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1 Πιθανότητα, Δειγματικός Χώρος και Ενδεχό-

μενα

1.1 Δειγματικός Χώρος και Ενδεχόμενα

Στη θεωρία πιθανοτήτων, κάθε τυχαίο πείραμα συνοδεύεται από έναν δειγματικό χώρο,
που συμβολίζεται με Ω. Ο δειγματικός χώρος είναι το σύνολο όλων των δυνατών εκβάσεων
του πειράματος.

• Παράδειγμα: Ρίψη κέρματος Ω = {Κ,Γ}.

• Παράδειγμα: Ρίψη ζαριού Ω = {1, 2, 3, 4, 5, 6}.

΄Ενα ενδεχόμενο E είναι οποιοδήποτε υποσύνολο του Ω. Αποτελεί μια συλλογή
εκβάσεων που ικανοποιούν μια συγκεκριμένη συνθήκη.

• Παράδειγμα: E = {ζυγό αποτέλεσμα} = {2, 4, 6}.

Sample Space 

Event E

Σχήμα 1.1: Δειγματικός χώρος Ω και ενδεχόμενο E ⊆ Ω.

1.2 Μέτρο Πιθανότητας

΄Ενα μέτρο πιθανότητας P αντιστοιχίζει έναν αριθμό μεταξύ 0 και 1 σε κάθε ενδεχό-
μενο E, εκφράζοντας το πόσο πιθανό είναι να συμβεί.
Τυπικά,

P : F ⊆ 2Ω → [0, 1],
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όπου F είναι μια συλλογή υποσυνόλων του Ω (μια σ-άλγεβρα) στα οποία μπορεί να οριστεί
πιθανότητα.
Το μέτρο ικανοποιεί:

P(Ω) = 1, P

(⋃
i

Ei

)
=
∑
i

P(Ei) για ανεξάρτητα ενδεχόμενα Ei.

Η πρώτη ιδιότητα εξασφαλίζει ότι το σύνολο των πιθανών εκβάσεων έχει συνολική πι-

θανότητα 1, ενώ η δεύτερη ότι η πιθανότητα ανεξάρτητων ενδεχομένων είναι αθροιστική.

1.3 Διακριτοί και Συνεχείς Δειγματικοί Χώροι

Ο δειγματικός χώρος μπορεί να είναι διακριτός ή συνεχής:

Διακριτοί δειγματικοί χώροι. Οι εκβάσεις είναι αριθμήσιμες (πεπερασμένες ή αρι-
θμήσιμα άπειρες). Σε κάθε έκβαση ωi ∈ Ω αντιστοιχίζεται μια πιθανότητα P({ωi}) = pi, και
για κάθε ενδεχόμενο E ⊆ Ω ισχύει

P(E) =
∑
ωi∈E

pi,
∑
i

pi = 1.

Τυπικά παραδείγματα: κέρματα, ζάρια, κατηγορικές μεταβλητές.

Συνεχείς δειγματικοί χώροι. Οι εκβάσεις είναι μη αριθμήσιμες (π.χ. πραγματικοί
αριθμοί). Δεν μπορούμε να αποδώσουμε πιθανότητα σε μεμονωμένη τιμή. Οι πιθανότητες
ορίζονται σε διαστήματα μέσω συνάρτησης πυκνότητας πιθανότητας (PDF) px(z):

P(a ≤ x ≤ b) =

∫ b

a

px(z) dz,

∫ ∞

−∞
px(z) dz = 1.

Παραδείγματα: θερμοκρασία, χρόνος, πλάτος θορύβου.

1.4 Οπτικοποίηση και Ερμηνεία

Είναι συχνά χρήσιμο να οπτικοποιούμε τον δειγματικό χώρο Ω ως μια περιοχή που περιέχει
όλες τις δυνατές εκβάσεις (Σχ. 1.1). Τα ενδεχόμενα είναι υποσύνολα αυτής της περιοχής,
και η πιθανότητα P(E) αντιστοιχεί στο “μέγεθος” (ή μέτρο) του υποσυνόλου E σε σχέση
με το Ω.
Στην διακριτή περίπτωση, αυτό αντιστοιχεί στο άθροισμα των πιθανοτήτων των αντίσ-

τοιχων εκβάσεων. Στη συνεχή περίπτωση, αντιστοιχεί στο ολοκλήρωμα της PDF πάνω
στην περιοχή ενδιαφέροντος (Σχ. 1.2).
Σύνοψη:

• Ο δειγματικός χώρος Ω περιέχει όλες τις δυνατές εκβάσεις.

• ΄Ενα ενδεχόμενο E είναι υποσύνολο του Ω.

• ΄Ενα μέτρο πιθανότητας P δίνει τιμές στο [0, 1], με άθροιση των ανεξάρτητων
ενδεχομένων και P(Ω) = 1.

• Σε διακριτούς χώρους, οι πιθανότητες αθροίζονται. Σε συνεχείς χώρους, ολοκληρώνον-
ται μέσω της συνάρτησης πυκνότητας πιθανότητας.
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Discrete  (countable outcomes)

1
2

3

4

5

6

Event E

Continuous  (uncountable)

E

A

Events are measurable subsets of 

Σχήμα 1.2: Διακριτοί vs. συνεχείς δειγματικοί χώροι. Στους διακριτούς αθροίζουμε πι-
θανότητες· στους συνεχείς ολοκληρώνουμε χρησιμοποιώντας PDF.

2 Τυχαίες Μεταβλητές

2.1 Ορισμός και Ερμηνεία

Μια τυχαία μεταβλητή είναι μια μετρήσιμη απεικόνιση που αντιστοιχίζει εκβάσεις ενός

τυχαίου πειράματος σε αριθμητικές τιμές:

x : Ω −→ R.

Πιο γενικά, ένα τυχαίο διάνυσμα ορίζεται ως

x : Ω −→ RM ,

όπου M είναι η διάσταση του διανύσματος.
Μια τυχαία μεταβλητή δημιουργεί έναν νόμο πιθανότητας στο σύνολο τιμών της

(τον φορέα) X ⊆ R μέσω

P(x ∈ X ) = P({ω ∈ Ω : x(ω) ∈ X }) .

΄Ετσι, το μέτρο πιθανότητας στον δειγματικό χώρο Ω μεταφέρεται σε ένα μέτρο πάνω σε
αριθμητικές τιμές στο R.

2.2 Διακριτές και Συνεχείς Τυχαίες Μεταβλητές

Ανάλογα με το αν το στήριγμα X είναι αριθμήσιμο ή μη-αριθμήσιμο, οι τυχαίες μεταβλητές
διακρίνονται σε διακριτές και συνεχείς.

Διακριτές τυχαίες μεταβλητές. Μια διακριτή τυχαία μεταβλητή x παίρνει τιμές σε
ένα αριθμήσιμο σύνολο X και χαρακτηρίζεται από τη συνάρτηση μάζας πιθανότητας
(Propability Mass Function - PMF)

px(z) = P(x = z), z ∈ X ,
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με

px(z) ≥ 0,
∑
z∈X

px(z) = 1.

Η πιθανότητα του ενδεχομένου a ≤ x ≤ b υπολογίζεται αθροίζοντας τις αντίστοιχες μάζες.

Συνεχείς τυχαίες μεταβλητές. Μια συνεχής τυχαία μεταβλητή έχει μη-αριθμήσιμο
στήριγμα X ⊆ R και περιγράφεται από μια συνάρτηση πυκνότητας πιθανότητας
(Probability Density Function - PDF)

px(z) ≥ 0,

∫
X
px(z) dz = 1.

Οι πιθανότητες ενδεχομένων δίνονται από ολοκληρώματα:

P(a ≤ x ≤ b) =

∫ b

a

px(z) dz.

Αθροιστική Συνάρτηση Κατανομής. Κάθε τυχαία μεταβλητή (διακριτή ή συνεχής)
έχει μια αθροιστική συνάρτηση κατανομής (Cumulative Distribution Function -
CDF)

Fx(z) = P(x ≤ z),

η οποία δίνει την πιθανότητα η τιμή της τυχαίας μεταβλητής να μην υπερβαίνει το z.

Παραδείγματα. Η ρίψη ζαριού αποτελεί παράδειγμα διακριτής τυχαίας μεταβλητής,
ενώ ο θόρυβος μέτρησης που μοντελοποιείται ως Γκαουσιανός είναι συνεχής.

Παράδειγμα 1: Διακριτή Τυχαία Μεταβλητή (Ρίψη κέρματος)
Δειγματικός χώρος και πιθανότητες:

Ω = {H,T}, P(H) = 0.7, P(T) = 0.3.

Τυχαία μεταβλητή:

x(ω) =

{
1, ω = H,

0, ω = T.

Νόμος πιθανότητας:

P(x = 1) = P(H) = 0.7, P(x = 0) = P(T) = 0.3.

΄Αρα η συνάρτηση μάζας πιθανότητας (PMF) του x είναι

px(z) =


0.7, z = 1,

0.3, z = 0,

0, διαφορετικά.

Το παράδειγμα δείχνει ότι η x απλώς απεικονίζει εκβάσεις σε αριθμητικές τιμές, ενώ οι
πιθανότητες προέρχονται από το υποκείμενο μέτρο P.
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Παράδειγμα 2: Συνεχής Τυχαία Μεταβλητή (Μονοτονικός Μετασχημα-
τισμός)
Δειγματικός χώρος και μέτρο: ΄Εστω Ω = [0, 1] με ομοιόμορφο μέτρο πιθανότητας

P(ω ∈ [a, b]) = b− a.

Ορίζουμε u(ω) = ω. Τότε u ∼ Uniform(0, 1) με PDF

pu(zu) =

{
1, 0 ≤ zu ≤ 1,

0, διαφορετικά.

Τυχαία μεταβλητή: Ορίζουμε

x(ω) = ω2 = u(ω)2.

΄Ετσι η x απεικονίζει το [0, 1] στο [0, 1] μονοτονικά.
Αθροιστική συνάρτηση κατανομής (CDF) της x:

Fx(z) = P(x ≤ z) = P(u2 ≤ z) = P(u ≤
√
z) =

√
z, 0 ≤ z ≤ 1.

Συνάρτηση πυκνότητας πιθανότητας (PDF) της x:

px(z) =
d

dz
Fx(z) =

1

2
√
z
, 0 < z < 1.

΄Ελεγχος κανονικοποίησης:∫ 1

0

px(z) dz =

∫ 1

0

1

2
√
z
dz = [

√
z]10 = 1.

΄Αρα η PDF της x είναι

px(z) =


1

2
√
z
, 0 < z < 1,

0, διαφορετικά.

Παράδειγμα 3: Συνεχής Τυχαία Μεταβλητή (Μη Μονοτονικός Μετασχη-
ματισμός)
Δειγματικός χώρος και μέτρο: ΄Εστω ξανά Ω = [0, 1] με ομοιόμορφο μέτρο και

u(ω) = ω ∼ Uniform(0, 1).

Τυχαία μεταβλητή: Ορίζουμε

x(ω) = g(u(ω)) = sin(2πu).

Η συνάρτηση g(u) είναι μη μονοτονική, καθώς η sin(2πu) αυξάνεται από 0 σε 1 στο [0, 1
4
],

μειώνεται σε −1 στο [1
4
, 3
4
], και ξανανεβαίνει σε 0 στο [3

4
, 1].

Φορέας της x: Αφού sin(2πu) ∈ [−1, 1], η τυχαία μεταβλητή x λαμβάνει τιμές στο

z ∈ [−1, 1].
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Γενικός κανόνας μετασχηματισμού: Κατά τον μετασχηματισμό μιας συνεχούς
μεταβλητής πρέπει να διατηρείται η πιθανότητα:

pu(u) du = px(z) dz.

Εφόσον z = g(u), μια μικρή μεταβολή du προκαλεί

dz = g′(u) du.

Λαμβάνοντας απόλυτες τιμές:

px(z) |dz| = pu(u) |du| =⇒ px(z) =
pu(u)

|g′(u)|
.

Αυτό ισχύει τοπικά όταν ο μετασχηματισμός είναι μονοτονικός.
΄Οταν όμως το g(u) είναι μη μονοτονικό, η ίδια τιμή z μπορεί να προκύψει από πολλαπλές

τιμές u. Τότε πρέπει να αθροίσουμε τις συνεισφορές:

px(z) =
∑

ui: z=g(ui)

pu(ui)

|g′(ui)|
.

Αυτός είναι ο γενικός μονοδιάστατος κανόνας μεταβολής μεταβλητής για PDF.
Εφαρμογή στο παρόν παράδειγμα: Με g(u) = sin(2πu) και pu(u) = 1, βρίσκ-

ουμε τα ui από

z = sin(2πu) =⇒ 2πu = arcsin(z) ή 2πu = π − arcsin(z).

΄Ετσι,

u1 =
arcsin(z)

2π
, u2 =

1

2
− arcsin(z)

2π
.

Η παράγωγος:

g′(u) = 2π cos(2πu) =⇒ |g′(ui)| = 2π
√
1− z2.

΄Αρα:

px(z) =
1

2π
√
1− z2

+
1

2π
√
1− z2

=
1

π
√
1− z2

, −1 < z < 1.

Ερμηνεία - Κανονικοποίηση: Αυτή είναι η γνωστή arcsine κατανομή στο [−1, 1],
με ∫ 1

−1

dz

π
√
1− z2

= 1.

Η πυκνότητα είναι μεγαλύτερη κοντά στα άκρα z = ±1 (όπου το |g′(u)| είναι μικρό, άρα
≪συμπιέζονται≫ πιθανότητες) και μικρότερη κοντά στο z = 0 (όπου το |g′(u)| είναι μεγάλο).
΄Ετσι ο μη μονοτονικός μετασχηματισμός μετατρέπει την ομοιόμορφη πυκνότητα σε μια

έντονα ανομοιόμορφη.

Τελικό σχόλιο: Οι τιμές μιας τυχαίας μεταβλητής δεν καθορίζουν άμεσα την PDF. Η
κατανομή προκύπτει από το πώς παράγονται αυτές οι τιμές μέσω του αρχικού πιθανοτικού

μοντέλου.
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Σχήμα 2.1: Κοινές διακριτές κατανομές πιθανότητας.
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Σχήμα 2.2: Κοινές συνεχείς κατανομές πιθανότητας.

2.3 Συνήθεις Κατανομές Πιθανότητας

Πολλά φαινόμενα περιγράφονται με συγκεκριμένες παραμετρικές οικογένειες κατανομών.

Διακριτές κατανομές. Συνηθισμένα παραδείγματα είναι οι κατανομές Bernoulli, Bi-
nomial και Poisson (Σχ. 2.1).

Bernoulli(p), 0 < p < 1. Φορέας: z ∈ {0, 1}.

px(z) = pz(1− p)1−z, z ∈ {0, 1}.

Αθροιστική συνάρτηση κατανομής (CDF):

Fx(z) = P(x ≤ z) =


0, z < 0,

1− p, 0 ≤ z < 1,

1, z ≥ 1.

Binomial(n, p), n ∈ N, 0 < p < 1. Φορέας: z = 0, 1, . . . , n.

px(z) =

(
n

z

)
pz(1− p)n−z, z = 0, . . . , n.
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Αθροιστική συνάρτηση κατανομής:

Fx(z) =

⌊z⌋∑
u=0

(
n

u

)
pu(1− p)n−u.

Συμπαγώς,
Fx(z) = I1−p(n− ⌊z⌋, ⌊z⌋+ 1),

όπου Ia,b(z) είναι η κανονικοποιημένη ατελής βήτα.

Poisson(λ), λ > 0. Φορέας: z ∈ {0, 1, 2, . . . }.

px(z) = e−λλ
z

z!
, z = 0, 1, 2, . . .

Αθροιστική συνάρτηση κατανομής:

Fx(z) = e−λ

⌊z⌋∑
u=0

λu

u!
= P (⌊z⌋+ 1, λ),

όπου P (s, u) = γ(s, u)/Γ(s) είναι η κανονικοποιημένη κάτω ατελής γάμμα.

Συνεχείς κατανομές. Κλασικά παραδείγματα είναι η Ομοιόμορφη (Uniform), Εκ-
θετική (Exponential) και Γκαουσιανή (Gaussian) (Σχ. 2.2).

Uniform(a, b), a < b. Φορέας: z ∈ [a, b].

px(z) =
1

b− a
1[a,b](z),

όπου 1[a,b](z) είναι η ενδεικτική συνάρτηση του διαστήματος [a, b] (1 στο διάστημα μεταξύ
a και b, και 0 οπουδήποτε αλλού).
Αθροιστική συνάρτηση κατανομής:

Fx(z) =


0, z < a,

z − a

b− a
, a ≤ z ≤ b,

1, z > b.

Exponential(λ), λ > 0. Φορέας: z ∈ [0,∞).

px(z) = λe−λz 1[0,∞)(z).

Αθροιστική συνάρτηση κατανομής:

Fx(z) =

∫ z

0

λe−λu du = 1− e−λz, z ≥ 0,

και Fx(z) = 0 για z < 0.
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Gaussian/Normal (µ, σ2), σ > 0. Φορέας: z ∈ R.

px(z) =
1√
2π σ

exp

(
−(z − µ)2

2σ2

)
.

Αθροιστική συνάρτηση κατανομής:

Fx(z) = P(x ≤ z) = Φ

(
z − µ

σ

)
,

όπου

Φ(u) =
1√
2π

∫ u

−∞
e−t2/2 dt = 1

2

(
1 + erf

(
u√
2

))
.

Κατανομή PMF/PDF CDF Fx(z)

Bernoulli(p) pz(1− p)1−z, z ∈ {0, 1} 0 (z < 0); 1− p (0 ≤ z < 1); 1 (z ≥ 1)

Binomial(n, p)
(
n
z

)
pz(1− p)n−z

∑⌊z⌋
u=0

(
n
u

)
pu(1− p)n−u

Poisson(λ) e−λλ
z

z!
e−λ

∑⌊z⌋
u=0

λu

u!

Uniform(a, b)
1

b− a
1[a,b](z)

z − a

b− a
στο [a, b]

Exponential(λ) λe−λz1[0,∞)(z) 1− e−λz (z ≥ 0)

Normal(µ, σ2)
1√
2πσ

e−
(z−µ)2

2σ2 Φ

(
z − µ

σ

)
Table 1: PMFs/PDFs και CDFs για κοινές κατανομές.

2.4 Συμβάσεις Σημειογραφίας

Για λόγους σαφήνειας και συνέπειας, οι συμβάσεις σημειογραφίας του Πίνακα 2 χρησι-
μοποιούνται σε όλο το κείμενο. Συνοπτικά: τα πεζά γράμματα δηλώνουν βαθμωτά μεγέθη,
τα έντονα πεζά διανύσματα, και τα έντονα κεφαλαία πίνακες. Τα tildes (x̃, x̃) μπορούν να
χρησιμοποιηθούν για να επισημανθεί η τυχαιότητα όταν χρειάζεται, ενώ τα καπέλα (x̂, x̂)
δηλώνουν εκτιμήσεις.

3 Διακριτές και Συνεχείς Πιθανότητες

3.1 Διακριτές Πιθανότητες

Σε ένα διακριτό δειγματικό χώρο Ω = {ω1, . . . , ωn}, κάθε στοιχειώδες ενδεχόμενο
ωi έχει μια πιθανότητα

pi = P({ωi}), pi ≥ 0,
n∑

i=1

pi = 1.

Το σύνολο {pi} ορίζει μια συνάρτηση μάζας πιθανότητας (PMF) πάνω στο Ω.
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Τύπος

Μεγέθους

ΝτετερμινιστικόΤυχαίο Σχόλια

Scalar
(βαθμωτός)

x x ή x̃ x ∈ R: το x̃
χρησιμοποιείται

όταν θέλουμε να

τονίσουμε ρητά

την τυχαιότητα

Vector
(διάνυσμα)

x x ή x̃ x ∈ Rn: τυχαίο
διάνυσμα αν έχει

οριστεί πυκνότητα

p(x)

Matrix
(πίνακας)

A — A ∈ Rm×n:
συνήθως

θεωρείται

ντετερμινιστικός

Estimate
(εκτίμηση)

x̂, x̂ — Χρησιμοποιούνται

για εκτιμημένες ή

υπολογισμένες

τιμές

Table 2: Σημειογραφία για ντετερμινιστικά και τυχαία μεγέθη.

Για οποιοδήποτε ενδεχόμενο E ⊆ Ω, η πιθανότητά του είναι

P(E) =
∑
ωi∈E

pi.

Μια τυχαία μεταβλητή x : Ω → R συνεπάγεται πιθανότητες στις τιμές της. ΄Εστω
X ⊆ R το σύνολο των πιθανών τιμών της. Η PMF δίνεται από:

px(z) = P(x = z) =
∑

ωi:x(ωi)=z

pi, z ∈ X ,
∑
z∈X

px(z) = 1.

Παράδειγμα. Για ένα ζάρι:

Ω = {1, 2, 3, 4, 5, 6}, X = {1, 2, 3, 4, 5, 6}, pi =
1
6
.

Π.χ. η πιθανότητα άρτιου αποτελέσματος:

P(άριτος) = P({2, 4, 6}) = 1
2
.

3.2 Συνεχείς Πιθανότητες

Σε έναν συνεχή δειγματικό χώρο, η τυχαία μεταβλητή x : Ω → R λαμβάνει τιμές σε
μη αριθμήσιμο σύνολο X ⊆ R. Σε αυτή την περίπτωση, μεμονωμένα αποτελέσματα έχουν
μηδενική πιθανότητα και οι πιθανότητες περιγράφονται μέσω μιας μη αρνητικής συνάρτησης

px(z), της συνάρτησης πυκνότητας πιθανότητας (PDF):

px(z) ≥ 0,

∫
X
px(z) dz = 1.
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Η πιθανότητα ότι x ανήκει σε μια μετρήσιμη περιοχή A ⊆ X είναι

P(x ∈ A) =

∫
A

px(z) dz.

Η αντίστοιχη αθροιστική συνάρτηση κατανομής (CDF) ορίζεται ως

Fx(z) = P(x ≤ z) =

∫ z

−∞
px(u) du.

Παράδειγμα. Για τυχαία μεταβλητή με ομοιόμορφη τυχαιότητα στο [0, 1]:

X = [0, 1], px(z) =

{
1, 0 ≤ z ≤ 1,

0, αλλού,
Fx(z) =


0, z < 0,

z, 0 ≤ z ≤ 1,

1, z > 1.

3.3 Διακριτές vs. Συνεχείς Πιθανότητες

Η βασική διάκριση μεταξύ διακριτών και συνεχών τυχαίων μεταβλητών αφορά τον τρόπο με

τον οποίο αποδίδεται η πιθανότητα:

Διακριτή περίπτωση. Οι πιθανότητες αποδίδονται σε συγκεκριμένα σημεία:

px(z) = P(x = z),
∑
z∈X

px(z) = 1.

Για οποιοδήποτε υποσύνολο A ⊆ X ,

P(x ∈ A) =
∑
z∈A

px(z).

Παράδειγμα: για ένα ζάρι,

X = {1, 2, 3, 4, 5, 6}, P(άρτιος) = 1
2
.

Συνεχής περίπτωση. Οι πιθανότητες αποδίδονται σε διαστήματα ή περιοχές, όχι σε
μεμονωμένα σημεία:

px(z) ≥ 0,

∫
X
px(z) dz = 1, P(x ∈ A) =

∫
A

px(z) dz.

Παράδειγμα: αν x ∼ Uniform(0, 1),

P(0.2 ≤ x ≤ 0.5) = 0.3.

Κύρια διαφορά.

• Διακριτές μεταβλητές: Η πιθανότητα αποδίδεται σε συγκεκριμένες τιμές z ∈ X .

• Συνεχείς μεταβλητές: Η πιθανότητα οποιασδήποτε ακριβούς τιμής είναι μηδέν,
P(x = z) = 0: μόνο διαστήματα έχουν μη μηδενική πιθανότητα.
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4 Μέτρα Πιθανότητας και Κατανομές

4.1 Μέτρο Πιθανότητας

Το πιο θεμελιώδες αντικείμενο στη θεωρία πιθανοτήτων είναι το μέτρο πιθανότητας,
συμβολιζόμενο με P. Ορίζεται πάνω σε έναν δειγματικό χώρο Ω και αντιστοιχίζει σε κάθε
γεγονός (μετρήσιμο υποσύνολο του Ω) έναν μη αρνητικό αριθμό στο διάστημα [0, 1]:

P : F ⊆ 2Ω → [0, 1], P(A) = “η πιθανότητα το γεγονός A να συμβεί”.

Το μέτρο P ικανοποιεί:

P(Ω) = 1, P

(⋃
i

Ai

)
=
∑
i

P(Ai) για ανεξάρτητα (ασυμβίβαστα) γεγονότα Ai.

Αυτή η διατύπωση μέσω μέτρου αποτελεί τη βάση πάνω στην οποία ορίζονται οι τυχαίες

μεταβλητές, οι συναρτήσεις κατανομής και οι πυκνότητες.

4.2 Συνάρτηση Κατανομής (CDF)

Μια τυχαία μεταβλητή x : Ω → R “δημιουργεί” έναν νόμο πιθανότητας στο R μέσω της
αθροιστικής συνάρτησης κατανομής (CDF):

Fx(t) = P(x ≤ t).

Η Fx(t) είναι μη φθίνουσα, δεξιά συνεχής και ικανοποιεί:

lim
t→−∞

Fx(t) = 0, lim
t→+∞

Fx(t) = 1.

Διαισθητικά, η Fx(t) δίνει την πιθανότητα η τυχαία μεταβλητή x να πάρει τιμή μικρότερη ή
ίση από t.

4.3 Πυκνότητα και Μάζα Πιθανότητας

Η πυκνότητα πιθανότητας (PDF) ή η συνάρτηση μάζας πιθανότητας (PMF)
περιγράφει το πώς κατανέμεται η πιθανότητα στις δυνατές τιμές της x.

Διακριτή περίπτωση. Αν η x παίρνει τιμές σε αριθμήσιμο σύνολο X ,

px(z) = P(x = z),
∑
z∈X

px(z) = 1.

Συνεχής περίπτωση. ΄Οταν η x είναι συνεχής, οι πιθανότητες εκφράζονται μέσω
πυκνότητας:

px(z) =
d

dz
Fx(z),

∫ ∞

−∞
px(z) dz = 1.

Η πιθανότητα να βρεθεί η x σε διάστημα είναι

P(a ≤ x ≤ b) =

∫ b

a

px(z) dz.

Η CDF ανακτάται από την PDF μέσω ολοκλήρωσης:

Fx(z) =

∫ z

−∞
px(u) du.
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4.4 Από Κοινού Κατανομές (Joint Distributions)

΄Οταν εξετάζουμε δύο ή περισσότερες τυχαίες μεταβλητές, η κοινή τους συμπεριφορά περι-
γράφεται από μια από κοινού κατανομή (joint distribution). Για δύο τυχαίες μεταβλητές
x, y, η από κοινού συνάρτηση πυκνότητας πιθανότητας (PDF) ή συνάρτηση
μάζας πιθανότητας (PMF) (joint PDF or joint PMF) συμβολίζεται με px,y(z1, z2).

Συνεχής περίπτωση.

px,y(z1, z2) ≥ 0,

∫
X

∫
Y
px,y(z1, z2) dz1 dz2 = 1.

Για οποιεσδήποτε μετρήσιμες περιοχές A ⊆ X και B ⊆ Y ,

P(x ∈ A, y ∈ B) =

∫
A

∫
B

px,y(z1, z2) dz1 dz2.

Παράδειγμα. ΄Εστω ότι x και y είναι από κοινού ομοιόμορφες στο μοναδιαίο τετράγωνο:

px,y(z1, z2) =

{
1, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1,

0, αλλιώς.

΄Ελεγχος κανονικοποίησης:∫ 1

0

∫ 1

0

px,y(z1, z2) dz1 dz2 =

∫ 1

0

∫ 1

0

1 dz1 dz2 = 1.

Διακριτή περίπτωση.

px,y(z1, z2) = P(x = z1, y = z2),
∑
z1,z2

px,y(z1, z2) = 1.

Παράδειγμα. Για δύο ρίψεις νομίσματος:

Ω = {HH,HT, TH, TT}, px,y(H,H) = 1
4
, . . .

4.5 Περιθωριακές Κατανομές (Marginal Distributions)

Η περιθωριακή κατανομή (marginal distribution) μιας μεταβλητής προκύπτει με ολοκ-
λήρωση (ή άθροιση) της από κοινού κατανομής των τιμών όλων των άλλων μεταβλητών.

Συνεχής περίπτωση.

px(z1) =

∫
Y
px,y(z1, z2) dz2, py(z2) =

∫
X
px,y(z1, z2) dz1.

Διακριτή περίπτωση. Οι ολοκληρώσεις αντικαθίστανται από αθροίσματα:

px(z1) =
∑
z2

px,y(z1, z2), py(z2) =
∑
z1

px,y(z1, z2).
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Παράδειγμα. Για το πείραμα δύο ρίψεων νομίσματος:

px(H) = px,y(H,H) + px,y(H,T ) = 1
2
.

4.6 Διανυσματικές Τυχαίες Μεταβλητές και Από Κοινού

Κατανομές

Μια διανυσματική τυχαία μεταβλητή είναι μια τυχαία μεταβλητή με τιμές στο RM :

x = [x1, . . . , xM ]⊤ : Ω → RM .

Η κατανομή της περιγράφεται από μια από κοινού CDF και, όπου υπάρχει, από μια από
κοινού PDF.

Από κοινού αθροιστική συνάρτηση κατανομής (CDF).

Fx(z) = P(x1 ≤ z1, . . . , xM ≤ zM), z ∈ RM .

Η συνάρτηση αυτή είναι μη φθίνουσα ως προς κάθε συνιστώσα και ικανοποιεί Fx(∞, . . . ,∞) =
1.

Από κοινού συνάρτηση πυκνότητας πιθανότητας.

px(z) =
∂MFx(z)

∂z1 · · · ∂zM
,

∫
RM

px(z) dz = 1.

Στη διακριτή περίπτωση, px(z) = P(x = z), ενώ στη συνεχή περίπτωση είναι μια πυκνότητα
στο RM .

4.7 Περιθωριακές Πυκνότητες και Γεωμετρική Ερμηνεία

Για μια διανυσματική τυχαία μεταβλητή x = [x1, . . . , xM ]⊤, η περιθωριακή πυκνότητα
(marginal density) μιας συνιστώσας xi προκύπτει με ολοκλήρωση ως προς όλες τις υπόλοιπες

μεταβλητές:

pxi
(zi) =

∫
px(z) dz\i,

όπου z\i είναι όλα τα στοιχεία του z εκτός από το zi.

Γεωμετρική ερμηνεία. Στη συνεχή περίπτωση, η πιθανότητα

P(a1 ≤ x1 ≤ b1, . . . , aM ≤ xM ≤ bM)

ισούται με τον όγκο κάτω από την από κοινού συνάρτηση πυκνότητας πιθανότητας px(z)
στην περιοχή που ορίζεται από τα διαστήματα [ai, bi].
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5 Δεσμευμένες Κατανομές και Θεμελιώδεις Κανόνες

Πιθανότητας

5.1 Δεσμευμένες Κατανομές

Μια δεσμευμένη κατανομή περιγράφει τον νόμο πιθανότητας μιας τυχαίας μεταβλητής,
υπό την προϋπόθεση ότι μια άλλη έχει λάβει συγκεκριμένη τιμή. Για δύο τυχαίες μεταβλ-
ητές x και y με από κοινού κατανομή px,y(z1, z2), η δεσμευμένη πυκνότητα του y υπό την
προϋπόθεση x = z1 ορίζεται ως

py|x(z2 | z1) =
px,y(z1, z2)

px(z1)
.

Ισχύει η κανονικοποίηση:

py|x(z2 | z1) ≥ 0,

∫
Y
py|x(z2 | z1) dz2 = 1,

και στη διακριτή περίπτωση το ολοκλήρωμα αντικαθίσταται από άθροισμα.
Η αντίστοιχη δεσμευμένη πιθανότητα δίνεται από

P(y ∈ B | x = z1) =

∫
B

py|x(z2 | z1) dz2.

Διαισθητικά, η δέσμευση στο x = z1 περιορίζει την αβεβαιότητα για το y στις τιμές που
είναι συμβατές με την παρατήρηση του x.
Η από κοινού πιθανότητα δύο μεταβλητών γράφεται ως

P(y ∈ B, x ∈ A) =

∫
A

∫
B

py|x(z2 | z1) px(z1) dz2 dz1.

Παράδειγμα (Διακριτή περίπτωση). ΄Εστω ότι x και y είναι τα αποτελέσματα δύο
ανεξάρτητων ρίψεων ενός νομίσματος:

px,y(H,H) = px,y(H,T ) = px,y(T,H) = px,y(T, T ) =
1
4
.

Τότε η δεσμευμένη κατανομή του y υπό την προϋπόθεση x = H είναι

py|x(y | H) =
px,y(H, y)

px(H)
=

1
4
1
2

= 1
2
.

΄Αρα το y παραμένει ομοιόμορφο ακόμη και γνωρίζοντας ότι x = H, λόγω ανεξαρτησίας. Σε
περίπτωση εξάρτησης, το py|x θα άλλαζε αναλόγως.

Δεσμευμένες Κατανομές για Πολλαπλές Μεταβλητές

Μια δεσμευμένη κατανομή επεκτείνεται φυσικά στην περίπτωση τριών ή περισσότερων

τυχαίων μεταβλητών. Για τυχαίες μεταβλητές x1, x2, . . . , xn με από κοινού κατανομή

px1,x2,...,xn(z1, z2, . . . , zn),
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η δεσμευμένη πυκνότητα μιας μεταβλητής xi, δεδομένων όλων των υπόλοιπων, δίνεται από

pxi|x1,...,xi−1,xi+1,...,xn(zi | z1, . . . , zi−1, zi+1, . . . , zn) =
px1,...,xn(z1, . . . , zn)

px1,...,xi−1,xi+1,...,xn(z1, . . . , zi−1, zi+1, . . . , zn)
.

Ισχύει η κανονικοποίηση:

pxi|x\i(zi | z\i) ≥ 0,

∫
Xi

pxi|x\i(zi | z\i) dzi = 1,

όπου x\i = (x1, . . . , xi−1, xi+1, . . . , xn). Στη διακριτή περίπτωση, το ολοκλήρωμα αντικα-
θίσταται από άθροισμα.
Η αντίστοιχη δεσμευμένη πιθανότητα γράφεται:

P(xi ∈ B | x\i = z\i) =

∫
B

pxi|x\i(zi | z\i) dzi.

Η από κοινού κατανομή μπορεί πάντοτε να παραγοντοποιηθεί με τον κανόνα αλυσί-

δας της πιθανότητας:

p(x1, x2, . . . , xn) = p(x1) p(x2 | x1) p(x3 | x1, x2) · · · p(xn | x1, . . . , xn−1).

Αυτή η παραγοντοποίηση δείχνει πώς οι εξαρτήσεις μεταξύ των μεταβλητών αποτυπώνονται

μέσω δεσμευμένων κατανομών.
Γενικότερα, για οποιαδήποτε ανεξάρτητα μεταξύ τους σύνολα δεικτώνA,B,C ⊆ {1, . . . , n},

η δεσμευμένη πυκνότητα γράφεται ως

p(xA | xB, xC) =
p(xA, xB | xC)

p(xB | xC)
=

p(xA, xB, xC)

p(xB, xC)
.

΄Ετσι, η δέσμευση σε πολλές μεταβλητές απλώς περιορίζει την αβεβαιότητα σε έναν χώρο
υψηλότερης διάστασης.
Τέλος, η από κοινού πιθανότητα υποσυνόλων μεταβλητών δίνεται από

P(xA ∈ A′, xB ∈ B′) =

∫
A′

∫
B′
pxA|xB

(zA | zB) pxB
(zB) dzA dzB.

Δεσμεύσεις σε Διανυσματική Μορφή

Μπορούμε πάντα να θεωρήσουμε τις μεταβλητές (x1, x2, . . . , xn) ως ένα διανυσματικό τυχαίο
μέγεθος x ∈ Rn. Τότε:

pxi|x\i(zi | z\i) =
px(z)

px\i(z\i)
.

Για συντομία, μπορούμε να γράφουμε ισοδύναμα:

p(xi | x\i) =
p(x)

p(x\i)
.

Η μορφή αυτή τονίζει ότι οι δεσμευμένες κατανομές είναι απλώς λόγοι κατάλληλων περι-

θωριακών και από κοινού πυκνοτήτων.
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5.2 Κανόνες Αθροίσματος και Γινομένου

Κανόνας Αθροίσματος (Ολοκλήρωση Περιθωριακής Κατανομής)

Ο κανόνας αθροίσματος (ή marginalization) μάς επιτρέπει να βρούμε την περιθωριακή
κατανομή μίας μεταβλητής, αθροίζοντας ή ολοκληρώνοντας την από κοινού κατανομή ως
προς την άλλη:

px(z1) =


∑
z2∈Y

px,y(z1, z2), διακριτή περίπτωση,∫
Y
px,y(z1, z2) dz2, συνεχής περίπτωση.

Αυτό εκφράζει την ιδέα ότι για να βρούμε την περιθωριακή πυκνότητα ως προς x, “ξεχνάμε”
ή “αθροίζουμε” τη μεταβλητή y.

Παράδειγμα (Διακριτό). ΄Εστω ότι x και y είναι τα αποτελέσματα δύο ζαριών. Η από
κοινού κατανομή px,y(i, j) αντιστοιχεί σε πιθανότητα 1/36 για καθεμία από τις 36 ισοπίθανες
εκβάσεις. Η περιθωριακή πυκνότητα ως προς x είναι:

px(i) =
6∑

j=1

px,y(i, j) = 6× 1

36
=

1

6
.

΄Αρα το κάθε ζάρι παραμένει ομοιόμορφα κατανεμημένο, ακόμη και όταν τα θεωρούμε από
κοινού.

Παράδειγμα (Συνεχές). Αν x, y ∼ Uniform(0, 1) ανεξάρτητα,

px,y(z1, z2) =

{
1, 0 ≤ z1, z2 ≤ 1,

0, αλλιώς,

τότε

px(z1) =

∫ 1

0

px,y(z1, z2) dz2 = 1,

οπότε x είναι περιθωριακά ομοιόμορφη στο [0, 1].

Κανόνας Γινομένου ( Παραγοντοποίηση )

Ο κανόνας γινομένου γράφει την από κοινού κατανομή ως γινόμενο μιας δεσμευμένης

και μίας περιθωριακής πυκνοτήτας:

px,y(z1, z2) = py|x(z2 | z1) px(z1),

ή ισοδύναμα,
px,y(z1, z2) = px|y(z1 | z2) py(z2).

Αυτή η παραγοντοποίηση δείχνει ότι η από κοινού κατανομή μπορεί να κατασκευαστεί από

το “τι γνωρίζουμε” (px) και το “τι παραμένει αβέβαιο” δεδομένης αυτής της γνώσης (py|x).
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Ερμηνεία.

• Κανόνας αθροίσματος: Περιθωριοποιείς (αθροίζεις ή ολοκληρώνεις) ως προς
τις μεταβλητές που δεν σε ενδιαφέρουν: ουσιαστικά τις ≪ξεχνάς≫.

• Κανόνας γινομένου: Παραγοντοποιείς την από κοινού κατανομή: την ≪χτίζεις≫ από

κομμάτια που ήδη γνωρίζεις.

Παράδειγμα: Δύο Ζάρια

΄Εστω δύο ζάρια με εκβάσεις x, y ∈ {1, 2, 3, 4, 5, 6}. Το πρώτο ζάρι είναι δίκαιο (όλες
οι πλευρές έχουν ίδια πιθανότητα), ενώ το δεύτερο έχει άνισες πιθανότητες ανά όψη (βλ.
Fig. 5.1).

Ζάρι με άνισες πιθανότητες. Οι ακατέργαστες (μη κανονικοποιημένες) ≪βαρύτητες≫ των

έξι όψεων είναι:
loaded weights = [0.5, 0.6, 1.5, 1.2, 2.0, 0.8].

Κανονικοποιώντας τις, προκύπτει μία έγκυρη PMF:

py(z) =
loaded weights[z]∑6
k=1 loaded weights[k]

,

όπου
6∑

k=1

loaded weights[k] = 0.5 + 0.6 + 1.5 + 1.2 + 2.0 + 0.8 = 6.6.

΄Αρα,

py =
[
0.5
6.6

, 0.6
6.6

, 1.5
6.6

, 1.2
6.6

, 2.0
6.6

, 0.8
6.6

]
= [0.0758, 0.0909, 0.2273, 0.1818, 0.3030, 0.1212].

Κλασικό Ζάρι. Το πρώτο ζάρι έχει

px(z) =
1

6
, z = 1, . . . , 6.

Από Κοινού Κατανομή. Υποθέτοντας ότι τα δύο ζάρια είναι ανεξάρτητα, η από κοινού
πιθανότητα παραγοντοποιείται ως

px,y(i, j) = px(i) py(j) =
1

6
py(j).

΄Αρα ο πίνακας της κοινής κατανομής (όλες οι τιμές i, j) έχει σειρές ίδιες μεταξύ τους και
αναλογικές προς τις τιμές py(j).

΄Ελεγχος Κανονικοποίησης.

6∑
i=1

6∑
j=1

px,y(i, j) =
6∑

i=1

1

6

6∑
j=1

py(j) =
1

6
× 6× 1 = 1.
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Περιθωριακές πυκνότητες (Marginals). Η περιθωριακή πυκνοτήτα του x είναι
ομοιόμορφη:

px(i) =
6∑

j=1

px,y(i, j) =
1

6

6∑
j=1

py(j) =
1

6
.

Η περιθωριακή πυκνοτήτα του y είναι εξ ορισμού py(j).

Υπό Συνθήκη Κατανομές. Από τον κανόνα του γινομένου:

py|x(j | i) =
px,y(i, j)

px(i)
=

1
6
py(j)
1
6

= py(j).

΄Οπως αναμένεται για ανεξάρτητες μεταβλητές, το py|x(j | i) δεν εξαρτάται από το i.

Πίνακας Περιθωριακών Πυκνοτήτων για το ζάρι με άνισες πιθανότητες.

j 1 2 3 4 5 6
py(j) 0.0758 0.0909 0.2273 0.1818 0.3030 0.1212

Ερμηνεία.

• Το πρώτο ζάρι παραμένει ομοιόμορφο, px(i) = 1/6.

• Το δεύτερο ζάρι είναι μεροληπτικό προς τις μεγαλύτερες τιμές (το 5 είναι το πι-
θανότερο, το 1 το λιγότερο πιθανό).

• Η από κοινού κατανομή px,y(i, j) = px(i)py(j) σχηματίζει έναν πίνακα όπου όλες οι
σειρές είναι ίδιες (ανεξαρτησία), αλλά οι στήλες διαφέρουν.

• Η υπό συνθήκη κατανομή py|x(j | i) = py(j) επιβεβαιώνει ότι η γνώση του x δεν δίνει
καμία πληροφορία για το y.

Σύγκριση με την περίπτωση δύο κλασικών ζαριών. Αν και τα δύο ζάρια είναι
κλασικά, τότε py(j) = 1/6 και

px,y(i, j) =
1

36
,

οπότε ανακτούμε την ομοιόμορφη από κοινού κατανομή όπου όλα τα αποτελέσματα είναι

ισοπίθανα. Αντίθετα, το ≪φορτωμένο≫ ζάρι μετατοπίζει τις κοινές πιθανότητες προς τα

αποτελέσματα (i, 5) και (i, 3).

Παράδειγμα: Γκαουσιανή Κατανομή

΄Εστω ότι (x, y) είναι από κοινού γκαουσιανές τυχαίες μεταβλητές με μηδενική μέση τιμή,
μοναδιαίες διασπορές και συσχέτιση ρ ∈ (−1, 1):

px,y(z1, z2) =
1

2π
√

1− ρ2
exp

(
−z21 − 2ρz1z2 + z22

2(1− ρ2)

)
.

Ισοδύναμα, (x, y) ∼ N (0,Σ) με

Σ =

[
1 ρ
ρ 1

]
, Σ−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
.
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Σχήμα 5.1: Οπτικοποίηση του κανόνα αθροίσματος και του κανόνα γινομένου για δύο ζάρια.
Κάθε κελί αντιστοιχεί σε ένα αποτέλεσμα (z1, z2).

Στόχος. Θέλουμε να δείξουμε ότι οι περιθωριακές πυκνότητες είναι τυπικά κανονικές
και να υπολογίσουμε την υπό συνθήκη κατανομή py|x(z2 | z1), επαληθεύοντας στη συνέχεια
την παραγοντοποίηση του κανόνα γινομένου

px,y(z1, z2) = py|x(z2 | z1) px(z1).

1. Περιθωριακή πυκνοτήτα του x μέσω ολοκλήρωσης ως προς z2

Ξεκινάμε από την από κοινού κατανομή:

px,y(z1, z2) =
1

2π
√

1− ρ2
exp

(
−z21 − 2ρz1z2 + z22

2(1− ρ2)

)
.

Θεωρούμε τον εκθέτη ως τετραγωνική μορφή ως προς το z2 και συμπληρώνουμε το τετράγ-
ωνο:

z21 − 2ρz1z2 + z22 = (z2 − ρz1)
2 + (1− ρ2)z21 .

΄Αρα

px,y(z1, z2) =
1

2π
√

1− ρ2
exp

(
−(z2 − ρz1)

2

2(1− ρ2)

)
exp

(
−z21

2

)
.

Ολοκληρώνουμε ως προς z2 ∈ R:

px(z1) =

∫ ∞

−∞
px,y(z1, z2) dz2 =

[
1√
2π

e−
z21
2

][
1√

2π(1− ρ2)

∫ ∞

−∞
e
− (z2−ρz1)

2

2(1−ρ2) dz2

]
︸ ︷︷ ︸

=1

.
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Συνεπώς,

px(z1) =
1√
2π

exp

(
−z21

2

)
= N (0, 1).

Λόγω συμμετρίας το ίδιο ισχύει και για το py(z2).

2. Υπό συνθήκη κατανομή του y δεδομένου x = z1

Από τον ορισμό,

py|x(z2 | z1) =
px,y(z1, z2)

px(z1)
.

Χρησιμοποιώντας τις δύο εκφράσεις παραπάνω:

py|x(z2 | z1) =
1

2π
√

1−ρ2
exp
(
− (z2−ρz1)2

2(1−ρ2)

)
exp
(
− z21

2

)
1√
2π

exp
(
− z21

2

) =
1√

2π(1− ρ2)
exp

(
−(z2 − ρz1)

2

2(1− ρ2)

)
.

΄Αρα,
py|x(z2 | z1) = N

(
ρz1, 1− ρ2

)
.

Αμέσως προκύπτει ότι

E[ y | x = z1 ] = ρz1, Var[ y | x ] = 1− ρ2.

3. Επαλήθευση του κανόνα γινομένου

Πολλαπλασιάζουμε την υπό συνθήκη κατανομή με το περιθώριο:

py|x(z2 | z1) px(z1) =

[
1√

2π(1− ρ2)
e
− (z2−ρz1)

2

2(1−ρ2)

][
1√
2π

e−
z21
2

]
=

1

2π
√
1− ρ2

e
− (z2−ρz1)

2+(1−ρ2)z21
2(1−ρ2) .

Χρησιμοποιώντας την ταυτότητα

(z2 − ρz1)
2 + (1− ρ2)z21 = z21 − 2ρz1z2 + z22 ,

ανακτούμε

py|x(z2 | z1) px(z1) =
1

2π
√

1− ρ2
exp

(
−z21 − 2ρz1z2 + z22

2(1− ρ2)

)
= px,y(z1, z2).

Συμπεράσματα.

px(z1) = N (0, 1), py|x(z2 | z1) = N (ρz1, 1− ρ2), px,y(z1, z2) = py|x(z2 | z1) px(z1).

΄Οταν ρ = 0, τα x και y είναι ανεξάρτητα, py|x = py, και η από κοινού κατανομή παραγοντοποιεί-
ται στο γινόμενο δύο τυπικών κανονικών (Γκαουσιανών) κατανομών.
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Σχήμα 5.2: Συνεχές παράδειγμα: διδιάστατη Γκαουσιανή κατανομή που απεικονίζει τους
κανόνες αθροίσματος και γινομένου. Η υπό συνθήκη κατανομή μειώνει την αβεβαιότητα
της μεταβλητής y.

6 Ο Κανόνας του Bayes και η Συμπερασματολογία

κατά Bayes

6.1 Ο Κανόνας του Bayes: Θεμέλια

Ο κανόνας του Bayes παρέχει το μαθηματικό πλαίσιο για τον υπολογισμό των “πεποιθήσεών”
μας σχετικά με μια άγνωστη ποσότητα μετά την παρατήρηση νέων δεδομένων. Προκύπτει
άμεσα από τον κανόνα γινομένου:

px,y(z1, z2) = py|x(z2 | z1) px(z1) = px|y(z1 | z2) py(z2).

Απλή αναδιάταξη οδηγεί στη γνωστή μορφή του κανόνα του Bayes.

Διακριτή περίπτωση.

px|y(z1 | z2) =

py|x(z2 | z1)︸ ︷︷ ︸
Likelihood

px(z1)︸ ︷︷ ︸
Prior

py(z2)︸ ︷︷ ︸
Evidence

, py(z2) =
∑
z1∈X

py|x(z2 | z1) px(z1).

Συνεχής περίπτωση.

px|y(z1 | z2) =
py|x(z2 | z1) px(z1)

py(z2)
, py(z2) =

∫
X
py|x(z2 | z1) px(z1) dz1.
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Ερμηνεία.

• Posterior (Εκ των υστέρων κατανομή/πιθανότητα/πυκνοτήτα) px|y: η ενημερωμένη
πεποίθηση για το x αφού παρατηρήσουμε το y.

• Prior (πρότερη κατανομή/πιθανότητα/πυκνοτήτα) px: η πεποίθησή μας για το x πριν
δούμε δεδομένα.

• Likelihood (πιθανοφάνεια) py|x: η πιθανότητα των δεδομένων, δεδομένου του x.

• Evidence (περιθωριακή πιθανοφάνεια) py: η σταθερά κανονικοποίησης που εξασ-
φαλίζει ότι η εκ των υστέρων πιθανότητα “αθροίζει” στην μονάδα.

Συνοπτικά:

Posterior =
Likelihood× Prior

Evidence
.

Ο κανόνας του Bayes είναι άμεση συνέπεια του κανόνα γινομένου και του κανόνα
αθροίσματος.

Παράδειγμα (Διακριτή περίπτωση): Ιατρικό Τεστ

΄Εστω ότι εξετάζουμε για μια σπάνια ασθένεια που επηρεάζει το 1% του πληθυσμού:

px(disease) = 0.01, px(healthy) = 0.99.

Το τεστ έχει:

py|x(positive | disease) = 0.99, py|x(positive | healthy) = 0.05.

Θέλουμε να υπολογίσουμε την πιθανότητα να έχει κάποιος την ασθένεια δεδομένου ότι

βγήκε θετικός:
px|y(disease | positive).

Βήμα 1: Evidence.

py(positive) = py|x(positive | disease) px(disease) + py|x(positive | healthy) px(healthy)
= 0.99(0.01) + 0.05(0.99) = 0.0594.

Βήμα 2: Posterior.

px|y(disease | positive) =
0.99(0.01)

0.0594
≈ 0.167.

Ερμηνεία: Παρά το πολύ ακριβές τεστ, η πιθανότητα να έχει πράγματι την ασθένεια
κάποιος που βρέθηκε θετικός είναι μόλις περίπου 16.7%, λόγω του πολύ χαμηλού prior
(base rate).
Αυτό δείχνει τη δύναμη του κανόνα του Bayes στη συλλογιστική υπό αβεβαιότητα.

Παράδειγμα (Συνεχή περίπτωση): Γκαουσιανές για prior και πιθανοφάνεια

΄Ενα κλασικό παράδειγμα συνεχούς συμπερασματολογίας κατά Bayes αφορά συζυγείς (con-
jugate) Γκαουσιανές κατανομές (Fig. 6.1). Το παράδειγμα δείχνει πώς ενημερώνουμε την
πεποίθησή μας για μια άγνωστη συνεχόμενη ποσότητα μετά από μια θορυβώδη μέτρηση.
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Σχήμα 6.1: Γκαουσιανό prior, likelihood και posterior. Το posterior βρίσκεται “ενδιάμεσα”
και έχει μικρότερη διασπορά.

Πλαίσιο. Θέλουμε να εκτιμήσουμε μια άγνωστη πραγματική ποσότητα (π.χ. πραγματική
θερμοκρασία δωματίου), την οποία συμβολίζουμε με θ. Πριν πάρουμε κάποια μέτρηση,
έχουμε μια prior πεποίθηση, η οποία μοντελοποιείται ως:

θ ∼ N (µprior, σ
2
prior),

όπου µprior είναι η αρχική μας εκτίμηση και σ
2
prior η αβεβαιότητά μας. Παίρνουμε μια θορυβώδη

μέτρηση:
yobs | θ ∼ N (θ, σ2

noise),

όπου σ2
noise είναι η διακύμανση του αισθητήρα. Στόχος: να βρούμε την posterior p(θ | yobs),

δηλαδή την πεποίθησή μας μετά τη μέτρηση.

Βήμα 1: Μορφή του posterior. Από τον κανόνα του Bayes:

p(θ | yobs) ∝ p(yobs | θ) p(θ).
Υποκαθιστώντας τις Γκαουσιανές μορφές:

p(θ | yobs) ∝ exp

[
−(yobs − θ)2

2σ2
noise

]
exp

[
−(θ − µprior)

2

2σ2
prior

]
.

Συνδυάζοντας τους εκθέτες:

ln p(θ | yobs) = −1

2

[
(yobs − θ)2

σ2
noise

+
(θ − µprior)

2

σ2
prior

]
+ const.

Βήμα 2: Ανάπτυξη και ομαδοποίηση των όρων ως προς θ. Αναπτύσσουμε τα
τετράγωνα:

(yobs − θ)2

σ2
noise

=
θ2 − 2θyobs + y2obs

σ2
noise

,
(θ − µprior)

2

σ2
prior

=
θ2 − 2θµprior + µ2

prior

σ2
prior

.

΄Αρα:

ln p(θ | yobs) = −1

2

[
θ2
(

1

σ2
noise

+
1

σ2
prior

)
− 2θ

(
yobs
σ2
noise

+
µprior

σ2
prior

)
+ const

]
.
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Βήμα 3: Ολοκλήρωση τετραγώνου. Ορίζουμε

A =
1

σ2
noise

+
1

σ2
prior

, B =
yobs
σ2
noise

+
µprior

σ2
prior

.

Τότε

ln p(θ | yobs) = −1

2

[
Aθ2 − 2Bθ

]
+ const.

Κάνουμε ολοκλήρωση τετραγώνου:

Aθ2 − 2Bθ = A(θ −B/A)2 − B2

A
.

΄Αρα,

ln p(θ | yobs) = −A

2
(θ −B/A)2 + const.

Αναγνωρίζουμε τον εκθέτη της Γκαουσιανής:

θ | yobs ∼ N (µpost, σ
2
post),

όπου

σ2
post =

1

A
=

(
1

σ2
prior

+
1

σ2
noise

)−1

, µpost =
B

A
= σ2

post

(
µprior

σ2
prior

+
yobs
σ2
noise

)
.

Βήμα 4: Evidence (περιθωριακή πιθανοφάνεια). Το evidence προκύπτει με
περιθωριοποίηση (marginalization) ως προς θ:

p(yobs) =

∫ ∞

−∞
p(yobs | θ) p(θ) dθ.

Η συνέλιξη δύο Γκαουσιανών είναι Γκαουσιανή:

p(yobs) = N
(
yobs;µprior, σ

2
prior + σ2

noise

)
.

Βήμα 5: Ερμηνεία.

• Μέση τιμή posterior (ενημερωμένη εκτίμηση):

µpost = wpriorµprior + wdatayobs, wprior =
σ2
noise

σ2
prior + σ2

noise

, wdata =
σ2
prior

σ2
prior + σ2

noise

.

Αν η μέτρηση είναι πολύ θορυβώδης (σ2
noise ≫ σ2

prior), το prior υπερισχύει· αλλιώς,
υπερισχύει το δεδομένο.

• Διακύμανση posterior (ενημερωμένη αβεβαιότητα):

σ2
post =

(
1

σ2
prior

+
1

σ2
noise

)−1

.

Είναι πάντα μικρότερη από καθεμία από τις δύο αρχικές διακυμάνσεις— συνδυάζοντας
δύο ανεξάρτητες πηγές πληροφορίας μειώνουμε την αβεβαιότητα.

• Evidence (predictive likelihood): Το p(yobs) μετρά πόσο ≪πιθανή≫ είναι η

παρατήρηση υπό το μοντέλο: χρήσιμο για σύγκριση μοντέλων ή ρύθμιση υπερπαραμέτρων.
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Σύνοψη. Το παράδειγμα δείχνει την ιδιότητα της συζυγίας στα Γκαουσιανά μοντέλα: η
posterior παραμένει Γκαουσιανό, με μέση τιμή και διακύμανση που υπολογίζονται αναλυ-
τικά. Η ίδια λογική επεκτείνεται άμεσα και στην πολυδιάστατη περίπτωση, όπου οι πίνακες
ακρίβειας (αντίστροφοι πίνακες συνδιακύμανσης) αθροίζονται γραμμικά.

6.2 Διαισθητική Περίληψη

Ο κανόνας του Bayes τυποποιεί τη μάθηση από δεδομένα:

Posterior ∝ Likelihood× Prior.

Συνδυάζει την προϋπάρχουσα γνώση με την παρατηρούμενη πληροφορία. Στις διακριτές
περιπτώσεις αυτό εμφανίζεται ως κανονικοποιημένο σταθμισμένο άθροισμα πιθανών υπο-

θέσεων. Στις συνεχείς περιπτώσεις οδηγεί σε κλειστές μορφές για συζυγείς κατανομές,
όπως στο παράδειγμά μας.
Η συμπερασματολογία κατά Bayes είναι πολύ χρήσιμη στη σύγχρονη μηχανική μάθηση,

στην επεξεργασία σήματος και στον έλεγχο: παρέχει έναν συστηματικό τρόπο υπολογισμού
πεποιθήσεων και ποσοτικοποίησης της αβεβαιότητας.

7 Μέση Τιμή,Διασπορά,Συνδιασπορά και Συσχέτιση

Σε αυτήν την ενότητα εξετάζουμε τις πιο θεμελιώδεις στατιστικές ποσότητες που χρησι-

μοποιούνται για να περιγράψουν τυχαίες μεταβλητές. Αυτές οι ποσότητες (οι μέσες τιμές,
οι διασπορές, οι συνδιασπορές και οι συσχετίσεις) αποτελούν τη ραχοκοκαλιά της θεωρίας
πιθανοτήτων, και της στοχαστικής μοντελοποίησης. Περιγράφουν την κεντρική τάση, τη
διασπορά και τις σχέσεις ανάμεσα σε τυχαίες ποσότητες.

7.1 Αναμενόμενες Τιμές και Μέση Τιμή

Η αναμενόμενη τιμή (ή μέση τιμή) μιας τυχαίας μεταβλητής ποσοτικοποιεί την ≪μέση

τιμή≫ της με βάση τον νόμο πιθανοτήτων της. Διαισθητικά, αντιστοιχεί στην τιμή που θα
προέκυπτε κατά μέσο όρο αν το ίδιο τυχαίο πείραμα επαναλαμβανόταν άπειρες φορές.
΄Εστω ότι x είναι μια τυχαία μεταβλητή με συνάρτηση πυκνοτήτας πιθανότητας px(z)

ορισμένη σε έναν δειγματοχώρο X .

Διακριτή περίπτωση. Αν το x λαμβάνει διακριτές τιμές z ∈ X , η αναμενόμενη τιμή
ορίζεται ως το σταθμισμένο άθροισμα:

E[x] =
∑
z∈X

z px(z).

Συνεχής περίπτωση. Αν το x είναι συνεχές, η αναμενόμενη τιμή του δίνεται από
ολοκλήρωμα πάνω στη συνάρτηση πυκνότητας πιθανότητας:

E[x] =
∫
X
z px(z) dz.

Η αναμενόμενη τιμή είναι μια βαθμωτή σύνοψη της κατανομής της τυχαίας μεταβλητής:
δίνει ένα μέτρο της κεντρικής θέσης της. Ωστόσο, δεν παρέχει πληροφορία σχετικά με τη
διασπορά ή τη μεταβλητότητά της.
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Πολυδιάστατη περίπτωση. Για μία τυχαία διανυσματική μεταβλητή x = [x1, x2, . . . , xN ]
⊤ ∈

RN , η αναμενόμενη τιμή (ή διανυσματική μέση τιμή) ορίζεται ανά συνιστώσα:

E[x] =


E[x1]

...

E[xN ]

 =


∫
X1

z px1(z) dz

...∫
XN

z pxN
(z) dz

 .

Παραδείγματα.

• Αν x ∼ Bernoulli(p), τότε E[x] = p. Η μέση τιμή αντιστοιχεί στην πιθανότητα
επιτυχίας.

• Αν x ∼ N (µ, σ2), τότε E[x] = µ.

Γραμμικότητα της αναμενόμενης τιμής. Μία από τις πιο ισχυρές ιδιότητες της
αναμενόμενης τιμής είναι η γραμμικότητα:

E[a x+ b y] = aE[x] + bE[y],

για κάθε σταθερές a, b ∈ R και για οποιεσδήποτε τυχαίες μεταβλητές x, y. Αυτή η ιδιότητα
ισχύει ανεξάρτητα από το αν x και y είναι ανεξάρτητες. Επιτρέπει τον αλγεβρικό χειρισμό
αναμενόμενων τιμών σε πιθανολογικές παραθέσεις.

7.2 Διασπορά και Τυπική Απόκλιση

Ενώ η μέση τιμή δείχνει την κεντρική τάση μίας τυχαίας μεταβλητής, δεν παρέχει πληροφορία
σχετικά με το πόσο μακριά τείνουν να αποκλίνουν τα δείγματα από αυτήν. Η διασπορά
μιας τυχαίας μεταβλητής x μετρά τη μέση τετραγωνική απόκλιση από τη μέση τιμή:

Var[x] = E
[
(x− E[x])2

]
= E[x2]− (E[x])2.

Η διασπορά είναι πάντα μη αρνητική και έχει τις ίδιες μονάδες με το τετράγωνο του x.
Ποσοτικοποιεί το πόσο ≪απλωμένη≫ είναι η κατανομή του x.
Η τετραγωνική ρίζα της διασποράς είναι η τυπική απόκλιση:

σx =
√

Var[x].

Η τυπική απόκλιση συχνά είναι ευκολότερο να ερμηνευτεί, καθώς έχει τις ίδιες μονάδες με
τη μεταβλητή.

Παράδειγμα. Αν x ∼ N (µ, σ2), τότε Var[x] = σ2. Για μια τυχαία μεταβλητή Bernoulli
x ∈ {0, 1} με παράμετρο p, η διασπορά είναι

Var[x] = p(1− p),

η οποία μεγιστοποιείται όταν p = 0.5.
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7.3 Συνδιασπορά

Η συνδιασπορά γενικεύει την έννοια της διασποράς ώστε να περιγράψει το πώς δύο

τυχαίες μεταβλητές μεταβάλλονται μαζί. Για τυχαίες μεταβλητές x και y, η συνδιασπορά
ορίζεται ως:

Cov[x, y] = E
[
(x− E[x])(y − E[y])

]
= E[x y]− E[x]E[y].

Αν Cov[x, y] > 0, τότε x και y τείνουν να αυξάνονται ή να μειώνονται μαζί (θετική
γραμμική εξάρτηση). Αν Cov[x, y] < 0, τείνουν να κινούνται σε αντίθετες κατευθύνσεις.
Αν Cov[x, y] = 0, είναι γραμμικά μη συσχετισμένες, αν και όχι απαραίτητα ανεξάρτητες.

Διαισθητικά. Η συνδιασπορά μετρά τον ευθυγραμμισμό ανάμεσα στις αποκλίσεις του
x και του y από τις αντίστοιχες μέσες τιμές τους. Αν δούμε τα κεντραρισμένα δείγματα
(x − E[x], y − E[y]) ως διανύσματα στο επίπεδο, η συνδιασπορά είναι ανάλογη με το μέσο
εσωτερικό τους γινόμενο.

Οπτικό παράδειγμα. Τα διαγράμματα διασποράς μπορούν να αποδώσουν οπτικά τη
συνδιασπορά:

• Θετική συνδιασπορά: τα σημεία συγκεντρώνονται κατά μήκος μιας ανοδικής τάσης.

• Αρνητική συνδιασπορά: τα σημεία συγκεντρώνονται κατά μήκος μιας καθοδικής τάσης.

• Μηδενική συνδιασπορά: τα σημεία σχηματίζουν ένα μη συσχετισμένο ≪σύννεφο≫ κυκ-

λικού τύπου.

2 1 0 1 2
x

3

2

1

0

1

2

3

y

Positive covariance
Cov  0.91

2 1 0 1 2 3
x

2

1

0

1

2

3

y

Negative covariance
Cov  -0.93

2 1 0 1 2
x

3

2

1

0

1

2

y

Zero covariance
Cov  0.11

7.4 Συσχέτιση

Ο συντελεστής συσχέτισης παρέχει ένα κανονικοποιημένο μέτρο γραμμικής εξάρτησης

μεταξύ δύο τυχαίων μεταβλητών:

ρx,y =
Cov[x, y]

σxσy

, −1 ≤ ρx,y ≤ 1.

Επανακλιμακώνει τη συνδιασπορά με το γινόμενο των τυπικών αποκλίσεων, παράγοντας
έναν αδιάστατο αριθμό. Τιμές της ρx,y κοντά στο +1 υποδεικνύουν ισχυρή θετική γραμμική
σχέση, κοντά στο −1 ισχυρή αρνητική σχέση, ενώ κοντά στο 0 ασθενή ή μηδενική γραμμική
σχέση.
Σημειώνεται ότι η συσχέτιση μετρά μόνο γραμμική συσχέτιση. Δύο τυχαίες μεταβλ-

ητές μπορεί να έχουν μηδενική συσχέτιση αλλά να είναι στατιστικά εξαρτημένες μέσω μη

γραμμικών σχέσεων.
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7.5 Πολυδιάστατη Συνδιασπορά

Πολλαπλές μεταβλητές. Για τυχαία διανύσματα x ∈ Rn,y ∈ Rm:

Cov[x,y] = E
[
(x− E[x])(y − E[y])⊤

]
.

Cov[x,y] =


Cov[x1, y1] Cov[x1, y2] · · · Cov[x1, ym]
Cov[x2, y1] Cov[x2, y2] · · · Cov[x2, ym]

...
...

. . .
...

Cov[xn, y1] Cov[xn, y2] · · · Cov[xn, ym]

 ∈ Rn×m.

Μητρώο/Πίνακας συνδιασποράς. Για ένα τυχαίο διάνυσμα x = [x1, x2, . . . , xn]
⊤

με μέση τιμή µ = E[x], ο πίνακας συνδιασποράς ορίζεται ως:

Σ = Cov[x,x] = E
[
(x− µ)(x− µ)⊤

]
.

Αυτό ο πίνακας περιέχει όλες τις ανά ζεύγη συνδιασπορές μεταξύ των συνιστωσών της x:

Σ =


Var[x1] Cov[x1, x2] · · · Cov[x1, xn]

Cov[x2, x1] Var[x2] · · · Cov[x2, xn]
...

...
. . .

...
Cov[xn, x1] Cov[xn, x2] · · · Var[xn]

∈Rn×n.

Ο πίνακας συνδιασποράς είναι συμμετρικός (Σ⊤ = Σ) και θετικά ημιορισμένος (a⊤Σa ≥ 0
για κάθε a ∈ Rn).

Ερμηνεία. Κάθε διαγώνιο στοιχείο Σii = Var[xi] μετρά τη διασπορά μιας συνιστώσας,
ενώ κάθε εκτός-διαγωνίου στοιχείο Σij αντιπροσωπεύει τη συνδιασπορά μεταξύ των xi

και xj. Η δομή του Σ αποκαλύπτει τις εξαρτήσεις και τις κλίμακες της πολυμεταβλητής
κατανομής.

Πίνακας συσχέτισης. Ο πίνακας συσχέτισης αποτελεί μια κανονικοποιημένη,
αδιάστατη εκδοχή του πίνακα συνδιασποράς:

R = [Rij] ∈ Rn×n, Rij =
Σij√
ΣiiΣjj

, −1 ≤ Rij ≤ 1.

Το R αποτυπώνει αποκλειστικά τη δύναμη και τη φορά των ανά ζεύγη γραμμικών σχέσεων,
αφαιρώντας την επίδραση από διαφορετικές μονάδες και κλίμακες.
Ο προσανατολισμός και η επιμήκυνση της έλλειψης αντανακλούν τη συσχέτιση μεταξύ

των συνιστωσών. ΄Ενα τέλεια κυκλικό σχήμα υποδηλώνει ασυσχέτιστες (ανεξάρτητες)
συνιστώσες.

Απεικόνιση των Σ καιR. Το Σχήμα 7.2 δείχνει το μητρώο συνδιασποράς ως heatmap,
όπου η ένταση του χρώματος αποτυπώνει μέγεθος και πρόσημο των συνδιασπορών. Το
Σχήμα 7.3 παρουσιάζει τον αντίστοιχο πίνακα συσχέτισης, ο οποίος αναδεικνύει τις σχετικές
σχέσεις ανεξάρτητα από τις μονάδες μέτρησης.
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Σχήμα 7.1: Δειγματοληπτικά σημεία 2D Γκαουσιανής με την ελλειψοειδή ισοκαμπύλη που
ορίζεται από τη Σ.
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Σχήμα 7.2: Heatmap της μήτρας συνδιασποράς Σ.

Περίληψη.

• Η αναμενόμενη τιμή E[x] περιγράφει την κεντρική τάση.

• Η διασπορά Var[x] μετρά τη διασπορά γύρω από τον μέσο όρο.

• Η συνδιασπορά Cov[x, y] ποσοτικοποιεί το πώς δύο μεταβλητές μεταβάλλονται από
κοινού.
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Σχήμα 7.3: Heatmap της μήτρας συσχέτισης R.

• Η συσχέτιση ρx,y κανονικοποιεί τη συνδιασπορά και δίνει ένα αδιάστατο μέτρο γραμ-
μικής εξάρτησης.

• Ο πίνακας συνδιασποράςΣ επεκτείνει τις έννοιες αυτές στα τυχαία διανύσματα, κωδικοποιών-
τας τόσο τις επιμέρους διασπορές όσο και τις διασταυρούμενες συσχετίσεις.

7.6 Δειγματικοί Μέσοι και Συνδιασπορές

Στην πράξη, η πραγματική μέση τιμή και η πραγματική συνδιασπορά μιας τυχαίας μεταβλητής
ή ενός τυχαίου διανύσματος σπάνια είναι γνωστές. Αντίθετα, πρέπει να εκτιμηθούν από
ένα πεπερασμένο σύνολο δεδομένων. Ο δειγματικός μέσος και η δειγματική συνδιασπορά
αποτελούν εμπειρικές εκτιμήσεις των θεωρητικών μεγεθών που εισήχθησαν προηγουμένως.

Δειγματικός μέσος. Δοθέντων N ανεξάρτητων πραγματοποιήσεων ενός τυχαίου δι-
ανύσματος {x(1),x(2), . . . ,x(N)}, με κάθε x(i) ∈ Rd, ο δειγματικός μέσος ορίζεται
ως:

µ̂x =
1

N

N∑
i=1

x(i).

Αποτελεί αμερόληπτη εκτίμηση της πραγματικής μέσης τιμής E[x] υπό την υπόθεση i.i.d.:

E[µ̂x] = E[x].

Γεωμετρικά, ο δειγματικός μέσος αντιστοιχεί στο ≪κέντρο μάζας≫ του νέφους των δε-

δομένων στο Rd.

Δειγματικός πίνακας συνδιασποράς. Η εμπειρική συνδιασπορά των δεδομένων
εκτιμάται ως εξής:

Σ̂x =
1

N − 1

N∑
i=1

(
x(i) − µ̂x

)(
x(i) − µ̂x

)⊤
.

Ο παρονομαστής N − 1 (αντί του N) εξασφαλίζει αμερόληπτη εκτίμηση του πραγματικού

μητρώου συνδιασποράς Σx. Κάθε διαγώνιο στοιχείο Σ̂ii δίνει τη δειγματική διασπορά της

συνιστώσας xi, ενώ κάθε εκτός-διαγωνίου στοιχείο Σ̂ij μετρά την δειγματική συνδιασπορά

μεταξύ xi και xj.
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Ερμηνεία.

• Το µ̂x δίνει το εμπειρικό κέντρο των παρατηρούμενων δεδομένων.

• Το Σ̂x αποτυπώνει τη διασπορά και τον προσανατολισμό του νέφους δεδομένων.

• Τα ιδιοδιανύσματα της Σ̂x αντιστοιχούν στις κύριες διευθύνσεις μεταβολής: χρησι-
μοποιούνται σε πολλές μεθόδους όπως Principal Component Analysis (PCA).

Python Implementation

1 import numpy as np

2

3 # Generate random data: d dimensions , N samples (each sample is a

column vector)

4 d, N = 3, 100

5 X = np.random.randn(d, N) # X ∈ R^{d×N}
6

7 # Compute sample mean (column vector)

8 mu_hat = np.mean(X, axis=1, keepdims=True) # shape (d, 1)

9

10 # Center the data

11 X_centered = X - mu_hat # subtract mean from each column

12

13 # --- Manual computation of sample covariance ---

14 Sigma_hat_manual = (X_centered @ X_centered.T) / (N - 1)

15

16 # --- Using NumPy’s built -in function ---

17 # np.cov expects samples as rows by default , so we transpose X

18 Sigma_hat_np = np.cov(X.T, bias=False)

19

20 print("Sample mean (column vector):\n", mu_hat)

21 print("\nSample covariance (manual):\n", Sigma_hat_manual)

22 print("\nSample covariance (np.cov):\n", Sigma_hat_np)

Listing 1: Sample mean and covariance.

7.7 Εσωτερικά Γινόμενα Τυχαίων Μεταβλητών

Οι τυχαίες μεταβλητές μπορούν να θεωρηθούν ως στοιχεία ενός διανυσματικού χώρου, εξ-
οπλισμένου με ένα εσωτερικό γινόμενο το οποίο ορίζεται μέσω της αναμενόμενης τιμής.
Αυτή η οπτική συνδέει τη θεωρία πιθανοτήτων με τη γραμμική άλγεβρα και τη λειτουργική

ανάλυση, και αποτελεί τη βάση για έννοιες όπως η ορθογωνιότητα, οι προβολές και η εκ-
τίμηση ελαχίστων τετραγώνων.

Ορισμός. Για τυχαία διανύσματα x,y ∈ Rd, το εσωτερικό γινόμενο ορίζεται ως:

⟨x,y⟩ = E
[
x⊤y

]
.

Για βαθμωτές τυχαίες μεταβλητές αυτό απλοποιείται σε

⟨x, y⟩ = E[x y].

Η αντίστοιη νόρμα ορίζεται ως

∥x∥ =
√

⟨x,x⟩ =
√
E[x⊤x].
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Ιδιότητες. Το εσωτερικό γινόμενο μέσω αναμενόμενης τιμής ικανοποιεί τις κλασικές
ιδιότητες:

• Συμμετρία: ⟨x,y⟩ = ⟨y,x⟩.

• Γραμμικότητα: ⟨ax+ bz, y⟩ = a ⟨x,y⟩+ b ⟨z,y⟩.

• Θετικότητα: ⟨x,x⟩ = E[x⊤x] ≥ 0.

Σύνδεση με στατιστικά μεγέθη. Το εσωτερικό γινόμενο ενοποιεί αρκετούς θεμελιώδεις
ορισμούς:

Μέση τιμή: ⟨x,1⟩ = E[x],

Συνδιασπορά: Cov[x,y] = ⟨x− E[x], y − E[y]⟩,

Διασπορά: Var[x] = ⟨x− E[x], x− E[x]⟩.

Ερμηνεία. Με αυτή την οπτική, οι τυχαίες μεταβλητές λειτουργούν σαν διανύσματα σε
έναν χώρο Hilbert, τον L2 (χώρος των τετραγωνικά ολοκληρώσιμων τυχαίων μεταβλητών),
όπου η αναμενόμενη τιμή ορίζει το εσωτερικό γινόμενο και η διασπορά αντιστοιχεί στη νορμά

στο τετράγωνο. Η ορθογωνιότητα μεταξύ τυχαίων μεταβλητών, ⟨x, y⟩ = 0, σημαίνει ότι
είναι ανεξάρτητες. Αυτή η γεωμετρική ερμηνεία θεμελιώνει πολλές μεθόδους στατιστικής
εκτίμησης, όπως η γραμμική παλινδρόμηση και οι προβολές ελαχίστων τετραγώνων.

8 Ανεξαρτησία και Υπό Συνθήκη Ανεξαρτησία

Οι τυχαίες μεταβλητές μπορεί να παρουσιάζουν διάφορες μορφές στατιστικής εξάρτησης.
Η κατανόηση του πότε δύο (ή περισσότερες) τυχαίες μεταβλητές είναι ανεξάρτητες (ή
ανεξάρτητες υπό συνθήκη σε κάποια άλλη μεταβλητή) είναι θεμελιώδης στη θεωρία πι-
θανοτήτων, στη στατιστική μοντελοποίηση και στην συμπερασματολογία. Η ανεξαρτησία
καθορίζει το πώς παραγοντοποιούνται οι αθροιστικές κατανομές και πώς απλοποιούνται οι

προσδοκίες, οι διασπορές και οι συνδιασπορές.

8.1 Στατιστική Ανεξαρτησία

Δύο τυχαίες μεταβλητές x και y λέγονται ανεξάρτητες όταν η γνώση της μίας δεν παρέχει
καμία πληροφορία για την άλλη. Τυπικά,

x ⊥ y ⇐⇒ px,y(z1, z2) = px(z1) py(z2) για όλα τα z1, z2.

Ισοδύναμα, για οποιαδήποτε μετρήσιμα σύνολα A,B,

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B).

Με άλλα λόγια, η από κοινού κατανομή των x και y παραγοντοποιείται στο γινόμενο
των περιθωριακών τους κατανομών. Διαισθητικά, η παρατήρηση της μίας μεταβλητής δεν
μας αποκαλύπτει τίποτα για την άλλη.

Παράδειγμα. Αν ρίξουμε δύο ζάρια, το αποτέλεσμα του ενός είναι ανεξάρτητο από το
αποτέλεσμα του άλλου. Η πιθανότητα να δείξει το πρώτο ζάρι 3 και το δεύτερο 5 ισούται
με το γινόμενο των ατομικών πιθανοτήτων.
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Συνέπειες. Αν x και y είναι ανεξάρτητες:

E[f(x) g(y)] = E[f(x)]E[g(y)]

για όλες τις μετρήσιμες συναρτήσεις f, g. Αυτή η ιδιότητα απλοποιεί πολλές πράξεις που
αφορούν υπολογισμούς αναμενόμενων τιμών και διασπορών.

8.2 Υπό Συνθήκη Ανεξαρτησία

Η υπό συνθήκη ανεξαρτησία γενικεύει την έννοια της ανεξαρτησίας εισάγοντας μια τρίτη

μεταβλητή w που ≪εξηγεί≫ την εξάρτηση μεταξύ x και y.
Τυπικά, οι τυχαίες μεταβλητές x και y είναι υπό συνθήκη ανεξάρτητες δεδομέ-

νου του w αν

x ⊥ y | w ⇐⇒ px,y|w(z1, z2 | z3) = px|w(z1 | z3) py|w(z2 | z3) για όλα τα z1, z2, z3.

Ισοδύναμα,

P(x ∈ A, y ∈ B | w = z3) = P(x ∈ A | w = z3)P(y ∈ B | w = z3).

Διαισθητικά. Δεδομένου του w, η γνώση του x δεν παρέχει επιπλέον πληροφορία για
το y.

Παράδειγμα. ΄Εστω w ο καιρός, x το αν κάποιος κρατάει ομπρέλα, και y το αν το
έδαφος είναι βρεγμένο. Συνολικά, x και y είναι εξαρτημένες μεταβλητές, αλλά γίνονται υπό
συνθήκη ανεξάρτητες δεδομένου του w: μόλις γνωρίζουμε τον καιρό, το αν κάποιος κρατάει
ομπρέλα δεν προσθέτει πληροφορία για το αν το έδαφος είναι βρεγμένο.

Σημαντικές διακρίσεις.

• Η ανεξαρτησία δεν συνεπάγεται υπό συνθήκη ανεξαρτησία.

• Η υπό συνθήκη ανεξαρτησία δεν συνεπάγεται ανεξαρτησία.

8.3 Επίδραση της Ανεξαρτησίας στη Συνδιασπορά και στη

Διασπορά

Η στατιστική ανεξαρτησία οδηγεί σε σημαντικές απλοποιήσεις σε υπολογισμούς αναμενό-

μενων τιμών και διασπορών, καθώς τα διασταυρούμενα μέλη μηδενίζονται.

Συνδιασπορά υπό ανεξαρτησία. Αν x και y είναι ανεξάρτητες τυχαίες μεταβλητές,
τότε:

Cov[x, y] = E[x y]− E[x]E[y] = 0.

΄Αρα, η ανεξαρτησία συνεπάγεται ότι οι μεταβλητές είναι μη συσχετισμένες. Ωστόσο,
το αντίστροφο δεν ισχύει: Cov[x, y] = 0 δεν σημαίνει απαραίτητα ανεξαρτησία, εκτός από
ειδικές περιπτώσεις (π.χ. σε από κοινού Γκαουσιανές μεταβλητές).
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Διασπορά αθροίσματος. Για ανεξάρτητες τυχαίες μεταβλητές x και y,

Var[x+ y] = Var[x] + Var[y].

Πιο γενικά, για ανεξάρτητες μεταβλητές {xi}ni=1:

Var

(
n∑

i=1

xi

)
=

n∑
i=1

Var[xi].

Το αποτέλεσμα αυτό προκύπτει από τη γραμμικότητα της αναμενόμενης τιμής και τον μη-

δενισμό των όρων συνδιασποράς λόγω ανεξαρτησίας.

Συσχέτιση. Η ανεξαρτησία συνεπάγεται επίσης μηδενική συσχέτιση:

x ⊥ y ⇒ ρx,y = 0.

Ωστόσο, τυχαίες μεταβλητές με μηδενική συσχέτιση (ρx,y = 0) μπορεί να είναι εξαρτημένες
μέσω μη-γραμμικών σχέσεων.

Ερμηνεία.

• Η ανεξαρτησία μηδενίζει διασταυρούμενους όρους σε διασπορές και συνδιασπορές.

• Η μη συσχέτιση είναι ασθενέστερη ιδιότητα: μπορεί να υπάρχουν εξαρτήσεις που δεν
είναι γραμμικές.

• Για Γκαουσιανές μεταβλητές, μη συσχέτιση και ανεξαρτησία συμπίπτουν.

Παράδειγμα: Μη συσχετισμένες αλλά εξαρτημένες. ΄Εστω x ∼ U(−1, 1) και
y = x2. Τότε E[x] = 0, E[y] > 0 και Cov[x, y] = 0, αλλά το y εξαρτάται σαφώς από το x,
άρα οι μεταβλητές δεν είναι ανεξάρτητες.

9 Κανονικές (Gaussian) Κατανομές

Η κανονική (ή Gaussian) κατανομή κατέχει κεντρική θέση στην πιθανότητα, τη στατισ-
τική και την επεξεργασία σήματος. Προκύπτει φυσικά ως η οριακή κατανομή αθροισμάτων
τυχαίων μεταβλητών (μέσω του Κεντρικού Οριακού Θεωρήματος) και είναι μαθηματικά ιδι-
αίτερα βολική λόγω της αναλυτικής της μορφής και των ιδιοτήτων κλειστότητας υπό κοινές

πράξεις όπως οι γραμμικοί μετασχηματισμοί, η υπό συνθήκη κατανομή και η περιθωριοποίηση.

9.1 Μονοδιάστατη Κανονική Κατανομή

Μια πραγματική τυχαία μεταβλητή x ακολουθεί κανονική κατανομή με μέση τιμή µ και
διασπορά σ2 > 0 αν η συνάρτηση πυκνότητας πιθανότητας (PDF) της είναι

px(z) =
1√
2πσ2

exp

(
−(z − µ)2

2σ2

)
, x ∼ N (µ, σ2).
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Παράμετροι.

• Η μέση τιμή µ καθορίζει τη θέση (κέντρο) της κατανομής.

• Η διασπορά σ2
καθορίζει την εύρος ή διασπορά των τιμών.

Ιδιότητες.

• Η κανονική κατανομή προσδιορίζεται πλήρως από τις δύο πρώτες ροπές (µ, σ2).

• Είναι συμμετρική ως προς το µ.

• Περίπου 68.3%, 95.4% και 99.7% των δειγμάτων βρίσκονται εντός 1σ, 2σ και 3σ από
τη μέση τιμή, αντίστοιχα.

9.2 Πολυδιάστατη Κανονική Κατανομή

Η πολυδιάστατη κανονική κατανομή γενικεύει την κανονική κατανομή σε τυχαία διανύσματα

x ∈ Rd.

Ορισμός.

px(z) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(z − µ)⊤Σ−1(z − µ)

)
, x ∼ N (µ,Σ),

όπου

• µ ∈ Rd
είναι το διάνυσμα μέσης τιμής,

• Σ ∈ Rd×d
είναι ο πίνακας συνδιασποράς, συμμετρικός και θετικά ορισμένος.

Γεωμετρική ερμηνεία.

• Οι ισοεπίπεδες καμπύλες της πυκνότητας είναι ελλείψεις (ή υπερελλείψεις) με κέντρο
το µ.

• Τα ιδιοδιανύσματα του Σ καθορίζουν τις κύριες διευθύνσεις (άξονες) της έλλειψης.

• Οι αντίστοιχες ιδιοτιμές καθορίζουν τα τετράγωνα των μηκών των αξόνων (δηλ. τον
βαθμό διασποράς ανά κατεύθυνση).

Βασική ιδιότητα. Η πολυδιάστατη κανονική κατανομή καθορίζεται πλήρως από τις
πρώτες δύο ροπές (µ,Σ) και μεγιστοποιεί την εντροπία μεταξύ όλων των κατανομών με
δεδομένη μέση τιμή και συνδιασπορά.

9.3 Από Κοινού, Περιθώριες και Υπό Συνθήκη Κατανομές

΄Εστω

x =

[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

όπου x1 ∈ Rd1 , x2 ∈ Rd2 και d1 + d2 = d.
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Περιθώριες κατανομές. Κάθε τμήμα (block) είναι επίσης κανονικά κατανεμημένο:

x1 ∼ N (µ1, Σ11), x2 ∼ N (µ2, Σ22).

Υπό συνθήκη κατανομή. Υπό την συνθήκη x2 = z2:

x1 | x2 = z2 ∼ N (µ1|2, Σ1|2),

όπου

µ1|2 = µ1 +Σ12Σ
−1
22 (z2 − µ2),

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

Ιδιότητα κλειστότητας. Η οικογένεια των κανονικών κατανομών είναι κλειστή ως
προς:

• Περιθωριοποίηση: κάθε υποσύνολο μεταβλητών είναι κανονικά κατανεμημένο.

• Υπό συνθήκη κατανομή: οι υπό συνθήκη κατανομές παραμένουν κανονικές.

Ερμηνεία. Η υπό συνθήκη γνώση της x2 μετατοπίζει γραμμικά τη μέση τιμή της x1, ενώ
η συνδιασπορά της x1 μειώνεται στις κατευθύνσεις που ≪εξηγούνται≫ από την x2.

Εξαγωγή της υπό συνθήκη κατανομής

Διατύπωση. Διαμερίζουμε

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σx =

[
Σ11 Σ12

Σ21 Σ22

]
, x ∼ N (µ, Σx).

Από κοινού πυκνότητα. Ο πίνακας ακρίβειας (precision matrix) Λx = Σ−1
x ,

px(z) ∝ exp
(
− 1

2
(z − µ)⊤Λx(z − µ)

)
, Λx =

[
Λ11 Λ12

Λ21 Λ22

]
.

Υπό συνθήκη x2 = z2. Κρατάμε μόνο τους όρους που εξαρτώνται από x1:

− 1
2

[
x1 − µ1

z2 − µ2

]⊤ [
Λ11 Λ12

Λ21 Λ22

] [
x1 − µ1

z2 − µ2

]
= −1

2
(x1 − µ1)

⊤Λ11(x1 − µ1)− (x1 − µ1)
⊤Λ12(z2 − µ2) + (όροι ανεξάρτητοι από x1).

Ολοκλήρωση τετραγώνου ως προς x1. Ορίζουμε

h = Λ12(z2 − µ2).

Τότε ο εκθέτης που εξαρτάται από x1 είναι

−1
2
(x1 − µ1)

⊤Λ11(x1 − µ1)− (x1 − µ1)
⊤h.
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Ολοκληρώνουμε το τετράγωνο:

−1
2

(
x1 − µ1 + Λ−1

11 h
)⊤

Λ11

(
x1 − µ1 + Λ−1

11 h
)
+ 1

2
h⊤Λ−1

11 h.

Επομένως

x1 | x2 = z2 ∼ N
(
µ1 − Λ−1

11 Λ12(z2 − µ2), Λ
−1
11

)
.

Συσχέτιση με τα μπλοκ συνδιασποράς. Χρησιμοποιώντας την ταυτότητα αντι-
στροφής κατά μπλοκ:

Λ−1
11 = Σ11 −Σ12Σ

−1
22 Σ21, −Λ−1

11 Λ12 = Σ12Σ
−1
22 ,

προκύπτει η τυπική μορφή:

x1 | x2 = z2 ∼ N (µ1|2, Σ1|2),

µ1|2 = µ1 +Σ12Σ
−1
22 (z2 − µ2),

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

Python Implementation

1 import numpy as np

2

3 # -------------------------------

4 # Helper utilities (optional)

5 # -------------------------------

6 def is_psd(A, tol=1e-10):

7 """Check positive semidefiniteness."""

8 eigvals = np.linalg.eigvalsh ((A + A.T) / 2.0)

9 return np.all(eigvals >= -tol)

10

11 def symmetrize(A):

12 """Numerical symmetrization."""

13 return 0.5 * (A + A.T)

14

15

16 # ============================================================

17 # (A) Build a joint Gaussian from two separate Gaussians

18 # ============================================================

19 # Given:

20 # x1 ~ N(mu1 , Sigma11), x2 ~ N(mu2 , Sigma22)

21 # We form:

22 # x = [x1; x2] ~ N([mu1; mu2], [[Sigma11 , Sigma12], [Sigma21 , Sigma22

]])

23

24 # Dimensions

25 d1 , d2 = 2, 3

26

27 # Means (column vectors)

28 mu1 = np.array ([[1.0] , [ -0.5]]) # shape (d1 , 1)

29 mu2 = np.array ([[0.2] , [1.0], [0.3]]) # shape (d2 , 1)

30

31 # Covariances (blocks)

32 Sigma11 = np.array ([[1.0 , 0.3],

33 [0.3, 2.0]]) # (d1 x d1)
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34 Sigma22 = np.array ([[1.5 , 0.1, 0.0],

35 [0.1, 1.2, 0.2],

36 [0.0, 0.2, 0.8]]) # (d2 x d2)

37

38 # ---- Case A1: Independent x1 and x2 (no cross -covariance) ----

39 Sigma12_indep = np.zeros((d1 , d2)) # (d1 x d2)

40 Sigma21_indep = Sigma12_indep.T # (d2 x d1)

41

42 mu_joint_indep = np.vstack ([mu1 , mu2]) # (d1+d2 , 1)

43 Sigma_joint_indep = np.block([

44 [Sigma11 , Sigma12_indep],

45 [Sigma21_indep , Sigma22 ]

46 ])

47

48 Sigma_joint_indep = symmetrize(Sigma_joint_indep)

49 assert is_psd(Sigma_joint_indep), "Joint covariance (independent) not

PSD!"

50

51 # ---- Case A2: Correlated x1 and x2 (non -zero cross -covariance) ----

52 # Provide a valid cross -covariance Sigma12; ensure the final block

matrix is PSD.

53 Sigma12 = np.array ([[0.4 , -0.2, 0.1],

54 [0.6, 0.1, 0.0]]) # (d1 x d2)

55 Sigma21 = Sigma12.T # (d2 x d1)

56

57 mu_joint_corr = np.vstack ([mu1 , mu2]) # same stacked mean

58 Sigma_joint_corr = np.block([

59 [Sigma11 , Sigma12],

60 [Sigma21 , Sigma22]

61 ])

62

63 Sigma_joint_corr = symmetrize(Sigma_joint_corr)

64 assert is_psd(Sigma_joint_corr), "Joint covariance (correlated) not PSD

!"

65

66 print("Joint mean (independent):\n", mu_joint_indep)

67 print("Joint covariance (independent):\n", Sigma_joint_indep)

68 print("\nJoint mean (correlated):\n", mu_joint_corr)

69 print("Joint covariance (correlated):\n", Sigma_joint_corr)

70

71

72 # ============================================================

73 # (B) Extract marginals from a larger joint Gaussian

74 # ============================================================

75 # Suppose we are given a big joint:

76 mu_big = mu_joint_corr # shape (d1+d2 , 1)

77 Sigma_big = Sigma_joint_corr # shape (d1+d2 , d1+d2)

78 d = d1 + d2

79

80 # By construction , we assume the variable order is x = [x1; x2]

81 # Index ranges for slicing:

82 idx1 = slice(0, d1) # rows/cols for x1 -block

83 idx2 = slice(d1 , d1 + d2) # rows/cols for x2 -block

84

85 # Extract marginals:

86 mu1_marg = mu_big[idx1 , :] # (d1 , 1)

87 mu2_marg = mu_big[idx2 , :] # (d2 , 1)

88 Sigma11_marg = Sigma_big[idx1 , idx1] # (d1 , d1)
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89 Sigma22_marg = Sigma_big[idx2 , idx2] # (d2 , d2)

90 Sigma12_marg = Sigma_big[idx1 , idx2] # (d1 , d2)

91 Sigma21_marg = Sigma_big[idx2 , idx1] # (d2 , d1)

92

93 print("\n--- Extracted marginals from the big joint ---")

94 print("mu1 (marg):\n", mu1_marg)

95 print("mu2 (marg):\n", mu2_marg)

96 print("Sigma11 (marg):\n", Sigma11_marg)

97 print("Sigma22 (marg):\n", Sigma22_marg)

98 print("Sigma12 (marg):\n", Sigma12_marg)

99 print("Sigma21 (marg):\n", Sigma21_marg)

100

101 # (Optional) Consistency checks against the originals used to build the

joint

102 assert np.allclose(mu1_marg , mu1)

103 assert np.allclose(mu2_marg , mu2)

104 assert np.allclose(Sigma11_marg , Sigma11)

105 assert np.allclose(Sigma22_marg , Sigma22)

106 assert np.allclose(Sigma12_marg , Sigma12)

107 assert np.allclose(Sigma21_marg , Sigma21)

108 print("\nConsistency checks passed: extracted blocks match originals.")

109

110 # ============================================================

111 # (C) Conditional distribution: x1 | x2 = z2

112 # ============================================================

113 z2 = np.array ([[0.5] , [1.2]]) # observed value of x2

114

115 # Conditional mean and covariance

116 mu_cond = mu1_marg + Sigma12_marg @ np.linalg.inv(Sigma22_marg) @ (z2 -

mu2_marg)

117 Sigma_cond = Sigma11_marg - Sigma12_marg @ np.linalg.inv(Sigma22_marg)

@ Sigma21_marg

118

119 print("\nConditional mean mu_ {1|2}:\n", mu_cond)

120 print("Conditional covariance Sigma_ {1|2}:\n", Sigma_cond)

Listing 2: Gaussian Distribution: Joint, Marginals and Conditionals

9.4 Γινόμενο Γκαουσιανών Πυκνοτήτων

Το γινόμενο δύο Γκαουσιανών πυκνοτήτων στην ίδια μεταβλητή είναι μια νέα (scaled) Γκαου-
σιανή.

Αποτέλεσμα. Για x ∈ Rd,

N (x;µ1,Σ1)N (x;µ2,Σ2) = cN (x;µ∗, Σ∗),

όπου

Σ∗ =
(
Σ−−1

1 +Σ−1
2

)−1
,

µ∗ = Σ∗(Σ−1
1 µ1 +Σ−1

2 µ2

)
.

Ερμηνεία.
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• Οι “ακρίβειες” (αντίστροφες συνδιασπορές) αθροίζονται: η πληροφορία συνδυάζεται
γραμμικά.

• Η τελική μέση τιμή είναι ένας σταθμισμένος ως προς την ακρίβεια μέσος των µ1 και

µ2.

• Η σταθερά κανονικοποίησης c εξασφαλίζει ότι το γινόμενο ολοκληρώνεται στο ένα.

Εφαρμογές. Η πράξη αυτή εμφανίζεται στην Bayesian ενημέρωση με Γκαουσιανή εκ
των προτέρων και πιθανοφάνεια, στα φίλτρα Kalman και στη συνένωση αισθητήρων.

9.5 Γραμμικοί Μετασχηματισμοί Γκαουσιανών

Η οικογένεια των Γκαουσιανών είναι επίσης κλειστή κάτω από αφινικούς μετασχηματισμούς.

Αποτέλεσμα. Αν
x ∼ N (µx, Σx) και y = Ax+ b,

τότε

y ∼ N (Aµx + b, AΣxA
⊤).

Ερμηνεία.

• Η Γκαουσιανή μορφή διατηρείται κάτω από οποιονδήποτε αφινικό (γραμμικό+ μετατόπιση)
μετασχηματισμό.

• Η μέση τιμή μετασχηματίζεται γραμμικά ενώ η συνδιασπορά μετασχηματίζεται τετραγ-
ωνικά.

Εφαρμογές. Οι αφινικοί μετασχηματισμοί Γκαουσιανών είναι θεμελιώδεις σε:

• Γραμμικά δυναμικά συστήματα,

• Μοντέλα χώρου κατάστασης,

• Το βήμα πρόβλεψης του Kalman filter.

9.6 Δειγματοληψία από Γκαουσιανές Κατανομές

Μονοδιάστατη περίπτωση. Αν x ∼ N (µ, σ2), τότε

x = µ+ σz, z ∼ N (0, 1).

Πολυδιάστατη περίπτωση. Αν x ∼ N (µ,Σ), μπορούμε να δειγματοληπτήσουμε
μέσω:

x = µ+Lz, z ∼ N (0, I),

όπου L είναι οποιοδήποτε μητρώο που ικανοποιεί LL⊤ = Σ, π.χ. μέσω ανάλυσης Cholesky.
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Μετασχηματισμός Box-Muller (1D). Κλασική μέθοδος παραγωγής ανεξάρτητων
κανονικών δειγμάτων από ομοιόμορφα:

u1, u2 ∼ Uniform(0, 1) ⇒

{
z1 =

√
−2 lnu1 cos(2πu2),

z2 =
√
−2 lnu1 sin(2πu2),

με z1, z2 ∼ N (0, 1).

Ερμηνεία. Η παραγωγή Γκαουσιανών δειγμάτων γίνεται μέσω γραμμικού μετασχημα-
τισμού τυπικά κανονικών δειγμάτων, επιτρέποντας προσομοίωση με οποιαδήποτε μέση τιμή
και συνδιασπορά.

Python Implementation

1 import numpy as np

2

3 # --- Univariate Gaussian ---

4 mu = 2.0 # mean

5 sigma = 0.5 # standard deviation

6 N = 10 # number of samples

7

8 # Sample from N(mu , sigma ^2)

9 z = np.random.randn(N) # z ~ N(0, 1)

10 x = mu + sigma * z # x ~ N(mu , sigma ^2)

11

12 print("Univariate samples shape:", x.shape)

13

14 # --- Multivariate Gaussian ---

15 d = 3 # dimensionality

16 mu_vec = np.array ([[1.0] , [2.0], [ -1.0]]) # mean vector (d x 1)

17 Sigma = np.array ([[1.0 , 0.5, 0.2],

18 [0.5, 2.0, 0.3],

19 [0.2, 0.3, 1.5]]) # covariance matrix (d x d)

20

21 # Cholesky decomposition: Sigma = L L^T

22 L = np.linalg.cholesky(Sigma)

23

24 # Sample from N(mu , Sigma)

25 Z = np.random.randn(d, N) # Z ~ N(0, I)

26 X = mu_vec + L @ Z # X ~ N(mu , Sigma)

27

28 print("Multivariate samples shape:", X.shape)

Listing 3: Sampling from Gaussian distributions
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