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A B S T R A C T   

Due to urbanization and the rapid growth of population, carbon emission is increasing, which leads to climate 
change and global warming. With an increased level of fossil fuel burning and scarcity of fossil fuel, the power 
industry is moving to alternative energy resources such as photovoltaic power (PV), wind power (WP), and 
battery energy-storage systems (BESS), among others. BESS has some advantages over conventional energy 
sources, which include fast and steady response, adaptability, controllability, environmental friendliness, and 
geographical independence, and it is considered as a potential solution to the global warming problem. This 
paper provides a comprehensive review of the battery energy-storage system concerning optimal sizing objec-
tives, the system constraint, various optimization models, and approaches along with their advantages and 
weakness. Furthermore, for better understanding, the optimization objectives and methods have been classified 
into different categories. This paper also provides a detailed discussion on the BESS applications and explores the 
shortages of existing optimal BESS sizing algorithms to identify the gaps for future research. The issues and 
challenges are also highlighted to provide a clear idea to the researchers in the field of BESS. Overall, this paper 
conveys some significant recommendations that would be useful to the researchers and policymakers to structure 
a productive, powerful, efficient, and robust battery energy-storage system toward a future with a sustainable 
environment.   

1. Introduction 

The energy concepts are evolving all around the world due to 
increasing technological advancements, decarbonization initiatives, the 
establishment of the smart grid concept, and the rapid growth in the use 
of renewable resources. In the past, fossil fuels are critical resources for 
generating electrical power. Due to global warming and greenhouse gas 
(GHG) emissions resulting from the widespread use of diesel, petrol, and 
other fossil fuels, which emits tons of CO2, the world is now approaching 
toward decarbonization through low-carbon emission while expanding 
the utilization of sustainable power sources [1]. As a result, the electrical 
power infrastructures are facing significant challenges such as the 
dispersed nature of making power, the requirement for autonomous 
microgrids to guarantee reliability, the need of reducing GHG 

discharges, and the ability to suit blended energy resources to meet 
innovative and unpredictable demands of providing consistent power 
supply [2,3]. To address these issues, the usage of the renewable 
energy-storage system (RESS) has increased tremendous consideration 
and has become an appealing option for researchers due to its promising 
features in decreasing GHG. However, the wide assortment of alterna-
tives and complex performance matrices can make it hard to assess an 
Energy Storage System (ESS) technology for a specific application [4,5]. 

The principle highlight of RESS is to consolidate at least two 
renewable energy sources (PV, wind), which can address outflows, 
reliability, efficiency, and economic impediment of a single renewable 
power source [6]. However, a typical disadvantage to PV and wind is 
that both are dependent on climatic changes and weather, both have 
high initial costs, and both would need to be larger than average to make 
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their independent frameworks robust for the occasions when neither one 
of the systems is delivering enough electric capacity to fulfill the load 
[7]. The BESS can be applied to RESS frameworks to expand the effec-
tiveness and evacuate the deficiencies. Truth be told, when the wind 
speed or solar radiation diminishes, or a peak demand happens, the 
presence of these capacity units gets essential. 

The design optimization aided by an efficient sizing of BESS is 
essential to expand the exhibition and reliability, which may satisfy the 
external load demand, lessen the energy cost and net present cost (NPC), 
and limit the ozone harming substance emanations [7]. The optimal 
sizing of an effective BESS system is a tedious job, which involves factors 
such as aging, cost efficiency, optimal charging and discharging, carbon 
emission, power oscillations, abrupt load changes, and interruptions of 
transmission or distribution systems that needed to be considered [6,7]. 
Thus, the interest in developing a competent and reliable BESS is 
increasing among the researchers. Many researchers have developed 
different optimization algorithm to find out the best possible outcome 
from the traditional BES system considering the low cost, high lifetime, 
reliability, and lower environmental impact. 

Until now, a couple of significant BESS survey papers have been 
distributed, as described in Table 1. A detailed description of different 
energy-storage systems has provided in [8]. In [8], energy-storage (ES) 
technologies have been classified into five categories, namely, me-
chanical, electromechanical, electrical, chemical, and thermal 
energy-storage technologies. A comparative analysis of different ESS 
technologies along with different ESS applications is mentioned, and the 
suitable technology for each application is provided. However, the 
challenges of different technologies and the BESS optimization methods 
were not described extensively in the research. 

The sizing of BESS in the RES is mainly focused in [9]. The appli-
cation of BESS sizing has been categorized into four sectors, namely, 
BESS sizing in microgrids, distributed renewable energy systems, 
standalone hybrid renewable energy systems (HRES), and renewable 
energy power plant. However, the study did not include BESS sizing 
methods and optimization techniques in detail. Details about microgrids 
and the technologies integrated with microgrids are discussed in [10], 
but detail about BESS sizing and optimization is missing in the literature. 
A comprehensive review on battery and non-BESS from a distributed 
energy perspective is given in [11]. 

The chemical formulation and differences of various types of 
lead–acid batteries have been presented in [1]. A comparative study on 
BESS and non-battery energy-storage systems in terms of life, cycles, 
efficiency, and installation cost has been described. Multi-criteria deci-
sion-making-based approaches in ESS, including ESS evolution, 
criteria-based decision-making approaches, performance analysis, and 
stockholder’s interest and involvement in the criteria-based analysis, 
have been mentioned in [12]. Nevertheless, BESS sizing and optimiza-
tion techniques have not been discussed in detail. A detailed discussion 
on ESS sizing methods toward achieving decarbonization in the micro-
grid (MG) application is presented in [13]. The optimization methods 
and algorithms for ESS sizing are divided into two modes, namely, 
grid-connected and isolated mode, and a brief comparative study is also 
presented considering decarbonization. Olabi et al. in [14] have divided 
the ESS into four major categories, i.e., mechanical, electromechanical, 
chemical, and thermal ES systems. Detailed construction and application 
of each category are described followed by future challenges. The 
detailed discussion of ESS sizing and optimization techniques along with 
system constraints is absent in the manuscript. Only the ESS technology 
development and application are being focused on. 

To bridge these research gaps, this review provides a brief discussion 
on BESS sizing technologies and optimization methods. Moreover, a 
brief comparative study on BES technology, recent sizing, and optimi-
zation methods, and outstanding issues of BESS sizing strategies are 
presented. The main objective of the study is to develop a comprehen-
sible analysis of the existing research for a critical research question and 
identify the research gap. The key objectives of this study are 

summarized as follows: 

• To deliver researchers a clearer image of the cutting-edge electro-
chemical advances available and where they would be appropriate 
for integration into a power generation and distribution framework  

• To study the different BESS technologies, constraints, and 
applications 

• To classify various optimization strategies according to their ap-
proaches, technologies, advantages, and disadvantages  

• To discuss various optimization methods’ problems and concerns  
• To provide some valuable guidelines for potential system 

development 

2. Surveying methodology 

In terms of recent research, there has been a developing enthusiasm 

Table 1 
Discussion on a recently published review article in the field of BESS.  

Ref. Year Focused topics Research gaps 

[8] 2016 A detailed discussion on ES 
technologies and applications 
has been provided. 

The challenges and issues of 
different BESS and their 
optimization techniques were 
also not provided extensively. 

[9] 2017 Presented BESS sizing in 
renewable energy system (RES). 
The sizing techniques have been 
categorized into four methods, 
namely, probabilistic methods, 
analytical methods, direct search 
based, and hybrid methods. 

The clarification of BESS 
sizing optimization was 
constrained to only a few 
methods. 

[10] 2017 Provided details about microgrid 
definition, characteristics, 
classification, challenges, 
combining technology with 
microgrids, and future scope. 

Theoretical analysis of 
microgrid integrated 
technologies has been given, 
but discussion about the sizing 
and optimization methods is 
missing. 

[1] 2018 Described the lead–acid batteries 
principles, cell construction, 
durability limiting factors, 
application in different 
countries, and sustainability. 

Focused only on lead–acid 
batteries. The energy sizing 
and optimization techniques 
have not been discussed. 

[11] 2018 A comprehensive literature 
review of ESS sizing, smart 
charging and discharging, and 
mitigation possibilities of power 
quality issues by ESS placement 
are provided. 

The execution process of BESS 
sizing optimization algorithms 
was not described extensively. 

[12] 2019 Multi-criteria decision-making- 
based approaches in ESS are 
described. Moreover, criteria for 
ESS evolution, performances, 
comparative studies among 
criteria, uncertainty analysis, 
and stockholder’s involvement 
and interests are provided. 

BESS sizing and optimization 
methods and implementation 
factors were not involved in 
the literature. 

[13] 2020 Discussion on ES sizing methods 
toward achieving 
decarbonization in MG 
application is presented based on 
grid-connected and isolated 
mode of operation. The 
comparative study, including 
advantages, limitations, and 
outcome, is presented. 

The constraints of the BESS 
system have not been clarified 
and described clearly. 

[14] 2021 According to the manuscript, 
mechanical, electromechanical, 
chemical, and thermal energy- 
storage systems are the four main 
divisions of the ESS. Each 
category is outlined in-depth, 
including its construction and 
implementation, as well as 
potential challenges. 

The manuscript lacks a 
thorough discussion of ESS 
sizing and optimization 
methods, as well as system 
constraints.  
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to create compelling and dependable BESS frameworks. To discover the 
present state of scientific research in the field of “battery energy-storage 
system,” a brief search in Google Scholar, Web of Science, and Scopus 
database has been done to find articles published in journals indexed in 
these databases within the year 2005–2020. The keywords that were 
selected to search for the publication include energy storage, battery en-
ergy storage, sizing, and optimization. Various articles were found, but 
appropriate articles were recognized by assessing the title, abstracts, 
focus, and contributions of the manuscript. The outcome of the selection 
process is categorized into four stages. Firstly, the different BESS opti-
mization objectives, alongside system constraints, were broadly 
explored. Secondly, an extensive survey on BESS modeling and devel-
opment approaches, intelligent systems, strengths, weaknesses, and key 
findings were reviewed. Thirdly, the BESS application in a real-life 
scenario, including the issues and challenges regarding BES system 
development, was analyzed and described. Finally, the survey provides 
some significant proposals for the further development of the battery ES 
system to achieve clean energy and sustainable environmental goal. 
Fig. 1 summarizes the selection process and the review outcome. 

2.1. Selection process  

• Following the primary process, a total of 496 papers were selected.  
• The first evaluation and screening were done utilizing the proper 

catchphrases, title, theoretical, and article content, and 298 articles 
were recognized through this refining process.  

• The second assessment and screening were conducted, utilizing the 
articles’ impact factor, review procedure, and citation.  

• Finally, a sum of 173 papers from journals and scientific conference 
proceedings were chosen for the review stage. 

2.2. Research outcome  

• BESS optimization objectives and system constraints toward 
achieving clean energy were comprehensively reviewed. 

• A comprehensive survey on BESS modeling and development ap-
proaches, objective functions, advantages, disadvantages, and key 
findings were given in detail.  

• The real-time BESS applications, issues, and challenges while 
developing a robust and efficient BESS optimization method were 
also broadly described.  

• Few selective and significant proposals for further improvement of 
BESS, including the improvement of power quality, battery lifetime, 
cost reduction, and carbon emission, were provided. 

3. BESS market trend 

The 2015 United Nations Climate Change Conference in Paris set the 
structure for a quick worldwide move to an economical energy frame-
work to avoid the danger of disastrous environmental change [15]. 
Energy storage has been a key part of empowering the outstanding 
transition as it depends more on renewables and less on fossil fuels. 
Among various ES technologies, BESS follows with the most potential 
[16]. According to BloombergNEF (BNEF), battery prices have dropped 
to 87% from the year 2010 to 2019 [17]. Fig. 2 shows the lithium-ion 
(Li-ion) battery pack price. As shown in Fig. 2, the prices in 2010 
were above 1100 $/kWh and reduced gradually and 156 $/kWh in 
2019. Besides, the battery market is also proliferating due to the rapid 
reduction of cell pack prices and better value for money while installing 
new ES systems. The annual lithium-ion battery market worth will in-
crease from $28 billion to $116 billion from the 2020 to 2030 [17]. 

According to Deb [18], $1 billion has been given by the world bank 
to accelerate the investments in BESS. This will allow the developing and 
middle-income countries to overcome the obstacles toward the next 
generation of power technology, expand energy access, and set the stage 

Fig. 1. Schematic diagram of the entire surveying methodology of the literature.  
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for cleaner and more stable energy systems. According to [19], the 
growth of the battery market in Malaysia is expected to be over 6.6% 
during 2020–2025, and lead–acid battery is expected to dominate the 
market. A detailed discussion on Malaysian electricity tariff and 
methods of grid-tied potential sources (PV and BESS) to mitigate the 
peak demand shaving is presented in [20]. 

4. Overview of battery ES technologies 

Clean energy sources which use renewable resources and the battery 
storage system can be an innovative and environmentally friendly so-
lution to be implemented due to the ongoing and unsurprising energy 
crisis and fundamental concern. As previously discussed, BESS is a 
supporting system with a rapid response time, high reliability, and low 
self-discharge rate and is highly potential under the circumstances [21]. 
BESS can also be a great alternative in mitigating peak shaving instead of 
using liquid-based generation [22]. Every storage type has specific at-
tributes, namely, capacity, energy, and power output, charging/di-
scharging rates, efficiency, life cycle, and cost, which need to be taken 
into consideration for possible applications. The diverse ESS technolo-
gies display differing confinements relying upon the materials and 
power electronic interfacing. Table 2 presents a comparative summary 
of different battery ES technologies considering life cycle, efficiency, 
power and energy density, advantages, limitation, and applications [1, 
10–12,23–27]. 

As presented in Table 2, an electric double-layer capacitor (EDLC) or 
supercapacitor has the highest life cycle and energy density but the 
lowest specific energy. Among all the storage options, the super-
capacitor has a wide variety of applications such as bus, rail, and electric 
vehicles (EV) and backup power applications. Supercapacitors show 
significantly less sensitivity to temperature than Li-ion batteries with 
potential working temperatures in the scope of -40–65◦C [28]. 
Hydrogen batteries have the highest specific energy compared to other 
storage systems and have a high life cycle as well. Though hydrogen 
batteries are environmentally friendly and have a long life cycle, it has a 
high initial cost. On the other hand, flow batteries are safe as they are 
nonflammable and demonstrated a long battery life, and it is not 
dependent on the depth of discharge. Flow batteries are mainly used in 
EVs and for load balancing along with solar and wind. There are 
different types of flow batteries, including Fe-Cr, Fe/V (vanadium 
redox), zinc bromide (Zn-Br), and zinc chloride (ZnCl2). Among them, 
vanadium redox is the most common type of storage option. Vanadium 
redox flow battery (VRFB) has a larger energy capacity than other 
technologies, and it can be it tends to be left discharged for extended 
periods with no harmful impacts. However, the main disadvantage is 
that the VRFB has poor energy-to-volume ratio and a poor round trip 

efficiency [29]. 
Lead–acid is the oldest rechargeable battery technology. Lead–acid 

batteries have a moderate life cycle and efficiency, and the most com-
mon applications are in emergency lighting and electric motor. 
Regardless of having a meager energy-to-weight ratio and a low energy- 
to-volume ratio, its capacity to supply high surge current implies that the 
cells have a moderately substantial power-to-weight ratio. These fea-
tures, alongside their ease, make them appealing for use in motor ve-
hicles to give the high current required by starter engines [1]. 

The most common battery energy technology is lithium-ion batte-
ries. There are different types of lithium-ion batteries, including lithium 
cobalt oxide (LiCoO2), lithium iron phosphate (LiFePO4), lithium-ion 
manganese oxide batteries (Li2MnO4, Li2MnO3, LMO), and lithium 
nickel manganese cobalt oxide (LiNiMnCoO2). The main advantages of 
lithium-ion batteries are portability, high energy density, and fast 
response time; however, the main drawbacks considered are its high cost 
and limited capacity. Different types of lithium-ion batteries have 
different applications. LiMnO2 is used in mobile phones, laptops, and 
cameras, among others, because it is safe and can deliver high power. 
LiNiMnCoO2 and Li2MnO4 are mainly used in medical instruments. 
Among all storage options, Li-ion presents a relatively high cycle effi-
ciency, superior power, and energy density. 

5. Optimization objectives and constraints in BESS 

In this review, objective function of the optimization and constraint 
i.e. limitations on the optimization of BESS have been explained detail. 
The BESS optimization requires the process of optimizing the derivatives 
of the objective functions with respective to some variables in presence 
of constraints. Detail objective functions and optimization constrains of 
BESS are demonstrated in the following section. 

5.1. Optimization objectives in BESS 

BESS optimization refers to the sizing and placement of the BESS in 
such a way which become more popular among consumers on the cost- 
effectiveness, energy cut and demand expenses. Nowadays, due to the 
constant increase of fossil fuel burning, carbon emission, and scarcity of 
fuel sources, BESS is becoming a promising alternative source for fast 
response, adaptability, controllability, environmental friendliness, and 
geographical independence. Researchers show great interest in devel-
oping an efficient BES system. Fig. 3 shows the basic construction of the 
BESS sizing optimization problem. 

Researchers have used several methods to improve various param-
eters. The most common goals in different papers are to determine the 
cost, capacity, lifetime and power quality, and load flow. The most 

Fig. 2. (a) Annual lithium-ion battery market size (b) Lithium-ion battery pack price from the year 2010 to 2019.  
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Table 2 
Overview of different battery ES technologies considering life cycle, efficiency, power and energy density, advantages, limitation, and applications [1,10–12,23–27].  

Technology Life cycle at 80% 
depth of discharge 
(DoD) 

Efficiency 
(%) 

Specific 
energy(Wh/ 
L) 

Energy density 
(W/L) 

Advantages Limitations Applications 

Lead–acid 300–3000 70–90 35–40 80–90 - Cheap 
- Available 

- Low-energy density 
- Restricted cycling 
ability 
- High environmental 
impact 

- Emergency lighting 
- Electric motors 
- Diesel-electric submarines 

NiCd 3000 80 40–60 50–150 - Good life cycle 
- Improved low- 
temperature 
performance 
- High tolerance level 

- High self-discharge rate 
- High environmental 
impact 
- Memory effect 

- Low-cost rechargeable 
batteries 
- Battery manufacturing 
companies 

NiMH 2000 66–92 60–120 140–300 - High tolerance level 
- Improved low- 
temperature 
performance 
- Availability and 
high energy density 

- Highly expensive 
- Damage may happen 
due to full discharge 
mode 

- Low-cost rechargeable 
batteries 
- Battery manufacturing 
companies 

Li-ion 3000 75–90 100–265 250–693 - High energy density 
- Fast response time 
- High efficiency and 
low self-discharge 
rate 
- No memory effect 

- High initial expense 
- Safety issue depending 
on the type 

- Portable devices like mobile 
phones, laptops, etc. 
- Thermometers, remote car 
locks, laser pointers, MP3 
players, hearing aids, etc. 
- Electric vehicles (EV) 

LiCoO2 500–1000 95.7–98.4 150–200 2710 - High detailed 
energy 
- Secured market 
share 

Expensive, limited 
power, no longer relevant 

Mobile phones, tablets, 
laptops, cameras 

LiMn2O4 300–700 80 100–150 2310 - High power 
- Safer than LiCoO2. 

Less capacity, need to 
combine with NMC to 
improve efficiency 

Power tools, medical devices, 
electric powertrains 

LiNiMnCoO2 1000–2000 - 150–220  - High capacity and 
high power 
- Leading system 

- Highly expensive 
- Complex monitoring 
and control 

E-bikes, medical instruments, 
EVs, industry application 

LiFePO4 2000> - 90–120 1932 - Safe 
- Stable voltage 
discharge 

Low capacity, used for 
preliminary energy 
storage 

Portable and stationary 
application where high load 
current is needed 

LiNiCoAlO2 500 - 200–260 - - High specific energy 
and stability 
- Works as an energy 
cell 

Expensive, limited power 
capacity 

Medical application, 
industry, and power train 

Li2TiO3 3000–7000 - 50–80 - - High life cycle 
- Fast charging and 
safer technology 
- Wide thermal range 

Expensive, low specific 
energy 

uninterruptible power supply 
(UPS), solar-powered street 
lighting 

Flow batteries 2000–20000 65–85 40 - - Nearly unlimited 
longevity 
- Scalability 

High maintenance 
- An extra electrolyte tank 
is needed 
- Complex monitoring 
and control 

- UPS 
- Can be used alongside solar 
and wind for load balancing 
- EV 

NaS 4500 89 150–300 10000 - High efficiency 
- High life cycle 

- High maintenance 
- High operating 
temperatures 

- Load balancing 
- Secondary UPS 
- EV 

NaNiCl2 1500–3000 85–95 90–120 150 - Long life cycle 
- High energy density 

- High thermal 
management is needed 

- Load leveling 
- EV 

Electric double- 
layer capacitor 
(EDLC) 

1000000 95 <8 10000–20000 - High power density 
- Long life cycle 
- Fast response time 
- Lower thermal 
management 
required 

- Low specific energy 
- Complex water and 
thermal control 
- High initial cost 
- Low efficiency 

- Hybrid bus, rail, and EV 
- Backup power applications 
- Standalone or hybrid 
technology with battery for 
ES system 

Hydrogen 20000 20–66 500–3000 500< - Less environmental 
impact 
- Long life cycle 

– - Electrical energy in satellite 
- Space probes  

Fig. 3. Overall system flowchart of the BESS optimization technique.  
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notable objective functions in the BESS optimization are discussed 
below. 

5.1.1. BESS cost optimization 
Another very widely recognized optimization is cost optimization, 

which is conducted to minimize the cost and achieve the highest possible 
outcome with minimum cost (including installing and operation cost). In 
most of the literature, the best possible outcome in the most cost- 
effective way has been considered. In [7,30–40], and [41], cost func-
tion is used as an optimization parameter. In [30], BESS scheduling is 
solved through mixed-integer linear programming (MILP) where the 
cost function is defined as follows: 

∑N

i=1

∑T

j=T∗

{
uT∗

i,j ⋅(FCi)⋅ΔT + uT∗

i,j ⋅
(

1 − uT∗

i,j

)
⋅SCi

}
(1)  

where T*= Tpre is for the previous day and T*= Tcu is for the current day, 
ΔT is the unit time, and uTcu

i,j is the activator for the thermal generator i at 
time j (0: stop; 1: start). The system constraints are categorized in three 
categories, namely, constraints of thermal power generator, constraints 
of BESS, and constraints of forecast update. The thermal power gener-
ator output constraints include maximum and minimum power limit, 
upward reverse capacity, and load frequency control, whereas the BESS 
constraints include charging–discharging and the stored energy of the 
primary and end state. The result shows that the determination of 
charging–discharging of BESS with respect the actual PV power outcome 
can reduce the energy shortfall of the overall system and improve the 
system reliability and reduce the overall cost. 

In [36], two objective functions have been considered, namely, total 
cost and loss of load expectation. The cost objective function is defined 
as follows: 

Min φ1 = IC + OC (2)  

IC =
∑

j∈n

{
ICPBPR

B j + ICEBCmax
B j

}
(3)  

OC =
∑NS

s=1
ρs

∑NT

t=1

∑NH

h− 1
×

∑

j∈n

[
λth × Ps

sun jth

]

+
∑NS

s=1
ρs

∑NT

t=1

∑NH

h− 1
×

∑

j∈n

(
αjPs

DG jth + bjPs
DG jth + cj × us

jth

)

+
∑NS

s=1
ρs

∑NT

t=1

∑NH

h− 1
×

∑

j∈n

{
SUCs

jth ×
(

us
jth − us

j(t− 1)h

)}

(4)  

where IC and OC are the installment cost and operation cost, respec-
tively. NH, NT, and NS are the number of days, hours, and scenarios, 
respectively, whereas ρs is the scenario possibility. Ps

DG jth, SUCs
jth and us

jth 

are the generation, startup cost and on/off condition of the DG units in 
bus j at time t in day h. ICPB and ICEB are the installation cost of ESS and 
Cmax

B j is the maximum battery capacity at bus j. The two main constraints 
are power flow limitation and total generation cost of DG. Optimal sizing 
of BESS with and without demand response program (DRP) is shown 
here, and the obtained result has revealed that the total cost of micro-
grids considering the DRP is 13.34% less than the reasonable condition. 
In [41], the techno-economic analysis is carried on using two key pa-
rameters, i.e., life cycle cost of storage (LCCOS) and the levelized cost of 
energy (LCOE), and the analysis is divided into three categories, i.e., 
short-, medium-, and long-term ESS. The result shows that for long-term, 
medium-term, and short-term analysis, pumped hydroelectric storage 
(PHS), NaS technology, and supercapacitor energy storage (SCES) 
technology have provided the lowest LCCOS and LCOE, respectively. In 
the context of cost optimization, the main constraints include but are not 
limited to fuel constraints, emissions constraints, and plant 
characteristics. 

5.1.2. BESS capacity and lifetime optimization 
Another key optimization factor is capacity optimization in BESS 

where the capacity of the power conversion system and the battery 
storage capacity are considered. In designing an efficient BESS, power 
rating and battery storage capacity are needed to be optimized accord-
ingly. Several researchers proposed various methods to optimize the 
battery capacity and improve BES system performance and cast mini-
mization [42–48]. In [42], the main goal of the BESS capacity optimi-
zation model is maximizing the equivalent uniform annual profit: 

maxobj = Csell − CWP − CPV − CCSP − CBESS − COM − Ctax (5)  

where, Csell is the annual income, CWP, CPV , CCSP, CBESS, COM and Ctax are 
the equivalent uniform annual cost of wind, PV, concentrated solar 
power, BESS, operation and maintenance and annual tax respectively. 
Transmission line capacity, renewable energy annual curtailment rate, 
WP, PV, CSP, BESS operation, and state of charge (SoC) limitations are 
considered as the constraints. The capacity optimization is conducted on 
an hourly basis over a year, and the result concluded that the profit 
should be maximized, less than 5% of the annual curtailment rate is 
ensured, and 99MW/254MWh battery will be disposed from the project. 
Moreover, 0.09$/kWh is the threshold level of the profit margin from 
the project. An optimal method for BESS sizing is proposed in [49], 
where the capacity and annual charging and discharging are optimized 
to achieve the annual maximum reduction rate. A dynamic program-
ming (DP)-based capacity degradation and cost modeling are computed 
in [48], where the BESS is optimized along with the wind turbine (WT). 
Five different system configurations are considered:  

• WT output = Load; BESS is not required.  
• WT output > Load; BESS can eradicate the excess power.  
• WT output >>Load; BESS can no longer eradicate, so the excess 

power is discarded. In this scenario, the excess power can be sold to 
the grid to reduce the overall operating cost.  

• WT output < Load; BESS delivers the stored energy to mitigate the 
demand.  

• WT output + BESS < Load. 

The capacity of BESS is optimized to reduce the overall system cost in 
[46] where the mixed-integer linear problem is expressed as follows: 

cpv⋅Kpv + cw⋅Kw + cbat⋅Kbat + cfc⋅Kfc + Hcost⋅nhyd (6)  

where cpv, cw, cbat, and cfc are the PV, wind, BESS, and fuel cell capacity, 
respectively. The results show that replacement of the installed Li-ion 
batteries recurring on a frequent basis may trigger the uplift in overall 
cost for the systems having extended life span crossing the threshold of 
14 years. Fig. 4 shows the flow chart of the proposed capacity optimi-
zation determination system in [50]. 

In the optimization process, ESS capacity, SoC, and output power are 
considered system constraints. The result shows that a BESS life span can 
be significantly improved by an optimal configuration of BESS and WT 
and with the discarded energy selling can effectively minimize the 
operating cost of the system. 

The lifetime of a battery depends on its cell structure, operation 
procedure, and thermal environment along with charging and dis-
charging cycle. Many researchers perform different techniques to 
analyze and optimize the lifetime, and sometimes the lifetime is inte-
grated with cost function as well. The main idea in [43] is the allocation 
of battery capacity and power according to the current state of health 
(SoH). The rate of degradation, corrosion, cycle count, and SoH are 
considered as parameters for the battery management system (BMS). 
Multiuse application with UPS system is applied with BESS to increase 
lifetime through higher mean SoC, lower DoD, and lower nominal cur-
rent rate per string. In [51], SoH estimation of Li-ion battery is 
completed based on self-adaptive differential evolution algorithm, 
which increases SoH estimation accuracy by adding a community of 
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poor learners. In [52], the two main objective functions include RMS 
battery power and overall cost, to reduce initial cost and battery life 
span. A hybrid particle swarm–Nelder–Mead algorithm involving 
multi-objective optimization is used for BESS sizing. Cycle 
counting-based battery life span assessment is used in [53], where DoD 
and SoC are the two key parameters used for the battery control algo-
rithm. The battery lifetime estimation is formulated as follows: 

LBESS =
T

∑m
i=1

Ni
CFi

(7)  

where T is the simulation duration in years, Niis the number of cycles at 
each DoD, and CFi is the number of cycles to failure at the corresponding 
DoD. From the literature, it is concluded that the proposed method 
improves battery life and reduces battery degradation due to overuse. 
Battery cycle count and sizing are also done in [54–56]. A demand 
response program combined with BESS is presented in [57], where the 
cost function, internal power transfer, external power rating, load pro-
file, and batter SoC characteristics are analyzed. To estimate and 
improve battery life span, thorough SoC optimization is also presented 
in [58–63]. A cloud-based optimal energy management system (EMS) 
based on DP is introduced in [64] to diminish the battery lifetime 

degradation in China. The outcome shows significant improvements 
over the rule-based methods. A PV-BESS-based prototype is presented in 
[65]. The BESS of the prototype consists of three nickel–metal hydride 
(NiMH) batteries providing up to 3.24 kWh of storage capacity. Fig. 5 
shows a block diagram of the prototype system. 

The two key objectives are maximizing the delivered energy by PV 
framework and restraining the power drain from the distribution 
network. Table 3 presents the control strategy of the charging and dis-
charging of the prototype system. 

The battery lifetime is also dependent on temperature and humidity. 
If the temperature exceeds 25◦C, a significant decrease in battery ca-
pacity is shown in [66]. The study shows that if the temperature changes 
from 25◦C to 35◦C, the cycle count of an LFP cell at 90% capacity is 
decreased from 2600 to 1450. The cycle count can reduce to 400 at 
55◦C. Therefore, at an increase of 30◦C, the cycle count will decrease to 
84.6%. Both the battery capacity and battery lifetime optimization are 
essential as it is directly related to the operational cost of the overall BES 
system. 

5.1.3. Power quality and power flow optimization 
An unoptimized BESS in the distribution network leads not only to 

the degradation of the power quality but also to the reduction of reli-
ability, load controlling, voltage, and frequency regulation. A brief 
description of the importance and problems regarding power quality 
and frequency regulation in the smart power system is presented in 
[67-69]. Since the frequency regulation profoundly relies upon infusion 
and ingestion of real power inside a brief span, the different study ap-
plies different BESS technologies to achieve frequency stability. In [70] 
and [71], SMESS-based ESS is applied, which showed promising results 
in damping out the power flow oscillation. Detailed overvoltage and 
undervoltage problems due to install rooftop PV are discussed in [72]. A 
PV inverter with reactive capability along with an ESS is proposed to 
minimize the problem. Voltage imbalance for rooftop PV is analyzed in 
[73], and a control method of distributed and localized SoC of the 
distributed ESS is proposed. A new approach for BESS sizing is 

Fig. 4. Optimal method to determine BESS capacity.  

Fig. 5. Integration of BESS with the PV system [65].  

Table 3 
Control strategy of battery charging and discharging by the PV system.  

1. Start 
2. Input: load active power PDC and PAC 

3. If, load power ∕= 0; SOCmin < SOC < SOCmax; 
4. And, PPV > PPVmin; 
5. Output: Battery will charge 
6. If, SOC ≥ SOCmax; 

7. And, PPV ≤ PPVmin; 
8. Output: battery will discharge 
9. End   
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introduced in [44], where second-order clone program (SOCP)-based 
optimal power flow (OPF) algorithm is used in a medium voltage dis-
tribution feeder. The two main objective functions are loss minimization 
and minimization of absolute active power flow at the substation. 
Optimal sizing of VRFB is done in [74], where the cost and frequency 
deviation are considered using a hybrid optimization model. 

5.2. Constraints on BESS optimization 

The constraints are the prohibitive criteria which must be considered 
in some arbitrary scenario. Nevertheless, defining the required scope of 
constraints in the optimization procedure may be difficult. The issues 
and difficulties can be diverse as far as climate conditions, area, popu-
lation, and infrastructural conditions. An overall outline of the BESS 
sizing constraints, including the literature, is given in Fig. 6. The most 
notable constraints in the BESS sizing optimization are discussed below. 

5.2.1. Charging and discharging constraint 
The most common operational constraint while developing an effi-

cient BESS optimization technique is the charging and discharging 
constraint or SoC constraint. While considering BESS optimization, the 
rate of degradation of battery and life span should be considered. Both 
are directly related to the SoC. BESS cost optimization considering SoC is 
presented in the following literature [37,75–78]. On the other hand, 
optimizing BESS capacity, power loss, power balance, control strategy, 
and battery lifetime, SoC constraints have been considered in [53] and 
[79–87]. In [86], the impact of battery constraints is analyzed for 
microgrid application. DP is used to optimize the cost and SoC, and 
battery capacity is considered as constraints. The defined conditions are 
as follows: 

0.3 ≤ SOC (k) ≤ 0.9 (8)  

− 6 kW ≤ Pb(k) ≤ 6 kW (9) 

The battery charging is done in a constant–current–constant–voltage 
(CCCV) manner for system safety. The grid energy cost with and without 
CCCV charging constraints are compared. MILP-based ESS optimization 
with flexible demand control is presented in [81]. The self-sufficiency 
index and the system self-consumption index are used to evaluate the 
system performance. The SoC is considered as a system constraint, and 
the maximum and minimum charging constant is defined as follows: 

Emin = 0.2Pstge; Emax = 0.8Pstge (10)  

0 ≤ Pt
ch ≤ δt

ch⋅Pstge and 0 ≤ Pt
dch ≤ δt

dch⋅Pstge (11)  

where the discharge time h is the maximum duration for which the 
system can discharge the rated power, Pstge, Pt

ch, and δt
ch are the ES 

nominal power, charge power, and charge control, respectively. Emax 
and Emin are the maximum and minimum depth of discharge. In [53], the 
SoC constraints executed by battery and inverter conditions are defined 
as follows: 

PB(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, SOC(k) = SOCmin PB(k) > 0
0, SOC(k) = SOCmax PB(k) < 0
0, SOC(k) < η′

d ⋅ PB(k)
/

12 Erated

0. (SOC(k) − 1)>ηc ⋅ PB(k)
/

12 Erated

PB
rated, PB(k) >PB

rated SOC(k) ∕= SOCmin

− PB
rated, PB(k) < − PB

rated

PB(k), else
SOC(k) ∕= SOCmax

(12)  

where ηc and η′

d refers to the charging and discharging efficiency, PB
rated 

and PB(k) are the BESS rated and output power, respectively. The con-
dition implies that if, SOC(k) = SOCmin, battery power output = 0, and 
the battery will not charge if SOC(k) = SOCmax. The third limitation 
implies that the BESS cannot supply power to the grid if the demand 
power is greater than the remaining power of the battery. The fourth 
condition limits the overcharging of BESS as the charging cannot occur 
more than battery capacity. The fifth and sixth conditions state that the 
output and input power cannot exceed the rated power. Thus, providing 
different SoC conditions during the system development can improve 
the battery life span by limiting the overcharging of the battery. 

5.2.2. Capacity constraint 
Under certain predetermined conditions, the maximum amount of 

energy that can be extracted from a battery is known as the capacity of 
that battery. As the lifespan of a battery is dependent on the rate of 
degradation, the battery capacity consideration is very important while 
sizing a BESS. In [37], power and energy capacity is considered as BESS 
constraints which are defined as; 

0 ≤ PB,d
i ≤ Smax; 0 ≤ PB,c

i ≤ Smax ∀ i;
∑24

i=1
PB,d

i ≤ Wmax (13)  

where, PB,d
i and PB,c

i are discharge and charge rates of BESS in ith hour. In 
[84], battery capacity is considered as the main objective function 
where initial charging and discharging rate and capacity are considered 
as the main constraints. While considering BESS cost optimization, 
battery capacity is considered as constraint in [37,88,89,90]. 

5.2.3. System reliability constraints 
To ensure the developed optimized model reliability, few battery 

Fig. 6. The summary of the BESS optimization constraints.  

M.A. Hannan et al.                                                                                                                                                                                                                             



Journal of Energy Storage 42 (2021) 103023

9

parameters such as; maximum and minimum energy limit, power flow 
limitation, ramping capabilities has to predefined is known as system 
reliability constraints. To optimize cost, power and energy limit con-
straints is considered in [77,91]. As power flow determines the best 
possible operating level of the BESS, considering power flow as a system 
parameter is very crucial [92]. In [77,79,93,94], power flow is consid-
ered as a system constraint. In [77], the objective function cost and for 
the case study, IEEE 15 bus system is for system verification. The power 
flow constraint is stated as: 

Ptk
Net, i + PDis, Max

BESS, i ≤ Pi(Wtk ) ≤ Ptk
Net, i + PChr, Max

BESS, i (14)  

Qi(Wtk ) = − Qtk
Net, i (15)  

⃒
⃒Itk

ij

⃒
⃒ < Iij max (16)  

P1(Wtk ) < Smax
T R (17)  

where, Ptk
Net, i, P

Chr, Max
BESS, i and PDis, Max

BESS, i are the net demand, power output 
while charging and power output whole discharging of BESS, respec-
tively. Iij max is the current limit of line ij. The power flow of the BESS can 
rapidly substitute from positive to negative or the other way around, by 
which the battery charging-discharging cycles are increased of a shallow 
DOD level [93]. 

Power and energy balancing among the demand and generation 
section is another important consideration for BESS sizing. In [77,79,81, 
83,89,95–97] power and energy balance is considered as a constraint in 
the BESS optimization approach. In [79], the optimal sizing of BESS is 
done for microgrid operation, and the power balance constraints are 
stated as; 

XT,k +
∑n

i=1
Xi,k = PL,k −

∑m

j=1
Pj,k; ∀k, k = ki ... kf (18)  

where XT is the tie flow from utility and PL is the local load. ki and kf are 
the initial and final times, respectively. The main objective function is 
the capacity, and the experiment is conducted in Thailand. 

Ramping up and down usually relates to the ability to change the 
power output of the system concerning the demands. For PV and wind, 
the rapid change in power output is dependent on weather conditions. A 
control strategy must apply to minimize the power fluctuation and 
smoothing the output curve [91]. In [98], a unique ramping control 
algorithm is presented where the ramping control algorithm is stated as; 

PBAT(t) = PG(t) − PPV(t) (19)  

where, PPV(t), PG(t), and PBAT(t) are the power of inverter, grid, and 
battery, respectively. The ramping condition is; 
⃒
⃒ΔPG,1 min(t)

⃒
⃒ > TMAX (20)  

Thus, the corresponding power excess or shortage is either taken from 
(PBAT(t) > 0) or stored into (PBAT(t) < 0) the battery for minimizing the 
ramping effect. 

5.2.4. Environmental constraint 
Due to the rapid increase in the price of fossil fuel and GHG emis-

sions, an alternative environment-friendly energy solution is required. 
Integration of BESS in the RESS has a high potentiality in solving global 
warming problems. EV can be a great solution in terms of reducing GHG 
gas, and the impact of EV charging stations in a distributed network is 
significant [93,100–102]. A quantum-inspired particle swarm optimi-
zation (QPSO)-based optimization method is used in [103] to optimize 
the cost and the power consumption capacity. The economic dispatch 
(ED) model is the combination of BESS and wind power (WP) consid-
ering carbon emission, as described below. 

Fcost =
∑M

i=1
CP

i,t +
∑N

j=1
Cw

j,t +
∑M

i=1
Ce

i,t −
∑N

j=1
Cs

j,t

+
∑

E
N

j=1

[
Co,t(Woe)

]
+
∑N

j=1
E
[
Cu,t(Wue)

]
+
∑N

i=1
CBESS

i,t

(24)  

C
∑M

i=1

e
i,t =CTaxEMi(pi) (25)  

EMi(pi) = efi
(
fi + gi pi + hi P2

i

)
(26)  

where, EMi(pi) is the carbon emission of the thermal unit i and efi is the 
fuel emission factor of CO2 and whereas CTax is the market carbon tax 
price. CP

i,t, Cw
j,t , Ce

i,t, and Cs
j,t are the cost of thermal generator, wind power, 

emission, and government subsidy, respectively. The result shows that 
the BESS integration with WP can reduce up to 20% of carbon emission, 
including the total cost. However, optimized plug-in hybrid electric 
vehicles (PHEVs) integration model considering the cost and environ-
mental impact is presented in [104]. A multi-objective optimization 
approach is presented in [105], where the NPC and life cycle environ-
mental impact are considered as the main objective functions. The HRES 
is optimized using genetic algorithm (GA) at the household level, and 
the results shows that PV is the most cost-efficient system to minimize 
the GHG emissions with reliable renewable supply. Table 4 presents a 
comprehensive summary of the reviewed literature considering 
different objectives and constraints of the BESS system. 

From the above discussion, it can be summarized that the charging 
and discharging constraint has been considered by most of the 
researcher. A very few researchers consider environmental impact as a 
constraint which can be considered as a future suggestion in the field of 
BESS development and optimization. 

6. Optimization approaches 

Fast response time, improvement in power quality, minimizing 
voltage and frequency regulation, reduction of GHG emission, and 
adaptability are the main reasons why BESS is considered as an alter-
native to the existing energy sources. BESS needs to be optimized ac-
cording to its size, capacity, cost, and lifetime. To achieve such a goal, 
many researchers focus on developing optimal BESS sizing methods. An 
outline of BESS sizing optimization approaches is described below. 

6.1. Probabilistic approaches 

The probabilistic method is considered one of the simplest methods 
for BESS sizing as only one or two system parameters can be optimized. 
The main advantage of probabilistic approaches is the requirement of 
limited data to achieve the output. Therefore, probabilistic approaches 
are perfect for circumstances with constrained information accessibility. 
The main drawback of such an approach is the limitation of the number 
of the considered parameter (one or two). To achieve optimal sizing of 
BESS, probabilistic approaches are mainly used to define the uncertainty 
parameter of the optimized method [85,107–112]. In [107], a proba-
bilistic generation model is used to determine the cost of community ES 
(CES) installation and the number of units required. In [108], a proba-
bilistic framework based on 2m point estimate method is proposed to 
identify the load forecasting error. The main advantage of the proposed 
model is the reliability of the cost function from the energy operation 
management point of view. A PV-BESS-based system is developed in 
[73], where probabilistic analysis is used to determine the PV generation 
over a year estimation. 

Table 5. 
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6.2. Rule-based optimization (RBO) approaches 

Another popular optimization approach is the RBO approach, con-
sisting of a set of rules to identify an expected solution. The most 
prominent RBO approach in BESS sizing is fuzzy logic [31,36,82, 
113–115]. The main advantage of using a fuzzy optimizer is that the 
number of uncertainty parameters or any change in parameter number 
has almost no effect on the size of the optimization problem [116]. In 
[113], fuzzy linear programming (FLP) is used for BESS price forecasting 
to ensure computational tractability. The fuzzy optimization model is 
described as follows: 

Maximize, λ = min {μTP, μσυ , μσD , μσR , μσE} (27) 

The fuzzy constraints are as follows: 

λ ∗ TP ≤ TP (28)  

λ ∗
(

σU − σU
)
≤ σU − σU (29)  

λ ∗
(

σD − σD
)
≤ σD − σD (30)  

λ ∗
(

σR − σR
)
≤ σR − σR (31)  

λ ∗
(

σE − σE
)
≤ σE − σE (32)  

where μTP is the profit satisfaction function. σE, σD, σU, and σR are the 
forecasted energy price ($/kWh), forecasted price of regulation down, 
up, and responsive reserve ($/kWh), respectively. A comparative study 
on FLP and deterministic approach is also presented, and it is concluded 
that FLP is more reliable in optimizing the BESS cost and capacity and in 
identifying the annual profit more perfectly. 

The fuzzy satisfying technique is used in [31] and [36] to determine 
the best outcome from the decision of the bi-objective optimization 
model. A fuzzy-based EMS is presented in [114] to optimize the power 
capacity and cost of the BESS. The result shows that an optimized BESS 
can reduce the cost of the microgrid (MG) by 3.2%, and battery lifetime 
has a significant impact on the cost of MG. 

6.3. Deterministic approaches 

Deterministic approaches are based on investigating a series of 
power system construction with the system components changed being 
those that should be optimized against predetermined rules. A deter-

ministic approach is a straightforward approach considered by a 
different researcher to optimize cost [117] and capacity [113]. In [118], 
a WP-BESS-based framework is designed, where the power and energy 
capacity are optimized directly from the daily spilled wind power pro-
file. Optimal battery size is conducted from the outcome obtained from a 
wind farm, as presented in [119]. Both the deterministic and probabi-
listic methods are used in [120] to determine the simultaneous 
security-constrained market-clearing procedure and to schedule the 
reserved service. The deterministic market-clearing formulation is 
described as follows: 

min
{

Cg(u, g)+Cr(r) − B(d)
}

(33)  

where Cg(u,g), Cr(r), and B(d) are described as the total generation cost, 
cost function for reserve services, and total demand benefit function, 
respectively. The main disadvantage of the deterministic method is the 
requirement of a large number of data set, which increases the compu-
tational time exponentially while considering a small interval during 
simulations. 

6.4. Mathematical optimization-based approaches 

From the perspective of mathematical optimization approaches, 
BESS sizing optimizations may be stated as linear programming, mixed- 
integer programming, or even nonlinear programming problems. One of 
the most common approaches for solving the BESS sizing optimization 
problem is mathematical modeling. Mathematical optimization-based 
approaches can be divided into three categories, namely, DP, convex 
programming, and SOCP. A detailed discussion of these accroaches are 
given below. 

6.4.1. DP approach 
In the DP model, the entire optimization procedure is divided into 

several time slots and identifies the solutions in each stage of time, thus 
being viable and valuable to construct time-varying situations [93]. The 
main utilization of the DP model in the BESS sizing optimization field is 
power-split controlling in hybrid EV [121], controlling low-frequency 
oscillation damping [122], peak shaving operation strategy [123], 
scheduling of the vanadium redox battery (VRB) energy storage [124], 
obtaining the optimal allocation of VRB [91], cost analysis and peak 
load management [78], and minimizing cost in EMS [125]. The primary 
constraint of DP modeling is that the efficiency is dependent on the 
degree of state variable discretization, affecting the complexity of 
calculation. A comparative study of the different applications of 
DP-based approaches in BESS sizing is given below. 

Table 4 
Overview of the research on the BES system’s optimization objectives and requirements.  

Ref. Year Case Study Optimization Objectives Constraints 

Cost Capacity Power Loss Lifetime Power flow Reliability Emissions 

[103] 2015 Australia ✓ ✓ £ £ £ £ ✓ CDC, PEBC, PELC, EC 
[79] 2016 Thailand £ ✓ £ £ £ £ £ P ELC, PEBC, PFC 
[36] 2017 - ✓ £ ✓ £ £ £ £ PFC 
[84] 2017 - £ ✓ £ £ £ £ £ C DC, CC 
[53] 2018 - £ £ £ ✓ £ £ £ C DC 
[37] 2018 Rooftop PV generation ✓ £ £ £ £ £ £ CDC, CC 
[77] 2018 IEEE 15-bus system ✓ £ £ £ £ £ £ CDC, PELC, PEBC, PFC 
[76] 2018  - ✓ £ £ £ £ ✓ ✓ CDC, EC 

[78] 2019 - ✓ £ £ £ £ £ £ CDC 
[83] 2019 Illinois Institute of Technology ✓ ✓ £ £ £ £ £ C DC, PELC, PEBC 
[81] 2019 - ✓ £ ✓ £ £ £ £ CDC, PELC, PEBC 
[92] 2019 - ✓ ✓ £ £ £ £ £ P ELC, RCC 
[80] 2020 Fujian, China ✓ ✓ £ £ £ £ £ C DC 
[105] 2020 - ✓ £ £ £ £ £ ✓ CDC, EC 
[106] 2021 - ✓ ✓ £ £ £ £ £ C DC, PELC 

CDC, charging and discharging constraint; CC, capacity constraint; PELC, power and energy limit constraint; PEBC, power and energy balance constraint; PFC, power 
flow constraint; RCC, ramping capability constraint; EC, environmental constraint 
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6.4.2. Convex programming (CP) approach 
One of the most popular mathematical-based approaches is CP. The 

main advantage of CP is discretization independence. Fig. 7 shows the 
conventional CP-based optimization stages. The CP-based optimization 
method is used in [126], where the main objective function is cost along 
with the MG output stability. A novel home energy management system 
(HEMS) is introduced along with CP optimization in [34] to reduce 
household cost and PV consumption. 

A CP-based optimization approach is used broadly in the trans-
portation sector, especially in the hybrid bus [127], power train [128], 

and EV [129], where battery size, vehicular economic operation, and 
battery dimensioning problem are mostly analyzed and optimized. 
Table 6 presents a detailed discussion of the CP-based optimization 
approaches in the existing literature. 

6.4.3. SOCP approach 
SOCP is another form of CP where a linear objective function is 

minimized over the intersection of an affine linear manifold and the 
product of second-order cones [131]. SOCP is another popular approach 
to optimize BESS size and location [132]. IEEE 34-bus test feeder is 
considered to optimize cost, deviate voltage, and minimize flow in 
[131]. The cost function is stated as follows: 

Objinv =
∑

i

( (
uDSS

i FCi
)
+
(
SDSS

i InvCp
i
)
+
(
EDSS

i InvCE
i

))

+
1

(1 + α)(y− 1)

∑

y

∑

i
(MCy

i ) (34)  

where, uDSS
i , SDSS

i and EDSS
i are the energy storage, power rating, and 

energy reservoir at a given Dispersed storage system (DSS) at bus i. For a 
given DSS at bus i, the investment cost linked with power rating, 
reservoir capacity and maintenance cost is denoted as InvCp

i , InvCE
i and 

MCy
i , respectively. A 5-year time span is assumed for the optimal anal-

ysis. The maximum number of buses, maximum/minimum capacity, 
maximum of total DSS power rating, voltage, and power flow are 
considered as the system constraints. A WP-BESS system is considered, 
where the key objective is to optimize BESS location and size. The main 
uncertainty is identified as wind speed variation. To minimize the un-
certainty effect, spinning reserve support is provided, which improves 
the system performance. In [133], 287 node-based networks are 
considered to verify the SOCP-based optimization method, where cost 
minimization, network losses, and voltage deviation are considered as 
the main objective functions. A brief comparative study of SOCP-based 
approaches is presented below. 

6.5. Heuristics approaches 

Heuristic strategies permit nonideal arrangements, which are 
adequate for real-time application. The main advantages of considering 
the heuristic approach include less computational time, flexibility, high 
accuracy rate, and comprehensibility. Without mathematically proven 
basis for obtaining optimal solutions, heuristic approaches such as 
nature-inspired algorithms like GAs [134], PSO [135,106], tabu 
searches [136], and bat algorithms [137,138] tend to offer fast 
convergence, straightforward execution, and solid adaptability [9]. 
Table 8 presents a brief comparative study of heuristic approaches in 

Table 5 
Comparative study of different DP-based approaches in the BESS.  

Year Ref. Method Objective Function Key findings 

2007 [123] DP Cost, capacity Optimized battery 
size reduces the 
electricity bill 
The investments 
growth of VRB 
concerning battery 
capacity growth is 
minor than for 
lead–acid batteries 

2012 [121] DP Fuel consumption SoC optimization 
improve the battery 
lifetime 
Under a certain 
situation, a set of 
four battery packs, 
with a total capacity 
of 1.3 kWh, is the 
most optimized 
solution 

2014 [122] Global 
representation 
heuristic DP 
(GrHDP) 

Power quality 
improvement 
through low- 
frequency 
oscillation 
damping 

A comparative study 
of power oscillation 
damper (POD), 
particle swarm 
optimization (PSO), 
and GrHDP is 
presented, and 
GrHDP proves more 
efficient 
An energy-storage 
damping controller 
is proposed 

2015 [124] DP Cost, VRB 
scheduling 

SoC is considered as 
a constraint 
In case of using MG 
as backup source 
power, VRB is only a 
cost-effective 
serving minimum 
load in September 
when the PV power 
is high 

2017 [91] DP Cost, optimal 
allocation of VRB 

The cost of 
abandoned wind 
and solar power is 
considered along 
with the uncertainty 
of fuel and 
electricity price to 
optimize total cost 

2018 [125] DP Cost Peat cost, time of use 
energy utilization 
cost, and battery 
degradation cost are 
considered 
The proposed 
cost–benefit analysis 
achieves 77.0% of 
the optimal offline 
profit 

2019 [78] DP Capacity Power balance and 
SoC are considered 
as constraints  

Fig. 7. Flowchart of traditional CP optimization problem-solving stages.  
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optimal BESS sizing. Table 7. 
A GA is a method for solving both constrained and unconstrained 

optimization issues based on a natural selection process that imper-
sonates biological evolution. GA is quite popular among researchers 
because it is fast and easily adaptable. In [37], GA is performed in 
DIgSILENT program language (DPL) to minimize system cost, where the 
reverse power flow and voltage magnitude are considered as the system 
constraints. GA-PSO-based algorithms, along with a multi-objective PSO 
(MOPSO), are applied to optimize the maximum system reliability and 
system cost in [7]. The cost function is derived as follows: 

CT = CI + CM + CR (35)  

CI = (NPV CPV) + (NWT CWT) + (NBAT CBAT) + (NINV CINV) (36)  

CM =
(
NPV CM,PV +NWT CM,WT +NBAT CM,BAT

)∑T

t=1

(
1 + InfR
1 + IntR

)t

(37)  

where, CT, CI, and CM are the total cost, initial cost, and maintenance 
cost, respectively. CBAT, and CINV are the per-unit cost of battery and 
inverter. Number of PV panels, wind turbines, batteries and inverters are 
denoted as NPV , NWT, NBAT , and NINV , respectively. CM,BAT, CM;PV and CM; 

WT are the maintenance cost of the battery, PV, and WP in ($/kW) 
respectively. Three different system architectures, namely, PV-BAT, WT- 
BAT, PV-WT-BAT system, are presented to verify the optimized result. 
The result has shown that the PV-WT-BAT has a lesser overall cost than 
the other two systems. In terms of NPC, PV-WT-BAT provides a 2% 
maximum probability of loss of power supply (LPSP) which is 42.17% 
and 29.91% less than the PV-BAT and WT-BAT system, respectively. A 
modified bat algorithm (MBA) is applied to evaluate generation, storage, 
and energy management to overcome dynamic optimization problems in 
[138]. In modeling the PV, four different scenarios are considered, i.e., 
days with a lot of clouds, days with a lot of sun and cloud, days with a lot 
of suns, and cold days with a lot of suns. Scenario-based uncertainty is 
modeled considering the market price, and the result shows promising 
performance over GA and PSO to minimize the cost of the system. 

The main advantages of the PSO algorithm are summarized as a 
straightforward idea, simple execution, robustness to control strategy, 
and computational efficiency when compared with the mathematical 
algorithm and other heuristic optimization techniques. PSO-based cost 
optimization for a different combination of renewable energy (RE) and 
ES resources is shown in [106]. Cost of energy (COE) is considered as the 
key metrics for cost evaluation, whereas SoC and ES rated power are 
considered as the main constraints. The result shows that 
PV-WT-PHS-based system has the lowest COE (0.196 $/kWh) and is 
considered as the most optimized system for the off-grid system for a 

Table 6 
Comparative study of different CP-based approaches in the BESS.  

Year Ref. Method Objective 
Function 

Key findings 

2013 [126] CP Cost Stabilization of the NG 
output with the 
consideration of cost is 
presented 
Power limit and SoC 
are considered as the 
system constraints 

2014 [128] CP Battery size and 
fuel 
consumption 

The battery 
dimensioning problem 
is optimized through 
the CP approach 
SoC, fuel cell capacity, 
and power loss are 
considered as the 
constraints 

2015 [127] CP Power 
allocation and 
battery pack 
size 

The battery size is 
dependent on the 
spread of regenerative 
power request 
The optimal fuel cell 
system size is defined 
as the average and the 
standard deviation of 
the propelling power 
request 

2016 [129] CP Minimize CO2 

emission 
SoC is considered as 
the system constraint 
The proposed method 
can minimize up to 
14% CO2 emission 

2017 [130] Convex 
relaxations based 
on semidefinite 
programming 

Cost, capacity, 
and power loss 

The main goal of the 
literature is to prevent 
the low-voltage 
network from 
overvoltage and 
undervoltage problem 
A multi-period optical 
power flow (OPF) 
convex relaxation is 
adopted to determine 
the size of each storage 
unit 

2019 [34] CP Cost SoC is considered as 
the system constraint 
A power converter 
model is introduced to 
control the HESS 
The result shows that 
up to 32% of household 
cost reduction can be 
achieved with the 
proposed HEMS  

Table 7 
Comparative study of different SOCP-based approaches in the BESS.  

Year Ref. Method Objective Function Key findings 

2014 [131] SOCP Voltage deviation 
minimization, flow 
minimization 

The maximum number of 
buses, maximum/ 
minimum capacity, 
maximum of total DSS 
power rating, voltage, and 
power flow are considered 
as the constraints 
IEEE 34-bus test feeder 
and 5-year time span have 
been assumed for the 
optimal analysis 

2015 [133] SOCP Voltage deviation, 
network loss, cost 
minimization 

Capacity, power rating, 
and power flow are 
considered the main 
system constraints 
287 node-based networks 
are considered for the 
case study 

2016 [132] SOCP BESS allocation and size A WP-BESS-based system 
is constructed where the 
main considering factor is 
wind speed 
The main advantage of 
the proposed system is the 
spinning reserve support 
for WP 
The main drawback of the 
system is the unspecified 
power quality issues 

2018 [44] SOCP Minimalization of loss 
and minimalization of 
active power flow 

Power flow, SoC, and 
voltage limit are 
considered as system 
constraints 
Battery placement and 
sizing are analyzed 
A cost–benefit analysis of 
battery investment in 
grid-connected mode is 
presented  
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Table 8 
Comparative study of different heuristic approaches in the BESS.  

Year Ref. Method Objective 
Function 

Key findings 

2009 [136] Tabu search 
method 

Maximize the 
revenue by 
determining the 
optimal size 

BESS life cycle, 
production, emission, and 
distribution cost are 
considered while 
developing the cost 
function 
Ramping constraints, the 
power limit, and SoC are 
considered system 
constraints 

2011 [147] Ant colony 
optimization 

Cost, power loss 
minimization 

IEEE 33-bus and 70-bus 
test distribution systems 
and 135-bus real 
distribution systems are 
used for system 
verification 
Adaptive ant colony 
optimization is used to 
optimize the loss 
minimization 

2015 [140] HMPSO +
NSGA-II + PLF 

Cost, voltage 
stability 

Optimal sizing of BESS 
along with cost 
minimization and voltage 
stability is done in the 
literature 
The key advantages are 
cost minimization and 
voltage profile 
improvement 
System complexity is said 
as the main drawback 

2016 [39] TS-PSO Cost The TS-PSO-based 
algorithm is used to 
optimize BESS location, 
capacity, cost, and power 
rating in grid-connected 
mode 
SoC and power limit are 
considered as constraints 
Cost minimization, peak 
shaving, and reduction of 
technical violation are the 
main findings of the paper 

2016 [148] Cuckoo search 
algorithm 

Cost Cuckoo search algorithm is 
used to optimize cost while 
considering the seasonal 
variations 
Power flow and SoC are 
the two constraints 
considered in the literature 
Reduce the effect of high 
wind penetration 

2017 [144] Multi-period 
AC OPF, MPC, 
MILP, and 
CPLEX 

Battery lifetime 
and real-time 
measurement 

Reduced 30% ESS losses 
and minimized ESS 
degradation 

2018 [139] HGWO-PSO +
MOEM 

Cost Capacity, power flow, SoC, 
and maximum power limit 
are considered as 
constraints 
Reliability, reduction of 
operational cost, 
reasonable, and PQ 
solution are the key 
advantages, whereas 
intermittency of RES is 
considered as the 
drawback of the system 

2018 [7] GA-PSO and 
MOPSO 

Maximize 
system 
reliability, cost 

GA-PSO-based 
optimization approach is 
presented 
A comparative study of 
GA-PSO and hybrid  

Table 8 (continued ) 

Year Ref. Method Objective 
Function 

Key findings 

optimization model for 
electric renewables 
(HOMER) optimization is 
presented, and it is shown 
that GA-PSO has a 
promising outcome over 
HOMER optimization 
Three different system 
combinations are selected 
to compare the output of 
GA-PSO. From the output, 
it is concluded that the PV- 
WT-BAT system has a 
lower cost than PV-BAT 
and WT-BAT systems 

2018 [37] GA Cost GA is performed in DPL to 
optimize the cost 
The constraints are reverse 
power flow and voltage 
magnitude 
The main advantage of the 
method is the 
improvement of the 
distribution network by 
minimizing the effect of 
high photovoltaic 
penetration 

2019 [149] GA + greedy 
algorithm 

Cost Planning and scheduling of 
BESS in the LV grid are 
presented 
Capacity, voltage limit, 
and power flow are 
considered as constraints 

2020 [142] MILP Cost, CO2 

emission 
MILP-based approach is 
implemented to measure 
the potential of hydrogen 
storage in reducing the 
CO2 emissions 
A combination of battery 
and H2 storage is analyzed, 
and the performance 
showed that with perfect 
optimization, the CO2 is 
reduced 

2021 [106] PSO Cost Different configurations of 
RE and ES resources are 
considered for the off-grid 
power supply to the 
remote island 
PSO is used for system 
optimization, and the key 
metric for cost evaluation 
is COE 
PV-WT-PHS is considered 
as the most optimal system 
with the lowest COE at a 
different discharge rate 

2021 [138] MBA Cost PV system is modeled 
considering four different 
scenarios 
PV, WT, FC, MT, and BESS 
are considered as energy 
sources 
Battery capacity supplied 
energy and 
charging–discharging are 
considered as the system 
constraints. Scenario- 
based uncertainty 
modeling is performed 
considering the market 
price and the compared 
system performance with 
GA and PSO  
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remote island. A novel hybrid gray wolf optimizer-particle swarm 
optimization (HGWO-PSO) along with multi-objective energy manage-
ment (MOEM) is introduced in [139]. The main advantages of the pro-
posed system are reliability, reduction of operational cost and PQ 
solution. In [140], hybrid multi-objective particle swarm optimization 
along with nondominated sorting genetic algorithm (NSGA-II) and 
probabilistic load flow (PLF) technique is proposed to minimize cost and 
improve the system stability especially in the case of RE penetration. 

MILP is another popular approach for BESS optimization which is 
used in [30,36,46,81,93], and [141–146]. In [144], multi-period OPF, 
MILP, and CPLEX-based optimization approaches are presented to assess 
the battery lifetime. The main goal of the proposed method is to mitigate 
voltage and line flow violations that are induced by high PV penetrations 
in low-voltage (LV) grids. 

6.6. Other approaches 

Other than conventional approaches, some hybrid and unconven-
tional approaches are also introduced by different researchers in the 
field of BESS sizing and optimization. An extreme learning machine 
(ELM)-based gravitational search algorithm is introduced in [150] to 
estimate the SoC of lithium-ion batteries. The main advantage of the 
model is considered as the independence of internal battery mechanism 
and mathematical modeling. In contrast, the construction of the model is 
complicated as it is highly dependent on training accuracy and the 
number of neurons in a hidden layer. In [151], binary lightning search 
algorithm (BLSA) is applied to optimize the size and location of the 
charging station of an EV. A Monte Carlo simulation-based modeling 
approach is presented in [152] and [153]. In [153], the capacity of the 
BESS is optimized, and a comparative study between the deterministic 
method and the Monte Carlo simulation-based method is presented. The 
result shows that the proposed method has more flexibility to determine 
the optimum capacity according to the needs of the operation. In [152], 
the main goal is not only to optimize cost but also to maximize the 
utilization of wind power distributed generation systems (DGS) with 
BESS. Different sizing tools, such as HOMER [154] and hybrid power 
system simulation model (HYBRID2) [155–160], are also widely used by 
various researchers to optimize the cost and capacity of BESS. 

From the above discussion, it can be concluded that various algo-
rithms can be identified from the existing literature in the field of 
optimal BESS sizing. The most common objective function considered by 
the researchers is system cost. The consideration of environmental 
impact is presented in very few articles which can be suggested as future 
work. 

7. BESS applications 

Due to the economic and environmental impact, BESS along with RE 
sources is considered a potential alternative to fossil fuel-based energy 
sources. Different BESS technology is already applied in different ap-
plications, such as the improvement of power system stability by 
reducing voltage and frequency regulation, microgrid application, 
hybrid marine power system, wave energy conversion, and EV, ferry, 
and bus. A detailed discussion on the BESS application is given below. 

7.1. Transportation application 

Transportation is a sector of BESS in the battery EV critical appli-
cation. Because of the increasing fuel price, diminution of fuel reserve 
and to reduce the carbon emission, EV is becoming popular day by day. 
A fast response time, adaptability, and efficiency are the three main 
three factors that are important while designing an ESS for EV. Lead- 
acid, Lithium-ion (Li-ion), and Nickel-Metal Hydride (NiMH) are the 
most popular battery type used for EV [161–164]. Many researchers 
develop different methods to optimize the ESS SOC, cost, weight, and 
efficiency such as; Particle Swarm Optimization (PSO) [47,165], 

Multilevel converter topology [166], Convex Programming (CP) [129], 
multi-objective optimization and wavelet-transform-based power man-
agement algorithm [167], Dynamic programming (DP) [121], Deep 
Neural Network (DNN) [168], population-based metaheuristic optimi-
zation algorithm named TLBO [169], the binary lightning search algo-
rithm is used for charging station planning and sizing optimization 
[151] and hybrid Particle Swarm-Nelder-Mead algorithm involving 
multi-objective optimization for optimizing [52]. 

With the rapid increase of EV, the increase of EV charging stations 
have a significant impact on the distribution networks [99,101,170] in 
loads and voltage flow, power losses, phase imbalance, voltage and 
frequency regulation, power quality, and reliability [100]. According to 
[171], charging stations available of fast charging with a rated power of 
more than 22 kW is considered as a fast-charging station. In [171], a 
prototype EV charging stations along with energy storage system is 
presented as shown in Fig. 8. 

The combination of RE sources along with storage technologies are 
used in the fast-charging stations to reduce the demand from the grid 
explained in [172]. In [172], an optimized EV fast-charging station is 
presented using GA and PSO. A comparative analysis is presented 
considering only RE, only grid and grid+RE case and the outcome shows 
that, using RE with ES can reduce the impact of EV station over grid. a 
stochastic dynamic simulation modeling framework is presented by 
Yang et al. in [173], where, dynamic demand-responsive price adjust-
ment (DDRPA) scheme is proposed to decrease the queue length, bal-
ance charging and overall increase the revenue of the charging station 
by 5.8%. 

7.2. Microgrid applications 

As Microgrid (MG) can operate in both stand-alone and grid- 
connected mode, so it is becoming an essential part of a Distributed 
Generation System (DGS). BESS can be integrated with microgrid 
operation as an external power source or a controller. There are several 
advantages of MG such as; high efficiency, reduction of grid congestion, 
stability and reliability of the local electric grid. An optimal BESS can 
drastically improve the microgrid system frequency [135,174]. In [135], 
Particle Swarm Optimization (PSO) is used for BESS sizing with load 
shedding scheme whereas BESS is used as a voltage source inverter in 
[174] for frequency controlling of microgrid operation. The main 
contribution of [174] is to implement short-term overloading charac-
teristics of BESS in the initial frequency control of MG operation. 
Optimal BESS can also reduce the overall microgrid operation cost [36, 
114,175–177]. HOMER is also a popular software used by various re-
searchers to model grid-connected or off-grid MG [155,157,159,161, 
178]. In [161], a combination of HOMER and PSCAD based hybrid MG is 
developed by Sarkar et al. where 1 kW/6 kWh VRFB storage is used to 
fulfill the demand side management. The techno-economic analysis is 
performed using the HOMER software whereas the peak shaving is 
simulated using the PSCAD software. The hybrid MG model is shown is 
Fig. 9. 

One of the key components of power system stability is frequency 
control, and BESS can play a considerably potential role in this sector. 
BESS can be charging or discharging during the small disturbance 
period, which is occurred when the frequency is higher or lower than 50 
Hz respectively. Significant disturbance can be minimized using BESS 
through over/under frequency tripping [135]. In [182], it is mentioned 
that BESS has a high potential to act as a stabilizer in the power system. 
[182] has identified three aspects where BESS can improve the 
steady-state stability, transfer capability, small-signal stability, and 
steady-state stability boundary. The integration of BESS with the power 
system is shown in Fig. 10. 

In [182], a comparative study between STATCOM and BESS is pre-
sented. The active power for BESS and STATCOM is expressed as below; 
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PBESS =
V2

X
sinδ +

VIc

2
cos(δ − α) (35)  

PSTATCOM = V2

X sinδ + VIc
2 cosδ

2
(36)  

where, α is the phase angle between midpoint voltage Vm and Vr 
whereas, δ is the phase angle between Vs and Vr and X is the series 
inductance of the line. From the power transfer capacity curve, it is 
summarized that BESS can release more power than STATCOM while 
varying the phase angle. It very well may be inferred that BESS is a fast 
and adaptable component for the power system stability. 

7.3. Other applications 

Other than EV, MG and power system applications, BESS is also used 
in the hybrid marine power system [33] and wave energy conversion 
(WEC) system [186,187]. In [33], the three objective functions that are 
chosen for optimization such as potential fuel savings, projected life-
time, and cost-benefit analysis. The result illustrated that the 
Cost-Benefit Index (CBI) decreases with a slope of - 0.225 M€/MWh for 
nominal energy beyond 1 MWh, and with - 0.15 M€/MW for rated power 
beyond 2MW. While CBI is proportional to the BESS lifetime; however, 
not to BESS sizing. Thus, it can be summarized that installing a 
moderate-sized BESS with proper optimization is more cost-effective 
than installing an oversized BESS for reducing the cycling stress and 
increasing fuel saving. According to [187], back to back converter can 
solve the problem of distorted output power and can maximize the wave 

Fig. 8. Prototype of EV charging station along with ESS.  

Fig. 9. Hybrid microgrid model [161].  

Fig. 10. BESS connected to power system [182].  
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power. BESS is used as a controller for the grid side converter. The 
construction of WEC and BES is shown in Fig. 11. 

Power resilience is an important factor while achieving the goal of 
the ultimate reliability of the renewables integrated power system. The 
resilience of the power system can be defined as the effectiveness of the 
power system to endure catastrophic events effectively while ensuring 
the lowest possible disruption in electricity supply, sustaining essential 
services, and facilitating a swift recovery to the steady-state condition 
[188]. Following a catastrophic incident, a dynamic microgrid formu-
lation can substantially improve the on-outage area’s resilience by 
providing local load self-sufficiency. A broad review of the role of MG in 
the power system resilience is described in [189] where the reasons for 
power outages are mentioned such as; equipment failure (47.86%), 
natural disaster (30.71%), miscellaneous (10.1%) vandalism (5.71%), 
supply shortage (4.29%), and cyber-attack (1.43%). In recent times 
several researchers have focused on developing such an MG model 
associated with battery to improve the overall grid reliability 
[188–193]. HOMER is used in [188,190] to find out suitable combina-
tion of sources effective in different power outage conditions. A 
comparative study between traditional backup generator-based systems 
and HRES systems is presented in [188] and the result shows a similar 
result for both systems but the economic analysis shows the traditional 
system as a cost-effective one. In [190], the outcome shows that, for 
prolonged power outages, the arrangement using the BESS alone as a 
standby alternative source may not be viable. The proposed 
grid-connected PV+ BESS system shows promising performance for both 
enhancing resilience and minimizing the overall cost of the power 
system. 

8. Issues and challenges 

Developing an efficient BESS is a tedious job since various factors 
have to be considered, including cost, reliability, suitable type of stor-
age, power and voltage quality, frequency deviations, and environ-
mental issues. However, researchers are trying to develop newer 
technologies to consider all the factors and which is feasible to integrate 
with other ESS technologies as well. A summary of the most common 
challenges is described below. 

8.1. Economic impact 

The most common challenge of developing a BESS system is the 
economic aspects. From the literature, it is a clear indication that for 
BESS sizing, most of the researchers focused on the cost–benefit analysis. 
The cost of BESS depends on several factors, including the types of BESS 
selection, number of energy source integration, geographical condition, 
installed area feature, installation cost, and maintenance cost. The 
installation and maintenances costs include the capital power cost of the 

converter interface, the capital energy cost of storage capacity, the 
capital replacement cost, and the annual fixed operation and mainte-
nance cost [85]. The fixed operation cost includes projected annual costs 
for BESS parts, labor, annual property taxes, and insurance. In contrast, 
the maintenance cost consists of the operation of the protective devices 
such as relays and circuit breakers, calibrating sensors, audit operation 
due to abnormal vibrations or noise, inspecting for abnormal conditions 
of connecting cables and piping, inspecting insulation resistance, and 
servicing the battery controller, pumps, fans, and other system compo-
nents [37]. The factors affecting BESS costs include lifetime, battery 
capacity, rate of degradation of the battery, power loss, and SoC. The 
size and capacity of the BESS technology must be determined accord-
ingly to optimize the total cost of the BESS installation. Oversized BESS 
will increase not only the total cost but also the power loss of the system. 
On the other hand, undersized BESS will cause a frequency deviation, 
leading to an imbalance of supply and demand. 

Another two key factors that affect cost optimization are peak 
shaving and load shifting. The most effective way of reducing demand 
charges is peak shaving, which refers to flattening out the peaks in 
electricity usage. On the other hand, load shifting is defined as a tran-
sient decrease in power utilization followed by a production growth 
afterward, when the price is low. In [176], complex-valued neural net-
works and time domain power flow method are used to identify and 
BESS location and ED model to optimize the capacity of the BESS in the 
transmission and distribution of power system. In the distribution stage, 
peak shaving is issued as a quadratic programming method to force BESS 
to flatten the load curve. In [177], to optimize the peak shaving of Zurich 
1 MW BESS, a predictive power dispatch optimization based on an MPC 
control scheme is proposed to minimize the sudden peak event arising. 
Therefore, developing an effective BESS considering the economic fac-
tors is a challenge, and several aspects need to be considered. 

8.2. Power quality impact 

The main goal of integrating BESS with the distribution network is to 
ensure reliability and steadiness of power transmission. The degradation 
of power quality can affect the overall distribution network perfor-
mance. Most conventional power quality problems include voltage sag 
and swell, overvoltage, undervoltage, voltage unbalance, frequency 
deviation, and harmonics distortion [11]. Various power quality 
improvement techniques have been developed by many researchers, 
including power electric transformer with control strategy [178], 
application of PV capacity firming with BESS to improve voltage un-
balance and to smooth power swings [179], and ESS coupled with dis-
tribution static synchronous compensator (DSATCOM) for flicker 
compensation to improve voltage profile through control strategy of 
receive power [109]. A detailed power quality problem in the distrib-
uted and renewable power system from the technical and economic 

Fig. 11. Formation of WEC and BES with the integration of Grid [187].  
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perspective is presented in [68] and [69]. 

8.3. Aging impact 

While developing a BES system, the battery aging effect must be 
considered as it is directly related to the overall cost of the system. The 
battery consists of various chemical materials, and every battery has a 
life span. There are two types of aging, i.e., calendric and cyclic aging. 
Even in idle conditions, the chemical agents of the BES are active due to 
the temperature and voltage, causing a constant degradation of the 
battery known as calendric aging. The cyclic aging is dependent on the 
charging and discharging factor of the battery. The main parameters of 
an efficient BESS system are fast charging, slow discharging, and long 
lifetime [180]. To achieve this goal, many researchers proposed 
different methods for BESS sizing while considering SoC constraint. 

8.4. Environmental impact 

One of the critical impacts of BESS application is to achieve a sus-
tainable environmental goal through reducing GHG emissions. BESS 
itself has some environmental impacts on the environment. The cell 
construction of BESS contains harmful materials/chemicals [181]. After 
the ending of battery life span, chemical waste can have a significant 
impact on the environment [182]. The degraded batteries can be recy-
cled and reused. In terms of lead–acid batteries, approximately 95% of 
the main ingredients can be recycled and reused [183]. The detailed 

environmental impact of BESS with the integration of RESS is described 
in [183–185]. 

8.5. Availability of technologies 

With the rapid increase of industrialization, the use of fossil fuel is 
also increasing, which leads to global warming. To transform the current 
state-of-the-art fossil fuel-based energy resources, a reliable and clean 
energy source is needed. BESS has excellent potential to become an 
alternative to fossil fuel-based energy resources. Nevertheless, a stand-
alone BESS installation cannot solve all the problems. BESS should be 
integrated with other RES or in MG to improve the power quality and 
reduce the loss. New technological advancement and control strategy 
are needed to ensure the proper integration of BESS with RES in DG and 
MG application. Suitable optimization approaches are needed, consid-
ering the issues and constraints specially to reduce GHG emissions. 
Moreover, BESS technology and application are only limited to the high- 
income country due to the system availability and high installation cost. 
As a result, the prospect of presenting these technologies in intermedi-
ate- and middle-income nations is still to be explored. 

9. Conclusions and recommendations 

A considerable number of researches have been carried out on BESS 
optimization and modeling to achieve the objectives, such as cost 
minimization, capacity estimation, power quality improvement, voltage 

Fig. 12. Summary of the contents of BESS in the manuscript.  
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stability, frequency deviation reduction, and carbon emission reduction. 
An improved and efficient optimization strategy is needed to guarantee 
the robust, reliable, and economic operation of the BES framework. 
Fig. 12 shows the summary of the whole manuscript. Unlike most of the 
available review papers, the scope of this paper has been broadened to 
cover all the possible aspects of BESS sizing, including optimization 
objectives, constraints, algorithm development, applications and 
recommendation based on research gaps. Firstly, this survey clarifies the 
performance of current and noticeable BESS sizing techniques featuring 
their structure, scientific articulation, and contribution. Additionally, 
strengths, weaknesses, and the estimation accuracy of each optimization 
method are provided. Secondly, this survey profoundly researches the 
constraints affecting the BESS sizing, including the objective functions 
and optimization algorithms. Thirdly, this survey investigates the key 
issues and challenges through which new perceptions have been ach-
ieved regarding the optimization principles that are proven to be the 
most vital for the BESS framework development. Fourthly, this survey 
provides a clear idea about the existing application of BESS along with 
its advantages and disadvantages. The fifth and final contribution can be 
stated as the future suggestions. This survey proposes some viable future 
exploration works for further technological development of BESS sizing 
methods such as the following:  

• Further research into the successful incorporation of BESS with other 
current sources like PV, wind, hydropower, and concentrated solar 
energy is required.  

• Novel optimization approaches can be applied in BESS sizing to 
achieve promising outcomes in terms of cost, capacity, power loss, 
power quality improvement, and carbon emission.  

• A careful selection of constraints is needed to obtain a better and 
more realistic outcome.  

• The environmental constraint should be considered more frequently 
in the future, and the impact of BESS application on the environment 
should be measured more carefully.  

• The introduction of novel battery storage technology can be a great 
solution to the present limited BESS applications.  

• While developing the microgrid model, the decarbonization factor is 
needed to be considered.  

• Microgrid and smart-grid are becoming popular, more research and 
real-time application of the security technology for smart-grid is 
suggested.  

• The issues and the constraints are needed to be considered during the 
development of a robust, efficient, and optimized battery ES system. 
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