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Preface

The preparation of this book began nine years ago. As I was at the Univer-
sity of Applied Science Lausitz and planed my sabbatical in 1998, the idea of
preparing a textbook on model-based fault diagnosis technique was born. I
discussed with Prof. P. M. Frank about it and found a remarkable resonance.
He invited me to spend my sabbatical in his institute and to work on the book.
At that time, the model- and observer-based fault diagnosis technique became
attractive and received enhanced attention both in the academic community
and in industry. After the pioneering work in the 80’s, which led to the es-
tablishment of observer and parity space based fault diagnosis framework, the
major topics in the 90’s focused on the advanced unknown input decoupling
technique and robustness issues. Inspired by this trend and based on my Ph.D.
work in Duisburg, I have, during March to September 1999 in Duisburg, pro-
visionally completed the draft on the design of observer and parity relation
based residual generators, the unknown input decoupling technique, fault iso-
lation schemes and on the discussion about the robustness issues. They build
the core of Chapters 5 - 7 and 13 of this book.
Unfortunately, this work was interrupted by my engagement as vice-

president of the University of Applied Science Lausitz 1999 - 2000. Due to
my move to the University of Duisburg in 2001 and the time consuming ac-
tivity as the coordinator of the European research project IFATIS during
2002 - 2005, the break became longer and longer. On the other side, review-
ing the progress in the model-based, in particular, in the observer-based fault
diagnosis technique in the last years, I have to say that this break has also
a unexpected positive side. In the past decade, the development of model-
based fault diagnosis technique was rapid and highly dynamic. Driven by the
industrial demands for high reliability and safety on the one side and fully
developed robust control theory on the other side, extensive and comprehen-
sive research and development activities at universities and in industry have
been dedicated to the model- and observer-based fault diagnosis technique.
Advanced observer-based fault diagnosis schemes and new solutions to the
robustness problems have been published in the leading journals in the field
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of control theory and engineering, new research lines like the integrated de-
sign of control and fault diagnosis systems or the fault tolerant control have
emerged, and successful applications in major industrial sectors have been
reported. Today, model-based fault diagnosis is a part of control engineering
and advanced control theory. A glance at the recent publications in journals
and monographs on this topic reveals that it is one of the most vital research
areas in the control community. Chapters 7 - 11 and 14 cover a wide range of
the recent research topics of the observer-based fault diagnosis technique, in-
cluding residual generator design with enhanced robustness against unknown
inputs and model uncertainties, residual evaluation in the statistical and norm
based frameworks and observer-based fault identification schemes. A further
positive aspect of the break is that the distance to my early work, the activity
in the European project IFATIS and the recent cooperation with the automo-
tive industry enable and motivate me to re-view the underlying ideas of the
observer-based fault diagnosis technique and the associated design schemes
under a di erent aspect. In this book, critical notes on the application of
observer-based fault diagnosis technique are included and a new design strat-
egy is proposed in Chapter 12. Thanks to the European project IFATIS and
the industrial cooperation, my research group is involved in di erent bench-
mark studies. They enable me to include five benchmark systems in Chapter
3 and to use them in the subsequent chapters to illustrate the design schemes
and algorithms.
As a response to the increasing demands of industry for control engineers

equipped with basic knowledge of model-based fault diagnosis and fault tol-
erant systems, a course entitled Fault Diagnosis and Fault Tolerant Systems
is o ered in the Department of Electrical Engineering and Information Tech-
nology at the University of Duisburg-Essen since 2002. It is a core course for
the students of the master programs Automatic Control as well as Control
and Information Systems. The draft of this book serves as the textbook for
this course. It is also used in the seminar on Advanced Observer-based Fault
Diagnosis Technique for the Ph.D. students in our institute. To help the stu-
dents and the readers to understand the motivation and the original ideas of
applying the advanced control theory to addressing the fault diagnosis prob-
lems, control theoretical preliminaries are integrated into the chapters where
needed. If possible, they are described in the context of model-based fault di-
agnosis. It is remarkable that the main results and methods described in this
book are presented in form of algorithms that enable the students and readers
to check the theoretical results via short programs. Some of these algorithms
are integrated into a MATLAB based FDI-Toolbox being available in our in-
stitute. This book is so structured that it can also be used as a self-study
book for engineers working with automatic control and mechatronic systems.
This book would not be possible without valuable support from many

people. First, I would like to thank my wife and colleague, Eve Limin. It seems
unusual. But, she is the person who influences my thinking at most, at least in
the past two decades in working with fault diagnosis. As a holder of numerous
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patents on the model-based fault diagnosis systems in vehicles, she helps me
to understand the practical side of the model-based fault diagnosis and to
learn the link between the fault diagnosis theory and the engineering world.
A lot of ideas and methods in this book are traced back to her contributions.
I would especially like to thank Prof. Paul M. Frank, my respectful mentor.

He paved me the way to the "fault diagnostic" world and opened me the door
to a wonderful scientific community. I thank him for his influence on my
research and his valuable support in preparing this book.
I appreciate it very much to be able to work with wonderful colleagues

in the di erent phases of my "fault diagnostic" life. During my Ph.D. study
in Duisburg 1987 - 1992, I found in Jürgen Wünnenberg an excellent and
most talented colleague who was full of new ideas and developed the first un-
known input observer scheme for the fault diagnosis purpose. In Senftenberg,
at the University of Applied Science Lausitz, I have been successfully work-
ing with Torsten Jeinsch and Mario Sader in numerous industrial research
projects, with Maiying Zhong on the robustness issues in the model-based
fault diagnosis and with Hao Ye on the time-frequency domain properties of
the observer and parity space based methods. In the past six years in Duis-
burg, I have found in Ping Zhang a valuable co-worker who is equipped with
excellent mathematical and control theoretical skills. She has helped me to
understand and solve some complex problems in dealing with model-based
fault diagnosis. I am indebted to all of them for their great contributions to
this book.
I would like to thank my Ph.D. students for their valuable contribution to

the benchmark study. They are Abdul Qayyum Khan and Yongqiang Wang
(inverted pendulum), Muhammad Abid and Amol Naik (three-tank-system),
Ibrahim Al-Salami, Jedsada Saijai, Wei Chen and Stefan Schneider (vehicle
lateral dynamic system), Wei Li (DC motor), Alethya Salas and Alejandro Ro-
driguez (electrohydraulic servo-actuator). In addition, I would like to express
my gratitude to Amol Naik for the extensive editorial corrections and Stefan
Schneider for his valuable support in setting up the LATEX environment. I
am also grateful to the technical sta s and secretary for their support.
Finally, I want to give an answer to one question that may arise (a typical

formulation in such a book): Who has motivated me to continue the work on
the book? It is Mrs. Hestermann-Beyerle from Springer-Verlag. On one occa-
sion, she learned my previous work with lecture notes on model-based fault
diagnosis and proposed the idea for this book. Thanks to her encouragement,
I have re-started with this book project in May of this year. Without her
constant support in the past months, it would be di cult for me to complete
this book. I am greatly indebted to her and her colleagues for the valuable
help.

Duisburg,
December 2007 Steven X. Ding
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Introduction

Associated with the increasing demands for higher system performance and
product quality on the one side and more cost e ciency on the other side, the
complexity and the automation degree of technical processes are continuously
growing. This development calls for more system safety and reliability. Today,
one of the most critical issues surrounding the design of automatic systems is
the system reliability and dependability.
A traditional way to improve the system reliability and dependability is

to enhance the quality, reliability and robustness of individual system com-
ponents like sensors, actuators, controllers or computers. Even so, a fault-free
system operation cannot be guaranteed. Process monitoring and fault diag-
nosis are hence becoming an ingredient of a modern automatic control system
and often prescribed by authorities.
Originated in the early 70’s, the model-based fault diagnosis technique

has developed remarkably since then. Its e ciency in detecting faults in a
system has been demonstrated by a great number of successful applications in
industrial processes and automatic control systems. Today, model-based fault
diagnosis systems are fully integrated into vehicle control systems, robots,
transport systems, power systems, manufacturing processes, process control
systems, just to mention some of the application sectors.
Although developed for di erent purposes by means of di erent techniques,

all model-based fault diagnosis systems are common in the explicit use of a
process model, based on which algorithms are implemented for processing data
that are on-line collected and recorded during the system operation.
The major di erence between the model-based fault diagnosis schemes

lies in the form of the adopted process model and particular in the applied
algorithms. There exists an intimate relationship between the model-based
fault diagnosis technique and the modern control theory. Furthermore, due to
the on-line requirements on the implementation of the diagnosis algorithms,
powerful computer systems are usually needed for a successful fault diagnosis.
Thus, besides the technological and economic demands, the rapid development
of the computer technology and the control theory is another main reason why
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the model-based fault diagnosis technique is nowadays accepted as a powerful
tool to solve fault diagnose problems in technical processes.
Among the existing model-based fault diagnosis schemes, the so-called

observer-based technique has received much attention since 90’s. This tech-
nique has been developed in the framework of the well-established advanced
control theory, where powerful tools for designing observers, for e cient and
reliable algorithms for data processing aiming at reconstructing process vari-
ables, are available. The focus of this book is on the observer-based fault
diagnosis technique and the related topics.

1.1 Basic concepts of fault diagnosis technique

The overall concept of fault diagnosis consists in the following three essential
tasks:

• Fault detection: detection of the occurrence of faults in the functional units
of the process, which lead to undesired or intolerable behavior of the whole
system

• Fault isolation: localization (classification) of di erent faults
• Fault analysis or identification: determination of the type, magnitude and
cause of the fault.

A fault diagnosis system, depending on its performance, is called FD (for
fault detection) or FDI (for fault detection and isolation) or FDIA (for fault
detection, isolation and analysis) system, whose outputs are correspondingly
alarm signals to indicate the occurrence of the faults or classified alarm sig-
nals to show which fault has occurred or data of defined types providing the
information about the type or magnitude of the occurred fault.
The model-based fault diagnosis technique is a relatively young research

field in the classical engineering domain technical fault diagnosis, its devel-
opment is rapid and currently receiving considerable attention. In order to
explain the essential ideas behind the model-based fault diagnosis technique,
we first give a rough classification of the technical fault diagnosis technique, as
sketched in Fig.1.1, and briefly review some traditional fault diagnosis schemes
and their relationships to the model-based technique.

• Hardware redundancy based fault diagnosis: The core of this scheme, as
shown in Fig.1.2, consists in the reconstruction of the process compo-
nents using the identical (redundant) hardware components. A fault in
the process component is then detected if the output of the process com-
ponent is di erent from the one of its redundancy. The main advantage
of this scheme is its high reliability and the direct fault isolation. The
use of redundant hardware results in, on the other hand, high costs and
thus the application of this scheme is only restricted to a number of key
components.
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Fig. 1.1 Classification of fault diagnosis methods

Fig. 1.2 Schematic description of the hardware redundancy scheme

• Signal processing based fault diagnosis: On the assumption that certain
process signals carry information about the faults of interest and this infor-
mation is presented in form of symptoms, a fault diagnosis can be achieved
by a suitable signal processing. Typical symptoms are time domain func-
tions like magnitudes, arithmetic or quadratic mean values, limit values,
trends, statistical moments of the amplitude distribution or envelope, or
frequency domain functions like spectral power densities, frequency spec-
tral lines, ceptrum, etc. The signal processing based schemes are mainly
used for those processes in the steady state, and their e ciency for the
detection of faults in dynamic systems, which are of a wide operating
range due to the possible variation of input signals, is considerably lim-
ited. Fig.1.3 illustrates the basic idea of the signal processing schemes.
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Fig. 1.3 Schematic description of the signal processing based scheme

• Plausibility test: As sketched in Fig.1.4, the plausibility test is based on
the check of some simple physical laws under which a process component
works. On the assumption that a fault will lead to the loss of the plausi-
bility, checking the plausibility will then provide us with the information
about the fault. The plausibility test is limited in its e ciency for detecting
faults in a complex process or for isolating faults.

Fig. 1.4 Schematic description of the plausibility test scheme

The intuitive idea of the model-based fault diagnosis technique is to re-
place the hardware redundancy by a process model which is implemented in
the software form on a computer. A process model is a quantitative or a qual-
itative description of the process dynamic and steady behavior, which can be
obtained using the well-established process modelling technique. In this way,
we are able to reconstruct the process behavior on-line, which, associated with
the concept of hardware redundancy, is called software redundancy concept.
Software redundancies are also called analytical redundancies.
Similar to the hardware redundancy schemes, in the framework of the

software redundancy concept the process model will run in parallel to the
process and be driven by the same process inputs. It is reasonable to expect
that the re-constructed process variables delivered by the process model will
well follow the corresponding real process variables in the fault-free operating
states and show an evident derivation by a fault in the process. In order
to receive this information, a comparison of the measured process variables
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(output signals) with their estimates delivered by the process model will then
be made. The di erence between the measured process variables and their
estimates is called residual. Roughly speaking, a residual signal carries the
most important message for a successful fault diagnosis:

if residual 6= 0 then fault, otherwise fault-free.
The procedure of creating the estimates of the process outputs and building
the di erence between the process outputs and their estimates is called resid-
ual generation. Correspondingly, the process model and the comparison unit
build the so-called residual generator, as shown in Fig.1.5.

Fig. 1.5 Schematic description of the model-based fault diagnosis scheme

Residual generation can also be considered as an extended plausibility test,
where the plausibility is understood as the process input-output behavior and
modelled by an input-output process description. As a result, the plausibility
check can be replaced by a comparison of the real process outputs with their
estimates.
Since no technical process can be modelled exactly and there often exist un-

known disturbances, in the residual signal the fault message is corrupted with
model uncertainties and unknown disturbances. Moreover, fault isolation and
identification require an additional analysis of the generated residual to distin-
guish the e ects of di erent faults. A central problem with the application of
model-based fault diagnosis technique can be expressed as filtering/extracting
the needed information about the faults of interests from the residual signals.
To this end, two di erent strategies have been developed:

• designing the residual generator to achieve a decoupling of the fault of
interests from the other faults, unknown disturbances and model uncer-
tainties
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• extracting the information about the fault of interests from the residual
signals by means of post-processing of the residuals. This procedure is
called residual evaluation.

The first strategy has been intensively followed by many of the research
groups working on model-based fault diagnosis technique. One of the central
schemes in this area is the so-called observer-based fault diagnosis technique,
which is also the focus of this book. The basic idea behind the development of
the observer-based fault diagnosis technique is to replace the process model
by an observer which will deliver reliable estimates of the process outputs as
well as to provide the designer with the needed design freedom to achieve the
desired decoupling using the well-established observer theory.
In the framework of residual evaluation, the application of the signal

processing schemes is the state of the art. Among a number of evaluation
schemes, the statistical methods and the so-called norm based evaluation are
the most popular ones which are often applied to achieve optimal post-
processing of the residual generated by an observer. These two evaluation
schemes are common in that both of them create a bound, the so-called thresh-
old, regarding to all possible model uncertainties, unknown inputs and the
faults of no interests. Exceeding the threshold indicates a fault in the process
and will release an alarm signal.
Integrated application of the both strategies, as shown in Fig.1.3 as well

as in Fig.1.5, marks the state of the art of the model and observer-based fault
diagnosis technique.

1.2 Historical development and some relevant issues

The study on model-based fault diagnosis began in the early 1970s. Strongly
stimulated by the newly established observer theory at that time, the first
model-based fault detection method, the so-called failure detection filter, was
proposed by Beard and Jones. Since then, the model-based FDI theory and
technique went through a dynamic and rapid development and is currently
becoming an important field of automatic control theory and engineering.
As shown in Fig.1.6, in the first twenty years, it was the control community
that made the decisive contribution to the model-based FDI theory, while
in the last decade, the trends in the FDI theory are marked by enhanced
contributions from

• the computer science community with knowledge and qualitative based
methods as well as the computational intelligent techniques

• the applications, mainly driven by the urgent demands for highly reliable
and safe control systems in the automotive industry, in the aerospace area,
in robotics as well as in large scale, networked and distributed plants and
processes.
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Fig. 1.6 Sketch of the historic development of model-based FDI theory

In the first decade of the short history of the model-based FDI tech-
nique, various methods were developed. During that time the framework of
the model-based FDI technique had been established step by step. In his
celebrated survey paper in Automatica 1990, Frank summarized the major
results achieved in the first fifteen years of the model-based FDI technique,
clearly sketched its framework and classified the studies on model-based fault
diagnosis into

• observer-based methods
• parity space methods and
• parameter identification based methods.

In the early 90’s, great e orts have been made to establish relationships
between the observer and parity relation based methods. Several authors from
di erent research groups, in parallel and from di erent aspects, proven that
the parity space methods lead to certain types of observer structures and
are therefore structurally equivalent to the observer-based ones, even though
the design procedures di er. From this viewpoint, it is reasonable to include
the parity space methodology in the framework of the observer-based FDI
technique. The interconnections between the observer and parity space based
FDI residual generators and their useful application to the FDI system design
and implementation build one of the central topics of this book. It is worth to
point out that both observer-based and parity space methods only deal with
residual generation problems.
In the framework of the parameter identification based methods, fault de-

cision is performed by an on-line parameter estimation, as sketched in Fig.1.7.
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In the 90’s, there was an intensive discussion on the relationships between the
observer and parameter estimation FDI schemes. Comparisons between these
two schemes have been made on di erent benchmarks. These e orts lead to
a now widely accepted point of view that both schemes have advantages and
disadvantages in di erent respects, and there are arguments for and against
each scheme.

Fig. 1.7 Schematic description of the parameter identification scheme

It is interesting to notice that the discussion at that time was based on
the comparison between an observer as residual generator and an parameter
estimator. In fact, from the viewpoint of the FDI system structure, observer
and parameter estimation FDI schemes are more or less common in resid-
ual generation but significantly di erent in residual evaluation. The residual
evaluation integrated into the observer-based FDI system is performed by a
feedforward computation of the residual signals, as shown in Fig.1.5, while a
recursive algorithm is used in the parameter estimation methods to process
the residual signals aiming at a parameter identification and the resulted pa-
rameter estimates are further fed back to the residual generator, as illustrated
in Fig.1.8. Viewing from this aspect, the parameter identification based fault
diagnosis system is structured in a feedback closed-loop, and in against the
observer-based FD system is open-loop structured.

Fig. 1.8 An alternative view of the parameter identification scheme

The application of the well-developed adaptive observer theory to the fault
detection and identification in the recent decade is the result of a reasonable
combination of the observer-based and parameter identification FDI schemes.
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The major di erence between the adaptive observer-based and parameter
identification FDI schemes lies in the residual generation. In other words, the
adaptive observer-based FDI schemes di er from the regular observer-based
ones in the way of residual evaluation.
In this book, our focus in on the residual generation and evaluation issues

in the framework of the observer and parity space based strategies. Besides of
the introduction of basic ideas, special attention will be paid to those schemes
and algorithms which are devoted to the analysis, design and synthesis of FDI
systems.

1.3 Notes and references

To author’s knowledge, the first book on the model-based fault diagnosis tech-
nique with a strong focus on the observer and parity space based FDI schemes
was published 1989 by Patton et al. [116]. For a long time, it was the only
reference book in this area and has made a decisive contribution to the early
development of the model-based FDI technique.
The next two monographs, published by Gertler in 1998 [64] and by Chen

and Patton in 1999 [21], address di erent issues of the model-based FDI tech-
nique. While [64] covers a wide spectrum of the model-based FDI technique,
[21] is dedicated to the robustness issues in dealing with the observer-based
FDI schemes. There are numerous books that deal with model-based FDI
methods in part, for instance [10, 13, 69] or address a special topic in the
framework of the model-based fault diagnosis technique like [100, 133]. In two
recent books by Patton et al. [117] and Isermann [81], the latest results on
model-based FDI technique achieved in the last decade are well presented.
In the last three decades, numerous survey papers have been published.

We divide them into three groups, corresponding to the di erent development
phases of the model-based FDI technique, and give some representative ones
from each group:

• introduction and establishment of the observer, parity space and parameter
identification based FDI schemes [50, 67, 79, 146]

• robustness issues [51, 52, 55, 114]
• nonlinear, adaptive FDI schemes, application of computational intelligence
[53, 90, 140].

Representative study on the relationships between the observer and parity
relation based methods can be found, for instance, in [28, 62, 74]. For the com-
parison study on parameter identification and observer-based FDI schemes the
reader is referred to [1, 26, 63].
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Basic ideas, major issues and tools in the
observer-based FDI framework

In this chapter, we shall review the historical development of the observer-
based FDI technique, the major issues and tools in its framework and roughly
highlight the topics addressed in this book.

2.1 On the observer-based residual generator framework

The core of the model-based fault diagnosis scheme shown in Fig.1.5 is a
process model running parallel to the process. Today, it would be quite natural
for anyone equipped with knowledge of the advanced control theory to replace
the process model by an observer, in order to, for instance, increase the ro-
bustness against the model uncertainties, disturbances and deliver an optimal
estimate of the process output. But, thirty years ago, the first observer-based
FDI system proposed by Beard and Jones marked a historical milestone in
the development of the model-based fault diagnosis. The importance of their
contribution lies not only in the application of observer theory, a hot research
topic at that time in the area of the advanced control theory, to the residual
generation, but also in the fact that their work built the fundament for the
observer-based FDI framework and opened FDI community the door to the
advanced control theory. Since that time, progress of the observer-based FDI
technique is closely coupled with the development of the advanced control
theory. Nowadays, the observer-based FDI technique is an active field in the
area of control theory and engineering.
Due to the close relation to the observer study, the major topics for the

observer-based residual generator design are quite similar to those concerning
the observer design, including

• observer/residual generator design approaches
• reduced order observer/residual generator design and
• minimum order observer/residual generator design.



14 2 Basic ideas, major issues and tools in the observer-based FDI framework

The major tools for the study of these topics are the linear system theory
and linear observer theory. A special research focus is on the solution of the
so-called Luenberger equations.
In this book, Chapter 5 will address those topics.
It is well-known that system observability is an important prerequisite

for the design of a state observer. In the early development stage of the
observer-based FDI technique, system observability was considered as a nec-
essary structural condition for the observer construction. It has often been
overlooked that diagnostic observers (i.e. observers for the residual generation
or diagnostic purpose) are di erent from the well-known state observers and
therefore deserve particular treatment. The wide use of the state observers for
the diagnostic purpose misled some researchers to the erroneous opinion that
for the application of the observer-based FDI schemes the state observability
and knowledge of the state space theory would be indispensable. In fact, one
of the essential di erences between the state observer and diagnostic observer
is that the latter is primarily an output observer rather than a state observer
often used for control purposes.
Another misunderstanding of the observer-based FDI schemes is concern-

ing the role of the observer. Often, the observer-based FDI system design is
understood as the observer design and the FDI system performance is evalu-
ated by the observer performance. It leads to an over-weighted research focus
on the observer-based residual generation and less interests in studying the
residual evaluation problems. In fact, the most important role of the observer
in an FDI system is to make the generated residual signals independent of the
process input signals and process initial conditions. The additional degree of
design freedom can then be used, for instance, for the purpose of increasing
system robustness.

2.2 Unknown input decoupling and fault isolation issues

Several years after the first observer-based FDI schemes have been proposed,
it was recognized that such FDI schemes can only work satisfactorily if the
model used describes the process perfectly. Motivated by it and coupled with
the development of the unknown input decoupling control methods in the
80’s, study on the observer-based generation of the residuals decoupled from
unknown inputs received strong attention in the second half of the 80’s. The
idea behind the unknown input decoupling strategy is simple and clear: if the
generated residual signals are independent of not only the inputs and initial
conditions but also the unknown inputs, then they can be directly used as a
fault indicator. Using the unknown input observer technique, which was still
in its developing phase at that time, Wünnenberg and Frank proposed the
first unknown input residual generation scheme 1987. inspired and driven by
this promising work, unknown input decoupling residual generation became
one of the mostly addressed topics in the observer-based FDI framework in a
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very short time. Since then, a great number of methods have been developed.
Even today, this topic is still receiving considerable research attention. An im-
portant aspect of the study on unknown input decoupling is that it stimulated
the study on the robustness issues in the model-based FDI.
During the study on the unknown input decoupling FDI, it was recognized

that the fault isolation problem can also be formulated as a number of un-
known input decoupling problems. For this purpose, faults are, in di erent
combinations, clustered into the faults of interests and faults of no interests
which are then handled as unknown inputs. If it is possible to design a bank
of residual generators that solves unknown input decoupling FDI for each
possible combination, a fault isolation is then achieved.
Due to its duality to the unknown input decoupling FDI in an extended

sense, the decoupling technique developed in the advanced linear control the-
ory in the 80’s o ers one major tool for the FDI study. In this framework,
there are numerous approaches, e.g. the eigenvalue and eigenstructure assign-
ment scheme, matrix pencil method, geometric method, just to mention some
of them.
In this book, Chapter 6 is dedicated to the unknown input decoupling

issues, while Chapter 13 to the fault isolation study.
Already at this early stage, we would like to call reader’s attention to

the di erence between the unknown input observer scheme and the unknown
input residual generation scheme. As mentioned in the last section, the core
of an observer-based residual generator is an output observer whose existence
conditions are di erent (less strict) from the ones for a (state) unknown input
observer.
We would also like to give a critical comment on the original idea of the

unknown input decoupling scheme. FDI problems deal, in their core, with a
trade-o between the robustness against unknown inputs and the fault de-
tectability. The unknown input decoupling scheme only focuses on the un-
known inputs without explicitly considering the faults. As a result, the un-
known input decoupling is generally achieved at the cost of the fault de-
tectability. In Chapters 7 and 12, we shall discuss this problem and propose an
alternative way of applying the unknown input decoupling solutions to achieve
an optimal trade-o between the robustness and detectability.

2.3 Robustness issues in the observer-based FDI
framework

From today’s viewpoint, application of the robust control theory to the
observer-based FDI should be a logical step following the study on the un-
known input decoupling FDI. Historical development shows however a some-
what di erent picture. The first work on the robustness issues was done in
the parity space framework. In their pioneering work, Chow and Willsky as
well as Lou et al. proposed a performance index for the optimal design of
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parity vectors if a perfect unknown input decoupling is not achievable due
to the strict existence conditions. A couple of years later, in 1989 and 1991,
Ding and Frank proposed the application of the H2 and H optimization
technique, a central research topic in the area of control theory between the
80’s and early 90’s, to the observer-based FDI system design. Preceding to
this work, a parametrization of (all) linear time invariant residual genera-
tors was achieved by Ding and Frank 1990, which builds, analogous to the
well-known Youla-parametrization of all stabilization controllers, the basis of
further study in the H framework. Having recognized that the H norm
is not a suitable expression for the fault sensitivity, Ding and Frank in 1993
and Hou and Patton in 1996 proposed to use the minimum singular value of
a transfer matrix to describe the fault sensitivity and gave the first solutions
in the H framework. Study on this topic builds one of the mainstreams in
the robust FDI framework.
Also in theH framework, transforming the robust FDI problems into the

so-called Model-Matching-Problem (MMP), a standard problem formulation
in the H framework, provides an alternative FDI system design scheme.
This work has been particularly driven by the so-called integrated design of
feedback controller and (observer-based) FDI system, and the achieved results
have also been applied for the purpose of fault identification, as described in
Chapter 14.
Stimulated by the recent research e orts on robust control of uncertain

systems, study on the FDI in uncertain systems is receiving increasing atten-
tion in this decade. Remarkable progress in this study can be observed, since
the so-called LMI (linear matrix inequality) technique is becoming more and
more popular in the FDI community.
For the study on the robustness issues in the observer-based FDI frame-

work, H technique, including the so-called factorization technique, MMP
solutions, and the LMI techniques are the most important tools.
In this book, Chapters 7 and 8 are devoted to those topics.
Although the above-mentioned studies lead generally to an optimal de-

sign of a residual generator under a cost function that expresses a trade-o
between the robustness against unknown inputs and the fault detectability,
the optimization is achieved regarding to some norm of the residual genera-
tor. In this design procedure, well known in the optimal design of feedback
controllers, neither the residual evaluation nor the threshold computations are
taken into account. As a result, the FDI performance of the overall system, i.e.
the residual generator, evaluator and threshold, might be poor. This problem,
which makes the FDI system design di erent from the controller design, will
be addressed in Chapter 12.
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2.4 On the parity space FDI framework

Although they are based on the state space representation of dynamic systems,
the parity space FDI schemes are significantly di erent from the observer-
based FDI methods in

• the mathematical description of the FDI system dynamics,
• and associated with it, also in the solution tools.

In the parity space FDI framework, residual generation, the dynamics
of the residual signals regarding to the faults and unknown inputs are pre-
sented in form of algebraic equations. Hence, most of the problem solutions
are achieved in the framework of linear algebra. This not only brings with the
advantages that (a) the FDI system designer is not required to have rich knowl-
edge of the advanced control theory for the application of the parity space FDI
methods (b) the most computations can be completed without complex and
involved mathematical algorithms, but also provides the researchers with a
valuable platform, at which new FDI ideas can be easily realized and tested.
In fact, a great number of FDI methods and ideas have been first presented in
the parity space framework and later extended to the observer-based frame-
work. The performance index based robust design of residual generators is a
representative example.
Motivated by these facts, we devote throughout this book much attention

to the parity space FDI framework. The associated methods will be presented
either parallel to or combined with the observer-based FDI methods. Com-
prehensive comparison studies build also a focus.

2.5 Residual evaluation and threshold computation

Despite of the fact that an FDI system consists of a residual generator, a
residual evaluator together with a threshold and a decision maker, in the
observer-based FDI framework, studies on the residual evaluation and thresh-
old computation have only been occasionally published. There exist two major
residual evaluation strategies. The statistic testing is one of them, which is
well established in the framework of statistical methods Another one is the
so-called norm based residual evaluation. Besides of less on-line calculation,
the norm based residual evaluation allows a systematic threshold computation
using well-established robust control theory.
The concept of norm based residual evaluation was initiated by Emami-

naeini et al. in a very early development stage of the model-based fault di-
agnosis technique. In their pioneering work, Emami-naeini et al. proposed to
use the root-mean-square (RMS) norm for the residual evaluation purpose
and derived, based on the residual evaluation function, an adaptive threshold,
also called threshold selector. This scheme has been applied to detect faults in
dynamic systems with disturbances and model uncertainties. Encouraged by
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this promising idea, researchers have applied this concept to deal with residual
evaluation problems in the H framework, where the L2 norm is adopted as
the residual evaluation function.
The original idea behind the residual evaluation is to create such a (phys-

ical) feature of the residual signal that allows a reliable detection of the fault.
The L2 norm measures the energy level of a signal and can be used for the
evaluation purpose. In practice, also other kinds of features are used for the
same purpose, for instance the absolute value in the so-called limit monitoring
scheme. In our study, we shall also consider various kinds of residual evalu-
ation functions, besides of the L2 norm, and establish valuable relationships
between those schemes widely used in practice, like limit monitoring, trends
analysis etc.
The mathematical tools for the statistic testing and norm based evaluation

are di erent. The former is mainly based on the application of statistical
methods, while for the latter the functional analysis and robust control theory
are the mostly used tools.
In this book, we shall in Chapters 9 and 10 address both the statistic test-

ing and norm based residual evaluation and threshold computation methods.
In addition, a combination of these two methods will be presented in Chapter
11.

2.6 FDI system synthesis and design

In applications, an optimal trade-o between the false alarm rate (FAR) and
fault detection rate (FDR), instead of the one between the robustness and
sensitivity, is of primary interest in designing an FDI system. FAR and FDR
are two concepts that are originally defined in the statistic context. In their
work in 2000, Ding et al. have extended these two concepts to characterize the
FDI performance of an observer-based FDI system in the context of a norm
based residual evaluation.
In Chapter 12, we shall revise the FDI problems from the viewpoint of the

trade-o between FAR and FDR. In this context, the FDI performance of the
major residual generation methods presented in Chapters 6-8 will be checked.
We shall concentrate ourselves on two design problems: (a) given an allowable
FAR, find an FDI system so that FDR is maximized (b) given an FDR, find
an FDI system to achieve the minimum FAR.

2.7 Notes and references

As mentioned above, linear algebra and matrix theory, linear system theory,
robust control theory, statistical methods and currently the LMI technique
build the major tools for our study throughout this book. Among the great
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number of available books on these topics, we would like to mention the fol-
lowing representative ones:

• matrix theory: [58]
• linear system theory: [19, 87]
• robust control theory: [49, 160]
• LMI technique: [14]
• statistical methods: [10, 93].

Below are the references for the pioneering works mentioned in this chap-
ter:

• the pioneering contributions by Beard and Jones that initiated the observer-
based FDI study [11, 86]

• the first work of designing unknown input residual generator by Wünnen-
berg and Frank [149]

• the first contributions to the robustness issues in the parity space frame-
work by Chow and Willsky, Lou et al., [23, 98], and in the observer-based
FDI framework by Ding and Frank [37, 39, 43] as well as Hou and Patton
[75]

• the norm based residual evaluation initiated by Emami-naeini et al. [48]
• the FDI system synthesis and design in the norm based residual evaluation
framework by Ding et al. [31].



3

Modelling of technical systems

The objective of this chapter is to model a class of dynamic systems, which
consist of a process, also known as plant, actuators and sensors for the control
and supervision purposes, and may be, during their operation, disturbed, as
schematically sketched in Fig. 3.1. Our major objective of addressing mod-
elling issues is to describe nominal and faulty system behavior.

Fig. 3.1 Schematic description of the systems under consideration

We shall first give a brief review of mathematical models for linear dynamic
systems, including

• input-output description
• state space representation
• di erent forms of models with disturbances and model uncertainties as
well as

• models that describe influences of faults.

These model forms are essential for the subsequent studies in the latter
chapters.
Coprime factorization is a technique that bridges the system modelling and

system analysis, synthesis in the advanced control theory. As one of the key
tools for our study, coprime factorization will be frequently used throughout
this book. This motivates us to address this topic in a separate section.
We shall moreover deal with modelling of faults in a closed loop feed-

back control system, which is of a special interest for practical applications.
A further focus of this chapter is on the introduction of five technical and
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laboratory processes that will not only be used to illustrate the application
of those model forms for the FDI purpose but also serve as benchmarks used
throughout this book.

3.1 Description of nominal system behavior

Depending on the process dynamics and modelling aims, di erent system
model types can be used for the purpose of process description, among them
the linear time invariant (LTI) system is the simplest and mostly used. In this
book, we call disturbance-free and fault-free systems nominal and suppose
that the nominal systems are LTI.
There are two standard mathematical representations for LTI systems: the

transfer matrix and the state space description. Below, they will be briefly
introduced.
Roughly speaking, a transfer matrix is an input-output description of the

dynamic behavior of an LTI system in the frequency domain. Throughout
this book, notation ( ) LH × will be used for presenting the transfer
matrix from input vector R to output vector R i.e.

( ) = ( ) ( ) (3.1)

It is assumed that ( ) is a proper real-rational matrix. We use to denote
either the complex variable of Laplace transform for continuous time signals
or the complex variable of z-transform for discrete time signals.

Remark 3.1 The results presented in this book generally hold for both contin-
uous and discrete time systems except that the type of the system is specified.
In that case, time variable and complex variable will be used for continu-
ous time signal and systems, while time variable and complex variable for
discrete time signals and systems.

The standard form of the state description of a continuous time LTI system
is given by

˙ ( ) = ( ) + ( ) (0) = 0 (3.2)

( ) = ( ) + ( ) (3.3)

while for a discrete time LTI system we used

( + 1) = ( ) + ( ) (0) = 0 (3.4)

( ) = ( ) + ( ) (3.5)

where R is called the state vector, 0 the initial condition of the system,
R the input vector and R the output vector. Matrices

are appropriately dimensioned real constant matrices.
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Remark 3.2 Considering that our subsequent study in the latter chapters will
be carried out in the framework of linear system theory and thus be generally
independent of the signal type, we shall use continuous time model to present
the state space descriptions except that the signal type is specified. Also, for the
sake of simplicity we shall drop out variable so far no confusion is caused.

State space model (3.2)-(3.3) can be either directly achieved by modelling
or derived based on transfer matrix ( ) The latter is called a state space
realization of ( ) = ( ) 1 + and denoted by

( ) = ( ) or ( ) =

¸
(3.6)

In general, we assume that ( ) is a minimal realization of ( )

3.2 Coprime factorization technique

Coprime factorization of a transfer matrix gives a further system represen-
tation form which will be intensively used in our subsequent study. Roughly
speaking, coprime factorization over RH is to factorize a transfer matrix
into two stable and coprime transfer matrices.

Definition 3.1 Two transfer matrices ˆ ( ) ˆ( ) in RH are called left
coprime over RH if there exist two transfer matrices ˆ( ) and ˆ ( ) in
RH such that £

ˆ ( ) ˆ( )
¤ ˆ( )
ˆ ( )

¸
= (3.7)

Similarly, two transfer matrices ( ) ( ) in RH are right coprime over
RH if there exist two matrices ( ) ( ) such that

£
( ) ( )

¤ ( )
( )

¸
= (3.8)

Let ( ) be a proper real-rational transfer matrix. The so-called left co-
prime factorization (LCF) of ( ) is a factorization of ( ) into two stable and
coprime matrices which will play a key role in designing residual generators.
To complete the notation, we also introduce the right coprime factorization
(RCF), which is however only occasionally applied in our study.

Definition 3.2 ( ) = ˆ 1( ) ˆ( ) with the left coprime pair
³
ˆ ( ) ˆ( )

´
over RH is called LCF of ( ) Similarly, RCF of ( ) is defined by
( ) = ( ) 1( ) with the right coprime pair ( ( ) ( )) over RH
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It follows from (3.7) and (3.8) that transfer matrices

£
ˆ ( ) ˆ( )

¤ ( )
( )

¸
are respectively right and left invertible in RH .
Below, we present a lemma that provides us with a state space com-

putation algorithm of
³
ˆ ( ) ˆ( )

´
( ( ) ( )) and the associated pairs³

ˆ( ) ˆ ( )
´
and ( ( ) ( ))

Lemma 3.1 Suppose ( ) is a proper real-rational transfer matrix with state
space realization ( ) and it is stabilizable and detectable. Let and
be so that + and are both stable, and define

ˆ ( ) = ( ) ˆ( ) = ( ) (3.9)

( ) = ( + ) ( ) = ( + + ) (3.10)
ˆ( ) = ( + + ) ˆ ( ) = ( + 0) (3.11)

( ) = ( ( ) ) ( ) = ( 0) (3.12)

Then
( ) = ˆ 1( ) ˆ( ) = ( ) 1( ) (3.13)

are the LCF and RCF of ( ), respectively. Moreover, the so-called Bezout
identity given below is satisfied

( ) ( )
ˆ( ) ˆ ( )

¸
( ) ˆ ( )

( )) ˆ( )

¸
=

0
0

¸
(3.14)

In the textbooks on robust control theory, the reader can find the feedback
control interpretation of the RCF. For our purpose, we would like to give an
observer interpretation of the LCF and the associated computation algorithm

for
³
ˆ ( ) ˆ( )

´
Introduce a state observer

˙̂ = ˆ + + ( ˆ) ˆ = ˆ +

with an observer gain that ensures the observer stability. Consider output
estimation error = ˆ It turns out

( ) ˆ( ) =
³

( ) 1 +
´
( )

( ) 1 ( ( ( ) ˆ( )) + ( )) ( )³
+ ( ) 1

´
( ( ) ˆ( )) = 0 ( ) ˆ( ) = 0

On the other side,
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( ) ˆ( ) =
³

( + ) 1
´
( )³

( + )
1
( ) +

´
( )

It becomes evident that

ˆ ( ) ( ) ˆ( ) ( ) = 0 ( ) = ˆ 1( ) ˆ( ) ( )

( ) = ˆ 1( ) ˆ( )

In fact, the output estimation error is the so-called residual signal.

3.3 Representations of disturbed systems

In practice, environmental disturbances, unexpected changes within the tech-
nical process under observation as well as measurement and process noises are
often modelled as unknown input vectors. We denote them by or and
integrate them into input-output model (3.1) or state space model (3.2)-(3.3)
as follows

• input-output model

( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) (3.15)

where ( ) is known and called disturbance transfer matrix, R
represents a deterministic unknown input vector, R a steady sto-
chastic process which is assumed to be, if no additional remark is made, a
white, normal distributed noise vector with zero mean and variance matrix

= ( 1 · · · ) We use the notation N (0 )
• state space representation

˙ = + + + = + + + (3.16)

with being constant matrices of compatible dimensions, R is
again a deterministic unknown input vector, N (0 ) N (0 ).

3.4 Representations of system models with model
uncertainties

Model uncertainties refer to the di erence between the system model and the
reality. It can be caused, for instance, by changes within the process or in
the environment around the process. Representing model uncertainties is a
research topic that is receiving more and more attention. In this book, we
restrict ourselves to the following standard representations.
Consider an extension of system model (3.1) given by
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( ) = ( ) ( ) + ( ) ( ) (3.17)

where the subscript indicates model uncertainties. The model uncertainties
can be represented either by an additive perturbation

( ) = ( ) + 1( ) 2( ) (3.18)

or in the multiplicative form

( ) = ( + 1( ) 2( )) ( ) (3.19)

where 1( ) 2( ) are some known transfer matrices and is unknown and
bounded by ¯ ( ) where ¯ (·) denotes the maximum singular value of
a matrix.
Among a number of expressions for model uncertainties in the state space

representations, we consider an extended form of (3.2)-(3.3) given by

˙ = ¯ + ¯ + ¯ = ¯ + ¯ + ¯ (3.20)
¯ = + ¯ = + ¯ = + (3.21)
¯ = + ¯ = + ¯ = + (3.22)

where the model uncertainties and belong to one
of the the following three types:

• norm bounded type ¸
=

¸
( )
£ ¤

(3.23)

where are known matrices of appropriate dimensions and
( ) is unknown but bounded by

¯ ( )

It is worth mentioning that (3.20)-(3.22) with norm bounded uncertainty
(3.23) can also be written as

˙ = + + + = + + + (3.24)

= + + + = ˜ ˜ = ( + )
1 (3.25)

on the assumption that ( + ) is invertible.
• polytopic type ¸

=

½
1 1 1

1 1 1

¸
· · ·

¸¾
(3.26)

where , = 1 · · · are known matrices of appropriate
dimensions and {·} denotes a convex set defined by
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1 1 1

1 1 1

¸
· · ·

¸¾
(3.27)

=
X
=1

¸ X
=1

= 1 0 = 1 · · ·

• stochastically uncertain matrices¸
=
X
=1

μ ¸
( )

¶
(3.28)

with known matrices = 1 · · · of appropriate di-
mensions. ( ) =

£
1( ) · · · ( )

¤
represents model uncertainties and is

expressed as a stochastic process with

(̄ ) = E ( ( )) = 0 E
¡
( ) ( )

¢
= ( 1 · · · )

where E( ) = ¯ denotes the mean of variable and = 1 · · · are
known. It is further assumed that (0) (1) · · · are independent and
(0) ( ) ( ) are independent of ( )

Remark 3.3 Note that model (3.20)-(3.21) with polytopic uncertainty (3.27)
can also be written as

˙ =

ÃX
=1

( + )

!
+

ÃX
=1

( + )

!
+

ÃX
=1

( + )

!

=

ÃX
=1

( + )

!
+

ÃX
=1

( + )

!
+

ÃX
=1

( + )

!

It is a polytopic system.

3.5 Modelling of faults

There exist a number of ways to model faults, among them the extension of
model (3.15) to

( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) (3.29)

is a widely used one, where R is a unknown vector that represents all
possible faults and will be zero in the fault-free case, ( ) LH is a known
transfer matrix. Throughout this book, is assumed to be a deterministic time
function. No further assumption on it is made, provided that the type of the
fault is not specified.
Suppose that a minimal state space realization of (3.29) is given by
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˙ = + + + (3.30)

= + + + (3.31)

with known matrices Then we have

( ) = + ( )
1 (3.32)

It becomes evident that indicate the place where a fault occurs and
its influence on the system components. As shown in Fig. 3.1, we divide the
faults into three categories:

• sensor faults : these are faults that directly act on the process measure-
ment

• actuator faults : these faults cause changes in the actuator
• process faults : they are used to indicate malfunctions within the
process.

Sensor faults can be modelled by setting = i.e.

= + + + (3.33)

while actuator faults by setting = = i.e.

˙ = + ( + ) + = + ( + ) + (3.34)

Depending on their type and location, process faults can be modelled by
= and = for some For a system with sensor, actuator

and process faults, we define

= =
£

0
¤

=
£ ¤

(3.35)

and apply (3.30)-(3.31) to represent the system dynamics.
Due to the way how they a ect the system dynamics, the faults described

by (3.30)-(3.31) are called additive faults. It is very important to note that the
occurrence of an additive fault will not a ect the system stability, independent
of if a feedback control loop is integrated into the system under observation.
Typical additive faults met in practice are, for instance, o set in sensors and
actuators or drift in sensors. The former can be described by a constant while
the latter by a ramp.
In practice, malfunctions in the process or in the sensors and actuators

often cause changes in the model parameters. They are called multiplicative
faults and generally modelled in terms of parameter changes. They can be
described by extending (3.20)-(3.22) to

˙ = ( ¯ + ) + ( ¯ + ) + (3.36)

= ( ¯ + ) + ( ¯ + ) + (3.37)
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where represent the multiplicative faults in the plant,
actuators and sensors, respectively. It is assumed that

=
X
=1

=
X
=1

(3.38)

=
X
=1

=
X
=1

(3.39)

where

• = 1 · · · = 1 · · · = 1 · · · and = 1 · · ·
are known and of appropriate dimensions

• = 1 · · · = 1 · · · = 1 · · · and =
1 · · · are unknown time functions

Multiplicative faults are characterized by their (possible) direct influence
on the system stability. This fact is evident for the faults described by
In case that state feedback or observer-based state feedback control laws are
adopted, we can also see that would a ect the system sta-
bility.
Introducing

= + = ( ) (3.40)

=

×
...
×
0
...
0

=

0
...
0

×
...
×

( ) =
³

1 × · · · × 1 × · · · ×
´

=
£

1 · · · 1 · · ·
¤

=
£

1 · · · 1 · · ·
¤

we can rewrite (3.36)-(3.37) into

˙ = ¯ + ¯ + + (3.41)

= ¯ + ¯ + + (3.42)

In this way, the multiplicative faults are modelled as additive faults. Also for
this reason, the major focus of our study in this book will be on the detection
and identification of additive faults. But, the reader should keep in mind that

is a function of the state and input variable of the system and thus will
a ect the system stability.
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3.6 Modelling of faults in closed loop feedback control
systems

Model-based fault diagnosis systems are often embedded in closed loop feed-
back control systems. Due to the closed loop structure with an integrated
controller that brings the system in general robustness against changes in the
system, special attention has been paid to the topic of fault detection in feed-
back control loops. In this section, we consider modelling issues for a standard
control loop with sensor, actuator and process faults, as sketched in Fig. 3.2.

Fig. 3.2 Strcture of a standard control loop with faults

Suppose that the process with sensors and actuators is described by (3.16).
Denote the control objective by reference signal by the prefilter by ( )
and the control law by

( ) = ( ) ( )

For the sake of simplifying the problem formulation, we only consider additive
faults. The overall system model with sensor, actuator and process faults is
then given by

˙ = + ( + ) + + (3.43)

= + ( + ) + + + (3.44)

( ) = ( ) ( ) + ( ) ( ) (3.45)

Depending on the signal availability and requirements on the realization of
FDI strategy, there are two di erent ways of modelling the system.
In the framework of the so-called open loop FDI, it is assumed that input

and output vectors and are available. For the FDI purpose, the so-called
open loop model (3.43)-(3.44) can be used, which contains all information
needed for detecting the faults. Note that this open loop model is identical
with the one introduced in the last section.
In practice, it is often the case that is not available. For instance, if the

control loop is a part of a large scaled system and located remotely from the
supervision station, where the higher level controller and FDI unit are located,
the reference signal instead of process input signal , is usually available
for the FDI purpose. In those cases, the so-called closed loop FDI strategy can
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be applied. The closed loop FDI strategy is based on the closed loop model
with and as input and output signals respectively. The nominal system
behavior of the closed loop is described by

( ) = ( ) ( ) ( ) = ( ( ) ( )) 1 ( ) ( ) (3.46)

( ) = + ( )
1

The overall system model with the faults and disturbances is given by

( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

+ ( ) ( ) + ( ) ( ) (3.47)

( ) = ( ( ) ( )) 1
³

+ ( ) 1
´

( ) = ( ( ) ( ))
1
³

+ ( )
1
´

( ) = ( ( ) ( )) 1
³

+ ( ) 1
´

( ) = ( ( ) ( ))
1

From the viewpoint of residual generation, which utilizes the nominal
model, it may be of additional advantage to adopt the closed loop FDI strat-
egy. It is known in control theory that by means of some advanced control
strategy the dynamics of the closed loop system, ( ) may be well mod-
elled in a form easy for further handling. For instance, using a decoupling
controller will result in a diagonal ( ) which may reduce an MIMO (mul-
tiple input, multiple output) system into a number of (decoupled) SISO (single
input, single output) ones.

3.7 Benchmark examples

In this section, five benchmark examples will be introduced. They will be
used to illustrate the modelling schemes described in the previous sections
and serve subsequently as benchmark systems in the forthcoming chapters.

3.7.1 Speed control of a DC motor

DC (Direct Current) motor converts electrical energy into mechanical energy.
Below, the laboratory DC motor control system DR300 will be briefly de-
scribed.
Model of DC motor
Fig. 3.3 gives a schematic description of a DC motor, which consists of

an electrical part and a mechanical part. Define the loop current and the
armature frequency as state variables, the terminal voltage as input
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Fig. 3.3 Schematic description of a DC motor

and the (unknown) load as disturbance, we have the following state space
description

˙

˙

¸
0

¸ ¸
+

1

0

¸
+

0
1

¸
(3.48)

as well as the transfer function

( ) =
1³

1 + + 2
´ ( ) (3.49)

(1 + )³
1 + + 2

´ ( ) =

where the parameters given in (3.48) and (3.49) are summarized in Table 3.1.

Table 3.1 Parameters of laboratory DC motor DR300

Parameter Symbol Value Unit
Total Inertia 62 75

Voltage constant 6 27 · 10 3

Motor constant 0 06

Armature Inductance 0 003

Resistance 3 13

Tacho output voltage 5 · 10 3

Tacho filter time constant 5

Models of DC motor control system
For the purpose of speed control, cascade control scheme is adopted with

a speed control loop and a current control loop. As sketched in Fig. 3.4, the
DC motor together with the current control loop will be considered as the
plant that is regulated by a PI speed controller.
The plant dynamics can be approximately described by
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Fig. 3.4 Structure of DC motor control system

( ) = ( ) ( ) + ( ) ( ) (3.50)

( ) =
8 75

(1 + 1 225 )(1 + 0 03 )(1 + 0 005 )
( ) =

31 07

(1 + 0 005 )

with = (voltage delivered by the Tacho) as output, = as input
and = as disturbance.
With a PI speed controller set to be

( ) = ( )( ( ) ( )) ( ) = 1 6
1 + 1 225

(3.51)

where ( ) = ( ) the closed loop model is given by

( ) = ( ) ( ) + ( ) ( ) (3.52)

( ) =
14 00

(1 + 0 03 )(1 + 0 005 ) + 14 00

( ) =
31 07(1 + 0 03 )

(1 + 0 03 )(1 + 0 005 ) + 14 00

Modelling of faults
Three faults will be considered:

• an additive actuator fault
• an additive fault in Tacho 1 and
• a multiplicative fault in Tacho 2 [ 1 0].

Based on (3.50), we have the open loop structured overall system
model

( ) = ( ) ( ) + ( ) ( ) + ( ) + 1( ) 1 + ( ) 2

(3.53)

( ) = ( ) ( ) = ( ( ) ( ) + ( ) ( ))

The closed loop model can be achieved by extending (3.52) to

( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

+ 1 ( ) 1( ) + ( ) (3.54)
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( ) =
8 75

(1 + 1 225 ) ( (1 + 0 03 )(1 + 0 005 ) + 14 00)

1 ( ) =
(1 + 0 03 )(1 + 0 005 )

(1 + 0 03 )(1 + 0 005 ) + 14 00

( ) = (1 + ( ) ( ) 2)
1
( ( ) ( ) + ( ) ( )) 2

( ( ) ( ) + ( ) ( ))

3.7.2 Inverted pendulum control system

Inverted pendulum is a classical laboratory system that is widely used in the
education of control theory and engineering. Below is a brief introduction
to the laboratory pendulum system LIP100 that is schematically sketched in
Fig.3.5.
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Fig. 3.5 Schematic description of an inverted pendulum

The inverted pendulum system consists of a cart (pos. 6 in Fig.3.5) that
moves along a metal guiding bar (pos.5). An aluminum rod (pos.9) with a
cylindrical weight (pos.7) is fixed to the cart by an axis. The cart is connected
by a transmission belt (pos.4) to a drive wheel (pos.3). The wheel is driven
by a current controlled direct current motor (pos.2) which delivers a torque
proportional to the acting control voltage such that the cart is accelerated.
This system is nonlinear and consists of four state variables:

• the position of the cart (marked by 6 in Fig.3.5)
• the velocity of the cart ˙
• the angle of the pendulum as well as
• the angle velocity ˙

Among the above state variables, is measured by means of a circular coil
potentiometer that is fixed to the driving shaft of the motor, ˙ by means of
the tacho generator that is also fixed to the motor and by means of a layer
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potentiometer fixed to the pivot of the pendulum. The system input is the
acting control voltage that generates force on the cart.
Nonlinear system model
The following nonlinear model describes the dynamics of the inverted pen-

dulum:

˙ = ( )
³

32 sin cos + 33 ˙ + 34
˙ cos + 35

˙2 sin + 3

´
(3.55)

˙ = ( )
³

42 sin + 43 ˙ cos + 44
˙ + 45

˙2 cos sin + 4 cos
´
(3.56)

where

( ) =

μ
1 +

2

2
01

sin

¶ 1

32 =
2

2
01

33 = 2
01

34 = 2
01

35 = 2
01

42 = 2
01

43 = 2
01

44 = 2
01

45 =
2

2
01

3 = 2
01

4 = 2
01

The parameters are given in Table 3.2.
Disturbances
There are two types of frictions in the system that may considerably af-

fect the system dynamics. Theses are Coulomb friction and static friction,
described by

Coulomb friction : = | |sgn( )
static friction : =

½
= 0

0 6= 0
To include their e ects in the system model, is extended to

= +

with being a unknown input.
Linear model
After a linearization at operating point

= 1 ˙ = 0 = 0 ˙ = 0

and a normalization with

1

2

3

4

=

11

22

33 ˙

44
˙
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we have the following (linear) state space model of the inverted pendulum

˙ = + + = + (3.57)

=

0 0 1 95 0
0 0 0 1 0
0 0 12864 1 9148 0 0082
0 21 4745 26 31 0 1362

=

0
0
6 1343
84 303

=
1 0 0 0
0 1 0 0
0 0 1 0

= = N (0 )

where denotes the measurement noise.
It is worth noting that linear model (3.57) is valid under the following

conditions:

• | | 20
• | | 0 5
• | | 10

Discrete time model
By a discretization of model (3.57) with a sampling time = 0 03 sec, we

obtain the following discrete time model

( + 1) = ( ) + ( ) + ( ) ( ) = ( ) + ( ) (3.58)

=

1 0 0001125 0 05685 8 174 006
0 1 01 0 01162 0 03003
0 0 00384 0 9441 0 0002962
0 0 6434 0 768 1 005

= =

0 005288
0 03723
0 1792
2 461

LCF of the nominal model
To illustrate the coprime factorization technique introduced in Subsection

3.2, we derive below an LCF for model (3.57). It follows from Lemma 3.1 that
for the purpose of an LCF of (3.57) the so-called observer gain matrix should
be selected that ensures the stability of Using the pole assignment
method with the desired poles 1 = 6 0 2 = 6 5 3 = 7 0 4 = 7 5
is chosen equal to

=

6 9983 0 0025 1 9544
0 2552 13 7523 13 2474
0 4027 0 0192 11 9981
3 5602 64 3490 158 1113

which gives

=

6 9983 0 0025 0 0044 0
0 2552 13 7523 13 2474 1 0000
0 4027 0 1478 13 9131 0 0082
3 5602 42 8760 184 4213 0 1362
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As a result, the LCF of system (3.57) is given by

( ) = ( ) 1 = ˆ 1( ) ˆ ( )

ˆ ( ) = ( + ) 1 ˆ ( ) = ( + ) 1

Table 3.2 Parameters of laboratory pendulum system LIP100

Constant Numerical value Unit
2.6

11 14.9
22 -52.27
33 -7.64
44 -52.27
0 3.2
1 0.329

3.529
0.44
0.072 2

0.1446
2
01 0.23315 2 2

2 2
01 0.0897

6.2
0.009 2

Model uncertainty
Recall that linear model (3.57) has been achieved by a linearization at an

operating point. The linearization error will cause uncertainties in the model
parameters. Taking into account it, model (3.57) is extended to

˙ = ( + ) + ( + ) + ( + ) = + (3.59)£ ¤
= ( )

£ ¤
=

0 0
0 0
1 0
0 1

( ) = 32 33 34

42 44 44

¸
=

0 1 0 0
0 0 1 0
0 0 0 1

=
0
3 2
0

¯ ( ( )) 1 7221

Modelling of faults
Additive sensor and actuator faults are considered. To model them, (3.57)

and (3.58) are respectively extended to
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˙ = + + + = + + (3.60)

( + 1) = ( ) + ( ) + ( ) + ( ) (3.61)

( ) = ( ) + ( ) + ( )

=
£

0 0 0
¤

=
£

0 0 0
¤

=
0 1 0 0
0 0 1 0
0 0 0 1

=

1

2

3

4

= 1

2

3

Closed loop model
An observer-based state feedback controller with a disturbance compen-

sation is integrated into LIP100 control system, which consists of

• an observer "
˙̂

˙̂

#
=

0 0

¸
ˆ
ˆ

¸
+ + ( ˆ) (3.62)

which delivers an estimate for and respectively,
• a state feedback controller with a disturbance compensator

= ˆ ˆ+ (3.63)

where the observer, feedback gains and the prefilter are respectively

= 1

2

¸
=

6 9983 0 0025 1 9544
0 2552 13 7523 13 2474
0 4027 0 0192 11 9981
3 5602 64 3490 158 1113
0 4596 0 2586 7 7164

=
£
2 1000 2 2151 3 8604 0 4819

¤
= 2 1

The overall system dynamics is described by

˙
˙
˙

= 0 1

0 2 0
+

0
0
1

˙ + (3.64)

0
0

+
0

1

2

+ ( 1 )

2

= + + (3.65)

3.7.3 Three tank system

Three tank system sketched in Fig.3.6 has typical characteristics of tanks,
pipelines and pumps used in chemical industry and thus often serves as bench-
mark process in laboratories for process control. The three tank system intro-
duced in here is a laboratory setup DTS200.
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Fig. 3.6 DTS200 setup

Nonlinear model
Applying the incoming and outgoing mass flows under consideration of

Torricellies law, the dynamics of DTS200 is modelled by

1̇ = 1 13 2̇ = 2 + 32 20 3̇ = 13 32

13 = 1 13sgn( 1 3)
p
2 | 1 3|

32 = 3 23sgn( 3 2)
p
2 | 3 2| 20 = 2 0

p
2 2

where

• 1 2 are incoming mass flow
• is the mass flow from the -th tank to the -th tank
• ( ) = 1 2 3 are the water level of each tank and measured.

The parameters are given in Table 3.3.
Linear model
After a linearization at operating point 1 = 45 , 2 = 15 and 3 =

30 , we have the following linear (nominal) model

˙ = + = (3.66)

= =
1

2

3

= 1

2

¸
=

0 0085 0 0 0085
0 0 00195 0 0084

0 0085 0 0084 0 0169

=
0 0065 0
0 0 0065
0 0

=
1 0 0
0 1 0
0 0 1

Model uncertainty
We consider the model uncertainty caused by the linearization and model

it into
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Table 3.3 Parameters of DTS200

Parameters Symbol Value Unit
cross section area of tanks 154 2

cross section area of pipes 12 23 0 0.5 2

max. height of tanks 62 2

max. flow rate of pump 1 1 100 3

max. flow rate of pump 2 2 100 3

coe . of flow for pipe 1 1 0.46
coe . of flow for pipe 2 2 0.60
coe . of flow for pipe 3 3 0.45

˙ = ( + ) + = = ( ) (3.67)

( ) =
1( ) 0 0
0 2( ) 0
0 0 3( )

=
0 0085 0 0 0085
0 0 00195 0 0084

0 0085 0 0084 0 0169

( ( )) 1 3620

Modelling of faults
Three types of faults are considered in this benchmark system:

• component faults: leaks in the three tanks, which can be modelled as ad-
ditional mass flows out of tanks,

1

p
2 1 2

p
2 2 3

p
2 3

where 1 2 and 3 are unknown and depend on the size of the leaks
• component faults: pluggings between two tanks and in the letout pipe by
tank 2, which cause changes in 13 32 and 20 and thus can be modelled
by

4 1 13sgn( 1 3)
p
2 | 1 3| 6 3 23sgn( 3 2)

p
2 | 3 2|

5 2 0

p
2 2

where
4 5 6

[ 1 0] and are unknown
• sensor faults: three additive faults in the three sensors, denoted by 1, 2

and 3

• actuator faults: faults in pumps, denoted by 4 and 5.

They are modelled as follows

˙ = ( + ) + + = + (3.68)

=
6X
=1

1

0 0214 0 0
0 0 0
0 0 0

2 =
0 0 0
0 0 0371 0
0 0 0
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3 =
0 0 0
0 0 0
0 0 0 0262

4 =
0 0085 0 0 0085
0 0 0

0 0085 0 0 0085

5 =
0 0 0
0 0 0111 0
0 0 0

6 =
0 0 0
0 0 0084 0 0084
0 0 0084 0 0084

=

1

...
5

=
£
0

¤ R3×5 =
£
3×3 0

¤ R3×5

Closed loop model
In DTS200, a nonlinear controller is implemented which leads to a full

decoupling of the three tank system into

• two linear subsystems of the first order and
• a nonlinear subsystem of the first order.

This controller can be schematically described as follows:

1 = 1 = 13 + ( 11 1 + 1 ( 1 1)) (3.69)

2 = 2 = 20 32 + ( 22 2 + 2 ( 2 2)) (3.70)

where 11 22 0, 1 2 represent two prefilters and 1 2 are reference
signals. The nominal closed loop model is

˙1
˙2
˙3

=

( 11 1) 1

( 22 2) 2

1 13sgn( 1 3) 2 | 1 3| 3 23sgn( 3 2) 2 | 3 2|
(3.71)

+
1 0
0 2

0 0

1

2

¸

while the linearized closed loop model with the faults is given by

˙ =
11 1 0 0
0 22 2 0

0 0085 0 0084 0 0169
+

1 0
0 2

0 0

1

2

¸
+ + ¯

+
0 0085 0 0 0085
0 0 0028 0 0084
0 0 0

1

2

3

= + (3.72)

¯ =
11 1 0 0 0 0065 0
0 22 2 0 0 0 0065
0 0 0 0 0
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3.7.4 Vehicle lateral dynamic system

In today’s vehicles, lateral dynamic models are widely integrated into control
and monitoring systems. The so-called one-track model, also called bicycle
model, is the simplest form amongst the existing lateral dynamic models,
which is, due to its low demand for the on-line computation, mostly imple-
mented in personal cars.

Fig. 3.7 Kinematics of one-track model

One-track model is derived on the assumption that the vehicle is simplified
as a whole mass with the center of gravity on the ground, which can only move
in axis, axis, and yaw around axis. The kinematics of one-track model is
schematically sketched in Fig. 3.7. It has been proven that one-track model can
describe the vehicle dynamic behavior very well, when the lateral acceleration
under 0 4 on normal dry asphalt roads. Further assumptions for one-track
model are:

• the height of center of gravity is zero, therefore the four wheels can be
simplified as front axle and rear axle

• small longitudinal acceleration, ˙ 0, and no pitch and roll motion
• the equations of motion are described according to the force balances and
torque balances at the center of gravity

• linear tire model,
= (3.73)

where is the lateral force, is the cornering sti ness, is the side
slip angle

• small angles simplification(
= +

= +
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The reader is referred to Table 3.4 for all variables and parameters used
above and below.
Nominal model
Let vehicle side slip angle and yaw rate be the state variables and

steering angle the input variable, the state space presentation of the one-
track model is given by

˙ = + = 1

2

¸
=

¸
= (3.74)

=

0 + 0
2 1

0 2 0 + 2 =

" 0

0

#

Typically, a lateral acceleration sensor ( ) and a yaw rate sensor ( ) are
integrated in vehicles and available, for instance, in ESP (electric stabilization
program). The sensor model is given by

= + = 1

2

¸
=

¸
(3.75)

=

" 0
+ 0

0 1

#
=

" 0

0

#

Below are the one-track model and the sensor model for = 50

=
3 0551 0 9750
29 8597 3 4196

¸
=

1 12
40 9397

¸
(3.76)

=
152 7568 1 2493
0 1

¸
=

56
0

¸
By a sampling time of 0 1 ., we have the following discrete time model

( + 1) = ( ) + ( ) ( ) = ( ) + ( )

where for = 50

=
0 6333 0 0672
2 0570 0 6082

¸
=

0 0653
3 4462

¸
(3.77)

Disturbances
In model (3.74)-(3.75), the influences of road bank angle vehicle body

roll angle and roll rate have not been taken into account. Moreover, sen-
sor noises are inevitable. Generally, sensor noises can be modelled as steady
stochastic process with zero mean Gaussian distribution. But, in vehicle sys-
tems, the variance or standard variance of sensor noises cannot be modelled
as constant, since at di erent driving situations, the sensor noises are not
only caused by the sensor own physical or electronic characteristic, but also
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Table 3.4 Parameter of the one-track model

Physical constant Value Unit Explanation
9 80665 2 gravity constant

Vehicle parameters
18 0 [ ] steering transmission ratio
1630 [ ] rolling sprung mass
220 [ ] non-rolling sprung mass
+ [ ] total mass

1 52931 [ ] distance from the CG to the front axle
1 53069 [ ] distance from the CG to the rear axle
3870 [ - 2] moment of inertia about the z-axis

[ ] vehicle longitude velocity
[ ] vehicle side slip angle
[ ] vehicle yaw rate
[ ] vehicle steering angle

103600 [ ] front tire cornering sti ness
179000 rear tire cornering sti ness

Table 3.5 Typical sensor noise of vehicle lateral dynamic control systems

Sensor Test condition Unit Standard
variation

Yaw rate Nominal value [ ] 0 2
Drive on the asphalt, even, dry road
surface

0 2

Drive on the uneven road 0 3
Brake (ABS) on the uneven road 0 9

lateral
acceleration

Nominal value [ 2] 0 05

Drive on the asphalt, even, dry road
surface

0 2

Drive on the uneven road 1 0
Brake (ABS) on the uneven road 2 4

strongly disturbed by the vibration of vehicle chassis. In Table 3.5, typical
sensor data are listed.
To include the influences of the above-mentioned disturbances, model

(3.74)-(3.75) is extended to

˙ = + + = + + + (3.78)

=

+ + ˙

˙ =
1 0 0
0 1 0

¸

=
0 0 1
0 0 0

¸
N
μ
0

0
0

¸¶
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Model uncertainties
Below, major model parameter variations are summarized:

• Vehicle reference velocity : the variation of longitudinal vehicle veloc-
ity is comparably slow, so it can be considered as a constant during one
observation interval

• Vehicle mass: when the load of vehicle varies, accordingly the vehicle spring
mass and inertia will be changed. Especially the load variation are very
large for the truck, but for the personal car, comparing to large total mass,
the change caused by the number of passengers can be neglected normally

• Vehicle cornering sti ness : Cornering sti ness is the change in lateral
force per unit slip angle change at a specified normal load in the linear
range of tire. Remember that the derivation of one track model is based
on (3.73). Actually, the tire cornering sti ness depends on road—tire
friction coe cient, wheel load, camber, toe-in, wheel pressure etc. In some
studies, it is assumed, based on the sti ness of steering mechanism (steer-
ing column, gear, etc.), that

=
0

(3.79)

In our benchmark study, we only consider the parameter changes caused
by and assume that

• 0 = 103600 + [ 10000 0] is a random number and
• = 0 = 1 7278

As a result, we have the following system model:

˙ = ( + ) + ( + ) + (3.80)

= ( + ) + ( + ) + +£ ¤
=

" 1+
2

1

2 + 2

#
£ ¤

=
1+ 1

0 0 0

¸
Modelling of faults
Three additive faults are considered in the benchmark:

• fault in lateral acceleration sensor, which can also be a constant or a ramp
and denoted by 1

• fault in yaw rate sensor, which can be a constant or a ramp and denoted
by 2

• fault in steering angle measurement, which would be a constant and de-
noted by 3. It is worth to remark that in practice a fault in the steering
angle measurement is also called sensor fault.
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Table 3.6 Typical sensor faults

Sensor faults
O set Ramp

Yaw rate ± 2 , ± 5 , ± 10 ± 10 min

Lateral acceleration ± 2 2, ± 5 2 ± 4 2 , ± 10 2

Steering angle ± 15 ± 30 —

In Table 3.6, technical data of the above-mentioned faults are given.
Based on (3.78), the one-track model with the above-mentioned sensor

faults can be described by

˙ = + + + = + + + + (3.81)

=
£
0

¤ R2×3 =
£
2×2

¤
=

1

2

3

3.7.5 Electrohydraulic Servo-actuator

In this subsection, we briefly introduce a linear model of electrohydraulic
servo-actuator (EHSA) which is used in aileron control.
Nominal model
The state space representation of the EHSA considered in our benchmark

study is given by

˙ = + = =

˙
˙

= =

¸
(3.82)

=

2 0 2 0 0

0 0

1 0 0 0 0

0 2 2
0 0

0 1 0 0 0

=

2

0
0
0
0

=
0 0 0 1 0
0 0 0 0 1

¸

where the physical meanings as well as their values of the process variables
and parameters are given in Table 3.7.
Substituting these values into matrices gives

=

884 67 0 3 06× 105 0 0
0 3 6244× 104 0 12 19× 10 4 26 28
1 0 0 0 0
0 3 29× 1010 5 02× 1012 0 0
0 1 0 0 0
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Table 3.7 Technical data of the EHSA used in the benchmark study

Symbol Description Value Unit
Piston area 8 5348× 10 3 2

Servovalve orifice coe cient 406 84× 10 6 3

Command input [ 25 25]

Damping factor [0 7 0 8] -

Damping actuator 2 2× 106 · 2
2

Bulk modulus elasticity 6895× 105 2

Viscose friction 11711 ·

External air loads f( )
Max. input current 0 008

Input current [ ]

Controller gain 2 88

Servovalve gain 0 111125

Aerodynamic hinge moment 3680 ·
Piston mass 7

Chamber A,B pressure [0 ]

Supply pressure 205× 105
Tank pressure 5× 105
System pressure 200× 105

Reduced moment arm 0 09

Dead volume 3 2458× 10 5 3

Cut-o frequency [60 88]

Desired piston position [ ]

Max. extension movement 38 1× 10 3

Max. retraction movement 37 96× 10 3

Piston position [ ]

˙ Max. velocity 0 11

Max. spool movement 0 889× 10 3

Servovalve position [ ]

=

3 3973× 104
0
0
0
0

LCF of the nominal model
Below, we briefly describe the application of the LCF methods introduced

in Subsection 3.2 to model (3.82). The eigenvalues of matrix are

1 = 35101 2 = 1143 1 3 = 442 3 + 331 7

4 = 442 3 331 7 5 = 0 0

To construct ˆ ( ) ˆ( ) an observer gain matrix has been selected:
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=

9 2418× 10 5 3 0326× 103
1 6676× 10 3 7 1992× 104
5 6× 10 7 19 116
3 2451× 104 1 02× 1012
1 8795× 10 7 1 262× 103

which results in the following eigenvalues of matrix :

1 = 38611 2 = 1257 4 3 = 486 5 + 364 9

4 = 486 5 364 9 5 = 30000

Disturbance and model uncertainty
Typical disturbance that a ects the EHSA is the external air loads

The uncertainty due to the linearization can be described by

=

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0

| 1| 1 0097× 104 [ ] | 2| 1 144× 10 3
3
¸

This kind of uncertainty is of the polytopic type because they build a convex
set depending on di erent operating points. In our benchmark study, it is
assumed that

= { 1 · · · 9}
corresponding to 9 operating points. The values of 1 2 in each operating
point are given in Table 3.8.

Table 3.8 Polytopic uncertainties

i 1 2

1 493 25 1 144× 10 3

2 7580 3 0 858× 10 3

3 10097 0 572× 10 3

4 6419 2 0 286× 10 3

5 0 0

6 6419 2 0 286× 10 3

7 10097 0 572× 10 3

8 7580 3 0 858× 10 3

9 493 25 1 144× 10 3

Integrating the influences of into (3.82) yields

˙ = ( + ) + + = (3.83)

=
h
0 1 0 0 0

i
=
£
0 0 1429 0 0 0

¤
=
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Modelling of faults
Di erent kinds of faults will be considered in the benchmark study. These

include

• Failures inside the EHSA: The faults that may occur in the EHSA are
divided into two groups,
— faults that degrade the dynamics of the EHSA. This kind of faults are
multiplicative faults and will a ect parameters in system matrices
and . They are represented by

= 1 1 1 =

0 0 0
0 0 0 0 0
0 0 0 0 0

0 1 0 0

0 0 0 0 0

=
0
0
0
0

1

1 = 1

— faults that cause undesired movement of the control surface. Denoted
by 1 this kind of faults can be represented as an additive fault a ecting
the system input .

• additive sensor faults, denoted by 2 and 3

As a result, we have the following model to described the system dynamics
when some of the above-mentioned faults occur:

˙ = ( + ) + ( + ) + + = + (3.84)

=
1

2

3

=
£

0 0
¤

=
£
0 2×2

¤
1 [ 1 0]

3.8 Notes and references

In this chapter, we have introduced di erent model forms for the presenta-
tion of linear dynamic systems, which are fundamental for the subsequent
study. We suppose that the nominal systems considered in this book are LTI.
Modelling LTI systems by means of a state space representation or transfer
matrices is standard in the modern control theory. The reader is referred to
[19, 87] for more details.
Modelling disturbances and system uncertainties is essential in the frame-

work of robust control theory. In [49, 160, 161] the reader can find excellent
background discussion, basic modelling schemes as well as the needed math-
ematical knowledge and available tools for this purpose.
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In the framework of model-based fault diagnosis, it is the state of the art
that modelling of faults is realized in an analogous way to the modelling of
disturbances and uncertainties.
Coprime factorization technique is a standard tool in the framework of

linear system and robust control theory for the system representation. In
[49, 160, 161], the interested reader can find well-structured and detailed de-
scription about this topic.
To illustrate the application of the introduced system modelling technique,

five laboratory and technical systems have been briefly studied. The first three
systems, DC motor DR200, inverted pendulum LIP100 and three tank system
DTS200, are laboratory set-ups produced by AMIRA. To author’s knowledge,
they can be found in many laboratories for automatic control across the world.
It is worth mentioning that three tank system DTS200 and inverted pendulum
LIP100 are two benchmark processes that are frequently used in FDI study.
There have been a number of invited sessions dedicated to the benchmark
study on these two systems at some major international conferences. For the
technical details of these three systems, the interested reader is referred to
the practical instructions, [3] for DTS200, [4] for LIP100 and [5] for DR200.
[104] is an excellent textbook for the study on vehicle lateral dynamics. The
one-track model presented in this chapter is an extension of the standard one
given in [104], which has been used for a benchmark study in the European
project IFATIS [99]. A detailed description of EHSA is given in [128].
Another motivation for introducing these five systems is that they will

serve as benchmarks for illustrating the applications of our study in the forth-
coming chapters.
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Structural fault detectability, isolability and
identifiability

Corresponding to the major tasks in the FDI framework, the concepts of
fault detectability, isolability and identifiability are introduced to describe
the structural properties of a system from the FDI point of view. Gener-
ally speaking, we distinguish the structural fault detectability, isolability and
identifiability from the performance based fault detectability, isolability and
identifiability. For instance, the structural fault detectability is expressed in
terms of the signature of the faults on the system without any reference to the
FDI system used, while the performance based one refers to the conditions
under which a fault can be detected using some kind of FDI systems. Study
on structural fault detectability, isolability and identifiability plays a central
role in the structural analysis for the construction of a technical process and
for the design of an FDI system.
In this chapter, we shall introduce the concepts of structural fault de-

tectability, isolability and identifiability, study their checking criteria and il-
lustrate the major results using the benchmark examples.

4.1 Structural fault detectability

In the literature, one can find a number of definitions of fault detectability,
introduced under di erent aspects. Moreover, there are some significant di er-
ences regarding to additive and multiplicative faults. One of these di erences
is that a multiplicative fault may cause changes in the system structure. In
order to give a unified definition which is valid both for additive and multi-
plicative faults, we first specify our intension of introducing the concept of
structural fault detectability.
First, structural fault detectability should be understood as a structural

property of the system under consideration, which describes how a fault af-
fects the system behavior. It should be expressed independent of the system
input variables, disturbances as well as model uncertainties. Secondly, fault
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detectability should indicate if a fault would cause changes in the system out-
put. Finally, the structural fault detectability should be independent of the
type and the size of the fault under consideration.
Bearing these in mind, we adopt an intuitive definition of fault detectability

which says: a fault is detectable if its occurrence, independent of its size and
type, would cause a change in the nominal behavior of the system output. To
define it more precisely, we assume that

• the following system model is under consideration

˙ = ( + ) + ( + ) + (4.1)

= ( + ) + ( + ) + (4.2)

where, as introduced in Chapter 3, ( ) = + ( ) 1 repre-
sents the nominal system dynamics, R the additive fault vector and

the multiplicative faults given by

=
X
=1

=
X
=1

(4.3)

=
X
=1

=
X
=1

(4.4)

• a fault is understood as a scalar variable, either { }
or , and unifiedly denoted by

Definition 4.1 Given system (4.1)-(4.2). A fault is said structurally de-
tectable if for some

| =0 6 0 (4.5)

Equation (4.5) is the mathematical description of a change in the system
output caused by the occurrence of a fault (from zero to a time function dif-
ferent from zero), independent of its size and type. A fault becomes detectable
if this change is not constantly zero. In other words, it should di er from zero
at least at some time instant and for some system input.
The following theorem provides us with a necessary and su cient condition

for the detectability of additive and multiplicative faults.

Theorem 4.1 Given system (4.1)-(4.2), then

• an additive fault is detectable if and only if

( ) 1 + 6= 0 (4.6)

with denoting the i-th column of matrices respectively,
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• a multiplicative fault is detectable if and only if

( ) 1 ( ) 1 6= 0 (4.7)

• a multiplicative fault is detectable if and only if

( )
1 6= 0 (4.8)

• a multiplicative fault is detectable if and only if

( ) 1 6= 0 (4.9)

• a multiplicative fault is detectable if and only if

6= 0 (4.10)

Proof. While the proof of (4.6), (4.8)-(4.10) is straightforward and is thus
omitted here, we just check (4.7). It turns out

=
˙
= +

It yields

L
μ

| =0

¶
= ( )

1
( ) 1 ( )

with L denoting the Laplace transform ( -transform in the discrete time case)
Hence, for some | =0 6= 0 if and only if (4.7) holds. ut
It can be easily seen from Theorem 4.1 that

• an additive fault is structurally detectable as far as the transfer function
from the fault to the system output is not zero

• a multiplicative fault is always structurally detectable
• the structural detectability of multiplicative faults and can be
interpreted as input observability and output controllability respectively

• a multiplicative fault will cause essential changes in the system struc-
ture.

Also, it follows from Theorem 4.1 that we can estimate the changes in the
system output caused by the di erent types of the faults. To this end, suppose
that the faults occur at time instant 0 and their size is small at beginning,
then

• in case of additive fault :

( ) = + (4.11)

= + ( 0) = 0
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• in case of multiplicative fault

( )
( ) | =0 = (4.12)μ ¶

= + | =0 ( 0) = 0

where | =0 satisfies
˙ = +

• in case of multiplicative fault

( )
( )

= (4.13)μ ¶
= + ( 0) = 0

• in case of a multiplicative fault

( )
( )

= ( ) ˙ = + (4.14)

• in case of multiplicative fault

( )
( )

= ( ) (4.15)

Comparing (4.11) with (4.12)-(4.15) makes it evident that

• detecting additive faults can be realized independent of the system input,
and

• multiplicative faults can only be detected if ( ) 6= 0 In another word,
exciting signal is needed for a successful fault detection.

We see that transfer matrices

( ) 1 + ( ) 1 ( ) 1

( ) 1 ( ) 1

give a structural description of the influences of the faults on the system
output. For this reason and also for our subsequent study on fault isolability
and idenfiability, we introduce the following definition.

Definition 4.2 Given system (4.1)-(4.2). Transfer matrices

( ) 1 + ( ) 1 ( ) 1

( ) 1 ( ) 1

are called fault transfer matrices and denoted by ( ) ( ) ( )
( ) and ( ) respectively, or in general by ( )
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Example 4.1 To illustrate the results in this section, we consider three tank
system DTS200 given in Subsection 3.7.3. The fault transfer matrices of the
five additive faults are respectively

( ) 1
1 + 1 =

1
0
0

( ) 1
2 + 2 =

0
1
0

( ) 1
3
+

3
=

0
0
1

( ) 1
4
+

4
=

0 0065 +0 0002
( 2+0 0449 +0 0005)

0
0 0001

( 2+0 0449 +0 0005)

( ) 1
5
+

5
=

0
0 0065 +0 0002

( 2+0 0449 +0 0005)
0 0001

( 2+0 0449 +0 0005)

It is evident that these five faults are detectable. As to the multiplicative faults,
we have the following fault transfer matrices

( ) 1
1( ) 1

=
0 0214(0 0065 2 + 0 0002 )

( 3 + 0 0449 2 + 0 0005 )2

2 + 0 0364 0
0 0001 0

0 0085 + 0 0002 0

( ) 1
2( ) 1

=
0 0371(0 0065 2 + 0 0002 )

( 3 + 0 0449 2 + 0 0005 )2

0 0 0001
0 2 + 0 0254 + 0 0001
0 0 0084 + 0 0001

( ) 1
3( ) 1

=
0 00000262

( 3 + 0 0449 2 + 0 0005 )2

0 0085 + 0 0002 0 0085 + 0 0002
0 0084 + 0 0001 0 0084 + 0 0001

2 + 0 0280 + 0 0002 2 + 0 0280 + 0 0002

( ) 1
4( ) 1

=
0 0000085

( 3 + 0 0449 2 + 0 0005 )2

0 001 2 0 055 3 + 0 002 2

0 1 3 + 0 002 2 6 5 4 0 21 3 0 002 2

0 1 3 0 002 2 6 5 4 + 0 227 3 + 0 003

( ) 1
5( ) 1

=
0 0111(0 0065 2 + 0 0002 )

( 3 + 0 0449 2 + 0 0005 )2

0 0 0001
0 2 + 0 0254 + 0 0001
0 0 0084 + 0 0001

( ) 1
6( ) 1

=
0 0000084

( 3 + 0 0449 2 + 0 0005 )2

0 001 2 0 055 3 + 0 002 2

0 1 3 + 0 002 2 6 5 4 0 21 3 0 002 2

0 1 3 0 002 2 6 5 4 + 0 227 3 + 0 003

As a result, all these multiplicative faults are detectable.
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4.2 Excitations and su ciently excited systems

In this section, we briefly address the issues with excitation signals, which are,
as shown above, needed for detecting multiplicative faults. Let ( ) be the
fault transfer matrix of a multiplicative fault and satisfy¡

( )
¢
= ( 0)

then we can find a -dimensional subspace U so that for all U

( ) ( ) 6= 0

From the viewpoint of fault detection, subspace U contains all possible
input signals that can be used to excite a detection procedure.

Definition 4.3 Let ( ) be the fault transfer matrix of multiplicative fault

U =
© | ( ) ( ) 6= 0ª (4.16)

is called excitation subspace with respect to

Mathematically, we can express the fact that detecting an additive fault,
say is independent of exciting signals by defining

U =
© R ª

In this way, we generally say that

Definition 4.4 System (4.1)-(4.2) is su ciently excited regarding to a fault
if

U (4.17)

With this definition, we can reformulate the definition of the fault de-
tectability more precisely.

Definition 4.5 Given system (4.1)-(4.2). A fault is said structurally de-
tectable if for U

| =0 6 0 (4.18)

Remark 4.1 In this book, the rank of a transfer matrix is understood as the
so-called normal rank if no additional specification is given.
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4.3 Structural fault isolability

4.3.1 Concept of structural fault isolability

For the sake of simplicity, we first study a simplified form of fault isolability
problem, namely distinguishing the influences of two faults. An extension to
the isolation of multiple faults will then be done in a straightforward manner.
Consider system model (4.1)-(4.2) and suppose that the faults under con-

sideration are detectable. We say any two faults, 6= are isolable if the
changes in the system output caused by these two faults are distinguishable.
This fact can also be equivalently expressed as: any simultaneous occurrence of
these two faults would lead to a change in the system output. Mathematically,
we give the following definition.

Definition 4.6 Given system (4.1)-(4.2). Any two detectable faults, =£ ¤ 6= are isolable, when for U U

| =0 6 0 (4.19)

It is worth mentioning that detecting a fault in a disturbed system requires
distinguishing the fault from the disturbances. This standard fault detection
problem can also be similarly formulated as an isolation problem for two faults.
In a general case, we say that a group of faults are isolable if any simulta-

neous occurrence of these faults would lead to a change in the system output.
Define a fault vector

=
£
1 · · ·

¤
(4.20)

which includes structurally detectable faults to be isolated.

Definition 4.7 Given system (4.1)-(4.2). The faults in fault vector are

isolable, when for all
T
=1
U

| =0 6 0 (4.21)

We would like to call reader’s attention on the similarity between the
isolability of additive faults and the so-called input observability which is
widely used for the purpose of input reconstruction. Consider system

˙ = + = + (0) = 0

It is called input observable, when ( ) 0 implies ( ) 0. Except the
assumption on initial condition (0) the physical meanings of the isolability
of additive faults and input observability are equivalent.
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4.3.2 Fault isolability conditions

With the aid of the concept of fault transfer matrices, we now derive existence
conditions for the structural fault isolability.

Theorem 4.2 Given system (4.1)-(4.2), then any two faults with fault trans-
fer matrices ( ) ( ) 6= are structurally isolable if and only if

£
( ) ( )

¤
=

¡
( )
¢
+

³
( )
´

(4.22)

Proof. It follows from (4.11)-(4.15) that the changes in the output caused by
can be respectively written as

L 1
¡

( ) ( )
¢ L 1

³
( ) ( )

´
where

( ) = L( ) for = or ( ) = L ( ( )) for { }

with U U . Since

| =0 = | =0 + | =0

it holds that if is not isolable, then

| =0 = 0 L
μ

| =0
¶
+ L

μ
| =0

¶
= 0

£
( ) ( )

¤ ( )
( )

¸
= 0£

( ) ( )
¤ ¡

( )
¢
+

³
( )
´

The theorem is thus proven. ut
An extension of the above theorem to a more general case with a fault

vector =
£
1 · · ·

¤
is straightforward and hence its proof is omitted.

Corollary 4.1 Given system (4.1)-(4.2), then with fault transfer matrix

( ) =
£

1
( ) · · · ( )

¤
is structurally isolable if and only if

( ( )) =
X
=1

¡
( )
¢

(4.23)
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In order to get a deeper insight into the results given in Theorem 4.2 and
Corollary 4.1, we study some special cases often met in practice.
Suppose that the faults in fault vector =

£
1 · · ·

¤
are additive faults.

Then the following result is evident.

Corollary 4.2 Given system (4.1)-(4.2) and assume that = 1 · · ·
are additive faults. Then, these faults are isolable if and only if

( ( )) = (4.24)

This result reveals that, to isolate di erent faults, we need at least an -
dimensional subspace in the measurement space spanned by the fault transfer
matrix. Considering that ( ( )) min { } with as the number of
the sensors, we have the following claim which is very easy to check and thus
useful for the practical application.

Claim. The additive faults are isolable only if the number of the faults is not
larger than the number of the sensors.

Denote the minimal state space realization of ( ) by

( ) = ( )
1

+

Check condition (4.24) can be equivalently expressed in terms of the matrices
of the state space description.

Corollary 4.3 Given system (4.1)-(4.2) and assume that = 1 · · ·
, are additive faults. Then these faults are isolable if and only if¸

= + (4.25)

Proof. The proof becomes evident by noting that¸
( ) 1 ( ) 1

0

¸
=

0

( ) 1 ( ) 1 +

¸
=

¸
=

μ ¸
( ) 1 ( ) 1

0

¸¶
=

0

( ) 1 ( ) 1 +

¸
= +

³
( ) 1 +

´
ut
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Recall that for additive faults the fault isolability introduced in Definition
4.7 is identical with the concept of input observability known and intensively
studied in the literature, we would like to extend our study

• to find out alternative conditions for checking conditions (4.24) or (4.25)
• to compare them with the results known in the literature and
• to gain a deeper insight into the isolability of additive faults, which will
be helpful for some subsequent studies in the latter chapters.

To simplify our study, we first consider ( ) = ( ) 1 It follows
from Cayley-Hamilton Theorem that

( )
1

=
1

( )

ÃX
=1

!
=

1

( )

ÃX
=1

( ) 1

!
(4.26)

( ) = det ( ) = + 1
1 + 2

2 + · · ·+ 1 +

= 1 + 1 1 = = 2 · · ·
1( ) =

1 + 1
2 + · · ·+ 1 · · · 1( ) = + 1 ( ) = 1

which can be rewritten into

( )
1

=
1

( )

£
1( ) 2( ) · · · ( )

¤
...
1

(4.27)

It is obvious that if

...
1

then there exists a which yields

...
1

= 0 = ( )
1

= 0

Thus,

...
1

= (4.28)
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builds a necessary condition for the fault isolability. We would like to call
reader’s attention that (4.28) is not a su cient condition for the fault isola-
bility. To see it, we consider a special case with = 1 and ( )
being observable, i.e.

...
1

=

It immediately becomes clear that (4.28) is satisfied. But, the system is, due
to not isolable, as can be seen from Corollary 4.2.

Remark 4.2 We would like to point out that (4.28) is claimed as a necessary
and su cient condition for the input observability in some publications, which
is, as shown above, not correct.

Below, we shall derive some su cient conditions on the assumption that
and (4.28) holds. Note that the orders (highest power) of ( ) =

1 · · · given in (4.26) are di erent . If for some {1 · · · }¡
1

¢
= (4.29)

then (4.27) can be rewritten into

( ) 1 =
1

( )
( ) +

X
=1 6=

( ) 1

where R × = 1 · · · 6= are some matrices. Considering that

( ) +
X
=1 6=

( ) =
¡

1
¢
=

we finally have ³
( )

1
´
=

This proves the following theorem.

Theorem 4.3 Given ( ) 1 as defined in (4.26) with and
satisfying (4.28). Assume that for some {1 · · · } ¡

1
¢
=

Then ³
( ) 1

´
=

In the framework of linear system theory, = 0 1 · · · are called
Markov matrices. Theorem 4.3 provides us with a su cient condition for
checking the isolability of additive faults by means of Markov matrices.
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It is interesting to note that according to (4.26) ( )
1 can also

be rewritten into

( )
1

= (4.30)

£
1 · · · 1

¤ 0 · · · 0
. . .

...
...

...
. . . 0

1 2 · · ·

...
1

This form is important in studying various algebraic properties of the so-called
parity space methods.
In a similar manner like the proof of Theorem 4.3, we are able to prove

the following theorem that gives an alternative su cient condition for the
isolability.

Theorem 4.4 Given ( ) 1 . Let = = 1 · · · and
assume that for some {1 · · · }

( ) = (4.31)

then
³

( ) 1
´
= .

The above discussion and the results given in Theorems 4.3 and 4.4 can
be easily extended to the general form of system model ( ) 1 +
To this end, we extend the state space description as follows

˙
˙

¸
=

0 0

¸ ¸
+

0
¸
˙ := ¯¯ + ¯ ˙ (4.32)

=
£ ¤ ¸

:= ¯¯ ¯ =

¸
(4.33)

It is easy to prove that given ( ) 1 + condition (4.28) can then
be equivalently written as

¯ ¯
¯ ¯ ¯

...
¯ ¯ ¯

...
¯ ¯ + 1 ¯

= ...
1

= (4.34)

while conditions (4.29) and (4.31) respectively as

¡
¯ ¯ 1 ¯

¢
=

½
( ) = if = 1¡

2
¢
= if {2 · · · + 1} (4.35)
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¡
¯
¢
= {0 · · · } 0̄ =

£ · · · 1

¤ 0
...
0

= (4.36)

¯ =
£

1 · · · 1

¤
0
...
0

...
1

{1 · · · } (4.37)

We now review the conditions for the structural fault isolability of mul-
tiplicative faults. Although Corollary 4.1 holds for both additive and multi-
plicative faults, the forms of the faults matrices of multiplicative faults reveal
that isolating multiplicative faults may demand more sensors. To illustrate it,
we first take a multiplicative process fault as an example. Remember that in
this case the fault transfer matrix is ( ) 1 ( ) 1 , which can
be written as

( ) 1 ( ) 1 = 0
0

0 0

In the worst case, this multiplicative process fault can span a subspace with
dimension equaling to¡

( ) 1 ( ) 1
¢
= min { } :=

To isolate such a (single) fault, we need at least sensors.
As to multiplicative sensor and actuator faults, it seems that their fault

transfer matrices, ( ) 1 ( ) 1 would span a lower dimen-
sional subspace, for instance in case that

( ) = 1 ( ) = 1

On the other side, if those faulty sensors and actuators are embedded in a
feedback control loop, for instance with = then they will cause change
in the eigendynamics of the closed loop system. In another word, they will
a ect the system performance like a multiplicative process fault. Again, to
isolate these faults, additional number of sensors are demanded.
In practice, in particular in systems with integrated feedback control loops,

it is often the case that the system input keeps constant or changes slowly
over a relatively long time interval. On the assumption of a constant vector
, we introduce the concept of weak isolability of multiplicative faults.
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Definition 4.8 Given system (4.1)-(4.2) and let

=

1

...

with multiplicative faults = 1 · · · is called weakly isolable, if for all

constant vector
T
=1

U

| =0 6 0

The theorem given below follows directly from Corollary 4.1 and the defi-
nition of weak isolability of multiplicative faults.

Theorem 4.5 Given system (4.1)-(4.2) and let

=

1

...

be a multiplicative fault vector with fault transfer matrix

( ) =
£

1( ) · · · ( )
¤

Then, is weakly isolable if and only if for all constant vector
T
=1
U

£
1
( ) · · · ( )

¤
=

Comparing the results given in Corollary 4.1 and the above theorem makes
it evident that the existence condition for a weak isolability of multiplicative
faults can be remarkably released.

Example 4.2 Consider again three tank system DTS200. It is evident that
it is impossible to isolate all eleven faults, since we only have three sensors.
However, if we are able to divide the faults into di erent groups and assume
that faults from only one group can occur simultaneously, then a fault isolation
becomes possible. For instance, if we divide the additive faults into two groups,
a group with the sensor faults and a group with the actuator faults, then we
have, using the fault transfer matrices given in the last section,¸

= 6

and
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= 5

where

= 0 =
1 0 0
0 1 0
0 0 1

=
£

4 5

¤
= 0

Thus, it follows from Corollary 4.2 that these additive faults are isolable on the
above assumption. As for the multiplicative faults, it follows from Corollary
4.1 that a group of three faults is generally not isolable. In fact, if it is assumed
that the six multiplicative faults are divided into three groups with (a) group
1: 1 2 (b) group 2: 3 4 (c) group 3: 5 6 then using the fault transfer
matrices given in the last section, we are able to prove that these faults are
isolable.

4.4 Structural fault identifiability

Roughly speaking, the concept of structural fault identifiability is understood
as a characterization of system structure that is essential to reconstruct faults
from the system output. From the mathematical viewpoint, fault identifia-
bility characterizes the mapping from the system output to the faults under
consideration. If this mapping is unique, then the faults are identifiable. Usu-
ally, we intend to express this mapping in terms of the model from the faults
to the system output, then the structural fault identifiability is equivalent to
the model invertibility. Motivated by this fact, we introduce the concept of
structural fault identifiability in terms of, di erent from the structural fault
detectability and isolability, fault transfer matrices.

Definition 4.9 Given system (4.1)-(4.2) and let

( ) =
£

1
( ) · · · ( )

¤
be the fault transfer matrix of fault vector =

£
1 · · ·

¤
is called struc-

turally identifiable if ( ) is invertible and its inverse is stable and causal.

Note that the requirements on the stability and causality of the inverse of
( ) is an expression for the realizability of inversing ( ) It is evident that

without these two requirements, the structural fault identifiability would be
equivalent to the structural fault isolability. In another word, the structural
fault isolability is a necessary condition for the faults to be identifiable.
To understand the idea behind the definition of structural fault identifi-

ability, we now consider di erent types of faults respectively. Let ( ) be a
vector of additive faults with fault transfer matrix ( ) As shown in (4.11),
the change of ( ) caused by ( ) can be written as
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( ) = ( ) ( )

If ( ) is invertible and its inverse is stable and causal, then it is possible to
reconstruct ( ) based on the relation

( ) = 1( ) ( ) (4.38)

Thus, fault vector is structurally identifiable. For a multiplicative fault
we have

( ) = ( )L ( ( ) )

with ( ) = ( ) 1 According to Definition 4.9, the structural
idenfiability of means it is possible to reconstruct ( ) based on

L ( ( ) ) = 1 ( ) ( ) := ( ) (4.39)

Since system input ( ) is generally on-line available, an identification of the
fault can be achieved using the relation

=
¡

( ) ( )
¢ 1

( ) ( ) for ( ) 6= 0 (4.40)

Analog to (4.39) and (4.40), we have the relations

L ( ( ) ) = 1 ( ) ( ) := ( ) (4.41)

=
¡

( ) ( )
¢ 1

( ) ( ) for ( ) 6= 0
L ( ( ) ) = 1 ( ) = ( ) (4.42)

=
¡

( ) ( )
¢ 1

( ) ( ) for ( ) 6= 0

for multiplicative faults and , respectively. Again, we can see that
identifying a multiplicative fault requires not only the invertibility of the fault
transfer matrix but also a su cient excitation.
As to a multiplicative fault remember that the change in caused by
can only be approximated by

( ) ( )L ( ( ) ) ( ) = ( ) 1 ( ) 1

in case of a small In general, we haveμ ¶
= ( + ) + ( 0) = 0 (4.43)

˙ = ( + ) + ( ) =

It is evident that an identification of would become very di cult.
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Example 4.3 Consider three tank system DTS200 with the fault transfer ma-
trices derived in Example 4.1. Since

0

3×3

¸
= 6

the inverse of the transfer matrix of the sensor faults is stable and causal.
According to Definition 4.9, these faults are identifiable. In against, the ad-
ditive actuator faults and the multiplicative process faults are not structurally
identifiable.

4.5 Notes and references

Due to their important role in the FDI study, much attention has been de-
voted to the concepts of fault detectability and isolability. In the beginning
phase, fault detectability and isolability have been often defined in terms of
the performance of the FDI systems used. Di erently, in most of the recent
publications on this topic, fault detectability and isolability are expressed in
terms of the structural properties of the system under consideration. In or-
der to distinguish these two di erent ways of defining fault detectability and
isolability, we have adopted the notation structural fault detectability and
isolability to underline the original idea behind the introduction of these two
concepts. They are used to indicate the structural properties of the system
under consideration from the FDI viewpoint.
Definitions of (structural) fault detectability and isolability can be found

in all recently published books, see for instance [13, 21, 64, 117]. The inter-
ested reader may wonder about many di erent definitions of (structural) fault
detectability and isolability. One may also notice that most of these definitions
are related to the additive faults. It is one of our motivations to define struc-
tural fault detectability and isolability both for additive and multiplicative
faults unifiedly.
A confusion by the definition of fault detectability and isolability is caused

by way of defining faults. In some publications, a fault is also understood as a
vector. In this case, fault detectability requires a full (column) rank of the fault
transfer matrix to ensure that the occurrence of any fault would cause changes
in the system output. On the other side, this definition yields a conflict with
the fault isolability defined on the assumption that a fault is a scalar variable
and a fault vector represents a number of faults. For this reason, it has been
adopted in our study that a fault is understood as a scalar variable. In our
view, this definition fits real applications well. It also allows a unified handling
of additive and multiplicative faults.
In [76], the concept of input observability has been introduced, which has

been, in its original study, motivated by the input identification problem.
Due to its close relation to the FDI problems, this concept has been lately
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reformulated as fault detectability for additive faults, see for instance [96]. As
pointed out above and shown in Subsection 4.3.2, the input observability is
identical with the fault isolability defined in our study. We would like to call
attention of the interested reader that in Subsection 4.3.2 we have corrected
some wrong results on the existence conditions for the input observability.



Part II

Residual generation



5

Basic residual generation methods

The objective of this chapter is to establish a framework and to lay founda-
tions for the study on model-based residual generation. We shall address the
concepts of analytical redundancy and residual generation on the assumption
of a perfect system model, as sketched in Fig. 5.1, and introduce a general
description form of model-based redundancy and residual generators. On this
basis, tasks of designing and constructing model-based residual generators will
be formulated.

Fig. 5.1 Schematic description of the object addressed in Chapter 5

Three types of residual generators including

• fault detection filter (FDF)
• diagnostic observer (DO)
• parity relation based residual generator (PRRG)

will be presented and studied. Main attention is paid to
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• the implementation and design forms of these residual generators,
• characterization of the solutions and
• interconnections among the di erent types of residual generators.

5.1 Analytical redundancy

The concept analytical redundancy stands generally for an analytical recon-
struction of quantities or parts of the system under monitoring. For our pur-
pose of residual generation, known as a comparison between system measure-
ments and their redundancy, the analytical redundancy is understood as a
reconstruction of the measured quantities of the system under consideration.
Consider the following nominal model that describes the transfer behavior

of the system or a part of the system under monitoring,

( ) = ( ) ( ) (5.1)

where ( ) represents the measured variable, for which a redundancy will be
established, and ( ) a process variable that may be the process input or
even a measured variable. A natural and in practice often applied method to
reconstruct ( ) is an on-line parallel simulation of input-output relationship
(5.1)

ˆ( ) = ( ) ( )

where ˆ( ) stands for an estimate of ( ) and is called analytical or software
redundancy. Although this kind of redundancy promises a simple on-line im-
plementation and seems easy to be understood, the scheme of generating
redundancy is of a property that makes a direct application of this approach
often impossible, at least theoretically and in many practical cases: The dy-
namics of the estimation error is identical with the one of the system, i.e.

( ). In order to show what this means and which consequence this prop-
erty has, consider the influences of the system initial states and system model
uncertainty on the residual signal. To this end, the system model (5.1) is
extended to

( ) = ( ) ( ) + ( ) 1 (0) + ( ) (5.2)

to include the process initial states (0) and model uncertainty ( ), where
the state space realization of ( ) is assumed to be ( ). It turns
out

( ) = ( ) ˆ( ) = ( ) 1 (0) + ( ) (5.3)

which means, in other words,

• the variation of ( ) from zero caused by (0) 6= 0 disappears only when the
process ( ) is stable (i.e. is stable), and even in this case the convergent
rate exclusively depends on the position of the eigenvalues of in the real
part of the complex plane
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• the influence of the model uncertainty is not suppressed.

As a result, the reconstructed variable may strongly di er from its original
one (the measured one).
From the viewpoint of control engineering, the reason for the above-

mentioned problems is evidently traced back to the so-called open-loop struc-
ture. A known solution is, therefore, to modify the structure of system (5.1)
in such a way that a feedback loop is included. A reasonable and typical form
of such a modification is given by

ˆ( ) = ( ) ( ) + ¯( ) ( ( ) ˆ( )) (5.4)

In comparison with the open-loop structured system (5.1), we see that the
added term ¯( ) ( ( ) ˆ( )) acts as a correction on ˆ( ) that ensures a
limited variation of ˆ( ) from ( ). This system is closed-loop structured and
is of, by a suitable choice of the feedback matrix ( ), the properties required
for a redundancy system:

( ) = ( ) ˆ( ) = 0 for all ( ) (5.5)

lim ( ( ) ˆ( )) for all (0) (5.6)

The convergent rate is arbitrarily assignable (5.7)

the influence of ( ) is suppressed. (5.8)

We now consider how to choose ( ).
It follows from (5.2) and (5.4) that

( ) ˆ( ) = ( ) ( ) + ( ) 1 (0) + ( )

( ) ( ) ¯( )( ( ) ˆ( )) (5.9)

and furthermore¡
+ ¯( )

¢
( ( ) ˆ( )) = ( ) 1 (0) + ( )

Do a left coprime factorization of ( ) 1 (see Section 3.2),

( ) 1 =
¡

( + ) 1
¢ 1

( + ) 1

with ensuring stable. Recall our task is to select ¯( ) so that (5.5)-
(5.8) are fulfilled. To this end, we have to, knowing from linear system theory,
cancel the poles of transfer function matrix ( ) 1, which are obviously
the zeros of matrix ( + ) 1 . Setting

+ ¯( ) =
¡

( + ) 1
¢ 1

and noting the following equality¡
( + ) 1

¢ 1
= + ( ) 1 (5.10)
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give

+ ¯( ) = + ( ) 1 = ¯( ) = ( ) 1 (5.11)

Substituting (5.11) into (5.9) yields

( ) ˆ( ) = ( + ) 1 (0) +
¡

( + ) 1
¢

( )

On the assumption that ( ) is observable, by choosing suitably we can
arbitrarily assign the poles of ( + ) 1 and simultaneously suppress
the influence of ( ).
It is evident that system (5.4) with ¯( ) given by (5.11) satisfies condi-

tions (5.4)-(5.8). However, a slight modification is needed such that (5.4) is
presented in a suitable form for the on-line implementation. We do the fol-
lowing calculations:

ˆ( ) = ( ) ( ) + ( ) 1 ( ( ) ˆ( ))¡
+ ( ) 1

¢
ˆ( ) = ( ) ( ) + ( ) 1 ( )

and thus

ˆ( ) =
¡

+ ( + ) 1( )
¢
( )

+ ( + ) 1 ( ) (5.13)

During the above calculations, Lemma 3.1 and (5.10) have been used. With
the aid of these relations, (5.13) can be brought into a compact form

ˆ( ) = ˆ ( ) ( ) ( ˆ ( ) ) ( ) (5.14)

with ˆ ( ) ˆ ( ) denoting an LCF of ( ) i.e. ( ) = ˆ 1( ) ˆ ( )
(5.14) describes a dynamic system whose input is ( ), ( ) and output an

estimate of ( ). This system is stable and will converge to ( ), independent
of ( ) (0), with an arbitrarily assignable velocity.
Let’s transform (5.13) into the state space

˙̂ = ˆ + + ( ˆ ) (5.15)

ˆ = ˆ + (5.16)

Its similarity to the well known state observer becomes evident. We call there-
fore system (5.14) or equivalently (5.15)-(5.16) output observer. As an estimate
for ( ) ˆ( ) and the associated algorithm are also called soft- or virtual sen-
sor.
We summarize the main results of this section into a theorem.

Theorem 5.1 Given a transfer function matrix ( ) R × with the
state space realization ( ), then signal ˆ( ) delivered by system (5.14)
or equivalently (5.15)-(5.16) reconstructs ( ) in the sense of (5.5)-(5.8).
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The output observer builds the core of a residual generator. As will be
shown in the next section, residual generator design can be reduced to the
construction of an output observer.

Remark 5.1 The original idea of using system model to construct redun-
dancy and residual signals goes back to the works by Beard and Jones, in
which a state observer in a quite similar form to (5.15)-(5.16) was used for
the purpose of the output reconstruction. Since then, this approach is widely
and successfully used in dealing with FDI problems under the name observer-
based approach and has now become one of most powerful techniques in the
field of model-based fault diagnosis. Unfortunately, the expression observer-
based approach often leads to the misunderstanding that a state observer is
necessary. This is also the reason why we have paid much attention to the
introduction of analytical redundancy construction using process input-output
relationship.

We would like to conclude this section with the following comments:

• What we need for the residual generation is the input-output behaviors of
the process under consideration.

• The state observer form (5.15)-(5.16) provides us with a numerical solution
for the purpose of creating analytical redundancy. It is not the only solution
and, in some cases, also not the best one.

• The use of the state observer form (5.15)-(5.16) is based on the assump-
tion that ( ) has the state space realization ( ). Known from
the linear system theory, it means that only observable and controllable
parts of the process are taken into account. From the viewpoint of resid-
ual generation, the system observability and controllability are in fact not
necessary for the use of the so-called observer-based FDI scheme.

5.2 Residuals and parameterization of residual
generators

In the context of FDI study, a residual signal is understood as an indicator for
the possible faults. The most important characteristic features of a residual,
( ), are

lim ( ) = 0 for all ( ) (0) and ( ) = 0 (5.17)

( ) = ( ) ( ) ( ) 6= 0 (5.18)

Using the output observer (5.14) we are able to generate a residual simply by
a comparison of ˆ( ) with ( ):

( ) = ( ) ˆ( ) = ˆ ( ) ( ) ˆ ( ) ( ) (5.19)
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On the other hand, we know that a signal constructed by e.g. ( ) ( ( ) ˆ( )),
where ( ) 6= 0 is some matrix or vector, is also a residual in the sense of
(5.17)-(5.18). This motivates us to ask: What is the general form of a resid-
ual generator? It is reasonable to assume that all residual generators can be
expressed in terms of

( ) = ( ) ( ) + ( ) ( ) ( ) ( ) RH (5.20)

where ( ) and ( ) represent two stable systems with appropriate dimen-
sion. Thus, the answer to the above question can be concretely reformulated as
a search for the existence conditions for ( ) and ( ) under which residual
( ) fulfills conditions (5.17)-(5.18).
Substituting (5.1) into (5.20) yields

( ) = ( ) ( ) + ( ) ( ) ( ) = ( ( ) + ( ) ( )) ( )

We see that system (5.20) delivers a residual only if

( ) + ( ) ( ) = 0

which can be further written into

( ) ( ) + ( ) ( ) = 0 (5.21)

with ( ( ) ( )) denoting a RCF pair of ( ). The following theorem
shows under which conditions (5.21) holds.

Theorem 5.2 Let

• ( ˆ ( ) ˆ ( )) and ( ( ) ( )) be left and right coprime factorization
pair of transfer function matrix ( ) LR × ,

• ( ) ( ) ˆ ( ) ˆ( ) beRH -matrices with appropriate dimensions that
satisfy the Bezout identity (3.14)

• ( ) be a × -dimensional RH -matrix.

Then, the set of RH -matrices ( ) ( ) satisfying

( ) ( ) + ( ) ( ) = ( ) (5.22)

is given by

( ) = ( ) ( ) ( ) ˆ ( ) ( ) = ( ) ( ) + ( ) ˆ ( ) (5.23)

where ( ) belongs to RH and is a × -dimensional RH parameteri-
zation matrix.
Furthermore, for every × -dimensional RH parameterization matrix
( ), ( ) ( ) satisfying (5.23) ensure that (5.22) holds.
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Proof. Suppose ( ) and ( ) satisfy (5.22) and define

( ) =
£
( ) ( )

¤ ˆ ( )
ˆ( )

¸
which, considering that ( ) ( ) ˆ( ) and ˆ ( ) are RH matrices, be-
longs to RH . It results in

£
( ) ( )

¤
=
£
( ) ( )

¤ ( ) ˆ ( )

( ) ˆ( )

¸ 1

from which (5.23) follows readily. To prove that every ( ) ( ) given
by (5.23) satisfy (5.22) we use the double Bezout identity (3.14). Suppose
( ) ( ) satisfy (5.23). Then

( ) ( ) + ( ) ( ) =£
( ) ( )

¤ ( ) ( )
ˆ ( ) ˆ ( )

¸
( )
( )

¸
=
£
( ) ( )

¤ ¸
= ( )

Hence, they ensure that (5.22) holds. ut
Setting ( ) in Theorem 5.2 equal to null-matrix gives all solutions of

(5.21) and thus a parameterization of all residual generators.

Theorem 5.3 Given transfer function matrix ( ) LR × with a left
coprime factorization pair ( ˆ ( ) ˆ ( )), then

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(5.24)

represents a parameterization form of linear residual generators in the sense
that

• for every residual generator we can find a RH -matrix ( ) such that the
residual generator can be expressed in terms of (5.24),

• for every ( ) RH system (5.24) delivers a residual satisfying (5.17)-
(5.18).

A comparison with (5.19) reveals that any residual generator can be con-
sidered as an extension of an output observer-based residual generator. They
consist of two parts: an output observer and a dynamic system ( ). These
two parts may take di erent functions:

• the output observer builds the core of the residual generator and is used
to reconstruct system behavior so that the original form of residual signal,
( ) ˆ( ), provides us with the information about the variation of the
system operation from its nominal value,
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• the dynamic system ( ) acts in fact as a signal filter and can, by a suitable
selection, help us to obtain significant characteristics of faults, as will be
discussed in the forthcoming chapters. Thus, ( ) is also called post-filter.

Example 5.1 Consider the benchmark system EHSA given in Subsection
3.7.5. We would like to parameterize all residual generators for EHSA accord-
ing to Theorem 5.3. To this end, we use the same LCF as given in Subsection
3.7.5 with

ˆ ( ) =
ˆ
11( ) ˆ12( )
ˆ
21( ) ˆ22( )

¸
ˆ ( ) =

ˆ
11( )
ˆ
21( )

¸

ˆ
11( ) =

μ
5 + 38391 4 + 1 19× 108 3 + 1 36× 1011 2

+6 98× 1013 + 1 5× 1016
¶

( )

ˆ
21( ) =

1 88× 10 7

μ
4 + 28256 3 1 46× 108 2

1 6× 1011 6 52× 1013
¶

( )

ˆ
12( ) =

1 02× 1012
μ

4 + 39549 3 + 3 79× 107 2

+1 43× 1010 + 3 17× 108
¶

( )

ˆ
22( ) =

μ
5 + 6 958× 104 4 + 1 22× 109 3 + 1 15× 1012 2

+4 28× 1014 2 64× 1011
¶

( )

ˆ
11( ) =

3 34

μ
10 10 4 5 79× 10 5 3 5 1× 1016 2

1 91× 1021 2 33× 1024
¶

( )

ˆ
21( ) =

5 82× 10 11

μ
4 + 40960 3 + 1 34× 108 2

+5 51× 1020 + 1 86× 1025
¶

( )

( ) =
5 + 7 08× 104 4 + 1 31× 109 3 + 2 69× 1012 2

+1 87× 1015 + 5 38× 1017

The parameterization form of the all residual generators is expressed by

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
( ) RH

5.3 Problems related to residual generator design and
implementation

Having addressed the parameterization form of residual generators, we are now
faced with a practical task: how to design a residual generator described by
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(5.24). Taking a look at (5.24) and recalling the meaning of ( ) ˆ ( ) and
ˆ ( ) make it clear that there exist indeed two design parameters (parameter
matrices): the observer gain matrix and the post-filter ( ). The question
arises: how to choose and ( )?
Remember that the main objective of using a residual generator is to

make the residual signal as sensitive to faults as possible and simultaneously
as robust as possible against the model uncertainty. For this reason, we first
study the dynamics of residual generator (5.24). Let us consider system model
of the form

( ) = ( ) ( ) + ( ) ( ) + ( )

and substitute it into (5.24). We immediately see that the dynamics of residual
generator (5.24) is governed by

( ) = ( ) ˆ ( ) ( ( ) ( ) + ( )) (5.25)

Obviously, the problem of residual generator design can be simply formulated
as finding ( ) RH and ensuring the stability of matrix such
that

• ( ) ˆ ( ) ( ) as large as possible and simultaneously
• ( ) ˆ ( ) ( ) as small as possible.

In fact, the so-called observer-based residual generation approaches re-
ported during the last three decades served only for one purpose, i.e. finding
( ) and , although di erent mathematical and control theoretical tools

have been applied, the structures of residual generators are various and the
achieved results appear quite di erent. These approaches will be described in
the subsequent sections of this chapter.
We now have two di erent forms of residual generators, (5.24) and (5.25).

(5.24) presents an explicit form that describes the structure and the possible
algorithm for the on-line implementation. We call it implementation form of
residual generators. In some references, it is also called computational form.
Note that all variables and transfer function matrices used in (5.24) are known
or measurable. In against, the variables given in (5.25) are unknown. Thus,
(5.25) is an internal form that provides us with the dynamics of the FDI
system and used for the purpose of residual generator design. For this reason,
we call it design form of residual generators.

Remark 5.2 There exist a variety of methods for the on-line realization of
implementation form (5.24). We can use, for instance, the state space realiza-
tion similar to (5.15)-(5.16) or transfer matrices. It is independent of which
method is used for the determination of and ( ). Our main attention in
the following will be paid to the methods of residual generator design. The
reader should keep in mind that the on-line implementation can be carried out
independent of the design form used. One can use e.g. state space scheme for
the on-line implementation even if and ( ) are calculated by means of a
frequency domain approach.
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Although (5.24) and (5.25) can be directly used for the residual generator
design, the most important advantage of using them lies in their generality and
the parameterization form, i.e. they represent the design and implementation
forms of all linear residual generators. We shall in the following often make use
of this property for the purposes of introducing some concept and or making
system analysis. We call them therefore general forms of residual generators.

5.4 Fault detection filter

Fault detection filter (FDF) is the first kind of observer-based residual gener-
ators proposed by Beard and Jones in the early 70’s. Their work marked the
beginning of a stormy development of model-based FDI techniques.
Core of an FDF is a full-order state observer

˙̂ = ˆ + + ( ˆ ) (5.26)

which is constructed on the basis of the nominal system model ( ) =
( ) 1 + . Built upon (5.26), the residual is simply defined by

= ˆ = ˆ (5.27)

Introducing variable = ˆ yields

˙ = ( ) =

It is evident that possesses the characteristic features of a residual when
the observer matrix is so chosen that is stable. In this case, ˆ also
provides a unbiased estimation for , i.e.

lim ( ( ) ˆ( )) = 0

The advantages of an FDF lie in its simple construction form (5.26)-(5.27)
and, for the reader who is familiar with the state space control theory, in its
intimate relationship with the state observer design, modern control theory
and especially with the well established robust control theory by designing
robust residual generators.
We see that the design of an FDF is in fact the selection of the observer

matrix . To increase the degree of design freedom, we can switch a matrix
to the output estimation error ( ) ˆ( ) i.e.

( ) = ( ( ) ˆ( )) (5.28)

As discussed in the last section, (5.26)-(5.27) can be interpreted as a state
space realization of ˆ ( ) ( ) ˆ ( ) ( ). It thus turns out that an FDF
is indeed a special form of residual generator (5.24), namely the post-filter is
a unit matrix for FDF given by (5.26)-(5.27) or a certain algebraic matrix
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for FDF given by (5.26) and (5.28). A disadvantage of FDF scheme lies in
the on-line implementation due to the full-order state observer, since in many
practical cases a reduced order observer can provide us with the same or
similar performance but with less on-line computation. This is one of the
motivations for the development of Luenberger type residual generators, also
called diagnostic observers.

Example 5.2 Given benchmark system EHSA with model (3.82). For the
residual generation purpose, an FDF of form (5.26)-(5.27) is designed with
the same observer gain as used in the LCF, i.e.

=

9 2418× 10 5 3 0326× 103
1 6676× 10 3 7 1992× 104
5 6× 10 7 19 116
3 2451× 104 1 02× 1012
1 8795× 10 7 1 262× 103

which ensures a stable FDF with poles

1 = 38611 2 = 1257 4 3 = 486 5 + 364 9

4 = 486 5 364 9 5 = 30000

5.5 Diagnostic observer scheme

The diagnostic observer is one of mostly used and studied model-based resid-
ual generator forms. One reason for this popularity is its flexible structure
and its similarity to the Luenberger type observer.

5.5.1 Construction of diagnostic observer-based residual
generators

The core of a diagnostic observer is a Luenberger type (output) observer that
is knowingly described by

˙ = + + ˆ = ¯ + ¯ + ¯ (5.29)

where R , denotes the observer order and can be equal to or lower or
higher than , the system order. Although most contributions to the Luen-
berger type observer are focused on the first case aiming at getting a reduced
order observer, higher order observers will play an important role in optimiza-
tion of FDI systems.
Assume ( ) = ( ) 1 + , then matrices ¯ ¯ and

¯ together with a matrix R × have to fulfill the so-called Luenberger
conditions,
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is stable (5.30)

= = (5.31)

= ¯ + ¯ ¯ = ¯ + (5.32)

under which system (5.29) delivers a unbiased estimation for , i.e.

lim ( ( ) ˆ( )) = 0 (5.33)

To show it, we consider a dynamic system with = as its state vector
and ( ) ˆ( ) as its output. It turns out, according to (5.30)-(5.32),

˙ = ˆ = ¯ (5.34)

which ensures (5.33). On account of (5.34),

= ( ˆ) 6= 0 (5.35)

builds a residual vector, whose dynamics is described by

˙ = + + (5.36)

= ¯ ¯ ¯ = (5.37)

where
=

¡
¯
¢

= ¯ = ¯

Thus, for the residual generator design condition III given by (5.32) should
be replaced by

= 0 = (5.38)

Remember that in the last section it has been claimed all residual generator
design schemes can be formulated as the search for an observer matrix and
a post-filter. It is therefore of practical and theoretical interest to reveal the
relationships between matrices and solving Luenberger equations
(5.30), (5.31), (5.38) and observer matrix as well as post-filter.
A comparison with the FDF scheme makes it clear that

• the diagnostic observer scheme may lead to a reduced order residual gen-
erator, which is desirable and useful for on-line implementation,

• we have more degree of design freedom but, on the other hand,
• more involved design.

Having shown the importance of Luenberger equations (5.30)-(5.31), (5.38)
in designing diagnostic observers, we concentrate our attention in the following
on their solutions.

Remark 5.3 On account of its importance in observer design, solution of
Luenberger equations has received much attention in the 70’s and 80’s, and a
large number of algorithms and studies have been published during this period.



5.5 Diagnostic observer scheme 83

On the other side, unlike most of observer design approaches, in which the
observers are usually designed for the estimation of unmeasurable variables,
the objective of using diagnostic observer is to reconstruct measured variable.
This di erence, being observable by III condition (5.32), also motivated studies
on characteristic properties of the special form of Luenberger conditions given
by (5.30)- (5.31), (5.38).

5.5.2 Characterization of solutions

In this subsection, a characterization of solutions of Luenberger equations
(5.30), (5.31) and (5.38) will be provided. Some of results will be used later and
help us get an insight into the structure of observer-based residual generators.
We shall concentrate ourselves on the following topics

• existence conditions,
• minimum system order and
• parameterization of solutions.

Without loss of generality we first make the following assumptions:

• the pair ( ) is given in the canonical observer form, i.e.

=

¯
11 · · · ¯

1

...
...

...
¯

1 · · · ¯
R × =

£
¯
1 · · · ¯

¤ R ×

¯ =

0 0 0 · · · 0 ¯1
1 0 0 · · · 0 ¯2
0 1 0 · · · 0 ¯3
...
. . .

. . .
. . .

...
...

0 · · · 0 1 0 ¯( 1)

0 · · · 0 0 1 ¯

R × = 1 · · ·

¯ =

0 · · · 0 ¯1
...
...
...
...

0 · · · 0 ¯
R × = 1 · · · 1

¯ =

0 · · · 0 ¯1
...
...
...
...

0 · · · 0 ¯
R × = 1 · · · 1

¯ =
£
0 · · · 0 ¯ ¤ R × = 1 · · ·

¯> =
£
0 · · · 0 1 ¯ +1 · · · ¯

¤> R1× = 1 · · ·
where 1 · · · are the observability indices satisfying 1 · · · 1P

=1 = . We denote the minimum as well as maximum observability
indices with = min as well as = max , respectively.
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• the residual is a scalar variable, i.e. R, and thus will in the
following be replaced by , respectively.
There are two reasons that explain why this assumption implies no restric-
tion on the generality of the study:
— A characterization of solutions will provide us with all possible solutions
of . Using linearly independent solutions we are able to construct a
residual vector. On the other hand, a residual vector can equivalently
be considered as a bank of scalar residuals.

— More important, however, is the fact that in practical cases scalar resid-
ual signals are generally used.

• matrices take the following form

=
£ ¤

=

0 0 · · · 0
1 0 · · · 0
...
. . .

. . .
...

0 · · · 1 0
0 · · · 0 1

R ×( 1) =

1

... R (5.39)

=
£
0 · · · 0 1 ¤ R (5.40)

Note that the dynamics of the residual generator is governed by

˙ = =

It is reasonable to design the residual generator so that the pair ( ) is ob-
servable. It is well known that by a suitable regular state transformation every
observable pair can be transformed into the form (5.39)-(5.40). Therefore this
assumption loses no generality.
To begin with our study, we split into two parts

= + = ( 1 · · · ) (5.41)

=

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...
. . .

. . .
. . .

...
0 · · · 0 1 0

R × = 1 · · · R ×

=

0 · · · 0 ¯111 0 · · · 0 ¯121 · · · 0 · · · 0 ¯11
...
...
...
...
...
...
...
...

...
...
...
...

...
0 · · · 0 ¯11

1
0 · · · 0 ¯12

1
· · · 0 · · · 0 ¯1

1

...
...
...
...
...
...
...
...

...
...
...
...

...
0 · · · 0 ¯ 1

1 0 · · · 0 ¯ 2
1 · · · 0 · · · 0 ¯1

...
...
...
...
...
...
...
...

...
...
...
...

...
0 · · · 0 ¯ 1 0 · · · 0 ¯ 2 · · · 0 · · · 0 ¯
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The pair ( ) is of an interesting property that is described by Lemma 5.1
and will play an important role in the following study.

Lemma 5.1 Equation

+ 1 + · · ·+ + = 0 0 (5.42)

holds if and only if
= 0 = 0 · · · (5.43)

Furthermore, vectors = 0 · · · satisfy

= 0 = 0 · · · 1; = 0 = · · · 1 (5.44)

and are arbitrarily selectable.

Proof. First note that = 0 , hence we have

= 0 for all and so

+ 1 + · · ·+ = 0 + 1 + · · ·+ = 0

with =

½
1 for
for

We now prove (5.43) as well as (5.44). To this end, we utilize the following
fact: for a row vector (6= 0) = £ 1 · · ·

¤ R we have

=
£
1̄ · · · ¯

¤
0

with the row vector ¯ R satisfying

for ¯ = 0 and

for ¯ =
£
0 · · · 0 ¯ 0 · · · 0 ¤

where the entry ¯ lies in the ( )-th place. Thus, the non-zero entries of
two row vectors and 6= , are in di erent places. This ensures
that (5.42) holds if and only if

= 0 = 0 · · ·

Note that ( ) = ( ) = = 0 · · · 1. Hence, we finally
have: for = 0 · · · 1

= 0 = 0

The lemma is thus proven. ut
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We now consider equation (5.31) and rewrite it into

= ¯ ¯ = =

and furthermore
¯

¸ £ ¤ ¯
¸
=

¯
¯

¸
¯

¸
¯ =

¯
¯

¸
+

(5.45)
where

=
¯
¸
¯ =

1

...
1

¯ =
¯
¯

¸
¯ =

1̄

...
¯

1

Writing as

= 1 0
0 1

¸
1 =

0 0 · · · 0
1 0 · · · 0
...
. . .

. . .
...

0 · · · 1 0
0 · · · 0 1

R( 1)×( 2)

and considering the last row of (5.45) result in

1 = ¯ + 1 = (¯ + ) (5.46)

Repeating this procedure leads to

2 = 1 (¯ 1 + 1 )

= 2 (¯ 1 + ¯ ) ( 1 + )

· · · (5.47)

2 = 3 ( 3̄ + 3 )

= 2 ( 3̄ + · · ·+ ¯ 3) ( 3 + · · ·+ 3)

1 = 2 ( 2̄ + 2 )

= 1 ( 2̄ + · · ·+ ¯ 2) ( 2 + · · ·+ 2)

Finally, from the first row of (5.45) we have

1 = 1̄ + 1 (5.48)

(5.46)-(5.48) give a kind of characterization of all solutions of (5.31), based on
which we are going to derive the existence condition of residual generators.
To this end, we first consider (5.38). Since 6= 0, it is evident that the

equation

= 0
£ ¤ ¸

= 0

is true if and only if the last row of matrix linearly depends on the rows of
. Based on this fact, the following existence condition can be derived.
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Remark 5.4 It is worth pointing out that the above fact is contrary to the
existence condition of a Luenberger type state observer which requires the lin-
ear independence of the rows of from the ones of . The reason for this is
that state observers and observer-based residual generators are used for dif-
ferent purposes: state observers are used for the estimation of unmeasurable
state variables, while the observers for the residual generation are used for the
estimation of measurable state variables (output signal).

Theorem 5.4 Equations (5.31) and (5.38) are solvable if and only if

(5.49)

Proof. Here, we only prove the necessity. The su ciency will be provided
below in form of an algorithm. The fact that the last row of matrix is
linearly dependent on the rows of can be expressed by

= ¯

for some ¯ 6= 0 This leads to

1 = (¯ + ) = ¯ (¯ + )

· · ·
1 = ¯

1 ( 2̄ + · · ·+ ¯ 2) ( 2 + · · ·+ 2)

Substituting 1 into (5.48) gives

¯ ( 1̄ + 2̄ + · · ·+ ¯ 1) = 1 + 2 + · · ·+ 1

and further

¯ ( 1̄ + 1¯ ) · · · (¯ + ¯ ) 1 = 0

Following Lemma 5.1 we know that the above equation holds only if

Thus, the necessity is proven. ut
Based on this theorem, we can immediately claim

Corollary 5.1 Given system ( ) = ( ) 1 + , the minimal order
of residual generator (5.36)-(5.37) is .

We now derive an algorithm for the solution of (5.30), (5.31) and (5.38),
which also serves as the proof of the su ciency of Theorem 5.4.
We begin with the following assumption

= ¯ ¯ 6= 0
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and suppose . According to (5.46)-(5.47) we have

1 = ¯ (¯ + ¯ ) (5.50)

· · ·
1 = ¯

1 ( 2̄ + 2¯ ) · · · (¯ + ¯ ) 2 (5.51)

Substituting 1 into (5.48) yields

¯ ( 1̄ + 1¯ ) ( 2̄ + 2¯ ) · · · (¯ + ¯ ) 1 = 0 (5.52)

Following Lemma 5.1, (5.52) is solvable if and only if

¯ = 0 ¯ 6= 0 (5.53)

(¯ + ¯ ) 1 = 0 · · · (¯ +1 + +1¯ ) = 0 (5.54)
¯ + ¯ = 0 · · · 1̄ + 1¯ = 0 (5.55)

and furthermore, since , (5.53)-(5.55) are solvable. In order to sim-
plify the notation, we introduce vectors ¯ = · · · 1 defined by

¯ = ¯+1 + +1¯ (¯+1 + +1¯ ) = 0

With the aid of these results the following theorem becomes evident.

Theorem 5.5 Given , then matrices defined by

=

0 · · · 0 ¯ · · · ¯
0 · · · ¯ · · · ¯ 0
...

...
...
...

0 ¯ · · · ¯ · · · 0
¯ · · · ¯ 0 · · · 0
...

...
...

...
...

¯ 1 ¯ 0 0 · · · 0
¯ 0 0 0 · · · 0

...
1

...
2

1

(5.56)

= ¯ + ¯ =

1¯

2¯
...
¯

¯ +1¯
...

¯ 2 1¯
¯ 1 ¯

(5.57)

=
£
0 · · · 0 1 ¤ = ¯ (5.58)
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solve equations (5.31) and (5.32) for all 1 2 · · · that ensure the stability
of , where ¯ 1 · · · ¯ are the solution of the following equations

¯ 1
1 = 0 · · · ¯ = 0 (5.59)

¯ · · · ¯ are arbitrarily selectable and ¯ 6= 0.
The proof follows directly from (5.50)-(5.55) as well as Lemma 5.1.
Together with (5.59), Theorem 5.5 provides us with an algorithm for the

solution of Luenberger equations for the residual generator design. We see that
the solution of (5.31) and (5.38) is reduced to the solutions of equations given
by (5.59). From up increasing the order does not lead to an increase in
computation. In fact, once equations (5.59) are solved for ¯ 1 · · · ¯ ,
we are able to design residual generators of arbitrary order without additional
computation.
From the above algorithm we know that the solution for (5.31) and (5.38)

is usually not unique, since the solutions of equations given by (5.59) is not
unique (see also below) and, if , vectors ¯ = · · · are also
arbitrarily selectable. It is just this degree of freedom that can be utilized for
designing FDI systems. This also motivates the study on the parameterization
of solutions, which builds the basis of a successful optimization.
For our purpose, we first re-arrange the matrix given by (5.56) as a row

vector:

=

1

...
new arrangement £

1 · · ·
¤
:= ˆ

then we have, following Theorem 5.5,

ˆ=
£
¯ ¯ +1 · · · ¯

¤

=

1 · · · 0 · · · 0
· · · . . .

...
...

...
...

. . .
. . . 0

1 · · · 1 · · ·
Let us introduce the notation

= ( · · · 1 × · · · × )

where R( )× = · · · 1, stands for the basis matrix
of left null space of matrix with

=
¡ ¢

It is evident that any vector
£
¯ ¯ +1 · · · ¯

¤
can be written as
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¯ ¯ +1 · · · ¯

¤
= ¯

where ¯ 6= 0 is a vector of appropriate dimension. This gives the following
theorem.

Theorem 5.6 Given , then matrix that solves (5.31) can be pa-
rameterized by

ˆ= ¯

1 · · · 0 · · · 0
· · · . . .

...
...

...
...

. . .
. . . 0

1 · · · 1 · · ·

(5.60)

The proof is evident and therefore omitted.
From Theorems 5.5 and 5.6 we know that

• for every solution of (5.31) we are able to find a vector ¯ 6= 0 such that
this solution can be brought into the form given by (5.60)

• on the other side, given a vector ¯ 6= 0 we have a and further a solution
for (5.31).

In this sense, the vector ¯ 6= 0 is called the parameterization vector. Note
that

( ) = number of the rows of

= ( + 1) +

1X
=

( )

( + 1 ) = number of the columns of (5.61)

and moreover

1 · · · 0 · · · 0
· · · . . .

...
...

...
...

. . .
. . . 0

1 · · · 1 · · ·
= ( + 1 ) = number of the rows. (5.62)

Thus we have

Corollary 5.2 Equation (5.31) has ( + 1) +
P 1

= ( )
linearly independent solutions.

Remark 5.5 If , the number of the linearly independent solutions
is given by

P
= ( ).
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Remember that at the beginning of this subsection we have made the as-
sumption that the observable pair ( ) is presented in the canonical observer
form. Note that all the results given Theorems 5.5 and 5.6 are expressed in
terms of observability indices, matrices . It is known from the linear
control theory that the observability indices, matrix are structural charac-
teristics of a system under consideration that are invariant to a regular state
transformation. Moreover, for any regular state transformation, say , we
have

= 1 =

= 0 = 0

= = 1

i.e. the solutions and so that the construction of the residual
generator are invariant to the state transformation . This implies that the
achieved results hold for every observable pair.

5.5.3 A numerical approach

Based on the result achieved in the last subsection, we now present an ap-
proach to solving Luenberger equations (5.30)-(5.31) and (5.38).
We first consider Theorem 5.5, in which a solution is indeed provided

except that knowledge of and is needed. Although and can be
determined by (a) transforming ( ) into observer canonical form (b) solving
equation = for the required calculation is involved and in
many cases too di cult to be managed without a suitable CAD program. For
this reason, further study is, on account of Theorem 5.5, carried out aiming
at getting an explicit solution similar to the one given by Theorem 5.5 but
expressed in terms of system matrices .
For our purpose, the following lemma is needed.

Lemma 5.2 Given matrices and with appropriate dimen-
sions, then we have for = 1 · · ·

¯
¯

...
¯

=

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0
...

...
. . .

. . .
...

0
1

0 · · · 0

¯
0

...
¯
0

(5.63)

¯ = ¯ = +

...
=

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

( + )
...

( + )

(5.64)
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The proof is straightforward and thus omitted.
Let’s introduce matrix 1 defined by

1 =

1 · · · 0 · · · 0

· · · . . .
...

...
...

...
...

. . .
. . . 0

1 · · · 1 · · ·
Note that

1 ...
=

+1

...

whose proof can readily be obtained by using equality (5.64). It turns out

£
¯ ¯ +1 · · · ¯

¤ +1

...
= ˜ 1 ...

= 0

where ¯ ¯ +1 · · · ¯ satisfy (5.59). We now define a new vector

=
£

0 1 · · ·
¤
= ˜ 1

and then apply (5.64) to (5.56)-(5.57). As a result we obtain

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...
2

1

=

0

1

...
1

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...
2

1

+

0

1

...
1

+

=

0 + 1

1 + 2

...
1 +

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...
2

1

= = =
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We now remove the assumption that ( ) is given in the observer canonical
form, under which Theorem 5.5 has been derived. To this end, we suppose the
original system matrices are given by 1 1 with denoting a
regular state transformation. Note that

= 1 1 1 = 1 (5.65)

= = 1 (5.66)

= 0 1 1 = 0 (5.67)

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

1

1 1

...

...
1( 1) 1 1

= 1 (5.68)

...
= 0

1

1 1

...
( 1)

= 0 (5.69)

We finally have the following theorem.

Theorem 5.7 Given system model ( ) = ( ) 1 + and suppose
that and

...
= 0 =

£
0 1 · · ·

¤
(5.70)

then matrices defined by

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...

...
2

1

(5.71)

=

0

1

...
1

=
£
0 · · · 0 1 ¤ = (5.72)
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¸
=

0 + 1 1 2 · · · 1

1 + 2 2 · · · · · · 0
...

... · · · · · · ...
...

1 + 0 · · · 0 0
0 0 · · · 0 0

...
2

1

(5.73)

solve the Luenberger equations (5.30)-(5.31) and (5.38), where vector should
be so chosen that the matrix is stable.

It is clear that once the system matrices are given we are able to
calculate the solution of Luenberger equations (5.30)-(5.31) and (5.38) using
(5.71)-(5.72). To this end, we provide the following algorithm.

Algorithm 5.1 Solution of Luenberger equations (5.30)-(5.31) and (5.38)

Step 1. Set
Step 2. Solve (5.70) for 0 · · ·
Step 3: Select such that given in (5.39) is stable
Step 4. Calculate according to (5.71)-(5.73).

We see that the major computation of the above approach consists in
solving (5.70). It reminds us of the so-called parity space approach. In fact,
the main advantage of this approach, as will be shown in the next sections, is
its intimate connection to the parity space approach and to parameterization
form presented in the last subsection, which are useful for such applications
like robust FDI, analysis and optimization of FDI systems.

Example 5.3 Given benchmark system EHSA with model (3.82). We now
design a diagnostic observer based residual generator using Algorithm 5.1.
Below is the design procedure with the achieved result:

Step 1: Set = 2
Step 2: Solve (5.70), which results in

=
£
3 36× 10 8 7 25× 10 4 1 08× 10 19 1 0 2 76 × 10 5

¤
Step 3: Set

=
20000
300

¸
= =

0 20000
1 300

¸
which results in two poles at 100 and 200 respectively

Step 4: Calculate which gives

=
0
0

¸
=

3 36× 10 8 0 551
4 6× 10 21 1

¸
=

0 2 76× 10 5 0 1 08× 10 19 1
0 0 0 0 2 76× 10 5

¸
=
£
0 2 7610 5

¤
=
£
0 1
¤

= 0
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Example 5.4 We now design a minimum order diagnostic observer for the
inverted pendulum system LIP100 that is described in Subsection 3.7.2. It fol-
lows from Corollary 5.1 that the minimum order of a DO is the minimum ob-
servability index of the system under consideration. For LIP100 whose model
can be found in (3.57), the minimum observability index is 1 Below is the
design procedure for a minimum order DO:

Step 1: Set = 1
Step 2: Solve (5.70), which results in

=
£
0 0 0645 0 0051 0 4947 0 0041 0 5011

¤
Step 3: Select = 3 Note that for = 1

= = 3

Step 4: Calculate which gives

= 3 0738 =
£
1 4841 0 0521 1 5083

¤
= 0 = 1

=
£
0 4947 0 0041 0 5011 0

¤
=
£
0 4947 0 0041 0 5011

¤
To make an impression on the reader how a residual signal responds to
the occurrence of a fault, we show in Fig.5.2 the response of the generated
residual signal to a unit step fault occurred in the sensor measuring the
angular position of the inverted pendulum at 20 . We can see that due to
the initial condition the residual generator needs a couple of minutes before
delivering a zero residual signal in the fault-free situation. Mathematically,
it is described by the requirement (5.17), i.e.

lim ( ) = 0 for all ( ) (0)

In practice, such a time interval is considered as the calibration time and
is a part of a measurement or monitoring process. In this context, in our
subsequent study, we generally do not take into account the influence of
the initial conditions. From Fig.5.2, we can further see that the residual
signal has a strong response to the fault.

5.5.4 An algebraic approach

The original version of the approach presented in this subsection was published
by Ge and Fang in their pioneer work in the late 80’s. In a modified form, the
key points of this approach are summarized in the following theorem.

Theorem 5.8 Given system model ( ) = ( ) 1 + and
, then matrices defined by

= ( ) = (5.74)

= > ¡ >¢ 1
= (5.75)
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Fig. 5.2 Response of the residual signal to a sensor fault

solve the Luenberger equations (5.30)-(5.31) and (5.32), where matrix G
should be chosen stable, X ∈ Rs×m is an arbitrary matrix, and

CN ∈ R(n−m)×n and rank
∙
C
CN

¸
= n, CCT

N = 0 (5.76)

Y =
£
X GX · · · Gn−1X

¤
(5.77)

c(p) = det(pI −A) = anp
n + an−1p

n−1 + · · ·+ a1p+ a0 (5.78)

J =

⎡⎢⎢⎢⎣
anCA

n−1 + an−1CA
n−2 + · · ·+ a2CA+ a1C

anCA
n−2 + an−1CA

n−3 + · · ·+ a2C
...

anC

⎤⎥⎥⎥⎦ (5.79)

Proof. Substituting (5.74) into the left side of (5.31) yields

TA− FT = Y JA−GY J = X
nX
i=1

aiCA
i −

nX
i=1

aiG
iXC

Since

a0C +
nX
i=1

aiCA
i = 0

we obtain

TA− FT = −a0XC −
nX
i=1

aiG
iXC = −c(G)XC = LC.

That (5.74) solves (5.31) is thus proven. Note V C = WT given by (5.31)
means WT belongs to the range of C, which, considering CN

T spans the null-
space of C, equivalently implies WTCN

T = 0. Furthermore, multiplying the
both sides of V C =WT by CT gives

V CC> =WTCT ⇐⇒ V =WTCT
¡
CCT

¢−1
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Hence, the theorem is proven. ut
It is evident that the design freedom is provided by the arbitrary selection

of matrix , possible solutions of equation = 0 that are generally not
unique. We summarize the main results in the following algorithm.

Algorithm 5.2 Solution of Luenberger Equations by Ge and Fang

Step 1. Calculate ( ) = ( ) for 0 1 · · ·
Step 2. Calculate according to (5.74)
Step 3. Solve = 0 for
Step 4. Set subject to (5.75).

Example 5.5 We now design a DO for LIP100 using Algorithm 5.2. To this
end, model (3.57) is used. Below is the design procedure:

Step 1: Calculate ( ) = ( ) for 0 1 · · · , which results in

4 = 1 0 3 = 2 0512 2 = 20 9964 1 = 37 7364 0 = 0

Step 2: Calculate according to (5.74):

=
43 7363 20 6009 25 6136 5 2725
31 9964 32 0988 5 1094 10 0610
3 9488 11 1150 66 6030 3 5182

=
23 6928 49 8218 297 1340
0 2995 115 0328 494 9239
8 3036 49 5223 182 1012

Step 3: Solve = 0 for :

=
0 8461 0 5040 0 1734
1 6922 1 0081 0 3469
2 5383 1 5121 0 5203

Step 4: Set subject to (5.75):

=
21 5620 3 1786 30 6468
43 1240 6 3572 61 2936
64 6860 9 5358 91 9404

5.6 Parity space approach

In this section, we describe the parity space approach, initiated by Chow and
Willsky in their pioneering work in the early 80’s. Although a state space
model is used for the purpose of residual generation, the so-called parity re-
lation, instead of an observer, builds the core of this approach. This is also
the reason why the parity space approach is generally recognized as one of
the important model-based residual generation approaches, parallel to the
observer-based and the parameter estimation.
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5.6.1 Construction of parity relation based residual generators

A number of di erent forms of parity space approach have, since the work
by Chow and Willsky, been introduced. We consider in the following only the
original one that is based on the assumption of a state space model of a linear
discrete time system described by

( + 1) = ( ) + ( ) + ( ) + ( ) (5.80)

( ) = ( ) + ( ) + ( ) + ( ) (5.81)

It is further assumed that ( ) is observable and ( ) = .
For the purpose of constructing residual generator, we first suppose ( ) =

0 ( ) = 0. Following (5.80)-(5.81), ( ) 0, can be expressed in terms
of ( ) ( ) and ( +1) in terms of ( ) ( +1) ( ),

( ) = ( ) + ( ) (5.82)

( + 1) = ( + 1) + ( + 1)

= ( ) + ( ) + ( + 1)

Repeating this procedure yields

( + 2) = 2 ( ) + ( ) + ( + 1)

+ ( + 2) · · ·
( ) = ( ) + 1 ( ) + · · ·+ ( + 1) + ( )

(5.83)

Introducing the notations

( ) =

( )
( + 1)

...
( )

( ) =

( )
( + 1)

...
( )

(5.84)

= ...
=

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

(5.85)

allows us to rewrite (5.82)-(5.83) into the following compact form

( ) = ( ) + ( ) (5.86)

Note that (5.86), the so-called parity relation, describes the input and output
relationship in dependence on the past state variable ( ). It is expressed
in an explicit form, in which
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• ( ) and ( ) consist of the temporal and past outputs and inputs re-
spectively and are known

• matrices and are composite of system matrices and
also known

• the only unknown variable is ( )

The underlying idea of the parity relation based residual generation lies
in the utilization of the fact, known from the linear control theory, that for

the following rank condition holds:

( ) = the number of the rows of matrix

This ensures that for there exists at least a (row) vector (6= 0)
R( +1) such that

= 0 (5.87)

Hence, a parity relation based residual generator is constructed by

( ) = ( ( ) ( )) (5.88)

whose dynamics is governed by, in case of ( ) = 0,

( ) = ( ( ) ( )) = ( ) = 0

Vectors satisfying (5.87) are called parity vectors, the set of which,

= { | = 0} (5.89)

is called the parity space of the -th order.
In order to study the influence of on residual generator (5.88), the

assumption that ( ) = 0 ( ) = 0 is now removed. Let us repeat procedure
(5.82)-(5.83), which gives

( ) = ( ) + ( ) + ( ) + ( )

where

( ) =

( )
( + 1)

...
( )

=

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

(5.90)

( ) =

( )
( + 1)

...
( )

=

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

(5.91)

Constructing a residual generator according to (5.88) finally results in
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( ) = ( ( ) + ( )) (5.92)

We see that the design parameter of the parity relation based residual gener-
ator is the parity vector whose selection decisively e ects the performance of
the residual generator.

Remark 5.6 One of the significant properties of parity relation based residual
generators, also widely viewed as the main advantage over the observer-based
approaches, is that the design can be carried out in a straightforward manner.
In fact, it only deals with solutions of linear equations or linear optimization
problems. In against, the implementation form (5.88) is surely not ideal for
an on-line realization, since it is presented in an explicit form, and thus not
only the temporal but also the past measurement and input data are needed
and have to be recorded.

Remark 5.7 The requirement on the past measurement and input data is one
of the reasons why the parity space approach is mainly applied to the discrete
time dynamic systems.

5.6.2 Characterization of parity space

Due to its simple form as solution of (5.87) a characterization of the par-
ity space seems unnecessary. However, some essential questions remain to be
solved:

• What is the minimum order of a parity space?
Remember that presents a su cient condition for (5.87). This im-
plies that the order of the designed residual generator is at least as high as
the one of the system under consideration. Should it be? Dose there exist
a lower order residual generator?

• How to parameterize the parity space for a given ?
As will be shown in the forthcoming chapters, parameterization of the
parity space plays an important role in optimization of parity relation
based FDI systems

• How to select the order of the parity space?
• Are there close relationships between the parity space approach and the
observer-based approaches?

Finding out suitable answers to these questions motivates a study on the
characterization of parity space.
To begin with, we introduce the following notation for

=
£
0 1 · · · ¤ R = 0 · · ·

Notice that (5.87) is identical with (5.70) given in Theorem 5.7, which is
necessary and su cient for solving Luenberger equations (5.30)-(5.31) and
(5.38). This relationship reveals
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Theorem 5.9 The minimum order of the parity space is .

Theorem 5.10 Given , then =
£
0 · · · 1

¤
can be

written as

= ¯ 1 ¯ =
£
¯ ¯ +1 · · · ¯ 1 ¯

¤
(5.93)

where

¯ = { | = 0} (5.94)

1 =

1 · · · 0 · · · 0

· · · . . .
...

...
...

...
...

. . .
. . . 0

1 · · · 1 · · ·

0 is defined in (5.41)

Theorem 5.11 Assume that and let¡ ¢
= = 0 = · · ·

Then the base matrix of parity space , denoted by , can be described
by

= ¯
1
¯ = ( · · · 1 · · · )

= +1 = · · · = = × (5.95)

and the dimension of parity space ¯ is given by

(¯ ) =
X
=

( ) for

= × ( + 1) +

1X
=

( ) for (5.96)

Theorem 5.10 gives another way to write the parity vectors defined by
(5.87). It shows that all parity vectors can be characterized by vectors
¯ = · · · , which belong to the subspaces defined by (5.94). In
other words: the selection of parity vectors only depends on the solution of
equations ¯ = 0 .
Theorem 5.11 provides us with an explicit expression for the base matrix

of parity space ¯ and shows that the degree of freedom for the selection of a
parity vector is the sum of the dimensions of subspaces = · · · .
The results presented in Theorems 5.9-5.11 have not only answered the

questions concerning the structure of the parity space but also shown an inti-
mate relationships between the observer-based and the parity relation based
approaches.
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5.6.3 Examples

Example 5.6 Consider nominal system model

( ) =
+ 1

1 + · · · 1 + 0

+ 1
1 + · · ·+ 1 + 0

( ) (5.97)

A trivial way to construct a parity space based residual generator for (5.97) is
(a) to rewrite the system into its minimum state space realization form and (b)
to solve (5.87) for design the residual generator and finally (c) to construct
the residual generator according to (5.88). On the other side, it follows from
Cayley-Hamilton Theorem that

+ 1
1 + · · ·+ 1 + 0 = 0 =

£
0 · · · 1 1

¤
...

= 0

where denote the system matrices of the minimum state space realization
of ( ) That means

=
£

0 · · · 1 1
¤

(5.98)

is a parity space vector of system (5.97). To construct the residual generator
based on given by (5.98), (5.88) is used, which yields

( ) = ( ) ( )

= ( ) + · · ·+ 1 ( + 1) + 0 ( ) ( )

It follows from (5.97) that should satisfy

=
£
0 · · · 1

¤
As a result, the residual generator is given by

( ) =
£

0 · · · 1 1
¤
( )

£
0 · · · 1

¤
( ) (5.99)

It is interesting to note that residual generator (5.99) can be directly derived
from the nominal transfer function without a state space realization. In fact,
(5.99) can be instinctively achieved by moving the characteristic polynomial
+ 1

1+ · · ·+ 1 + 0 to the left side of equation (5.97). Study on this
example will be continued in the next section, which will show an interesting
application of this result.

Example 5.7 We now design a PRRG for the inverted pendulum system
LIP100. For our purpose, we set = 4 and compute a parity vector using
matrices and given in discrete time model (3.58), which leads to

=
£

0 1 2 3 4

¤
0 =

£
0 0643 0 0756 0 1674

¤
1 =

£
0 1418 0 0841 0 0391

¤
2 =

£
0 0700 0 0440 0 0425

¤
3 =

£
0 0686 0 0030 0 0467

¤
4 =

£
0 0674 0 0397 0 0518

¤
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5.7 Interconnections, comparison and some remarks

In the early 90’s, study on interconnections and comparison among the resid-
ual generation approaches has increasingly received attention. In this section,
we focus our study on the interconnections between the design parameters
as well as the comparison of dynamics of the residual generator schemes pre-
sented in the last sections. We shall also make some remarks on the imple-
mentation and design forms of these residual generation approaches.

5.7.1 Parity space approach and diagnostic observer

We first study the interconnections between the design parameters of the par-
ity space and diagnostic observer approaches, i.e. interconnections between

and parity vector The following two theorems give an ex-
plicit expression for these connections.

Theorem 5.12 Given system model (5.80)-(5.81) and a parity vector =£
0 1 · · ·

¤
, then matrices defined by

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...

...
2

1

(5.100)

¸
=

0 + 1 1 2 · · · 1

1 + 2 2 · · · · · · 0
...

... · · · · · · ...
...

1 + 0 · · · 0 0
0 0 · · · 0 0

...
2

1

(5.101)

=

0

1

...
1

=
£
0 · · · 0 1 ¤ = (5.102)

solve the Luenberger equations (5.30)-(5.31), (5.38), where matrix is given
in the form of (5.39) with ensuring the stability of matrix .

Theorem 5.13 Given system model (5.80)-(5.81) and observer-based resid-
ual generator (5.36)-(5.37) with matrices solving the Luenberger
equations (5.30)-(5.31), (5.38) and satisfying (5.39), then vector =£

0 1 · · ·
¤
with
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=

0

1

...
1

=

belongs to the parity space .

These two theorems are in fact a reformulation of Theorem 5.7 and the
proof is thus omitted.
It is interesting to notice the relationship between and as

defined in (5.88) and in (5.36)-(5.37) respectively. Suppose that = 0 then

=
£

0 1 · · ·
¤ 0 · · · 0

. . .
...

...
. . .

. . . 0
1 · · ·

:=
£

0 2 · · ·
¤

¸
=

¸
=

0 2 · · ·
1 · · · 0
... · · · · · · ...

0 · · · 0

...
1

=

0

2

...

(5.103)
That means we can determine as far as is known, by just re-
arranging row vector into a column vector without any additional
computation, and vice versa.
Theorems 5.12 - 5.13 reveal an one-to-one mapping between the design

parameters of observer and parity relation based residual generators. While
Theorem 5.12 implies that for a given parity relation based residual generator
there exists a set of corresponding observer-based residual generators with
being a parameter vector, Theorem 5.13 shows how to calculate the corre-

sponding parity vector when an observer-based residual generator is provided.
Now, questions may arise: Is there a di erence between the residuals deliv-

ered respectively by a diagnostic observer and its corresponding parity relation
based residual generator? Under which conditions can we get two identical
residuals delivered respectively by these two kinds of residual generators? To
answer these questions, we bring the diagnostic observer

( + 1) = ( ) + ( ) + ( ) ( ) = ( ) ( ) ( )

into a similar form like the parity relation based residual generator given by
(5.88)

( ) = ( ) + ( ) ( )

= ( ) + ( ) ( ( 1) + ( 1) + ( 1))

= ( ) + ( ) ( ) ( 1) · · ·
1 ( ) ( 1) · · · 1 ( )
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Recalling (5.71)-(5.72) in Theorem 5.7 and noting that

=
£
0 · · · 0 1 · · · 1

¤
it turns out

=
£
0 · · · 0 1 · · · 1

¤ 0

1

...
1

+

=
£

0 1 · · · 1

¤
0
...
0

×
×
...
1 ×

×
= ( ) =

£
0 · · · 0 1 · · · 1

¤
1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...

...
2

1

+

0

1

...
1

+

=
£

0 1 · · · 1

¤ 0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

0
...
0

×
×
...

1 ×
×

which finally results in

( ) = ( ) +
¡
¯ ( ) ¯ ( )

¢
(5.104)

where
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¯ =

× 0 · · · 0

×
. . .

. . .
...

...
. . .

. . . 0
1 × · · · × ×

¯ =

× 0 · · · 0

×
. . .

. . .
...

...
. . .

. . . 0
1 × · · · × ×

Comparing (5.104) with (5.88) evidently shows the di erences between these
two types of residual generators:

• in against to the parity relation based residual generators, the diagnostic
observer does not possess the s-step dead-beat property, i.e. the residual
( ) depends on ( ) · · · (0) if 6= 0

• the construction of the diagnostic observer depends on the selection , and
in this sense, we can also say that the diagnostic observer possesses more
degree of design freedom.

On the other side, setting = 0 leads to

= 0 ¯ = ( +1)× ( +1)
¯ = ( +1)× ( +1)

Thus, under condition = 0 the both types of residual generators are identical.
It is interesting to note that in this case

¸
=

0

1

...
1

(5.105)

Remember that a residual signal is originally defined as the di erence between
the measurement or a combination of the measurements and its estimation.
This can, however, not directly recognized from the definition of the parity
relation based residual signal, (5.88). The above comparison study reveals that

( ) = ( ( ) ( ))

can be equivalently written as

( + 1) = ( ) + ( ) + ( ) ( ) = ( ) ( ) ( )

It is straightforward to demonstrate that ( )+ ( ) is in fact an estimate
for ( ) Thus, a parity relation based residual signal can also be interpreted
as a comparison between ( ) = ( ) and its estimation.
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5.7.2 Diagnostic observer and residual generator of general form

Our next task is to find out the relationships between the design parameters
of the diagnostic observer and the ones given by the general residual generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(5.106)

whose design parameters are observer matrix and post-filter ( ). We study
two cases: and .
Firstly :
We only need to demonstrate that for the diagnostic observer (5.36)-

(5.37) satisfying (5.30)-(5.31), (5.38) can be equivalently written into form
(5.106). Let us define

=
1

¸
R ×

1 R( )× ( ) = (5.107)

1 1 1 = 1 1 R( )×( ) is stable =
0

0 1

¸
(5.108)

= R × =
1

¸
=
£

0
¤ R × (5.109)

and extend (5.31) and (5.38) as follows

= = = (5.110)

= 0 = = 0 (5.111)

= = = (5.112)

Note that choosing, for instance, 1 as a composite of the eigenvectors of
and 1 = 1 guarantees the existence of (5.108), where denotes

some matrix that ensures the stability of matrix . Since

( ) 1 ( ( ) + ( )) = ( ) 1 ( ( ) + ( ))

= ( + 1 ) 1 1 ( ( ) + ( ))

= ( + 1 ) 1
³
( 1 ) ( ) + 1 ( )

´
the residual generator

( ) = ( ) + ( ) ( ) 1 ( ( ) + ( ))

can be equivalently written as

( ) =
³
ˆ ( ) ( ) ˆ ( ) ( )

´
with

ˆ ( ) = ( + 1 ) 1 1 (5.113)
ˆ ( ) = + ( + 1 ) 1( 1 ) (5.114)

We thus have the following theorem.
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Theorem 5.14 Every diagnostic observer (5.36)-(5.37) of order can
be considered as a composite of a fault detection filter and post-filter .

Remark 5.8 Theorem 5.14 implies that the performance of any diagnostic
observer (5.36)-(5.37) of order can be reached by an FDF together with
an algebraic post-filter.

Now :
We first demonstrate that for the diagnostic observer (5.36)-(5.37)

satisfying (5.30)-(5.31), (5.38) can be equivalently written into form (5.106).
To this end, we introduce following matrices

=
£ ¤ R × R ×( ) ( ) = (5.115)

= 0 R( )×( ) is stable =
0

0

¸
(5.116)

=
0
¸

R × =
£
0

¤ R × (5.117)

= 1 = 1

2

¸
1 R( )×

2 R × (5.118)

and extend (5.31) and (5.38) to

= = 1 = 1 (5.119)

= 0 = +
£

0
¤
= 0 (5.120)

= = = (5.121)

Since is stable, there does exist satisfying (5.116). Applying (5.115)-
(5.118) to the diagnostic observer

( ) = ( ) + ( ) ( ) 1 ( ( ) + ( ))

results in

( ) 1 ( ( ) + ( ))

= ( + ) 1 1 ( ( ) + ( ))

=
£ ¤

( + ) 1 (( ) ( ) + ( ))

and furthermore

( ) =
¡

( + 2 ) 1
2

¢
( )

( ) 1
1

¡
( + 2 ) 1

2

¢
( )

+ ( ) 1
1

¡
+ ( + 2 ) 1( 2 )

¢
( )¡

( + 2 ) 1( 2 ) +
¢
( ) (5.122)

which, by setting
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ˆ ( ) = ( + 2 ) 1
2 (5.123)

ˆ ( ) = + ( + 2 ) 1( 2 ) (5.124)

( ) = ( ) 1
1 (5.125)

finally gives

( ) = ( ) + ( ) ( ) 1 ( ( ) + ( ))

= ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(5.126)

We see that for the diagnostic observer (5.36)-(5.37) can be equivalently
written into form (5.106), in which the post-filter is a dynamic system.
Solve equation ¸ £ ¤

= ( )×( ) 0
0 ×

¸
for , then we obtain

= 1 + 2 = 1 = 2 =

The following theorem is thus proven.

Theorem 5.15 Given diagnostic observer (5.36)-(5.37) of order with
solving the Luenberger equations (5.30)-(5.31) and (5.38), then

it can be equivalently written into

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(5.127)

ˆ ( ) = ( + ) 1 (5.128)
ˆ ( ) = + ( + ) 1( ) (5.129)

( ) = ( ) 1 (5.130)

We are now going to show that for a given residual generator of form
(5.106) we are able to find a corresponding diagnostic observer (5.36)-(5.37).
For this purpose, we denote the state space realization of ( ) with +
( ) 1 . Since

( ) 1 ˆ ( ) =
£
0

¤μ 0
¸¶ 1 ¸

( ) 1 ˆ ( ) =
£
0

¤μ 0
¸¶ 1 ¸

ˆ ( ) = ( ) 1 ˆ ( ) = + ( ) 1

it is reasonable to define
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=
0
¸
¯ =

¸
=
£ ¤

(5.131)

= =

¸
= (5.132)

Note that

0

¸
0

¸
= ¯

0

¸
= (5.133)

=
0

¸
¯ = (5.134)

ensure that residual generator

( ) = ( ) + ( ) ( ) 1
¡

( ) + ¯ ( )
¢

satisfies Luenberger conditions (5.30)-(5.31), (5.38).
The discussion on the possible applications of the interconnections revealed

in this subsection will be continued in the next subsections.

5.7.3 Applications of the interconnections and some remarks

In literature, parity relation based residual generators are often called open-
loop structured, while the observer-based residual generators closed-loop
structured. This view may cause some confusion, since, as known in the control
theory, closed-loop and open loop structured systems have di erent dynamic
behavior. The discussion carried out above, however, reveals that this is not
the case for the parity relation and observer-based residual generators: They
have the identical dynamics (under the condition that the eigenvalues are
zero), also regarding to the unknown inputs and faults, as will be shown later.
A further result achieved by the above study indicates that the selection of

a parity space vector is equivalent with the selection of the observer matrix,
the feedback matrix (i.e. feedback of system output ) of an s-step dead-
beat observer. In other words, all design approaches for the parity relation
based residual generation can be used for designing observer-based residual
generators, and vice-versa.
What is then the prime di erence between the parity relation based and

the observer-based residual generators? The answer can be found by taking
a look at the implementation forms of the both types of residual genera-
tors: the implementation of the parity relation based residual generator uses
a non-recursive form, while the observer-based residual generator represents
a recursive form.
A similar fact can also be observed by the observer-based approaches.

Under certain conditions the design parameters of a residual generator can be
equivalently converted to the ones of another type of residual generator, also
the same performance can be reached by di erent residual generators.
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This observation makes it clear that designing a residual generator can
be carried out independent of the implementation form adopted later. We
can use, for instance, parity space approach for the residual generator design,
then transform the parameters achieved to the parameters needed for the
construction of a diagnostic observer and finally realize the diagnostic observer
for the on-line implementation. The decision for a certain type of design form
and implementation form should be made on account of

• the requirements on the on-line implementation,
• which approach can be readily used to design a residual generator that
fulfills the performance requirements on the FDI system,

• and of course, in many practical cases, the available design tools and de-
signer’s knowledge of design approaches.

Recall that parity space based system design is characterized by its simple
mathematical handling. It only deals with matrix- and vector-valued opera-
tions. This fact attracts attention from industry for the application of parity
space based methods. Moreover, the one-to-one mapping between the parity
space approach and the observer-based approach described in Theorems 5.12
and 5.13 allows an observer-based residual generator construction for a given
a parity vector. Based on this result, a strategy called parity space design,
observer-based implementation has been developed, which makes use of the
computational advantage of parity space approaches for the system design
(selection of a parity vector or matrix) and then realizes the solution in the
observer form to ensure a numerically stable and less consuming on-line com-
putation. This strategy has been for instance successfully used in the sensor
fault detection in vehicles and highly evaluated by engineers in industry. It
is worth mentioning that the strategy of parity space design, observer-based
implementation can also be applied to continuous time systems.
Table 5.1 summarizes some of important properties of the residual gener-

ators described in this section, which may be useful for the decision on the
selection of design and implementation forms.

In this table,

• "solution form" implies the required knowledge and methods for solving
the related design problems. LTI stands for the needed knowledge of linear
system theory, while algebra means for the solution only algebraic compu-
tation, in most cases solution of linear equations, is needed.

• "dynamics" is referred to the dynamics of LTI residual generator (5.24).
OEE + implies a composite of output estimation error and an algebraic
post-filter, OEE + ( ) a composite of output estimation error and a
dynamic post-filter.
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Table 5.1 Comparison of di erent residual generation schemes

Type FDF PRRG DO
Order =

Design
parameters

Design
freedom

Solution LTI or LTI or
form LTI algebra algebra algebra algebra

Implement.
form recursive non-recurs. non-recurs. recursive recursive

Dynamics OEE + OEE + OEE + ( ) OEE + OEE + ( )

5.7.4 Examples

Example 5.8 We now extend the results achieved in Example 5.6 to the con-
struction of an observer-based residual generator. Suppose that (5.97) is a
discrete time system. It follows from Theorem 5.12 and (5.103) that

( + 1) = ( ) + ( ) + ( ) ( ) = ( ) ( ) ( )

with

=

0 0 · · · 0
1 0 · · · 0
...
. . .

. . .
...

0 · · · 1 0

= =

0

...
1

=

0

1

...
1

= = 1 =
£
0 · · · 0 1 ¤

builds a residual generator. If we are interesting in achieving a residual resid-
ual generator whose dynamics is governed by

( ) = 1
1 · · · 1 0

then the observer gain matrix should be extended to

=

0

...
1

0

...
1
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Note that in this case the above achieved results can also be used for continuous
time systems.

In summary, we have some interesting conclusions:

• given a transfer function, we are able to design a parity space based residual
generator without any involved computation and knowledge of state space
realization

• the designed residual generator can be extended to the observer-based one.
Once again, no involved computation is needed for this purpose

• the observer-based form can be applied both for discrete and continuous
time systems.

We would like to mention that the above achieved results can also be
extended to MIMO systems.

Example 5.9 We now apply the above result to the residual generator design
for our benchmark DC motor DR300 given in Subsection 3.7.1. It follows from
(3.50) that

( ) =
0

3 + 2
2 + 1

2 + 0

2 = 234 0136 1 = 6857 1 0 = 5442 2 0 = 47619

which yields
=
£

0 1 2 1
¤

(5.135)

Now, we design an observer-based residual generator of the form

˙ = + + = (5.136)

without the knowledge of the state space representation of the system. To this
end, using Theorem 5.12 and (5.103) with given in (5.135) results in

=
0 0 1

1 0 2

0 1 3

=
0

0
0

=
0

1

2

1

2

3

= 0 = 1 =
£
0 0 1

¤
To ensure a good dynamic behavior, the eigenvalues of matrix are set to be
10 10 10 which leads to

1

2

3

=
1000
300
30

and further

=
4442 2
6557 1
204
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5.8 Notes and references

The general form and parameterization of all LTI stable residual generators
were first derived by Ding and Frank [38]. The FDF scheme was proposed
by Beard [11] and Jones [86]. These works are recognized as marking the
beginning of the model-based FDI theory and technique. Both FDF and DO
techniques have been developed on the basis of linear observer theory, to which
O’Reilly’s book [111] gives an excellent introduction.
Only few references concerned characterization of DO and parity space

approaches can be found in the literature. For this reason, an extensive and
systematic study on this topic has been included in this chapter. The most
significant results are

• the necessary and su cient condition for solving Luenberger equations
(5.30)-(5.31), (5.38) and its expression in terms of the solution of parity
equation (5.87)

• the one-to-one mapping between the parity space and the solutions of the
Luenberger equations

• the minimum order of diagnostic observers and parity vectors and
• the characterization of the solutions of the Luenberger equations and the
parity space.

Some of these results are achieved based on the works by Ding et al. [28]
(on DO) and [44] (on the parity space approach). They will also be used in
the forthcoming chapters.
The original versions of numerical approaches proposed by Ge and Fang

as well as Ding at al. have been published in [61] and [28], respectively.
Accompanied with the establishment of the framework of the model-based

fault detection approaches, comparison among di erent model-based residual
generation schemes has increasingly received attention. Most of studies have
been devoted to the interconnections between FDF, DO on the one side and
parity space approaches on the other side, see for instance, the significant
work by Wuenneberg [148]. Only a few of them have been dedicated to the
comparison between DO and factorization or frequency approach. A part of
the results described in the last section of this chapter was achieved by Ding
and his co-worker [42].
An interesting application of the comparison study is the strategy of parity

space design, observer-based implementation, which can be applied both for
discrete and continuous time systems and allows an easy design of observer-
based residual generators. In [131], an application of this strategy in practice
has been reported. It is worth emphasizing that this strategy also enables an
observer-based residual generator design based on the system transfer func-
tion, instead of the state space representation, as demonstrated in Example
5.9.



6

Perfect unknown input decoupling

In this chapter, we address the problems of generating residual signals which
are decoupled from the disturbances (unknown inputs). That means the gen-
erated residual signals will only be influenced by the faults. In this sense,
such a residual generator also acts as a fault indicator. It is often called un-
known input residual generator. Fig.6.1 sketches the objective of this chapter
schematically.

Fig. 6.1 Schematical description of unknown input decoupled residual generation

6.1 Problem formulation

Consider system model (3.29) and its minimal state space realization (3.30)-
(3.31). It is straightforward that applying a residual generator of the general
form (5.24) to (3.29) yields

( ) = ( ) ˆ ( ) ( ( ) ( ) + ( ) ( )) (6.1)
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Remember that for the state space realization (3.30)-(3.31), residual generator
(5.24) can be realized as a composition of a state observer and a post-filter,

˙̂ = ˆ + + ( ˆ ) ( ) = ( ) ( ( ) ˆ( ) ( ))

It turns out, by setting = ˆ

˙ = ( ) + ( ) + ( )

( ) = ( ) ( ( ) + ( ) + ( ))

which can be rewritten into, by noting Lemma 3.1,

( ) = ( )
³
ˆ ( ) ( ) + ˆ ( ) ( )

´
(6.2)

ˆ ( ) = ( + ) 1 ( ) +

ˆ ( ) = ( + )
1
( ) +

with an LCF of ( ) = ˆ 1( ) ˆ ( ) and ( ) = ˆ 1( ) ˆ ( ) It is
interesting to notice that

ˆ ( ) = ˆ ( ) = ˆ ( ) = ( + )
1

Hence, we assume in our subsequent study, without loss of generality, that

ˆ ( ) ( ) ˆ ( ) ( ) RH
For the fault detection purpose, an ideal residual generation would be a

residual signal that only depends on the faults and is simultaneously indepen-
dent of disturbances. It follows from (6.1) that this is the case for all possible
disturbances and faults if and only if

( ) ˆ ( ) ( ) 6= 0 and ( ) ˆ ( ) ( ) = 0 (6.3)

Finding a residual generator which satisfies condition (6.3) is one of the mostly
studied topics in the FDI area and is known as, among a number of expres-
sions, perfect unknown input decoupling.

Definition 6.1 Given system (3.29). Residual generator (5.24) is called per-
fectly decoupled from the unknown input if condition (6.3) is satisfied. The
design of such a residual generator is called .

In the following of this chapter, we shall approach PUIDP. Our main tasks
consist in

• the study on the solvability of (6.3),
• presentation of a frequency domain approach to PUIDP
• design of unknown input fault detection filter (UIFDF)
• design of unknown input diagnostic observer (UIDO) and
• design of unknown input parity relation based residual generator.
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6.2 Existence conditions of PUIDP

In this section, we study

• under which conditions (6.3) is solvable and
• how to check those existence conditions.

6.2.1 A general existence condition

We begin with a reformulation of (6.3) as

( ) ˆ ( )
£

( ) ( )
¤
=
£

0
¤

(6.4)

with 6= 0 as some RH transfer matrix. Since³
ˆ ( )

´
=

and ( ) is arbitrarily selectable in RH the following theorem is obvious.

Theorem 6.1 Given system (3.29), then there exists a residual generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
such that (6.3) holds if and only if£

( ) ( )
¤

( ( )) (6.5)

Proof. If (6.5) holds, then there exists a ( ) such that

( ) ˆ ( ) ( ) = 0 and ( ) ˆ ( ) ( ) 6= 0

This proves the su ciency. Suppose that (6.5) does not hold, i.e.£
( ) ( )

¤
= ( ( ))

As a result, for all possible ( ) ˆ ( ) one can always find a transfer matrix
( ) such that

( ) ˆ ( ) ( ) = ( ) ˆ ( ) ( ) ( )

Thus, ( ) ˆ ( ) ( ) = 0 would lead to

( ) ˆ ( ) ( ) = 0

i.e. (6.3) can never be satisfied. This proves that condition (6.5) is necessary
for (6.3). ut



118 6 Perfect unknown input decoupling

The geometric interpretation of (6.5) is that the subspace spanned by
( ) is di erent from the subspace spanned by ( ) i.e.

( ( )) 6 ( ( ))

Note that £
( ) ( )

¤
(6.5) also means

( ( ))

In other words, the subspace spanned by ( ) should be smaller than the -
dimensional measurement space. From the viewpoint of system structure, this
can be understood as: the number of the unknown inputs that have influence
on ( ) (output controllability) or equivalently that are observable from ( )
(input observability) should be smaller than the number of sensors. For the
purpose of residual generation, those unknown inputs that have no influence
on the measurements and those measurements that are decoupled from the
faults are of no interest. Bering it in mind, below we continue our study on
the assumption £

( ) ( )
¤
= (6.6)

Although (6.5) sounds compact, simple and has a logic physical interpreta-
tion, its check, due to the rank computation of the involved transfer matrices,
may become di cult. This motivates the derivation of alternative check condi-
tions which are equivalent to (6.5) but may require less special mathematical
computation or knowledge.

Example 6.1 Consider the inverted pendulum system LIP100 described in
Subsection 3.7.2. Suppose that we are interested in achieving a perfect decou-
pling from the friction . It is easy to find out£

( ) ( )
¤
= 3 ( ( )) = 1

Thus, following Theorem (6.1), for this system the PUIDP is solvable.

6.2.2 A check condition via Rosenbrock system matrix

We now consider minimal state space realization (3.30)-(3.31), i.e. ( ) =
( ) ( ) = ( ). Let us do the following calculation¸

( ) 1 ( ) 1

0 ×

¸
= × 0

( ) 1 ( ) 1 +

¸
¸ ( ) 1 ( ) 1 ( ) 1

0 × 0
0 0 ×

= × 0 0
( ) 1 ( ) 1 + ( ) 1 +

¸
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from which we immediately know¸
= ×

( ) 1 ( )

¸
= +

¡
( ) 1 +

¢
(6.7)¸

= × 0 0
( ) 1 ( ) ( )

¸
= +

£
( ) ( )

¤
(6.8)

Thus, we have

Theorem 6.2 Given ( ) = ( ) 1 + and ( ) = (
) 1 + , then (6.3) holds if and only if¸ ¸

+ (6.9)

Given a transfer function matrix ( ) = ( ) 1 + , matrix¸
is called Rosenbrock system matrix of ( ). Due to the importance of the con-
cept Rosenbrock system matrix in linear system theory, there exist a number
of algorithms and CAD programs for the computation related to properties
of a Rosenbrock system matrix. This is in fact one of the advantages of check
condition (6.9) over the one given by (6.5). Nevertheless, keep it in mind that
a computation with operator is still needed.
A check of existence condition (6.9) can be carried out following the algo-

rithm given below.

Algorithm 6.1 Solvability check of PUIDP via Rosenbrock system matrix

Step 1. Calculate ¸ ¸
Step 2. Prove (6.9). If it holds, the PUIDP is solvable, otherwise unsolvable.

Example 6.2 Given benchmark system EHSA with model (3.83) and suppose
that the model uncertainty is zero and three additive faults (two sensor and one
actuator faults) are considered. We now check the solvability of the PUIDP.
To this end, Algorithm 6.1 is applied, which leads to

Step 1: ¸
= 7

¸
= 6
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Step 2: ¸ ¸
Thus, the PUIDP is solvable.

6.2.3 Algebraic check conditions

As mentioned in the last chapter, the parity space approach provides us with a
design form of residual generators, which is expressed in terms of an algebraic
equation,

( ) = ( ( ) + ( )) (6.10)

From (6.10) we immediately see that a parity relation based residual generator
delivers a residual decoupled from the unknown input ( ) if and only if there
exists a parity vector such that

6= 0 and = 0 (6.11)

Taking into account the definition of parity vectors, (6.11) can be equivalently
rewritten into £ ¤

=
£

0 0
¤

with vector 6= 0, from which it becomes clear that residual ( ) is decoupled
from ( ) if and only if£ ¤ £ ¤

(6.12)

Comparing (6.12) with (6.9) or (6.5) evidently shows the major advantage
of check condition (6.12), namely the needed computation only concerns de-
termining matrix rank, which can be done using a standard mathematical
program.
Another advantage of using (6.12) consists in the possibility to get the

knowledge of whether a residual generator of order can deliver a residual
decoupled from the unknown inputs. On the other side, the reader may ask:
Should I prove condition (6.12) for all possible in order to ensure whether
the decoupling problem is solvable? The following result gives an answer to
this question.
It follows from the parameterization of parity vectors presented in Theorem

5.10 and equality (5.64) given in Lemma 5.2 that can be rewritten into

= ¯ 1 (6.13)

and moreover
= ¯ ¯ = ¯ ¯ (6.14)

where
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¯ =
£
¯ ¯ +1 · · · ¯ 1 ¯

¤
¯ = { | = 0}

1 =

min 1 · · · 0 · · · 0

min · · · . . .
...

...
. . .

. . . 0
1 · · · min · · · · · ·

¯ R ( +1)× ( +1) ¯ R ( +1)× ( +1)

¯ =

1 ¯ · · · ¯ 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

1 ¯ 2 ¯ · · · ¯ 0 · · ·
0 1 ¯ · · · · · · · · · 0
...

...
. . .

...
...

. . .
...

0 · · · 1 ¯ · · · · · · ¯

¯ =

1 ¯ · · · ¯ 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

1 ¯ 2 ¯ · · · ¯ 0 · · ·
0 1 ¯ · · · · · · · · · 0
...

...
. . .

...
...

. . .
...

0 · · · 1 ¯ · · · · · · ¯

¯ = ¯ =

with and as defined in (5.41). We are now able to prove the following
theorem.

Theorem 6.3 Given = + as well as£
¯ ¯

¤
= ( + 1) = the row number of ¯ (6.15)

then for = + + 1£
¯ ¯

¤
= ( + 2) = the row number of ¯ (6.16)

Proof. Following Theorem 5.11 we rewrite ¯ as

¯ = ¯ =
£ · · · ¤ 6= 0

¯ = ( · · · 1 · · · )

= 0 = 1 · · · 1 = +1 = · · · = = ×

For = + , (6.15) holds if and only if for all vector 6= 0
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¯ ¯ 6= 0

We now check the case = + + 1. To this end, we write
¯

+ +1
¯

+ +1 into

¯
+ +1 =

+ 0
˜

+ +1

¸
˜

+ +1 =
£
0 · · · 0 1 ¯ · · · ¯

¤
¯

+ +1 = ( ¯ + )

respectively. It is important to notice that the rows of matrix£
˜

+ +1

¤
is linearly independent of the rows of£

+ 0
¤

and so matrix
+ 0

˜
+ +1

¸
is of full row rank. Thus, for any

+ +1 =
£

+

¤ 6= 0
we have

+ +1
¯

+ +1
¯

+ +1 =

+
¯

+

£
+

¤
+

£
˜

+ +1

¤ 6= 0
This implies (6.16) holds. The theorem is thus proven. ut
It follows from Theorem 6.3 that = + sets a up-bound for the

check of condition £ ¤
= 0

This means if for = + the above equation is not solvable, then it
remains unsolvable for all + .
Remember that a diagnostic observer can also be brought into a similar

form like a parity relation based residual generator, as demonstrated in the
last chapter. It is thus reasonable to prove the applicability of condition (6.12)
to the design of diagnostic observers decoupled from the unknown inputs.
We begin with transforming the design form of diagnostic observer

˙( ) = ( ) + ( ) ( ) + ( ) ( ) (6.17)

( ) = ( ) + ( ) + ( ) (6.18)
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into a non-recursive form using the similar computation procedure like the
one given in Theorem 5.7, in which = is replaced by
as well as . It turns out

( ) = ( ) +
¡

¯ ( ) + ¯ ( )
¢

(6.19)

where

=
£

0 1 · · ·
¤

=
£
0 · · · 0 1 ¤

¯ =

× · · ·
×

. . .
. . .

...
...

. . .
. . .

1 × · · · × ×

¯ =

× · · ·
×

. . .
. . .

...
...

. . .
. . .

1 × · · · × ×

( ) =

( )
...

( ) 1

( )

( ) =

( )
...

( ) 1

( )

We immediately see that choosing satisfying (6.11) yields

( ) = ( ) + ¯ ( )

i.e. the residual signal is decoupled from the unknown input.

Remark 6.1 We would like to emphasize that in the above derivation opera-
tor instead of is consciously used for the purpose of indicating the applica-
bility of the achieved results for both discrete and continuous time processes.

We have seen that (6.11) is a su cient condition for the construction of
a diagnostic observer decoupled from the unknown input. Moreover, (6.19)
shows the dependence of the residual dynamics on . Does the selection of
influence the solvability of PUIDP? Is (6.11) also a necessary condition? A
clear answer to these questions will be given by the following study.
Note that

...
1

=
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thus, a decoupling from only becomes possible if

6= 0 or 6= 0 (6.20)

= 0 and = 0 (6.21)

Remember that (Theorem 5.7)

=

0

1

...
1

(6.20)-(6.21) can be rewritten into

0 1

¸
¯ 1

0

¸ ¸
= 1 0

2 0

¸
=

¯ 1

0

¸ ¸
= 3 0

4 0

¸
(6.22)

where

¯ 1 =

0

1

...
1

3 6= 0 or 4 6= 0

Since

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...

...
2

1

equation (6.22) is, after an arrangement of matrix into a vector, equivalent
to

= 0 and 6= 0
It is evident that the solvability of the above equations is independent of the
choice of and so the eigenvalues of .
We have proven the following theorem.

Theorem 6.4 Given ( ) = ( ) 1 + and ( ) = (
) 1 + , then a diagnostic observer of order delivers a residual decoupled
from the unknown input if and only (6.11) or equivalently (6.12) holds. Fur-
thermore, the eigenvalues of the diagnostic observer are arbitrarily assignable.
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An important message of Theorem 6.4 is that

• the parity relation based residual generator and the diagnostic observer
have the same solvability conditions for the PUIDP and furthermore,

• upon account of the discussion on the relationships between the di erent
types of residual generators, the algebraic check conditions expressed in
terms of (6.11) or equivalently (6.12) are applicable for all kinds of residual
generators.

We now summarize the main results of this subsection into an algorithm.

Algorithm 6.2 An algebraic check of the solvability of PUIDP

Step 1. Form
Step 2. Prove (6.12). If it holds for some , the PUIDP is solvable, otherwise
unsolvable.

Example 6.3 We consider again benchmark system EHSA with model (3.83)
and suppose that three additive faults are considered. We now check the
solvability of the PUIDP by means of Algorithm 6.2. We have first formed

and for = 2 3 and 4 respectively. In the second step,£ ¤
and

£ ¤
have been computed for di erent

values of The results are: for = 2£ ¤
= 6 =

£ ¤
for = 3 £ ¤

= 8
£ ¤

= 7

for = 4 £ ¤
= 10

£ ¤
= 8

Thus, the PUIDP is solvable.

6.3 A frequency domain approach

The approach presented in this section provides a so-called frequency domain
solution for the residual generator design problem: given general residual gen-
erator in the design form

( ) = ( ) ˆ ( ) ( ( ) ( ) + ( ) ( )) R (6.23)

find such a post-filter ( ) RH that ensures

( ) ˆ ( ) ( ) = 0 and ( ) ˆ ( ) ( ) 6= 0 (6.24)
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In order to illustrate the underlying idea, we first consider a simple case

ˆ ( ) ( ) = 1( )

2( )

¸
with 1( ) 2( ) R and stable. Set

( ) =
£
2( ) 1( )

¤
gives

( ) ˆ ( ) ( ) = 2( ) 1( ) 1( ) 2( ) = 0

We see from this example that the solution is based on a simple multiplication
and an addition of transfer functions. No knowledge of modern control theory,
the state space equations and associated calculations are required.
We now present an algorithm to approach the design problem stated by

(6.23)-(6.24). We suppose and£
( ) ( )

¤
( ( ))

and denote

ˆ ( ) ( ) = ¯ ( ) =

1̄1( ) · · · 1̄ ( )
...

...
...

¯ 1( ) · · · ¯ ( )

RH ×

Algorithm 6.3 A frequency domain approach

Step 1: Set initial matrix ( ) = ×
Step 2: Start a loop: = 1 to =

Step 2-1: When ¯ ( ) = 0,
Step 2-1-1: set = + 1 and check ¯ ( ) = 0?
Step 2-1-2: If it is true, set = + 1 and go back to Step 2-2-1,
otherwise

Step 2-1-3: set

=

11 · · · 1

...
...

...
1 · · ·

=

½
1 : 6= and
0 : = or

=

½
0 : ( 6= ) and ( 6= and 6= or 6= and 6= )
1 : ( 6= ) and ( = and = or = and = )

¯ ( ) = ¯ ( ) ( ) = ( )

Step 2-2: Start a loop: = + 1 to = :
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( ) =

11( ) · · · 1 ( )
...

...
...

1( ) · · · ( )

( ) =

½
1 : 6= or = and ¯ ( ) = 0

¯ ( ) : = and ¯ ( ) 6= 0

( ) =

½
0 : 6= and 6= and =

¯ ( ) : = and =

¯ ( ) = ( ) ¯ ( ) ( ) = ( ) ( )

Step 3: Set
( ) =

£
( )× ( )×( )

¤
( )

To explain how this algorithm works, we make the following remark.

Remark 6.2 All calculations in the above algorithm are multiplications and
additions of two transfer functions, in details

• Step 2-1 serves as finding ¯ ( ) 6= 0 by a row exchange ¯ ( ) (6= 0).
• After completing Step 2-2 we have

¯ ( ) 6= 0 = 1 · · · ¯ ( ) = 0

• When the loop in Step 2 is finished, we obtain

Y Y
( ) ¯ ( ) =

1̂1( )
0 ˆ22( )
...

. . .
. . .

0 · · · 0 ˆ ( )
0 · · · · · · 0

where ˆ ( ) 6= 0 = 1 · · · and denotes some transfer matrix of no
interest. Since and ( ) are regular transformations, the above results
are ensured.

• It is clear that

( ) =
£
0( )× ( )×( )

¤
( )
Y Y

( ) and so

( ) ¯ ( ) =
£
0( )× ( )×( )

¤ 1̂1( )
0 ˆ22( )
...

. . .
. . .

0 · · · 0 ˆ ( )
0 · · · · · · 0

= 0
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We have seen that the above algorithm ensures that the residual generator
of the form

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
delivers a residual perfectly decoupled from the unknown input .

6.4 UIFDF design

The problem to be solved in this section is the design of UIFDF that is
formulated as: given system model

˙ ( ) = ( ) + ( ) + ( ) + ( ) R (6.25)

( ) = ( ) + ( ) + ( ) R (6.26)

and an FDF

˙̂ = ˆ( ) + ( ) + ( ( ) ˆ( )) (6.27)

( ) = ( ( ) ˆ( )) ˆ( ) = ˆ( ) + ( ) (6.28)

find such that residual generator (6.27)-(6.28) is stable and

( + ) 1 = 0¡
( + ) 1( ) +

¢ 6= 0
We shall present two approaches,

• the eigenstructure assignment approach and
• the geometric approach.

6.4.1 The eigenstructure assignment approach

Eigenstructure assignment is a powerful approach to the design of linear state
space feedback system, as it can be shown easily that the closed-loop system
structure like ( + ) depends entirely on the eigenvalues and the left
and right eigenvectors of .
The eigenstructure approach proposed by Patton and co-worker is dedi-

cated to the solution of equation

( + ) 1 = 0 (6.29)

for . To this end, the following two well-known lemmas are needed.

Lemma 6.1 Suppose matrix R × has eigenvalues = 1 · · ·
and the associated left and right eigenvectors R1× R ×1, then we
have

= 0 = 1 · · · 6= = 1 · · ·
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Lemma 6.2 Suppose matrix R × can be diagonalized by similarity
transformations and has eigenvalues = 1 · · · and the associated left
and right eigenvectors R1× R ×1, then the resolvent of
can be expressed by

( + ) 1 = 1 1

1
+ · · ·+

Below are two su cient conditions for the solution of (6.29).

Theorem 6.5 If there exists a left eigenvector of matrix , , satis-
fying

= and = 0

then (6.29) is solvable.

Proof. The proof becomes evident by choosing so that = and consid-
ering Lemmas 6.1-6.2 :

( + ) 1 =

μ
1 1

1
+ · · ·+

¶
= = 0

ut
Theorem 6.6 Given whose columns are the right eigenvectors of ,
then (6.29) is solvable if there exists a vector so that

= 0

The proof is similar to Theorem 6.5 and is thus omitted.
Upon account of Theorem 6.5 Patton et al. have proposed an algorithm

for the eigenstructure assignment approach.

Algorithm 6.4 Eigenstructure assignment approach by Patton and Kangethe

Step 1: Compute the null space of , , i.e. = 0
Step 2: Determine the eigenstructure of the observer
Step 3: Compute the observer matrix using an assignment algorithm and
set = 6= 0
Theorem 6.7 follows directly from Lemmas 6.1-6.2 and provides us with a

necessary and su cient condition.

Theorem 6.7 Suppose that matrix R × can be diagonalized by
similarity transformations and has eigenvalues = 1 · · · and the asso-
ciated left and right eigenvectors R1× R ×1, then (6.29) holds if
and only if there exist such that

1 1 = 0 · · · = 0 (6.30)
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Note that (6.30) holds if and only if = 0 or = 0 and there
exists an index 0 so that

= 0 = 1 · · · = 0 = + 1 · · ·
Let the -th column of , , be expressed by

=
X
=1

then we have

= 0 = + 1 · · · = = 0 = + 1 · · · = 1 · · ·

= =
X
=1

= 1 · · ·

This verifies the following theorem.

Theorem 6.8 Equation (6.29) holds if and only if can be expressed by

=
£

1 · · ·
¤ R × £

1 · · ·
¤
= 0

From the viewpoint of linear control theory, this means the controllable
eigenvalues of ( ), 1 · · · , are unobservable by . Since 6= 0
is arbitrarily selectable, Theorem 6.8 can be reformulated as

Corollary 6.1 (6.29) holds if and only if can be expressed by

=
£

1 · · ·
¤ R × ¡ £

1 · · ·
¤¢

Now, we introduce some well-known definitions and facts from the linear
system theory and the well-established eigenstructure assignment technique:

• is called invariant or transmission zero of system ( ) when

0

¸
+min{ }

• Vectors and satisfying£ ¤
0

¸
= 0

are called state and input direction associated to respectively.
• Observer matrix defined by

=

1

...

1
1

... = ( ) 1

ensures
( + ) = 0 = 1 · · ·

i.e. is the eigenvalue of and the left eigenvector.
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• Let
= = =

then we have
( ) = 0 = 0

Following algorithm is developed on the basis of Corollary 6.1 and the
above-mentioned facts .

Algorithm 6.5 An eigenstructure assignment approach

Step 1: Determine the invariant zeros of system ( ) defined by

0

¸
+min{ } = + 1 · · ·

Step 2: Solve £ ¤
0

¸
= 0 = + 1 · · ·

for
Step 3: Set

= = = = + 1 · · ·
Step 4: Define = 1 · · · satisfying

= ( ) 1 = 1 · · ·
1

... =

Step 5: Set

=

1

...

1
1

...

Step 6: Solve
1

...
£

1 · · ·
¤
= ×

0( )×

¸
for 1 · · ·

Step 7: If £
1 · · ·

¤
then solve £

1 · · ·
¤
= 0

for
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Note that the condition that there exists a vector so that = 0 can
equivalently be reformulated as the solution of equations

= = 0 R( )×

Furthermore, the requirement that the rows of are the left eigenvectors of
matrix leads to

+1 0 0

0
. . . 0

0 0

=

This verifies that Luenberger conditions (5.30)-(5.32) are necessary for the use
of the eigenstructure assignment approach provided above.

6.4.2 Geometric approach

The so-called geometric approach is one of the fields in the control theory,
where elegant tools for the design and synthesis of control systems are avail-
able. On the other side, the application of the geometric approach requires a
profound mathematical knowledge.
The pioneering work of approaching the design and synthesis of FDF by

geometric approach was done by Massoumnia, in which an elegant solution to
the FDF design has been derived. In this subsection, we shall briefly describe
the geometric approach to the FDF design without elaborate handling of its
mathematical background.
The core of the geometric approach is the search for an observer matrix
that makes ( ) maximally uncontrollable by . It is the dual

form of the geometric solution to the disturbance decoupling (control) problem
(DDP) by means of a state feedback controller. Below, we briefly describe an
algorithm for this purpose, which is presented as the dual form of the algorithm
proposed by Wonham for the DDP-controller design.
The addressed problem is formulated as follows: given system

˙ = ( ) + = (6.31)

find such that the pair ( ) becomes maximally uncontrollable. The
terminology maximally uncontrollable is used to express the uncontrollable
subspace with the maximal dimension. We shall also use maximal solution to
denote the maximally dimensional solution of an equation = 0 (or

= 0) for a given

Algorithm 6.6 Computation of observer gain for generating maximally
uncontrollable subspace
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Step 0: Setting initial condition: find a maximal solution of

0 = 0

for 0

Step 1: Find a maximal solution of£
1

¤
= 0 = 1 2 · · ·

for
Step 2: Find a maximal solution of¸

= 0 = 1 2 · · ·

for
Step 3: Check

( ) = ( 1)

If no, increase = + 1 and go to Step 1, otherwise set ¯ =
Step 4: Find a solution of

¯ =
£

¯
¤ ¸

for ( )
Step 5: Solve

= ¯

for the observer gain

Remark 6.3 Step 0 to Step 3 are the algebraic version of the algorithm pro-
posed by Wonham for the computation of the supremal ( )-invariant
subspace contained in the null-space of As a result, the dual representa-
tion of system (6.31) becomes maximally unobservable.

The following lemma is known in the geometric control framework, based
upon which a UIFDF can be designed.

Lemma 6.3 Suppose makes ( ) maximally uncontrollable by ,
i.e. (( ) ) is maximally unobservable. Then by a suitable choice of
output and state bases, and , the resulting realization can be described by

( ) 1 =
¯
11
¯
12

0 ¯
22

¸
=

¯
1

0

¸
¯ = 1 =

¯
1 0
0 ¯

2

¸
(6.32)

where the realization ( ¯11 ¯
1
¯
1) is perfectly controllable.
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Remark 6.4 A system ( ) is called perfectly controllable if

0

¸
has full row rank.

Let max be the observer gain that makes ( max ) maximally
uncontrollable by . When ¯

2 6= 0, we construct, according to Lemma 6.3,
the following FDF

˙1
˙2

¸
=

¯
11 11

¯
1
¯
12 12

¯
2

0 22 22
¯
2

¸
1

2

¸
+ + ( max + 0 )

=
£
0 2

¤μ ¯
1 0
0 ¯

2

¸
1

2

¸¶
2 6= 0 (6.33)

with

0 =
11 12

0 22

¸
(6.34)

and 11, 22 ensuring the stability of ¯11 11
¯
1 and 22 22

¯
2 Intro-

ducing

= 1

2

¸
= = 1

2

¸
gives

˙1
˙2

¸
=

¯
11 11

¯
1 12 12

¯
2

0 22 22
¯
2

¸
1

2

¸
+

¯
1

0

¸
(6.35)

=
£
0 2

¤ ¯
1 0
0 2

¸
1

2

¸
= 2

¯
2 2 (6.36)

It is evident that residual signal is perfectly decoupled from .
It is straightforward to rewrite (6.33) into the original FDF form (6.27)-

(6.28) with
= max + 0 =

£
0 2

¤
(6.37)

as well as
ˆ = 1

Below is a summary of the above results in the form of an algorithm.

Algorithm 6.7 The geometric approach based UIFDF design

Step 1: Determine max that makes ( max ) maximally uncon-
trollable by using Algorithm 6.6

Step 2: Transform ( max ) into (6.32) by a state ( ) and an out-
put ( ) transformation (controllability and observability decomposition)

Step 3: Select 0 satisfying (6.34) and ensuring the stability of ¯11 11
¯
1

and ¯
22 22

¯
2
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Step 4: Construct FDF (6.33) or in the original form (6.27)-(6.28) with
satisfying (6.37).

Remember that the construction of residual generator (6.33) is based on
the assumption that ¯2 6= 0 Without proof we introduce the following neces-
sary and su cient condition for ¯2 6= 0, which is known from the geometric
control theory.

Theorem 6.9 Under the same conditions as given in Lemma 6.3, we have

• ¯
2 6= 0 if and only if ( ) ( )

• ( ¯22 ¯
2) is equivalent to

( ¯22 ¯
2)

μ
¯
221 0
¯
222

¯
223

¸ £
¯
21 0

¤¶
where ( ¯221 ¯

21) is perfectly observable, the eigenvalues of matrix ¯
223

are the invariant zeros of ( ) and they are unobservable.

An immediate result of the above theorem is

Corollary 6.2 Given system model

( ) = ( ) ( ) + ( ) ( )

with ( ) = ( ) and ( ) = ( ) then there exists an FDF
that is decoupled from if and only

0

¸
+

and ( ) = ( ) has no unstable invariant zero.

We know from Theorem 6.9 that there exists an observer matrix such
that ( ) can be brought into (6.32) with ¯2 6= 0 if and only if

0

¸
+

Moreover, if

0

¸
0 0

¸
+

then by suitably choosing output and state bases, and , the resulting
realization can be described by equations of the form

( ) 1 =
¯
11
¯
12

0 ¯
22

¸
¯ = 1 =

¯
1 0
0 ¯

2

¸
=

¯
1

0

¸
=

¯
1

¯
2

¸
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where ¯ 2 6= 0. As a result, constructing an FDF according to (6.33) yields

˙1
˙2

¸
=

¯
11 11

¯
1 12 12

¯
2

0 22 22
¯
2

¸
1

2

¸
+

¯
1

0

¸
+

¯
1

¯
2

¸
=
£
0 2

¤ ¯
1 0
0 2

¸
1

2

¸
=

( ) = 2 2( 22 + 22 2)
1 ¯

2 ( )

i.e. a fault detection is achievable. Recall Corollary 6.2, we have

Corollary 6.3 Given system model

( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

with ( ) = ( ) ( ) = ( ) and ( ) = ( ) then
there exists an FDF that solves PUIDP if

0

¸
0 0

¸
+ (6.38)

and the invariant zeros of ( ) are stable.

It is interesting to notice the fact that, if there exists a UIFDF then we
are also able to construct a reduced order residual generator decoupled from
. To this end, we consider FDF (6.33). Instead of constructing a full order
observer, we now define the subsystem regarding to 2 i.e.

˙2 =
¡

22 22
¯
2

¢
2 + 2 + 2 ( max + 0 )

= 2

¡
2

¯
2 2

¢
(6.39)

with

:= 1

2

¸
:= 1

2

¸
It is evident that (6.39) is a reduced order residual generator which is decou-
pled from
Recall that residual generator (6.33) becomes unstable if system ( )

has unstable invariant zeros. This problem can be solved by constructing a
reduced order residual generator. Without loss of generality, suppose that
after applying Algorithm 6.7 ( ¯22 ¯

2) is of the form

¯
22 =

¯
221 0
¯
222

¯
223

¸
¯
2 =

£
¯
21 0

¤
(6.40)

as described in Theorem 6.9, i.e.
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( ) 1 =

¯
11
¯
121

¯
122

0 ¯
221 0

0 ¯
222

¯
223

¯ = 1 =
¯
1 0 0
0 ¯

21 0

¸
=

¯
1

0
0

(6.41)

Corresponding to the decomposition given in (6.41), we now further split
2 22 and 2 into

2 =
21

22

¸
22 =

221

222

¸
2 =

21

22

¸
and construct the following residual generator

˙21 =
¡
¯
221 121

¯
21

¢
21 + 21 + 21 ( max + 0 ) (6.42)

= 2

¡
2

¯
21 21

¢
It is straightforward to prove that for 21 = 21 21

˙21 =
¡
¯
221 121

¯
21

¢
21 = 2

¯
21 21

That means residual generator (6.42) is stable and perfectly decoupled from

Corollary 6.4 Given system model

( ) = ( ) ( ) + ( ) ( )

with ( ) = ( ) and ( ) = ( ) and suppose that

0

¸
+

Then residual generator (6.42) delivers a residual signal decoupled from .

A very useful by-product of the above discussion is that residual generator
(6.42) can be designed to be of the minimum order and decoupled from
This will be handled at the end of this chapter.

Algorithm 6.8 The geometric approach based design of reduced order resid-
ual generator

Step 1: Determine max that makes ( max ) maximally uncon-
trollable by using Algorithm 6.6

Step 2: Transform ( max ) into (6.32) by a state and an output
transformation (controllability and observability decomposition)

Step 3: Transform ( ¯22 ¯
2) into (6.40) by a state transformation (observ-

ability decomposition)
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Step 4 Select 221 ensuring the stability of ¯221 221
¯
21

Step 5: Construct residual generator (6.42).

The results achieved in this section can be easily extended to the systems
described by (3.30)-(3.31) with 6= 0 To this end, we can, as done in the
former chapters, rewrite (3.30)-(3.31) into

˙
˙

˙
= 0 0 0

0 0 0
+ 0

0
+

0

0

˙+
0
0 ˙ (6.43)

=
£ ¤

+ (6.44)

Note that

0 0
0 0

0

0

0
0

0 0

=

¸
+ +

0
0

0
=

¸
+

it holds

0 0
0 0

0

0

0
0

0 0

+ + +

¸
+

0
0

0
+ +

¸
+

Recall further the definition of invariant zeros, the results given in Theorem
6.9 and Corollary 6.2 can be extended to

Corollary 6.5 Given system model (3.30)-(3.31), then there exists an FDF
that ensures a perfect unknown input decoupling if¸ ¸

+ (6.45)

and the invariant zeros of ( ) = + ( ) 1 are stable.
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Example 6.4 We now apply Algorithm 6.7 to the design of a full order
UIFDF for the benchmark system LIP100 described by (3.57). This UIFDF
should deliver residual signals decoupled from the unknown input . Using
Algorithm 6.6, we obtain

max =

0 0 0000 1 9500
0 0 0000 13 7429
0 0 7131 0 2470
0 0 0519 0 0180

It is followed by the computation of the state and output transformation ma-
trices, which results in

=

0 0 0 1630 0
0 0055 0 9473 0 3193 0 0232
0 0676 0 3191 0 9428 0 0686
0 9977 0 0269 0 0621 0 0045

=
0 0 1
0 1 0
1 0 0

To ensure the desired dynamics, 11 and 22 are selected as follows, from
which 0 is computed

0 =

1 0000 0 5000 0 5000
0 11 0500 11 8438
0 0 8796 5 1779
0 0 1223 7 0497

Finally, set £
0 2

¤
=

0 0 500 1 000
0 0 750 1 500

¸
and based on which as well as are determined Having designed a
residual generator of the form (6.33) is constructed. In Fig.6.2, the response
of the two residual signals to di erent faults is sketched. These faults occurred
after the 10-th second. It can be seen that in the fault-free time interval (before
the 10-th second) the residual signals are almost zero. It verifies a perfect
decoupling.

6.5 UIDO design

The UIDO design addressed in this section is formulated as: given system
model (3.30)-(3.31) and diagnostic observer

˙( ) = ( ) + ( ) + ( ) (6.46)

( ) = ( ) ( ) ( ) (6.47)

that satisfies Luenberger conditions (5.30)-(5.31) and (5.38), and thus whose
design form is described by
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Fig. 6.2 Response of the residual signals to faults

˙( ) = ( ) + ( ) ( ) + ( ) ( ) (6.48)

( ) = ( ) + ( ) + ( ) (6.49)

find such that residual generator (6.46)-(6.47) is stable and

( ) 1( ) + = 0 (6.50)

( ) 1( ) + 6= 0 (6.51)

6.5.1 An algebraic approach

In this subsection, the approach by Ge and Fang to the DO design is extended
to the construction of UIDO. Suppose that

= 0 = 0 and
£ ¤

= ×

Then, there exists an UIDO if and only if

= ×
0

¸
= 0

which is, by denoting the -th column of with , equivalent to

= 0 = 1 · · ·

Based on the method introduced in Chapter 5, Ge and Fang have proposed
a recursive algorithm to the design of a UIDO satisfying (6.50). To this end,
they have proven the following theorem.

Theorem 6.10 Let
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=

1

... =

0 · · · 0
1 · · · 0
...
. . .

. . .
...

0 · · · 1

(6.52)

where R × R × and is the order of the DO, then

=
1X

=0

1

!
( ) = 1 · · · (6.53)

( ) =
X
=1

1X
=0

1 =

1

... (6.54)

provide an equivalent solution with the one given in Theorem (5.8) for the Lu-
enberger equations, where denotes the eigenvalue being arbitrarily selectable.

The proof is straightforward and thus omitted.
Following algorithm, developed on the basis of Theorem 6.10, can be used

to approach the design of UIDO satisfying (6.50).

Algorithm 6.9 The approach to UIDO design by Ge and Fang

Step 1: Calculate ( ) = + · · ·+ 1 + 0

Step 2: Solve (5.76) for
Step 3: Set = 1
Step 4: Calculate ( ) by (6.54) and set

0 = ( ) (6.55)

Step 5: Denote the i-th column of 0( ) with 0 and form

0 =
£

0 1 · · · 0

¤
(6.56)

Step 6: Solve
1 0 = 0 1 6= 0

for 1 and set
1 = 1 0

Step 7: Form according to (6.52) and prove if

( ) (6.57)

Step 8: If (6.57) holds, then go to Step 11
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Step 9: Increase the observer order by one: = + 1, and calculate

1 =
1

( 1)!
1( )

then set
1 =

£
1 1 · · · 1

¤
Step 10: Solve

0 +
1X

=1

= 0 (6.58)

for , set

=
1X

=0

= 0 (6.59)

and go to Step 7
Step 11: Solve (5.75) for (6= 0), set according to (6.52) and calculate

( ) by (5.78)
Step 12: Set subject to (6.54), (5.74), (5.75) respectively.

Remark 6.5 The above algorithm is a recursive realization of Theorem 6.10,
and thus the achieved UIDO is of minimal order.

Example 6.5 We now apply Algorithm 6.9 to design a minimum order UIDO
for the benchmark system LIP100 described by (3.57). We start with = 1
and set

= 1

It follows

=
£
92 2308 0 0000 0 0002 0 0000

¤
=
£
92 2308 0 0003 179 8499

¤
=
£
46 1154 0 0000 0 0001

¤
based on which, we can also determine Thus, it can be concluded that
using Algorithm 6.9 we are able to design a minimum order UIDO for LIP100.

6.5.2 Unknown input observer approach

In the early 80’s, the so-called unknown input observer (UIO) design received
much attention due to its importance in robust state estimation and observer-
based robust control. Consider system model

˙ ( ) = ( ) + ( ) + ( ) ( ) = ( ) (6.60)

A UIO is a Luenberger type observer that delivers a state estimation ˆ inde-
pendent of unknown input in the sense that
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lim ( ( ) ˆ( )) = 0 for all ( ) ( ) 0 (6.61)

Making use of ˆ a residual signal can be constructed as follows

( ) = ( ) ˆ( )

This is the way that is widely used to design UIDO, also for the reason that
the technique of designing UIO is well established.
It is worth pointing out that the primary objective of using a UIO is to re-

construct the state variables. It is di erent from the one of residual generation,
where only measurements have to be reconstructed. In the next subsections,
we shall present some approaches to the design of UIO only for the residual
generation purpose.
We now outline the underlying idea of the UIO design technique.
It follows from (6.60) that

˙( ) ( ) ( ) = ( ) (6.62)

Assume that
( ) = ( ) = (6.63)

then there exists a matrix satisfying

= × (6.64)

Multiplying the both sides of (6.62) by gives

( ˙( ) ( ) ( )) = ( )

This means, using ˙ ( ( +1) for discrete time systems), an estimation of the
state vector ˆ and the input vector the unknown input vector can be
constructed by

(̂ ) = ( ˙( ) ˆ( ) ( ))

On account of ˆ we are able to construct a full order state observer, on the
assumption that ˙ is available, as follows

˙̂ = ˆ + + ( ) 1 ( ˙ ˆ ) + ( ˆ) (6.65)

whose estimation error is evidently governed by

˙ = ( ) = ˆ

In case that there exists an observer matrix such that matrix
is stabilizable, observer (6.65) fulfills (6.61).

Note that observer (6.65) requires knowledge of ˙, which may cause trou-
bles by the on-line implementation. To overcome this di culty, modification
is made. Introduce a new state vector
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( ) = ˆ( ) ( )

and a matrix
= (6.66)

then it turns out

˙ = ( ) + + (( ) + ) (6.67)

ˆ = + (6.68)

It is clear that for all 0

lim ( ( ) ( )) = 0 lim ( ( ) ˆ( )) = 0

and furthermore, setting = and after some calculations, we have

= (( ) + ) =

This means system (6.67)-(6.68) is a Luenberger type unknown input observer,
and by setting

= (( ) ) 6= 0 (6.69)

we get a UIDO.

Algorithm 6.10 UIO based residual generation

Step 0: Check the existence conditions given in Corollary 6.6. If they are
satisfied, go to the next step, otherwise stop.

Step 1: Compute according to (6.64) and further according to (6.66)
Step 2: Selection of that ensures the stability of
Step 3: Construct residual generator following (6.67) and (6.69).

It can be seen that the core of UIO technique is the reconstruction of
the unknown input , which requires condition (6.63) or equivalently (6.64).
Furthermore, to ensure the stability of observer (6.65) or equivalently (6.67),
the pair ( ) should be observable or at least detectable. In summary, we
have the following theorem.

Theorem 6.11 Given system model (6.60) and suppose

Condition I:
( ) = ( ) =

Condition II: ( ) is detectable, where

=

then there exists a UIO in the sense of (6.61).
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Remark 6.6 It can be demonstrated that Condition I and II are also nec-
essary conditions for the existence of a UIO. It is interesting to notice that
matrix is singular. This can be readily seen by observing the fact

= = 0

Thus, by a suitable transformation we are able to find a low order UIO.

Notice the following equality

0

¸
=

μ
0

¸
0
¸¶

=
+

0

¸
=

0

¸
This means if ( ) is undetectable, then ( ) has at least one un-
stable transmission zero, i.e. there exists at least one C+ such that

0

¸
+

since the fact ( ) is undetectable implies there exists at least one
RHP such that ¸
Hence, Theorem 6.11 can be reformulated as

Corollary 6.6 Given system model (6.60), then there exists a UIO in the
sense of (6.61) if

• ( ) =
• ( ) has no unstable transmission zero.

In a number of publications, it has been claimed that Conditions I and
II stated in Theorem 6.11 are necessary for the construction of UIDO in the
form of (6.67) and (6.69). It should be pointed out that these two conditions
are not equivalent to the solvability conditions of the PUIDP described at the
beginning of this chapter. To illustrate it, we only need to consider the case

( ) ( ) and

which does not satisfy Condition I in Theorem 6.11. In against, following
Theorem 6.3 the PUIDP is solvable in this case, i.e. we should be able to find
a residual generator that is decoupled from the unknown input vector .
We now check a special case: = . Since

= = = = ( ) = 0
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we claim that ( ) is not observable for = . In other words, we are
able to construct a UIDO of form (6.67) and (6.69) whose eigenvalues are
arbitrarily assignable only if . Indeed, following (6.69) we have for
=

= (( ) ) =

Multiplying the both sides of (6.67) by gives

˙ =

Moreover, notice that

lim ( ( ) ( )) = 0 = lim ( ( ) ( )) = lim ( ) = 0

Thus, it is evident that for = the residual is independent of the fault
vector ( ) and therefore it cannot be used for the purpose of fault detection.
The above-mentioned two cases reveal that approaching the UIDO design

using the UIO technique may restrict the solvability of the problem. The rea-
son lies in the fact that UIDO and UIO have di erent design aims. While a
UIO is in fact used to reconstruct the state variables, the design objective of
a UIDO is to reconstruct measurable state variables for the purpose of gen-
erating analytical redundancy. The realization of these di erent aims follows
di erent strategies. By the design of UIO an exact estimation of the unknown
input is required such that the influence of the unknown input can totally be
compensated. In comparison, an exact compensation of the unknown input is
not necessary by a UIDO. Therefore, the existence conditions of UIO are, gen-
erally speaking, stronger than the ones of UIDO. In the following subsections,
two approaches to the design of UIDO will be presented.

Example 6.6 In this example, we design a UIO for the vehicle lateral dy-
namic system aiming at generating a residual signal decoupled from the (un-
known) road bank angle. As described in Section 3.7.4, the linearized model of
this system is described by

˙ ( ) = ( ) + ( ) + ( ) ˜( ) = ( ) ( ) = ( )

with the system matrices given in (3.76). For our purpose, Algorithm 6.10
is used. After checking the existence conditions, which are satisfied, ,
and are determined respectively:

=
£
0 0065 0

¤
=

1 0
0 1

¸
=

0 0 0082
0 1

¸
=
£
1 1

¤
Finally, UIO (6.67) is constructed, which delivers a residual signal on account
of (6.69).
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6.5.3 A matrix pencil approach to the UIDO design

Using matrix pencil to approach the design of UIDO was initiated by Wuen-
nenberg in the middle 80’s and lately considerably developed by Hou and
Patton.
The core of the matrix pencil approach consists in a transformation of

an arbitrary matrix pencil to its Kronecker canonical form. For the re-
quired knowledge of matrix pencil, matrix pencil decomposition and Kro-
necker canonical form, we refer the reader to the references given at the end
of this chapter. We introduce the following lemma.

Lemma 6.4 An arbitrary matrix pencil + can be transformed to the
Kronecker canonical form by a regular transformation, i.e. there exist regular
constant matrices and such that

( + ) = ( + + + + 0) (6.70)

where

• + is the finite part of the Kronecker form, contains the Jordan
blocks ;

• + is the infinite part of the Kronecker form, contains the
Jordan blocks with

=

0 1
. . .

. . .

. . . 1
0

• + is the row part of the Kronecker form. It is a block diagonal
matrix pencil with blocks in the form

+ =
£

× 0
¤
+
£
0 ×

¤
of the dimension × ( + 1);

• + is the column part of the Kronecker form. It is a block diagonal
matrix pencil with blocks in the form

+ = ×
0

¸
+

0

×

¸
of the dimension ( + 1)× ;

• 0 denotes the zero matrix of appropriate dimension.

There exists a number of numerically stable matrix pencil decomposition
methods for the computation of the regular transformation described above,
for instance we can use the one proposed by Van Dooren.
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Remark 6.7 It is evident that Kronecker blocks + + +
have full row rank.

Corresponding to system model (3.30)-(3.31) and the original form of resid-
ual generation, = ˆ we introduce the following matrix pencil

˜ ˜ =
0

¸
(6.71)

That means we consider a dynamic system whose inputs are the process input
vector and output vector and output is di erence between the process
output and its estimate ˙ delivered by the parallel model.
Suppose a regular transformation by 1 leads to

1

¸
=

0
˜

¸ ³
˜
´
=

and denote

1
+ 0

¸
= 1 + 1 1

˜ 0

× ˜

¸
where and × denote constant matrices and matrix pencil of appropriate
dimensions, respectively, and their forms and values are not of interest. Then,
by a suitable regular transformation of the form, we obtain

( ) 1
0

¸
( )

= ( ) 1 1 1
˜ 0

× ˜

¸
( )

=
0 ˜

11
˜
1 0

0 ˜
12
˜
2 0

× × ˜
(6.72)

where are regular matrices that transform the matrix pencil 1 1 into
its Kronecker canonical form and the matrix pencil is the composite
of finite, infinite and row parts of the Kronecker form which have full row
rank, as stated in Lemma 6.4. Since it is supposed that¸

=

i.e. ( ) is observable, the 0 block in (6.70) disappears.
Due to its special form, matrix pencil can also be equivalently

rewritten into ¸
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where and are diagonal matrices with blocks in the form

=
1
. . .
. . .
. . .
1

=
£
0 · · · 1 ¤

Corresponding to it we denote£
˜
12
˜
2

¤ ¸
In conclusion, we have, after carrying out the above-mentioned transforma-
tions,

0
¸

(6.73)

0 ˜
11
˜
1 0

0 0
0 0

× × ˜

From the linear system theory we know

• ( ) is observable;
• denoting the state vector of the sub-system ( ) by , then there
exists a matrix such that = .

Thus, based on sub-system model

˙ = +

¸
+ = +

¸
+ (6.74)

we are able to construct a residual generator of the form

˙̂ = ˆ +

¸
+

μ
ˆ

¸¶
(6.75)

= ˆ +

¸
(6.76)

whose dynamics is governed by

˙ = ( ) + ( ) = +

with = ˆ .
Naturally, the above-mentioned design scheme for UIDO is realizable only

certain conditions are satisfied. The theorem given below provides us with a
clear answer to this problem.
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Theorem 6.12 The following statements are equivalent:

• There exists a UIDO;
• In (6.73), block ( ) exists and¸

6= 0

• The following condition holds true¸ ¸
+

Due to the requirement on the knowledge of Kronecker canonical form and
decomposition of matrix pencil, we omit the proof of this theorem and refer
the interested reader to the references given at the end of this chapter. Never-
theless, we can see that the existence condition for a UIDO being designed by
the matrix pencil approach described above is identical with the one stated
in Theorem 6.2. This condition, as we have illustrated, is weaker than the one
for UIO.
As a summary, the design algorithm for UIDO using the matrix pencil

approach is outlined below.

Algorithm 6.11 The matrix pencil approach to the design of UIDO

Step 1: Decompose the matrix pencil (6.71) into (6.73) by regular transfor-
mations;

Step 2: Define UIDO according to (6.75)-(6.76) by choosing properly.

6.5.4 A numerical approach to the UIDO design

The approach stated below is in fact a summary of the results presented in
Subsections 5.7.1 and 6.2.3.
Consider system model (3.30)-(3.31). As shown in Subsections 5.7.1 and

6.2.3, residual generator

˙ = + + = (6.77)

delivers a residual signal whose dynamics, expressed in the non-recursive
form, is governed by

( ) = ( ) +
¡

¯ ( ) + ¯ ( )
¢

where
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=
£ ¤

=

0 0 · · · 0
1 0 · · · 0
...
. . .

. . .
...

0 · · · 1 0
0 · · · 0 1

R ×( 1) (6.78)

=

1

... ...
= 0 =

£
0 · · ·

¤
(6.79)

=
£
0 · · · 0 1 ¤ = = (6.80)

= =

0

1

...
1

(6.81)

=

1 2 · · · 1

2 · · · · · · 0
... · · · · · · ...

...
0 · · · · · · 0

...

...
2

1

(6.82)

¯ =

× · · ·
×

. . .
. . .

...
...

. . .
. . .

1 × · · · × ×

¯ =

× · · ·
×

. . .
. . .

...
...

. . .
. . .

1 × · · · × ×

( ) =

( )
...

( ) 1

( )

( ) =

( )
...

( ) 1

( )

Following Theorem 6.4, under condition£ ¤ £ ¤
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we are able to solve equations

6= 0 and £ ¤
= 0 (6.83)

for such that residual generator (6.77) becomes a UIDO, i.e. its dynamics
fulfills

˙ = + ( ) = +

in the recursive form or equivalently

( ) = ( ) + ¯ ( )

in the non-recursive form.
In summary, we have

Algorithm 6.12 The UIDO design approach by Ding et al.

Step 1: Solve (6.83) for ;
Step 2: Choose and set according to (6.78)-(6.81);
Step 3: Construct residual generator according to (6.77).

Example 6.7 We continue our study in Example 6.3 and now design a UIDO
for the benchmark system EHSA. Remember that we have found out that be-
ginning with = 3 condition (6.83) is satisfied. Below, we design a reduced
order UIDO (for = 3) using the above algorithm.

Step 1: Solve (6.83) for

0 =
£
6 73× 10 16 2 99× 10 12

¤
1 =

£
3 04× 10 11 1 00

¤
2 =

£
8 79× 10 14 0 29× 10 2

¤
3 =

£
9 94× 10 17 3 27× 10 6

¤
Step 2: is chosen to be

=
6 0× 106
1 1× 105
6 0× 102

and compute which results in

=
0 0005 4 26× 10 8 0 4416 3 04× 10 11 1
0 1 25× 10 12 0 0005 8 79× 10 14 0 0029
0 0 0 9 94× 10 17 3 27× 10 6

=
5 96× 10 10 19 626
1 94× 10 11 6 40× 10 1

2 83× 10 14 9 3× 10 4
=

16 959
0
0

=
£
9 94× 10 17 3 27× 10 6

¤
= 0 =

£
0 0 1

¤
Step 3: Construct residual generator according to (6.77) using the obtained
system matrices.
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6.6 Unknown input parity space approach

With the discussion in the last subsection as background, the parity space
approach introduced in the last chapter can be readily extended to solve the
PUIDP. Since the underlying idea and the solution are quite similar to the
ones given in the last subsection, below we just give the algorithm for the
realization of the unknown input parity space approach without additional
discussion.

Algorithm 6.13 The unknown input parity space approach

Step 1: Solve
6= 0 and £ ¤

= 0

for ;
Step 2: Construct residual generator as follows

( ) = ( ( ) ( ))

Note that the application of this algorithm leads to a residual signal de-
coupled form :

( ) = ( ( ) ( )) = ( )

6.7 An alternative scheme - null matrix approach

Recently, Frisk and Nyberg have proposed an alternative scheme to study
residual generation problems and in particular to solve PUIDP. Below, we
briefly introduce the basic ideas of this scheme.
Consider system model (3.29) and rewrite it into

( )
( )

¸
=

( ) ( ) ( )
0 0

¸ ( )
( )
( )

(6.84)

Now, we are able to formulate the residual generation problem in an alter-
native manner, i.e. find a dynamic system ( ) RH with and as its
inputs and residual signal as its output so that

( ) = ( )
( )
( )

¸
= ( )

( ) ( ) ( )
0 0

¸ ( )
( )
( )

= ( )
( ) ( )
0 0

¸
( )
( )

¸
(6.85)

In particular, if there exists a ( ) RH such that
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( )
( ) ( )
0

¸
= 0 (6.86)

then we have

( ) = ( )
( )
( )

¸
= ( )

( )
0

¸
( )

Note that solving (6.86) is a problem of finding null matrix of
( ) ( )
0

¸
In this way, solving PUIDP is transformed into a problem of finding a null
matrix. Nowadays, there exist a number powerful algorithms and software
tools that provide us with numerically reliable and computationally e cient
solutions for (6.86).
It is worth mentioning that application of the so-called minimal polynomial

basis method for solving (6.86) leads to a residual generator of the minimum
order.

6.8 Minimum order residual generator

Remember that the minimum order of a parity relation or an observer-based
residual generator is given by the minimum observability index . How can
we design a UIDO or a parity relation based unknown input residual generator
of a minimum order? The answer to this question is of practical interest, since
a minimum order residual generator implies a minimal on-line computation.
In Subsections 6.5.1, 6.4.2 and Section 6.7, we have mentioned that

• the algebraic approach by Ge and Fang
• the geometric approach and
• the minimal polynomial basis method

can be used to construct residual generators of a minimum order. Below,
we shall introduce two approaches in details.

6.8.1 Minimum order residual generator design by geometric
approach

In this subsection, we propose a design procedure for constructing minimum
order UIFDF based on the results achieved in Subsection 6.4.2.
Assume that the existence condition (6.45) for a UIFDF is satisfied. Then,

applying Algorithm 6.8 leads to an observable pair
¡
¯
21

¯
221

¢
as shown in

(6.40). Now, instead of constructing a residual generator described by (6.42),
we reconsider

˙21 = ¯
221 21 + 21 + 21 max = ¯

221 21 + ¯¯ (6.87)

¯ = 2 = ¯
21 21 (6.88)
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with
¯ =

£
21 21 max

¤
¯ =

¸
Suppose that the minimum observability index of the observable pair

¡
¯
21

¯
221

¢
is 2 min It is known from Chapter 5 that the minimum order residual gen-
erator for (6.87)-(6.88) is 2 min and we are able to apply Algorithm 5.1 to
design a (minimum order) residual generator with = 2 min

To show that 2 min is also the minimum order of (reduced order) UIFDF,
we call the reader’s attention to the following facts: Given system model (6.31)

• any pair ( ) that solves the PUIDP leads to

( )μ
˜
11
˜
12

0 ˜
22

¸
˜
1

0

¸
˜
11
˜
12

0 ˜
22

¸¶

• the subspace spanned by
³
˜
11

˜
1
˜
11

´
includes the perfect controllable

subspace ( ¯11 ¯
1
¯
1) given in Lemma 6.3

• by a suitable selection of a pair
³
˜
1 1̃

´
³
˜
11

˜
1
˜
11

˜
1 1̃

˜
11

´
μ

˜
11 11

˜
11 12

0 ˜
11 22

¸
˜
1 1

0

¸
˜
11 11

˜
11 12

0 ˜
11 22

¸¶

where
³
˜
11 11

˜
1 1

˜
11 11

´
is perfect controllable.

• Due to the special form ofμ
˜
11 22

0 ˜
22

¸
˜
11 22

0 ˜
22

¸¶
(6.89)

with denoting some block of no interest, it is evident that the minimum
order of the residual generator for the pair (6.89) is not larger than the

minimum order of the residual generator for the pair
³
˜
22

˜
22

´
• the pair (6.89) is equivalent to the pair ( ¯22 ¯

2) given in Theorem 6.9.

Based on these facts, the following theorem becomes clear.

Theorem 6.13 Given system (6.25)-(6.26) and suppose that the PUIDP is
solvable. Then, using Algorithms 6.8 and 5.1, a minimum order UIFDF can
be constructed.

Algorithm 6.14 The geometric approach based design of minimum order
residual generator
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Step 1: Apply Algorithm 6.8 to system (6.25)-(6.26) and bring the resulted
system into form (6.87)-(6.88)

Step 2: Find the minimum observability index 2 min and set = 2 min

Step 3: Using Algorithm 5.1 to construct a minimum order residual genera-
tor.

Example 6.8 We now apply Algorithm 6.14 to design a minimum order
UIDO for the benchmark system LIP100. For this purpose, we continue our
study in Example 6.4, from which we can find out

2 min = 1

and thus set = 1 It follows the determination of the observer gain that is
set to be 1 0 and the other system matrices (parameters). Fig.6.3 gives the
response of the residual signal to a simulated fault that occurred at = 15 .
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Fig. 6.3 Response of the residual signal generated by a minimum order UIDO

6.8.2 An alternative solution

A natural way to approach the reach for a minimum order residual generator
is a repeated use of Algorithm 6.13 or 6.12 by increasing step by step. This
implies, however, equation

6= 0 and £ ¤
= 0 (6.90)

should be repeatedly solved, which, for a large , results in an involved com-
putation and may also lead to some numerical problems, for instance due to
high power of , may become ill-conditioned.
Below is an approach that o ers a solution to this problem.
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Recall that a parity vector can be parametrized by

= ¯ 6= 0 = ( · · · 1 · · · )

= 0 = 1 · · · 1 = +1 = · · · = = ×

and further by
= ¯ ¯

with ¯ as defined in (6.14), in (5.41). Note that the elements of
matrix are either one or zero, hence computation of high power of is
not critical. Moreover, for we have = 0 Taking into account these
facts, the following algorithm is developed, which can be used to determine
the minimum order parity vector that ensures a residual generation decoupled
from the unknown inputs.

Algorithm 6.15 Calculation of minimum order parity vector

Step 1: Transform ( ) into its observer canonical form and determine the
observability indices and matrices ;

Step 2: Set initial conditions

= ¯ =
£
˜

¤
˜ =

£
1 ¯ · · · ¯

¤
= ¯ = = 0

Step 3: Solve
¯ = 0

If it is solvable, then set
= 1

with 1 as defined in (6.13) and end;
Step 4: If = + , no solution and end;
Step 5: If 1, set

= + 1 ¯ =
¯

1 0
˜

¸
˜ =

£
1 ¯ · · · ¯

¤
= ( ¯ 1 ) = 0

and go to Step 3;
Step 6: If = 1, set

= + 1 ¯ =
¯

1 0
˜

¸
˜ =

£
1 ¯ · · · ¯

¤
= ( ¯ 1 × )

and go to Step 3;
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Step 7: Form the first columns of ¯ as a new matrix ˆ , remove them
from ¯ and define the rest of ¯ as new ¯ , i.e.

¯ = ¯ ( + 1 )

where denotes the number of the columns of the old ¯ and ¯ ( +
1 ) the columns from the + 1 to the last one.

Step 8: Set

= + 1 ¯ =
¯

1 0
˜

¸
˜ =

£
1 ¯ · · · ¯

¤
and solve

1
ˆ = 0

for 1 and set
= ( 1

¯
1 × )

and go to Step 3.

The purpose of Algorithm 6.15 is to solve£ ¤
= 0

for with the minimum order. The underlying ideas adopted are

• to do it iteratively,
• to utilize the facts
— for = , = 0 and so for 6= 0

¯

...
¯

= 0 = ( 1 × )

¯

...
¯

= 0

where

1

¯

...
1 ¯

= 0

— given matrices 1 2 of appropriate dimensions the solvability of the
following two equations £

1 2

¤
= 0

and
1 2 2 = 0 2 1 = 0

are identical, moreover = 1 2.
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• following Theorem 6.3 we only need to carry out searching up to =
+ .

In comparison with a direct solution of equation (6.90), using Algorithm
6.15 has the following advantages:

• The highest power of is limited to 1;
• The maximally dimensional linear equation to be solved is

0 · · · 0

¯ . . .
...

...
. . .

. . . 0
1 ¯ · · · ¯

= 0

which is the case for = + and whose dimension is not larger
than ( + 1) × ( + 1). Note that in the same case a direct
solution of (6.90) implies

0 · · · 0
. . .

...
...

...
. . .

. . . 0
+ + 1 · · ·

= 0

whose dimension amounts to

( + + 1)× ( + ( + + 1))

Note that the one-to-one mapping between the parity vector and DO de-
sign also allows applying Algorithm 6.15 for the design of minimum order
UIDO.

6.9 Notes and references

Unknown input decoupling was an attractive research topic in the past two
decades. In this chapter, we have only introduced some representative methods
aiming at demonstrating how to approach the relevant issues around this topic.
The existence conditions for the PUIDP, expressed in terms of the rank

of transfer matrices, was first derived by Ding and Frank [38]. Using matrix
pencil technique, Patton and Hou [76] have given a proof of the check condition
described by the rank of Rosenbrock system matrix, which, di erent from
the proof given in Subsection 6.2.2, requires the knowledge of the matrix
pencil technique. The existence conditions expressed by the rank of parity
space matrices have been studied by Chow and Willsky [23], and
subsequently by Wuennenberger [148]. The existence condition (6.11) and the
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results described by Theorem 6.3 have been lately presented, for instance by
Ding et al. [42].
Concerning the solution of the PUIDP, we have introduced di erent meth-

ods. Significant contributions to the frequency domain approaches have been
made by Frank with his co-worker [38, 54] and Viswanadham et al. [142].
The eigenstructure assignment approach presented in Subsection 6.4.1 is a
summary of the work by Patton and his research group [119]. Massoumnia
[102] has initiated the application of the geometric theory to the FDI system
design. However, considering the demand on the knowledge of geometric the-
ory, which seems di cult for the readers without profound knowledge of the
advanced control theory, we have adopted a modified form for the description
of this approach. Most of those results can be, in the dual form, found in
the books by Wonham [147] and Kailath [87]. Algorithm 6.6 is given in [12].
UIDO and parity space type residual generator design are the two topics in
the field of model-based FDI which received much attention in the last two
decades. The contributions by Chow and Willsky [23] using the parity space
approach, by Ge and Fang [61] (see Subsection 6.5.1) and by Wuennenberg
and Frank [149] using the Kronecker canonical form are the pioneering works
devoted to these topics, in which, above all, the original ideas have been pro-
posed. Their works have been followed by a great number of studies, e.g. the
one on the use of UIO technique made by Hou and Müller [73], the matrix
pencil approach developed by Patton and Hou [76], in which matrix pencil
decompositions are necessary and thus the use of a matrix pencil decomposi-
tion technique proposed by Van Dooren [45] is suggested, as well as the work
by Wuennenberg [148], just mention some of them. We would like to point
out that in this chapter we have only presented the original and simplest form
of the UIO technique, although it is one of widely used approach and is of
a number of presentation forms, see for instance [74, 141]. The reason why
we did not present more lies in the fact that the application of this approach
for the FDI purpose is restricted due to the existence conditions. They are
stronger than most of the other approaches described in this chapter. We re-
fer the reader to the survey papers, e.g. [50, 51, 52], and the references given
there for more information about this technique. The alternative scheme for
residual generation and PUIDP solution by means of null matrix formulation
has been recently proposed in [57, 139].
Finally, we would like to mention that only few studies on the design of

minimum or low order residual generators have been reported, although such
residual generators are of practical interest, due to their favorable on-line
computation.
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Residual generation with enhanced robustness
against unknown inputs

It has been early recognized that the restriction on the application of the
perfect decoupling technique introduced in the last chapter may be too strong
for a realistic dissemination of this technique in practice. Taking a look at the
general existence condition for a residual generator perfectly decoupled from
unknown inputs,

( ( ))

it becomes clear that a perfect decoupling is only possible when enough num-
ber of sensors are available. This is often not realistic from the economic view-
point. Furthermore, if model uncertainties are unstructured and disturbances
possibly appear in all directions of the measurement subspace, the decoupling
approaches introduced in the last chapter will fail.
Since the pioneering work by Lou et al., in which the above problems were,

for the first time, intensively and systematically studied and a solution was
provided, much attention has been devoted to this topic. The rapid devel-
opment of robust control theory in the 80’s and early 90’s gave a decisive
impulse for the establishment of a framework, in which approaches and tools

Fig. 7.1 Schematic description of robust residual generation
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to deal with robustness issues in the FDI field are available. The major ob-
jective of this chapter is to present those advanced robust FDI approaches
and the associated tools, which are becoming popular for the robust residual
generator design. Di erent from a perfect decoupling, the residual generators
studied in this chapter will be designed in the context of a trade-o between
the robustness against the disturbances and the sensitivity for the faults. As a
result, the generated residual signal will also be a ected by the disturbances,
as shown in Fig.7.1.
Generally speaking, robust FDI problems can be approached in three dif-

ferent manners:

• making use of knowledge of the disturbances
A typical example is the Kalman filter approach, in which it is assumed
that the unknown input is white noise.

• approximating ( ) by a transfer matrix ¯ ( ) which, on the one side,
satisfies the existence conditions for a PUID and, on the other side, pro-
vides an optimal approximation (in some sense) to the original one
It is evident that the design procedure of this scheme would consist of two
steps: the first one is the approximation and the second one the solution
of PUIDP based on ¯ ( )

• designing residual generators under a certain performance index
A reasonable extension of the PUIDP is, instead of a perfect decoupling,
to make a compromise between the robustness against the unknown input
and the sensitivity to the faults. This compromise will be expressed in
terms of a performance index, under which the residual generator design
will then be carried out.

In the forthcoming sections, we are going to describe these three types of
schemes, concentrate ourselves, however, on the third one, due to its important
role both in theoretical study and practical applications.

7.1 Mathematical and control theoretical preliminaries

Before we begin with our study on the robustness issues surrounding FDI
system design, needed mathematical and control theoretical knowledge, skills
and associated tools, including

• norms for signals and systems
• algorithms for norm computation
• singular value decomposition (SVD)
• co-inner-outer factorization (CIOF),
• H solutions to model matching problem (MMP) and
• linear matrix inequality (LMI) technique,

will be introduced in this section. Most of them are standard in linear
algebra and robust control theory. The detailed treatment of these topics can
be found in the references given at the end of this chapter.
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7.1.1 Signal norms

In this subsection, we shall answer the question: how to measure the size of a
signal.
Measuring the size of a signal in terms of a certain kind of norm is becom-

ing the most natural thing in the world of control engineering. A norm is a
mathematical concept that is originally used to measure the size of functions.
Given signals

=

1

... R =

1

... R

then a norm must have the following four properties:

I. k k 0
II. k k = 0 = 0
III. k k = | |k k is a constant
IV. k + k k k+ k k.
Next, three types of norms, which are mostly used in the control engineer-

ing and also for the FDI purpose, are introduced.
L1 norm: The L1 norm of a vector-valued signal ( ) or ( ) is defined

by

k k1 =
X
=1

Z
0

| ( )| or k k1 =
X
=1

ÃX
=0

| ( )|
!

(7.1)

L2 norm: The L2 norm of a vector-valued signal ( ) or ( ) is defined
by

k k2 =
μZ

0

( ) ( )

¶1 2

or k k2 =
ÃX

=0

( ) ( )

!1 2

(7.2)

The L2 norm is associated with energy. While ( ) ( ) or ( ) ( ) is
generally interpreted as the instantaneous power, k k22 stands for the total
energy.
In practice, the root mean square (RMS), instead of L2 norm, is often

used. The RMS measures the average energy of a signal over a (large) time
interval (0 ) and is defined by

k k =
1
Z
0

( ) ( )

1 2

(7.3)

It follows from the Parseval Theorem that the size computation of a signal
can also be carried out in the frequency domain:



164 7 Residual generation with enhanced robustness against unknown inputsZ
0

( ) ( ) =
1

2

Z
( ) ( )

for the continuous time signal and

X
=0

( ) ( ) =
1

2

Z
( ) ( )

for the discrete time signal, where

( ) = F( ( )) and ( ) = F( ( ))
with F denoting the Fourier transformation.
L norm: The L norm of a signal ( ) or ( ) is the least upper bound

of its absolute value:

k k = max sup | ( )| or k k = max sup | ( )|

The L norm is the maximum amplitude of a signal.
In the FDI study, we are often interesting in checking whether the peak

amplitude of a vector-valued residual is below a given threshold. To this end,
we introduce next the so-called peak-norm.
Peak norm: The peak norm of R is defined by

k k = sup
¡

( ) ( )
¢1 2

or k k = sup
¡

( ) ( )
¢1 2

Remark 7.1 By introducing the above definitions we have supposed that the
signal under consideration is zero for 0, i.e. it starts at time = 0.

A direct application of the signal norms in the FDI field is the residual
evaluation, where the size (in the sense of a norm) of the residual signal
will be on-line calculated and then compared with the given threshold. Since
evaluation over the whole time or frequency domain is usually unrealistic,
introducing an evaluation window is a practical modification. For our purpose,
following definitions are introduced:

k k1 =
X
=1

Z
2

1

| ( )| or k k1 =
X
=1

2X
= 1

| ( )| (7.4)

k k2 =

μZ
2

1

( ) ( )

¶1 2

or k k2 =

Ã
2X
= 1

( ) ( )

!1 2

(7.5)

k k2 =

μ
1

2

Z
2

1

( ) ( )

¶1 2

(7.6)

k k = max sup | ( )| or k k = max sup | ( )| (7.7)
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where = ( 1 2) or = ( 1 2) and = ( 1 2) stand for the time and
frequency domain evaluation windows.
Note that a discrete time signal over a time interval can also be written

into a vector form. For instance, in our study on parity space methods, we
have used the notation ( )

( ) =

( )
( + 1)
...

( + )

to represent the disturbance in the time interval [ + ] Thus, in this sense,
we are also able to use vector norms to the calculation of the size of a (dis-
crete time) signal. Corresponding to the above-mentioned three kinds of signal
norms, we introduce following vector norms:
1 norm:

k k1 =
X
=0

| ( + )| (7.8)

2 norm:

k k2 =

ÃX
=0

2( + 1)

!1 2

(7.9)

norm:
k k = sup

[ + ]

| ( )| (7.10)

It is obvious that the computation of a vector norm is much more simple than
the one of a signal norm.

7.1.2 System norms

In this subsection, we shall answer the question: how to measure the size of a
system.
Consider a dynamic system ( ) = ( ) ( ). For our purpose, we only

consider those LTI systems, which are causal and stable. Causality means
( ) = 0 for 0 or ( ) = 0 for 0 with ( ) or ( ) as impulse

response. Mathematically, the causality requires that ( ) is proper, i.e.

lim ( )

A system is called strictly proper if

lim ( ) = 0

System ( ) or ( ) is called stable if it is analytic in the closed RHP
(Re ( ) 0) or for | | 1
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One way to describe the size of the transfer matrix ( ) is in terms of
norms for systems or norms for transfer function matrices. There are two dif-
ferent ways to introduce norms for systems. From the mathematical viewpoint
is an operator that maps the vector-valued input function to the vector-

valued output function . The operator norm k k is defined in terms of the
norms of input and output functions as follows:

k k = sup
6=0
k k
k k = sup

6=0
k k
k k (7.11)

It is thus also known as induced norm.
Suppose that the input signal is not fixed and can be any signal of L2

norm. It turns out

sup
6=0
k k2
k k2 = sup6=0

k k2
k k2 = sup

[0 ]

¯ ( ( )) (7.12)

for continuous time systems and

sup
6=0
k k2
k k2 = sup6=0

k k2
k k2 = sup

[0 2 ]

¯
¡
( )

¢
for discrete time systems, where ¯ ( ( )) or ¯

¡
( )

¢
denotes the maximum

singular value of ( ) or ( ). This induced norm equals to the H norm
of ( ) defined by
H norm:

k k = sup
[0 ]

¯ ( ( )) or k k = sup
[0 2 ]

¯
¡
( )

¢
(7.13)

H norm can be interpreted as the amplification of a transfer function matrix
that maps the input signal with finite energy but being any kind of signals into
the output signal. Remember that in the design form of a residual generator,

( ) = ( ) ˆ ( ) ( ( ) ( ) + ( ) ( ))

both signals, ( ) ( ) are unknown. If their energy level is bounded, then
H norm can be used to measure their influence on the residual signal. It
is interesting to note that even if the input signal is not L2 bounded but
k k we have

sup
6=0
k k
k k = sup ¯ ( ( )) = k k (7.14)

Let ( ) (for continuous time) as well as (0) (1) · · · (for discrete time)
be the impulse response function of system ( ) = ( ) ( ) R, then
H1 norm:
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k k1 =
Z

| ( )| or k k1 = | (0)|+ | (1)|+ · · · (7.15)

The H1 norm of is the L /L norm induced norm, i.e.

sup
6=0
k k
k k = sup

6=0
k k
k k = k k1 (7.16)

Thus, the H1 norm of can be interpreted as the amplification of the maxi-
mum value of the input signal.
In the FDI study, for ( ) R k k instead of k k is often used for

the purpose of residual evaluation. In this case,
peak-to-peak gain:

k k = sup
6=0
k k
k k (7.17)

is useful for the threshold computation.
A further induced norm is the so-called generalized H2 norm,
generalized H2 norm:

k k = sup
6=0
k k
k k2 (7.18)

which is rarely applied in the control theory but provides us with a helpful
tool to answer the question: how large does the disturbance (input variable)
with bounded energy cause instantaneous power change in the residual signal
(output variable)?
Another norm for transfer function matrices is
H2 norm:

k k2 =
μ
1

2

Z ¡
( ) ( )

¢ ¶1 2

or (7.19)

k k2 =
μ
1

2

Z 2

0

¡
( ) ( )

¢ ¶1 2

(7.20)

H2 norm is not an induced norm, but widely used in the control theory. Given
transfer matrix when the input is a realization of a unit variance white
noise process, then the H2 norm of equals to the expected RMS value of
the output. A well-known application example of the H2 norm is the optimal
Kalman filter, in which the H2 norm of the transfer function matrix from the
noise to the estimation error is minimized.
Motivated by the study on parity space methods, we introduce next some

norms for matrices. Compared with the norms for transfer function matrices,
the norms for matrices are computationally much simpler. Let R × be
a matrix with elements = 1 · · · = 1 · · · , then we have
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matrix norm induced by the 2 norm for vectors, which is also called
spectral norm:

k k2 = sup
6=0
k k2
k k2 = ¯( ) =

³
max ( )

´1 2

(7.21)

Frobenius- or Euclidian norm:

k k =
X
=1

X
=1

| |2
1 2

=

ÃX
=1

( )

!1 2

(7.22)

1 norm:

k k1 = max
X
=1

| | (7.23)

for which equation

max
X
=1

| | = sup
6=0
k k1
k k1 (7.24)

holds, i.e. k k1 is a matrix norm induced by the 1 norm for vectors.
norm:

k k = max
X
=1

| |

which also equals to the induced norm by the norm for vectors, i.e.

max
X
=1

| | = sup
6=0
k k
k k (7.25)

7.1.3 Computation of H2 and H norms

Suppose system ( ) has a minimal state space realization ( ) = + (
) 1 and is stable, then

• for continuous time systems k k2 is finite if and only if = 0 and

k k2 = ( ) = ( ) (7.26)

where are respectively the solution of Lyapunov equations

+ + = 0 + + = 0 (7.27)

• for discrete time systems

k k2 = ( + ) = ( + ) (7.28)

where are respectively the solution of Lyapunov equations

+ = 0 + = 0 (7.29)
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Unlike the H2 norm, an iterative procedure is needed for the computation
of the H norm, where an algorithm of determining whether k k will
be repeatedly used until

inf{k k } := k k

is found. Below is the so-called Bounded Real Lemma that characterizes the
set {k k }.
Lemma 7.1 Given a continuous time system ( ) = + ( ) 1

RH , then k k if and only if

:= 2 0

and there exists = 0 satisfying the Riccati equation

( + 1 ) + ( + 1 ) + 1 +

( + 1 ) = 0

Lemma 7.2 Given a discrete time system ( ) = + ( ) 1

RH then k k if and only if 0 such that

2 0

¯ ¯ ¯ ( + ) 1 ¯ + 2 = 0

¯ = +
¡
2

¢ 1
=

¡
2

¢ 1

=
¡
2

¢ 1

and ( + ) 1 ¯ is stable.

We see that the core of the above computation is the solution of Riccati
equations which may be, when the system order is very high, computationally
consuming. There exists a number of CAD programs for that purpose.
In subsection 7.1.7, an LMI based algorithm will be introduced for the

H norm computation as well as the computation of other above-mentioned
norms.

7.1.4 Singular value decomposition

The SVD of a matrix R × is expressed by

=

where R × R ×

= × = ×
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and for

=
( 1 · · · )
0( )×

¸
for

=
£

( 1 · · · ) 0 ×( )

¤
with 1 2 · · · denoting the singular values of . The SVD of

R × is of the following two interesting properties:

k k =
°° °° = k k =

X
=1

(7.30)

k k = k k = k k = 1 (7.31)

7.1.5 Co-inner-outer factorization

Inner-outer factorization (IOF) technique is a powerful tool for solving ro-
bustness related control problems. For the FDI purpose, the so-called co-
inner-outer factorization (CIOF) plays an important role. Roughly speaking,
a CIOF of a transfer function matrix ( ) is a decomposition of ( ) into

( ) = ( ) ( ) (7.32)

where ( ) is called co-inner and satisfies ( ) ( ) = for all
(for continuous time systems) or ( ) ( ) = for all [0 2 ] (for
discrete time systems) and ( ) is called co-outer and has as its zeros all
the (left) zeros of ( ) in the LHP and on the -axis, including at infinity
(for continuous time systems), or within | | 1 (for discrete time systems).
IOC is a dual form of CIOF and thus the IOC of ( ) can be expressed in
terms of the CIOF of ( ) = ( ( ) ( )) = ( ) ( ) ( ) ( )
are respectively called inner and outer of ( )
In most of textbooks on robust control, study is mainly focused on IOF

instead of CIOF. Also, it is generally presented regarding to continuous time
systems. Next, we shall introduce the existence conditions for CIOF and the
associated algorithms by "translating" the results on IOF into the ones of
CIOF based on the duality.
We first introduce some relevant definitions. A rational matrix ( ) is

called surjective if it has full row rank for almost all and injective if it has
full column rank for almost all A co-outer is analytic in C̄+ and has a left
inverse analytic in C+ If there exists ( ) RH such that ( ) ( ) = ,
then ( ) is called left invertible in RH .
The following results are well-known in the robust control theory.

Lemma 7.3 Assume that ( ) LH × is surjective and

• in case of a continuous time system: [0 ]

rank ( ( )) = ( ) ( ) 0 (7.33)
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• in case of a discrete time system: [0 2 ]

rank
¡
( )

¢
= ( ) ( ) 0 (7.34)

then there exists a CIOF

( ) = ( ) ( ) (7.35)

Lemma 7.4 Assume that ( ) LH × is surjective and [0 ]

( ) ( ) 0 (7.36)

Then there exists an LCF ( ) = ˆ 1( ) ˆ( ) that also gives a CIOF

( ) = ˆ 1( ) ˆ( ) = ( ) ( ) (7.37)

with ( ) = ˆ 1( ) as co-outer and ( ) = ˆ( ) RH as co-inner.
This factorization is unique up to a constant unitary multiple. If ( ) RH
then 1( ) RH Furthermore, assume that the realization of ( ) =
( ) with R × is detectable and [0 ]

rank
¸
= + (7.38)

Then the above LCF can be expressed by

ˆ ( ) = ( ) ˆ( ) = ( ) RH
= ( ) 1 2 = ( + )( ) 1 (7.39)

where 0 is the stabilizing solution of the Riccati equation

+ + ( + )( ) 1( + ) = 0 (7.40)

Lemma 7.5 Assume that ( ) LH × is surjective and [0 2 ]

( ) ( ) 0 (7.41)

Then there exists an LCF ( ) = ˆ 1( ) ˆ( ) that also gives a CIOF

( ) = ˆ 1( ) ˆ( ) = ( ) ( ) (7.42)

with ( ) = ˆ 1( ) as co-outer and ( ) = ˆ( ) RH as co-inner.
If ( ) RH then 1( ) RH This factorization is unique up to a
constant unitary multiple. Furthermore, assume that the realization of ( ) =
( ) with R × is detectable and [0 2 ]

rank
¸
= + (7.43)
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Then the above LCF can be expressed by

ˆ ( ) = ( ) ˆ( ) = ( ) RH
=
¡

+
¢ 1 2

= ( + )( + ) 1

(7.44)

where 0 is the stabilizing solution of the Riccati equation³
+

¡ ¢ 1
´ 1

+ = 0 (7.45)

=
¡ ¢ 1

Note that Lemmas 7.4 and 7.5 establish an important connection between
CIOF and LCF, which is useful for our latter study.
In Lemmas 7.3 - 7.5, the LCF is achieved on the assumption that the

transfer matrix is surjective. Removing this condition, the LCF would be
computationally more involved. Below, we introduce a recent result by Oara
and Varga for a general CIOF. For the sake of simplification, we restrict
ourselves to the continuous time systems.

Lemma 7.6 Let ( ) RH × be a real rational matrix of rank . A CIOF
( ) = ( ) ( ) with ( ) co-inner and ( ) co-outer, can be com-

puted using the following two-step algorithm:

• Column compression by all-pass factors: is factorized as

( ) =
£
˜( ) 0

¤
( )

where ( ) is square and inner, ˜( ) RH × is injective and has the
same zeros in C̄+ as ( ) and its zeros in C include the zeros of 1( )
By this step, ( ) is chosen to have the smallest possible Mcmillan de-
gree which is equal to the sum of all right minimal indices of ( ) The
computation of ( ) amounts to solving for the stabilizing solution of a
standard Riccati equation. ( ) can be rewritten into ( ) = ˜( ) 1( )
where ( ) =

£
1( ) ˜ ( )

¤
1( ) R × is inner.

• Dislocation of zeros by all-pass factors. ˜( ) is further factorized as ˜( ) =
¯ ( ) 2( ), where 2( ) is square, inner and ¯ ( ) is injective and has
no zeros in C+. By this step, 2( ) is chosen to have the smallest possible
Mcmillan degree which is equal to the number of zeros of ˜( ) in C+. The
computation of 2( ) is achieved by solving a Lyapunov equation.

The CIOF is finally given by

( ) = ( ) ( ) ( ) = ¯ ( ) ( ) = 2( ) 1( ) (7.46)



7.1 Mathematical and control theoretical preliminaries 173

7.1.6 Model matching problem

H optimization technique is one of the most celebrated frameworks in the
control theory, which has been well established between the 80’s and 90’s.
The application of H optimization technique to the FDI system design is
many-sided and covers a wide range of topics like design of robust FDF, fault
identification, handling of model uncertainties, threshold computation etc.
MMP is a standard problem formulation in the H framework. Many

approaches to the FDI system design can be, as will be shown in the next
sections, reformulated into an MMP. The MMP met in the FDI framework is
often of the following form: given 1( ) 2( ) RH find ( ) RH so
that

k 1( ) ( ) 2( )k min (7.47)

The following result o ers a solution to the MMP in a way that is very helpful
for the FDI system design.

Lemma 7.7 Given (scalar) transfer functions 1( ) 2( ) ( ) RH and
assume that 2( ) has zeros = = 1 · · · in the RHP, then

k 1( ) ( ) 2( )k = ¯
1 2
( ) (7.48)

where ¯( ) denotes the maximum eigenvalue of matrix which is formed as
follows:

• form

1 =

1
1+ 1

· · · 1
1+

· · · 1
+ · · ·

1
+ 1

· · · 1
+

2 =

1( 1) 1 ( 1)

1+ 1
· · · 1( 1) 1 ( )

1+

· · · 1( ) 1 ( )
+ · · ·

1( ) 1 ( 1)
+ 1

· · · 1( ) 1 ( )
+

(7.49)
• set

=
1 2

1 2
1 2

1 (7.50)

It follows from Lemma 7.7 that the model matching performance depends
on the zeros of 2( ) in the RHP. Moreover, if 1( ) = a constant, then

k 1( ) ( ) 2( )k = | | (7.51)

These two facts would be useful for our subsequent study.

7.1.7 Essentials of the LMI technique

In the last decade, the LMI technique has become an important formula-
tion and design tool in the control theory, which is not only used for solving
standard robust control problems but also for multiobjective optimization and
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handling of model uncertainties. As FDI problems are in their nature a mul-
tiobjective trade-o , i.e. enhancing the robustness against the disturbances,
model uncertainty and the sensitivity to the faults simultaneously, applica-
tion of the LMI technique to the FDI system design is currently receiving
considerable attention.
In the H framework, the Bounded Real Lemma that connects the H

norm computation to an LMI plays a central role. Next, we briefly introduce
the "LMI-version" of the Bounded Real Lemma for continuous and discrete
systems.

Lemma 7.8 Given a stable LTI system ( ) = + ( )
1 , then

k ( )k if and only if there exists a symmetric with

+
0 0 (7.52)

Lemma 7.9 Given a stable LTI system ( ) = + ( )
1 , then

k ( )k if and only if there exists a symmetric with

0
0

0
0

0 0 (7.53)

In the LMI framework, the so-called Schur complement is often used for
checking the definiteness of a matrix. Given matrix

= 11 12

21 22

¸
and suppose that 11 is invertible, then

0 or 0 (7.54)

if and only if
= 22 21

1
11 12 0 or 0 (7.55)

where is known as the Schur complement of

7.2 Kalman filter based residual generation

In this section, we present one of the first residual generation schemes, the
Kalman filter based residual generation scheme.
Consider a discrete time dynamic system described by
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( + 1) = ( ) + ( ) + ( ) + ( ) (7.56)

( ) = ( ) + ( ) + ( ) + ( ) (7.57)

where ( ) R ( ) R ( ) R are the state, input, output vectors
of the system, ( ) R stands for the fault vector. ( ) R ( ) R
represent process and measurement noise vectors. It is evident that for such a
system there exists no residual generator decoupled from the unknown inputs
( ) ( ).
On the other hand, from the well-established stochastic control theory we

know that a Kalman filter delivers residual that is a white Gaussian process
if the noise signals ( ) ( ) are white Gaussian processes and independent
of initial state vector (0) with

[ ( )] = 0 [ ( ) ( )] = 0 (7.58)

[ ( )] = 0 [ ( ) ( )] = 0 (7.59)

[ (0)] = ¯ [( (0) ¯)( (0) ¯) ] = (7.60)

The Kalman filter technique makes use of this fact and performs a fault de-
tection in two steps:

• residual generation using a Kalman filter
• residual evaluation by doing the so-called Generalized Likelihood Ratio
(GLR) test that allows us to detect changes in the residual signal. In
Chapter 10, the GLR test will be studied.

In this section, we devote our attention to the problem of residual gen-
eration using a Kalman filter. We suppose that the noises ( ) ( ) and the
initial state vector (0) possess the properties described by (7.58)-(7.60).
A Kalman filter is, although structured similar to an observer of full order,

a time-varying system given by the following recursions:
recursive scheme for optimal state estimation:

ˆ (0 | 0) = ¯ (7.61)

ˆ( | 1) = ˆ( 1 | 1) + ( 1) = 1 2 · · · (7.62)

ˆ( | ) = ˆ( | 1) + ( ) ( ( ) ˆ( | 1) ( )) (7.63)

recursive scheme for Kalman filter gain:

(0 | 0) = (7.64)

( | 1) = ( 1 | 1) + (7.65)

( ) = ( | 1)
¡

+ ( | 1)
¢ 1

(7.66)

( | ) = ( ( ) ) ( | 1) = 1 2 · · · (7.67)

where ˆ( | ) denotes the estimation of ( ) given the measurements
(1) · · · ( ) and
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( | ) = ¡
[ ( ) ˆ( | )][ ( ) ˆ( | )] ¢ (7.68)

( | 1) =
¡
[ ( ) ˆ( | 1)][ ( ) ˆ( | 1)]

¢
(7.69)

are the associated estimation error covariance.
The significant characteristics of Kalman filter is

• the state estimation is optimal in the sense of

( | ) = [ ( ) ˆ( | )][ ( ) ˆ( | )] =

• the so-called innovation process,

( ) ˆ( | 1) ( )

is a white Gaussian process with covariance

+ ( | 1)

The underlying idea of applying Kalman filter to solve FDI problems lies in
making use of the second property. Let residual signal ( ) be the innovation
process

( ) = ( ) ˆ( | 1) ( )

Under the normal operating condition, i.e. fault-free, ( ) should be a zero
mean white Gaussian process. When a fault occurs, i.e. ( ) 6= 0, ( ) is
no longer white, which can be determined, for instance, by means of a GLR
test that will be discussed in the next part. In such a way, a successful fault
detection is performed. Note that the signal ˆ( | 1) + ( ) is in fact
an optimal estimation of the measurement ( ).

Remark 7.2 Although given in the recursive form, the Kalman filter algo-
rithm (7.61)-(7.63) is highly computation consuming. The most involved com-
putation is

¡
+ ( | 1)

¢ 1
which may also cause numerical sta-

bility problem. There are a great number of modified forms of the Kalman
filter algorithm. The reader is referred to the references given at the end of
this chapter.

Suppose the process under consideration is stationary, then

lim ( ) = = constant matrix

which is subject to
=

¡
+

¢ 1
(7.70)

with

=
³ ¡

+
¢ 1

´
= lim ( | ) (7.71)

= + = lim ( | 1) (7.72)
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It holds

=
³ ¡

+
¢ 1

´
+ (7.73)

(7.73) is an algebraic Riccati equation whose solution is positive definite if
the pairs ( ) and ( ) are respectively controllable and observable. It
thus becomes evident that given system model (7.56)-(7.57) the gain matrix
can be calculated o -line by solving Riccati equation (7.73). The correspond-
ing residual generator is then given by

ˆ( | ) = ˆ( 1 | 1) + ( 1) (7.74)

+ ( ( ) ˆ( | 1) ( ))

( ) = ( ) ˆ( | 1) ( ) (7.75)

Note that we now have in fact an observer of the full-order.
Below is an algorithm for the on-line implementation of the Kalman filter

algorithm given by (7.61)-(7.67).

Algorithm 7.1 On-line implementation of the Kalman filter algorithm

Step 0: O -line set up of initial conditions: set ˆ(0 | 0) (0 | 0) as given in
(7.61) and (7.64)

Step 1: Calculate ˆ( | 1) ( | 1) ( ) according to (7.62), (7.65)
and (7.66)

Step 2: Calculate ˆ( | ) ( | ) according to (7.63) and (7.67)
Step 3: Increase and go Step 1.

Remark 7.3 The o -line set up (Step 0) is needed only for one time, but
Steps 1 - 3 have to be repeated at each time instant. Thus, the on-line imple-
mentation, compared with the steady-state Kalman filter, is computationally
very consuming. For the FDI purpose, we can generally assume that the sys-
tem under consideration is operating in its steady state before a fault occurs.
Therefore, the use of the steady-state type residual generator (7.74)-(7.75) is
advantageous. In this case, the most involved computation is finding a solu-
tion for Riccati equation (7.73), which, nevertheless, is carried out o -line,
and moreover for which there exist a number of numerically reliable methods
and CAD programs.

Example 7.1 In this example, we design a steady Kalman filter for the ve-
hicle lateral dynamic system. For our purpose, the linearized, discrete time
model is used with

=
0 6333 0 0672
2 0570 0 6082

¸
=

0 0653
0 4039

¸
=

152 7568 1 2493
0 1 0000

¸
=

56
0

¸
=

0 0 0 0653
0 0 0 4039

¸
=

1 0 56
0 1 0

¸
=

0 0653
0 4039

¸
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Using the given technical data, we get

= 0 0012 =
0 0025 0
0 1 2172 5

¸
and based on which the observer gain matrix has been computed

=
0 0025 0 0086
0 0122 0 9487

¸

7.3 Approximation of UI-distribution matrix

The underlying the idea of the approaches introduced in this section can be
simply formulated as follows: given system model

( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

which does not satisfy the existence condition of the PUIDP, (6.5), find a
transfer function matrix ˆ ( ) that approximates ( ) in some optimal
sense and simultaneously ensures that (6.5) is satisfied. In a next step, we are
then able to design a residual generator which is designed on the basis of the
approximated model and delivers an approximated decoupling.

7.3.1 Approximation of matrices E , F

Consider the minimal state space realization of the above model

˙ = + + + (7.76)

= + + + (7.77)

for which the existence condition for the PUIDP, (6.9), is not satisfied. We
suppose that ¸

=

Patton and Chen have proposed the idea of approximating the unknown input
(UI) distribution matrices by matrices ˆ ˆ that ensure the solvability
of the PUIDP.
Remember that is a su cient condition for the solution of the

PUIDP. Thus, we formulate the approximation problem as follows: given ma-
trices R × R × , find ˆ R × ˆ R × such that

Condition I:
ˆ

ˆ

¸
= (7.78)

Condition II: min
ˆ ˆ

°°°° ˆ

ˆ

¸°°°° (7.79)
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Condition I, (7.78), ensures that³
( ) 1 ˆ + ˆ

´
and the solution of the optimization problem (7.79) delivers an optimal ap-
proximation of matrix in sense of a norm k · k. In the following of this
subsection, we consider two matrix norms: the Frobenius and the 2 norm. We
shall use SVD as the mathematical tool for the solution of the approximation
problem (7.78)-(7.79).
We now do an SVD of matrix ¸

which yields ¸
= =

( 1 · · · )
0( + )×

¸
(7.80)

R( + )×( + ) = ( + )×( + ) (7.81)

R × = × (7.82)

Setting
ˆ

ˆ

¸
=

( 1 · · · 1 0 · · · 0)
0( + )×

¸
(7.83)

results in

ˆ

ˆ

¸
=

(0 · · · 0 · · · )
0( + )×

¸
Hence, we finally have°°°° ˆ

ˆ

¸°°°° =
X
=

°°°° ˆ

ˆ

¸°°°°
2

=

Note that the matrix defined by (7.83) satisfies Condition I and furthermore,
known from the linear algebra, it does also solve the optimization problem
(7.79). Thus, we claim that (7.83) is a solution for the above-mentioned prob-
lem.
In fact, this result is not surprising, since it is reasonable that the ap-

proximation has at least to maintain the dominant part of the matrix being
approximated, which is, in our case, given by the first 1 largest singular
values.
In summary, we have

Algorithm 7.2 Optimal approximation of



180 7 Residual generation with enhanced robustness against unknown inputs

Step 1: Do an SVD according to (7.80)-(7.82);
Step 2: Set

ˆ

ˆ

¸
according to (7.83).

Once an approximation for has been found, we can apply the
schemes described in the last chapter to solve the decoupling problem

( ) ˆ ( )
³
( ) 1 ˆ + ˆ

´
= 0

7.3.2 Approximation of matrices H

Remember that the dynamics of a residual generator can be expressed in a
non-recursive form (see Subsection 6.5.4)

( ) = ( ) +
¡

¯ ( ) + ¯ ( )
¢

(7.84)

=
£

0 1 · · ·
¤

(7.85)

=
£
0 · · · 0 1 ¤ (7.86)

and the necessary and su cient condition for a successful unknown input
decoupling is given by£ ¤

the row number of
£ ¤

(7.87)

or equivalently

( ) the row number of

where matrix denotes the base matrix of parity space of order s.
Since is a necessary condition for the existence of a residual generator,
what can be approximated is only matrix .
It follows from Theorems 5.6 and 5.11 that the rank of matrix is

equal to its row number given by

( ) = ( ) =
X
=

( ) for

= × ( + 1) +

1X
=

( ) for

This motivates us to define the following approximation problem: given matrix
, find ˆ such that
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Condition I: ( ˆ ) ˜

with

˜ =
X
=

( ) for

= × ( + 1) +

1X
=

( ) for

Condition II: min
ˆ

k ˆ k as well as inf
ˆ

k ˆ k2

It is evident that Condition I is a su cient condition such that (7.87) holds.
On account of a similar procedure carried out in the last subsection, we give
the following algorithm to solve the above-mentioned approximation problem.

Algorithm 7.3 Optimal approximation of

Step 1: Do an SVD on

=

where

=
£

( 1 · · · ( +1)) ( +1)×( )( +1)

¤
(7.88)

R( ( +1))×( ( +1)) = ( +1)× ( +1)

R ( +1)× ( +1) = ( +1)× ( +1)

Step 2: Set

ˆ =
£

( 1 · · · ˜ 1 0 · · · 0) 0 ( +1)×( )( +1)

¤
Again, once an approximation has been found, we are able to find a vector
solving

ˆ = 0

The achieved parity vector defined by

=

can then be used to construct a parity relation based residual generator or,
as shown in the last two chapters, to construct a diagnostic observer.
We would like to point out that the assumption that the SVD of matrix
can be written into (7.88) holds, since , otherwise, as shown in

Subsection 6.5.4, the PUIDP becomes trivial and solvable. Also, as shown
above, the approximation error is given by

k ˆ k =

( +1)X
=˜

k ˆ k2 = ˜
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7.3.3 Some remarks

The most significant advantage of approaching the robust residual generation
problem by an approximation of UI distribution matrices lies in its mathe-
matical simplicity and its evident relationship to the PUIDP. In fact, it is a
natural extension of the PUIDP. On the other hand, this kind of approach,
although already known in the late 80’s, has not received so much attention
like the robust residual generation approaches described in the forthcoming
sections of this chapter.
We now study the approximation errors and their influence on the residual

signals. We first consider the approach based on an approximation of matrices
. The residual dynamics is governed by

( ) = ( )
³
ˆ ( ) ( ) + ˆ ( ) ( )

´
(7.89)

where

ˆ ( ) = + ( + ) 1( )

ˆ ( ) = + ( + ) 1( )

Under consideration that

( )
³
ˆ + ( + ) 1( ˆ ˆ )

´
= 0 (7.90)

(7.89) can be brought into

( ) = ( ) ˆ ( ) ( ) + ( )

μ
+

( + ) 1( )

¶
( )

Thus, the maximum (possible) influence of the unknown input vector on
can be measured by

k ( )
¡

+ ( + ) 1( )
¢ k k ( )k2 (7.91)

Note that in (7.91), ( ) is the solution of (7.90) and are subject
to °°°° ¸°°°°

2

=

It turns out

inf
( )
k ( )

¡
+ ( + ) 1( )

¢ k (7.92)

inf
( ) solving (7.90)

k ( )
¡

+ ( + ) 1( )
¢ k

The situation with the approximation of is almost the same, in which we
have
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( ) = ( ) +
¡

¯ ( ) + ¯ ( )
¢

(7.93)

= ( )
¡

¯ ( ) + ¯ ( )
¢

(7.94)

where solves
ˆ = 0

and = ˆ . To simplify the discussion, we set = 0 which leads
to

= 0

This results in that the maximum influence of the unknown input vector
can be measured by

k ¯ k k ( )k2
It is clear that

inf k ¯ k inf
ˆ =0

k ¯ k (7.95)

As a conclusion of (7.92) and (7.95), we claim

Claim. A direct optimization in the sense of

inf
( )
k ( )

¡
+ ( + ) 1( )

¢ k
or

inf k ¯ k

will provide us with a better FDI performance than approximating the robust
FDI problems based on an approximation of unknown input matrices
or .

Remark 7.4 Recall that

ˆ

ˆ

¸
= ( ˆ ) ˜

therefore the approach based on the approximation of delivers a residual
generator with higher robustness.

We would like to point out that the above-described approximations are
not unique, thus it makes sense to carry out a further optimization

inf
( ) solving (7.90)

k ( )
¡

+ ( + ) 1( )
¢ k

or
inf

ˆ =0
k ¯ k

in order to improve the FDI performance.
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Finally, it is worth mentioning that following the same idea we can also
make an approximation of the unknown input transfer matrix in the H
optimization framework

min
ˆ ( )

k ( ) ˆ ( )k

where ˆ ( ) has to satisfy

( ˆ ( ))

However, carrying out such an approximation requires some special mathe-
matical knowledge.

7.4 Robustness, fault sensitivity and performance indices

Beginning with this section, we shall study the FDI problems in the context
of a trade-o between the robustness against the disturbances and sensitivity
to the faults. To this end, we are first going to find a way to evaluate the
robustness and sensitivity and then to define performance indices that would
give a fair evaluation of the trade-o between the robustness and sensitivity.
To simplify the notations, in this section we express a residual generator

in terms of
= ( ) + ( ) (7.96)

where stands for residual vector which is either ( ) for the residual gen-
erators in the recursive form (observer-based residual generators) or ( )
for the residual generators in the non-recursive form (parity space residual
generators). Corresponding to it, we have

( ) = ( ) ˆ ( ) ( ) ( ) = ( ) ˆ ( ) ( ) (7.97)

or
( ) = ( ) = (7.98)

where variable is used to denote design parameters, which are, in case of a
residual generator in the recursive form, the post-filter ( ) and the observer
matrix , and the parity vector for a residual generator in the non-recursive
form.

7.4.1 Robustness and sensitivity

A natural way to evaluate the robustness of residual generator (7.96) against
is the use of an induced norm, which is formally defined by
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:= k ( )k = sup
6=0
k ( ) k
k k (7.99)

It is well known that this is a worst-case evaluation of the possible influence
of on
Compared with the robustness, evaluation of sensitivity of an FDI system

to the faults is not undisputed. The way of using an induced norm like

+ = k ( )k = sup
6=0
k ( ) k
k k (7.100)

is popular and seems even logical. However, when we take a careful look at
the interpretation of (7.100), which means a best-case handling of the influ-
ence of on , the sense of introducing (7.100) for the sensitivity becomes
questionable. A worst-case for the sensitivity evaluation should, in fact, be
the minimum influence of on , which can be expressed in terms of

= k ( )k = inf
6=0
k ( ) k
k k (7.101)

Note that is not a norm, since there may exist 6= 0 such that ( ) =
0. This is also the reason why in some cases the sensitivity defined by (7.101)
makes less sense.
Both + have been adopted to measure the sensitivity of the FDI

system to the faults, although was introduced much late than +.
We would like to remark that both + are some extreme value

of transfer matrix. From the practical viewpoint, it is desired to define an
index that gives a fair evaluation of the influence of the faults on the residual
signal over the whole time or frequency domain and in all directions in the
measurement subspace. We shall introduce such an index at the end of this
chapter, after having studied the solutions under the standard performance
indices.

7.4.2 Performance indices: robustness vs. sensitivity

With the aid of the introduced concepts of the robustness and sensitivity we
are now able to formulate our wish of designing an FDI system: the FDI system
should be as robust as possible to the disturbances and simultaneously as
sensitive as possible to the faults. It is a multiobjective optimization problem:
given (7.96), find such that

min and simultaneously max

It is well known that solving a multiobjective optimization problem is usually
much more involved than solving a single-objective optimization. Driven by
this idea, a variety of attempts have been made to reformulate the optimiza-
tion objective as a compromise between the robustness and sensitivity. A first
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kind of these performance indices was introduced by Lou et al., which takes
the form

= sup( ) 0 (7.102)

where are some given weighting constants. Wuennenberg and Frank
suggested to use the following the performance index

= sup (7.103)

which, due to its intimate connection to the sensitivity theory, is widely ac-
cepted. Currently, the index of the form

and (7.104)

becomes more popular, where are some positive constant. The FDI system
design is then formulated as maximizing and minimizing by selecting .

7.4.3 Relations between the performance indices

Next, we are going to demonstrate that the above-introduced three types of
indices are equivalent in a certain sense.
Suppose that

= arg

μ
sup

¶
then it follows from (7.96) that for any constant also solves
sup This means that the optimal solution to the ratio-type optimiza-
tion is unique up to a constant. To demonstrate the relationship between
the optimal performance under indices (7.103) and (7.104), suppose that
solves

max and min subject to (7.104)

and yields

k ( )k = 1 k ( )k = 1 =
k ( )k
k ( )k = = 1

1

On the other side, ensures that 0°° ( )
°°°° ( )
°° =

°° ( )
°°°° ( )
°°

As a result, it is possible to find a such that°° ( )
°°

1 and
°° ( )

°° = 1 (7.105)

To illustrate the relation between optimizations under (7.103) and (7.102),
suppose that solves
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sup = sup ( k ( )k k ( )k)

and results in

k ( )k k ( )k = k ( )k =

=
k ( )k
k ( )k = +

Once again, we are able to find a such that

k ( )k
k ( )k + and k ( )k =

= k ( )k k ( )k (7.106)

(7.105) and (7.106) demonstrate that the optimal solution under ratio-type
performance index (7.103) is, up to a constant, equivalent to the ones under
indices (7.102) and (7.104). With this fact in mind, in this chapter we mainly
consider optimizations under indices (7.103) and (7.104), which are also mostly
considered in recent studies.

7.5 Optimal selection of parity matrices and vectors

In this section, approaches to optimal selection of parity vectors will be pre-
sented. The starting point is the design form of the parity relation based
residual generator

( ) = ( ( ) + ( )) (7.107)

where ( ) R , denotes the dimension of the parity space of order s,
which, following Theorem 5.11, is given by

=
X
=

( ) for

= × ( + 1) +

1X
=

( ) for

Our task is to choose under a given performance index. Recall that it holds
for with that

= ¯ := ¯ ¯ (7.108)

= ¯ := ¯ ¯ (7.109)

with being the base matrix of parity space and ¯ 6= 0 an arbitrary
matrix with appropriate dimensions. Hence, residual generator (7.107) can be
rewritten into
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( ) = ¯
¡
¯ ( ) + ¯ ( )

¢
(7.110)

We suppose that ¡
¯

¢
= the row number of ¯

i.e. the PUIDP is not solvable, which motivates us to find an alternative way
to design the parity matrix

7.5.1 S +/R as performance index

The idea of using the ratio of the robustness ( ) to the sensitivity ( ) was
initiated by Wuennenberg and Frank in the middle 80’s. We first consider the
case

+ = sup
6=0
k k
k k

and express the performance index in terms of

+ = max
+
= max

¯

k ¯ ¯ k
k ¯ ¯ k (7.111)

where k·k denotes some induced norm of a matrix. Doing an SVD of ¯

gives

¯ = = × (7.112)

= × =
£

( 1 · · · ) 0 ×( )

¤
(7.113)

where is the column number of i.e.

= ( + 1 )

Set
¯ = ˜ 1 = ( 1 · · · ) (7.114)

it turns out °°¯ ¯ °° k = °°°˜ £ 0 ×( )

¤°°°
Following the definitions of 1, 2, and norms for a matrix, we have°°° ˜ £ 0 ×( )

¤°°°
1
= k˜ k1 (7.115)°°° ˜ £ 0 ×( )

¤°°°
2
= ¯(˜ ) = k˜ k2 (7.116)°°° ˜ £ 0 ×( )

¤°°° = k˜ k (7.117)

Note that

k¯ ¯ k = k ˜ 1 ¯ k k ˜ kk 1 ¯ k
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As a result, the following inequality holds: ˜ 6= 0

k¯ ¯ k
k¯ ¯ k =

k ˜ 1 ¯ k
k˜ k

k ˜ kk 1 ¯ k
k˜ k = k 1 ¯ k

In other words, we have

+ k 1 ¯ k

On the other hand, it is evident that setting ˜ = gives

k¯ ¯ k
k¯ ¯ k = k

1 ¯ k

thus, we finally have

+ = max
¯

k ¯ ¯ k
k¯ ¯ k = k

1 ¯ k

This proves the following theorem.

Theorem 7.1 Given system (7.110), then

¯ = 1 (7.118)

solves the optimization problems

1 = max
¯

k ¯ ¯ k1
k ¯ ¯ k1 2 = max

¯

k ¯ ¯ k2
k ¯ ¯ k2 (7.119)

= max
¯

k ¯ ¯ k
k ¯ ¯ k (7.120)

which results in

1 = max
¯

k¯ ¯ k1
k ¯ ¯ k1 = k

1 ¯ k1 (7.121)

2 = max
¯

k ¯ k2
k ¯ k2 = k

1 ¯ k2 (7.122)

= max
¯

k¯ ¯ k
k ¯ k = k 1 ¯ k (7.123)

Note that the optimal solution (7.118) solves all above-mentioned three
optimization problems. This fact is of great interest for the sensitivity and
performance analysis of FDI systems.
We now summarize the main results achieved above into an algorithm.

Algorithm 7.4 Solution of optimization problem +
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Step 1: Do an SVD on ¯ ;
Step 2: Set ¯ according to (7.118).

Next, we study the relationship between the optimization problems whose
solutions are presented above and the optimal design of parity vectors under
the performance index

= max
¯ ¯

¯ ¯ (7.124)

which was introduced byWuennenberg and Frank and is now one of the mostly
used performance indices. To begin with, we take a look at the solution of
optimization problem (7.124).
Let the optimal solution be denoted by and rewrite (7.124) into¡

¯ ¯ ¯ ¯
¢
( ) = 0

By an SVD of ¯ ¯ = we obtain¡
¯ ¯

¢
( ) = 0

Setting
= ¯ 1

yields
¯ (¯ ) ¯ 1 ¯

¡
¯ 1 ¯

¢
= 0

It is clear that choosing the nominal eigenvector corresponding to the maximal
eigenvalue of matrix 1 ¯ ¯ 1 as ¯ , i.e.

¯
¡

1 ¯ ¯ 1
¢
= 0 ¯ (¯ ) = 1 (7.125)

with being the maximal eigenvalue of matrix 1 ¯ ¯ 1,
gives

= (7.126)

Theorem 7.2 Given system (7.110), then the optimal solution of (7.124) is
given by

= ¯ 1 > (7.127)

with ¯ solving (7.125), and in this case

= max
¯ ¯

¯ ¯ = (7.128)

Comparing in (7.124) with 2 and noting the fact

= ¯
¡
¯ 1

¢
= ¯

¡
1 ¯

¢
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we immediately see
= 2

2 (7.129)

This reveals the relationship between both the performance indices and verifies
that the optimal solution is not unique. In fact, we have

2 = max
¯

k¯ ¯ k2
k¯ ¯ k2 = max

k ¯ k2
k ¯ k2

Nevertheless, both the FDI systems have quite di erent fault detectability, as
the discussion in Chapter 12 will show.
Bringing (7.125) into the following form

¯
¡

1 ¯ ¯ 1
¢
= 0¡

¯ ¯ ¯ ¯
¢
= 0 (7.130)

shows that the optimization problem (7.124) is equivalent to a generalized
eigenvalue-eigenvector problem defined by (7.130). The maximal eigenvalue is
the optimal value of performance index , and the corresponding eigenvector
is the optimal parity vector.

7.5.2 S /R as performance index

As mentioned in the last section

= inf
( )6=0

k ¯ ( )k
k ( )k

is also a reasonable index to evaluate the fault sensitivity. However, it is not
a norm. For this reason, we restrict our attention just to the following case

= (¯ ¯ )

where ( ¯ ¯ ) denotes the minimum singular value of matrix ¯ . It is
worth noting that if ¯ ¯ has full column rank, then

inf
( )6=0

k ¯ ¯ ( )k
k ( )k = (¯ ¯ )

Analogous to the calculation made in the last subsection we have

= max
¯

= max
¯

( ¯ ¯ )

k¯ ¯ k2 = max˜
( ˜ 1 ¯ )

k˜ k2
Since

( ˜ 1 ¯ ) ¯( ˜ ) ( 1 ¯ )

and ¯( ˜ ) = k˜ k2, it turns out
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Theorem 7.3 Given system (7.110), then

¯ = 1 (7.131)

solves the optimization problem

= max
¯

= max
¯

( ¯ ¯ )

k ¯ ¯ k2 (7.132)

which results in
=

¡
1 > ¯ ¢

It is very interesting to notice that the optimal solution

¯ = 1

recalling the results described in Theorem 7.1, solves both optimization prob-
lems + and .
As mentioned early, the optimization solution is not unique. Setting

= = ¯ 1

where ¯ is the eigenvector corresponding to the minimum eigenvalue of matrix
1 ¯ ¯ 1, i.e.

¯
¡

1 ¯ ¯ 1
¢
= 0 6= 0 ¯ (¯ ) = 1

delivers the same performance value,

=
¡

1 ¯
¢

On the other side, in this case

+ max
¯

+

that is, the solution is not optimal in the sense of + .
We see that di erent optimal solutions may provide us with quite di erent

system performance. Which one is the best one can only be answered in the
context of an analysis of FDI system performance, in which relationships
between the performance indices and system properties are established and
the functions of residual generations and evaluation are integrated considered.
This is the central topic in Chapter 12.
Let (·) denote the -th non-zero singular value of a matrix. Due to³

˜ 1 ¯
´

¯( ˜ )
¡

1 ¯
¢

we have
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max
¯

¡
¯ ¯

¢
k¯ ¯ k2 = max

˜

³
˜ 1 ¯

´
¯( ˜ )

(7.133)

max
˜

¯( ˜ )
¡

1 ¯
¢

¯( ˜ )
=

¡
1 ¯

¢
(7.134)

and so the following theorem.

Theorem 7.4 Given system (7.110), then

¯ = 1 (7.135)

solves the optimization problem

= max
¯

¡
¯

¢
k ¯ k2 for all (7.136)

for which we have

max
¯

¡
¯

¢
k ¯ k2 =

¡
1 ¯

¢
We would like to call reader’s attention that Theorem 7.1 and Theorem

7.3 are indeed two special cases of Theorem 7.4. From the practical viewpoint,
performance index gives a fair evaluation of the influence of the faults
on the residual signal over the time interval [ ] and in all directions in
the measurement subspace. For these reasons, solution (7.135) is called unified
parity space solution.

7.5.3 J as performance index

The first version of the performance index in the form was proposed
by Lou et al. We consider in the following a modification form expressed in
terms of

= max
¯

¡ k¯ ¯ k k¯ ¯ k¢ 0 (7.137)

where k · k denotes 1, 2, and norms of a matrix. Since is proportional
to the size of parity matrix ¯ , we suppose that k ¯ k = 1, i.e. we are only
interested in those nominal solutions.
Repeating the same procedure adopted in the previous two subsections

allows us to rewrite (7.137) into

= max
¯

¡ k¯ ¯ k k¯ ¯ k¢ k˜ k ¡ k 1 ¯ k ¢
with ¯ = ˜ 1 Thus, we claim
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Theorem 7.5 Given system (7.110), then the optimal solution

¯ =
1

k 1 k (7.138)

leads to

=
k 1 ¯ k

k 1 k (7.139)

Recall that the optimization problems + are independent of
the size of ¯ , i.e. for all 6= 0

¯ = 1

also solves the optimization problems + , and furthermore

+ = k 1 ¯ k
It leads to

Corollary 7.1 + have the identical solution:

¯ =
1

k 1 k (7.140)

Definition 7.1 Given system (7.110).

¯ =
1

k 1 k
is called nominal unified solution of parity matrix.

From the mathematical viewpoint, ¯ satisfying (7.140) can be interpreted
as the inverse of the amplitude of ¯ and used for weighting ¯ i.e.

( ) = ¯
¡
¯ ( ) + ¯ ( )

¢
=

1

k 1 k
¯ ( ) +

£
0 ×( )

¤
k 1 k ( )

From the FDI viewpoint, this solution ensures that the influence of the faults
will be stronger weighted at the places where the influence of the disturbances
is weaker. In this manner, an optimal trade-o between the robustness against
the disturbances on the one side and the fault sensitivity on the other side is
achieved. We would like to call reader’s attention that this idea will also be
adopted in the observer-based residual generator design.

Corollary 7.2 It holds

=
+

k 1 k (7.141)
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It follows from (7.141) that increasing + simultaneously enhances
and vice verse. This also verifies our early statement that the perfor-

mance indices (7.103) and (7.102) are equivalent.
Analogous to the discussion in the last two subsections, it can readily be

demonstrated that

• the optimal solution ¯ satisfying (7.140) also solves the optimization prob-
lem

max
¯ k ¯ k=1

¡ ¡
¯ ¯

¢ k¯ ¯ k2
¢
=

¡
1 ¯

¢
k 1 k

(7.142)
• the optimal parity vector

= ¯
1

k 1 k ¯ ¯ = 1

where ¯ is the eigenvector corresponding to the maximum eigenvalue of
matrix 1 ¯ , solves the optimization problem

max
k k2=1

¡k ¯ k2 k ¯ k2
¢

7.5.4 Optimization performance and system order

Until now, our study on the parity space relation based residual generation
has been carried out for a given . Since is a design parameter, the question
may arise: How can we choose a suitable ?
The fact that the choice of the system order may have considerable

influence on the optimization performance has been recognized, but only few
attention has been devoted to this subject. In this subsection, we will find out
an answer to this problem, which may, although not complete, build a basis
for further investigation.
To begin with, we concentrate ourselves on a modified form of the opti-

mization problem (7.124), for which the following theorem is known.

Theorem 7.6 The inequality

min
> >

> > =

min
+1 +1

+1 +1
>
+1

>
+1

+1 +1
>
+1

>
+1

= +1 (7.143)

holds.

The proof of this theorem is strongly related to the study on the minimum
order of residual generators in Section 6.8 and much involved, hence it is
omitted. We refer the interested reader to a paper by Ding et al. listed at the
end of this chapter.
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Remark 7.5 It can be shown that the performance index converges to
a limit with .

Theorem 7.6 reveals that increasing the order of parity space does really
improve the system robustness and sensitivity. On the other hand, increasing
means more on-line computation. Thus, a compromise between the system

performance and the on-line implementation is desired. To this end, we pro-
pose the following algorithm.

Algorithm 7.5 Selection of :

Step 0: Set the initial value of the order of parity relation (note that it
should be larger than or equal to ) and a tolerance;

Step 1: Calculate the base matrix of parity space and
;

Step 2: Solve the generalized eigenvalue-eigenvector problem;
Step 3: If 1 tolerance, end, otherwise go back to Step 1.

We would like to point out that a repeated calculation of Step 1 is not
necessary. In fact, once the system model is transformed into the canonical
observer form and equations ¯ = 1, are solved, we
can determine the base matrix of the parity space and
for di erent without solving additional equations (see also Subsection 5.6.2
and Section 6.8.). This fact promises a strong reduction of computation for a
(sub-)optimal selection of the order of the parity matrices.
Remember that

2 =
p

max 2 = max
¯

¡k¯ ¯ k2 k ¯ ¯ k2
¢
=

+

k 1 k2
the following corollary becomes clear.

Corollary 7.3 The inequalities

max
k k2
k k2 max

+1 +1

k +1 +1k2
k +1 +1k2 (7.144)

max ( k k2 k k2)
max
+1 +1

( k +1 +1k2 k +1 +1k2) (7.145)

max (k k2 k k2)
max
+1 +1

(k +1 +1k2 k +1 +1k2) (7.146)

hold.

In fact, we can expect that the results of Theorem 7.6 as well as Corollary
7.3 are applicable for other performance indices.
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7.5.5 Summary and some remarks

In this section, we have introduced a number of performance indices and,
based on them, formulated and solved a variety of optimization problems.
Some of them sound similar but have di erent meanings, and the others may
be defined from di erent aspects but have identical solutions. It seems that a
clear classification and a summary of the approaches described in this section
would be useful for the reader to get a deep insight into the framework of
model-based residual generation schemes.
We have defined two types of performance indices

Type I : = max
k k
k k = max¯

k ¯ ¯ k
k¯ ¯ k (7.147)

Type II : = max ( k k k k) (7.148)

= max
¯

¡ k ¯ ¯ k k ¯ ¯ k¢
and each of them can be expressed in four di erent forms, depending on
which of the norms, 1, 2, norm, or the minimum singular value is used
for the evaluation of the robustness and sensitivity. It is worth noting that
the minimum singular value ( ) is not a norm, but it, together with
k k2, measures the worst-case from the FDI viewpoint.
A further variation of (7.147) and (7.148) is given by the selection of parity

matrix ¯ : it can be a × -dimensional matrix or just a -dimensional row
vector, where denotes the number of the rows of ¯ = . Of
course, ¯ can also be a × -dimensional matrix with 1 , the results
will remain the same.
Considering the fact that the solution of the optimization problem Type

I is independent of k ¯ k and the one of Type II is proportional to k¯ k, we
have introduced the concept of nominal optimal solution whose size (norm) is
one (k ¯ k = 1). The most significant results derived in this section can then
be stated as follows:

• Given ¯ R × , then

¯ =
1

k 1 k
is the nominal optimal solution for the both types optimization problems,
independent of which norm is used;

• Given a row vector R , then

= ¯
1

k 1 k
is the nominal optimal solution for the both types optimization problems,
where ¯ is, depending on the norm used, chosen as follows:
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1 norm : ¯ =
£
1 · · · 1 ¤ £ 0 · · · 0 0 · · · 0 ¤ (7.149)

2 norm : ¯
¡
( 1 ¯ ) 1 ¯

¢
= 0 or

¯ ( ¯ ¯
max

¯ ¯ ) = 0 (7.150)

norm : ¯ =
£
0 · · · 0 1 0 · · · 0 ¤

0
...

0
...

(7.151)

=
£ · · · 0 1 0 · · · ¤

Recall that

1 =
°° 1 ¯

°°
1

=
°° 1 ¯

°°
and remember the definitions of the 1 and norms of a matrix, we have
¯ in (7.149) that selects the the largest absolute column sum, assumed
to be the -th column, of 1 and ¯ in (7.151) that selects the largest
absolute row sum, assumed to be the -th row, of 1

• The optimal value of performance index is

+ = k 1 ¯ k =
¡

1 ¯
¢

and is

+ =
k 1 ¯ k

k 1 k =

¡
1 ¯

¢
k 1 k2

Either for ¯ R × or for R these results always hold.

The last statement is worth a brief discussion. We see that using a parity
vector or a parity matrix has no influence on the optimal value of the per-
formance indices. But these two di erent constructions do have considerably
di erent influences on the system performance. Taking a look at the design
form,

( ) = ( ( ) + ( ))

shows the role of evidently: It is a filter and selector. From the geometric
viewpoint, it spans a subspace and thus allows only the signals, whose compo-
nents lie in this subspace, to have an influence on the residual ( ). When is
selected as a vector, the dimension of the subspace spanned by is one, i.e. it
selects signals only in one direction. Of course, in this direction the ratio of the
robustness to the sensitivity is optimal in a certain sense, but if the strength
of the fault in this direction is weak, a fault detection will become very dif-
ficult. In contrast, choosing to be matrix ensures that all components of
the fault will have influence on the residual, although in some directions the
ratio of the robustness to the sensitivity may be only suboptimal. Following
this discussion, it can be concluded that
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• if we have information about the faults and know they will appear in a
certain direction, then using a parity vector may reduce the influence of
model uncertainties and improve the sensitivity to the faults,

• in other cases, using a parity matrix is advisable.

Another interesting aspect is the computation of optimal solutions. All of
derived results rely on the SVD of ¯ =

¯ = = × = ×
=
£

( 1 · · · ) 0 ×( )

¤
=
£

0 ×( )

¤
Remark 7.6 The assumption made at the beginning of this section,¡

¯
¢
= the row number of ˆ

does not lead to the loss of generality of our results. In fact, if this condition
is not true, then an SVD of ¯ results in

¯ = = × = ×

=
( 1 · · · )
0( )×

¸
Note that there exists a matrix R × such that

= ×

It is easy to prove that by replacing 1 with all results and theorems
derived in this section hold true.

In case that the 2 norm is used, we have an alternative way to compute the
solution, namely by means of the generalized eigenvalue-eigenvector problem,

¯
¡
¯ ¯ ¯ ¯

¢
= 0 =

For ¯ R × , ¯ consists of all the eigenvectors, while for R , is the
eigenvector corresponding to the maximum eigenvalue. Thanks to the work
by Wuennenberg and Frank, the generalized eigenvalue-eigenvector problem
as the solution is much popular than the one of using SVD, although many
of numerical solutions for the generalized eigenvalue-eigenvector problem are
based on the SVD.
Finally, we would like to place particular emphasis on the application of

the achieved results to the design of observer-based residual generators. We
have in Subsection 5.7.1 shown the interconnections between the parity space
and observer-based approaches, and revealed the fact that the observer-based
residual generator design can equivalently be considered as a selection of a
parity vector or matrix. Thus, the results achieved here are applicable for
the design of observer-based residual generators. To illustrate it, consider the
non-recursive design form of observer-based residual generators given by
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( ) = ( ) +
¡

¯ ( ) + ¯ ( )
¢

Let = 0, i.e. the eigenvalues of matrix equal zero, we have

( ) = ( ( ) + ( ))

or in a more general form

( ) = ( ( ) + ( ))

This is just the form, on account of which we have derived our results. Once
or is determined under a given performance index, we can set the parameter
matrices of the residual generator according to Theorem 5.12.

Example 7.2 In this example, we briefly demonstrate the computation of the
unified solution of parity space matrix for the benchmark system vehicle lateral
dynamics. For our purpose, we first set = 2 and compute ¯ :

12 4385 0 6892 3 0551 0 0 1 0000 0 0 0
0 1179 0 0810 29 8597 0 0 0 0 0 0
20 6950 11 9554 0 12 4385 0 6892 3 0551 0 0 1 0000
373 8685 20 6950 0 0 1179 0 0810 29 8597 0 0 0

Next, do an SVD on ¯ = , which yields

=

0 4343 0 0223 0 2416 0 8675
0 0033 0 0005 0 9637 0 2668
0 0592 0 9982 0 0004 0 0039
0 8988 0 0550 0 1132 0 4199

=

28 7790 0 0 0
0 12 5281 0 0
0 0 2 1373 0
0 0 0 0 0416

Finally, we compute the optimal solution ¯ = 1

¯ =

0 0151 0 0001 0 0021 0 0312
0 0018 0 0000 0 0797 0 0044
0 1130 0 4509 0 0002 0 0530
20 8489 6 4123 0 0939 10 0922

as well as the nominal unified solution of parity matrices given by
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¯ =
1

k 1 k1
=

0 0007 0 0000 0 0001 0 0015
0 0001 0 0000 0 0038 0 0002
0 0054 0 0215 0 0000 0 0025
0 9938 0 3057 0 0045 0 4811

¯ =
1

k 1 k2
=

0 0006 0 0000 0 0001 0 0013
0 0001 0 0000 0 0033 0 0002
0 0047 0 0188 0 0000 0 0022
0 8675 0 2668 0 0039 0 4199

¯ =
1

k 1 k =

0 0004 0 0000 0 0001 0 0008
0 0000 0 0000 0 0021 0 0001
0 0030 0 0120 0 0000 0 0014
0 5568 0 1712 0 0025 0 2695

7.6 H optimal fault identification scheme

In this section, we briefly discuss about the H optimal fault identification
problem (OFIP), one of the most popular topics studied in the FDI area. The
OFIP is formulated as finding residual generator (5.24) such that ( 0) is
minimized under a given ( 0), where°° ( ) ¯ ( )

°° °° ( ) ¯ ( )
°° (7.152)

=

°° ( ) ( ) ¯ ( ) ( )
°°
2

k k2
subject to

°° ( ) ¯ ( )
°°

Considering that it is often unnecessary to reconstruct ( ) over the whole
frequency domain, a weighting matrix ( ) RH can be introduced, which
defines the frequency range of interest, and the H OFIP (7.152) is then
reformulated into°° ( ) ¯ ( )

°° °° ( ) ( ) ¯ ( )
°° (7.153)

AlthoughH OFIP is a formulation for the purpose of fault identification,
it has been originally used for the integrated design of robust controller and
FDI. From the fault detection viewpoint, H OFIP or its modified form
(7.153) can also be interpreted as a reference model-based design scheme,
which is formulated as: given reference model = find ( ) so that

k k2 = k k2 min

min
( ) RH

°°£ ( ) ¯ ( ) ( ) ¯ ( )
¤°°

One essential reason for the wide application of H OFIP solutions is that
it is of the simplest MMP form. Maybe for this reason, in the most studies,
optimization problem (7.152) or its modified form (7.153) are considered as
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being solvable and no special attention has been paid to the solution. The
following discussion calls for more attention to this topic.
To simplify the discussion, we consider continuous time systems and as-

sume that R and ¯ ( ) has a RHP-zero 0 It follows from Lemma 7.7
that for any given weighting factor ( ) RH

min
RH

°° ( ) ( ) ¯ ( )
°° = | ( 0)| (7.154)

In case that ( ) = we have

min
RH

k ( ) ¯ ( )k = 1 (7.155)

Note that in (7.155) setting ( ) = 0 gives k ( ) ¯ ( )k = 1 and as a
result, we have

( ) = 0 = ( ) ( ) = ( ) =
k ( ) ( )k2
k ( )k2

= 1

That means zero is the best estimation for ( ) (although may not be the only
one) in the sense of (7.155) and the estimation error equals to ( ) Consider
further that

( ) = 0 = ( ) ¯ ( ) = 0 = k ( ) ¯ ( )k = 0

then it becomes evident that ( ) = 0 also solves H OFIP Of course, such
an estimation with a relative estimation error equal to

k ( ) ( )k2
k ( )k2

= 1

is less useful in practice.
Generally speaking, (7.154) reveals that adding a weighting matrix ( )

does not automatically ensure a good estimation performance. On the other
side, it provides us with a useful relation, based on which the weighting matrix
can be suitably selected. Equation (7.154) can be understood that ( ) should
have a RHP-zero structure similar to the one of ¯ ( ) i.e. if 0 is a RHP-zero
of ¯ ( ), then the best solution can be achieved as 0 is also a zero of ( )
In the Chapter 14, we shall study H OFIP in more details.

7.7 H2/H2 design of residual generators

Beginning with this section, we study design schemes for the residual generator
(5.24) whose dynamics is governed by

( ) = ( ) ˆ ( ) ( ( ) ( ) + ( ) ( )) (7.156)

= ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
( ) RH
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The major di erence between these schemes lies in the performance index,
under which the residual generator design is formulated as an optimization
problem. The design problem addressed in this section is the so-called H2 H2

design scheme, which is formulated as follows.

Definition 7.2 (H2 H2 design) Given system (7.156), find a transfer vector
( ) RH that solves

sup
( ) RH

2( ) = sup
( ) RH

°° ( ) ¯ ( )
°°
2°° ( ) ¯ ( )
°°
2

(7.157)

H2 H2 design has been proposed in 1989 and was the first design scheme
using the type performance index for the post-filter design. It has been
inspired by the optimal selection of parity vectors proposed by Wuennenberg.
This can also be observed by the solution to (7.157) that is given in the next
theorem.

Theorem 7.7 Given continuous time system (7.156), then

sup
( ) RH

2( ) = sup
( ) RH

°° ( ) ¯ ( )
°°
2°° ( ) ¯ ( )
°°
2

= 1 2
max( ) (7.158)

max( ) = sup max( )

where max( ) is the maximal eigenvalue of the generalized eigenvalue-eigenvector
problem

max( )
¡
¯ ( ) ¯ ( ) max( ) ¯ ( ) ¯ ( )

¢
= 0 (7.159)

with max( ) being the corresponding eigenvector. The optimal solution
( ) is given by

( ) = ( ) max( ) ( ) RH2 (7.160)

where ( ) represents a band pass filter at frequency , which gives

1

2

Z
( ) ¯ ( ) ¯ ( ) ( ) (7.161)

max( ) ¯ ( ) ¯ ( ) max( )

Proof. The original proof given by Ding and Frank consists of three steps

Step1: prove that the optimization problem

= sup
( ) RH

°° ( ) ¯ ( )
°°
2 with constraint (7.162)

0
°° ( ) ¯ ( )

°°
2

is equivalent to a generalized eigenvalue-eigenvector problem;
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Step 2: find the solution for the generalized eigenvalue-eigenvector problem;
Step 3: prove

sup
( ) RH

2( ) =

Here, we only outline the first step. The next two steps are straightforward
and the reader can refer to the paper by Ding and Frank given at the end of
this chapter.

Note that (7.162) is, according to the duality theorem, equivalent to

= sup
0
inf
¯

Ã
S
Ã
˜ ( ) ˜ ( )

!
+ S

³
˜ ( ) ˜ ( )

´!

where S (·) is an operator,

S
³
˜ ( ) ˜ ( )

´
=

Z ³
˜ ( ) ˜ ( )

´

S
³
˜ ( ) ˜ ( )

´
=

Z ³
˜ ( ) ˜ ( )

´
˜ ( ) = ¯ ( ) ¯ ( ) ˜ ( ) = ¯ ( ) ¯ ( )

˜ ( ) = ( ) ( )

It turns out
= inf

0
( )

with variable satisfying

˜ ( )
+ ˜ ( ) 0 ˜ ( ) ˜ ( ) 0 (7.163)

(7.163) can be equivalently written as

max ( )

with max ( ) denoting the maximal eigenvalue of matrix pencil

˜ ( ) max ( ) ˜ ( )

As a result, we finally have

= inf
0
( ) = max ( )

ut
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Suppose that ¯ ( ) is left invertible in RH i.e. [0 ]

¯ ( ) ¯ ( ) 0 (7.164)

It follows from Lemma 7.4 that we are able to do a CIOF of ¯ ( )

¯ ( ) = ( ) ( )

with a left invertible co-outer ( ) and co-inner ( ) Let

( ) = ( )¯max( )
1( )

with

¯max( )
¡

1( ) ¯ ( ) ¯ ( ) ( ) max( )
¢
= 0 (7.165)

In other words, in this case

sup
( ) RH

2( ) = max( ) 1 2
max( ) = sup ¯

¡
1( ) ¯ ( )

¢
Without proof, we give the analogous result of the above theorem for

discrete time systems. The interested reader is referred to the paper by Zhang
et al. listed at the end of this chapter.

Corollary 7.4 Given discrete time system (7.156), then

sup
( ) RH

2( ) = sup
( ) RH

°° ( ) ¯ ( )
°°
2°° ( ) ¯ ( )
°°
2

= 1 2
max( )

max( ) = sup max( )

where max( ) is the maximal eigenvalue of the generalized eigenvalue- eigen-
vector problem

max( )( ¯ ( ) ¯ ( ) max( ) ¯ ( ) ¯ ( )) = 0 (7.166)

with max( ) being the corresponding eigenvector. The optimal solution
( ) is given by

( ) = ( ) ( )

where ( ) is an ideal band pass with the selective frequency at , which
satisfies

( ) RH2 ( ) ( ) = 0 6= (7.167)Z 2

0

( ) ( ) ( ) ( ) = ( ) ( ).
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Although the H2 H2 design is the first approach proposed for the optimal
design of observer-based residual generators using the advanced robust con-
trol technique, only few study has been devoted to it. In our view, there are
two reasons for this situation. The first one is that the derivation of the solu-
tion, di erent from the standard H2 control problem, is somewhat involved.
The second one is that the implementation of the resulting residual generator
seems unpractical. The reader may notice that the most significant charac-
terization of an H2 H2 optimal residual generator is its bandpass property.
It is this feature that may considerably restrict the application of H2 H2 op-
timal residual generator due to the possible loss of fault sensitivity. On the
other side, this result is not surprising. Remember the interpretation of the
H2 norm as the RMS value of a system output when this system is driven
by a zero mean white noise with unit power spectral densities. It is reason-
able that an optimal fault detection will be achieved at frequency since
at other frequencies the relative influence of the fault, whose power spectral
density is, as assumed to be a white noise, a constant, would be definitively
smaller. Unfortunately, most kinds of faults are deterministic and therefore
H2 H2 design makes less practical sense.

7.8 Relationship between H2/H2 design and optimal
selection of parity vectors

The analogous form between the H2 H2 solution (7.166) and the optimal
selection of parity vectors (7.130) motivates our discussion in this section. For
our purpose, we consider discrete time model

( + 1) = ( ) + ( ) + ( ) + ( ) (7.168)

( ) = ( ) + ( ) + ( ) + ( ) (7.169)

Suppose that { (0) (1) · · · } is the impulse response of system (7.168)-
(7.169) to the unknown disturbances . Apparently,

(0) = (1) = · · · ( ) = 1 · · · (7.170)

We can then express matrix in parity space residual generator (5.92) in
terms of the impulse response as follows

=

(0) 0 · · · 0

(1) (0)
. . .

...
...

. . .
. . . 0

( ) · · · (1) (0)

Partition the parity vector as
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=
£

0 1 · · ·
¤

where the row vector R = 0 1 · · · . Then, we have
=
£
( ) ( 1) · · · (0)

¤
with

( ) =
X
=0

( ) = = 0 1 · · ·

Let go to infinity. It leads to

lim =
£
( ) · · · (0)

¤
(7.171)

and in this case

( ) =
X
=0

( ) = ( ) ( ) = Z 1( ( ) ( )) (7.172)

( ) = Z[ ( )] ( ) = { 0 1 · · · } (7.173)

where denotes the convolution. Equation (7.173) means that ( ) is the
-transform of the sequence { 0 1 · · · }.
According to the Parseval Theorem, we have

lim =
X
=0

( ) ( ) (7.174)

=
1

2

Z 2

0

( ) ( ) ( ) ( )

with ( ) = ( ) 1 + Similarly, it can be proven that

lim =
1

2

Z 2

0

( ) ( ) ( ) ( ) (7.175)

with ( ) = ( )
1

+ On the other side, if given a residual
generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(7.176)

we can always construct a parity vector, as stated in the next lemma.

Lemma 7.10 Given system (7.168)-(7.169) and a residual generator (7.176)
with ( ) RH1× . Then the row vector defined by

=
£ · · · ¯ ¯2 ¯ ¯ ¯ ¯ ¯ ¯ ¯

¤
(7.177)

where ( ¯ ¯ ¯ ¯) is the state space realization of ( ) ˆ ( ), belongs to the
parity space ( ).
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Proof. Assume that ( ) is a state space realization of ( ). Re-
calling Lemma 3.1, we know that

¯ =
0
¸
¯ =

¸
¯ =

£ ¤
¯ =

It can be easily obtained that

lim = lim
£ · · · ¯ ¯2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¤ 2

...

= lim
£ · · · ¤ ( )

( )2

...

(7.178)

For a linear discrete time system

( + 1) = ( ) ( ) ( ) = ( ) (7.179)

with any initial state vector (0) = 0 R , apparently

(0) = 0 (1) = ( ) 0 (2) = ( )2 0 · · ·

Since ( ) RH1× and is selected to ensure the stability of , the
cascade connection of system (7.179) and ( ) is stable. So

lim Z 1{ ( ) ( )} = 0

Note that

lim Z 1{ ( ) ( )} = lim
£ · · · ¤ 0

( ) 0

( )2 0

...

we get

lim
£ · · · ¤ ( )

( )2

...

0 = 0

for any initial state vector 0 R . Thus it can be concluded that
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lim
£ · · · ¤ ( )

( )2

...

= 0

At last, from (7.178) we obtain

lim = 0

i.e. the vector defined by (7.177) belongs to the parity space ( ).
The lemma is thus proven. ut
It is of interest to note that vector is indeed composed of the impulse

response of the residual generator ( ) ˆ ( ) = ¯ + ¯( ¯) 1 ¯, which
is given by

©
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯2 ¯ · · ·ª. Based on the above analysis, the fol-

lowing theorem can be obtained.

Theorem 7.8 Given system (7.168)-(7.169) and assume that
and ( ) are the optimal solutions of optimization problems

= max = max = (7.180)

= max
( ) RH1×

= max
( ) RH1×

R 2
0

( ) ˆ ( ) ( ) ( ) ˆ ( ) ( )R 2
0

( ) ˆ ( ) ( ) ( ) ˆ ( ) ( )

=

R 2
0

( ) ˆ ( ) ( ) ( ) ˆ ( ) ( )R 2
0

( ) ˆ ( ) ( ) ( ) ˆ ( ) ( )
(7.181)

respectively. Then

lim = (7.182)

( ) = ( ) ˆ ( ) (7.183)

where

( ) = Z[ ( )] ( ) = { 1 · · · 0} (7.184)

Proof. Let denote the optimal solution of optimization problem
(7.180) as . Remembering Theorem 7.6 and the associated remark,
it follows from (7.173)-(7.175) that for any LCF of ( ) = ˆ 1( ) ˆ ( ),
the post-filter ( ) given by

( ) = ( ) ˆ 1( )
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where ( ) is defined by (7.184), leads to

| ( )= ( )= lim = lim max = max max max
( ) RH1×

(7.185)
We now demonstrate that

| ( )= ( )= = max
( ) RH1×

(7.186)

Suppose that (7.186) does not hold. Then, the optimal solution of optimization
problem (7.181), denoted by ( ) RH1× and di erent from ( ) should
lead to

| ( )= ( )= max
( ) RH1×

| ( )= ( ) (7.187)

According to Lemma 7.10, we can find a parity vector whose com-
ponents are just a re-arrangement of the impulse response of ( ) ˆ ( ).
Moreover, because of (7.173)-(7.175), we have

| = = | ( )= ( ) (7.188)

As a result, it follows from (7.185), (7.187) and (7.188) that

| = max max

which is an obvious contradiction. Thus we can conclude that

= max
( ) RH1×

= | ( )= ( )= lim

and
( ) = ( ) ˆ 1( ) := ( )

solve optimization problem (7.181). The theorem is thus proven. ut
Theorem 7.8 gives a deeper insight into the relationship between the parity

space approach and the H2 H2 design and reveals some very interesting facts
when the order of the parity relation increases:

• The optimal performance index of the parity space approach con-
verges to a limit which is just the optimal performance index of the
H2 H2 optimization.

• There is a one-to-one relationship between the optimal solutions of opti-
mization problems (7.180) and (7.181) when the order of the parity relation

. Since ( ) is a band-limited filter, the frequency response of
is also band-limited.

The above result can be applied in several ways, for instance:
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• for multi-dimensional systems, the optimal solution of the H2 H2 design
can be approximately computed by at first calculating the optimal solution
of the parity space approach with a high order and then doing the z-
transform of the optimal parity vector. It is worth noticing that numerical
problem may be met for some systems, especially when is unstable.

• In the parity space approach, a high order will improve the performance
index but, on the other side, increase the on-line computational
e ort. To determine a suitable trade-o between performance and imple-
mentation e ort, the optimal performance index of the H2 H2 design
can be used as a reference value.

• Based on the property that the frequency response of is band-
limited, advanced parity space approaches can be developed to achieve
both a good performance and a low order parity vector. For instance,
infinite impulse response (IIR) filter and wavelet transform have been in-
troduced, respectively, to design optimized parity vector of low order and
good performance.

Example 7.3 (A numerical example) Given a discrete time system modelled
by (7.168)-(7.169), where

=
1 1 30
0 25 0 25

¸
=

2
1

¸
=
£
0 1
¤

=
0 4
0 5

¸
=

0 6
0 1

¸
= = = 0 (7.189)

As system (7.189) is stable, matrix in the LCF can be selected to be
zero matrix and thus ˆ ( ) is an identity matrix. To solve the generalized
eigenvalue-eigenvector problem (7.166) to get that achieves max( ) =
sup max( ), note that

max( ) =
0 0125 + 0 01 cos

0 41 0 4 cos

Therefore, the optimal performance index of the H2 H2 design is = 2 25
and the selective frequency is = 0.
Fig.7.2 demonstrates the change of the optimal performance index

with respect to the order of the parity relation . From the figure it can be seen
that increases with the increase of and, moreover, converges
to when . Fig. 7.3 shows the frequency responses of the optimal
parity vector when is chosen as 20 50 100 and 200 respectively. We
see that the bandwidth of the frequency response of becomes narrower
and narrower with the increase of .

7.9 LMI aided design of FDF

Comparing with the methods introduced in the last two sections, the FDF
scheme with its fixed structure o ers a lower degree of the design freedom.
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On the other hand, its observer structure allows a design using the available
approaches for the robust observer design. For this reason, the FDF design is
receiving much attention currently.
In this section, we deal with the optimal design of FDF under di erent

performance indices. Recall that for a given system described by (3.30)-(3.31),
an FDF delivers a residual whose dynamics with respect to the faults and
unknown inputs is described by

( ) = ˆ ( ) ( ) + ˆ ( ) ( ) (7.190)
ˆ ( ) = ( + ) 1( ) + (7.191)
ˆ ( ) = ( + ) 1( ) + (7.192)
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Our main objective is to find an observer matrix such that ˆ ( ) is smaller
than a given bound and simultaneously ˆ ( ) is as large as possible. We shall
use the H2 and H norms as well as the so-called H index to measure the
size of these two transfer matrices. To this end, the LMI technique will be
used as a mathematical tool for the problem solution.

7.9.1 H2 to H2 trade-o design of FDF

We begin with a brief review of the H2 optimization problem described by

min k ( + ) 1( )k2 (7.193)

Remark 7.7 Remember that for a continuous time system its H2 norm exists
only if it is strictly proper. For a discrete time system,

k + ( + ) 1( )k2 =
¡ ¢

+
¡ ¢

= ( ) ( ) +
¡ ¢

where are respectively the solutions of two Lyapunov equations. Thus,

min k + ( + ) 1( )k2
min k ( + ) 1( )k2

For this reason, we only need to consider the optimization problem (7.193).

Theorem 7.9 Given system ( + ) 1( ) and suppose that

A1. ( ) is detectable;
A2. has full row rank with = ;

A3. for a continuous time system
¸
or for a discrete time sys-

tem
¸
has full row rank for all [0 ] or [0 2 ]

then the minimum

min k ( + ) 1( )k2 =
¡

( )
¢1 2

or

min k ( + ) 1( )k2 =
¡

( )
¢1 2

is achieved by

= 2 = + or (7.194)

= 2 =
¡

+
¢ ¡

+
¢ 1

(7.195)

where matrix 0 solves the Riccati equation
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( ) + ( ) + = 0
(7.196)

( 2 ) + ( 2 ) + > + = 0
(7.197)

and matrix 0 solves the Riccati equation

( 2 ) ( 2 ) + ( 2 ) ( 2 ) = 0 (7.198)

This theorem is a dual result of the well-known H2 optimization of the
state feedback controller,

min k( )( ) 1 k2

the proof is therefore omitted.

Remark 7.8 In A2, if 6= we are able to find an output transformation
to ensure that = as far as has full row rank. Assumption

A3 ensures that no zeros lie on the imaginary axis and at infinity.

Recall that the optimal design of FDF di ers from the optimal estimation
mainly in its additional requirement on the sensitivity to the faults. This
requires to add an additional optimization objective to (7.193). Next, we are
going to introduce a design scheme, starting from Theorem 7.9, that allows a
compromise between the robustness and the fault sensitivity.
Set = 2 + with 2 given in (7.194) and bring the dynamics of the

residual generator (7.190) into

˙ = ( 2 ) + ( 2 ) + ( 2 ) +

= ( ˆ) = ˆ = ˆ = + +

with ˆ denoting the state variable estimation delivered by the FDF. Let ( )
denote the dynamic part of the transfer matrix from ( ) to ( ), i.e.

( ) ( ) = ( + 2 ) 1 (( 2 ) ( ) + ( ))

Since

( ) = ( ( ) + ( ))

=
¡
( + 2 ) 1 (( 2 ) ( ) + ( )) + ( )

¢
=

¡
+ ( + 2 ) 1

¢ 1¡
( + 2 ) 1( 2 ) +

¢
( )

we obtain
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( ) ( ) = ( + 2 ) 1( 2 ) ( ) + ( + 2 ) 1¡
+ ( + 2 ) 1

¢ 1
( )

μ
( + 2 ) 1

( 2 ) ( ) + ( )

¶
= ( + 2 ) 1( 2 ) ( ) +

( + 2 + ) 1( )

μ
( + 2 ) 1

( 2 ) ( ) + ( )

¶
Note that ( ) := ( + 2 ) 1( 2 ) + is co-inner and
( )

¡
( + 2 ) 1( 2 )

¢ RH , thus we finally have

k ( )k22 = k ( + 2 ) 1( 2 )k22
+k ( + ( 2 + ) ) 1( )k22 (7.199)

With the aid of (7.199), we are able to formulate our design objective as
finding such that

( + ) is stable (7.200)

k ( )k2 (7.201)

k ( + ( 2 + ) ) 1 k22 2 ( ) or

k ( + ( 2 + ) ) 1 k22 2 ( )

k ( + ( 2 + ) ) 1( ( 2 + ) )k2 max (7.202)

Following the computing formula for the H2 norm, (7.200)-(7.202) can further
be reformulated as: for the continuous time system

max
¡
( ¯ ) ( ¯ )

¢
(7.203)

( ) 2 ( ) := 1 (7.204)

( 2 ) + ( 2 ) + = 0 0 (7.205)

2 = 2
¯ = 2

and for the discrete time system

max
¡
( ¯ ) ( ¯ )

¢
(7.206)

( ) 2 ( ) := 1 (7.207)

( 2 ) ( 2 ) + = 0 0 (7.208)

Setting = ¯ = 1 for the continuous time case and = ¯ =
1 for the discrete time case leads respectively to

( ) = (¯ ¯) ( ) = (¯ ¯)¡
( ¯ ) ( ¯ )

¢
=

¡
( ¯ ¯ ) ( ¯ ¯ )

¢¡
( ¯ ) ( ¯ )

¢
=

¡
( ¯ ¯ ) ( ¯ ¯ )

¢
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Using Schur complement we have that

k ( 2 + ) 1 k2 = (¯ ¯) 1

and (
2

¯ ) is stable if and only if

• for the continuous time system: there exist 1 such that

2
+ 2

¯ ¯ + 0 (7.209)
¯

¯
1

¸
0 ( 1) 1 (7.210)

• for the discrete time system: there exist 2 such that

2
¯

2
¯

¸
0 (7.211)

¯
¯

2

¸
0 ( 2) 1 (7.212)

In summary, we obtain the following optimization design scheme for FDF.

Theorem 7.10 The optimization problem (7.200)-(7.202) is equivalent to

• for continuous time systems

max
¯

³¡
¯ ¯

¢
1
¡

¯ ¯
¢´

(7.213)

subject to

2
+ 2

¯ ¯ + 0 (7.214)
¯

¯
1

¸
0 ( 1) 1 (7.215)

• for discrete time systems

max
¯

³¡
¯ ¯

¢
1
¡
¯ ¯

¢´
(7.216)

subject to

2
¯

2
¯

¸
0 (7.217)

¯
¯

2

¸
0 ( 2) 1 (7.218)

On account of the above-achieved results, following algorithm for the H2
to H2 optimal design of FDF is proposed.
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Algorithm 7.6 H2 to H2 optimization of continuous time FDF

Step 1: Solve Riccati equation (7.196) for 0 and further 2;
Step 2: Solve optimization problem (7.214)-(7.215) for ¯ ;
Step 3: Set the optimal solution as follows:

= + + 1 ¯

Algorithm 7.7 H2 to H2 optimization of discrete time FDF

Step 1: Solve Riccati equation (7.198) for 0;
Step 2: Solve optimization problem (7.217)-(7.218) for ¯ ;
Step 3: Set the optimal solution as follows:

=
¡

+
¢ ¡

+
¢ 1

+ 1 ¯

Remark 7.9 Notice that the cost functions (7.213) and (7.216) are nonlinear
regarding to or Moreover, due to the constraints (7.215) and (7.218), the
terms

¡
¯

¢
1
¡
¯

¢
and

¡
¯

¢
1
¡
¯

¢
are bounded. On account

of this fact, the cost functions can be replaced by

max
¯

¡
¯ ¯ ¯ ¯ ¯ ¯

¢
as well as

max
¯

¡
¯ ¯ ¯ ¯ ¯ ¯

¢
Example 7.4 We now apply Algorithm 7.6 to the benchmark system EHSA
with model (3.83). We suppose that measurement noises are present in the
sensor signals and model them by extending to

=

0 0 0
0 143 0 0
0 0 0
0 0 0
0 0 0

=
0 1 0
0 0 1

¸

Solving Riccati equation (7.196) gives

2 =

8 69× 10 22 1 03× 10 25

0 067976 2 06× 10 12

1 538× 10 25 8 078× 10 28

6 6889× 104 2 03× 10 6

2 03× 10 6 2 02× 10 15

¡ ¢
0 7× 105

In the next step, optimization problem (7.214)-(7.215) is solved for ¯ with
1 1 7× 105
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=

2 84× 106 1 47× 105 1 81× 105 0 1703 4810 7
1 47× 105 8 0014× 104 5 08× 106 0 0456 278 21
1 81× 105 5 08× 106 9 95× 108 0 010 2 6103× 104
0 1703 0 0456 0 010 1 6756× 10 6 0 0003
4810 7 278 21 2 6103× 104 0 0003 265 89

¯ =

21561 145 29
45507 19 36

8 01× 106 1 54× 105
0 389 9 77× 10 5

40 74 1460 2

Finally, the optimal solution is

= 2 +
1 ¯ =

0 0177 0 0093
0 0048 0 0042
0 0084 2 97× 10 5

3 03× 105 53 96
0 8745 5 6617

7.9.2 On H index

Remember the discussion on the fault sensitivity in Subsection 7.4.1, which
provides us with reasonable arguments to evaluate the fault sensitivity by
means of the so-called index. In this subsection, we shall address the
definition of index for a transfer matrix and its computation. This index
is called H index and will be, instead of the H norm or the H2 norm as
required in (7.202), used for the evaluation of the fault sensitivity.

Definition 7.3 Given system ( ) = ( ) ( ) The strict H index of ( )
is defined by

k ( )k = inf
6=0
k ( ) ( )k2
k ( )k2 (7.219)

Note that k ( )k is not a norm. For instance, if the row number of ( )
is smaller than its column number, then there exists some ( ) 6= 0 so that
( ) ( ) = 0 and therefore k ( )k = 0 Consider that an evaluation of those

faults, which are structurally undetectable (see Chapter 4), makes no sense.
We are only interested in evaluation of the minimum value of k ( ) ( )k2
for k ( )k2 = 1 which is di erent from zero. Since

k ( ) ( )k2 = 1

2

Z
( ) ( ) ( ) ( )

we have the nonzero minimum value of k ( ) ( )k2
• for surjective ( )

k ( )k = min
¡

( )
¢
or min

¡
( )

¢
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• for injective ( )

k ( )k = min ( ( )) or min
¡
( )

¢
where (·) denotes the minimum singular value of a matrix.

For the FDI purpose, we introduce the following definition.

Definition 7.4 Given system ( ) = ( ) ( ) The H index of ( ) is
defined by

k ( )k = min
¡

( )
¢
or min

¡
( )

¢
for surjective ( ) satisfying

( ) ( ) 0 or ( ) ( ) 0 (7.220)

and
k ( )k = min ( ( )) or min

¡
( )

¢
for injective ( ) satisfying

( ) ( ) 0 or ( ) ( ) 0 (7.221)

Remark 7.10 Note that if both (7.220) and (7.221) are satisfied, then

min
¡

( )
¢
= min ( ( )) min

¡
( )

¢
= min

¡
( )

¢
Moreover,

( ) ( ) = ( ) ( ) and

( ) ( ) = ( ) ( )

Next, we study the computation of the H index of a transfer matrix as
defined in Definition 7.4. We start with a detailed discussion about continuous
time systems and give the "discrete time version" at the end of the discussion.
Our major results rely on the following lemma.

Lemma 7.11 Let be matrices of compatible dimensions with
symmetric, 0 and ( ) stabilizable. Suppose either one of the

following assumptions is satisfied:

A1. has no eigenvalues on the imaginary axis;
A2. 0 or 0 and ( ) has no unobservable modes on the imaginal
axis.

Then, the following statements are equivalent:
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I. The parahermitian rational matrix

( ) =
£

( ) 1
¤ ¸

( ) 1
¸

satisfies
( ) 0 for all 0

II. There exists a unique real and symmetric such that

( 1 ) + ( 1 ) 1 + 1 = 0

and that 1 1 is stable.

Lemma 7.11 is a standard result in the robust control theory. Hence, its
proof is omitted.

Theorem 7.11 Given system ( ) = + ( ) 1 with

A1. 2 0 and
A2. ( ) has no unobservable modes on the imaginary axis,

then inequality¡
( ) 1 +

¢ ¡
( ) 1 +

¢
2 (7.222)

holds for all , including at infinity, if and only if there exists a symmetric
matrix such that

¯ + ¯ 1 + ( 1 ) = 0 (7.223)

with
¯ = 1 = 2

Proof. The proof is straightforward. We first substitute

= = = 2

into ( ) given in Lemma 7.11, which gives

( ) =
£

( ) 1
¤

2

¸
( ) 1

¸
=
¡

( ) 1 +
¢ ¡

( ) 1 +
¢

2

As a result, ( ) 0 (7.222) holds. Finally, using Lemma 7.11 the
theorem is proven. ut
With the proof of Theorem 7.11, the following corollary becomes evident.

Corollary 7.5 Given system ( ) = + ( )
1 with
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A1. 2 0 and
A2. ( ) has no uncontrollable modes on the imaginary axis,
then inequality¡

( ) 1 +
¢ ¡

( ) 1 +
¢

2 (7.224)

holds for all , including at infinity, if and only if there exists a symmetric
matrix such that

¯ + ¯ 1 + ( 1 ) = 0 (7.225)

with
¯ = 1 = 2

Remember that with the H index defined in Definition 7.4 we are only
interesting in the minimal nonzero singular value of a transfer matrix, which
is equivalent to, for given ( ) = ( ) 1 +

( ) ( ) 0

if ( ) is injective or
( ) ( ) 0

if ( ) is surjective. Note that

I ( ) ( ) 0

¸
= +

II ( ) ( ) 0

¸
= +

where denote the number of the state variables, the inputs and the
outputs respectively. Hence, it also ensures that there exists no unobservable
mode on the imaginary axis in case I and no uncontrollable mode on the
imaginary axis in case II. As a result of Theorem 7.11, Corollary 7.5 and the
above discussion, we have

Theorem 7.12 Given system ( ) = + ( )
1 that satisfies

A1. (a) 2 0 if ( ) is injective, or (b) 2 0 if ( )
is surjective

A2. (a) for ( ) being injective [0 ]¸
= + (7.226)

or (b) for ( ) being surjective [0 ]¸
= + (7.227)
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then for a given constant 0 the following two statements are equivalent:

S1. H index satisfies
k ( )k (7.228)

S2. for case (a) there exists a symmetric matrix such that

¯ + ¯ 1 + ( 1 ) = 0 (7.229)
¯ = 1 = > 2

or for case (b) there exists a symmetric matrix such that

¯ + ¯ 1 + ( 1 ) = 0 (7.230)
¯ = 1 = 2

(7.229) and (7.230) are Riccati equations, which can also be equivalently
reformulated as Riccati inequalities. To this end, di erent methods are avail-
able. Next, we introduce one approach proposed by Zhang and Ding.
Recalling Lemma 7.4 and its dual form for the IOF, we can, under condi-

tion (7.226) or (7.227), factorize ( ) = + ( )
1 RH into

( ) = ˆ 1( ) ˆ( ) = ( ) 1( )

where ˆ( ) ( ) are co-inner and inner respectively and ˆ 1( ) 1( )
RH It turns out that

k ( )k = k 1( )k =
1

k ( )k (7.231)

for ( ) being injective and satisfying (7.226) and

k ( )k = k ˆ 1( )k =
1

k ˆ ( )k (7.232)

for ( ) being surjective and satisfying (7.227). As a result, the requirement
that k ( )k can be equivalently expressed by

k ( )k 1
or k ˆ ( )k 1

(7.233)

The following theorem follows directly from (7.233) and the Bounded Real
Lemma, Lemma 7.8.

Theorem 7.13 Given ( ) = + ( ) 1 RH × and 0
suppose that

I. for ( ) being injective ¸
= + 2 0
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II. for ( ) being surjective ¸
= + 2 0

then k ( )k if and only if for case I there exists = such that

+ + +( + )( 2 ) 1( + ) 0 (7.234)

and for case II there exists = such that

+ + +( + )( 2 ) 1( + ) 0 (7.235)

Proof. We only prove (7.234) for case I. (7.235) for case II is a dual result of
(7.234). It follows from Bounded Real Lemma that for k ( )k 1 there
exists a matrix 0

( ) = ( ) + ( ) +

+( )(
1
2

) 1( ) 0 (7.236)

where, as a dual result of Lemma 7.4,

= ( ) 1 2 = ( ) 1( + ) (7.237)

with 0 being the solution of Riccati equation

+ + ( + )( ) 1( + ) = 0 (7.238)

Substituting (7.237) into the left side of (7.236) yields

( ) = + + ( ( ) 1 )

×
(
( ) +

μ
1
2

( ) 1

¶ 1
)
(( ) 1 )

= + + ( ( ) 1 )( )

× ¡ 2
¢ 1

( )(( ) 1 )

= + + ( )

× ¡ 2
¢ 1 ¡ ¢

Let = 1. Then we have

1 ( ) 1 = ( ) + ( )

+( + )
¡

2
¢ 1 ¡

+
¢
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Because is a nonsingular matrix, (7.236) holds if and only if 1 ( ) 1

0. By noting that (7.237) and (7.238) imply + = ,
(7.236) is equivalent to

+ + + ( + )
¡
2

¢ 1 ¡
+

¢
0

(7.239)
The theorem is thus proven. ut
Without proof, we introduce the "discrete time" version of Theorem 7.13.

Corollary 7.6 Given ( ) = + ( ) 1 RH × and 0
suppose that

I. for ( ) being injective

[0 2 ]

¸
= +

II. for ( ) being surjective

[0 2 ]

¸
= +

then k ( )k if and only if for case I there exists = such that

+ 2 0

¯ ¯ ¯ ( + ) 1 ¯ + 2 0 (7.240)

˜
¡

+ 2
¢ 1 ˜ + 0 (7.241)

¯ = +
¡
2

¢ 1
=

¡
2

¢ 1

=
¡
2

¢ 1 ˜ = +

or for case II there exists = such that

+ 2 0

¯ ¯ ¯ ( + ) 1 ¯ + 2 0 (7.242)

˜
¡

+ 2
¢ 1 ˜ + 0 (7.243)

¯ = +
¡
2

¢ 1
=

¡
2

¢ 1

=
¡
2

¢ 1 ˜ = +

In the next subsections, the H index and its LMI aided computation will
be integrated into the FDF design.
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7.9.3 H2 to H trade-o design of FDF

The so-called H2 to H sub-optimal design of FDF is defined as follows: Find
such that

is stable (7.244)

k ( + ) 1( )k2 (7.245)

k ( + ) 1( ) + k max (7.246)

where it is assumed that ( + ) 1( ) + RH × is
injective and for continuous time systems

k ( + ) 1( ) + k
= min

¡
( + ) 1( ) +

¢
0

as well as for discrete time systems

k ( + ) 1( ) + k
= min

¡
( + ) 1( ) +

¢
0

Analogous to the derivation given in Subsection 7.9.1, we first set = 2+
and reformulate the optimization problem as finding such that

( + ) is stable (7.247)

k ( + ( 2 + ) ) 1 k22 2 ( ) = 1 or
(7.248)

k ( + ( 2 + ) ) 1 k22 2 ( ) = 1 (7.249)

k ( + ( 2 + ) ) 1( ¯ ) + k max (7.250)

Recall that conditions I and II can be expressed in terms of the following
LMIs:

• for continuous time systems there exist 1 1 such that

2 1 + 1 2
¯ ¯ + 0 (7.251)

1
¯

¯
1

¸
0 ( 1) 1 (7.252)

• for the discrete time system: there exist 2 1 such that

1 1 2
¯

2 1
¯

1

¸
0 (7.253)

1
¯

¯
2

¸
0 ( 2) 1 (7.254)
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where

= ¯ = 1
1 or = 1

1 2 = 2

and 2 is theH2 optimal observer gain as given in Theorem 7.9. It follows from
Theorem 7.13, Corollary 7.6 and Schur complement that we can reformulate
(7.250) as

max
2= 2

2 subject to (7.255)"
2
2

˜
2 +

2
˜ + 2 + 2 +

#
0

for continuous time systems and

max
2= 2

2 subject to (7.256)"
+ ˜

2
˜ 2 ˜

2 +

2
˜ + 2 2 +

#
0

for discrete time systems, where

= 2
˜ = ( 2 + ) = ¯

In summary, theH2 toH sub-optimal design of FDF can be formulated as
the following optimization problem with nonlinear matrix inequalities (NMI):

• for continuous time systems

max
¯

1 2= 2

2 subject to (7.257)

2 1 + 1 2
¯ ¯ + 0

1
¯

¯
1

¸
0 ( 1) 1"

2
2

˜
2 +

2
˜ + 2 + 2 +

#
0

• for discrete time systems

max
¯

1 2= 2

2 subject to (7.258)

1 1 2
¯

2 1
¯

1

¸
0

1
¯

¯
2

¸
0 ( 2) 1"

+ ˜
2
˜ 2 ˜

2 +

2
˜ + 2 2 +

#
0
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Remark 7.11 Optimization problems (7.257) and (7.258) have been formu-
lated on the assumption that ( + ) 1( ) + is injective.
In case that it is surjective, using the dual principle we are able to derive the
solution.

Remark 7.12 (7.257) and (7.258) are optimization problems with NMI con-
straints. Such optimization problems can be solved in an iterative way. We
refer the reader to some literatures on this topic, given at the end of this
chapter.

7.9.4 H to H trade-o design of FDF

The so-called H to H optimization of FDF is formulated as finding such
that

is stable (7.259)

k ( + ) 1( ) + k (7.260)

k ( + ) 1( ) + k max (7.261)

The basic idea of solving the above optimization problem is, again, to trans-
form it into an optimization problem with matrix inequalities as constraints.
Initiated by Hou and Patton in 1997, study on the H to H optimization of
FDF has received considerable attention. In this subsection, we only introduce
an essential formulation of this optimization problem. For further details and
results published in the past, we refer the reader to the literature cited at the
end of this chapter.
To ensure the existence of a nonzero minimum H index, we assume that
( + ) 1( )+ RH × is injective and for continuous

time systems

k ( + ) 1( ) + k (7.262)

= min
¡
( + ) 1( ) +

¢
0

as well as for discrete time systems

k ( + ) 1( ) + k (7.263)

= min
¡
( + ) 1( ) +

¢
0

Once again, we would like to mention that using the dual principle a solution
for the surjective case can also be found. For the sake of simplicity, we only
concentrate ourselves on the injective case.
It follows from Lemmas 7.8 and 7.9 that requirements (7.259) and (7.260)

can be written into a matrix inequality form
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• for continuous time systems: there exists a 0 such that

( ) + ( ) ( )
( ) 0 (7.264)

• for discrete time systems: there exists a 0 such that

( ) ( ) 0

( ) 0
( ) 0

0

0 (7.265)

Combining (7.264), (7.265) with the results given in Theorem 7.13, Corol-
lary 7.6 leads to the following reformulation ofH toH optimization (7.259)-
(7.261):

• for continuous time systems:

max
0 1= 1

1 subject to (7.266)

( ) + ( ) ( )
( ) 0

2
1 ( ) 1 +

1( ) + 1 ( ) + ( ) 1 +

¸
0

• for discrete time systems:

max
1= 1

1 subject to (7.267)

( ) ( ) 0

( ) 0
( ) 0

0

0

11 12

12 22

¸
0

11 = + ( ) 1( ) 2
1

12 = ( ) 1 ( ) +

22 = ( ) 1 ( ) 1 +

Again, solving (7.266) and (7.267) deals with an optimization with NMI
constraints and requires the application of advanced nonlinear optimization
technique.
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7.9.5 An alternative H to H trade-o design of FDF

Although the approach proposed in the last subsection provides an elegant
LMI solution to the H to H trade-o design, it is computationally in-
volved and delivers often only local optimum. We now derive an alternative
solution to the same problem with less computation and guaranteeing the
global optimum.
Assume that ( + ) 1( ) + RH × is surjective

and satisfies ¸
= + or

[0 2 ]

¸
= +

It follows from Lemma 7.4 or Lemma 7.5 that setting

0 = ( + )( ) 1
0 = ( ) 1 2 0 or (7.268)

0 = ( + )( + ) 1
0 =

¡
+

¢ 1 2

(7.269)

gives °° ( + ) 1( ) +
°° = or°° ( + ) 1( ) +
°° =

where is the solution of Riccati equation

+ + ( + )( ) 1( + ) = 0 (7.270)

and of³
+

¡ ¢ 1
´ 1

+ = 0 (7.271)

=
¡ ¢ 1

Note that the dynamics of the corresponding FDF is governed by

( ) = ˆ
0( ) ( ) + ˆ

0( ) ( ) (7.272)

with

( ) = ˆ 1
0( )

ˆ
0( ) ( ) = ˆ 1

0 ( )
ˆ

0( )

ˆ ( ) = ˆ
0( ) = ˆ

0( ) = 0

¡
( + 0 ) 1

0

¢
(7.273)

ˆ
0( ) = 0

¡
( + 0 ) 1( 0 ) +

¢
(7.274)

ˆ
0( ) = 0

¡
( + 0 ) 1( 0 ) +

¢
(7.275)
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Next, we would like to demonstrate that 0 0 given in (7.268) or (7.269)
solve the optimization problem of finding such that

is stable (7.276)

k ( + ) 1( ) + k (7.277)

k ( + ) 1( ) + k max (7.278)

Remember that the dynamics of an FDF is generally described by

( ) = ˆ ( ) ( ) + ˆ ( ) ( )

which can be further written as

( ) = ( ) ˆ 1
0( )

³
ˆ

0( ) ( ) + ˆ
0( ) ( )

´
Suppose that ensure°°° ˆ ( )°°° =

°°° ( ) ˆ 1
0( )

ˆ
0( )

°°°
and make°°° ˆ ( )°°° =

°°° ( ) ˆ 1
0( )

ˆ
0( )

°°° = °°° ( ) ˆ 1
0 ( )

°°°
reaching its maximum. Consider the following relations (see also (7.232))°°° ˆ 0( )

°°° °°° ˆ 0( )
1( )

°°° °°° ( ) ˆ 1
0( )

ˆ
0( )

°°°°°° ˆ 0( )
°°° =

°°° ( ) ˆ 1
0( )

ˆ
0( )

1( ) ˆ 0( )
°°°

°°° ˆ 0( )
1( )

°°° °°° ( ) ˆ 1
0( )

°°°
and set

=
1°°°( ) 1 2 ( ( + 0 ) 1

0)
1( )

°°° or

=
1°°°°³ +

´ 1 2

( ( + 0 ) 1
0)

1( )

°°°°
we get °°° ˆ 0( )

°°° °°° ( ) ˆ 1
0 ( )

ˆ
0( )

°°° =
°°° ˆ ( )°°°°°° ˆ 0( )

°°° 1°°° ( ) ˆ 1
0 ( )

°°° =
°°° ˆ ( )°°°

This result verifies that 0 0 given in (7.268) or (7.269) do solve the opti-
mization problem (7.276)-(7.278) and thus proves the following theorem.
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Theorem 7.14 0 0 given in (7.268) or (7.269) with

0 °°°( ) 1 2
¡
( ¯) 1 ¯ +

¢°°° or (7.279)

0 °°°°³ +
´ 1 2 ¡

( ¯) 1 ¯ +
¢°°°° (7.280)

¯ = 0
¯ = 0

solve the optimization problem (7.276)-(7.278).

It is worth noting that for the determination of 0 0 only the solution of
one Riccati equation is needed. Moreover, the solution is analytically achiev-
able and ensures a global optimum.

Remark 7.13 We would like to mention that 0 0 given in (7.268) or
(7.269) also solves

sup
k ( + ) 1( ) + k
k ( + ) 1( ) + k

where ( 0) can be any constant. In Section 12.3, we shall prove it. We
would like to call reader’s attention that this result also verifies the comparison
study in Section 7.4.

Algorithm 7.8 H to H trade-o design of FDF - an alternative solution

Step 1: Compute 0 0 according to (7.268) or (7.269)
Step 2: Set satisfying (7.279) or (7.280).

Example 7.5 In this example, we design an H to H optimal FDF for
the benchmark vehicle dynamic system via Algorithm 7.8. To this end, system
model (3.76) in Subsection 3.7.4 is slightly modified, where

0 = 103600 + [ 10000 0]

is rewritten as

0 = 9360 + [ 5000 5000]

This change is due to the need in the late study. It results in

=
2 9077 0 9762
28 4186 3 2546

¸
=

1 0659
38 9638

¸
=

145 3844 1 1890
0 1 0000

¸
=

53 2973
0

¸
with
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=
0 0 1 0659
0 0 38 9638

¸
=

1 0 53 2973
0 1 0

¸
The achieved results are

0 =
0 0200 0 0002
0 7308 0 0707

¸
0 =

0 0188 0
0 1

¸

7.9.6 A brief summary and discussion

In this section, we have derived three approaches to the optimal design of
FDF regarding to three di erent performance indices:

• H2 H2 optimization
• H2 to H optimization
• H to H optimization.

Remember that our design objective is indeed a multiobjective optimiza-
tion, i.e. minimizing the influence of the disturbances on the residual and
simultaneously maximizing the one of the possible faults. The underlying
idea adopted here for solving such optimization problems is to reduce the
multiobjective optimization problem to a single optimization problem with
constraints. To this end, the well-established robust control theory and LMI-
techniques have been used. As a result, all requirements and constraints given
in the form of norms of transfer function matrices are equivalently expressed in
terms of matrix inequalities. Although these matrix inequalities look formally
linear, part of them is indeed bilinear related to the optimization parameters.
Bearing in mind the main objective of our handling, we shall continue our

study without detailed dealing with the solution for the formulated optimiza-
tion problems. At the end of this chapter, however, a number of references
are given, where the reader is provided with useful materials like essentials,
algorithms and even software solutions for such problems.
The reader might notice that theH norm has not been taken into account

for measuring the influence of faults . This is mainly due to the di culty met
by handling the inequality

k ˆ ( )k 0

A further discussion upon this will be carried out in the subsequent sections.

7.10 The unified solution

In the last sections, di erent norms and indices have been used to describe
the influence of the unknown disturbances and faults on the residual signal.
Remember that both the H norm and index H are some extreme value
of a transfer function matrix. From the practical viewpoint, it is desired to
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define an index that gives a fair evaluation of the influence of the faults on
the residual signal over the whole frequency domain and in all directions in
the measurement subspace.
The major objective of this section is to introduce an index for a practical

evaluation of the fault sensitivity and, based on it, to achieve an optimal
design of the observer-based FD systems.

7.10.1 H /H index and problem formulation

Consider system (7.156). To simplify our discussion, we first focus on the con-
tinuous time systems. The extension to the discrete time systems is straight-
forward and will be given at the end of this section.
For our purpose, we now introduce a definition of fault sensitivity and,

associated with it, the so-called H H performance index. Recall that the
singular values of a matrix give a measurement of the "gain" in each di-
rection of the subspace spanned by the matrix. In this context, all singular
values ( ( ) ¯ ( )) [0 ] together build a natural measurement
of the fault sensitivity. They cover all directions of the subspace spanned by
( ) ¯ ( ) In comparison,

°° ¯
°° or

°° ¯
°° are only two extreme

points in this subspace. It holds [0 ]°° ¯
°° ( ( ) ¯ ( ))

°° ¯
°° (7.281)

Associated with it, we introduce

Definition 7.5 (H H design) Given system (7.156) and let ( ( ) ¯ ( ))
= 1 · · · be the singular values of ( ) ¯ ( ).

( ) =
( ( ) ¯ ( ))°° ( ) ¯ ( )

°° (7.282)

is called H H performance index.

We would like to call reader’s attention that H H index indicates a set
of ( ) functions. It is clear that ( ) and 0( )

( ) =

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° 0( ) =

inf ( ( ) ¯ ( ))°° ( ) ¯ ( )
°°

are only two special functions in the set of ( )
Under H H performance index, we now formulate the residual gener-

ator design as finding ( ) RH such that for all ( ( ) ¯ ( )) =
1 · · · [0 ] ( ) is maximized, i.e.

sup
( ) RH

( ) = sup
( ) RH

( ( ) ¯ ( ))°° ( ) ¯ ( )
°° (7.283)
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It is worth emphasizing that (7.283) is a multiobjective ( objectives!) opti-
mization and the solution of (7.283) would also solve

sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° and sup

( ) RH

inf ( ( ) ¯ ( ))°° ( ) ¯ ( )
°° (7.284)

which have been discussed in the previous sections.

7.10.2 H /H optimal design of FDF: the standard form

Now, we are going to solve (7.283). For our purpose, we first assume that

[0 ] ¯ ( ) ¯ ( ) 0 (7.285)

This assumption will be removed in the next section. It follows from Lemma
7.4 that ¯ ( ) can be factorized into ¯ ( ) = ˆ 1

0 ( ) ˆ0( ) where ˆ
1

0 ( ) is
a co-outer, ˆ0( ) a co-inner of ¯ ( ) Let ( ) = ( ) ˆ0( ) for some ( )
RH It then turns out that [0 ] and for all ( ( ) ¯ ( )) =
1 · · ·

( ) =

³
( ) ˆ0( ) ¯ ( )

´
k ( )k

³
ˆ
0( ) ¯ ( )

´
(7.286)

On the other side, setting ( ) = ˆ
0( ) leads to

( ( ) ¯ ( )) ( ) =
³
ˆ
0( ) ¯ ( )

´
i.e. [0 ], = 1 · · · the postfilter ( ) = ˆ

0( ) leads to the
maximum ( ) As a result, the following theorem is proven.

Theorem 7.15 Given system (7.156) and assume that (7.285) holds, then
[0 ] and ( ( ) ¯ ( )) = 1 · · ·

( ) = arg

Ã
sup

( ) RH
( )

!
= ˆ

0( ) (7.287)

where ˆ 1
0 ( ) is a co-outer of ¯ ( )

Theorem 7.15 reveals that ( ) leads to a simultaneous optimum of
performance index (7.283) in the whole subspace spanned by ¯ ( ) It also
covers the special case (7.284). For this reason, ( ) is the unified solution.
It can be shown (see Chapter 12) that the unified solution delivers not only
an optimal solution in the sense of (7.283) or (7.284) but also an optimal
trade-o in the sense that given an allowable false alarm rate, the fault detec-
tion rate is maximized. This also gives a practical explanation why the unified
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solution, di erent from the existing optimization methods, solves (7.283) si-
multaneously for all ( ( ) ¯ ( )) [0 ] = 1 · · · .
Applying ( ) to (7.156) yields

( ) = ˆ
0( ) ( ) + ˆ

0( ) ¯ ( ) ( ) (7.288)

and in the fault-free case k k2 = k k2 In the above expression, ˆ0( ) can
be considered as a weighting matrix of the influence of on Remember that
ˆ
0( ) is the inverse of the co-outer of ¯ ( ) and the co-outer of a transfer

function matrix can be interpreted as the magnitude profile of the transfer
function matrix in the frequency domain. In this context, it can be concluded
that the optimal solution is achieved by inversing the magnitude profile of
¯ ( ) As a result, the influence of on becomes uniform in the whole
subspace spanned by the possible disturbances, while the influence of on is
weighted by the inverse of the magnitude profile of ¯ ( ) i.e. where ¯ ( )
is strong (weak), ¯ ( ) will be weakly (strongly) weighted.

Remark 7.14 Remember that in Subsection 7.9.5, we have derived a solution
for the optimization problem

sup
( ) RH

0( ) =
inf ( ( ) ¯ ( ))°° ( ) ¯ ( )

°°
which is di erent from the one given above. This shows that the solution for
this problem is not unique. In Chapter 12, we shall further discuss this prob-
lem.

Following Lemma 7.4, the results given in Theorem 7.15 can also be pre-
sented in the state space form. To this end, suppose that the minimal state
space realization of system (7.156) is given by

˙ ( ) = ( ) + ( ) + ( ) + ( )

( ) = ( ) + ( ) + ( ) + ( ) (7.289)

Using an FDF,

˙̂ ( ) = ˆ( ) + ( ) + ( ( ) ˆ( )) (7.290)

ˆ( ) = ˆ( ) + ( ) ( ) = ( ( ) ˆ( ))

for the purpose of residual generation gives

( ) =
³
ˆ ( ) ( ) ( ) + ˆ ( ) ( ) ( )

´
=

³
ˆ ( ) ( ) + ˆ ( ) ( )

´
(7.291)

ˆ ( ) = ( + ) 1 = ˆ ( ) = ˆ ( )

ˆ ( ) = + ( + ) 1( )

ˆ ( ) = + ( + ) 1( )

( ) = ˆ 1( ) ˆ ( ) ( ) = ˆ 1( ) ˆ ( )
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The following theorem represents a state space version of the optimal solution
(7.287) and gives the optimal design for .

Theorem 7.16 Given system (7.289) that is detectable and satisfies
[0 ] ¸

= + (7.292)

and the residual generator (7.290), then

= ( + )( ) 1 = ( ) 1 2 (7.293)

with 0 being the stabilizing solution of the Riccati equation

+ + ( + )( ) 1( + ) = 0 (7.294)

deliver an optimal FDF (7.290) in the sense of ( ˆ ( )) = 1 · · ·

sup ( ) = sup
( ˆ ( ))°°° ˆ ( )

°°° = ( ˆ ( )) (7.295)

ˆ ( ) = + ( + ) 1( )

The proof of this theorem follows directly from Lemma 7.4 and Theorem
7.15.
Theorem 7.16 provides us not only with a state space expression of opti-

mization problem (7.283) but also with the possibility for a comparison with
the existing methods from the computational viewpoint. Remember that most
of the LMI aided design methods handle the optimization problems as a multi-
objective optimization. As a result, the solutions generally include two Riccati
LMIs. In comparison, the unified solution only requires solving Riccati equa-
tion (7.294) and thus demands less computation.

Example 7.6 We now design an FDF using the unified solution for the
benchmark system LIP100. Our design purpose is to increase the system ro-
bustness against the unknown inputs including measurement noises. Based on
model (3.57) with the extended (to include the measurement noises)

=
£
0

¤
=
£
3×3 0

¤
we get

=

0 0006 0 0711 0 0013
0 0711 8 8764 0 1619
6 1356 0 1619 0 0030
84 6187 39 4106 0 7188

= 3×3
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7.10.3 Discrete time version of the unified solution

In this subsection, we shall briefly present the analogous version of Theorems
7.15 and 7.16 for discrete time systems without proof.

Theorem 7.17 Given system (7.156) and assume that

[0 2 ] ¯ ( ) ¯ ( ) 0 (7.296)

then [0 2 ] and ( ( ) ¯ ( )) = 1 · · ·

( ) = arg

Ã
sup

( ) RH
( )

!
= ˆ

0( ) (7.297)

where ˆ 1
0 ( ) is a co-outer of ¯ ( )

Theorem 7.18 Given system

( + 1) = ( ) + ( ) + ( ) + ( )

( ) = ( ) + ( ) + ( ) + ( )

that is detectable and satisfies [0 2 ]¸
= +

Then residual generator

ˆ( + 1) = ( ) ˆ( ) + ( ) ( ) + ( )

( ) = ( ( ) ˆ( ) ( ))

with
= = (7.298)

delivers residual signal ( ) that is optimum in the sense that [0 2 ] and³
ˆ ( )

´

sup

³
ˆ ( )

´
°°° ˆ ( )

°°° =
³

ˆ ( )
´

ˆ ( ) = + ( + )
1
( )

In (7.298), is the left inverse of a full column rank matrix satisfying
= + , and ( ) is the stabilizing solution to the

DTARS (discrete time algebraic Riccati system)

+ +
+ +

¸ ¸
= 0 (7.299)
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7.11 The general form of the unified solution

Due to the complexity, the study in this section will focus on continuous time
systems.
Recall that the unified solution proposed in the last section is based on

assumption (7.285) or its state space expression (7.292), i.e. ¯ ( ) is surjective
and has no zero on the -axis or at infinity. Although it is standard in
the robust control theory and often adopted in the observer-based residual
generator design, this assumption may considerably restrict the application
of design schemes. For instance, the case ( ) which is often met
in practice, leads to invalidity of (7.292). Another interesting fact is that for

a PUID can be achieved, as shown in Chapter 6. It is evident that for
(7.285) does not hold.

It is well-known that a zero on the -axis or at infinity means that a
disturbance of frequency or with infinitively high frequency will be fully
blocked. Also, for there exists a subspace in the measurement sub-
space, on which has no influence. From the FDI viewpoint, the existence
of such a zero or subspace means a "natural" robustness against the un-
known disturbances. Moreover, remember that the unified solution can be
interpreted as weighting the influence of the faults on the residual signal by
means of inversing the magnitude profile of ¯ ( ). Following it, around zero

say ( ± ) the influence of the faults on the residual signal will

be considerably strongly weighted by ˆ
0( ) (because

³
ˆ 1
0 ( )

´
is very

small). From this observation we learn that it is possible to make use of the
information about the available zeros on the -axis or at infinity or the exist-
ing null subspace of ¯ ( ) to improve the fault sensitivity considerably while
keeping the robustness against This is the motivation and the basic idea
behind our study on extending the unified solution so that it can be applied
to system (7.156) without any restriction.
Our extension study consists of two parts: (a) a special factorization of

¯ ( ) is developed, based on it (b) an approximated "inverse" of ¯ ( ) in the
whole measurement subspace will be derived.

7.11.1 Extended CIOF

Now, under the assumption that ¯ ( ) RH × ,¡
¯ ( )

¢
= min { }

¯ ( ) will be factorized into

¯ ( ) = ( ) ( ) ( ) ( ) (7.300)

with co-inner ( ) left invertible ( ), ( ) having the same zeros on
the -axis and ( ) having the same zeros at infinity as ¯ ( ). This special
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factorization of ¯ ( ) is in fact an extension of the standard CIOF introduced
at the beginning of this chapter.
We present this factorization in the form of an algorithm.

Algorithm 7.9 Algorithm for the extended CIOF

Step 0: Do a column compression by all-pass factors as described in Lemma
7.6: ¯ ( ) = ˜( ) 1( )
Note that this step is necessary only if
Step 1 : Do a dislocation of zeros for ˜( ) by all-pass factors: ˜( ) =

¯ ( ) 1( ). Denote the zeros and poles of ¯ ( ) in C by
Step 2: Set = + with satisfying

Re( ) 0 (7.301)

and substitute = + into ¯ ( ): 1( ) = ¯ ( + ) = ¯ ( )
We denote the zeros of 1( ) corresponding to the zeros of ¯ ( ) in C C

and at infinity by , and respectively. It follows from (7.301) that
Re( ) 0 Re( ) 0 = Also, all poles of 1( ) are located
in C .
Step 3: Do a CIOF of 1( ) following Lemma 7.6: 1( ) = 1 ( ) 1 ( )
Note that 1 ( ) is inner and 1 ( ) is an outer factor whose zeros belong

to C and at infinity
Step 4: Substitute = into 1 ( ) 1 ( ) and set ¯ ( ) equal to

¯ ( ) = 1( ) = 1 ( ) 1 ( ) = ( ) ¯1 ( )

Remembering that is corresponding to a zero of ¯ ( ) in C it is evident
that ( ) has as its zeros all the zeros of ( ) on the imaginary axis. Noting
that = + 0 it can be further concluded that ¯1 ( ) only has zeros
in C as well as at infinity and the poles of ( ) ¯1 ( ) are all located in
C Denote the zeros and poles of ¯1 ( ) in C by

Step 5: Set = 1 and substitute it into
¯
1 ( ) : ¯1 ( ) = ¯

1

³
1

´
=

2( ) where is a constant satisfying

(Im( ))2

|Re( )| + |Re( )| | (7.302)

It is straightforward to prove that after Step 5 the zeros of ¯1 ( ) at infinity
and in C are located in C+ and C of the -complex plane respectively. Also
the poles of ¯1 ( ) are in C of the -complex plane.
Step 6: Do a CIOF on 2( ) following Lemma 7.6: 2( ) = 2 ( ) 2 ( )
Note that 2 ( ) is inner and has as its zeros all the zeros of 2( ) in C+

Since 2( ) has no zero in C and at infinity, 2 ( ) is right invertible in
RH
Step 7: Substitute = + into 2 ( ) 2 ( ) and set ¯1 ( ) equal to
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2( ) = 2

μ
+

¶
2

μ
+

¶
= ( ) ( )

It is evident that ( ) has as its zeros only zeros of ¯ ( ) at infinity. Denote
a zero or a pole of 2 ( ) in C by C . It turns out

=
1
=

(Re( ) 1) Im( )

(Re( ) 1)2 + (Im( ))2

Since 0 Re( ) 0 we have Re( ) 0 C . It can thus be
concluded that the poles of ( ) ( ) lie in C and ( ) is right invertible
in RH As a result, the desired factorization

¯ ( ) = ( ) ( ) ( ) ( ) ( ) = 1( ) 1( )

is achieved.

Remark 7.15 We would like to point out that the study on the extended
CIOF primarily serves as a mathematical formulation. Below, we shall demon-
strate that the information provided by those zeros at the -axis can be utilized
to improve the fault detection performance. From the numerical viewpoint,
there should be more e cient algorithms to realize such an extended CIOF.

7.11.2 Generalization of the unified solution

We are now in a position to extend and generalize the unified solution. Recall-
ing the idea behind the unified solution and our discussion at the beginning of
this section, our focus is on approximating the inverse of ( ) ( ) ( )
by a post-filter in RH To this end, we shall approach the inverse of

( ) ( ), ( ) separately.
Remember that ( ) has as its zeros all the zeros of ( ) on the -

axis. Define ˜ ( ) by ( ) 0 Note that all zeros of ˜ ( ) are
located in C If is chosen to be small enough, then we have ˜ 1( ) as an
approximation of the inverse of ( ) with

˜ 1( ) ( ) ˜ 1( ) = 1( ) RH (7.303)

To approximate the inverse of ( ) we introduce ˜ ( ) =
³

+1

´
0 whose zeros are 1 C . Thus, choosing small enough yields

˜ 1( ) ( ) ˜ 1( ) = 1

μ
+ 1

¶
RH (7.304)

Recalling that ( ) = ( ) is left invertible in RH for = the
solution is trivial, i.e. ( ) = 1( ) We study the case As
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described in Lemma 7.6, using a row compression by all-pass factors ( )
can be factorized into

( ) = 1( )
2( )
0

¸
RH × (7.305)

with 1( ) RH × , 2( ) RH × . Both 1( ) 2( ) are
invertible in RH (7.305) means that ¯ ( ) only spans a × -dimensional
subspace of the × -dimensional measurement space. In order to inverse
¯ ( ) in the whole measurement space approximately, we now extend ¯ ( )
and ( ) to

¯ ( ) =
£
¯ ( ) 0

¤ RH × ( ) =
( )
0

¸
R

which yields no change in the results achieved above. As a result, we have

¯ ( ) = 1
2( ) ( ) ( ) 0

0 0

¸
¯ ( )

¯ ( ) =
( ) 0
0

¸
is co-inner.

Since 2( ) ( ) ( ) 0
0 0

¸
is not invertible, we can introduce

2( ) ( ) ( ) 0
0

¸
with a very small constant to approximate it. Together with (7.303)-(7.305),
we now define the optimal post-filter as

( ) =
˜ 1( ) ˜ 1( ) 1

2( ) 0

0 1

¸
1
1( ) (7.306)

( ) satisfying (7.306) is an approximation of the inverse of the magnitude
profile of ¯ ( ). In order to understand it well, we apply ( ) to residual
generator

( ) = ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
and study the generated residual signal. It turns out

( ) = ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
= (7.307)

( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
= 1( )

2( )

¸
=

˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )
1

2( ) ( )

¸



242 7 Residual generation with enhanced robustness against unknown inputs

with
1( )

2( )

¸
=

˜ 1( ) ˜ 1( ) 1
2( ) 0

0 1

¸
1
1
¯ ( )

Note that has no influence on 2( ) Following the basic idea of the unified
solution, the transfer function of the faults to 2( ) should be infinitively
large weighted. In solution (7.306), this is realized by introducing factor 1 . It
is very interesting to notice that in fact 2( ) corresponds to the solution of
the full disturbance decoupling problem, where only this part of the residual
vector is generated and used for the FD purpose. This also means that the
dimension of the residual vector, is smaller than the dimension of the
measurement In against, the unified solution results in a residual vector
with the same dimension like the measurement vector, which allows also to
detect those faults, which satisfy 2( ) ( ) = 0 and thus are undetectable
using the full disturbance decoupling schemes.
In case = , the solution is reduced to

( ) = ˜ 1( ) ˜ 1( ) 1( ) (7.308)

Summarizing the results achieved in this and the last sections, the unified
solution can be understood as the inverse of the magnitude profile of ¯ ( )
and described in the following general form: given system (7.156),½

the unified solution is given by (7 306) if
the unified solution is given by (7 308) if

(7.309)

Note that if ¯ ( ) has no zero in C or at infinity, then ˜ ( ) = or
˜ ( ) =
We would like to call reader’s attention to the fact that the unified solution

will be re-studied in Chapter 12 under a more practical aspect. The physical
meaning of the unified solution will be revealed.

Example 7.7 We now illustrate the discussion in this subsection by studying
the following example. Consider system (7.156) with

( ) =
1( )

2( )

3( )
( ) = 1( )

2( )

¸
( ) = 1( )

2( )

¸

( ) =

2+3 +2
2 +1
2+3 +2
1
+1

¯ ( ) =

+5
2+4 +1 0
1

2+4 +1 0

0 1

¯ ( ) =
¯
1( )
0

¸
¯
1( ) =

"
( +1)( +4)

2+4 +1
1

2+4 +1
+5

2+4 +1
+2

2+4 +1

#
¯ ( ) has two zeros at 3 Moreover, it is evident that 3( ) = 2( ) i.e. a
full decoupling is achieved. However, using 3( ) 1 cannot be detected. In the
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following, we are going to apply the general optimal solution given in (7.309)
to solve the FD problem. It will be shown that using (7.309) we can achieve
the similar performance of detecting 2 as using the full decoupling scheme.
In addition, 1 can also be well detected and the zero at infinity can be used
to enhance the fault sensitivity. We now first apply the algorithm given in the
last section to achieve the special factorization (7.300) and then compute the
optimal solution according to (7.309). Considering that ¯ 1( ) has only zeros
in C and at we start from Step 5. Let = 4 5 and substitute = 1

into ¯ 1( )

¯
1( ) = 2( ) =

"
4( +3 5)( +0 125)

2+16 +3 25
5( 1)( 0 1)
2+16 +3 25

( 1)2

2+16 +3 25
2( 1)( +1 25)

2+16 +3 25

#
2( ) has poles at 15 7942 0 2058 and zeros at 1 0 5. As the next step,

do an IOF of 2( ) using Lemma 7.6. It results in 2( ) = 2 ( ) 2 ( ),
where

2 ( ) =
0 8321 0 5547
0 5547( 1)

+1
0 8321( 1)

+1

¸
2 ( ) ="

2 7735( 2+4 35 +0 725)
2+16 +3 25

3 0509( 2 2 3182 0 3182)
2+16 +3 25

3 0509( 2+2 6364 +0 0455)
2+16 +3 25

4 4376( 2+0 1562 +0 5312)
2+16 +3 25

#
Note that 2 ( ) has a pole at 1 and a zero at 1 and 2 ( ) has poles
at 15 7942 0 2058 and zeros 1 0 5. The next step is to transform
2 ( ) 2 ( ) back to the -plane by letting = 4 5+ . It yields

( ) =
0 8321 0 5547
1 2481
+2 25

1 8721
+2 25

¸
( ) ="

0 8321( 2+4 7037 +3 3333)
2+4 +1

0 2465( 2+0 875 12 375)
2+4 +1

0 5547( 2+5 6667 +5 5)
2+4 +1

0 3695( 2+5 75 +12)
2+4 +1

#
where ( ) has a pole at 2 25 and zero at , ( ) has poles at 3 7321
0 2679 and zeros at 3 2 25. Thus, 1( ) = ( ) ( ),

¯ ( ) =
¯
1( )

¸
=

( ) ( )
¸

As a result, the optimal post filter ( ) is given by

( ) =
˜ 1( )( ( )) 1 0

0 1

¸
with

˜ 1( ) =
0 8321 0 5547

0 2465(1+2 25 ) 0 5547
+1

0 3698(1+2 25 ) +0 8321
+1

¸

=

"
0 8321( 2+5 75 +12)

2+5 25 +6 75
1 2481( 2+5 6667 +5 5)

2+5 25 +6 75
0 5547( 2+0 875 12 375)

2+5 25 +6 75
1 8721( 2+4 7037 +3 3333)

2+5 25 +6 75

#
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and the small positive numbers are selected as = 0 01 = 0 01. The
optimal performance indexes ( ), = 1 2 are shown in Fig.7.4. It can
be read from the figure that

( ) = max ( ) = 99 1( 40 )

0( ) = min ( ) 0

We would like to point out that, if 0, the value of ( ) will converge
to 1 = 100. It is evident that ( ) may become infinitively large as goes
to zero.
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Fig. 7.4 Optimal performance index ( ), = 1 2

7.12 Notes and references

The topics addressed in this chapter build one of the vital research fields of
the recent years in the area of the model-based fault diagnosis technique. The
results presented in Sections 5-10 mark the state of the art of the model and
observer-based FDI methods. After working with this chapter, we can identify
the major reasons for this development:

• the development of these methods are well and similarly motivated
They are driven by the increasing needs for enhanced robustness against
disturbances and simultaneously by the demands for reliable and fault
sensitive residual generation.
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• the ideas behind these methods are similar
The residual generation problems are formulated in terms of robustness
and sensitivity and then solved in the framework of the robust control
theory.

• each method and design scheme is coupled with a newly developed method
in the framework of the robust control theory
The duality between the control and estimation problems enables a direct
application of advanced control theory and technique to approaching the
residual generation problems.

Due to this close coupling with the advanced control theory, needed pre-
liminaries of the advanced control theory have first been introduced in this
chapter. We refer the reader to [49, 46, 161, 160, 134] for the essential knowl-
edge of signal and system norms, the associated norm computation and the
H2 H technique. To our knowledge, [14, 130] are two mostly cited literatures
in the area of the LMI technique, which contain both the needed essentials
and computational skills. The factorization technique plays an important role
in our study. We refer the reader to [161] for a textbook styled presenta-
tion on this topic and [110, 137] for a deeper study, for which some special
mathematical knowledge is required.
The proofs of Lemmas 7.1 - 7.5 are given in [161], the proof of Lemma 7.6

in [110] and the one of Lemma 7.7 on the MMP solution in [46]. The LMI
version of the Bounded Real Lemma, Lemmas 7.8 - 7.9, is well known, see for
instance [14].
The Kalman filter technique is standard and can be found in almost any

standard textbooks of control engineering, see for instance [6, 20]. Patton
and Chen [115] initiated the technique of residual generator design via an
approximation of unknown input distribution matrices and made the major
contributions to it. The study on the comparison of di erent performance
indices presented in Section 7.4 gives us a deeper insight into the optimization
strategies. To our knowledge, no study has been published on this topic. The
optimal selection of parity matrices and vectors addressed in Section 7.5 is
mainly due to the work by Ding and co-worker [27, 28, 30] . They extended
the first results by Chow and Willsky [23, 98] and by Wuennenberg [148]
in handling residual generator design via parity space technique and gave a
systematic and complete procedure to the residual generator design.
Although the H2 H2 design is the first approach proposed in [37, 97] for

the optimal design of observer-based residual generators using the advanced
robust control technique, only few study has been devoted to it. The interest-
ing result on the relationship between the parity vector and H2 H2 solution
has been recently published by Zhang et al. [155]. Based on it, Ye et al.
[150, 151] have developed time-frequency domain approaches for the residual
generator design .
The core of an observer-based residual generator is an observer or postfilter

based residual generator. Some works have formulated the design problems in
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the framework of H2 or H or mixed H2/H filtering [47, 88, 89, 101, 109],
or using the game theory [24]. TheH H design problem was first proposed
and solved in [39], lately in [121, 54, 129]. In the literature, few results have
been reported on the LMI technique based solution of H H design. Most
relevant works are focused on the FDF design withH robustness against dis-
turbances, see for instance [109, 47, 22] or [89]. Although it has been proposed
and addressed in 1993 [43],H H design problem has been extensively stud-
ied after the publication of the first LMI solution to this problem [75]. The
discussion about the H index in Subsection 7.9.2 is based on the work by
Zhang and Ding [153] and strongly related to the results in [75, 122, 96].
Roughly speaking, there are three di erent design schemes relating to the H
index

• LMI technique based solutions, which also build the mainstream of the
recent study on observer-based FD,

• H solution by means of a reformulation ofH H design into a standard
H problem as well as

• factorization technique based solutions.

In this chapter, we have studied the first and the third schemes in the
extended details. The second one has been briefly addressed. The most signif-
icant contributions to the first scheme are [75, 122, 96], while [72, 123] have
provided solutions to the second scheme. In [32], the factorization technique
has been used for the first time to get a complete solution. This work is the
basis for the development of the unified solution. A draft version of the unified
solution has been reported in [29]. Further contributions to this scheme can
be found in [82, 97, 152].
The unified solution plays a remarkable role in the subsequent study. The

fact that the unified solution o ers a simultaneous solution to the multiobjec-
tive H H (including H H and H H ) optimization problem with, in
comparison with other LMI solutions, considerably less computation is only
one advantage of the unified solution, even though it seems attractive for the
theoretical study. It will be demonstrated, in Chapter 12, that the general
form of the unified solution leads to an optimal trade-o between the false
alarm rate and fault detection rate and thus meets the primary and practi-
cal demands on an FDI system. This is the most important advantage of the
unified solution. We would like to call reader’s attention that the study on
the extended CIOF in Subsection 7.11.1 primarily serves as a mathematical
formulation. Aided by this formulation, we are able to prove that making use
of the information provided by those zeros at the -axis will lead to an im-
provement of the fault detection performance. From the numerical viewpoint,
there should be more e cient algorithms to realize such an extended CIOF.
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Residual generation with enhanced robustness
against model uncertainties

In this chapter, we shall deal with robustness problems met by generating
residual signals in uncertain systems. As sketched in Fig.8.1, model uncertain-
ties can be caused by changes in process and in sensor, actuator parameters.
These changes will a ect the residual signal and complicate the FDI process.
The major objective of addressing the robustness issues is to enhance the
robustness of the residual generator against model uncertainties and distur-
bances without significant loss of the faults sensitivity.

Fig. 8.1 Schematic description of residual generation in a uncertain dynamic system

Model uncertainties may be present in di erent forms. It makes the han-
dling of FDI in uncertain systems much more complicated than FDI for sys-
tems with unknown inputs. Bearing in mind that there exists no systematic
way to address FDI problems for uncertain systems, in this chapter we shall
focus on the introduction of some basic ideas, design schemes and on handling
of representative model uncertainties.
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8.1 Preliminaries

The major mathematical tool used for our study is the LMI technique intro-
duced in the last chapter. Next, we shall introduce some additional mathe-
matical preliminaries that are needed for the study on uncertain systems.

8.1.1 LMI aided computation for system bounds

The following lemma plays an important role in boundness computation for
uncertain systems.

Lemma 8.1 Let and ( ) be real matrices of appropriate dimensions
with ( ) being a matrix function and ( ) ( ) . Then

(a) for any 0,

( ) + ( )
1

+ (8.1)

(b) for any 0 0 satisfying 1 0,

( + ( ) ) ( + ( ) ) ( 1 ) 1 +
1

(8.2)

Consider a system

˙ = ¯ + ¯ = ¯ + ¯ (8.3)
¯ = + ¯ = + ¯ = + ¯ = + (8.4)

with polytopic uncertainty¸
=
X
=1

¸ X
=1

= 1 0 = 1 · · · (8.5)

It holds

Lemma 8.2 Given system (8.3)-(8.5) and a constant 0 then

k k2 k k2
if and only if there exists 0 so that = 1 · · ·

( + ) + ( + ) ( + ) ( + )

( + ) ( + )
+ +

0 (8.6)
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The proof of this lemma can be found in the book by Boyd et al. (see
the reference given at the end of this chapter). Along with the lines of this
proof, we can find an LMI solution for the computation of the H index by
extending Theorem 7.13 to the systems with polytopic uncertainties. Without
proof, we summarize the results into the following lemma.

Lemma 8.3 Given system (8.3)-(8.5) and a constant 0 suppose that for
= 1 · · ·

+ +
+ +

¸
= + ( + ) ( + )

then
k k2 k k2

if and only if there exists = so that = 1 · · ·
( + ) + ( + ) ( + ) ( + )

( + ) ( + )
+ +

0 (8.7)

8.1.2 Stability of stochastically uncertain systems

Given a stochastically uncertain system

( + 1) =

Ã
+
X
=1

( )

!
( ) (8.8)

where ( ) = 1 · · · represents a stochastic process with

E ( ( )) = 0 E
³£

1( ) · · · ( )
¤ £

1( ) · · · ( )
¤´
= ( 1 · · · )

= 1 · · · are known. It is further assumed that (0) (1) · · · are in-
dependent and (0) is independent of ( ) The stability of (8.8) should be
understood in the context of statistics. The so-called mean square stability
serves for this purpose.

Definition 8.1 Mean square stability: Given system (8.8) and denote

( ) = E
¡
( ) ( )

¢
The system is called mean-square stability if for any (0)

lim ( ) = 0

It is straightforward that

( + 1) = ( ) +
X
=1

2 ( )
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Lemma 8.4 Given system (8.8). It is mean square stable if and only if there
exists 0 so that

+
X
=1

2 0

We refer the reader to the book by Boyd et al. for a comprehensive study
on systems with stochastic uncertainties.

8.2 Transforming model uncertainties into unknown
inputs

As introduced in Chapter 3, systems with norm bounded uncertainties can be
described by

˙ = ¯ + ¯ + ¯ + = ¯ + ¯ + ¯ + (8.9)
¯ = + ¯ = + ¯ = + (8.10)
¯ = + ¯ = + ¯ = + (8.11)

where ¸
=

¸
( )
£ ¤

(8.12)

with known which are of appropriate dimensions and unknown
( ) which is bounded by

¯ ( ) (8.13)

Applying residual generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
( ) RH (8.14)

to (8.9)-(8.11) yields

˙ = ¯ + ¯ + ¯ +

˙ = ( ) + ( ) + ( )

+
¡
¯ ¯

¢
+ ( ) (8.15)

( ) = ( )
¡

+ + + ¯ +
¢

(8.16)

It is evident that system (8.15)-(8.16) is stable if and only if the original
system (8.9) is stable and the observer gain is so chosen that is
stable. For this reason, we assume in the following study that for any ( )
(8.9) is stable.
Note that, due to (8.12), (8.15) and (8.16) can be further written into
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˙ = ( ) + ( ) + ( ) + ( )

( ) = ( ) ( + + + )

=
£ ¤

Let
˜=

¸
˜=

£ ¤
˜=

£ ¤
we have

˙ = ( ) +
¡

˜

¢̃
˜+ ( ) (8.17)

( ) = ( )
³

+ ˜
˜+

´
(8.18)

i.e. the dynamics of the residual generator is now represented by (8.17)-(8.18).
In this way, the influence of the model uncertainty of the norm bounded type
is modelled as a part of the unknown input vector ˜ Thanks to its standard
form, optimal design of (8.17)-(8.18) can be realized using the approaches
presented in Chapter 7.

Remark 8.1 Note that is a function of and , which can be expressed by

= ( + ) +
£ ¤ ¸

with
˙ = ¯ + ¯ + ¯ ˙ = ¯ + ¯ +

In the fault-free case,

˜=

¸
=

£ ¤
Thus, the unified solution can be achieved based on (8.17)-(8.18), even if ˜

depends on

This way of handling system uncertainties can also be extended to dealing
with other types of model uncertainties.
It is worth pointing out that modelling the model uncertainty as unknown

input vector may lead to a conservative design of the residual generator, since
valuable information about the structure of the model uncertainty has not
been taken into account.
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8.3 Reference model strategies

8.3.1 Basic idea

Among the existing FDI schemes for uncertain systems, the so-called reference
model based scheme has received considerable attention. The basic idea behind
this scheme is the application of a reference model. In this way, similar to the
solution of the H OFIP, the original FDI problem can be transformed into
a standard design problem

min
( ) RH

sup
k k2°°°°°°

°°°°°°
2

with respect to (8.9)-(8.11) (8.19)

with denoting the reference model. (8.19) is an MMP and there exist a
number of methods to approach (8.19). The major di erence between those
methods lies in the definition of the reference model.
The earliest and most studied strategy is to handle the FDI problems in

the form of the H OFIP. That means the reference model is defined as

( ) = ( ) or ( ) = ( ) ( ) (8.20)

with a given weighting matrix ( ) RH This method has been first
introduced in solving the integrated design of controller and FD unit and
lately for the FD purpose, where optimization problem (8.19) is solved in the
H / framework.
As mentioned in Section 7.6 in dealing with the solution of H OFIP,

the performance of the FDI systems designed based on reference model (8.20)
strongly depends on the system structure regarding to the faults and on the
selection of the weighting matrix ( ). Next, we shall present an approach
proposed by Zhong et al., which provides us with a more reasonable solution
for the FDF design.

8.3.2 A reference model based solution for systems with norm
bounded uncertainties

The proposed approach consists of a two-step procedure for the design of FDI
system:

• Find the unified solution for system (8.9)-(8.11) with ( ) = 0 Let
be computed according to (7.293) and

( ) = ( ) ( ) + ( ) ( ) (8.21)

( ) =
¡
( + ) 1 ( ) +

¢
( ) =

¡
( + ) 1 ( ) +

¢
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• Solve optimization problem

min sup
k k2°°°°°°

°°°°°°
2

(8.22)

by means of a standard LMI optimization method.

Comparing reference models (8.20) and (8.21) makes it clear that includ-
ing the influence of in the reference model is the distinguishing di erence
between (8.21) on the one side and (8.20) on the other side. At the first glance,
it seems contradictory that is integrated into the reference model though re-
ducing the influence of is desired. On the other hand, we have learnt from the
unified solution that the optimum is achieved by a suitable trade-o between
the influences of the faults and disturbances. Simply reducing the influence of
the disturbances does not automatically lead to an optimal trade-o .
Now, we describe the second step of the approach, i.e. the solution of

(8.22), in the extended detail.
Let be the state vector of the reference model, i.e.

˙ = + + = + +
(8.23)

= = =

= = =

Recalling that the dynamics of residual generator (8.14) with ( ) = (i.e.
an FDF) can be written as

˙
˙

¸
=

¯ 0
¸ ¸

+
¯

¸
+

¯
¯ ¯

¸
+

¸
(8.24)

=

μ£ ¤ ¸
+ + ¯ +

¶
(8.25)

it turns out

˙ = ( + ) +
¡

¯+
¢̄
¯ (8.26)

= ( + ) +
¡

¯+
¢̄
¯ (8.27)

with

= ¯= =
0 0

0 0
0 0

=
£

0
¤
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¯=
0

0
¯=

£
0

¤

=
0 0 0
0 0
0 0

=
0

( )
£
0 0

¤
=
£
0 0

¤
= ( )

£
0 0

¤
¯=

0 0 0
0
0

=
0

( )
£

0
¤

¯=
£

0
¤
= ( )

£
0
¤

The following theorem builds the basis for the solution of (8.22).

Theorem 8.1 Given system (8.26)-(8.27) and suppose that

(0) = 0 and ( ) ( ) 1

Then Z
0

( ) ( ) 2

Z
0

¯ ¯ (8.28)

if there exist some 0 and 0 so that

+ + ¯ ¯ ¯+ ¯ ¯ ¯

¯ + ¯ ¯ 2 + ¯ ¯
¯ 0

¯

¯ 0

0 (8.29)

where

¯ =
£
0 0

¤
¯ =

£
0
¤
¯ =

h
0 ( )

i
Proof. Let

( ) = 0

It holds

( ) ( ) 2 ¯ ¯+ ˙ ( ) 0 =Z
0

( ) ( ) 2

Z
0

¯ ¯ +

Z
0

˙ ( )

=

Z
0

( ) ( ) 2

Z
0

¯ ¯ + ( ) 0

=

Z
0

( ) ( ) 2

Z
0

¯ ¯ 0
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Since

( ) ( ) 2 ¯ ¯+ ˙ ( ) =£
¯
¤Ã" ( + )¡

¯+
¢̄ # £

+ ¯+ ¯
¤ 0 0

0 2

¸!
¯

¸

+
£

¯
¤Ã" ( + ) + ( + )

¡
¯+

¢̄¡
¯+

¢̄
0

#!
¯

¸
it turns out"

( + )¡
¯+

¢̄ # £
+ ¯+ ¯

¤ 0 0
0 2

¸
(8.30)

+

"
( + ) + ( + )

¡
¯+

¢̄¡
¯+

¢̄
0

#
0

=

Z
0

( ) ( ) 2

Z
0

¯ ¯ 0

Applying the Schur complement we can rewrite (8.30) into

( + ) + ( + )
¡

¯+
¢̄
( + )¡

¯+
¢̄

2
¡

¯+
¢̄

+ ¯+ ¯

0

(8.31)

+ ¯

¯
2

¯

¯

+

+ ¯

¯ 0 ¯

¯ 0

0

Split the second matrix in the above inequality into

+ ¯

¯ 0 ¯

¯ 0

=

¯
1
¯
2
¯
3

0
0
0

( )
£
0 0 0 0

¤

+

˜
1
˜
2
˜
3

0
0
0

( )
£
0 0 0 0

¤ ¯
1
¯
2
¯
3

= ¯



256 8 Residual generation with enhanced robustness against model uncertainties

Then, according to Lemma 8.1, we know that (8.31) holds if there exists a
0 so that

+ ¯

¯
2

¯

¯

+ 1

¯
1
¯
2
¯
3

0
0
0

¯
1
¯
2
¯
3

0
0
0

+
£
0 0 0 0

¤ £
0 0 0 0

¤
0

Finally, applying the Schur complement again yields

+ + ¯ ¯ ¯+ ¯ ¯ ¯

¯ + ¯ ¯ 2 + ¯ ¯
¯ 0

¯

¯ 0

0

The theorem is thus proven. ut
Remark 8.2 The assumptions

(0) = 0 and ( ) ( )

do not lead to the loss of the generality of Theorem 8.1. If (0) 6= 0 it can
be considered as an additional unknown input. In case that ( ) ( )
6= 1 we define

¯( ) = ( )
p£

0 ˜ 0 ˜ ˜ 0
¤
=
£
0 0 0

¤p
As a result, Theorem 8.1 holds.

Remark 8.3 If Z
0

( ) ( ) 2

Z
0

¯ ¯

instead of (8.28) is required, condition (8.29) can be released and replaced by

+ + ¯ ¯ ¯+ ¯ ¯ ¯

¯ + ¯ ¯ 2 + ¯ ¯
¯ 0

¯

¯ 0

0

+ + ¯ ¯ 0
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Based on Theorem 8.1, the optimization problem (8.22) can be reformu-
lated as

min subject to (8.32)

+ + ¯ ¯ ¯+ ¯ ¯ ¯

¯ + ¯ ¯ 2 + ¯ ¯
¯ 0

¯

¯ 0

0 (8.33)

for some 0 0 For our purpose of solving (8.32), let

=
11 12 0

21 22 0
0 0 33

= 1
33

Then (8.33) becomes an LMI regarding to 0 and 0 as described
by

= = [ ]7×7 0

where

11 =
0

0

¸
11 12

21 22

¸
+ 11 12

21 22

¸
0

0

¸
+

0 0
0

¸
12 = 0 13 =

11 12

21 22

¸
0
¸
+

0
¸

14 =
11 12

21 22

¸ ¸
+

0
¸

15 =
11 12

21 22

¸ ¸
16 = 0

¸
17 =

11 12

21 22

¸
0
¸

22 = 33 + 33 23 = 0 24 = 33

25 = 33 26 = 27 = 33

33 =
2 + 34 = 35 = 0 36 = 0 37 = 0

44 =
2 + 45 = 0 46 = 47 = 0 55 =

2

56 = 57 = 0 66 = 67 = 77 =

As a result, we have an LMI solution that is summarized in the following
algorithm.

Algorithm 8.1 LMI solution of optimization problem (8.32)

Step 0: Form matrix = [ ]7×7
Step 1: Given 0 find 0 and 0 so that

0
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Step 2: Decrease and repeat Step 1 until the tolerant value is reached
Step 3: = 1

33

Since for ( ) = 0 the influence of ( ) on ( ) is nearly zero, neither in
reference model (8.20) nor in (8.21) ( ) is included. However, we see that the
system input ( ) does a ect the dynamics of the residual generator It is thus
reasonable to include ( ) as a disturbance into the FDI system design. On
the other side, it should be kept in mind that ( ) di erent from ( ) is on-
line available. In order to improve the FDI system performance, knowledge of
( ) should be integrated into FDI system design and operation. This can be
done, for instance, in form of an adaptive threshold or the so-called threshold
selector, as will be shown in the Chapter 9.

Remark 8.4 The above-presented results have been derived for continuous
time systems. Analogous results for discrete time systems can be achieved in
a similar way. For this purpose, inequality (8.2) in Lemma 8.1 is helpful. It
would be a good exercise for the interested reader.

Example 8.1 In this example, we design an FDF for the benchmark system
LIP100 by taking into account the model uncertainty. In Subsection 3.7.2, the
model uncertainty is well described, which is mainly caused by the linearization
error. For our design purpose, the unified solution is used for the construction
of the reference model and Algorithm 8.1 is applied to compute the observer
gain and post-filter Remember that the open loop of the inverted pendulum
system is not asymptotically stable. Thus, di erent from our previous study
on this benchmark, the closed loop model of LIP100 builds the basis for our
design. For the sake of simplicity, we assume that a state feedback controller
is used, which places the closed loop poles at 3 1 3 2 3 3 3 4. We are
in a position to design the FDF.

• Design of the reference model: The reference model is so designed that it
is robust against unknown input and measurement noises. It results in

=

1 1338 0 1718 0 3728
0 1718 0 0260 0 0565
6 5071 0 0565 0 1226
84 1928 0 0167 0 0362

=
1 0 0
0 1 0
0 0 1

• Determination of via Algorithm 8.1: We get

= 1 0× 104
0 0040 0 0076 0 0040
0 0378 0 1211 0 0559
0 1179 0 2152 1 5578
0 4436 1 3666 0 6366

=
0 6741 0 2586 0 4970
0 2586 1 1533 0 4906
0 4970 0 4906 0 7928

with = 2 8216
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8.4 Residual generation for systems with polytopic
uncertainties

In this section, we address residual generation for systems with polytopic
uncertainties. As described in Chapter 3, those systems are modelled by

˙ = ¯ + ¯ + ¯ = ¯ + ¯ + ¯ (8.34)
¯ = + ¯ = + ¯ = +
¯ = + ¯ = + ¯ = +

with ¸
=
X
=1

¸ X
=1

= 1 0 = 1 · · ·
(8.35)

Two approaches will be presented. The first one is based on the reference
model scheme, while the second one is an extension of the LMI based H to
H design scheme.

8.4.1 The reference model scheme based scheme

For our purpose, we apply again reference model (8.23) and formulate the
residual generator design as finding such that 0 is minimized, where
is given in the context ofZ

0

( ) ( ) 2

Z
0

¯ ¯ (8.36)

and is governed by

˙ = ( + ) +
¡

¯+
¢̄
¯

= ( + ) +
¡

¯+
¢̄
¯

with ¯ ¯ ¯ defined in (8.26)-(8.27) and

=
X
=1

¯ ¯ =
0 0 0
0 0
0 0

=
X
=1

¯ ¯ =
£
0 0

¤

¯=
X
=1

¯ ¯ =
0 0 0

0
0

¯=
X
=1

¯ ¯ =
£

0
¤
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It follows from Lemma 8.2 that for given 0 (8.36) holds if and only if
there exists 0 so that = 1 · · ·¡

+ ¯
¢

+
¡

+ ¯
¢ ¡

¯+ ¯
¢ ¡

+ ¯
¢¡

¯+ ¯
¢ ¡

¯+ ¯
¢

+ ¯ ¯+ ¯
0 (8.37)

Setting

=
11 12 0

21 22 0
0 0 33

0 = 1
33 (8.38)

yields
(8.37) = = [ ]7×7 0 = 1 · · · (8.39)

with

11 =
0

0 +

¸
11 12

21 22

¸
+ 11 12

21 22

¸
0

0 +

¸
12 =

0

33

¸
13 =

11 12

21 22

¸
0
+

¸
14 =

11 12

21 22

¸
+

¸
15 =

11 12

21 22

¸ ¸

16 =

¸
22 = 33 + 33

23 = 33 24 = 33 ( + ) ( + )

25 = 33 26 = 33 = 34 = 0 35 = 0

36 = 44 = 45 = 0 46 = ( + )

55 = 56 = 66 =

Based on this result, the optimal design of residual generators for systems
with polytopic uncertainties can be achieved using the following algorithm.

Algorithm 8.2 LMI solution of (8.36)

Step 0: Form matrix = [ ]7×7 = 1 · · ·
Step 1: Given 0 find 0 satisfying (8.38) so that

0

Step 2: Decrease and repeat Step 1 until the tolerant value is reached.
Step 3: Set according to (8.38).
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Example 8.2 In our previous examples concerning the benchmark system
EHSA, we have learned that the linearization model works only in a neigh-
borhood around the linearization point. In Subsection 3.7.5, the linearization
errors are modelled into the polytopic type uncertainty. In this example, we
design an FDF for the benchmark system EHSA under consideration of the
polytopic type uncertainty. The design procedure consists of

• Design of a reference model: For this purpose, the unified solution is applied
to the linearization model with

=

0 0 0
0 143 0 0
0 0 0
0 0 0
0 0 0

=
0 1 0
0 0 1

¸

The resulted observer gain and post-filter (of the reference model) are

==

8 69× 10 22 1 03× 10 25

0 067976 2 06× 10 12

1 538× 10 25 8 078× 10 28

6 6889× 104 2 03× 10 6

2 03× 10 6 2 02× 10 15

=

• Determination of via Algorithm 8.2: We get

=
1 0349 0 0019
0 0019 0 3689

¸
=

0 1111 0 0004
0 5250 0 9723
209 96 0 5119
516 69 0 0007
0 0005 541 3

=

6 04× 105 1 734
72 201 0 105
105 46 0 0008

3 96× 1011 5 65× 105
0 2949 199 96

= 1000

In our simulation study, we first compare the residual signals generated
respectively by FDF with and without considering the polytopic uncertainty.
Fig.8.2 verifies a significant performance improvement, as the residual gener-
ator is designed by taking into account the polytopic uncertainty. To demon-
strate the application of the FDF designed above, an actuator fault, which
results in a piston runaway, is generated at = 3 Fig.8.3 shows a success-
ful fault detection.
Using the analog version of Lemma 8.2 for discrete time systems, it is easy

to find an LMI solution of a reference model based design of the discrete time
residual generator given by
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Fig. 8.2 Residual signal regarding to generated by FDF with and without con-
sidering polytopic uncertainty
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Fig. 8.3 Response of residual signal regrading to to an actuator fault

ˆ( + 1) = ˆ( ) + ( ) + ( ( ) ˆ( )) (8.40)

ˆ( ) = ˆ( ) + ( ) ( ) = ( ( ) ˆ( )) (8.41)

To this end, the unified solution described in Theorem 7.18 will be used as
reference model and the design problem is formulated as finding such
that 0 is minimized, where is given byX

=0

( ( ) ( )) ( ( ) ( )) 2
X
=0

¯ ( ) (̄ ) (8.42)

Without derivation, we present below the LMI solution of this optimization
problem:
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min
0

subject to (8.43)

= = [ ]8×8 0 = 1 · · ·
where

11 =
11 12

21 22

¸
12 = 0 13 =

11 12

21 22

¸
0

0 +

¸

14 = 0 15 =
11 12

21 22

¸
0
+

¸
16 =

11 12

21 22

¸
+

¸
17 =

11 12

21 22

¸ ¸
18 = 0 22 = 33 23 =

£
0 33

¤
24 = 33 25 = 33 26 = 33 ( + ) ( + )

27 = 33 28 = 0 33 = 11 34 = 0 35 = 36 = 37 = 0

38 =

¸
44 = 22 45 = 46 = 47 = 0 48 =

55 = 56 = 57 = 0 58 = 66 = 55 67 = 0

68 = ( + ) 77 = 55 78 = 88 =

8.4.2 H_ to H design formulation

Denote the dynamics of residual generator (8.24)-(8.25) by

˙ = + + + = + + +

=
0

0

¸
+
X
=1

0
0

¸
:= 0 +

X
=1

=
0

¸
+
X
=1

¸
:= 0 +

X
=1

=
£
0

¤
+
X
=1

£
0
¤
:= 0 +

X
=1

=
X
=1

:=
X
=1

= +
X
=1

:= 0 +
X
=1

=

¸
+
X
=1

¸
:= 0 +

X
=1

=

¸
=
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Along with the idea of the H_ to H design of residual generators presented
in Subsection 7.9.4, we formulate the residual generator design as finding
such that °° ( ) 1

£ ¤
+
£ ¤°° (8.44)

k ( ) 1 + k max (8.45)

It follows from Lemmas 8.2-8.3 that (8.44)-(8.45) can be equivalently written
into

max
0 =

1 subject to (8.46)

( 0 + ) ( 0 + ) ( 0 + )

( 0 + ) 0

( 0 + ) 0

0 +

0

(8.47)

= ( 0 + ) + ( 0 + ) = 1 · · ·
( 0 + ) + ( 0 + ) ( 0 + )

1

0 + 1

0 = 1 · · ·

(8.48)

Now, let

= 1 0
0 2

¸
0 = = 1 0

0 2

¸
Then, (8.46)-(8.48) become

max
1 0 2 0 1= 1 2= 2

1 subject to (8.49)

11 21 1 ( + ) 1 ( + )

21 22 2 ( ) 24

( + ) 1 ( ) 2 0

( + ) 1 24 0 ( + )
( + )

0 = 1 · · · (8.50)

11 = ( + ) 1 + 1 ( + ) 21 = 2 ( )

22 = 2 ( ) + ( ) 2 24 = 2 ( + )

11 21 1

21 22 2 ( )

1 2 ( ) 1

1

0 = 1 · · · (8.51)

11 = ( + ) 1 + 1 ( + ) 21 = 2 ( )
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22 = 2 ( ) + ( ) 2

As mentioned in our study on the H_ to H design, (8.49)-(8.51) are an
optimization problem with NMI constraints due to the terms 2 2 which
can be approached by advanced nonlinear optimization technique. A (very)
conservative solution could be achieved by setting

2 = 2 = 1
2

In this case, (8.50)-(8.51) becomes LMIs regarding to 1 0 2 0 1

8.5 Residual generation for stochastically uncertain
systems

In this section, we deal with residual generation for stochastically uncertain
systems, which, as introduced in Chapter 3, are described by

( + 1) = ¯ ( ) + ¯ ( ) + ¯ ( ) + ( ) (8.52)

( ) = ¯ ( ) + ¯ ( ) + ¯ ( ) + ( ) (8.53)

where

¯ = + ¯ = + ¯ = +
¯ = + ¯ = + ¯ = +

and represent model uncertainties satisfying¸
=
X
=1

μ ¸
( )

¶
(8.54)

with known matrices = 1 · · · of appropriate dimen-
sions. ( ) =

£
1( ) · · · ( )

¤
represents model uncertainties and is ex-

pressed as a stochastic process with

(̄ ) = E ( ( )) = 0 E
¡
( ) ( )

¢
= ( 1 · · · )

where = 1 · · · are known. It is further assumed that (0) (1) · · · are
independent and (0) ( ) ( ) ( ) are independent of ( )
For the purpose of residual generation, the standard residual generator

ˆ( + 1) = ˆ( ) + ( ) + ( ( ) ˆ( )) (8.55)

ˆ( ) = ˆ( ) + ( ) ( ) = ( ( ) ˆ( )) (8.56)

is considered in the following study.



266 8 Residual generation with enhanced robustness against model uncertainties

8.5.1 System dynamics and statistical properties

For our purpose, the dynamics and the statistical properties of residual gen-
erator (8.55)-(8.56) will first be studied. Introducing the following notations,

( ) =
( )

( ) ˆ( )

¸
0 =

0
0

¸
=

0
0

¸
= 0 +

X
=1

( ) 0 = 0

¸
=

¸

= 0 +
X
=1

( ) 0 =
£
0

¤
=
£

0
¤

= 0 +
X
=1

( ) = =
X
=1

( ) 0 =

¸

=

¸
= 0 +

X
=1

( ) 0 =

= = 0 +
X
=1

( ) =

¸
=

we have

( + 1) = ( ) + ( ) + ( ) + ( ) (8.57)

( ) = ( ) + ( ) + ( ) + ( ) (8.58)

Note that the overall system (the plant + the residual generator) is mean
square stable if and only if the plant is mean square stable, since the observer
gain has no influence on system (8.52). In the following of this section, the
mean square stability of the plant is assumed.
Remember that ( ) is independent of ( ) ( ) ( ) ( ) and (̄ ) = 0

Thus, the mean of ( ) can be expressed by

¯ ( + 1) = 0¯ ( ) + 0 ( ) + 0 ( ) + ( )

(̄ ) = 0¯ ( ) + 0 ( ) + ( )

which is equivalent to

(̄ + 1) = ( ) (̄ ) + ( ) ( ) + ( ) ( ) (8.59)

(̄ ) = ( (̄ ) + ( ) + ( )) (8.60)

8.5.2 Basic idea and problem formulation

Note that the mean of the residual signal given by (8.59)-(8.60) is exactly
presented in a form, to which the unified solution can be used. Bearing in mind
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the stochastic property of the model uncertainty, we introduce the following
performance index

= E( ( ) ( )) ( ( ) ( )) (8.61)

which will be minimized by selecting and In (8.61), ( ) stands for
the reference model given by

( + 1) = ( ) + ( ) + ( )

( ) = ( ) + ( ) + ( )

= = =

= = =

with chosen using the unified solution described in Theorem 7.18.
It is evident that is a standard evaluation of the di erence between the
residual signal and the reference model in the statistic context.
Since

E( ( ) ( )) ( ( ) ( )) =

E( ( ) (̄ )) ( ( ) (̄ )) + ( (̄ ) ( )) ( (̄ ) ( ))

we formulate the design problem as finding such that for some given
0

( (̄ ) ( )) ( (̄ ) ( )) min (8.62)

subject to 2( ) = E( ( ) (̄ )) ( ( ) (̄ )) is bounded

Next, we shall derive an LMI solution for (8.62).

8.5.3 An LMI solution

For our purpose of solving (8.62), we are first going to find LMI conditions
for

( (̄ ) ( )) ( (̄ ) ( )) 2
1

1X
=0

¡
( ) ( ) + ( ) ( )

¢
(8.63)

+ 2
2

¡
( ) ( ) + ( ) ( )

¢
2( ) 2

1

1X
=0

¡
( ) ( ) + ( ) ( ) + ( ) ( )

¢
(8.64)

+ 2
2

¡
( ) ( ) + ( ) ( ) + ( ) ( )

¢
for some 1 0 2 0 1 0 2 0 We start with problem (8.63).
Introducing notions
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( ) =
(̄ )
( )

¸
(̄ ) =

( )
( )

¸
=

0
0

¸
=
£ ¤

¯=

¸
¯=

£ ¤
yields

( + 1) = ( ) + ¯ (̄ ) (8.65)

(̄ ) ( ) = ( ) + ¯ (̄ ) (8.66)

The following theorem provides an LMI condition for (8.63).

Theorem 8.2 Given system (8.65)-(8.66), the constants 1 0 2 0 and
suppose that (0) = 0, then

( (̄ ) ( )) ( (̄ ) ( )) 2
1

1X
=0

¡
( ) ( ) + ( ) ( )

¢
+ 2

2

¡
( ) ( ) + ( ) ( )

¢
if the following three LMI’s hold for some 0

¯

0

¯ 0
0 (8.67)

2
1

¸
0 (8.68)

¯

¯
2
2

¸
0 (8.69)

Proof. Let
( ) = ( ) ( ) 0 = 1 · · ·

It is evident that
( + 1) ( ) ¯ ( ) (̄ ) (8.70)

ensures

( ) ( )
1X

=0

¯ ( ) (̄ ) (8.71)

(8.70) is equivalent with

¯

¸ £
¯
¤ 0

0

¸
0 (8.72)

If (8.71) holds, then
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2
1 = ( ) ( ) 2

1

1X
=0

¯ ( ) (̄ ) (8.73)

Applying the Schur complement yields

1
¯

0

¯ 0
0

¯

0

¯ 0
0

2
1 2

1

¸
0

Since

( (̄ ) ( )) ( (̄ ) ( )) ( ) ( ) + ¯ ( ) ¯ ¯ (̄ )

¯ ¯
2
2

¯

¯
2
2

¸
0 = ¯ ( ) ¯ ¯ (̄ ) 2

2
¯ ( ) (̄ )

the theorem is proven. ut
The solution of (8.64) is somewhat involved. We start with some prelimi-

nary work.
Define

( ) = E
¡

( ) ¯ ( )
¢

(8.74)

for some ¯ 0 We know from the basic statistics that

( ) = E
£

( ) ¯ ( )
¤
+E

¡
¯ ( ) ¯¯ ( )

¢
( ) = ( ) ¯ ( )

and moreover

E
£

( ) ¯ ( )
¤
=

¡
¯ ( )

¢
( ) = E

£
( ) ( )

¤
Hence

( + 1) = ( ( )) +

¯ ( )
( )
( )
( )

1

¯ ( )
( )
( )
( )

(8.75)

where

( ) = E
¡

( ) ( )
¢

= 0
¯

0 +
X
=1

2

1 =

0

0

0

¯
£

0 0 0

¤
+
X
=1

2

0

¯
£

0
¤

(8.76)
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Suppose

1

¯ 0 0 0
0 0 0
0 0 0
0 0 0

(8.77)

Note that (8.77) also implies
¯

then we have

( + 1) E
£

( ) ¯ ( )
¤
+ ¯ ( ) ¯¯ ( )

+ ( ) ( ) + ( ) ( ) + ( ) ( ) (8.78)

= ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )

which leads to

( )
1X

=0

£
( ) ( ) + ( ) ( ) + ( ) ( )

¤
= (8.79)

¡
¯ ( )

¢
+ ¯ ( ) ¯ ( )

1X
=0

£
( ) ( ) + ( ) ( ) + ( ) ( )

¤
We now consider 2( ) and write it into

2( ) = ( ( )) + ¯ ( ) 2¯ ( ) +
( )
( )
( )

3

( )
( )
( )

= +
X
=1

2
2 =

X
=1

2 (8.80)

3 =
X
=1

2

0

£
0
¤

(8.81)

As a result, if

( ( )) + ¯ ( ) 2¯ ( )
2
1

¡ ¡
¯ ( )

¢
+ ¯ ( ) ¯¯ ( )

¢
(8.82)

3
2
2 (8.83)

then it holds

2( ) 2
1

1X
=0

£
( ) ( ) + ( ) ( ) + ( ) ( )

¤
+ 2

2

¡
( ) ( ) + ( ) ( ) + ( ) ( )

¢
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It is evident that (8.82) holds, when

2
1
¯ (8.84)

In summary, we have proven the following theorem.

Theorem 8.3 Given system (8.57)-(8.58) and constants 1 0 2 0
Then (8.64) holds if there exists ¯ 0 so that

1

¯ 0 0 0
0 0 0
0 0 0
0 0 0

(8.85)

2
1
¯ (8.86)

3
2
2 (8.87)

where 1 3 are respectively defined in (8.76),(8.80), (8.81).

Remark 8.5 It follows from Lemma 8.4 that the LMI (8.77) ensures the
stability of the overall system.

Starting from Theorems 8.2 and 8.3, we are now in a position to describe
optimization problem (8.62) more precisely. The design objective is to solve
the optimization problem

min
¡

1
2
1 + 2

2
2

¢
(8.88)

subject to (8.67)-(8.69) and (8.85)-(8.87) for given constants 1 0 2 0
In this formulation, 1 2 are two weighting factors whose values depend on
the bounds of the L2 norm and L of
Let matrix given in (8.67)-(8.69) be

= 1 0
0 2

¸
0

and set ¯ matrix given in (8.85)-(8.87) equal to

¯ = 3 0
0 1

¸
0 (8.89)

Moreover, define
= 1

1

As a result, (8.67)-(8.69) can be respectively rewritten into



272 8 Residual generation with enhanced robustness against model uncertainties

1 0 1 0 1 1

0 2 0 2 2 2

( 1 ) 0 1 0 0 0
0 2 0 2 0 0

( 1 ) 2 0 0 0

( 1 ) 2 0 0 0

(8.90)

0

1 0
0 2

2
1

0 (8.91)

0

0
2
1

0 (8.92)

As to (8.85)-(8.87), a reformulation is needed. To this end, rewrite 1

and 3 into

1 =
£

0 1 · · ·
¤ ¯ 0 · · · 0

0 2
1
¯ · · · 0

...
. . .

. . .
...

0 · · · 0 2 ¯

0

1

...

0 =
£

0 0 0

¤
=
£

0
¤

= 1 · · ·

=
£

0 1 · · ·
¤ 0 · · · 0
0 2

1 · · · 0
...
. . .

. . .
...

0 · · · 0 2

0

1

...

3 =
£

1 · · ·
¤ 2

1 · · · 0

0
. . . 0

0 · · · 2

1

...

=
£

0
¤

= 1 · · ·

Then applying the Schur complement yields

(8.85)

˜
0 1 · · ·

0
¯ 1 0 · · · 0

1 0
¡

2
1
¯
¢ 1 · · · 0

...
...

. . .
. . .

...
0 · · · 0

¡
2 ¯
¢ 1

0
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˜
0
¯

1
¯ · · · ¯

¯
0

¯ 0 0
¯

1 0 2
1
¯ · · · 0

...
...

. . .
. . .

...
¯ 0 · · · 0 2 ¯

0 ˜ =

¯ 0 0 0
0 0 0
0 0 0
0 0 0

(8.93)

(8.86)

2
1
¯

0 1 · · · 0

0 0 · · · 0

1 0 2
1 · · · 0

...
...

. . .
. . .

...
0 · · · 0 2

0 (8.94)

(8.87)

2
2 1 · · ·
1

2
1 · · · 0

...
. . .

. . .
...

· · · 0 2

0 (8.95)

Note that

¯
0 =

3 0 3 3 3

0 1 0 1 1

¸
¯ = 3 0 3 3 0

0 1 1 1 0

¸
0 =

£
0

¤
=
£

0
¤

= 1 · · ·
=
£

0
¤

= 1 · · ·

Thus, (8.90)-(8.95) are LMIs regarding to 1 2 3 It allows us to use
the following algorithm to solve (8.88).

Algorithm 8.3 LMI aided FDI design for stochastically uncertain systems

Step 0: Set 1 2 1 2 and 1 2

Step 1: Find 1 0 2 0 3 0 so that (8.90)-(8.95) are satisfied
Step 2: Decrease ¡

1
2
1 + 2

2
2

¢
and repeat Step 1 until the tolerant value is reached

Step 3: set = 1
1

Remark 8.6 The solution may become conservative due to definition (8.89).
Using an iterative algorithm, this problem can be solved.

Example 8.3 In this example, we continue our study on the benchmark vehi-
cle dynamic system (see Subsection 3.7.4). Our purpose is to design an FDF
via Algorithm 8.3, which takes into account the stochastic change in 0 . To
this end, the discrete time system model (3.77) with a slight modification
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0 = 9360 + [ 5000 5000]

is adopted. are respectively

= 10 4 × 0 0388 0 0024
0 1208 0 0201

¸
= 10 4 × 0 0108

0 3952

¸
We assume that only yaw rate measurement is available for the fault detection
purpose. Our design procedure is as follows:

• Design of the reference model:

=
0 2000
1 4495

¸
= 5 7014

• Under the setting 1 = 2 = 1 we get

= 5 7014 1 =
31 2660 0 6697
0 6697 0 0419

¸
2 =

0 9343 0 1390
0 1390 0 0483

¸
3 =

1 3667 0 0550
0 0550 0 0237

¸
=

2 1358
0 0312

¸
=

0 0796
0 5288

¸
1 = 50 2 = 7 1125× 10 7

8.5.4 An alternative approach

In the above presented approach, the optimization objective is described by
(8.62). Alternatively, we can also define

X
=0

( (̄ ) ( )) ( (̄ ) ( )) 2
X
=0

¡
( ) ( ) + ( ) ( )

¢
(8.96)

subject to

X
=0

2( ) 2
X
=0

¡
( ) ( ) + ( ) ( ) + ( ) ( )

¢
(8.97)

as a cost function and formulate the design problem as finding so that
2 is minimized for a given constant 2. Its solution can be easily derived
along with the lines given above and the standard solution for H norm
computation (Bounded Real Lemma). Next, we sketch the basic steps of the
solution and give the design algorithm. We assume that (0) = 0 (0) = 0
It follows from Lemma 7.9 that (8.96) holds if and only if there exists a
0 so that

¯ 0
0

¯ 0 ¯

0 ¯

0
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Setting

= 1 0
0 2

¸
0 = 1

1

leads to

1 0 13 0 15 16 0
0 2 0 2 2 2 0

13 0 1 0 0 0
0 2 0 2 0 0

15 2 0 0 0 75

16 2 0 0 0 76

0 0 75 76

0 (8.98)

13 = 1 15 = 1 16 = 1

75 = 76 =

To find a su cient LMI condition for (8.97), we introduce

( ) = E
£

( ) ¯ ( )
¤

and consider
2( ) 2

¡
( ) ( ) + ( ) ( ) + ( ) ( )

¢
+ ( + 1) ( ) 0

which ensures that (8.97) holds. Remember that
2( ) = E

£
( ) ( )

¤
E
¡
(̄ ) (̄ )

¢
( ) = E

£
( ) ¯ ( )

¤
E
¡
¯ ( ) ¯¯ ( )

¢
It turns out

E
£

( ) ( )
¤
+E

£
( + 1) ¯ ( + 1)

¤
E
£

( ) ¯ ( )
¤

2
¡

( ) ( ) + ( ) ( ) + ( ) ( )
¢¡

E
¡
(̄ ) (̄ )

¢
+E

¡
¯ ( + 1) ¯¯ ( + 1)

¢
E
¡
¯ ( ) ¯¯ ( )

¢¢
0

which is equivalent to

0

0

0

¯
£

0 0 0

¤ ¯ 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

+
X
=1

2

0 0

¯ 0
0

¸
0
0

¸
0 (8.99)

0

0

0

¯
£

0 0 0

¤ ¯ 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

0 (8.100)
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It is evident that (8.99) implies (8.100). Now, let

¯ = 3 0
0 1

¸
0

and apply Schur complement to (8.99). We have for (8.99)

˜
0
¯ ˜

1
ˆ · · · ˜ ˆ

¯
0

¯ 0 0
ˆ ˜

1 0 2
1
¯ · · · 0

...
...

. . .
. . .

...
ˆ ˜ 0 · · · 0 2 ¯

0 (8.101)

where

˜ =

¯ 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

¯
0 =

3 0 3 3 3

0 1 0 1 1

¸
ˆ ˜ =

3 0 3 3 0
0 1 1 1 0

0 0
= 1 · · ·

In summary, we have the following algorithm.

Algorithm 8.4 An alternative approach to LMI aided FDI design for sto-
chastically uncertain systems

Step 0: Set 0 and 0
Step 1: Find 1 0 2 0 3 0 so that (8.98) and (8.101) are
satisfied

Step 2: Decrease 0 and repeat Step 1 until the pre-defined tolerant value
is reached

Step 3: Set = 1
1

8.6 Notes and references

In this chapter, we have focused our study on the application of the LMI
technique to dealing with the robustness issues surrounding the design of
residual generators for systems with model uncertainties. Although di erent
types of model uncertainties have been handled, the underlying ideas of the
presented methods are similar. The core of these methods is the application
of a reference model. In this way, similar to the solution of the H OFIP,
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the original residual generation problem is transformed into a, more or less,
standard MMP problem.
A key and also critical point surrounding the reference model based

residual generation strategy is the selection of the reference model. Among
the di erent selection schemes, handling the residual generation in the H
OFIP framework is the most popular one, where the faults themselves or the
weighted faults are defined as the reference model. This method has been first
introduced in solving the integrated design of controller and FD unit [105, 136]
and lately for the residual generation purpose [22, 56, 100, 123], where the
optimization problem can also be solved in the H / framework [161]. Signif-
icantly di erent from it, disturbances are integrated into the reference model
used in our study in this chapter. The basic idea behind such a reference model
is the trade-o between the robustness and fault detectability. This idea has
been first proposed by Zhong et al. [159], where the unified solution is, due to
its optimal trade-o , adopted as reference model. The methods presented in
this chapter are the results of the application of this idea to the systems with
di erent kinds of model uncertainties, where the LMI technique as the tool
for the solution plays a central role. We refer the reader again to [14, 130] for
the needed knowledge of the LMI technique. A comprehensive discussion on
Lemma 8.1 can be found in [145].
We would like to call reader’s attention to the systematical and compre-

hensive study on the interpretation of the unified solution in Chapter 12. It
will be demonstrated that the unified solution provides us with a reference
model that is optimum in the sense of a trade-o between the false alarm rate
and the fault detectability.
Another way of handling residual generation problems for uncertain sys-

tems is to extend the H H or H H solutions. For instance, [126] pro-
posed to solve H and H H problems in the H / framework. [72] devel-
oped a two-step scheme, in which H H design of the residual generator
is first transformed and solved by means of the LMI technique and then in
the second step the fault sensitivity performance is addressed with the aid of
-synthesis.
Comparing with the study in the previous two chapters, the reader may

notice that the results presented in this chapter are considerably limited. This
is also the state of the art in the model-based FDI technique. If we say, the
results in Chapters 6 and 7 mark the state of the art of yesterdays’ and today’s
FDI technique respectively, then it can be concluded that the study on the
model-based FDI for uncertain systems would be a major topic in the field of
the model-based FDI technique in the coming years.
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Residual evaluation and threshold computation



9

Norm based residual evaluation and threshold
computation

In this and the next two chapters, we shall study residual evaluation and
threshold computation problems. The study in the last part has clearly shown
that the residual signal is generally corrupted with disturbances and uncer-
tainties caused by parameter changes. To achieve a successful fault detection
based on the available residual signal, further e orts are needed. A widely
accepted way is to generate such a feature of the residual signal, by which
we are able to distinguish the faults from the disturbances and uncertainties.
Residual evaluation and threshold setting serve for this purpose. A decision
on the possible occurrence of a fault will then be made by means of a simple
comparison between the residual feature and the threshold, as shown in 9.1.

Fig. 9.1 Schematic description of residual evaluation and threshold generation
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Depending on the type of the system under consideration, there exist two
residual evaluation strategies. The statistic testing is one of them, which is
well established in the framework of statistical methods. Another one is the
so-called norm based residual evaluation. Besides the less on-line calculation,
the norm based residual evaluation allows a systematic threshold computation
using the well-established robust control theory.
In this chapter, we shall focus on the norm based residual evaluation and

the associated threshold computation, as sketched in Fig.9.1. The statistic
testing methods and the integration of the norm based and statistic methods
will be addressed in the next two chapters.

9.1 Preliminaries

The concepts with the signal and system norms introduced in Sections 7.1
and 8.1 are essential for our study in this chapter.
Remember that in Section 7.1 we have introduced the so-called peak-to-

peak gain and the generalized H2 norm. Both of them are the induced system
norm and useful for our study in this chapter. Below, we present the known re-
sults on the LMI aided computation of these two norms, published by Scherer
et al. in their celebrated paper entitled multiobjective output-feedback control
via LMI optimization.

Lemma 9.1 Given system

G : ˙ = + = (0) = 0

Then for a given constant 0

kGk k k k k2
if and only if there exists a 0 so that

+
¸

0 2

¸
0

Lemma 9.2 Given system

G : ˙ = + = + (0) = 0

where is bounded by
( ) ( ) 1

Then for a given constant 0

kGk k k k k
if there exist 0 0 and 0 so that
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+ +
¸

0

0
0 ( ) 0

The following two lemmas are the extension of Lemmas 9.1 and 9.2 to
the systems with polytopic uncertainties. For their proof, the way of handling
polytopic uncertainty described in the book by Boyd et al. can be adopted.

Lemma 9.3 Given system

G : ˙ = ( + ) + ( + ) = ( + ) (0) = 0

0

¸
=
X
=1

0

¸
X
=1

= 1 0 = 1 · · ·

Then for a given constant 0

kGk k k k k2
if and only if there exists a 0 so that = 1 · · ·"

( + ) + ( + ) ( + )

( + )

#
0

( + )
+ 2

¸
0

Lemma 9.4 Given system

G : ˙ = ( + ) + ( + ) = ( + ) + ( + ) (0) = 0¸
=
X
=1

¸
X
=1

= 1 0 = 1 · · ·

Then for a given constant 0

kGk k k k k

if there exist 0 0 and 0 so that = 1 · · ·
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( + ) + ( + ) + ( + )

( + )

#
0

0 ( + )

0 ( ) ( + )
+ +

0

9.2 Basic concepts

In practice, the so-called limit monitoring and trend analysis are, due to their
simplicity, widely used for the purpose of fault detection. For a given signal
, the primary form of limit monitoring is

min or max = alarm, a fault is detected

min max = no alarm, fault-free

where min max denote the minimum and maximum values of in the fault-
free case. They are also called threshold.
The trend analysis of a signal can be in fact interpreted as limit moni-

toring of ˙ and thus formulated as

˙ ˙min or ˙ ˙max = alarm, a fault is detected

˙min ˙ ˙max = no alarm, fault-free.

Also widely accepted in practice is the root-mean-square (RMS) (see also
Section 7.1), denoted by k·k that measures the average energy of a signal
over a time interval (0 ) The fault detection problem is then described by:

k k k k min or k k k k max

= alarm, a fault is detected

k k min k k k k max = no alarm, fault-free

with k k min k k max as minimum and maximum values of k k
In order to overcome the di culty with noises, the average value of a

signal over a time interval [ + ] instead of its maximum/minimum value
or RMS, is often used for the purpose of fault detection. In this case, the limit
monitoring can be formulated as:

¯( ) =
1

+Z
(̄ ) ¯min or ¯( ) =

1
+Z

(̄ ) ¯max

= alarm, a fault is detected

¯min ¯( ) ¯max = no alarm, fault-free
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where ¯min ¯max represent the minium and maximum value of ¯( ) respec-
tively.
In summary, it is the state of the art in practice that for the purpose

of fault detection an evaluation function is first defined, which gives some
mathematical feature of the signal, and, based on it, a threshold is established.
The last step is then the decision making. In the subsequent sections, we shall
study these issues in a more generalized form.

9.3 Some standard evaluation functions

Consider a dynamic process. Driven by the process input signal the value
or average value or the energy of the process output may become very large.
In order to achieve an e cient and highly reliable FDI, it is reasonable to
analyze the system performance on account of a residual signal instead of
In our subsequent study in this chapter, we assume that for the FDI purpose
a residual vector, R is available. Next, we describe some standard
evaluation functions which are in fact a generalization of the above-mentioned
evaluation functions of .
Peak value: The peak value of residual signal is defined and denoted

by, for continuous time ( )

= k k := sup
0
k ( )k k ( )k =

ÃX
=1

2( )

!1 2

(9.1)

and for discrete time ( )

= k k := sup
0
k ( )k k ( )k =

ÃX
=1

2( )

!1 2

(9.2)

The peak value of is exactly the peak norm of , as introduced in Section 7.1.
Using the peak value of , the limit monitoring problem can be reformulated
as

= alarm, a fault is detected

= no alarm, fault-free

where is the so-called threshold defined by

= sup
fault-free

k ( )k or = sup
fault-free

k ( )k (9.3)

Also, we can use the peak value of ˙ or ( ) = ( +1) ( ) to reformulate
the trend analysis. Let
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= k ˙k = sup
0
k ˙( )k for the continuous time case (9.4)

= k ( )k = sup
0
k ( )k for the discrete time case (9.5)

= sup
fault-free

k ˙( )k or = sup
fault-free

k ( )k (9.6)

then

= alarm, a fault is detected

= no alarm, fault-free.

Often, for the practical implementation ˙ is replaced by ˆ̇

ˆ̇( ) =
+ 1

( ) (9.7)

with 0 ¿ 1 or ( ) by

( ) = ( ) ( 1) (9.8)

As for the average value evaluation, we define for the continuous time case

= k ( )k = sup
0
k (̄ )k (̄ ) =

1
+Z

( ) (9.9)

and for the discrete time case

= k ( )k = sup
0
k (̄ )k (̄ ) =

1 X
=1

( + ) (9.10)

and moreover,

= sup
fault-free

k ( )k or sup
fault-free

k ( )k (9.11)

As a result, the decision logic for detecting a fault is

= alarm, a fault is detected

= no alarm, fault-free.

The following modified form of average value ¯ given in (9.9) or (9.10) is
often adopted

˙̄( ) = (̄ ) + ( ) (9.12)

(̄ + 1) = (1 ) (̄ ) + ( ) (9.13)



9.4 Basic ideas of threshold setting and problem formulation 287

where 0 1 and 0¿ 1
RMS value: As introduced in Section 7.1, the RMS value of is defined

by, for the continuous time case,

= k ( )k =
1

+Z
k ( )k2

1 2

(9.14)

and for the discrete time case,

= k ( )k =
1 X

=1

k ( + )k2
1 2

(9.15)

measures the average energy of over time interval ( + ) as well as
( + ) Remember that the RMS of a signal is related to the L2 norm of
this signal. In fact, it holds

k ( )k2 1 k ( )k22 (9.16)

as well as
k ( )k2 1 k ( )k22 (9.17)

Let
= sup
fault-free

k k

be the threshold, then the detection logic becomes

= alarm, a fault is detected

= no alarm, fault-free.

9.4 Basic ideas of threshold setting and problem
formulation

From the engineering viewpoint, the determination of a threshold is to find
out the tolerant limit for disturbances and model uncertainties under fault-
free operation conditions. There are a number of factors that can significantly
influence this procedure. Among them are

• the dynamics of the residual generator
• the way of evaluating the unknown inputs (disturbances) and model un-
certainties as well as

• the bounds of the unknown inputs and model uncertainties.

Next, we shall briefly address these issues.
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9.4.1 Dynamics of the residual generator

We assume that the system model is given by (8.9)-(8.11), where the model
uncertainties are either the norm bounded type (8.12) or the polytopic type
(8.35).

Remark 9.1 The model uncertainty of the stochastic type given in (8.54) will
be handled in a separate chapter.

Applying residual generator (8.14) to this process model yields

˙ = ¯ + ¯ + ¯ + (9.18)

˙ = ( ) + ( ) + ( )

+
¡
¯ ¯

¢
+ ( ) (9.19)

( ) = ( )
¡

+ + + ¯ +
¢

(9.20)

Note that the modified forms (9.7) or (9.8) of the trend analysis or (9.12) as
well as (9.13) of the average value analysis can be handled as a filtering of the
residual signal and thus included in the post-filter ( ). Hence, without loss
of generality, we use below (9.18)-(9.20) to represent all the three possible
forms of the residual signal under consideration. Let’s denote the minimal
state space realization and the state vector of ( ) by ( ) and
respectively with subscript standing for post-filter. For our purpose, write

(9.18)-(9.20) into the following compact form

˙ = ( + ) + ( + ) + (9.21)

= ( + ) + ( + ) + (9.22)

where

= =
0 0

0 0
0

=
0 0
0 0
0 0

=

¸
= 0

0
=

= =
£
0

¤
=
£

0 0
¤

=
£
0

¤
=
£ ¤

=

In case of the norm bounded model uncertainty

= ( )
£

0 0
¤

= ( )
£ ¤

= ( )
£

0 0
¤

= ( )
£ ¤

( ) ( )
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while for the polytopic uncertainty

=
X
=1

=
0 0
0 0
0 0

=
X
=1

=

=
X
=1

=
£
0 0

¤
=
X
=1

=
£ ¤

9.4.2 Definitions of thresholds and problem formulation

Recall that the threshold is understood as the tolerant limit for the unknown
inputs and model uncertainties during the fault-free system operation. Under
this consideration, the threshold can be generally defined by

= sup
=0

with denoting the model uncertainties and the feature of the residual
signal like defined in the last subsection. Also, the way of
evaluating the unknown inputs plays an important role by the determination
of thresholds. Typically, the energy level and the maximum value of unknown
inputs are adopted in practice for this purpose. In this context, we introduce
below di erent kinds of thresholds to cover these possible practical cases.

Definition 9.1 Suppose that is bounded by and in the sense of

k k k k + k k + (9.23)

Then the threshold is defined by

= sup
k k +

=0 ¯( )

(9.24)

for the norm bounded uncertainty or

= sup
k k +

=0 =1···

(9.25)

for the polytopic uncertainty.
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measures the maximum (instantaneous) change in caused
by the instantaneous (bounded) changes of . Note that can
be reached even if the energy level of signal may be very low but its size
at some time instance is very large.

Definition 9.2 Suppose that is bounded by and in the sense of

k k2 2 + 2 and k k + (9.26)

Then the threshold 2 is defined by

2 = sup
k k2 2+ 2

k k +

=0 ¯( )

(9.27)

for the norm bounded uncertainty or

2 = sup
k k2 2+ 2

k k +

=0 =1···

(9.28)

for the polytopic uncertainty.

Although 2 also measures the maximum change in but di erent
from 2 does it with respect to the bounded energy in .

Definition 9.3 Suppose that is bounded by and in the sense of

k k2 2 + 2

Then the threshold 2 is defined by

2 = sup
k k 2+ 2

=0 ¯( )

(9.29)

for the norm bounded uncertainty or

2 = sup
k k 2+ 2

=0 =1···

(9.30)

for the polytopic uncertainty.

2 measures the maximum change in the (average) energy level of
in response to the model uncertainty and unknown inputs which are of certain
energy level.
In practice, aiming at an early fault detection on the one side and a low

false alarm rate on the other side, is often set low and is
used to activate the computation of 2 or 2 While 2 is
generally set higher than , due to the assumption on the energy
level of 2 requires an observation of the residual signals over a
(long) time window This scheme is used to reduce the false alarm rate.
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Remark 9.2 Although the input signal is treated as a "unknown input",
the available information about it will be used to realize the so-called adaptive
threshold, which will then recover the performance.

From the mathematical and system theoretical viewpoint, the above-
defined thresholds can be understood as induced norms or ”system gains”.
In this context, we are able to formulate the threshold computation as an
optimization problem:

• Computation of

= min ( + ) with subject to (9.31)

satisfying (9 23) either norm bounded or polytopic

sup
0
k ( )k sup

0
k ( )k or sup

0
k ( )k sup

0
k ( )k

• Computation of 2

2 = min 1 ( 2 + 2) + 2 ( + ) (9.32)

with 1 subject to

satisfying (9 26) either norm bounded or polytopic

sup
0
k ( )k 1 k ( )k2 or sup

0
k ( )k 1 k ( )k2

Remark 9.3 The term 2 ( + ) in (9.32) is due to the existence of
+ , by which will act on instantaneously. In the section dealing

with the computation of 2 we shall explain it in more detail.

• Computation of 2

2 = min ( 2 + 2) with subject to (9.33)

satisfying (9 26) either norm bounded or polytopic

k ( )k2 k ( )k2 or k ( )k2 k ( )k2
Using the LMI technique, we shall derive algorithms for solving these prob-
lems. This is the major objective of the rest of the sections in this chapter.

9.5 Computation of J 2

In this section, we address the computation of 2 for the systems with
both the norm bounded and polytopic model uncertainty.
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9.5.1 Computation of J 2 for the systems with the norm
bounded uncertainty

For our purpose, we first give a theorem, which builds the basis for the com-
putation of 2

Theorem 9.1 Given system (9.21)-(9.22) with the norm bounded uncertainty
and 0 and suppose that (0) = 0 ( ) ( ) , then

k ( )k2 k ( )k2
if there exist 0 0 so that

+ + ¯ ¯ + ¯ ¯ ¯
2 + ¯ ¯ 0

¯ 0

0 (9.34)

where

¯ =
£

0 0
¤
¯ =

£ ¤
¯ = (9.35)

The proof of this theorem is similar with the one of Theorem 8.1 and
follows directly from the Bounded Real Lemma and Lemma 8.1.
The "discrete time version" of Theorem 9.1 is given in the following theo-

rem.

Theorem 9.2 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

( ) = ( + ) ( ) + ( + ) ( )

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and 0 and suppose that (0) =
0 ( ) ( ) , then

k ( )k2 k ( )k2 (9.36)

if there exist 0 0 so that

0 ¯

0
¯ ¯ ¯ ¯ 0
¯ ¯ ¯ ¯ 2 0

¯ 0 0

0 (9.37)

with ¯ ¯ ¯ as defined in (9.35).
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Proof. Due to the similarity to Theorem 8.1, we only briefly sketch the proof.
It is evident that (9.36) holds if"

( + ) ( + )

( + ) ( + )

#
0

0

¸
+ +
+ +

¸
0

0 2

¸
0

Recall that

¸
= ( )

£
0 0

¤

It follows from Lemma 8.1 that the above inequality holds, provided that for
some 0

¸
0

0

¸ 1

1 ¸

+
1 £

0 0
¤ £

0 0
¤ 0

0 2

¸
0

Now, applying the Schur complement yields

0
0

¸ 1 ¸
¸

1 ¯ ¯ 1 ¯ ¯
1 ¯ ¯ 1 ¯ ¯ 2

¸ 0

0 ¯

0
1 ¯ ¯ 1 ¯ ¯ 0
1 ¯ ¯ 1 ¯ ¯ 2 0

¯ 0 0 1

0

Finally, setting = 1 completes the proof. ut
With the aid of Theorems 9.1 and 9.2 as well as the relation between the

L2 norm and the RMS, (9.16) or (9.17), we have

Algorithm 9.1 Computation of 2 for the systems with the norm
bounded uncertainty
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Step 0: Substitute ¯ ¯ in (9.35) by ¯ ¯

Step1: Solve optimization problem

min subject to (9 34) or (9 37)

for 0 0 and set = min
Step 2: Set

2 =
( 2 + 2) or 2 =

( 2 + 2) (9.38)

Example 9.1 In this example, we illustrate the application of the above al-
gorithm to the threshold computation via the benchmark system DC motor
DR300. In order to demonstrate that the proposed approach is also applicable
for systems modelled in terms of transfer functions, our study is based on the
input-output description of the DC motor DR300 given in Section 3.7.1. We
assume that the gain of the nominal model is uncertain with

( ) =
0 +

3 + 2
2 + 1 + 0

where [ ], = 10000, and moreover the measurement is
corrupted with a noise,

( ) = ( ) ( ) + 0 01 k k2 2 = 1 8

We now apply the residual generator developed in Example 5.9 to this system.
It leads to

˙ = +
£

0 01
¤ ¸

= +
£
0 0 01

¤ ¸
with

= 0
0

= ¯ ¯ =
1
0
0

( )
£
1 0

¤
By solving optimization problem

min subject to (9 34) or (9 37)

we get
= 0 27

Under the assumption that 2 = 2 1 and the evaluation time window =
10 , the threshold is finally set to be

2 2 =
( 2 + 2)

10
= 0 33

To verify the design result, simulations with di erent faults are made. Fig.9.2
and Fig.9.3 show the threshold and the responses of the evaluated residual
signal to an actuator fault and a sensor fault.
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Fig. 9.2 Threshold and the evaluated residual signal: = 100 = 0 05 oc-
curred at = 25
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Fig. 9.3 Threshold and the evaluated residual signal: = 100 1 = 0 25
occurred at = 25

9.5.2 Computation of J 2 for the systems with the polytopic
uncertainty

Now, we consider system (9.21)-(9.22) with the polytopic uncertainty. The
following two theorems follow directly from Lemma 8.2 and its "discrete time
version".

Theorem 9.3 Given system (9.21)-(9.22) with the polytopic uncertainty and
0 and suppose that (0) = 0 then

k ( )k2 k ( )k2 (9.39)
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if there exists 0 so that = 1 · · ·

( + ) + ( + ) ( + ) ( + )

( + ) ( + )
+ +

0

(9.40)

Theorem 9.4 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

( ) = ( + ) ( ) + ( + ) ( )

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and 0 and suppose that ( ) = 0 then

k ( )k2 k ( )k2 (9.41)

if there exists a 0 so that = 1 · · ·
( + ) ( + ) 0

( + ) 0 ( + )

( + ) 0 ( + )
0 + +

0 (9.42)

Based on Theorems 9.3 and 9.4, we have

Algorithm 9.2 Computation of 2 for the systems with the polytopic
uncertainty

Step1: Solve optimization problem

min subject to (9 40) or (9 42)

for 0 and set = arg (min )
Step 2: Set

2 =
( 2 + 2) or 2 =

( 2 + 2)

Example 9.2 We continue our study in Example 8.2, in which an FDF is
designed for the benchmark system EHSA with polytopic model uncertainty.
Our objective is now to compute the corresponding 2 via Algorithm
8.2. We assume that 2 is bounded by 2 and the evaluation window is 5
The computation of Step 1 gives

= 0 98

Following it, we have



9.6 Computation of 297

2 =
0 98 (2 + 2)

5

In our simulation, 2 is on-line estimated (see Section 9.8). In Fig.9.4,
both the RMS value of the residual signal and the corresponding threshold
are shown, where a fault in sensor occurred at = 3
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Fig. 9.4 Residual response and threshold

9.6 Computation of J

9.6.1 Computation of J for the systems with the norm
bounded uncertainty

We start with the (su cient) condition for

k ( )k k ( )k

under the assumption that = 0 (0) = 0 and a given 0

Theorem 9.5 Given system (9.21)-(9.22) with the norm bounded uncertainty
and 0 suppose that (0) = 0 k ( )k 1 ( ) ( ) Then

k ( )k

if there exists 0 0 1 0 2 0 0 so that
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+ + + 1
¯ ¯ + 1

¯ ¯ ¯

+ 1
¯ ¯ + 1

¯ ¯ 0
¯ 0 1

0 (9.43)

1 2

2
¯ ¯

2
¯ ¯ 0

2
¯ ¯ ( ) 2

¯ ¯ 0
1 2 ( ) 0 0 2

0 (9.44)

where ¯ ¯ ¯ are given in (9.35).

The proof of this theorem can be achieved along with the lines in the
proof of Lemma 9.2 provided by Scherer et al., together with the application
of Lemma 8.1, see also the proof of the next theorem.

Theorem 9.6 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

( ) = ( + ) ( ) + ( + ) ( )

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and 0 and suppose that

(0) = 0 ( ) ( ) ( ) ( ) 1

then
k ( )k

if there exist 0 0 1 0 2 0 0 so that

¯

(1 ) 1
¯ ¯

1
¯ ¯ 0

1
¯ ¯

1
¯ ¯ 0

¯ 0 0 1

0 (9.45)

1 2

2
¯ ¯

2
¯ ¯ 0

2
¯ ¯ ( ) 2

¯ ¯ 0
1 2 ( ) 0 0 2

0 (9.46)

where ¯ ¯ ¯ are given in (9.35).

Proof. Let
( ( )) = ( ) ( )

for some 0 and assume that

( ( )) (9.47)

for 0 1 0 Note that ( ( )) satisfying
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( ( + 1)) + ( 1) ( ( )) ( (0)) = 0 (9.48)

is bounded by the solution of di erence equation

( ( + 1)) = (1 ) ( ( )) +

i.e.
( ( ))

On the other side, matrix inequality"
( + )

( + )

# £
( + ) ( + )

¤
(9.49)

+(1 )
0

0 0

¸
0 0
0

¸
ensures that ( ) ( )

( ( + 1)) + ( 1) ( ( )) ( ) ( ) = ( ( ))

Thus, (9.47) holds if (9.49) is satisfied. Note that ( ) bounded by
k k 1 and ( ) ( ) respectively,

( ) ( )
¡

( ) ( ) + ( ( ) ( ) ( )
¢

(9.50)

= ( ) ( ) 2

if (9.47) holds. Moreover, (9.50) can be expressed in terms of matrix inequality

1

"
( + )

( + )

# £
+ +

¤ 0
0 ( )

¸
(9.51)

According to Lemma 8.1, we know that for 1 0 2 0¸ ¡
1

1
¯ ¯

¢ 1 £ ¤
+
1

1

¯
¯

¸ £
¯ ¯

¤
(1 ) 0

0

¸
1

¸³
2 ( )

´ 1 £ ¤
+
1

2

¯
¯

¸ £
¯ ¯

¤
0

0 ( )

¸
are su cient for (9.49) and (9.51) respectively. Applying the Schur comple-
ment we have



300 9 Norm based residual evaluation and threshold computation

1
1
¯ ¯

(1 ) 1

1

¯ ¯ 1

1

¯ ¯
1

1

¯ ¯ 1

1

¯ ¯
0

¯

(1 ) 1

1

¯ ¯ 1

1

¯ ¯ 0
1

1

¯ ¯ 1

1

¯ ¯ 0
¯ 0 0 1

1

0

1 2

1

2

¯ ¯ 1

2

¯ ¯ 0
1

2

¯ ¯ ( ) 1

2

¯ ¯ 0
1 2 ( ) 0 0 1

2

0

The theorem is finally proven by setting 1 =
1

1
2 =

1

2
ut

Algorithm 9.3 Computation of for the systems with the norm
bounded uncertainty

Step 0: Substitute ¯ ¯ in (9.35) by ¯ ¯

Step1: Solve optimization problem

min subject to (9 43) (9 44) or (9 45) (9 46)

for 0 0 1 0 2 0 0 and set = min
Step 2: Set

= ( + ) (9.52)

Example 9.3 In this example, we study the residual evaluation and threshold
setting problems via the benchmark system LIP100. The same model like the
one used in Example 8.1 is adopted. Further, we suppose the use of a residual
generator designed by the unified solution with

=

1 1338 0 1718 0 3728
0 1718 0 0260 0 0565
6 5071 0 0565 0 1226
84 1928 0 0167 0 0362

=
1 0 0
0 1 0
0 0 1

The application of Algorithm 9.3 leads to

= 4 6762

On the assumption that = 0 0096 = 0 1 with an evaluation window
of 10 , we have finally

= 0 5125

In Fig.9.5, we show a simulation of the evaluated residual signals in compar-
ison with the threshold set above, where a fault in the velocity sensor of the
cart occurred at = 6
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Fig. 9.5 Residual evaluation and comparison with the threshold by a sensor fault

9.6.2 Computation of J for the systems with the
polytopic uncertainty

Consider system (9.21)-(9.22) with the polytopic uncertainty. Following Lemma
9.4 and its "discrete time version", we have

Theorem 9.7 Given system (9.21)-(9.22) with the polytopic uncertainty and
0 and suppose that (0) = 0 then

k ( )k k ( )k

if there exist 0 0 and 0 so that = 1 · · ·"
( + ) + ( + ) + ( + )

( + )

#
0 (9.53)

0 ( + )

0 ( ) ( + )
+ +

0 (9.54)

Theorem 9.8 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

( ) = ( + ) ( ) + ( + ) ( )

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and 0 and suppose that ( ) = 0 then

k ( )k k ( )k
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if there exist 0 0 and 0 so that = 1 · · ·
( + ) ( + )

( + ) (1 ) 0

( + ) 0

0 (9.55)

0 ( + )

0 ( ) ( + )
+ +

0 (9.56)

Algorithm 9.4 Computation of for the systems with the poly-
topic uncertainty

Step1: Solve optimization problem

min subject to (9 53) (9 54) or (9 55) (9 56)

for 0 0 and 0 and set = min
Step 2: Set

= ( + )

9.7 Computation of J 2

9.7.1 Computation of J 2 for the systems with the norm
bounded uncertainty

Consider system (9.21)-(9.22) with the norm bounded uncertainty. It is ev-
ident that ( ) acts directly on ( ) via the crossing matrix +
The maximum change in ( ) caused by ( ) via + is given by

2 ( + ) with

sup
¯( ( ))

¡
+ ( ) ¯

¢ ¡
+ ( ) ¯

¢
2

where ¯ is given in (9.35). Using Lemma 8.1, 2 can be determined by solving

2 = min
3 0

2 subject to (9.57)

2 3
¯ ¯ 0

0 3

0

Write into two parts,

= 1 + 2 1 = ( + ) 2 = ( + )

Using Lemmas 9.1 and 8.1, we are able to compute the bound of the influence
of on 1 as stated in the following theorem.
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Theorem 9.9 Given system

˙ = ( + ) + ( + )

1 = ( + )

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and 1 0 and suppose that (0) =
0 ( ) ( ) then

k 1( )k 1 k ( )k2
if there exist 1 0 2 0 0 so that

+ + 1
¯ ¯ + 1

¯ ¯ ¯

+ 1
¯ ¯

1
¯ ¯ 2

1 0
¯ 0 1

0 (9.58)

+ 2
¯ ¯ 0

0 2

0 (9.59)

where ¯ ¯ ¯ are given in (9.35).

The proof of this theorem is similar to the one of the next theorem.

Theorem 9.10 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

1( ) = ( + ) ( )

with the norm bounded uncertainty, where all system matrices are identical
with the ones used in (9.21)-(9.22), and 1 0 and suppose that

(0) = 0 ( ) ( )

then
k 1( )k 1 k ( )k2

if there exist 1 0 2 0 0 so that

¯

1
¯ ¯

1
¯ ¯ 0

1
¯ ¯

1
¯ ¯ 2

1 0
¯ 0 0 1

0 (9.60)

+ 2
¯ ¯ 0

0 2

0 (9.61)

where ¯ ¯ ¯ are given in (9.35).
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Proof. Let
( ( )) = ( ) ( )

for some 0 Considering that

( ( + 1)) ( ( )) 2
1 k ( )k2 (9.62)

yields

( ( )) 2
1

1X
=0

k ( )k2

we have

1( )
2
1

1X
=0

k ( )k2

provided that
( + ) ( + ) (9.63)

We now express (9.62) in terms of matrix inequality:"
( + )

( + )

# £
+ +

¤ 0
0 2

1

¸
0 (9.64)

Using Lemma 8.1 leads to a su cient condition for (9.64) as well as (9.63),
respectively

¯

1
¯ ¯

1
¯ ¯ 0

1
¯ ¯

1
¯ ¯ 2

1 0
¯ 0 0 1

0

+ 2
¯ ¯ 0

0 2

0

for some 1 0 2 0 ut
Algorithm 9.5 Computation of 2 for the systems with the norm
bounded uncertainty

Step 0: Substitute ¯ ¯ in (9.35) by ¯ ¯

Step 1: Solve optimization problem (9.57) for 2

Step 2: Solve optimization problem

min 1 subject to (9 58) (9 59) or (9 60) (9 61)

for 1 0 2 0 0 and set 1 = min 1

Step 3: Set
2 = 1 ( 2 + 2) + 2 ( + ) (9.65)
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Example 9.4 Under the exactly same conditions with the ones of Example
9.3, we now determine 2 for the benchmark system LIP100 with the
norm bounded uncertainty. Under the application of Algorithm 9.5 we get

1 = 3 3197 2 = 9 0651× 10 11

and further, on the assumption that

= 0 1000 = 0 0099 2 = 0 3162 2 = 0 0163

2 = 3 3197(0 3162 + 0 0163)

+9 0651× 10 11(0 100 + 0 0099) = 1 1040

In Fig.9.6, we see simulation of the evaluated residual signals in comparison
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Fig. 9.6 Residual evaluation and comparison with the threshold by a sensor fault

with the threshold set above, where a fault in the velocity sensor of the cart
occurred at = 6

9.7.2 Computation of J 2 for the systems with the polytopic
uncertainty

We now study the computation of 2 for system (9.21)-(9.22) with the
polytopic uncertainty.
In order to evaluate the influence of ( ) on ( ) via the crossing matrix
+ we propose to solve the following optimization problem: finding

2 such that = 1 · · ·

( + ) ( + ) 2 (9.66)
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For the evaluation of the influence of L2 norm of on 1 we have the
following two theorems which are a straightforward extension of Lemma 9.3
and its "discrete time version".

Theorem 9.11 Given system

˙ = ( + ) + ( + )

1 = ( + )

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and 1 0 and suppose that (0) = 0 then

k 1( )k 1 k ( )k2
if there exist 0 so that = 1 · · ·"

( + ) + ( + ) ( + )

( + )

#
0 (9.67)

( + )
+

¸
0 (9.68)

Theorem 9.12 Given system

( + 1) = ( + ) ( ) + ( + ) ( )

1( ) = ( + ) ( )

with the polytopic uncertainty, where all system matrices are identical with
the ones used in (9.21)-(9.22), and 1 0 and suppose that ( ) = 0 then

k 1( )k 1 k ( )k2
if there exists 0 so that = 1 · · ·

( + ) ( + )

( + ) 0

( + ) 0 2
1

0 (9.69)

+

( + )

¸
0 (9.70)

Algorithm 9.6 Computation of 2 for the systems with the polytopic
uncertainty

Step1: Solve optimization problem (9.66) 2

Step 2: Solve optimization problem

min 1 subject to (9 67) (9 68) or (9 69) (9 70)

for 0 and set 1 = min 1
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Fig. 9.7 Evaluated residual signal and threshold

Step 3: Set
2 = 1 ( 2 + 2) + 2 ( + )

Example 9.5 Similar to Example 9.2, we now compute 2 for the
benchmark system EHSA via Algorithm 9.6:

Step 1: 2 = 1 5168
Step 2: 1 = 1 0006
Step 3: 2 = 3 5095 + 1 0006 2 + 1 5083 for = 1

Again, by the simulation the on-line estimation of 2 and is used.
In Fig.9.7, both the RMS value of the residual signal and the corresponding
threshold are shown, where a fault in sensor occurred at = 3

9.8 Threshold generator

The thresholds derived in the last sections have in common that they are
constant and a function of a bound on the input vector . Since is generally
on-line available during process operation, substituting the bound on by an
on-line computation would considerably reduce the threshold size and thus
increase the fault detection sensitivity. Those thresholds which are driven by
the system input signals, as shown in Fig.9.1, are known as adaptive thresholds
or threshold selectors. Analog to the concept of residual evaluator, we call
them threshold generator.
While the bound on the peak of can be easily replace by the instan-

taneous value
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k ( )k =
q

( ) ( ) or k ( )k =
q

( ) ( )

2 will be approximated by

k ( )k2 =

+Z
k ( )k2

1 2

or k ( )k2 =
X
=1

k ( + )k2
1 2

in an iterative way or with a weighting, e.g.

k ( )k22 +1 = k ( )k22 + k ( + + 1)k2 or
k ( )k22 +1 = k ( )k22 + k ( + + 1)k2

with 0 1
The three kinds of constant thresholds introduced in the last sections,

2 and 2 given by (9.38), (9.52) and (9.65) re-
spectively, will be replaced by the threshold generators

2( ) =
2
+ k ( )k or (9.71)

2( ) =
2
+ k ( )k

( ) = + k ( )k or (9.72)

( ) = + k ( )k
2( ) = 1 2 + 2 + 1 k ( )k2 + 2 k ( )k or (9.73)

2( ) = 1 2 + 2 + 1 k ( )k2 + 2 k ( )k
where the superscript stands for generator.
It is interesting to notice that the threshold generators consist of two parts:

a constant part and a time varying part. This time varying part depends on
the instantaneous energy change in the input signals. In other words, un-
der di erent operating conditions, expressed in terms of the input signals,
the threshold will be di erent. In this context, the threshold generator is an
adaptive threshold. Since

2 2 2 2

it is clear that substituting the thresholds by the corresponding threshold
generators will enhance the fault detection sensitivity.

Example 9.6 In this example, we replace the constant threshold computed
in Example 9.1 by a threshold generator and repeat the simulation. It follows
from (9.71)that

2( ) = 0 15 + 0 27 k ( )k
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Fig. 9.8 Threshold generator and the evaluated residual signal: = 100 =
0 006 occurred at = 25
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Fig. 9.9 Threshold generator and the evaluated residual signal: = 100 1 =
0 125 occurred at = 25

where k ( )k will be on-line computed. Fig.9.4 and Fig.9.5 show the
threshold generator and the responses of the evaluated residual signal to an
actuator fault and a sensor fault. Comparing Fig.9.8 and Fig.9.9 with Fig.9.2
and Fig.9.3, we clearly see that the threshold generator scheme delivers higher
fault detectability, also in case of a large size input signal.
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9.9 Notes and references

Although the norm based residual evaluation was initiated by Emami-naeini et
al. [48] almost twenty years ago, only few research results on this topic have
been published, see for instance [39, 54, 77, 85, 123]. On the other side, in
practice limit monitoring and trend analysis schemes are very popular, where
the determination of thresholds plays a central role. It is the state of the art
in practice that thresholds are generally determined based on experiences or
by means of real tests and simulation.
The results and algorithms presented in this chapter are a considerable

extension of the results reported in [34]. They have been achieved in the norm
based framework and therefore may lead to a conservative threshold setting.
Even though, they provide the system designer with a reliable and reasonable
estimate of the value range of the thresholds. It can save a great number of
real tests and therefore are valuable both from the technical and economic
viewpoint.
The major tools used for our study in this chapter is the robust control

theory and LMI technique. We refer the reader to [14, 130] as well as [160] for
the needed knowledge and computation skills in this area.
The proofs of Lemmas 9.1, 9.2 on the generalized H2 norm and peak-to-

peak gain can be found in [130] and as well as in [14]. The extension of these
results to the systems with polytopic model uncertainties, as given in Lemmas
9.3 and 9.4, is schematically described in [14].
A major conclusion of this chapter is that for di erent application purposes

di erent residual evaluation functions and correspondingly di erent induced
norms should be used. This conclusion also reveals the deficit in the current
research. The e orts for achieving an optimization without considering the
evaluation function and the associated threshold computation can result in
poor FDI performance. Research on the optimization schemes under perfor-
mance indices di erent from the H or H2 norm is urgently demanded in
order to fill in the gap between the theoretical study and practical applica-
tions.



10

Statistical methods based residual evaluation
and threshold setting

10.1 Introduction

The objective of this chapter is to present some basic statistical methods
which are typically used for residual evaluation, threshold setting and decision
making.
In working with this chapter, the reader will observe that the way of prob-

lem handling and the mathematical tools used for the problem solution are
significantly di erent from those presented in the previous chapters. We shall
first introduce some elementary statistical testing methods and the basic ideas
behind them. Although no dynamic process is taken into account, those meth-
ods and ideas build the basis for the study in the sequent sections. A further
section is devoted to the criteria for the selection of thresholds. In the last
section, we shall briefly deal with residual evaluation problems for stochastic
dynamic processes, as sketched in Fig.10.1.

Fig. 10.1 Schematic description of statistic testing based residual evaluation and
decision making
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10.2 Elementary statistical methods

In this section, a number of elementary statistical methods will be introduced.

10.2.1 Basic hypothesis test

The problem under consideration is formulated as follows: Given a model

= + R
with N (0 2) (i.e. normally distributed with zero mean and variance 2)
= 0 or | | 0 a number of samples of 1 · · · and a constant 0

(the so-called significance level), find a threshold such that

prob {| |̄ | = 0} ¯ =
1 X

=1

(10.1)

where prob{| |̄ | = 0} denotes the probability that | |̄ under
condition = 0 It is well-known that the probability prob{| |̄ | = 0}
is the false alarm rate if the following decision rule is adopted:

| |̄ : = 0 ( 0 null hypothesis) (10.2)

| |̄ : 6= 0 ( 1 alternative hypothesis). (10.3)

From the viewpoint of fault detection, the above mathematical problem is
the answer to the fault detection problem: Given system model, how can we
select the threshold towards a reliable detection of the change (fault) in
based on the samples of the output ? In the problem formulation and the
way of approaching the solution we can observe some key steps:

• the objective is formulated in the statistical context: the probability of
a false decision, i.e. prob{| |̄ | = 0} should be smaller than the
given significance level

• an estimation of the mean value of based on the samples ¯ = 1
P
=1

is included in the testing process
• the decision is made based on two hypotheses: 0 the null hypothesis,
means no change in while 1 the alternative hypothesis, means a change
of

Throughout this chapter, these three key steps to the problem solutions
will play an important role.
The solutions of the above-formulated problem are summarized into two al-

gorithms, depending on whether is known. For details, the interested reader
is referred, for instance, to the textbook by Lapin.

Algorithm 10.1 Computing if is known
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Step 1: Determine the critical normal deviate 2 using the table of critical
normal deviate values or the table of standard normal distribution, i.e.

prob
©

2

ª
= 2 (10.4)

Step 2: Set
= 2 (10.5)

since ¯ is normally distributed with

(¯) = 0 (¯) =
2

(10.6)

Algorithm 10.2 Computing if is unknown

Step 1: Determine 2 using the table of distribution with degree of freedom
equal 1, i.e.

prob
©

2

ª
= 2 (10.7)

Step 2: Set

= 2
2 =

P
=1
( ¯)

2

1
(10.8)

where
=

¯

satisfies Student distribution with the degree of freedom equal to 1

Remark 10.1 The idea behind the above algorithm is an estimation of the
variance by

It is clear that for the purpose of change detection, following on-line com-
putation (evaluation of the samples of ) is needed: In case that is known
it is

¯ =
1 X

=1

otherwise ¯ and

=

vuuutP
=1

( ¯)2

1
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10.2.2 Likelihood ratio and generalized likelihood ratio

Likelihood ratio (LR) methods are very popular in the framework of change
detection. In this subsection, we briefly introduce two basic versions of these
methods. We refer the interested reader to the excellent monograph by Bas-
seville and Nikiforov for details on the topics introduced in this and the next
subsections.
Given the system model

= + N (0 2) =

½
0 = 0 0 (no change)

1 1 (change but constant)

the log likelihood ratio for data is defined by

( ) = ln 1( )

0( )
=

1

2 2

h
( 0)

2
( 1)

2
i

( ) =
1

2

( )2

2 2

(10.9)
where ( ) is the probability density of for = The basic idea of the
LR methods can be clearly seen from the decision rule

( ) =

½
0 0 ( = 0) is accepted
0 1 ( = 1) is accepted

Note that ( ) 0 means 1( ) 0( ) i.e. given the probability of
= 1 is higher than the one of = 0 Thus, it is reasonable to make a

decision in favour of 1

In case that samples of = 1 · · · , are available, the (log) LR
is defined by

1 =
X
=1

=
X
=1

ln 1( )

0( )
=

1

2 2

X
=1

h
( 0)

2
( 1)

2
i

=
1 0

2

X
=1

μ
1 + 0

2

¶
(10.10)

We distinguish two di erent cases: 1 is known and 1 is unknown.
Detection when 1( 0) is known and 0 = 0
Note that

1 0
X
=1

μ
1 + 0

2

¶
=
X
=1

μ
1

2

¶
0

1 X
=1

1

2

(10.11)
and moreover

1 X
=1

N
μ
0

2
¶

Thus, given allowed false alarm rate the following algorithm can be used
to compute the threshold.
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Algorithm 10.3 Computing if 1 is known

Step 1: Determine 1

2 using the table of standard normal distribution,
i.e.

prob { } =
Step 2: Set

= (10.12)

It is very interesting to see the interpretation of condition (10.11). Recall

that 1
P
=1

gives in fact an estimate of the mean value of based on the

available samples. (10.11) tells us: if the estimate of the mean value is larger
than 1

2 , then a change is detected. This is exactly what we would instinctively
do in such a situation.
Detection when 1 is unknown and 0 = 0
In practice, it is the general case that 1 is unknown. For the purpose of

detecting change in with unknown 1 the so-called generalized likelihood
ratio (GLR) method was developed, where 1 is replaced by its maximum
likelihood estimate. The maximum likelihood estimate of 1 is an estimate
achieved under the cost function that the LR is maximized. Thus, the max-
imum LR as well as the maximum likelihood estimate of 1 are the solution
of the following optimization problem

max
1

1 = max
1

1

2 2

X
=1

h
2 ( 1)

2
i

= max
1

1

2 2

1
ÃX

=1

!2
( 1 ¯)2 = (10.13)

ˆ
1 = argmax

1
1 = ¯ =

1 X
=1

max
1

1 =
1

2 2

ÃX
=1

!2
max

1
1 =

1

2 2
(¯)

2 (10.14)

It is of practical interest to notice that

• the maximum likelihood estimate of 1 is the estimate of the mean value,

¯ = 1
P
=1

• the maximum LR, 1
2 2 (¯)

2 is always larger than zero and thus
• a suitable threshold should be established to avoid high false alarm rate.

Note that the distribution of 1
2 (¯)2 is 2(1). Therefore, given allowed

false alarm rate the following algorithm can be used to compute the thresh-
old.
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Algorithm 10.4 Computing if 1 is unknown

Step 1: Determine using the table of 2 distribution with 1 degree of
freedom, i.e.

prob { } =
Step 2: Set

= 2 (10.15)

For both the cases, the decision rule is

1 =

½
0 ( = 0) is accepted
1 ( 6= 0) is accepted

which ensures that false alarm rate is not larger than
It has been theoretically proven that the LR based change detection leads

to a minimization of the missed detection rate for a given false alarm rate.
For the implementation of the above-described LR methods, computation

of 1 is needed, which is

¯ =
1 X

=1

in case that 1 is known and otherwise

1

2 2

ÃX
=1

!2

10.2.3 Vector-valued GLR

In this subsection, the generalized likelihood ratio (GLR) test will be presented
in the vector form.
Given the system model

= + N (0 ) =

½
0 no change
1 change

where R and the probability density of Gaussian vector is defined
by

( ) =
1p

(2 ) det( )

1
2 ( ) 1( ) (10.16)

Hence, the LR for given vector satisfies

( ) = ln 1( )

0( )
=
1

2

h
( 0)

1 ( 0) ( 1)
1 ( 1)

i
Under the assumption that 0 = 0 and (vector-valued) samples of

= 1 · · · are available, the maximum likelihood estimate of 1 and
the maximum LR are given by
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max
1

1 = max
1

1

2

"X
=1

1
X
=1

( 1)
1 ( 1)

#
=

max
1

1

2

"X
=1

1
X
=1

1

Ã
1

1
1 2 1

1 1
X
=1

!#

= max
1

1

2

h
¯ 1¯ (¯ 1)

1 (¯ 1)
i
¯ =

1 X
=1

= ˆ
1 = argmax

1
1 = ¯ = max

1
1 =

2
¯ 1¯ (10.17)

Once again, we can see that also in the vector-valued case, the maximum

likelihood estimate of 1 is ¯ = 1
P
=1

Since ¯ is a -dimensional vector

with
¯ N (0 )

¯ 1¯ is distributed as a 2( ) As a result, the following algorithm can
be used for computing the threshold if the decision rule is defined as

1 =

½
0 ( = 0) is accepted
1 ( 6= 0) is accepted

Algorithm 10.5 Computing if vector 1 is unknown

Step 1: Determine using the table of 2 distribution with degrees of
freedom, i.e.

prob { } =
Step 2: Set

= 2 (10.18)

10.2.4 Detection of change in variance

Given the system model

= + R N (0 2
0)

a number of samples of 1 · · · and a constant 0 (the significance
level), find a statistic and a threshold such that the change in variance
(assume that 2 2

0) can be detected with a false alarm rate smaller than

We present two testing methods for our purpose.
Testing with the 2 statistic given by Lapin
The statistic
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1 :=
( 1) 2

2
0

2 =

P
=1
( ¯)2

1
(10.19)

has the standard 2 sampling distribution with the degree of freedom equal
to 1 Thus, given the threshold is determined by (using the standard
2 distribution table)

= 2 prob
©

2 2
ª
= (10.20)

The decision rule is

1 =

½
0 (

2 2
0) is accepted

1 (
2 2

0) is accepted

Testing using GLR given by Basseville and Nikiforov
For this purpose, first consider LR which is described by

1 =
X
=1

=
X
=1

ln 1
( )

0( )
= ln

0

1
+

1

2 2
0

X
=1

2 1

2 2
1

X
=1

2

Thus, solving the optimization problem

max
1

1 = max
1

Ã
ln

0

1
+

1

2 2
0

X
=1

2 1

2 2
1

X
=1

2

!
=

ˆ21 = argmax
1

1 =
1 X

=1

2 (10.21)

1 = ln 0
2

"
1 + ln

Ã
1 X

=1

2

!#
+

1

2 2
0

X
=1

2

gives the GLR.

10.2.5 Aspects of on-line realization

The above-presented detection methods can be realized on-line in di erent
ways.
On-line implementation with a fixed sample size N
In this case, the decision rule, for instance for the GLR test, is defined by

( +1)
+1 =

½
0 ( = 0) is accepted
1 ( 6= 0) is accepted

( +1)
+1 =

X
=1

+ =

( +1)X
= +1

ln 1( )

0( )
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The observation will be stopped after the first sample of size for which the
decision is made in favor of 1 ( 6= 0). Note that in this case the maximal
(possible) delay is × where is the sampling time.
On-line implementation in a recursive manner
In practice, for the reason of achieving a su ciently large sample size and

continuously computing the LR, GLR is often realized in a recursive form.
For this purpose, we define

=
1

2

ÃX
=1

!
1

ÃX
=1

!
=
1

2
1

=
X
=

= 1 · · ·

and write +1 into

+1 =
1

2( + 1)

Ã
+1X
=1

!
1

Ã
+1X
=1

!

=
1

2

1

( + 1)
1 +

1

( + 1)

¡
2 1

+1 + +1
1

+1

¢¸
=
( + 1)

+
1

( + 1)

μ
+1

1

2
+1

¶
1

+1

Based on it, the following recursive calculation is introduced:

+1 = + (1 )

μ
+1

1

2
+1

¶
1

+1
0 = 0 (10.22)

+1 = + +1

where 0 1 and acts as a forgetting factor. In order to avoid being
too large, ¯ := 1 can be replaced by

¯ +1 = ¯ + (1 ) +1 0̄ = 0

As a result, (10.22) can then be written into

+1 = +

μ
¯ +1

(1 )

2
+1

¶
1

+1 (10.23)

and, in case that 1 is very small, furthermore

+1 = + ¯ +1
1

+1 (10.24)

Setting a counter
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An e ective way to make the decision making procedure to be robust
against strong noises is to set a counter. Let

{ }

be an indicator that the GLR is larger than the threshold, i.e.

{ } =
½
1
0

Then the stopping rule is set to be

= min

(
:
X
=0

{ }

)

where is a threshold for the number of the crossings of threshold

10.3 Criteria for threshold computation

In the last section, the threshold is determined in such a way that the admis-
sible false alarm rate will not be exceeded. In this section, we first study this
criterion from the theoretical viewpoint and then present a number of di erent
criteria for the threshold computation given by Mcdonough and Whalen.

10.3.1 The Neyman-Pearson criterion

Let us introduce notations

= prob( 1 | 0) = prob( 0 | 1)

for the probability that decision for 1 is made ( 1) in case of no change
( 0) and the probability that decision for 0 is made ( 0) as the change is
present ( 1) respectively, i.e.

false alarm rate =

missed detection rate =

The scheme adopted in the last section for the threshold computation can
then be formulated as: Given an admissible false alarm rate the threshold
should be selected such that

= prob( 1 | 0) (10.25)

It is also desired that the missed detection rate is minimized under the condi-
tion that (10.25) is satisfied. It leads to the following optimization problem:
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min = minprob( 0 | 1) subject to = prob( 1 | 0)
(10.26)

Note that
= prob( 0 | 1) = 1 prob( 1 | 1)

and :=prob( 1 | 1) means the detection rate, thus optimization problem
(10.26) can be equivalently reformulated as:

max = max prob( 1 | 1) subject to = prob( 1 | 0)
(10.27)

Optimization problem (10.27) is called Neyman-Pearson criterion. On the
assumptions that

• the conditional densities

0( ) := ( 0 | ) 1( ) := ( 1 | )

are known
• there exist no unknown parameters in 0( ) 1( )

the so-called Neyman-Pearson Lemma provides a solution to the optimiza-
tion problem (10.27), which can be roughly stated as follows: Given 0( )
(6= 0) 1( ) and

• if 1( ) 0( ) choose 0

• if 1( ) 0( ) choose 1

• is determined by

prob( 1( ) 0( ) | 0) = (10.28)

Following Neyman-Pearson Lemma, it becomes clear that the LR method
introduced in the last section for the case of both 0 1 being known ensures
a maximum fault detection rate. Moreover, the GLR provides us with a sub-
optimal solution, since 1( ) contains a unknown parameter ( 1 is unknown
and estimated).

10.3.2 Maximum a posteriori probability (MAP) criterion

Consider again the system model

= + N (0 ) =

½
0 no change
1 change

Assume that a posteriori probability is available, i.e.

0 = prob ( = 0) 1 = prob ( = 1) are known

then it turns out
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1( ) = ( 1 | ) = ( | 1) 1

( )
0( ) = ( 0 | ) = ( | 0) 0

( )

Now consider the (log) LR

( ) = ln
1( )

0( )
= ln

( | 1) 1

( | 0) 0
= ln

( | 1)

( | 0)
+ ln

1

0

The MAP criterion results in a decision in favour of 1 if ( ) = ln 1( )

0( )
0

otherwise 0 Thus, following the MAP criterion, the threshold is computed
by solving

ln
( | 1)

( | 0)
+ ln

1

0
= 0 (10.29)

For instance, for the above-given system model we have

ln
( | 1)

( | 0)
+ ln

1

0
=

1 0

2

μ
1 + 0

2

¶
+ ln

1

0
=

ln
( | 1)

( | 0)
+ ln

1

0
= 0

1 0

2

μ
1 + 0

2

¶
= ln

0

1
=

=
2

1 0
ln

0

1
+

1 + 0

2

To determine the false alarm rate, the probability

prob( | 0)

will be calculated.

10.3.3 Bayes’ criterion

Bayes’ criterion is a general criterion which allows us to make a decision among
a number of hypotheses. For the sake of simplicity, we only consider the case
with two hypotheses, 0 and 1

The basic idea of the Bayes’ criterion consists in the introduction of a cost
function of the form

= 00 ( 0 | 0) 0 + 10 ( 1 | 0) 0 + 01 ( 0 | 1) 1

+ 11 ( 1 | 1) 1 (10.30)

where 0 =prob( 0) 1 =prob( 1) and are assumed to be known, =
0 1, is the "cost" for choosing decision when is true. Thus, it is rea-
sonable to assume that

6=

The decision rule is then derived based on the minimization of the cost func-
tion For this purpose, (10.30) is re-written into
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= 00 (1 ( 1 | 0)) 0 + 01 (1 ( 1 | 1)) 1 +

10 ( 1 | 0) 0 + 11 ( 1 | 1) 1

= 00 0 + 01 1 +

Z
[ 0 ( 10 00) 0( ) + 1( 11 01) 1( )]

where 0( ) 1( ) stand for the densities of 0 1 It turns out that

0 ( 10 00) 0( ) + 1( 11 01) 1( ) 0 =

1( )

0( )
0 ( 10 00)

1( 01 11)

will reduce the cost function. As a result, the threshold is defined

= ln
0

1
+ ln

10 00

01 11

and the decision rule is

( ) = ln
1( )

0( )

(
= ln 0

1
+ ln 10 00

01 11
decision for 1

= ln 0

1
+ ln 10 00

01 11
decision for 0

10.3.4 Some remarks

It is evident that the main di erence among the above-introduced methods
consists in the fact that using Neyman-Pearson strategy the prior probabilities
of 0 1 are not needed, while Bayes’ criterion and MAP criterion are based
on them.
It is remarkable that all three methods lead to the computation of (log)

LR. Neyman-Pearson scheme is mostly suitable for the solution of the fault
detection problem formulated as: Given an admissible false alarm rate, find
a threshold and a decision rule such that the missed detection rate is mini-
mized, although the GLR may only give a sub-optimal solution. On the other
side, the Neyman-Pearson scheme is a traditional statistical method whose
core is performing hypotheses tests towards decisions consistent with sample
evidence. In against, Bayes’ and MAP schemes allow to make a decision even
if the usual sample data are not available. In particular, Bayes’ criterion takes
into account the possible "costs" for a decision. This will make the whole
decision procedure more reasonable.
It should be pointed out that the Bayes’ scheme can also be extended to

the case where the probabilities of 0 1 are not available. In this case, the
worst case due to the unknown 0 1 = 1 0 should be taken into the
optimization procedure. For instance, instead of minimizing in (10.30) a
so-called minmax optimization problem is solved:

max
0 1=1 0

min =

max
0 1=1 0

min 00 ( 0 | 0) 0 + 10 ( 1 | 0) 0+

01 ( 0 | 1) 1 + 11 ( 1 | 1) 1

¸
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10.4 Application of GLR testing methods

The methods presented in this section are in fact the application and extension
of the above introduced methods to the solution of fault detection problems
met in linear dynamic systems.

10.4.1 Kalman filter based fault detection

Consider an LTI system given by

( + 1) = ( ) + ( ) + ( ) + ( ) (10.31)

( ) = ( ) + ( ) + ( ) + ( ) (10.32)

where ( ) N (0 ) ( ) N (0 ) are independent white noises. Using
a steady Kalman filter introduced in Section 7.2 an innovation process

( ) = ( ) ˆ( ) ( ) (10.33)

is created with white Gaussian process ( ) N (0 ) = +
when ( ) = 0 We are interested in the problem of detecting those faults
whose energy level is higher than a tolerant limit i.e.

k ( )k =

vuut 1

+ 1

X
=0

( ) ( ) =

½
(fault-free)

1 (fault)
(10.34)

by using ( ) as the residual signal and on the assumption that ( ) =
0 · · · are available for the detection purpose. Next, we apply the GLR
scheme to solve this problem.
Write the available residual data into a vector

=

( )
( + 1)

...
( )

It turns out

= 0 + (10.35)

where 0 represents the fault-free and stochastic part of the residual
signal

0 N (0 ˜ ) ˜ = ( · · · )

and is described by

= ( ) +
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with

=

( )
...
...
( )

=
¯

...
¯

=

0

¯ . . .
. . .

...
. . .

. . . 0
¯ 1 ¯ · · · ¯

( ) denoting the mean of the state estimate delivered by the Kalman filter
(see Section 7.2), i.e.

( + 1) = ¯ ( ) + ¯ ( ) ¯ = ¯ = (10.36)

and the observer gain given by (7.70). We assume that ( ) = 0 before the
fault occurs.
For our purpose, the GLR for the given model (10.35) is computed as

follows

2 = 2 ln

sup
k ( )k

k k ( )

sup
k ( )k

k k ( )
=

sup
k ( )k

h
( ¯ ) ( ¯ )

i
(10.37)

+ sup
k ( )k

h
( ¯ ) ( ¯ )

i
(10.38)

whose solution can be approached by solving optimization problems (10.37)
and (10.38) separately. To this end, we first assume that ( ) is small
enough so that

¯ = (10.39)

Note that

k ( )k2 = 1

+ 1
=

k ( )k2 2 ( + 1) 2 := ¯2 (10.40)

we have for k ( )k

ˆ
0 = arg sup

k ( )k

h
( ¯ ) ( ¯ )

i
= arg inf

1
+1

2

h
( ) ( )

i
and for k ( )k
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ˆ
1 = arg sup

k ( )k

h
( ¯ ) ( ¯ )

i
= arg inf

1
+1

2

h
( ) ( )

i
On the assumption that is right invertible, i.e. of full row rank, we have

ˆ
0 =

¡ ¢ 1

if
³ ´ 1

¯2 ,

ˆ
0 =

¡ ¢ 1 ¯r ³ ´ 1

if
³ ´ 1

¯2 and

ˆ
1 =

¡ ¢ 1

if
³ ´ 1

¯2 ,

ˆ
1 =

¡ ¢ 1 ¯ +r ³ ´ 1

if
³ ´ 1

¯2 where 0 is an arbitrarily small con-
stant. It turns out

2 =

Ã
1

¯ +

( )
1

!2
¯2Ã

1
¯

( )
1

!2
¯2

(10.41)
where

=
¡ ¢ 1

As a result, the decision rule follows (10.41) directly and is described by¡ ¢ 1 ¯2 : 0 (10.42)¡ ¢ 1 ¯2 : 1 (10.43)

Thus,
³ ´ 1

builds the evaluation function (testing sta-

tistic) for our fault detection purpose.
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Next, we study the following two problems: (a) given residual evaluation

function
³ ´ 1

and threshold = ¯2 find the false

alarm rate defined by

= prob
³ ¡ ¢ 1 | k ( )k

´
(10.44)

(b) given residual evaluation function
³ ´ 1

and allow-

able false alarm rate find the threshold. To solve these two problems, let

˜ = ˜ 1 2

It holds ¡ ¢ 1
˜ ˜ 1

= min

³
˜ 1 2 ˜ 1 2

´
(10.45)

with min

³
˜ 1 2 ˜ 1 2

´
denoting the minimum eigenvalue of ma-

trix ˜ 1 2 ˜ 1 2. Thus, we can estimate the false alarm rate by
means of

prob
¡
˜ ˜ | k ( )k ¢

(10.46)

Considering that in the fault-free case ˜ ˜ is noncentrally 2 distrib-
uted with noncentrality parameter

˜ 1 2 ˜ 1 2 ¯2
max

³
˜ 1 2 ˜ 1 2

´
and the degrees of the freedom equals to the dimension of ˜ the proba-
bility in (10.46) can be computed using the noncentral 2 distribution.
To solve the second problem, we can directly use the following relation

prob
³

2(dim(˜ ) ¯
2
)

´
= (10.47)

¯2 = ¯2
max

³
˜ 1 2 ˜ 1 2

´
for the determination of by given where dim(¯ ) 2 stand for the
degrees of the freedom and the (maximum) non-centrality parameter of the
non-central 2 distribution respectively.

Algorithm 10.6 Threshold computation

Step 1: Computation of ¯2 max

³
˜ 1 2 ˜ 1 2

´
Step 2: Determination of according to (10.47).

Algorithm 10.7 Computation of false alarm rate
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Step 1: Computation of ¯2 and ¯2 max

³
˜ 1 2 ˜ 1 2

´
Step 2: Computation of prob

³
2(dim(˜ ) ¯

2
) ¯2

´
Algorithm 10.8 on-line realization

Step 1: Computation of evaluation function¡ ¢ 1

Step 2: Comparison between
³ ´ 1

and threshold

Remember that the above solution is achieved on the assumption of
(10.39). We now remove this assumption. Let

¯ =

( )
( )
...
...
( )

¯ =

0

¯ ¯ . . .
. . .

...
...

. . .
. . . 0

¯ 1 ¯ · · · ¯

and rewrite ¯ into

¯ = = ¯ ¯

Since ( ) is driven by the fault, we replace our original problem formu-
lation (10.34) by

k¯ k =
r

1

+ 1
¯ ¯ =

½
¯ (fault-free)
¯ 1 (fault)

(10.48)

where ¯ is a constant determined by

¯ =
°°° ¡

¯
¢ 1 ¯

°°°
That means, we now define the fault detection problem in terms of the influ-
ence of the fault on the mean of the residual signal. Applying the GLR to the
given model (10.35) yields

2 = 2 ln

sup
k¯ k ¯

k¯ k ¯
( )

sup
k¯ k ¯

k¯ k ¯
( )

=

sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
(10.49)

+ sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
(10.50)
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Along with the way of solving (10.37) and (10.38), we can find out that for
k¯ k ¯

ˆ̄ 0 = arg sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
=

if 2
¯ and

ˆ̄ 0 = arg sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
=

¯q
if 2

¯ as well as for k¯ k ¯

ˆ̄ 1 = arg sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
=

if 2
¯ and

ˆ̄ 0 = arg sup
k¯ k ¯

h
( ¯ ) ( ¯ )

i
=

¯+q
if 2

¯ where 0 is a arbitrarily small constant. It leads to

2 =

μ
1 ¯+

¶2
2
¯μ

1 ¯

¶2
2
¯

(10.51)
Thus, the decision rule can be defined as

2
¯ : 0 (10.52)
2
¯ : 1 (10.53)

with as the testing statistic. Similar to the study in the first part
of this section, we can introduce

˜ = ˜ 1 2

and, based on it, estimate the false alarm rate by applying decision rule
(10.52) and (10.53) or determine the threshold for a given allowable false
alarm rate as described in the following two algorithms.
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Algorithm 10.9 Computation of false alarm rate

Step 1: Compute

= min
³
˜
´
¯2 = 2

Step 2: Compute

prob
³

2(dim(˜ ) ¯
2
) 2

¯

´
(10.54)

Algorithm 10.10 Threshold computation

Step 1: Compute ¯
2

Step 2: Solve
prob

³
2(dim(˜ ) ¯

2
)

´
= (10.55)

for

10.4.2 Parity space based fault detection

Applying the parity space method to system (10.31) and (10.32) yields

=

( )
...
( )

0
. . .

. . .
...

. . .
. . . 0

1 · · ·

( )
...
...
( )

(10.56)

= + (10.57)

with

=

0
. . .

. . .
...

. . .
. . . 0

1 · · ·

=

( )
...
...
( ))

+

0
. . .

...
. . .

. . .
1 · · · 0

( )
...
...
( )

N (0 )

Again, we are interested in detecting those faults whose energy level is higher
than a tolerant limit i.e.

k ( )k =

vuut 1

+ 1

X
=0

( ) ( ) =

½
(fault-free)

1 (fault)

(10.58)
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Comparing (10.57) with (10.35) makes it clear that we are able to use the same
method to solve the above-defined fault detection problem. Thus, without a
detailed derivation, we give the major results in the following two algorithms.

Algorithm 10.11 Threshold computation

Step 1: Compute ¯
2
= ¯2

max

³
1 2 1 2

´
Step 2: Solve

prob
³

2(dim(˜ ) ¯
2
)

´
=

for .

Algorithm 10.12 Computation of false alarm rate

Step 1: Compute ¯2 and ¯
2
= ¯2

max

³
1 2 1 2

´
Step 2: Compute the false alarm rate prob

³
2(dim(˜ ) ¯

2
) ¯2

´
In the above two algorithms, the parameters ¯2 are identical with the

ones given in (10.45) and (10.40), and vector ˜ is given by

˜ = 1 2

Remark 10.2 The above results have been achieved on the assumption that
is right invertible. In case that it does not hold, we can use the method

described in Section 7.3 to replace by its approximation which is then
invertible.

Example 10.1 To illustrate the application of Algorithm 10.6, we consider
three tank system DTS200 given in Subsection 3.7.3. In order to get more
insight into the system design and threshold computation, we design two dif-
ferent Kalman filters, based on model (3.66). The first one is a Kalman filter
driven only by one sensor (the level sensor of tank 1). Such a residual gen-
erator is often integrated into a bank of residual generators for the isolation
purpose, see Section 13.5.1. Under the assumption that

= 0 1 3 = 0 1

the observer gain is given by

=
0 3816
0 0452
0 1107

Suppose that = 0 05 and the length of the evaluation window = 15, then
we get

¯2 ( 1 2 1 2) = 0 3787
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Fig. 10.2 Testing statistic and the threshold: one sensor case

In the next step, is determined according to (10.47). Setting = 0 05
results in

= 25 6222

Fig.10.2 provides us with a simulation result of the testing statistic and thresh-
old by a o set fault (5 ) in sensor 1 at = 12 The second Kalman filter
is designed using all three sensor signals. For = = 0 1 3 we get

=
0 3813 0 0000 0 0007
0 0000 0 3804 0 0007
0 0007 0 0007 0 3806

On the assumption = 0 1 and length of evaluation window = 15, it turns
out

¯2 ( 1 2 1 2) = 1 5213

On the demand of = 0 05 we have

= 27 4760

Fig.10.3 gives a simulation result of the testing statistic and threshold by the
same o set sensor fault ( = 5 = 12 ) like the last simulation Com-
paring both the simulation results, we can evidently see that fault detectability
is enhanced with more measurements.
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Fig. 10.3 Testing statistic and the threshold: three sensors case

10.5 Notes and references

In this chapter, essentials of statistic methods for the residual evaluation and
decision making have been briefly reviewed. In Section 10.2, basic ideas, im-
portant concepts and basic statistic testing tools have been introduced. For
the basic knowledge and elementary methods of probability and statistics, we
have mainly referred the book by Lapin [92]. By the introduction of the LR
and GLR technique, the monograph by Basseville and Nikiforov [10] serves as
a major reference.
The discussion in Section 10.3 about criteria for threshold computation is

intended for providing the reader with deeper background information about
the LR method and other useful alternative schemes. It is mainly based on
[103].
From the FDI viewpoint, Section 10.4 builds the main focus of this chapter.

Along with the ideas presented in [10] and equipped with the skill of applying
the GLR technique to solve change detection problems learned from [10],
we have introduced two methods for detecting faults in stochastic systems.
They serve as a bridge between the model-based FDI methods presented in
the previous chapters and the statistical methods, and build the basis for an
extended study in the forthcoming chapter.
We would like to emphasize that the statistical methods introduced in this

chapter is only a small part of the statistical methods based FDI framework.
For more detailed and comprehensive study, we refer the reader to the excellent
monographs by Basseville and Nikiforov [10] and by Gustafsson [69] as well
as the frequently cited book [93]. There also are a great number of excellent
papers, for instance [7, 8, 9, 91, 157].
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Integration of norm based and statistical
methods

In this chapter, we study the integration of norm based and statistical methods
to address FDI in systems with both deterministic disturbances and stochastic
uncertainties. Three schemes with di erent solution strategies and supported
by di erent tools will be presented. The first scheme deals with FDI in systems
with deterministic disturbances and stochastic noises, while the second and
third ones address systems with stochastically varying parameters.

11.1 Residual evaluation in stochastic systems with
deterministic disturbances

As sketched in Fig.11.1, in this section we continue our study started in the
last chapter.

Fig. 11.1 FDI in systems with deterministic disturbances and stochastic noises
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We consider systems modelled by

( + 1) = ( ) + ( ) + ( ) + ( ) + ( ) (11.1)

( ) = ( ) + ( ) + ( ) + ( ) + ( ) (11.2)

The terms ( ) ( ) represent the influence of some deterministic un-
known inputs with known distribution matrices and vector of unknown
inputs ( ) R which is bounded byvuut X

=

( ) ( )

with denoting the length of the evaluation window. ( ) R ( ) R
are assumed to be discrete time, zero-mean, white noise and satisfy

E

μ
( )
( )

¸ £
( ) ( )

¤¶
=

¸
Further, ( ) ( ) are assumed to be statistically independent of the input
vector ( )
Our objective is to detect the fault vector ( ) R if it di ers from

zero.

11.1.1 Residual generation

For the residual generation purpose, we use, without loss of generality, an
FDF

ˆ( + 1) = ( ) ˆ( ) + ( ) ( ) + ( )

( ) = ( ( ) ˆ( ) ( )) R

which yields

( + 1) = ¯ ( ) + ¯ ( ) + ¯ ( ) + ¯( ) (11.3)

( ) = ( ( ) + ( ) + ( ) + ( )) (11.4)

with

( ) = ( ) ˆ( ) ¯( ) = ( ) ( )
¯ = ¯ = ¯ =

The observer matrix and post-filter can be selected e.g. using the unified
solution or Kalman-filter scheme.
In the steady state, the means of ( ) ( ) (̄ ) = E ( ( )) (̄ ) =

E ( ( )) satisfy
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(̄ + 1) = ¯ (̄ ) + ¯ ( ) + ¯ ( ) (11.5)

(̄ ) = ( (̄ ) + ( ) + ( )) (11.6)

For our purpose, we write (̄ ) into

(̄ ) = ( ) + ( )

with

( ) =
³ ¡

¯
¢ 1 ¯ +

´
( )

( ) =
³ ¡

¯
¢ 1 ¯ +

´
( )

Note that in the fault-free case the mean of the residual signal is bounded by

k k =

vuut X
=

( ) ( )
°°° ³ ¡

¯
¢ 1 ¯ +

´°°° :=

(11.7)
for all The covariance matrix of ( ) is given by

E ( ( ) (̄ )) ( ( ) (̄ )) =
¡

+
¢

(11.8)

where 0 solves

¯ ¯ + = 0

=
£ ¤ ¸ ¸

= +

11.1.2 Problem formulation

Along with the lines in Section 10.4, we formulate two problems for our study.
Problem 1: Given { ( ) = · · · } find a residual evaluation func-

tion (testing statistic), k k a threshold and compute the false alarm rate
defined by

= prob {k ( )k | = 0} (11.9)

Problem 2: Given { ( ) = · · · } an allowable false alarm rate
and the residual evaluation function (testing statistic), k k as defined in

Problem 1, find a threshold such that

prob {k ( )k | = 0} (11.10)

Both of these two problems are of strong practical interests.
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11.1.3 GLR solutions

Below, we shall use the GLR method to solve the above two problems. For
this purpose, the GLR for given ( ) = · · · is computed. It results
in

2 = 2
X
=

= 2 log

sup
k k 6=0

Q
=

6=0( ( ))

sup
k k =0

Q
=

=0( ( ))

= sup
k k =0

" X
=

( ( )) ( )

#

+ sup
k k 6=0

" X
=

( ( )) ( )

#
(11.11)

where

6=0( ( )) =
1p

(2 )

1
2 ( ( )) ( )

=0( ( )) =
1p

(2 )

1
2 ( ( )) ( )

( ) = ( ) ( ) ( ) = ( ) ( ) ( )

Introduce the notations

= =

=

( )
...
...
( )

=

( )
...
...
( )

=

( )
...
...
( )

then we have

2 = sup
k k =0

h
( )

i
+ sup
k k 6=0

h
( )

i
(11.12)

Moreover, the boundedness of ( ) gives

=
X
=

( ) ( ) 2
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Next, we compute the LR estimate for :

ˆ 0 = arg sup
2

=0

h
( )

i

= if 2

ˆ 0 = arg sup
2

=0

h
( )

i

= q if 2

ˆ 1 = arg sup
2

6=0

h
( )

i
= 0

as well as for

ˆ 1 = arg sup
2

6=0

h
( )

i
=

As a result, we have

2 =

0 for 2μ
1

¶2
for 2

(11.13)
Recall that in the context of the GLR scheme a decision for a fault will be
made if 0 Thus, it follows from (11.13) that the probability of a false
alarm (the false alarm rate) equals to

= prob
¡

0 | = 0
¢
= prob

¡
2 | = 0

¢
(11.14)

In this way, defines a residual evaluation function (testing sta-
tistic) and 2 the threshold. For the computation of the false alarm rate we
need a further study on the testing statistic Remember that in
the fault-free case

=

( )
...
...
( )

+

0
. . .

...
. . .

. . .
¯ 1 · · · 0

¯( )
...
...

¯( )

=
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0 0
. . .

. . .
...

. . .
. . . 0

¯ 1 ¯ 1 · · · 0

( )
( )
...
...
( )
( )

N (0 ˜)

with

˜ = ˜
μ ¸

· · ·
¸¶

˜ (11.15)

˜ =

0 0
. . .

. . .
...

. . .
. . . 0

¯ 1 ¯ 1 · · · 0

Thus, for = 0 ˜ 1 is noncentrally 2 distributed with the
degree of freedom equal to ( + 1) and the noncentrality parameter

˜ 1 Consider that

= prob
¡

2 | = 0
¢

prob
³

˜ 1 1
max

³
˜
´

2 | = 0
´

prob
μ
max ˜ 1 1

max

³
˜
´

2 | = 0

¶
= 1 prob

μ
max ˜ 1 1

max

³
˜
´

2 | = 0

¶
Hence, is bounded by

1 prob
³

2
³

( + 1) 1
min

³
˜
´

2
´

1
max

³
˜
´

2
´

(11.16)

where 2
³

( + 1) 1
min

³
˜
´

2
´
denotes 2 distribution with the degree of

the freedom equal to ( +1) and the noncentrality parameter 1
min

³
˜
´

2

As a result, Problem 1 is solved.
The reader may notice that in (11.16)

noncentrality parameter 1
min

³
˜
´

2 threshold 1
max

³
˜
´

2

It will cause a high false alarm rate. To overcome this di culty, we can simply
substitute by

˜ 1
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as the testing statistic. Although additional on-line computation is now
needed, we have

prob
μ
max ˜ 1

max

³
˜ 1

´
2 | = 0

¶
= 1 prob

¡
2
¡

( + 1) 2
¢

2
¢

(11.17)

which ensures that the noncentrality parameter is equal to the threshold.
We summarize the major result in the following algorithm.

Algorithm 11.1 Computation of for given statistic and threshold

Step 1: Compute 2 according to (11.7)
Step 2: Form ˜ according to (11.15)
Step 3: Compute prob

¡
2
¡

( + 1) 2
¢

2
¢
and finally the bound of

using (11.17).

Algorithm 11.2 on-line realization

Step 1: Compute testing statistic

˜ 1

Step 2: Comparison between the testing statistic threshold = 2

Now, we solve Problem 2 for given testing statistic ˜ 1 and
an allowable false alarm rate It follows from (11.17) that the threshold
can be determined by solving

= 1 prob
³

2
³

( + 1) 1
min

³
˜
´

2
´ ´

(11.18)

It leads to the following algorithm.

Algorithm 11.3 Threshold computation

Step 1: Compute 2

Step 2: Determine according to (11.18).

11.1.4 Discussion and example

We see that the residual evaluation function is the statistic ˜

which measures the weighted energy level of the residual signal over the time
interval ( ) It is interesting to note that this function is similar to

the one used in the norm based residual evaluation methods.
On the other hand, di erent from the well-established norm based methods,
where the threshold is set to be 2 the threshold proposed here is determined
in the statistical context as defined by (11.18).
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The achieved results evidently reveal that, both in the norm based methods
and the approach presented in this section, the boundedness of and the
covariance of the residual signal given in (11.8) play an important role in
threshold determination, as we can see from (11.18). This is a convincing
argument for a system designer to make use of the degree of the design freedom
o ered by the observer to achieve an optimal trade-o between 1

min

³
˜
´

2

and .

Example 11.1 We continue our study in Example 10.1, where a fault detec-
tion system is designed for the three tank system benchmark. Now, in addition
to the noises, o set in the sensors is taken into account and modelled as un-
known inputs by

= and R3

It is assumed that is bounded by = 0 05 Our design objective is to de-
termine the threshold using Algorithm 11.3. For the residual generation
purpose, we use the same two Kalman filters designed in Example 10.1, i.e.
(a) a Kalman filter driven by the level sensor of tank 1 (b) a Kalman filter
driven by all three sensors. Under the same assumptions with = 0 05 we
have

Case (a) with one sensor: = 26 3349

Case (b) with three sensors: = 68 0159

Fig.11.2 and Fig.11.3 show the simulation results of the testing statistic and
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Fig. 11.2 Testing statistic and the threshold: one sensor case
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Fig. 11.3 Testing statistic and the threshold: three sensors case

threshold by an o set fault (5 ) in sensor 1 at = 12 with respect to the
designed FD systems.

11.2 Residual evaluation scheme for stochastically
uncertain systems

In Section 8.5, we have studied the residual generation problems for stochasti-
cally uncertain systems. The objective of this section is to address the residual
evaluation problems, as sketched in Fig.11.4.

11.2.1 Problem formulation

As studied in Section 8.5, we consider system model

( + 1) = ¯ ( ) + ¯ ( ) + ¯ ( ) + ( ) (11.19)

( ) = ¯ ( ) + ¯ ( ) + ¯ ( ) + ( ) (11.20)

where

¯ = + ¯ = + ¯ = +
¯ = + ¯ = + ¯ = +

and represent model uncertainties satisfying



344 11 Integration of norm based and statistical methods

Fig. 11.4 FDI in systems with deterministic disturbances and stochastic uncertainties¸
=
X
=1

μ ¸
( )

¶
(11.21)

with known matrices = 1 · · · of appropriate dimen-
sions. ( ) =

£
1( ) · · · ( )

¤
represents model uncertainties and is ex-

pressed as a stochastic process with

(̄ ) = E ( ( )) = 0 E
¡
( ) ( )

¢
= ( 1 · · · )

where = 1 · · · are known. It is further assumed that (0) (1) · · · are
independent and (0) ( ) ( ) ( ) are independent of ( )
For the purpose of residual generation, an FDF

ˆ( + 1) = ˆ( ) + ( ) + ( ( ) ˆ( )) (11.22)

ˆ( ) = ˆ( ) + ( ) ( ) = ( ( ) ˆ( )) (11.23)

is used. The dynamics of the above residual generator is governed by

( + 1) = ( ) + ( ) + ( ) + ( ) (11.24)

( ) = ( ) + ( ) + ( ) + ( ) (11.25)

( ) =
( )

( ) ˆ( )

¸
=

( )
( )

¸
and the mean of ( ) is

(̄ + 1) = ( ) (̄ ) + ( ) ( ) + ( ) ( ) (11.26)

(̄ ) = ( (̄ ) + ( ) + ( )) (11.27)
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The matrices and in (11.24)-(11.25) are de-
scribed in Section 8.5. We assume that the system is mean square stable.
In the remainder of this section, the standard variance of ( ) is denoted

by
( ) = E

£
( ( ) (̄ )) ( ( ) (̄ ))

¤
= E

£
( ) ( )

¤
with

( ) = ( ) (̄ )

It is the objective of our study in this section that a residual evaluation
strategy will be developed and integrated into a procedure of designing an
observer-based FDI system. This residual evaluation strategy should take into
account a prior knowledge of the model uncertainties and combine the statistic
testing and norm based residual evaluation schemes. Note that the residual
signal considered in the last section is assumed to be a normal distributed.
Di erently, we have no knowledge of the distribution of the residual signal
addressed in this section.
The problems to be addressed in the next subsections are

• selection of a residual evaluation function and
• threshold determination for the given residual evaluation function and an
allowable false alarm rate

11.2.2 Solution and design algorithms

A simplest way to evaluate the residual signal is to compute its size at each
time instant and compare it with a threshold. Considering that ( ) is a
stochastic process whose distribution is unknown, it is reasonable to set the
threshold equal to

=
r
sup
=0
¯ ( ) (̄ ) +

r
sup ( ) (11.28)

and define the decision logic as

=
q

( ) ( ) = fault (11.29)

=
q

( ) ( ) = fault-free (11.30)

where ( 1) is some constant used to reduce the false alarm rate. In (11.28),
the first term represents the bound on the mean value of the residual signal in
the fault-free case, while the second term, considering the stochastic character
of ( ) is used to express the expected derivation of ( ) from its mean value.
It is evident that the above decision logic with threshold (11.28) may result

in a high false alarm rate if the standard variance of ( ) is large. For this
reason, we propose the following residual evaluation function
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=

vuutÃ 1 X
=1

( )

! Ã
1 X

=1

( )

!
(11.31)

for some In fact
1 X

=1

( )

is the average of the residual signal over the time interval ( ), which is
influenced by both the additive and multiplicative faults. The following theo-
rem reveals an important statistical property of evaluation function (11.31).

Theorem 11.1 Given system model (11.24)-(11.25) and suppose that the
system is mean square stable, i.e. E

¡
( ) ( )

¢
and E

£
( ) ( )

¤
with

( ) = ( ) ¯ ( )

are bounded. Then,

E

Ã
1 X

=1

( )

! Ã
1 X

=1

( )

!

where 0 is some constant.

Proof. Note that for 0

E
£

( ) ( )
¤
= E

h
( )

¡
0 0

¢
0 ( )

i
+ E

( )
( )
( )

( )
( )
( )

=
X
=1

2
¡

0
1
0

¢ £ ¤
It leads to

E

ÃX
=1

( )

! ÃX
=1

( )

!
=
X
=1

E
£

( ) ( )
¤

+
X
=2

1X
=1

¡
E
£

( ) ( )
¤
+E

£
( ) ( )

¤¢
=
X
=1

E
£

( ) ( )
¤
+
X
=2

¡
+

¢
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with

= E ( )

Ã
1X

=1

0 0

!
0 ( )

+ E
( )
( )
( )

( )
( )
( )

Recall that

( 0)

1X
=1

0 = 0(
1
0 )

and moreover, considering that the size of all eigenvalues of 0 is smaller
than one, we also have

1X
=1

0 = ( 0)
1

0(
1
0 )

is bounded by

lim

1X
=1

0 = ( 0)
1

0

It turns out

+ =

E
£

( ) ( )
¤
+ E

( )
( )
( )

( )
( )
( )

= 0 0 + 0 0 =

1X
=1

¡
+

¢
1X

=1

=
X
=1

2
0

£ ¤
= ( 0)

1
0(

1
0 )

Note are bounded, i.e. so that

max ( ) max ( )

we have
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E

ÃX
=1

( )

! ÃX
=1

( )

! X
=1

( )+

X
=2

E
£

( ) ( )
¤
+

X
=2

E
( )
( )
( )

( )
( )
( )

= max ( ) + maxE
£

( ) ( )
¤
+ maxE

£
( ) ( )

¤
+ max

¡
( ) ( ) + ( ) ( )

¢
(11.32)

where, due to the boundness of E
£

( ) ( )
¤
and E

£
( ) ( )

¤
is a

constant and independent of It results in finally

E

Ã
1 X

=1

( )

! Ã
1 X

=1

( )

!
=

1
2
E

ÃX
=1

( )

! ÃX
=1

( )

!

The theorem has thus been proven. ut
Note thatvuutEÃ 1 X

=1

( )

!
E

Ã
1 X

=1

( )

! vuut 1 X
=1

(¯ ( ) (̄ ))

r
max

=0
¯ ( ) (̄ ) := ¯max

We have, following Theorem 11.1,

E 2 = E

Ã
1 X

=1

( )

!
E

Ã
1 X

=1

( )

!
+

E

Ã
1 X

=1

( )

! Ã
1 X

=1

( )

!
2
¯max + (11.33)

(11.33) and Theorem 11.1 reveal that for

E

Ã
1 X

=1

( )

! Ã
1 X

=1

( )

!
0 (11.34)

E 2 2
¯max (11.35)
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i.e. will deliver a good estimate for the mean value of the residual signal.
Motivated and guided by the above discussion, we propose, correspond-

ing to evaluation function (11.31), the following general form for setting the
threshold:

=
q

2
¯max + ( ) max( ) max( ) = sup ( ) (11.36)

where ( ) is a constant for a given . In this way, the problem of determin-
ing the threshold is reduced to find ( ) Next, we approach this problem
for a given allowable false alarm rate To this end, we first introduce the
well-known Tchebyche Inequality, which says: for a given random number
and a constant 0 satisfying 2 E ( ¯)2 it holds

prob (| ¯| )
E ( ¯)2

2
(11.37)

Recall that the false alarm rate is defined by

prob ( | = 0)

and moreover

prob ( | = 0) = prob ( E ( ) E ( ) | = 0)

prob ( E ( ) | = 0) prob (| E ( )| | = 0)

If follows from the Tchebyche Inequality that setting

=
q

2
¯max + ( ) max

which satisfies

E ( E )
2

2

E 2

2

2
¯max +

2
¯max + ( ) max

= ( )
(1 ) 2

¯max +

max
(11.38)

ensures
prob ( | = 0)

From (11.38) it can be seen that a lower allowable false alarm rate requires
a larger ( )
To complete our design procedure, it remains to find 2

¯max and max as
well as E

£
( ) ( )

¤
and E

£
( ) ( )

¤
which are needed for the compu-

tation of threshold (11.36) as well as in (11.32). Using the LMI technique
introduced in Chapter 9, we obtain the following results.
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Theorem 11.2 Given system model (11.26)-(11.27), 1 0 and assume
that

k ( )k2 2

q
( ) ( )

Then,
¯ ( ) (̄ ) 1

2
2 + 2

2 := 2
¯max (11.39)

if the following two LMI’s hold for some 0

( ) ( )

( ) 0

( ) 0

0 (11.40)

1

¸
0 (11.41)

where 1 2
2 denotes the maximum singular value of matrix

Proof. The proof of this theorem is straightforward. Indeed, it follows from
(11.27) thatq

¯ ( ) (̄ )

q
( (̄ )) (̄ ) +

q
( ( )) ( )

Thus, according to the discrete time version of Lemma 9.1 the first term is
bounded by q

( (̄ )) (̄ )
1 2
1 2

and the second term byq
( ( )) ( ) max( ) =

1 2
2 ut

Theorem 11.3 Given system model (11.24)-(11.25) and 1 0 2 0, and
assume that

k ( )k2 2

q
( ) ( )

Then,

( ) = E
£
( ( ) (̄ )) ( ( ) (̄ ))

¤
1

1X
=0

¡
( ) ( ) + ( ) ( )

¢
+ 2

¡
( ) ( ) + ( ) ( )

¢
(11.42)

1
2
2 + 2

2 + 1

1X
=0

¡
( ) ( )

¢
+ 2 ( ) ( ) := max( ) (11.43)

if the following matrix inequalities hold for some 0 so that
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1

0 0
0 0
0 0

1 2 (11.44)

1 =
0

0

0

£
0 0 0

¤
+
X
=1

2
£ ¤

(11.45)

= +
X
=1

2 (11.46)

=
X
=1

2

¸ £ ¤
(11.47)

The proof of this theorem is identical with the one of Theorem 8.3 and is
thus omitted here.

Theorem 11.4 Given system model (11.24)-(11.25) and 1 0 2 0, and
assume that

max k ( )k2 2

then and for = 1
2 (1 + 1)

E
£

( ) ( )
¤ 1X

=0

¡
( ) ( ) + ( ) ( )

¢
(11.48)

2
2 +

1X
=0

¡
( ) ( )

¢
:= max( ) (11.49)

if the following matrix inequalities hold for some 0

0 0 0
˜

0

˜
0 0 1

¸
0 ˜

0 =
£

0 0

¤
(11.50)

1

0 0
0 0
0 0

(11.51)

2 (11.52)

where 1 is given in (11.45).

Proof. By proving Theorem 8.3, it has been shown that for given 0

( ( )) + ¯ ( ) ¯ ( )
1X

=0

¡
( ) ( ) + ( ) ( )

¢
if (11.51) is true. Since
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¯ ( ) ¯ ( ) 1

1X
=0

¡
( ) ( ) + ( ) ( )

¢

1

1X
=0

¡
( ) ( ) + ( ) ( ) ¯ ( + 1) ¯ ( + 1) + ¯ ( ) ¯ ( )

¢
0

(11.50) holds

it turns out

2E
£

( ) ( )
¤

(1 + 1)
1X

=0

¡
( ) ( ) + ( ) ( )

¢
when

2

The theorem is thus proven. ut
Theorem 11.5 Given system model (11.24)-(11.25) and 0, and assume
that

max k ( )k2 2

then and for = 1

E
£

( ) ( )
¤ 1X

=0

¡
( ) ( ) + ( ) ( )

¢
(11.53)

2
2 +

1X
=0

¡
( ) ( )

¢
:= 2 ( ) (11.54)

if there exists 0 so that

1

0 0
0 0
0 0

(11.55)

(11.56)

where 1 is given in (11.45).

Proof. In the proof of Theorem 8.3, it has been shown that for given 0

E
£

( ) ( )
¤ 1X

=0

¡
( ) ( ) + ( ) ( )

¢
if (11.55) holds. As a result, for given 0 leads to

E
£

( ) ( )
¤ 1X

=0

¡
( ) ( ) + ( ) ( )

¢
The theorem is thus proven. ut
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We would like to call reader’s attention to the fact that the bounds of
( ) ( ) as well as E

¡
( ) ( )

¢
are respectively a function of the input

signal ( ) [ ) As a result, the threshold defined by (11.36) is an
adaptive threshold or a threshold generator driven by ( ).
Based on the above theorems, we are now able to present the following

algorithm for the threshold computation by a given false alarm rate and
evaluation window [ )

Algorithm 11.4 Threshold computation

Step 1: Compute defined by (11.32) using the results given in Theorems
11.3-11.5

Step 2: determine ( ) as defined by(11.38)
Step 3: Set according to (11.36).

Remark 11.1 We would like to emphasize that increasing may signifi-
cantly decrease the threshold and thus enhance the fault detectability. But,
this is achieved at the cost of an early fault detection.

Example 11.2 Consider the benchmark system lateral dynamic system in-
troduced in Subsection 3.7.4. For our purpose, the discrete time model (3.77)
is used. It is well-known that among the parameters in model (3.74) the front
cornering sti ness 0 and the rear cornering sti ness may vary over
a large range, depending on the road condition and driving maneuvers. Fol-
lowing (3.79) and (3.80), we have

1 = 10
4 0 0388 0 0024

0 1208 0 0201

¸
1 = 10

4 0 0108
0 3952

¸
1 = 10

3 1 475 0 0002
0 0

¸
1 = 10

3 0 5405
0

¸
Note that 1 and 1 have been calculated after a discretization. For our study
purpose, we also make the following assumptions on the bounds of di erent
variables and signals: (a) the variance of is limited to 5000 (b) the upper
bound of L2 norm and L norm of the disturbance and the control input
are respectively 2 = 0 046 = 0 085 and 2 = 0 23 = 0 045

(c) the unified solution has been applied for the construction of the residual
generator with

=
0 0010 0 0038
0 0015 0 0810

¸
=

0 0125 0
0 1

¸
Now, we are in a position to apply Algorithm 11.4 to set the threshold. For
the computation of in Step 1, we get
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= = ( 0)
1

0 =

0 3993 0 2542 0 0
7 4014 0 3089 0 0
0 0 0 9384 0 2771
0 0 9 2621 0 1516

( = ) =
2

0

0

0
( = ) 0

£
0 0 0

¤

= 10 5

0 0994 0 0008 0 0 0 0365 0
0 0127 0 0001 0 0 0 0046 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1715 0 0014 0 0 0 0629 0
0 0 0 0 0 0

( = ) = 10
5

0 1989 0 0135 0 0 0 1351 0
0 0135 0 0002 0 0 0 0032 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1351 0 0032 0 0 0 1258 0
0 0 0 0 0 0

( = ) =

0 0 0 0
0 0 0 0
0 0 5 6969 8 3274
0 0 8 3274 0 2884

as well as

( ) = 2 5× 10 6 = ( ) = 11 55 =

= 3 3579× 10 4 max
£

( ) ( )
¤
= 0 7512

which gives
= 15 7

To compute ( ) required in Step 2, it is further calculated that

2
(̄ ) = 0 0072

which, for an allowable FAR = 5% and = 30, leads to

( ) = 214 0329

Finally, is set constructed according to (11.36). Considering that de-
pends on the input signal ( ) will be on-line computed. Fig.11.5 and
Fig.11.6 are the simulation results of the evaluated residual signals, in com-
parison with the threshold that is "on-line" calculated.



11.2 Residual evaluation scheme for stochastically uncertain systems 355

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time [s]

fa
ul

t

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time[s]

 e
va

lu
at

ed
 r

es
id

ua
l/ 

th
re

sh
ol

d

residual
threshold

Fig. 11.5 The evaluated residual signal, threshold and a fault in yaw rate sensor
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Fig. 11.6 The evaluated residual signal, theshold and a fault in the steering sensor

From the above example we see that the threshold setting scheme may be
conservative. Also, the design is involved, in which a number of LMIs should
be solved for achieving the needed bound estimations of di erent variables. It
also leads to the conservative threshold setting.
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11.3 Probabilistic robustness technique aided threshold
computation

In this section, we introduce a new strategy for the computation of thresholds
and false alarm rate. This study is motivated by the observation that a new
research line has recently, parallel to the well-developed robust control the-
ory, emerged, where the robust control problems are solved in a probabilistic
framework. Comparing with the method introduced in the last section, the
implementation of this technique demands less involved computation and the
threshold setting is less conservative. It opens a new and e ective way to solve
FD problems and builds an additional link between the traditional statistic
testing and the norm based residual evaluation methods.

11.3.1 Problem formulation

Consider the system model

˙ = ¯ + ¯ + ¯ = ¯ + ¯ + ¯ (11.57)
¯ = + ¯ = + ¯ = +
¯ = + ¯ = + ¯ = +

where , represent model uncertainties satisfying¸
=

¸ £ ¤
with known matrices of appropriate dimensions. Di erent to the
similar model form introduced in Chapter 3, represents a norm-bounded
uncertainty and is expressed in terms of a random matrix with a known prob-
ability distribution over its support set := { : ¯ ( ) } where
¯ (·) denotes the maximal singular value of a matrix.
As described in Chapter 3, we model the influence of these faults by

˙ = ( ¯ + ) + ( ¯ + ) + ¯ + (11.58)

= ( ¯ + ) + ( ¯ + ) + ¯ + (11.59)

where , and represent multiplicative and ad-
ditive faults in the plant, actuators and sensors, respectively. It is assumed
that is a unknown vector, are known matrices with appro-
priate dimensions and , are unknown. To simplify the
notation, we shall use

=

¸
to denote the set of multiplicative faults so that = 0 = 0 indicate the
fault-free case and otherwise there exists at least one fault.
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For the residual generation purpose, an observer-based fault detection sys-
tem of the following form

˙̂ = ˆ + + ( ˆ) ˆ = ˆ + ( ) = ( )( ( ) ˆ( )) (11.60)

is applied, where ( ) RH denotes the post-filter. The dynamics of the
above residual generator is governed by

( ) = 1( ) ( ) + 2( ) ( ) (11.61)

˙ = ¯ + ¯ + ¯ = ( + + ) (11.62)

with

1( ) = ( )
³

+ ( + )
1
( )

´
: = 1 + ( )

1
1

2( ) = ( )
³

+ ( + ) 1 ( )
´

: = 2 + ( ) 1
2

For the purpose of residual evaluation, the L2 norm of ( ) is used:

= k k2 =
μZ

0

>( ) ( )
¶1 2

We know that

sup

(
k k2 : k k2

°° °°
2

sup
°° °°

2

)
(11.63)

k 1k sup
°° °°

2
+ k 2k (11.64)

where sup k k2 =
We would like to emphasize:

• the system model is assumed to be stable and ( ) is detectable
• due to the existence of model uncertainty the residual signal is also a func-
tion of the system input . Since and its norms are, di erent from the
unknown inputs, known during the on-line implementation, this informa-
tion should be used to improve the performance of the FD system. As a
result, the threshold is driven by .

• although the following study can be carried out on the basis of (8.24)-
(8.25), we adopt (11.61)-(11.62) for our study, because it will lead to a
considerable simplification of the problem handling.
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We now begin with the formulation of the problems to be solved in this
section.
Let the false alarm rate be defined as

= prob {k k2 | = 0 = 0} (11.65)

Our first problem to be addressed in this section is to estimate by a
given threshold It follows from (11.64) that

prob { | = 0 = 0}

prob

(
k 1k sup

°° °°
2
+ k 2k

)
=

= 1 prob { | = 0 = 0} 1 (11.66)

= prob

(
k 1k sup

°° °°
2
+ k 2k

)
(11.67)

= prob

(
sup

°° °°
2

k 2k
k 1k

)

Thus, the problem of estimating is reduced to find an estimate for
when is given.
On the other side, following the definition of and (11.66), we have,

for a given allowable

1 1 prob { | = 0 = 0}

As a result, the second problem of finding so that the real is smaller
than can be formulated as finding so that the following inequality
holds

1 (11.68)

11.3.2 Outline of the basic idea

It is clear that the core of the problems to be solved is the computation of
the probability that an inequality related to the random matrix holds
We propose to solve those two probabilistic problems formulated in the last
subsection using the procedure given below:

• Denote inequality

sup
°° °°

2
( k 2k ) k 1k

by ( ) where is independent of Find an algorithm to compute
the norms used in ( ) on the assumption that is given
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• Generate matrix samples of 1 · · · on the assumption that the
random matrix is uniformly distributed in the spectral norm ball

• Generate samples ( 1) · · · ( ) using the algorithms developed in
the first step

• Construct an indicator function of the form¡ ¢
=

½
1 if ( )
0 otherwise

= 1 · · ·

• An estimation for prob{ ( ) } is finally given by 1
P
=1

¡ ¢
In the following of this section, we are going to realize this idea step by

step.

11.3.3 LMIs needed for the solutions

We now consider inequality

sup
°° °°

2
( k 2k ) k 1k

It follows from (11.62) that

sup
°° °°

2
= k k k k2 + k k

where

k k = sup {k k2 : k k2 = 1}
: ˙ = ¯ + ¯ = ( + )

k k = sup {k k2 : k k2 = 1}
: ˙ = ¯ + ¯ = ( + )

Hence, that the above inequality can be further written into

k k k k2 + k k ( k 2k ) k 1k (11.69)

Note that the term on the right side of (11.69) is independent of the model
uncertainty regarding to We denote it by

:= ( k 2k ) k 1k (11.70)

where k 1k k 2k can be computed, according to Lemma 7.8 by solving
the following LMI problem:

k k = min := min, = 1 2 (11.71)

subject to
+

0 0
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Di erently, both k k and k k depend on and will be computed, again
using Lemma 7.8, as follows:

k k = min 1 := 1min( ) subject to (11.72)

( + ) + ( + ) ( + ) ( )

( + ) 1 ( )

1

0 0

k k = min 2 := 2min( ) subject to (11.73)

( + ) + ( + ) ( + ) ( )

( + ) 2 ( )

2

0 0

Hence, inequality (11.69) can be rewritten into

1min( ) k k2 + 2min( ) := ( ) (11.74)

11.3.4 Problem solutions in the probabilistic framework

Assume that the probability distribution of over its support set is
given. Using (11.71)-(11.74), our original problems can be reformulated as:

• Problem 1: estimate for a given

= prob { ( ) } (11.75)

• Problem 2: for a given admissible determine such that

= prob( | = 0 = 0) (11.76)

The core of these two problems is the computation of the probability that
some LMIs are solvable. For this purpose, the so-called probabilistic robust-
ness technique can be used in the form of the procedure described in Subsec-
tion 11.3.2. In the framework of the probabilistic robustness technique, the
so-called randomized algorithms provide an e ective method to generate sam-
ples of a matrix uniformly distributed in the spectral norm ball. Assume
that ( ) is a Lebesgue measurable function of and matrix samples of

1 · · · , are generated. Then an empirical estimation of the probabil-
ity of ( ) is given by

ˆ =

where is the number of the samples for which ( ) holds. It is well
known that for any (0 1) and (0 1), if

log 2

2 2
(11.77)
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then it holds

prob {|ˆ | } 1 = prob { ( ) } (11.78)

In fact, describes the accuracy of the estimate and the confidence. In
the following, we focus our attention on the application of the probabilistic
robustness technique for solving the above-defined Problem 1 and Problem
2. We refer the interested reader to the references given at the end of this
chapter for the details of the randomized algorithms.
To solve Problem 1, we propose the following algorithm.

Algorithm 11.5 Solution of Problem 1

Step 1: Generation of matrix samples 1 · · · using the available
randomized algorithms, where is chosen to satisfy (11.77) for given
and

Step 2: Construction of indicator functions for given : for = 1 · · ·

2

¡ ¢
=

½
1 if 1min( ) k k2 + 2min( )

0 otherwise
(11.79)

Step 3: Computation of the empirical probability

ˆ =
1 X

=1

2

¡ ¢
(11.80)

As a result, we have an estimation for , denoted by

= 1 ˆ (11.81)

According to (11.78), we know that

prob {| | } = prob {|ˆ | } 1 (11.82)

prob {| | }

(11.82) gives the confidence of as an estimate of
For the solution of Problem 2, we propose the following algorithm.

Algorithm 11.6 Solution of Problem 2

Step 1: Generation of matrix samples 1 · · · using the available
randomized algorithms, where is again chosen to satisfy (11.77) for
given and

Step 2: Computation of

= 1min( ) k k2 + 2min( ) = 1 · · ·
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Step 3: Construction of indicator functions

2

¡ ¢
=

½
1 if
0 otherwise

{1 · · · }

Step 4: Computation of

ˆ =
1 X

=1

2

¡ ¢
(11.83)

Step 5: Determination of threshold for given and

= 1min + 2min = 1min( ) k k2 + 2min( ) (11.84)

= arg min
(1 ··· )

©
ˆ | ˆ 1 +

ª
We now check the real false alarm rate

= prob { | = 0 = 0}
with satisfying (11.84). Since

Pr
n¯̄̄
ˆ 1 +

¯̄̄ o
1

we finally have that setting according to (11.84) ensures

prob { ˜ } 1

where ˜ is some constant larger than zero. Thus, the requirement that
is satisfied with a probability not smaller than 1

11.3.5 An application example

We now study an application example and illustrate the results achieved in
this section. The system under consideration is again the benchmark system
vehicle lateral dynamics introduced in Subsection 3.7.4. In our study, it is
assumed that only yaw rate sensor is used. The purpose of our study is to

• estimate the FAR of an observer-based FD system designed based on
(3.76), where the false alarms are caused by the stochastic model uncer-
tainty due to 0 and ;

• compute the threshold for the observer-based FD system under a given
FAR.

The following assumptions are made:

• 0 = + [ 10000 0] is a random number with uni-
form distribution;

• = 0 = 1 7278
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For our study, (3.74)-(3.75) are rewritten with = = and

=

(1+ ) ( ) 0
2 1

( ) 0 ( 2 + 2 )
=

" #

=

" 1+
2

2 + 2

#
=

"
1

#
= 0 = 0 = 0 = 0

For the purpose of residual generation, the following observer is used"
ˆ

ˆ

#
=

(1+ ) ( ) 0
2 1

( ) 0 ( 2 + 2 )

ˆ

ˆ

¸
+

" #
+ 1

2

¸
( )̂

residual signal = ˆ

with 1 = 10 4472 2 = 31 7269
In our study, di erent driving maneuvers have been simulated by CARSIM,

a standard program for the simulation of vehicle dynamics. Here, results are
presented, which have been achieved using the input data generated by CAR-
SIM during the so-called Double Lane Changing (DLC), a standard driving
maneuver for simulation.
The sample size N: It follows from (11.77) that for given = 0 02 =

0 01
log 2

2 2
= 10000

= 10000 has been used in our study.

Table 11.1 Estimation of FAR for a given threshold

The given threshold 0.078 0.080 0.082 0.084
Estimation of (%) 8.43 6.22 3.90 1.38

Table 11.2 Computation of threshold for a given

The given (%) 10 5 2
The achieved threshold 0.0766 0.0811 0.0836

In Table 11.1, FAR estimations with respect to di erent threshold values,
achieved using Algorithm 11.5, are listed, while in Table 11.2 the result of the
threshold computation for di erent using Algorithm 11.6, is included.
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11.3.6 Concluding remarks

It is well-known that the sample size plays an important role in estimating
empirical probability. Increasing will improve the estimation performance
but also lead to higher computation costs. For this reason, e ective algorithms
should be used for solving the above-mentioned problems. The reader is re-
ferred to the references given at the end of this chapter for such algorithms.
Also for the same reason, our study has been carried out on the basis of (11.61)
instead of the original form, in order to avoid norm computations for systems
of the 2 -th order (the order of the system + the order of the observer).
The solution of Problem 1 is useful for the analysis of observer-based FD

systems. It is shown that for a given constant threshold the FAR will be a
function of system input signals. To ensure a constant FAR, the adaptive
threshold should be adopted, as demonstrated by the solution of Problem 2.
The solution of Problem 2 provides a useful tool to set a suitable threshold and
to integrate it into the design of observer-based FD systems. The introduction
of the adaptive threshold ensures that the requirement on the FAR will be
satisfied for all possible operation states of the process under consideration.
The basic idea behind our study in this section is the application of the

probabilistic robustness theory for computing the thresholds and FAR. Dif-
ferent from the known norm based residual evaluation methods, in which the
threshold computation is based on the worst-case handling of model uncer-
tainty and unknown inputs, our study leads to the problem solutions in the
probabilistic framework and may build a bridge between the well-established
statistic testing methods and the norm based evaluation methods.
Although the study carried out in this section aims at solving the fault

detection problem, it is expected that the achieved results can also be extended
to solving the fault isolation problem if statistical knowledge of faults, for
instance their probability distribution, is available.
The methods presented here can also be extended to the cases, where L

norm or the modified forms of L2, L norms like RMS or peak value are used
as residual evaluation function.

11.4 Notes and references

In this chapter, we have introduced three di erent schemes for the purpose
of residual evaluation and threshold setting. But, they have one in common:
the integration of the norm based methods and statistical methods builds the
core of these schemes.
Section 11.1 is in fact an extension of the discussion in Section 10.4. Some

of the results have been provisionally published in [35]. [70] also addresses fault
detection in systems with both stochastic and deterministic unknown inputs,
where the influence of the deterministic unknown inputs is, however, decou-
pled from the residual signal by means of solving the PUIDP (see Chapter 6).
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In our view, the most important message of this section is that the integra-
tion of the norm based and statistic based methods may help us to improve
the performance of FDI systems. As mentioned in the previous chapter, the
reader is referred to [8, 10] for the needed knowledge of the GLR technique.
Motivated by the observation in practice that a priori knowledge of the

model uncertainties is generally limited, the study in Section 11.2 has been
devoted to those systems, which are corrupted with stochastically uncertain
changes in the model parameters. Di erent from the study in Section 11.1,
we have only information about mean values and variances instead of the
distribution of the stochastically uncertain variables. To handle such systems
and to solve the associated FDI problems, the LMI technique based analysis
and synthesis methods for systems with multiplicative stochastic noises are
adopted as tool, which has been introduced in Chapter 8. For more details
and the needed mathematical skills, we refer the reader again to [14, 130].
We would like to call reader’s attention to the fact that the key to link the
norm based methods and statistical handling, as done in this section, is the
Tchebyche Inequality [112]. This idea is first proposed by Li et al. [94].
The probabilistic robustness technique is a new research line that has re-

cently, parallel to the well-developed robust control theory, emerged [17, 18,
16]. This technique allows to solve robust control problems in a probabilistic
framework and opens a new and e ective way to solve fault detection prob-
lems. The design scheme presented in Section 11.3 is the preliminary result
achieved by the first application of the probabilistic robustness technique to
addressing the fault detection problems. A draft version of this scheme has
been reported in [33]. An advanced study with an application can be found in
[125, 154]. In our view, the probabilistic robustness technique is an alternative
way to build a bridge between the well-established statistic testing schemes
and the norm based methods.
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Integrated design of fault detection systems

The objective of this chapter is the design of model-based fault detection
systems. In the literature related to the observer-based FDI technique, this
task is often (mis)understood as the design of a residual generator. In the last
part, we have studied the residual evaluation issues and learned the important
role of the residual evaluation unit in an FDI system. A three-step design
procedure with

• construction of a residual generator under a given performance index
• definition of a suitable residual evaluation function and, based on it,
• determination of a threshold

seems a logical consequence of our study in the last two parts towards the
design of the model-based FDI system.
On the other side, it is of considerable practical interests to know if an

integrated design of the fault detection system, i.e. the design of the resid-
ual generator, evaluator and threshold in an integrated manner instead of
separate handling of these units, will lead to an improvement of the FD sys-
tem performance. This question is well motivated by the observation that the
residual evaluation function and threshold computation have not been taken
into account by the development of the optimal residual generation meth-
ods, as introduced in Part II. A residual generator optimized under some
performance index does not automatically result in an optimal fault detection
system. Now, a critical question may arise: what is the criterion for an optimal
fault detection system?
Having studied the last two parts, the reader should have gained the im-

pression that many model-based FDI problems have been handled in the con-
text of the advanced control theory and an optimum FD system is understood
in the context of robustness vs. sensitivity.
In practice, essential requirements on a fault diagnosis system are generally

expressed in terms of a lower false alarm rate and a higher fault detection rate,
and an optimal trade-o between them is of primary interest in designing an
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FD system. In this context, a separate study on residual generation, evaluation
and threshold computation makes less sense. To achieve a successful design
of a model-based FD system, an integrated handling of residual generator,
evaluator and threshold is needed. False alarms are caused by disturbances and
model uncertainties. In order to reduce them, thresholds are introduced, which
result, in turn, in a reduction of fault detection rate. The core of designing
a fault detection system is to find out a suitable trade-o between the false
alarm rate and the fault detection rate. In fact, the concepts robustness and
sensitivity are the "translation" of false alarm rate and fault detection rate
into the language of control theory. Unfortunately, their application is mostly
restricted to the residual generator design.
In this chapter, we shall study the integrated design of fault detection

systems, as sketched in Fig.12.1, and introduce two design strategies. A further
focus of our study is to re-view some residual generation methods introduced
in Part II in the context of the trade-o between the false alarm rate and the
fault detection rate.

Fig. 12.1 Integrated design of fault detection systems

12.1 FAR and FDR

As introduced in the last two chapters, false alarm rate (FAR) and fault de-
tection rate (FDR) are two concepts that are originally defined in the statistic
framework. Suppose that is a residual vector that is a stochastic process cor-
rupted with the unknown input vector and the fault vector We denote the
residual evaluation function, also called testing statistic, by = k k and the
corresponding threshold by and suppose that the fault detection decision
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logic is

= fault-free (12.1)

= faulty. (12.2)

Definition 12.1 The probability

= prob ( | = 0) (12.3)

is called false alarm rate in the statistical framework.

Definition 12.2 The probability

= prob ( | 6= 0) (12.4)

is called fault detection rate in the statistical framework.

Definition 12.3 The probability

1 = prob ( | 6= 0) (12.5)

is called missed detection rate ( ) in the statistical framework.

For FD systems with deterministic residual signals, it is obvious that new
definitions are needed. Ding et al. have first introduced the concepts FAR
and MDR in the context of a norm based residual evaluation. Below, we shall
concentrate ourselves on the establishment of a norm based framework, which
will help us to evaluate the performance of a model-based FD system in the
context of the trade-o between the FAR and FDR.
To simplify the presentation, we first introduce the following notations. We

denote the residual generator by G and suppose that G generates a residual
vector which is driven by the unknown input vector the fault vector
and a ected by the model uncertainty We assume that is bounded and
express it by

k k
where k·k stands for some signal norm. We denote the norm based evaluation
of by

= k k
threshold by and suppose that the decision logic (12.1)-(12.2) is adopted
for the detection purpose.
The objective of introducing the concept FAR is to characterize the FD

system performance in terms of the intensity of false alarms during system
operation. A false alarm is created if

for = 0 (12.6)
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Definition 12.4 Given residual generator G and the set (G )
defined by

(G ) = { | (12.6) is satisfied} (12.7)

is called set of disturbances that cause false alarms (SDFA).

The size of SDFA indicates the number of the possible false alarms and
thus builds a direct measurement of the FD system performance regarding to
the intensity of false alarms. On the other side, it is very di cult to express
FAR in terms of the size of SDFA and moreover the determination of the size
of SDFA depends on For this reason, we introduce the following simplified
definition for FAR.
Consider that in the fault-free case

k k k k
with denoting the induced norm defined by

= sup
=0 k k

k k

Thus, a threshold equal to will guarantee a zero FAR. It motivates us to
introduce

Definition 12.5 given by

= 1 (12.8)

is called FAR in the norm based framework.

Note that for = 0

= 1 (G 0) = max (G ) (12.9)

i.e. 0 (G ) (G 0)

and for =

= 0 (G ) = min (G ) (12.10)

i.e. (G ) (G )

The introduction of the concept FDR is intended to evaluate the FD sys-
tem performance from the viewpoint of fault detectability, which is understood
as the set of all detectable fault. Recall that a fault is detected if

for 6= 0 (12.11)

We have
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Definition 12.6 Given residual generator G and the set (G )
defined by

(G ) = { | (12.11) is satisfied} (12.12)

is called set of detectable faults (SDF).

The size of SDF is a direct measurement of the FD system performance
regarding to the fault detectability. Similar to the case with the FAR, we now
introduce the simplified definition of FDR in the norm based framework. For
our purpose, we call reader’s attention to the fact that on the assumption
= 0 = 0

6= 0 k k k k
where

= inf
6=0 =0 =0

k k

Suppose that those vectors whose size is larger than min are defined as
faults to be detected. Then, setting threshold equal to min will give a 100%
fault detection. Bearing this in mind, we have

Definition 12.7 given by

=
min (12.13)

is called FDR in the norm based framework.

Note that on the assumption = 0 = 0 we have for = min

(G min) = max
min

(G )

According to this definition, given an the threshold should be set as

=
min (12.14)

12.2 Maximization of fault detectability by a given FAR

In this section, we present an approach in the norm based framework, which
will lead to a trade-o between the FDR and FAR, expressed in terms of
maximizing the number of detectable faults by a given FAR. Our focus is
not only on the derivation of this approach but also on an evaluation of the
existing optimal residual generation approaches in the context of the trade-o
strategy.
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12.2.1 Problem formulation

For the sake of simplicity, we consider system model

( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) (12.15)

and apply residual generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
( ) RH (12.16)

for the residual generation purpose as well as use L2 norm as the residual
evaluation function.
Recall that according to detection logic (12.1)-(12.2) a fault can be de-

tected if and only if

k k2 (12.17)

k ( )( ¯ ( ) ( ) + ¯ ( ) ( ))k2 - detection condition

and in the fault-free case if

k k2 = k ( ) ¯ ( ) ( )k2 - false alarm condition (12.18)

then a false alarm will be released, where

¯ ( ) = ˆ ( ) ( ) ¯ ( ) = ˆ ( ) ( )

and are assumed to be stable.
Suppose that the allowable is now given. It follows from the false

alarm condition (12.18) and the definition of FAR that the threshold should
be set as

= (1 ) k ( ) ¯ ( )k (12.19)

For our design purpose, we formulate our trade-o design problem as follows:
Problem of Maximizing SDF under a given FAR (PMax-SDF):

Given and setting according to (12.19), find ( ) RH so
that

( ) RH ( ) ( ) (12.20)

(12.20) means that ( ) is the maximum SDF and thus
should give the maximum FDR. At the end of the next subsection, we shall
prove that maximizing SDF is equivalent to maximizing FDR.

12.2.2 Essential form of the solution

In this subsection, we shall outline the basic idea and present a solution for
PMax-SDF on the following assumptions:
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S1:
( ( )) =

¡
¯ ( )

¢
= = (12.21)

S2: The co-outer of ¯ ( ) = ( ) ( ) ( ) is left invertible in RH
i.e.

[0 ] ¯ ( ) ¯ ( ) 0 for continuous time systems (12.22)

[0 2 ] ¯ ( ) ¯ ( ) 0 for discrete time systems. (12.23)

We now start to solve the design problem PMax-SDF. Let

( ) = ( ) 1( )

with ( ) RH standing for an arbitrarily selectable matrix of an appro-
priate dimension. It yields

= k ( ) 1( ) ¯ ( ) ( ) + ( ) ( ) ( )k2
(1 ) k ( ) ( )k

Considering that

k ( ) ( )k = k ( ( ) ( )) k = k ( )k
k ( ) 1( ) ¯ ( ) ( ) + ( ) ( ) ( )k2
k ( )k k 1( ) ¯ ( ) ( ) + ( ) ( )k2

it turns out ( ) 6= 0 RH

k ( )k k ¡ 1( ) ¯ ( ) ( ) + ( ) ( )k2 (1 )
¢

which means

k 1( ) ¯ ( ) ( ) + ( ) ( )k2 (1 ) 0 (12.24)

is a necessary condition under which fault ( ) becomes detectable. We have
proven the following theorem.

Theorem 12.1 Given system (12.15), residual generator (12.16), and
threshold setting (12.19), a fault ( ) can then be detected only if (12.24)
holds.

Note that setting ( ) = and therefore ( ) = 1( ) leads to

= k 1( ) ¯ ( ) ( ) + ( ) ( )k2 (1 )

This means that (12.24) is also a su cient condition for ( ) to be detectable,
provided that ( ) is set to be 1( ). This result provides us with the proof
of the solution for PMax-SDF which is summarized into the following theorem.
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Theorem 12.2 Given system (12.15), residual generator (12.16), and
threshold setting (12.19), then

( ) = 1( ) (12.25)

is the optimal solution of PMax-SDF (12.20).

The following corollary follows from Lemmas 7.4 and 7.5.

Corollary 12.1 Given system (12.15), residual generator (12.16), and
threshold setting (12.19), then

( ) = ˆ ( ) (12.26)

solves PMax-SDF (12.20).

Theorem 12.2 and Corollary 12.1 reveal that the unified solution given in
Theorem 7.10 for continuous time systems and Theorem 7.18 for discrete time
systems solves the PMax-SDF. That also explains why the unified solution
does deliver the highest fault sensitivity in the sense of H H index. We
refer the reader to Section 7.10 for the detailed discussion and description of
the unified solution. Below is a summary of some important properties:

• Theorems 7.11 and 7.18 provide us with the state space form of the solution
(12.26).

• The solution (12.26) ensures that

min( ( ) ¯ ( ))°° ¯ ( )
°° = sup

( ) RH
min( ( ) ¯ ( ))°° ( ) ¯ ( )

°° as well as

min( ( ) ¯ ( ))°° ( ) ¯ ( )
°° = sup

( ) RH
min( ( ) ¯ ( ))°° ( ) ¯ ( )

°°
thus, it also results in maximizing the FDR

=
min

=
min( ( ) ¯ ( )) min

(1 )
as well as

=
min

=
min( ( ) ¯ ( )) min

(1 )

• The threshold is given by

= (1 ) (12.27)

12.2.3 A general solution

In this subsection, we remove Assumptions S1-S2 and present a general solu-
tion.
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Having learned that the unified solution given in Theorem 7.10 solves the
PMax-SDF on the Assumptions S1-S2, it is reasonable to apply the general
form of the unified solution given in Section 7.11 to deal with our problem.
Similar to Section 7.11, due to the complexity we only consider continuous
time systems in the following study.
As described in Section 7.11, any given ¯ ( ) can be factorized, by means

of an extended CIOF (see Algorithm 7.9), into

¯ ( ) = 1
2( ) ( ) ( ) 0

0 0

¸
( ) 0
0

¸
(12.28)

where 1( ) 2( ) are invertible in RH and ( ) RH is co-
inner. Note that the zero-blocks in the above transfer matrices exist only if
Assumption S1 is not satisfied, i.e.

( ( )) =
¡
¯ ( )

¢
=

As a result, the generalized unified solution is given by

( ) =
˜ 1( ) ˜ 1( ) 1

2( ) 0

0 1

¸
1
1( ) (12.29)

where 0 is some constant that can be enough small and ˜ 1( ) ˜ 1( )
satisfy (7.303)-(7.304). We now check if the generalized unified solution (12.29)
solves the PMax-SDF.
Recall that applying (12.29) to (12.16) yields

( ) = ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
= (12.30)

1( )

2( )

¸
=

˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )
1

2( ) ( )

¸
with

1( )

2( )

¸
=

˜ 1( ) ˜ 1( ) 1
2( ) 0

0 1

¸
1
1
¯ ( )

It turns out

=
°°° ˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )

°°°
2

+
1 k 2( ) ( )k2 (1 )

°°° ˜ 1( ) ˜ 1( ) ( ) ( ) ( )
°°°°°° ˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )

°°°
2

+
1 k 2( ) ( )k2 (1 )

Thus, any fault ( ) that causes
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°°°
2
+
1 k 2( ) ( )k2

(1 ) (12.31)

will be detected. On the other side, for any ( ) = ( ) ( ) ( )(6= 0)
RH , it holds

k k
Ã°°° ˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )

°°°
2

+1 k 2( ) ( )k2 (1 )

!
(12.32)

Summarizing (12.31)-(12.32) gives a proof of the following theorem.

Theorem 12.3 Given system (12.15), residual generator (12.16), and
threshold setting (12.19), then

( ) =
˜ 1( ) ˜ 1( ) 1

2( ) 0

0 1

¸
1
1( ) (12.33)

solves the PMax-SDF.

It is very interesting to note that any fault ( ) satisfying

2( ) ( ) 6= 0 k 2( ) ( )k2 (1 )

can be detected. Since can be set small enough, we can claim that any fault
( ) with 2( ) ( ) 6= 0 can be detected. Recall that 2( ) is spanned by
the null space of ( ) i.e.

2( ) = ( ) ( ) ( ) ( ) = 0 (12.34)

Thus, any fault, which can be decoupled from the unknown input vector ( )
in the measurement subspace, can be detected.
Below is the algorithm for the optimal design of FD systems in the context

of maximizing the fault detectability by a given .

Algorithm 12.1 Optimal design of FD systems by given

Step 1: Bring ¯ ( ) into (12.28)
Step 2: Find ˜ 1( ) ˜ 1( ) according to (7.303) and (7.304)
Step 3: Set ( ) according to (12.29)
Step 4: Set threshold according to (12.27).

12.2.4 Interconnections and comparison

In this subsection, we study the relationships between the solution (12.26),
i.e. the unified solution, and the design approaches presented in Chapters 6
and 7.
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Relationship to the PUIDP
In Chapter 6, we have studied the PUIDP and learned that under condition£

( ) ( )
¤

( ( )) = (12.35)

there exists a residual generator ( ) so that

( ) = ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
= ( ) ¯ ( ) ( )

As a result, the threshold will be set equal to zero. We denote the set of all
detectable faults using the solution to the PUIDP by

( 0) =
© | ( ) ¯ ( ) ( ) 6= 0ª

It follows from (12.34) and the associated discussion that

( 0)

we also have
( (1 ) )

On the other side, it is evident that for any satisfying

2( ) ( ) = 0°°° ˜ 1( ) ˜ 1( ) ( ) ( ) ( ) ( ) + 1( ) ( )
°°°
2

(1 )

it holds

( (1 ) ) but ( 0)

In this way, we have proven the following theorem, which demonstrates that
the solution (12.26) provides us with a better fault detectability in comparison
with the PUID scheme.

Theorem 12.4 Given system (12.15), residual generator (12.16) and assume
that (12.35) holds, then

( 0) ( (1 ) ) (12.36)

Relationship to H2 H2 optimal design scheme
For the sake of simplicity, we only consider continuous time systems and

assume (a) is set to be zero (b) Assumptions S1-S2, (12.21)-(12.22), are
satisfied. In Section 7.7, the solution of optimization problem is given by

sup
( ) RH

°° ( ) ¯ ( )°°
2°° ( ) ¯ ( )°°
2

=

°° ( ) max( )
1( ) ¯ ( )

°°
2

k ( ) max( )k2
= 1 2

max( )

max( )( 1( ) ¯ ( ) ¯ ( )
¡

1( )
¢

max( )) = 0

max( ) = max max( ) = argmax max( )
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Here, ( ) represents a band pass filter at frequency , which givesμ
1

2

Z
( ) max( ) ( ) max( ) ( )

¶1 2

=

Ã
1

2

Z +

( ) max( ) ( ) max( ) ( )

!1 2

( max( ) ( ) max( ))1 2

( ) = 1( ) ¯ ( ) ¯ ( )
¡

1( )
¢

Since

( ) max( ) max( ) ( ) =
max( ) ( ) max( )

max( )

the threshold 2 should be set as

2 =

s
max( ) ( ) max( )

max( )

with = 2 Denote the SDF achieved by using H2 H2 optimal scheme
with

( 2) =
© | k ( )( ( ) ( ) + 1( ) ¯ ( ) ( ))k2 2

ª
( ) = ( ) max( ) (12.37)

Considering

k ( )( ( ) ( ) + 1( ) ¯ ( ) ( ))k2
k ( )k k ( ) ( ) + 1( ) ¯ ( ) ( )k2

=

s
max( ) ( ) max( )

max( )
k ( ) ( ) + 1( ) ¯ ( ) ( )k2

we know
k ( )( ( ) ( ) + 1( ) ¯ ( ) ( ))k2 2

only ifs
max( ) ( ) max( )

max( )
k ( ) ( ) + 1( ) ¯ ( ) ( )k2s

max( ) ( ) max( )

max( )
=

k ( ) ( ) + 1( ) ¯ ( ) ( )k2 (12.38)
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Recall that the last inequality is exactly the fault detection condition if the
unified solution is used, i.e. for any

( 2)

it also holds
( )

On the other side, since ( ) is a vector-valued post-filter with a strongly
limited band, there do exist faults which belong to ( ) but lead
to

( ) 1( ) ¯ ( ) ( ) = 0 or

( ) 1( ) ¯ ( ) ( ) 0

and thus
( ) ( 2)

This proves that the solution (12.26) provides us with a better fault detectabil-
ity than the H2 H2 scheme, as summarized in the following theorem.
Theorem 12.5 Given system (12.15) and residual generator (12.16), then

( 2) ( ) (12.39)

Relationship to H H and H H optimal schemes
Recall that H H and H H are respectively formulated as

sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° and sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° (12.40)

Since in both formulations, the influence of is evaluated by L2 norm, the
threshold setting should follow (12.19). It is clear that both ( (1

) ) and ( (1 ) ) i.e. the sets of detectable faults
that are delivered by an H H and an H H optimal residual generator,
should belong to ( ) Without proof, we provide the following
theorem.

Theorem 12.6 Given system (12.15) and residual generator (12.16), then

( (1 ) ) ( (1 ) ) (12.41)

( (1 ) ) ( (1 ) ) (12.42)

At the end of this subsection, we would like to evaluate the solutions to
H OFIP scheme and compare di erent reference model-based FD schemes
introduced in Chapter 8 in the context of the trade-o between the FAR and
FDR.
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Consider H OFIP scheme given in Section 7.6 and the reference model
based design scheme with reference model = They can be unifiedly
formulated as finding ( ) so that

k k2 = k k2 min (12.43)

min
( ) RH

°°£ ( ) ¯ ( ) ( ) ¯ ( )
¤°°

In this context, we rewrite detection condition into

k ( )( ¯ ( ) ( )+ ¯ ( ) ( ))k2 k +( ) k2
Since

k + ( ) k2 k k2 + min
( ) RH

k k2

for a good optimization with a (very) small min ( ) RH k k2 the
detection condition, under a given , can be approximately expressed by

k k2 = (1 ) k ( ) ¯ ( )k (12.44)

( ) = arg min
( ) RH

°°£ ( ) ¯ ( ) ( ) ¯ ( )
¤°°

For our comparison purpose, we now apply the unified solution as the reference
model,

( ) = ˆ ( ) ( ) + ˆ ( ) ¯ ( ) ( )

and rewrite detection condition into

k ( )( ¯ ( ) ( ) + ¯ ( ) ( ))k2
k + ( ) k2

Under the same , the detection condition, by a good optimization, is
approximately given by

k k2 = (1 ) (12.45)

Following Corollary 12.1, the residual signal generated by means of H
OFIP solutions or the reference model based design scheme with reference
model = , would lead, under the same , to a poorer fault de-
tectability than the residual signal generated by the reference model based
design scheme with reference model
In summary, our above discussion evidently demonstrates that the optimal

solution (12.33) delivers the best fault detectability for a given

12.2.5 Examples

The following two examples are used to illustrate our discussion in the last
subsection.
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Example 12.1 Given system model

( ) =
1

2+1 5 +0 5
1

+0 5

¸
( ) +

1
+1

1
2+2 +1

0 1
+1

¸
( )

and assume that is required to be 0. It is easy to prove that

( ) =
£
1 1

+1

¤
delivers a residual signal decoupled from ( ) i.e.

( ) = ( ) ( ) =
£

1
+1 0

¤
( ) =

1

+ 1
1( ) ( ) = 1( )

2( )

¸
The corresponding SDF is

( 0) = { | 1( ) 6= 0}
In comparison, applying Algorithm 12.1 yields

( ) =
+0 5
+1 0

0 1

¸
0 1
1 1

+1

¸
(12.46)

which leads to

1( )

2( )

¸
=

1
+1

0

¸
( ) +

0 +0 5
2+2 +1

1 1
+1 0

¸
1( )

2( )

¸
Thus, for a enough small 1

( ) =

{ | 1( ) 6= 0}
½

|
°°°° 1

+ 1
( ) +

+ 0 5
2 + 2 + 1

2( )

°°°°
2

¾
= ( 0)

½
|
°°°° 1

+ 1
( ) +

+ 0 5
2 + 2 + 1

2( )

°°°°
2

¾
This result verifies the result in Theorem 12.4.

Example 12.2 In this example, we concentrate ourselves on the detection of
2( ) given in the above example, i.e. we consider system model

2( ) =
1

+ 0 5
( ) +

1

+ 1
( ) (12.47)

We first design an H2 H2 optimal residual generator. To this end, we compute
max ( ) and

1

1 +

1

1
max ( )

1

0 5 +

1

0 5
= 0

max ( ) =
0 25 + 2

(1 + 2)2
= = 0 5
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In the next step, we design a band pass around

2( ) =
1

2 + 0 001 + 0 7
(12.48)

which delivers a (sub-)optimum

max
( )

°°° ( ) 1
+1

°°°
2°°° ( ) 1

+0 5

°°°
2

= 1 2
max ( )

°°° 2( )
1
+1

°°°
2°°° 2( )

1
+0 5

°°°
2

Note (12.47) is a single output system. Hence, with the above post-filter also
an H H optimum is reached, i.e.

max
( )

°°° ( ) 1
+1

°°°
2°°° ( ) 1

+0 5

°°°
2

= max
( )

°°° ( ) 1
+1

°°°°°° ( ) 1
+0 5

°°° = 1 2
max ( )

Next, for our comparison purpose, we design an H H optimal residual
generator. Remember that the H H optimal design is not unique (see also
the next section), we have decided to use the one which is di erent from the
unified solution given in (12.46), as shown below,

( ) =
+ 1

+ 1
= 0 005 (12.49)

and yields °°° +1
+1

1
+1

°°°°°° +1
+1

1
+0 5

°°° max
( )

°°° ( ) 1
+1

°°°°°° ( ) 1
+0 5

°°° = max
0 25 + 2

1 + 2

In comparison, the optimal solution proposed in this section is given by

( ) =
+ 0 5

+ 1
(12.50)

which delivers °°° +0 5
+1

1
+1

°°°°°° +0 5
+1

1
+0 5

°°° = max
0 25 + 2

1 + 2

Below, we compare the performance of residual generators (12.48), (12.49)
and (12.50) by means of two simulation cases:

Case I : ( ) is a white noise ( ) = 10( 20) sin (3 )

Case II : ( ) is a white noise ( ) = 5( 20) sin (0 5 )
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Fig. 12.2 Response of the residual signal generated by an H2 H2 optimal residual
generator (Case I)
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Fig. 12.3 Response of the residual signal generated by an H H optimal residual
generator (Case I)

Fig.12.2-Fig.12.4 show the simulation results using the three residual
generators, the H2 H2 optimal residual generator (12.48) ( 2( )) H H
optimal residual generator (12.49) ( ( )) and the residual generator

( ) (12.50) designed using the approach proposed in this section, for
Case I and Fig.12.5-Fig.12.7 for Case II. We can see that residual genera-
tor ( ) is sensitive to the faults in both cases, while 2( ) delivers a
good FD performance only in Case II and the FD performance of ( )
is poor in both cases. These results confirm the theoretical results achieved in
this section and demonstrate.
In Section 12.4, we shall briefly study the application of the trade-o ap-

proach proposed in this section to the stochastic systems.
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Fig. 12.4 Response of the residual signal generated by the residual generator designed
using the unified solution (Case I)
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Fig. 12.5 Response of the residual signal generated by an H2 H2 optimal residual
generator (Case II)

12.3 Minimizing false alarm number by a given FDR

The last section has shown that the unified solution provides an optimal trade-
o in the sense that by a given allowable FAR, the fault detectability is maxi-
mized. From the practical viewpoint, it is of considerable interest to approach
the dual form of the above trade-o , i.e. by a given FDR, how to achieve
a minimization of false alarm number. This is the objective of this section.
Beside of problem formulation and solution, we shall, in this section, address
the interpretation of the developed trade-o scheme and the comparison of
the achieved solution with the existing ones.
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Fig. 12.6 Response of the residual signal generated by an H H optimal residual
generator (Case II)
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Fig. 12.7 Response of the residual signal generated by the residual generator designed
using the unified solution (Case II)

12.3.1 Problem formulation

Again, we consider system model (12.15) and residual generator (12.16). The
fault detection condition and false alarm condition are respectively given in
(12.17) and (12.18). We formulate our problem as
Problem of Minimizing SDFA under a given FDR (PMin-SDFA):

Given in the context of Definition 12.7 and setting according to
(12.14), find ( ) RH so that

( ) RH ( ) ( ) (12.51)
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It is evident that applying ( ) would ensure the least number of false
alarms.

12.3.2 Essential form of the solution

In the subsequent discussion, it is first assumed that

[0 ] ¯ ( ) ¯ ( ) 0 for continuous time systems (12.52)

[0 2 ] ¯ ( ) ¯ ( ) 0 for discrete time systems. (12.53)

and
= (12.54)

As a result, the co-outer of ¯ ( ) = ( ) ( ) ( ) is left invertible in
RH . Note that, assumptions (12.52)/(12.53) and (12.54) also ensure that°° ¯ ( )°° 0 These two assumptions will be removed in the next subsection.

Theorem 12.7 Given system model (12.15), residual generator (12.16) and
, assume that ¯ ( ) RH satisfies (12.52)/(12.53) and (12.54) and

¯ ( ) RH , then

( ) = 1( ) RH (12.55)

is the solution of PMin-SDFA (12.51).

Proof. Do an LCF of ¯ ( ) = ( ) ( ) where 1( ) RH ( )
RH and ( ) is a co-inner. Assume that

( ) = ( ) 1( ) ( ) RH
Then, false alarm condition (12.18) can be rewritten into°°° ( ) 1( ) ¯ ( ) ( )

°°°
2

min k ( ) ( )k 0 (12.56)

Note that

k ( ) ( )k k ( )k k ( )k = k ( )k°°° ( ) 1( ) ¯ ( ) ( )
°°°
2

k ( )k
°°° 1( ) ¯ ( ) ( )

°°°
2

It turns out

k ( )k
μ°°° 1( ) ¯ ( ) ( )

°°°
2

min
¶

°°° ( ) 1( ) ¯ ( ) ( )
°°°
2

min k ( ) ( )k

As a result,
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k ( )k 0
°°° 1( ) ¯ ( ) ( )

°°°
2

min
0 (12.57)

lead to (12.56). In other words, (12.57) is su cient for a false alarm. Hence
any satisfying (12.57) will result in°° ( ) ¯ ( ) ( )

°°
2

min °° ( ) ¯ ( )
°° =°°° ( ) 1( ) ¯ ( ) ( )

°°°
2

min k ( )k 0

Considering that (12.57) can be achieved by setting ( ) = 1( ) we finally
have ( ) RH with k ( )k 0³

1
´ ³

1
´

which is equivalent to (12.51). The theorem is proven. ut
Theorem 12.7 provides us with an approach, by which we can achieve an

optimal trade-o in the sense of minimizing the FAR under a given FDR in
the context of norm based residual evaluation. It is interesting to notice that
the role of post-filter ( ) is in fact to inverse the magnitude profile of
¯ ( ) As a result, we have°° ( ) ¯ ( )

°° =
°° ( ) ¯ ( )

°° = 1 (12.58)

Moreover, the residual dynamics is governed by

( ) = 1( ) ¯ ( ) ( ) + ( ) ( )

and the threshold should be set, according to (12.14), as

=
min °° ( ) ¯ ( )

°° =
min (12.59)

Note that in case of weak disturbances, ( ) also delivers an estimation
of the size of the fault (i.e. the energy of the fault), as

k k2 k ( ) ( )k2 = k k2 (12.60)

We would like to mention that the application of the well-established factor-
ization technique to the problem solution is very helpful for getting a deep
insight into the optimization problem. Di erent from the LMI solutions, the
interpretation of (12.55) as the inverse of the magnitude profile of ¯ ( ) is
evident. Based on this knowledge, the achieved solution will be used for the
comparison study in the next section. From the computational viewpoint, so-
lution (12.55) is an analytical one and the major computation is to solve a
Riccati equation for the computation of ( ).
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12.3.3 The state space form

Following Lemmas 7.4 and 7.5, the results given in Theorem 12.7 can also be
expressed in the state space form. To this end, suppose that the minimal state
space realization of system (12.15) is given by

˙ ( ) = ( ) + ( ) + ( ) + ( ) (12.61)

( ) = ( ) + ( ) + ( ) + ( ) (12.62)

where R are known constant matrices of com-
patible dimensions. For the purpose of residual generation, FDF of the form

˙̂ ( ) = ˆ( ) + ( ) + ( ( ) ˆ( )) (12.63)

ˆ( ) = ˆ( ) + ( ) ( ) = ( ( ) ˆ( )) (12.64)

can be used, which also represents a state space realization of residual gen-
erator (12.16) with a constant post-filter . In (12.63)-(12.64), and are
constant matrices and can be arbitrarily selected. The dynamics of (12.63)-
(12.64) can be equivalently written as

( ) =
³
ˆ ( ) ( ) ( ) + ˆ ( ) ( ) ( )

´
=

³
ˆ ( ) ( ) + ˆ ( ) ( )

´
ˆ ( ) = ( + ) 1 = ˆ ( ) = ˆ ( )

ˆ ( ) = + ( + ) 1( )

ˆ ( ) = + ( + ) 1( )

( ) = ˆ 1( ) ˆ ( ) ( ) = ˆ 1( ) ˆ ( )

The following theorem represents a state space version of optimal solution
(12.55) and so that gives the optimal design for .

Theorem 12.8 Given system (12.61)-(12.62) that is detectable and satisfies,
for continuous time systems,

[0 ]

¸
= +

and for discrete time systems

[0 2 ]

¸
= +

and residual generator (12.63)-(12.64), then for continuous time systems

= ( + )( ) 1 = ( ) 1 2 (12.65)
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with 0 being the stabilizing solution of the Riccati equation

+ + ( + )( ) 1( + ) = 0

and for discrete time systems

= = (12.66)

with being the left inverse of a full column rank matrix satisfying
= + , and ( ) the stabilizing solution to the DTARS

(discrete time algebraic Riccati system)

+ +

+ +

¸ ¸
= 0

deliver an optimal FDF in the sense of (12.51).

The proof of this theorem follows directly from Lemmas 7.4 and 7.5 and
thus omitted.

12.3.4 The extended form

We are now going to remove assumption (12.52) or (12.53) and assumption
(12.54), and extend the proposed approach so that it can be applied for any
system described by (12.15). This extension is of practical interest and will
enhance the applicability of the proposed approach considerably. For instance,
after this extension the approach can also be applied to the detection of actu-
ator faults, which would be otherwise impossible due to the fact that ( )
would have zeros at infinity. For the sake of simplicity, we only consider con-
tinuous time systems.
We first release (12.54) and consider system (12.15) with Note

that in this case
°° ¯ ( )°° 6= 0 which is equivalent to

[0 ] ¯ ( ) ¯ ( ) 0 (12.67)

Since ¯ ( ) RH × and, due to (12.67), [0 ]

rank
¡
¯ ( )

¢
= (12.68)

it follows from the discussion on the CIOF in Subsection 7.1.5 that ¯ ( ) can
be factorized into

¯ ( ) = ( ) ( ) ¯ ( ) = ( ) ( ) (12.69)

where ( ) is co-inner and ( ) is left invertible in RH As a result, we
have the following theorem.
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Theorem 12.9 Given ¯ ( ) RH × satisfying (12.67), ¯ ( )
RH , then

( ) = ( ) RH (12.70)

ensures that ( )(6= 0) RH

( ) ( )

where ( ) is the left inverse of ( ) and ( ) the co-outer of ¯ ( )
as given in (12.69).

The proof of this theorem is similar to the one of Theorem 12.7 and thus
omitted.
We now remove assumptions (12.52) and (12.54) and extend the solution.

Note that in this case
°° ¯ ( )°° = 0 i.e. there exists a class of faults which

are, independent of their size, structurally not detectable (see Chapter 4).
They can be, for vectors in the right null subspace of ¯ ( ) or for
rank

¡
¯ ( )

¢
those vectors corresponding to the zeros ¯ ( ) in C

or at infinity. The basic idea behind the extension study is to exclude these
faults and consider only the structurally detectable faults. For this purpose,
an extended CIOF of ¯ ( ) introduced in Chapter 7 can be used, which is
described by

¯ ( ) = ( ) ( ) ( ) ( ) (12.71)

where ( ) is co-inner, ( ) has a left inverse in RH , ( ) has the
same zeros on the imaginary axis and ( ) the same zeros at infinity as
¯ ( ) Considering that k ( ) ( ) ( )k = 0, it is reasonable to define

( ) =
( ) ( )

k ( ) ( )k ( ) ( ) = (12.72)

k ( )k2 k ( ) ( )k2 k ( )k2 (12.73)

and reformulate the fault detection problem as finding ( ) such that the
residual generator

( ) = ( )
¡
¯ ( ) ( ) + ¯ ( ) ( )

¢
(12.74)

¯ ( ) = ( ) k ( ) ( )k (12.75)

is optimal in the sense of minimizing FAR under a given FDR, as formulated at
the beginning of this section. This problem can then be solved using Theorem
12.7 and the optimal solution is given by

( ) = ¯ 1( )

We summarize the introduced approach into the following algorithm.

Algorithm 12.2 Optimal design of FD systems by given and min
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Step 1: Bring ¯ ( ) into (12.74) using the extended CIOF algorithm 7.9
Step 2: Compute ¯ ( ) according to (12.75)
Step 3: Set ( ) as

( ) = ¯ 1( )

Step 4: Set threshold according to (12.59).

12.3.5 Interpretation of the solutions and discussion

In this subsection, we are going to study the proposed approach from the
mathematical viewpoint and compare it with some existing results. To this
end, we first demonstrate that solution (12.55) also solves the optimization
problem

sup
( ) RH

0 = sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° (12.76)

Theorem 12.10 Assume that ¯ ( ) ¯ ( ) and ( ) are the ones given in
Theorem 12.7, then

sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° =

1°°° 1( ) ¯ ( )
°°°

( ) = arg sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° = 1( )

Proof. Let ( ) = ( ) 1( ) RH It leads to

0 =

°°° ( ) 1( ) ( ) ( )
°°°°°° ( ) 1( ) ¯ ( )

°°°
k ( )k°°° ( ) 1( ) ¯ ( )

°°°
Due to the relation°°° ( ) 1( ) ¯ ( )

°°° k ( )k
°°° 1( ) ¯ ( )

°°°
we get

0
1°°° 1( ) ¯ ( )

°°°
and the equality holds when ( ) = . Thus, ( ) = ( ) = 1( ) is
the optimal solution to the optimization problem (12.76) and the theorem is
proven. ut
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Theorem 12.10 reveals that the optimization problem (12.76) can be solved
analytically and the major involved computation is solving a Riccati equation
for achieving ( ) Remember that the unified solution ( ) = 1( )
under certain conditions, also solves (12.76). It is thus of interest to check the
equivalence between these two solutions.

Theorem 12.11 Assume that ¯ ( ) ¯ ( ) can be factorized into

¯ ( ) = ( ) ( ) ¯ ( ) = ( ) ( )

with 1( ) 1( ) RH , ( ) and ( ) co-inner. Then°°° 1( ) ¯ ( )
°°°°°° 1( ) ¯ ( )
°°° =

°° 1( ) ¯ ( )
°°°° 1( ) ¯ ( )
°° (12.77)

Proof. The left side of (12.77) equals to°°° 1( ) ¯ ( )
°°°°°° 1( ) ¯ ( )
°°° =

1°°° 1( ) ¯ ( )
°°°

=
1°°° 1( ) ( ) ( )

°°° =
1°°° 1( ) ( )

°°°
Note that

1°°° 1( ) ( )
°°° =

°° 1( ) ( )
°°

On the right side of (12.77), we have°° 1( ) ¯ ( )
°°°° 1( ) ¯ ( )
°° =

°° 1 ¯
°° =

°° 1
°°

The theorem is thus proven. ut
Although solutions 1( ) and 1( ) are equivalent in the sense of op-

timizing (12.76), they deliver di erent results for the following general opti-
mization problem H H ,

sup
( ) RH

( ) = sup
( ) RH

( ( ) ¯ ( ))°° ( ) ¯ ( )
°° as well as (12.78)

sup
( ) RH

( ) = sup
( ) RH

( ( ) ¯ ( ))°° ( ) ¯ ( )
°° (12.79)

as described in Theorem 12.12.
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Theorem 12.12 : Assume that ¯ ( ) ¯ ( ) satisfy the assumptions given
in Theorem 12.11, then the following relations hold³

1
´
=

³
1
´
= 0

³
1
´
=

1°°° 1( ) ¯ ( )
°°° =

0

¡
1
¢
= sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° ¡

1
¢
=

¡
1( ) ¯ ( )

¢°° 1( ) ¯ ( )
°°

= sup
( ) RH

( ( ) ¯ ( ))°° ( ) ¯ ( )
°° ¡

1
¢
= sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°°
(12.80)

as well as ³
1
´
=

³
1
´
= 0

³
1
´
=

1°°° 1( ) ¯ ( )
°°° =

0

¡
1
¢
= sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° ¡

1
¢
=

¡
1( ) ¯ ( )

¢°° 1( ) ¯ ( )
°°

= sup
( ) RH

( ( ) ¯ ( ))°° ( ) ¯ ( )
°° ¡

1
¢
= sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°°
(12.81)

where

sup
( ) RH

( ) = sup
( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°° (12.82)

Proof. We only prove the continuous time case. Noting that³
1( ) ¯ ( )

´
= 1

for any and , it turns out³
1
´
=

1°°° 1( ) ¯ ( )
°°°³

1
´
= sup

³
1
´
=

1°°° 1( ) ¯ ( )
°°°

0

³
1
´
= inf

³
1
´
=

1°°° 1( ) ¯ ( )
°°°

It follows from Theorem 12.11 that

0

³
1
´
= 0

¡
1
¢
= sup

( ) RH

°° ( ) ¯ ( )
°°°° ( ) ¯ ( )
°°
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On the other side, it holds that¡
1( ) ¯ ( )

¢
= inf

¡
1( ) ¯ ( )

¢
¡

1( ) ¯ ( )
¢

sup
¡

1( ) ¯ ( )
¢
= ¯

¡
1( ) ¯ ( )

¢
As a result,

0

¡
1
¢
= inf

¡
1
¢ ¡

1
¢

sup
¡

1
¢
=

¡
1
¢

The theorem is thus proven. ut
From the FDI viewpoint, the result in Theorem 12.12 can be interpreted

as the fact that the FD system designed by the trade-o strategy developed
in this paper is less robust in comparison with the FD system designed by
using the unified solution. On the other side, as mentioned in the former
subsection, the new trade-o strategy delivers a better estimation of the size
of the possible faults. In this context, we would like to emphasize that the
decision for a certain optimization approach should be made based on the
design objective not on the mathematical optimization performance index.

12.3.6 An example

In this subsection, an example is given to illustrate the results achieved in the
last two sections.
Consider the FD problem of a system in the form of (12.61)-(12.62) with

matrices

=

3 0 5 0 8 1
1 4 0 1
2 3 1 0 5
0 1 2 0

=

3
2
1
1

=
1 0 25 1 0
0 1 0 1

¸
=

0 5
0 3

¸

=

0 5 1 1
0 8 0 5 0
0 1 1
0 2 0 0 5

=

1 0
0 5 1
0 2 1
1 0

=
0 5 1 0
1 0 1

¸
=

1 0
0 1 5

¸

From Theorem 12.8, we get the optimal gain matrix 1 1

1 =

0 9735 0 1323
0 5639 0 5791
0 2118 0 6198
0 4837 0 4439

1 =
1 0
0 0 6667

¸
(12.83)

The unified solution that solves (12.78), (12.82) and (12.76) simultaneously is
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2 =

1 0072 1 0029
0 6343 0 2393
1 1660 0 7751
0 0563 0 3878

2 =
0 9333 0 1333
0 1333 0 7333

¸
(12.84)

The optimal performance indexes, as obtained by solving (12.78), (12.82) and
(12.76) are shown in Fig.12.8. It can be seen that, ,
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Fig. 12.8 Performance index ( 1 1) = 0( 1 1) = 1 ( 1 1) =

2 ( 1 1) 0 1769 (dashed line), performance index 1 ( 2 2) (solid line),
and performance index 2 ( 2 2) (dotted line)

2 1533 = ( 2 2) = 1 =0( 2 2) 1 ( 2 2)

2 ( 2 2) 2 =1 7870( 2 2) = 0( 2 2) = 0( 1 1)

= 1 ( 1 1) = 2 ( 1 1) = ( 1 1) = 0 1769

These results verify Theorems 12.10-12.12.
In the simulation study, the simulation time is set to be 2000 seconds and

the control input is a step signal (step time at 0) of amplitude 5. The unknown
disturbances are, respectively, a continuous signal taking value randomly from
a uniform distribution between [ 0 1 0 1], a sine wave 0 1 sin(0 1 ), and a chirp
signal with amplitude 0 1 and frequency varying linearly from 0 02 Hz to 0 06
Hz. Fault 1 appears at the 1200-th second as a step function of amplitude 0 75.
Fault 2 appears at the 1000-th second as a step function of amplitude 0 4. The
fault energy is k k2 = 24 71. The residual signals are shown in Fig.12.9, where
1 denotes the residual vector generated with 1 1 and 2 that by 2 2.
As k 1k2 = 25 45 k 2k2 = 21 46, the residual vector obtained by 1 1 gives
a better estimation of the energy level of the fault signal. On the other side,
we see from the second figure that the residual vector got by 2 2 shows
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a better fault/disturbance ratio in the sense of (12.78), (12.82) and (12.76).
This demonstrates the results in Theorem 12.12.
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Fig. 12.9 Residual signals

12.4 On the application to stochastic systems

In the last two sections, two trade-o strategies and the associated design
methods have been developed in the norm based evaluation framework. It is
of practical interests to know if they are still valid for stochastic systems and
in the statistic testing framework. In this section, we shall briefly discuss the
related problems.

12.4.1 Application to maximizing FDR by a given FAR

In Subsection 11.1.3, we have introduced a GLR solution to the residual eval-
uation and threshold computation for stochastic systems modelled by (11.1)-
(11.2). The core of this approach is the computation of the FAR in the sense
of Definition 12.1, which is given by (see (11.17))

1 prob
¡

2
¡

( + 1) 2
¢

2
¢

(12.85)

Equation (12.85) can be equivalently written as

1 prob
¡

2 ( ( + 1) 1) 1
¢

(12.86)

when the residual evaluation function is re-defined by
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˜ 1

2

Now, if we set the residual generator according to Corollary 12.1, then we
have ( ) RH

( ) ( )

As a result, delivers the maximal probability

prob

Ã
˜ 1

2 1 | 6= 0
!

(12.87)

while keeping the same FAR as given by (12.86). Remember that the prob-
ability given in (12.87) is exactly the FDR given in Definition 12.2. In this
context, we claim that the solution presented in this section, namely the uni-
fied solution, also solves the FD systems design problem for stochastic systems
(11.1)-(11.2), which is formulated as: given FAR (in the sense of Definition
12.1) find the residual generator, and so that the FDR (in the sense of
Definition 12.2) is maximized.

12.4.2 Application to minimizing FAR by a given FDR

The trade-o strategy proposed in Section 12.3 requires a threshold setting
according to (12.59), which also fits the FDR in the sense of Definition 12.2,

= prob
³

˜ 1 | 6= 0
´

For the computation of the associated FAR as defined in Definition 12.1,
we can again use the estimation

1 prob
¡

2
¡

( + 1) 2
¢ ¢

(12.88)

Remember that the optimal residual generator ensures that

( ) RH ( ) ( )

It results in a maximum probability prob
¡

2
¡

( + 1) 2
¢ ¢

which
in turn means o ers the minimum bound for among all possible
residual generators. In other words, delivers a minimum by a
given .

12.5 Notes and references

Although this chapter is less extensive in comparison with the other chapters,
it is, in certain sense, the soul of this book. Di erent from the current way
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of solving the FDI problems in the context of robustness and sensitivity, as
introduced in the previous chapters, the model-based FDI problems have been
re-viewed in the context of FAR vs. FDR. Inspired by the interpretation of
the concepts FAR and FDR in the statistical framework, we have

• introduced the concepts of FAR and FDR in the norm based context,
• defined SDF and SDFA and, based on them,
• formulated two trade-o problems: maximizing fault detectability by a
given (allowable) FAR (PMax-SDF) and minimizing false alarm number
by a given FDR (PMin-SDFA).

In this way, we have established a norm based framework for the analysis
and design of observer-based FDI systems. It is important to notice that
in this framework the four essential components of an observer-based FD
system, the residual generator, residual evaluation function, the threshold
and the decision logic, are taken into account by the problem formulations.
This requires and also allows us to deal with the FDI system in an integrated
manner. The integrated design distinguishes the design procedure proposed in
this chapter significantly from the current strategies, where residual generation
and evaluation are separately addressed.
It has been demonstrated that the unified solution introduced in Chapter

7 also solves PMax-SDF, while the solution with inversing the magnitude
profile of the fault transfer function matrix is the one for PMin-SDFA. In
the established norm based framework, a comparison study has further been
undertaken. The results have verified, from the aspect of the trade-o FAR
vs. FDR, that

• the unified solution leads to the maximum fault detectability under a given
FAR and

• the ratio between the influences of the fault and the disturbances is the
decisive factor for achieving the optimum performance and thus the influ-
ence of the disturbance should be integrated into the reference model by
designing a reference model based FD system.

One question may arise: why have we undertaken a so extensive study
on the PUIDP in Chapter 6 and on the robustness issues in Chapter 7? To
answer this question, we would like to call reader’s attention to the result that
the solution of the PUIDP is implicitly integrated into the general form of the
unified solution (12.29). In fact, the solution of the PUIDP gives a factorization
in the form of (7.305), which leads then to (12.29). Also, it should be pointed
out that in the established norm framework, we have only addressed the FDI
design problems under the assumption that the residual signals are evaluated
in terms of the L2 norm. As outlined in Chapter 9, in practice also other kinds
of signal norms are used for the purpose of residual evaluation. To study the
FDI system design under these norms, the methods and tools introduced in
Chapter 7 are very helpful. As additional future work we would like to mention
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that an "LMI version" of the unified solution would help us to transfer the
results achieved in this chapter to solving FDI problems met in dealing with
other types of systems. In Section 12.4, we have briefly discussed the possible
application of the proposed approaches to the stochastic systems. It would be
also a promising topic for the future investigation. A useful tool to deal with
such problems e ciently is the optimal selection of parity matrices presented
in Section 7.5, which builds a link to the GLR technique.
A part of the results in this chapter has been provisionally reported in

[31].
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Fault isolation schemes

Fault isolation is one of the central tasks of a fault diagnosis system, a task that
can become, by many practical applications, a real challenge for the system
designer. Generally speaking, fault isolation is a signal processing process
aiming at gaining information about the location of the faults occurred in
the process under consideration. Evidently, the complexity of such a signal
processing process strongly depends on

• the number of the possible faults,
• the possible distribution of the faults in the process under consideration,
• the characteristic features of each fault and
• the available information about the possible faults.

Correspondingly, the fault isolation problems will be solved step by step
at di erent stages of a model-based fault diagnosis system. Depending on the
number of the faults, their distribution and the fault isolation logic adopted
in the decision unit, the residual generator should be so designed that the
generated residual vector delivers the first clustering of the faults, which, in
accordance with the fault isolation logic, divides the faults into a number of
sets. At the residual evaluation stage, the characteristic features of the faults
are then analyzed by using signal processing techniques based on the available
information of the faults. As results, a further classification of the faults is
achieved, and on its basis a decision about the location of the occurred faults
is finally made. If the number of the faults is limited and their distribution
is well structured, a fault isolation may become possible without a complex
residual evaluation.
The main objective of this chapter is to present a number of widely used

approaches for the purpose of fault isolation. Our focus is on the residual
generation, as shown in Fig.13.1. We will first describe the basic principle,
and then show the limitation of the fault isolation schemes which only rely on
residual generators and without considering the characteristic features of the
faults and thus without the application of special signal processing techniques
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for the residual evaluation, and finally present and compare di erent observer-
based fault isolation approaches.

Fig. 13.1 Description of the fault isolation schemes addressed in Chapter 13

13.1 Essentials

In this section, we first study the so-called perfect fault isolation (PFIs) prob-
lem formulated as: given system model

( ) = ( ) ( ) + ( ) ( ) (13.1)

with the fault vector ( ) R , find a (linear) residual generator such that
each component of the residual vector ( ) R corresponds to a fault
defined by a component of the fault vector ( ). We do this for two reasons:
by solving the PFIs problem

• the role and, above all, the limitation of a residual generator for the pur-
pose of fault isolation can be readily demonstrated and

• the reader can get a deep insight into the underlying idea and basic prin-
ciple of designing a residual generator for the purpose of fault isolation.

On this basis, we will then present some approaches to the solution of the
PFIs problem.

13.1.1 Existence conditions for a perfect fault isolation

In order to study the existence conditions for a PFIs, we consider again the
general form of the dynamics of the residual generator derived in Chapter 5
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( ) =

1( )
...
( )

= ( ) ˆ ( ) ( ) ( ) = ( ) ˆ ( ) ( )

1( )
...
( )

The requirement on a PFIs can then be mathematically formulated as: find
( ) such that

( ) ˆ ( ) ( ) = ( 1( ) · · · ( )) (13.2)

which gives
1( )
...
( )

=

1( ) 1( )
...

( ) ( )

(13.3)

where ( ) = 1 · · · are some RH transfer functions. Thus, the PFIs
problem is in fact a problem of solving equation (13.2) which is a dual form the
well-known decoupling control problem. In the following of this subsection, we
will restrict our attention to the existence conditions of (13.2) whose solution
will be handled in the next section.
It is evident that (13.2) is solvable if and only if³

ˆ ( ) ( )
´
=

Recall that ˆ ( ) R × has a full-rank equal to , the following theorem
becomes evident.

Theorem 13.1 The PFIs problem is solvable if and only if

( ( )) = (13.4)

Remember that in Section 4.3, we have studied structural fault isolabil-
ity. We have learned from Corollary 4.2 that additive faults are structurally
isolable if and only if the rank of the corresponding fault transfer matrix is
equal to the number of the faults. The result in Theorem 13.1 is identical with
the one stated in Corollary 4.2. Hence, we can claim that the PFIs is solvable
if and only if the faults are structurally isolable.
Since ˆ ( ) R × ( ) R × and³

ˆ ( ) ( )
´

min
n ³

ˆ ( )
´

( ( ))
o
= min{ }

we have

Corollary 13.1 The PFIs problem is solvable only if
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Theorem 13.1 and Corollary 13.1 not only give some necessary and su -
cient conditions for the solution of the PFIs problem but also reveal a physical
law that is of importance for our further study on the fault isolation problem:
Suppose that the FDI system under consideration only consists of a residual
generator and furthermore no assumptions on the faults are made, then a suc-
cessful fault isolation can only be achieved if the number of the faults to be
isolated is not larger than the number of the sensors used (i.e. the dimension
of the output signals). In other words, we are only able to isolate as many
faults as the sensors used. Surely, this is a hard limitation on the application of
the model-based FDI systems. Nevertheless, this strict condition is a result of
the hard assumptions we made. Removing them, for instance, by introducing
a residual evaluation unit which processes the residual signals by taking into
account possible knowledge of faults, or assuming that a simultaneous occur-
rence of faults is impossible, it is possible to achieve a fault isolation, even if
the conditions given in Theorem 13.1 or Corollary 13.1 are not satisfied.
Let the system model be given in the state space representation

( ) = ( ) ( ) = ( )

with R × R × R × R × R × and
R × Then, Theorem 13.1 is equivalent with

Theorem 13.2 The PFIs problem is solvable if and only if¸
= +

Theorem 13.2 provides us with a PFIs check condition via the Rosenbrock
system matrix, whose proof can be found in Corollary 4.3.

13.1.2 PFIs and unknown input decoupling

Taking, for instance, a look at the first row of (13.3), we can immediately
recognize that the residual 1( ) is decoupled from the faults 2( ) · · · ( )
and therefore only depends on 1( ). In general, the -th residual signal,
( ), is sensitive to ( ) and totally decoupled from the other faults,
1( ) · · · 1( ) +1( ) · · · ( ). Recall the problem formulation of the
so-called fault detection with unknown input decoupling, the selection of the
-th row of the transfer function matrix ( ) is in fact equivalent to the de-
sign of a residual generator with unknown input decoupling. In this sense, the
residual generator described by (13.3) can be considered as a bank of dynamic
systems, and each of them is a residual generator with perfect unknown input
decoupling. In other words, we can handle the residual isolation problem as a
special problem of designing residual generators with perfect unknown input
decoupling formulated as following: Given
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( ) = ( ) ( ) + ( ) ( ) + ¯ ( ) ¯( ) = 1 · · ·

¯( ) =

1( )
...
1( )

+1( )
( )

( ) =
£
1 ( ) · · · ( )

¤

¯ ( ) =
£
1 ( ) · · · 1 ( ) +1 ( ) ( )

¤
find ( ) RH = 1 · · · such that

( ) = ( ) ˆ ( )
¡

( ) ( ) + ¯ ( ) ¯( )
¢

= ( ) ˆ ( ) ( ) ( ) = 1 · · ·
This fact allows us to apply the well-developed approaches to the design
of residual generators with perfect unknown input decoupling introduced in
Chapter 6 to the fault isolation. It is indeed also the mostly used way to solve
the PFIs problem.
The idea of reducing the fault isolation problem to the design of residual

generators with perfect unknown input decoupling is often adopted to handle
the case where a PFIs is not realizable, which is in fact mostly met in practice.
Assume that . Taking the fact in mind that for a system with
outputs and 1 unknown inputs there exists a residual generator with
a perfect unknown input decoupling, let’s define a group of subsets, each of
which contains ( 1) faults. For a system with outputs and faults,
there existμ

1

¶
=

μ
+ 1

¶
=

!

( 1)!( + 1)!
:=

such subsets. Now, we design residual generators, each of them is perfectly
decoupled from 1 faults. According to the relationships between the resid-
ual signals and the faults, a logical table is then established, by which a deci-
sion on the location of a fault is made. Of course, in this case a fault isolation
generally means locating the subset, to which the fault belongs, instead of in-
dicating exactly which fault occurred. To demonstrate how this scheme works,
we take a look at the following example.

Example 13.1 Suppose that

( ) = ( ) 1 + R3×

=
£

1 2 2 4 5

¤ R ×5 =
£

1 2 2 4 5

¤ R ×5

i.e. the system has three outputs, and five possible faults have to be detected
and isolated. Since = 3 5 = , a PFIs is not realizable. To the end of
fault isolation, we now use the fault isolation scheme described above. Firstly,
we define
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=

μ
5
2

¶
= 10

fault subsets:

1 = { 1 2 3} 2 = { 1 2 4} 3 = { 1 3 4} 4 = { 2 3 4}
5 = { 1 2 5} 6 = { 1 3 5} 7 = { 2 3 5} 8 = { 1 4 5}
9 = { 2 4 5} 10 = { 3 4 5}

Then, correspondingly we can design ten residual generators with perfect un-
known input decoupling on the basis of the following ten unknown input models¡ £

4 5

¤ £
4 5

¤¢ ¡ £
3 5

¤ £
3 5

¤¢¡ £
2 5

¤ £
2 5

¤¢ ¡ £
1 5

¤ £
1 5

¤¢¡ £
3 4

¤ £
3 4

¤¢ ¡ £
2 4

¤ £
2 4

¤¢¡ £
1 4

¤ £
1 4

¤¢ ¡ £
2 3

¤ £
2 3

¤¢¡ £
1 3

¤ £
1 3

¤¢ ¡ £
1 2

¤ £
1 2

¤¢
As a result, ten residual signals are delivered,

1( ) = 1( 1( ) 2( ) 3( )) 2( ) = 2( 1( ) 2( ) 4( ))

3( ) = 3( 1( ) 3( ) 4( )) 4( ) = 4( 2( ) 3( ) 4( ))

5( ) = 5( 1( ) 2( ) 5( )) 6( ) = 6( 1( ) 3( ) 5( ))

7( ) = 7( 2( ) 3( ) 5( )) 8( ) = 8( 1( ) 4( ) 5( ))

9( ) = 9( 2( ) 4( ) 5( )) 10( ) = 10( 3( ) 4( ) 5( ))

with ( ) = ( 1( ) 2( ) 3( )) denoting the -th residual as a function of
faults 1( ) 2( ) and 3( ). Finally, a logic table can be established. Surely,
using the logic

( ) 6= 0 indicates that a fault is from = 1 · · · 10
we are able to locate to which sub-set a fault belongs. The fact that a fault may
influence more than one residual, however, allows to get more information
about the location of faults. To this end, the following table is helpful. In Table
13.1, "1" in the -th column and the -th row indicates that residual is
a function of and "0" means that is decoupled from . Following this
table, it becomes clear that not every type of faults is locatable. For instance,
if any three faults simultaneously occur, then all of the residual signals will
di er from zero. That means we cannot, for instance, distinguish the situation
1 6= 0 2 6= 0 3 6= 0 from the one 2 6= 0 3 6= 0 4 6= 0. Nevertheless,
under the assumption that no faults occur simultaneously the five faults can
be isolated. Indeed, in this case, using residual generators 1 2 3 4 and 5,
instead of all ten residual signals, a PFIs can be achieved.

Remark 13.1 The above discussion shows that the strong existence condition
for a PFIs may become weaker when we have additional information about
faults.
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Table 13.1 Logic table for fault isolation

1 2 3 4 5 6 7 8 9 10

1 1 1 1 0 1 1 0 1 0 0
2 1 1 0 1 1 0 1 0 1 0
3 1 0 1 1 0 1 1 0 0 1
4 0 1 1 1 0 0 0 1 1 1
5 0 0 0 0 1 1 1 1 1 1

13.1.3 PFIs with unknown input decoupling (PFIUID)

We now extend our discussion to the process with a unknown input vector,

( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

and study the problem, under which condition there exists a post-filter ( )
RH such that

( ) ˆ ( ) ( ) = 0 ( ) ˆ ( ) ( ) = ( 1( ) · · · ( )) (13.5)

which implies

( ) =

1( )
...
( )

= ( ) ˆ ( ) ( ) ( ) =

1( ) 1( )
...

( ) ( )

Below is a theorem which describes a necessary and su cient condition for
the solution of (13.5).

Theorem 13.3 (13.5) is solvable if and only if£
( ) ( )

¤
= ( ( )) + ( ( )) (13.6)

= + ( ( )) (13.7)

Proof. Su ciency: From Algebraic Theory we know that (13.6) implies there
exists a 1( ) RH with

( 1( )) =

such that

1( ) ˆ ( )
£

( ) ( )
¤
=

¯ ( ) 0
0 ¯ ( )

¸
¡
¯ ( )

¢
=

¡
¯ ( )

¢
= ( ( ))

Let
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( ) =
£

2( ) 0
¤

1( )

with
2( ) ¯ ( ) = ( 1( ) · · · ( ))

then we have

( ) ˆ ( ) ( ) = ( 1( ) · · · ( )) ( ) ˆ ( ) ( ) = 0

Necessity: Assume that (13.6) is not true. Then for all ( ) ensuring

( ) ˆ ( ) ( ) = 0

we have ³
( ) ˆ ( ) ( )

´
( ( ))

(13.6) is hence a necessary condition for the solvability of (13.5). ut
It follows from Theorem 13.3 that the solvability of the PFIUID problem

depends on the rank of ( ) and the number of measurable outputs. In fact,
such a problem is solvable if and only if ( ) and ( ) have totally decoupled
e ects on the measurement ( ). From the practical viewpoint, this is surely
a unrealistic requirement on the structure of the system under consideration.
On the other side, however, it reveals an intimate relationship between the
problem of fault isolation and unknown input decoupling.
In the forthcoming sections, we are going to present a number of ap-

proaches to the PFIs problem defined in the last subsection, most of which
have been developed following the decoupling principle. Without loss of gen-
erality, we consider only the situation without unknown inputs.

13.2 A frequency domain approach

The approach presented below is in fact an extension of the so-called frequency
domain approach described in Section 6.3 for the purpose of unknown input
decoupling. The problem to be solved is now formulated as: Given transfer
function matrices ˆ ( ) ( ) and suppose ( ( )) = , find such
a post filter ( ) RH that ensures

( ) ˆ ( ) ( ) = ( 1( ) · · · ( )) RH

Recall that applying Algorithm 6.3 to 1( ) ˆ ( ) ( ) leads to

1( ) ˆ ( ) ( ) =

1̂1( ) 1̂2( ) · · · 1 ( )
0 2̂2( ) · · · 2 ( )
...

. . .
. . .

...
0 · · · 0 ˆ ( )

RH (13.8)
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and ˆ ( ) 6= 0 = 1 · · · , provided that

( ( )) =

Setting

( ) =
Y
=1

1( )

with

( ) =

1 0 · · · 0 1 ( )
ˆ ( )

0 · · · 0
0 1 · · · 0 2 ( )

ˆ ( )
0 · · · 0

...
. . .

...
...

...
...
...

0 · · · · · · 1 1 ( )
ˆ ( )

0 · · · 0
0
...

... 0 1 0 · · · 0
...
...

...
...

...
. . .

. . .
...

0 · · · · · · · · · · · · · · · 1 0
0 · · · · · · · · · · · · · · · 0 1

gives

( ) ˆ ( ) ( ) =
Y
=1

( ) 1( ) ˆ ( ) ( )

=
Y
=1

( )

1̂1( ) 1̂2( ) · · · 1 ( )
0 2̂2( ) · · · 2 ( )
...

. . .
. . .

...
0 · · · 0 ˆ ( )

= ( 1( ) · · · ( )) ( ) = ˆ ( )

We now summarize these results into an algorithm for solving the PFIs.

Algorithm 13.1 Frequency domain approach to PFIs

Step 1: Application of Algorithm 6.3 to solve (13.8) for 1( );
Step 2: Set ( )

( ) =
Y
=1

( ) 1( )

Remark 13.2 Since the essential calculations in Algorithm 13.1 consist of
addition and multiplication operations of transfer functions, the order of the
resulted post filter may become higher than , the order of the system.
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13.3 Fault isolation filter design

In this section, three approaches to the design of fault detection filters for the
purpose of a PFIs will be presented. For the sake of simplicity, we only deal
with continuous time systems.
As known, under the assumption that the system model is given by

˙ ( ) = ( ) + ( ) + ( ) ( ) = ( ) (13.9)

we can construct an FDF of the form

˙̂ ( ) = ˆ( ) + ( ) + ( ( ) ˆ( )) ˆ( ) = ˆ( ) (13.10)

( ) = ( ( ) ˆ( )) (13.11)

whose dynamics is governed by

˙( ) = ( ) ( ) + ( ) ( ) = ( ) ˆ( ) ( ) = ( )

Remembering our design purpose and the PFIs condition, it is in the following
assumed that

( ) = ( ) = = ( ) = ( ) R ×

We formulate the design problem as follows: Given system model (13.9) and
fault detection filter (13.10)-(13.11), find and such that the fault detection
filter is stable and ( + ) 1 is diagonal.

Definition 13.1 A fault detection filter solving the above-defined problem is
called fault isolation filter.

13.3.1 A design approach based on the duality to decoupling
control

The basic idea of the approach by Liu and Si for the problem solution is based
on the so-called dual principle, namely the duality between the PFIs and the
state feedback decoupling which is formulated as: Given the system model

˙ ( ) = ¯ ( ) + ¯ ( ) ( ) = ¯ ( )

and a control law
( ) = ( ) + ¯ ( )

find and ¯ such that the transfer function matrix

¯( ¯ ¯ ) 1 ¯ ¯

is diagonal. Let
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= ¯ = ¯ = ¯ = = ¯

we obtain ¡
( + ) 1

¢
= ¯( ¯ ¯ ) 1 ¯ ¯

The duality thus becomes evident.
Considering that the state feedback decoupling is a standard control prob-

lem whose solution can be found in most of textbooks of modern control
theory, we shall below present the results without a detailed proof.
To begin with, a so-called fault isolability matrix is introduced. Write

=
£

1 · · ·
¤

and let

= min{ : 1 6= 0 = 1 2 · · · } = 1 · · ·
which are also called fault detectability indices. Then, the fault isolability
matrix is defined as

=
h

1 1
1 · · · 1

i
With the definition of we are now able to state a necessary and su cient
condition for the solvability of the design problem.

Lemma 13.1 The transfer function matrix ( + ) 1 can be
diagnosed if and only if is left invertible.

The following theorem is the core of the approach, which provides a means
of designing a fault isolation filter (13.10)-(13.11).

Theorem 13.4 Suppose be left invertible. Setting

=
¡£

1 1 · · ·
¤ ¢

+ + 1(
+ ) (13.12)

= + + 2(
+ ) (13.13)

gives a diagonal transfer function matrix ( + ) 1 , where 1

and 2 are arbitrary matrices with compatible dimensions, is any regular
diagonal matrix, + is the Moore-Penrose generalized inverse of with

+ =
¡ ¢

and is a diagonal matrix with its entries = 1 · · · assignable.

It is worth to point out that setting and according to Theorem 13.4
only ensures a diagonal transfer function matrix ( + ) 1 but
not the system stability. Hence, before formulas (13.12)-(13.13) are applied
for solving the PFIs problem formulated above, further conditions should be
fulfilled.
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Lemma 13.2 Let be left invertible and be given by (13.12). Then, the
characteristic polynomial of the matrix ( ) is of the form

( ) = ( 1
1) · · · ( ) 1( ) = 0( ) 1( ) (13.14)

where 1( ) is the invariant polynomial with the degree equal to
P
=1

and

is uniquely determined once the matrices are given.

The following theorem describes a condition, under which a stable PFIs is
ensured.

Theorem 13.5 Let be left invertible. Then, fault detection filter (13.10)-
(13.11) with being given by (13.12) is stable and ensures a fault isolation
if and only if = 1 · · · is one and the invariant polynomial 1( ) in
(13.14) is Hurwitz.

Remark 13.3 Following the definition of matrix the conditions that =
1 and is left invertible imply

( ) =

Furthermore, the following two statements are equivalent:

• the invariant polynomial 1( ) in (13.14) is Hurwitz
• ( ) has no transmission zeros in the RHP.

We have thus the following corollary:

Corollary 13.2 : Fault detection filter (13.10)-(13.11) with being given by
(13.12) is stable and ensures a fault isolation if and only if

•
( ) = (13.15)

•
0

¸
= + for all C+. (13.16)

It is very interesting to notice the similarity of the existence conditions
for a fault isolation filter, (13.15)-(13.16), with the ones for a UIO stated
in Corollary 6.6. This fact may reveal some useful aspects for the design of
fault isolation filter. Recall that the underlined idea of a UIO is to reconstruct
the unknown input vector. Following this idea, it should also be possible to
reconstruct the fault vector when conditions (13.15)-(13.16) are satisfied. The
discussion in Section 6.5.2 shows for this purpose we can use system

˙̂ ( ) = ˆ( ) + ( ) + (̂ ) + ( ( ) ˆ( )) (13.17)

(̂ ) = ( ) ( ˙( ) ˆ( ) ( )) (13.18)

Note that the implementation of the above system requires the knowledge of
˙( )
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Theorem 13.6 Given system model (13.9) and suppose that ˙( ) is mea-
surable and the system satisfies (13.15)-(13.16), then system (13.17)-(13.18)
delivers an estimation for the fault vector.

Surely, the application of this result is limited due to the practical di -
culty of getting ˙. Nevertheless, it reveals the real idea behind the approach
presented here lies in the reconstruction of the faults. We know that the exis-
tence conditions for such kind of systems are stronger than, for instance, the
fault isolation systems designed by the frequency domain approach, where the
existence condition is

( ( )) =

which is obviously weaker than (13.15)-(13.16).

13.3.2 The geometric approach

In this subsection, an algorithm of using the geometric approach to the fault
isolation filter design will be presented, whose existence conditions are less
strict than the ones given in Theorem 13.5 and the order is equal to the sum
of = 1 · · · We shall also briefly discuss the relationship between the
order and the number of the invariant zeros of the system under consideration.
Without loss of generality, it is assumed that =
We begin with the existence conditions of such kind of fault isolation filters.

Theorem 13.7 : Suppose for system (13.9) the matrix is left invert-
ible and the transmission zeros of ( ) lie in the LHP, then there exist
matrices and such that fault detection filter (13.10)-(13.11) ensures a
PFIs.

In the following we present an algorithm that serves, on the one side, as a
proof sketch for Theorem 13.7 and, on the other side, as a design algorithm
for the fault isolation filters. The theoretical background of this algorithm is
the so-called geometric approach that has been introduced and handled in
Chapter 6. The interested reader is referred to the literatures given there.

Algorithm 13.2 Design of fault isolation filters using the geometric ap-
proach

Step 1: Determine that makes ( ) maximally uncontrollable
by using the known geometric approach, for instance Algorithm 6.6, and
transform ( ) into

¯
1 1

¯ ¯
3
¯
2

¸
¯
¸ £

¯
¤

by a state transformation and an output transformation , where ( ¯1
1
¯ ¯ ¯) is perfectly controllable, 1 is arbitrary and the eigenvalues

of ¯2 are zeros of transfer function matrix ( ) = ( )
1
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Step 2: Set
¯ =

h
¯ ¯ 1 1

1 1̄ · · · ¯ ¯
1

1 ¯

i
where

¯ =
£
1̄ · · · ¯

¤
= min{ : ¯ ¯ 1

1 ¯ 6= 0 = 1 2 · · · } = 1 · · ·
Step 3: Set

1 =
³h
¯ 1
1 1̄ · · · ¯1 ¯

i ´
¯ 1

1 = ¯ 1

with

=

"
1 1P
=0

1
¯
1 1̄ · · ·

1P
=0

¯
1¯

#
= ( 1 · · · )

(13.19)
The coe cients = 1 · · · 1 = 1 · · · , are arbitrarily se-
lectable but should ensure the roots of polynomials

1X
=0

= 0 = 1 · · ·

lie in the LHP
Step 4: Construct the residual generator:

˙( ) = ( ¯1 1
¯) ( ) + ¯

1 ( ) + (¯ + 1 ) ( )

( ) = 1

¡
( ) ¯ ( )

¢
where

¯
1 =

£
0
¤

( ) 1

0

¸
¯ =

0

¸
¯ =

£
0
¤

¯
1 =

£
0
¤

The dynamics of the fault isolation filter designed using the above algo-
rithm is governed by

˙( ) = ( ¯1 1
¯) ( ) + ¯ ( ) + ¯

3¯2( )

˙̄2( ) = ¯
2¯2( ) ( ) = 1

¯ ( )

Since ¯2 is stable, the influence of ¯2( ) on the residual vector ( ) will vanish
as approaching infinity, and thus it is reasonable just to consider the part

( ) = 1
¯( ¯

1 + 1
¯) 1 ¯ ( )

which, as will be shown latter, takes the form

( ) =
+ 1 + · · · 1 +

= 1 · · ·

To explain and to get a deep insight into the algorithm we further make
following remarks.



13.3 Fault isolation filter design 417

Remark 13.4 The definition of matrix ensures that condition

( ) =

can be replaced by
( ) =

i.e. can be larger than one. Indeed, the dual form of this result is known in
the decoupling control theory. We shall also give a proof in the next subsection.

Remark 13.5 It is a well known result of the decoupling control theory that
the order of the transfer function matrix between the inputs and outputs after
the decoupling is equal to the di erence of the order of the system under con-
sideration and the number of its invariant zeros. Since the triple ( ¯1 ¯ ¯)
is perfect controllable, i.e. it has no transmission zeros, it becomes evident that

dim
¡
¯
1

¢
=
X
=1

13.3.3 A generalized design approach

The approaches presented in the last two subsections are only applicable for
the purpose of component fault isolation. In order to handle the more gen-
eral case, namely isolation of both component and sensor faults, an approach
is proposed by Ding et al., which is established on the duality of the fault
isolation problem to the well-established decoupling control theory. In this
subsection, we briefly introduce this approach with an emphasis on its deriva-
tion of the solution, which, we hope, may give the reader a deep insight into
the fault isolation technique.
The fault model considered here is given by

( ) = + ( ) (13.20)

with ( ) as a minimal state space realization of ( ) Without
loss of generality and for the sake of simplicity it is assumed =
To begin with, the concepts of fault isolatability matrix and fault de-

tectability indices introduced in the last subsections are extended to include
the case where 6= 0
Denote

=
£

1 · · ·
¤

=
£

1 · · ·
¤

then the fault detectability indices are defined by

=

½
0 6= 0 = 1 · · ·
min{ : 1 6= 0 = 1 2 · · · } = 0 = 1 · · ·

and the fault isolatability matrix by
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=
£

1 · · ·
¤

=

½ 6= 0 = 1 · · ·
1 = 0 = 1 · · ·

In order to simplify the notation, we assume, without loss of generality, that

6= 0 = 1 · · · 1 and = 0 = · · ·
thus, can be written as

=
h

1 · · · 1
1 · · · 1

i
(13.21)

Under the assumption that is invertible, we now introduce matrices
and :

=

0
. . .

0

=

0 · · · 0 0

1 0 1

. . .
...

0 1 1

= · · · (13.22)

=
¡£

1 · · · 1 · · · ¤ ¢
1 (13.23)

=

"
0 · · · 0

1P
=0

· · ·
1P

=0

#
(13.24)

=
h

· · · 1 · · · · · · 1
i

R × =
X
=

(13.25)

= ( 1 · · · ) 1 (13.26)

= (13.27)

In the following, we shall study the properties of and and how
to make use of these properties to construct a fault isolation filter. To this
end, we first prove that

2 = 2 (13.28)

holds, where satisfies
= ×

and will be specified below, and

= 1

2

¸
1 =

1 0 0
. . .

...
0 0 1 0

1
2 =

0 0
...

. . .
0 0

1 (13.29)

= 1

2

¸
with 1 = 1 2 = 2 (13.30)
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It is straightforward that

= =
h

· · · 1 · · · · · · 1
i

= ( 1 · · · )

0
( 1)×( 1)

¯ 0 · · · 0

0 ¯ +1
. . .

...
...
. . .

. . . 0
0 · · · 0 ¯

with row vectors ¯ = · · · whose entries are zero but the last one which
equals one. That implies

1 = 0 2 =

0
. . .

0

¯ 0
. . .

0 ¯

(13.31)

( 2) = + 1 = the row number of 2

Now, we solve
2 1 = 0 (13.32)

for 1 with £
1

¤ R × £
1

¤
=

Note that due to (13.31) such a 1 does exist. Let

1

¸
R ×

with

1

¸ £
1

¤
=
£

1

¤
1

¸
= × (13.33)

It turns out

2

£
1

¤
1

¸
= 2 =

£
2 0
¤

1

¸
= 2

which proves (13.28).
Next, we shall prove

1

¸
( )

£
1

¤
= 2

0 1

¸
1 = 1 ( ) 1 (13.34)

1

¸
( ) =

( )
0

¸
(13.35)

For our purpose, we check ( ) Since
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=
£ · · · · · · · · · ¤

=
h

· · · 1 · · · · · · 1
i

and furthermore we have

= 0 = 0 · · · 2 = · · ·
1 =

1X
=0

= · · ·

where the first equation is due to the definition of fault detectability indices
and the second one the definition of matrix it holds

( ) =

"
· · ·

1P
=0

· · · · · ·
1P

=0

#
(13.36)

It is of interest to notice that all columns of matrix ( ) can be expressed
in terms of a linear combination of the columns of matrix , i.e.

Im (( ) ) Im( ) (13.37)

Hence, it is obvious that

1 ( ) = 0

Let be the -th row of matrix then it follows from (13.36) that for
= 1 + 1 = · · · 1 = 0

( ) =
£
0 · · · 0 0 0 · · · 0

¤
with 0 at the 1 = (

1P
=

)-th entry and otherwise for 1 + 1

= · · ·
( ) =

£
0 · · · 0 1 0 · · · 0 0 · · · 0 ¤

= 1 1

with "1" at the ( 1)-th entry and 0 at the -th entry. As a result, we
obtain

( ) =

Thus, the proof of (13.34) is completed.
The proof of (13.35) is evident by noting the fact that

=
¡£

1 · · · 1 · · · ¤ ¢
( 1)×( 1)

0

¸
=
£

1 · · · 1 0 · · · 0
¤
= =

£
0 · · · 0 · · · ¤

= Im( ) Im( )
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which leads to

1 ( ) = 0

Now, we are in a position to construct a fault isolation filter based on
matrices 2 2 respectively defined by (13.22), (13.23), (13.33),
(13.29) and (13.30).Note that during the above study no assumption is made
on = · · · = 0 · · · 1, they can be so selected that the dynamic
system of the form

˙1( )
˙2( )

¸
= 2

0 1

¸
1( )

2( )

¸
+

1

¸
( ) +

1

¸
( ) (13.38)

is stable. Moreover, we define

( ) = 1( )

2( )

¸
= 1( ) ( ) + ( ) 1 2( ) (13.39)

Now, we check if (13.38)-(13.39) build a fault isolation filter. To this end, we
take a look at the dynamics of the residual generator. Introducing variables

( ) = ( ) 1( ) ( ) = 1 ( ) 2( )

and noting that £
1

¤
=
£

1

¤
=

( ) = ( ( ) + 1( )) + 1 ( ( ) + 2( ))

yield

˙( ) = ( ) + ( ) ( ) + 2 ( ) ˙( ) = 1 ( ) (13.40)

( ) = ( ) + ( ) + 1 ( ) (13.41)

We now calculate ( ) and ( ) Since

( ) =
£
0 · · · 0 · · · ¤

we obtain

( ) =
£
0 · · · 0 · · · ¤

=

0 ¯ 0 · · · 0

0 0 ¯ +1
. . .

...
...
...
. . .

. . . 0
0 0 · · · 0 ¯

where all entries of column vector ¯ = · · · are zero but the first one
which equals one. and

= ( 1 · · · )
( 1)×( 1)

0
( )×( )

¸
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Under the assumption that 1 is stable and thus its influence on ( ) will
vanish as approaching infinity, we finally have

( ) = ( ) 1 ( ) ( ) + ( ) (13.42)

=

1 1( )
...

1 1( )

1

=0
1

( )

...

1

=0
1

( )

It is hence evident that the residual generator (13.38)-(13.39) does deliver a
PFIs.
From (13.42) we see two interesting facts:

• The residual generator can be divided into two independent parts: a static
subsystem that delivers an isolation of faults, 1 · · · 1 and a dynamic
subsystem used for isolating faults · · · ;

• Setting = 1 = 1 · · · 1 gives

1( )
...
1( )

=

1( )
...
1( )

thus these faults can be identified. This fact can also be interpreted as:
The approach described above is applicable for sensor fault identification.

In order to get some insight into the construction of the residual genera-
tor (13.38)-(13.39) we shall briefly discuss its structural properties from the
viewpoint of control theory.
We know that the observability is not a ected by the output feedback,

thus the subsystem ( 1 1) should be observable. On the other side, the
modes of 1 are not controllable by ( ) Indeed, the eigenvalues of 1

are transmission zeros of the transfer function matrix ( ) To demonstrate
this claim, we consider the Smith form of system matrix

( ) =

¸
Since the output feedback ( ) and changes of state space and output bases
do not modify the Smith form, we find
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( )
+

¸ 2 ( )
0 1 0

1

( ) 0
0

0 0 1

It follows from (13.42) that

( )
¸

( ) 1 ( ) +

¸
Recall that the transfer function matrix ( ) 1 ( ) +
has no zeros, we finally have

( )
0

0 1

¸
It thus becomes evident that the transmission zeros of ( ) are identical
with the eigenvalues of 1 which are knowingly invariant to the output
feedback.

Remark 13.6 It is worth noting that if only sensor faults are under consid-
eration, i.e.

( ) = = 0

then = 0 That means a fault isolation is only possible based on the system
model instead of an observer. The physical interpretation of this fact is evident.
Since all sensors are corrupted with faults, none of them should be used for
the PFIs purpose. On the other hand, in Section 14.1 we shall present an
algorithm that allows a perfect sensor fault identification, which also solves
the sensor fault isolation problem.

In summary, we have the following theorem and the algorithm for the fault
isolation filter design.

Theorem 13.8 Suppose that for system (13.20) the matrix is left invert-
ible and the transmission zeros of ( ) lie in the LHP, then system
(13.38) and (13.39) provides a PFIs.

Algorithm 13.3 Design of fault isolation filters

Step 1: Set according to (13.21) and according to (13.22)-(13.25)
Step 2: Set according to (13.26)-(13.27)
Step 3: Solve (13.32) and (13.33) for 1 1

Step 4: Compute 1 2 according to (13.34)
Step 5: Construct residual generator according to (13.38) and (13.39).
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Example 13.2 In this and the next examples, we are going to demonstrate
the application of Algorithm 13.3 to the solution of fault isolation problem.
We first consider the benchmark system LIP100 given in Subsection 3.7.2.
Our intention is to isolate those three faults: position sensor fault, angular
sensor fault as well as the actuator fault. Checking the transmission zeros of
the corresponding fault transfer matrix reveals that this fault transfer matrix
has two RHP zeros (including the origin)

1 = 4 3163 2 = 0

Thus, it follows from Theorem 13.8 that FDF (13.38) and (13.39) cannot
guarantee a stable perfect fault isolation. In order to verify it, Algorithm 13.3
is applied to the LIP100 model. Below is the design result:

Step 1: Computation of

=
1 0000 0 0
0 1 0000 0
0 0 6 1343

=

0 0 1 9500
0 0 13 7429
0 0 0 1977
0 0 0 6960

= 2 0000 =

Step 2:Setting

=
1 0 0
0 1 0
0 0 0 1630

Step 3: Solution of (13.32) and (13.33) for 1

1 =

0 1 0000 0
1 0000 0 0
0 0 0000 0
0 0 1 0000

=
£
0 0000 0 0 1630 0

¤

Step 4: Computation of 1 2

2

0 1

¸
=

2 0000 0 0210 0 0000 0 0013
0 0 0 0000 1 0000

0 0000 0 0 0000 0
0 0000 19 7051 0 0000 0 2489

which has four eigenvalues:

2 000 4 5652 4 3163 0

This result verifies our conclusion.
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Example 13.3 We now apply Algorithm 13.3 to the benchmark lateral vehicle
dynamic system given in Subsection 3.7.4. We are interested in isolating the
fault in the yaw rate sensor and the presentation of the road bank angle. In
our previous study, the road bank angle has been treated as disturbance. Often,
it is desired to isolate and indicate the occurrence of the road bank angle. This
motivates our example. Checking the transmission zeros of the corresponding
fault transfer matrix gives two LHP zeros. Thus, it follows from Theorem 13.8
that FDF (13.38) and (13.39) would delivers a perfect fault isolation. Below
are the design procedure and the associated results:

Step 1: Set ,

=
0 152 7568

1 0000 0

¸
=

0 0069 0
0 1955 0

¸
=

1
0

¸
= 2 000

Step 2: Set

=
0 1 0000
0 0065 0

¸
=

0
1

¸
Step 3: Find 1 1

1 =
0 0082
1 0000

¸
=
£
1 0000 0 0082

¤
1 =

£
0 1 0000

¤
Step 4: Computation of 1 2

2

0 1

¸
=

2 0000 0 9740
0 0000 3 1754

¸
Step 5: Construct residual generator according to (13.38) and (13.39).

We now extend Algorithm 13.3 aiming at removing the requirement on
the transmission zeros of ( ) Let us first express the dynamics of
the residual generator (13.40)-(13.41) in the transfer matrix form

( ) =
¡

( ) 1 ( ) +
¢
( ) (13.43)

+
¡

( ) 1
2 + 1

¢
( 1)

1 (0)

Considering that there exists a diagonal ( ) RH so that

( )
¡

( ) 1
2 + 1

¢
( 1)

1 RH
and ( )

¡
( ) 1 ( ) +

¢
remains diagonal, ( ) ( )

builds a residual generator which results in a PFIs, i.e. satisfies (13.5),
and is stable, independent of the placement of the transmission zeros of
( ) in the complex plane. In this way, the requirement on the trans-
mission zeros of ( ) can be removed. Note that this extension can
considerably increase the order of the residual generator.
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Example 13.4 In this example, we re-study the fault isolation problem for
the benchmark system LIP100 by applying the above-described extension. Re-
member that in Example 13.2, we have found out that due to the transmission
zeros equal to 4 3163 and 0 we can achieve a fault isolation using Algorithm
13.3 but the resulted fault isolation filter is unstable. We now multiply

( ) =
( 4 3163)

( + 1)( + 3)

to the residual vector described in Example 13.2. It results in

( ) ( ) =

( 4 3163)
( +1)( +3) 1( )
( 4 3163)
( +1)( +3) 2( )

( 4 3163)( 4 4924)
( +1)( +2)( +3) 3( )

+

( 4 3163)

( + 1)( + 3)

¡
( ) 1

2 + 1

¢
( 1)

1 (0)

Note that the unstable poles in the second transfer matrix are canceled by the
zeros of ( ) so that the second term in the residual signals will vanish as
approaching infinity. In this way, a stable fault isolation is achieved. It is

worth mentioning that the on-line implementation of post-filter ( ) should
carried out in the observer form.

13.4 An algebraic approach to fault isolation

In the last section, we have introduced di erent approaches whose application
to fault isolation is more or less restricted. For the frequency domain approach
it is due to the possible higher order of the resulted residual generators, while
for the approaches by Liu and Si as well as the generalized design approach
the applicability depends on the structure of the system model. In this section,
we shall present an approach, which is in fact an extension of the UIDO de-
sign approach presented in Subsection 6.5.4. Thus, this approach can be used
for both the parity relation based and the observer-based residual generator
design.
Consider system model

( ) = ( ) ( ) + ( ) ( ) (13.44)

with ( ) and ( ) as minimal realization of transfer function
matrices ( ) and ( ) respectively. Recall that a residual generator can
be constructed either in a recursive form like

˙( ) = ( ) + ( ) + ( ) ( ) R
( ) = ( ) ( ) ( )
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with and satisfying the Luenberger conditions, or in a non-
recursive form like

( ) = ( ( ) ( ))

with denoting the parity vector. For both of them, the system dynamics
related to the fault vector can be described in a unified form

( ) = ( ) + ¯ ( ) (13.45)

where ( ) is a vector which, in fault-free case, will be zero as time approaching
to infinity,

=

0 · · · · · · 0 1

1 0 · · · 0 2

0 1
. . .

...
...

...
. . .

. . . 0 1

0 · · · 0 1

=

1

... =

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

¯ =

× 0 · · · 0

×
. . .

. . .
...

...
. . .

. . . 0
1 × · · · × ×

( ) =

( )
( ) +1

...
( )

=
£
0 · · · 0 1 ¤ =

£
0 · · ·

¤
and = 0 in case of the parity space approach is used (the non-recursive
form) as well as

=

0

1

...
1

, =

which describes the relationship between these two forms. Starting from
(13.45) we now derive an approach to the design of residual generators for
the purpose of fault isolation.
We first introduce following notations:

¯ =

0 · · · 0
. . .

...
...

. . .
. . . 0

1 · · ·

= 1 · · · ¯ ( ) =

( )
( ) +1

...
( )

=
£

1 · · · 1 +1 · · ·
¤

=
£

1 · · · 1 +1 · · ·
¤
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=

· · ·
. . .

...
...

. . .
. . .

1 · · ·

( ) =

1( )
...
1( )

+1( )
...
( )

( ) =

( )
( ) +1

...
( )

=

( 1)×( 1) · · ·
( 1)×( 1)

. . .
. . .

...
...

. . .
. . .

1
( 1)×( 1) · · · ( 1)×( 1) ( 1)×( 1)

¯ =

1 0 · · · 0
. . .

. . .
...

...
. . .

. . .
1 · · · 1

then (13.45) can equivalently be written as

( ) = ( ) +
¡

( ) + ¯ ¯ ¯ ( )
¢

(13.46)

Remember the claim that a perfect unknown input decoupling is achievable if
the number of the outputs is larger than the number of the unknown inputs.
Taking ( ) as a unknown input vector, we are able to find parity vectors,

= 1 · · · such that

= 0 = 1 · · ·
Note that the order of the parity vectors must not be identical, hence we
denote them separately by . Corresponding to the parity vectors, we
obtain residual generators

( ) = ( ) +
¡

( ) + ¯ ¯ ¯ ( )
¢

= ( ) + ¯ ¯ ¯ ( )

Since ( ) is independent of ( ) as a result, we claim that ( ) only de-
pends on ( ). That means the residual generator bank, ( ) = 1 · · · ,
delivers a perfect fault isolation. Notice that during the above derivation no
assumption on the structure of the system under consideration has been made.
The following theorem is thus proven.

Theorem 13.9 Given system model (13.44) with then there ex-
ist = 1 · · · and residual generators ( ) with dimension =
1 · · · such that each residual generator is only influenced by one fault.
And these residual generators can either be in a recursive form like
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˙ ( ) = ( ) + ( ) + ( ) ( ) R (13.47)

( ) = ( ) ( ) ( ) (13.48)

or in a non-recursive form like

( ) = ( ( ) ( )) (13.49)

Dynamic systems (13.47)-(13.48) are in fact a bank of residual generators.
On the other hand, they can also be written in a compact form

˙( ) = ( ) + ( ) + ( ) (13.50)

( ) = ( ) ( ) ( ) (13.51)

with

=

1

... =

1

... =

1 0
. . .

0

=

1

...

=

1

... =

1

... =

1

. . .

Recall that in Section 6.8 we have introduced an algorithm of designing mini-
mum order residual generators, and using it we are able to construct residual
generators ( ) = 1 · · · whose order is minimum. As a result, resid-
ual generator (13.50)-(13.51) is also of the minimum order, which, as shown
in the last section, may be smaller than , the order of the system under
consideration.
We now summary the main results achieved above into an algorithm.

Algorithm 13.4 An algebraic approach to designing fault isolation systems

Step 1: Form matrix and solve£
¯

¤
=
£
0

¤
= 1 · · ·

for e.g. using Algorithm 6.15 (Calculation of minimum order parity
vectors). Note that 6= 0 is some constant vector and should be a
parity vector.

Step 2: Construct residual generator in the non-recursive form

( ) = ( ( ) ( ))

or
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Step 2: Set vector ensuring the stability of and let

=

0 · · · · · · 0 1

1 0 · · · 0 2

0 1
. . .

...
...

...
. . .

. . . 0 1

0 · · · 0 1

=

1
...

=

1 2 · · · 1

2 · · · · · · 0
...

...
...

0 · · · · · · 0

...
1

=

0

1
...

1

= =
£
0 · · · 0 1 ¤

Step 3: Construct residual generators according to

˙ = + + =

Example 13.5 In this example, we apply Algorithm 13.4 to design fault iso-
lation filters for the benchmark example EHSA. Considering that there are
three faults to be isolated with

=

3 3973× 104 0 0
0 0 0
0 0 0
0 0 0
0 0 0

=
0 1 0
0 0 1

¸

and only two sensors are available, we divide the faults into three groups, (G1)
1 and 2 (G2) 1 and 3 (G3) 2 and 3 and assume that only two faults
can simultaneously occur. On this assumption, we are then able to design a
bank of fault isolation filters that delivers a perfect fault isolation. Below, we
demonstrate the design of two fault isolation filters for the third group. In this
case, we set

= 0 = 2×2
and design two fault isolation filters: fault isolation filter 1 should be sensitive
to 3 and decoupled from 2 and fault isolation filter 2 sensitive to 2 and
decoupled from 3 It follows from Algorithm 13.4 that

Step 1:

1 =
£
0 1 0 0 0 0 0 0 0 5 8598× 10 3

¤
2 =

£
0 0 1 0 3 797× 10 3 0

¤
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Step 2: for the first fault isolation filter = 4

1 =

0 0 0 0 2 4× 105
1 0 0 0 5 0× 104
0 1 0 0 3 50× 103
0 0 1 0 1 0× 102

1 =

1 4074× 103
2 9299× 102
20 509
0 5860

1 = 0 1 =
£
0 0 0 1

¤
1 = 5 8598× 10 3

for the second fault isolation = 2

2 =
0 1 2× 103
1 70

¸
2 =

4 5564
0 7342

¸
2 = 0

2 = 3 797× 10 3
1 =

£
0 1
¤

Step 3: construct fault isolation filters

˙1( ) = 1 1( ) + 1 1( ) 1( ) = 1 1( ) 1 1( )

˙2( ) = 2 2( ) + 2 1( ) 2( ) = 2 1( ) 2 2( )

We would like to call reader’s attention to the special form of 1 2 It can
be so interpreted that each residual signal is only driven by one sensor.
This is in fact the so-called DOS isolation scheme, which will be handled
in the forthcoming subsection.

13.5 Fault isolation using a bank of residual generators

As mentioned at the beginning of this chapter, a fault isolation problem can
be in fact equivalently reformulated as a decoupling problem described by

1( )
...
( )

= ( ) ˆ ( ) ( ) ( ) =

1( ) 1( )
...

( ) ( )

Denoting the rows of ( ) ˆ ( ) with ˆ ( ) = 1 · · · then the fault
isolation problem can be interpreted as a search for a bank of residual genera-
tors, ˆ ( ) = 1 · · · . In the early development stage of FDI technique, the
strategy of using a bank of fault detection filters was considered as a special
concept for solving the fault isolation problem. The so-called dedicated ob-
server scheme (DOS) and the generalized observer scheme (GOS), developed
in the end of the 70’s and at the beginning of the 80’s by Clark and Frank with
his co-worker respectively, are two most known fault isolation approaches of
using a bank of residual generators.
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13.5.1 The dedicated observer scheme (DOS)

The DOS was proposed by Clark originally for the purpose of sensor fault
isolation. The idea behind the DOS is very simple. Under the assumption
that sensor faults have to be detected and isolated, residual generators
are then constructed, and each of them is driven by only one output, i.e.

1( )
...
( )

=

1 ( ( ) 1( ))
...¡

( ) ( )
¢ (13.52)

where ( ( ) ( )) = 1 · · · , stands for a function of the inputs and
the -th output ( ). It is evident that the -th residual, ( ) will only be
influenced by the i-th sensor fault , it thus ensures a sensor fault isolation.
Below we briefly show the application of DOS concept for the sensor fault
isolation.
Suppose the system model takes the form

( ) =

1( )
...
( )

= ( ) ( ) + ( ) =

1( ) ( ) + 1( )
...

( ) ( ) + ( )

(13.53)

with ( ) standing for the sensor fault vector. We now construct residual
generators as follows

( ) =

1( )
...
( )

=

1( )
³
ˆ

1( ) 1( ) ˆ
1( ) ( )

´
...

( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´ (13.54)

where ˆ ( ) ˆ ( ) denote a left coprime pair of transfer function ( ) =
1 · · · , ( ) = 1 · · · a parametrization vector. It leads to

( ) = ( ) ˆ ( ) ( ) = 1 · · ·

which clearly means a perfect sensor fault isolation.

Remark 13.7 The original form of DOS approach was presented in the state-
space. Under the assumption

( ) = ( ) =

1

... =

1

...

the -th residual generator is constructed as follows
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˙̂ ( ) = ˆ( ) + ( ) + ( ( ) ˆ( ) ( ) ( ))

( ) = ( ) ˆ( ) ( )

and whose dynamics is governed by

˙( ) = ( ) ( ) ( ) ( ) = ( ) + ( )

It is evident that the residual signal only depends on the -th fault

Remember the claim that every kind of residual generators can be pre-
sented in the form

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(13.55)

As will be shown below, the bank of residual generators (13.54) is in fact
a multi-dimensional residual generator. Thus, all results achieved in the last
chapters are also available for a bank of residual generators. In order to show
it, we first rewrite (13.54) into

1( )
...
( )

=

1( )
³
ˆ

1( ) 1( ) ˆ
1( ) ( )

´
...

( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´ =

1( ) 0
. . .

0 ( )

ˆ
1( ) 0

. . .
0 ˆ ( )

1( )
...
( )

ˆ
1( )
...

ˆ ( )

( )

Introducing notations:

ˆ ( ) = ( 1) ˆ ( ) = ( )

and for a vector whose the -th entry is one and the others are zero, then
we have

ˆ ( ) = ( ( + ) 1 )

ˆ ( ) = ( + ( + ) 1 ( ))

Note that£
0 · · · 0 ˆ ( ) 0 · · · 0 ¤ = ( ( + )

1
) := ¯ ( )

so setting
¯ =

gives
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1( )
...
( )

=

1( ) 0
. . .

0 ( )

¯
1( )
...

¯ ( )

1( )
...
( )

ˆ
1( )
...

ˆ ( )

( )

with

¯ ( ) =
¡

( + ¯
¢ 1 ¯ )

ˆ ( ) =
¡

+ ( + ¯
¢ 1

( ¯ ))

Recalling the coprime factorization of transfer matrices, we are able to rewrite
¯ ( ) and ˆ ( ) into

¯ ( ) = ( ) ˆ ( ) ˆ ( ) = ( ) ˆ ( )

where

ˆ ( ) = ( + ) 1

ˆ ( ) = + ( + ) 1( )

( ) = + ( + ¯ ) 1( ¯ )

with denoting some matrix ensuring the stability of matrix . This
leads finally to

1( )
...
( )

=

1( ) 0
. . .

0 ( )

1 1 ( )
...
( )

³
ˆ ( ) ( ) ˆ ( ) ( )

´

=

1( ) 1 1 ( )
...

( ) ( )

³
ˆ ( ) ( ) ˆ ( ) ( )

´

Thus, setting

( ) =

1( ) 1 1 ( )
...

( ) ( )

we obtain the general form of residual generators (13.55). This demonstrates
that a bank of residual generators is in fact a special form of (13.55).
The DOS has also been extended to the solution of actuator fault isolation

problem, where the system inputs are assumed to be

( ) = ( ) + ( ) = 1 · · ·

with being the -th fault in the -th input. Analogues to the (13.52) we are
able to use a bank of residual generators
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1( )
...
( )

=

1 ( 1( ) ( ))
...¡
( ) ( )

¢
for the purpose of actuator fault isolation. Note that since ( ) may depend on
every input signal ( ) the -th residual regenerator should be so designed
that it is decoupled from ( ) 6= . This, as shown in the last section,
becomes possible when the number of the outputs is at least equals the number
of the inputs (and so the number of the faults).
The advantage of the DOS is its clear structure and working principle. In

against, the application fields are generally limited to the sensor fault isolation.

Remark 13.8 In literature, the reader may find the statement that less ro-
bustness is an essential disadvantage of the DOS. It is argued as follows: For
the construction of each residual generators only one output signal is used.
In this case, as known, the design freedom is restricted. Remember, however,
on the assumption that sensor fault may occur in every sensor (and so every
output) we can only isolate sensor faults and have in fact no design freedom
for the purpose of robustness. Thus, the above claim is, although it seems rea-
sonable, not correct. Of course, in case that only a part of sensors may fail,
for instance, 1 · · · and the rest, +1 · · · will fault-freely work, we
can modify the DOS as follows

1( )
...
( )

=

1

¡
( ) 1( ) +1( ) · · · ( )

¢
...¡

( ) ( ) +1( ) · · · ( )
¢

It becomes evident that the degree of freedom provided by +1( ) · · · ( )
can be utilized for the purpose of enhancing the robustness of the FDI system.

13.5.2 The generalized observer scheme (GOS)

The GOS was proposed by Frank and his co-worker. The working principle
of the GOS is di erent from the one of the DOS. Assume again there exist

faults to be isolated. The first step to a fault isolation using the GOS
consists in the generation of a bank of residual signals that fulfill the relation:

1( )
...
( )

=

1( 2( ) · · · ( ))
...¡

1( ) · · · 1( )
¢ (13.56)

A unique fault isolation then follows the logic

if all 6= 0 except 1 then 1 6= 0 (13.57)

· · ·
if all 6= 0 except then 6= 0 (13.58)
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Although this concept seems quite di erent from the logic usually used,
namely,

1( )
...
( )

=

1( 1( ))
...¡
( )
¢

with
if 6= 0 then 6= 0 = 1 · · · (13.59)

the existence conditions for a PFIs remains same. To explain this, we only
need to notice the fact that the logic (13.57)-(13.58) is indeed complementary
to the logic (13.59), i.e. if a fault is localizable according to (13.57)-(13.58),
then we are also able to locate the fault uniquely using (13.59). To compare
with the DOS, we demonstrate the application of the GOS to the sensor fault
isolation. To this end, we consider again process model (13.53) with =
sensor faults to be detected and isolated.
Under the use of notations

¯ ( ) =

1( )
...
1( )

+1( )
...
( )

¯ ( ) =

1( )
...
1( )

+1( )
...
( )

, ¯( ) =

1( )
...
1( )

+1( )
...
( )

the system model can be rewritten into

¯ ( ) = ¯ ( ) + ¯( ) = 1 · · ·
on account of which, the GOS residual generators are constructed in the fol-
lowing form

( ) = ( )
¡
¯ ( )¯ ( ) ¯ ( ) ( )

¢
= 1 · · · (13.60)

whose dynamics is governed by

( ) = ( ) ¯ ( ) ¯( ) = 1 · · · (13.61)

where ¯ ( ) ¯ ( ) are a left coprime pair of transfer matrix ¯ ( ). It is
evident that (13.61) fulfills (13.56).
The original version of the GOS was presented in the state space form

described by

˙̂ ( ) = ˆ( ) + ( ) + (¯ ( ) ¯ ˆ( ) ¯ ( ) ( ))

( ) = ¯ ( ) ¯ ˆ( ) ¯ ( )

whose dynamics is then given by
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˙( ) = ( ¯ ) ( ) ¯( ) ( ) = ¯ ( ) + ¯( )

where

( ) = ( ) =

1

...
¯ =

1

...
1

+1

...

¯ =

1

...
1

+1

...

Analogues to the discussion about the DOS, we demonstrate next that (13.60)
is equivalent to (13.55), the general form of residual generators.
Denote ¯ ( ) ¯ ( ) by

¯ ( ) = ( ¯ ¯ ) ¯ ( ) = ( ¯ ¯ ¯ ¯ )

and introduce a matrix ¯

¯ =
£
1 · · · 1 0 +1 · · ·

¤
with being a vector whose the -th entry is one and all the others are zero,
then (13.60) can be rewritten as

( ) = ( )
¡
¯ ( )¯ ( ) ¯ ( ) ( )

¢
= ( )¯

³
˜ ( ) ( ) ˜ ( ) ( )

´
where

˜ ( ) = ( + ˜ ) 1 ˜

˜ ( ) = + ( + ˜ ) 1( ˜ )

with ˜ = ¯ . By introducing

ˆ ( ) = ( + ) 1

ˆ ( ) = + ( + ) 1( )

( ) = + ( + ˜ ) 1( ˜ )

it turns out

( ) = ( )¯ ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
and finally

( ) =

1( )
...
( )

= ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´

=

1( ) 1̄ 1 ( )
...

( )¯ ( )

³
ˆ ( ) ( ) ˆ ( ) ( )

´
Thus, it is demonstrated that the GOS is also a special form of (13.60).
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Remark 13.9 We would like to emphasize that both the DOS and GOS have
the same degree of freedom for the purpose of fault isolation or robustness
enhancement. Also, using a bank of residual generators, either the DOS or
the GOS, we do not achieve more degree of design freedom than a multi-
dimensional residual generator.

Example 13.6 In this example, the application of the DOS is illustrated via
the benchmark lateral dynamic system. The design objective is to isolate the
sensor faults, which will be done based on the model (3.76). To this end, two
observers are constructed, and each of them is driven by one sensor:

Residual generator I: ˙̂ ( ) = ˆ( ) + ( ) + 1 1( )

1( ) = 1( ) 1ˆ( ) 1 ( )

where 1( ) is the lateral acceleration sensor signal and

1 =
0 0501
0 1039

¸

Residual generator II: ˙̂ ( ) = ˆ( ) + ( ) + 2 2( )

2( ) = 2( ) 2ˆ( )

where 2( ) is the yaw rate sensor signal and

2 =
0 4873
7 5252

¸
Remark 13.10 We would like to mention that in the case of isolating two
faults the DOS and the GOS are identical, as we can see from the above
example.

13.6 Notes and references

During last years, discussion and studies on the PFIs have been carried out
from di erent viewpoints and using di erent mathematical and control the-
oretical tools. Generally speaking, the existing schemes can be divided into
three categories:

• solving the PFIs using the unknown input decoupling strategy
• formulating the PFIs as a dual problem of designing a decoupling controller
and then solving it in this context

• handling the PFIs by means of a bank of residual generators.
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All these three schemes have been addressed in this chapter. Attention has
also been paid to the study on the relationships between these schemes.
The discussion about the existence conditions of a PFIs is an extension of

the results by Ding and Frank [38]. Using the matrix pencil approach Patton
and Hou [118] have published very interesting results on the fault isolation
problem viewed from the viewpoint of unknown input decoupling. Considering
that the main results of their work on the existence conditions of a PFIs is
similar with the ones given in Theorem 13.2, it is not included in this chapter.
Since the topic PFIs is one of the central problems of observer-based FDI,

much attention has been paid to it during the last two decades, and as a re-
sult, a great number of approaches have been reported during this time, see for
instance the survey papers by Frank, Gertler and Patton [50, 51, 62, 120]. In
this chapter, we have consciously only introduced those approaches, which are
representative for introducing the basic ideas and major schemes for achieving
a PFIs. The frequency domain approach developed by Ding [36] gives a gen-
eral solution for the fault isolation problems, while the approach introduced in
Subsection 13.3.1, which was proposed by Liu and Si [95], and the geometric
method as well as the general design solution described in Subsection 13.3.3
provide solutions in the state space form. The solutions using a bank of resid-
ual generators, the DOS and GOS, were respectively derived by Clark [25] and
Frank [50]. It is worth to mention that Alcorta García and Frank [2] reported
a novel approach to the fault isolation system design. The main contribution
of this approach is the construction of a bank residual generators which have
a common dynamic part. As a result, the order of the whole fault detection
system may become low. This approach has an intimate relationship to the
approaches proposed by Liu and Si [95] and the general design solution given
in Subsection 13.3.3.
In conclusion, we would like to make the following notes:

• In practice, it is not realistic to expect achieving a perfect fault isola-
tion just using a residual generator, because of the strict conditions on
the structure of the system under monitoring. In most of cases, a stage
of residual evaluation and a decision unit are needed. However, the ap-
proaches introduced here provide us with the possibility for clustering
faults into some groups, which may considerably simplify the decision on
a fault isolation.

• The concepts like structured residuals or fixed direction residuals have not
been included in this chapter. We refer the interested reader to [13, 66, 62,
64, 65, 120, 135] for excellent references on this topic.

• As mentioned in Chapter 4, the structural fault isolatability is a concept
that is independent of the FDI system used. In this chapter, we have
illustrated how to design an FDI system to achieve a PFIs if the system
is structurally fault isolable. The realization of a PFIs is decided by the
structure of the system under monitoring and by the available information
about the faults. The more information we have, the more faults become
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isolable. In the worst case, i.e. in case that we have no information about
faults, the number of the isolable faults is given by the number of the
measurements (sensors), as required by the structural fault isolability.

• The major focus of this chapter is on the PFIs without taking into account
the unknown inputs, model uncertainties and without addressing the resid-
ual evaluation problems. Solving these problems is also a part of a fault
isolation process. On the other hand, if the faults are structurally isolable,
then we are able to accomplish fault isolation in a two-step procedure: (a)
first achieve a fault isolation (b) then detect each (isolated) fault by taking
into account the influence of the unknown inputs and model uncertainties.
In this way, after designing a fault isolation filter for a PFIs, the remaining
problems in the second step are the standard fault detection problems, to
which the schemes and methods introduced in the previous chapters can
be applied.
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On fault identification

In the fault diagnosis framework, fault identification is often considered as
the ultimate design objective. In fact, a successful fault identification also
indicates a successful fault detection and isolation implicitly. This is a rea-
sonable motivation for the intensive research in the field of model-based fault
identification.
Roughly speaking, there are four types of model-based fault identification

strategies:

• the parameter identification technique based fault identification, where the
faults are modelled as system parameters that are then identified by means
of the well-established parameter identification technique,

• the extended observer schemes, in which the faults are addressed as state
variables and an extended observer is constructed for the estimation of
both state variables and the faults,

• the adaptive observer scheme, which can be considered, in some sense, as
a combination of the above two schemes, and

• the observer-based fault identification filter (FIF) scheme.

The first strategy is generally applied for the identification of multiplicative
faults, in order to fit the standard model form of the parameter identification
technique, while the second and the fourth ones are dedicated to the additive
faults. A major di erence between these four strategies lies in the demand
on a priori knowledge of the faults to be identified. In the framework of the
first three strategies, a successful and reliable fault identification is based on
certain assumptions on the faults, for instance they are quasi constant or vary
slowly or they are generated by a dynamic system. In against, no assumption
on the faults is needed by applying the fault identification filter scheme. In
this chapter, we concentrate ourselves on the last fault identification scheme,
which is schematically sketched in Fig.14.1. A major reason for this focus is,
on the one hand, the close relationship of the fault identification filter scheme
to the FDI schemes introduced in the former chapters and, on the other hand,
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the fact that few systematic studies have been reported on this topic, while
numerous monographs and significant papers are available for the first three
fault identification schemes. The reader who is interested in these three fault
identification schemes is referred to the representative literature given at the
end of this chapter.

Fig. 14.1 Observer based fault identification filter scheme

14.1 Fault identification filter and perfect fault
identification

In order to present the underlying ideas and the core of the fault identification
filter (FIF) scheme clearly, we first consider LTI systems described by

( ) = ( ) ( ) + ( ) ( ) (14.1)

( ) = ( ) ( ) = ( ) (14.2)

without considering the influence of the unknown input.
An FIF is an LTI system that is driven by and and its output is an

estimation of To ensure that the estimate for is independent of and
the initial condition of the state variables, a residual generator is the best
candidate for an FIF. Applying residual generator

( ) = ( )
³
ˆ ( ) ( ) ˆ ( ) ( )

´
(14.3)

to (14.1)-(14.2) gives

( ) = ( ) ¯ ( ) ( ) := (̂ ) ¯ ( ) = ˆ ( ) ( ) (14.4)
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(̂ ) R is called an estimate of fault vector and (14.3) is called FIF.
See Section 5.2 for a detailed description of residual generator (14.3).
The primary interest of designing an FIF is to find a fault estimate that is

as close as possible to the fault vector. The ideal case is the so-called perfect
fault identification.

Definition 14.1 Given system (14.1)-(14.2) and FIF (14.3). A perfect fault
identification (PFI) is the case that

(̂ ) = ( ) (14.5)

Next, we study the existence conditions to achieve a PFI.
It follows from (14.4) that (14.5) holds if and only if

( ) ¯ ( ) = ( ) ˆ ( ) = ( ) = ˆ 1( ) ˆ ( )

which is equivalent to the statement that ( ) is left invertible in RH
The following Theorem is a reformulation of the above result.

Theorem 14.1 Given system (14.1)-(14.2) and FIF (14.3). Then the follow-
ing statements are equivalent

S1: the PFI is achievable
S2: ( ) is left invertible in RH
S3: the rank of ( ) is equal the column number of ( ) and ( ) has
no transmission zero in C̄+ for the continuous time systems and C̄1 for the
discrete time systems.

The proof of this theorem is obvious and is thus omitted.
If ( ) is given in the state space presentation with = ( )

then the statement S3 in Theorem 14.1 can be equivalently reformulated as

Corollary 14.1 Given system (14.1)-(14.2) and FIF (14.3), then the PFI is
achievable if and only if for continuous time systems

C̄+
¸
= + (14.6)

and for discrete time systems

C̄1
¸
= + (14.7)

Suppose that the existence condition given in Corollary 14.1 is satisfied.
Then, the following algorithm can be used for the FIF design.

Algorithm 14.1 FIF design for a PFI
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Step 1: Select such that

˙̂ = ˆ + + ( ˆ) ˆ = ˆ +

is stable
Step 2: Solve

=

for and set

( ) =

Ã ³
+ +

´ 1

( )

!
(14.8)

Step 3: Construct FIF

(̂ ) = ( ) ( ( ) ˆ( )) (14.9)

Remark 14.1 ( ) given in (14.8) is the (left) inverse of ˆ ( )

We would like to point out that Algorithm 14.1 is generally used for the
identification of sensor faults due to the requirement ( ) = It is
very interesting to note that in this case Algorithm 14.1 can also be used
for the purpose of (sensor) fault isolation, while Algorithm 13.3 for the fault
isolation filter design fails, see Remark 13.6.

Example 14.1 We now design an FIF to identify the sensor faults in the
benchmark vehicle dynamic system. For our purpose, we add a post-filter to
the residual signal generated by an FDF with

=
0 0133 0 0001
0 1 0004

¸
which is selected based on model (3.76). This post-filter is given by

( ) = ˆ 1( ) =

"
2+4 2243 +31 3489
2+6 1623 +37 2062

1 1802 +145 4182
2+6 1623 +37 2062

1 55×10 6 +0 3788
2+6 1623 +37 2062

2+7 1627 +40 1169
2+6 1623 +37 2062

#
ˆ ( ) = ( )

Assume that ( ) satisfies the conditions given in Corollary 14.1. It
follows from Lemmas 7.4 and 7.5 that there exist an LCF and a CIOF of

( ) so that

( ) = ˆ 1( ) ˆ( ) = ( ) ( ) ˆ 1( ) = ( ) ˆ( ) = ( )

Since ( ) has no RHP zero, ( ) is a regular constant matrix. Without
loss of generality, assume ( ) = then we have

ˆ ( ) ( ) =

This proves the following theorem.
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Theorem 14.2 Given system (14.1)-(14.2) that satisfies (14.6) or (14.7).
Then the FIF

˙̂ = ˆ + + ( ˆ ) ˆ= ( ˆ )

with
= ( ) 1 2 = ( + )( ) 1

for continuous time systems or

=
¡

+
¢ 1 2

= ( + )( + ) 1

for discrete time systems gives

lim (̂ ) = ( ) or lim (̂ ) = ( )

where 0 0 respectively solve

+ + ( + )( ) 1( + ) = 0³
+

¡ ¢ 1
´ 1

+ = 0

=
¡ ¢ 1

Recall our study on the structural fault identifiability in Section 4.4, it
can be concluded that the PFI is achievable if and only if the system is struc-
turally fault identifiable. We can further conclude that, referred to the exis-
tence condition given in Theorem 13.1 for a successful fault isolation, the PFI
is achievable if and only if

• the faults are isolable and
• ˆ ( ) is a minimal phase system.

We have learned in Chapter 13 how di cult it is to achieve a fault isolation.
The PFI requires in addition that ˆ ( ) should not have any zero in the
RHP including zeros at infinity for continuous time systems. It is a very hard
condition which can often not be satisfied in practice. For instance, we are not
able to identify process component faults, because in this case = 0 which
means ( ) will have zeros at infinity.
In other words, we can claim that the PFI is achievable if only sensor faults

are under consideration. Bearing it in mind, we shall present various schemes
in the next sections, for which the hard existence conditions given in Theorem
14.1 can be released.

14.2 FIF design with additional information

A natural way to release the hard existence conditions is to increase the sensor
number to gain additional information. On the other side, this solution means
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more cost. In practice, the utilization of the first derivative of is widely
adopted as a compromise solution for additional information but without ad-
ditional sensors. In our following study, we assume that

( ) = (14.10)

( ) ˙( ) ( ) ˙ ( ) are available and the system model is given in the state
space representation. For the sake of simplicity, we only study FIF design for
continuous time systems.
We first check how far the additional information ˙( ) can help us to release

the hard conditions given in Theorem 14.1. Since for ( ) = 0

L ( ˙( )) = ( ) = ˙ ( ) = ( )

it becomes clear that ˙ ( ) has all the finite transmission zeros of ( )
Comparing with the existence condition given in Corollary 14.1, it can be
concluded that using ˙( ) only helps us to remove the zeros at infinity. On
account of this result, we concentrate ourselves below on the the zeros at
infinity.
We first write ˙( ) into

˙( ) = ( ) + ( ) + ( ) + ˙( ) + ˙( ) (14.11)

Note that the term ˙( ) means additional faults on the one side and does
not lead to removing the transmission zeros at infinity on the other side. To
avoid ˙( ) let solve

= 0 ( ) = max

Denote

( ) =
( )
˙( )

¸
( ) =

( )
˙ ( )

¸
=
£

0
¤

=

¸
=

0
¸

=

¸
we have an extended system model

˙ ( ) = ( )+ ( )+ ( ) ( ) = ( )+ ( )+ ( ) (14.12)

In (14.12), the number of the transmission zeros at infinite, is determined
by

= ( )

Considering that

( ) =

¸
( )

and thus has all the finite transmission zeros of ( ) the following theorem
is proven.
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Theorem 14.3 Given system (14.12) and assume that ( ( )) =
Then, the PFI is achievable if and only if

C1 :
¸
= (14.13)

C2 : 0 Re ( ) | |
¸
= + (14.14)

This theorem reveals the role and limitation of the additional information
˙( ) For the realization of the idea, we can use the following algorithm.

Algorithm 14.2 FIF design for a PFI under utilization of ˙( )

Step 0: Check the existence conditions given in Theorem 14.3. If they are
satisfied, go to the next step, otherwise stop

Step 1: Solve
= 0 ( ) =

Step 2: Apply Algorithm 14.1 to the design of an FIF for system (14.12).

It is interesting to note that for = 0 the existence conditions given
in Theorem 14.3 are identical with the ones of Corollary 6.6, which deals
with the design of UIO. This motivates us to construct an FIF using the
UIO scheme. Without proof, we present an algorithm for this purpose. The
interested reader is referred to the discussion in Subsection 6.5.2.

Algorithm 14.3 FIF design for a PFI using the UIO scheme

Step 1: Solve ¸
= × = 11 0

0 22

¸
11 R ×

for
Step 2: Set

= 2 2 =
0

22

¸
Step 3: Select so that μ

11

0

¸
+

¶
is stable

Step 4: Construct an observer

˙( ) =
³

˜
´
( ) +

³
˜
´
( ) +

³³
˜
´

2 + ˜
´

˜ = 11

0

¸
+
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Step 5: Set

(̂ ) = 11 (( 2 ) ( ) ( ) ( ))

22 ( ˙( ) ( ) 2 ( ) ( ))

¸
One question may arise: can we use the higher order derivatives of ( )

as additional information to achieve a PFI which is otherwise not achiev-
able based on ( ) ˙( )? The following theorem gives a clear answer to this
question.

Theorem 14.4 Given system (14.12) and assume that ( ( )) =
and ( )( ) = 1 · · · are available for the FIF construction. Then, the PFI
is achievable if and only if

C1 :
...
1

= (14.15)

C2 : 0 Re ( ) | |
¸
= + (14.16)

Proof. The proof of this theorem is similar to the one of Theorem 14.3. Two
facts are needed to be noticed:

( )( ) = ( ) + 1 ( ) +
1X

=1

1 ( ) ( ) + ( ) ( )

(14.17)

( )
( )
...
( )

= ...
( ( ) ( ) + ( ) ( )) (14.18)

From (14.17) we know that the term 1 ( ) can contribute to removing
the zeros at infinite, while (14.18) tells us that all the finite transmission zeros
of ( ) cannot be removed. These prove the theorem. ut

14.3 On the optimal fault identification problem

The results in the previous section make it clear that a PFI is only achievable
under strict conditions. This fact motivates the search for an alternative solu-
tion. The H OFIP introduced in Section 7.6 has been considered as such a
solution. In this section, we present a key result in the H OFIP framework,
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which extends the results given in Section 7.6. In the following study, we only
consider continuous time systems.
We assume that

A1:
( ¯ ( )) =

A2: ¯ ( ) RH × has at least one zero in the RHP including the ze-
ros on the -axis and at infinity, i.e. ¯ ( ) is non-minimum phase in a
generalized sense, in order to avoid the trivial instance of the problem.

On these two assumptions, we study the following optimization problem

min
( ) RH

°° ( ) ¯ ( )
°° (14.19)

Note that the optimization problem (7.155) with = = 1 is a special case
of (14.19).

Theorem 14.5 Given ¯ ( ) RH × which is non-minimum phase (hav-
ing zeros in RHP and at infinity), then we have

min k ( ) ¯ ( )k = 1 (14.20)

Proof. We begin with a co-inner-outer factorization of ¯ ( ) = ( ) ( )
with ( ) and ( ) denoting co-outer and co-inner of ¯ ( ) respectively.
It results in

k ( ) ¯ ( )k = k ( ) ( ) ( )k

which further leads to

min k ( ) ¯ ( )k = min k ( ) ( ) ( )k (14.21)

with ( ) = ( ) Note that

min k ( ) ( ) ( )k k ( )k = 1 (14.22)

On the other hand,

min k ( ) ( ) ( )k min k ( ) ( )k k k

where and k k represent the Henkel operator of ( ) and its Henkel
norm, and the last inequality can be found in Francis’s book. Since ( )
RH , ( ) = ( ) is an anti-stable transfer function matrix. Thus, denot-
ing the minimal space realization of ( ) by ( ), which gives

= ( 0), we have, following,
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k k = ( )1 2 (14.23)

where is the maximal eigenvalue of matrix with and solving

+ > = > > + = >

Moreover, it holds
for ( ) = ( ) = (14.24)

Therefore,
k k = 1

and so
min k ( ) ( ) ( )k 1 (14.25)

Summarizing (14.22)-(14.25) finally yields

min k ( ) ¯ ( )k = min k ( ) ( ) ( )k = k k = 1

ut
Remark 14.2 (14.23) and (14.24) are known in the H optimization frame-
work, see the literature given at the end of this chapter.

Once again, we would like to call reader’s attention to (14.20) that means

( ) = 0 = argmin k ( ) ¯ ( )k

The real reason for this more or less surprising result seems to be the fact
that a satisfactory fault identification over the whole frequency domain is
not achievable, provided that the transfer function matrix from to is
non-minimum phase. If this interpretation is true, then introducing a suitable
weighting matrix ( ) which is used to limit the frequency interval interested
for the fault identification purpose, could improve the performance. The study
in the following sections will demonstrate it and show three di erent ways to
the alternative problem solutions.

14.4 Study on the role of the weighting matrix

In this section, we consider residual generators of the form

( ) = ( ) ¯ ( )

and study the generalized optimal fault identification problem (GOFIP) de-
fined by

min
( ) RH

°° ( ) ( ) ¯ ( )
°° (14.26)
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where ( ) RH is a weighting matrix. Our study focus is on the role of
( ) Again, the two assumptions A1 and A2 mentioned in the last section

are assumed to hold. Considering that a fault isolation is necessary for a fault
identification, for our purpose and also for the sake of simplicity, we first
reformulate the GOFIP (14.26).
Let us choose a ˜( ) RH such that

˜( ) ¯ ( ) = ( 1( ) · · · ( )) (14.27)

and introduce ( ) =
¡
1( ) · · · ( )

¢ RH × which leads to

( ) ¯ ( ) =

1( ) 1( )
...

( ) ( )

( ) = ( ) ˜( ) ( ) RH = 1 · · ·

then we have

( ) =

1( )
...
( )

=

1( ) 1( ) 1( )
...

( ) ( ) ( )

(14.28)

Note that the selection of ˜( ) is a fault isolation problem, which is also the
first step to a successful fault identification. The next step is the solution
of the modified GOFIP: given weighting factors ( ) ( ) RH find
( ) RH such that

sup
6=0

k ( ) ( ) ( ) ( ) ( )k2
k ( )k2

= k ( ) ( ) ( )k = 1 · · ·
(14.29)

is minimized.
Before we begin with solving the GOFIP (14.29), we would like to remind

the reader of Lemma 7.7, which tells us, on the assumption that ( ) has a
single RHP zero 0

min
RH

k ( ) ( ) ( )k = | ( 0)| (14.30)

Equation (14.30) reveals that ( ) should structurally have all RHP zeros
with the associated structure of ( ) in order to ensure that

min
RH

k ( ) ( ) ( )k = 0

In the following of this section, we focus our attention on the GOFIP
(14.29), which is the standard scalar-valued model-matching problem. On the
assumption that

( ) 6= 0 for all 0
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and 1( ) RH to avoid the trivial instance, we have a standard algo-
rithm (see the book by Francis given at the end of this chapter) to compute
optimal ( ) and the value of

min
RH

k ( ) ( ) ( )k

Algorithm 14.4 Solution of GOFIP (14.29)

Step 1: Do an inner-outer factorization

( ) = ( ) ( )

where ( ) is inner and ( ) outer
Step 2: Define

( ) = ( ( )) 1 ( ) := ( ) ( )

and find a state-space minimal realization

( ) = ( 0) + (a function in RH )

where ( 0) is strictly proper and analytic in Re 0 with
antistable

Step 3: Solve the equations

+ = + = (14.31)

for and
Step 4: Find the maximum eigenvalue 2 of and a corresponding eigen-
vector

Step 5: Define

( ) = ( 0) ( ) = ( 1 0) ( ) = ( ) ( ) ( )

Step 6: Set
( ) = ( ( )) 1 ( ) (14.32)

( ) given in (14.32) is the solution of GOFIP (14.29), i.e.

( ) = ( ( )) 1 ( ) = arg min
RH

k ( ) ( ) ( )k

Moreover,
min
RH

k ( ) ( ) ( )k =

and ( ) ( ) ( ) is all-pass, i.e.

| ( ) ( ) ( )| =
Using the above algorithm we now prove the following theorem. First, for

the sake of simplicity, it assumed that



14.4 Study on the role of the weighting matrix 453

( ) = ( ( )) 1 := ( )

and has only real and di erent eigenvalues. Thus, without loss of gen-
erality, we further suppose that

= ( 1 · · · ) = =
¡

1 · · · ¢
This is achievable by a regular state transformation.

Theorem 14.6 Given a weighting function ( ) = ( ) and ( )
RH then

•

min k ( ) ( ) ( )k
Z
0

( )2

1 2

(14.33)

=
1

2

Z
( ) ( )

1 2

(14.34)

•

min k ( ) ( ) ( )k
Z
0

¯̄ ¯̄
= k k1 (14.35)

where are some positive constants.

Proof. Remember that ( ) is an inner factor, so we have ( ) = ( ( )) 1 =
( ) Thus, the unstable projection of ( ) ( 0) can be described by

( 0) = ( 0)

where is the solution of the equation

= (14.36)

Solving (14.31) and (14.36), respectively, gives

=

Z
0

=

Z
0

( )

Replacing by leads to

=

Z
0

( ) =

Z
0

Z
0

Z
0

( )
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Let be the maximum eigenvalue of . Since

=

Z
0

Z
0

Z
0

and

=

1
1

...

we have

=

Z
0

Z
0

Z
0

(14.37)

=

Z
0

X
=1

¡ ¢2 Z
0

2

(14.38)

Z
0

X
=1

¡ ¢2 Z
0

( )2
Z
0

( )2 = 1

Z
0

( )2

(14.39)

Note that is the impulse response function of the weighting factor
( ), hence we also have

1

Z
( ) ( )

Denote the maximum eigenvalue of matrix by and recall thatp
It then turns out

min k ( ) ( ) ( )k =

vuuut 1

Z
( ) ( )

Z
0

( )2

1 2

=
1

2

Z
( ) ( )

1 2

This proves (14.33). The proof of (14.35) is evident. It follows from
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=

Z
0

X
=1

¡ ¢2 Z
0

2

Z
0

X
=1

¡ ¢2 Z
0

¯̄ ¯̄ 2

1

Z
0

¯̄ ¯̄ 2

Notice that Z
0

¯̄ ¯̄
= k k1

we finally have

min
RH

k ( ) ( ) ( )k = k k1

ut
From this theorem we evidently see that the performance of a fault iden-

tification depends on the selection of the weighting factor ( ) A suitable
selection of ( )may strongly improve the estimation accuracy. Although the
estimation errors bounds given by (14.33) and (14.35) are conservative, they
may help us to have a better understanding regarding to selecting a weighting
factor. To demonstrate this, let us observe the following case.
Suppose that we would like to recover (identify) a fault over a given fre-

quency interval ( 1 2). In order to describe this requirement, we introduce a
bandpass as weighting factor ( ), which has the following frequency domain
behavior

| ( )|2 =
½

1 ( 1 2)
' 0 ( 1 2)

It follows from (14.33) that in this case

min
RH

k ( ) ( ) ( )k 1

2

Z
( ) ( )

1 2

'
μ
1

2
| 2 1|

¶1 2

In extreme case, we even have

lim
2 1

min
RH

k ( ) ( ) ( )k 0

That means we are able to achieve the desired estimation accuracy if the
frequency interval is very narrow. In a similar way, we can also design ( )
in the time domain based on (14.35).
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14.5 Approaches to the design of FIF

In this section, we introduce three design approaches for the FIF design. We
start with the second step of designing an FIF with the following model

( ) =

1( )
...
( )

=

1( ) 1( ) 1( ) + 1( ) 1( ) ( )
...

( ) ( ) ( ) + ( ) ( ) ( )

˜( ) ¯ ( ) =

1( )
...
( )

( ) RH1×

and try to solve the problem described as: given ( ) ( ) RH and a
constant 0 find a reasonable ( ) as well as ( ) RH that is the
solution of the optimization problem

min
( ) RH

k ( ) ( ) ( )k k ( ) ( )k = 1 · · · (14.40)

We would like to emphasize that the selection of ( ) is also a part of our
design procedures.

14.5.1 A general fault identification scheme

The underlying idea of this approach is to ensure that ( ) have all RHP
zeros with the associated structure of ( ) To this end, we propose a two-step
design procedure.

Algorithm 14.5 Two-step solution of design problem solution (14.40)

Step 1: Selection of weighting matrix ( )

• do an extended CIOF using Algorithm 7.9

( ) = ( )˜ ( ) (14.41)

with invertible ( ) ˜ ( ) having as its zeros all the zeros of ( ) in
the RHP including on the -axis and at infinity. Note that ( ) is a
SISO system and thus the computation may become very simple

• set
( ) = ˜ ( ) (14.42)

Step 2: Solution of the optimization problem

min
( ) RH

k1 ( ) ( )k k ( ) ( )k (14.43)

It is evident that solution of (14.43) delivers an estimate for

¯( ) = ˜ ( ) ( )

We would like remark that the above algorithm is applicable, independent
of the placement of the zeros of ( ) in the complex plane.
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14.5.2 An alternative fault detection scheme

The basic idea of the design scheme proposed below is the application of
possible frequency or time domain information of the faults to improve the
identification performance, based on Theorem 14.6. Recall that the algorithm
given in the last section is developed on the assumption that

( ) 6= 0 for all 0 (14.44)

which however may be too hard to be satisfied in practice. For instance, if the
system is strictly proper then we have a zero at infinity, i.e. ( ) = 0 In
the following, we are going to propose a scheme to overcome this di culty.
We know that if ( ) has -axis zeros, say 1 · · · then faults with

frequencies 1 · · · do not have any influence on the system output and
thus on the residual signals. In other words, a detection and further identifi-
cation of these faults are impossible. For this reason, we propose the following
algorithm for the system design.

Algorithm 14.6 The alternative FIF design

Step 1: Do an extended co-inner-outer factorization of ( ) = 1 · · ·

( ) = ( )¯ ( ) ( )

with invertible ( ) inner ¯ ( ) and ( ) having as its zeros all the zeros
of ( ) on the -axis and at infinity

Step 2: Select ¯ ( ) according to the frequency domain or the time domain
requirements

Step 3: Solve optimization problem

min
¯ RH

k ¯ ( ) ¯ ( )¯ ( )k °°¯ ( ) 1( ) ( )
°° (14.45)

using the known H optimization technique.
Step 4: Set

( ) = ¯ ( ) 1( )

as the solution, where ¯ ( ) solves the optimization problem (14.45).

Di erent from the design scheme introduced in the previous subsection,
the generated residual signal ( ) delivers an estimate for

(̄ ) = ( ) ( )

where ( ) is only a part of ˜ ( ) given in (14.41). On the other side, this
design procedure requires frequency or time domain information about the
possible fault ( ), which is necessary for the selection of ¯ ( ) in Step 3.
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14.5.3 Identification of the size of a fault

In practice, identification of the size of a fault, expressed in terms of the energy
level (L2 norm) or the average energy level (RMS), is often of primary interest.
Recall that in Subsection 7.9.5 as well as in Section 12.3, we have introduced a
method that provides us with an alternative solution to the H to H design
problem, which can also be used to estimate the L2 norm of a fault. Based
on this result, we propose the following algorithm for the identification of the
energy level (L2 norm) or the average energy level of a fault.
Algorithm 14.7 Identification of the size of a fault

Step 1: Do an extended co-inner-outer factorization of ( ) = 1 · · ·
( ) = ( )¯ ( ) ( )

with invertible ( ) inner ¯ ( ) and ( ) having as its zeros all the zeros
of ( ) on the -axis and at infinity

Step 2: Solve optimization problem

min
¯ RH

subject to (14.46)

(1 k¯ ( )k )
2 °°¯ ( ) 1( ) ( )

°° (14.47)

using the known H optimization technique.
Step 3: Set

( ) = ¯ ( ) 1( ) (14.48)

as the solution, where ¯ ( ) solves the optimization problem (14.46).

Remember that integrating ( ) given in (14.48) into the residual gener-
ator yields

( ) = ¯ ( )˜ ( ) ( ) + ¯ ( ) 1( ) ( ) ( ) ( )

As a result, in case of a weak disturbance , we have

k ( )k2 k¯ ( )˜ ( ) ( )k2 = k k2 as well as (14.49)

k ( )k k¯ ( )˜ ( ) ( )k = k k (14.50)

Example 14.2 Remember that in Example 13.4 we have achieved a perfect
fault isolation. Now, based on that result, i.e.

( ) =
1( )

2( )

3( )
=

( 4 3163)
( +1)( +3) 1( )
( 4 3163)
( +1)( +3) 2( )

( 4 3163)( 4 4924)
( +1)( +2)( +3) 3( )

we are going to identify the faults. To simplify the computation and clearly
describe the problem, we only consider the identification of first fault and



14.5 Approaches to the design of FIF 459

assume that the disturbance on the corresponding sensor is very weak. For
our purpose, we first apply Algorithm 14.5. In the first step, we get

1( ) = 1 0( )e1( ) e1( ) = ( 4 3163)

( + 1)( + 4 3163)
1 0( ) =

+ 4 3163

( + 3)

Set
1( ) = e1( )

we have, after the second step,

1( ) =
+ 3

+ 4 3463

Thus, as a result,
(̂ ) = 1( ) 1( )

which delivers an exact estimate for

(̄ ) = e1( ) ( )
We now illustrate the application of Algorithm 14.6. The first step computa-
tion yields

1( ) = ( )¯ ( ) ( ) ¯1( ) =
4 3163

+ 4 3163
=

+ 1
0( ) =

+ 4 3163

+ 3

Now we select the weighting factor ¯1( ) Considering that 1( ) has a zero
equal to 0, in order to avoid the frequency range around 0, we introduce a band
pass

¯1( ) =
10( + 1)

+ 10

which is very small around = 0 and becomes larger as increasing and then
approaches to a constant for 10. Next, solving (14.45) gives

¯ =
0 5373 2 + 1 0681 + 0 5308

2 + 1 9878 + 0 9878

and finally

1( ) =
( + 3)(0 5373 2 + 1 0681 + 0 5308)

( + 4 3463)( 2 + 1 9878 + 0 9878)

The estimate for ( ) is delivered by

(̂ ) =
( + 3)(0 5373 2 + 1 0681 + 0 5308)

( + 4 3463)( 2 + 1 9878 + 0 9878)
1( )

We would like to emphasize that (̂ ) only gives an estimate of ( ) in the
frequency range bounded by ¯1( ) Finally, we consider Algorithm 14.7. The
first step is identical with the one in Algorithm 14.6, i.e.
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1( ) = ( )¯ ( ) ( )

In case that the disturbance is not taken into account, we can set, in the second
step,

¯ ( ) = 1

and finally

1( ) =
1

0 ( ) =
+ 3

+ 4 3163

and
(̂ ) =

+ 3

+ 4 3163
1( )

14.6 Notes and references

Two topics, the PFI and H OFIP, have been treated in this chapter. In our
study, no assumption has been made on the faults to be identified. This is a
major di erence between the approaches described here and the other fault
identification strategies mentioned at the beginning of this chapter.
Study on the PFI is strongly related to the topic structural fault identifi-

ability introduced in Chapter 4. Since no assumption on the faults is made,
this problem is equivalent to the invertibility of a transfer matrix. Our dis-
cussion in Sections 14.1 and 14.2 relies on this idea and the main results can
be found in [36, 38]. Hou and Patton have investigated this problem in a dif-
ferent way and by means of the matrix pencil technique [76]. Recalling our
discussion about the underlying idea of a UIO in Subsection 6.5.2, an intimate
relationship between the FIF and UIO can be recognized. In fact, the first FIF
towards a PFI has been proposed by Park and Stein using the UIO scheme
[113].
As mentioned in Section 7.6, the H OFIP is one of the popular topics in

the FDI research area [107, 108, 124]. Moreover, it is also often adopted in the
integrated design of robust controller and FDI, as proposed in [105, 106, 138].
Extension of the H OFI strategy to other types of dynamic systems like
time delay systems, nonlinear systems has been recently reported. Theorem
14.5 reveals that solving the H OFIP in its original form, (14.19), makes less
sense, as far as the fault matrix is non-minimum phase. In this case, integrat-
ing a weighting matrix into the system design, as formulated in the GOFIP
(14.26), allows reasonable and realistic solutions. Unfortunately, there are few
publications devoted to this topic. Our study in Section 14.4 is dedicated to
the weighting factors. Based on it, we have developed in Section 14.5 two
approaches, which provide us with useful solutions both for the design of the
residual generator and the selection of the weighting factors. The last design
approach introduced in this section solves the fault identification problem in
an extended sense. Instead of identifying the faults in the form of a time or
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frequency domain function, the energy level of the fault is identified. This
work has been originally motivated and driven by some real application cases.
The proof of Theorems 14.5 and 14.6 is based on the known results in

[49, 68, 78] and Algorithm 14.4 can be found in [49].
As mentioned at the beginning of this chapter, model-based fault identi-

fication is a vital research area. We have, with the FIF schemes presented in
this chapter, only touched a sub-area. In comparison, the parameter identifica-
tion technique based fault identification builds, parallel to the observer-based
strategy, one of the mainstreams in this research area. The core of this tech-
nique consists in the application of the well-established parameter identifica-
tion technique to the identification of the faults that are modelled as system
parameters. This technique is especially e cient in dealing with multiplica-
tive faults. On the other hand, it requires intensive on-line computation and is
generally applicable for those faults, which are constants or change slowly. We
refer the interested reader to [67, 79, 80, 81, 133] for a comprehensive study
on this technique. Recently, the application of the extended observer schemes
to fault identification has received increasing attention. The underlying idea
of the extended observer schemes lies in addressing the faults as the extended
state variables, which are then reconstructed by an (extended) observer. The
well-known PI observer is a special kind of such observers [15, 127]. The ex-
tended observer technique is strongly related to the UIO scheme. In this con-
text, the extended observer is also called simultaneous state and disturbance
estimator [132]. Often, such observers/estimators are designed based on cer-
tain assumption on the faults, for instance the boundedness on the derivative.
We refer the reader to [60, 59, 71] for some recent publications on this topic.
Application of advanced adaptive observer technique to fault identification
has been initiated in the 90’s [41, 40, 143, 144]. In certain sense, it can be
considered as a combination of the observer-based and parameter identifica-
tion based schemes. Recent research activity in this field is focused on the
application to uncertain systems, nonlinear systems and time varying systems
[83, 84, 156, 158].
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analytical redundancy, 6
output observer based generation, 74
parity relation based generation, 106

benchmarks
DC motor, 31, 113, 294, 308
electrohydraulic servoactuator, 46,
78, 81, 94, 119, 125, 152, 217, 261,
296, 306, 428

inverted pendulum , 34, 94, 97, 102,
118, 139, 142, 156, 236, 258, 300,
304, 422, 424, 457

three tank system, 38, 55, 64, 67, 331,
342

vehicle lateral dynamic system, 42,
146, 177, 200, 231, 273, 353, 423,
436, 442

Bezout identity, 24
Bounded Real Lemma, 169, 174

co-inner-outer factorization (CIOF),
170

extended CIOF, 239
coprime factorization
left coprime factorization (LCF), 23
right coprime factorization (RCF), 23

design form of residual generators, 79
diagnostic observer (DO), 81

excitation subspace, 56

false alarm rate (FAR)
in the norm based framework, 370

in the statistical framework, 357, 369
fault detectability in the norm based

framework, 370
fault detectability indices, 411
fault detection, 4
fault detection filter (FDF), 80
fault detection rate (FDR)
in the norm based framework, 371
in the statistical framework, 369

fault identification, 4
fault identification filter (FIF), 441
fault isolability matrix, 411
fault isolation, 4
fault transfer matrix, 54

generalized likelihood ratio (GLR), 315
generalized optimal fault identification

problem (GOFIP), 448

hardware redundancy, 4

implementation form of residual
generators, 79

inner-outer factorization (IOF), 170

Kalman filter scheme, 175, 324

likelihood ratio (LR), 314
Luenberger equations, 81
a numerical solution, 93
characterization of the solution, 89

Luenberger type ouput observer, 81

maximum likelihood estimate, 315
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mean square stability, 249
minimum order of residual generators,

87
missed detection rate (MDR)
in the statistical framework, 369

model matching problem (MMP), 173
model uncertainties
norm bounded type, 26
polytopic type, 26
stochastically uncertain type, 27

modelling of faults, 27
actuator faults, 28
additive faults, 28
faults in feedback control systems, 30
multiplicative faults, 28
process or component faults, 28
sensor faults, 28

norm based residual evaluation
limit monitoring, 284
trend analysis, 284

norm of vectors
1 norm, 165
2 norm, 165
norm, 165

norms of matrices
1 norm, 168
norm, 168

Frobenius- or Euclidian norm, 168
spectral norm, 168

optimal design of residual generators
H H design, 391
H2 optimization problem, 213
H2 to H design, 225
H2 to H2 design, 216
H2 H2 design, 203
H optimal fault identification , 201
H to H design, 227
H to H design - an alternative
solution, 229

H /H design, see also the unified
solution, 233

optimal fault identification
H optimal fault identification
problem (H OFIP), 447

output observer, 74

parameter identification methods, 9

parameterization of residual generators,
77

parity space approach
characterization of residual generator,
101

construction of residual generator, 99
minimum order of residual generator,
101

perfect fault identification (PFI)
existence condition, 441
solutions, 441

perfect fault isolation (PFIs)
definition, 403
existence conditions, 403
fault isolation filter, 410
frequency domain solution, 408

perfect unknown input decoupling
problem (PUIDP), 116

performance indices
index, 186
index, 186

+ index, 185
index, 185

H index, 218
plausibility test, 6
post-filter, 77

residual evaluation, 8
residual evaluation functions
average value, 286
peak value, 285
RMS value, 287

residual generation, 7
residual generator, 7
residual generator bank
dedicated observer scheme (DOS),
430

generalized observer scheme (GOS),
433

residual signal
observer-based, 75
parity relation based, 99

sensor fault identification, 420, 442
sensor fault isolation, 430, 442
set of detectable faults (SDF), 371
set of disturbances that cause false

alarms (SDFA), 370
signal norms
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L1 norm, 163
L2 norm, 163
L norm, 164
root mean square (RMS), 163, 287
peak norm , 164

signal processing based fault diagnosis,
5

simultaneous state and disturbance
estimator, 459

soft- or virtual sensor, 74
software redundancy, 6
structual fault detectability
definition, 52
existence conditions, 52

structural fault identifiability
definition, 65

structural fault isolability
check conditions, 58
definition, 57

system norm
H1 norm, 166
H2 norm, 167

H norm, 166
generalized H2 norm, 167
peak-to-peak gain, 167
induced norm, 166

Tchebyche inequality, 349
the unified solution
discrete time version, 237
general form, 242, 376
standard form, 234, 374

thresholds
2, 290
2, 290

, 289

unified solution of parity matrix, 194
unknown input diagnostic observer

(UIDO), 139
unkown input fault detection filter

(UIFDF), 128
unkown input observer (UIO), 142

weighting matrix, 448
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