or vector, is also a residual in the sense of

(5.17)-(5.18). This motivates us to ask: What is the general form of a resid-

ual generator? It is reasonable to assume that all residual generators can be

expressed in terms of

r(p) = F(p)u(p) + H(p)y(p), F'(p), H(p) € RHoo (5.20)

where F(p) and H(p) represent two stable systems with appropriate dimen-
sion. Thus, the answer to the above question can be concretely reformulated as
a search for the existence conditions for F(p) and H(p) under which residual
r(p) fulfills conditions (5.17)-(5.18).

Substituting (5.1) into (5.20) yields

7(p) = F(p)u(p) + H(p)Gyu(p)ulp) = (F(p) + H(p)Gyu(p)) u(p).

We see that system (5.20) delivers a residual only if

F(p) + H(p)Gyu(p) =0

which can be further written into
F(p)My(p) + H(p)Nu(p) =0 (5.21)

with (M, (p), Nu(p)) denoting a RCF pair of Gy, (p). The following theorem
shows under which conditions (5.21) holds.

Theorem 5.2 Let

o (My(p),Nu(p)) and (My(p), Nu(p)) be left and right coprime factorization
pair of transfer function matriz Gy, (p) € LR™ F,

e Y(p),X(p), Y(p), X(p) be R'H oo -matrices with appropriate dimensions that
satisfy the Bezout identity (3.14)

o K(p) be a ky X kp,-dimensional RH -matriz.

Then, the set of RHoo-matrices F(p), H(p) satisfying

F(p)M.(p) + H(p)Nu(p) = K(p) (5.22)

is given by

F(p) = K(p)X(p) — R(p)Nu(p), H(p) = K(p)Y (p) + R(p)Mu(p) (5.23)

where R(p) belongs to RHoo and is a k, X m-dimensional RH~ parameteri-
zation matriz.

Furthermore, for every k, x m-dimensional RHoo parameterization matrix
R(p), F(p), H(p) satisfying (5.23) ensure that (5.22) holds.
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Proof. Suppose F(p) and H (p) satisfy (5.22) and define

which, considering that F(p), H (p),X (p) and Y(p) are RH., matrices, be-
longs to RH . It results in

- -1
[F(p) Hp)] = [K(p) R(p)] [1‘]\{“ (<p)) Y((zﬂ
from which (5.23) follows readily. To prove that every F(p),H(p) given

by (5.23) satisfy (5.22) we use the double Bezout identity (3.14). Suppose
F(p), H(p) satisty (5.23). Then

F(p)M,(p)+ H (p)Nu(p) =

Hence, they ensure that (5.22) holds. O

Setting K(p) in Theorem 5.2 equal to null-matrix gives all solutions of
(5.21) and thus a parameterization of all residual generators.

Theorem 5.3 Given transfer function matriz Gy, (p) € LR™F with a left
coprime factorization pair (M, (p), Nu(p)), then

r(p) = Rp) (Mu)y(p) - Nu(p)u(p)) (5.24)

represents a parameterization form of linear residual generators in the sense
that

o for every residual generator we can find a RHoo-matriz R(p) such that the
residual generator can be expressed in terms of (5.24),

o for every R(p) € RHoo system (5.24) delivers a residual satisfying (5.17)-
(5.18).

A comparison with (5.19) reveals that any residual generator can be con-
sidered as an extension of an output observer-based residual generator. They
consist of two parts: an output observer and a dynamic system R(p). These
two parts may take different functions:

e the output observer builds the core of the residual generator and is used
to reconstruct system behavior so that the original form of residual signal,
y(p) — §(p), provides us with the information about the variation of the
system operation from its nominal value,
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e the dynamic system R(p) acts in fact as a signal filter and can, by a suitable
selection, help us to obtain significant characteristics of faults, as will be
discussed in the forthcoming chapters. Thus, R(p) is also called post-filter.

Example 5.1 Consider the benchmark system EHSA given in Subsection
3.7.5. We would like to parameterize all residual generators for EHSA accord-
ing to Theorem 5.3. To this end, we use the same LCF as given in Subsection
3.7.5 with

’ M1 (p) Mlz(P)} 5 {]\711(1?)}
Mu - ~ ~ 7Nu = A
®) [Mm(p) Maa(p) ») Noi(p)
PP+ 38391p* + 1.19 x 10%p® + 1.36 x 10'1p?
+6.98 x 10'3p + 1.5 x 1016

Mlp) = C(p)
4 3 8,,2
s (M)
C(p)
1,02 x 1012 ( pt + 39549p130+ 3.79 x 107%2>
Mu(p) _ +1.43 x 10*"°p + 3.17 x 10
C(p)
< p° + 6.958 i i(;;pi +1011.422 X ;(éipi ;)11.115 X 1012p2>
A . p— 2.
Maa(p) = C’(p)
_3.34 (10 104t — 579 x210_5p3 —5.1 ><241016p2>
Fa(p) = —1.91 x 10%'p —2.33 x 10
C(p)
4 3 8,2
Fonlp) = 282> 1070 (1—91—5—.;1 ¥ 61(())15(’p++1 i?).g6xx1(1)0€5>
C(p)
Clp) = p° 4+ 7.08 x 10*p* + 1.31 x 10%p® + 2.69 x 10'2p?

+1.87 x 10p + 5.38 x 107

The parameterization form of the all residual generators is expressed by

r(p) = R) (Mu(p)y(p) — Nu(®)u(p)) , R(p) € RHoc

5.3 Problems related to residual generator design and
implementation

Having addressed the parameterization form of residual generators, we are now
faced with a practical task: how to design a residual generator described by
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(5.24). Taking a look at (5.24) and recalling the meaning of R(p), M, (p) and
N, (p) make it clear that there exist indeed two design parameters (parameter
matrices): the observer gain matrix L and the post-filter R(p). The question
arises: how to choose L and R(p)?

Remember that the main objective of using a residual generator is to
make the residual signal as sensitive to faults as possible and simultaneously
as robust as possible against the model uncertainty. For this reason, we first
study the dynamics of residual generator (5.24). Let us consider system model
of the form

y(p) = Gyu(p)u(p) + Gys(p) f(p) + Ay(p)

and substitute it into (5.24). We immediately see that the dynamics of residual
generator (5.24) is governed by

r(p) = R(p)Mu(p) (Gys (p) S (p) + Ay(p)). (5.25)
Obviously, the problem of residual generator design can be simply formulated
as finding R(p) € RHs and L ensuring the stability of matrix A — LC such
that

e R(p)M,(p)G 7(p) as large as possible and simultaneously
R(p) M., (p)A(p) as small as possible.

In fact, the so-called observer-based residual generation approaches re-
ported during the last three decades served only for one purpose, i.e. finding
R(p) and L, although different mathematical and control theoretical tools
have been applied, the structures of residual generators are various and the
achieved results appear quite different. These approaches will be described in
the subsequent sections of this chapter.

We now have two different forms of residual generators, (5.24) and (5.25).
(5.24) presents an explicit form that describes the structure and the possible
algorithm for the on-line implementation. We call it implementation form of
residual generators. In some references, it is also called computational form.
Note that all variables and transfer function matrices used in (5.24) are known
or measurable. In against, the variables given in (5.25) are unknown. Thus,
(5.25) is an internal form that provides us with the dynamics of the FDI
system and used for the purpose of residual generator design. For this reason,
we call it design form of residual generators.

Remark 5.2 There exist a variety of methods for the on-line realization of
implementation form (5.24). We can use, for instance, the state space realiza-
tion similar to (5.15)-(5.16) or transfer matrices. It is independent of which
method is used for the determination of L and R(p). Our main attention in
the following will be paid to the methods of residual generator design. The
reader should keep in mind that the on-line implementation can be carried out
independent of the design form used. One can use e.g. state space scheme for
the on-line implementation even if L and R(p) are calculated by means of a
frequency domain approach.
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Although (5.24) and (5.25) can be directly used for the residual generator
design, the most important advantage of using them lies in their generality and
the parameterization form, i.e. they represent the design and implementation
forms of all linear residual generators. We shall in the following often make use
of this property for the purposes of introducing some concept and or making
system analysis. We call them therefore general forms of residual generators.

5.4 Fault detection filter

Fault detection filter (FDF) is the first kind of observer-based residual gener-
ators proposed by Beard and Jones in the early 70’s. Their work marked the
beginning of a stormy development of model-based FDI techniques.

Core of an FDF is a full-order state observer

&= A%+ Bu+ L (y — Ci — Du) (5.26)

which is constructed on the basis of the nominal system model G, (p) =
C(pI — A)7'B + D. Built upon (5.26), the residual is simply defined by

r=y—y=y—C%— Du. (5.27)
Introducing variable e = z — % yields
é=(A—-LCe,r=Ce.

It is evident that r possesses the characteristic features of a residual when
the observer matrix L is so chosen that A — LC' is stable. In this case, Z also
provides a unbiased estimation for z, i.e.

lim (z(t) — z(t)) = 0.

t—oo
The advantages of an FDF lie in its simple construction form (5.26)-(5.27)
and, for the reader who is familiar with the state space control theory, in its
intimate relationship with the state observer design, modern control theory
and especially with the well established robust control theory by designing
robust residual generators.

We see that the design of an FDF is in fact the selection of the observer

matrix L. To increase the degree of design freedom, we can switch a matrix
to the output estimation error y(p) — 4(p), i-e.

r(p) =V (y(p) — 9(p)) - (5.28)

As discussed in the last section, (5.26)-(5.27) can be interpreted as a state
space realization of M, (p)y(p) — Nu(p)u(p). It thus turns out that an FDF
is indeed a special form of residual generator (5.24), namely the post-filter is
a unit matrix for FDF given by (5.26)-(5.27) or a certain algebraic matrix
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for FDF given by (5.26) and (5.28). A disadvantage of FDF scheme lies in
the on-line implementation due to the full-order state observer, since in many
practical cases a reduced order observer can provide us with the same or
similar performance but with less on-line computation. This is one of the
motivations for the development of Luenberger type residual generators, also
called diagnostic observers.

Example 5.2 Given benchmark system EHSA with model (3.82). For the
residual generation purpose, an FDF of form (5.26)-(5.27) is designed with
the same observer gain as used in the LCF, i.e.

—9.2418 x 107° 3.0326 x 103
1.6676 x 10~2 7.1992 x 104

L= 5.6 x 107 —19.116
3.2451 x 10* —1.02 x 10'2
—1.8795 x 10~7 1.262 x 103

which ensures a stable FDF with poles

$1 = —38611, 89 = —1257.4, 53 = —486.5 + 364.9j
54 = —486.5 — 364.97, s5 = —30000.

5.5 Diagnostic observer scheme

The diagnostic observer is one of mostly used and studied model-based resid-
ual generator forms. One reason for this popularity is its flexible structure
and its similarity to the Luenberger type observer.

5.5.1 Construction of diagnostic observer-based residual
generators

The core of a diagnostic observer is a Luenberger type (output) observer that
is knowingly described by

3=Gz+Hu+Ly,j=Wz+Vy+Qu (5.29)

where z € R®, s denotes the observer order and can be equal to or lower or
higher than n, the system order. Although most contributions to the Luen-
berger type observer are focused on the first case aiming at getting a reduced
order observer, higher order observers will play an important role in optimiza-
tion of FDI systems.

Assume Gy, (p) = C(pI — A)™'B + D, then matrices G, H,L,Q,V and
W together with a matrix 7' € R**" have to fulfill the so-called Luenberger
conditions,
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I. G is stable (5.30)
II. TA—GT = LC,H =TB — LD (5.31)
III. C=WT+VC,Q=-VD+D (5.32)

under which system (5.29) delivers a unbiased estimation for y, i.e.

Jim (y(8) ~ 3(0)) = 0. (5.33)
To show it, we consider a dynamic system with e = Tz — z as its state vector
and y(p) — g(p) as its output. It turns out, according to (5.30)-(5.32),

é¢=Ge,y—17j=We (5.34)
which ensures (5.33). On account of (5.34),
r=V*(y—9),V*#0 (5.35)
builds a residual vector, whose dynamics is described by

2 =Gz+Hu+ Ly (5.36)
r=VyY-V*Wz—V*Vy -V*Qu=Vy—-Wz - Qu (5.37)

where - - -
V=V (I—V),W:V*W,Q:V*Q.

Thus, for the residual generator design condition IIT given by (5.32) should
be replaced by
1. VC-WT =0,Q =VD. (5.38)

Remember that in the last section it has been claimed all residual generator
design schemes can be formulated as the search for an observer matrix and
a post-filter. It is therefore of practical and theoretical interest to reveal the
relationships between matrices G, L, T, V and W solving Luenberger equations
(5.30), (5.31), (5.38) and observer matrix as well as post-filter.

A comparison with the FDF scheme makes it clear that

e the diagnostic observer scheme may lead to a reduced order residual gen-
erator, which is desirable and useful for on-line implementation,
we have more degree of design freedom but, on the other hand,
more involved design.

Having shown the importance of Luenberger equations (5.30)-(5.31), (5.38)
in designing diagnostic observers, we concentrate our attention in the following
on their solutions.

Remark 5.3 On account of its importance in observer design, solution of
Luenberger equations has received much attention in the 70’s and 80’s, and a
large number of algorithms and studies have been published during this period.
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On the other side, unlike most of observer design approaches, in which the
observers are usually designed for the estimation of unmeasurable variables,
the objective of using diagnostic observer is to reconstruct measured variable.
This difference, being observable by III condition (5.82), also motivated studies
on characteristic properties of the special form of Luenberger conditions given
by (5.30)- (5.81), (5.58).

5.5.2 Characterization of solutions

In this subsection, a characterization of solutions of Luenberger equations
(5.30), (5.31) and (5.38) will be provided. Some of results will be used later and
help us get an insight into the structure of observer-based residual generators.
We shall concentrate ourselves on the following topics

existence conditions,
minimum system order and
parameterization of solutions.

Without loss of generality we first make the following assumptions:

e the pair (C, A) is given in the canonical observer form, i.e.

Ay - Ay
A=| + ¢ 1 |eRY™C=[C- Cn] eR™™
| A1 -+ Amm
[0 0 0 ---0 d‘l‘
10 0--0 ay
B 01 0---0 a¥
Ai=1|.. . . . : ERI* 4i=1,---,m
0--- 0 1 O&sz@fl)
[0--- 0 01 ay |
[0--- 0a¥]
Ayyj=1:::1  |eR T m>i>jj=1,-,m—1
[0+~ 0aY, |
[0--- 0a¥]
Aij=1|: 1 |eR m>j>i,i=1--,m—1
_0---0&?_
Cfi:[O---Oéi]eRmX‘”,izl,---m
&l = [0 011 &m] €RV™i=1,-,m
where o1, -+ ,0,, are the observability indices satisfying o1, -, 0., > 1,

>, 0; = n. We denote the minimum as well as maximum observability
indices with 0,,;, = min; o; as well as 0,4, = max; o;, respectively.
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e the residual is a scalar variable, i.e. 7 € R, and thus Q,V, W will in the

following be replaced by ¢, v, w, respectively.

There are two reasons that explain why this assumption implies no restric-

tion on the generality of the study:

— A characterization of solutions will provide us with all possible solutions
of v, w. Using linearly independent solutions we are able to construct a
residual vector. On the other hand, a residual vector can equivalently
be considered as a bank of scalar residuals.

— More important, however, is the fact that in practical cases scalar resid-
ual signals are generally used.

e matrices G, w take the following form

10 -0 0
G=[Gog].Go=|:" - | eRXED g=]:]ecR (539

0--- 10 gs

0--- 01

w=[0---01] e R". (5.40)

Note that the dynamics of the residual generator is governed by
é = Ge,r = we.

It is reasonable to design the residual generator so that the pair (w,G) is ob-
servable. It is well known that by a suitable regular state transformation every
observable pair can be transformed into the form (5.39)-(5.40). Therefore this
assumption loses no generality.

To begin with our study, we split A into two parts

A= Ao+ LoC, A, = diag(Aot, -+, Aom) (5.41)
00 0 -0
1000

Ay = |01 0 O e oo =1 oo m, L,C e R™"
0--- 0 10

0---0ato---0ai?---0---0am™]
0--- Od}yll 0--- 0@(1721 oo 0--- 0 aim
LOC: . . . .

0---0a™o0---0ay?---0--- 0ap™

0---0ga™to0---0gm™%...0--- 0gmm

L Tm Om Om 4
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The pair (C, A,) is of an interesting property that is described by Lemma 5.1
and will play an important role in the following study.

Lemma 5.1 Fquation

poC +p1CAy+ -+ p;CAL + p,CAS =0,5 >0 (5.42)
holds if and only if '
piCA, =0, 1=0,---,s. (5.43)
Furthermore, vectors p;,1 =0,--- s, satisfy

pi=0,a=0,-, Omin — 1;piCAi =0, 4= Omins " »Omaz — 1 (5.44)
and pi, i > Opmas, are arbitrarily selectable.
Proof. First note that AY = 0,4 > 0'y4s, hence we have

ij’A{; =0, for all p;,j > 0mas and so
PoC +p1CAy + -+ +pCAS =0 <= p,C +p1CA, + -+ +pCAL =0

with [ = Omaz — 1 for s Z Omax
s for s < Oimaq

We now prove (5.43) as well as (5.44). To this end, we utilize the following
fact: for a row vector ¢(# 0) = [ql qm] € R™ we have

qCAL =[G+ @], j>0
with the row vector q; € R7¢ satisfying

for j > 0;,q; = 0,and
for j <oy, i = [O 0ge; 0--- 0]

where the entry ¢é; lies in the (0; — j)-th place. Thus, the non-zero entries of
two row vectors p;CA? and p;CAJ,i # j, are in different places. This ensures
that (5.42) holds if and only if

p;jCAI =0, =0, ,1

Note that rank(CAJ) = rank(C) =m,j =0, ,0pmin — 1. Hence, we finally
have: for j =0,--- ,omin — 1

ijAZ:O<:>pj:0

The lemma is thus proven. 0O
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We now consider equation (5.31) and rewrite it into
TA,—GT = LC,L=L—TL, Ay—= A— L,C

and furthermore

TSAO Ts _ I/s TSAO o I/s
] teal o] =[] [ ] o= [ oo
(5.45)
where N
_ t1 _ 1
T:|:TS:|7TS_ : vl_/:|:I:S:|7-Es:
ts ls —
te—l ls—l
Writing G, as
00 ---0
10 ---0
G, — {%1 ?] Gr= | | e REDXGY)
0--- 10
0--- 01
and considering the last row of (5.45) result in
teAy —ts 1 = 1,0+ gsts ==ty 1 =t Ay — (I,C + gsts). (5.46)
Repeating this procedure leads to
ts—2 = ts—le - (l_s—lc + gs—lts)
= tsAg - (l_s—lc + l_sCAo) - (gs—lts + gstsAo)
. (5.47)

ta = t3Ao — (13C + gats)

=t AS2 = (130 + -+ LOAS™) — (gaty + -+ + got s AS5)
t1 = taAy — (12C + gots)

=t AT (O + -+ LOAS™) — (gats + - + guta AS72).

Finally, from the first row of (5.45) we have
t14, = [10 + g1ts. (5.48)

(5.46)-(5.48) give a kind of characterization of all solutions of (5.31), based on
which we are going to derive the existence condition of residual generators.

To this end, we first consider (5.38). Since v # 0, it is evident that the
equation

T —0C =0 g
wl —vC =0 < [w —v] [C} =

is true if and only if the last row of matrix T linearly depends on the rows of
C. Based on this fact, the following existence condition can be derived.
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Remark 5.4 [t is worth pointing out that the above fact is contrary to the
existence condition of a Luenberger type state observer which requires the lin-
ear independence of the rows of T' from the ones of C. The reason for this is
that state observers and observer-based residual generators are used for dif-
ferent purposes: state observers are used for the estimation of unmeasurable
state variables, while the observers for the residual generation are used for the
estimation of measurable state variables (output signal).

Theorem 5.4 Equations (5.31) and (5.88) are solvable if and only if
$ > Omin- (5.49)

Proof. Here, we only prove the necessity. The sufficiency will be provided
below in form of an algorithm. The fact that the last row of matrix T is
linearly dependent on the rows of C' can be expressed by

ts = 0sC,
for some v5 # 0. This leads to

tsfl = tsAo - (ZSC + gsts) = ESCAO - (ch + gkts)

t; = 0,CASH — (IO + - + [,CAST2) — (gats + - -+ + gst s AST?)
Substituting ¢; into (5.48) gives
0sCAS — (1LC + 1,C A, + - + [CAS™Y) = gits + gots Ay + -+ + gsts AST?
and further
0,CA% — (I} + g105)C — - - - — (I + 950, )CAS™ =0
Following Lemma 5.1 we know that the above equation holds only if
$ 2 Omin
Thus, the necessity is proven. O

Based on this theorem, we can immediately claim

Corollary 5.1 Given system G, (p) = C(pI — A)"1B+ D, the minimal order
of residual generator (5.36)-(5.37) is Omin-

We now derive an algorithm for the solution of (5.30), (5.31) and (5.38),
which also serves as the proof of the sufficiency of Theorem 5.4.
We begin with the following assumption

ty = 0,C, 05 £ 0
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and suppose s > 0min. According to (5.46)-(5.47) we have

ts—1 = 0sCAy — (Is + gsUs)C (5.50)

t1 = 0,CAS™Y — (Iy + go0s)C — -+ — (I + gs05)CAS™2. (5.51)
Substituting ¢; into (5.48) yields
0,CA% — (11 4 g175)C — (Io + g2Us)C Ay — - - — (Is + 950 )CAS™H = 0. (5.52)

Following Lemma 5.1, (5.52) is solvable if and only if

vsCAG = 0,05 # 0 (5.53)
([s + gs'ES)CAf)71 =0,---, (dein,+1 + gdminJrl@S)CAgmm =0 (5'54)
l_Umin + gdmin'l_}s = 07 e 71_1 + glﬁs = 0 (5-55)

and furthermore, since s > 0min, (5.53)-(5.55) are solvable. In order to sim-
plify the notation, we introduce vectors v;,% = dpnin, - ,s — 1, defined by

B = lis1 + gir1Us, (lig1 + giy10s)C AL = 0.
With the aid of these results the following theorem becomes evident.

Theorem 5.5 Given s > 0, then matrices L, T, v, w defined by

0 T 0 ,Do'nlin o @S 1T C T

O PP @Umin e /L_}s O CAO

6 Vomin " . Vg *-- O CA(‘S;_‘;.min—l
T = Doy 0" Ty 0O ---0 C As—omin (5.56)

Vg—1 g 0 0O ---0 CA?;_Q
Vg 0 0 0 - 0] CAg_l |
I _glﬁs 1
—9g2Us

L=L+ TL,, L= Y90 minUs (5.57)

“Vomin — Yomin+1Us

*65—2 - gs—llas
—Us—1 — gsUs

w=1[0---01],0 =1, (5.58)
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solve equations (5.31) and (5.52) for all 1,92, ,gs that ensure the stability

of G, where Vs, —1, " ,Vs,,., 0re the solution of the following equations
’DUmamflc’Agmaz_l = 07 T 77707nm CAgmm =0 (559)
Voyuws '+ »Us are arbitrarily selectable and v5 # 0.

The proof follows directly from (5.50)-(5.55) as well as Lemma 5.1.

Together with (5.59), Theorem 5.5 provides us with an algorithm for the
solution of Luenberger equations for the residual generator design. We see that
the solution of (5.31) and (5.38) is reduced to the solutions of equations given
by (5.59). From 0,4, up increasing the order s does not lead to an increase in
computation. In fact, once equations (5.59) are solved for ¥y, —1,"** , T ;s
we are able to design residual generators of arbitrary order without additional
computation.

From the above algorithm we know that the solution for (5.31) and (5.38)
is usually not unique, since the solutions of equations given by (5.59) is not
unique (see also below) and, if s > 044, Vectors 0;,%1 = opmaz, - , S, are also
arbitrarily selectable. It is just this degree of freedom that can be utilized for
designing FDI systems. This also motivates the study on the parameterization
of solutions, which builds the basis of a successful optimization.

For our purpose, we first re-arrange the matrix 7" given by (5.56) as a row
vector:

1
T — : new arﬂgement [tl . ts] — f
ts
then we have, following Theorem 5.5,
£: [@Umin ,Uam,in‘i‘l e 'l_}?] Q
C’Agmin_l... 0 .- 0
CAgmin .. CA, C ;
@= : . . :

CAzfl o CA‘Z*U’"’:" CAszfminfl . C
Let us introduce the notation
Nbasis == dlag (Na'

min? aNUm,az—hIme, e a[mxm)

where N; € R(m=—mi)xm j — g . .. Omas — 1, stands for the basis matrix
of left null space of matrix C A} with

m; = rank (C’Aé) .

It is evident that any vector [@gmm Vgpintl " T)S] can be written as
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[Q_}Umm Vo pmin+1 " 'US] = UNpasis

where ¥ # 0 is a vector of appropriate dimension. This gives the following
theorem.

Theorem 5.6 Given s > opin, then matriz T that solves (5.81) can be pa-
rameterized by

C’Agnlin_l . C O e 0

f= 0Npai | OO G ¢ (5.60)
"

CAf;_l . CA?;_U"”’"" CAf)—ﬂ'min—l . C

The proof is evident and therefore omitted.
From Theorems 5.5 and 5.6 we know that

e for every solution of (5.31) we are able to find a vector o # 0 such that
this solution can be brought into the form given by (5.60)

e on the other side, given a vector v # 0 we have a T' and further a solution
for (5.31).

In this sense, the vector ¥ # 0 is called the parameterization vector. Note
that

rank (Npesis) = number of the rows of Npgsis

Omax—1
:m(s_gmam+1)+ Z (m—ml)
<m(s+1— omin) = number of the columns of Npgsis (5.61)
and moreover
CAgnmﬁl C 0 ... 0
rank CA‘_)mm o Cj_qo ¢
: : : - .0
CAs~1 ... CA3=9min CAS—Omin=1 ... O
=m(s+ 1 — 0min) = number of the rows. (5.62)

Thus we have

Corollary 5.2 Equation (5.31) has m(s — omaz + 1) + Zf:”:;j(m —m;)
linearly independent solutions.

Remark 5.5 If s < 04z, the number of the linearly independent solutions
is given by Y7 (m —my).

1=0min
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Remember that at the beginning of this subsection we have made the as-
sumption that the observable pair (C, A) is presented in the canonical observer
form. Note that all the results given Theorems 5.5 and 5.6 are expressed in
terms of observability indices, matrices A,, CA®. It is known from the linear
control theory that the observability indices, matrix A, are structural charac-
teristics of a system under consideration that are invariant to a regular state
transformation. Moreover, for any regular state transformation, say Ty, we
have

TA—-GT = LC <= TTyT; ATy — GTTy = LCTy
vC —wT =0 <= vCTy —wTTg =0
H=TB-LD<+= H=TT4T,;'B— LD

i.e. the solutions G, H, L, q,v,w and so that the construction of the residual
generator are invariant to the state transformation Ty;. This implies that the
achieved results hold for every observable pair.

5.5.3 A numerical approach

Based on the result achieved in the last subsection, we now present an ap-
proach to solving Luenberger equations (5.30)-(5.31) and (5.38).

We first consider Theorem 5.5, in which a solution is indeed provided
except that knowledge of A, and L, is needed. Although A, and L, can be
determined by (a) transforming (C, A) into observer canonical form (b) solving
equation L,C' = A — A, for L,, the required calculation is involved and in
many cases too difficult to be managed without a suitable CAD program. For
this reason, further study is, on account of Theorem 5.5, carried out aiming
at getting an explicit solution similar to the one given by Theorem 5.5 but
expressed in terms of system matrices A, C.

For our purpose, the following lemma is needed.

Lemma 5.2 Given matrices A,, B,C, E, F and L, with appropriate dimen-
sions, then we have fori=1,--- s

F T 0 0 - 0][ F
CE —CLyg I 0 - 0 CE
CAE| - | =CALy —CLy I -+ 0| |CAE| (563
_CA'é I _CAZLO —CAio_lLO e _CLO I CA(SE
E=FE—L,F,A, = A, + L,C
cA, _ | o4, + L)
s = CLO I ’ . (564)
0

| CA; —CAé—lLo —Cio 7| | C(4,+ L,O)
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The proof is straightforward and thus omitted.
Let’s introduce matrix H; defined by

—CAgmin=LL, ... -CL, I 0 0
—CAZmin L, —CA,L, —CL, 1
H, =
: : : : .0
~CA3~ 'L, - —CA3~min[, —~CASOmin=V[ ... —CL, I
Note that
C C AGmin
CA C Agmintl
H,y = .
CA CA;
whose proof can readily be obtained by using equality (5.64). It turns out
CAGmin C
CAgmerl CA
[@Umin Uopmin+1 """ ’DS] . = 0sH; . =0
CA? cAs

where Uy, Vo,in+1:° - - » Us satisfy (5.59). We now define a new vector

Vs = [US,O Us,1 " " Us,s] = 6SH1

and then apply (5.64) to (5.56)-(5.57). As a result we obtain

= Vs, =VD = v, s D.

r A C
Us,1 Us2 *** Us,s—1 Us,s CA Us,0
Vs, 2 =t VUs,s 0 . Us,1
T = . . : 7L - - - g'Us,s
o . : A2
L Us,s 0 0 1 {cas—1 Vs,s—1
— _ T C ]
Us,1 Us,2 Us,s—1 Us,s CA Us,0
US,2 ...... US,S O ] Us,l
= . . : B + D + g’US’SD
e : C’AS—Q
L Us,s 0 0 _ CA‘S_l Vs,s—1
- D -
Us,0 + g1VUs,s Vs 1 Us2 **° Uss—1 Us,s CB
Vs,1 + GoUs,s VUs2 -+ --- Us,s 0 CAB
| Us,s—1 + gsVs,s Us,s 0 0 CA*2B
CA*~ 1B
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We now remove the assumption that (C, A) is given in the observer canonical
form, under which Theorem 5.5 has been derived. To this end, we suppose the
original system matrices are given by PAP~1,CP~!, PB with P denoting a
regular state transformation. Note that

TA—-GT =LC < TP 'PAP™' - GTP ' =LCP! (5.65)
H=TB—-LD<+= H=TP 'PB-LD (5.66)
vC —wT =0 <= vCP ' —wl'P™' =0 (5.67)
I cp! ]
Us,1 Us,2 " Us,s—1 Us,s CcP~1pAp~!
US,Q ...... ,US,S 0
=TP ' (5.68)
vss 0 - 0 :
| CP~Y(PAP~1)s—ip~1
C cp—!
CA CP~'PAP!
vs | . =0 <= v ) =0. (5.69)
CA* CP(PAP~1)*

We finally have the following theorem.

Theorem 5.7 Given system model Gy, (p) = C(pl —A)~'B+D and suppose
that s > oin and

C
CA
Vs . =0, vs = [US,O Vs1 **° US,S] (570)
CA®

then matrices L, T, H, q,v,w defined by

C
Vs,1 Us,2 * Vs,s—1 VUs,s cA
/US,Q ...... US,S 0 .
T=1" T : (5.71)
Vss 0 0 | |cas—2
_CIAS?I -l
Us,0
Vs,1
L=- . — Gusss,w=[0--- 01], v=04, (5.72)

Vs,s—1
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D
Us,0 + J1VUs,s Us1 VUs2 "+ Uss—1 Us,s CB
H Us,1 + 92VUs,s Us2 " = Us,s 0 CAB
I R S S | L
Vs,s—1 + GsUs,s ’Ugs g 8 8 CAS‘_QB
Vors A 1B

solve the Luenberger equations (5.30)-(5.81) and (5.38), where vector g should
be so chosen that the matriz G is stable.

It is clear that once the system matrices A,C are given we are able to
calculate the solution of Luenberger equations (5.30)-(5.31) and (5.38) using
(5.71)-(5.72). To this end, we provide the following algorithm.

Algorithm 5.1 Solution of Luenberger equations (5.30)-(5.31) and (5.38)

Step 1. Set s > Opmin

Step 2. Solve (5.70) for vso,- - ,Vs.s

Step 3: Select g such that G given in (5.89) is stable

Step 4. Calculate L, T, H, q,v,w according to (5.71)-(5.73).

We see that the major computation of the above approach consists in
solving (5.70). It reminds us of the so-called parity space approach. In fact,
the main advantage of this approach, as will be shown in the next sections, is
its intimate connection to the parity space approach and to parameterization
form presented in the last subsection, which are useful for such applications
like robust FDI, analysis and optimization of FDI systems.

Example 5.3 Given benchmark system EHSA with model (3.82). We now
design a diagnostic observer based residual generator using Algorithm 5.1.
Below is the design procedure with the achieved result:

Step 1: Set s =2
Step 2: Solve (5.70), which results in

vg=[-336x107% 7.25x 107" —1.08x 107" 1 0 2.76e x 1077 ]

Step 3: Set g
| —20000 N 0 —20000
| —300 T |1 —300

which results in two poles at —100 and —200 respectively
Step 4: Calculate L, T, H, q,v,w, which gives

0] , _[336x107% 0551
0%~ |-46x10"2 —1

02.76 x 107° 0 —1.08 x 10719 1
0 0 0 0 2.76 x 107°

v=1[027610"°] ,w=[01],¢=0.

-]

T
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Example 5.4 We now design a minimum order diagnostic observer for the
inverted pendulum system LIP100 that is described in Subsection 3.7.2. It fol-
lows from Corollary 5.1 that the minimum order of a DO is the minimum ob-
servability index of the system under consideration. For LIP100 whose model
can be found in (3.57), the minimum observability index is 1. Below is the
design procedure for a minimum order DO:

Step 1: Set s =1
Step 2: Solve (5.70), which results in

vs = [00.0645 —0.0051 —0.4947 0.0041 0.5011 |
Step 3: Select g = —3. Note that for s =1
G=g=-3
Step 4: Calculate L, T, H, q,v,w, which gives

H = —3.0738,L = [ —1.4841 —0.0521 1.5083] ,¢ = 0,w = 1
T = [—0.4947 0.0041 0.5011 0] ,v = [ —0.4947 0.0041 0.5011] .

To make an impression on the reader how a residual signal responds to
the occurrence of a fault, we show in Fig.5.2 the response of the generated
residual signal to a unit step fault occurred in the sensor measuring the
angular position of the inverted pendulum at 20 sec. We can see that due to
the initial condition the residual generator needs a couple of minutes before
delivering a zero residual signal in the fault-free situation. Mathematically,
it is described by the requirement (5.17), i.e.

tliglo r(t) = 0 for all u(t), z(0).

In practice, such a time interval is considered as the calibration time and
s a part of a measurement or monitoring process. In this context, in our
subsequent study, we gemerally do not take into account the influence of
the initial conditions. From Fig.5.2, we can further see that the residual
signal has a strong response to the fault.

5.5.4 An algebraic approach

The original version of the approach presented in this subsection was published
by Ge and Fang in their pioneer work in the late 80’s. In a modified form, the
key points of this approach are summarized in the following theorem.

Theorem 5.8 Given system model Gy, (p) = C(pI — A)"'B+ D and s >
Omin, then matrices L, T, V,W defined by

L=—c@)X, T=YJ (5.74)
v=wrcT (ccT) wrch = (5.75)
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0.15F B B . 4

g

5 10 15 20 25 30 35 40 45 50
Time [s]

Residual signal

Fig. 5.2 Response of the residual signal to a sensor fault

solve the Luenberger equations (5.80)-(5.81) and (5.32), where matriz G
should be chosen stable, X € R**™ is an arbitrary matriz, and

Cn € R=™X" and rank [ } =n, CCx =0 (5.76)

C
Cn
YV=[XGX. - G"'X] (5.77)
c(p) = det(pl — A) = anp” + an1p" '+ +ap+ao  (5.78)
a,CA" ' +a, 1CA" 2+ ... 4+ aCA+ a;C

anCA" 2 + a, 1CA" 3 + ... + axC

J = .
a,C

Proof. Substituting (5.74) into the left side of (5.31) yields

TA—FT=YJA-GYJ=X ZaiCAi - Z a;G'XC

i=1 i=1
Since .
aC+ > a,CA =0
i=1

we obtain

TA—-FT =-aXC - a,G'XC = —¢(G)XC = LC.
i=1
That (5.74) solves (5.31) is thus proven. Note VC' = WT given by (5.31)
means WT belongs to the range of C, which, considering Cy” spans the null-
space of C, equivalently implies WT'Cn” = 0. Furthermore, multiplying the
both sides of VC = WT by CT gives

VeCeT =WTCT <V =wrc” (cc”) ™
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Hence, the theorem is proven. 0O

It is evident that the design freedom is provided by the arbitrary selection
of matrix X, possible solutions of equation WT'C% = 0 that are generally not
unique. We summarize the main results in the following algorithm.

Algorithm 5.2 Solution of Luenberger Equations by Ge and Fang

Step 1. Calculate c(p) = det(pl — A) for ag,a1,--+ ,an
Step 2. Calculate L, T according to (5.74)

Step 3. Solve WT'CYL =0 for W

Step 4. Set V' subject to (5.75).

Example 5.5 We now design a DO for LIP100 using Algorithm 5.2. To this
end, model (3.57) is used. Below is the design procedure:

Step 1: Calculate c(p) = det(pl — A) for ag, a1, - ,ay, which results in
as = 1.0,a3 = 2.0512, ay = —20.9964, a; = —37.7364, a9 = 0
Step 2: Calculate L, T according to (5.74):

[ —43.7363 20.6009 25.6136 —5.2725
T = | —31.9964 32.0988 5.1094 —10.0610
| —3.9488 11.1150 66.6030 —3.5182

[ —23.6928 —49.8218 297.1340
L= 0299 —115.0328 494.9239
8.3036 —49.5223 182.1012

Step 3: Solve WTCL =0 for W :

—0.8461 0.5040 —0.1734
W = | —1.6922 1.0081 —0.3469
—2.5383 1.5121 —0.5203

Step 4: Set V' subject to (5.75):

21.5620 —3.1786 —30.6468
V = 143.1240 —6.3572 —61.2936
64.6860 —9.5358 —91.9404

5.6 Parity space approach

In this section, we describe the parity space approach, initiated by Chow and
Willsky in their pioneering work in the early 80’s. Although a state space
model is used for the purpose of residual generation, the so-called parity re-
lation, instead of an observer, builds the core of this approach. This is also
the reason why the parity space approach is generally recognized as one of
the important model-based residual generation approaches, parallel to the
observer-based and the parameter estimation.
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5.6.1 Construction of parity relation based residual generators

A number of different forms of parity space approach have, since the work
by Chow and Willsky, been introduced. We consider in the following only the
original one that is based on the assumption of a state space model of a linear
discrete time system described by

w(k+1) = Az(k) + Bu(k) + Eqd(k) + By f (k) (5.80)
y(k) = Cx(k) + Du(k) + Fqd(k) + Fy f (k). (5.81)

It is further assumed that (C, A) is observable and rank(C) = m.
For the purpose of constructing residual generator, we first suppose f(k) =
0, d(k) = 0. Following (5.80)-(5.81), y(k — s),s > 0, can be expressed in terms
of x(k—s),u(k—s) and y(k—s+1) in terms of x(k—s),u(k—s+1),u(k —s),
y(k —s) = Cx(k — s) + Du(k — s) (5.82)

yk—s+1)=Cx(k—s+1)+Dulk—s+1)
= CAz(k — s) + CBu(k — s) + Du(k — s + 1).

Repeating this procedure yields

y(k — s +2) = CA%x(k — 5) + CABu(k — s) + CBu(k — s + 1)
+Du(k —s+2), -,
y(k) = CA%z(k — s) + CA* ' Bu(k — s) + - -- + CBu(k + 1) + Du(k).

(5.83)
Introducing the notations
[ ylk—s) u(k - 5)
ys(k) = ok _:S oy Jus(k) = uik _:S Y (5.84)
L) u(k)
e D 0 --- 0
H,, = C:A H=| B P (5.85)
[CA° A . B D
allows us to rewrite (5.82)-(5.83) into the following compact form
ys(k) = Hosa(k — 5) + Hysus (). (5.86)

Note that (5.86), the so-called parity relation, describes the input and output
relationship in dependence on the past state variable z(k — s). It is expressed
in an explicit form, in which
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o 1y (k) and us(k) consist of the temporal and past outputs and inputs re-
spectively and are known

e matrices H, s and H, s are composite of system matrices A, B,C, D and
also known

e the only unknown variable is z(k — s).

The underlying idea of the parity relation based residual generation lies
in the utilization of the fact, known from the linear control theory, that for
s > n the following rank condition holds:

rank (H,s) =n < the number of the rows of matrix H, ;.

This ensures that for s > n there exists at least a (row) vector vs(# 0) €
R+D™ guch that
vsH, s = 0. (5.87)

Hence, a parity relation based residual generator is constructed by
r(k) = vs (ys (k) — Hu,sus(k)) (5.88)
whose dynamics is governed by, in case of f(k) =0,
(k) = vs (ys(k) — Hy sus(k)) = vsHp sx(k — s) = 0.
Vectors satisfying (5.87) are called parity vectors, the set of which,
Py ={vs | vsH,,s =0} (5.89)

is called the parity space of the s-th order.

In order to study the influence of f,d on residual generator (5.88), the
assumption that f(k) = 0,d(k) = 0 is now removed. Let us repeat procedure
(5.82)-(5.83), which gives

ys(k) = Hy sx(k — s) + Hy sus(k) + Hy s fs (k) + Hq sds(k)

where
flk=s) ] Fp 00

fo(k) = e _:SH) Hp = | P F | (5.0
i £(k) l C’As;lEf . CEf 1%
S dh—s) T Fy 0 --- 0

L) = d(k—zs—i-l) Ha. = C@d Fy oo (5.91)
] CAE, - CE, zgd

Constructing a residual generator according to (5.88) finally results in
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ro(k) = vy (H .o fo(k) + Haods (k) ,vs € Pi. (5.92)

We see that the design parameter of the parity relation based residual gener-
ator is the parity vector whose selection decisively effects the performance of
the residual generator.

Remark 5.6 One of the significant properties of parity relation based residual
generators, also widely viewed as the main advantage over the observer-based
approaches, is that the design can be carried out in a straightforward manner.
In fact, it only deals with solutions of linear equations or linear optimization
problems. In against, the implementation form (5.88) is surely not ideal for
an on-line realization, since it is presented in an explicit form, and thus not
only the temporal but also the past measurement and input data are needed
and have to be recorded.

Remark 5.7 The requirement on the past measurement and input data is one
of the reasons why the parity space approach is mainly applied to the discrete
time dynamic systems.

5.6.2 Characterization of parity space

Due to its simple form as solution of (5.87) a characterization of the par-
ity space seems unnecessary. However, some essential questions remain to be
solved:

e What is the minimum order of a parity space?
Remember that s > n presents a sufficient condition for (5.87). This im-
plies that the order of the designed residual generator is at least as high as
the one of the system under consideration. Should it be? Dose there exist
a lower order residual generator?

e How to parameterize the parity space for a given s?
As will be shown in the forthcoming chapters, parameterization of the
parity space plays an important role in optimization of parity relation
based FDI systems
How to select the order of the parity space?
Are there close relationships between the parity space approach and the
observer-based approaches?

Finding out suitable answers to these questions motivates a study on the
characterization of parity space.
To begin with, we introduce the following notation for v

m -
Vs = [UO,S Vi,s " 'Us,s] »y Vis ER™,i=0,---,s.

Notice that (5.87) is identical with (5.70) given in Theorem 5.7, which is
necessary and sufficient for solving Luenberger equations (5.30)-(5.31) and
(5.38). This relationship reveals
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Theorem 5.9 The minimum order of the parity space iS T pmin -

Theorem 5.10 Given s > Opmin, then vy = [vos -+ Vs_1s Us,s | € Ps can be
written as
Vs = @Hl, v = [ﬁﬂmin T_Ja-m,;n-‘,-l st Vg1 'Us] (593)
where
v; € Qj, Qj = {q | qCAﬁ = O}, Omin <J <8 (594)
_CAgmin_lLo —CL, T o --- 0
7CAg'nLinLO . *CAOLO *CLO I .
Hy =
: : : : . .0
fC'AfflLo . _CAzfam,;nLo —CAgf"mi"’lLo oo —CLy I

Ag is defined in (5.41)
Theorem 5.11 Assume that s > o and let
rank (C’A{;) =my, NjCAZ =0, ] =0Omin, "8

Then the base matriz of parity space Ps, denoted by Qpgse,s, can be described
by

Qbase,s = QbaS&SHl? QbaSE,S = diag(Namma o Nopae—1Nopgs o 7Ns)
No oo = Noaot1 =+ = Ny = Isem (5.95)

Omazx

and the dimension of parity space Vs is given by

S
dim(vs) = Z (m —m;), for omin < 8 < Omax
1=Cmin
Omax—1

=m X ($— Omaz + 1)+ Z (m —my;), for s> omaz- (5.96)

1=0min

Theorem 5.10 gives another way to write the parity vectors defined by
(5.87). It shows that all parity vectors v, can be characterized by vectors
Uj,J = Omin, - ,S, which belong to the subspaces @; defined by (5.94). In
other words: the selection of parity vectors only depends on the solution of
equations ﬁjCA{; =0,0min <J < s.

Theorem 5.11 provides us with an explicit expression for the base matrix
of parity space vs and shows that the degree of freedom for the selection of a
parity vector is the sum of the dimensions of subspaces Q;,j7 = opmin, - ,S.

The results presented in Theorems 5.9-5.11 have not only answered the
questions concerning the structure of the parity space but also shown an inti-
mate relationships between the observer-based and the parity relation based
approaches.
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5.6.3 Examples
Example 5.6 Consider nominal system model

b'npn + bn—lpn_l + - blp + bO
y(p) = —, p u
p" +ap—1p +-rFap+ag

(p). (5.97)

A trivial way to construct a parity space based residual generator for (5.97) is
(a) to rewrite the system into its minimum state space realization form and (b)
to solve (5.87) for vy design the residual generator and finally (c) to construct
the residual generator according to (5.88). On the other side, it follows from
Cayley-Hamilton Theorem that

AVt a1 AV At agA=0= [ao - an1 1] | . | =0
cA"
where A, c denote the system matrices of the minimum state space realization

of Gyu(p). That means
Vg = [ao S 1] (5.98)

is a parity space vector of system (5.97). To construct the residual generator
based on vs given by (5.98), (5.88) is used, which yields

r(k) = veys(k) — vsHy sus(k)
=yk)+ - +arylk —s+1) +aoylk — s) — vsHy sus(k).
It follows from (5.97) that vsH,, s should satisfy
VsHys = [bo -+ bn—1 bn].
As a result, the residual generator is given by
r(k) = [ao ) 1] ys(k) — [bo R bn] us (k). (5.99)

It is interesting to note that residual generator (5.99) can be directly derived
from the nominal transfer function without a state space realization. In fact,
(5.99) can be instinctively achieved by moving the characteristic polynomial
P4 an_1p" "+ aip+ag to the left side of equation (5.97). Study on this
example will be continued in the next section, which will show an interesting
application of this result.

Example 5.7 We now design a PRRG for the inverted pendulum system
LIP100. For our purpose, we set s = 4 and compute a parity vector using
matrices A and C given in discrete time model (3.58), which leads to

Vg = [0570 Vs,1 Vs,2 VUs,3 0574] ,Vs,0 = [—0.0643 —0.0756 —0.1674]
vs,1 = [—0.1418 0.0841 0.0391] , v, 2 = [0.0700 0.0440 0.0425 |
vs,3 = [0.0686 0.0030 0.0467 | ,v,4 = [0.0674 —0.0397 0.0518 ] .
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5.7 Interconnections, comparison and some remarks

In the early 90’s, study on interconnections and comparison among the resid-
ual generation approaches has increasingly received attention. In this section,
we focus our study on the interconnections between the design parameters
as well as the comparison of dynamics of the residual generator schemes pre-
sented in the last sections. We shall also make some remarks on the imple-
mentation and design forms of these residual generation approaches.

5.7.1 Parity space approach and diagnostic observer

We first study the interconnections between the design parameters of the par-
ity space and diagnostic observer approaches, i.e. interconnections between
L,T,H,q,v,w and parity vector vs. The following two theorems give an ex-
plicit expression for these connections.

Theorem 5.12 Given system model (5.80)-(5.81) and a parity vector vy, =
[v&g Vo1 - vs,s], then matrices L, T, H, q,v,w defined by

C
_'Ue,l Vs,2 *** Us,s—1 Us,s cA
/US,Q ...... ’US,S 0 N
T=1| " T : (5.100)
|55 0 0 | | cas—2
CAsfl
I + . [ D |
VUs,0 N 91Vs,s 'Us,l Us‘,2 - Us,s—l UB,S CB
e Us,1 G2Vs.s Us,2 VUs,s CAB
[ ; ] = : Lo L , (5.101)
Us,s—ly"" gsvs,s UB,S 8 8 8 CA572B
: | CcAs1B]
Us,0
VUs,1
L=-— _ —guss,w=1[0--- 01],v =04, (5.102)
Vs,s—1

solve the Luenberger equations (5.80)-(5.31), (5.38), where matriz G is given
in the form of (5.39) with g ensuring the stability of matriz G.

Theorem 5.13 Given system model (5.80)-(5.81) and observer-based resid-
ual generator (5.36)-(5.87) with matrices L,T,v,w solving the Luenberger
equations (5.80)-(5.31), (5.38) and G satisfying (5.89), then vector vy =
['US,O Us,1 * Us,s] with
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VUs,0
Us,1

Vg5 = U, : =—L—gv
Vs,s—1
belongs to the parity space Ps.

These two theorems are in fact a reformulation of Theorem 5.7 and the
proof is thus omitted.

It is interesting to notice the relationship between vsH, s and H,q as
defined in (5.88) and in (5.36)-(5.37) respectively. Suppose that g = 0, then

UsHu,s = [US,O Us,l T Us,s] ¢B b = [hv,O h/v,2 e hv,s]
: - -0
CA*~'B... CBD
Us,0 Us,2 "+ Uss D hv,O
H TB — LD US,I cr VUss 0 CB h'u,2
q| Vs,s D o Lo B
vss 0 - 0 | |CA'B P

(5.103)

That means we can determine H,q, as far as vsH, s is known, by just re-
arranging row vector vsH, s into a column vector without any additional
computation, and vice versa.

Theorems 5.12 - 5.13 reveal an one-to-one mapping between the design
parameters of observer and parity relation based residual generators. While
Theorem 5.12 implies that for a given parity relation based residual generator
there exists a set of corresponding observer-based residual generators with
g being a parameter vector, Theorem 5.13 shows how to calculate the corre-
sponding parity vector when an observer-based residual generator is provided.

Now, questions may arise: Is there a difference between the residuals deliv-
ered respectively by a diagnostic observer and its corresponding parity relation
based residual generator? Under which conditions can we get two identical
residuals delivered respectively by these two kinds of residual generators? To
answer these questions, we bring the diagnostic observer

z(k+1) = Gz(k) + Hu(k) + Ly(k),r(k) = vy(k) — wz(k) — qu(k)

into a similar form like the parity relation based residual generator given by
(5.88)

r(k) = vy(k) + qu(k) — wz(k)
=vy(k) + qu(k) —w (Gz(k — 1) + Hu(k — 1) + Ly(k — 1))
= vy(k) + qu(k) — wG°z(k — s) —wHu(k — 1) —
wG* P Hu(k — s) —wLy(k —1) — -+ —wG* ' Ly(k — s).
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Recalling (5.71)-(5.72) in Theorem 5.7 and noting that
wG = [0 - 01 wg--- wGi_lg]
it turns out
Us,0

Us,1

wG’iL:_[O...Olwg.--wGi’lg] : + gvs s

Im><m

= [vs,O VUs,1 *** VUs,s—1 Us,s] ngme

wGiilgI’mX’"L

i WG gL xm i
wG'H = wG* (TB — LD) = [0--- 01 wg- - wGg]
ST
Us1 Vs2 "+ ° VUss—1 Us,s cA Us,0
/US,Q ...... ’US,S 0 Us,l
) B+ . D + gvs s D
Ves 0 <o -0 0 CA'S,g Vs.s1
CAs—l
_ 0 _
D :
0 0 0
o CB D . Ik-uxku
— [,US,O Us 1 Vs ,s—1 Us,s] : . o ngkuxku
CA*"'B...CBD N
wGl_.lgIkuxku
| wGglk, xk, |
which finally results in
r(k) = —wG°z(k — s) + vs (fysys(k) — H07sfusus(k)) (5.104)

where
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Tnxm 0o 0
- wg[mxm |
ys — .
: 0
| wG g lsm  Welnxm Imxm
B ijuXk'u 0 0
I_us _ wglkuxku
: ‘ 0
| WG Ty, sk, - weTk, xk, Tr,xk,

Comparing (5.104) with (5.88) evidently shows the differences between these
two types of residual generators:

e in against to the parity relation based residual generators, the diagnostic
observer does not possess the s-step dead-beat property, i.e. the residual
r(k) depends on z(k —s),---,2(0),if g #0

e the construction of the diagnostic observer depends on the selection g, and
in this sense, we can also say that the diagnostic observer possesses more
degree of design freedom.

On the other side, setting g = 0 leads to
wWG® =0, Iys = Ln(si1)xm(s1)> Lus = Loy (551) x ko (5+1)

Thus, under condition g = 0 the both types of residual generators are identical.
It is interesting to note that in this case

—VUs,0
—VUs,1
L .
[v} = : . (5.105)
—Vs,s—1
Us,s

Remember that a residual signal is originally defined as the difference between
the measurement or a combination of the measurements and its estimation.
This can, however, not directly recognized from the definition of the parity
relation based residual signal, (5.88). The above comparison study reveals that

T(k) = Vs (ys(k) - Hu,S“S(k))
can be equivalently written as
z(k+1) = Gz(k) + Hu(k) + Ly(k),r(k) = vy(k) — wz(k) — qu(k).

It is straightforward to demonstrate that wz(k) + qu(k) is in fact an estimate
for vy(k). Thus, a parity relation based residual signal can also be interpreted
as a comparison between vy(k) = v, sy(k) and its estimation.
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5.7.2 Diagnostic observer and residual generator of general form

Our next task is to find out the relationships between the design parameters
of the diagnostic observer and the ones given by the general residual generator

r(p) = R(p) (Mu(p)y(p) — Nu(p)u(p)) (5.106)

whose design parameters are observer matrix L and post-filter R(p). We study
two cases: s < n and s > n.

Firstly s < n:

We only need to demonstrate that for s < n the diagnostic observer (5.36)-
(5.37) satisfying (5.30)-(5.31), (5.38) can be equivalently written into form
(5.106). Let us define

T = [g] € R™™ Ty € R rank(T*) =n (5.107)
1

TiA - GiTy = [,C, Gy € RM=9X(=5) 5 stable, G* = [%; cg } (5.108)
1

H*=T*B—L*D € R L* = [LL ] JWE=[WO0] e R™™  (5.109)
1
and extend (5.31) and (5.38) as follows
TA—GT = LC = T*A— G*T* = L*C (5.110)
VC-WI=0=VC-W*'T"=0 (5.111)
H=TB-LD = H*=T"B— L*D. (5.112)

Note that choosing, for instance, 77 as a composite of the eigenvectors of
A-L,C and Ly = Ty L, guarantees the existence of (5.108), where L, denotes
some matrix that ensures the stability of matrix A — L,C. Since

W(pI — G)~" (Hu(p) + Ly(p)) = W*(pI — G*)~" (H*u(p) + L*y(p))
= W*T*(pl — A+ T*'L*C)~'T* " (H*u(p) + L*y(p))
_ VC(pI —_A + T*flL*C)fl ((B . T*flL*D)u(p) + T*flL*y(p)>

the residual generator

r(p) = Vy(p) + Qu(p) — W(pI — G)~" (Hu(p) + Ly(p))

can be equivalently written as

with
M,(p) =T -C(pl — A+T*'L*C) "' 'L* (5.113)
Nu(p) = D+C(pl — A+T*'L*C)" (B -T*"'L*D).  (5.114)
We thus have the following theorem.
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Theorem 5.14 Every diagnostic observer (5.36)-(5.37) of order s < n can
be considered as a composite of a fault detection filter and post-filter V.

Remark 5.8 Theorem 5.1 implies that the performance of any diagnostic
observer (5.36)-(5.37) of order s < n can be reached by an FDF together with
an algebraic post-filter.

Now s > n:

We first demonstrate that for s > n the diagnostic observer (5.36)-(5.37)
satisfying (5.30)-(5.31), (5.38) can be equivalently written into form (5.106).
To this end, we introduce following matrices

T = [T, T] € R, T, € R rank(T*) = s (5.115)

T,A, —GT, =0, A, € RETM*(7n) ig gtable, A* = [*‘é 2] (5.116)

B = {g] R C* = [0 C] e R™ (5.117)

L =T = |:§1:| L€ R(sfn)xm,L2 c Rnxm (5.118)
2

and extend (5.31) and (5.38) to

TA—-GT = LC = T*A*T* ' — G = LC*T* ! (5.119)
VC-WT =0=VC"—WT*+ [WT,0] =0 (5.120)
H=TB-LD—=— H=TB"— LD. (5.121)

Since G is stable, there does exist T, satisfying (5.116). Applying (5.115)-
(5.118) to the diagnostic observer

r(p) = Vy(p) + Qu(p) — W(pI — G)~' (Hu(p) + Ly(p))
results in

W(pl = G)™" (Hu(p) + Ly(p))
= WT*(pI — A* + L*C*)"*T** (Hu(p) + Ly(p))
= [WT, VC] (pI — A* + L*C*)"" ((B* — L*D)u(p) + L*y(p))

and furthermore

r(p) =V (I = C(pT — A+ LyC) " L) y(p)
~WT,(pl — A;) 'Ly (I — C(pI — A+ LyC) ' Ly) y(p)
+WT,(pI — A;) 'Ly (D + C(pI — A+ LyC) (B — Ly D)) u(p)
—V (C(pT — A+ LyC)" (B — LyD) + D) u(p) (5.122)

which, by setting
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My(p) =1 —C(pI — A+ LyC) 'Ly (5.123)
Nu(p) = D+ C(pI — A+ LyC)™ (B — LyD) (5.124)
R(p) =V = WT,(pl — A.) 'L (5.125)

finally gives

r(p) = Vy(p) + Qu(p) = W(pI — G)~" (Hu(p) + Ly(p))
= R(p) (ML0)y(p) - Nu(p)u()) (5.126)
We see that for s > n the diagnostic observer (5.36)-(5.37) can be equivalently

written into form (5.106), in which the post-filter is a dynamic system.
Solve equation

T, Isfn s—n 0
{To] (7, T] = { (st n]
for 1,7, ,T~, then we obtain

L=T,01+TLy,— L1 = T(;L, Lo=T L.

The following theorem is thus proven.

Theorem 5.15 Given diagnostic observer (5.86)-(5.87) of order s > n with
G,L,T,V,W solving the Luenberger equations (5.30)-(5.31) and (5.38), then
it can be equivalently written into

r(p) = R) (Ma(p)y(p) - Nu(p)u(p) ) (5.127)
My(p)=T—-C(pl —A+T LC)"'T"L (5.128)
N.(p) =D+ C(pl — A+ T LC)"Y(B - T~ LD) (5.129)

R(p) =V = WT,(pI — A,)"' T, L. (5.130)

We are now going to show that for a given residual generator of form
(5.106) we are able to find a corresponding diagnostic observer (5.36)-(5.37).
For this purpose, we denote the state space realization of R(p) with D, +
C,.(pI — A,)"1B,. Since

Cy(pl — A,) " B, M,(p) = [0 C,] <Pf - [éfo XTD_l {Bﬂ

g A, 01\ '[ B
Crlot - A B8 = [0 &) (o= | 45 D) | 2
D, M,(p) = D, — D,C(pI — AL)"'L, D, N,(p) = D,D + D,C(pI — AL) "By,

it is reasonable to define
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G= [A_LC 0 } L= [_L ],W [D,C C,]  (5.131)

B,.C A, B,
B - LD
V=D, H= [ 5D } .Q=—D,D. (5.132)
Note that
I I - I
Maall]sowove o
H = {é] B-ILD,Q=-VD (5.134)

ensure that residual generator

r(p) = Vy(p) + Qu(p) — W(pI — G)~" (Hu(p) + Ly(p))

satisfies Luenberger conditions (5.30)-(5.31), (5.38).
The discussion on the possible applications of the interconnections revealed
in this subsection will be continued in the next subsections.

5.7.3 Applications of the interconnections and some remarks

In literature, parity relation based residual generators are often called open-
loop structured, while the observer-based residual generators closed-loop
structured. This view may cause some confusion, since, as known in the control
theory, closed-loop and open loop structured systems have different dynamic
behavior. The discussion carried out above, however, reveals that this is not
the case for the parity relation and observer-based residual generators: They
have the identical dynamics (under the condition that the eigenvalues are
zero), also regarding to the unknown inputs and faults, as will be shown later.

A further result achieved by the above study indicates that the selection of
a parity space vector is equivalent with the selection of the observer matrix,
the feedback matrix (i.e. feedback of system output y) of an s-step dead-
beat observer. In other words, all design approaches for the parity relation
based residual generation can be used for designing observer-based residual
generators, and vice-versa.

What is then the prime difference between the parity relation based and
the observer-based residual generators? The answer can be found by taking
a look at the implementation forms of the both types of residual genera-
tors: the implementation of the parity relation based residual generator uses
a non-recursive form, while the observer-based residual generator represents
a recursive form.

A similar fact can also be observed by the observer-based approaches.
Under certain conditions the design parameters of a residual generator can be
equivalently converted to the ones of another type of residual generator, also
the same performance can be reached by different residual generators.
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This observation makes it clear that designing a residual generator can
be carried out independent of the implementation form adopted later. We
can use, for instance, parity space approach for the residual generator design,
then transform the parameters achieved to the parameters needed for the
construction of a diagnostic observer and finally realize the diagnostic observer
for the on-line implementation. The decision for a certain type of design form
and implementation form should be made on account of

the requirements on the on-line implementation,
which approach can be readily used to design a residual generator that
fulfills the performance requirements on the FDI system,

e and of course, in many practical cases, the available design tools and de-
signer’s knowledge of design approaches.

Recall that parity space based system design is characterized by its simple
mathematical handling. It only deals with matrix- and vector-valued opera-
tions. This fact attracts attention from industry for the application of parity
space based methods. Moreover, the one-to-one mapping between the parity
space approach and the observer-based approach described in Theorems 5.12
and 5.13 allows an observer-based residual generator construction for a given
a parity vector. Based on this result, a strategy called parity space design,
observer-based implementation has been developed, which makes use of the
computational advantage of parity space approaches for the system design
(selection of a parity vector or matrix) and then realizes the solution in the
observer form to ensure a numerically stable and less consuming on-line com-
putation. This strategy has been for instance successfully used in the sensor
fault detection in vehicles and highly evaluated by engineers in industry. It
is worth mentioning that the strategy of parity space design, observer-based
implementation can also be applied to continuous time systems.

Table 5.1 summarizes some of important properties of the residual gener-
ators described in this section, which may be useful for the decision on the
selection of design and implementation forms.

In this table,

e "solution form" implies the required knowledge and methods for solving
the related design problems. LTI stands for the needed knowledge of linear
system theory, while algebra means for the solution only algebraic compu-
tation, in most cases solution of linear equations, is needed.

e "dynamics" is referred to the dynamics of LTT residual generator (5.24).
OEE + v implies a composite of output estimation error and an algebraic
post-filter, OEE + R(p) a composite of output estimation error and a
dynamic post-filter.
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Table 5.1 Comparison of different residual generation schemes

Type FDF PRRG DO
Order s=n s<n s>n s<n s>n
Design
parameters| wv,L Vs Vs G,L,v,w| G,L,v,w
Design
freedom v, L Vs Vs vs, G vs, G
Solution LTT or LTT or
form LTI algebra algebra algebra algebra
Implement.
form recursive |[non-recurs.| non-recurs. |recursive| recursive
Dynamics |OEE + v| OEE + v |OEE + R(p)|OEE + v|OEE + R(p)

5.7.4 Examples

Example 5.8 We now extend the results achieved in Fxample 5.6 to the con-
struction of an observer-based residual generator. Suppose that (5.97) is a
discrete time system. It follows from Theorem 5.12 and (5.108) that

z(k+1) = Gz(k) + Hu(k) + Ly(k),r(k) = vy(k) — wz(k) — qu(k)

with
00 ---0 b ag
10 --- 0 a
G = |, H=TB-LD=| : |,L=—] |
0 10 bn An_1

q:bn,vzl,w:[()--- 01]

builds a residual generator. If we are interesting in achieving a residual resid-
ual generator whose dynamics is governed by

Clp) =p" — gn-1"" " — - — 910 — 9o

then the observer gain matrix L should be extended to

ago go
L=-— : —

Ap—1 9n—-1
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Note that in this case the above achieved results can also be used for continuous
time systems.

In summary, we have some interesting conclusions:

e given a transfer function, we are able to design a parity space based residual
generator without any involved computation and knowledge of state space
realization

e the designed residual generator can be extended to the observer-based one.
Once again, no involved computation is needed for this purpose

e the observer-based form can be applied both for discrete and continuous
time systems.

We would like to mention that the above achieved results can also be
extended to MIMO systems.

Example 5.9 We now apply the above result to the residual generator design
for our benchmark DC motor DR300 given in Subsection 3.7.1. It follows from
(8.50) that

bo
Gyu(p) =
vu(P) P34 agp? + a1p® + ag
as = 234.0136, a; = 6857.1,ap = 5442.2, by — 47619

which yields
Vg = [ao ay as 1] ) (5.135)

Now, we design an observer-based residual generator of the form
2=Gz+ Hu+ Ly,r = vy —wz — qu (5.136)

without the knowledge of the state space representation of the system. To this
end, using Theorem 5.12 and (5.103) with vs given in (5.185) results in

00 gq bo ag g1
G: 1092 aH: 0 7L:* al — 192
01gs 0 as g3

qu,vzl,wz[OOl}.

To ensure a good dynamic behavior, the eigenvalues of matrix G are set to be
—10, —10, —10, which leads to

a ~1000
g | = | =300
93 —30
and further
4442.2
L =—]6557.1

204
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5.8 Notes and references

The general form and parameterization of all LTI stable residual generators
were first derived by Ding and Frank [38]. The FDF scheme was proposed
by Beard [11] and Jones [86]. These works are recognized as marking the
beginning of the model-based FDI theory and technique. Both FDF and DO
techniques have been developed on the basis of linear observer theory, to which
O’Reilly’s book [111] gives an excellent introduction.

Only few references concerned characterization of DO and parity space
approaches can be found in the literature. For this reason, an extensive and
systematic study on this topic has been included in this chapter. The most
significant results are

e the necessary and sufficient condition for solving Luenberger equations
(5.30)-(5.31), (5.38) and its expression in terms of the solution of parity
equation (5.87)

e the one-to-one mapping between the parity space and the solutions of the
Luenberger equations
the minimum order of diagnostic observers and parity vectors and
the characterization of the solutions of the Luenberger equations and the
parity space.

Some of these results are achieved based on the works by Ding et al. [28]
(on DO) and [44] (on the parity space approach). They will also be used in
the forthcoming chapters.

The original versions of numerical approaches proposed by Ge and Fang
as well as Ding at al. have been published in [61] and [28], respectively.

Accompanied with the establishment of the framework of the model-based
fault detection approaches, comparison among different model-based residual
generation schemes has increasingly received attention. Most of studies have
been devoted to the interconnections between FDF, DO on the one side and
parity space approaches on the other side, see for instance, the significant
work by Wuenneberg [148]. Only a few of them have been dedicated to the
comparison between DO and factorization or frequency approach. A part of
the results described in the last section of this chapter was achieved by Ding
and his co-worker [42].

An interesting application of the comparison study is the strategy of parity
space design, observer-based implementation, which can be applied both for
discrete and continuous time systems and allows an easy design of observer-
based residual generators. In [131], an application of this strategy in practice
has been reported. It is worth emphasizing that this strategy also enables an
observer-based residual generator design based on the system transfer func-
tion, instead of the state space representation, as demonstrated in Example
5.9.
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Perfect unknown input decoupling

In this chapter, we address the problems of generating residual signals which
are decoupled from the disturbances (unknown inputs). That means the gen-
erated residual signals will only be influenced by the faults. In this sense,
such a residual generator also acts as a fault indicator. It is often called un-
known input residual generator. Fig.6.1 sketches the objective of this chapter
schematically.

disturbances ———» .
process |¢—————— disturbances

(plant) sensors
actuators » output

input
% faults % faults % faults

output

output estimate A post- >
observer - filter fault indicator

residual signal (0 = fault alarm
=0= fault free

unknown input residual generator

Fig. 6.1 Schematical description of unknown input decoupled residual generation

6.1 Problem formulation

Consider system model (3.29) and its minimal state space realization (3.30)-
(3.31). It is straightforward that applying a residual generator of the general
form (5.24) to (3.29) yields

r(p) = R(p) M, (p) (Gya(p)d(p) + Gys(p) f(p)) - (6.1)
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Remember that for the state space realization (3.30)-(3.31), residual generator
(5.24) can be realized as a composition of a state observer and a post-filter,

&= A&+ Bu+ L(y — C& — Du),r(p) = R(p) (y(p) — Ci(p) — Du(p)) .
It turns out, by setting e = = — Z,

é=(A—LC)e+ (Eq— LF)d+ (E; — LFy)f
r(p) = R(p) (Ce(p) + Fud(p) + Fy f(p))

which can be rewritten into, by noting Lemma 3.1,

r(p) = Rp) (Ny(p)f () + Na(p)d(p)) (6.2)
N¢(p) = C (pI — A+ LC)~ 1(Ef_LFf)+Ff

Na(p) = C (pI = A+ LC)™" (Eq — LF4) + Fy
)

with an LCF of Gy¢(p) = M (p)N¢(p) and Gya(p) = My (p)Na(p). Tt is
interesting to notice that

My (p) = Ma(p) = My(p) =1 —C (pI = A+ LC) ' L

Hence, we assume in our subsequent study, without loss of generality, that

M.(p)Gya(p), Mu(p)Gys(p) € RHoo

For the fault detection purpose, an ideal residual generation would be a
residual signal that only depends on the faults and is simultaneously indepen-
dent of disturbances. It follows from (6.1) that this is the case for all possible
disturbances and faults if and only if

R(p)M.(p)Gyy(p) # 0 and R(p)M,(p)Gya(p) = 0. (6.3)

Finding a residual generator which satisfies condition (6.3) is one of the mostly
studied topics in the FDI area and is known as, among a number of expres-
sions, perfect unknown input decoupling.

Definition 6.1 Given system (3.29). Residual generator (5.24) is called per-
fectly decoupled from the unknown input d if condition (6.3) is satisfied. The
design of such a residual generator is called .

In the following of this chapter, we shall approach PUIDP. Our main tasks
consist in

the study on the solvability of (6.3),

presentation of a frequency domain approach to PUIDP

design of unknown input fault detection filter (UIFDF)

design of unknown input diagnostic observer (UIDO) and

design of unknown input parity relation based residual generator.
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6.2 Existence conditions of PUIDP

In this section, we study
e under which conditions (6.3) is solvable and

e how to check those existence conditions.

6.2.1 A general existence condition

We begin with a reformulation of (6.3) as

R(p)M.(p) [Gys(p) Gya(p)] = [A 0] (6.4)

with A # 0 as some RH transfer matrix. Since
rank (Mu(p)) =m

and R(p) is arbitrarily selectable in RH o, the following theorem is obvious.

Theorem 6.1 Given system (5.29), then there exists a residual generator

r(p) = R(p) (Mu (P)y(p) = N (p)U(p))
such that (6.8) holds if and only if

rank [ Gyr(p) Gya(p) | > rank (Gya(p)) . (6.5)

Proof. If (6.5) holds, then there exists a R(p) such that

R(p)M,(p)Gya(p) = 0 and R(p) M., (p)Gys(p) # 0

This proves the sufficiency. Suppose that (6.5) does not hold, i.e.

rank [ Gys(p) Gya(p) | = rank (Gya(p)).

As a result, for all possible R(p)M,,(p) one can always find a transfer matrix
T(p) such that

R(p) M, (p)Gyy(p) = R(p)M.(p)Gya(p)T(p)
Thus, R(p)M,(p)Gya(p) = 0 would lead to
R(p) My (p)Gys(p) =0

i.e. (6.3) can never be satisfied. This proves that condition (6.5) is necessary
for (6.3). O
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The geometric interpretation of (6.5) is that the subspace spanned by
Gys(p) is different from the subspace spanned by G,q(p), i.e.

Im (Gyg(p)) & Im (Gya(p)) -
Note that
rank [Gys(p) Gya(p)] <m
(6.5) also means
rank (Gya(p)) < m.

In other words, the subspace spanned by G4(p) should be smaller than the m-
dimensional measurement space. From the viewpoint of system structure, this
can be understood as: the number of the unknown inputs that have influence
on y(p) (output controllability) or equivalently that are observable from y(p)
(input observability) should be smaller than the number of sensors. For the
purpose of residual generation, those unknown inputs that have no influence
on the measurements and those measurements that are decoupled from the
faults are of no interest. Bering it in mind, below we continue our study on
the assumption

ka < m,rank [ Gyr(p) Gya(p)| = m. (6.6)

Although (6.5) sounds compact, simple and has a logic physical interpreta-
tion, its check, due to the rank computation of the involved transfer matrices,
may become difficult. This motivates the derivation of alternative check condi-
tions which are equivalent to (6.5) but may require less special mathematical
computation or knowledge.

Example 6.1 Consider the inverted pendulum system LIP100 described in
Subsection 3.7.2. Suppose that we are interested in achieving a perfect decou-
pling from the friction d. It is easy to find out

rank [ Gyg(s) Gya(s) | =3 > rank (Gya(s)) = 1.
Thus, following Theorem (6.1), for this system the PUIDP is solvable.

6.2.2 A check condition via Rosenbrock system matrix

We now consider minimal state space realization (3.30)-(3.31), i.e. Gyf(p) =
(A, Ef,C,Fy),Gya(p) = (A, Eq,C, Fy). Let us do the following calculation

A—pl Eq| [(pI = A)~" (pI — A)'Ey
C Fy 0 Iy xcny

_ _Inxn 0
T | C(pI— A" C(pI — A)~'E,+ F,

A —pI E Ed (pI - A)_l (pI - A)_lEf (pI - A)_lEd
[ C Ff Fd:| 0 Ik:kaf 0
f 0 0 L xk,

. —Ixn 0 0
B |:C(p] — A)_l C(p] — A)_lEf + Ff C(p] — A)_lEd + Fd:|
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from which we immediately know

A—pl E —Lnxn (@]
rank [ C’p Fj] = rank {C(p] 7XA)71 Gyd(p):|
=n+rank (C(pl — A)"'Eq + Fy) (6.7)
rank [A ~pLEy Ed} = rank [ —nxn 0 0 ]
C F;F, C(pI — A)~' Gys(p) Gya(p)
=n+rank [Gyr(p) Gya(p)] . (6.8)

Thus, we have

Theorem 6.2 Given Gy ¢(p) = C(pl — A)"'E; + F and Gya(p) = C(pI —
A)"YE  + Fy, then (6.3) holds if and only if

AprEd
C Fy

AprEfEd

rank [ C Fr Fy

| < ran | [<nem ©9)

Given a transfer function matrix G(p) = C(pI — A)~! + D, matrix

A—-pl B
C D

is called Rosenbrock system matrix of G(p). Due to the importance of the con-
cept Rosenbrock system matrix in linear system theory, there exist a number
of algorithms and CAD programs for the computation related to properties
of a Rosenbrock system matrix. This is in fact one of the advantages of check
condition (6.9) over the one given by (6.5). Nevertheless, keep it in mind that
a computation with operator p is still needed.

A check of existence condition (6.9) can be carried out following the algo-
rithm given below.

Algorithm 6.1 Solvability check of PUIDP via Rosenbrock system matriz
Step 1. Calculate

rank [A—p] Ey Ed] ,

A— pI Ed
C FF rank[ ]

Step 2. Prove (6.9). If it holds, the PUIDP is solvable, otherwise unsolvable.

Example 6.2 Given benchmark system EHSA with model (3.83) and suppose
that the model uncertainty is zero and three additive faults (two sensor and one
actuator faults) are considered. We now check the solvability of the PUIDP.
To this end, Algorithm 6.1 is applied, which leads to

Step 1:

A—pIEfEd o A—pIEd o
rank[ C Fde}Zrank{ o =6
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Step 2:
A— p[ Ef Ed
C F; Fy

Thus, the PUIDP is solvable.

rank {

] > rank [A_pIEd}.

C Fy

6.2.3 Algebraic check conditions

As mentioned in the last chapter, the parity space approach provides us with a
design form of residual generators, which is expressed in terms of an algebraic
equation,

r(k) = vs (Hyf s fs(k) + Hqsds(k)),vs € Ps (6.10)

From (6.10) we immediately see that a parity relation based residual generator
delivers a residual decoupled from the unknown input ds (k) if and only if there
exists a parity vector such that

vsHy s # 0 and vsHg s = 0. (6.11)

Taking into account the definition of parity vectors, (6.11) can be equivalently
rewritten into
vg [Hys Hos Has| = [A00]

with vector A # 0, from which it becomes clear that residual (k) is decoupled
from d,(k) if and only if

rank [Hﬁs H,, H,LS] > rank [H(,,S Hd7s] . (6.12)

Comparing (6.12) with (6.9) or (6.5) evidently shows the major advantage
of check condition (6.12), namely the needed computation only concerns de-
termining matrix rank, which can be done using a standard mathematical
program.

Another advantage of using (6.12) consists in the possibility to get the
knowledge of whether a residual generator of order s can deliver a residual
decoupled from the unknown inputs. On the other side, the reader may ask:
Should I prove condition (6.12) for all possible s in order to ensure whether
the decoupling problem is solvable? The following result gives an answer to
this question.

It follows from the parameterization of parity vectors presented in Theorem
5.10 and equality (5.64) given in Lemma 5.2 that vs can be rewritten into

Vg = @Hl,savs S }Ds (613)

and moreover B B
veHg s =VHg g, vsHy o = VHy o, v € Py (6.14)

where
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v = I:T_}a'm,;n 7_}(7,,,,71,,-&-1 ce Us—q 'Us]
ﬁj S Qjan = {q ‘ qCAg) :0},0min SJ <s
—CAImn1L, ... —CL, I 0 - 0
_CAgminLo . _CAOLO _CLO I
H17S = . .
: : oo 0
—CAf)’lLO coo —CASOminl, ... ... —CL, T
Hd,s c Rm(s—omm—&-l)xkd(s—i-l)’Hf’s c Rm(s—dmm-&-l)xkf(s-&-l)
_CAgmin_lEd CE, E;, 0 -+ 07
i i CAgm‘“'_lEd CAgm‘“'_QEd cee CEd F; O
d,s = 0 CAgvnaz_lEd e e Fd 0
L 0 e CAgmam_lEd . "'CEdFd_
-CAg"”'"*lEf CEf Ff 0 -+ 0]
H _ CAgvnaz_lEf CAgm,az_QE:‘f e CEf Ff O
fis = 0 CAGmas—1E . s e F 0
0 CAGmaz=1F, ... -~-C’EfFf_

Ey= Eq— LoFy, By = Ef — L, Fy

with A, and L, as defined in (5.41). We are now able to prove the following
theorem.

Theorem 6.3 Given s = 0ae + Omin s well as

rank [Hos Hys | = m(0mae +1) = the row number of Hy, (6.15)
then for s = Omazr + Omin + 1

rank [Hos Has | = m(0maz +2) = the row number of Hq,s. (6.16)
Proof. Following Theorem 5.11 we rewrite U as

U= stbase,S7ws = [wa7nin7s e ws,s] #0
Qbase,s = dlag(Na'min, t aNdmaz—lv Ndmam’ T 7NS)
1 .
N;CA,' = 0,i=1,-+,0maz—1, N,

Omax

= Nomam-i-l == Ns = Imxm-

For s = 0maz + Omin, (6.15) holds if and only if for all vector ws # 0
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ws@base,st,s #0

We now check the case s = oumaz + Omin + 1. To this end, we write
Hi.6p e+ mint+1s @base,oman+omin+1 10LO

H Hd?"maa:"ramin 0
d,0maz+0mintl [y
Hdvo-mam"!‘amin“l‘l Fd

I:Id,amm+omin+1 = [0 e 0 CAS e By C'Ed]

Qbasevomam +0mint+l — diag(Qbasevamaz"rgmin’ I)

respectively. It is important to notice that the rows of matrix

[Hagportomintt Fa

is linearly independent of the rows of

[ Hd7‘7maz +0min 0 ]

and so matrix
~Hd70mam+0min 0
Hiopowtomint1 Fa

is of full row rank. Thus, for any

wgmam“ram,in“l‘l = [wUTILaI+U’ﬂLi7L w] % O

we have

Wo 0wt min+1Qbase,omaz+omint1 Hd,omaz+omintl =

wo'maz+o'minQbaseao'maz+0min [Hd-,crmaﬁamm O] +w [ﬁd,omaﬁom“ﬂrl Fd] # 0.
This implies (6.16) holds. The theorem is thus proven. 0O

It follows from Theorem 6.3 that s = 0,42 + Tmin sets a up-bound for the
check of condition
Vs I:Ho,s Hd,s] =0.

This means if for s = 0,42 + Omin the above equation is not solvable, then it
remains unsolvable for all s > 000 + Tmin-

Remember that a diagnostic observer can also be brought into a similar
form like a parity relation based residual generator, as demonstrated in the
last chapter. It is thus reasonable to prove the applicability of condition (6.12)
to the design of diagnostic observers decoupled from the unknown inputs.

We begin with transforming the design form of diagnostic observer

é(t) = Ge(t) + (TEf — LFy) f(t) + (TEq — LF;)d(t) (6.17)
r(t) = we(t) + vF5 f(t) + vFyd(t) (6.18)
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into a non-recursive form using the similar computation procedure like the
one given in Theorem 5.7, in which H =TB — LD is replaced by TE; — LFy
as well as T'Ey — LFy. It turns out

r(p) = wG’p~*e(p) + vs (Hf,sffsfs(p) + Hd7sfdsds(p)) (6.19)
where

Vs = [vs,o Vg1 e US’S] € P,,w= [0 01]

ka)(kf O e O
ffs — ngk:ka)f
: . 0)
wGS_lgkaka tee ngkkaf kaka
Ik‘ka‘d 0 T 0
- WGk, xky ;
: . @)
WG gl kg W9k xky Thyxky
fp)p~* d(p)p~*
A= o ldw) =]
f)p™" d(p)p~*
f(p) d(p)

We immediately see that choosing v, satisfying (6.11) yields
r(p) = wGp~*e(p) + vsHysIysfs(p)
i.e. the residual signal is decoupled from the unknown input.

Remark 6.1 We would like to emphasize that in the above derivation opera-
tor p instead of k is consciously used for the purpose of indicating the applica-
bility of the achieved results for both discrete and continuous time processes.

We have seen that (6.11) is a sufficient condition for the construction of
a diagnostic observer decoupled from the unknown input. Moreover, (6.19)
shows the dependence of the residual dynamics on g. Does the selection of g
influence the solvability of PUIDP? Is (6.11) also a necessary condition? A
clear answer to these questions will be given by the following study.

Note that
w

wG
rank . =3

wGs!
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thus, a decoupling from d only becomes possible if

TE; — LF; #0 or vE; #0 (6.20)
TEd - LFd =0 and UFd =0. (621)

Remember that (Theorem 5.7)

Us,0
VUs,1

)

L=- . — JUs;s
VUs,s—1

(6.20)-(6.21) can be rewritten into

Ig T vs_1 EfEd _ A1 0
[0 1} [0 v} [Ff FJ = [AQO =

T vs_1 Ef Ey . Az 0
o] B R [ 622
where
Us,0
Us,1
Vg—1 = ) ,A3 #£ 0 or Ay #0.
Vs,s—1
Since i i
C
Us,1 Us,2 VUs,s—1 Us,s cA
Vgg +o =+ US,S 0
T =
Vs,s o --- 0 014;72
_CIAS*]‘ -

equation (6.22) is, after an arrangement of matrix 7" into a vector, equivalent

to
vsHgs =0 and veHy, # 0,0, € P;.

It is evident that the solvability of the above equations is independent of the
choice of g and so the eigenvalues of G.
We have proven the following theorem.

Theorem 6.4 Given Gy¢(p) = C(pl — A)"'E; + Ff and Gya(p) = C(pI —
A) LB +Fy, then a diagnostic observer of order s delivers a residual decoupled
from the unknown input if and only (6.11) or equivalently (6.12) holds. Fur-
thermore, the eigenvalues of the diagnostic observer are arbitrarily assignable.
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An important message of Theorem 6.4 is that

e the parity relation based residual generator and the diagnostic observer
have the same solvability conditions for the PUIDP and furthermore,

e upon account of the discussion on the relationships between the different
types of residual generators, the algebraic check conditions expressed in
terms of (6.11) or equivalently (6.12) are applicable for all kinds of residual
generators.

We now summarize the main results of this subsection into an algorithm.
Algorithm 6.2 An algebraic check of the solvability of PUIDP

Step 1. Form H, s, Hy o, Hy s
Step 2. Prove (6.12). If it holds for some s, the PUIDP is solvable, otherwise
unsolvable.

Example 6.3 We consider again benchmark system EHSA with model (3.83)
and suppose that three additive faults are considered. We now check the
solvability of the PUIDP by means of Algorithm 6.2. We have first formed
H,q,Hfs and Hgs for s = 2,3 and 4 respectively. In the second step,
rank [Hﬁs H, Hd,s] and rank [H(,’S H,LS] have been computed for different
values of s. The results are: for s = 2

rank [Hys Hos Hys] =6 =rank [H, s Hys |
fors=3
rank [Hys Hos Hays)| =8 > rank [H, s Hys] =17
for s =4
rank [Hys Hos Hys | =10 > rank [Ho s Hys| = 8.

Thus, the PUIDP 1is solvable.

6.3 A frequency domain approach

The approach presented in this section provides a so-called frequency domain
solution for the residual generator design problem: given general residual gen-
erator in the design form

r(p) = R(p)Mu(p) (Gya(p)d(p) + Gys(p)f(p)) € R (6.23)

find such a post-filter R(p) € RH that ensures

R(p) M (p)Gya(p) = 0 and R(p) M. (p)Gy(p) # 0. (6.24)
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In order to illustrate the underlying idea, we first consider a simple case

M. (p)Gya(p) = [gl Eﬁg]

with ¢1(p), g2(p) € R and stable. Set

R(p) = [92(p) —91(p) ]

gives A
R(p)M.(p)Gya(p) = g2(p)g1(p) — g1(p)g2(p) = 0.

We see from this example that the solution is based on a simple multiplication
and an addition of transfer functions. No knowledge of modern control theory,
the state space equations and associated calculations are required.

We now present an algorithm to approach the design problem stated by
(6.23)-(6.24). We suppose m > kg and

rank [Gyr(p) Gya(p)] > rank (Gya(p))

and denote

G11(p) -+ Gika(p)

My(p)Gyalp) = Gap) = | 1+ 1 | ERHM
Gm1(P) ** Gmka(p)

Algorithm 6.3 A frequency domain approach

Step 1: Set initial matriz T(p) = Imxm
Step 2: Start a loop: i =1 toi=kq
Step 2-1: When gi;(p) =0,
Step 2-1-1: set k; =i+ 1 and check gi,:(p) =07
Step 2-1-2: If it is true, set k; = k; +1 and go back to Step 2-2-1,
otherwise
Step 2-1-3: set

e ik #iand k

. . . _ : 7 an i
D= 0 1 ’tkk_{O:kiorki

tml"'tmm
b — 0:(k#1) and (k#£k; andl # i ork# 1 and l # k;)
MZV1:(k#1) and (k=k; andl =14 or k=1 and | = k;)

Gd(p) = Tki Gd(p)7 T(p) = TkiT(p)

Step 2-2: Start a loop: j =i+ 1 to j =m:
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ti1(p) -+ tim(p)

bt (0) ++ tram (D)

Gii(p) : k=7 and g;;(p) # 0

Step 3: Set

R(p) = [O(m—ta)xka Lim—tka)x(m—ka) | T(D)-

O:k#landk#j andl =1
—gji(p):k=jandl =1
(

tkk(p):{ 1:k#jork=jand gji(p) =0
T, p), T(p) =Ti;(p)T(p)

To explain how this algorithm works, we make the following remark.
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Remark 6.2 All calculations in the above algorithm are multiplications and

additions of two transfer functions, in details

e Step 2-1 serves as finding gi;(p) # 0 by a row exchange g;;(p) (# 0).

o After completing Step 2-2 we have

gjj(p) #Oaj: la 7i7 gkj(p) :07k>JSZ

o When the loop in Step 2 is finished, we obtain

g11(p)
0 g22(p) A
HTki HTij(p)Gd(p) = : .
s E 0 0 gkdk'd (p)
0 . 0
where Gii(p) #0,i=1,--- kg and A denotes some transfer matriz of no

interest. Since Ty, and T;;(p) are reqular transformations, the above results

are ensured.
o It is clear that

R(p) = [ Otm—ta)xha Limn—ta)x(m—ta) | T®) [ [ T, [ T25(p) and so
i i

§11(P)

R()Ga(p) = [0(m—tka)xka Lim—ta)x(m—ra) |

0

922 (p)

0 gkdkd (p)

A

0
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We have seen that the above algorithm ensures that the residual generator
of the form

r(p) = B(p) (M. (p)y(p) — Nu(p)u(p))

delivers a residual perfectly decoupled from the unknown input d.

6.4 UIFDF design

The problem to be solved in this section is the design of UIFDF that is
formulated as: given system model

i(t) = Ax(t) + Bu(t) + Ep f(t) + Eqd(t) € R" (6.25)
y(t) = Cx(t) + Du(t) + Frf(t) e R™ (6.26)
and an FDF
& = Ai(t) + Bu(t) + L(y(t) — §(t)) (6.27)
r(t) = v (y(t) — 9(t),§(t) = C&(t) + Du(t) (6.28)

find L, v such that residual generator (6.27)-(6.28) is stable and

vC(pl — A+ LC) 'E4=0
v(C(pl — A+ LC)" ' (Ey — LFy) + Fy) #0.

We shall present two approaches,

e the eigenstructure assignment approach and
e the geometric approach.

6.4.1 The eigenstructure assignment approach

Eigenstructure assignment is a powerful approach to the design of linear state
space feedback system, as it can be shown easily that the closed-loop system
structure like (pI — A+ LC') depends entirely on the eigenvalues and the left
and right eigenvectors of A — LC.

The eigenstructure approach proposed by Patton and co-worker is dedi-
cated to the solution of equation

vO(pl — A+ LCO) 'E; =0 (6.29)
for L,v. To this end, the following two well-known lemmas are needed.

Lemma 6.1 Suppose matriz A—LC € R™ ™ has eigenvalues \j;i =1,--- . n
and the associated left and right eigenvectors o; € RY"™, B, € R™*1, then we
have

aiﬁjzoa iz]—v"'vnv ]7&27 .7:177“
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Lemma 6.2 Suppose matric A—LC € R™ ™ can be diagonalized by similarity
transformations and has eigenvalues \;,© = 1,--- ;n and the associated left
and right eigenvectors a; € RY"™ B, € R™ 1, then the resolvent of A — LC
can be expressed by

_ 61011 Brom
I-A+LC) =1 ... 4 0
(p ) p— >\1 p— )\n
Below are two sufficient conditions for the solution of (6.29).

Theorem 6.5 If there exists a left eigenvector of matrix A — LC, «;, satis-
fying
a; =vC and o; Eg =0

then (6.29) is solvable.

Proof. The proof becomes evident by choosing v so that vC' = «; and consid-
ering Lemmas 6.1-6.2 :

vC(prAJrLC)*lEd:ai (&+"'+M) E;= if; a;Eg=0.
q p—A P— Ay P—A

Theorem 6.6 Given E; whose columns are the right eigenvectors of A— LC,
then (6.29) is solvable if there exists a vector v so that

”UCEd =0.

The proof is similar to Theorem 6.5 and is thus omitted.
Upon account of Theorem 6.5 Patton et al. have proposed an algorithm
for the eigenstructure assignment approach.

Algorithm 6.4 FEigenstructure assignment approach by Patton and Kangethe

Step 1: Compute the null space of CEq, N, i.e. NCE4 =0
Step 2: Determine the eigenstructure of the observer

Step 3: Compute the observer matriz L using an assignment algorithm and
set v =wN,w # 0.

Theorem 6.7 follows directly from Lemmas 6.1-6.2 and provides us with a
necessary and sufficient condition.

Theorem 6.7 Suppose that matric A — LC € R™ ™ can be diagonalized by
similarity transformations and has eigenvalues X\;;i = 1,--- ,n and the asso-
ciated left and right eigenvectors a; € RY"™ B, € R™ 1, then (6.29) holds if
and only if there exist v, L such that

vCBia1Eqg =0, ,vCB,anFEy = 0. (6.30)
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Note that (6.30) holds if and only if vCB; = 0 or a; Eq = 0 and there
exists an index k,0 < k < n, so that
vCB;=0,i=1,---k, ;Eq=0, i=k+1,--- ,n.
Let the j-th column of Ey, eq;, be expressed by

n
eqj = Z ki
i=1
then we have

By = 0i=k+1, n=ky=0i=k+1,- nj=1- kg
k
ﬁed]:Zk‘”B“ jzla 7'I€(i'
1=1

This verifies the following theorem.
Theorem 6.8 Equation (6.29) holds if and only if E4 can be expressed by
Ey=[By - Bp] B, E* € RF* 4 0C [By -+ B] =0.

From the viewpoint of linear control theory, this means the controllable
eigenvalues of (A — LC, E4), A1, -, Ak, are unobservable by vC. Since v # 0
is arbitrarily selectable, Theorem 6.8 can be reformulated as

Corollary 6.1 (6.29) holds if and only if E4 can be expressed by
E; = [ﬂl Bk] E* E* € RF*kd_rank (C’ [61 Bk]) <m.

Now, we introduce some well-known definitions and facts from the linear
system theory and the well-established eigenstructure assignment technique:

e 2; is called invariant or transmission zero of system (A, E4, C), when

A —ZZ'I Ed

rank { c 0

} < n+min{m, kq}.

e Vectors v, and 6; satisfying

A— ZiI Ed o
are called state and input direction associated to z; respectively.
e Observer matrix L defined by

-1
aq D1

Qn Pn
ensures
a;(M —A+LC)=0,i=1,---,n

i.e. A; is the eigenvalue of A — LC and v; the left eigenvector.
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o Let
A=z, pi = —0;, ;=

then we have
ozl(A — )\ll) — piC = O,CliEd =0.

Following algorithm is developed on the basis of Corollary 6.1 and the
above-mentioned facts .

Algorithm 6.5 An eigenstructure assignment approach
Step 1: Determine the invariant zeros of system (A, Eq,C) defined by

A*Z,;I Ed

rank [ C 0

] <n4+min{m, kq},i=k+1,---,n
Step 2: Solve

[7; 60:] [A}fi”f)d] =0i=k+1,--,n

for i, 0i
Step 8: Set

)\i:'ziu pi:_eiy Qi = Y455 Z:k—‘rl,ﬂ’L

Step 4: Define \;, a;,pi,i =1, |k satisfying

aq
ozi:I%‘C(A—)\i])—l7 i=1,- k rank | © | =n
an
Step 5: Set
-1
1 1
L = .
Qn Dn

Step 6: Solve

a1 7
_ kxk
[ﬂl Bk] - |:0(n—k)><k:|
Qp
forﬂlf" aBk
Step 7: If
rankC [61 ﬂk] <m
then solve

for v.
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Note that the condition that there exists a vector v so that vC'E4y = 0 can
equivalently be reformulated as the solution of equations

vC = wT, TEd — O’T c R(?L—kd)xn-

Furthermore, the requirement that the rows of T' are the left eigenvectors of
matrix A — LC leads to

Aeg1 00
TA-T| ¢ . o |=TLC.
0 0 M\,

This verifies that Luenberger conditions (5.30)-(5.32) are necessary for the use
of the eigenstructure assignment approach provided above.

6.4.2 Geometric approach

The so-called geometric approach is one of the fields in the control theory,
where elegant tools for the design and synthesis of control systems are avail-
able. On the other side, the application of the geometric approach requires a
profound mathematical knowledge.

The pioneering work of approaching the design and synthesis of FDF by
geometric approach was done by Massoumnia, in which an elegant solution to
the FDF design has been derived. In this subsection, we shall briefly describe
the geometric approach to the FDF design without elaborate handling of its
mathematical background.

The core of the geometric approach is the search for an observer matrix
L that makes (A — LC, E4,C) maximally uncontrollable by d. It is the dual
form of the geometric solution to the disturbance decoupling (control) problem
(DDP) by means of a state feedback controller. Below, we briefly describe an
algorithm for this purpose, which is presented as the dual form of the algorithm
proposed by Wonham for the DDP-controller design.

The addressed problem is formulated as follows: given system

t=(A—-LC)x+ Eyd,y =Cx (6.31)

find L such that the pair (A—LC, E4) becomes maximally uncontrollable. The
terminology mazimally uncontrollable is used to express the uncontrollable
subspace with the maximal dimension. We shall also use maximal solution to
denote the maximally dimensional solution X of an equation MX = 0 (or
XM =0) for a given M.

Algorithm 6.6 Computation of observer gain L for generating mazimally
uncontrollable subspace
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Step 0: Setting initial condition: find a maximal solution of
EiVo=0

for Vg
Step 1: Find a mazimal solution of

for W;
Step 2: Find a mazimal solution of
Bl 1y o
|:WZAT:| Vi _OaZ_ 1a2a"'
for V;

Step 8: Check
rank (V;) = rank (V;_1)

If no, increase i =i+ 1 and go to Step 1, otherwise set V =1V;
Step 4: Find a solution of

_ -1 | K
TYr _ [T
ATV = [C v][P}
for (K, P)
Step 5: Solve -
K=L"V

for the observer gain L.

Remark 6.3 Step 0 to Step 3 are the algebraic version of the algorithm pro-
posed by Wonham for the computation of the supremal (AT, CT)-invariant
subspace contained in the null-space of Eg. As a result, the dual representa-
tion of system (6.31) becomes mazimally unobservable.

The following lemma is known in the geometric control framework, based
upon which a UIFDF can be designed.

Lemma 6.3 Suppose L makes (A — LC, Eq) mazimally uncontrollable by d,
i.e. ((A—LC)T,ET) is mazimally unobservable. Then by a suitable choice of
output and state bases, V and T, the resulting realization can be described by

1 _ App Ass _ Eq ~ -1 Cy 0
T(A-LC)T —[ 0 Ay ,TE ;= 0 ,C=VCT™ " = 0 Cy
(6.32)

where the realization (All, Eq, C’l) is perfectly controllable.
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Remark 6.4 A system (A, B,C) is called perfectly controllable if

A- M B

o

} has full row rank.

Let Liyax be the observer gain that makes (A — LnaxC, E4) maximally
uncontrollable by d. When Cy # 0, we construct, according to Lemma 6.3,
the following FDF

[21] _ [Au — L1Cy A12L12C’2} |:Zl] +TBu+T(Lmax—|—L0V)y

29 0 Agy — Loy | | 22
o Cl 0 Z1
r—[()m](Vy—[O C’g] {@}),vg#o (6.33)
with
| L11 L2
TLo = { 0 ng] (6.34)
and L1, Loo ensuring the stability of /_111 - LuC’l and Ay — LQQC_’Q. Intro-
ducing
z= [21] e=Tr —z= [el]
29 €2
gives
é1|  [An — L11Cy Az — L12Cs | [er Egp
-t mna] o) e
él 0 el =
T = [0 UQ] |: 0 CQ:| |:62:| 21)20262. (636)

It is evident that residual signal r is perfectly decoupled from d.
It is straightforward to rewrite (6.33) into the original FDF form (6.27)-
(6.28) with
L= Lpax+LoV,v=[0v2]V (6.37)

as well as
2=T""z

Below is a summary of the above results in the form of an algorithm.
Algorithm 6.7 The geometric approach based UIFDF design

Step 1: Determine Lyax that makes (A — LynaxC, Eq, C) maximally uncon-
trollable by using Algorithm 6.6

Step 2: Transform (A — LyaxC, Eq,C) into (6.52) by a state (T') and an out-
put (V') transformation (controllability and observability decomposition)

Step 3: Select Ly satisfying (6.34) and ensuring the stability of A1 — L1:Cy
and AQQ - LQQCQ



6.4 UIFDF design 135

Step 4: Construct FDF (6.33) or in the original form (6.27)-(6.28) with L,v
satisfying (6.37).

Remember that the construction of residual generator (6.33) is based on
the assumption that Cy # 0. Without proof we introduce the following neces-
sary and sufficient condition for Cy # 0, which is known from the geometric
control theory.

Theorem 6.9 Under the same conditions as given in Lemma 6.3, we have

o Cy # 0 if and only if rank (C) > rank (Eq)
o (A, (Cy) is equivalent to

i A Az 0 =
Asg, C5) ~ - - Cs1 0
( 22, 2) (|:14222 A223:| ) [ 21 ]>
where (14_1221,6_'21) is perfectly observable, the eigenvalues of matriz Asaz
are the invariant zeros of (A, Eq,C) and they are unobservable.

An immediate result of the above theorem is

Corollary 6.2 Given system model

y(p) = Gyu(p)u(p) + Gya(p)d(p)

with Gyu(p) = (A, B,C) and Gyq(p) = (A, Eq,C), then there exists an FDF
that is decoupled from d if and only

A—p[ Ed

rank [ C 0

]<n+m

and Gyq(p) = (A, Eq,C) has no unstable invariant zero.

We know from Theorem 6.9 that there exists an olzserver matrix L such
that (A — LC, E4,C) can be brought into (6.32) with Cy # 0 if and only if

A—pIEd
rcmk[ C O}<n+m.
Moreover, if
A—pIEd A—pIEfEd
rcmk[ C O}<rank{ C 0 0 <n+m

then by suitably choosing output and state bases, V and T', the resulting
realization can be described by equations of the form

Aq 14:112

0 Aa 2

_[Ean _[En

e o[£

T(A—L(J)T—lz[ },C‘:V(JT*:[%

=)
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where Es # 0. As a result, constructing an FDF according to (6.33) yields
é1 A11 — L11Cy A1 — L12Co | [ e Eqn En
. = d =
A iy e Y Kl L A
_ 01 0 €1
r=[0uw] { 0 CJ [62] =
7(p) = v2Ca(pl — Agz + L2aCs) " Etaf(p)

i.e. a fault detection is achievable. Recall Corollary 6.2, we have

Corollary 6.3 Given system model

y(p) = Gyu(p)u(p) + Gys(p) f(p) + Gya(p)d(p)

with Gy, (p) = (A, B,C),Gys(p) = (A, Ef,C) and Gya(p) = (A, Eq,C), then
there exists an FDF that solves PUIDP if

rank {A—p[ Ed} < rank {A—p[ Ey Eq

c o c 0 O]Sner (6.38)

and the invariant zeros of Gyq(p) are stable.

It is interesting to notice the fact that, if there exists a UIFDF, then we
are also able to construct a reduced order residual generator decoupled from
d. To this end, we consider FDF (6.33). Instead of constructing a full order
observer, we now define the subsystem regarding to zs, i.e.

iy = (Agz — L2C) 20 + ThBu + Ts (Linax + Lo V) y
T = Uy (ng - C'QZQ) (6.39)

| _ "
T = [TJ Vs M .
It is evident that (6.39) is a reduced order residual generator which is decou-
pled from d.
Recall that residual generator (6.33) becomes unstable if system (A, E4, C)
has unstable invariant zeros. This problem can be solved by constructing a

reduced order residual generator. Without loss of generality, suppose that
after applying Algorithm 6.7 (Asg, C2) is of the form

with

Ay 0

Ayy = < Cy=[Cn0 6.40
> [A222A223]’ 2= [Cn 0] (6.40)

as described in Theorem 6.9, i.e.



6.4 UIFDF design 137

An 14:1121 Al

T(A-LC)T ™' =] 0 Ay O
0 Aszp Agas
A Eq
c—vert=|¢ 00 ,TE;=1 0 |. (6.41)
0 Cy 0 0

Corresponding to the decomposition given in (6.41), we now further split
Z2, Lo and Ty into

291 Laoy I
2 {222 } 1 {Lzzz } 2 {Tzz ]

and construct the following residual generator
91 = (Az21 — L121C21) 201 + To1 Bu+ To1 (Linax + LoV)y  (6.42)
r =y (Vay — Cor221) -
It is straightforward to prove that for es; = To1x — 201
éa1 = (Az21 — L1210 ) €21, 7 = 0201 €01

That means residual generator (6.42) is stable and perfectly decoupled from
d.

Corollary 6.4 Given system model

y(p) = Gyu(p)u(p) + Gya(p)d(p)
with Gyu(p) = (A, B,C) and Gya(p) = (A, Eq,C) and suppose that

A—p[Ed

rank [ c 0

} <n-+m.

Then residual generator (6.42) delivers a residual signal decoupled from d.

A very useful by-product of the above discussion is that residual generator
(6.42) can be designed to be of the minimum order and decoupled from d.
This will be handled at the end of this chapter.

Algorithm 6.8 The geometric approach based design of reduced order resid-
ual generator

Step 1: Determine Lyax that makes (A — LmaxC, Eq,C) mazimally uncon-
trollable by using Algorithm 6.6

Step 2: Transform (A — LymaxC, Eq,C) into (6.32) by a state and an output
transformation (controllability and observability decomposition)

Step 8: Transform (Age,Co) into (6.40) by a state transformation (observ-
ability decomposition,)
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Step 4 Select Looy ensuring the stability of Aoy — Log1Coy
Step 5: Construct residual generator (6.42).

The results achieved in this section can be easily extended to the systems
described by (3.30)-(3.31) with Fy # 0. To this end, we can, as done in the
former chapters, rewrite (3.30)-(3.31) into

j/: AEdEf xT B 0 . 0 .
di =100 0 dl+ |0 |u+|I|d+|0]|f  (6.43)
f 00 O f 0 0 I
o]
y=[CF;Fs] |d|+Du. (6.44)
/]
Note that
A-pl E; Ef 00]
0 —p[ 0 10 o A—pIEdEf
rank 0 0 —pl 01 —rank[ C FyFy +ka+ky
C Fq Fy 00 ]
A—pl Eq4 0]
rank 0 —pll :mnk[AE,pI?d]—&-kd
C  F; 0] ¢
it holds
A—-pl Eq Ef 00
0 —-pl 0 IO
rank 0 0 —pl 01 <n+ksg+kf+m
C Fq Ff 00
A—pl Eq Ey
<:>Tank[ C FyFy <n+m
A—pl E; 0
rank 0 —pllI <n+kd+m<:>Tank[ACpI§d}<n+m.
C F; 0 ¢

Recall further the definition of invariant zeros, the results given in Theorem
6.9 and Corollary 6.2 can be extended to

Corollary 6.5 Given system model (3.80)-(3.31), then there exists an FDF
that ensures a perfect unknown input decoupling if

A—pIEd A—pIEdEf
rank[ c F{J <rank{ C FyFy <n+m (6.45)

and the invariant zeros of Gyq(p) = Fq+ C (pI — A) "' Ey are stable.
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Example 6.4 We now apply Algorithm 6.7 to the design of a full order
UIFDF for the benchmark system LIP100 described by (3.57). This UIFDF
should deliver residual signals decoupled from the unknown input d. Using
Algorithm 6.6, we obtain

0 0.0000 —1.9500

I _100.0000 —13.7429
max T 1 00.7131  0.2470
00.0519 0.0180

It is followed by the computation of the state and output transformation ma-
trices, which results in

0 0 —0.1630 0

T— 0.0055 0.9473 0.3193 0.0232 V= 8(1)(1)
~ 10.0676 0.3191 —0.9428 —0.0686 | >~ 100

0.9977 —0.0269 0.0621 0.0045

To ensure the desired dynamics, L1y and Log are selected as follows, from
which Ly 1s computed

—1.0000 0.5000 0.5000
0 11.0500 11.8438
0 0.8796 5.1779
0 —0.1223 7.0497

TLy =

Finally, set
0 —0.500 —1.000

[0w2] =10 0750 1.500

and based on which v as well as L are determined. Having designed L,v, a
residual generator of the form (6.33) is constructed. In Fig.6.2, the response
of the two residual signals to different faults is sketched. These faults occurred
after the 10-th second. It can be seen that in the fault-free time interval (before
the 10-th second) the residual signals are almost zero. It verifies a perfect
decoupling.

6.5 UIDO design

The UIDO design addressed in this section is formulated as: given system
model (3.30)-(3.31) and diagnostic observer

#(t) = Gz(t) + Hu(t) + Ly(t) (6.46)
r(t) = vy(t) — wz(t) — qu(t) (6.47)

that satisfies Luenberger conditions (5.30)-(5.31) and (5.38), and thus whose
design form is described by
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Fig. 6.2 Response of the residual signals to faults

&(t) = Ge(t) + (TEy — LEp)f(t) + (TEq — LEg)d(t) (6.48)
r(t) = we(t) + vEs f(t) + vFad(t) (6.49)

find G, L, T, v, w such that residual generator (6.46)-(6.47) is stable and
wC(pl —G) N(Ey— LFy) +vF;=0 (6.50)
wC(pl — G) ' (Ey — LEy) +vFy #0. (6.51)
6.5.1 An algebraic approach

In this subsection, the approach by Ge and Fang to the DO design is extended
to the construction of UIDO. Suppose that

Fd=0,Ff:03nd [Ed Ef] = Inxn, kg < m.

Then, there exists an UIDO if and only if
TE;=T [I’“dox’“d} =0

which is, by denoting the i-th column of T with ¢;, equivalent to

Based on the method introduced in Chapter 5, Ge and Fang have proposed
a recursive algorithm to the design of a UIDO satisfying (6.50). To this end,
they have proven the following theorem.

Theorem 6.10 Let
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g0 -0
T 1q -0

T=|:|,G=1|.. . . (6.52)
T 0 1 gq

where T € R*™ G € R**® and s is the order of the DO, then

i—1
1 d* ,
Ti= 2V CguQ@i=t s (6:53)
k=0
no g1 X1
Qle) =) a; > "1k X = | (6.54)
j=1 k=0 X,

provide an equivalent solution with the one given in Theorem (5.8) for the Lu-
enberger equations, where q denotes the eigenvalue being arbitrarily selectable.

The proof is straightforward and thus omitted.
Following algorithm, developed on the basis of Theorem 6.10, can be used
to approach the design of UIDO satisfying (6.50).

Algorithm 6.9 The approach to UIDO design by Ge and Fang

Step 1: Calculate det(pl — A) = app™ + -+ a1p+ ag
Step 2: Solve (5.76) for Cy

Step 3: Set s =1

Step 4: Calculate Q(q) by (6.54) and set

My = CQ(q) (6.55)
Step 5: Denote the i-th column of My(p) with My,; and form
So=[Mo, -+ Moy, ] (6.56)

Step 6: Solve
X15=0,X7 #0

for X1 and set
Ty = X1 My

Step 7: Form T according to (6.52) and prove if
rank (TCN) < s (6.57)

Step 8: If (6.57) holds, then go to Step 11
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Step 9: Increase the observer order by one: s = s+ 1, and calculate

1 o
M, 1 = WCQ 1(‘1)

then set
Seo1=[Ms_1q -+ Mo_1p,]
Step 10: Solve
s—1
XSo+ Y XekSk=0 (6.58)
k=1
for X, set

s—1
T, = ZXs_kMk. =0 (6.59)
k=0
and go to Step 7
Step 11: Solve (5.75) for w(# 0), set G according to (6.52) and calculate
c(G) by (5.78)
Step 12: Set X, L,v subject to (6.54), (5.74), (5.75) respectively.

Remark 6.5 The above algorithm is a recursive realization of Theorem 6.10,
and thus the achieved UIDO is of minimal order.

Example 6.5 We now apply Algorithm 6.9 to design a minimum order UIDO
for the benchmark system LIP100 described by (3.57). We start with s = 1
and set

G=-1
It follows

T = [92.2308 —0.0000 0.0002 0.0000 ]
L = [92.2308 0.0003 —179.8499] , v = [46.1154 —0.0000 0.0001 |

based on which, we can also determine H,w. Thus, it can be concluded that
using Algorithm 6.9 we are able to design a minimum order UIDO for LIP100.
6.5.2 Unknown input observer approach

In the early 80’s, the so-called unknown input observer (UIO) design received
much attention due to its importance in robust state estimation and observer-
based robust control. Consider system model

&(t) = Az(t) + Bu(t) + Eqd(t), y(t) = Cx(t). (6.60)

A UIO is a Luenberger type observer that delivers a state estimation & inde-
pendent of unknown input d in the sense that
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lim (x(t) — Z(¢)) = 0 for all u(t),d(t), xo. (6.61)

t—oo

Making use of &, a residual signal can be constructed as follows

r(t) = y(t) — Ci(t).

This is the way that is widely used to design UIDO, also for the reason that
the technique of designing UIO is well established.

It is worth pointing out that the primary objective of using a UIO is to re-
construct the state variables. It is different from the one of residual generation,
where only measurements have to be reconstructed. In the next subsections,
we shall present some approaches to the design of UIO only for the residual
generation purpose.

We now outline the underlying idea of the UIO design technique.

It follows from (6.60) that

§(t) — CAz(t) — Cu(t) = CEqd(t). (6.62)

Assume that
rank (CEy) = rank (Eg) = kg (6.63)

then there exists a matrix M., satisfying
MeeCEq = I, xky- (6.64)
Multiplying the both sides of (6.62) by M. gives
Mee (§(t) — CAz(t) — Cu(t)) = d(t).

This means, using y (y(k+ 1) for discrete time systems), an estimation of the
state vector £ and the input vector u, the unknown input vector d can be
constructed by

d(t) = Mee (§() — CA&(t) — Cuft)).
On account of d, we are able to construct a full order state observer, on the
assumption that ¢ is available, as follows
& = Ai + Bu+ E4(CE;)~" (j — CAz — CBu) + L(y — C#) (6.65)
whose estimation error is evidently governed by
ée=(A-LC - E;M.CA)e,e =z — Z.

In case that there exists an observer matrix L such that matrix A — LC —
EqM.4CA is stabilizable, observer (6.65) fulfills (6.61).

Note that observer (6.65) requires knowledge of g, which may cause trou-
bles by the on-line implementation. To overcome this difficulty, modification
is made. Introduce a new state vector
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2(t) = &(t) — EaMcey(t)
and a matrix
T=1-FE;M.C (6.66)
then it turns out

4= (TA—-LC)z+TBu+ (TA— LC)E;M,. + L)y (6.67)
&=z + EqM,.y. (6.68)

It is clear that for all d,u, xq

lim (2(t) = Ta(t)) = 0, lim (2(t) - #(t)) = 0

t—o0

and furthermore, setting G = T A — LC and after some calculations, we have
TA-GT =(TA-LC)E4M,..+L)C,H =TB.

This means system (6.67)-(6.68) is a Luenberger type unknown input observer,
and by setting
r=v((I—-CEgjMc)y—Cz),v#0 (6.69)

we get a UIDO.
Algorithm 6.10 UIO based residual generation

Step 0: Check the existence conditions given in Corollary 6.6. If they are
satisfied, go to the next step, otherwise stop.

Step 1: Compute M. according to (6.64) and further T according to (6.66)

Step 2: Selection of L that ensures the stability of A — LC — EqM..CA

Step 3: Construct residual generator following (6.67) and (6.69).

It can be seen that the core of UIO technique is the reconstruction of
the unknown input d, which requires condition (6.63) or equivalently (6.64).
Furthermore, to ensure the stability of observer (6.65) or equivalently (6.67),
the pair (C,TA) should be observable or at least detectable. In summary, we
have the following theorem.

Theorem 6.11 Given system model (6.60) and suppose

Condition I:
rank (CEg) = rank(Eq) = kq

Condition II: (C,TA) is detectable, where
T=1-FE;M.,C

then there exists a UIO in the sense of (6.61).
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Remark 6.6 It can be demonstrated that Condition I and II are also nec-
essary conditions for the existence of a UIO. It is interesting to notice that
matriz T is singular. This can be readily seen by observing the fact

TE;=FE;— E;M . .CE4 = 0.
Thus, by a suitable transformation we are able to find a low order UIO.

Notice the following equality

5] (54 ] [ ]

C 0 C 0 M. .CAIT
. )\I—A+EcheCA Ef . M —-TA Ef
—rank[ C 0]—rank[ c 0l

This means if (C,TA) is undetectable, then (A, E¢,C) has at least one un-
stable transmission zero, i.e. there exists at least one A\, € C4 such that

Nl — A Ey

rank [ c 0

]<n+k:f

since the fact (C,TA) is undetectable implies there exists at least one A, €

RHP such that
I Al — A <
ran c n

Hence, Theorem 6.11 can be reformulated as

Corollary 6.6 Given system model (6.60), then there exists a UIO in the
sense of (6.61) if

e rank (CE,]) = k‘d
e (A, Ef,C) has no unstable transmission zero.

In a number of publications, it has been claimed that Conditions I and
IT stated in Theorem 6.11 are necessary for the construction of UIDO in the
form of (6.67) and (6.69). It should be pointed out that these two conditions
are not equivalent to the solvability conditions of the PUIDP described at the
beginning of this chapter. To illustrate it, we only need to consider the case

rank (CEq) < rank (Eq) and m > kq

which does not satisfy Condition I in Theorem 6.11. In against, following
Theorem 6.3 the PUIDP is solvable in this case, i.e. we should be able to find
a residual generator that is decoupled from the unknown input vector d.

We now check a special case: m = k4. Since

M,.CEy =1 <= CE;M,, = = CT = C(I — E4M,.C) =0
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we claim that (C,TA) is not observable for m = ky. In other words, we are
able to construct a UIDO of form (6.67) and (6.69) whose eigenvalues are
arbitrarily assignable only if m > k4. Indeed, following (6.69) we have for
m = kd

r=v((I—-CEqM.)y—Cz) = —vC-x.

Multiplying the both sides of (6.67) by C' gives
Cz=—-CLCxz.
Moreover, notice that

lim (2(t) — Tz(t)) =0 = lim C (2(t) — Tz(t)) = lim Cz(t) = 0.
t—o0 t—o0 t—o0
Thus, it is evident that for m = k4 the residual r is independent of the fault
vector f(t) and therefore it cannot be used for the purpose of fault detection.
The above-mentioned two cases reveal that approaching the UIDO design
using the UIO technique may restrict the solvability of the problem. The rea-
son lies in the fact that UIDO and UIO have different design aims. While a
UIO is in fact used to reconstruct the state variables, the design objective of
a UIDO is to reconstruct measurable state variables for the purpose of gen-
erating analytical redundancy. The realization of these different aims follows
different strategies. By the design of UIO an exact estimation of the unknown
input is required such that the influence of the unknown input can totally be
compensated. In comparison, an exact compensation of the unknown input is
not necessary by a UIDO. Therefore, the existence conditions of UIO are, gen-
erally speaking, stronger than the ones of UIDQO. In the following subsections,
two approaches to the design of UIDO will be presented.

Example 6.6 In this example, we design a UIO for the vehicle lateral dy-
namic system aiming at generating a residual signal decoupled from the (un-
known) road bank angle. As described in Section 3.7.4, the linearized model of
this system is described by

#(t) = Az(t) + Bu(t) + Eqd(t), §(t) = y(t) — Du(t) = Cz(t)

with the system matrices given in (8.76). For our purpose, Algorithm 6.10
is used. After checking the existence conditions, which are satisfied, M., T,L
and v are determined respectively:

M, = [<0.0065 0], L = — [éﬂ T [80.01082] =1 1],

Finally, UIO (6.67) is constructed, which delivers a residual signal on account
of (6.69).
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6.5.3 A matrix pencil approach to the UIDO design

Using matrix pencil to approach the design of UIDO was initiated by Wuen-
nenberg in the middle 80’s and lately considerably developed by Hou and
Patton.

The core of the matrix pencil approach consists in a transformation of
an arbitrary matrix pencil to its Kronecker canonical form. For the re-
quired knowledge of matrix pencil, matrix pencil decomposition and Kro-
necker canonical form, we refer the reader to the references given at the end
of this chapter. We introduce the following lemma.

Lemma 6.4 An arbitrary matriz pencil —pE + A can be transformed to the
Kronecker canonical form by a reqular transformation, i.e. there exist regular
constant matrices P and Q such that

P(_pE+A)Q = dzag(—pl—l— Jf7 _innf +I; _pEr +Ar7 _pEc+Aca O) (670)
where

o —pl + J; is the finite part of the Kronecker form, Jy contains the Jordan
blocks Jy, ;

o —pJins + I is the infinite part of the Kronecker form, Ji,¢ contains the
Jordan blocks Jin ¢, with

Jinfi =
1
0

o —pE,.+ A, is the row part of the Kronecker form. It is a block diagonal
matriz pencil with blocks in the form

—pE” +A11 =P [Imxm 0] + [0 I”‘i><7’11]

of the dimension r; x (r; +1);
o —pE.+ A, is the column part of the Kronecker form. It is a block diagonal
matriz pencil with blocks in the form

IC,‘ Xc;

I we:
_pE‘Ci +Aci =-—p |: 016<LZ:| + [ 0 :|

of the dimension (¢; +1) X ¢;;
0 denotes the zero matriz of appropriate dimension.

There exists a number of numerically stable matrix pencil decomposition
methods for the computation of the regular transformation described above,
for instance we can use the one proposed by Van Dooren.
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Remark 6.7 It is evident that Kronecker blocks —pI+J¢, —pJins+1, —pE,+
A, have full row rank.

Corresponding to system model (3.30)-(3.31) and the original form of resid-
ual generation, r = y — g, we introduce the following matrix pencil

- ~ |A—=pIl B 0 Ey Ey
ApE{ C D-IF;Fy| (6.71)
That means we consider a dynamic system whose inputs are the process input
vector v and output vector y and output is difference between the process
output y and its estimate y delivered by the parallel model.

Suppose a regular transformation by P; leads to

P {?ﬂ = [Epd: ,rank (Ed) =ky

and denote

p [-PI+AB 0 E; By] _ [-pEi+ Ay By By 0
! C D-IF;F;| X A A Ey

where A and x denote constant matrices and matrix pencil of appropriate
dimensions, respectively, and their forms and values are not of interest. Then,
by a suitable regular transformation of the form, we obtain

. A-pI B 0 E+ FE .
dzag(PJ)H[ A Fj]dzag@,n

= diag(P, 1) [Al _XpEl 121 EAf gd] diag(Q,I)

Ae_pEe 0 B;11 E:‘fl 0
= 0 A.—pE. B Ep 0 (6.72)

X X A A Ey

where P, () are regular matrices that transform the matrix pencil A; —pFE; into
its Kronecker canonical form and the matrix pencil A, — pFE, is the composite
of finite, infinite and row parts of the Kronecker form which have full row
rank, as stated in Lemma 6.4. Since it is supposed that

rank [Aapl} =n

i.e. (C,A) is observable, the 0 block in (6.70) disappears.
Due to its special form, matrix pencil A, — pE. can also be equivalently

rewritten into
A, —pl
Co
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where A, — pI and C, are diagonal matrices with blocks in the form
P

Ay —pl; = L 7Coi:[0"~1]

Corresponding to it we denote

. B, Ey,
5501~ (15

In conclusion, we have, after carrying out the above-mentioned transforma-
tions,

C D-I1F; Fy (6.73)
A, — pE, 0 Bll Efl 0
0 Ao —pl B, E¢, 0
0 Co D, Fyo 9
X X A A Ey

—AprB 0 Ef Ed]

From the linear system theory we know

(Cy, Ao) is observable;
denoting the state vector of the sub-system (4,, B,, C,) by Z,, then there
exists a matrix 71" such that z, = Tx.

Thus, based on sub-system model

Gy = Aty + B, m + Efof,ro = Como+ D, m + Frof (6.74)

we are able to construct a residual generator of the form
o= Aoio+ By m + L, <7~0—00550—D0 [;D (6.75)
r=Coito+ D, m (6.76)

whose dynamics is governed by
€o = (Ao — Loco)eo + (Efo — LoFfo)f, r=Cye, + Ffof

with e, = x, — Zo.

Naturally, the above-mentioned design scheme for UIDO is realizable only
certain conditions are satisfied. The theorem given below provides us with a
clear answer to this problem.
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Theorem 6.12 The following statements are equivalent:

o There exists a UIDO;
e In (6.73), block (Ao, By, Co, D,) exists and

Eto
[Ffo} 70
o The following condition holds true

pI—AEd:| <ra k[pI_AEfEd

m""’[ —C Fy ~C Fy Fy

} <n-4+m.

Due to the requirement on the knowledge of Kronecker canonical form and
decomposition of matrix pencil, we omit the proof of this theorem and refer
the interested reader to the references given at the end of this chapter. Never-
theless, we can see that the existence condition for a UIDO being designed by
the matrix pencil approach described above is identical with the one stated
in Theorem 6.2. This condition, as we have illustrated, is weaker than the one
for UIO.

As a summary, the design algorithm for UIDO using the matrix pencil
approach is outlined below.

Algorithm 6.11 The matrix pencil approach to the design of UIDO

Step 1: Decompose the matriz pencil (6.71) into (6.73) by regular transfor-
mations;
Step 2: Define UIDO according to (6.75)-(6.76) by choosing L, properly.

6.5.4 A numerical approach to the UIDO design

The approach stated below is in fact a summary of the results presented in
Subsections 5.7.1 and 6.2.3.

Consider system model (3.30)-(3.31). As shown in Subsections 5.7.1 and
6.2.3, residual generator

2=Gz+ Hu+ Ly,r = vy —wz — qu (6.77)

delivers a residual signal r whose dynamics, expressed in the non-recursive
form, is governed by

’I"(p) = wGSpise(p) + vs (Hf,sjfsfs(p) + Hd,sjdsds(p))

where
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00 ---0
10 ---0
G:[G()g]vGo: ERSX(S—l)
0--- 10
C
g1 CA
g = , Us . =0,vs = [US,O Us,s]
9s C A3

Us,0
s,1
H=TB-LD,L=—| . | —gv.s
Vs,s—1
_ C -
_Us,l Us,2 " VUs,s—1 Us,s cA
US,Q ...... US,S O
T =
| vss 0 0 | |cas—2
| cAst
r kaxkf 0] ce 0]
Ifs — wg]kkaf ’

: . 0]
_wGs_lgkaXk:f ngkkaf kathf
r Ikdxkd 0] e O

I_ds = ngkkad . :

: . 0]
_wGs_lgIkkad e wglkdxkd Ik}ka}d
[ f(p)p~* d(p)p~*
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fp)p~t d(p)p~!
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Following Theorem 6.4, under condition

rank [Hﬁs H, Hd,s] > rank [Hms Hd7s]
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(6.78)

(6.79)

(6.80)

(6.81)

(6.82)
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we are able to solve equations
vsHy s # 0 and vs [HO,S Hd,s] =0 (6.83)

for v, such that residual generator (6.77) becomes a UIDO, i.e. its dynamics
fulfills
é=Ge+ (TEy — LFy)f,r =we+vFf

in the recursive form or equivalently
T(p) = wGspise(p) + ’Ust,sjfsfs(p)

in the non-recursive form.
In summary, we have

Algorithm 6.12 The UIDO design approach by Ding et al.

Step 1: Solve (6.83) for vs;
Step 2: Choose g and set G,H,L,q,T,v,w according to (6.78)-(6.81);
Step 8: Construct residual generator according to (6.77).

Example 6.7 We continue our study in Example 6.3 and now design a UIDO
for the benchmark system EHSA. Remember that we have found out that be-
ginning with s = 3 condition (6.83) is satisfied. Below, we design a reduced
order UIDO (for s = 3) using the above algorithm.

Step 1: Solve (6.83) for vs

Vg0 = [—6.73 x 10716 2.99 x 1071?] v, 1 = [3.04 x 10711 1.00 ]
Vg2 = [8.79 x 1071 0.29 x 1072 ] , v, 3 = [9.94 X 10717 3.27 x 107 |
Step 2: g is chosen to be
—6.0 x 10°

g=|—-1.1x10°
—6.0 x 102

and compute H, L, q,T,v,w, which results in

[0.0005 4.26 x 10~% 0.4416 3.04 x 10~ 1 1
T = 0 —1.25x 1072 0.0005 8.79 x 10~**  0.0029
| 0 0 0 9.94x10°17327x 107
[ 5.96 x 10~10 19.626 16.959
L=|-194x10"" —-6.40x 107 | ,H = 0
| —2.83 x 1071 —9.3 x 104 0

v=1[994%x10"1"327x107%] ,¢g=0,w=[001].

Step 3: Construct residual generator according to (6.77) using the obtained
system matrices.
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6.6 Unknown input parity space approach

With the discussion in the last subsection as background, the parity space
approach introduced in the last chapter can be readily extended to solve the
PUIDP. Since the underlying idea and the solution are quite similar to the
ones given in the last subsection, below we just give the algorithm for the
realization of the unknown input parity space approach without additional
discussion.

Algorithm 6.13 The unknown input parity space approach

Step 1: Solve
vl o # 0 and v, [HO’S Hd,s] =0

for vg;
Step 2: Construct residual generator as follows

T(k) = Us (ys(k) - Hu,S“S(k)) .

Note that the application of this algorithm leads to a residual signal de-
coupled form d:

(k) = vs (ys(k) — Hu sus(k)) = vsHy s fs (k).

6.7 An alternative scheme - null matrix approach

Recently, Frisk and Nyberg have proposed an alternative scheme to study
residual generation problems and in particular to solve PUIDP. Below, we
briefly introduce the basic ideas of this scheme.

Consider system model (3.29) and rewrite it into

d(p)

y(p) | _ | Gya(s) Gys(s) Gyu(s)
u(p)

Now, we are able to formulate the residual generation problem in an alter-

native manner, i.e. find a dynamic system R(s) € RHo with y and u as its
inputs and residual signal r as its output so that

) = ) [ 12)] = sy [ Ooae) Gog) Gl zgﬁ
o[5S (]

In particular, if there exists a R(s) € RHs such that
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R(s) {Gyg(s) Gﬂ“}(s)} =0 (6.86)

then we have

o) = k) |90 | = res) | 4] 100

Note that solving (6.86) is a problem of finding null matrix of [Gyg(s) Gm}(s)
In this way, solving PUIDP is transformed into a problem of finding a null
matrix. Nowadays, there exist a number powerful algorithms and software
tools that provide us with numerically reliable and computationally efficient
solutions for (6.86).

It is worth mentioning that application of the so-called minimal polynomial
basis method for solving (6.86) leads to a residual generator of the minimum
order.

6.8 Minimum order residual generator

Remember that the minimum order of a parity relation or an observer-based

residual generator is given by the minimum observability index ¢,,,;,. How can

we design a UIDO or a parity relation based unknown input residual generator

of a minimum order? The answer to this question is of practical interest, since

a minimum order residual generator implies a minimal on-line computation.
In Subsections 6.5.1, 6.4.2 and Section 6.7, we have mentioned that

the algebraic approach by Ge and Fang
the geometric approach and
the minimal polynomial basis method

can be used to construct residual generators of a minimum order. Below,
we shall introduce two approaches in details.

6.8.1 Minimum order residual generator design by geometric
approach

In this subsection, we propose a design procedure for constructing minimum
order UIFDF based on the results achieved in Subsection 6.4.2.

Assume that the existence condition (6.45) for a UIFDF is satisfied. Then,
applying Algorithm 6.8 leads to an observable pair (6_'21,121221) as shown in
(6.40). Now, instead of constructing a residual generator described by (6.42),
we reconsider

291 = Aga1221 + To1 Bu + Toy Linaxy = Aso1221 + Bl (6.87)
y=Voy = Cazmn (6.88)
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with

B=[Ta1B To1Lmax | = [z} :

Suppose that the minimum observability index of the observable pair (6_'21, [1221)
is 02 min- It is known from Chapter 5 that the minimum order residual gen-
erator for (6.87)-(6.88) is 02,min and we are able to apply Algorithm 5.1 to
design a (minimum order) residual generator with s = 02 min.

To show that og iy is also the minimum order of (reduced order) UIFDF,
we call the reader’s attention to the following facts: Given system model (6.31)

e any pair (L, V) that solves the PUIDP leads to
(A= LC,E4,VC) ~
Ay 14:112 En Cni C:'12
0 A22 ’ 0 ’ 0 022
e the subspace spanned by (fln, Edl, C’ll) includes the perfect controllable

subspace (A1, Eq1,C1) given in Lemma 6.3
e by a suitable selection of a pair (il, f/l) ,

(12111 - Zzléu,Edelén) ~
({/111,11 /:111,12} {Edl,l} [011,11 C:'u,u])
0 Apel’| 0 |7 0 Cii

where (All,ll,Edl,l,éll,H) is perfect controllable.
e Due to the special form of

Ajrge X Ciian X
([ 0 12122]’{ 0 ézz]) (6:89)

with X denoting some block of no interest, it is evident that the minimum
order of the residual generator for the pair (6.89) is not larger than the

minimum order of the residual generator for the pair (12122, 6’22

e the pair (6.89) is equivalent to the pair (Agq, C2) given in Theorem 6.9.
Based on these facts, the following theorem becomes clear.

Theorem 6.13 Given system (6.25)-(6.26) and suppose that the PUIDP is
solvable. Then, using Algorithms 6.8 and 5.1, a minimum order UIFDF can
be constructed.

Algorithm 6.14 The geometric approach based design of minimum order
residual generator
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Step 1: Apply Algorithm 6.8 to system (6.25)-(6.26) and bring the resulted
system into form (6.87)-(6.88)

Step 2: Find the minimum observability index o2 min and set s = 02 min

Step 3: Using Algorithm 5.1 to construct a minimum order residual genera-
tor.

Example 6.8 We now apply Algorithm 6.14 to design a minimum order
UIDO for the benchmark system LIP100. For this purpose, we continue our
study in FExample 6.4, from which we can find out

02 min = 1

and thus set s = 1. It follows the determination of the observer gain that is
set to be —1.0 and the other system matrices (parameters). Fig.6.3 gives the
response of the residual signal to a simulated fault that occurred at t = 15sec.

0.5

0.4t 1

0.3r i

0.2 B

0.1r b

Residual Signal
o

05 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Time [s]

Fig. 6.3 Response of the residual signal generated by a minimum order UIDO

6.8.2 An alternative solution

A natural way to approach the reach for a minimum order residual generator
is a repeated use of Algorithm 6.13 or 6.12 by increasing s step by step. This
implies, however, equation

vsHy s # 0 and v, [HO,S Hd,s] =0 (6.90)

should be repeatedly solved, which, for a large s, results in an involved com-
putation and may also lead to some numerical problems, for instance due to
high power of A, H, 5, Hy s may become ill-conditioned.

Below is an approach that offers a solution to this problem.
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Recall that a parity vector can be parametrized by

Vg = stbase,sv Wg 7é 07 Qbase,s = diag(Na,mn; T 7Na'ma1717 Namaza e 7Ns)
i .
NiCAO = O,Z = 1, e 7O'magC,h.ZV

Omazx

= No’maerl == Ns = Imxm

and further vsHgy s by B B
Ust,s = stbase,st,s

with Hy ¢ as defined in (6.14), A,, L, in (5.41). Note that the elements of
matrix A, are either one or zero, hence computation of high power of A4, is
not critical. Moreover, for § > 0,4, We have A = 0. Taking into account these
facts, the following algorithm is developed, which can be used to determine
the minimum order parity vector that ensures a residual generation decoupled
from the unknown inputs.

Algorithm 6.15 Calculation of minimum order parity vector

Step 1: Transform (C, A) into its observer canonical form and determine the
observability indices and matrices Ay, Ly;
Step 2: Set initial conditions

s = O-minzﬁds = [ﬁd,s Fd] 7]~{d7s = [CA()SilEd T CEd]

Po = Q_base,s = Nsigmamm, Nsigmamm C’Aoﬂ-min =0
Step 8: Solve i
wSPoHd,s = 0
If it is solvable, then set
Vg = wSPoHLs

with Hy 5 as defined in (6.18) and end;
Step 4: If s = Omin + Omaz, 10 solution and end;
Step 5: If s < Opmaz — 1, set

Hd,s—l 0
Hys Fy
P, = diag(@base,sflaNSL NSCA; =0

s= s 1ty = | | . = [0, By - CE

and go to Step 3;
Step 6: If s = Opmaz — 1, set

Hg7s_1 0
Hys Fy

Po = diag(@base,s—l, [mxm)

8:S+1,Hd,s:|: :|;Hd,s:[CAoSIEd"'CEd]

and go to Step 3;
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Step 7: Form the first kq columns of ﬁd,s as a new matriz f[d7s, remove them
from Hy s and define the rest of Hy s as new Hg s, i.e.

Hd,s = Hdﬁg(k‘d + 1,&)

where o denotes the number of the columns of the old f_fd,s and des(kd +
1, ) the columns from the kq+ 1 to the last one.
Step 8: Set

Hg7s_1 0

] = Omaz—1 [ e )
- FJ gy = [CASm= By .. CEy]

3:s+1,ﬁd75: [
and solve .
PiH;s=0

for Py and set B
Po = diag(PlQbase,sflv Imxm)

and go to Step 3.
The purpose of Algorithm 6.15 is to solve
Vg [Ho,s Hd,s] =0
for vs with the minimum order. The underlying ideas adopted are

e to do it iteratively,
e to utilize the facts

— for s = 0yas, CAS =0 and so for P #0

CA,'Eq CA'Eq
P : = 0= diag(P1, Lxm) : =0
CASE, CA’Eq
where i £
CA,' Ey
Py =0
CA,'Ey

— given matrices (1, Q2 of appropriate dimensions the solvability of the
following two equations

P[Q1 Q2] =0

and
PPQy =0, P,Q1 =0

are identical, moreover P = Py P,.
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e following Theorem 6.3 we only need to carry out searching up to s =
Omaz T Omin-

In comparison with a direct solution of equation (6.90), using Algorithm
6.15 has the following advantages:

The highest power of A, is limited to 0yqr — 1;
The maximally dimensional linear equation to be solved is

Fy 0 --- 0

E F,
wg P, C. d d =0
0

C’Aoam‘”_lEd CEd Fy

which is the case for s = 040 + Omin and whose dimension is not larger
than m(omaz + 1) X kq(0max + 1). Note that in the same case a direct
solution of (6.90) implies

C Iy 0O - 0

s CA CEd Fd . . —0
: : . .0

C AomaztOmin O ATmaztomin—lp, ... CE,; Fy;

whose dimension amounts to
m(amam + Omin + 1) X (’I’L + kd(amaz + T min + 1))

Note that the one-to-one mapping between the parity vector and DO de-
sign also allows applying Algorithm 6.15 for the design of minimum order
UIDO.

6.9 Notes and references

Unknown input decoupling was an attractive research topic in the past two
decades. In this chapter, we have only introduced some representative methods
aiming at demonstrating how to approach the relevant issues around this topic.

The existence conditions for the PUIDP, expressed in terms of the rank
of transfer matrices, was first derived by Ding and Frank [38]. Using matrix
pencil technique, Patton and Hou [76] have given a proof of the check condition
described by the rank of Rosenbrock system matrix, which, different from
the proof given in Subsection 6.2.2, requires the knowledge of the matrix
pencil technique. The existence conditions expressed by the rank of parity
space matrices H, s, Hq s have been studied by Chow and Willsky [23], and
subsequently by Wuennenberger [148]. The existence condition (6.11) and the
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results described by Theorem 6.3 have been lately presented, for instance by
Ding et al. [42].

Concerning the solution of the PUIDP, we have introduced different meth-
ods. Significant contributions to the frequency domain approaches have been
made by Frank with his co-worker [38, 54] and Viswanadham et al. [142].
The eigenstructure assignment approach presented in Subsection 6.4.1 is a
summary of the work by Patton and his research group [119]. Massoumnia
[102] has initiated the application of the geometric theory to the FDI system
design. However, considering the demand on the knowledge of geometric the-
ory, which seems difficult for the readers without profound knowledge of the
advanced control theory, we have adopted a modified form for the description
of this approach. Most of those results can be, in the dual form, found in
the books by Wonham [147] and Kailath [87]. Algorithm 6.6 is given in [12].
UIDO and parity space type residual generator design are the two topics in
the field of model-based FDI which received much attention in the last two
decades. The contributions by Chow and Willsky [23] using the parity space
approach, by Ge and Fang [61] (see Subsection 6.5.1) and by Wuennenberg
and Frank [149] using the Kronecker canonical form are the pioneering works
devoted to these topics, in which, above all, the original ideas have been pro-
posed. Their works have been followed by a great number of studies, e.g. the
one on the use of UIO technique made by Hou and Miiller [73], the matrix
pencil approach developed by Patton and Hou [76], in which matrix pencil
decompositions are necessary and thus the use of a matrix pencil decomposi-
tion technique proposed by Van Dooren [45] is suggested, as well as the work
by Wuennenberg [148], just mention some of them. We would like to point
out that in this chapter we have only presented the original and simplest form
of the UIO technique, although it is one of widely used approach and is of
a number of presentation forms, see for instance [74, 141]. The reason why
we did not present more lies in the fact that the application of this approach
for the FDI purpose is restricted due to the existence conditions. They are
stronger than most of the other approaches described in this chapter. We re-
fer the reader to the survey papers, e.g. [50, 51, 52], and the references given
there for more information about this technique. The alternative scheme for
residual generation and PUIDP solution by means of null matrix formulation
has been recently proposed in [57, 139].

Finally, we would like to mention that only few studies on the design of
minimum or low order residual generators have been reported, although such
residual generators are of practical interest, due to their favorable on-line
computation.



7

Residual generation with enhanced robustness
against unknown inputs

It has been early recognized that the restriction on the application of the
perfect decoupling technique introduced in the last chapter may be too strong
for a realistic dissemination of this technique in practice. Taking a look at the
general existence condition for a residual generator perfectly decoupled from
unknown inputs,

rank (Gya(p)) <m

it becomes clear that a perfect decoupling is only possible when enough num-
ber of sensors are available. This is often not realistic from the economic view-
point. Furthermore, if model uncertainties are unstructured and disturbances
possibly appear in all directions of the measurement subspace, the decoupling
approaches introduced in the last chapter will fail.

Since the pioneering work by Lou et al., in which the above problems were,
for the first time, intensively and systematically studied and a solution was
provided, much attention has been devoted to this topic. The rapid devel-
opment of robust control theory in the 80’s and early 90’s gave a decisive
impulse for the establishment of a framework, in which approaches and tools

disturbances ———»f .
process [«————disturbances

(plant) sensors
actuators output

input
E\IAWA? faults % faults % faults

output . .
output estimate post- residual signal
observer - filter as a function of disturbances
and faults

Residual generator

Fig. 7.1 Schematic description of robust residual generation
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to deal with robustness issues in the FDI field are available. The major ob-
jective of this chapter is to present those advanced robust FDI approaches
and the associated tools, which are becoming popular for the robust residual
generator design. Different from a perfect decoupling, the residual generators
studied in this chapter will be designed in the context of a trade-off between
the robustness against the disturbances and the sensitivity for the faults. As a
result, the generated residual signal will also be affected by the disturbances,
as shown in Fig.7.1.

Generally speaking, robust FDI problems can be approached in three dif-
ferent manners:

e making use of knowledge of the disturbances
A typical example is the Kalman filter approach, in which it is assumed
that the unknown input is white noise.

e approximating Gyq(p) by a transfer matrix G,q(p) which, on the one side,
satisfies the existence conditions for a PUID and, on the other side, pro-
vides an optimal approximation (in some sense) to the original one
It is evident that the design procedure of this scheme would consist of two
steps: the first one is the approximation and the second one the solution
of PUIDP based on Gyq4(p)

e designing residual generators under a certain performance index
A reasonable extension of the PUIDP is, instead of a perfect decoupling,
to make a compromise between the robustness against the unknown input
and the sensitivity to the faults. This compromise will be expressed in
terms of a performance index, under which the residual generator design
will then be carried out.

In the forthcoming sections, we are going to describe these three types of
schemes, concentrate ourselves, however, on the third one, due to its important
role both in theoretical study and practical applications.

7.1 Mathematical and control theoretical preliminaries

Before we begin with our study on the robustness issues surrounding FDI
system design, needed mathematical and control theoretical knowledge, skills
and associated tools, including

e norms for signals and systems

e algorithms for norm computation

e singular value decomposition (SVD)

e co-inner-outer factorization (CIOF),

e H., solutions to model matching problem (MMP) and
e linear matrix inequality (LMI) technique,

will be introduced in this section. Most of them are standard in linear
algebra and robust control theory. The detailed treatment of these topics can
be found in the references given at the end of this chapter.
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7.1.1 Signal norms

In this subsection, we shall answer the question: how to measure the size of a
signal.

Measuring the size of a signal in terms of a certain kind of norm is becom-
ing the most natural thing in the world of control engineering. A norm is a
mathematical concept that is originally used to measure the size of functions.
Given signals u, v

then a norm must have the following four properties:

L Jul] >0
IL Ju| =0 <= u=0
III. |jau|| = |a|||ul|, a is a constant

IV Alu + vl < Jlul] + (o]

Next, three types of norms, which are mostly used in the control engineer-
ing and also for the FDI purpose, are introduced.
£y norm: The £; norm of a vector-valued signal u(t) or u(k) is defined

by
Jull = Z/ Jui (£) dt or July = ( Iui(k)|> : (7.1)
i=170 k=0

i=1 =

L5 norm: The L5 norm of a vector-valued signal u(t) or u(k) is defined
by

1/2

oo 1/2 oo
= 'LLT u or ||ul|g = 'LLT (7 . .
l[ull2 = </O (t) (t)dt> [ <kz_0 (k) (k)) (7.2)

The £y norm is associated with energy. While u® (k)u(k) or u® (k)u(k) is
generally interpreted as the instantaneous power, ||u|3 stands for the total
energy.

In practice, the root mean square (RMS), instead of Lo norm, is often
used. The RMS measures the average energy of a signal over a (large) time
interval (0,7") and is defined by

lullgass = | 7 [ o (utrrar | . (73)

It follows from the Parseval Theorem that the size computation of a signal
can also be carried out in the frequency domain:
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1 o

o
/ ul (t)u(t)dt = — u’ (—jw)u(jw)dw
0 2w —00
for the continuous time signal and

Zu ;ﬂ /W uT (e u(e’?)do

for the discrete time signal, where
u(jw) = F(u(t)) and u(e’’) = F(u(k))

with F denoting the Fourier transformation.
Lo norm: The Lo norm of a signal u(¢) or u(k) is the least upper bound
of its absolute value:

lelloc = maxcsup fu; (B)] or [Juloc = maxsup Ju; (k)].

The L norm is the maximum amplitude of a signal.

In the FDI study, we are often interesting in checking whether the peak
amplitude of a vector-valued residual is below a given threshold. To this end,
we introduce next the so-called peak-norm.

Peak norm: The peak norm of u € R" is defined by

1/2 1/2
e = sup (u (0)u(1)) " 0 s = sup (u ()u(k) .

Remark 7.1 By introducing the above definitions we have supposed that the
signal under consideration is zero for t <0, i.e. it starts at time t = 0.

A direct application of the signal norms in the FDI field is the residual
evaluation, where the size (in the sense of a norm) of the residual signal
will be on-line calculated and then compared with the given threshold. Since
evaluation over the whole time or frequency domain is usually unrealistic,
introducing an evaluation window is a practical modification. For our purpose,
following definitions are introduced:

lulls» = Z/ i (8))dt or |[ull1 » = ZZ\UL (7.4)

= < [ f uT(t)u(t)dt>1/2 or [lullsr = (é uT(l-c)u(k)>1/2 (7.5)

fulls = (55 [ uT(jw)u(jw>dw)1/2 (76)

1
[ul|oo,r = maxsup [u;(t)| or ||ulec,r = maxsup u;(k)] (7.7)
vooter v ker
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where 7 = (t1,t2) or 7 = (k1,k2) and ¢ = (w1, ws) stand for the time and
frequency domain evaluation windows.

Note that a discrete time signal over a time interval can also be written
into a vector form. For instance, in our study on parity space methods, we
have used the notation dg(k)

d(k)
d(k+ 1)
dy(k) = ,

d(k + s)

to represent the disturbance in the time interval [k, k 4 s|. Thus, in this sense,
we are also able to use vector norms to the calculation of the size of a (dis-
crete time) signal. Corresponding to the above-mentioned three kinds of signal
norms, we introduce following vector norms:

1 norm: .
lully,s =Y [u(k + ). (7.8)
i=0
2 norm:
s 1/2
s = (Z u (k + 1)) . (7.9)
i=0
00 norm:
[ulloo,s = sup  [u(k)|. (7.10)
i€[k,k+s]

It is obvious that the computation of a vector norm is much more simple than
the one of a signal norm.

7.1.2 System norms

In this subsection, we shall answer the question: how to measure the size of a
system.

Consider a dynamic system y(p) = G(p)u(p). For our purpose, we only
consider those LTI systems, which are causal and stable. Causality means
G(t) =0fort < 0or G(k) =0 for k < 0 with G(t) or G (k) as impulse
response. Mathematically, the causality requires that G(p) is proper, i.e.

lim G(p) < o

p—00
A system is called strictly proper if
lim G(p) =

p—00

System G(s) or G(z) is called stable if it is analytic in the closed RHP
(Re(s) > )orfor|z\§1.
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One way to describe the size of the transfer matrix G(p) is in terms of
norms for systems or norms for transfer function matrices. There are two dif-
ferent ways to introduce norms for systems. From the mathematical viewpoint
G is an operator that maps the vector-valued input function u to the vector-
valued output function y. The operator norm ||G||, is defined in terms of the
norms of input and output functions as follows:

I = sup 1402 — g L0l
P u#0 ||u||p u#0 ||u||17

(7.11)

It is thus also known as induced norm.
Suppose that the input signal u is not fixed and can be any signal of Lo
norm. It turns out

G
sup lyll> = sup 1G]l = sup 7 (Gw)) (7.12)
wzo l[ullz w0 llullz weo,00)

for continuous time systems and

G ‘
ol _ o 05l _ o o
o i~ Tulla” ~ ocloim

for discrete time systems, where & (G(w)) or  (G(e??)) denotes the maximum
singular value of G(jw) or G(e’?). This induced norm equals to the H., norm
of G(p) defined by

'Hoo norm:

|Glloc = sup 7 (G(w)) or [|G|lec = sup c‘r(G(eje)). (7.13)

w€[0,00] 0€[0,27]

‘H~ norm can be interpreted as the amplification of a transfer function matrix
that maps the input signal with finite energy but being any kind of signals into
the output signal. Remember that in the design form of a residual generator,

r(p) = R(p)Mu(p) (Gys(p)f(p) + Gyalp)d(p))

both signals, d(p), f(p), are unknown. If their energy level is bounded, then
Ho norm can be used to measure their influence on the residual signal. It
is interesting to note that even if the input signal u is not £ bounded but
llull gars < o0, we have

sup lyllraes sup & (G(w)) = || Glloo- (7.14)
u#0 ||UHRMS w

Let G(t) (for continuous time) as well as G(0), G(1), - - - (for discrete time)
be the impulse response function of system y(p) = G(p)u(p) € R, then
‘H1 norm:
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(oo}
Gl =/ |G(7)ldT or [|G]ly = |GO)| +|G(1)[ +--- . (7.15)

The H; norm of G is the Lo, /Ls norm induced norm, i.e.

G
sup Iylloo = sup 1Guloo = |G- (7.16)

u£0 llu] oo u£0 [fa[p

Thus, the H; norm of G can be interpreted as the amplification of the maxi-
mum value of the input signal.

In the FDI study, for y(p) € R™, ||y|| ,cqs, instead of [ly[|, is often used for
the purpose of residual evaluation. In this case,

peak-to-peak gain:

G lpear = sup 12lpea (7.17)
T Tullear

is useful for the threshold computation.
A further induced norm is the so-called generalized Hy norm,
generalized H; norm:

1G], = sup 19 lpees (7.18)
Sl

which is rarely applied in the control theory but provides us with a helpful
tool to answer the question: how large does the disturbance (input variable)
with bounded energy cause instantaneous power change in the residual signal
(output variable)?

Another norm for transfer function matrices is

Hs norm:

1G> = <i /OO trace (G (—jw)G(jw)) dw>1/2 or  (7.19)

2 J_ o
1/2

|Gl = <% /0% trace (GT(e—f‘))G(eﬂ'e))d0> . (7.20)

‘Hs norm is not an induced norm, but widely used in the control theory. Given
transfer matrix GG, when the input is a realization of a unit variance white
noise process, then the Hy norm of G equals to the expected RMS value of
the output. A well-known application example of the Hs norm is the optimal
Kalman filter, in which the Hs norm of the transfer function matrix from the
noise to the estimation error is minimized.

Motivated by the study on parity space methods, we introduce next some
norms for matrices. Compared with the norms for transfer function matrices,
the norms for matrices are computationally much simpler. Let G € R™*™ be

a matrix with elements G; ;,i =1,--- ,m,j =1,--- ,n, then we have
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matrix norm induced by the 2 norm for vectors, which is also called
spectral norm:

|Gul2
[[ull2

Frobenius- or Euclidian norm:

|Gll2 = sup =0(G) = (mlax )\i(GTG)>1/2 (7.21)

1/2 B 1/2

1GllF = ZZ\GUIQ = (ZM(GTG)) (7.22)

1=15=1 =1

1 norm:
IGI1 —maXZ|GU\ (7.23)
=1
for which equation
||Gu||1

max Gii|l = 7.24
Z' J| usé() ||UH1 ( )

holds, i.e. ||G||1 is a matrix norm induced by the 1 norm for vectors.
00 norm:

n
[Glloe = m?XZ 1G]
j=1
which also equals to the induced norm by the oo norm for vectors, i.e.

maxz Gy;| = ”G“”°° (7.25)

o Tulloo

7.1.3 Computation of Hs and H,, norms

Suppose system G(p) has a minimal state space realization G(p) = D+C(pI —
A)71B and A is stable, then

e for continuous time systems [|G||2 is finite if and only if D = 0 and
|G|z = trace(CPCT) = trace(BTQB) (7.26)
where P, () are respectively the solution of Lyapunov equations
AP+ PAT + BBT =0,QA+ ATQ+CTC =0 (7.27)
e for discrete time systems
|Gll2 = trace(CPCT + DD™) = trace(BTQB + DT D) (7.28)
where P, (Q are respectively the solution of Lyapunov equations

APAT — P+ BBT =0,ATQA-Q+CTC =0. (7.29)
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Unlike the Hs norm, an iterative procedure is needed for the computation
of the Ho norm, where an algorithm of determining whether ||G||oo < 7y will
be repeatedly used until

mf{Glloo <7} = 1Glloo
is found. Below is the so-called Bounded Real Lemma that characterizes the
set {||Glleo < v}

Lemma 7.1 Given a continuous time system G(s) = D + C(sl — A)™'B €
RHoo, then ||Glloo < v if and only if

R:=~*T-DTD>0
and there exists P = PT > 0 satisfying the Riccati equation

P(A+BR'D'C)+(A+BR'D'C)'P+ PBR'BTP +
CcT(I+DR'DT)C =0.

Lemma 7.2 Given a discrete time system G(z) = D+ C (21 —A)"'B ¢
RHoo, then ||Glloo <7 if and only if 3X > 0 such that

I —-DT'D—-BTXB>0
ATXA-X -ATXGU+XG) ' XA++*Q=0
A=A+B(’I-D'D) ' D"C,G=-B(,’I-D'D) ' B”
Q=C"(*1-D"D) ' C
and (I + XG)™' A is stable.

We see that the core of the above computation is the solution of Riccati
equations which may be, when the system order is very high, computationally
consuming. There exists a number of CAD programs for that purpose.

In subsection 7.1.7, an LMI based algorithm will be introduced for the
H~ norm computation as well as the computation of other above-mentioned
norms.

7.1.4 Singular value decomposition

The SVD of a matrix G € R™** is expressed by
G=Uxv"

where U € R ",V € RF*k,

UUT = I7L><'n7 VVT = Ika
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and for n > k
s diag(oq,- - ,ak)}
On—t)xk
forn <k
Y= [dmg(ah c L Op) Onx(k,n)]
with 01 > 09 > .-+ > 0} denoting the singular values of G. The SVD of
G € R™*F is of the following two interesting properties:

k

IGllr = USVT o =12l =) o (7.30)
i=1

IGlloe = ITZVT oo = || Xl = o1 (7.31)

7.1.5 Co-inner-outer factorization

Inner-outer factorization (IOF) technique is a powerful tool for solving ro-
bustness related control problems. For the FDI purpose, the so-called co-
inner-outer factorization (CIOF) plays an important role. Roughly speaking,
a CIOF of a transfer function matrix G(p) is a decomposition of G(p) into

G(p) = Gco(p)Gcz(p) (732)

where G;(p) is called co-inner and satisfies G;(jw)G%;(jw) = I for all w
(for continuous time systems) or G*(e??)G(e’?) = I for all § € [0,27] (for
discrete time systems) and G.,(p) is called co-outer and has as its zeros all
the (left) zeros of G(p) in the LHP and on the jw-axis, including at infinity
(for continuous time systems), or within |z| < 1 (for discrete time systems).
IOC is a dual form of CIOF and thus the IOC of G(p) can be expressed in
terms of the CIOF of GT (p) = (Geo(p)Gei(p))" = Gi(p)Go(p). Gi(p), Go(p)
are respectively called inner and outer of G(p).

In most of textbooks on robust control, study is mainly focused on IOF
instead of CIOF. Also, it is generally presented regarding to continuous time
systems. Next, we shall introduce the existence conditions for CIOF and the
associated algorithms by "translating" the results on IOF into the ones of
CIOF based on the duality.

We first introduce some relevant definitions. A rational matrix G(p) is
called surjective if it has full row rank for almost all p and injective if it has
full column rank for almost all p. A co-outer is analytic in C; and has a left
inverse analytic in C.. If there exists G~ (p) € RH oo such that G~ (p)G(p) = 1,
then G(p) is called left invertible in RH .

The following results are well-known in the robust control theory.

Lemma 7.3 Assume that G(p) € LH™** is surjective and
e in case of a continuous time system: Yw € [0, o0

rank (G(jw)) = m <= G(jw)G* (jw) > 0 (7.33)
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e in case of a discrete time system: V6 € [0, 2]
rank (G(e7?)) = m < G(e/)G* (%) > 0 (7.34)
then there exists a CIOF
G(p) = Geo(p)Gei(p)- (7.35)
Lemma 7.4 Assume that G(s) € LH™*" is surjective and Yw € [0, 00]
G(jw)G* (jw) > 0. (7.36)

Then there exists an LCF G(s) = M~*(s)N(s) that also gives a CIOF

G(s) = M7 (s)N(5) = Geo(5)Gei(s) (7.37)
with Geo(s) = M~(s) as co-outer and Gei(s) = N(s) € RHoo as co-inner.
This factorization is unique up to a constant unitary multiple. If G(s) € RHoo,

then G_1(s) € RHoo. Furthermore, assume that the realization of G(s) =
(A, B,C, D) with A € R"™" is detectable and Yw € [0, 0]

A—jwl B

rank [ o D

] =n+m. (7.38)

Then the above LCF can be expressed by
M(s) = (A— LC,L,—QC,Q),N(s) = (A— LC,B — LD,QC,QD) € RHx
Q= (DDT)V2 L= (vcT + BDT)(DDT)™! (7.39)
where Y > 0 is the stabilizing solution of the Riccati equation
AY +YAT + BBT — (YCT + BDT)(DDT)~"(CY + DBT) =0. (7.40)
Lemma 7.5 Assume that G(z) € LH™*" is surjective and V0 € [0, 2n]
G(e19)G*(e7%) > 0. (7.41)

Then there exists an LCF G(z) = M~(2)N(z) that also gives a CIOF

G(z) = MY (2)N(2) = Geo(2)Gei(2) (7.42)

with Geo(z) = M‘l(z) as co-outer and G (z) = ]\7(2’) € RHo as co-inner.
If G(2) € RHso, then G H(2) € RHoo. This factorization is unique up to a
constant unitary multiple. Furthermore, assume that the realization of G(z) =
(A, B,C, D) with A € R™*" is detectable and V0 € [0, 2]

A—e’T B

rank [ C D

] =n+m. (7.43)
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Then the above LCF can be expressed by
M(s) = (A— LC,L,—RC,R),N(s) = (A— LC,B — LD, RC, RD) € RHo

R= (DD +CxCT)* L= (ATXCT + BDT)(DDT + CXCT)"!
(7.44)

where X > 0 is the stabilizing solution of the Riccati equation

ApX (I +cT (DDT)’1 CX) ' AL - X +BDID,BT =0 (7.45)

Ap=A-C"(DD") "' DB

Note that Lemmas 7.4 and 7.5 establish an important connection between
CIOF and LCF, which is useful for our latter study.

In Lemmas 7.3 - 7.5, the LCF is achieved on the assumption that the
transfer matrix is surjective. Removing this condition, the LCF would be
computationally more involved. Below, we introduce a recent result by Oara
and Varga for a general CIOF. For the sake of simplification, we restrict
ourselves to the continuous time systems.

Lemma 7.6 Let G(s) € RH™*" be a real rational matriz of rank r. A CIOF
G(8) = Geo(8)Gei(s) with Gei(s) co-inner and Geo(s) co-outer, can be com-
puted using the following two-step algorithm:

o Column compression by all-pass factors: G is factorized as

G(s) = [G(s) 0] Ga(s)

where Gq(s) is square and inner, G(s) € RH™ " is injective and has the
same zeros in Cy as G(s), and its zeros in C_ include the zeros of G;(s).
By this step, G, (s) is chosen to have the smallest possible Memillan de-
gree which is equal to the sum of all right minimal indices of G(s). The
computation of G4(s) amounts to solving for the stabilizing solution of a
standard Riccati equation. G(s) can be rewritten into G(s) = G(s)Ga1(s),
where Go(s) = [Ga1(s) Ga(s) ], Gar(s) € R™*F is inner.

e Dislocation of zeros by all-pass factors. G(s) is further factorized as G(s) =
Go(5)Gaz2(s), where Gua(s) is square, inner and G,(s) is injective and has
no zeros in C4. By this step, Gaa(s) is chosen to have the smallest possible
Memillan degree which is equal to the number of zeros of G’(s) in Cq. The
computation of Ga2(s) is achieved by solving a Lyapunov equation.

The CIOF is finally given by

G(s) = GCO(S)Gci(S),Gco(S) = Go(s)7 Gci(S) = GQQ(S)GM(S). (7.46)
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7.1.6 Model matching problem

H~ optimization technique is one of the most celebrated frameworks in the
control theory, which has been well established between the 80’s and 90’s.
The application of H,, optimization technique to the FDI system design is
many-sided and covers a wide range of topics like design of robust FDF, fault
identification, handling of model uncertainties, threshold computation etc.
MMP is a standard problem formulation in the H., framework. Many
approaches to the FDI system design can be, as will be shown in the next
sections, reformulated into an MMP. The MMP met in the FDI framework is
often of the following form: given T} (s),T2(s) € RHwo, find R(s) € RHoo sO
that
IT1(s) — R(s)T2(s)

The following result offers a solution to the MMP in a way that is very helpful
for the FDI system design.

— min. (7.47)

oo

Lemma 7.7 Given (scalar) transfer functions T1(s), T2(s), R(s) € RHe and
assume that Tx(s) has zeros s = s;,i =1,--- ,p, in the RHP, then

ITi(5) = R(s)Ta(s)l| = X"/*(T) (7.48)

where M\(T) denotes the mazimum eigenvalue of matriz T which is formed as
follows:

o form
1 o 1 Ty (s)TY (1) . Ty (s) Ty (sp)
s1+87 s1+s3 s1+s7 s1+sy
P, = R S P, — T1(si)T7 (s5)
1= si+s] y 42— si+s;
- L - - 1 — T1(sp)T7 (s1) L. T1(sp)T7 (sp)
Sp+sy Sptsy Spt ST sptsy
(7.49)
o set / /
—1/2 —1/2
T=PF PP . (7.50)

It follows from Lemma 7.7 that the model matching performance depends
on the zeros of T5(s) in the RHP. Moreover, if T} (s) = &, a constant, then

IT1(s) = R(s)T2(s)ll o = 5] - (7.51)

These two facts would be useful for our subsequent study.

7.1.7 Essentials of the LMI technique

In the last decade, the LMI technique has become an important formula-
tion and design tool in the control theory, which is not only used for solving
standard robust control problems but also for multiobjective optimization and
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handling of model uncertainties. As FDI problems are in their nature a mul-
tiobjective trade-off, i.e. enhancing the robustness against the disturbances,
model uncertainty and the sensitivity to the faults simultaneously, applica-
tion of the LMI technique to the FDI system design is currently receiving
considerable attention.

In the H, framework, the Bounded Real Lemma that connects the Hoo
norm computation to an LMI plays a central role. Next, we briefly introduce
the "LMI-version" of the Bounded Real Lemma for continuous and discrete
systems.

Lemma 7.8 Given a stable LTI system G(s) = D + C (sl — A)~' B, then
|G(s)||.. <7 if and only if there exists a symmetric Y with

ATY +YAYB CT
BTY — —I DT | <0,Y >0. (7.52)
C D —I

Lemma 7.9 Given a stable LTI system G(z) = D + C(zI — A)"' B, then
|G (2)|lo, < if and only if there exists a symmetric X with

-X XAXB 0
ATX - X o CT
BTX 0 —~I DT
0 C D —~I

<0,X>0. (7.53)

In the LMI framework, the so-called Schur complement is often used for
checking the definiteness of a matrix. Given matrix

A1 Az
A =
[Am A22]

and suppose that Aq; is invertible, then
A>00r A<O (7.54)

if and only if
A=Ay — AglAilAlg >0or A<O (755)

where A is known as the Schur complement of A.

7.2 Kalman filter based residual generation

In this section, we present one of the first residual generation schemes, the
Kalman filter based residual generation scheme.
Consider a discrete time dynamic system described by
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z(k+1) = Az(k) + Bu(k) + Ey f(k) + Eyn(k) (7.56)
y(k) = Cz(k) + Du(k) + Fr f(k) + v(k) (7.57)

where z(k) € R"™, u(k) € RF«,y(k) € R™ are the state, input, output vectors
of the system, f(k) € R¥s stands for the fault vector. n(k) € R*, v(k) € R™
represent process and measurement noise vectors. It is evident that for such a
system there exists no residual generator decoupled from the unknown inputs
n(k), v(k).

On the other hand, from the well-established stochastic control theory we
know that a Kalman filter delivers residual that is a white Gaussian process
if the noise signals n(k), v(k) are white Gaussian processes and independent
of initial state vector z(0) with

Eln(k)] = 0, Eln(i)n" (j)] = Zydij, Ty 2 0 (7.58)
E[v(k)] =0, E[v(i)v" (j)] = 2 511,2 >0 (7.59)
Elz(0)] = &, B[(2(0) — 2)(z(0) — 2)"] = P.. (7.60)

The Kalman filter technique makes use of this fact and performs a fault de-
tection in two steps:

residual generation using a Kalman filter
residual evaluation by doing the so-called Generalized Likelihood Ratio
(GLR) test that allows us to detect changes in the residual signal. In
Chapter 10, the GLR test will be studied.

In this section, we devote our attention to the problem of residual gen-
eration using a Kalman filter. We suppose that the noises n(k), v(k) and the
initial state vector z(0) possess the properties described by (7.58)-(7.60).

A Kalman filter is, although structured similar to an observer of full order,
a time-varying system given by the following recursions:

recursive scheme for optimal state estimation:

#(0]0) =% (7.61)
dk|k—1)=A2(k—1|k—1)+ Bu(k—1),k=1,2,--- (7.62)
Bk | k) =&k | k— 1) + L(k) (y(k) — Ci(k | k — 1) — Du(k)).  (7.63)

recursive scheme for Kalman filter gain:

P(O]0)=P (7.64)
Pk|k—-1)=AP(k—-1|k-1)A" + E,2,ET (7.65)

L(k) = P(k | k —1)CT (2, + CP(k | k —1)CT) ™" (7.66)

Pk | k) =(I—L(K)C) Pk | k—1),k=1,2, - (7.67)

where #(i | j) denotes the estimation of z(i) given the measurements

y(1),-- () and
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P(k | k) = E ([z(k) — @(k | k)][z(k) = 2(k | K)]T) (7.68)
P(k |k —1) = B ([a(k) — &k | k= D]fa(k) — 2k | k—1)]T)  (7.69)

are the associated estimation error covariance.
The significant characteristics of Kalman filter is

e the state estimation is optimal in the sense of
P(k | k) = E[z(k) — &(k | k)][z(k) — &(k | k)]" = min
e the so-called innovation process,
y(k) — C(k | k—1) — Du(k)
is a white Gaussian process with covariance
X, +CP(k|k—-1)CT.

The underlying idea of applying Kalman filter to solve FDI problems lies in
making use of the second property. Let residual signal (k) be the innovation
process

r(k) =y(k) — Ci(k | k — 1) — Du(k).
Under the normal operating condition, i.e. fault-free, r(k) should be a zero
mean white Gaussian process. When a fault occurs, i.e. f(k) # 0, r(k) is
no longer white, which can be determined, for instance, by means of a GLR
test that will be discussed in the next part. In such a way, a successful fault
detection is performed. Note that the signal CZ(k | kK — 1) + Du(k) is in fact
an optimal estimation of the measurement y(k).

Remark 7.2 Although given in the recursive form, the Kalman filter algo-
rithm (7.61)-(7.63) is highly computation consuming. The most involved com-

putation is (X, + CP(k | k — 1)C’T)_1 , which may also cause numerical sta-
bility problem. There are a great number of modified forms of the Kalman
filter algorithm. The reader is referred to the references given at the end of
this chapter.

Suppose the process under consideration is stationary, then

lim L(k) = L = constant matrix
k—o00

which is subject to
L=vc" (cyc"+x,)"" (7.70)

with
Y = (1 —xc"(cyc" +x,)7" C) XY = lim P(k| k) (7.71)
X =AYA" + E, %, ET X = Jim P(k | k—1). (7.72)
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It holds
X=A(I-XCT(CYCT+5,)" C) XAT + B, %, E". (7.73)

(7.73) is an algebraic Riccati equation whose solution X is positive definite if
the pairs (A4, E,) and (C, A) are respectively controllable and observable. It
thus becomes evident that given system model (7.56)-(7.57) the gain matrix L
can be calculated off-line by solving Riccati equation (7.73). The correspond-
ing residual generator is then given by

#(k | k)= As(k —1|k—1)+ Bu(k — 1) (7.74)
+L (y(k) — Ci(k | k — 1) — Du(k))
r(k) = y(k) — Ci(k | k — 1) — Du(k). (7.75)

Note that we now have in fact an observer of the full-order.
Below is an algorithm for the on-line implementation of the Kalman filter
algorithm given by (7.61)-(7.67).

Algorithm 7.1 On-line implementation of the Kalman filter algorithm

Step 0: Off-line set up of initial conditions: set £(0 | 0), P(0 | 0) as given in
(7.61) and (7.64)

Step 1: Calculate &(k | k — 1), P(k | k— 1), L(k) according to (7.62), (7.65)
and (7.66)

Step 2: Calculate &(k | k), P(k | k) according to (7.63) and (7.67)

Step 3: Increase k and go Step 1.

Remark 7.3 The off-line set up (Step 0) is needed only for one time, but
Steps 1 - 8 have to be repeated at each time instant. Thus, the on-line imple-
mentation, compared with the steady-state Kalman filter, is computationally
very consuming. For the FDI purpose, we can generally assume that the sys-
tem under consideration is operating in its steady state before a fault occurs.
Therefore, the use of the steady-state type residual generator (7.74)-(7.75) is
advantageous. In this case, the most involved computation is finding a solu-
tion for Riccati equation (7.73), which, nevertheless, is carried out off-line,
and moreover for which there exist a number of numerically reliable methods
and CAD programs.

Example 7.1 In this example, we design a steady Kalman filter for the ve-
hicle lateral dynamic system. For our purpose, the linearized, discrete time
model is used with

A= 0.6333 —0.0672 B— —0.0653 C— —152.7568 1.2493
~12.0570 0.6082 |’ T | 0.4039 > 0 1.0000

56 00 —0.0653 1056 ~0.0653
b= {0}’Ef_ [00 0.4039}’Ff_ {01 0}’E’7_ [ 0.4039 ]
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Using the given technical data, we get

5, =0.0012, %, = [0'0025 0 ]

0 1.2172e—-5
and based on which the observer gain matriz has been computed

I — —0.0025 —0.0086
© ] 0.0122 0.9487 |-

7.3 Approximation of Ul-distribution matrix

The underlying the idea of the approaches introduced in this section can be
simply formulated as follows: given system model

y(p) = Gyu(P)u(p) + Gyr(p) f(p) + Gya(p)d(p)

which does not satisfy the existence condition of the PUIDP, (6.5), find a
transfer function matrix Gg4(p) that approximates Gya(p) in some optimal
sense and simultaneously ensures that (6.5) is satisfied. In a next step, we are
then able to design a residual generator which is designed on the basis of the
approximated model and delivers an approximated decoupling.

7.3.1 Approximation of matrices Eg4, Fy4

Consider the minimal state space realization of the above model

&= Az + Bu+ Epf + Egd (7.76)
y=Cax+Du+Frf+ Fyd (7.77)

for which the existence condition for the PUIDP, (6.9), is not satisfied. We
suppose that
rank {Ed} =kqg > m.
Fy

Patton and Chen have proposed the idea of approximating the unknown input
(UT) distribution matrices Eq, F;; by matrices E,, F; that ensure the solvability
of the PUIDP.

Remember that k; < m is a sufficient condition for the solution of the

PUIDP. Thus, we formulate the approximation problem as follows: given ma-
trices E; € R™"*ka [, € Rm*ka find Fy € R™*ka Fy € R™*kd guch that

Condition I: rank {?fl} =kg<m (7.78)
d

{Ed - Ed] H (7.79)

Condition II: min F, -

Eq,Fq
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Condition I, (7.78), ensures that
rank (C(p] — A By + Fd) <m

and the solution of the optimization problem (7.79) delivers an optimal ap-
proximation of matrix Fg, F;; in sense of a norm || - ||. In the following of this
subsection, we consider two matrix norms: the Frobenius and the 2 norm. We
shall use SVD as the mathematical tool for the solution of the approximation
problem (7.78)-(7.79).

We now do an SVD of matrix

Eq
Fy
which yields
Ey T diag(oy,--+ 0k )}
=Uu XV XY = ’ »o 7.80
|:Fd ] ¢ ¢ |: O(Tler*kd)Xkd ( )
U, € R(n-&-m)x(n-i-'rn)’ UdUT — I(n+m)><(n+m) (7.81)
Vg € RExka Vvt = [ (7.82)
Setting X
Ed diag(o-la"' 7U7rz—1707"' 70):| T
=0, 14 7.83
|:Fd :| ¢ |: O(n-i-m—kd)xkd ( )
results in

Ed_Ed:| |:diag(07"'7070'mv"'70'k‘ ):| T
Y=, S I VA
|:Fd — Fy d 0(7z+7rn—kd)><kd

Hence, we finally have
Eq—Ey
H [ Fy—Fy ]
Note that the matrix defined by (7.83) satisfies Condition I and furthermore,
known from the linear algebra, it does also solve the optimization problem
(7.79). Thus, we claim that (7.83) is a solution for the above-mentioned prob-
lem.
In fact, this result is not surprising, since it is reasonable that the ap-
proximation has at least to maintain the dominant part of the matrix being
approximated, which is, in our case, given by the first m — 1 largest singular

values.
In summary, we have

ka

= E O,

F i=m

=0Om.

]l

Fy—Fy

Algorithm 7.2 Optimal approzimation of Eq, Fy
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Step 1: Do an SVD according to (7.80)-(7.82);

Step 2: Set
Eq
Fy

Once an approximation for Ey4, F; has been found, we can apply the
schemes described in the last chapter to solve the decoupling problem

according to (7.83).

R(p) M. (p) (C(p[ A B+ Fd) —0.

7.3.2 Approximation of matrices Hg,,

Remember that the dynamics of a residual generator can be expressed in a
non-recursive form (see Subsection 6.5.4)

r(p) = wGsp_se(p) + vs (Hf,sl_fsfs(p) + Hd,sfdsds(p)) (784)
Vs = [US,O Us1 * " Us,s] S }Ds (785)
w=1[0-01] (7.86)

and the necessary and sufficient condition for a successful unknown input
decoupling is given by

rank [Hms Hd,s] < the row number of [Hms Hd,s] (7.87)
or equivalently

rank (Qvase,s Ha,s) < the row number of Qpgse,s Ha,s
where matrix Qpqse,s denotes the base matrix of parity space Ps of order s.
Since vy € Py is a necessary condition for the existence of a residual generator,
what can be approximated is only matrix Hg.
It follows from Theorems 5.6 and 5.11 that the rank of matrix Qpase s is
equal to its row number given by

dzm(Ps‘) = 7ﬂank(Qbase,s) = Z (’ITL - mi)a for Tmin S S < Omazx
Omaz—1
=m X ($— Omaz +1) + Z (m —my), for s > omaz-

1=0min

This motivates us to define the following approximation problem: given matrix
Hg, find Hy ¢ such that
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Condition I: rank(ﬁd7s) < kq
with

]Ngd = Z (m — m,;),for Tmin S S < Omazx

1=0min
Tmaz—1
=mx($—Omaz + 1)+ Z (m —m;), for s > omax

1=0min

Condition IT: min ||Hy s — I;Id,SHF as well as inf ||Hy s — f[d’SHg.

d,s Hy s

It is evident that Condition I is a sufficient condition such that (7.87) holds.
On account of a similar procedure carried out in the last subsection, we give
the following algorithm to solve the above-mentioned approximation problem.

Algorithm 7.3 Optimal approrimation of Hy s
Step 1: Do an SVD on Hy s

Hys=UgSVa"

where
Y = [diag(o1,- -+, Om(s+1)) Om(s+1)x (ka—m)(s+1) | (7.88)
Ud c R(m(5+1))x(m(5+1))7 UdUT = Im(s+1)><m(s+1)
Vy € Rbalstl)xka(s+1) -y T — Iy (1) x kg (s+1)
Step 2: Set

f{d,s =Uy [diag(o—la 0,1 07 T 70) 0m(s+l)><(kd—m)(s+l) ] VT-

Again, once an approximation has been found, we are able to find a vector
w solving

waase,st,s =0.
The achieved parity vector defined by

Vs = waase,s

can then be used to construct a parity relation based residual generator or,
as shown in the last two chapters, to construct a diagnostic observer.

We would like to point out that the assumption that the SVD of matrix
H, s can be written into (7.88) holds, since kg > m, otherwise, as shown in
Subsection 6.5.4, the PUIDP becomes trivial and solvable. Also, as shown
above, the approximation error is given by

m(s+1)
|Has — HasllF = Z 0is |Ha,s — Hasll2 = op,-

i=kq
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7.3.3 Some remarks

The most significant advantage of approaching the robust residual generation
problem by an approximation of Ul distribution matrices lies in its mathe-
matical simplicity and its evident relationship to the PUIDP. In fact, it is a
natural extension of the PUIDP. On the other hand, this kind of approach,
although already known in the late 80’s, has not received so much attention
like the robust residual generation approaches described in the forthcoming
sections of this chapter.

We now study the approximation errors and their influence on the residual
signals. We first consider the approach based on an approximation of matrices
E4, Fy. The residual dynamics is governed by

r(p) = R(p) (N (0)f (o) + Na(p)d()) (7.89)
where

Ni(p) = Fy + C(pI — A+ LC)~Y(Ey — LFy)
Nu(p) = Fy+ C(pl — A+ LC) " (Eq — LEy).

Under consideration that
R(p) (Fd + Ol — A+ LC) Y (By — Lﬁd)> =0 (7.90)

(7.89) can be brought into

) = RON00)+ R0 (o a4 10y iams - 1ary ) 10

Thus, the maximum (possible) influence of the unknown input vector d on r
can be measured by

|R(p) (AFa+ C(pI — A+ LO)"H(AEy — LAFY)) [lclld(p)ll2-  (7.91)

Note that in (7.91), R(p) is the solution of (7.90) and AFy, AE,; are subject

AES]||
AFy Tm:
It turns out
int | Rp) (Fa+ O(pl = A+ L)~ (Ba — LE) |l (7.92)
P
< inf |R(p) (AF; + C(pI — A+ LC) Y (AE4 — LAFy)) [|oo-

R(p) solving (7.90)

The situation with the approximation of Hy s is almost the same, in which we
have
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’I“(p) = wGSp_Se(p) + vs (Hf,sl_fsfs(p) + Hd,sl_dsds(p)) (7-93)
=wG*p~*e(p)vs (Hyslps fs(p) + AHq s 1asds(p)) (7.94)

where vs € P; solves
'Ust,s =0

and AHg s = Hg s —f[d,s. To simplify the discussion, we set g = 0 which leads
to
wG® = 0.

This results in that the maximum influence of the unknown input vector d
can be measured by

||vsAHd,sfd8H00Hds(p)||2'
It is clear that

inf HUst,sIdsHoo < ian HUSAHd-,S‘TdSHOO' (795)
vs € Ps vs€Ps,vsHg s=0

As a conclusion of (7.92) and (7.95), we claim
Claim. A direct optimization in the sense of

inf [R() (Fi+ C(pI = A+ LO) ™ (Ey — LE) |

or

USH":}fPS Hvst,sIds ||oo

will provide us with a better FDI performance than approximating the robust
FDI problems based on an approximation of unknown input matrices Fq, Fy
or Hd,s-

Remark 7.4 Recall that

rank {?d] <m= rank(ﬁ,m) < ky
d

therefore the approach based on the approzimation of Hy s delivers a residual
generator with higher robustness.

We would like to point out that the above-described approximations are
not unique, thus it makes sense to carry out a further optimization

inf |R(p) (AFy + C(pl — A+ LC) " (AE4 — LAFy)) |
R(p) solving (7.90)

or

inf llvs AHg s 1as | oo
vSEPs,Ust,SZO

in order to improve the FDI performance.
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Finally, it is worth mentioning that following the same idea we can also
make an approximation of the unknown input transfer matrix in the Ho,
optimization framework

min [|Ga(p) — Ga(p)||
Ga(p)

where Gg4(p) has to satisfy
rank(Gq(p)) < m.

However, carrying out such an approximation requires some special mathe-
matical knowledge.

7.4 Robustness, fault sensitivity and performance indices

Beginning with this section, we shall study the FDI problems in the context
of a trade-off between the robustness against the disturbances and sensitivity
to the faults. To this end, we are first going to find a way to evaluate the
robustness and sensitivity and then to define performance indices that would
give a fair evaluation of the trade-off between the robustness and sensitivity.
To simplify the notations, in this section we express a residual generator

in terms of
r=Hq(P)d+ H¢(P)f (7.96)

where r stands for residual vector which is either r(p) for the residual gen-
erators in the recursive form (observer-based residual generators) or rs(k)
for the residual generators in the non-recursive form (parity space residual
generators). Corresponding to it, we have

Ha(P) = R(p)Mu(p)Gya(p), H (P) = R(p) M (p)Gy(p) (7.97)

or

Hq(P) =V Hys,Hf(P) = V;Hjy 4 (7.98)

where variable P is used to denote design parameters, which are, in case of a
residual generator in the recursive form, the post-filter R(p) and the observer
matrix L, and the parity vector V for a residual generator in the non-recursive
form.

7.4.1 Robustness and sensitivity

A natural way to evaluate the robustness of residual generator (7.96) against
d is the use of an induced norm, which is formally defined by
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| Ha(P)d]

(7.99)

It is well known that this is a worst-case evaluation of the possible influence
of donr.

Compared with the robustness, evaluation of sensitivity of an FDI system
to the faults is not undisputed. The way of using an induced norm like

1.0 = (P = sup 12 I ()l (7.100)

171l

is popular and seems even logical. However, when we take a careful look at
the interpretation of (7.100), which means a best-case handling of the influ-
ence of f on 7, the sense of introducing (7.100) for the sensitivity becomes
questionable. A worst-case for the sensitivity evaluation should, in fact, be
the minimum influence of f on r, which can be expressed in terms of

 lEP)

- = [Hp(P)||- = inf T

(7.101)
Note that Sy,_ is not a norm, since there may exist f # 0 such that H;(P)f =
0. This is also the reason why in some cases the sensitivity defined by (7.101)
makes less sense.

Both Sy, Sy~ have been adopted to measure the sensitivity of the FDI
system to the faults, although Sy _ was introduced much late than Sy ..

We would like to remark that both Sf,S¢_ are some extreme value
of transfer matrix. From the practical viewpoint, it is desired to define an
index that gives a fair evaluation of the influence of the faults on the residual
signal over the whole time or frequency domain and in all directions in the
measurement subspace. We shall introduce such an index at the end of this
chapter, after having studied the solutions under the standard performance
indices.

7.4.2 Performance indices: robustness vs. sensitivity

With the aid of the introduced concepts of the robustness and sensitivity we
are now able to formulate our wish of designing an FDI system: the FDI system
should be as robust as possible to the disturbances and simultaneously as
sensitive as possible to the faults. It is a multiobjective optimization problem:
given (7.96), find P such that

Ry — min and simultaneously Sy — max.

It is well known that solving a multiobjective optimization problem is usually
much more involved than solving a single-objective optimization. Driven by
this idea, a variety of attempts have been made to reformulate the optimiza-
tion objective as a compromise between the robustness and sensitivity. A first
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kind of these performance indices was introduced by Lou et al., which takes
the form
Js—r = Sup(afo — Oéde),Oéf, aqg >0 (7.102)
P

where oy, aq are some given weighting constants. Wuennenberg and Frank
suggested to use the following the performance index

Sy
Js/r = sup —= 7.103
/ p Ra ( )
which, due to its intimate connection to the sensitivity theory, is widely ac-
cepted. Currently, the index of the form

R4 <~y and Sf > 6 (7.104)

becomes more popular, where -y, 3 are some positive constant. The FDI system
design is then formulated as maximizing S and minimizing ~ by selecting P.

7.4.3 Relations between the performance indices

Next, we are going to demonstrate that the above-introduced three types of
indices are equivalent in a certain sense.
Suppose that

PS/R,opt = arg <Slllpp JS/R)

then it follows from (7.96) that for any constant ¥,9Pg g op also solves
supp Jg/r. This means that the optimal solution to the ratio-type optimiza-
tion is unique up to a constant. To demonstrate the relationship between
the optimal performance under indices (7.103) and (7.104), suppose that Py,
solves

mgxﬁ and m}inv subject to (7.104)

and yields
[ H s (Popt) | A1
H(Popt) || = By, | Ha(Popt) || = TS ot/ = 2L
H f( Pt)” Bl || d( Pt)H V1= ||Hd(Popf)|| & 7
On the other side, Ps/g op¢ ensures that Vi > 0
[y (Psropt)|| _ [[9Hy (Ps/r.opt) | _—
|Ha(Ps/ropt)||  [[9Ha(Ps/Rr,opt)|| ~
As a result, it is possible to find a 9 such that
[9H; (Psyr.opt)|| = B1 and [[0Ha(Ps;r.ope) || = 71- (7.105)

To illustrate the relation between optimizations under (7.103) and (7.102),
suppose that Ps_p opt Solves
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sup Js—r = sup (ay [ Hy (P)]| = ea [ Ha(P)]])

and results in

ap||Hy(Ps—r.opt)|l = @al[Ha(Ps—r.opt)ll = 1 [ Ha(Ps—Rr.opt) | = 0

Qay ||Hf(PS—R,opt)H =ay+ Q
||Hd(P5'7R,opt)|| 0

Once again, we are able to find a 9 such that

ay [[9H ;(Ps—gopt) |l n
: > ag+ = and ||[VH(Ps_p.opt)| =0
||19Hd(PS*R,opt)” d 0 || d( S—R, Pt)H

= ay [|[0H;(Ps—Ropt) || — aa [[VHa(Ps—R,opt)|l > n- (7.106)

(7.105) and (7.106) demonstrate that the optimal solution under ratio-type
performance index (7.103) is, up to a constant, equivalent to the ones under
indices (7.102) and (7.104). With this fact in mind, in this chapter we mainly
consider optimizations under indices (7.103) and (7.104), which are also mostly
considered in recent studies.

7.5 Optimal selection of parity matrices and vectors

In this section, approaches to optimal selection of parity vectors will be pre-
sented. The starting point is the design form of the parity relation based
residual generator

r(k) = Vi (Hasds(k) + Hy o fs(K)) , Vs € P, (7.107)

where r(k) € R*, « denotes the dimension of the parity space of order s,
which, following Theorem 5.11, is given by

S

a = E (m - mi)7 for opmin < 5 < Omas

1=Cmin
Omaz—1
=mX ($— Omazr + 1) + E (m —my), for s > omaz-
=0 min

Our task is to choose V; under a given performance index. Recall that it holds
for ViHg,, VsHy s with V, € P that
‘/st,s = ‘_/SQbase,st,s = ‘Z@Hd,s (7108)
‘/;Hf,s = V;Qbase,st,s = VSHf,S (7109)
with Qpase.s being the base matrix of parity space and V; # 0 an arbitrary

matrix with appropriate dimensions. Hence, residual generator (7.107) can be
rewritten into
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r(k) = Vs (Hasds(k) + Hy,s f5s(K)) . (7.110)
We suppose that
rank (H'd,s) = the row number of Hd,s
i.e. the PUIDP is not solvable, which motivates us to find an alternative way
to design the parity matrix V.
7.5.1 S¢ 1 /R4 as performance index

The idea of using the ratio of the robustness (Rg) to the sensitivity (Sy) was
initiated by Wuennenberg and Frank in the middle 80’s. We first consider the

case I
Sp = sup 5y £l
20 Il

and express the performance index in terms of

Syt IVl g

J - L e 7.111
SHR = VR Ra v |[VaHa| (7.111)
where |-| denotes some induced norm of a matrix. Doing an SVD of Hy g
gives
Hys =USVT UUT = 1,44 (7.112)
VVT = I5,5, X = [diag(o1, - ,0a) Oax(s—a) (7.113)
where (3 is the column number of Hg , i.e.
ﬁ = kd(s +1-— O'm,m).
Set B 3
Ve =V.S7WUT, S = diag(o1,--- ,04) (7.114)
it turns out o ~
[VeHas|| || = ‘ Vi [ o OaX(ﬁ—a)]H :
Following the definitions of 1, 2, and oo norms for a matrix, we have
‘ Ve [laa Oaxw—a)]Hl = Vallu (7.115)
Ve [ Oaxisa |, = 97 = Va2 (7.116)
’ Vi [Loo oax(ﬁ_M]Hm = Vi oe. (7.117)

Note that

Vil gl = |VeS™ U Hyl| < ValllSTHOUT Hy sl
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As a result, the following inequality holds: V V; # 0

WViHysll _ IVaST'UTHpl| _ ValllS7 U Hy.s|

Lt Al = < _ — ST U Hy..
Vs Ha,s || IVl Vsl
In other words, we have
Js1/r <|ISTUTHy |-
On the other hand, it is evident that setting V=1 gives
||ngf s| —17T 13
L = ST Ay
IVsHa,s||
thus, we finally have
||‘_/st sll —177T 13
J =max-—=—="-— = ||STU" Hs||.
reess = max L = | pol
This proves the following theorem.
Theorem 7.1 Given system (7.110), then
V,=85"1U" (7.118)
solves the optimization problems
[VsH sl [VeHys|l2
J, =max . =—="—, J = max ——=—"—- 7.119
S S Rl T T, Y
[VaH sl
J = max ———"— — 7.120
which results in
||Vst s| 1 —177T 13
J =max ——="—-—=||ST U Hy, 7.121
sy = mac ek = S0 (7.121)
||VstAsH2 -177T 3
J =max——="-=||ST U H, 7.122
sy = max [ = 0T (7.122)
||‘7'st‘5”00 —177T 5
Js/R,0o = Max ——="— = [|STU" Hy,s||oo- (7.123)
! Vo Vel lloo

Note that the optimal solution (7.118) solves all above-mentioned three
optimization problems. This fact is of great interest for the sensitivity and
performance analysis of FDI systems.

We now summarize the main results achieved above into an algorithm.

Algorithm 7.4 Solution of optimization problem Sy /Rq
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Step 1: Do an SVD on Hys;
Step 2: Set Vi according to (7.118).

Next, we study the relationship between the optimization problems whose
solutions are presented above and the optimal design of parity vectors under
the performance index

vsHp sHE 0T
J = max% (7.124)
Vs USH(i,SHd,SUT

which was introduced by Wuennenberg and Frank and is now one of the mostly
used performance indices. To begin with, we take a look at the solution of
optimization problem (7.124).

Let the optimal solution be denoted by vs op: and rewrite (7.124) into

Us,opt (Jgd,sggjf - Hf,SE?g) ('Us,opt)T =0.
By an SVD of ﬁd,s,ﬁd,s =UXVT, we obtain
Vs,opt (JUSETUT — Hy (HY ) (vs,0p)” = 0.

Setting
vs,opt = @szlUT
yields
— — \T
Jus(v5)" — 0,8 U T Hy s (0,S7'UTHy,5)" = 0.
It is clear that choosing the nominal eigenvector corresponding to the maximal
eigenvalue of matrix S‘lUTHf,SHfTVSUS_1 as U, i.e.

s (Amaxd = ST'UTHy JHf US™") = 0,0,(0,)" =1 (7.125)

with A4, being the maximal eigenvalue of matrix S™1UTH f,sH}—:SUS_l,
gives
J = Amas. (7.126)

Theorem 7.2 Given system (7.110), then the optimal solution of (7.124) is
given by
Vsopt = 0sS U T (7.127)

with U5 solving (7.125), and in this case

7 T T
J = max US}:’faSHf,s’Us

Usllpsllysls g 7.128
vo wsHg s Hy vT e ( )

Comparing J in (7.124) with Jg, 2 and noting the fact

Amaz = 6 (HE,US™Y) =& (ST'UTHy,)
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we immediately see
J=J%ro (7.129)

This reveals the relationship between both the performance indices and verifies
that the optimal solution is not unique. In fact, we have

Js/Rr2 = max IVeHpall2 _ xw

T = . - ma/ — .
Vs ||‘/5Hd,s||2 Us Hvst,s| 2

Nevertheless, both the FDI systems have quite different fault detectability, as
the discussion in Chapter 12 will show.
Bringing (7.125) into the following form

Uy (Amael — ST'UTHp JHf US™") =0 <=

S

vi (JHasHy, — Hy Hf ) =0 (7.130)

shows that the optimization problem (7.124) is equivalent to a generalized
eigenvalue-eigenvector problem defined by (7.130). The maximal eigenvalue is
the optimal value of performance index J, and the corresponding eigenvector
is the optimal parity vector.

7.5.2 S¢_ /Rq4 as performance index

As mentioned in the last section

o | Hys fs (k)|
fomy#0 || fs(K)||

is also a reasonable index to evaluate the fault sensitivity. However, it is not
a norm. For this reason, we restrict our attention just to the following case

Sy =

Sy =a(VeHys)

where g(ViHy ) denotes the minimum singular value of matrix Hy . It is
worth noting that if V,H¢ , has full column rank, then

. ||ngj9f9(k)” \/ J
in —_— =g Vs‘H s).
famyzo | fs(B)l oVsH.s)

Analogous to the calculation made in the last subsection we have

Sy a(Vs fs) Q(Vss_lUTHfS)
Jo _/p = max —= —_— = —.
STETT Ry OV, VeHaslz v 1Vell2

Since

and 3(V,) = ||Vsl|2, it turns out
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Theorem 7.3 Given system (7.110), then
V,=8"tu" (7.131)

solves the optimization problem

St sty s
Js,—/r = max /. :maxu (7.132)
' v. R ,
which results in -
JS,f/R =g (S_lUTHf,s) .
It is very interesting to notice that the optimal solution
‘_/s = S_lUTa

recalling the results described in Theorem 7.1, solves both optimization prob-
lems Sy 1 /R4 and Sf _ /Rg.
As mentioned early, the optimization solution is not unique. Setting

V. =v, = 0,807

where v is the eigenvector corresponding to the minimum eigenvalue of matrix
SflUTnystT,SUS*l, ie.

s (STUTHp (HFUS™ = Mpind) = 0, A # 0,75(35) 7 = 1
delivers the same performance value,
Js—yp=0(S'UTHy).
On the other side, in this case

Js+/r < max Js+/r

that is, the solution is not optimal in the sense of Jg | /g.

We see that different optimal solutions may provide us with quite different
system performance. Which one is the best one can only be answered in the
context of an analysis of FDI system performance, in which relationships
between the performance indices and system properties are established and
the functions of residual generations and evaluation are integrated considered.
This is the central topic in Chapter 12.

Let o;(-) denote the i-th non-zero singular value of a matrix. Due to

oi (VoS0 Hy, ) < (Vo (ST'UTHy,)

we have
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2§ (75 7}".3) gi (VSS_lUTHf’S)
max —————% = max = (7.133)
V. |ViHaslo V. a(Vs)
5(Vs)o; (STTUTHy, _
< max AOLACE i) =0, (S7'UTHy) (7.134)
V. (Vs)
and so the following theorem.
Theorem 7.4 Given system (7.110), then
V,=S8"tu" (7.135)
solves the optimization problem
o (Vars)
Js/R.o. = max ——————= for all 4 7.136
S/R7 i V:' ||V5Hd7sl|2 f ( )
for which we have
maxw =o0; (S*IUTH} ) .
Vo |[VsHasll2 ’

We would like to call reader’s attention that Theorem 7.1 and Theorem
7.3 are indeed two special cases of Theorem 7.4. From the practical viewpoint,
performance index Jg g 5, gives a fair evaluation of the influence of the faults
on the residual signal over the time interval [k — s, k] and in all directions in
the measurement subspace. For these reasons, solution (7.135) is called unified
parity space solution.

7.5.3 Js_gr as performance index

The first version of the performance index in the Jg_pg form was proposed
by Lou et al. We consider in the following a modification form expressed in
terms of

JS’—R = H%?ax (Oéf”f/sI:IﬁSH — 05d||‘7st,s||) y Of, Og >0 (7.137)
where || - || denotes 1, 2, and oo norms of a matrix. Since Jg_ g is proportional
to the size of parity matrix Vi, we suppose that ||[Vi]| = 1, i.e. we are only

interested in those nominal solutions.
Repeating the same procedure adopted in the previous two subsections
allows us to rewrite (7.137) into

Js-r= max (aflVeHp ol = cal VeHasll) < Vil (af|STUT Hy ol — cua)

with V, = V,S—1UT. Thus, we claim
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Theorem 7.5 Given system (7.110), then the optimal solution

— S-yT
= 1
Y= s (7135)
leads to T
_ Oéf”Si U Hf75|| — Qg (7139)

Jo-n [5-107]

Recall that the optimization problems Jgs | /g, Js /g are independent of
the size of V., i.e. for all k # 0

V. =rS'UT
also solves the optimization problems Jg 1 /g, Js _/r, and furthermore
Js+/r=ST1UT Hy,ll.
It leads to

Corollary 7.1 Js i /gr,Js—/r, Js—r have the identical solution:

- s-tuT

Definition 7.1 Given system (7.110).
—177T
v, = STU
[1S=tuT]|
is called nominal unified solution of parity matriz.

From the mathematical viewpoint, V, satisfying (7.140) can be interpreted
as the inverse of the amplitude of Hgy s and used for weighting Hy s, i.e.

r(k) = ‘78 (Hd,sds(k) + Hf,sfs(k))

st - [1 Oax(s-a) | V"
- Sk
Ei R T el

dy (k).

From the FDI viewpoint, this solution ensures that the influence of the faults
will be stronger weighted at the places where the influence of the disturbances
is weaker. In this manner, an optimal trade-off between the robustness against
the disturbances on the one side and the fault sensitivity on the other side is
achieved. We would like to call reader’s attention that this idea will also be
adopted in the observer-based residual generator design.

Corollary 7.2 It holds

_ayds /R — 4

Js_r = 7.141
N R ()
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It follows from (7.141) that increasing Jp, g+ simultaneously enhances
Jr—s and vice verse. This also verifies our early statement that the perfor-
mance indices (7.103) and (7.102) are equivalent.

Analogous to the discussion in the last two subsections, it can readily be
demonstrated that

e the optimal solution V; satisfying (7.140) also solves the optimization prob-
lem
afo; (S*IUTH},S) —Qq
[S=tuT]|

3 _SH s) — _S-H s =
‘z’r”n‘%:i‘(:1 (afo (V fy) OédHV d, ||2)

(7.142)
e the optimal parity vector

—17/T
S U —T:1

Vg = ’ljsm, ES’US

where ¥ is the eigenvector corresponding to the maximum eigenvalue of
matrix S~UTH .5, solves the optimization problem

max (||Usﬁf78||2 - ||U8Hd,8||2) .

v, [lvs[l2=1

7.5.4 Optimization performance and system order

Until now, our study on the parity space relation based residual generation
has been carried out for a given s. Since s is a design parameter, the question
may arise: How can we choose a suitable s?

The fact that the choice of the system order s may have considerable
influence on the optimization performance has been recognized, but only few
attention has been devoted to this subject. In this subsection, we will find out
an answer to this problem, which may, although not complete, build a basis
for further investigation.

To begin with, we concentrate ourselves on a modified form of the opti-
mization problem (7.124), for which the following theorem is known.

Theorem 7.6 The inequality

T ,T
vst75Hd,sUs

min = Mmin.s >
veP, v Hy H o "
T T
. Vo1 Has1Hy o 10611
min 5L S — N ninst1 (7.143)

T T
Vs+1€Ps+1 Us+1Hj',(9+1Hf7s+1vs+1
holds.

The proof of this theorem is strongly related to the study on the minimum
order of residual generators in Section 6.8 and much involved, hence it is
omitted. We refer the interested reader to a paper by Ding et al. listed at the
end of this chapter.
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Remark 7.5 It can be shown that the performance index Apin,s converges to
a limit with s — oo.

Theorem 7.6 reveals that increasing the order of parity space does really
improve the system robustness and sensitivity. On the other hand, increasing
s means more on-line computation. Thus, a compromise between the system
performance and the on-line implementation is desired. To this end, we pro-
pose the following algorithm.

Algorithm 7.5 Selection of s:

Step 0: Set the initial value of the order of parity relation s (note that it
should be larger than or equal to omin) and a tolerance;

Step 1: Calculate the base matriz of parity space Qpase,s and Qvase,sHf s,
Qbase,st,s;'

Step 2: Solve the generalized eigenvalue-eigenvector problem;

Step 3: If Amin,s—1 — Amin,s < tolerance, end, otherwise go back to Step 1.

We would like to point out that a repeated calculation of Step 1 is not
necessary. In fact, once the system model is transformed into the canonical
observer form and equations NJC'A{; =0, 0min < J < Omaz—1, are solved, we
can determine the base matrix of the parity space and Qpase,s H¢,s, Qvase,s Hd,s
for different s without solving additional equations (see also Subsection 5.6.2
and Section 6.8.). This fact promises a strong reduction of computation for a
(sub-)optimal selection of the order of the parity matrices.

Remember that

= = - - afJs 1/r — 04
Js/r2 = V Amax; Js—R2 = max (IVeHysll2 — [|[VsHasl2) = S VAL

1S=1UT2
the following corollary becomes clear.
Corollary 7.3 The inequalities
VsHy s Vsr1Hy s
max WVeHrslz Vss1Hysv1ll2 (7.144)
VeePs ||ViHasl2 = Ver1€Potr ||Vep1 Ha o412
sH s - sH s
max (Ve gl = aallVHaall2) >
max  (og||Vegr1Hysyall2 — aal|Var1 Ha s 12) (7.145)
Vsy1€Ps11
max (o Hyolla = losHall2) >
max  ([|vsy1Hystille = [[vst1Has+1ll2) (7.146)

Vsy1€Ps11
hold.

In fact, we can expect that the results of Theorem 7.6 as well as Corollary
7.3 are applicable for other performance indices.
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7.5.5 Summary and some remarks

In this section, we have introduced a number of performance indices and,
based on them, formulated and solved a variety of optimization problems.
Some of them sound similar but have different meanings, and the others may
be defined from different aspects but have identical solutions. It seems that a
clear classification and a summary of the approaches described in this section
would be useful for the reader to get a deep insight into the framework of
model-based residual generation schemes.
We have defined two types of performance indices

HVstsH ||‘25Hfs||
Type I : = L T it £ 14
ype I+ Js/r = max AR AT (7.147)
TypeIl: Js-r = max (af||VsH | — aallVsHasll) (7.148)

= max (afllVeHy sl — cal VaHa )

and each of them can be expressed in four different forms, depending on
which of the norms, 1, 2, co norm, or the minimum singular value is used
for the evaluation of the robustness and sensitivity. It is worth noting that
the minimum singular value o(VsHy ) is not a norm, but it, together with
|VsHg,s|l2, measures the worst-case from the FDI viewpoint.

A further variation of (7.147) and (7.148) is given by the selection of parity
matrix Vi: it can be a a X a-dimensional matrix or just a a-dimensional row
vector, where a denotes the number of the rows of des = Qbase,sHa,s. Of
course, Vs can also be a 6 x a-dimensional matrix with 1 < 6 < «, the results
will remain the same.

Considering the fact that the solution of the optimization problem Type
I is independent of ||V;|| and the one of Type II is proportional to ||V||, we
have introduced the concept of nominal optimal solution whose size (norm) is
one (||V4]| = 1). The most significant results derived in this section can then
be stated as follows:

e Given V, € R**®, then
- S—tyT
Vs = 1T
[1S=1UT]|
is the nominal optimal solution for the both types optimization problems,
independent of which norm is used;
e Given a row vector v, € R®, then

s-tuT
[s=ru|

Vs = Vg

is the nominal optimal solution for the both types optimization problems,
where 7, is, depending on the norm used, chosen as follows:
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1norm:175:[1~~1][0~'Oe,;0~'0] (7.149)
2 norm : U ((S_lUTI_{f’S)TS_lUTHf,S - /\mml) =0or
Us(HysHf . — Amax,sHasHi ) =0 (7.150)
0
conorm : Uy =[0---010--- 0] [ef (7.151)
0

Recall that
Tsyra = ||STUTHyally  Js/roe = |STUTHp |,

and remember the definitions of the 1 and oo norms of a matrix, we have
Us in (7.149) that selects the the largest absolute column sum, assumed
to be the i-th column, of ST1U7T and o, in (7.151) that selects the largest
absolute row sum, assumed to be the j-th row, of S~1UT.

e The optimal value of performance index Jg,g is

Js4/r=I1ST"U Hy |, Js,—jp = (S'UT Hy,s)
and Jg_p is

JS _ Oéf”S_lUTHf_’S” — Qq JS _ afo (SilUTgf,s) — Qy
S 1S—1UT|| s Re 1S=1UT ]

Either for V, € R**® or for v, € R® these results always hold.

The last statement is worth a brief discussion. We see that using a parity
vector or a parity matrix has no influence on the optimal value of the per-
formance indices. But these two different constructions do have considerably
different influences on the system performance. Taking a look at the design
form,

r(k) = Vs (Hq,sds(k) + Hy s fs(k)), Vs € Ps

shows the role of Vy evidently: It is a filter and selector. From the geometric
viewpoint, it spans a subspace and thus allows only the signals, whose compo-
nents lie in this subspace, to have an influence on the residual r(k). When V; is
selected as a vector, the dimension of the subspace spanned by v, is one, i.e. it
selects signals only in one direction. Of course, in this direction the ratio of the
robustness to the sensitivity is optimal in a certain sense, but if the strength
of the fault in this direction is weak, a fault detection will become very dif-
ficult. In contrast, choosing V; to be matrix ensures that all components of
the fault will have influence on the residual, although in some directions the
ratio of the robustness to the sensitivity may be only suboptimal. Following
this discussion, it can be concluded that
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e if we have information about the faults and know they will appear in a
certain direction, then using a parity vector may reduce the influence of
model uncertainties and improve the sensitivity to the faults,

e in other cases, using a parity matrix is advisable.

Another interesting aspect is the computation of optimal solutions. All of
derived results rely on the SVD of Hg s = Qpase,sH,s,

Hys =UXVT UUT = Lixa, VVT = Igxp
Y= [dia’g(ala" : 70a) Oax(ﬁfa)] = [S Oax(ﬁfa)] .
Remark 7.6 The assumption made at the beginning of this section,
rank (f[d’s) = the row number of fld,s

does not lead to the loss of generality of our results. In fact, if this condition
is not true, then an SVD of Hy s results in

Hd>5 = UEVT7 uut = Toxa, vVt = Iﬁxﬁ

5 _ |diag(o1,---,08) |
O(a—p)x3

Note that there exists a matriz S~ € R**® such that
STXY = Igxg.

It is easy to prove that by replacing S~ with S~ all results and theorems
derived in this section hold true.

In case that the 2 norm is used, we have an alternative way to compute the
solution, namely by means of the generalized eigenvalue-eigenvector problem,

‘78 (Hf’sl_{}js - )\Hdvsl_{gjs) = 07 ‘/s‘/ST =1.

For V, € R®*®, V, consists of all the eigenvectors, while for v, € R, v is the
eigenvector corresponding to the maximum eigenvalue. Thanks to the work
by Wuennenberg and Frank, the generalized eigenvalue-eigenvector problem
as the solution is much popular than the one of using SVD, although many
of numerical solutions for the generalized eigenvalue-eigenvector problem are
based on the SVD.

Finally, we would like to place particular emphasis on the application of
the achieved results to the design of observer-based residual generators. We
have in Subsection 5.7.1 shown the interconnections between the parity space
and observer-based approaches, and revealed the fact that the observer-based
residual generator design can equivalently be considered as a selection of a
parity vector or matrix. Thus, the results achieved here are applicable for
the design of observer-based residual generators. To illustrate it, consider the
non-recursive design form of observer-based residual generators given by
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r(p) = wG*p~*e(p) + vs (Hy,sIf,sfs(p) + Ha,sla,sds(p)) s vs € Ps.
Let g = 0, i.e. the eigenvalues of matrix G equal zero, we have
r(k) = vs (Hys fs(k) + Ha,sds(K))
or in a more general form
r(k) = Vs (Hyfsfs(k) + Hasds(k)) .

This is just the form, on account of which we have derived our results. Once v
or V; is determined under a given performance index, we can set the parameter
matrices of the residual generator according to Theorem 5.12.

Example 7.2 In this example, we briefly demonstrate the computation of the
unified solution of parity space matriz for the benchmark system vehicle lateral
dynamics. For our purpose, we first set s = 2 and compute Hg s :

—12.4385 0.6892  3.0551 0 0 1.0000 00 O
0.1179  0.0810 —29.8597 0 0 0 00 O
20.6950 11.9554 0 —12.4385 0.6892 3.0551 00 1.0000

373.8685 —20.6950 0 0.1179 0.0810 —29.859700 O

Neat, do an SVD on Hy s = UXVT, which yields

[ —0.4343 —0.0223 0.2416 0.8675
U= 0.0033 —0.0005 0.9637 —0.2668
0.0592 —0.9982 0.0004 0.0039
| 0.8988 0.0550 0.1132 0.4199
[28.7790 0 0 0
g 0 125281 O 0
0 0 21373 0
0 0 0 0.0416

Finally, we compute the optimal solution V, = ST1UT,

—0.0151 0.0001 0.0021 0.0312
—0.0018 —0.0000 —0.0797 0.0044
0.1130 0.4509 0.0002 0.0530
20.8489 —6.4123 0.0939 10.0922

‘_/S:

as well as the nominal unified solution of parity matrices given by
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[—0.0007 0.0000 0.0001 0.0015]

v StUT | —0.0001 —0.0000 —0.0038 0.0002
* T IS—1UT|, | 0.0054 0.0215 0.0000 0.0025
| 0.9938 —0.3057 0.0045 0.4811 |

[—0.0006 0.0000 0.0001 0.0013]

v - StUT | —0.0001 —0.0000 —0.0033 0.0002
* 7 IS—1UT|, — | 0.0047 0.0188 0.0000 0.0022
| 0.8675 —0.2668 0.0039 0.4199 |

—0.0004 0.0000 0.0001 0.0008

v S-1yT —0.0000 —0.0000 —0.0021 0.0001

~ JSUT[_ ~ | 0.0030 0.0120 0.0000 0.0014
0.5568 —0.1712 0.0025 0.2695

7.6 H optimal fault identification scheme

In this section, we briefly discuss about the Ho, optimal fault identification
problem (OFIP), one of the most popular topics studied in the FDI area. The
OFIP is formulated as finding residual generator (5.24) such that g (> 0) is
minimized under a given v (> 0), where

[R(P)Gap)| . <71 - R@)GsD)||.. <5 (7.152)
|£(p) = R(p)G(p
1£1l

Considering that it is often unnecessary to reconstruct f(p) over the whole
frequency domain, a weighting matrix W(p) € RH can be introduced, which
defines the frequency range of interest, and the H,, OFIP (7.152) is then
reformulated into

V@), < B subject to ||R(p)Ga(p)|., <~-

|R(p)Ga(p)||, <

(W (p) - R(p)G ()|, <B. (7.153)

Although H, OFIP is a formulation for the purpose of fault identification,
it has been originally used for the integrated design of robust controller and
FDI. From the fault detection viewpoint, H,, OFIP or its modified form
(7.153) can also be interpreted as a reference model-based design scheme,
which is formulated as: given reference model r,..y = f, find R(p) so that

[r — Tref“g =|r— f||2 — min <
om, [T - R@)Gs(p) R(p)Gap) ]| -

One essential reason for the wide application of Ho, OFIP solutions is that
it is of the simplest MMP form. Maybe for this reason, in the most studies,
optimization problem (7.152) or its modified form (7.153) are considered as
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being solvable and no special attention has been paid to the solution. The
following discussion calls for more attention to this topic.

To simplify the discussion, we consider continuous time systems and as-
sume that f € R and Gf(s) has a RHP-zero sq. It follows from Lemma 7.7
that for any given weighting factor W(s) € RH

R3in [W(s) = R(s)Gr(5)]|, = IW(so)l. (7.154)

In case that W (s) = I, we have

RLin I = R(5)G(s)lloo = 1. (7.155)
Note that in (7.155) setting R(s) = 0 gives || — R(s)Gf(s)||cc = 1, and as a
result, we have

1) = r(s)l, _
176,

That means zero is the best estimation for f(s) (although may not be the only
one) in the sense of (7.155) and the estimation error equals to f(s). Consider
further that

r(s) = 0= f(s) —r(s) = f(s) =

R(s) = 0 => R(s)Gals) = 0 = | R(5)Ga(8)|loc = 0

then it becomes evident that R(s) = 0 also solves Ho, OFIP. Of course, such
an estimation with a relative estimation error equal to

1£(s) = r(s)ll,

el

is less useful in practice.

Generally speaking, (7.154) reveals that adding a weighting matrix W (s)
does not automatically ensure a good estimation performance. On the other
side, it provides us with a useful relation, based on which the weighting matrix
can be suitably selected. Equation (7.154) can be understood that W (s) should
have a RHP-zero structure similar to the one of G¢(s), i.e. if s¢ is a RHP-zero
of G/#(s), then the best solution can be achieved as s is also a zero of W (s).

In the Chapter 14, we shall study Ho, OFIP in more details.

7.7 Ho/H2 design of residual generators

Beginning with this section, we study design schemes for the residual generator
(5.24) whose dynamics is governed by

r(p) = R(p) M. (p) (Gyalp )d( )+ Gyr(p)f(p)) (7.156)
= R(p) (Ga(p)d(p) + G (p)f(p)) , R(p) € RHoo-
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The major difference between these schemes lies in the performance index,
under which the residual generator design is formulated as an optimization
problem. The design problem addressed in this section is the so-called Ha/Ho
design scheme, which is formulated as follows.

Definition 7.2 (Hz/Hz design) Given system (7.156), find a transfer vector
R(p) € RHs that solves

sup JQ (R) = sup M

_ . 7.157
R(p)ERHeoo R(p)eRH~ | R(P)Ga(p)|, ( )

Hs/Hs design has been proposed in 1989 and was the first design scheme
using the Jg/r type performance index for the post-filter design. It has been
inspired by the optimal selection of parity vectors proposed by Wuennenberg.
This can also be observed by the solution to (7.157) that is given in the next
theorem.

Theorem 7.7 Given continuous time system (7.156), then

sup Jo(R) = sup
R(s)ERHow R(s)eRHo. || R(S)

Amax(wopt) = sup Amax(w)

[R(s)G(s)]] 172
TS)HE = Alax(Wopt)  (7.158)

where Apax(w) is the mazimal eigenvalue of the generalized eigenvalue-eigenvector
problem

UHIHX(jw) (Gf (]w)é; (]w) - /\Inax(w)éd(jw)G:l(jw)) =0 (7159)

with Vmax(jw) being the corresponding eigenvector. The optimal solution
Ropi(s) is given by

Ropt(s) = qb(8)vmax(s), av(s) € RHy' (7.160)
where qp(s) represents a band pass filter at frequency wope, which gives
1 e NS e N Ay . /.
o Ropt (jw)Ga(jw)Ga(jw) Roy (jw)dw (7.161)

~ UHIHX(jw()])t)éd(jw)é:;(jw)vltlax(jvat)'
Proof. The original proof given by Ding and Frank consists of three steps
Stepl: prove that the optimization problem

| R(p)Gy(p)],

R(p)ERH oo &
0 < ||R(p)Galp)|, < @

J = with constraint (7.162)

is equivalent to a generalized eigenvalue-eigenvector problem;
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Step 2: find the solution for the generalized eigenvalue-eigenvector problem;
Step 3: prove

sup  Jo(R) = J.
R(p)ERH oo

Here, we only outline the first step. The next two steps are straightforward
and the reader can refer to the paper by Ding and Frank given at the end of
this chapter.

Note that (7.162) is, according to the duality theorem, equivalent to
E R - -
J = —supinf (—aﬂ -8 <M> + S (Ef (w) R(w)))
B>0 R a

where S (-) is an operator,

oo

S (Ed (W) R (w)) - / trace (Ed (W) R (w)) dw
S (Ef (W) R (w)) = 7t7’ace <Ef W) R (w)) dw

Eq(w) = Ef (—jw) Eq (jw) , By (w) = Ef (—jw) By (jw)
R(w) = RT (—jw) R (jw).
It turns out
7= a0
with variable 3 satisfying Yw

_Ei @) ) 8By @) 2 0 = 08B @) - Br @) 20, (7163)

(7.163) can be equivalently written as

@B > Amax (@)
with Apax (w) denoting the maximal eigenvalue of matrix pencil
Ef (W) = Amax (W) Ey (w).

As a result, we finally have

J = ég% (046) = Amax (W) .
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Suppose that Gy(s) is left invertible in RH., i.e. Yw € [0, o]
Ga(jw)G5(jw) > 0. (7.164)
It follows from Lemma 7.4 that we are able to do a CIOF of G(s)
Ga(s) = Gao(5)Gai(s)
with a left invertible co-outer Gg,(s) and co-inner Gg;(s). Let
Ropi(5) = a0(5)Pmax ()G 32 (5)
with
Umax (jw) (Gg, (jw) G (jw) G} (jw) Gy (jw) = Amax(w)I) = 0. (7.165)
In other words, in this case

sup  Jo(R) = /\maX(wopt)a /\1111/a2x(w011t) =supo (G;ol (jw>éf (]W)) .
R(s)ERHoo w

Without proof, we give the analogous result of the above theorem for
discrete time systems. The interested reader is referred to the paper by Zhang
et al. listed at the end of this chapter.

Corollary 7.4 Given discrete time system (7.156), then

HR('Z)Gf(Z)Hz —\/2

sup J2(R) — max(aOPt)

R(2)ERH o R(z)erM ||R(2)Ga(2)|,
)\max(eopt) = Slelp )‘max(e)

where Amax(0) is the mazimal eigenvalue of the generalized eigenvalue- eigen-
vector problem

Prmax(€°)(G 1 (€7)G7(€”) — Amax(0)Ga(e”)Giy(e’?)) = 0 (7.166)

with Pumax(€’?) being the corresponding eigenvector. The optimal solution
Ropi(2) is given by
Ropt(z) = f@opt (Z)p(z)

where fq,,,(2) is an ideal band pass with the selective frequency at 0,p¢, which
satisfies

Vq" (z) € RHa, fo,,.(€7%)q(e’®) = 0, 0 # Oop (7.167)

J00pe (€7)a ()" () f5

opt

27
(e79)dh = q(eT%rt)q* (e9ort),
0
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Although the Hsy/H2 design is the first approach proposed for the optimal
design of observer-based residual generators using the advanced robust con-
trol technique, only few study has been devoted to it. In our view, there are
two reasons for this situation. The first one is that the derivation of the solu-
tion, different from the standard Ho control problem, is somewhat involved.
The second one is that the implementation of the resulting residual generator
seems unpractical. The reader may notice that the most significant charac-
terization of an Hy/Ho optimal residual generator is its bandpass property.
It is this feature that may considerably restrict the application of Hs/Hs op-
timal residual generator due to the possible loss of fault sensitivity. On the
other side, this result is not surprising. Remember the interpretation of the
‘Hs norm as the RMS value of a system output when this system is driven
by a zero mean white noise with unit power spectral densities. It is reason-
able that an optimal fault detection will be achieved at frequency wope, since
at other frequencies the relative influence of the fault, whose power spectral
density is, as assumed to be a white noise, a constant, would be definitively
smaller. Unfortunately, most kinds of faults are deterministic and therefore
Ho/Ho design makes less practical sense.

7.8 Relationship between H,/?#, design and optimal
selection of parity vectors

The analogous form between the Hy/Hs solution (7.166) and the optimal
selection of parity vectors (7.130) motivates our discussion in this section. For
our purpose, we consider discrete time model

ok +1) = Az(k) + Bu(k) + Eqd(k) + E; f (k) (7.168)
y(k) = Ca(k) + Du(k) + Fad(k) + Fy f (k). (7.169)

Suppose that {g4(0), ga(1), ---} is the impulse response of system (7.168)-
(7.169) to the unknown disturbances d. Apparently,

94(0) = Fy, g4(1) = CEq, -+, ga(s) = CA*'E4,-- - . (7.170)

We can then express matrix Hy s in parity space residual generator (5.92) in
terms of the impulse response as follows

ga(0) 0 -+ 0
Ha, = 94(1) ga(0) :
N
ga(s) -+ ga(l) ga(0)

Partition the parity vector vy as
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Vs = I:US,O Vs1 - Us,s]

where the row vector v, ; € R™, 4 =0,1,---s. Then, we have

vsHy s = [@(s) @(s —1) -+ ©(0)]
with _

K3
90(7’) = Zpi—lgd(l)a Pi = Us,s—i> 1=0,1,---s.

=0

Let s go to infinity. It leads to

lim vsHg s = [p(o0) -+ ¢(0)] (7.171)

§—00

and in this case

(i) = Y pisaga(l) = p(i) ® ga(i) = 27 (P(2)Galz))  (T.172)

P(z) = Zlp(i)], p(i) = {po:p1,--} (7.173)
where ® denotes the convolution. Equation (7.173) means that P(z) is the
z-transform of the sequence {pg, p1,- - }-

According to the Parseval Theorem, we have

oo
lim vst7sH£svz = Z(p(i)ng(i) (7.174)
S§— 00 7:0

1 2w

=50 ; P(ejw)Gyd(ej“)sz(ej‘”)P*(ej‘*’)dw

with Gyq(z) = C (2 — A)"! B4 + Fy. Similarly, it can be proven that
2

1 . _ _ .
lim vst,sH}jSvsT = P(e)Gyp(e’)Gyp(e??) P (e?)dw  (7.175)

5—00 2 0

with Gyr(z) = C (21 — A7t Ef + Fy. On the other side, if given a residual
generator

r(z) = R(2) (Ma(2)y(2) = Nu(2)u(2)) (7.176)
we can always construct a parity vector, as stated in the next lemma.

Lemma 7.10 Given system (7.168)-(7.169) and a residual generator (7.176)
with R(z) € RHXX™. Then the row vector defined by

v=[- CAB CAB CB D] (7.177)

where (A, B,C, D) is the state space realization of R(z)M,(z), belongs to the
parity space Ps (s — 00).
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Proof. Assume that (4,, B, C,, D,) is a state space realization of R(z). Re-
calling Lemma 3.1, we know that
T {A —LC 0 ] = { L

A=AV B BJ,C[—DTC’CT],DDT.

It can be easily obtained that

C

ol CA

lim vH, s = lim [ .. CA’2BCAB CB D] C A2

C
C(A-LC)
= lim [ -+ C.A,.B, C.B, D,«] C(A—LC)? | - (7.178)
For a linear discrete time system

Mk+1)=(A— LC)A(k),0(k) = CA(k) (7.179)

with any initial state vector A\(0) = Ao € R™, apparently
5(0) = CXg,6(1) = C(A — LC)Xg,0(2) = C(A — LC)* N, - - - .

Since R(z) € RHXX™ and L is selected to ensure the stability of A — LC, the
cascade connection of system (7.179) and R(z) is stable. So

klingo Z7YHR(2)0(2)} = 0.

Note that

C)o
C(A—LC))\
Jim Z7HR(2)6(2)} = lim [+ C,AB, C.B, Dy ] | 0(A — LO)2 A

we get
C
C(A - LC)
lim [--- C;A, B, CrBr Di] | 0(A— LO)2 | Ao =0

§—00

for any initial state vector Ag € R™. Thus it can be concluded that
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C
C(A-LC)
lim [ -+ CLA.B, C.B, DT.] C(A-—LC)?| = 0.

§—00

At last, from (7.178) we obtain

lim vH,, =0

§— 00

i.e. the vector v defined by (7.177) belongs to the parity space Ps (s — 00).
The lemma is thus proven. 0O

It is of interest to note that vector v is indeed composed of the impulse
response of the residual generator R(z)M,(z) = D 4 C(zI — A)~'B, which
is given by {D, CB,CAB,CA%B,--- } Based on the above analysis, the fol-
lowing theorem can be obtained.

Theorem 7.8 Given system (7.168)-(7.169) and assume that vs opt, Js opt
and Ropi(2), Jopt are the optimal solutions of optimization problems

USHf’ H?s Z US,OPtHfSH]j;s Zopt

Toort = I S = O S T T vmom Han L 0T s (7.180)
Jort =

s fQ”R D) ML) Gy (7)) Gy (7°) My (1) R (&7 oo
R(z)ERME™ [ R(e30) M, (€10)G ya(e1%) Gy (€39) M7 (90) R (99 dw

Jo T Ropn(¢7%) Mu(€7) Gy (¢72) Gy (€72) M (€7) Ry (€7 ) o 7.180)
Jo Ropt(€7) M, (€79)Gya(3%) G 4 (€39) Mz (€39) Ry (€3%)

respectively. Then
Jim o opt = Jopt (7.182)
P(2) = Ropi(2) My (2) (7.183)

P(Z) = Z[p(l)]v p(Z) = {vs—mo,opt,s,Us—>oo,opt,s—1, T 7vs—>oo,OPt,0}' (7184)

Proof. Let vs_,o0,0pt denote the optimal solution of optimization problem
(7.180) as s — oo. Remembering Theorem 7.6 and the associated remark,
it follows from (7.173)-(7.175) that for any LCF of Gy, (z) = M (2)Ny(2),
the post-filter R,(z) given by
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where P(z) is defined by (7.184), leads to

7 |re=r= i Juom = Jim mex Jo=mpxmex Jy < omax,J
(7.185)
‘We now demonstrate that
J | r(:)=R. ()= Jopt = max J. 7.186
| R(2)=Ro(2)= Jopt O (7.186)

Suppose that (7.186) does not hold. Then, the optimal solution of optimization

problem (7.181), denoted by R.(z) € RH.X™ and different from R,(z), should
lead to

J | R(=R. ()= max J > J |R(x)=R,(2) - 7.187

|R(z)=R.(2) O . |R(z)=Ro(2) (7.187)

According to Lemma 7.10, we can find a parity vector v € P whose com-
ponents are just a re-arrangement of the impulse response of R.(z)M,(z).
Moreover, because of (7.173)-(7.175), we have

Js |1;S:v: J ‘R(z):Rc(z) (7188)
As a result, it follows from (7.185), (7.187) and (7.188) that

Js

v.=v> Max max J,
; s wvsEP;

which is an obvious contradiction. Thus we can conclude that

Jopt = max J=J|rin)=R. ()= lim Js,
" RseRMAE™ IRGe)=Ro ()= B, Jocrt

and
Ry(2) = P(Z)M_l(z) = Ropt(2)

u

solve optimization problem (7.181). The theorem is thus proven. O

Theorem 7.8 gives a deeper insight into the relationship between the parity
space approach and the Hy/Hs design and reveals some very interesting facts
when the order of the parity relation s increases:

e The optimal performance index J; o, of the parity space approach con-
verges to a limit which is just the optimal performance index J,p: of the
Ho/Hz optimization.

e There is a one-to-one relationship between the optimal solutions of opti-
mization problems (7.180) and (7.181) when the order of the parity relation
s — o0. Since Rypi(2) is a band-limited filter, the frequency response of
Vs—o0,0pt 15 also band-limited.

The above result can be applied in several ways, for instance:



7.9 LMI aided design of FDF 211

e for multi-dimensional systems, the optimal solution of the Hs/H2 design
can be approximately computed by at first calculating the optimal solution
of the parity space approach with a high order s and then doing the z-
transform of the optimal parity vector. It is worth noticing that numerical
problem may be met for some systems, especially when A is unstable.

e In the parity space approach, a high order s will improve the performance
index Jgope but, on the other side, increase the on-line computational
effort. To determine a suitable trade-off between performance and imple-
mentation effort, the optimal performance index Jop of the Ha/Ho design
can be used as a reference value.

e DBased on the property that the frequency response of v, o opt is band-
limited, advanced parity space approaches can be developed to achieve
both a good performance and a low order parity vector. For instance,
infinite impulse response (IIR) filter and wavelet transform have been in-
troduced, respectively, to design optimized parity vector of low order and
good performance.

Example 7.3 (A numerical example) Given a discrete time system modelled
by (7.168)-(7.169), where

A:{ 1 1.30]732 H,Cz[m]

0.25 —0.25 1
0.4 0.6
B = {0.5} By = {0.1} D=Fy=Fy—0. (7.189)

As system (7.189) is stable, matrix L in the LCF can be selected to be
zero matriz and thus Mu(z) 1s an identity matriz. To solve the generalized
eigenvalue-eigenvector problem (7.166) to get Oope that achieves Amax(Oopt) =
SUpPg Amax(0), note that

0.0125 + 0.01 cos 6
AIn' b 0) =
x(0) 0.41 —0.4cos @

Therefore, the optimal performance index of the Ha/Ho design is Jope = 2.25
and the selective frequency is Oope = 0.

Fig.7.2 demonstrates the change of the optimal performance index Jg opt
with respect to the order of the parity relation s. From the figure it can be seen
that Js opt increases with the increase of s and, moreover, Js o, converges
to Jopt when s — oo. Fig. 7.8 shows the frequency responses of the optimal
parity vector ve ope when s is chosen as 20,50,100 and 200 respectively. We
see that the bandwidth of the frequency response of vs ope becomes narrower
and narrower with the increase of s.

7.9 LMI aided design of FDF

Comparing with the methods introduced in the last two sections, the FDF
scheme with its fixed structure offers a lower degree of the design freedom.
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Fig. 7.3 The frequency response of the optimal parity vector vs opt vs s

On the other hand, its observer structure allows a design using the available
approaches for the robust observer design. For this reason, the FDF design is
receiving much attention currently.

In this section, we deal with the optimal design of FDF under different
performance indices. Recall that for a given system described by (3.30)-(3.31),
an FDF delivers a residual whose dynamics with respect to the faults and
unknown inputs is described by

r(p) = Na(p)d(p) + Ny(p) f (p) (7.190)
Ny(p) = C(pI — A+ LC) Y (E4 — LF;) + F4 (7.191)
N¢(p) = C(pI — A+ LC)"Y(E; — LFy) + Fy. (7.192)
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Our main objective is to find an observer matrix L such that Ny(p) is smaller
than a given bound and simultaneously N 7(p) is as large as possible. We shall
use the Hy and H, norms as well as the so-called H_ index to measure the
size of these two transfer matrices. To this end, the LMI technique will be
used as a mathematical tool for the problem solution.

7.9.1 Ho to H, trade-off design of FDF
We begin with a brief review of the Ha optimization problem described by

mLin|\C(pI—A+LC)*1(Ed — LEy)|2- (7.193)

Remark 7.7 Remember that for a continuous time system its Ha norm exists
only if it is strictly proper. For a discrete time system,

|Fy+ C(pI — A+ LC) Y (Eq — LE,)||s = trace (CPCT) + trace (F4F;)
= trace(Ey — LFy)" Q(Eq — LFy) + trace (F] Fy)
where P,Q are respectively the solutions of two Lyapunov equations. Thus,
min |Fy+ C(pl — A+ LC) N (Ey — LFy)||2 <=
min |C(pl — A+ LC) Y(Eq — LFy)|».

For this reason, we only need to consider the optimization problem (7.193).
Theorem 7.9 Given system C(pI — A+ LC)~Y(E4 — LF;) and suppose that

Al. (C,A) is detectable;
A2. Fy has full row rank with FdFdT =1;
AS8. for a continuous time system {A _C,JWI ffl
d
A— ejef Ed
tem [ C £,

} or for a discrete time sys-
} has full row rank for all w € [0, 00] or 6 € [0, 27],

then the minimum
min|[C(pl — A+ LC) ™ (Ba — LE)||> = (trace(CXC™))""* or
min|[C(pl — A+ LC)™ (Ea ~ LEs)|l> = (trace(CYCT))"/?

is achieved by
L=1Ly=XCT +E,F] or (7.194)
L=1Ly=(AYC" + E4Ff) (I+CYCT) ™ (7.195)

where matriz X > 0 solves the Riccati equation
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(A— EFTC)X + X(A— E.FTC)T — XCTCX + E4EY — E,FTFyET =0
(7.196)
= (A—L0)X + X(A— Ly,C)T + XCTCX + E4ET — E4FFF,ET =0
(7.197)
and matriz Y > 0 solves the Riccati equation

(A—LyC)Y (A= LyC)' —Y + (Ej — LyFy) (Ey — LoFy)" = 0. (7.198)

This theorem is a dual result of the well-known Hs optimization of the
state feedback controller,

min (€ ~ DK)(pl ~ A~ BK)™E|);

the proof is therefore omitted.

Remark 7.8 In A2, if F;FT # I we are able to find an output transformation
V to ensure that VF,FTVT = I as far as F, has full row rank. Assumption
A8 ensures that no zeros lie on the imaginary axis and at infinity.

Recall that the optimal design of FDF differs from the optimal estimation
mainly in its additional requirement on the sensitivity to the faults. This
requires to add an additional optimization objective to (7.193). Next, we are
going to introduce a design scheme, starting from Theorem 7.9, that allows a
compromise between the robustness and the fault sensitivity.

Set L = Lo + AL with Lo given in (7.194) and bring the dynamics of the
residual generator (7.190) into

e = (A_LQC)€+(Ed_L2Fd)d+(Ef_LQFf')f+U
v=—ALly—9y)e=x—2,r=y—y=Ce+ Fad+ Fyf

with & denoting the state variable estimation delivered by the FDF. Let T,.4(p)
denote the dynamic part of the transfer matrix from d(p) to r(p), i.e.

Tra(p)d(p) = C(pI — A+ LyC) ™' ((Eq — LaFg)d(p) + v(p)) -
Since

v(p) = —AL(Ce(p) + Fud(p))
= —AL (C(pI — A+ LyC) ' (Eq — LaFy)d(p) +v(p)) + Fud(p))
— —(I+ALC(pI — A+ L,0) ™)™
AL (C(pI — A+ LyC) Y (Ey — LoFy) + Fy) d(p)

we obtain
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Tra(p)d(p) = C(pI — A+ LyC) ' (Eq — Lo Fy)d(p) + C(pI — A+ LyC) ™"

C(pI—A+LQC)_1 )

(I+ALC(pI — A+ LeC) ") ' (~AL) ((Ed — LyFy)d(p) + Fad(p)

= C(pI — A+ LyC) " (Eq — LaFy)d(p) +

C(pl — A+ LyC + ALC) ' (—AL) <( C(pI — A+ L,O)™* >

Eq — LyFa)d(p) + Fad(p)
Note that U(p) := C(pI — A + LyC)~Y(Ey — LoFy) + Fy is co-inner and
U(—p) (C(pl — A+ LoC) Y (Ey — Lng))T € RHL , thus we finally have
I Tra(@)l5 = |C(pI = A+ LC) ™ (Ea — Lo Fu) |3
+||C(pI — A+ (L + AL)C) " (AL)|)3. (7.199)

With the aid of (7.199), we are able to formulate our design objective as
finding AL such that

A—(L+ AL)C is stable (7.200)
[Tra(p)]l2 <7 = (7.201)
|C(pI — A+ (Ly + AL)C) P AL|5 < v* — trace(CXCT) or
|C(pI — A+ (Ly + AL)C) P AL|3 < 42 — trace(CYCT)
|C(pI — A+ (L + AL)C) Y (Ey — (Lg + AL)Fy)||2 — max.  (7.202)

Following the computing formula for the Hz norm, (7.200)-(7.202) can further
be reformulated as: for the continuous time system

max trace ((Ey — ALFy)"W(Ey — ALFy)) (7.203)
trace(ALTW AL) < 4* — trace(CXCT) := v, (7.204)
(Ap, — ALOYW + W (AL, — ALC)T + CTC =0,W >0 (7.205)

AL, = A—LoC, By = Ey — LyFy

and for the discrete time system

max trace ((Ef — ALFy)" Z(E; — ALFY)) (7.206)
trace(ALY ZAL) < 42 — trace(CYCT) := v, (7.207)
(Ap, — ALC)YZ(AL, — ALC) — Z+CTC =0,Z > 0. (7.208)

Setting AL = PL, P = W~ for the continuous time case and AL = PL, P =
Z~! for the discrete time case leads respectively to

trace(AL"W AL) = trace(LT PL), trace(ALT ZAL) = trace(L" PL)
trace ((Ey — ALFy)"W(Ey — ALFy))
=trace (WEy — LF;)" P(WE; — LFy))
trace ((Ey — ALFy)" Z(Ey — ALFy))
=trace ((ZE; — LFy)"P(ZEy — LFy)) .
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Using Schur complement we have that

|C(pI — Ar, + ALC) ' AL||y = trace(L* PL) < 7,
and (A, — PLC) is stable if and only if

e for the continuous time system: there exist @Q1, W such that

AT W+ WAL, —CTLT —LC+CTC <0 (7.209)
[IV/I; Cg } > 0,trace(Q1) < v, (7.210)
1

e for the discrete time system: there exist QJ, Z such that

Z ZAr, — LC
|:A'£ 7_CTIT 7 i cTo >0 (7211)
{EZT QLJ > 0,trace(Qz2) < 4. (7.212)

In summary, we obtain the following optimization design scheme for FDF.
Theorem 7.10 The optimization problem (7.200)-(7.202) is equivalent to

e for continuous time systems

max trace ((WEf — EFf)T w1t (WEf — EFf)> (7.213)
W,L
subject to
AT W+ WAL, -CT'L" —LC+C"C <0 (7.214)
[LM; QLJ > 0,trace(Q1) < vq (7.215)

o for discrete time systems

wairace (28, - LF))" 274 (2B, - 1)) (7210

subject to
{AEQZ N CTLT ZZA L_Q(;T%C] 0 (7.217)
{LZT ci} > 0,trace(Q2) <71 (7.218)

On account of the above-achieved results, following algorithm for the Ho
to Ho optimal design of FDF is proposed.



7.9 LMI aided design of FDF 217

Algorithm 7.6 Hy to Ha optimization of continuous time FDF

Step 1: Solve Riccati equation (7.196) for X >0 and further Lo;
Step 2: Solve optimization problem (7.214)-(7.215) for L, W ;
Step 3: Set the optimal solution as follows:

L=XCT"+E,FT + WL
Algorithm 7.7 Hy to Ho optimization of discrete time FDF

Step 1: Solve Riccati equation (7.198) for Y > 0; B
Step 2: Solve optimization problem (7.217)-(7.218) for L, Z;
Step 3: Set the optimal solution as follows:

L= (AYCT + E,F]) (I+0vC™) '+ 77'L.

Remark 7.9 Notice that the cost functions (7.213) and (7.216) are nonlinear
regarding to W or Z. Moreover, due to the constraints (7.215) and (7.218), the
terms (EFf)T w1 (EFf) and (EFf)T z-1 (EFf) are bounded. On account
of this fact, the cost functions can be replaced by

max trace (E;‘CFWEf - FfZLTEf - E?EFf) as well as

W,L

t ETZE; —F'LTE, — EYLFy) .
Hzl%xmce( Fetfr =4y s — Ef LFy)

Example 7.4 We now apply Algorithm 7.6 to the benchmark system EHSA
with model (3.83). We suppose that measurement noises are present in the
sensor signals and model them by extending Eq, Fy to

0 00

—-0.14300
mi-| 0 ool 08

0 060

0 060

Solving Riccati equation (7.196) gives

—8.69 x 10722 —1.03 x 10~
—0.067976  2.06 x 10712

Ly = | 1.538 x 1072 8.078 x 10-2® | [trace (CXCT) ~ 0.7 x 10°.
6.6889 x 10* —2.03 x 10~°
—2.03 x 1076 2.02 x 1071

In the next step, optimization problem (7.214)-(7.215) is solved for L, W with
vy < 1.7 x 105,
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2.84 x 106 —1.47 x 105 1.81 x 10° 0.1703 —4810.7
—1.47 x 10°8.0014 x 10* —5.08 x 109 —0.0456 278.21
W =| 181 x10° —5.08 x 105 9.95 x 108 0.010 —2.6103 x 10*
0.1703 —0.0456 0.010 1.6756 x 10~ —0.0003
—4810.7 278.21 —2.6103 x 10*  —0.0003 265.89
—21561 —145.29

—45507 19.36
L= |801x10% —1.54 x 10°

0.389 —9.77 x 107°

40.74 1460.2

Finally, the optimal solution s

—0.0177 0.0093
—0.0048  —0.0042

L=Ly+W™'L=1] 0.0084 —2.97x107°
3.03x10°  —53.96
0.8745 5.6617

7.9.2 On ‘H_ index

Remember the discussion on the fault sensitivity in Subsection 7.4.1, which
provides us with reasonable arguments to evaluate the fault sensitivity by
means of the so-called Sy _ index. In this subsection, we shall address the
definition of Sy _ index for a transfer matrix and its computation. This index
is called H_ index and will be, instead of the H,, norm or the Hs norm as
required in (7.202), used for the evaluation of the fault sensitivity.

Definition 7.3 Given system y(p) = G(p)u(p). The strict H_ index of G(p)

is defined by
. 1G)up)]l2
G - = inf —————.
IGWI- = Inf =

Note that ||G(p)||— is not a norm. For instance, if the row number of G(p)
is smaller than its column number, then there exists some u(p) # 0 so that
G(p)u(p) = 0 and therefore ||G(p)||— = 0. Consider that an evaluation of those
faults, which are structurally undetectable (see Chapter 4), makes no sense.
We are only interested in evaluation of the minimum value of ||G(p)u(p)|e,
for ||u(p)||2 = 1, which is different from zero. Since

(7.219)

Gl = 5= [ T ()G ()G (o) dw

21 J_ o
we have the nonzero minimum value of |G(p)u(p)||2
e for surjective G(p)

G- = HgHQ(GT(jw)) or m(}ng(GT(ej"))
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e for injective G(p)
IG()]|- = ming (G(jw)) or ming (G(e™))
where o (-) denotes the minimum singular value of a matrix.

For the FDI purpose, we introduce the following definition.

Definition 7.4 Given system y(p) = G(p)u(p). The H_ index of G(p) is
defined by

G- = ming (67 (jw)) or ming (G7())
for surjective G(p) satisfying
Vw, G(—jw)GT (jw) > 0 or V0, G(e71)GT (/%) > 0 (7.220)

and
G|~ = ming (G(jw)) or meinQ(G(ejG))

for injective G(p) satisfying
Vw, GT (—jw)G(jw) > 0 or V0, GT (e719)G(e??) > 0. (7.221)
Remark 7.10 Note that if both (7.220) and (7.221) are satisfied, then
. T/ . _ . . . T/ 560 _ . j6
rrgng(G (jw)) rrgng(G(jw)),rrbmg(G (e’”) memg(G(e )) -
Moreover,

Yw, G(—jw)G" (jw) = G(jw)GT (—jw) and
V0, G(e )G (1) = G(7?)GT (e719).

Next, we study the computation of the H_ index of a transfer matrix as
defined in Definition 7.4. We start with a detailed discussion about continuous
time systems and give the "discrete time version" at the end of the discussion.
Our major results rely on the following lemma.

Lemma 7.11 Let A, B, P,S, R be matrices of compatible dimensions with
P,R symmetric, R > 0 and (A, B) stabilizable. Suppose either one of the
following assumptions is satisfied:

Al. A has no eigenvalues on the imaginary axis;
A2. P >0 or P<0 and (P, A) has no unobservable modes on the imaginal
axis.

Then, the following statements are equivalent:
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1. The parahermitian rational matriz

O(s) = [ BT (=sI — AT)"1 1] { ; S} [(SI ) A)_lB]

ST R I

satisfies
P(jw) >0 for all0 <w < o0

1I. There exists a unique real and symmetric X such that
(A=BR'STY'X+X(A-BR'ST)~XBR'B"X+P-SR™'ST =0
and that A — BR™'ST — BR™'BT X is stable.

Lemma 7.11 is a standard result in the robust control theory. Hence, its
proof is omitted.

Theorem 7.11 Given system G(s) = D + C (sI — A)~' B with

A1. DD —~%I >0 and
A2. (C, A) has no unobservable modes on the imaginary axis,

then inequality
(C(—jwI — A)"'B+ D)’ (C(jwl — A) "B+ D) > +*T (7.222)

holds for all w, including at infinity, if and only if there exists a symmetric
matriz X such that

ATX + XA - XBR'B"X +C*(I- DR 'DTYC =0 (7.223)

with -
A=A-BR'DTC,R=DTD —~°I.

Proof. The proof is straightforward. We first substitute
P=CTC,S=CTD,R=DTD —~%I
into @(s) given in Lemma 7.11, which gives

B(s) = [BT(—sI — ATy 1 1]] €, 0 C'D ] [(sI—A)lB}

DTC DTD —~%I 1

= (BT(-=sI —AT)"'CT + D) (C(sI — A")"'B+ D) — y*I.
As a result, $(jw) > 0 <=(7.222) holds. Finally, using Lemma 7.11 the
theorem is proven. a

With the proof of Theorem 7.11, the following corollary becomes evident.
Corollary 7.5 Given system G(s) = D + C (sI — A)~' B with
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A1. DDT —~%I > 0 and
A2. (A, B) has no uncontrollable modes on the imaginary axis,
then inequality

(C(jwl — A) "B+ D) (C(—jwl — A)'B+ D)’ >~ (7.224)

holds for all w, including at infinity, if and only if there exists a symmetric
matriz'Y such that

AY +YAT —-YCTR™'CY + BI-DT"R™'D)BT =0 (7.225)

with B
A=A-BDTR'C,R=DDT —4°I.

Remember that with the H_ index defined in Definition 7.4 we are only
interesting in the minimal nonzero singular value of a transfer matrix, which
is equivalent to, for given G(s) = C (sI — A)"' B+ D,

G* (jw)G (jw) > 0, Y

if G(s) is injective or
G(jw)G* (jw) > 0,Vw

if G(s) is surjective. Note that Vw

L G*(jw)G(jw) > 0 <= rank {A e g] otk
I1. G(jw)G*(jw) > 0 <= rank {A *CJ“’I g] —n4+m

where n, k, m denote the number of the state variables, the inputs and the
outputs respectively. Hence, it also ensures that there exists no unobservable
mode on the imaginary axis in case I and no uncontrollable mode on the
imaginary axis in case II. As a result of Theorem 7.11, Corollary 7.5 and the
above discussion, we have

Theorem 7.12 Given system G(s) = D + C (sI — A)"" B that satisfies

Al. (a) DTD —~21 >0, if G(s) is injective, or (b) DDT —~%I > 0, if G(s)
18 surjective
A2. (a) for G(s) being injective Yw € [0, 0]

A—jwl B
rank [ C’j D] =n+k (7.226)
or (b) for G(s) being surjective Vw € [0, o0]
A—jwl B
rank { C’7 D] =n+m (7.227)
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then for a given constant vy > 0 the following two statements are equivalent:

S1. H_ index satisfies
1G(s)ll- >~ (7.228)

S2. for case (a) there exists a symmetric matriz X such that
XA+ ATX - XBR'BTX +CT(I - DR 'DTYC =0 (7.229)
A=A—-BR'DC,R=D"D—+°I

or for case (b) there exists a symmetric matriz' Y such that

AY +YAT —-YCT'R™'CY + BI-D"R'D)BT =0 (7.230)
A=A-BDTR'C,R=DDT —4°I
(7.229) and (7.230) are Riccati equations, which can also be equivalently
reformulated as Riccati inequalities. To this end, different methods are avail-
able. Next, we introduce one approach proposed by Zhang and Ding.

Recalling Lemma 7.4 and its dual form for the IOF, we can, under condi-
tion (7.226) or (7.227), factorize G(s) = D + C (sI — A)"' B € RH, into

G(s) = M~(s)N(s) = N(s)M~'(s)

where N(s), N(s) are co-inner and inner respectively and M~1(s), M~1(s) €
RHso. It turns out that

1

G- =M (s)- = s 7.231
1G]~ = 1M~ (s)] T ()T (7.231)
for G(s) being injective and satisfying (7.226) and
~ 1
G- = 1M ()] - = (7.232)
1M (8)]] oo

for G(s) being surjective and satisfying (7.227). As a result, the requirement
that ||G(s)||- > 7 can be equivalently expressed by

1 ~ 1
1M (s)]|oo < 5 or [|[M(s)]leo < 5 (7.233)

The following theorem follows directly from (7.233) and the Bounded Real
Lemma, Lemma 7.8.

Theorem 7.13 Given G(s) = D + C (s — A" B € RH™** and v > 0,
suppose that

L for G(s) being injective

A—jwl B

Yw, rank [ ¢ D

] =n+kDI'D—+’T>0
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II. for G(s) being surjective

A—jwl B

Yw, rank [ ¢ D

} =n+m,DDT —+*T >0

then |G(s)||= > ~v if and only if for case I there exists X = X T such that
XA+ ATX +CTC+(XB+CTD)(*I-DT" D)"Y (BT X +D*C) > 0 (7.234)
and for case II there exists Y =Y such that
YAT + AY +BBT + (YCT +BDT)(v*I-DDT)"Y(CY +DBT) > 0. (7.235)

Proof. We only prove (7.234) for case I. (7.235) for case II is a dual result of
(7.234). It follows from Bounded Real Lemma that for ||[M(p)|le < % there
exists a matric P >0

¥(P)=(A— BF)P+ P(A-BF)" + Bvv'BT
1
+(BVVT — XFT)(¥I - vvhH)=YwvTBT - FX) <0 (7.236)

where, as a dual result of Lemma 7.4,
V =(DTD)"2 F = (DT"D)"Y(BTQ + DTC) (7.237)
with @ > 0 being the solution of Riccati equation
QA+ ATQ+CTC - (QB+CTD)DTD)"Y(BTQ + DTC)=0. (7.238)
Substituting (7.237) into the left side of (7.236) yields

U(P)= AP+ PAT — PFTDTDFP + (B(DT"D)™' — PFT)
X {(DTD) + (%I - (DTD)l) _1} (DTD)"'BT — FP)
= AP+ PAT - PF'D"DFP + (B(D"D)™! — PFT) (D" D)
x (D"D —+21)" (D" D)((D*D)"'BT — FP)
= AP + PAT - PFTD"DFP + (B — PQB — PCTD)
x (DD —~21)"" (B — B"QP — D'CP).
Let X = Q — P~'. Then we have
PU(P)P ' =(Q-X)A+AT(Q - X)-F'D'DF
+(XB+C"D) (DD - B°1) " (BTX + D'C).
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Because P is a nonsingular matrix, (7.236) holds if and only if P~'W(P)P~! <
0. By noting that (7.237) and (7.238) imply QA+ ATQ—-FTDTDF = -C*C,
(7.236) is equivalent to

XA+ ATX +CTC+ (XB+C"D) ("I —D'D) "' (B"X + D'C) > 0.
(7.239)
The theorem is thus proven. O

Without proof, we introduce the "discrete time" version of Theorem 7.13.

Corollary 7.6 Given G(z) = D+ C (21 — A)"' B € RH™* and v > 0,
suppose that

L for G(z) being injective

A—eI B
VGE[O,QW],TUmk‘[ c D] =n+k
II. for G(z) being surjective
A—e’I B
VGG[O,QW],rank[ c D] =n+m

then |G(2)||~ > v if and only if for case I there exists X = X1 such that
DD +BT"XB - ~*I >0
ATXA-X —ATXGUI+XG) " XA++2Q >0« (7.240)
ATXA-X —ET(D"D+BT'XB—-~*1) ' E+CTC>0  (1.241)
A=A+B(y*I-D"D)"'D"C,G=-B (I -D'D) ' B”
Q=C" (y*I-D"D) ' C,E=B"XA+D'C
or for case II there exists Y =Y 7T such that
DDT +CYCT — 421 >0
AYAT - X —AYG(I+YGQ) 'YAT +4%Q > 0 — (7.242)
AYAT Y —FT (DD +CYCT —4*1) ' F 4+ BB” > 0 (7.243)
A=A+BD" (\*1-DD") "' C,G=—C" (*I-DD") "' C
Q=B (’I-DD") ' B",F =Y A" + DB".

In the next subsections, the H_ index and its LMI aided computation will
be integrated into the FDF design.
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7.9.3 #H2 to H_ trade-off design of FDF

The so-called Hs to H_ sub-optimal design of FDF is defined as follows: Find
L such that

I.A — LC is stable (7.244)
IL||C(pI — A+ LC) Y(Eq— LE))|2 <~ (7.245)
II1||C(pI — A+ LC) Y (Ey — LFy) + Fy| - — max (7.246)

where it is assumed that C(pI — A + LO)~Y(Ey — LF;) + Fy € RH™*M is
injective and for continuous time systems

IC(pI — A+ LC)"(Ey — LFy) + Fy||-
=ming (C(jwl — A+ LC) " (Ef — LFy) + Fy) >0
as well as for discrete time systems
IC(pI — A+ LC)"H(Ef — LFy) + Fy||-
=ming (C(e’1 — A+ LC) ™ (Ey — LFy) + Fy) > 0.

Analogous to the derivation given in Subsection 7.9.1, we first set L = Lo+ AL
and reformulate the optimization problem as finding AL such that

I.A—(L+ AL)C is stable (7.247)
II.||C(pl — A+ (Ly + AL)O) *AL|2 < 42 — trace(C'XC’T) =, or
(7.248)

II. ||C(pI — A+ (Ly + AL)C) ' AL|j3 < 4% — trace(CYCT) = ~; (7.249)
III.||C(pI — A+ (Ly + AL)C) Y (E; — ALFy) + Fy|- — max. (7.250)

Recall that conditions I and II can be expressed in terms of the following
LMIs:

e for continuous time systems there exist (J1,Y7 such that

AL Y1+ Y1 AL, —CTLT —LC+C"C <0 (7.251)
[%/% 5 } > 0, trace(Q1) < v, (7.252)
1

e for the discrete time system: there exist D2, Z; such that

[ Z1 Zide, — LOT (7.253)

AT 2, —CTLT 7, -CTC
z L

[ iT C;J > 0,trace(Qz2) <73 (7.254)
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where
AL=PL,P=Y or P=2' A, = A~ L,C

and Ls is the Hs optimal observer gain as given in Theorem 7.9. It follows from
Theorem 7.13, Corollary 7.6 and Schur complement that we can reformulate
(7.250) as

max 7y, subject to (7.255)
AL,Y>=Y]
DDT —~21 Ef Yo + FTC >0
E/QEf +CT F Yo AL + ATY2 +CTC
for continuous time systems and
max 7, subject to (7.256)

AL,Zy= Z
F}Ff+EfZQEf— I EfZ,AL+FfC

AT 2, +CTF,  ATZyA, - 2y +C7C | "

for discrete time systems, where
Ap = Ay, — ALC,Ey = Ef — (Ly + AL) Fy = Ey — ALF}.

In summary, the Hs to H_ sub-optimal design of FDF can be formulated as
the following optimization problem with nonlinear matrix inequalities (NMI):

e for continuous time systems

max -y, subject to (7.257)
LY1,Ya=Y]
AT Y1 +Y1 AL, —CTLT —LC+C"C <0
Y: L
[L; 0, } > 0,trace(Q1) < vq
DDT — 21 ETYQ + FTC’ >0
Y,Ef + CTF, Y2AL+A Y2+CTC
e for discrete time systems

max 7, subject to (7.258)

L,Z1,2,=2T
Zy  ZhAL, - LCT
AT 7z, -CTLT 7z,-CTC
Zy L
[i} QQ} > 0,trace(Q2) < v,
F{F;+ E{ZsE; —4*1  EfZs AL+ FfC
AL ZoE; + CTF, AT Z2AL — Zo+CTC
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Remark 7.11 Optimization problems (7.257) and (7.258) have been formu-
lated on the assumption that C(pI — A+ LC)~Y(Ef — LFy) + Fy is injective.
In case that it is surjective, using the dual principle we are able to derive the
solution.

Remark 7.12 (7.257) and (7.258) are optimization problems with NMI con-
straints. Such optimization problems can be solved in an iterative way. We
refer the reader to some literatures on this topic, given at the end of this
chapter.

7.9.4 H to H_ trade-off design of FDF

The so-called Hoo to H_ optimization of FDF is formulated as finding L such
that

I. A— LC is stable (7.259)
II. ||C(pI — A+ LC) (B — LEy) + Filloo <7 (7.260)
III. |O(pI — A+ LO) " (Ey — LFf) + Fy||- — max.  (7.261)

The basic idea of solving the above optimization problem is, again, to trans-
form it into an optimization problem with matrix inequalities as constraints.
Initiated by Hou and Patton in 1997, study on the Ho, to H_ optimization of
FDF has received considerable attention. In this subsection, we only introduce
an essential formulation of this optimization problem. For further details and
results published in the past, we refer the reader to the literature cited at the
end of this chapter.

To ensure the existence of a nonzero minimum H_ index, we assume that
C(pl — A+ LC)" " (Ef — LF;) + Fy € RHZ** is injective and for continuous
time systems

|C(pI — A+ LO) ' (Ef — LFy) + Fy|| - (7.262)
=ming (C(jwl — A+ LC) " (Ef — LFy) + Fy) >0

as well as for discrete time systems

IC(pI — A+ LC)" (Ey — LFy) + Fy| - (7.263)
= ming (C(e/°T = A+ LC)™(Ey — LFy) + Fy) > 0.

Once again, we would like to mention that using the dual principle a solution
for the surjective case can also be found. For the sake of simplicity, we only
concentrate ourselves on the injective case.

It follows from Lemmas 7.8 and 7.9 that requirements (7.259) and (7.260)
can be written into a matrix inequality form
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e for continuous time systems: there exists a Y > 0 such that

(A-LCY'Y +Y (A— LC) Y (E4 — LF,) CT
(Eq— LF)TY | FT | <o (7.264)
C Fd —’}/I

e for discrete time systems: there exists a X > 0 such that

-X X(A-LC)X(E;—LF;) 0

(A-Lo)' x —-X 0 cT
(Ba— LE)TX 0 e BTl < 0. (7.265)
0 C Fy —~1

Combining (7.264), (7.265) with the results given in Theorem 7.13, Corol-
lary 7.6 leads to the following reformulation of Ho.to H_ optimization (7.259)-
(7.261):

e for continuous time systems:

max v, subject to (7.266)
LY>0,Yi=Y{

(A-LCY'Y +Y (A— LC) Y(E, — LF,;) CT

(Eq— LE)TY I ET | <0
C Fd —’YI
FiFy—? (Ef — LFy)™Y1 + FfC

Yl(Ef—LFf)—‘rCTFf Yl(A—LC)+(A—LC)TY1+CTC >0

e for discrete time systems:

max 7, subject to (7.267)
LX,X1=XT
X X (A— LC) X(Eq—LFEy;) 0

(A-LO)' X —-X 0 ol
(Eq— LE)TX 0 —~I  FT

0 c Fy AT

I s
>0
i)

Iy = Ff Fy + (Ey — LFy)" X1(Ey — LFy) =731
Iy = (Ef — LFy)" X, (A— LC) + Ff C
H22 = (A — LC)T X1 (A — LC) — Xl + CTC
Again, solving (7.266) and (7.267) deals with an optimization with NMI

constraints and requires the application of advanced nonlinear optimization
technique.
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7.9.5 An alternative Ho, to H_ trade-off design of FDF

Although the approach proposed in the last subsection provides an elegant
LMI solution to the Ho, to H_ trade-off design, it is computationally in-
volved and delivers often only local optimum. We now derive an alternative
solution to the same problem with less computation and guaranteeing the
global optimum.

Assume that C(pl — A+ LC)~Y(E; — LFy) + Fy € RHT** is surjective
and satisfies

A—jw] Ef _
Vw,rank{ o Ff]—n—i—mor
A—ejef Ef o
Vo € [0,27r],rank[ c Ff} =n+m.

It follows from Lemma 7.4 or Lemma 7.5 that setting
Lo = (YCT + E;Ff)(FyFF) ™ Vo = a(FpFF) ™2 a>00r  (7.268)
Lo = (A"XCT + E;F])(FyFF + CXCT) ™ Vy = o (FyFF +cxC™) 2
(7.269)
gives
|C(jwI — A+ LC)""(Ef — LFy) 4 Fy|| _ = aor
|C(e’°T — A+ LC) " (Ef — LFy) + Fy||_ =«
where Y is the solution of Riccati equation
AY +YAT + EyE] — (YCT + E;FF)(FyFF)"HCY + FyET) =0 (7.270)
and X of
ApX (1+CT (FeFf)™ CX)71 AL — X + EFF Fp ET =0 (7.271)
Ap = A—CT (FsF}) ™ FET.
Note that the dynamics of the corresponding FDF is governed by
r(p) = Np.o(p) f(p) + Nao(p)d(p) (7.272)
with
Gya(s) = M3 (p)Nyo(p), Gya(p) = My (p)Nao(p)
M, (p) = Myo(p) = Mao(p) = Vo (I — C(pI — A+ LyC) 'Lo)  (7.273)
Nyolp) = Vo (C(pI — A+ LoC) ' (Ey — LoFy) + Fy) (7.274)
Nao(p) = Vo (C(pI — A+ LoC) ™ (Eq — LoFy) + Fy) . (7.275)
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Next, we would like to demonstrate that Lo, Vp given in (7.268) or (7.269)
solve the optimization problem of finding L,V such that

I. A— LC is stable (7.276)
II. |VO(pI — A+ LO) YE4— LE) + VFy|loo <7 (7.277)
III. |\VO(pI — A+ LO) ' (Ef — LFf) + VFy||- — max. (7.278)

Remember that the dynamics of an FDF is generally described by
r(p) = Ni(p)f(p) + Na(p)d(p)

which can be further written as
r(p) = Mu(p) M7 (0) (N70(p)f(0) + Nao(p)d(p) )

Suppose that L,V ensure

] = setigorsens] <
and make
|%5)|| = || ) Nsew)| = [r.0) ]\jfé(p)H

oo

reaching its maximum. Consider the following relations (see also (7.232))

Vao)] < [Wtrona )] 3tz 0o
[¥r0)]|_ = [ M7 ) i p0(0) M )70 H,
- ’ Iy, (p)MJl(p)HOO HMu(p)Mﬁé(p)Hoo
and set
o= L or
(FyFF)™2 (I = C(wl = A+ LoC) = Lo) M (i) | _
B 1
- (FrFf+ CXCT)_1/2 (I = C(e/T = A+ LoC) =1 Lo) My (e1?)

Nd’O(p)Hoo < HMu(p)M;é(P)Ndp(p)Hoo =
H > !
P o)

)

Ny p)HOO <7

Ny.o(p)

~ %)

HOO

This result verifies that Lo,V given in (7.268) or (7.269) do solve the opti-
mization problem (7.276)-(7.278) and thus proves the following theorem.
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Theorem 7.14 Lo, Vi given in (7.268) or (7.269) with
i
| Ep) 12 (Clwr - A)1Ea+ F) |
gl
—1/2 . —
H (FfFfT + CXC’T> (C(ed0] — Ay By + Fy)

I<a<

or (7.279)

I<a<

(7.280)

‘ oo

A= A—Loc,Ed =Fg— LoFy
solve the optimization problem (7.276)-(7.278).

It is worth noting that for the determination of Lg, Vj only the solution of
one Riccati equation is needed. Moreover, the solution is analytically achiev-
able and ensures a global optimum.

Remark 7.13 We would like to mention that Lo, Vo given in (7.268) or
(7.269) also solves

IV C @I — A+ LC)" ! (Ey — LEFy) + VFq| -
v VOl — A+ LO) (B — LFa) + VFal

where a (> 0) can be any constant. In Section 12.3, we shall prove it. We
would like to call reader’s attention that this result also verifies the comparison
study in Section 7.4.

Algorithm 7.8 H., to H_ trade-off design of FDF - an alternative solution

Step 1: Compute Ly, Vy according to (7.268) or (7.269)
Step 2: Set « satisfying (7.279) or (7.280).

Example 7.5 In this example, we design an Hoo to H_ optimal FDF for
the benchmark vehicle dynamic system via Algorithm 7.8. To this end, system
model (3.76) in Subsection 3.7.4 is slightly modified, where

C’;V = 103600 + AC,v, AC,v € [—10000,0]
18 rewritten as
C’;V = 9360 + AC,y, AC,v € [—5000, 5000] .

This change is due to the need in the late study. It results in

28.4186 —3.2546 38.9638
o [—145.3844 1.1890} D= {53.2973]

A= [—2.9077 —0.9762] B= { 1.0659 }

0 1.0000 0

with
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g, [001.0659 ] - [1053.2973
F=100389638|" "7~ |01 0

The achieved results are

- _ [0.02000.0002] _ [0.01880
07~ 10.7308 0.0707 | > 7° 0 1|

7.9.6 A brief summary and discussion

In this section, we have derived three approaches to the optimal design of
FDF regarding to three different performance indices:

e Hy/H> optimization
e Hy to H_ optimization
e H, to H_ optimization.

Remember that our design objective is indeed a multiobjective optimiza-
tion, i.e. minimizing the influence of the disturbances on the residual and
simultaneously maximizing the one of the possible faults. The underlying
idea adopted here for solving such optimization problems is to reduce the
multiobjective optimization problem to a single optimization problem with
constraints. To this end, the well-established robust control theory and LMI-
techniques have been used. As a result, all requirements and constraints given
in the form of norms of transfer function matrices are equivalently expressed in
terms of matrix inequalities. Although these matrix inequalities look formally
linear, part of them is indeed bilinear related to the optimization parameters.

Bearing in mind the main objective of our handling, we shall continue our
study without detailed dealing with the solution for the formulated optimiza-
tion problems. At the end of this chapter, however, a number of references
are given, where the reader is provided with useful materials like essentials,
algorithms and even software solutions for such problems.

The reader might notice that the H, norm has not been taken into account
for measuring the influence of faults . This is mainly due to the difficulty met
by handling the inequality

INf(p)]loo > 7 > 0.

A further discussion upon this will be carried out in the subsequent sections.

7.10 The unified solution

In the last sections, different norms and indices have been used to describe
the influence of the unknown disturbances and faults on the residual signal.
Remember that both the H,, norm and index H_ are some extreme value
of a transfer function matrix. From the practical viewpoint, it is desired to
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define an index that gives a fair evaluation of the influence of the faults on
the residual signal over the whole frequency domain and in all directions in
the measurement subspace.

The major objective of this section is to introduce an index for a practical
evaluation of the fault sensitivity and, based on it, to achieve an optimal
design of the observer-based FD systems.

7.10.1 H;/H~ index and problem formulation

Consider system (7.156). To simplify our discussion, we first focus on the con-
tinuous time systems. The extension to the discrete time systems is straight-
forward and will be given at the end of this section.

For our purpose, we now introduce a definition of fault sensitivity and,
associated with it, the so-called H;/Ho performance index. Recall that the
singular values of a matrix give a measurement of the "gain" in each di-
rection of the subspace spanned by the matrix. In this context, all singular
values o;(R(jw)Gf(jw)), w € [0,00], together build a natural measurement
of the fault sensitivity. They cover all directions of the subspace spanned by
R(jw)Gy(jw). In comparison, HRG’AL or HRG’fHOO are only two extreme
points in this subspace. It holds Vw € [0, o],

|RGy||_ < 0i(R(jw)Gy(jw)) < |RGy]| . (7.281)
Associated with it, we introduce

Definition 7.5 (H;/Ho design) Given system (7.156) and let o3 (R(jw)G(jw)),
i=1,---, k¢, be the singular values of R(jw)G¢(jw).

oi(R(j )G( w))
Jiww(R) = TR Gao) (7.282)

is called H;/H~ performance index.

We would like to call reader’s attention that H;/H. index indicates a set
of (k) functions. It is clear that J(R) and Jo(R),

inf,, Q(R(iW)Gf (jw))
|R(s)Ga(s)]|

are only two special functions in the set of J; ,(R).
Under H;/Hoo performance index, we now formulate the residual gener-
ator design as finding R(s) € RHo such that for all o;(R(jw)Gy(jw)),i =
Jkf,w € [0,00], J; . (R) is maximized, i.e.

ai(R(j )G’( w))
Ga(s)|.

IR&EGEL.
TR®GG). W =

Joo(R) =

sup  Jiw(R)= sup
R(s)ERH oo R(s)ERHoo ||R

(7.283)
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It is worth emphasizing that (7.283) is a multiobjective (k; objectives!) opti-
mization and the solution of (7.283) would also solve

R(s)eRH || R(5)Ga(s)]|

ol s P g(RG©)G(G6)

R(8)ERH oo ||R(3)Gd(5)” (7.284)

oo oo

which have been discussed in the previous sections.

7.10.2 H;/H~ optimal design of FDF: the standard form
Now, we are going to solve (7.283). For our purpose, we first assume that
Yw € [0,00], Gq(jw)G5(jw) > 0. (7.285)

This assumption will be removed in the next section. It follows from Lemma
7.4 that G4(s) can be factorized into Gig(s) = My (s)No(s), where My *(s) is
a co-outer, No(s) a co-inner of Gq(s). Let R(s) = Q(s)My(s) for some Q(s) €
RH,.. It then turns out that Vw € [0,00] and for all o;(R(jw)Gy(jw)),i =
1., ky,

o1 (QUw) Mo (j) G ()
[

On the other side, setting R(s) = My(s) leads to

Jiw(R) = <o <Mo(jw)éf(jw)) . (7.286)

Voo, 04 (R(jw) Gy (i) Jiaa (R) = 1 (Vo) G (i) )

ie. Vw € [0,00], i = 1,---,ky, the postfilter R(s) = Mp(s) leads to the
maximum J; ,(R). As a result, the following theorem is proven.

Theorem 7.15 Given system (7.156) and assume that (7.285) holds, then
Vw € [07 OO] and Ji(R(jw)Gf(jw))vi =1, >kfa

Ropt(s) = arg ( sup Ji’w(R)> = Mo(s) (7.287)
R(s)ERH oo

where My '(s) is a co-outer of Gq(s).

Theorem 7.15 reveals that Rp(s) leads to a simultaneous optimum of
performance index (7.283) in the whole subspace spanned by Gg(jw). It also
covers the special case (7.284). For this reason, Ry (s) is the unified solution.
It can be shown (see Chapter 12) that the unified solution delivers not only
an optimal solution in the sense of (7.283) or (7.284) but also an optimal
trade-off in the sense that given an allowable false alarm rate, the fault detec-
tion rate is maximized. This also gives a practical explanation why the unified
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solution, different from the existing optimization methods, solves (7.283) si-
multaneously for all o;(R(jw)G(jw)),w € [0,00],¢ =1,--- , ky.
Applying Ropt(s) to (7.156) yields

r(s) = No(s)d(s) + Mo(s)G(s) f(s) (7.288)

and in the fault-free case ||7||, = |||, . In the above expression, Mo (jw) can
be considered as a weighting matrix of the influence of f on r. Remember that
My(s) is the inverse of the co-outer of G4(s) and the co-outer of a transfer
function matrix can be interpreted as the magnitude profile of the transfer
function matrix in the frequency domain. In this context, it can be concluded
that the optimal solution is achieved by inversing the magnitude profile of
Ga(s). As a result, the influence of d on r becomes uniform in the whole
subspace spanned by the possible disturbances, while the influence of f on r is
weighted by the inverse of the magnitude profile of Gq(jw), i.e. where G4(jw)
is strong (weak), G¢(jw) will be weakly (strongly) weighted.

Remark 7.14 Remember that in Subsection 7.9.5, we have derived a solution
for the optimization problem

w _ infy, o(R(jw)Gr(jw))
R(S)egﬁm Jo(R) |R(s)Gals)|| .

which is different from the one given above. This shows that the solution for
this problem is not unique. In Chapter 12, we shall further discuss this prob-
lem.

Following Lemma 7.4, the results given in Theorem 7.15 can also be pre-
sented in the state space form. To this end, suppose that the minimal state
space realization of system (7.156) is given by

&(t) = Ax(t) + Bu(t) + Eqd(t) + Ef f(¢)
y(t) = Cx(t) + Du(t) + Fud(t) + Fy f(t). (7.289)
Using an FDF,
&(t) = A#(t) + Bu(t) + L(y(t) — g(t)) (7.290)
9(t) = Ci(t) + Du(t),r(t) = V(y(t) — 4(t))
for the purpose of residual generation gives
r(s) = V (Mu(5)Ga()d(s) + Mu(5)Gys () £(5) )
-V (Nd(s)d(s) + Ny(s) f(s)) (7.201)
I—C(sI — A+ LC) 'L = My(s) = My(s)
Fy+C(sI — A+ LC) Y (Eq— LF))
Fy+C(sI — A+ LC) Y (Ey — LFy)

My (s)Na(s), Gy(s) = My (s)Ny(s).

QzzE
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The following theorem represents a state space version of the optimal solution
(7.287) and gives the optimal design for L, V.

Theorem 7.16 Given system (7.289) that is detectable and satisfies Vw €

[0, 0]
A— jw] Ed o
rank { c Fd] =n+m (7.292)
and the residual generator (7.290), then
Lopt = (EaF{ + YaC ) (FaFf )™ Vope = (FaF ) ™/? (7.293)

with Yy > 0 being the stabilizing solution of the Riccati equation
AYy + Y4 AT 4+ E4ET — (E4FF + Y ,CT)(FyFF) Y (FyEY +CYy) = 0 (7.294)

deliver an optimal FDF (7.290) in the sense of Vw, Ji(VNf(jw)),i =1,--- kg,

sup J; (L, V) = sup M
LV LV ‘VNd(s)H

Nfopt(s) = Fy +C(sI = A+ LowC) ™ (Ey — Lopt Fy).

= Ui(Vopth,opt(jw)) (7295)

The proof of this theorem follows directly from Lemma 7.4 and Theorem
7.15.

Theorem 7.16 provides us not only with a state space expression of opti-
mization problem (7.283) but also with the possibility for a comparison with
the existing methods from the computational viewpoint. Remember that most
of the LMI aided design methods handle the optimization problems as a multi-
objective optimization. As a result, the solutions generally include two Riccati
LMIs. In comparison, the unified solution only requires solving Riccati equa-
tion (7.294) and thus demands less computation.

Example 7.6 We now design an FDF using the unified solution for the
benchmark system LIP100. Our design purpose is to increase the system ro-
bustness against the unknown inputs including measurement noises. Based on
model (3.57) with the extended Eq4, Fy (to include the measurement noises)

Eq=[0B],Fy=[Isx30]

we get

0.0006 0.0711 —0.0013

0.0711 8.8764 —0.1619|
—6.1356 —0.1619 0.0030 |’ "ort — 13x3
84.6187 39.4106 —0.7188

Lopt =
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7.10.3 Discrete time version of the unified solution

In this subsection, we shall briefly present the analogous version of Theorems
7.15 and 7.16 for discrete time systems without proof.

Theorem 7.17 Given system (7.156) and assume that
VO € [0,27], Gq(e?®)G5(e%) > 0. (7.296)
then VO € [0, 27], and o;(R(e7%)Gs(e7?)),i=1,--- ,ky,

Ropi(z) = arg sup  Jiw(R) | = Mo(2) (7.297)
R(s)ERHoo

where My '(2) is a co-outer of Gy(z).

Theorem 7.18 Given system

z(k+1) = Az(k) + Bu(k) + Eqd(k) + Ef f (k)
y(k) = Cx(k) + Du(k) + Fyd(k) + Fy f(k)

that is detectable and satisfies ¥V 6 € [0, 27]

A— ejOI Ed

rank [ c o

} =n-+m.

Then residual generator

#(k+1) = (A = LopiC) #(k) + (B — Lopt D) u(k) + Lopty(k)
r(k) = Vopt (y(k) — Ci(k) — Du(k))

with
Lopt = —Lg, ‘/opt =Wy (7298)

delivers residual signal v(k) that is optimum in the sense that V8 € [0, 2x] and
o (VNf (ejg))
g (VNf(eje))
vyl
Nyopt(2) = Fy + C (2I — A+ LopC) ™' (Ef — Lopt Fy) .

sup o (Voth\Affﬁopt (ej9)>

LV

In (7.298), W4 is the left inverse of a full column rank matriz H satisfying
H HY = CX,CT + FyFF, and (X4, Lg) is the stabilizing solution to the
DTARS (discrete time algebraic Riccati system,)

|:AXdAT —Xd-l-EdEg AXdCT+Ede:| |: I :| —0

CXdAT + FdEg CXdCT + FdF(%F Ly (7299)
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7.11 The general form of the unified solution

Due to the complexity, the study in this section will focus on continuous time
systems.

Recall that the unified solution proposed in the last section is based on
assumption (7.285) or its state space expression (7.292), i.e. G4(s) is surjective
and has no zero on the jw-axis or at infinity. Although it is standard in
the robust control theory and often adopted in the observer-based residual
generator design, this assumption may considerably restrict the application
of design schemes. For instance, the case rank(Fy) < m, which is often met
in practice, leads to invalidity of (7.292). Another interesting fact is that for
kq < m a PUID can be achieved, as shown in Chapter 6. It is evident that for
kq < m (7.285) does not hold.

It is well-known that a zero w; on the jw-axis or at infinity means that a
disturbance of frequency w; or with infinitively high frequency will be fully
blocked. Also, for k; < m there exists a subspace in the measurement sub-
space, on which d has no influence. From the FDI viewpoint, the existence
of such a zero or subspace means a "natural" robustness against the un-
known disturbances. Moreover, remember that the unified solution can be
interpreted as weighting the influence of the faults on the residual signal by
means of inversing the magnitude profile of G4(s). Following it, around zero
w;, say w € (w; + Aw), the influence of the faults on the residual signal will

be considerably strongly weighted by My (jw) (because o (M(;l(jw)) is very

small). From this observation we learn that it is possible to make use of the
information about the available zeros on the jw-axis or at infinity or the exist-
ing null subspace of G4(s) to improve the fault sensitivity considerably while
keeping the robustness against d. This is the motivation and the basic idea
behind our study on extending the unified solution so that it can be applied
to system (7.156) without any restriction.

Our extension study consists of two parts: (a) a special factorization of
G a(s) is developed, based on it (b) an approximated "inverse" of Gy4(s) in the
whole measurement subspace will be derived.

7.11.1 Extended CIOF
Now, under the assumption that G ,(s) € RHT ¥4,
rank (Gq(s)) = min {m, kq}
G a(s) will be factorized into
Ga(8) = Gao(8)G oo (8)Gjuw(8)Gai(s) (7.300)

with co-inner Gg;(s), left invertible Gy,(s), G (s) having the same zeros on
the jw-axis and G (s) having the same zeros at infinity as G4(s). This special



7.11 The general form of the unified solution 239

factorization of G4(s) is in fact an extension of the standard CIOF introduced
at the beginning of this chapter.
We present this factorization in the form of an algorithm.

Algorithm 7.9 Algorithm for the extended CIOF

Step 0: Do a column compression by all-pass factors as described in Lemma
7.6: Ga(s) = G(5)Ga1(s).

Note that this step is necessary only if kg > m.

Step 1: Do a dislocation of zeros for G(s) by all-pass factors: G(s) =
Go(8)Gi1(s). Denote the zeros and poles of Go(s) in C— by s; _.

Step 2: Set s = a+ \ with a satisfying

Vs; — Re(s;,—) <a<0 (7.301)

and substitute s = a + X into Go(s): G1(N) = G, (a+ \) = Go(s).

We denote the zeros of G1(\) corresponding to the zeros of G, (s) in Cj,,,C—
and at infinity by A; jo,A\i— and A; o respectively. It follows from (7.301) that
Re(Mijw) > 0, Re(Ai—) < 0, X\j, 0o = 00. Also, all poles of G1(A) are located
inC_.

Step 3: Do a CIOF of G1(X) following Lemma 7.6: G1(A) = G1,(A)G1i ().

Note that G1;(\) is inner and G1,(\) is an outer factor whose zeros belong
to C_ and at infinity.

Step 4: Substitute X\ = s — a into G1;()\), G1o(A\) and set Go(s) equal to

Go(5) =G1(\) =G (s —a)Gio (s —a) = Gij(s)Glo(s).

Remembering that )\; j,, is corresponding to a zero of G, (s) in Cjy, it is evident
that G, (s) has as its zeros all the zeros of G(s) on the imaginary axis. Noting
that s = a + \,a < 0, it can be further concluded that G,(s) only has zeros
in C_ as well as at infinity and the poles of G, (s), G1,(s) are all located in
C_. Denote the zeros and poles of G1,(s) in C_ by s; _.

Step 5: Set s = %5 and substitute it into G1o(8) : G1o(s) = G, (ﬁ) =

G2(X), where c is a constant satisfying

(Im(si,—))

2
Vs, _ ¢ > + |Re(s;,=)| | - 7.302
- o> TR e )| (7.302

It is straightforward to prove that after Step 5 the zeros of G1,(s) at infinity
and in C_ are located in C4 and C_ of the A-complex plane respectively. Also
the poles of G'1,(s) are in C_ of the A-complex plane.

Step 6: Do a CIOF on Ga(X) following Lemma 7.6: G2(X) = Gao(AN)G2;(A).

Note that Ga;(A) is inner and has as its zeros all the zeros of Go(A) in Cy.
Since G2(A) has no zero in Cj,, and at infinity, G2,(\) is right invertible in
RH .

Step 7: Substitute X = <2 into Gai(N), G20(N) and set G1o(s) equal to
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c+s c+s
GQ()\) = GQO ( 3 ) Ggi ( 3 ) = GO(S)GOO(S)

It is evident that G, (s) has as its zeros only zeros of G4(s) at infinity. Denote
a zero or a pole of Gap(A) in C_ by A; — € C_. It turns out

c _ c(Re(Nj—) —1) —cIm(N; -)j
N1 (Re(yo) — 17 + (Im(y )’

Since ¢ > 0,Re()\j—) < 0, we have Re(s) < 0 <= s € C_. It can thus be
concluded that the poles of GZ,(s), G, (s) liein C_, and G,(s) is right invertible
in RHso- As a result, the desired factorization

Ga(s) = Gao(5)Goo(5)Gjuw(5)Gai(s), Gai(s) = Ga1(s)Gir(s).
is achieved.

Remark 7.15 We would like to point out that the study on the extended
CIOF primarily serves as a mathematical formulation. Below, we shall demon-
strate that the information provided by those zeros at the jw-axis can be utilized
to improve the fault detection performance. From the numerical viewpoint,
there should be more efficient algorithms to realize such an extended CIOF.

7.11.2 Generalization of the unified solution

We are now in a position to extend and generalize the unified solution. Recall-
ing the idea behind the unified solution and our discussion at the beginning of
this section, our focus is on approximating the inverse of G, (8)Goo(5)Gjw(s)
by a post-filter in RH,. To this end, we shall approach the inverse of
Gjw(8), Goo(5),Gao(s) separately.

Remember that G, (s) has as its zeros all the zeros of G(s) on the jw-
axis. Define G, (s) by Gju(s —€),e > 0. Note that all zeros of ij( s) are
located in C_. If € is chosen to be small enough, then we have G () as an
approximation of the inverse of G, (s) with

G (5)Gju(s) = 1, G;wl(s) =G s —¢) € RHoo. (7.303)

Jw Jjw

To approximate the inverse of G (s), we introduce Goo(s) = Goo (ﬁ) JE>
0, whose zeros are —% € C_. Thus, choosing € small enough yields

G2 (5)Goo(s) ~ I,GZ (s) = G2 [ —— ) € RMee. 7.304

o (9)Gu(s) M I, G (3) = Goo | 7 H (7.304)

Recalling that Ggo(s) = GL(s) is left invertible in RHo, for m = k4 the
solution is trivial, i.e. G, (s) = G (s). We study the case m > k4. As
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described in Lemma 7.6, using a row compression by all-pass factors Gg,(s)
can be factorized into

Go2(8)

Guole) = Guna(s) | %

] € RH™*H (7.305)

with Gao1(s) € RH™ ™, Gao2(s) € RdeXkd. Both Gp,1(8), Gao2(s) are
invertible in RH . (7.305) means that G4(s) only spans a m X k4-dimensional
subspace of the m x m-dimensional measurement space. In order to inverse

G4(s) in the whole measurement space approzimately, we now extend G 4(s)
and d(s) to

d(s)

Gae(s) = [@d(s) 0] € RH™ ™ d.(s) = [ 0

:| 6 R’"L

which yields no change in the results achieved above. As a result, we have

Guols) = Gana | 2D T G
Gdi(s) = [Gdé(s) ﬂ is co-inner.

Glao,2(5)Goc(5)Gju(s) 0

Since 0 0} is not invertible, we can introduce

[Gdo,Z(S)GBO(s)ij(S) 501]

with a very small constant ¢ to approximate it. Together with (7.303)-(7.305),
we now define the optimal post-filter as

Rope(s) = {Gﬁu (S)G;z(S)Gio,z(s) %01} a1 (s). (7.306)

R,pt(s) satisfying (7.306) is an approximation of the inverse of the magnitude
profile of G4(s). In order to understand it well, we apply Ropt(s) to residual
generator

r(s) = R(s) (Ga(s)d(s) + G(s)f(s))

and study the generated residual signal. It turns out

r(s) = Ropt(s) (Ga(s)d(s) + G (s)f(s)) = (7.307)

G (8)(?;01(s)Goo(sszw(s)Gdi(s)d(S) + Gy1(s) f(s)]
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M Tene)] _ [GR 66 0
s — jw\S) oo (5) g, oS -1 ~
[(;f2(8)} = [ ! 0 ' %]- (;dm1(;f(5)
Note that d has no influence on r3(s). Following the basic idea of the unified
solution, the transfer function of the faults to ra(s) should be infinitively
large weighted. In solution (7.306), this is realized by introducing factor %. It
is very interesting to notice that in fact r5(s) corresponds to the solution of
the full disturbance decoupling problem, where only this part of the residual
vector is generated and used for the FD purpose. This also means that the
dimension of the residual vector, m — kg, is smaller than the dimension of the
measurement m. In against, the unified solution results in a residual vector
with the same dimension like the measurement vector, which allows also to
detect those faults, which satisfy Gf2(s)f(s) = 0 and thus are undetectable
using the full disturbance decoupling schemes.
In case m = kg4, the solution is reduced to
Ropt(s) = G ()G (5)Gg, (s). (7.308)
Summarizing the results achieved in this and the last sections, the unified
solution can be understood as the inverse of the magnitude profile of Gy(s)
and described in the following general form: given system (7.156),

{the unified solution is given by (7.306) if m > kg

. 7.309
the unified solution is given by (7.308) if m < kg4 ( )

Note that if G4(s) has no zero in C;, or at infinity, then G, (s) = I or
Gools) = 1.

We would like to call reader’s attention to the fact that the unified solution
will be re-studied in Chapter 12 under a more practical aspect. The physical
meaning of the unified solution will be revealed.

Example 7.7 We now illustrate the discussion in this subsection by studying
the following example. Consider system (7.156) with

(6= |rals) |16 = [0 o) = | 50
r3(s)
- S, s+5 0
5 +35+2 _ 52+zlls+1
Gyu(s) = [ssz+§$é Gy(8) = | oo
L 0 1
an (

_ _ (st1)(s+4) 1
Gat) = | ) | Gt = | i T
s24+4s+1  s24+4s+1

GT(s) has two zeros at —3, 00. Moreover, it is evident that r3(s) = fa(t), i.e. a
full decoupling is achieved. However, using r3(t) f1 cannot be detected. In the
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following, we are going to apply the general optimal solution given in (7.509)
to solve the FD problem. It will be shown that using (7.309) we can achieve
the similar performance of detecting fo as using the full decoupling scheme.
In addition, f1 can also be well detected and the zero at infinity can be used
to enhance the fault sensitivity. We now first apply the algorithm given in the
last section to achieve the special factorization (7.300) and then compute the
optimal solution according to (7.509). Considering that G, (s) has only zeros
in C_ and at oo, we start from Step 5. Let ¢ = 4.5 and substitute s = =

1
into G4, (s),

- 4(A+3.5)(A+0.125)  5(A—1)(A—0.1)
Gh(s) =Ga(N) = [ Vﬁ@f)rg% NZT167+3.25

2(A—1)(A+1.25)
A2+161+3.25 A2+161+3.25

G2(X) has poles at —15.7942, —0.2058 and zeros at 1,—0.5. As the next step,
do an IOF of G2(X\) using Lemma 7.6. It results in Ga(\) = Ga;(N)Gao(N),
where

0.8321 0.5547
Gai(A) = [—0.5547(5—1) 0.8321(s—1) ] ,Gao(N) =

s+1 s+1
2.7735(A\244.35040.725)  3.0509(\%—2.3182X—0.3182)
A2+161+3.25 A2+161+3.25
3.0509(\242.6364140.0455) 4.4376(A%+0.1562240.5312)
A2+161+3.25 A2+162+3.25

Note that G2;(X) has a pole at —1 and a zero at 1 and Ga2,(\) has poles
at —15.7942, —0.2058 and zeros —1, —0.5. The next step is to transform
Ga2i(A), G2o(N) back to the s-plane by letting A = 12E2. It yields

0.8321 0.5547
Goo(s) = |:—1.2481 1.8721 ] ,Go(s) =
s+2.25 s5+4+2.25

[ 0.8321(s2+4.7037s+3.3333) —0.2465(s>+0.8755—12.375) ]

214511 s244s+1
0.5547(5%45.66675+5.5) 0.3695(s°+5.755+12)
s24+4s+1 s24+4s+1

where GL (s) has a pole at —2.25 and zero at 0o, G,(s) has poles at —3.7321,
—0.2679 and zeros at —3, —2.25. Thus, G, (s) = GL (s)G,(s),

Gals) = {Gdgs)] _ [G%)goo(s)} |

As a result, the optimal post filter Ropi(s) is given by
51 T(e))—1

1
0 51
o 0.8321 0.5547
G (8) = | —0.2465(142.25¢)s—0.5547 0.3698(1-+2.25¢)s+0.8321
es+1 es+1
0.8321(s%45.755+12) —1.2481(s%+5.66675+5.5)
G-T = 5215.25516.75 $245.255+16.75
o 0.5547(s%+0.8755—12.375) 1.8721(s%+4.7037s+3.3333)
5245.2554+6.75 524+5.255+6.75
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and the small positive numbers €, are selected as ¢ = 0.01,§ = 0.01. The
optimal performance indexes J; ,(Ropt), © = 1,2 are shown in Fig.7.4. It can
be read from the figure that

Joo(Ropt) = max J; o, (Ropt) = 99.1(~ 40dB)

J()(Ropt) = r?i)n Ji,w(Ropt) =~ 0.

We would like to point out that, if € — 0, the value of Joo(Ropt) will converge
to % = 100. It is evident that Joo(Ropt) may become infinitively large as § goes
to zero.

80

60 A

40

Performance index (dB)

~100 | | | |
” 10° 10’ 10° 10°
Frequency (rad/sec)

Fig. 7.4 Optimal performance index J; o, (Ropt), @ = 1,2.

7.12 Notes and references

The topics addressed in this chapter build one of the vital research fields of
the recent years in the area of the model-based fault diagnosis technique. The
results presented in Sections 5-10 mark the state of the art of the model and
observer-based FDI methods. After working with this chapter, we can identify
the major reasons for this development:

e the development of these methods are well and similarly motivated
They are driven by the increasing needs for enhanced robustness against
disturbances and simultaneously by the demands for reliable and fault
sensitive residual generation.
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e the ideas behind these methods are similar
The residual generation problems are formulated in terms of robustness
and sensitivity and then solved in the framework of the robust control
theory.

e cach method and design scheme is coupled with a newly developed method
in the framework of the robust control theory
The duality between the control and estimation problems enables a direct
application of advanced control theory and technique to approaching the
residual generation problems.

Due to this close coupling with the advanced control theory, needed pre-
liminaries of the advanced control theory have first been introduced in this
chapter. We refer the reader to [49, 46, 161, 160, 134] for the essential knowl-
edge of signal and system norms, the associated norm computation and the
Hs/Ho technique. To our knowledge, [14, 130] are two mostly cited literatures
in the area of the LMI technique, which contain both the needed essentials
and computational skills. The factorization technique plays an important role
in our study. We refer the reader to [161] for a textbook styled presenta-
tion on this topic and [110, 137] for a deeper study, for which some special
mathematical knowledge is required.

The proofs of Lemmas 7.1 - 7.5 are given in [161], the proof of Lemma 7.6
in [110] and the one of Lemma 7.7 on the MMP solution in [46]. The LMI
version of the Bounded Real Lemma, Lemmas 7.8 - 7.9, is well known, see for
instance [14].

The Kalman filter technique is standard and can be found in almost any
standard textbooks of control engineering, see for instance [6, 20]. Patton
and Chen [115] initiated the technique of residual generator design via an
approximation of unknown input distribution matrices and made the major
contributions to it. The study on the comparison of different performance
indices presented in Section 7.4 gives us a deeper insight into the optimization
strategies. To our knowledge, no study has been published on this topic. The
optimal selection of parity matrices and vectors addressed in Section 7.5 is
mainly due to the work by Ding and co-worker [27, 28, 30] . They extended
the first results by Chow and Willsky [23, 98] and by Wuennenberg [148]
in handling residual generator design via parity space technique and gave a
systematic and complete procedure to the residual generator design.

Although the Hs/Hs design is the first approach proposed in [37, 97] for
the optimal design of observer-based residual generators using the advanced
robust control technique, only few study has been devoted to it. The interest-
ing result on the relationship between the parity vector and Ha/Hsa solution
has been recently published by Zhang et al. [155]. Based on it, Ye et al.
[150, 151] have developed time-frequency domain approaches for the residual
generator design .

The core of an observer-based residual generator is an observer or postfilter
based residual generator. Some works have formulated the design problems in
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the framework of Ha or Ho or mixed Ha/Hoo filtering [47, 88, 89, 101, 109],
or using the game theory [24]. The Hoo/Hoo design problem was first proposed
and solved in [39], lately in [121, 54, 129]. In the literature, few results have
been reported on the LMI technique based solution of Hu /Hoo design. Most
relevant works are focused on the FDF design with H, robustness against dis-
turbances, see for instance [109, 47, 22] or [89]. Although it has been proposed
and addressed in 1993 [43], H_ /H oo design problem has been extensively stud-
ied after the publication of the first LMI solution to this problem [75]. The
discussion about the H_ index in Subsection 7.9.2 is based on the work by
Zhang and Ding [153] and strongly related to the results in [75, 122, 96].
Roughly speaking, there are three different design schemes relating to the H_
index

e LMI technique based solutions, which also build the mainstream of the
recent study on observer-based FD,

e H solution by means of a reformulation of H_ /H . design into a standard
H~ problem as well as

e factorization technique based solutions.

In this chapter, we have studied the first and the third schemes in the
extended details. The second one has been briefly addressed. The most signif-
icant contributions to the first scheme are [75, 122, 96], while [72, 123] have
provided solutions to the second scheme. In [32], the factorization technique
has been used for the first time to get a complete solution. This work is the
basis for the development of the unified solution. A draft version of the unified
solution has been reported in [29]. Further contributions to this scheme can
be found in [82, 97, 152].

The unified solution plays a remarkable role in the subsequent study. The
fact that the unified solution offers a simultaneous solution to the multiobjec-
tive H; /Hoo (including H_ /Ho and Hoo /Hoo) optimization problem with, in
comparison with other LMI solutions, considerably less computation is only
one advantage of the unified solution, even though it seems attractive for the
theoretical study. It will be demonstrated, in Chapter 12, that the general
form of the unified solution leads to an optimal trade-off between the false
alarm rate and fault detection rate and thus meets the primary and practi-
cal demands on an FDI system. This is the most important advantage of the
unified solution. We would like to call reader’s attention that the study on
the extended CIOF in Subsection 7.11.1 primarily serves as a mathematical
formulation. Aided by this formulation, we are able to prove that making use
of the information provided by those zeros at the jw-axis will lead to an im-
provement of the fault detection performance. From the numerical viewpoint,
there should be more efficient algorithms to realize such an extended CIOF.
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Residual generation with enhanced robustness
against model uncertainties

In this chapter, we shall deal with robustness problems met by generating
residual signals in uncertain systems. As sketched in Fig.8.1, model uncertain-
ties can be caused by changes in process and in sensor, actuator parameters.
These changes will affect the residual signal and complicate the FDI process.
The major objective of addressing the robustness issues is to enhance the
robustness of the residual generator against model uncertainties and distur-
bances without significant loss of the faults sensitivity.

model uncertainties caused by the changes in the system

N Sao S
\ »/

\ A /
disturbance_\\_.
N process le——— disturbance
(plant) sensors
. actuators output
input
% faults % faults % faults
output idual signal
output estimate post- residual signal
observer -/ filter as a function of disturbances,
model uncertainties and faults
Residual generator

Fig. 8.1 Schematic description of residual generation in a uncertain dynamic system

Model uncertainties may be present in different forms. It makes the han-
dling of FDI in uncertain systems much more complicated than FDI for sys-
tems with unknown inputs. Bearing in mind that there exists no systematic
way to address FDI problems for uncertain systems, in this chapter we shall
focus on the introduction of some basic ideas, design schemes and on handling
of representative model uncertainties.
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8.1 Preliminaries
The major mathematical tool used for our study is the LMI technique intro-

duced in the last chapter. Next, we shall introduce some additional mathe-
matical preliminaries that are needed for the study on uncertain systems.

8.1.1 LMI aided computation for system bounds

The following lemma plays an important role in boundness computation for
uncertain systems.

Lemma 8.1 Let G, L, E and F(t) be real matrices of appropriate dimensions
with F(t) being a matriz function and F(t)T F(t) < I. Then

(a) for any e > 0,
LFt)E+ETFT(t)L" < éLLT +eETE (8.1)
(b) for any € > 0, P > 0 satisfying P~' —eETE > 0,
(G+LF(t)E)P(G+ LF(t)E)T <G(P~' —eETE)'GT + %LLT. (8.2)

Consider a system

T :Am+E‘dd,y:C'x+Fdd (8.3)
A:A+AA,CZC+AC,Ed:Ed+AE,Fd=Fd+AF (84)

with polytopic uncertainty

l
AA AE A B
[Ac AF] :l;ﬂi {CZ- F} ’

It holds

l
ﬂi=1,ﬂi20,i=1,---7l. (8.5)

Lemma 8.2 Given system (8.3)-(8.5) and a constant v > 0, then
lylly < lldll,
if and only if there exists P > 0 so thatVi=1,--- 1

(A+A)TP+P(A+A) P(Eg+ E;) (C+C)T
(Eq+ E;)" P I (Fy+F)T| <. (8.6)
C+G Fy+ F; —~I
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The proof of this lemma can be found in the book by Boyd et al. (see
the reference given at the end of this chapter). Along with the lines of this
proof, we can find an LMI solution for the computation of the H_ index by
extending Theorem 7.13 to the systems with polytopic uncertainties. Without
proof, we summarize the results into the following lemma.

Lemma 8.3 Given system (8.3)-(8.5) and a constant v > 0, suppose that for
i=1, 1
A+ A; —jwl Eg+ F;

C+C,  F;+F = n+ka,(Fa+ F)" (Fa+F) >~

Yw, rank

then
1ylly >[Il
if and only if there exists P = PT so that Vi =1,--- 1

(A+A)" P+ PA+A) P(Ea+E) (C+C)T
(Ba+E)" P I (Fy+F)T | >0. (8.7)
C+C; Fy+ F =1
8.1.2 Stability of stochastically uncertain systems

Given a stochastically uncertain system

l
z(k+1) = (A +) A,;pl-(k)> z(k) (8.8)
i=1
where p;(k),i =1,--- 1, represents a stochastic process with
T .
E (pi(k)) = 0,E ([m(k) o pu(R)] [pa(k) - pz(’f)]) = diag(o1,- -+, 0).
oi,t = 1,---1, are known. It is further assumed that p(0),p(1),---, are in-

dependent and z(0) is independent of p(k). The stability of (8.8) should be
understood in the context of statistics. The so-called mean square stability
serves for this purpose.

Definition 8.1 Mean square stability: Given system (8.8) and denote
M(k) = E (z(k)z" (k)) .
The system is called mean-square stability if for any x(0)
i Enm M(k) = 0.
It is straightforward that

l
M(k+1) = AM(k)AT + " 07 A; M (k) AT .

=1



250 8 Residual generation with enhanced robustness against model uncertainties

Lemma 8.4 Given system (8.8). It is mean square stable if and only if there
ezists P > 0 so that

l
APAT — P+ 07 A;PAT <.
i=1
We refer the reader to the book by Boyd et al. for a comprehensive study
on systems with stochastic uncertainties.

8.2 Transforming model uncertainties into unknown
inputs

As introduced in Chapter 3, systems with norm bounded uncertainties can be
described by

i=Ar+ Bu+ Eqd+ E¢f,y=Cx+ Du+ Fyd + Fyf (8.9)
A=A+ AA,B=B+ AB,C=C + AC (8.10)
D:D+AD,Ed:Ed—|—AE,Fd:Fd+AF (811)
where AL AB A
B AFE E
{AC AD AF} = [F] Alt)[GH J] (8.12)

with known F, F,G, H, J which are of appropriate dimensions and unknown
A(t) which is bounded by
g(A4)<da. (8.13)

Applying residual generator

to (8.9)-(8.11) yields

i = Ax+ Bu+ Eqd + Es f
¢é=(A—LC)e+ (AA—LAC)z + (AB — LAD)u
+ (Eq— LFy)d+ (Ef — LFy) f (8.15)
r(p) = R(p) (Ce + ACx + ADu + Fyd + Fyf). (8.16)

It is evident that system (8.15)-(8.16) is stable if and only if the original
system (8.9) is stable and the observer gain L is so chosen that A — LC' is
stable. For this reason, we assume in the following study that for any A(t)
(8.9) is stable.

Note that, due to (8.12), (8.15) and (8.16) can be further written into
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é:(A—LC)6+(E—LF)(,D—i—(Ed—LFd)d—I—(Ef—LFf)f
r(p) = R(p) (Ce+ Fo + Fyd + Fy f)

p=A [G H J] :Z
d
Let
d= [‘Cﬂ E;=[E E4],F;=[F Fy]
we have
¢=(A—-LC)e+ (E;— LF;)d+ (Ey — LFy) f (8.17)
r(p) = R(p) (Ce+ Fyd + Fy f) (8.18)

i.e. the dynamics of the residual generator is now represented by (8.17)-(8.18).
In this way, the influence of the model uncertainty of the norm bounded type
is modelled as a part of the unknown input vector d. Thanks to its standard
form, optimal design of (8.17)-(8.18) can be realized using the approaches
presented in Chapter 7.

Remark 8.1 Note that ¢ is a function of d and f, which can be expressed by

o =AG (wq+ap)+ A[H J] m

with - - - - -
Tq = Axg+ Bu+Edd,fo = Axf + B’LL+Eff.

In the fault-free case,

~ Zd
d:[g],<p:A[GHJ] u
d

Thus, the unified solution can be achieved based on (8.17)-(8.18), even if d
depends on f.

This way of handling system uncertainties can also be extended to dealing
with other types of model uncertainties.

It is worth pointing out that modelling the model uncertainty as unknown
input vector may lead to a conservative design of the residual generator, since
valuable information about the structure of the model uncertainty has not
been taken into account.
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8.3 Reference model strategies

8.3.1 Basic idea

Among the existing FDI schemes for uncertain systems, the so-called reference
model based scheme has received considerable attention. The basic idea behind
this scheme is the application of a reference model. In this way, similar to the
solution of the Ho, OFIP, the original FDI problem can be transformed into
a standard design problem

[7res =7l

. 2 .
min sup —————=——= with respect to (8.9)-(8.11 8.19
Tt SO e 1 p (8.9)-(8.11) (8.19)
d
Tl

with 7.5 denoting the reference model. (8.19) is an MMP and there exist a
number of methods to approach (8.19). The major difference between those
methods lies in the definition of the reference model.

The earliest and most studied strategy is to handle the FDI problems in
the form of the H,, OFIP. That means the reference model r;..s is defined as

Tref(p) = f(p) or Tref(p) = W(p) f(p) (8.20)

with a given weighting matrix W(p) € RHeo. This method has been first
introduced in solving the integrated design of controller and FD unit and
lately for the FD purpose, where optimization problem (8.19) is solved in the
Hoo/p framework.

As mentioned in Section 7.6 in dealing with the solution of H., OFIP,
the performance of the FDI systems designed based on reference model (8.20)
strongly depends on the system structure regarding to the faults and on the
selection of the weighting matrix W (p). Next, we shall present an approach
proposed by Zhong et al., which provides us with a more reasonable solution
for the FDF design.

8.3.2 A reference model based solution for systems with norm
bounded uncertainties

The proposed approach consists of a two-step procedure for the design of FDI
system:

e Find the unified solution for system (8.9)-(8.11) with A(¢) = 0. Let
Lopt, Vopt be computed according to (7.293) and

Tref(p) = Gr,o; £ (p)f(P) + Gr,.;a(p)d(p) (8.21)
Gryop £ (D) = Vopt (C(pI = A+ LopeC) ™' (Ef — Lope Fy) + Fy)
Grrﬁfd(p) = Vopt (C(pI —A + Loptc’)_1 (Ed - Lopth) + Fd)
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e Solve optimization problem

”TTef - T”z

min su 8.22
pip sup T (8.22)
d
F 1

by means of a standard LMI optimization method.

Comparing reference models (8.20) and (8.21) makes it clear that includ-
ing the influence of d in the reference model is the distinguishing difference
between (8.21) on the one side and (8.20) on the other side. At the first glance,
it seems contradictory that d is integrated into the reference model though re-
ducing the influence of d is desired. On the other hand, we have learnt from the
unified solution that the optimum is achieved by a suitable trade-off between
the influences of the faults and disturbances. Simply reducing the influence of
the disturbances does not automatically lead to an optimal trade-off.

Now, we describe the second step of the approach, i.e. the solution of
(8.22), in the extended detail.

Let x.f be the state vector of the reference model, i.e.

i'ref = Arefx'ref + Ef,Teff + Ed,Tefd7 Tref = CTef:L'ref + Ff,reff + Fd,refd
(8.23)
Aref =A- Loptca Ef,ref = Ef - Loptha Ed,ref = Ed - Lopth
Cref = VoptC, Frrep = Vopt By, Firep = Vopi Fa.

Recalling that the dynamics of residual generator (8.14) with R(s) =V (i.e.
an FDF) can be written as

)= laattae alie] ()4 | ap Dran)

E, E;

o, Pon] o+ g P | 521
r—V([AC C] [Z]+ADu+Fdd+Fff) (8.25)

it turns out
io = (Ao + AAy) xo+ (E, s+ AE, 3)d (8.26)
Tref =1 = (Co + ACo) o + (F, g+ AF, 7) d (8.27)

with
Tref _ (7 Aref 0 0

T, = x ,d=|d|,A, = 0 A 0 ,CO:[C’Tef 0 —VC’]

e f 0 0A—LC
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[ 0 Ed,ref Ef,ref

E,;j=|B Eq Ef | ,F,i=[0 Fivey —VFy Fprep— VFy]
| 0 E,— LF, Ef — LF;
[0 0 0 0

Ad,= |0 A4 o|l=| E |A®][0 @ 0]
|0 AA—LACO E-LF

AC, = [0 -VAC 0] = -VFA(t) [0 G 0]
[ 0 0 0 0

AE, ;= AB AE 0| = E |A@)[H J 0]

| AB — LAD AE — LAF 0 E—-LF

AF, ;= [-VAD —VAF 0] = —VFA®) [H J 0].

The following theorem builds the basis for the solution of (8.22).

Theorem 8.1 Given system (8.26)-(8.27) and suppose that
2,(0) = 0 and AT (t)A(t) < 1.

Then

oo

/ Tref — rref —r)dt < ,72/de(# (8.28)
0 0
if there exist some € >0 and P > 0 so that
ATP 4 PA, +<G'G PE,;+:G'H CT PE
ET.-P+eH"G  —*I+e¢H"H FF; 0

c, E, T _vrl < 0 (8.29)
ETP 0 —FTVT —el
where
G=[0G o], H=[H J0],E"=[0 E" (E-LF)"].
Proof. Let
V(z) = 2l Px,, P > 0.
It holds

(rTef—r)T(rmf—r)— 2dTd + V( )< 0=

/ Tref — r,«ef—r )dt — 72/ dt—i—/V(t)dt
0 0

0
/T,ef—T (Tref —7)dt — 72 /JTddt+V(oo)<0
0

0
9]

:>/ Tref — rmffr)dtf’yz/c?czdt<0.
0 0
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Since
(g —1)" (g — 1) —2dYd+ V(t) =

(C, + AC,)T 00 T,
[Co+ AC, F, ;+ AF, ;] — 021 7

Tar
(25 d"] ( (F, i+ AF, )"
T 0] (Ao + AA)" P+ P (4, + AA,) P (B, i+ AB, )
? (B,qs+AE,;) P 0
it turns out

(C,+AC,)T
(Fo,J + AFO@)T
(Ao + AA)" P+ P (A, + AA,) P (E, g+ AB,q) | _
(E, i+ AE, ;)" P 0

[CO + AC, F07J+AFO7J] — |:

:>/(Tref—T)T(rref—r)dt—'yQ/dTJdt<0.
0

Applying the Schur complement we can rewrite (8.30) into

(Ao + AA)T P+ P (A, + AA,) P (E, 4+ AE, ) (Co+ AC,)"
(E,q+AE, )" P 2] (F,q+AF, ;)" | <0
C,+ AC, FO’J—FAFO,J -1
(8.31)
AATP + PAA, PAE, ; ACT
AET P 0 AFT;
AC, AF,; 0

ATP+ PA, PE, ; CT
T 27 T

E, P = F
C, F,i -1

Split the second matrix in the above inequality into

— + < 0.

AATP + PAA, PAE, ; ACT
AET.P 0 AFT,
AC, AF,; 0

=| o [A®)[0GOHJOO]

Ey
Es
Es

+ 0 |A()[0GOHJOO0]| , = PE.
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Then, according to Lemma 8.1, we know that (8.31) holds if there exists a
€ > 0 so that

[ By | [ B ] g
Ey Ey
ATP+ PA, PE,; CT Fs B
ETP L F[ | +1/e| 0 0
o F,q —1 0 0
0 0
| —VF ]| | -VF]
+e[0GOHJ00]" [0GOH JOO] <0.
Finally, applying the Schur complement again yields
ATP+PA,+e¢G"G PE, ;+<G™H CI PE
ET.-P+e¢H'G —?I+eH"H FI; 0
o, o, < 0.
Co F,q -1 -VF
ETP 0 —FTvT —eI
The theorem is thus proven. a

Remark 8.2 The assumptions
7,(0) = 0 and AT (H)A(t) < T

do not lead to the loss of the generality of Theorem 8.1. If ©,(0) # 0, it can
be considered as an additional unknown input. In case that AT (t)A(t) < dal,
oa # 1, we define
A(t) = A(t)/v/da
[0GOHJO0]=[0G0HJO]+/a.

As a result, Theorem 8.1 holds.
Remark 8.3 If

oo

/(rref —r)T (Tres —r)dtgvz/circfdt
0 0

instead of (8.28) is required, condition (8.29) can be released and replaced by
ATP + PA, + 5CI’TG PE, ;+ sGTﬁ ct  PE
ET;P+eH"G  —*I+eH"H F]; 0 | _ 0
C, F,; I -VF|=
ETP 0 —~FTyT ¢l
ATP 4+ PA,+eGTG <.
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Based on Theorem 8.1, the optimization problem (8.22) can be reformu-
lated as

miny subject to (8.32)

AP+ PA,+cG"G PE,;+<G"H CI PE
EIsP+eH'G  —?1+eH"H F); 0

c, F,; I —VF

ETP 0 —FTVT ¢l

<0  (8.33)

for some P > 0,e > 0. For our purpose of solving (8.32), let
Py P2 0
P=|Py Py 0 |,L=P3Y.
0 0 Ps3

Then (8.33) becomes an LMI regarding to P > 0, V)Y and ¢ > 0, as described

NT =N =[Nyjl,., <0

where
Nt — Aver 0 "1py Py n Py Pio| [Aper O n 0 O
=1 0 Al | Py Py Py Py 0 A 0eGTG
P11 P, 0 0
N3 =0,Ni3 = {PZ PZ] [B} + |:€GT:| H
Py Pia| | Egrey 0 Py Pia | | Efrey
Ny = ’ T, Ny5 = :
=[] [P o oo = 2 2 7%

T
o= %] e = [ 2] 2]
Noy = AT Py3 + Py3sA — CTYT — YO, Ny3 =0, Ngy = P3sE; — YF
Nos = P33Ef — YFf, Nog = —CTVT Noy = Py3E —YF
Ni3 = —?T +eHTH,Ngy = eHTJ,Ng5s =0, N3g = 0, N37 = 0
Ny = 7T +eJ"J, Nus =0,Nyg = Fj ,o; — Fj V', Nyz = 0, N5 = —*1
Nsg = Ff,o; — Ff VT N5z = 0,Ngs = —1, Ng = =V F, Nyg = —¢l.

As a result, we have an LMI solution that is summarized in the following
algorithm.

Algorithm 8.1 LMI solution of optimization problem (8.32)

Step 0: Form matriz N = [Ny, .
Step 1: Given v > 0, find P > 0,Y,V and ¢ > 0 so that

N <0.
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Step 2: Decrease vy and repeat Step 1 until the tolerant value is reached
Step 3: L = Py33'Y.

Since for A(t) = 0 the influence of u(t) on r(t) is nearly zero, neither in
reference model (8.20) nor in (8.21) u(t) is included. However, we see that the
system input u(t) does affect the dynamics of the residual generator. It is thus
reasonable to include u(t) as a disturbance into the FDI system design. On
the other side, it should be kept in mind that u(¢), different from d(t), is on-
line available. In order to improve the FDI system performance, knowledge of
u(t) should be integrated into FDI system design and operation. This can be
done, for instance, in form of an adaptive threshold or the so-called threshold
selector, as will be shown in the Chapter 9.

Remark 8.4 The above-presented results have been derived for continuous
time systems. Analogous results for discrete time systems can be achieved in
a similar way. For this purpose, inequality (8.2) in Lemma 8.1 is helpful. Tt
would be a good exercise for the interested reader.

Example 8.1 In this example, we design an FDF for the benchmark system
LIP100 by taking into account the model uncertainty. In Subsection 3.7.2, the
model uncertainty is well described, which is mainly caused by the linearization
error. For our design purpose, the unified solution is used for the construction
of the reference model and Algorithm 8.1 is applied to compute the observer
gain L and post-filter V. Remember that the open loop of the inverted pendulum
system is not asymptotically stable. Thus, different from our previous study
on this benchmark, the closed loop model of LIP100 builds the basis for our
design. For the sake of simplicity, we assume that a state feedback controller
is used, which places the closed loop poles at —3.1,—3.2,—3.3, —3.4. We are
in a position to design the FDF.

e Design of the reference model: The reference model is so designed that it
s robust against unknown input and measurement noises. It results in

1.1338 —0.1718 —0.3728

[ _|-01718 0.0260 0.0565 | |, _ (1)(1)8
°Pt = | —6.5071 0.0565 0.1226 |’ °Pt — 001

84.1928 0.0167 0.0362
e Determination of L,V wia Algorithm 8.1: We get

0.0040 0.0076 —0.0040
0.0378 0.1211 —0.0559
0.1179 —0.2152 1.5578
0.4436 1.3666 —0.6366

0.6741 —0.2586 0.4970
V =1-0.2586 1.1533 —0.4906
0.4970 —0.4906 0.7928

L=1.0x10*

with v = 2.8216.



8.4 Residual generation for systems with polytopic uncertainties 259

8.4 Residual generation for systems with polytopic
uncertainties

In this section, we address residual generation for systems with polytopic
uncertainties. As described in Chapter 3, those systems are modelled by

&= Az + Bu+ Eqd,y = Cx + Du+ Fyd (8.34)
A=A+ AAB=B+AB,C =C+ AC
D:D+AD,Ed:Ed+AE,Fd:Fd+AF
with
! !
AA AB AE A B E; B o
{ACADAF} :lz_:lﬂi [c D; F} ’lz_:lﬂi_l’ﬁizo’z_l"” !

(8.35)
Two approaches will be presented. The first one is based on the reference
model scheme, while the second one is an extension of the LMI based H_to
Hso design scheme.

8.4.1 The reference model scheme based scheme

For our purpose, we apply again reference model (8.23) and formulate the
residual generator design as finding L,V such that v > 0 is minimized, where
v is given in the context of

/ Fref — 1) (Frep — 1) dt < 7 / d* ddt (8.36)
0 0

and r..r — 7 is governed by

b= (Ao + Ady) o+ (E, g+ AE, 3)d
Tref_r:(00+ACO)m0 ( 0»d+A )(i

with ,,d, Ao, E, 7,Co, F, ; defined in (8.26)-(8.27) and

0 0 0 l
AA, =D BiAiL A= |0 A 0|,AC, =) B,CiC [0 VC; 0]
li=1 0A4,—LC;0 li=1
l B 0 0 0
AE{),J = Z /BiEiaEL = B'L E'L 0
li=1 B; —LD; E; — LF; 0
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It follows from Lemma 8.2 that for given v > 0 (8.36) holds if and only if
there exists P > 0 so that Vi =1,--- [

(A4 +A)" P+ P (A +A4) P(E,;+E) (Co+Ci)"

(E,q+ EQ)TP I (Fa+ Fi)T <0. (8.37)
C,+C; F,;+F; I
Setting
Py P2 0
P=|Pu Py 0 |>0L=Pg'Y (8.38)
0 0 Psg
yields
(8.37) <= N; = N]' = [Nj],, ., <0,i=1,--- 1 (8.39)
with
N — Ay 0 [Py Py Py Pa| [Aey O
1 0 A+A;| |Pa P Py Py 0 A+ A
— 0 _ | Pi1 Pi2 0
Nig = [Afpgg — OfYT] N1z = {Pgl PQJ {B+Bl}
P11 Pio| | Eapres Py Pia | | Efrer
Nyy = ref | Nys = ,
14 {Pm Pzz] | Ea+ E; o Py Py Ey
N { Cres } Nog = AT P33 — CTYT + PjgA—-YC
16=| _orir | N2 = 33 33

Noz = P33B; — Y D;, Noy = P33 (Eq + E;) =Y (Fq + )

Nog = Py3Ep — YFy, Nog = —CTVT N33 = —yI, N3y = 0, N35 = 0
Nyg = —DIVT Nyy = —yI,Ny5 = 0,Ngg = F}op — (Fa+ E)" VT
Nss = —7I, Nsg = F} ,o; — Ff VT, Neg = —I.

Based on this result, the optimal design of residual generators for systems
with polytopic uncertainties can be achieved using the following algorithm.

Algorithm 8.2 LMI solution of (8.36)

Step 0: Form matriz N; = [Ngjl, 0 i=1,---,1
Step 1: Given v > 0, find P > 0 satisfying (8.38),Y,V so that

N; <0.

Step 2: Decrease v and repeat Step 1 until the tolerant value is reached.
Step 3: Set L according to (8.38).
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Example 8.2 In our previous examples concerning the benchmark system
EHSA, we have learned that the linearization model works only in a neigh-
borhood around the linearization point. In Subsection 3.7.5, the linearization
errors are modelled into the polytopic type uncertainty. In this example, we
design an FDF for the benchmark system EHSA under consideration of the
polytopic type uncertainty. The design procedure consists of

e Design of a reference model: For this purpose, the unified solution is applied
to the linearization model with

0 060

—0.14300
Bi-| 0 oo]n-[009].

0 00

0 00

The resulted observer gain and post-filter (of the reference model) are

—8.69 x 10722 —1.03 x 10~%°
—0.067976  2.06 x 10712

Lopt == | 1.538 x 1072° 8.078 x 10728 | |V, = I.
6.6889 x 10* —2.03 x 10~6
—2.03x107% 2.02 x 1071

e Determination of L,V wvia Algorithm 8.2: We get

0.1111  0.0004
—0.5250 0.9723
209.96 —0.5119

Vo [1.0349 0.0019} R
516.69 0.0007

0.0019 0.3689

0.0005 541.3
6.04 x 10°  1.734
72.201 —0.105

L= 105.46 —0.0008 | ,~ = 1000.

3.96 x 10! 5.65 x 10°
0.2949 199.96

In our simulation study, we first compare the residual signals generated
respectively by FDF with and without considering the polytopic uncertainty.
Fig.8.2 verifies a significant performance improvement, as the residual gener-
ator is designed by taking into account the polytopic uncertainty. To demon-
strate the application of the FDF designed above, an actuator fault, which
results in a piston runaway, is generated at t = 3 s. Fig.8.3 shows a success-
ful fault detection.

Using the analog version of Lemma 8.2 for discrete time systems, it is easy
to find an LMI solution of a reference model based design of the discrete time
residual generator given by
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Fig. 8.2 Residual signal regarding to z,, generated by FDF with and without con-
sidering polytopic uncertainty
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Fig. 8.3 Response of residual signal regrading to z, to an actuator fault

#(k+1) = Az(k) + Bu(k) + L (y(k) — g5(k)) (8.40)

§(k) = C(k) + Du(k),r(k) =V (y(k) — §(k)) - (8.41)

To this end, the unified solution described in Theorem 7.18 will be used as

reference model and the design problem is formulated as finding L,V such
that v > 0 is minimized, where v is given by

oo

D (rreg(k) = (k)" (rres(k) = (k) <+* D d" (k)d(k). (8.42)
k=0

k=0

Without derivation, we present below the LMI solution of this optimization
problem:



8.4 Residual generation for systems with polytopic uncertainties 263

i bject t 8.43
IR 7 subject to (8:49)

N; =N} = [Njilgug <0,i=1,--- 1

K3

. P11 Pio _ | PiiPia| |4y O
Nu=- [le Pzz] » N1z =0, N1z = {Pm P22:| [ 0 A+ A;

P, P 0 Py P Eyve
M=o = [REe] [0 ] = [Hr ] [ Bt

Py Py | | B+ B; Py, Pos | | B4+ E;
[Piy P [Efyre
Niz = _P; PZ] [ {Eff] s Nig = 0, Naz = — P33, Nog = [0 P33 A; — YO

Noy = P33A—YC,Nos = P33 B; — Y D;, Nog = Ps3 (Eq+ E;) =Y (Fq+ F)

Na7 = Py3Ey — Y Fy, Nog = 0, N33 = Ny1, N34 = 0, N35 = N3g = N37 =0
ot
N3g = CTvT:| Ny = Nog, Nys = Nag = Nay = 0, Nyg = —CTV7T

Ns5 = —7I, Nsg = N57 = 0, Nsg = =D V"', Ngs = Ns5, No7 = 0

Nes = Fi oy — (Fa+ F)" VT, Nyz = Nog, Nos = Ff,..; — Ff VT Ngg = =1
8.4.2 H to H design formulation

Denote the dynamics of residual generator (8.24)-(8.25) by

iy = Az, + By u+Erdd+Erff,r:er+D u+Frdd+Frff

A
A = |:OA LC:| ZB |: —LC O:l = TO+ZﬂArz

li=1 li=1
l
B'r‘: |: :l Zﬂ I:B LD :| = BT,O—’_Zﬁi‘BT,’L‘
li=1 li=1
l
c.=[0ve] + Zﬂi [VCi0] :=Cro+ Y BiCri
li=1 li=1

l

l l l
=Y BVD;:=Y BDri Fra=VF,+ Y BVFi:=Fo+ Y BF.
li=1

li=1 li=1 li=1

l l
E’r,d |:Ed_LFd:| Z:B |:E LF:| :E1,0+ZﬂzE777,

li=1

E;
En;= [Ef_LF} — VFy.
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Along with the idea of the H  to Ho, design of residual generators presented
in Subsection 7.9.4, we formulate the residual generator design as finding L, V'
such that

|Co(pI = A)) ™ [ By Era] + [ Dr Frall, <7 (8.44)
IC-(pI — AT)_IE,«,f + F, ¢||- — max. (8.45)

It follows from Lemmas 8.2-8.3 that (8.44)-(8.45) can be equivalently written
into

bject t 8.46
L,V,Prg(?:}é:QT v, subject to ( )
N P (Byo+ Byi) P(Ero+ Eri) (Cro+ Cra)"
(Bro+Bri)' P =9I 0 Dl
0 Fri) T <0
(Eno + Em') P 0 —~1 Fr,d
CT,O + Cr,i DT Fr,d _’YI
(8.47)
N = (AT,O +A7‘,i)TP+P(AT,O +A7‘,i) 7i = 17 T 7l
(Aro+Ari)" Q+Q (Ao + Ari) QEr g (Crg + Cri)”
E,Q T S o >0i=1,-- L
Cr,O + CTJ; Fr,f 7’71I
(8.48)
Now, let
_|P O o |@Q1 0
p=[1 0] sn0-=[2 2]
Then, (8.46)-(8.48) become
max v, subject to (8.49)
L,V,P1>0,P,>0,Q:=QT,Q2=QT
Ni NT P (B+B;) P (Eq+E) CIvT
N21 N22 P2 (B2 — LDZ) N24 CTVT
(B+ B)" P, (B;— LD;)" P —~T 0 prv”
(Bt E)" P N3y 0 I (Fa+F)'VT
<0i=1,--,1 (8.50)

Nii=(A+A)" Pi+ P (A+ A;),Noy = Py (A; — LCY)
Nogy = Py (A— LC) + (A — LC)" Py, Noy = Py (Eq + E; — LFy — LF})

My, ME Q1Ey crvrt
My Moy Q2 (Ef — LFy) CTVT o

QEY Qu(By—LF)"  —y1  FpyT| 7O hel 85
VCi Ve VFf —’le

My = (A+A4)T Q1+ Qi (A+ A), My = Qs (A; — LC))
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May = Qa2 (A — LC) + (A — LC)" Qs.

As mentioned in our study on the H to H. design, (8.49)-(8.51) are an
optimization problem with NMI constraints due to the terms P> L, Q2 L, which
can be approached by advanced nonlinear optimization technique. A (very)
conservative solution could be achieved by setting

Q2=P, L="P;'Y.

In this case, (8.50)-(8.51) becomes LMIs regarding to P; > 0, P, > 0,Q1,Y, V.

8.5 Residual generation for stochastically uncertain
systems

In this section, we deal with residual generation for stochastically uncertain
systems, which, as introduced in Chapter 3, are described by

z(k+1) = Az(k) + Bu(k) + E4d(k) + E; f (k) (8.52)
y(k) = Cx(k) + Du(k) + Fad(k) + Fy f (k) (8.53)

where

A=A+ AAB=B+ AB,C=C+ AC
D=D+AD,E;=E;+ AE, Fy = F; + AF

AA, AB, AC, AD, AE and AF represent model uncertainties satisfying

!
AA AB AE A; B; E;
[AC AD AF} = Z; <[c D F} pi(k)) (8:54)
with known matrices A;, B;,C;, D;, E;, F;,i = 1,---1, of appropriate dimen-
sions. pT(k) = [p1(k) --- pi(k)] represents model uncertainties and is ex-

pressed as a stochastic process with

p(k) = E(p(k)) = 0,E (p(k)p" (k)) = diag(o1,--- ,01)

where 0;,i =1, -1, are known. It is further assumed that p(0),p(1),--- , are
independent and x(0),u(k),d(k), f(k) are independent of p(k).
For the purpose of residual generation, the standard residual generator
Z(k+1) = Az(k) + Bu(k) + L (y(k) — g(k)) (8.55)
(k) = Ci(k) + Du(k),r(k) =V (y(k) — §(k)) (8.56)

is considered in the following study.
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8.5.1 System dynamics and statistical properties

For our purpose, the dynamics and the statistical properties of residual gen-
erator (8.55)-(8.56) will first be studied. Introducing the following notations,

= (k) = [x(k;c— @(k)} Ano = {gl A —OLC] A = {Ai jliwi 8]

l B B;
A, = Aho + ZAr,ipi(k)aBﬂO = |:0:| ’Br’i = |:B lLD:|
i=1 ' '
l
Br = Br,O + ZBr,ipi(k)aCT,O = [0 VC] ’Cr’i = [V07 0]

i=1

l l
E
CT = Gr,() + Z Cl,lpz(k)v D'r,i = VDu D'r = Z D'I',ipi(k;)a ET',O = |:Ed dLFd:|

=1 =1

l
E; = [ B F}] By =Ero+ ) Enipi(k), Fro=VFy

=1
l E
Fr,i =VF,F. = Fr,O + ;FT',ipi(k)vET‘J = |:Ef —fLFf:| 7F‘“f = VFf
we have
2ok +1) = Avary (k) + Byu(k) + E,d(k) + En s f(k) (8.57)
T(k) = Crmr(k) + DTu(k) + Frd(k) + Fr,ff(k)' (858)

Note that the overall system (the plant + the residual generator) is mean
square stable if and only if the plant is mean square stable, since the observer
gain L has no influence on system (8.52). In the following of this section, the
mean square stability of the plant is assumed.

Remember that p(k) is independent of d(k), u(k), z(k), e(k) and p(k) = 0.
Thus, the mean of r(k) can be expressed by

Zr(k+1) = A 0% (k) + Brou(k) + Erod(k) + E, s f (k)
7(k) = Cror(k) + Frod(k) + Fy 1 f (k)

which is equivalent to
ek+1)=(A—-LC)e(k)+ (Eq— LFy)d(k)+ (Ef — LFy) f(k) (8.59)
7(k) =V (Ce(k) + Fyd(k) + Frf(k)) . (8.60)
8.5.2 Basic idea and problem formulation

Note that the mean of the residual signal given by (8.59)-(8.60) is exactly
presented in a form, to which the unified solution can be used. Bearing in mind



8.5 Residual generation for stochastically uncertain systems 267

the stochastic property of the model uncertainty, we introduce the following
performance index

J = E(r(k) = rres (k)" (r(k) = rres (k) (8.61)

which will be minimized by selecting L and V. In (8.61), r..s(k) stands for
the reference model given by

Tref(k+1) = ArefZref(k) + Efref f(k) + Egrerd(k)
Tref(k) = Cref@res(k) + Fyref f(K) + Farepd(k)
Avef = A= LoptC, Efrey = By — Lopt Fy, Eqref = Ea — LoptFa
Cret = VoptC, Frrer = VoptFs Farer = VoptFa.
with Loy, Vope chosen using the unified solution described in Theorem 7.18.
It is evident that J is a standard evaluation of the difference between the

residual signal r and the reference model r;..¢ in the statistic context.
Since

E(r(k) = rref (k)" (r(k) = rres (K))
E(r(k) = 7(k)" (r(k) = 7(k)) + (7F(k) = rref (k)" (7(k) = ey (K))

we formulate the design problem as finding L,V such that for some given
v>0

(7(k) — rres (k)T (F(k) — 7rep(k)) — min (8.62)
subject to o2(k) = E(r(k) — 7#(k))T (r(k) — 7(k)) is bounded.

Next, we shall derive an LMI solution for (8.62).

8.5.3 An LMI solution

For our purpose of solving (8.62), we are first going to find LMI conditions
for

k—1
(P(k) = rrep (k)" (F(k) = rres (k) < a1 ) (d"()d() + £1(5)F (7)) (8.63)
+ag (A" (k)d(k) + fT (k) f (k)
or(k) <1 ) (@7 (GG) + TG +u" (Glu())  (8.64)

+93 (AT (k)d(k) + T (k) (k) + u” (k)u(k))

for some a; > 0,5 > 0,7; > 0,75 > 0. We start with problem (8.63).
Introducing notions
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-5, - 89 - [ )

Eq—LF; Ef — LFy
C — VC - re ’E 7 =
¢ [ f] &d |: Ed,ref Ef,ref
Fg,g = [VFd —Fgrey VFp— Ffﬂnef]
yields
E(k+1) = Ac(k) + E¢ gd(k) (8.65)
(k) = rreg(k) = Cel(k) + Fe gd(k). (8.66)

The following theorem provides an LMI condition for (8.63).

Theorem 8.2 Given system (8.65)-(8.66), the constants a; > 0,2 > 0 and
suppose that £(0) = 0, then Vk

k—

(7(k) = e (k)T (7(k) = rres (k) < a3 3 (d" (5)d(5) + 7 () £(5)

=

=0
+aj (dF (k)d(k) + f7 (k) f (k)
if the following three LMI’s hold for some P >0

P PA¢ PE.
Ang P 0 |>0 (8.67)
ET,p 0 I
P CT
[Cg aff] >0 (8.68)
I FT.
{ Fos a%}i] > 0. (8.69)

Proof. Let
V() =€ (G)PEG), P> 0,5 =1,
It is evident that

VG +1) = V() < d"(5)d() (8.70)
ensures -
7 (k) PE(k) < ZdT(j)J(j)- (8.71)
(8.70) is equivalent with
[%d] P[Ac B g - [g’ﬂ <0, (8.72)

If (8.71) holds, then
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k—1

CECe < alP = T (K)CECet(k) < i Y dT(5)d(j)- (8.73)
7=0

Applying the Schur complement yields

P! A Ee g P PA¢ PE.

Ajg P 0 >0 — Ang P 0 >0

ET, 0 1 ET.P 0 1

T 5 P Cf
Ce Ce <P [Cgo@I > 0.
Since
(F(R) = ey (k)T (F(k) = 1o (k) < €7 (R)CT Ce€(k) + dF () FL 3 (k)
FT. - -

FT\Feq < o3l = [F&d 51| = 0= EWFLFad) < o3 (0

the theorem is proven. 0O

The solution of (8.64) is somewhat involved. We start with some prelimi-
nary work.
Define
V(k) = E (z (k) Pz, (k)) (8.74)

for some P > 0. We know from the basic statistics that
V(k) = E [e] (k)Pes, (k)] + E (2] (k)PZ,(k)) , ez, (k) = z,(k) — Z,(k)
and moreover

E [efr (k)Pewr(k)] = trace (PEM(k:)) yEr (k) =E [ewr (k:)eT (k)] .

Ty

Hence
z()]" [z
V(k+ 1) = trace (MaEs, (k) + 383 M 3&’8 (8.75)
f(k) f(k)
where
l
E,, (k) =E (ex, (k)el (k) ,Ma = AT PA, o+ 07 Al PA,
=1
AZO ! A?z
M= | B0 P A B B B+ 302 | B | P4 B B 0]
E'rO T, T, T, T, f - i Erﬂ' rg Pri Lrg .
ET = 0

(8.76)
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Suppose ~
POOO
< |0 d0el- (8.77)
0001
Note that (8.77) also implies -
My < P
then we have
V(k+1) <E[el (k)Pe,, (k)] +zL (k) Pz, (k)
+dT (k)d(k) + u” (k)u(k) + fT (k) f(k) (8.78)
(k) + d" (k)d(k) + u” (k)u(k) + T (k) f (k)
which leads to
k—1
V(k) <) [d"()d() +u" (Gul) + TG G)] = (8.79)
§=0
k—1
trace (PE,, (k) +z; (k)PZ,(k) < Y [d"(j)d(5) +u" (j)u() + [T () ()]
§=0

We now consider o2(k) and write it into

u(k)]" [u(k)
o2(k) = trace (Mo E,, (k) + ZL (k) Moz, (k) + | d(k) | Mz | d(k)

f(k) f(k)
Mc =CE,Cr o+ Zol CrCri My = Zafcﬂcm < M¢ (8.80)
=1
! DT,
My = FI | [Dys Fri 0] (8.81)
=1 0

As a result, if

trace (Mo E,, (k) + z} (k) Mz, (k) < 73 (trace (PE,, (k)) + z] (k) Pz (k))2

then it holds
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It is evident that (8.82) holds, when
Mo < ~3P. (8.84)
In summary, we have proven the following theorem.

Theorem 8.3 Given system (8.57)-(8.58) and constants v, > 0,75 > 0.
Then (8.64) holds if there exists P > 0 so that

P00O
07100
Mi<|g070 (8.85)
0001
Mg <3P (8.86)
Mz <73 (8.87)

where My, Mc, M3 are respectively defined in (8.76),(8.80), (8.81).

Remark 8.5 It follows from Lemma 8.4 that the LMI (8.77) ensures the
stability of the overall system.

Starting from Theorems 8.2 and 8.3, we are now in a position to describe
optimization problem (8.62) more precisely. The design objective is to solve
the optimization problem

rl{n‘g (wiad +woa3) (8.88)

subject to (8.67)-(8.69) and (8.85)-(8.87) for given constants vy; > 0,75 > 0.
In this formulation, wy,wy are two weighting factors whose values depend on
the bounds of the L5 norm and L, of u,d, f.

Let P matrix given in (8.67)-(8.69) be

[P o
r=[fp] 0

and set P matrix given in (8.85)-(8.87) equal to

_ [Py 0
P_{O Pl] > 0. (8.89)

Moreover, define
L=P'Y.

As a result, (8.67)-(8.69) can be respectively rewritten into
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P 0 PA-YC 0 PE;—YF;PE;—YF;]
0 Py 0 P2Aref P2Ed,7‘ef P2Ef,ref
(PLA-YC)" 0 Py 0 0 0
0 AT, P 0 Py 0 0
(PEq—YF)" EI P, 0 0 I 0
(PEf—YF)" ET ;P 0 0 0 I |
(8.90)
>0

P 0 CctvTt
0 P —CLy|>0
vC _C'ref a%[

(8.91)

(8.92)

I 0 FIVv" - F,,
0 I FIVT—FI .| >o0.
VFd - Fd,ref VFf - Ff,ref OL%I
As to (8.85)-(8.87), a reformulation is needed. To this end, rewrite M7, Mc¢
and M3 into
PO -0 No
0 O'% cee 0 N1
My = [NJ NT o NP e
0 - 0P| |N

No=[AroBro E,gEry] ,Ni=[AiBri B, ;0] ,i=1,--

I 0 --- 0 CT,O
T ~T T 0oil - 0 Cra
MC = I:Cr,O Cnl C’l‘,l] . . : :
0--- 0 O-ZQI C’r‘,l
O'%I o 0 j“r71
o --- Ul2] Tr,l
Tr,i = [DT_’,L‘ Frﬂ; 0] =1, ’l.

Then applying the Schur complement yields

_P ]\foT N NF
No —P7' 0 - 0
— -1
885) = | N1 0 —(otP) - 0 <0

N, 0 o0 —(02P)"

)1
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—P NP NIP ... NIP _
PNy °p 0 0 P000
PNy, 0 —o72P--- 0 5_ | 0100
= .1 . .1 . . <0,P= 0070 (8.93)
B : " " o 0001
PN, 0 o0 —07%P
*’Y1PC 021 G,-T,Ol
Cr.0 fI 0 - 0
(886) = | Cra 0 —07?I-- 0 | <y (8.94)
Cry 0 - 0 —0,%I
-3l T - T
Try —oy?-+ 0
(8.87) = | . . , <0. (8.95)
T, - 0 —0;?I
Note that
P3A PsB  P3Ey PyE;
0 PlA YC 0 PE;—YF;PEf—YF;
. _ | P P B; PE; 0
‘ 0 P1A YC; PB; —YD; PLE; —YF; 0
=[0VC],Cri=[VCi0],i=1,---,1

771': [VDZ VFZ‘O] ,’L:l,--- ,l.

Thus, (8.90)-(8.95) are LMIs regarding to Py, Py, P5,Y, V. It allows us to use
the following algorithm to solve (8.88).

Algorithm 8.3 LMI aided FDI design for stochastically uncertain systems

Step 0: Set a1, ag,71,74 and wi, ws
Step 1: Find Py > 0,P, > 0,P3 > 0,Y,V so that (8.90)-(8.95) are satisfied
Step 2: Decrease

(wla% + wgag)

and repeat Step 1 until the tolerant value is reached
Step 3: set L = P;'Y.

Remark 8.6 The solution may become conservative due to definition (8.89).
Using an iterative algorithm, this problem can be solved.

Example 8.3 In this ezample, we continue our study on the benchmark vehi-
cle dynamic system (see Subsection 8.7.4). Our purpose is to design an FDF
via Algorithm 8.3, which takes into account the stochastic change in C.,,. To
this end, the discrete time system model (3.77) with a slight modification
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v = 9360 + AC, v, ACqy € [—5000, 5000]
is adopted. AA, AB are respectively

—0.0388 0.0024

104
A =107 x [ 0.1208 —0.0201

] AB =10~ x [0.0108}

0.3952

We assume that only yaw rate measurement is available for the fault detection
purpose. Our design procedure is as follows:

o Design of the reference model:

0.2000

Lopt = |:14495:| ,Vopt = 5.7014.

e Under the setting w1 = wy = 1, we get

0.6697 0.0419 —0.1390 0.0483

P — 1.3667 0.0550 v — —2.1358 I —0.0796
37 10.0550 0.0237 ~ | —0.0312 ~ | 0.5288

a; =50,y = 7.1125 x 107 7.

R T

8.5.4 An alternative approach

In the above presented approach, the optimization objective is described by
(8.62). Alternatively, we can also define

k k
D FG) = rres GNT ) =rres (5)) < @® Y (d7(G)G) + £ (5)f(5)) (8.96)
j=0 7=0
subject to
k k
> a2G) <D (dTG)AG) + TG ) +uT (G)ul)) (8.97)
§=0 j=0

as a cost function and formulate the design problem as finding L,V so that
o? is minimized for a given constant 2. Its solution can be easily derived
along with the lines given above and the standard solution for H., norm
computation (Bounded Real Lemma). Next, we sketch the basic steps of the
solution and give the design algorithm. We assume that £(0) = 0, e,,(0) = 0.
It follows from Lemma 7.9 that (8.96) holds if and only if there exists a

P > 0 so that

—P PA¢ PE.; 0

Ang -P 0 Cg
E&JP 0 —al Fg,&
0 Cg Fg,J —al

< 0.
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Setting
_|A 0 -1
P= [O PJ >0,L=P Y
leads to
[—P; 0 Niz 0 Nis Nig 0
0 P 0 PoA¢ PoEgref PoEfrey 0
N 0 -P 0 0 0 ctvrt
0 Al;P, 0 —P 0 0 —CZ;f <0 (8.98)
NE Eéreng 0 0 —al 0 NL
NE Ef . crP2 0 0 0 —al NE
L 0 0 vc _Cref N75 N76 —al 1
Nig=PA-YC N5 =P Eqg—YFy,Nig=PE; —YFy
Nis =VFy—Firep, Nt = VFr — Fyreg.
To find a sufficient LMI condition for (8.97), we introduce
V(j) = E[eg, (j) Pea, (5)]
and consider
o2 (5) = (d"(@)d(G) + TG FG) +u” (u@)) + V(i +1) = V(5) <0

which ensures that (8.97) holds. Remember that
a1 (j) = E [T ()r(5)] —E (F()T7()))
V(i) =B [/ () Pz, ()] — E (2 () P, (7)) -
It turns out
E| [ (G + )er(9+1)]
(7) + fTG) ()
(G + )Pz, (j + 1>)

E (2] (j) Pz, (j))
(7)u(j))
—E( T(5)Pz.(5))) <0

rT )r(])] +E |z
—y* (d"(j)d
—(E(r()'7() +E (z;

which is equivalent to

(J

ALy PO 0 0
BI, | 5 0421 0 0
Ezlvo P[Ano Bno ET,O Er,f]_ 00 ’}/2.[ 0
B! 00 0 ~2
L o
B! P0][An: By E,, 0
27| BT, FY [0 I} {c D, F;o} <0 (8.99)
B )
ALy PO0 0 0
BI, | - 0921 0 0
E’?O P[AT,O BT,O Er’() Er,f] - 0 0 721 0 < 0. (8100)
EL 00 0 421
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It is evident that (8.99) implies (8.100). Now, let

_ [P0
P_[OPJ>0

and apply Schur complement to (8.99). We have for (8.99)

P NIP NTP ... NTP

PNy, P 0 0
PNy 0 o?P--- 0 |5 (8.101)
PN] 0 0 0'1_2]5
where
[P0 0 0
= 10421 0 0O
P=10 0 421 0
10 0 0 4%
Py, — | P3A 0 PsB  PEy P3E;
7| 0 PA-YC 0 PE,—YF;PE;—YFy
- [PA 0 PyB; PE; 0
PNi: 0 P1A77Y01P1B17YD7P1E77YE0 7i:1,"',l.
ver 0 VD; VE 0

In summary, we have the following algorithm.

Algorithm 8.4 An alternative approach to LMI aided FDI design for sto-
chastically uncertain systems

Step 0: Set o >0 and v >0

Step 1: Find P, > 0,P, > 0,P3 > 0,Y,V so that (8.98) and (8.101) are
satisfied

Step 2: Decrease a > 0 and repeat Step 1 until the pre-defined tolerant value
s reached

Step 8: Set L = Ple.

8.6 Notes and references

In this chapter, we have focused our study on the application of the LMI
technique to dealing with the robustness issues surrounding the design of
residual generators for systems with model uncertainties. Although different
types of model uncertainties have been handled, the underlying ideas of the
presented methods are similar. The core of these methods is the application
of a reference model. In this way, similar to the solution of the H,, OFIP,
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the original residual generation problem is transformed into a, more or less,
standard MMP problem.

A key and also critical point surrounding the reference model based
residual generation strategy is the selection of the reference model. Among
the different selection schemes, handling the residual generation in the H,
OFIP framework is the most popular one, where the faults themselves or the
weighted faults are defined as the reference model. This method has been first
introduced in solving the integrated design of controller and FD unit [105, 136]
and lately for the residual generation purpose [22, 56, 100, 123]|, where the
optimization problem can also be solved in the Ho /1 framework [161]. Signif-
icantly different from it, disturbances are integrated into the reference model
used in our study in this chapter. The basic idea behind such a reference model
is the trade-off between the robustness and fault detectability. This idea has
been first proposed by Zhong et al. [159], where the unified solution is, due to
its optimal trade-off, adopted as reference model. The methods presented in
this chapter are the results of the application of this idea to the systems with
different kinds of model uncertainties, where the LMI technique as the tool
for the solution plays a central role. We refer the reader again to [14, 130] for
the needed knowledge of the LMI technique. A comprehensive discussion on
Lemma 8.1 can be found in [145].

We would like to call reader’s attention to the systematical and compre-
hensive study on the interpretation of the unified solution in Chapter 12. It
will be demonstrated that the unified solution provides us with a reference
model that is optimum in the sense of a trade-off between the false alarm rate
and the fault detectability.

Another way of handling residual generation problems for uncertain sys-
tems is to extend the H_/Hoo or Hoo/Heo solutions. For instance, [126] pro-
posed to solve Hoo and H_Ho, problems in the Ho. /p framework. [72] devel-
oped a two-step scheme, in which H_/H design of the residual generator
is first transformed and solved by means of the LMI technique and then in
the second step the fault sensitivity performance is addressed with the aid of
p-synthesis.

Comparing with the study in the previous two chapters, the reader may
notice that the results presented in this chapter are considerably limited. This
is also the state of the art in the model-based FDI technique. If we say, the
results in Chapters 6 and 7 mark the state of the art of yesterdays’ and today’s
FDI technique respectively, then it can be concluded that the study on the
model-based FDI for uncertain systems would be a major topic in the field of
the model-based FDI technique in the coming years.
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Residual evaluation and threshold computation
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Norm based residual evaluation and threshold
computation

In this and the next two chapters, we shall study residual evaluation and
threshold computation problems. The study in the last part has clearly shown
that the residual signal is generally corrupted with disturbances and uncer-
tainties caused by parameter changes. To achieve a successful fault detection
based on the available residual signal, further efforts are needed. A widely
accepted way is to generate such a feature of the residual signal, by which
we are able to distinguish the faults from the disturbances and uncertainties.
Residual evaluation and threshold setting serve for this purpose. A decision
on the possible occurrence of a fault will then be made by means of a simple
comparison between the residual feature and the threshold, as shown in 9.1.

disturbances —» l«——— disturbances
process

(plant) sensors R
actuators > output

input
2% fauts % faults 31 fauts

deterministic
residual

residual signal

» generator

feature of the
residual residual signal
evaluation

alarm

threshold

threshold
generator

fault-free

Fig. 9.1 Schematic description of residual evaluation and threshold generation
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Depending on the type of the system under consideration, there exist two
residual evaluation strategies. The statistic testing is one of them, which is
well established in the framework of statistical methods. Another one is the
so-called norm based residual evaluation. Besides the less on-line calculation,
the norm based residual evaluation allows a systematic threshold computation
using the well-established robust control theory.

In this chapter, we shall focus on the norm based residual evaluation and
the associated threshold computation, as sketched in Fig.9.1. The statistic
testing methods and the integration of the norm based and statistic methods
will be addressed in the next two chapters.

9.1 Preliminaries

The concepts with the signal and system norms introduced in Sections 7.1
and 8.1 are essential for our study in this chapter.

Remember that in Section 7.1 we have introduced the so-called peak-to-
peak gain and the generalized Hs norm. Both of them are the induced system
norm and useful for our study in this chapter. Below, we present the known re-
sults on the LMI aided computation of these two norms, published by Scherer
et al. in their celebrated paper entitled multiobjective output-feedback control
via LMI optimization.

Lemma 9.1 Given system
G:i=Ax+ Eqd,y = Cx,2(0) = 0.
Then for a given constant v > 0
1G]y <7 <= Wllpear < IIdll
if and only if there exists a P > 0 so that

ATP+ PAPES] _ [PCT] _,
ETP I 'O A2

Lemma 9.2 Given system
G:i=Ax+ Eqd,y=Cx + Fuad,z(0) =0

where d is bounded by
vt dT (t)d(t) < 1.

Then for a given constant v > 0
||g||pen,k <y <= ||y||pen,k <7 ||d||peak

if there exist A > 0,0 > 0 and P > 0 so that
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ATP + PA+ AP PE,

ETP —ur| <0
AP0 CT
0 (y—uIFT|>o0.
C Fd ’}/I

The following two lemmas are the extension of Lemmas 9.1 and 9.2 to
the systems with polytopic uncertainties. For their proof, the way of handling
polytopic uncertainty described in the book by Boyd et al. can be adopted.

Lemma 9.3 Given system
G:it=(A+AA)z+ (Eq+ AE)d,y = (C + AC) z,2(0) =0
1
AA AE A; E;
L) =Xala ]
1
Zﬁz :1,51 20,2: 1, 7l
i=1
Then for a given constant v > 0
1G]y <7 <= Wllpear < IIdll

if and only if there exists a P > 0 so thatVi=1,--- I,

(A+ A4)" P+ P(A+ A;) P(Eq+ E;)

<0
(Bq+ E)" P —I
P o+,
C+C; I '

Lemma 9.4 Given system
G:i=(A+AA)z+ (BEq+ AE)d,y=(C+ AC)z + (Fy+ AF)d,z(0) =0
1
AA AE A; E;
[AC AF} = ;5 [Ci F}
!

D Bi=1,8>0i=1,- 1L

i=1
Then for a given constant v > 0
||g||peak <Y = ||y||peak <7 ||d||peak

if there exist A > 0,0 >0 and P >0 so thatVi=1,--- I,
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(A+A)" P+ P(A+A) + AP P(Eqy+ E;)
(Bq+ E)"' P —ul
AP 0 (C+c)"

0 (v—wlIF;+F)"|>0.
C+C; Fy+ F; I

<0

9.2 Basic concepts

In practice, the so-called limit monitoring and trend analysis are, due to their
simplicity, widely used for the purpose of fault detection. For a given signal
1y, the primary form of limit monitoring is

Y < Ymin O Y > Ymax — alarm, a fault is detected
Ymin S Yy S Ymax — NO alarm, fault-free

where Ymin, Ymax denote the minimum and maximum values of y in the fault-
free case. They are also called threshold.

The trend analysis of a signal y can be in fact interpreted as limit moni-
toring of g, and thus formulated as

¥ < Ymin OF ¥ > Umax = alarm, a fault is detected
Ymin < ¥ < Ymax = no alarm, fault-free.

Also widely accepted in practice is the root-mean-square (RMS) (see also
Section 7.1), denoted by ||-|| gasg » that measures the average energy of a signal
over a time interval (0,7T). The fault detection problem is then described by:

1Wllrars < 1Yl garsmin OF 1Yl RArs > 19 RArs max
= alarm, a fault is detected

HyHRMS,min < ||y||RMS < Hy”RMS,max == no alarm’ fault-free

With 1Y/l pars.min » 1Yl Rz s.max @S minimum and maximum values of [|y[| g/ -

In order to overcome the difficulty with noises, the average value of a
signal over a time interval [t,¢ + T, instead of its maximum /minimum value
or RMS,; is often used for the purpose of fault detection. In this case, the limit
monitoring can be formulated as:

) t+T . t+T
gt = = / F(r)dr < Junin oF §(t) = = / F(r)dT > Finax
T T
t t
= alarm, a fault is detected

Jmin < Y(t) < Jmax = no alarm, fault-free
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where ¥min, Umax represent the minium and maximum value of g(¢) respec-
tively.

In summary, it is the state of the art in practice that for the purpose
of fault detection an evaluation function is first defined, which gives some
mathematical feature of the signal, and, based on it, a threshold is established.
The last step is then the decision making. In the subsequent sections, we shall
study these issues in a more generalized form.

9.3 Some standard evaluation functions

Consider a dynamic process. Driven by the process input signal u, the value
or average value or the energy of the process output y may become very large.
In order to achieve an efficient and highly reliable FDI, it is reasonable to
analyze the system performance on account of a residual signal instead of y.
In our subsequent study in this chapter, we assume that for the FDI purpose
a residual vector, r € RFr, is available. Next, we describe some standard
evaluation functions which are in fact a generalization of the above-mentioned
evaluation functions of y.

Peak value: The peak value of residual signal r is defined and denoted
by, for continuous time 7 (t)

k. 1/2
Ipeak = Tl pear, = sup [r@I Ir@)l = (Z T?(t)) (9.1)
2 i=1

and for discrete time r(k)

1/2

Toeat: = 7 lpear = sup [Ir (B[, I (k)1 = (if‘?(@) - (92

The peak value of r is exactly the peak norm of r, as introduced in Section 7.1.
Using the peak value of r, the limit monitoring problem can be reformulated
as

JIpeak > Jth peak = alarm, a fault is detected
Ipeak < Jth,peak = n0 alarm, fault-free

where Jip, peqar; is the so-called threshold defined by

Jth,peak = sup ||71(t)||pen,k or Jth,peak = sup Hr(k)Hpeak N (93)
fault-free fault-free

Also, we can use the peak value of 7 or Ar(k) = r(k—+1) —r(k) to reformulate
the trend analysis. Let
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Jtrend = |||l peqr, = sup [[7(¢)|| for the continuous time case
t>0

Jt'rend = ||A’I"(k‘)||

peak = Sup [|Ar(k)[| for the discrete time case
£>0
Jth,t’rend = sup H’r.‘(t)Hpeak‘ or Jth,peak: = sup ||Ar(k)|‘peak
fault-free fault-free

then

Jirend > Jth trenda = alarm, a fault is detected

Jirend < Jih trenda = no alarm, fault-free.

Often, for the practical implementation 7 is replaced by 7,

with 0 < a < 1 or Ar(k) by

Ar(k) =r(k) —r(k—1).

(9.7)

(9.8)

As for the average value evaluation, we define for the continuous time case

t+T
_ i 1
Javerﬂge = ||T(t) ||a’ue7"uge = iglg ||T(t) ||peak,‘ 77"(t) = T / T(T)dT
- t

and for the discrete time case

N

_ _ 1 ,

Javern,ge = ||r(k)||m)erage - iglg ||T(k)||peak 7T(k) = N X;T(k +])
2 j=

and moreover,

Jth,ave'rage = sup ”r(t)”average or sup |‘r(kj)|‘ave7’age :
fault-free fault-free

As a result, the decision logic for detecting a fault is

Javerage > Jih,average = alarm, a fault is detected

Javerage < Jth,average = D0 alarm, fault-free.

(9.9)

(9.10)

(9.11)

The following modified form of average value 7 given in (9.9) or (9.10) is

often adopted

7(t) = —77(t) + (1)
T(k+1)=(1-p)r(k)+r(k)

(9.12)
(9.13)
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where 0 < T << land 0 K 8 < 1.
RMS value: As introduced in Section 7.1, the RMS value of r is defined

by, for the continuous time case,

T 1/2
Tanss = I ®llws = | 7 [ Il dr (9.14)
t
and for the discrete time case,
N 1/2
Jrms = r(k)ll pars = Z k+DI| (9.15)

Jras measures the average energy of r over time interval (¢,¢+ 1) as well as
(k,k + N). Remember that the RMS of a signal is related to the £3 norm of
this signal. In fact, it holds

2 1 2
lr@®lrums < 7 lIr@)ll; (9.16)
as well as
2 1 2
lr (k) rars < 7 I (R)- (9.17)
Let
Jinrms = sup |7l gurs
fault-free

be the threshold, then the detection logic becomes

Jryvs > Jin,rmus = alarm, a fault is detected
Jryvs < Jin,rms = no alarm, fault-free.

9.4 Basic ideas of threshold setting and problem
formulation

From the engineering viewpoint, the determination of a threshold is to find
out the tolerant limit for disturbances and model uncertainties under fault-
free operation conditions. There are a number of factors that can significantly
influence this procedure. Among them are

the dynamics of the residual generator
the way of evaluating the unknown inputs (disturbances) and model un-
certainties as well as

e the bounds of the unknown inputs and model uncertainties.

Next, we shall briefly address these issues.
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9.4.1 Dynamics of the residual generator

We assume that the system model is given by (8.9)-(8.11), where the model
uncertainties are either the norm bounded type (8.12) or the polytopic type
(8.35).

Remark 9.1 The model uncertainty of the stochastic type given in (8.54) will
be handled in a separate chapter.

Applying residual generator (8.14) to this process model yields

i= Az + Bu+ Eqd+ Ef (9.18)
é¢=(A—-LC)e+ (AA - LAC)z + (AB — LAD)u

+ (Eq— LFy)d+ (Ef — LFy) f (9.19)

r(p) = R(p) (Ce + ACx + ADu+ Fyd + Fyf). (9.20)

Note that the modified forms (9.7) or (9.8) of the trend analysis or (9.12) as
well as (9.13) of the average value analysis can be handled as a filtering of the
residual signal and thus included in the post-filter R(p). Hence, without loss
of generality, we use below (9.18)-(9.20) to represent all the three possible
forms of the residual signal under consideration. Let’s denote the minimal
state space realization and the state vector of R(p) by (A, By, Cp, D)) and
xp, respectively with subscript p standing for post-filter. For our purpose, write
(9.18)-(9.20) into the following compact form

i, = (Ar + AA) xp + (Bayr + AE,) d, + Ep s f (9.21)
r=(C,+ AC,) % + (Fyr + AF) d, + Fy 4 f (9.22)
where
z A 0 0 AA 00
z,=|e |, A =|0A-LC 0 |,AA, = | AA—LAC 00
, 0 B,C A, B,AC 00
B  Ey AB AFE
d, = [3] E.g=|0E;—LF;| ,AE, = | AB— LAD AE — LAF
0 B,Fy B,AD B,AF
Ey
E.;=|E;—LFs|,C.=[0 D,C Cp],AC, =[D,AC 0 0]
Bpr

Fra=[0 DyFy],AF, = [D,AD D,AF],F, ;= D,Fyf.

In case of the norm bounded model uncertainty

E E
AA, = |E—~LF| A(t)[G 0 0],AE, = |E—~LF | A(t)[H J]
B,F B,F

AC, = D,FA(t)[G 0 0] ,AF, = D,FA(t)[H J],AT(#)A(t) <Al
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while for the polytopic uncertainty

AAr = BiAri Ari= | Ai—LC; 00
li=1 B,C; 00
AE, = Z BBy, Eri= | B; — LD; E; — LF;
li=1 B,D; B, F;

l
AC, = B;Cri,Cri = [0 0 D,Ci]

li=1

l
AF, =Y BiFi,Fri = [DpD; D,F].

li=1

9.4.2 Definitions of thresholds and problem formulation

Recall that the threshold is understood as the tolerant limit for the unknown
inputs and model uncertainties during the fault-free system operation. Under
this consideration, the threshold can be generally defined by

Jip = sup J
f=0,d,A

with A denoting the model uncertainties and J the feature of the residual
signal like Jpeqk, Jtrend, Jrms defined in the last subsection. Also, the way of
evaluating the unknown inputs plays an important role by the determination
of thresholds. Typically, the energy level and the maximum value of unknown
inputs are adopted in practice for this purpose. In this context, we introduce
below different kinds of thresholds to cover these possible practical cases.

Definition 9.1 Suppose that d, is bounded by and in the sense of

HdT”peak S Hd”peak + ”U’Hpeak S (;d,oo + 5"700' (923)

Then the threshold Jip peak,peak @5 defined by

Jth,peak,peak = sup Jpeak (924)
ol <00t o0
f=0,6(A)<éa

for the norm bounded uncertainty or

Jth, eak,peak — sup J eak (925)
'3 /4 p
lldrllpeqr <Od.c0t0u, o0
f=0,8;,i=1--,1

for the polytopic uncertainty.
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Jth.peak peak Measures the maximum (instantaneous) change in r caused
by the instantaneous (bounded) changes of A, d,.. Note that Jip peak, peak CaN
be reached even if the energy level of signal d,, may be very low but its size
at some time instance is very large.

Definition 9.2 Suppose that d, is bounded by and in the sense of

ldrlly < ba2 + 0wz and ||dr|l,eqr < Gd,00 + Ou,c0- (9.26)
Then the threshold Jip peak,2 15 defined by
Jth,peak,? = sup Jpeak (927)
ldrllo<0d,2+0u,2
ldr 1l pear <Od,00+0u,00
f=0,6(A)<éa
for the norm bounded uncertainty or
Jth,peak,Q = sup Jpeak (928)

lldrll;<6a,240u,2
lldrll pear <0d,00tdu,00
f:oyﬁ“i:l... 1

for the polytopic uncertainty.

Although Jip, peak,2 also measures the maximum change in r, but different
from Jip peak,peaks Jth,peak,2 does it with respect to the bounded energy in d,.

Definition 9.3 Suppose that d, is bounded by and in the sense of
||drH2 S 5d,2 + 5u,2'
Then the threshold Jip rars,2 15 defined by

Jen,rys,2 = sup Jrms (9.29)
HdT'HRMSS(Sd,2+6u,2
=0,0(A)<64

for the norm bounded uncertainty or

Jin,RMS,2 = sup JrRMS (9.30)
HdrHRMSS‘SdJJF‘Su,Q
f=0,8;,i=1--- 1

for the polytopic uncertainty.

Jin, R0 5,2 measures the maximum change in the (average) energy level of r
in response to the model uncertainty and unknown inputs which are of certain
energy level.

In practice, aiming at an early fault detection on the one side and a low
false alarm rate on the other side, §4.0o is often set low and Jip peak,peak 1S
used to activate the computation of Jij peak,2 Or Jen, rars,2. While Jip peak,2 is
generally set higher than Jip, peak,peak, due to the assumption on the energy
level of d,, Jip, rams,2 Tequires an observation of the residual signals over a
(long) time window. This scheme is used to reduce the false alarm rate.
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Remark 9.2 Although the input signal u is treated as a "unknown input”,
the available information about it will be used to realize the so-called adaptive
threshold, which will then recover the performance.

From the mathematical and system theoretical viewpoint, the above-
defined thresholds can be understood as induced norms or ”system gains”.
In this context, we are able to formulate the threshold computation as an
optimization problem:

e Computation of Jij peak peak

Jith peak,peak = MiN"Y (04,00 + 0y 00) With 7 subject to (9.31)
Vd, satisfying (9.23), A either norm bounded or polytopic

sup [[r(¢)[| < ysup [[dr ()] or sup||r(k)|| <~ sup|d.(K).

>0 t>0 k>0 k>0

e Computation of Jip, peak,2

Jih,peak,2 = Miny; (dg,2 + 0u2) + Y2 (0d,00 + Ou,00) (9.32)
with v, subject to
Vd, satisfying (9.26), A either norm bounded or polytopic

sup [ ()] < vy lldr(¢) [l or sup [[r(k)[| < vy [ldr (R, -
t>0 k>0

Remark 9.3 The term v, (04,00 + 0u,00) tn (9.82) is due to the existence of
Far + AF,., by which d, will act on r instantaneously. In the section dealing
with the computation of Jin peak,2, we shall explain it in more detail.

e Computation of Ji ras,2

Jin,rvs2 =min7y (6g2 + d,,2) with v subject to (9.33)
VT, d, satisfying (9.26), A either norm bounded or polytopic
lr(@)ll2 < vlldr ()l or lIr(E)lly < [ldr (Rl -

Using the LMI technique, we shall derive algorithms for solving these prob-
lems. This is the major objective of the rest of the sections in this chapter.

9.5 Computation of Jin rys,2

In this section, we address the computation of Jy rars,2 for the systems with
both the norm bounded and polytopic model uncertainty.
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9.5.1 Computation of Ji, rars,2 for the systems with the norm
bounded uncertainty

For our purpose, we first give a theorem, which builds the basis for the com-
putation of Jip rars, 2.

Theorem 9.1 Given system (9.21)-(9.22) with the norm bounded uncertainty
and vy > 0, and suppose that z,.(0) = 0, AT (t)A(t) < I, then

Ir@)lly < lldr (Bl
if there exist € > 0, P > 0 so that

ATP 4 PA, + <GTG PE,,+:GTH CT PE
Ezd —y2I+eHTH Fg:r 0

c Fu, ‘T p,F <0 (9.34)
ETP 0 FTDI? —el
where
E
G=[GO00|,H=[H J|,E=|E—-LF|. (9.35)
B,F

The proof of this theorem is similar with the one of Theorem 8.1 and
follows directly from the Bounded Real Lemma and Lemma 8.1.

The "discrete time version" of Theorem 9.1 is given in the following theo-
rem.

Theorem 9.2 Given system

2ok +1) = (A, + AA) &, (k) + (Bay + AE,) do (k)
r(k) = (Cp + AC,) 2, (k) + (Far + AF,) dy (k)

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and v > 0, and suppose that x,.(0) =
0, AT(k)A(k) < I, then

I (R)lly < lldr (Rl (9.36)

if there exist n > 0, P > 0 so that

-P 0 PA, PE, PE
0o I C, F, D,F
ATp ¢l nGT'G-P nGTH 0 | <0 (9.37)
EF P Ff ~ nH"G nH"H-~1 0
ETP F'DI 0 0 —nl

with E,G, H as defined in (9.35).
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Proof. Due to the similarity to Theorem 8.1, we only briefly sketch the proof.
It is evident that (9.36) holds if

(A, +A4.)" (¢, +AC)T

[P 0} [A,. + AA, Eq, + AE,

(Bgr + AE)" (Fip+ AF)T | [0 1] [Cr 4+ AC, Fy, + AF,

P 0

{0 721} <0,

Recall that
E
AA, AE, E—LF
[ACT AFJ S PO
D,F

It follows from Lemma 8.1 that the above inequality holds, provided that for
some € > 0

1 E g 1"
AT T rpo] |E-LF||E-LF A, E,
Ej, Ff, 01 B,F B,F C, F.
D,F D,F
1 T P O
+;[GOOHJ] [GOOHJ] - {0 721} <0.
Now, applying the Schur complement yields
E g 1" )
(| E-LF||E-LF {PO] [ATET]
B,F B,F 01 C, F, <0
D,F D,F
AT T [%GT_G - P _;QTH }
EY FJ. 1T 1OoTH -+21
-P 0 PA, PE, PE
0 -1 G F,  DyF
— | ATp cI' iG"G-pP 1G"H 0 | <o
ET P FI. "LHTG L1ETH -~ 0
ETP FTDF 0 0 —1I

Finally, setting n = % completes the proof. 0O

With the aid of Theorems 9.1 and 9.2 as well as the relation between the
L5 norm and the RMS, (9.16) or (9.17), we have

Algorithm 9.1 Computation of Jun ryms,2 for the systems with the norm
bounded uncertainty
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Step 0: Substitute G, H in (9.35) by G/\/Sa, H/\/SA
Step1: Solve optimization problem

min~y subject to (9.34) or (9.37)

fore >0,P >0 and set v* = minvy
Step 2: Set

Jin,rMS,2 = 7" a2 + du2) or Jih RMS,2 = 7" a2 + du2)
¢ = = t =L ~de e
, , \/T , , \/ﬁ

Example 9.1 In this example, we illustrate the application of the above al-
gorithm to the threshold computation via the benchmark system DC motor
DR300. In order to demonstrate that the proposed approach is also applicable
for systems modelled in terms of transfer functions, our study is based on the
input-output description of the DC motor DR300 given in Section 3.7.1. We
assume that the gain of the nominal model is uncertain with

. bo—l—A
T s34 a8 + ars + ag

where A € [—v/da,v/da], a4 = 10000, and moreover the measurement y is
corrupted with a noise,

(9.38)

Gyu(s)

y(s) = Gyu(s)u(s) +0.01d, ||d||, < dq2 = 1.8.

We now apply the residual generator developed in Example 5.9 to this system.
It leads to

¢=Ge+ [AH —0.01L] [Z] ;v =We+ [00.01] [g]

with
A 1
AH=|0| = EAB=|0|A®)[1 0].
0 0

By solving optimization problem
min~y subject to (9.34) or (9.37)
we get
~* =0.27.
Under the assumption that 6,2 = 2.1 and the evaluation time window T =
10s, the threshold is finally set to be
Jth2,2 = —7*(5‘1’2 +0u2)
th,2, \/m

To verify the design result, simulations with different faults are made. Fig.9.2
and Fig.9.3 show the threshold and the responses of the evaluated residual
signal to an actuator fault and a sensor fault.

=0.33.
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3 T

Il

Jth,RMS,Z

Ilgs
(4]

0.5

i
15 20 25 30 35 40 45 50
Time [s]

Fig. 9.2 Threshold and the evaluated residual signal: A = —100, f4 = 0.05V, oc-
curred at t = 25s
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Fig. 9.3 Threshold and the evaluated residual signal: A = —100, fs1 = —0.25V
occurred at t = 25s

9.5.2 Computation of Ji, rars,2 for the systems with the polytopic
uncertainty

Now, we consider system (9.21)-(9.22) with the polytopic uncertainty. The
following two theorems follow directly from Lemma 8.2 and its "discrete time
version".

Theorem 9.3 Given system (9.21)-(9.22) with the polytopic uncertainty and
v > 0, and suppose that z,.(0) = 0, then

@)y < lldr @)l (9-39)
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if there exists P > 0 so thatVi=1,---,l,

(Ar + Ar,i)T P+P (AT + Ar,i) P (Er,d + Er,i) (Cr + Cr,i)T
(Bra+Er)" P I (Fra+F0)" | <0
Cr + Cr,i Fr,d + Fr,i *’YI
(9.40)

Theorem 9.4 Given system

zr(k+1) = (A + AA) 2 (k) + (Eqr + AE,) dy (k)
r(k) = (Cr + AC,) x,(k) + (Fy, + AF,) d,.(k)

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and v > 0, and suppose that x,(k) = 0, then

I (R)lly < lldr (Rl (9.41)

if there exists a P > 0 so thatVi=1,--- I,

-P P(A.+A;) P(Erg+ Ery) 0
(A +A)"P =P 0 (Co+Cr)" | _ . (040
(Erg+E..)" P 0 " (Frg+F5)" <0. (942)
0 Cr+Cry Frag+ Fri -1

Based on Theorems 9.3 and 9.4, we have

Algorithm 9.2 Computation of Ju, ras2 for the systems with the polytopic
uncertainty

Step1: Solve optimization problem
min~y subject to (9.40) or (9.42)

for P >0 and set v* = arg (min-~)
Step 2: Set

v* (0g2 + 0u.2)

*(0a2 + 0u
Jth,RMSQ = T or Jth,RMS,Q = w

vN

Example 9.2 We continue our study in Fxample 8.2, in which an FDF is
designed for the benchmark system EHSA with polytopic model uncertainty.
Our objective is now to compute the corresponding Jin ryms,2 via Algorithm

8.2. We assume that 642 ts bounded by 2 and the evaluation window is 5s.
The computation of Step 1 gives

~* =0.98.

Following it, we have
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J 0.98(2+ 6y,2)
th,RMS,2 — — = -

In our simulation, 0,2 is on-line estimated (see Section 9.8). In Fig.9.4,
both the RMS value of the residual signal and the corresponding threshold
are shown, where a fault in A, sensor occurred at t = 3s.

14
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Time [s]

Fig. 9.4 Residual response and threshold

9.6 Computation of Ji, peak,peak

9.6.1 Computation of Jih peak,pear for the systems with the norm
bounded uncertainty

We start with the (sufficient) condition for

7Ol pear <V [1dr )l pear
under the assumption that f =0,z,(0) = 0 and a given v > 0.

Theorem 9.5 Given system (9.21)-(9.22) with the norm bounded uncertainty

and v > 0, suppose that z,(0) = 0, ||d,(t)[| pear, < 1, AT () A(t) < 1. Then

||71(t) ||peak <7

if there exists A > 0, > 0,61 > 0,62 > 0, P > 0 so that
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PA, + ATP+ AP +e,G"G PEq, +&1G"H PE ]
Ej, P+el"G —pul +e,HTH 0 | <0 (9.43)
ETP 0 751]_
yI C, Fy, /2D, F]
cr AP — ,GTG —eGTH 0
ngr —eoHTG (v —p)I —eoHTH 0 >0 (9.44)
V2 (D, F)" 0 0 eol |

where E,G, H are given in (9.35).

The proof of this theorem can be achieved along with the lines in the
proof of Lemma 9.2 provided by Scherer et al., together with the application
of Lemma 8.1, see also the proof of the next theorem.

Theorem 9.6 Given system

zr(k+1) = (A, + AA) 2,(k) + (Era + AE,) d, (k)
r(k) = (C, + AC,) z, (k) + (Fy.q + AF,) d, (k)

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and v > 0, and suppose that

2,(0) = 0, AT (k) A(k) < I,d" (k)d, (k) < 1

then
||r(k)||peak <7
if there exist A > 0, > 0,61 > 0,62 > 0, P > 0 so that

P PA, PE,, PE]
ATP 1 -ANP—-GTG - GTH 0
P e HTG ol -l o | 70 O)
ETP 0 0 el |
yI C, Frq V2D, F]
CTT AP — EQGTG _EQGTH 0
Fr, ey BTG (y—pI-eBTH 0 | =0(946)
~V2 (D, F)" 0 0 eol |
where E,G, H are given in (9.35).
Proof. Let
V(. (k)) = 7 (k) Pz, (k)
for some P > 0 and assume that
Vi, (k)) < % (9.47)

for 0 < A < 1, > 0. Note that V(x(k)) satisfying
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V(e (k+1)+ (A=1D)V(z (k) < p, V(2(0)) =0 (9.48)
is bounded by the solution of difference equation
Vizr(k+1)) = (1 = )V (zr(k)) + p

N V(z, (k) <

1=

On the other side, matrix inequality

(A, + AA,)"
(Eq, + AE)"

an (£ <2

ensures that VdT (k)d(k)

P[(A, + AA,) (Ea, + AE,) ] (9.49)

V(2 (k +1)) + (A = DV (z,(k)) < pd" (k)d(k) = V(@ (k)) < %

Thus, (9.47) holds if (9.49) is satisfied. Note that Vd,, A(k), bounded by
ld-]| <1 and AT(k)A(k) < I respectively,

peak —

T (k)r(k) < v (vdl (k)d, (k) + AV (z,(k) — pd] (k)d, (k) (9.50)
= rT(k:)r(k:) <2

if (9.47) holds. Moreover, (9.50) can be expressed in terms of matrix inequality

(Cr + AC)T
(Fyr+ AF)T

AP 0
C.+ AC, Fy,+ AF, | < . (9.51
[ d, ] |: 0 (,Y _ u)]:| ( )

-1

According to Lemma 8.1, we know that for n; > 0,175 >0
AT _ _ oy —1 1 [GT
] et s 2|

U ar
(1- MNP 0
< { 0 ul

wi | (= mpor0,07) (6 )+ | G 16 1]
= Péj (v—ou)l]

are sufficient for (9.49) and (9.51) respectively. Applying the Schur comple-
ment we have
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Pil - nlEET Ar Ed r
AT (1-MP— GTG - 1 GTH >0 <=
ET. nLETG pl — 1 HTH
P PA, PE,“, PE
ATP (1=XNP— - -GTG - o GTH 0
E,P 2 HTG -+ "7 o0 |70
ETP "0 0 1
I C, Fur /2D, F
o AP — o= GTG -LaTH 0
T T " mr A > 0.
Fd,r H G (’Y - ,u) - ”7_2H H 0 -
A2 (D, F)" " 0 L1

The theorem is finally proven by setting 1 = 77%’ €9 = % O

Algorithm 9.3 Computation of Jin peak peak for the systems with the norm
bounded uncertainty

Step 0: Substitute G, H in (9.35) by G/\/da, H/\/dA

Step1: Solve optimization problem
min~y subject to (9.43) — (9.44) or (9.45) — (9.46)

forA >0, > 0,61 > 0,60 > 0,P >0 and set v* = min~y
Step 2: Set
Jth,peak,peak = 7* (6d,oo + 61/,,00) . (952)

Example 9.3 In this example, we study the residual evaluation and threshold
setting problems via the benchmark system LIP100. The same model like the
one used in Fxample 8.1 is adopted. Further, we suppose the use of a residual
generator designed by the unified solution with

1.1338 —0.1718 —0.3728

[ _|—01718 0.0260 0.0565 | |, _ (1)(1)8
ort = | —6.5071 0.0565 0.1226 |’ °Pt — 001

84.1928 0.0167 0.0362
The application of Algorithm 9.3 leads to
7% = 4.6762.

On the assumption that §4,0 = 0.0096, 6y, 0 = 0.1 with an evaluation window
of 10s, we have finally
Jth,peak,peak = 0.5125.

In Fig.9.5, we show a simulation of the evaluated residual signals in compar-
ison with the threshold set above, where a fault in the velocity sensor of the
cart occurred at t = 6s.
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Evaluated Residual/Threshold

i h i i i i i i
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Fig. 9.5 Residual evaluation and comparison with the threshold by a sensor fault

9.6.2 Computation of Jh peak,pear for the systems with the
polytopic uncertainty

Consider system (9.21)-(9.22) with the polytopic uncertainty. Following Lemma
9.4 and its "discrete time version", we have

Theorem 9.7 Given system (9.21)-(9.22) with the polytopic uncertainty and
v > 0, and suppose that x.(0) = 0, then

‘ r(t)Hpeuk < Y ||d7“(t)||peuk'

if there exist A > 0,0 >0 and P >0 so thatVi=1,--- 1,

(Ar + A i) P+ P(A 4+ Ari) + AP P(E,q+ E,.)

<0 9.53
(Bra+ B, ;)" P “ul (9.53)
AP 0 (Cr+Cri)"
0  (v=mI (Fra+F)" | =0 (9.54)
Cr+ O,«J' F,.,d + F,.ﬂ‘ fy[

Theorem 9.8 Given system

zr(k+1) = (A, + AA) 2,(k) + (Era + AE,) d, (k)
r(k) = (Cr + AC,) x, (k) + (Fra + AF,) dy (K)

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and v > 0, and suppose that x.(k) = 0, then

||T(k)|‘peak <7 ||d”‘(k)Hpeak
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if there exist A > 0,0 >0 and P >0 so thatVi=1,--- I,

P P (AT + Am’) P (Er,d + Em‘)
(Ar+A) P (1-N)P 0 >0 (9.55)
(Bra+Eri)' P 0 pul
AP 0 (Cr+Cri)”
0 (v—w)I (Fa+F. ;)" | >0. (9.56)

Cr + Cr,i Fr,d + Fr,i "YI

Algorithm 9.4 Computation of Jip peak,peak for the systems with the poly-
topic uncertainty

Step1: Solve optimization problem
min -y subject to (9.53) — (9.54) or (9.55) — (9.56)

for A>0,u>0 and P > 0 and set v* = min~y
Step 2: Set
Jth,peak,peak = 7* (6d,oo + 51/,,00) .

9.7 Computation of Jip peak,2

9.7.1 Computation of Jin peak,2 for the systems with the norm
bounded uncertainty

Consider system (9.21)-(9.22) with the norm bounded uncertainty. It is ev-
ident that d,.(¢) acts directly on r(¢) via the crossing matrix F, 4 + AF,.
The maximum change in r(¢) caused by d,.(t) via F.q4 + AF, is given by
75 (0d,00 + Ou,00) With

sup  (Fra+ DyFAW)H)" (Fpq+ DyFA(RH) <51
F(A®) <6

where H is given in (9.35). Using Lemma 8.1, v} can be determined by solving

~5 = min 7, subject to (9.57)
n3>0
I Fra D,F
FZd vol —msHTH 0 > 0.
FTDY 0 03l

Write r into two parts,
r=ry+re,r = (Cr+ AC) zp, 1m0 = (Fy, + AF)) d,.

Using Lemmas 9.1 and 8.1, we are able to compute the bound of the influence
of d,. on r1, as stated in the following theorem.
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Theorem 9.9 Given system
&, = (A, + AA,) 2, + (Eqr + AE,) d,
r = (CT + AC,,.) T,

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and ~v; > 0, and suppose that x,.(0) =
0, AT (t)A(t) < I, then

||T1(t)||peak <M ||d,«(t>||2
if there exist n; > 0,19 > 0, P > 0 so that

ATP + PA, +3,G"G PEa+nGTH PE
EL,P+nHTG g HTH-3I 0 | <0 (9.58)

ETP 0 —n I

-1 Cr  DyF

cl —P+n,GTG 0 <0 (9.59)
FTDI 0 —nol

where E,G, H are given in (9.35).
The proof of this theorem is similar to the one of the next theorem.
Theorem 9.10 Given system
zr(k+1) = (A, + AA,) z. (k) + (Er g + AE,) d, (k)
ri(k) = (Cr + AC,) (k)

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and v, > 0, and suppose that

7,.(0) =0,AT(k)A(k) < I

then
171 ()l pear < 71 lldr (Rl
if there exist n; > 0,m9 > 0, P > 0 so that

P  PA, PE,, PE
ATP n,GTG-P nGTH 0
i — 7T = = = <0 9.60
B P g ATG o HTH -2 0 (9.60)
ETP 0 0 —n, I
-1 C.  D,F
cT —P+n,GTG 0 | <0 (9.61)
FTDY 0 —pI

where E,G, H are given in (9.35).
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Proof. Let
V (@ (k)) = &7 (k) Pa, (k)

for some P > 0. Considering that

V(2 (k+1)) =V (z,(k)) <3 lldr (k)| (9.62)
yields
k—1
V(@ (k) <73 lld ()]
j=0
we have

< 71 Z ||d1

provided that
(C.+ AC)T (C. + AC,) < P. (9.63)
We now express (9.62) in terms of matrix inequality:

(4, + A4,)"
(Er,d + AET)T

P 0
0 31

PlA, + AA, Erq+ AE, | — [ } <0.  (9.64)

Using Lemma 8.1 leads to a sufficient condition for (9.64) as well as (9.63),
respectively

-P PA, PE,. 4 PE
ATp anT_G - Pp _nquH 0
EL.P nHT'G mHTH-~3 0

T

<0

ETP 0 0 —n, I
-1 C,  D,F
CT —P+n,GTG 0 <0
FTDT 0 —ny1
for some n; > 0,175 > 0. O

Algorithm 9.5 Computation of Jin peak,2 for the systems with the norm
bounded uncertainty

Step 0: Substitute G, H in (9.35) by G/\/3a, H/\/3 A
Step 1: Solve optimization problem (9.57) for ~3%
Step 2: Solve optimization problem

min~y, subject to (9.58) — (9.59) or (9.60) — (9.61)

formy > 0,15 >0,P >0 and set vj = min~y,
Step 3: Set
Jth,peak:,2 = ’VT (6d,2 + 5u,2) + 7; ((5d,oo + (Suoc) . (965)
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Example 9.4 Under the exactly same conditions with the ones of Example
9.3, we now determine Jip peak,2 for the benchmark system LIP100 with the
norm bounded uncertainty. Under the application of Algorithm 9.5 we get

v =3.3197,~5 = 9.0651 x 10~
and further, on the assumption that

Su.00 = 0.1000, 34,00 = 0.0099, 8, 2 = 0.3162, 540 = 0.0163
Jih peak.2 = 3.3197(0.3162 + 0.0163)
49.0651 x 10711(0.100 + 0.0099) = 1.1040.

In Fig.9.6, we see simulation of the evaluated residual signals in comparison

1.5

Evaluated Residual / Threshold

o I h I I I I I I

5
Time [s]

Fig. 9.6 Residual evaluation and comparison with the threshold by a sensor fault

with the threshold set above, where a fault in the velocity sensor of the cart
occurred at t = 6s.

9.7.2 Computation of Ji4 peak,2 for the systems with the polytopic
uncertainty

We now study the computation of Jyj, peqk,2 for system (9.21)-(9.22) with the
polytopic uncertainty.

In order to evaluate the influence of d,.(t) on r(t) via the crossing matrix
F, 4+ AF,, we propose to solve the following optimization problem: finding
~5 such that Vi =1,--- [,

(Fra+ Fri)" (Fra+ Fri) <31 (9.66)
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For the evaluation of the influence of £o norm of d, on r; we have the
following two theorems which are a straightforward extension of Lemma 9.3
and its "discrete time version".

Theorem 9.11 Given system

&, = (A, + AA,) 2, + (Eqr + AE,) d,
r = (CT + AC,,.) T,

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and v, > 0, and suppose that x,.(0) = 0, then

171 (D) pear < 71 lldr (D)l

if there exist P > 0 so thatVi=1,--- 1,

Ar+AriTP+P AT+AT.i PE’I" +Erz
( (E)d+E-)(TP i) Pl . Il <o (9.67)
P CT'+Gr'iT
[a.+o,-( . i) }20. (9.68)

Theorem 9.12 Given system

zr(k+1) = (A, + AA) (k) + (Era + AE,) d- (k)
ri(k) = (Cr + ACy) z,.(k)

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and v, > 0, and suppose that z,.(k) = 0, then

||T1(k)||peak < 71 ||d,«(k’)||2
if there exists P > 0 so thatVi=1,--- I,

—-P P (Ar + Ar,i) P (Er,d + Er,i)
(A, + A )" P -P 0 <0 (9.69)
(Erq+ EM-)T P 0 —3I
T >
Crt Cri| _, (9.70)

. +c..)" —pP

Algorithm 9.6 Computation of Jip, peak,2 for the systems with the polytopic
uncertainty

Step1: Solve optimization problem (9.66) v
Step 2: Solve optimization problem

min~y, subject to (9.67) — (9.68) or (9.69) — (9.70)

for P >0 and set vy§ = min-y,;
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Fig. 9.7 Evaluated residual signal and threshold

Step 3: Set
Jth,peak,2 = 'YT (5d,2 + 6u,2) + 7; (6d,oo + 6u,oo) .

Example 9.5 Similar to Fxample 9.2, we now compute Jipn peak,2 for the
benchmark system EHSA via Algorithm 9.6:

Step 1: v5 = 1.5168
Step 2: v = 1.0006
Step 3: Jin,peak,2 = 3.5095 + 1.00060 2 + 1.50836 00 fOr 0g,00 = 1

Again, by the simulation the on-line estimation of §,2 and d,, o is used.
In Fig.9.7, both the RMS value of the residual signal and the corresponding
threshold are shown, where a fault in A, sensor occurred at t = 3s.

9.8 Threshold generator

The thresholds derived in the last sections have in common that they are
constant and a function of a bound on the input vector u. Since w is generally
on-line available during process operation, substituting the bound on w by an
on-line computation would considerably reduce the threshold size and thus
increase the fault detection sensitivity. Those thresholds which are driven by
the system input signals, as shown in Fig.9.1, are known as adaptive thresholds
or threshold selectors. Analog to the concept of residual evaluator, we call
them threshold generator.

While the bound on the peak of §,, o, can be easily replace by the instan-
taneous value
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(@)l = /u" @)u(t) or [[u(k)]| = /u” (k)u(k)
04,2 will be approximated by

t+T 1/2 1/2

(). = / e dr | or flu(k) lerk+3||

t

in an iterative way or with a weighting, e.g.

2 2 . 2
[u(k)ll2,541 = luB)lz; + lIr(k+ 5+ D] or
2 2 ) 2
(k)21 = e lluB)llz; + lIr(k+5 + 1)
with 0 < a < 1.
The three kinds of constant thresholds introduced in the last sections,

Jth,RMS,ijth,peak‘,peak‘ and Jth,peak,? given by (938), (952) and (965) re-
spectively, will be replaced by the threshold generators

Y 5d *
Jth RMS, o(t) = \/T2 Y Nu@®)| gars or (9.71)
7 94,2 5d 2
Jth RMS, z(k’) \/N + 7 (k) HRMS
thh,peak,peak (t) = 'Y*(Sd,oo + 'Y* ”u(t)” or (972)

Ji(]h,peuk,peak(k) = 7*5d700 + 7* ||U(k)||
Tihpear,2(t) = 71042 +¥30d,00 + 77 |l + 75 [[u(@)] or (9.73)
Tin pear2(k) = 710a,2 + ¥30d,00 + 7 (k) |y n + 3 [[u(k)]|

where the superscript g stands for generator.

It is interesting to notice that the threshold generators consist of two parts:
a constant part and a time varying part. This time varying part depends on
the instantaneous energy change in the input signals. In other words, un-
der different operating conditions, expressed in terms of the input signals,
the threshold will be different. In this context, the threshold generator is an
adaptive threshold. Since

Jth RMS2 = Jth RMS,25 Jth ,peak,peak — < Jin ,peak,peak Jth peak,2 = Jth,pmk 2

it is clear that substituting the thresholds by the corresponding threshold
generators will enhance the fault detection sensitivity.

Example 9.6 In this example, we replace the constant threshold computed

in Example 9.1 by a threshold generator and repeat the simulation. It follows
from (9.71)that

Ith rars2() = 0.15 4+ 0.27 [[u(t)| gars
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Fig. 9.8 Threshold generator and the evaluated residual signal: A = —100, fa =
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Fig. 9.9 Threshold generator and the evaluated residual signal: A = —100, fs1 =

—0.125V, occurred at t = 25s

where |[u(t)|| garg will be on-line computed. Fig.9.4 and Fig.9.5 show the
threshold generator and the responses of the evaluated residual signal to an
actuator fault and a sensor fault. Comparing Fig.9.8 and Fig.9.9 with Fig.9.2
and Fig.9.3, we clearly see that the threshold generator scheme delivers higher
fault detectability, also in case of a large size input signal.
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9.9 Notes and references

Although the norm based residual evaluation was initiated by Emami-naeini et
al. [48] almost twenty years ago, only few research results on this topic have
been published, see for instance [39, 54, 77, 85, 123]. On the other side, in
practice limit monitoring and trend analysis schemes are very popular, where
the determination of thresholds plays a central role. It is the state of the art
in practice that thresholds are generally determined based on experiences or
by means of real tests and simulation.

The results and algorithms presented in this chapter are a considerable
extension of the results reported in [34]. They have been achieved in the norm
based framework and therefore may lead to a conservative threshold setting.
Even though, they provide the system designer with a reliable and reasonable
estimate of the value range of the thresholds. It can save a great number of
real tests and therefore are valuable both from the technical and economic
viewpoint.

The major tools used for our study in this chapter is the robust control
theory and LMI technique. We refer the reader to [14, 130] as well as [160] for
the needed knowledge and computation skills in this area.

The proofs of Lemmas 9.1, 9.2 on the generalized Hs norm and peak-to-
peak gain can be found in [130] and as well as in [14]. The extension of these
results to the systems with polytopic model uncertainties, as given in Lemmas
9.3 and 9.4, is schematically described in [14].

A major conclusion of this chapter is that for different application purposes
different residual evaluation functions and correspondingly different induced
norms should be used. This conclusion also reveals the deficit in the current
research. The efforts for achieving an optimization without considering the
evaluation function and the associated threshold computation can result in
poor FDI performance. Research on the optimization schemes under perfor-
mance indices different from the Hoo or Hy norm is urgently demanded in
order to fill in the gap between the theoretical study and practical applica-
tions.
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Statistical methods based residual evaluation
and threshold setting

10.1 Introduction

The objective of this chapter is to present some basic statistical methods
which are typically used for residual evaluation, threshold setting and decision
making.

In working with this chapter, the reader will observe that the way of prob-
lem handling and the mathematical tools used for the problem solution are
significantly different from those presented in the previous chapters. We shall
first introduce some elementary statistical testing methods and the basic ideas
behind them. Although no dynamic process is taken into account, those meth-
ods and ideas build the basis for the study in the sequent sections. A further
section is devoted to the criteria for the selection of thresholds. In the last
section, we shall briefly deal with residual evaluation problems for stochastic
dynamic processes, as sketched in Fig.10.1.

stochastic noise . .
_— stochastic noise
f————

process

(plant) sensors
actuators output

input
% faults % faults % faults

stochastic | i
residual H statistical feature |
i

residual signal residual of residual signal|
generator evaluation

H; hypothesis
fault

threshold | treshold

generator

H, hypothesis

fault-free

Fig. 10.1 Schematic description of statistic testing based residual evaluation and
decision making
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10.2 Elementary statistical methods

In this section, a number of elementary statistical methods will be introduced.

10.2.1 Basic hypothesis test
The problem under consideration is formulated as follows: Given a model
y=0+€e€eR

with € € N(0,02) (i.e. normally distributed with zero mean and variance o2),
6 =0 or || > 0, a number of samples of y, y1,---yn, and a constant o > 0
(the so-called significance level), find a threshold Jy, such that

N
_ 1
prob {|g| > Jin |9:0}<a,y:N;yi (10.1)
where prob{|g| > Ju, | 6 = 0} denotes the probability that |§| > Jy, under
condition 8 = 0. It is well-known that the probability prob{|y| > Ji, | 8 = 0}
is the false alarm rate if the following decision rule is adopted:

|g| < Jin 2 6 =0 (Hp, null hypothesis) (10.2)
|g| > Jup, - 0 # 0 (Hy, alternative hypothesis). (10.3)

From the viewpoint of fault detection, the above mathematical problem is
the answer to the fault detection problem: Given system model, how can we
select the threshold towards a reliable detection of the change (fault) in 6
based on the samples of the output y? In the problem formulation and the
way of approaching the solution we can observe some key steps:

e the objective is formulated in the statistical context: the probability of
a false decision, i.e. prob{|g| > Ji | # = 0}, should be smaller than the
given significance level o

=

e an estimation of the mean value of y based on the samples,y = % Yis

=1

is included in the testing process

e the decision is made based on two hypotheses: Hy, the null hypothesis,
means no change in 6, while Hy, the alternative hypothesis, means a change
of 9.

Throughout this chapter, these three key steps to the problem solutions
will play an important role.

The solutions of the above-formulated problem are summarized into two al-
gorithms, depending on whether ¢ is known. For details, the interested reader
is referred, for instance, to the textbook by Lapin.

Algorithm 10.1 Computing Jip, if o is known
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Step 1: Determine the critical normal deviate z, /o using the table of critical
normal deviate values or the table of standard normal distribution, i.e.

prob {z > za/Q} =a/2 (10.4)
Step 2: Set Jup,
o
Jin = Za/Q\/—N (10.5)
since § 1s normally distributed with
o2
E(g) =0,var (y) = N (10.6)

Algorithm 10.2 Computing Jy, if o is unknown

Step 1: Determine t,, /o using the table of t distribution with degree of freedom
equal N — 1, i.e.
prob {t > ta/g} =qa/2 (10.7)

Step 2: Set Jup,
N
s 2—:1 (yi — ﬂ)z
e 10s)
Y
s/\/ﬁ

satisfies Student distribution with the degree of freedom equal to N — 1.

Jin =

where

t=

Remark 10.1 The idea behind the above algorithm is an estimation of the
variance o by s.

It is clear that for the purpose of change detection, following on-line com-
putation (evaluation of the samples of y) is needed: In case that o is known

L
ﬂiﬁZyi
i—1

it is

otherwise y and
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10.2.2 Likelihood ratio and generalized likelihood ratio

Likelihood ratio (LR) methods are very popular in the framework of change
detection. In this subsection, we briefly introduce two basic versions of these
methods. We refer the interested reader to the excellent monograph by Bas-
seville and Nikiforov for details on the topics introduced in this and the next
subsections.

Given the system model

6o =0, Hy (no change)

_ 2\ g _ 0 , Ho
y=0+eeccN(©,0),0= {91, H; (change but constant)
the log likelihood ratio for data y; is defined by

p 1(y1) 1 1 _ (yi—0)?
s(yi) =In pzo(yz) =352 [(yi —00)% — (yi — 91)2} ,po(yi) = \/ﬁae -

(10.9)
where pg(y;) is the probability density of y for y = y;. The basic idea of the
LR methods can be clearly seen from the decision rule

(i) = < 0,Hy (6 = 0) is accepted
Yi) =1 > 0,H; (0 = 6y) is accepted

Note that s(y;) > 0 means py, (¥;) > po, (i), i.e. given y; the probability of
0 = 6, is higher than the one of § = 6. Thus, it is reasonable to make a
decision in favour of Hj.

In case that N samples of y, y;,i = 1,--- , N, are available, the (log) LR
is defined by

SN _ZS’ Zlnpé’1

1 .
P Do, (Vi) :2_2[ yi — bo) _(yi—91)]

01 — 0 01+ 6o
_ 4 Z(y : ) (10.10)

i=1

We distinguish two different cases: 6, is known and 6; is unknown.
Detection when 6,(> 0) is known and 6y =0
Note that

N N
S{V>O<:>Z(yi01;00)z<yi 92)>0<:>N2y1 91
i=1

=1
(10. 11)

and moreover
1 N o2
Nizglyi EN((),F) .

Thus, given allowed false alarm rate «, the following algorithm can be used
to compute the threshold.
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Algorithm 10.3 Computing Jip, if 61 is known

Step 1: Determine z, > 9—21 using the table of standard normal distribution,
1.e.
prob{z > zo,} =

Step 2: Set Jip,
o

i

It is very interesting to see the interpretation of condition (10.11). Recall

Jeh = Za (10.12)

N
that % > y; gives in fact an estimate of the mean value of y based on the
i=1
available samples. (10.11) tells us: if the estimate of the mean value is larger
than 971, then a change is detected. This is exactly what we would instinctively
do in such a situation.
Detection when 6, is unknown and 6y =0
In practice, it is the general case that #; is unknown. For the purpose of
detecting change in 6 with unknown 6, the so-called generalized likelihood
ratio (GLR) method was developed, where 6, is replaced by its mazimum
likelihood estimate. The maximum likelihood estimate of 6; is an estimate
achieved under the cost function that the LR is maximized. Thus, the max-
imum LR as well as the maximum likelihood estimate of 6; are the solution
of the following optimization problem

N
1
N _ 2 C_0.)2
ma S = e 7 3 o = (0= 0]

~ max —— %(Zy) ~ N, -y = (10.13)

1 1 EN 2
N N _ & i V= 4
gl_argné?xsl =Y Nzy“%?xsl ~ 20°N <Z—_1 yl)

N_ L2
— n})&lmxsl = %7/N (7). (10.14)

It is of practical interest to notice that

e the maximum likelihood estimate of € is the estimate of the mean value,
N
Y= % > Yi
i=1

e the maximum LR L

’ 202 /N
e a suitable threshold should be established to avoid high false alarm rate.

(gj)2 , is always larger than zero and thus

Note that the distribution of ﬁ () is x2(1). Therefore, given allowed

false alarm rate «, the following algorithm can be used to compute the thresh-
old.
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Algorithm 10.4 Computing Jy, if 01 is unknown

Step 1: Determine x,, using the table of x*—distribution with 1 degree of
freedom, i.e.

prob{x > x,} =«

Step 2: Set Jup,
Jth = Xo/2- (10.15)

For both the cases, the decision rule is

1=

gN _ < Jin, Ho (6 = 0) is accepted
> Jin, H1 (0 # 0) is accepted

which ensures that false alarm rate is not larger than a.
It has been theoretically proven that the LR based change detection leads
to a minimization of the missed detection rate for a given false alarm rate.
For the implementation of the above-described LR methods, computation
of SV is needed, which is

in case that 6; is known and otherwise

1 L
v (L)
i=1
10.2.3 Vector-valued GLR

In this subsection, the generalized likelihood ratio (GLR) test will be presented
in the vector form.
Given the system model

6y, no change

y:9+6,6€N(0»2)79: {01’ change

where ¥, 0, ¢ € R™ and the probability density of Gaussian vector y is defined
by
L —5y=0)" T (y-0) (10.16)

po.s(y) = me

Hence, the LR for given vector y satisfies
b (Y) L T o T 1
sy) =M = o [y =007 27 = 60) — (w =0T 27 = 0]

Under the assumption that 6 = 0 and N (vector-valued) samples of y,
Yk, k = 1,--- , N, are available, the maximum likelihood estimate of #; and
the maximum LR are given by
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N N
1
N _ T y—1 T 5
né?xsl né?xilZykE yk*;(ykfa) (yr. — 0 ]
N
I%ax—lZykTE yk—Zy;fE ye = N <9T2 10y - 207 27 NZ )]
k=1 i=1
1 1
_ - T y—1- ~ T -1 i—0 =
71%?}(2[]\71! Y7T'y—N(@g—061) X (y :|,y N;

. N
=0, = argr%aXS{V = § = max SN — ?ngE_lgj. (10.17)
1 1

Once again, we can see that also in the vector-valued case, the maximum

likelihood estimate of 61 is § = % > yk. Since ¢ is a n-dimensional vector
i=1
with
y e N(0,2/N)

NyT X1y is distributed as a x%(n). As a result, the following algorithm can
be used for computing the threshold if the decision rule is defined as

gN _ ] < Jin, Ho (6 = 0) is accepted
L7l > Jun, Hy (0 #0) is accepted -

Algorithm 10.5 Computing Jiy, if vector 01 is unknown

Step 1: Determine x,, using the table of x?— distribution with n degrees of
freedom, i.e.

prob{x > x,} =«

Step 2: Set Jup,
Jth = Xo/2- (10.18)

10.2.4 Detection of change in variance
Given the system model
y=0+ccR,ecN(0,02)

a number of samples of y, y1,---yn and a constant o > 0 (the significance
level), find a statistic and a threshold Jy, such that the change in variance
(assume that 02 > ¢3) can be detected with a false alarm rate smaller than
a.

We present two testing methods for our purpose.

Testing with the y? statistic given by Lapin

The statistic
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N —\2
N (N*l)SQ ) Z;(yt_y)

X1 O’% ) S N —1 ( )

has the standard x? sampling distribution with the degree of freedom equal
to N — 1. Thus, given «, the threshold is determined by (using the standard
x? distribution table)

Jin = X2 prob{x* > X2} = a. (10.20)
The decision rule is

N _ | <Jwm, Hy (0% < O’%) is accepted
XUZ > Jun, Hy (02 > 02) is accepted

Testing using GLR given by Basseville and Nikiforov
For this purpose, first consider LR, which is described by

N
SY =Y si= Zlnpol = Nl —+2 22% _
i=1

i=1 poo

)—\l\D

2

Thus, solving the optimization problem

N N
N 2
II}}_E%XSl ngx(Nln— oy 32; Z%) -

i=1
.2 N_ 1 - 2
alzargrr}ﬁxsl :NZyi (10.21)
1211 N ;X
SV =lnoy— 1+1n<N;y§> +T'3;y?

gives the GLR.

10.2.5 Aspects of on-line realization

The above-presented detection methods can be realized on-line in different
ways.

On-line implementation with a fixed sample size N

In this case, the decision rule, for instance for the GLR test, is defined by

gk+)N _ | < Jun, Ho (6 = 0) is accepted
EN+L 7 > Ju, Hi (0 # 0) is accepted

(k+1)N

k+1)N pe, (Vi)
Sl(cN+% Z SkN+i = Z In p0: W)’
= i=kN+1 ‘
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The observation will be stopped after the first sample of size N for which the
decision is made in favor of Hy (6 # 0). Note that in this case the maximal
(possible) delay is N x Ty, where Ty is the sampling time.

On-line implementation in a recursive manner

In practice, for the reason of achieving a sufficiently large sample size and
continuously computing the LR, GLR is often realized in a recursive form.
For this purpose, we define

k T k
1 —1 L or 1
ﬁ<2y> ¥ (Z(%»):ﬂzy,,cz Zyk
=1 i=1

k
Ey,k: Zyiak:]-v"'a
k=i

Sk

and write S**1 into

1 k+1 \ T k+1
Sk+1 - - ; 271 i
2k + 1) 2. 2
i=1 =1
1 1 T w1 1 T -1 T y-1
=3 |G e et G 2Ly Z Yt + Yk X ykea)
k k 1 1 T —1
- S o= b .
T T (S e ) e

Based on it, the following recursive calculation is introduced:

1 T
S — Sk 1 (1—a) (Ey,,cﬂ — §yk+1> Y Y1, 8% = 0(10.22)
2y k41 = 2y + Ykt

where 0 < oo < 1 and acts as a forgetting factor. In order to avoid X, . being
too large, i := %Eyyk can be replaced by

Urt1 = afr + (1 = a)yri1, 50 = 0.
As a result, (10.22) can then be written into

1—a)
2

T
Skl — o6k + (ykﬂ B yk+1> X e (10.23)

and, in case that 1 — « is very small, furthermore
SEH = Sk + gl 27 . (10.24)

Setting a counter
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An effective way to make the decision making procedure to be robust
against strong noises is to set a counter. Let

Tesks gy
be an indicator that the GLR is larger than the threshold, i.e.

I o 1,Sk > Ji
{SE>Jen} — O,Sk < i "

Then the stopping rule is set to be
N
te = min {k : ZI{Sk:—i>J”L} > 77}
i=0

where 7 is a threshold for the number of the crossings of threshold Jyp.

10.3 Criteria for threshold computation

In the last section, the threshold is determined in such a way that the admis-
sible false alarm rate will not be exceeded. In this section, we first study this
criterion from the theoretical viewpoint and then present a number of different
criteria for the threshold computation given by Mcdonough and Whalen.

10.3.1 The Neyman-Pearson criterion
Let us introduce notations
Py = prob(D; | Hy), Py, = prob(Dy | Hy)

for the probability that decision for H; is made (D;) in case of no change
(Hp) and the probability that decision for Hy is made (Dg) as the change is
present (Hy), respectively, i.e.

false alarm rate = Py

missed detection rate = P,,.

The scheme adopted in the last section for the threshold computation can
then be formulated as: Given an admissible false alarm rate P q, the threshold
should be selected such that

Pj = prob(D; | Ho) < P (10.25)

It is also desired that the missed detection rate is minimized under the condi-
tion that (10.25) is satisfied. It leads to the following optimization problem:
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min P,,, = minprob(Dy | H1) subject to Py = prob(D1 | Ho) < Py 4.
(10.26)
Note that
P, =prob(Dy | Hy) =1 — prob(D; | Hy)

and P; :=prob(D; | H;) means the detection rate, thus optimization problem
(10.26) can be equivalently reformulated as:

max P; = max prob(D; | Hy) subject to Py = prob(D; | Hy) < Pfq.
(10.27)
Optimization problem (10.27) is called Neyman-Pearson criterion. On the
assumptions that

e the conditional densities

po(y) :=p(Ho | y),p1(y) :==p(H1 | y)

are known
e there exist no unknown parameters in po(y), p1(y)

the so-called Neyman-Pearson Lemma provides a solution to the optimiza-
tion problem (10.27), which can be roughly stated as follows: Given pg(y)

(#0),p1(y) and Prq

o ifpi1(y)/po(y) < Jin, choose Hy
o if p1(y)/po(y) > Jip, choose Hy
e Jy, is determined by

prob(p1(y)/po(y) > Jin | Ho) = Pya- (10.28)

Following Neyman-Pearson Lemma, it becomes clear that the LR method
introduced in the last section for the case of both 6,8, being known ensures
a maximum fault detection rate. Moreover, the GLR provides us with a sub-
optimal solution, since p;(y) contains a unknown parameter (6; is unknown
and estimated).

10.3.2 Maximum a posteriori probability (MAP) criterion

Consider again the system model

0y, no change

y:0+676€N(072)59: {91, change

Assume that a posteriori probability @ is available, i.e.
Py = prob (6 =6y), Py = prob (6 = 6;) are known

then it turns out
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_pyyH)A _ py(y | Ho) Py

20 () ,po(y) =p (Ho | y) 2y )

pi(y) =p(Hi|y)

Now consider the (log) LR

H,)P H P
_w2® @I HA ) py(y [ Hy) P

s po(y) py(y | Ho)Po py(y | Ho) Py

The MAP criterion results in a decision in favour of Hj if s(y) = In Z;—ggg > 0,

otherwise Hy. Thus, following the MAP criterion, the threshold is computed
by solving

, H P

In py(Jun | H1) +In =

Dy (Jen | Ho) Py

For instance, for the above-given system model we have

0. (10.29)

Dy (Jen | Hy) Py 01 — 0o < 91+90> Py
In—“4———< +In— = Jen — +1In— =
py(Jth | H()) PO 0’2 i 2 PO
Dy(Jen | Hi) P 61 — 6o < 01 +90> Py
In————<4+ln— =0 <= Jen — =In— =
py(Jin | Ho) P, 02 g 2 2
2 Py 0,+06g
Jin In —2
O e 2

To determine the false alarm rate, the probability
prob(y > Ju, | Ho)

will be calculated.

10.3.3 Bayes’ criterion

Bayes’ criterion is a general criterion which allows us to make a decision among
a number of hypotheses. For the sake of simplicity, we only consider the case
with two hypotheses, Hy and H;.

The basic idea of the Bayes’ criterion consists in the introduction of a cost
function of the form

J = CooP(Dy | Ho)Py + ChoP(Dy | Ho)Py + Cor P(Dy | H1)Py
+C1P(Dy | Hy)Py (10.30)

where Py =prob(Hy), P; =prob(H;) and are assumed to be known, C;j,4,j =
0,1, is the "cost" for choosing decision D; when Hj is true. Thus, it is rea-
sonable to assume that

Vi,j Cij7i¢j > Cy;.
The decision rule is then derived based on the minimization of the cost func-
tion J. For this purpose, (10.30) is re-written into
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J = Coo (1 —P(D: | Hy)) Po+Co1 (1 —P(Dy | Hi)) P+
Cl()P(Dl | Ho)P() + CHP(Dl ‘ Hl)Pl

= CooPo + Co1 P1 + / [Po (C10 — Coo) po(y) + P1(C11 — Co1)p1(y)] dy

where po(y), p1(y) stand for the densities of Hy, Hy. It turns out that

Py (C10 — Coo) po(y) + P1(C11 — Con)p1(y) < 0 =
p1(y) S Py (Cro — Coo)
po(y) = Pi(Cor — C11)

will reduce the cost function. As a result, the threshold is defined

Py Cio — Coo
T = In 20 4 g 20~ G0
th nP1+n001—C11

and the decision rule is

s(y) =In

p1(y) { > Jin =1In % +1In &0=Cu decision for H;

£ Co1—C11 )
po(y) | <Jw=InF +1n G0=Cw  decision for Hy

e
Co1—C11’

10.3.4 Some remarks

It is evident that the main difference among the above-introduced methods
consists in the fact that using Neyman-Pearson strategy the prior probabilities
of Hy, H, are not needed, while Bayes’ criterion and MAP criterion are based
on them.

It is remarkable that all three methods lead to the computation of (log)
LR. Neyman-Pearson scheme is mostly suitable for the solution of the fault
detection problem formulated as: Given an admissible false alarm rate, find
a threshold and a decision rule such that the missed detection rate is mini-
mized, although the GLR may only give a sub-optimal solution. On the other
side, the Neyman-Pearson scheme is a traditional statistical method whose
core is performing hypotheses tests towards decisions consistent with sample
evidence. In against, Bayes’ and MAP schemes allow to make a decision even
if the usual sample data are not available. In particular, Bayes’ criterion takes
into account the possible "costs" for a decision. This will make the whole
decision procedure more reasonable.

It should be pointed out that the Bayes’ scheme can also be extended to
the case where the probabilities of Hy, H1 are not available. In this case, the
worst case due to the unknown Py, Py = 1 — Py should be taken into the
optimization procedure. For instance, instead of minimizing J in (10.30) a
so-called minmax optimization problem is solved:

max minJ =
Po,Pi=1-Py Cjj

max min CooP(Dy | Hy)Py 4+ C1oP (D1 | Ho)Po+
Py,Pi=1-Py C;; CmP(DO | Hl)P1 + 011P(D1 ‘ Hl)Pl ’
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10.4 Application of GLR testing methods

The methods presented in this section are in fact the application and extension
of the above introduced methods to the solution of fault detection problems
met in linear dynamic systems.

10.4.1 Kalman filter based fault detection
Consider an LTI system given by

xz(k+1) = Az(k) + Bu(k) + Ef f (k) + n(k) (10.31)
y(k) = Cx(k) + Du(k) + Fr f(k) + v(k) (10.32)

where n(k) € N (0, X)), v(k) € N(0,X,) are independent white noises. Using
a steady Kalman filter introduced in Section 7.2 an innovation process

r(k) = y(k) — Ca(k) — Du(k) (10.33)

is created with white Gaussian process (k) € N(0,%,), X, = ¥, + CYCT,
when f(k) = 0. We are interested in the problem of detecting those faults
whose energy level is higher than a tolerant limit Ly, i.e.

170, = silz_;f%—of(k—i):{i P ) 103

by using r(k) as the residual signal and on the assumption that r(k — i), =
0,---,s, are available for the detection purpose. Next, we apply the GLR
scheme to solve this problem.

Write the available residual data into a vector

r(k—s)
r(k—s+1)
Tk—s,k = :
r(k)
It turns out
Th—sk = Tk—s,k,0 t Tk—sk,f (10.35)

where ry_s o0 represents the fault-free and stochastic part of the residual
signal o
kas,k,o e N(O7 ZT)7 2’!‘ = dlag (2’1‘7 e 72’!‘)

and 75—k, is described by

Th—sk,f = Ase(k — 8) + My s fr—sk
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with
flk—ys) c Fy 0
fo—s e = JAs = C:A My o = CEf
f(:k:) oA cAsz—lEf céf fgf

e(k) denoting the mean of the state estimate delivered by the Kalman filter
(see Section 7.2), i.e.

e(k+1)= Ae(k)+ Esf(k),A=A—LC,E; = Ey — LFy (10.36)

and L the observer gain given by (7.70). We assume that e(k) = 0 before the
fault occurs.

For our purpose, the GLR for the given model (10.35) is computed as
follows

sup p”flc—s,k“>Lf(rk—s,k)

k
25 g = 21 ON>Ls _
SUD Py f_. <Ly (Th—s.k)
If (R <Ly
— sup [— (Th—sk — flcfs,k)T (Th—s,k — kas,k)} (10.37)
lfF (R, <Ly
+ sup [— (Th—s.k — fk—s,k)T (Th—s,k — Fk_s,k)} (10.38)
lf () >Lf

whose solution can be approached by solving optimization problems (10.37)
and (10.38) separately. To this end, we first assume that e(k — s) is small
enough so that

Thes kb = Thesk,f = Mg o sk (10.39)

Note that
1
2
£ = mfkT_s,kfk—s,k =
IR < L3} <= fF o pfomsik < (s+1) L} = L3 (10.40)

we have for || f(k)|l, < Ly
fk—s,k,o =arg sup {— (Pe—s.k — fk-—s,k)T (re—sk — fk-—s,k)}
lf(R)II <Ly

=arg inf [(kas,k — Mf,sfkfs,k)T (Ph—ss — Mf,sfkfs,k)}

g 2
mfk_skakfs,kgllf

and for | f()], > Ly
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R B T B
fkrfs,k,l = arg sup {— (T‘kfs,k - kas,k) (T‘krfs,k - kas,k)}
Lf ()l s>Ly

= arg inf {(Tk-—s,k- — My sfosi)’ (reesi — Mf,sfk-—s,k-)] .

1 T 2
Tl p fo—s e >L7%

On the assumption that My , is right invertible, i.e. of full row rank, we have
. -1
fr—s,k,0 = M;?F,s (Mf,sM]z:s) Th—s,k
-1

e T T 7

g o (Mf,sMﬁs) Thesk < Lf‘-,

L
Tk—s,k ! —
\/qu;—s,k (Mf,stT,s) Th—s,k

-1 N
lf rlz—s,k (MfSM}:S) rk*&k > L?a and

Fresko = Mf  (My M)

. —1
fr—s k1 = M;ZS (Mf,sMJZ:S) Th—sk
1 B

if T%—Ls,k (MfysM}js) Tk—s,k > L?ﬁ

Ef + €

Tk—s,k —
T T
\/rk—s,k (vast,s) Tk—s,k

—1 _
if r,{_&k (Mf}SMfT’S> Thesk < Lfc, where € > 0 is an arbitrarily small con-

Frespn = MfT,s (Mf,sM}js)i

stant. It turns out

2
E —
—T‘E_&k 1— = f+ET = kas,kvr S L?g
\/kas,k(vast,s) Tk—s,k

2

Toell- Ls o T > L2

/rk_57k ( \/Tgfs,k(Mf,st’I:s)ilrk—s,k, " . d
(10.41)

28k—s i =

where .
F=ri_ g (MpsMfy)  Ths.

As a result, the decision rule follows (10.41) directly and is described by
—1 —
o (MpaMF )™ rioax < L% Hy (10.42)
-1 _
rhox (Mg oMP)  ri_se > L3 : Hi. (10.43)

-1
Thus, rf_, , <M f7sts) Tk—s,x builds the evaluation function (testing sta-

tistic) for our fault detection purpose.
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Next, we study the following two problems: (a) given residual evaluation

-1 _
function r%ﬁs}k (Mf,SM}jS) Tk—s,k and threshold Jy, = L2, find the false
alarm rate defined by

-1
o = prob (Tffs,k (Mps M) rhmsi > Jun | I F (Rl < Lf) (10.44)

(b) given residual evaluation function r{_, (M f7sts> Th—sk and allow-
able false alarm rate «, find the threshold. To solve these two problems, let

~ —1/2
Thesk = 24y / Thes k-

It holds

T 7\~ 1 ~T ~ -1
Th—s,k (Mf,st 9) Th—sk < Thes kTh—s,k7

v = ( My ML S 1/2) (10.45)

min

with Amin ( r 1/2Mf,stT7$§;1/2) denoting the minimum eigenvalue of ma-

trix ET_ 1/2 Mf7SM}:SZ~'T_1/2. Thus, we can estimate the false alarm rate o by
means of
o < prob (Fh_ jFr—si > vJen | [|F(B)]l, < Ly) . (10.46)

Considering that in the fault-free case 7:{75, wTk—s % is noncentrally x? distrib-
uted with noncentrality parameter

fgls;ki?”_1/2Mf:SMJ¥jSL~1T_1/2fk:78,k < I_’?)\max ( r 1/2Mf SMT 1/2)

and the degrees of the freedom equals to the dimension of 7;_s j, the proba-
bility in (10.46) can be computed using the noncentral x? distribution.
To solve the second problem, we can directly use the following relation

prob (XQ(dim(Fk_s,k),Sz) > Jth> =« (10.47)

6" = Dimax ((E71/2MMF 57117

for the determination of Jy, by given ¢, where dim(7x—_s k), 62 stand for the
degrees of the freedom and the (maximum) non-centrality parameter of the
non-central x2 distribution respectively.

Algorithm 10.6 Threshold computation

Step 1: Computation ofL : Amax ( ' 1/2M MT o 1/2
Step 2: Determination of Jy, according to (10,4’7),

Algorithm 10.7 Computation of false alarm rate
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Step 1: Computation of VE?- and I_/?-/\max (i’flﬂMf}SMfT’si’flm)
Step 2: Computation of prob(xg(dim(fk,&k), 52) > 'yl_/?c) )

Algorithm 10.8 on-line realization
Step 1: Computation of evaluation function

’r%lsqk (MfSM)Ts) - Tk—s,k

1
Step 2: Comparison between i_ (MﬁstT,s) Th—s,i; and threshold Jyp,.

Remember that the above solution is achieved on the assumption of
(10.39). We now remove this assumption. Let

[e(k —s)]
£k —s) C Fy 0
- . - CA CE
fr—sk = : yMys = . . !
: L o 0
f(k) CAs CASilEf CEf Ff

and rewrite 7j_s 5 into

Thesk = Thesk,f = M¢ s sk

Since e(k — s) is driven by the fault, we replace our original problem formu-
lation (10.34) by

1 < L~ _
|7a—s ]l = \/mf,{sﬁm_s,k - { < Ly, H, (fault-free) (10.48)

> Lz, Hy (fault)
where L7 is a constant determined by
Ly =|c(z1- )7 By Ly,

That means, we now define the fault detection problem in terms of the influ-
ence of the fault on the mean of the residual signal. Applying the GLR to the
given model (10.35) yields

SUD Pl i[> L (Th—s,k)

Fh—s,kll>Lr
984y = 2In Lokl _
SUD  Pljrs | <L (Ths,k)
1Pk —s, k1< Lr
— sup |:_ (rk—s,k - fk—S,k‘)T (Tk—s,k - fk—s,k‘)j| (1049)
[|7k—s, kIS L7
+ sup [* (Th—sk — fk—s,k)T (ro—sk — fk_s’k):l ) (10.50)

|7k —s,k||[> L
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Along with the way of solving (10.37) and (10.38), we can find out that for
[7k—s.ll < L7

S _ _ T _
Th—s ko0 = arg  sup — (Thesk — Thesk) (Th—sk — Th—s,k)
17k —s kIS L

=Tk—s,k

if rg_s,krk,syk < L% and

o _ T _
Th—sko0 = arg  sup {— (Theso — Th—s,k) (Th—s,k — Tk-_s,k-)]
|7k —s,k||<Lp

Lz

= Thes ke
\ Th—s,kTk—sk

if r%ﬁsykrk_s,k > L2, as well as for IFr—s.ill > L7

~ _ _ T _
Tk—s,k,1 = arg sup - (Tk—s.,k - kas,k) (kas,k - kas,k)
|7k—s,k||>L#

= Tk—s,k
e T 2
if Thes i Th—sk > Lz and
a _ _ T _
Tk—s,k,0 = aI'g sup - (rkfs,k - kas,k) (Tchs,k - kas,k)

|7k —s,k||> L
LF +e€

= Tk—s,kT—
A Th—s,kTk—sk

if rkaS’ wTk—sk < L2, where € > 0 is a arbitrarily small constant. It leads to

2
T Lyt T 2
—Thesk |1 — Th—sk Th—s kTh—sk < L
’ VTk—s,kTk—sk ?
28k—sk = 2 .
T Ly T 2
Thesk | 1 = === Th—sh>ThsiTh—s,k > L7
’ Vk—s,kTk—sk ’

(10.51)

Thus, the decision rule can be defined as
ThosiTh—s) < L7 Ho (10.52)
Th s kTh—sk > L2 1 Hi (10.53)

with TkT_s,kafs,k as the testing statistic. Similar to the study in the first part
of this section, we can introduce

~ —1/2
Froesk = 2 2o

and, based on it, estimate the false alarm rate a by applying decision rule
(10.52) and (10.53) or determine the threshold for a given allowable false
alarm rate «, as described in the following two algorithms.
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Algorithm 10.9 Computation of false alarm rate
Step 1: Compute
v = min A (f) ,(_53 = ’yLz
Step 2: Compute
a < prob (XQ(dim(Fk,svk),gi) > WL%) . (10.54)
Algorithm 10.10 Threshold computation

Step 1: Compute 57%
Step 2: Solve

prob (XQ(dim(fk,s’k),gi) > Jth) =« (10.55)
for Jip.

10.4.2 Parity space based fault detection

Applying the parity space method to system (10.31) and (10.32) yields

D 0 u(k — s)
y(k =) cB . :
Thsk =V : - . - ' 10.56)
: L0 :
y(k
“ CAS'B... CBD| | u(k)
= My fr—sk + €r—sk (10.57)
with
F; 0
My =v | O
CASilEf CEf Ff
v(k—s) 0 n(k — s)
€h—s,k = + C E e N(0,).
v(k)) CAs=L... C 0 n(k)

Again, we are interested in detecting those faults whose energy level is higher
than a tolerant limit Ly, i.e.

1, = |y 7= 01k ) = A

(10.58)
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Comparing (10.57) with (10.35) makes it clear that we are able to use the same
method to solve the above-defined fault detection problem. Thus, without a
detailed derivation, we give the major results in the following two algorithms.

Algorithm 10.11 Threshold computation

Step 1: Compute 5% = I)}Amax (E‘l/QMf,sM}jSE_lﬂ)
Step 2: Solve
prob (XQ(dim(fk,svk),c_f) > Jth) =«
for Jip,.

Algorithm 10.12 Computation of false alarm rate

_ P B B
Step 1: Compute VL?C and 6" = L?c)\max (E 1/2Mf_,stT7$E 1/2>
Step 2: Compute the false alarm rate prob(xg(dim(ﬁg,&k), 52) > 'yi}) .

In the above two algorithms, the parameters v, E? are identical with the
ones given in (10.45) and (10.40), and vector 7j_s j is given by
Frosk =2 2 rp g g
Remark 10.2 The above results have been achieved on the assumption that
My s is right invertible. In case that it does not hold, we can use the method
described in Section 7.3 to replace My s by its approzimation which is then
invertible.

Example 10.1 To illustrate the application of Algorithm 10.6, we consider
three tank system DTS200 given in Subsection 3.7.3. In order to get more
insight into the system design and threshold computation, we design two dif-
ferent Kalman filters, based on model (3.66). The first one is a Kalman filter
driven only by one sensor (the level sensor of tank 1). Such a residual gen-
erator is often integrated into a bank of residual generators for the isolation
purpose, see Section 13.5.1. Under the assumption that

Yy =01I3,%,=0.1
the observer gain is given by

0.3816
L = ]0.0452
0.1107

Suppose that Ly = 0.05 and the length of the evaluation window s = 15, then
we get ~
L3 A mao (2,12 My MF 271%) = 0.3787.

r
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Fig. 10.2 Testing statistic and the threshold: one sensor case

In the next step, Jin is determined according to (10.47). Setting o = 0.05

results in
Jin = 25.6222.

Fig.10.2 provides us with a simulation result of the testing statistic and thresh-
old by a offset fault (5em) in sensor 1 at t = 12sec. The second Kalman filter
is designed using all three sensor signals. For X, = X, = 0.113, we get

0.3813 0.0000 0.0007
L = [ 0.0000 0.3804 0.0007
0.0007 0.0007 0.3806

On the assumption Ly = 0.1 and length of evaluation window s = 15, it turns
out

72 —-1/2 T s1—1/2

L3 Amax (5,712 My MT 571/?) = 15213,

T T

On the demand of o = 0.05, we have
Jip = 27.4760.

Fig.10.3 gives a simulation result of the testing statistic and threshold by the
same offset sensor fault (f = bem,t = 12sec) like the last simulation. Com-
paring both the simulation results, we can evidently see that fault detectability
is enhanced with more measurements.
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Fig. 10.3 Testing statistic and the threshold: three sensors case
10.5 Notes and references

In this chapter, essentials of statistic methods for the residual evaluation and
decision making have been briefly reviewed. In Section 10.2, basic ideas, im-
portant concepts and basic statistic testing tools have been introduced. For
the basic knowledge and elementary methods of probability and statistics, we
have mainly referred the book by Lapin [92]. By the introduction of the LR
and GLR technique, the monograph by Basseville and Nikiforov [10] serves as
a major reference.

The discussion in Section 10.3 about criteria for threshold computation is
intended for providing the reader with deeper background information about
the LR method and other useful alternative schemes. It is mainly based on
[103].

From the FDI viewpoint, Section 10.4 builds the main focus of this chapter.
Along with the ideas presented in [10] and equipped with the skill of applying
the GLR technique to solve change detection problems learned from [10],
we have introduced two methods for detecting faults in stochastic systems.
They serve as a bridge between the model-based FDI methods presented in
the previous chapters and the statistical methods, and build the basis for an
extended study in the forthcoming chapter.

We would like to emphasize that the statistical methods introduced in this
chapter is only a small part of the statistical methods based FDI framework.
For more detailed and comprehensive study, we refer the reader to the excellent
monographs by Basseville and Nikiforov [10] and by Gustafsson [69] as well
as the frequently cited book [93]. There also are a great number of excellent
papers, for instance [7, 8, 9, 91, 157].



11

Integration of norm based and statistical

methods

In this chapter, we study the integration of norm based and statistical methods
to address FDI in systems with both deterministic disturbances and stochastic
uncertainties. Three schemes with different solution strategies and supported
by different tools will be presented. The first scheme deals with FDI in systems
with deterministic disturbances and stochastic noises, while the second and

third ones address systems with stochastically varying parameters.

11.1 Residual evaluation in stochastic systems with

deterministic disturbances

As sketched in Fig.11.1, in this section we continue our study started in the

last chapter.

stochastic noise ———»
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actuators

% faults

input

process
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stochastic
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Fig. 11.1 FDI in systems with deterministic disturbances and stochastic noises
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We consider systems modelled by

z(k+1) = Az(k) + Bu(k) + Eqd(k) + E¢ f(k) + n(k) (11.1)
y(k) = Cx(k) + Du(k) + Fad(k) + Fy f(k) + v (k). (11.2)
The terms Eyd(k), Fyd(k) represent the influence of some deterministic un-

known inputs with known distribution matrices E4, F; and vector of unknown
inputs d(k) € RF¢, which is bounded by

with s denoting the length of the evaluation window. n(k) € R"™,v(k) € R™
are assumed to be discrete time, zero-mean, white noise and satisfy

o (i) r o) - (4 2o

Further, n(k),v(k) are assumed to be statistically independent of the input
vector u(k).

Our objective is to detect the fault vector f(k) € R/ if it differs from
Z€ro.

11.1.1 Residual generation

For the residual generation purpose, we use, without loss of generality, an
FDF

#(k+1) = (A— LO)&(k) + (B — LD) u(k) + Ly(k)
r(k) = V (y(k) — Ci(k) — Du(k)) € R™

which yields

e(k+ 1) = Ae(k) + Ead(k) + By f(k) + (k) (11.3)
r(k) =V (Ce(k) + Fad(k) + Fr f(k) + v(k)) (11.4)

with

e(k) = x(k) — 2(k),n(k) = n(k) — Lo(k)
A=A-LC,Ey= E,— LF,;, Ef = Ef — LF}.

The observer matrix L and post-filter V' can be selected e.g. using the unified
solution or Kalman-filter scheme.

In the steady state, the means of e(k),r(k),e(k) = E(e(k)),7(k) =
E (r(k)), satisfy
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e(k+1) = Ae(k) + Eqd(k) + Ef f (k) (11.5)
7(k) =V (Ce(k) + Fyd(k) + Fr f(k)). (11.6)

For our purpose, we write 7(k) into
(k) = ra(k) + 7y (k)
with
ra(z) =V (c (21— A) " Eq+ Fd> d(z)
rp(2) =V (c (21— A) " By + Ff) £(2).

Note that in the fault-free case the mean of the residual signal is bounded by

k

lrally_sse = x| S r2()ra(d) < Hv (c («I - A)' B, +Fd)H 54:= 0y,
i=k—s
(11.7)
for all k. The covariance matrix of r(k) is given by
E (r(k) — 7(k)) (r(k) — 7(k))" =V (CPCT + R) VT (11.8)

where P > 0 solves
APAT — P+ X =0

S =[I-L] [s%fz} [_éT] — Q- LST— ST + LRI,

11.1.2 Problem formulation

Along with the lines in Section 10.4, we formulate two problems for our study.
Problem 1: Given {r(i),i = k —s,- -+ , k}, find aresidual evaluation func-
tion (testing statistic), ||7||, , a threshold Jy, and compute the false alarm rate

defined by
a = prob {||r(k)||, > Jwm | f=0}. (11.9)

Problem 2: Given {r(:),i =k —s,---,k}, an allowable false alarm rate
a and the residual evaluation function (testing statistic), ||7||, , as defined in
Problem 1, find a threshold .J;;, such that

prob {||r(k)||, > Ju | f =0} < a (11.10)

Both of these two problems are of strong practical interests.
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11.1.3 GLR solutions

Below, we shall use the GLR method to solve the above two problems. For
this purpose, the GLR for given r(i),i = k — s, -+ , k, is computed. It results
in

k
d R S 1§ Py#0(r(i))
25}:—3 =2 Z s; = 2log M=ok =Trd> —
o sw 1 pra(r(i)
Irally o <0rg f=0i=h—s
k
= _ sup — Z (Ard(i))T Ary(3)
HTde,S kférd,f:O i—h—s
k
* o Z (Ara ()" Ara s(i) (11.11)
Iralle s Seg 0 | 15
where
1 ) )
prro(r(i)) = 7m67%(Ard=f(l))TATd,f(l)
(2m)™r
1 ) )
pr=o(r(i)) = —m,e_%(ATd(l))TATd,f(l)
2m)"

Arg(3) =r(i) —ra(t), Arq 5 (i) = (i) — rq(i) — re(i).
Introduce the notations

ATg k—sk = Thesk — Tdk—s,ks ATd f k—sk = Th—s,k — Tdk—s,k — Tf k—s,k

r(k—s) ra(k — s) rf(k—s)
Th—s,k = JTdk—s,k = ST f k—s,k =
r(k) ra(k) ry(k)
then we have
258 o= — sup [— (Argp—si)” Am,k—s,k]
|‘Td|‘k—,§7k:§(srdf:0
+ sup {— (Ard,f,kfs,k)T Ard,f,kfs,k] . (11.12)

”"‘d”k—_ak S‘STd ,f#o
Moreover, the boundedness of r4(k) gives

k
g shTdk—sk= > Tq()ra(i) <7,

i=k—s
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Next, we compute the LR estimate for rqr—s x :
P = A A
Td,k—s,k,0 — aIg sup —( Td,kfs,k) Tdk—s,k
o ks kTd,k—s k<02
fr—s,6=0
. T 2
= Th—sky i Thg g Th—sk < 0y,
R T
Pd k—s,k,0 = aIg sup [* (Arg g—s,k) ATd,k—s,k}
Tik,s’krd,k—s,kgt;id
fr—s,k=0
O
d : T 2
= kas,kT—ﬂf Thes kTk—sk = Ord
\ Tk—s,kTk—s,k
p = A A =0
Tdk—s,k,1 = arg sup *( Td,f,k—s,k) Td, fk—sk| =
Tik,s’krd,k—s,kgt;id
Fr—s,k70
as well as for ¢ s 1
p - A A -
Pfh—s k1 = aIg sup —(Arq fr—sk) ATdfr—sk| = Th—sk-
rdT,k,s,krd,k_s,kSt?fd
fr—s, 170
As a result, we have
T 2
. 0 for Tk—s,krk*&]; <4,
25 =
k—s T Ory T 2
Tlcfs,krk*&k 1- T . for Tlcfs,krkfs’k > 5rd
k—s,kTk—s,k
(11.13)

Recall that in the context of the GLR scheme a decision for a fault will be
made if S§__ > 0. Thus, it follows from (11.13) that the probability of a false

alarm (the false alarm rate) equals to

o = prob (S,’jfs > 0| foesk = O) = prob (7”1{75,1@7“16—5,1@ > (5zd | fro—sk = O) .

(11.14)
In this way, rkas’krk_&k defines a residual evaluation function (testing sta-

tistic) and 2 , the threshold. For the computation of the false alarm rate, we
need a further study on the testing statistic r,{_&krk,s,k. Remember that in

the fault-free case
Vo(k — s) 0 n(k — s)

: ve . :
Argp—sk = ] + . . . . =

Vo(k) VCA1 ... VC O (k)
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[1(k —s)]
0V 0 v(k =)
VC —VCL . E : cN(0,2)
) : ) . . 0 :
VCAS—! —VCAS L ... VC —-VCL 0V n(k)
| o(k)
with
o S ST 5
Z‘_szag<[§2TR},'“>[5§2TR}>PT (11.15)
0oV 0
. Ve —-VCL
0

VCA*>~Y —VCA*~'L...VC —-VCL 0V
Thus, for f = 0, r]_ s, kE Tk—sk is noncentrally x? distributed with the
degree of freedom equal to mr(s + 1) and the noncentrality parameter
r(r{k_s,kff Tdk—s,k- Consider that
o = prob (T,{_sy“k_s E > 53d | fo—sk = O)
< prob (Tkas’ka Thesk > )\mix (f)) 53,1 | froesk = 0)
< prob <m5tx7"kT_sykZ~' Thosk > Ao (f]) 53d | fo—sk = 0)

=1 — prob (mgxrgs,ki’ Thesk < )\m;x (ff) 6£d | fo—sk = O> .
Hence, « is bounded by
a <1-—prob (X2 (mT(s + 1), (E‘) 5§d) <ML (2) 5§d) (11.16)

where y? (mT(s +1), A1 (E‘) 52 ) denotes x? distribution with the degree of

’ min

the freedom equal to m,(s+1) and the noncentrality parameter A1, (i‘) 52 i

As a result, Problem 1 is solved.
The reader may notice that in (11.16)

noncentrality parameter A1 ( ) (52 > threshold A1 (ZN‘) 62 i

It will cause a high false alarm rate. To overcome this difficulty, we can simply
substitute r,{_s,krk,sﬁk by

T &1
Thsk>  Th—sk
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as the testing statistic. Although additional on-line computation is now
needed, we have

a < prob (m(?xrg_&ki'lrk_&k > Aax (271) 53[1 | fo—s ik = 0>

=1—rprob (x* (m,(s +1),62,) <62)) (11.17)

' Yrg

which ensures that the noncentrality parameter is equal to the threshold.
We summarize the major result in the following algorithm.

Algorithm 11.1 Computation of a for given statistic and threshold

Step 1: Compute 5id according to (11.7)

Step 2: Form X according to (11.15)
Step 3: Compute prob(x? (my(s + 1),(5%) < 5fd) and finally the bound of o
using (11.17).

Algorithm 11.2 on-line realization

Step 1: Compute testing statistic
rlzls,ki‘_lrkfs,k
Step 2: Comparison between the testing statistic threshold Jyn, = 6fd.

Now, we solve Problem 2 for given testing statistic rk kZ‘ Th—sk and
an allowable false alarm rate a. It follows from (11.17) that the threshold Jy,
can be determined by solving

a =1 — prob (X2 (mT(s + 1), A0 (f?) 5fd) < Jth> . (11.18)
It leads to the following algorithm.
Algorithm 11.3 Threshold computation

Step 1: Compute 6zd
Step 2: Determine Jy, according to (11.18).

11.1.4 Discussion and example

We see that the residual evaluation function is the statistic 7’{78, kib\rk,s’k
which measures the weighted energy level of the residual signal over the time
interval (k — s,k). It is interesting to note that this function is similar to
r%ﬁsﬁkrk_s,k, the one used in the norm based residual evaluation methods.
On the other hand, different from the well-established norm based methods,
where the threshold is set to be 5? ,» the threshold proposed here is determined
in the statistical context as defined by (11.18).
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The achieved results evidently reveal that, both in the norm based methods
and the approach presented in this section, the boundedness of §,, and the
covariance of the residual signal given in (11.8) play an important role in
threshold determination, as we can see from (11.18). This is a convincing
argument for a system designer to make use of the degree of the design freedom

offered by the observer to achieve an optimal trade-off between A1 (f] ) 5fd
and Jy,.

Example 11.1 We continue our study in Example 10.1, where a fault detec-
tion system is designed for the three tank system benchmark. Now, in addition
to the noises, offset in the sensors is taken into account and modelled as un-
known inputs by

Fyd,Fy=1 and d € R>.

It is assumed that d is bounded by 64 = 0.05. Our design objective is to de-
termine the threshold Jy, using Algorithm 11.3. For the residual generation
purpose, we use the same two Kalman filters designed in Example 10.1, i.e.
(a) a Kalman filter driven by the level sensor of tank 1 (b) a Kalman filter
driven by all three sensors. Under the same assumptions with o = 0.05, we
have

Case (a) with one sensor: Jy, = 26.3349
Case (b) with three sensors: Jy, = 68.0159.

Fig.11.2 and Fig.11.3 show the simulation results of the testing statistic and
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Fig. 11.2 Testing statistic and the threshold: one sensor case
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Fig. 11.3 Testing statistic and the threshold: three sensors case

threshold by an offset fault (5em) in sensor 1 at t = 12sec, with respect to the
designed F'D systems.

11.2 Residual evaluation scheme for stochastically
uncertain systems

In Section 8.5, we have studied the residual generation problems for stochasti-
cally uncertain systems. The objective of this section is to address the residual
evaluation problems, as sketched in Fig.11.4.

11.2.1 Problem formulation

As studied in Section 8.5, we consider system model

z(k+1) = Az(k) + Bu(k) + E4d(k) + E; f (k) (11.19)
y(k) = Cx(k) + Du(k) + Fud(k) + Fy f(k) (11.20)

where

A=A+ AAB=B+ AB,C=C+ AC
D=D + Zﬁl), Z;d =FE;+ Z&l;,lii =F;+ AF

AA, AB, AC, AD, AE and AF represent model uncertainties satisfying
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Fig. 11.4 FDI in systems with deterministic disturbances and stochastic uncertainties

l
AA AB AE A; B; E;
[Ac AD AF} =2 <[c D, Fi}pi(k)> (11.21)
i=1
with known matrices A;, B;,C;, D;, E;, F;,i = 1,---1, of appropriate dimen-
sions. pT(k) = [p1(k) --- pi(k)] represents model uncertainties and is ex-

pressed as a stochastic process with

p(k) = E (p(k)) = 0,E (p(k)p" (k) = diag(o1,--- ,01)

where 0;,i = 1,-- 1, are known. It is further assumed that p(0), p(1),--- , are
independent and x(0),u(k),d(k), f(k) are independent of p(k).
For the purpose of residual generation, an FDF

#(k+1) = Az(k) + Bu(k) + L (y(k) — g(k)) (11.22)
§(k) = Ci(k) + Du(k),r(k) =V (y(k) — §(k)) (11.23)
is used. The dynamics of the above residual generator is governed by

zr(k+1) = Ayz, (k) + Bru(k) + Erd(k) + Ey £ f (k) (11.24)
r(k) = Crazy (k) + Dyu(k) + Frd(k) + Fr p f(k) (11.25)

o= [y o] = [0
and the mean of (k) is

é(k+1)=(A—-LC)e(k) + (Eq — LFy)d(k) + (Ey — LFy) f(k) (11.26)
7(k) =V (Ce(k) + Fyd(k) + Fr f(k)). (11.27)
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The matrices A, B,,Cy, D,, E,, F,,E, ; and F, ; in (11.24)-(11.25) are de-
scribed in Section 8.5. We assume that the system is mean square stable.
In the remainder of this section, the standard variance of r(k) is denoted
by
or(k) = E [(r(k) = 7(k))" (r(k) — 7(k))] = E [ey (k)er (k)]

with
er(k) = r(k) — (k).

It is the objective of our study in this section that a residual evaluation
strategy will be developed and integrated into a procedure of designing an
observer-based FDI system. This residual evaluation strategy should take into
account a prior knowledge of the model uncertainties and combine the statistic
testing and norm based residual evaluation schemes. Note that the residual
signal considered in the last section is assumed to be a normal distributed.
Differently, we have no knowledge of the distribution of the residual signal
addressed in this section.

The problems to be addressed in the next subsections are

selection of a residual evaluation function and
threshold determination for the given residual evaluation function and an
allowable false alarm rate a.

11.2.2 Solution and design algorithms

A simplest way to evaluate the residual signal is to compute its size at each
time instant and compare it with a threshold. Considering that r(k) is a
stochastic process whose distribution is unknown, it is reasonable to set the
threshold equal to

Jen = \/sup T (k)F(k) + \/5 sup o,.(k) (11.28)

d,f=0 du

and define the decision logic as

J =\/rT(k)r(k) > Jy, = fault (11.29)

J = \/rT(k)r(k) < Jy, = fault-free (11.30)

where 5(> 1) is some constant used to reduce the false alarm rate. In (11.28),
the first term represents the bound on the mean value of the residual signal in
the fault-free case, while the second term, considering the stochastic character
of r(k), is used to express the expected derivation of (k) from its mean value.

It is evident that the above decision logic with threshold (11.28) may result
in a high false alarm rate if the standard variance of r(k) is large. For this
reason, we propose the following residual evaluation function
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1 _ ! 1 .
J:\I<N2r(k—z)) <NZT(]€—Z)> (11.31)

for some N. In fact

is the average of the residual signal over the time interval (k — N, k), which is
influenced by both the additive and multiplicative faults. The following theo-
rem reveals an important statistical property of evaluation function (11.31).

Theorem 11.1 Given system model (11.24)-(11.25) and suppose that the
system is mean square stable, i.e. B (z] (k)z,(k)) and E [l (k)es (k)] with

ea(k) = 2o (k) — T, (k)

are bounded. Then,

1 & T & n
E(N;er(kz)> (NZer(kz)> gﬁ
where n > 0 is some constant.

Proof. Note that for ¢ > 0

E [e] (R)er(k = )] =B [eL (ki) (CroALy)" Croea(k —1)]
vk —i)] [a(k—i)]"

+trace | E | u(k —1) ulk—1) | Qi
d(k —1) d(k —1)

T
l 2 A%*j i-1\T
Qi = ZU' B (CT,OAT,U ) [CTJ Dr.j Fr,j] :

It leads to
g (Z erlk = Z')) (Z er(k - i>> = B[] (k —i)e,(k —i)]
22> (Bler (k= ier(h = )] + B [e] (k= fen(k = )])

= ZE [ef(k —i)e (k—1i)] + Z (7 +v)

i=1 =2
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with
T
oo (Bcots) s
(k=) ek =]
+trace | E | u(k — ) uk—1j) | Qj
d(k — §) d(k — j)
Recall that

Jj—1

(I - AT,O) ZAi,o = AT,O(I - Ai?)l)

i=1
and moreover, considering that the size of all eigenvalues of A, o is smaller
than one, we also have Vj

ZATO =(I—Ano) Aol — Al

is bounded by
j—1

Jim, g Ay = (I = Ano) Arp.
It turns out
v+ =
ar(k—5) | [@r(k—3)

E [el(k—j)®je.(k —5)] +trace | E | u(k — j) u(k —j) | 11,
d(k — j) d(k — j)

T

Jj—1
D; = ITCT Cro+ Oy Crol, 11 = S (Qi + QF)
=1

j—1 A
Z Q; = Za gT FJTCZO [Cri Dy Fri ]
i=1

%

= (1~ Apo) M Aol — ALY,
Note Vj ®;,II; are bounded, i.e. 3ep, e so that
V7 Omax (dsj) < €¢, Omax (H]) <en

we have
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E [(Ze,,.(k—i)) <Ze,,.(k—z')>] < Za,.(k—z')+
N N [z (k=517 [k -7)
eo Y E[el(k—j)es(k—j)] +en Dy E u(k—j)] u(k —j) | <nN
= d(k — j) d(k — )

=2
n =maxo,(k) + g maxE [e
d,u d,u

‘e max (u” (k)u(k) + d" (k)d(k))

j=2
Z(k)eT(k)} +emn n;ixE [:c (k)xr(k)]
(11.32)

where, due to the boundness of E [el(k)e, (k)] and E [z] (k)z,(k)],
constant and independent of N. It results in finally

1 & T
E <NZer(k—i)> <N er(k—i)>
i=1 i=1
1 N ‘ T /N .
mE (i_l e-(k — z)) <; er(k — z)) <

O

2=

The theorem has thu