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In this article we give an overview of the Ellipsoid Method. We start with a historic introduction
and provide a basic algorithm in Section 2. Techniques to avoid two important assumptions required
by this algorithm are considered in Section 2.2. After the discussion of some implementation aspects,
we are able to show the polynomial running time of the Ellipsoid Method. The second section is
closed with some modifications in order to speed up the running time of the ellipsoid algorithm. In
Section 3, we discuss some theoretical implications of the Ellipsoid Method to linear programming
and combinatorial optimization.

1 Introduction

In 1979, the Russian mathematician Leonid G. Khachiyan published his famous paper with the
title “A Polynomial Algorithm in Linear Programming”, [Kha79]. He was able to show that linear
programs (LPs) can be solved efficiently; more precisely that LP belongs to the class of polynomi-
ally solvable problems. Khachiyan’s approach was based on ideas similar to the Ellipsoid Method
arising from convex optimization. These methods were developed by David Yudin and Arkadi

Nemirovski, [YN76a, YN76b, YN77], and independently by Naum Shor, [Sho77], preceded by
other methods as for instance the Relaxation Method, Subgradient Method or the Method of Cen-
tral Sections, [BGT81]. Khachiyan’s effort was to modify existing methods enabling him to prove
the polynomial running time of his proposed algorithm. For his work, he was awarded with the
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Fulkerson Prize of the American Mathematical Society and the Mathematical Programming Soci-
ety, [MT05, Sia05].

Khachiyan’s four-page note did not contain proofs and was published in the journal Soviet
Mathematics Doklady in February 1979 in Russian language. At this time he was 27 years young and
quite unknown. So it is not surprising that it took until the Montreal Mathematical Programming
Symposium in August 1979 until Khachiyan’s breakthrough was discovered by the mathematical
world and a real flood of publications followed in the next months, [Tee80]. In the same year,
The New York Times made it front-page news with the title “A Soviet Discovery Rocks World

of Mathematics”. In October 1979, the Guardian titled “Soviet Answer to Traveling Salesmen”
claiming that the Traveling Salesman problem has been solved – based on a fatal misinterpretation
of a previous article. For an amusing outline of the interpretation of Khachiyan’s work in the
world press, refer to [Law80].

2 Method

The Ellipsoid Method is designed to solve decision problems rather than optimization problems.
Therefore, we first consider the decision problem of finding a feasible point to a system of linear
inequalities

A⊤x ≤ b (1)

where A is a n ×m matrix and b is an n-dimensional vector. From now on we assume all data to
be integral and n to be greater or equal than 2. The goal is to find a vector x ∈ R

n satisfying (1)
or to prove that no such x exists. We see in Section 3.1 that this problem is equivalent to a linear
programming optimization problem of the form

min
x

c⊤x

s.t. A⊤x ≤ b,

x ≥ 0,

in the sense that any algorithm solving one of the two problems in polynomial time can be modified
to solve the other problem in polynomial time.

2.1 The Basic Ellipsoid Algorithm

Roughly speaking, the basic idea of the Ellipsoid Method is to start with an initial ellipsoid con-
taining the solution set of (1). The center of the ellipsoid is in each step a candidate for a feasible
point of the problem. After checking whether this point satisfies all linear inequalities, one either
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produced a feasible point and the algorithm terminates, or one found a violated inequality. This is
used to construct a new ellipsoid of smaller volume and with a different center. Now the procedure
is repeated until either a feasible point is found or a maximum number of iterations is reached. In
the latter case, this implies that the inequality set has no feasible point.

Let us now consider the presentation of ellipsoids. It is well known, that the n-dimensional
ellipsoid with center x0 and semi-axis gi along the coordinate axis is defined as the set of vectors
satisfying the equality

n
∑

i=1

(xi − x0
i )

2

g2
i

= 1. (2)

More general, we can formulate an ellipsoid algebraically as the set

E := {x ∈ R
n | (x− x0)⊤B−1(x− x0) = 1}, (3)

with symmetric, positive definite, real-valued n× n matrix B. This can be seen with the following
argument. As matrix B is symmetric and real-valued, it can be diagonalized with a quadratic
matrix Q, giving D = Q−1BQ, or equivalently, B = QDQ−1. The entries of D are the eigenvalues
of matrix B, which are positive and real-valued. They will be the quadratic, reciprocal values of
the semi-axis gi. Inserting the relationship for B into (3) yields to (x−x0)⊤QD−1Q−1(x−x0) = 1
which is equivalent to

(

(x− x0)⊤Q
)

D−1
(

(x− x0)⊤Q
)⊤

= 1.

Hence, we can interpret matrix Q as a coordinate transform to the canonical case where the semi-
axis of the ellipse are along the coordinate axis. Recognize that in the case when matrix B is a
multiple of the unit matrix, B = r2 ·I, then the ellipsoid gets a sphere with radius r > 0 and center
x0. We abbreviate this in the following by S(x0, r).

We start with a somewhat basic version of the ellipsoid algorithm. This method requires two
important assumptions on the polyhedron

P := {x ∈ R
n |Ax ≤ b}. (4)

We assume that

1. the polyhedron P is bounded and that

2. P is either empty or full-dimensional.

In Section 2.2, we will see how this algorithm can be modified not needing these assumptions. This
will allow us to conclude that a system of linear inequalities can be solved in polynomial running
time with the Ellipsoid Method.
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Let us now discuss some consequences of these two assumptions. The first assumption allows us
to construct a sphere S(c0, R) with center c0 and radius R containing P completely: P ⊆ S(c0, R).
The sphere S(c0, R) can be constructed, for instance, in the following two ways. If we know the
bounds on all variables x, e.g. Li ≤ xi ≤ Ui, one can use a geometric argument to see that with

R :=

√

√

√

√

n
∑

i=1

max {|Li|, |Ui|}2,

the sphere S(0, R) will contain the polytope P completely. In general, when such bounds are not
given explicitly, one can use the integrality of the data and proof, see for instance [GLS88], that
the sphere with center 0 and radius

R :=
√

n2<A>+<b>−n2
(5)

contains P completely, where < · > denotes the encoding length of some integral data. For an
integer number bi, we define

< bi >:= 1 + ⌈log2(|bi|+ 1)⌉ ,
which is the number of bits needed to encode integer bi in binary form; one bit for the sign and
⌈log2(|bi|+ 1)⌉ bits to encode |bi|. With this, the encoding length of a vector b is the sum of the
encoding lengths of its components. Similarly, for a matrix A, the encoding length is given by
< A >:=

∑m
i=1 < ai >.

The second assumption implies that if P is non-empty, its volume is strictly positive, meaning
that there is an n-dimensional sphere of radius r > 0 which is contained in P . More precisely, it is
possible to show that

vol(P ) ≥ 2−(n+1)<A>+n3
, (6)

in the case that P is not empty, see [GLS81]. This will help us to bound the number of iterations
of the basic ellipsoid algorithm. The graphical interpretation of the positive volume of polytope P
is that the solution set of system (1) is not allowed to have mass zero, for instance, not to be a
hyperplane.

Figure 1 illustrates the effect of the two assumptions in the case that P is non-empty. As this
is a two-dimensional example, the second assumption implies that polytope P is not just a line
segment but instead contains a sphere of positive radius r.

Now, we are ready to discuss the main steps of the basic ellipsoid algorithm. Consider therefore
Algorithm 2.1. In the first six steps the algorithm is initialized. The first ellipsoid is defined in step
three. The meaning of the parameters for the ellipsoid and especially number k∗ will be discussed
later in this section. For now, let us also ignore step seven. Then, for each iteration k, it is checked
in step eight if center xk satisfies the linear inequality system (1). This can be done for instance
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P

Figure 1: P is bounded and full-dimesional

by checking each of the m inequalities explicitly. In the case that all inequalities are satisfied, xk

is a feasible point and the algorithm terminates. In the other case there is an inequality a⊤j x ≤ bj

which is violated by xk, step nine. In the next two steps, a new ellipsoid Ek+1 is constructed. This
ellipsoid has the following properties. It contains the half ellipsoid

H := Ek ∩ {x ∈ R
n | a⊤j x ≤ a⊤j xk} (7)

which insures that the new ellipsoid Ek+1 also contains polytope P completely, assuming that the
initial ellipsoid S(0, R) contained P . Furthermore, the new ellipsoid has the smallest volume of all
ellipsoids satisfying (7), see [BGT81]. The central key for the proof of polynomial running time of
the basic ellipsoid algorithm 2.1 is another property, the so called Ellipsoid Property. It provides
the following formula about the ratio of the volumes of the ellipsoids

volEk+1

volEk

=

√

(

n

n + 1

)n+1 (

n

n− 1

)n−1

< exp(− 1

2n
), (8)

for a proof see, for instance, [GLS81, NW99]. As exp(−1/(2n)) < 1 for all natural numbers n, the
new ellipsoid has a strict smaller volume than the previous one. We also notice that exp(−1/(2n))
is a strictly increasing function in n which has the consequence that the ratio of the volumes of the
ellipsoids is closer to one when the dimension of the problem increases.

Now, let us discuss the situation when P is empty. In this case, we want Algorithm 2.1 to
terminate in step seven. To do so, we will derive an upper bound k∗ on the number of iterations
needed to find a center xk satisfying the given system of linear inequalities for the case that P is not
empty. Clearly, if the algorithm would need more than k∗ iterations, the polytope P must be empty.
Therefore, let us assume again that P 6= ∅. In this case (6) provides a lower bound for the volume
of P and an upper bound of its volume is given, for instance, by (5). In addition, according to the
construction of the ellipsoids, we know that each of the Ek+1 contains P completely. Together with
the Ellipsoid Property (8) we get the relation

vol(Ek∗) < exp(
−k∗

2n
)vol(E0) < 2

k∗

2n
+n+n log(R) !

= 2−(n+1)<C>+n3 ≤ vol(P ).
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This chain provides an equation defining the maximum number of iterations

k∗ := 2n(2n + 1) < C > +2n2(log(R)− n2 + 1). (9)

A geometric interpretation is that the volume of the ellipsoid in the k∗th iteration would be too
small to contain the polytope P . Obviously, this implies that P has to be empty. With this, we
have shown that the presented basic ellipsoid algorithm works correctly.

Algorithm 2.1 Basic Ellipsoid Algorithm

Input: Matrix A, vector b; sphere S(c0, R) containing P
Output: feasible x or proof that P = ∅

// Initialize
1: k := 0
2: k∗ = 2n(2n + 1) < C > +2n2(log(R)− n2 + 1) // Max number of iterations
3: x0 = c0, B0 = R2 · I // Initial ellipsoid
4: τ := 1

n+1 // Parameter for ellipsoid: step

5: σ := 2
n+1 // Parameter for ellipsoid: dilation

6: δ := n2

n2−1
// Parameter for ellipsoid: expansion

// Check if polytope P is empty
7: if k = k∗ return P = ∅

// Check feasibility
8: if Axk ≤ b return x := xk // x is a feasible point
9: else let a⊤j xk > bj

// Construct new ellipsoid

10: Bk+1 := δ(Bk − σ
Bkaj(Bkaj)⊤

a⊤

j
Bkaj

)

11: xk+1 := xk − τ
Bkaj

√

a⊤

j Bkaj

// Loop
12: k ← k + 1 and goto step 7

One iteration of the basic ellipsoid algorithm, for the case of a non-empty polytope P , is il-
lustrated in Figure 2 (a). We recognize that P is contained completely in Ek. The dashed line
shows equality a⊤j x ≤ bj corresponding to one of the two inequalities which are violated by xk.

Geometrically, this equality is moved in parallel until it contains center xk. Recognize that the
new ellipsoid Ek+1 contains the half ellipsoid (7). In this case, the new center xk+1 is again not
contained in polytope P and at least one more step is required. The case that polytope P is empty
is illustrated in Figure 2 (b) which is mainly the same as Figure 2 (a).

In the case that Bk is a multiple of the identity, the ellipsoid is an n-dimensional sphere. Ac-
cording to the initialization of the basic ellipsoid algorithm in step three, this is the case for the first
iteration when k = 0. This gives us an interpretation of the values of δ and τ . The new ellipsoid
Ek+1 is shrunk by the factor

√

δ(1 − σ) = n/(n + 1) in the direction of vector aj and expanded
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Figure 2: Basic ellipsoid algorithm

in all orthogonal directions by factor
√

δ = n/
√

n2 − 1. Hence, we see that in the next step we
do no longer get a sphere if we start with one. The third parameter, the step, gives intuitively
the measure how far we go from point xk in the direction of vector Bkaj, multiplied by factor

1/
√

a⊤j Bkaj. For more details we refer to the survey of Bland, Goldfarb and Todd, [BGT81].

After all the discussions above, we are now able to conclude the polynomial running time of
the basic ellipsoid algorithm 2.1 for the case that the polyhedron P is bounded and either empty
or full-dimensional. For an algorithm to have polynomial running time in the deterministic Turing-
machine concept, there has to be a polynomial in the encoding length of the input data describing
the number of elementary steps needed to solve an arbitrary instance of the problem. Therefore, let
L :=< A, b > be the encoding length of the input data. Obviously, each of the steps of Algorithm
2.1 can be done in polynomial many steps in L. The maximum number of iterations is given through
k∗ which is also a polynomial in L; consider therefore equations (9) and (5). Hence, we conclude
that the ellipsoid algorithm 2.1 has a polynomial running time. During the reasoning above, we
required implicitly one more important assumption, namely to have exact arithmetic. Normally,
this is of more interest in numerics rather than in theoretical running time analysis. However, it
turns out that for the Ellipsoid Method this is crucial as the Turing-machine concept also requires
finite precision. Let us postpone this topic to the end of the next subsection and rather discuss
methods to avoid the two major assumptions on polyhedron P .

2.2 Polynomially running time: Avoiding the assumptions

In order to prove that the Ellipsoid Method can solve the system of linear inequalities (1) in poly-
nomial time, one has to generalize the basic ellipsoid algorithm 2.1 to need not the assumptions
that (1) polyhedron P is bounded, (2) P is either empty or full-dimensional and (3) that exact
arithmetic is necessary.



2 METHOD 8

In 1980, Khachiyan published a paper, [Kha80], discussing all the details and proofs about
the Ellipsoid Method which were neglected in his paper from 1979. In Lemma 1, he showed that

P ∩ S(0, 2L) 6= ∅, (10)

in the case that P 6= ∅. With this, one can use for R of (5) value 2L. However, we cannot just adopt
the algorithm above to the new situation. Instead of a lower bound for vol(P ), as given in (6), we
would need a lower bound for vol(P ∩ S(0, 2L)). To achieve this, we follow a trick introduced by
Khachiyan and consider the perturbed system of linear inequalities

2La⊤i x ≤ 2Lβi + 1 i = 1, . . . ,m. (11)

Let us abbreviate the corresponding solution set with P ′, which is in general a polyhedron. Khachiyan

was able to proof a one-to-one correspondence of the original system (1) and the perturbed one
(11). This means that P is empty if and only if P ′ is empty, it is possible to construct a feasible
point for (1) out of (11) in polynomial time and the formulation of the perturbed formulation is
polynomial in L. Furthermore, the new inequality system has the additional property that if P ′ 6= ∅
it is full-dimensional. Hence, it is possible to find a (non-empty) sphere included in P ′. It can be
shown, that

S(x, 2−2L) ⊆ P ′ ∩ S(0, 2L),

where x is any feasible point of the original system (1) and hence x ∈ P . With this argument at
hand, it is possible to derive an upper bound for the number of iterations for the Ellipsoid Method
by solving the perturbed system (11). It can be shown that a feasible point can be found in at
most 6n(n + 1)L iterations, [BGT81].

With the perturbation of the original system and property (10), we do no longer require that
P is bounded. As a byproduct, polyhedron P has not to be of full-dimension in the case that it
is non empty; as system (11) is of full-dimension independent of whether P is or not, assuming
that P 6= ∅. As a consequence, the basic ellipsoid algorithm can be generalized to apply for any
polyhedron P and the two major assumptions are no longer necessary.

During all of the reasoning, we assumed to have exact arithmetic, meaning that no rounding
errors during the computation are allowed. This implies that all data have to be stored in a math-
ematically correct way. As we use the Turing-machine concept for the running time analysis, we
require that all computations have to be done in finite precision. Let us now have a closer look for
the reason why this is crucial for ellipsoid algorithm 2.1.

The presentation of the ellipsoid with the matrix Bk in (3) yields to the convenient update for-
mulas for the new ellipsoid, parameterized by Bk+1 and xk+1. However, to obtain the new center

xk+1 one has to divide by factor
√

a⊤j Bkaj . If we work with finite precision, rounding errors are
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the consequence, and it is likely that matrix Bk is no longer positive definite. This may cause that
a⊤j Bkaj becomes zero or negative, implying that the ellipsoid algorithm fails.

Hence, to implement the ellipsoid method, one has to use some modifications to make it nu-
merically stable. One basic idea is to use factorization

Bk = LkDkL
⊤
k

for the positive definite matrix Bk, with L being a lower triangular matrix with unit diagonal and
diagonal matrix Dk with positive diagonal entries. Obtaining such a factorization is quite expensive
as it is of order n3. But there are update formulae applying for the case of the ellipsoid algorithm
which have only quadratic complexity. Already in 1975, for such a type of factorization, numerically
stable algorithms have been developed, insuring that Dk remains positive definite, see [GMS75].
We skip the technical details here and refer instead to Golfarb and Todd, [GT82].

With a method at hand which can handle the ellipsoid algorithm in finite precision numerically
stable, the proof of its polynomial running time is complete.

2.3 Modifications

In this subsection, we briefly discuss some straightforward modifications of the presented ellipsoid
method in order to improve its convergence rate. Therefore, let us consider Figure 2 once more.
From this figure it is intuitively clear that an ellipsoid containing set {x ∈ Ek | a⊤j x ≤ b} has a
smaller volume than the one containing the complete half-ellipsoid (7). In the survey paper of
Bland et al. it is shown that the smallest ellipsoid, arising from the so called deep cut a⊤j x ≤ b,
can be obtained by choosing the following parameters for Algorithm 2.1

τ :=
1 + nα

n + 1
,

σ :=
2 + 2nα

(n + 1)(1 + α)
,

δ :=
n2

(n2 − 1)(1 − α2)
,

with

α :=
a⊤j − bj

√

a⊤j Bkaj

.

The parameter α gives an additional advantage of this deep cut, as it is possible to check infeasi-
bility or for redundant constraints, [Sch83].
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Another idea could be to use a whole system of violated inequalities as a cut instead of only
one. Such type of cuts are called surrogate cuts and were discussed by Goldfarb and Todd. An
iterative procedure to generate these cuts was described by Krol and Mirman, [KM80].

Consider now the case that the inequality system (1) contains two parallel constraints which
means that they differ only in the right hand side. With this it is possible to generate a new el-
lipsoid containing the information of both inequalities. These cuts are called parallel cuts. Update
formulas for Bk and xk were discovered independently by several authors. For more details, we
refer to [Sch83, BGT81].

However, all modifications which have been found so far do not allow to reduce the worst case
running time significantly – they especially do not allow to avoid the presence of L. This implies
that the running time does not only depend on the size of the problem but also on the magnitude
of the data.

At the end of the second chapter, we point out that the Ellipsoid Method can also be generalized
to use other convex structures as ellipsoids. Methods working for instance only with spheres, or
triangles, are possible. The only crucial point is that one has to make sure that its polynomial
running time can be proven. Furthermore, the underlying polytope can be generalized to any
convex set; for which the separation problem can be solved in polynomial time, see Section 3.2.

3 Applications

In 1981, Grötschel, Lovász and Schrijver used the Ellipsoid Method to solve many open prob-
lems in combinatorial optimization. They developed polynomial algorithms, for instance, for the
vertex packing in perfect graphs, and could show that the weighted fractional chromatic number is
NP-hard, [GLS81]. Their proofs were mainly based on the relation of separation and optimization,
which could be established with the help of the Ellipsoid Method. We discuss this topic in Section
3.2 and give one application for the maximum stable set problem. For all other interesting results,
we refer to [GLS81]. But first, we consider another important application of the Ellipsoid Method.
We examine two concepts showing the equivalence of solving a system of linear inequalities and to
find an optimal solution to a LP. This will prove that LP is polynomial solvable.

3.1 Linear Programming

As we have seen in the last section, the Ellipsoid Method solves the problem of finding a feasible
point of a system of linear inequalities. This problem is closely related to the problem of solving
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the linear program

max
x

c⊤x

s.t. A⊤ x ≤ b, (12)

x ≥ 0.

Again, we assume that all data are integral. In the following we briefly discuss two methods
of how the optimization problem (12) can be solved in polynomial time via the Ellipsoid Method.
This will show that LP is in the class of polynomially solvable problems.

From duality theory, it is well known that solving the linear optimization problem (12) is
equivalent to finding a feasible point of the following system of linear inequalities

A⊤x ≤ b,

−x ≤ 0,

−Ay ≤ −c, (13)

−y ≤ 0,

−c⊤x + b⊤y ≤ 0.

The third and fourth inequality come from the dual problem of (12), insuring primal and dual
feasibility of x and y, respectively. The last inequality results from the Strong Duality Theorem,
implying that this inequality always has zero slack. The equivalence of the two problems means in
this case that vector x of each solution pair (x, y) of (13) is an optimal solution of problem (12)
and y is an optimum for the dual problem of (12). In addition, to each solution of the optimization
problem exists a vector such that this pair is feasible for problem (13).

From the equivalence of the two problems (12) and (13) we immediately conclude that the linear
programming problem can be solved in polynomial time; as the input data of (13) are polynomially
bounded in the length of the input data of (12). This argument was used by Gács and Lovász

in their accomplishment to Khachiyan’s work, see [GL81]. The advantage of this method is that
the primal and dual optimization problem are solved simultaneously. However, note that with this
method, one has no idea whether the optimization problem is infeasible or unbounded in the case
when the Ellipsoid Method proves that problem (13) is infeasible. Another disadvantage is that
the dimension of the problem increases from n to n + m.

Next we discuss the so called bisection method which is also known as binary search or sliding
objective hyperplane method. Starting with an upper and lower bound of an optimal solution, the
basic idea is to make the difference between the bounds smaller until they are zero or small enough.
Solving system A⊤ x ≤ b, x ≥ 0 with the Ellipsoid Method gives us either a vector x providing the
lower bound l := c⊤x for problem (12) or in the case that the polyhedron is empty, we know that
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the optimization problem is infeasible. An upper bound can be obtained, for instance, by finding a
feasible vector to the dual problem Ay ≥ c, y ≥ 0. If the Ellipsoid Method proves that the polytope
of the dual problem is empty, we can use the duality theory (as we already know that problem (12)
is not infeasible) to conclude that the optimization problem (12) is unbounded. In the other case
we obtain vector y yielding to the upper bound u := b⊤y of problem (12), according to the Weak
Duality Theorem. Once bounds are obtained, one can iteratively use the Ellipsoid Method to solve
the modified problem A⊤ x ≤ b, x ≥ 0 with the additional constraint

−c⊤x ≤ −u + l

2
,

which is a constraint on the objective function value of the optimization problem. If the new
problem is infeasible, one can update the upper bound to u+l

2 , and in the case that the ellipsoid
algorithm computes a vector x, the lower bound can be increased to c⊤x which is greater or equal
to u+l

2 . In doing so, one at least bisects the gap in each step. However, this method does not
immediately provide a dual solution. Note that only one inequality is added during the process,
keeping the problem size small. More details and especially the polynomial running time of this
method are discussed by Padberg and Rao, [aMRR80].

3.2 Separation and Optimization

An interesting property of the ellipsoid algorithm is that it does not require an explicit list of all
inequalities. In fact, it is enough to have a routine which solves the so called Separation Problem
for a convex body K:

Given z ∈ R
n, either conclude that z ∈ K or give a vector π ∈ R

n such that inequality

π⊤x < π⊤z holds for all x ∈ K.

In the latter case we say that vector π separates z from K. In the following, we restrict the
discussion to the case when K is a polytope meeting the two assumptions of Section 2.1. To be
consistent with the notation, we write P for K. From the basic ellipsoid algorithm 2.1 follows
immediately that if one can solve the separation problem for polytope P polynomially in L and n,
then the corresponding optimization problem

max
x

c⊤x

s.t. x ∈ P

can also be solved in polynomial time in L and n; L is again the encoding length of the input
data, see Section 2.1. The converse statement was proven by Groetschel et al., yielding to the
following equivalence of separation and optimization:

The separation problem and the optimization problem over the same family of polytopes are

polynomially equivalent.
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Consider now an example to see how powerful the concept of separation is. Given a graph
G = (V,E) with node set V and edges e ∈ E. A stable set S of graph G is defined as a subset of
V with the property that any two nodes of S are not adjacent; which means that no edge between
them exists in E. To look for a maximum one is the maximum stable set problem. This is a
well known optimization problem and proven to be NP-hard, see [GJ79]. It can be modeled, for
instance, as the integer program

max
x

c⊤x

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E (14)

x ∈ {0, 1}
with incidence vector x, meaning that xi = 1 iff node i is in a maximum stable set, otherwise it is
zero. Constraints (14) are called edge inequalities. Relaxing the binary constraints for x gives

0 ≤ x ≤ 1 (15)

yielding to a linear program. However, this relaxation is very weak; consider therefore a complete
graph. To improve it, one can consider the odd-cycle inequalities

∑

i∈C

xi ≤
|C| − 1

2
(16)

for each odd cycle C in G. Recognize that there are in general exponentially many such inequalities
in the size of graph G. Obviously, every stable set satisfies them and hence they are valid inequalities
for the stable set polytope. The polytope satisfying the trivial-, edge- and odd-cycle inequalities

P := {x ∈ R
|V | |x satisfies (14), (15) and (16)} (17)

is called the cycle-constraint stable set polytope. Notice that this polytope is contained strictly in
the stable set polytope. It can be shown that the separation problem for polytope (17) can be solved
in polynomial time. One idea is based on a construction of an auxiliary graph H with a double
number of nodes. Solving a sequence of n shortest path problems on H solves then the separation
problem with a total running time of order |V | · |E| · log(|V |). With the equivalence of optimization
and separation, the stable set problem over the cycle-constraint stable set polytope can be solved
in polynomial time. This is quite a remarkable conclusion as the number of odd-cycle inequalities
may be exponential. However, note that it does not imply that the solution will be integral and
hence, we cannot conclude that the stable set problem can be solved in polynomial time. But we
can conclude that the stable set problem for t-perfect graphs1 can be solved in polynomial time.
For more details about this topic see, for instance, [GS86, Reb06].

4 Conclusion

In 1980, the Ellipsoid Method seemed to be a promising algorithm to solve problems practically
[Tee80]. However, even though many modifications to the basic ellipsoid algorithm have been made,

1A graph is called t-perfect, iff the stable set polytope is equal to the cycle-constraint stable set polytope (17)
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the worst case running time still remains a function in n, m and especially L. This raises two main
questions. First, is it possible to modify the ellipsoid algorithm to have a running time which is
independent of the magnitude of the data, but instead depends only on n and m – or at least any
other algorithm with this property solving LPs? (This concept is known as strongly polynomial
running time.) The answer to this question is still not known and it remains an open problem. In
1984, Karmarkar introduced another polynomial running time algorithm for LP which was the
start of the Interior Point Methods, [Kar84]. But also his ideas could not be used to solve this
question. For more details about this topic see [NW99, Tar86]. The second question, coming into
mind, is how the algorithm performs in practical problems. Unfortunately, it turns out that the
ellipsoid algorithm tends to have a running time close to its worst-case bound and is inefficient
compared to other methods. The Simplex Method developed by George B. Dantzig in 1947,
was proven by Klee and Minty to have exponential running time in the worst case, [KM72]. In
contrast, its practical performance is much better and it normally requires only a linear number of
iterations in the number of constraints.

Until now, the Ellipsoid Method has not played a role for solving linear programming problems
in practice. However, the property that the inequalities themselves have not to be explicitly known,
distinguishes the Ellipsoid Method from others, for instance from the Simplex Method and the
Interior Point Methods. This makes it a theoretically powerful tool, for instance attacking various
combinatorial optimization problems which was impressively shown by Grötschel, Lovász and
Schrijver.

5 Crossreferences

Linear programming, LP; Linear programming: Interior point methods; Linear programming: Kar-
makar projective algorithm; Linear programming: Klee-Minty examples; Polynomial optimization;
Volume computation for polytopes: Strategies and performances
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