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The energy generation landscape is changing, pushed by stricter regulations for emissions
control and green energy generation. The limitations of renewable energy sources,
however, require flexible energy production sources to supplement them. Micro gas
turbine based combined heat and power plants, which are used for domestic applications,
can fill this gap if they becomemore reliable. This can be achieved with the use of an engine
monitoring and diagnostics system: real-time engine condition monitoring and fault
diagnostics results in reduced operating and maintenance costs and increased
component and engine life. In order to allow the step change in the connection of
small engines to the grid, a fleet monitoring system for micro gas turbines is required.
A proposed framework combines a physics-based model and a data-driven model with
machine learning capabilities for predicting system behavior, and includes a purpose-
developed diagnostic tool for anomaly detection and classification for a multitude of
engines. The framework has been implemented on a fleet of micro gas turbines and some
of the lessons learned from the demonstration of the concept as well as key takeaways
from the general literature are presented in this paper. The extension of fleet monitoring to
optimal operation and production planning in relation to the needs of the grid will allow the
micro gas turbines to fit in the future green energy system, connect to the grid, and trade in
the energy market. The requirements on the system level for the widespread use of micro
gas turbines in the energy system are addressed in the paper. A review of the current
solutions in fleet monitoring and diagnostics, generally developed for larger engines, is
included, with an outlook into a sustainable future.
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1 INTRODUCTION

When looking at energy generation, the share of renewable energy
is continually increasing, and the European Union targets a 32%
share of renewables along with an improvement of at least 32.5% in
energy efficiency in 2030 compared to projections of future energy
consumption, and a significant reduction of greenhouse gas
emissions compared to 1990 levels (European Council, 2020), as
depicted in Figure 1. The key targets for 2030 have been upgraded
in comparison to those agreed in 2014 (European Council, 2014),
with an updated proposal expected by June 2021 (European
Council, 2020).

The use of wind and solar power whose generation is
intermittent and unpredictable could result in stability
issues for the grid and in a time lag between supply and
demand of electricity. This results in a significant ramp of
demand in the evening hours, graphically represented in what
has become known as the “duck curve” (California
Independent System Operator, 2016). The difference in
supply and demand requires energy storage solutions;
energy storage possibilities are now a hot topic of
discussion. Pumped hydro storage accounts for the
majority of energy stored around the world (US
Department of Energy (DOE), 2021), but is typically
limited to mountainous regions. The use of short term
batteries at a large scale could provide a solution, and
research on different battery technologies is conducted
around the world (IEA International Energy Agency, 2014).
Battery energy storage offers quick response times, but cost is
still a major limiting factor for production. However, the
demand for battery storage is expected to increase in the
longer term (IEA International Energy Agency, 2014). The
short to mid-term energy situation creates an opportunity for
small combined heat and power (CHP) units, which can
provide flexibility of energy production when connected to
the grid. Distributed generation of heat and power can assist
in the move toward cleaner energy by reducing transmission
losses. In the longer term and with further technology
development, batteries and gas turbines could co-exist in
the future energy system to increase flexibility. As the

world is moving toward fossil-free fuels, a fast way to
reduce carbon emissions is to replace coal-fired plants with
gas-powered gas turbines, as argued by Langston (2020). After
all, gas turbine manufacturers have already investigated
operating their engines with alternative fuels such as
hydrogen, either pure or mixed with natural gas.

The reduction in energy consumption and the improvements
in energy efficiency need to come from all parties involved.
However, with buildings accounting for 40% of Europe’s
energy consumption (European Commission, 2016), there is a
significant margin for improvement. In fact, the role of buildings
in the EU policy is expected to expand from energy savings to
becoming active elements in future energy systems, allowing their
occupants to use, supply and store energy in a more flexible and
smarter way. The use of smart electricity meters in the EU (where
it was expected to reach 100% implementation by 2020 in many
countries, (European Commission, 2017) and worldwide allows
real-time billing and can help in the reduction of electricity
consumption. This needs to be done by engaging the
consumers and providing incentives for them to reduce their
electricity consumption. A number of studies in Sweden, where
substantial practical experience has been gained through the full
roll out of smart meters (first country to complete this, in 2009),
showed the complexity of customer response to different
incentives and highlighted that the potential for energy savings
has not been fully exploited (Vassileva and Campillo, 2016). It
was noted that a combination of environmental and economic
incentives, taking into account the income, educational level and
use patterns of the consumers is required in order to maximize
energy savings (Vassileva and Campillo, 2014).

A grid based on distributed generation and small combined
heat and power plants is a good solution to the problem of energy
production flexibility. The key objectives of this paper are to
identify the main requirements for micro gas turbines to fill the
gap in energy production until the generation of energy can fully
rely on renewable energy sources.

The section that follows discusses the historical development
of micro gas turbines that have allowed them to become more
energy efficient and a good option for distributed generation of
energy as well as the progress to date in their operation with
different fuels. The current state of the art in gas turbine
monitoring for maintenance and diagnostics is then presented,
as well as the enablers for the development of a framework for
fleet monitoring that extends the better established diagnostics
functionalities to optimal operation and production planning.
The paper concludes with the discussion of the concept that will
allow distributed micro gas turbines to connect to the smart grid
and trade in the energy market, the challenges and opportunities
for micro gas turbine fleet control and diagnostics, and the key
elements of the proposed framework.

2 DEVELOPMENT OF MICRO GAS
TURBINES

In the recent years, work in the field of micro gas turbines
(particularly those with low power output levels of 1–100 kW)

FIGURE 1 | European Union energy policy for 2030.
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has focused on the development of components and engines with
efficiency levels closer to those of larger gas turbines. The
efficiency levels are limited by small-scale effects, such as low
Reynolds numbers which result in high viscous losses, high tip
clearances due to manufacturing tolerances, large area-to-volume
ratio resulting in high heat losses, and relatively high auxiliary
system losses due to the low power output level (Visser et al.,
2011). Until recently, overall costs posed a limitation to the
development of components, which is crucial for the increase
of overall engine efficiency. However, the development of small
turbochargers with efficiencies close to those of small gas turbines
has allowed the development of micro gas turbines with practical
efficiency levels, using off-the-shelf turbocharger parts from the
automotive industry. State of the art component isentropic
efficiencies for small turbocharger turbomachinery are at the
level of 75% for compressors and 70% for turbines (Visser et al.,
2011; Visser et al., 2012) with further room for improvement by
optimizing the components for the particular application. In
Visser et al. (2011), a conceptual design of a turbocharger-
based microturbine for a heat demand driven micro combined
heat and power (CHP) unit was proposed, with 3 kW of electric
power, 15 kW for heating and hot water, and a target electrical
efficiency of 16%. A competitive market for these small CHP units
is domestic applications, with the units replacing conventional
boilers in larger houses, as well as in small offices, where the
output of the unit can cover daily needs. With an increase in
electrical efficiency to 20% coming from design optimization and
expected technology development, such systems can become even
more competitive.

The micro gas turbines available in the market today cover a
large range of power output. Some of the smallest commercial
solutions for distributed power generation are the EnerTwin by
MTT in the Netherlands which produces 3 kW electric power
fueled by natural gas and the MGT by Bladon in the
United Kingdom which produces 12 kW of electric power
using diesel and/or kerosene as fuel. Larger commercial
solutions for CHP have been provided by the market leaders
Ansaldo Energia with the 100 kW AE-T100, Capstone with a
range of gas turbines starting from 30 kW, FlexEnergy with the
333 kW GT333S. More recently, Aurelia Turbines in Finland has
introduced the A400, a 400 kW model with a stated electrical
efficiency of 40%, which is the highest in the market of small gas
turbines.

2.1 Operation With Alternative Fuels
The typical operating fuel for these engines has been natural gas,
but alternative fuels have become more and more common in the
recent years. In fact, much of the research has focused on fuel
flexibility for micro gas turbines (Bo et al., 2018; Bower et al.,
2020). Operation with a different fuel will often require the
redesign of the combustor to meet the demands of lower
grade fuels and some manufacturers opt for an externally fired
configuration that can increase modularity. Commercially
available gas turbines by Ansaldo Energia and Capstone can
operate with biogas as well as with other fuels in an externally
fired configuration. The Aurelia Turbines A400 can also run with
a variety of fuels, including hydrogen (Aurelia Turbines, 2020).

Units as small as the 3 kW micro gas turbine by MTT have been
tested with fuel blends containing hydrogen and methane, with
modifications to the combustor to allow for the faster flame
characteristics and prevent flashbacks (du Toit et al., 2020).

The use of hydrogen has been advocated for its zero emissions
and has long been suggested as an energy storage fuel (Turner,
2004). This pathway can take advantage of surplus renewable
energy from wind and solar for electrolysis of water for the
production of hydrogen that can be stored for later use. This can
solve the energy storage problem. However, the use of hydrogen
does not come without challenges. Running a gas turbine with
hydrogen requires significant changes in its combustor and the
fuel is less dense in terms of energy per unit volume compared to
fossil fuels. The requirements for transport and storage of
hydrogen imply that dedicated facilities are needed, which
represents a major stumbling block in its widespread use. In a
thorough review of the research in the field, Abe et al. (2019)
conclude that compressed hydrogen in a gaseous or liquid form
has multiple limitations, whereas solid-state storage solutions
show potential but do not yet meet all the criteria for practical and
economic hydrogen storage. However, hydrogen can already be
used in existing pipelines mixed with natural gas (Langston,
2019).

Alternative fuels that can be produced from hydrogen can
overcome some of these limitations, as they have higher energy
density and are easier to store. Adding carbon captured from
different sources to hydrogen can form a hydrocarbon with zero
net greenhouse gas emissions. This synthetic fuel can then be used
in different engines. Renewable synthetic fuels (e-fuels) generated
exclusively with renewable sources are hailed as the route to
sustainable transportation. Such fuels include e-methane,
e-diesel, e-methanol. Another fuel option is ammonia, which
can be produced through the same pathways, but is more toxic
and has other disadvantages such as low flammability, high NOx
emissions, and low radiation intensity (Kobayashi et al., 2019).
Even though it was shown to have a narrow range of efficient
combustion when used in fuel blends in gas turbines (Valera-
Medina et al., 2015), research in ammonia-fuelled gas turbines
has been increasing, with Kobayashi et al. (2019) achieving
combustion of 100% ammonia. Mitsubishi Power is targeting
the commercialization of the first ammonia-fuelled gas turbine in
a size scale of 40 MW around 2025 (Mitsubishi, 2021). This route,
however, is not without obstacles either. At present, the
generation of e-fuels is relatively inefficient and expensive. The
energy coming from renewable sources is becoming cheaper, but
is still at a cost. The electrolysis process has its own limited
efficiency and a high capital cost, which is a limiting factor to
hydrogen production that can allow the synthesis of
different fuels.

The production of alternative fuels from non-renewable
sources can be a near-term solution, but the generation of
carbon-neutral fuels will require that the energy input in the
process is itself fully renewable. Fuels derived from biomass
(biofuels), such as methanol, ethanol, or biodiesel, are
considered renewable but their sustainability, especially when
accounting for their ecological footprint, is a topic of debate
(Stoeglehner and Narodoslawsky, 2009; Solomon, 2010). The
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need for biofuel sustainability criteria that are consistently
applied worldwide is highlighted by Solomon (2010), as some
pathways were found to be unsustainable whereas others have
significant ecological and socio-economic impact.

E-fuels are a promising pathway to sustainable transportation,
in particular for the aviation industry, with electric cars
presenting a more promising alternative to ground
transportation due to the higher efficiency of the entire chain
and their lower cost (Searle, 2020). However, the use of electric
vehicles is a few steps into the future, as it depends on consumer
choices and material availability. In order to achieve net zero
emissions, neither the transportation nor the power generation
industry can rely on just one option; all different alternatives that
offer cleaner energy generation need to be researched and
employed in this journey.

These developments pave the way for the use of smaller and
smaller engines for distributed generation of heat and power with
cleaner fuels, something which is not too far into the future. The
key element will then become the reliability of the engine in order
to be able to compete with conventional systems.

3 GAS TURBINE MONITORING FOR
MAINTENANCE AND DIAGNOSTICS

In order to increase the reliability of gas turbines, a monitoring
and diagnostics system is required. Monitoring the condition of a
gas turbine, detecting anomalies in its operation and diagnosing
faults aims to reduce engine life cycle costs, for both operation
and maintenance, and to increase safety. This is done through
avoiding unscheduled maintenance, detecting partial failures,
improving repair schedules and increasing overhaul.

The detection of faults in the engine components is based on
deviations in the values of component performance parameters
from the baseline values of a “healthy” engine. This requires that
the operating parameters of the engine are measured in real time
and used to calculate key performance parameters. These can
then be compared to those predicted by a model of the engine. A
mathematical framework for this process, referred to as Gas Path
Analysis (GPA), was provided by Urban (1973). This approach
uses the measurable parameters in the gas path of the engine to
detect the change in component health parameters. The main
principle lies in the fact that hardware faults result in degraded
component performance, producing changes in measurable
parameters. The detection of these changes allows the isolation
of the component whose performance has degraded and the
correction of the faulty hardware.

Gas path analysis has been a key tool for engine diagnostics,
initially employing a linear model for the gas turbine. Extensive
research has followed in the field, with Stamatis et al. (1990)
introducing a method to take into account the non-linearities in
engine behavior and other studies proposing different techniques
to counteract some of the drawbacks of these early models. The
models themselves form an integral part of the diagnostic system,
and can be physics-based, data-driven, or hybrid (a mixture of the
two). Numerous papers have given an overview of different
aspects of the vast literature in the field. As (Li, 2002)

highlights, performance analysis has remained one of the most
powerful tools for gas turbine condition monitoring and fault
diagnostics. Engine gas-path performance monitoring represents
the majority of engine health management related research (Jaw,
2005). An overview of the fundamental theory can be found in
Volponi (2014) along with a timeline of past, present, and future
trends.

While the research within the field of gas turbine diagnostics
mainly evolved around exploring different variants of gas path
analysis techniques, numerous studies were performed to explore
methods for proper selection of measurement parameters.
Traditionally, commercial gas turbines are equipped with a
limited number of sensors that are essential for safe operation
and control (Mathioudakis et al., 2004). However, to ensure high
diagnostics accuracy, adequate instrumentation with acceptable
quality might be needed. On the other hand, over-
instrumentation does not necessarily guarantee better
diagnostics; it can lead to increased cost due to installation
and maintenance of redundant sensors. Hence measurement
selection is essential for setting up gas path analysis based
diagnostics. Ogaji et al. (2002) used a non-linear gas-path
analysis model to select the required instrumentation set. The
authors optimized the selection with respect to the number and
type of sensors and their locations for the considered engine-
faults. Jasmani et al. (2011) presented an analytical measurement
selection method based on sensitivity and correlation analysis
combined with a measurement subset concept for multiple
component fault diagnosis. In this study, measurements with
higher sensitivity and correlation are prioritized in the selection
process. The measurement subset concept supplements the
outcome of the sensitivity and correlation analyses with
visualization and priority. In another study, Stenfelt et al.
(2019) proposed a measurement selection method that
automatically modifies the selection under sensor malfunction
to ensure robust diagnostics. The authors emphasized that the use
of correlated measurements in gas path diagnostics should be
avoided. In all studies, the key parameters identified are the
pressure and temperature at the exit of the components
(compressor, combustor, turbine), the fuel flow rate, and the
spool speed.

The basis for gas path analysis can be either a physics-based or
a data-driven model. The two approaches, covered in a number of
review articles (Li, 2002; Marinai et al., 2004; Stamatis, 2011;
Fentaye et al., 2019) have their advantages and disadvantages. The
outcome of these analyses, based on criteria such as model
complexity, accuracy, reliability, computational efficiency,
dealing with noise and limited numbers of measurements is
that there is not one approach that outperforms the rest.
Therefore, a hybrid scheme that combines physics-based and
data-driven methods would be the best choice. In the area of
modeling, where the target is that this is performed real time on-
board for aero-engines, the main challenges identified are the
need for dependable and reliable on-board models that cover
safety-critical parameters, especially during transient operation
(Wei et al., 2020).

The employment of gas turbine diagnostics has seen a
significant increase in research in the field in the last
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2 decades, as major engine manufacturers introduced remote
monitoring and diagnostic services (Ozgur et al., 2000;
Brummel et al., 2005; Therkorn, 2005). Developments in gas
turbine diagnostics and diagnostics-oriented modeling have been
covered in recent review articles which identified research trends
and challenges. In gas path diagnostics, the main drivers for
research have been the limited number of sensors, measurement
uncertainty, engine non-linearity and dealing with simultaneous
faults. To address this, Fentaye et al. (2019) suggests that
researchers should converge toward a universally accepted
definition of the gas path diagnostic problem as well as focus
on the development of integrated platforms and hybrid methods
to combine the advantages of different techniques and models.
The fusion of information from different sources in order to
address the limitations of different methods and enhance the
capabilities of a decision support system has also been the focus of
multiple research studies. It has been extensively used on the
sensor level, but its use for decision support and diagnostics has
been relatively limited (Zaccaria et al., 2019). However, since it
offers benefits in dealing with incomplete data, it can be
particularly beneficial for small and micro-scale gas turbines,
allowing the development of an automated diagnostics and
decision support system.

Earlier researchers have made significant contributions in
improving gas turbine diagnostics methods. However, the
majority of these studies mainly considered large scale gas
turbines with only a few focusing on micro gas turbines.
Performance-based diagnostics of a micro gas turbine posses
additional challenges. To keep the manufacturing costs down,
micro gas turbines are often equipped with only a few sensors.
Moreover, the measurements often suffer from poor accuracy due
to the use of low cost sensors. Rahman et al. (2018) presented a
hybrid approach for micro gas turbine diagnostics by combining
gas path analysis and multiple linear regression. The authors used
five different measurements (i.e. compressor outlet pressure,
recuperator outlet temperature, turbine outlet temperature,
shaft speed and power) to diagnose seven different faults. The
results showed that the proposed diagnostics approach performs
satisfactorily even under measurement uncertainties.

3.1 Advances in Fleet Diagnostics
Simultaneous monitoring of a set of assets has been the next step
in the field. Activities ranging from engine monitoring, health
tracking, and fault diagnosis to fleet health management, are
performed by commercial airlines and power plant operators,
original equipment manufacturers (OEMs) and independent
maintenance facilities (Volponi, 2014). Fleetwide monitoring
programs were initiated in the power generation industry
(Plotts and Diatzikis, 2009; Johnson, 2014). Companies and
customers value the information that can be provided to assist
in troubleshooting or avoid an unplanned event and the effect this
has on overall plant efficiency. Information from the fleet is then
used to provide a baseline for engine performance and estimate
the nominal range of various operating parameters.

Research studies have reflected this, starting to look into
engine fleet monitoring and diagnostics, basing their approach
on data-driven models. Aircraft fleet monitoring has been

addressed by Chu et al. (2010), who constructed a data-driven
model for aircraft operation using historical fleet data for
anomaly detection. They then presented an approach for
population-wide monitoring and detection of performance
anomalies, performance shifts, and anomalous units in a fleet
of aircraft (Chu et al., 2011). They pointed out that the method
needs to be scalable in order to handle large scale fleet data and
the model should be quickly computable. Different approaches
were presented by Scheianu (2014) for diagnostics of an industrial
gas turbine fleet based on performance monitoring and by
Borguet et al. (2016) for data-driven modeling of a fleet of
engines, applied to a virtual fleet of generic high bypass ratio
turbofans. A framework for monitoring and diagnostics of a
virtual fleet of aero-engines was presented by Zaccaria et al.
(2018), pointing out the requirements for adaptive models in
order to accurately detect and classify faults. Machine learning
techniques are used more and more for anomaly detection in
different applications with promising results, and lessons learned
from these can also be transferred to fleet monitoring
applications.

3.2 Advances in Engine Prognostics
The ultimate goal in engine condition monitoring and health
management is the prediction of the future state of the engine and
its components (prognostics). This is linked to diagnostics and
judges the impact of a specific fault on the engine or component.
It can also take into account the degradation of the components
and predict their remaining useful life. Knowledge of when a
component might fail allows the shift from reactive to proactive
maintenance, significantly reducing response time and costs.
Discussion of prognostics has been on the table since the
2000s; Roemer and Kacprzynski (2000) presented an
integrated set of health monitoring, diagnostic, and prognostic
technologies for turbomachinery, highlighting the requirements
for the prediction of remaining useful life. Many physics-based
prognostic models have been presented in the literature, but their
application in real systems is quite limited because they are
generally complex and computationally expensive, defect-
specific, and various parameters need to be determined for
each system (Li et al., 2000; Oppenheimer and Loparo, 2002;
Qiu et al., 2002). Data-driven models such as exponential
smoothing, autoregressive models, and artificial neural
networks have been widely employed (Wang et al., 2004;
Orchard et al., 2005). A simple but effective regression method
combined with statistical knowledge for prognostic analysis has
been proposed by Li and Nilkitsaranont (2009). An extensive
review of prognostic methods and approaches can be found in
Heng et al. (2009).

4 TOWARDS MICRO-CHP FLEET
MANAGEMENT
4.1 Enablers for the Development of
Monitoring and Diagnostics Frameworks
The advances in instrumentation, communication techniques,
and computer technology have allowed the development of
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advanced monitoring tools for a large range of machines and
household devices. The use of monitoring and diagnostics is
increasing rapidly across many industries and applications, as
sensors are getting smaller, cheaper, smarter, and widespread.
Computing is becoming exponentially cheaper and wireless
visualization will enable wider deployment. Developments in
artificial intelligence (AI), with the rise of cloud-based big data
platforms and the success of deep learning, have made it easy to
collect and analyze large volumes of data (Najafabadi et al., 2015).
Therefore, the introduction of technology for the monitoring of
machines can now provide significant payback.

Ongoing trends in digitalization and automation show that
consumer expectations have also changed. In order for a device to
be competitive in the market, it needs to offer a diagnostics and
decision support system. This is no longer limited to large gas
turbines worth 100 million Euro, it is an expectation from almost
all “top of the market” household appliances. Consumers expect
to be able to monitor their appliances from their phones; these
expectations and the wide use of this technology open up new
opportunities for products with a lower acquisition cost that were
unthinkable a few years ago. In order for the micro-CHP system
to be attractive in the connected future, it needs to offer similar
capabilities. If it is to be connected to an increasingly renewable-
heavy energy system, it needs to provide even more advanced
capabilities than today’s and tomorrow’s expectations. When
energy dispatchability and grid stability becomes a key
concern, an intelligent diagnostic and decision support system
will be required. The engine of the future, referred to as the
intelligent engine, uses engine health management for adaptive
control based on the estimated state of health of the engine. This
system conducts analysis on-board, allowing the estimation of
deterioration, faults, and generating diagnostic and prognostic
information to support line maintenance and overhaul logistics
(Volponi, 2014). A key aspect of this is the construct of an
accurate on-board model that is calibrated to the particular
engine being monitored, the digital twin. As the cities get
smarter, the energy consumption and overall efficiency and
emission targets get stricter, and the grid can support more
advanced technologies, a framework that allows systems to be
connected needs to be in place.

4.2 Connection of Micro-CHP to the Grid
Distributed generation of heat and power has changed the energy
market in the last decades, offering many benefits, especially to
their owners, but at the same time posing challenges mainly in
terms of reliability and resilience when connected to the grid.
These small electricity production units can be clustered together
and monitored and controlled as a single entity, in a concept
referred to as the virtual power plant (VPP). This is defined as the
aggregation of load/generation/storage that can act as a single
entity in the electricity grid and market (Pandzic et al., 2013;
Oates and Melia, 2016). Research has been done on different
aspects of a virtual power plant, mostly on improving the
visibility, controllability in terms of electricity grid stability,
and market functionality i.e. scheduling of distributed energy
resources (Saboori et al., 2011; Ghavidel et al., 2016; Nosratabadi
et al., 2017). With regards to a micro-CHP virtual power plant,

research has focused on the technical feasibility, the economic
potential, and the institutional environment.

A number of studies have addressed specific issues arising in the
path of connectingmicro gas turbines to the grid, mostly focusing on
larger engines of the order of 100 kW. The production of a large
number of engines will result in small variations in design
parameters (production scatter) or operating parameters due to
installation effects. These will have an impact on the performance
parameters of the engine, which will in turn affect the optimal
operation of the micro gas turbine. Paepe et al. (2019) suggested that
robust optimization of the operation of the mGT by controlling the
turbine outlet temperature and rpm can minimize this and
maximize electrical efficiency and power output. This should be
taken into account for modeling and production planning. An
application study by di Gaeta et al. (2017) presented a scenario
where amicro gas turbine is used to compensate the deficit in energy
coming from renewable sources. They developed a simplified model
of the MGT that can be coupled to the simulation and control of a
hybrid energy grid operating with renewable energy sources and
hydrogen storage, resulting in savings of 37–41% in fossil fuel
consumption, depending on the level of hybridization of the grid.

Once the micro-CHPs are connected to the grid (be it on a
neighborhood or larger scale) they can then trade energy in the
market according to spot prices and hour by hour price variation
for each day. An application study (Rist et al., 2017) analyzed the
economic dispatch of a single gas turbine based micro-CHP unit in
four cases (small and large hotel, restaurant, residential building),
employing a comprehensive model for the engine, real demand
profiles and electricity tariffs. They identified four different
operation modes for the MGT: electricity driven, heat driven,
maintenance cost driven, and revenue driven. Their analysis
concluded that the connection of the micro-CHP to a smart
grid can offer significant economic benefits in all four cases,
highlighting that using the micro-CHP for electricity generation
in residential buildings in times of peak demand has a large cost
benefit compared to buying energy from the utility provider. In
such situations, the unit can operate in electricity driven mode,
covering the electricity needs of the building, or a revenue driven
mode, selling energy to the grid. Their analysis, however, does not
take into account the effect that variations in the load and frequent
switching on and off of the engine will have on its lifetime.

In order for the units to be used for trade in the energymarket, a
framework for the management of micro CHP is essential. This
framework will take care of control and diagnostics of the fleet and
will also allow management of the fleet and result in the reduction
of overall life cycle costs. This requires the use of historical data to
predict the remaining lifetime of the engine. The framework will
also include a cost function so then the system can make a decision
on whether it is profitable or not to start the GT to provide
electricity to the network. The concept for distributed generation of
combined heat and power is schematically depicted in Figure 2.

4.3 Challenges for Micro-CHP Fleet
Management
The use of data from a large family of similar units has been
proposed in the literature and applied in different fields. The
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main lessons learned from these applications that are applicable
to the micro gas turbine case are the requirements for a scalable
method and small computational times for the models. The
models themselves should be adaptive in order to deal with
production scatter and engine degradation. The framework
should be automated in order to handle a large amount of
data, and provide data processing, engine management,
prediction of service and maintenance needs and include a
visualization platform. The diagnostics and prognostics system
should aim to collect and digitalize the experience obtained
through maintenance, repair, and overhaul (MRO) and
provide a tool that is user friendly and uses continuous
learning techniques in order to build on the initial trained
model and align the decisions of the tool to those of the
experienced operators. In order for the operators to use the
diagnostics and decision support tool, it should first gain their
trust and show that it can make analyses that are not always
possible by a human. If the tool can use data from thousands of
engines in the fleet and analyze them to predict maintenance
action requirements or predict component failure, the operators
would start trusting the system and that would increase its
applicability and use. This experience and trust can be instilled
into the owners of the micro-CHP units by following a similar
approach.

The shift from a large, centralized plant to a fleet of distributed
micro-CHP engines raises a number of challenges for the control
and diagnostics of the fleet and for the operation of the engines in
the grid but also provides a number of opportunities due to the
large number of “sister” engines in the fleet:

• There is significant variability between engines of the fleet,
therefore a single engine model is not sufficient for fleet

diagnostics, as the differences between the engines are not
negligible (Niedler and Fiedler, 1999). A model of an
average turbine needs to be combined with data-driven
regression of every engine in “healthy” conditions to
remove the effects of production scatter. The operating
conditions of each machine should also be taken into
consideration.

• Engine degradation will result in the deviation of the
measurements from those of a healthy engine, and an
adaptive model should be used to monitor the trend of
the measurement data and predict component failure.

• The aim for low engine costs limits the number of sensors
used much more than in larger engines, rendering the
detection of sensor faults more difficult.

• The gas turbine community should understand the market
in order to figure out what will make micro gas turbines
more attractive to the customers.

Fleet monitoring applications in the currently deployed
systems typically do not take advantage of the multitude of
data from a fleet of similar engines to improve the diagnostics
capabilities. This makes them essentially multiple single unit
monitoring applications working individually in parallel and
depicted on the same map.

5 FRAMEWORK FORMICRO GAS TURBINE
FLEET MONITORING, DIAGNOSTICS, AND
PRODUCTION PLANNING
As technology advancement has been reaching different parts of
the industry at different times, many of the advanced

FIGURE 2 | The micro gas turbine fleet concept for distributed generation of combined heat and power (CHP).
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functionalities that can enable the operation of assets in the most
efficient and cost-effective way have been developed separately.
However, in order to increase automation, process efficiency and
reduce maintenance costs, these functionalities (modeling,
diagnostics, control, and decision support) should be included
in an integrated approach. A holistic system can help the industry
move from a collection of sub-optimal solutions to individual
problems to an optimal solution for the management of the entire
fleet. This section presents a framework for the management of a
fleet of units, and some of the lessons learned from its application
to real engines, which highlight the requirements for the
widespread use of micro gas turbines in the future smart
energy system.

5.1 Learning System Architecture
The starting point for the proposed framework is the
identification of a need for a modular architecture for a
learning system that can be applied to existing automation
platforms in the industry. This has been addressed in projects
funded by the EU in the Sustainable Process Industry through
Resource and Energy Efficiency program (SPIRE, 2021). An
architecture for a generic learning system for process industry
was proposed and developed in the FUDIPO (2021) project and is
depicted in Figure 3 presented by Rahman et al. (2021). The main
elements for this learning system that are relevant to the present
application are:

1. Data assurance, the pre-processing of data that includes
cleaning, smoothing and scaling.

2. Trend analysis, which essential for diagnostics and decision
support, most commonly with the use of first and second
derivatives.

3. Engine model, typically used for prediction and analysis.
4. Model predictive control to optimize the behavior of the units.
5. Anomaly detection, detection of abnormal conditions in the

operation of the engine.
6. Fault diagnostics to provide a possible cause for the anomaly

detected.

7. Sensors to collect data and store it in the database.
8. Decision support system, which analyses data and provides

decisions for operation, planning and management.
9. Human-machine interface to present the data to the user or

operator.

The implementation of this framework also brings specific
challenges. The main one is the integration of highly
heterogeneous models in a holistic system. This can be
solved on the platform level, by decoupling model services
and running them in containers that can be customized, thus
enabling different models to run on the same platform (Lipenko
et al., 2021). The framework needs to be implemented in a way
that will not affect the calculation performance of models in
order to allow them to be used for optimization of the process.
The models themselves can be executed on premises or on the
cloud, with each option offering advantages and disadvantages,
discussed by Lipenko et al. (2021). The framework will also need
to meet the requirements for dealing with large amounts of data
identified by Morris et al. (2014): handle data produced by
different sensors, which arrives rapidly, in large volumes, with
noise and is varying in structure. Data must be available to
operators and users in a convenient manner and data security
must also be ensured.

5.2 Requirements for Application to a Fleet
of Units
As the production of power is shifted toward distributed micro-
CHP units and the number of systems in a fleet increase from a
few dozen to hundreds or thousands, the approach for
monitoring and diagnostics needs to be extended to a wider
framework. The main points of departure for this framework are:

• A model for each system would result in too many models
once the number of systems increases, therefore a single
model should be used for each engine in the fleet, with a
unique set of tuning parameters for each system.

FIGURE 3 | Learning system architecture (Rahman et al., 2021).
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• The engine model needs to be simplified in order to run in
real time and enable the unit to trade in the market.

• The presence of a multitude of engines can be utilized for
diagnostics purposes, increasing the amount of information
available for healthy engines. However, this requires a big
amount of data to be collected, stored, and pre-processed to
extract useful information.

• In the calculation of remaining useful lifetime, the usage
profile needs to be taken into account, as the frequent start
and stop decrease the remaining life of the engine. This can
be done using historical data. The collection of data from
multiple engines also increases the confidence of the
calculation of remaining useful life.

• A unique cost function and weather forecast function for
each engine is required to optimize the operation of the
engine and allow the user to sell energy to the grid.

The learning system architecture presented by Rahman et al.
(2021) can be adapted to fit the monitoring, diagnostics and
production planning, as depicted in Figure 4. Each unit within
the micro gas turbine fleet is connected to a PC, enabling remote
monitoring and data collection through a web connection. A set
of parameters from every unit is logged at 1 min frequency in the
fleet historian. The historical and live data is used to monitor the
status of the installed units in the condition monitoring,
diagnostics, and prognostics module, which includes a model
for the engine as well as anomaly detection and diagnostics
functions. The module includes an engine prognostics function
to predict the remaining life of each unit and its individual
components that can enable predictive maintenance. The
optimal operation and production planning module receives as
input the weather forecast and the real-time electricity price in

addition to the data from the fleet. This module performs a cost
analysis taking also into account the output of the prognostics
function, and includes a model predictive controller for optimal
operation suggestions. These two modules provide the necessary
input for the engine decision support tool that can make
suggestions (or take actions once it has gained the trust of the
user) for maintenance and optimal operation.

5.3 Condition Monitoring, Diagnostics, and
Prognostics
To enable automated fleet diagnostics capability, a data
processing and model execution module is utilized. At first,
the data from the fleet historian is collected and different
data-filtering techniques are performed to remove outliers and
noise. Trend analyses are conducted on the data to track the
patterns of different parameters. In order to develop the
monitoring and diagnostics functionality for the fleet, a
physics-based micro gas turbine model has been developed.
The physics-based model is also used to develop a component
level diagnostic scheme. The diagnostic scheme is based on a
hybrid multi-layer approach, shown in Figure 5, where in the first
layer is based on gas path analysis and in the second layer a
signature based multiple linear regression techniques is applied.
This provides the locations and magnitudes of the possible faults.
The outcome from the diagnostics tools is stored in the Condition
monitoring and Diagnostics (CMD) database after data post-
processing. These results are available in the decision support tool
for further analysis and maintenance planning.

Managing a fleet operating on different fuels would add a level
of complexity to the framework. It would need to include fuel
characteristics to the tuning parameters of each engine model.

FIGURE 4 | Framework for micro gas turbine fleet monitoring, diagnostics, and production planning.
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The diagnostics model can be split into two levels, one sub-level
that is fuel-dependent, with smaller families of engines, and one
supervisory level that is collecting and comparing data from all
engines in the fleet.

5.4 Optimal Operation and Production
Planning
The management system for the micro-CHP takes into account
historical usage data from the user, the weather forecast and the
current electricity price in order to suggest the optimal operating
strategy for the unit. This optimal strategy can be a trade-off
between cost/unit life and comfort level at home and money
savings from selling energy to the grid. The weather forecast
function can help the user in determining the short term energy
requirements to maintain the desired comfort level. An integrated
framework and decision support system with a unique cost
function and weather forecast function for each engine allows
each user to decide if it is profitable to sell energy in the grid at any
given time. When the spot price is high, the user could decide to
turn on the engine or choose a lower comfort level at home in
order to sell energy. Another operating option would be to run
the engine continuously in higher or lower load and trade in the
grid rather than turn it on and off more frequently. The decision
support tool can advise the user, taking into account the health of
the system and the degradation of the components. The optimal
operation and production planning framework is depicted in
Figure 4. With this framework in place, the micro gas turbines
can be used as fast-responding load balancers in the grid, given
the right incentives from the energy market.

5.5 Application to Field Data
The proposed framework was used to analyze the micro gas
turbine fleet installed by Micro Turbine Technology BV (MTT), a
company based in the Netherlands with systems installed
throughout Europe. The diagnostics scheme can be used to
analyze installation effects on engine performance, which

differentiate the operation of different units and can also be
used to monitor engine performance degradation over time. The
proposed diagnostics scheme was tested on artificially simulated
faults in Rahman et al. (2018). A data-driven approach for
diagnostics was applied on real engine data collected from the
field unit (Olsson et al., 2021). This can provide suggestions for
maintenance of the different units, as seen in Figure 6. In the
figure, the blue lines represent the historical data, the black lines
the forecast for the next 5,000 h and the red lines the maintenance
suggestion by the diagnostics algorithm. As shown by Olsson
et al. (2021), the data-driven approach can provide an accurate
forecast of the condition of the unit. However, as shown by this
literature review, the data-driven and the physics-based
approaches both have benefits. As such, a combined approach
can be expected to provide even better predictions.

For the framework to be used for real-time decision support
and production planning, it requires the addition of a cost
function to the life prediction model, which can communicate
with the grid and receive real-time information on the price of
electricity and thermal energy and the weather forecast function
to predict the short-term usage requirements. A smart system can
then evaluate the optimal operating andmaintenance strategies to
minimize the cost function and maximize the economic return
for the user.

6 CONCLUSION

As technology plays a bigger role in everyday life, with smart
devices connected to smart grids, and automation is governing
the operation of numerous small and large devices and machines,
real-time monitoring and control is becoming more widespread.
Furthermore, advances in computing power and sensor
technology with lower costs propel the development of more
advanced diagnostics and health prediction functions and yield
new possibilities and applications for the monitoring of gas
turbines. The technology has reached a level of maturity that

FIGURE 5 | Physics-based diagnostics.
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allows the implementation of diagnostic functions in smaller and
cheaper machines. Meanwhile, the advances in turbocharger
technology have allowed the development of micro gas
turbines with power output below 10 kW electric that are cost-
effective and can be used for micro-CHP systems in domestic
applications.

The monitoring, control, and diagnostics of individual engines
is commonplace today. However, monitoring solutions for a fleet
are not developed to the same extent and are not available in the
public domain. The extension or multiplication of existing
solutions will not take advantage of all the possibilities
available with the presence of a multitude of engines of the
same family. It will also not be able to deal with the limited
number of sensors used in smaller systems, which is essential in
order to limit cost andmake them competitive in the market. This
requires a purpose-designed system that will compare data from
different engines to assist the process.

Fleetwide monitoring requires the processing of a large
amount of data and specific models for each engine which are
still fast enough to provide data real time. A simplified “mother”
engine model with a set of tuning parameters for each engine that
will take into account installation effects, operating conditions,

and degradation can ease the process of running engine
diagnostics and prognostics real time for the entire fleet and is
a key component for an automated diagnostics system. This will
also ensure that smaller engines will remain competitive by
reducing maintenance costs.

The framework for decision support discussed in this paper
extends the diagnostics framework to include optimal operation
and production planning that will allow the micro-CHP units to
connect to the grid and the energy market and provide the
possibility to sell energy to the grid when it is cost effective. For
this functionality, a cost function has to be included in the
framework presented in the literature, which will communicate
with the market and determine the more remunerative
operating strategy taking into account the possible lifetime
decrease due to high fired temperature operations or quick
load cycles. The associated challenges are the need to take
into account the usage profile of the engine and predict
consumer behavior in order to accurately predict its
remaining life. However, the extent of possible applications
and the maturity of the technologies involved make this a
worthwhile venture for the gas turbine community to secure
its place in the future energy market.

FIGURE 6 | Engine degradation and maintenance suggestion for different micro-GT units (Olsson et al., 2021).
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