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State Equations for Analog/Digital Systems

1 Continuous Time State Equations

Consider a second order transfer function
Y(S) . bis + by
U(s)  s®2+ajs+ay

1 1
by~ + by
5 5

1
L4+ay—+ar=
s s

1 1
btz B(s)
= 1 1
l+@i=+oe— Ba)
5 g




Two equations derived from the above yield a block diagram of
canonical structure.

Y(s) = (br g +b23)E(s)
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Using the state variables () and z3(t) shown in the block



diagram, we can write
sXi(s) = Xa(s)
sXa(s) = E(s)=—axXi(s) —a1Xa(s)+ U(s)
Y(S) = ngl(s) 1= b]_Xg(S)

from which we can write a set of simultaneous first order
differential equations.

zi(t) = zat)
Ig(t) = —GgIl(f) - almg(t) . 13 ‘Hr(t)
'y(t) = byxy (t) + bizs (t)

0] [2 2 ][ze] ]
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Example: Consider a 2nd order transfer function,

Y (s) 1

U(s) s(s+a)

This is the case of a; = a, az =0 and b; =0, by = 1. Using [z, z5]

as state variables, we have,
sX1(s) = Xa(s)
sXa(s) = —aXa(s)+U(s)

We can write the state equation,

: e lz 1



The state equation is written in a vector form as
x(t) = Ax(t) + bu(t),

along with an output equation (in case of single input, single
output)
y(t) = ex(t) + du(t).






2 Solution of State Equation

The Laplace transform of the state equation is

sx(s) —x(0) = Ax(s)+ bu(s)
six(s) — Ax(s) = x(0)+ bu(s)
x(s) = (sl—A)"*x(0)+ (sl — A)~'bu(s)

Define the state transition matrix, ®(t) as
o(t) = £ {(s1 - A)"'}

The inverse Laplace transform of x(s) yields time domain solution
of the state vector x(t).

x(t) = ®(t)x(0) —|—/ﬂ ®(t — 7)bu(7)dT



The output is
y(t) = ex(?)

Example: Find the state transition matrix for the next state

B Y

recalling the matrix inversion for 2 x 2 matrices,
= | T
a b R d -—c IR | d -b
c d S ad—-bc| _p 4 T ed—b| -2 @
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3 Discrete Time State Equation

Consider transition of the continuous state x(t} fromt =Tk to
t =T(k + 1) in the state equation,

x(£) = ®(t — to)x(to) + / ®(t — 7)bu(r) dr.

to

T(k+1)
X(T(k + 1)) = &(T)x(Tk) + /T O(T(k+ 1)~ m)bu(r) dr.
Let us simplify this equation.
T(k+1)
x(T(k+1)) = &(T)x(Tk)+ /Tk ®(T(k+1) — 7)bu(7r)dr

T(k+1)
—  O(T)x(Tk) + u(Tk) /T  O(T(k+1)-r)bdr
Tk +1) > >Tk
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~T(k+1) < —r<.~-Tk
0<T(k41)~1<T
Let 7" =T(k+1)—17
then dr = —dr’

b 4 U

®(T)x(Tk) + u(Tk) / ()b dr

_  O(T)x(Tk) + u(Tk) / " S{riidr
—  Px(Tk) + qu(Tk)
Thus

7

P=®(T) and q:/T¢(ijdT

It is important to notice that u(T'k) was held constant over the
integration period of T'(k + 1) > 7 > Tk. This means that ZOH
was taken into consideration for input u(Tk).
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For the previous example:

1 —aT
0 gL
1—e™ 97 0
( ) dr
e 4tr K
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E—aT)
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Properties of the state transition matrix ®(¢)

x(t) = Ax(t) < x(t) = az(t)
Characteristic Equation A—a=0
x(t) = ®(t)x(0) & z(t) =e™z(0)

Because of the similarity, we write
(1) = eM.

The state transition matrix ®(t) has similar properties as the scaler

function e®t.

1. ¢'(t1 —]— tg) = ¢(t1)¢l(t2) <::, Eﬂ{t1 +t2:l _ Eﬂf-;[ Eﬂ'ﬁz
d d At d t

At | at
dtm() Ad(t) < dt = Ae & dte ae
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A simple way to Calculate P and q

Taylor’s expansion also applies to e?t in the similar manner as it
applies to e®*.

f(t) = 7(0)+ %f’(u)wr %f”(o)tz -

1 1
ot = R v
[ —l—l—l!u‘lt—l—z!ﬂ.t—l-

1 1
At __ 2,42
o= WD) =™
= I+1AT+1A2T2+1A3T3+---
1! 2! 3!

Since higher order terms exponentially get smaller, first 4 to 5
terms is practically sufficient to calculate P.
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q:/¢bdr
0

44
== f eMbdr

0
T
= lht b
A D
= A Y™ =Db
= A (|+ AT+ A2T2+ A3T3 ..—1)b

1
e =1 2m2 33
= K (—I!AT+—2!AT +—3!AT +---)b
_ 1 1 2 1 2m3
= (1!T+2!AT +3—!AT +---)b

To maintain the degree of accuracy to be the same as P, use one
less terms for q than P if the cancelled | is taken into account.
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4 The structure of the state space model

by the previous example

u E——era Y
a[z_a-a'!':l

sampled analog transier function

systam

Y
x{k+1)=Pxik)+quik)
yik=cxikj+dufk), d=0
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State space model to transfer function

x(T'(k+1)) = Px(Tk) + qu(Tk), and y(Tk) = cx(Tk)

T
where, P =®(T), and q:/ ®(7)bdr
0

Note that the vector ¢ is a row vector, whereas other vectors are a
column vector. The z-transform of the state equation is given by

zIx(z) — zIx(0) = Px(z) + qu(z)

(z1 — P)"qu(z)
cx(z) = c(zl — P) " 'qu(z)

w2

T

Tt
T

= ¢c(zI-P)'q

[ =
—
b2
e
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5 Calculating the closed-loop disrete time

state equation

Method to use analog state equation and &(t)

Poweer

Controller amplifier Servomolor Gears
O + _ | Zero-order| Fj__ 200 H’L__ = A H!_'__
* e el e | T K T soss+n 100
- \ /
Volts
Sensor
WValls
.07

Figure P5-13 Robot arm joint control system.

K =2.4 and D(z) =1 in this block diagram.
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The transfer function of this system is,

9.6
s(s+2)

Ge(s) =

Analog state equation is,
Ty 0 1 T1 0
— + e
o 0 -2 T 9.6
For T'=0.1 and a =2,
P=9(I) = & ]
0 —aT J

1 0.0906
0 0.8187
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Using the expansion form to calculate P and q that includes up to

T? term.
P = )= eAT
= 1+ Lars taere g tpsps
1! 2! 3!
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1 0.0900
0 0.8200

q:/¢ T)bdT

= (2T _AT2+ A3T3 ..)b
1!

0.0480
0.8640

where, the output equation is,
i
y=1,0] |- ' = ex
| =

e=u—y=1u—0.07cx
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Thus, the closed loop state equation is,

x(k+1)=[P—0.07qc|x + qu = X + qu

[ 0.9969 0.0906]
[—0.0509 0.8187J
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How to program state space model in
MATLAB

NS e e
% Problem 5-13 p. 197 by state space model 2008
a

P e P S S S PO S e SO

Sys=ss([0, 1; 0, -a),[0; 9.6],[1, 0], 0)
dSys=c2d(Sys.T, 'zoh’)
[A,b,c,d]=s=datal(dSys)

dSys.A

d3ys.b
d8ys.c
diys.d

sensor=0.07
P=dSys.A
g=dSys.b
c=8ys.c
Pc=P-g*c*sensor
dB8ys.A=Pc
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AL
u=cnes(1,200); w=[u,-ul]; vw=[u,u,u,ul;

S

KN=sizelu,2);

t=[0:T: (N-1)*T];
[angle,x]=dlsim(dSys.a,dSys.b,dSys.c,dSys.d,u);
plet(t,u,'r",t,angle,'b’); axis tight;
title(*P5-13 Closed Loop System Simulation’)}
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Calculate P and q from A

% P5_13calc.m

T=0.1

a=2

a12=(1/a)*(1-exp(-a*T))
a22=expl-asT)

q1=(1/a)*(T+(1/a) *exp(-a*T)-(1/a))
q2=(1/a)*(1-exp(-a*T))

P=[1, al2; 0, a22]

q=9.6%[ql, g2]°

A=[0, 1; O, -2]

b=[0; 9.6]

P=[1,0; 0,1]1+A*T+(1/2)*A*=A*T"2
q=([1,0; 0,1]*T+(1/2)=A*T"2)=b

28
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6 Example of more complex state space

model

Example 5.5 textbook p. 184

Eﬂh:' E-‘f“"] Eais) E":L_-r!\'-l
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_ NS T = 1 Yis)

]
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Analog part of system

1
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LD—O J";’ Lo Gl‘il“"} : - UF‘HS:I O ;

< - i
1

]

;

]

1
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AR ——={ G5

L

W
1

Specifying blocks G1p(s), Gap(s), H(s) as shown in the figure
below, derive the state equations in discrete time domain. There is
no need to include ZOH as the integrations to find the state
equations’ matrices take ZOH into account. Also, modeling needs
not consider interconnections from outut to input as this can be
done by introducing a connection matrix.
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ES 1! ¥y
By A e ]
+U_ L | 5+2
. En! v
Eg E2 — 25 1 2
— s(s+1) 0.25 + 1

_______________________________________

For the state variables vy, v; and vs3, we can write

1

uls) = 180

1 N
Ua (5) = m Eqg (5)
va(s) = (0.2s+1)wva(s)

Augmenting another state variablt v4 to break v, into two
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equations,

v1(s)
va(s)
va(s)
va(s)
v1(s)
va(s)

v2(s)

v3(s)

%Uq(&)

(0.25 + 1) va(s)

-
S+231(5)

- &(s)

s+1e3

%m(s)

(0.25s5 + 1) va(s)
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We can write the state equation,

Uy

(P

Vg

—2
0
0

0
0
0

(s) = 11=-2v,+¢&
€2(s) = Ua=-—vs+ &
sv2(s) = va(s) = 712 =14
(s) = wv3=0.2504+v,

0
1
—1

M 1 0 .
€1
ty || O O
)
Vg 0 1

A dependent state variable is v3 = 0.25v4 + v, and the output
equation is y = v,. Now, consider interconnections between

outputs and inputs.

€1

€o

From the block diagram,

r—y=1r—1u

t — Uz = — Uy — 0.251!’4
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L1
e 0 -1 0 1
= Us + r
en 1 -1 -0.25 0
Vg

Let this equation be represented by a matrix equation,

e=Ev+fr

If we write the discrete state equation derived from the continuous
time state equation above as

v(k+ 1) = Pv(k) + Qe(k),
The closed loop state equation is given by

v(k+1) = Pv(k)+ Qe(k)
= Pv(k) + Q[Ev + fr]
= [P+ QE]v + Qfr
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The closed system is modelled according to this eguation in the following MATLAB
poIgram.

L ———

% Example 5.5 modified im H(s) p. 185

N S G R R R G S S B S v

T=0.01
Sys=-ss([-2, 0, 0; 0, O, 1; 0, O, -11,[1, O; 0, 0; 0, 1]1,[0, 1, 01, ©)
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dSys=c2d(Sys.T, 'zoh’)
[P.Q.C.d]l=s=datal(dSys)
E={0, -1, 9; 1, -1, -0,25]
f=[1; 0]

Pc=P+Q*E

Qc=Q+f

u=cnes(1,2000); u=[u,-u,zeros{1,2000),u];
N=size(u,2);

t=[0:T: (N-1)+T];

Ce=C: de=[0];

sys=ss(Pc,0c,Cc,dc,T)
[y.x]=dlsim(sys.a,sys.b,sys.c,sys.d,u);

plot{t,y); axis tight;

title('Closed Loop System Response, time in sec');
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