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The paper presents some new developments in the 
eigenstructure assignment approach to robust fault detection. 
By suitable assignment of the eigenstructure of an observer, the 
residual signal is de-coupled from disturbances. The main 
contriiution of this paper is the novel use of right eigenvector 
assignment of observers which gives more freedom for 
achieving disturbance de-coupling. The paper also shows that, 
when de-coupling conditions are satisfied, the resulting dead- 
beat design is equivalent to the 1st order parity space structure 
for residual generation. Two tutorial examples are presented to 
illustrate the disturbance de-coupling property and the 
conditions under which either left and right eigenvectors are 
assignable. 

1. INTRODUCTION 

The main problem obstructing the progress and 
improvement in reliability of fault detection schemes is the 
mbustmspvoblent with mpect to uncertainfy which arises, for 
example, due to process noise, turbulence, parameter 
variations and modelling error[ld]. As a general definition, the 
robustness is the degree to which the fault detection 
performance is unaffected by (or remains insensitive to) 
uncertainties of the system. The residual is an indicator signal 
of faults, and is usually based on a weighted comparison 
between estimated and measured variables. The residuals are 
designed in such a manner as to be near zero in normal 
operation of the process, but with a derivation from zero in the 
event of a fault. All residual generation methods employ a 
model of the dynamic system and hence, if there are no 
uncertainties in the system (the model is accurate and all the 
disturbances are measurable), fault detection is very 
straightforward and there is no associated robustness problem. 
In most practical systems, however, uncertainties are present 
almost inevitably and may interfere seriously with the fault 
detection procedure. Robustness is thus a key issue in model- 
based fault detection techniques. 

State observers are often considered for the role of 
residual generation [4-7]. Our interest lies in the problem of 
decoupling the observer estimation from the structured type of 
uncertainty in the following way. Assume that all uncertainties 
of a system can be summarised as "unknown inputs" 
(disturbances) with known distribution matrix (so-called 
structure uncertainties) acting on the system model on which 
the observer is designed. Patton et al first demonstrated the 
eigenstructure assignment approach to robust detection in 1986 
[a] and 1987 [7]. They have shown in continuing work [6-111 
that an approach to solving this problem using the assignment 

of suitable eigenvectors and eigenvalues (eigenstructure 
assignment) as a way of providing robustness through 
disturbance de-coupling. By assigning the eigenstructure to a 
closed-loop system such as an observer, a well-defined residual 
signal can be completely de-coupled from the disturbances (i.e. 
unknown inputs). In this way, robust fault detection is 
achievable. In a similar way, Watanabe & Himmelblau [12], 
Wtinnenberg & Frank [ 131 and Wtinnenberg [ 141 have used the 
so-called "unknown input observer" as an approach to the 
disturbance de-coupling problem. In this latter approach, the 
state estimate errors are de-coupled from each disturbance. 
The eigenstructure assignment approach, on the other hand is a 
method of designing a residual signal which is de-coupled from 
disturbances. The paper develops further the eigenstructure 
assignment approach to disturbance de-coupling and hence 
robust fault detection. Some new ideas are proposed, 
especially, a new method for the assignment of right 
eigenvectors of an observer to make full use of the design 
freedom available for de-coupling and good fault detection. 
Sufficient condition for disturbance de-coupling is given. 
Connected with this is the philosophy behind the choice of a 
dead-beat observer structure; the significance of this in terms 
of the assignability available for de-coupling is given in the 
paper- 

The paper also shows how the eigenstructure 
assignment problem fits into the context of parity space 
residual generation methods. In particular, it is shown that 
when robustness conditions hold true, the dead-beat design is 
equivalent to the 1st order parity space structure for residual 
generation. Two tutorial examples is presented to illustrate the 
approach. 

2. PROBLEM SPECIFICATION 

To approach the problem from the most general and 
practical point of view, one must start with a mathematical 
description of a system that includes aU kinds of dynamic input 
signal that can occur in practice and affect the dynamic 
behaviour of the system. In principle, either a continuous-time 
or discrete-time model description can be used. We choose 
here to use the discrete-time representation: 

x(k+ 1) = FI@) + Gdk) + Ed&) + Q€& (1) 

Ye) = cy(k) + he) + fs(k) (2) 

where dk) is the nxl state vector, F the open-loop system 
dynamics matrix, u(k) the m l  known input vector with the 
corresponding input distribution matrix G. The term W(k) 
characterizes a qxl unknown input (dkturbance) vector d(k) 
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with known distribution matrix E acting directly onto the 
system dynamics. Ed(k) is used to represent uncertainties 
acting upon the system, the so-called smcctured uncertahuies, 
i.e. although the values of the uncertainty are unknown, its 
distribution matrix (structure) is known a priori. C is the 
measurement matrix of the system and y(k) the mxl output 
vector that is assumed to be available for further treatment. 
The faults that corrupt the measurements, called sensor faults, 
are described by the vector &(k). The term Q&(k) represents 
the faults acting on the system dynamics, such as actuator or 
component faults. 

Faults Disturbances Faults 

- Y 
Measurements LF5Ek Measurements Estimated - 

W 
Residuals 

RESIDUAL GENERATOR 

Fig. 1 General structure of obsener-based residual generation approach 

The principle of the observer-based approach for generating of 
robust residual is illustrated in Figure 1. The residual generator 
uses an observer which generates estimates of the system states 
and measurements, and provides residual signals which are 
independent of uncertainties. The observer dynamics are 
described by the following: 

g(k+ 1) = (F- KC)i(k) + (G - KD)u(k) + Ky(k) (3) 

?(k) = &) + W k )  (4) 

where i(k) is the nxl state estimation vector and i(k) the 
mxl output ytimation vector. The state estimation error 
(g(k) = z(k) - x_(k)) dynamics are as follows: 

where F, = F-KC 

A p-dimensional residual vector is generated from the 
difference between the actual and estimated measurements 
having the form: 

where W is a pxm weighting matrix. 

From equations ( 5 )  and (7), we have the complete response of 
the residual vector is: 

L(Z) = [W - WC(d - Fc)-lK&(z) + WC(ZI - FJ-lQ&(z) 

(9) + WC(z1 - FJIEd(z) 

One can seen that the residual is not zero, even if no faults 
occur in the system. Indeed, it can be difficult to distinguish the 
effects of faults from the effects of disturbances acting on the 
system. The effects of disturbances obscure the performance of 
fault detection and act as a source of false alarms. Therefore, 
in order to minimize the false alarm rate, one should design the 
residual generator such that the residual itself becomes de- 
coupled with respect to disturbances. This is the principle of a 
robust residual generator. 

3. GENERAL THEORY FOR DISTURBANCE DE- 
COUPLING DESIGN 

In order that the residual 5 be independent of 
uncertainties, it is necessary to null the entries in the transfer 
function matrix between residuals and disturbances. i.e. 

Grd(z) = WC[ZI - (F - KC)]-'E = 0 (10) 

This is a special case of the output-zeroing problem which is 
well known in multivariable control theory [15]. Once E is 
known, the remaining problem is to choose the matrices K and 
W to satisfy this equation. The solubility condition for W and K 
in (10) can be determined in the context of the invariant 
subspace theory [ 16,171. 

H[zI - FJ1E = H{al(z)Io + a2(z)FC + . . . . . + %(z)F,o-l}E 

Hence, the equation (10) can be solved by following two 
approaches: 

(1) If the (H , Fc) - ~nvariant subspace (observable 
subspace) lies in the left zero space of E, the equation 
(10) holds true. 

or 

(2) If the (F, , E)-invariant subspace (controllable 
subspace) contained in the right zero space of H, the 
equation (10) holds true. 

In section 4, we show that these two goals can be achieved by 
the assignment of either left eigenvectors or right eigenvectors 
of the observer. 
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4 ROBUST RESIDUAL GENERATOR DESIGN BY 
USING EIGENSTRUCI’URE ASSIGNMENT APPROACH 

Now, Gd(z) can be expressed in the dyadic form: 

R1 Rn 
G,.,~(z) = -+ ........ + - (12) 

z-01 Z - 0 ,  

here & = HyjhTE 

where yj and hT are, respectively, the right and left eigenvectors 
assoCiated with an eigenvalue 0i of F,. It is well known that, a 
given left eigenvector hT (corresponding to eigenvalue Bi) of Fc 
is always orthogonal to the right eigenvectors 9 Corresponding 
to the remaining (n-1) eigenvalues 0j of F,, where 0; P 0j. In 
order to get expression (12), all eigenvectors must be 
appropriately scaled so that VLT = L v  = I ,  where: 

Thus, we note that disturbance de-coupling is possible if and 
only if Ri = H y j p E  = 0 for all i = 1 to n. This implies that: 

R1 + ... + Ri + ... + R, 
= HylllTE + ... + H a -  + ... + Hy,Jnm 

= HVLTE = H E  = W C E  = 0 (13) 

WCE = HE = 0 is a necessary condition for 
achieving disturbance de-coupling design. 

Theorem 1: 

4.1 Disturbance deGou~ . lina des ian bv us ina left 
m a  

Theorem2 If (1) WCE = 0, and (2) AU rows of the 
matrix H = WCE are left eigenvectors of F, 
corresponding to any eigenvalues, equation (10) 
holds true. 

A.oof: If the rows of H are p left eigenvectors (hT, i = 1, 2, 
. . . ., p) of FE, i.e. 

then: Hq = 0 a n d R j = O  

If further we have: w c E = H E = o  

i.e. kw=O and Ri = 0 forall i=l,Z, ..., p 

ThUS Grd(Z) = 0 

f o r i = p + l ,  ...., n 

(15) 

Then, the residual is completely de-coupled from the 
disturbance. The first step for the design of a disturbance de- 
coupled residual generator is to compute the weighting matrix 
W which must be satisfied to equation (15). The necessary and 
suf[icient condition for solution (15) to exist is rank(CE)<m. 
The second step is to assign the left eigenvectors of the 

observer as the rows of H (corresponding to suitable 
eigenvalues). This can be handled by means of a 
transformation of the dual control problem. On assignment of 
the right eigenvectors to the dual control problem these 
eigenvectors become the left eigenvectors of the observer. The 
assignment of right eigenvectors for a controller is a well 
developed technique [18,19]. The assignability condition is 
that for each 0” the corresponding left eigenvector hT of 
Fc must belong to the row subspace spanned by rows of matrix 
{ C( 41 - F)-1}. 

ina riaht 4.2 pisturbance de -couplina des ian bv us 
aaenvector assianment 

If the left eigenvector assignability condition is not 
satisfied, we can consider an alternative approach, that is to 
assign the right eigenvectors of the observer as columns of 
matrix E. 

Theorem 3: If (1) WCE = 0, and (2) All columns of the 
matrix E are right eigenvectors of F, 
corresponding to any eigenvalues, equation (10) 
holds true. 

The assignment of right eigenvectors of the observer 
(left eigenvector of dual controller) is a relatively new problem, 
although few other investigators have considered this problem 
[ZO]. Here we present the outline of a new assignment method. 

Theorem4 The necessary condition for a vector 5 is the 
right eigenvector of F - KC corresponding to the 
eigenvalue 0i is: 

lo: 

or 

20 

q is the right eigenvector of F corresponding to 0; and 
cr; = 0. 

& is not the right eigenvector of F corresponding to 0; 
andCG # 0. 

proof: If r; is the right eigenvector of F, = F - KC 
corresponding to a eigenvalue 0; 

The necessary and sufficient condition for solution K of 
equation (17) to exist is that either condition lo  or 20 must hold 
true. 

For the case, when a number of right eigenvectors must 
be assigned, the gain matrix K must satisfy a set of equations 
like (17). If we want to assign all columns % (i = 1, . . . , q) of 
E as the right eigenvectors of Fc = F - KC corresponding to 
eigenvalues Bj, the following equations must be satisfied. 

KC% = (F - 0;I)q for i = 1, . . ., q (18) 

i.e. K C E  = Fg (19) 



where Fg = [ (F - B1I)nl . . . (F - Bi1)~ . . . (F - B$)%] 

Now, the right eigenvector assignment problem is to solve the 
equation (19) and meanwhile to ensure that the observer is 
stable. 

Lemma: The necessary and sufficient condition for solution of 
equation (19) to exist is: 

rank(Fg) = rank(CE) 

Subject to this condition, the general form of the solution to 
(19) is: 

K = Fs(CE)' + Kl[I,-CE(CE)'] (20) 

where K1 is a n by m arbitrary design matrix and (CE)' is the 
pesudo-inverse of CE. When rank(CE) = q, (CE)' is given by: 

(CE)' = [(CE)TCE]-I(CE)T 

The dynamic matrix of the observer is thus: 

F-KC = F-FB(CE)*C-K~[I,-CE(CE)*]C = F1 - K1C1 

Where 

F1 = F - FB(CE)'C 

C1 = [Im - CE(CE)']C 

The necessary and sufficient condition for the observer 
dynamic matrix F - KC to be stable is that {Cl, F1} is the dud 
of a stabilizable pair. When this condition is satisfied, the 
assignment problem of the right eigenvectors is to choose the 
matrix K1 such that the observer is stable. This problem can be 
handled by using the traditional pole assignment methods. As 
131, . . . , Bq have been assigned as the eigenvalues of F - KC = 
Fl - KlC1, only the maximum (n-q) eigenvalues of F1 - KC1 
can be moved by changing the design matrix K1. 

4.3 D a d  -beat desian and relationshiD with the parity 
SQaX 

Here, we consider a dead-beat design, for which the de- 
coupling can be derived in a very simple manner. Consider the 
expression: 

H(zI - FC)-1E = z'H(1 + Fs-1 + F C k 2  + .... + .... )E (21) 

Choose H and K in such a way that the rows of H are the left 
eigenvectors of F, corresponding to zero-valued eigenvalues. 
From this case, the sufficient de-coupling conditions are: 

H E = O  
HF, = 0 

Alternatively, the sufficient de-coupling conditions can also be 
given as: 

H E = O  (234 

F,E = 0 (Zb) 

If each column of E is a right eigenvector corresponding to a 
zero-valued eigenvalue of F, (23b) holds true. 

Because of the assignment of zero-valued eigenvalues, 
the residuals have dead-beat (minimum-time) transient 
performance and this feature can be exploited to good use in 
the aim to provide a high sensitivity to soft faults. 

From the observer equations (3), (4) & (6), the z- 
transform of g(k) is: 

- E(Z) = [W - H(zI - AJ-~K]Y(z) - [WD + H(zI - A&~G~]Q(z) 
(24) 

where Gl = G - KD. If the perfect de-coupling conditions 
(22b) (not (23b)) hold true, then H(z1 - &)-I = z-~H, thus 
the residual vector ~ ( z )  can be re-written as 

- E ( Z )  = (W - Z-~HK)Y(Z) - [WD + z-'HG&(z) (25) 

It is evident that this is a 1st order parity space relation [21,22]. 
In its common form, the parity space approach is an open-loop 
concept, giving rise to residual generation from available 
measurements and controls [21, 221. The parity vector 
(residual) has a finite impulse response. Moreover, it could be 
designed to be robust with respect to disfurbances. That is to say, 
we can design a robust residual generator by using the 
eigenstructure assignment technique, and by implementing it in 
the form of the parity space. Note that in the right eigenvector 
assignment case (condition (Zb)), the link with the parity 
space approach cannot be derived. 

5. TWO TUTORIAL EXAMPLES 

Example 1; Consider the discrete-time system given by, 
F = diag(0.25, 0.5, 0.375}, G = [0, 1 , 1]T, disturbance 
distribution matrix E = [ 1 1 O]T, and the measurement 
matrix 

The weighting matrix is W = [ -1 , 21 so that WCE = 0, 
the desired left eigenvector is H = WC = [ -1 , 1 , 2 ] 
(corresponding to eigenvalue 0) which is assignable (p 
belongs to subspace span{-pfl}. The remaining two 
eigenvalues are chosen as (0, 0.1). Using the eigenstructure 
assignment technique [9,18,19], the gain matrix is derived as: 

0.0165 -0.3330 

-0.3502 -0.1246 
K = [ 0.4670 0.6661 ] 
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H(F - KC) = 0 and WCE = 0, i.e., the decoupling conditions 
(22a) & (22b) are satisfied. 

H(zI-FJ-1E = 0 

Clearly, the disturbance term is not present and the residual is 
only a function of faults. This means that a robust design has 
been achieved. And meanwhile, amrding to equation (26), the 
residual is: 

e(.) = [-1 2Mz) - [a249 O.749]i1~(z) - i'u(z) 

This is a 1st order parity space relation. 

Now consider changing the matrix F to F = diag 
(03.0.6.0.9). In this case, the required left eigenvector of the 
observer H is not assiguable (HT does not belong to subspace 
span{-PC}. We must use the alternative approach of 
assigning right eigenvectors, as discussed in section 4.2. The 
eigenvalues are choose as ( 4 0 ,  0.1). We then assign the right 
eigenvector of the observer as a single column of E 
(corresponding to eigenvalue 0), in this case, the resulting gain 
matrix computed using right eigenvector assignment is: 

1 0.098304 0.103392 
K = 0.589304 -0.596608 [ -0.8 1.6 

The 2-transform of the corresponding residual signal is: 

~ ( z )  = [(-1 + l.2f1-0.27f2) (2-2.7f1+ o.Sl~.'~)&(z)/( 1-O.1f1) 
t 3 - 1.&1 I~~(Z)/(I-~.IZ-~)  

The disturbance decoupling has also been achieved, however 
this residual signal although robust to disturbance is recursive 
in structure and is not a parity space residual signal. 

6. CONCLUDI" DISCUSSION 

This paper has studied the robust disturbance de- 
coupling fault detection problem, based on an observer with 
structured uncertainties acting on the estimation error. The de- 
coupling approaches making use of either left or right 
eigenvector assignment have been compared in a tutorial 
setting. It has also shown that when robustness conditions hold 
true, the dead-beat design is equivalent to the 1st order parity 
space relation for residual generation. A new method for direct 
assignment of the right eigenvectors in the observer design has 
been presented. 

Two tutorial examples have been presented to illustrate 
the disturbance de-coupling design method. Both of these two 
examples have structured uncertainties. The method presented 
can also be used for robust fault detection of a system with 
unstructured uncertainty. The method has been successfully 
applied to an example of unstructured uncertainty taken from a 
jet engine system, in which a structure for the uncertainty is 
estimated [lo, 111, via estimation of an optimal matrix E. As 
the "best" E is used (although assumed constant), the method 

can be used to detect incipient faults in a robust way. Later 
research will concentrate on methods to obtain the optimal 
approximate structure for general and practical systems with 
unstructured uncertainties. 
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