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1 Βέλτιστα Φίλτρα

Η κλασική φιλτράριση εισάγεται συχνά μέσω εμπειρικά σχεδιασμένων φίλτρων όπως φίλτρα

FIR/IIR, κινητοί μέσοι όροι, καθώς και τυπικά φίλτρα ζώνης διέλευσης ή απόρριψης (band-
pass / notch). Σε αυτό το πλαίσιο, πρώτα επιλέγουμε μια δομή φίλτρου και στη συνέχεια
ρυθμίζουμε τις παραμέτρους του (π.χ. συχνότητες αποκοπής, τάξη φίλτρου, μήκος παρα-
θύρου) βασιζόμενοι στη διαίσθηση για το φάσμα. Η προσέγγιση αυτή λειτουργεί καλά όταν
ο φασματικός διαχωρισμός μεταξύ σήματος και θορύβου είναι σαφής και σταθερός.
Σε πολλά πραγματικά προβλήματα, ωστόσο, οι υποθέσεις πίσω από τη εμπειρική ρύθμιση

είναι εύθραυστες. Ο θόρυβος μπορεί να είναι έγχρωμος αντί για λευκός και μπορεί να
μεταβάλλεται με τον χρόνο (μη στάσιμη συμπεριφορά). Επιπλέον, τα φάσματα σήματος
και θορύβου μπορεί να αλληλεπικαλύπτονται, οπότε σπάνια υπάρχει μια μοναδική ≪σω-

στή≫ συχνότητα αποκοπής. Διαφορετικές σχεδιαστικές επιλογές οδηγούν επομένως σε
διαφορετικούς συμβιβασμούς μεταξύ καταστολής θορύβου και παραμόρφωσης σήματος, και
δεν είναι πάντοτε προφανές πώς να επιλεγεί ο καλύτερος δυνατός συμβιβασμός.
Αυτό οδηγεί φυσικά στο ερώτημα:

Μπορούμε να σχεδιάσουμε ένα φίλτρο αυτόματα, με βέλτιστο τρόπο, εφόσον
ορίσουμε τι σημαίνει ≪βέλτιστο≫;

Η οπτική του βέλτιστου φιλτραρίσματος απαντά σε αυτό το ερώτημα μετατρέποντας

τον σχεδιασμό φίλτρων σε πρόβλημα εκτίμησης. Αντί να επιλέγουμε ένα φίλτρο ευριστικά,
καθορίζουμε (i) έναν στόχο (π.χ. εκτίμηση ή ανακατασκευή ενός καθαρού σήματος), (ii)
ένα κριτήριο (συνηθέστερα, την ελαχιστοποίηση του μέσου τετραγωνικού σφάλματος),
και (iii) ένα μοντέλο για το σήμα και τον θόρυβο (τυπικά μέσω στατιστικών δεύτερης
τάξης). Το προκύπτον φίλτρο προκύπτει τότε ως εκείνο που επιτυγχάνει την καλύτερη
δυνατή απόδοση υπό αυτές τις υποθέσεις.
Στο φιλτράρισμαWiener, εξετάζουμε έναν στατικό (μη αναδρομικό) βέλτιστο γραμ-

μικό εκτιμητή: δεδομένης μιας θορυβώδους διαδικασίας παρατήρησης, αναζητούμε το γραμ-
μικό φίλτρο που ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα εκτίμησης. Αυτό οδηγεί
στις εξισώσεις Wiener–Hopf και αποδίδει μια κλειστής μορφής βέλτιστη λύση σε όρους
συναρτήσεων συσχέτισης (ή, ισοδύναμα, φασματικών πυκνοτήτων ισχύος). Το φιλτράρισμα
Wiener είναι ιδιαίτερα χρήσιμο όταν μπορούμε να υποθέσουμε στασιμότητα και όταν ένα
batch/offline φίλτρο είναι αποδεκτό.
Στο φιλτράρισμα Kalman, περνάμε από τη στατική εκτίμηση στη δυναμική εκτίμηση.

Εδώ, το μέγεθος ενδιαφέροντος εξελίσσεται με τον χρόνο σύμφωνα με ένα μοντέλο στο
χώρο κατάστασης, και οι μετρήσεις φτάνουν διαδοχικά. Αντί να υπολογίζουμε μια μοναδική
λύση παρτίδας, επιδιώκουμε έναν αναδρομικό εκτιμητή που ενημερώνει την πεποίθησή του
για την κατάσταση κάθε φορά που γίνεται διαθέσιμη μια νέα μέτρηση. Υπό υποθέσεις
γραμμικής δυναμικής, γραμμικών μετρήσεων και Γκαουσιανού θορύβου, το φίλτρο Kalman
παρέχει τη βέλτιστη εκτίμηση ελάχιστου μέσου τετραγωνικού σφάλματος (MMSE) της
κατάστασης και το επιτυγχάνει αποδοτικά, μεταφέροντας μόνο την τρέχουσα εκτίμηση και
την αβεβαιότητά της (συνδιακύμανση).
΄Ετσι, το φιλτράρισμα Wiener και το φιλτράρισμα Kalman μπορούν να θεωρηθούν ως

δύο κλασικές περιπτώσεις βέλτιστο φιλτράρισμα: το φιλτράρισμα Wiener αντιμετωπίζει
τη βέλτιστη γραμμική εκτίμηση MMSE σε (τυπικά) στάσιμα περιβάλλοντα, ενώ το φιλ-
τράρισμα Kalman γενικεύει την ιδέα σε χρονικά μεταβαλλόμενα συστήματα με μια θεμελι-
ωμένη αναδρομική ενημέρωση. Μαζί, αναδεικνύουν το κεντρικό μήνυμα αυτής της ενότητας:
μόλις ορίσουμε ένα μοντέλο και ένα κριτήριο βελτιστότητας, το φίλτρο προκύπτει από τα
μαθηματικά και όχι από αποσπασματική ρύθμιση παραμέτρων.
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2 Φιλτράρισμα Wiener: Ο Βέλτιστος Γραμμικός

Εκτιμητής MMSE

Στη συνέχεια παραθέτουμε το φίλτρο Wiener, δηλαδή τον κλασικό βέλτιστο γραμμικό εκ-
τιμητή που ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα υπό τυπικές υποθέσεις δεύτερης

τάξης (και, προαιρετικά, Γκαουσιανότητας).

2.1 Υποθέσεις και Μοντελοποίηση

Το φιλτράρισμα Wiener μπορεί να ερμηνευθεί ως η Bayesian λύση MMSE (μέση τιμή
της εκ των υστέρων κατανομής) σε ένα γραμμικό–Γκαουσιανό πλαίσιο και, ισοδύναμα, ως
η λύση γραμμικού MMSE (LMMSE) όταν υποθέτουμε μόνο στατιστικά δεύτερης τάξης.
Συγκεκριμένα, υιοθετούμε το ακόλουθο μοντέλο.

1) Γραμμικό μοντέλο παρατήρησης. Υποθέτουμε ότι οι μετρήσεις x[n] ∈ Rp
παρά-

γονται από το άγνωστο (καθαρό) σήμα d[n] ∈ Rq
μέσω

x[n] = Ad[n] + v[n], (2.1)

όπου A ∈ Rp×q
είναι ένας γνωστός γραμμικός τελεστής. Στην αποθορυβοποίηση, A = I,

ενώ στη αποσυνέλιξη ή αποθόλωση, η A είναι συχνά ένας τελεστής συνέλιξης.

2)Μοντέλο σήματος δεύτερης τάξης (WSS). Το καθαρό σήμα d[n] μοντελοποιεί-
ται ως τυχαία διεργασία στάσιμη κατά τη ευρεία έννοια (wide-sense stationary), χαρακτηριζό-
μενη από τη συνάρτηση αυτοσυσχέτισης Rdd[k] (ή, ισοδύναμα, από τη φασματική πυκνότητα
ισχύος Sdd(ω) στη βαθμωτή/WSS περίπτωση).

3)Προσθετικό μοντέλο θορύβου (WSS) και ασυσχέτιση σήματος–θορύβου.
Ο θόρυβος v[n] μοντελοποιείται ωςWSS με αυτοσυσχέτιση Rvv[k] (ή φασματική πυκνότητα
ισχύος Svv(ω)), και υποθέτουμε ότι είναι ασυσχέτιστος με το σήμα:

Rdv[k] = 0. (2.2)

4) Γκαουσιανότητα (Bayesian θεμελίωση). Αν, επιπλέον, τα d και v μοντελοποι-
ηθούν ως Γκαουσιανές διεργασίες, τότε η εκ των υστέρων κατανομή p(d | x) είναι Γκαου-
σιανή και η μέση τιμή της είναι γραμμική ως προς το x. Αυτό συνεπάγεται ότι ο εκτιμητής
MMSE συμπίπτει με τον βέλτιστο γραμμικό εκτιμητή.

5) Περιορισμός σε γραμμικούς εκτιμητές. Αναζητούμε έναν εκτιμητή εντός της
κλάσης των γραμμικών απεικονίσεων, ο οποίος (για σταθερό χρονικό δείκτη n) γράφεται
ως

d̂[n] = W T x[n], (2.3)

όπου W ∈ Rp×q (ώστε W Tx ∈ Rq). Στο πλαίσιο LTI/WSS, αυτή η γραμμική απεικόνιση
αντιστοιχεί σε συνέλιξη με μια κρουστική απόκριση (δηλαδή σε ένα LTI φίλτρο). Το φίλ-
τρο Wiener είναι η συγκεκριμένη επιλογή της W που ελαχιστοποιεί το μέσο τετραγωνικό

σφάλμα.
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2.2 Στόχος Γραμμικού MMSE

Αναζητούμε τον γραμμικό εκτιμητή που ελαχιστοποιεί το αναμενόμενο τετραγωνικό σφάλμα

ανακατασκευής:

W ⋆ = argmin
W

E
[∥∥d[n]−W Tx[n]

∥∥2

2

]
. (2.4)

Για λόγους συμβολικής απλότητας, παραλείπουμε τον δείκτη [n] και γράφουμε x,d όταν
δεν υπάρχει κίνδυνος σύγχυσης.
Αναπτύσσοντας το τετραγωνικό μέλος προκύπτει

J(W ) = E
[
(d−W Tx)T (d−W Tx)

]
= tr

(
E{ddT}

)
− 2 tr

(
W TE{xdT}

)
+ tr

(
W TE{xxT}W

)
. (2.5)

Ορίζουμε τους πίνακες συσχέτισης

Rdd ≜ E{ddT}, Rxd ≜ E{xdT}, Rxx ≜ E{xxT}. (2.6)

Τότε η (2.5) γράφεται συνοπτικά ως

J(W ) = tr(Rdd)− 2 tr
(
W TRxd

)
+ tr

(
W TRxxW

)
. (2.7)

2.2.1 Εξισώσεις Wiener–Hopf (Κανονικές) και Λύση Κλειστής Μορφής

Παραγωγίζοντας τη J(W ) ως προςW και θέτοντας την παράγωγο ίση με μηδέν, προκύπ-
τουν οι κανονικές εξισώσεις (Wiener–Hopf):

∂J

∂W
= 0 =⇒ RxxW ⋆ = Rxd. (2.8)

Υποθέτοντας ότι ο Rxx είναι αντιστρέψιμος, λαμβάνουμε τη λύση Wiener/LMMSE

W ⋆ = R−1
xx Rxd. (2.9)

Χρησιμοποιώντας το μοντέλο παρατήρησης (2.1) και την υπόθεση ότι v ⊥ d, μπορούμε
να εκφράσουμε τους Rxd και Rxx σε όρους των συνδιακυμάνσεων του μοντέλου. Πράγματι,

Rxd = E{(Ad+ v)dT} = AE{ddT}+ E{vdT} = ARdd, (2.10)

Rxx = E{(Ad+ v)(Ad+ v)T}
= ARddA

T +Rvv, (2.11)

όπου Rvv ≜ E{vvT}. Αντικαθιστώντας τις (2.10)–(2.11) στην (2.9), προκύπτει η συνήθως
χρησιμοποιούμενη λύση κλειστής μορφής:

W ⋆ =
(
ARddA

T +Rvv

)−1
ARdd. (2.12)

Παρατήρηση (συσχέτιση έναντι συνδιακύμανσης). Υπό τη συνήθη υπόθεση
διεργασιών μηδενικού μέσου, E{x} = 0 και E{d} = 0, οι πίνακες συσχέτισης και συνδι-
ακύμανσης συμπίπτουν:

Cov[x,x] = E
[
(x− µx)(x− µx)

T
]
= E{xxT} = Rxx, (2.13)

και ομοίως

Cov[x,d] = E
[
(x− µx)(d− µd)

T
]
= E{xdT} = Rxd. (2.14)
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2.3 Αναλυτική Απόδειξη του Φίλτρου Wiener

Παρακάτω δίνουμε μια αναλυτική απόδειξη του φίλτρου Wiener, ελαχιστοποιώντας ρητά το
μέσο τετραγωνικό σφάλμα μέσα στην κλάση των γραμμικών εκτιμητών. Σε όλη την ανάπ-
τυξη υποθέτουμε πραγματικές τυχαίες διανυσματικές μεταβλητές και διεργασίες μηδενικού

μέσου.
΄Εστω x ∈ Rp

το διάνυσμα παρατήρησης, d ∈ Rq
το επιθυμητό (καθαρό) σήμα, και

W ∈ Rp×q
ο γραμμικός εκτιμητής έτσι ώστε d̂ = W Tx ∈ Rq.

2.3.1 Συνάρτηση Στόχου

Ο στόχος γραμμικού MMSE είναι

J(W ) = E
[
∥d−W Tx∥22

]
= E

[
(d−W Tx)T (d−W Tx)

]
. (2.15)

Χρησιμοποιώντας τον τελεστή ίχνους (trace), ο οποίος επιτρέπει βολική επεξεργασία εκ-
φράσεων με πίνακες, μπορούμε να γράψουμε

J(W ) = E
[
tr
(
(d−W Tx)T (d−W Tx)

)]
= tr

(
E
[
(d−W Tx)T (d−W Tx)

])
, (2.16)

όπου χρησιμοποιήθηκε η γραμμικότητα του ίχνους και της αναμενόμενης τιμής.

2.3.2 Ανάπτυξη του Τετραγωνικού ΄Ορου

Αρχικά αναπτύσσουμε τον τετραγωνικό όρο:

(d−W Tx)T (d−W Tx) = dTd− dTW Tx− xTWd+ xTWW Tx. (2.17)

Αντικαθιστώντας αυτή την ανάπτυξη στη συνάρτηση στόχου, παίρνουμε

J(W ) = tr
(
E[dTd]

)
− tr

(
E[dTW Tx]

)
− tr

(
E[xTWd]

)
+ tr

(
E[xTWW Tx]

)
. (2.18)

2.3.3 Υπολογισμός Κάθε ΄Ορου

Πρώτος όρος. Χρησιμοποιώντας dTd = tr
(
ddT

)
, προκύπτει

tr
(
E[dTd]

)
= tr

(
E[ddT ]

)
= tr(Rdd), (2.19)

όπου Rdd ≜ E[ddT ].

Δεύτερος όρος. Χρησιμοποιώντας την κυκλική μετατόπιση στο ίχνος,

tr
(
E[dTW Tx]

)
= E

[
tr
(
dTW Tx

)]
= E

[
tr
(
W TxdT

)]
= tr

(
W T E[xdT ]

)
= tr

(
W TRxd

)
, (2.20)

όπου Rxd ≜ E[xdT ].

6



Τρίτος όρος. Ομοίως,

tr
(
E[xTWd]

)
= E

[
tr
(
xTWd

)]
= E

[
tr
(
WdxT

)]
= tr

(
W E[dxT ]

)
= tr(WRdx), (2.21)

με Rdx = RT
xd. Χρησιμοποιώντας tr(A) = tr

(
AT

)
, αυτό γίνεται

tr(WRdx) = tr
(
RxdW

T
)
= tr

(
W TRxd

)
. (2.22)

Τέταρτος όρος. Τέλος,

tr
(
E[xTWW Tx]

)
= E

[
tr
(
xTWW Tx

)]
= E

[
tr
(
W TxxTW

)]
= tr

(
W T E[xxT ]W

)
= tr

(
W TRxxW

)
, (2.23)

όπου Rxx ≜ E[xxT ].

2.3.4 Τελική Μορφή της Συνάρτησης Κόστους

Συλλέγοντας όλους τους όρους, η συνάρτηση στόχου γράφεται ως

J(W ) = tr(Rdd)− 2 tr
(
W TRxd

)
+ tr

(
W TRxxW

)
. (2.24)

2.3.5 Παράγωγος και Συνθήκη Βελτιστότητας

Παραγωγίζουμε τώρα τη J(W ) ως προςW . Οι ταυτότητες λογισμού πινάκων που χρειαζό-
μαστε είναι:

∂

∂W
tr
(
W TA

)
= A,

∂

∂W
tr
(
W TAW

)
= (A+AT )W .

Εφόσον ο Rxx είναι συμμετρικός, Rxx = RT
xx, παίρνουμε

∂J

∂W
= −2Rxd + 2RxxW . (2.25)

Θέτοντας την παράγωγο ίση με μηδέν, προκύπτουν οι εξισώσεις Wiener–Hopf

RxxW ⋆ = Rxd, (2.26)

οι οποίες οδηγούν άμεσα στη λύση του φίλτρου Wiener W ⋆ = R−1
xxRxd.

2.3.6 Υπολογισμός των Rxd και Rxx από το Μοντέλο Παρατήρησης

Υπολογίζουμε τώρα ρητά τη δια-συνδιακύμανσηRxd και τη συνδιακύμανση των παρατηρήσεων

Rxx από το υποτιθέμενο γραμμικό μοντέλο μετρήσεων. Υπενθυμίζουμε ότι οι παρατηρήσεις
παράγονται σύμφωνα με

x[n] = Ad[n] + v[n], (2.27)

όπου E[d] = 0, E[v] = 0, και ο θόρυβος είναι ασυσχέτιστος με το σήμα, δηλαδή v ⊥ d.
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Δια-συνδιακύμανση παρατήρησης και σήματος. Εξ ορισμού,

Rxd ≜ E{xdT}. (2.28)

Αντικαθιστώντας το μοντέλο παρατήρησης (2.27), παίρνουμε

Rxd = E{(Ad+ v)dT}
= AE{ddT}+ E{vdT}. (2.29)

Επειδή v και d είναι ασυσχέτιστα, ο δεύτερος όρος μηδενίζεται: E{vdT} = 0. ΄Αρα,

Rxd = ARdd. (2.30)

Αυτο-συνδιακύμανση των παρατηρήσεων. Αντίστοιχα, η συνδιακύμανση των
παρατηρήσεων είναι

Rxx ≜ E{xxT} = E{(Ad+ v)(Ad+ v)T}. (2.31)

Αναπτύσσοντας το γινόμενο προκύπτει

Rxx = AE{ddT}AT +AE{dvT}+ E{vdT}AT + E{vvT}. (2.32)

Και πάλι, η ασυσχέτιση συνεπάγεται ότι οι μικτοί όροι μηδενίζονται:

E{dvT} = E{vdT} = 0.

΄Ετσι, η συνδιακύμανση των παρατηρήσεων ανάγεται σε

Rxx = ARddA
T +Rvv, (2.33)

όπου Rvv ≜ E{vvT}.

Παρατήρηση. Οι εξισώσεις (2.30) και (2.33) δείχνουν ότι το φίλτρο Wiener εξαρτάται
μόνο από τον γραμμικό τελεστή A και από στατιστικά δεύτερης τάξης του σήματος και του
θορύβου. Δεν απαιτούνται ροπές υψηλότερης τάξης, και η Γκαουσιανότητα είναι απαραίτητη
μόνο εάν επιθυμούμε να ερμηνεύσουμε τη λύση ως τον πλήρη Bayesian εκτιμητή MMSE
αντί ως τη λύση γραμμικού MMSE.

2.4 Πρακτική Χρήση του Φιλτραρίσματος Wiener

Η λύση Wiener γράφεται σε όρους πινάκων συσχέτισης όπως οι Rxx και Rxd, οι οποίοι
είναι αναμενόμενες τιμές ως προς τη (άγνωστη) διαδικασία που παράγει τα δεδομένα. Στην
πράξη, σπάνια έχουμε άμεση πρόσβαση σε αυτές τις αναμενόμενες τιμές και πρέπει να τις
προσεγγίσουμε από δεδομένα. Υπάρχουν δύο συνήθεις περιπτώσεις:
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2.4.1 Περίπτωση 1: ΄Οταν το επιθυμητό σήμα d[n] είναι διαθέσιμο (επι-
βλεπόμενη μάθηση / εκπαίδευση)

Σε ορισμένες εφαρμογές μπορούμε να αποκτήσουμε (τουλάχιστον περιστασιακά) ζεύγη
παρατηρήσεων και αληθούς τιμής,

(x[n],d[n]), n = 1, . . . , N,

για παράδειγμα από πειράματα βαθμονόμησης, αισθητήρες υψηλής ποιότητας, offline μετα-
επεξεργασία, ή από προσομοιωμένα δεδομένα. Σε αυτή την περίπτωση, το φίλτρο Wiener
μπορεί να υπολογιστεί μέσω ελαχιστοποίησης εμπειρικού κινδύνου (empirical risk minimiza-
tion): ελαχιστοποιούμε το μέσο τετραγωνικό σφάλμα στα δείγματα

Ŵ = argmin
W

1

N

N∑
n=1

∥∥d[n]−W Tx[n]
∥∥2

2
. (2.34)

Αυτό δεν είναι παρά πολυδιάστατα ελάχιστα τετράγωνα (γραμμική παλινδρόμηση) με εισό-
δους x[n] και στόχους d[n].
Ορίζουμε τους πίνακες δεδομένων

X ≜ [x[1] · · · x[N ]] ∈ Rp×N , D ≜ [d[1] · · · d[N ]] ∈ Rq×N .

Τότε το (2.34) γράφεται ως minW ∥D −W TX∥2F , και οι κανονικές εξισώσεις δίνουν

Ŵ =
(
XXT

)−1
XDT (υπό την υπόθεση ότι ο XXT

είναι αντιστρέψιμος). (2.35)

Ισοδύναμα, εισάγοντας τις εκτιμήσεις συσχέτισης από δείγμα

R̂xx =
1

N

N∑
n=1

x[n]x[n]T =
1

N
XXT , R̂xd =

1

N

N∑
n=1

x[n]d[n]T =
1

N
XDT ,

ανακτούμε την οικεία μορφή Wiener

Ŵ = R̂
−1

xx R̂xd. (2.36)

Online χρήση μετά την εκπαίδευση. Μόλις υπολογιστεί το Ŵ , η εφαρμογή είναι
πλήρως online και εξαιρετικά γρήγορη: για κάθε νέα παρατήρηση x[n] υπολογίζουμε

d̂[n] = Ŵ
T
x[n].

Αν το περιβάλλον μεταβάλλεται (drift), μπορούμε να ενημερώνουμε το Ŵ online με αναδρομικά
ελάχιστα τετράγωνα (RLS) ή με στοχαστική κατάβαση κλίσης στη στιγμιαία τετραγωνική
απώλεια ∥d[n]−W Tx[n]∥22 όταν η αληθής τιμή γίνεται διαθέσιμη.

2.4.2 Περίπτωση 2: ΄Οταν είναι γνωστές ή εκτιμήσιμες μόνο οι συσχετί-
σεις (μη επιβλεπόμενη μάθηση)

Συχνά, το καθαρό σήμα d[n] δεν παρατηρείται ποτέ άμεσα, άρα δεν μπορούμε να σχηματί-

σουμε το R̂xd από ζευγοποιημένα δείγματα. Παρόλα αυτά, το φιλτράρισμαWiener παραμένει
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εφαρμόσιμο εφόσον γνωρίζουμε (ή μπορούμε να εκτιμήσουμε) τα στατιστικά δεύτερης τάξης
που υπαγορεύει το μοντέλο.
Μια συνηθισμένη περίπτωση είναι ο προσθετικός θόρυβος με A = I:

x[n] = d[n] + v[n], v ⊥ d.

Από τις ταυτότητες που προέκυψαν νωρίτερα,

Rxx = Rdd +Rvv, Rxd = Rdd.

΄Αρα η λύση Wiener γίνεται

W ⋆ = (Rdd +Rvv)
−1Rdd. (2.37)

Στη βαθμωτή περίπτωση LTI/WSS, αυτό αντιστοιχεί στο πεδίο της συχνότητας στη γνωστή
μορφή PSD

H(ω) =
Sdd(ω)

Sdd(ω) + Svv(ω)
. (2.38)

Πώς αποκτούμε τα απαιτούμενα στατιστικά; Στην πράξη, ακολουθείται συνήθως
μία από τις παρακάτω διαδρομές:

• Βαθμονόμηση: εκτίμηση του Rvv (ή του Svv(ω)) από χρονικά διαστήματα όπου
το σήμα απουσιάζει.

• Μοντελοποίηση σήματος: υπόθεση παραμετρικής πρότερης κατανομής για το
d (π.χ. AR/ARMA) και εκτίμηση των παραμέτρων της από δεδομένα, κάτι που στη
συνέχεια καθορίζει το Rdd (ή το Sdd(ω)).

• Γνώση πεδίου: χρήση γνωστής ή αναμενόμενης μορφής PSD για το σήμα και/ή
τον θόρυβο (π.χ. θόρυβος 1/f , σήματα περιορισμένου εύρους ζώνης).

• Μη στάσιμες συνθήκες / online προσαρμογή: εκτίμηση συσχετίσεων σε
ολισθαίνον παράθυρο ώστε το Svv(ω) ή το Sxx(ω) να προσαρμόζεται σε μεταβαλ-
λόμενες συνθήκες.

Οπτική online υλοποίησης. Ακόμη και όταν οι συσχετίσεις εκτιμώνται, η online
λειτουργία έχει τυπικά δομή δύο σταδίων: (i) ενημέρωση των στατιστικών δεύτερης τάξης
(ή των παραμετρικών μοντέλων τους) από τα εισερχόμενα δεδομένα και (ii) ενημέρωση ή

εφαρμογή του φίλτρου ώστε να παραχθεί το d̂[n]. Σε στάσιμες συνθήκες, το φίλτρο μπορεί
να σχεδιαστεί μία φορά και στη συνέχεια να εφαρμοστεί online. Σε αργά μεταβαλλόμενες
συνθήκες, μπορούμε να επανεκτιμούμε τα στατιστικά και να επανασχεδιάζουμε το φίλτρο
Wiener περιοδικά (κατά μπλοκ) ή συνεχώς (προσαρμοστικό φιλτράρισμα).

Σύνοψη. Αν το d[n] είναι διαθέσιμο (έστω και περιστασιακά), το φίλτρο Wiener μπορεί
να εκτιμηθεί από δεδομένα μέσω ελαχίστων τετραγώνων και στη συνέχεια να εφαρμοστεί

online. Αν το d[n] δεν είναι διαθέσιμο, το φιλτράρισμα Wiener παραμένει δυνατό εφόσον
τα σχετικά στατιστικά δεύτερης τάξης (συσχετίσεις/PSDs) είναι γνωστά ή μπορούν να
εκτιμηθούν από τη ροή μετρήσεων υπό υποθέσεις μοντελοποίησης.
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2.5 Λυμένα Παραδείγματα

Για να γίνει το φιλτράρισμα Wiener πιο απτό, δουλεύουμε τώρα μικρά παραδείγματα χαμη-
λής διάστασης. Χρησιμοποιούμε 2-διάστατα σήματα ώστε κάθε πίνακας και κάθε βήμα να
ελέγχεται εύκολα ≪με το χέρι≫.

2.5.1 Παράδειγμα 1: Αποθορυβοποίηση μεA = I (Γνωστές Συνδιακυμάν-
σεις)

Διατύπωση. Θεωρούμε το μοντέλο παρατήρησης

x = d+ v, E[d] = 0, E[v] = 0, v ⊥ d,

με

Rdd =

[
2 1
1 2

]
, Rvv =

[
1 0
0 3

]
.

Τότε

Rxx = Rdd +Rvv =

[
3 1
1 5

]
, Rxd = E[xdT ] = Rdd.

Λύση Wiener. Ο πίνακας Wiener είναι

W ⋆ = R−1
xxRxd =

[
3 1
1 5

]−1 [
2 1
1 2

]
.

Υπολογίζουμε το αντίστροφο:

det(Rxx) = 3 · 5− 1 · 1 = 14, R−1
xx =

1

14

[
5 −1
−1 3

]
.

΄Αρα,

W ⋆ =
1

14

[
5 −1
−1 3

] [
2 1
1 2

]
=

1

14

[
9 3
1 5

]
=

[
9
14

3
14

1
14

5
14

]
.

Εφαρμογή του φίλτρου. Δεδομένου ενός μετρούμενου διανύσματος x ∈ R2, η εκ-
τίμηση είναι

d̂ = W T
⋆ x.

Για παράδειγμα, αν x = [1 2]T , τότε

d̂ =

[ 9
14

1
14

3
14

5
14

] [
1
2

]
=

[11
14
13
14

]
.

Ερμηνεία. Η δεύτερη συνιστώσα έχει μεγαλύτερη διασπορά θορύβου (3 έναντι 1), άρα
το φίλτρο ≪συρρικνώνει≫ και αναμειγνύει τις συνιστώσες ασύμμετρα. Η εκτίμηση δεν είναι
απλώς αx: εκμεταλλεύεται τη συσχέτιση στο d (τους εκτός διαγωνίου όρους του Rdd)
ώστε να ≪δανείζεται πληροφορία≫ από το καθαρότερο κανάλι.
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2.5.2 Παράδειγμα 2: Αποθορυβοποίηση όταν το d[n] είναι Γνωστό στην
Εκπαίδευση (Μάθηση του W )

Διατύπωση. Υποθέτουμε ότι διαθέτουμεN επιβλεπόμενα δείγματα εκπαίδευσης {(x[n],d[n])}Nn=1,
με x[n],d[n] ∈ R2. Ορίζουμε

X = [x[1] · · · x[N ]] ∈ R2×N , D = [d[1] · · · d[N ]] ∈ R2×N .

Η εκτίμηση ελαχίστων τετραγώνων για τον πίνακα Wiener είναι

Ŵ = (XXT )−1XDT .

΄Ενα μικρό αριθμητικό παράδειγμα (N = 3). Θεωρούμε το σύνολο εκπαίδευσης

x[1] =

[
1
0

]
, d[1] =

[
1
0

]
, x[2] =

[
0
1

]
, d[2] =

[
0
1

]
, x[3] =

[
1
1

]
, d[3] =

[
1
0

]
.

Τότε

X =

[
1 0 1
0 1 1

]
, D =

[
1 0 1
0 1 0

]
.

Υπολογίζουμε

XXT =

[
2 1
1 2

]
, XDT =

[
2 0
1 1

]
.

Εφόσον

(XXT )−1 =
1

3

[
2 −1
−1 2

]
,

προκύπτει

Ŵ =
1

3

[
2 −1
−1 2

] [
2 0
1 1

]
=

1

3

[
3 −1
0 2

]
=

[
1 −1

3

0 2
3

]
.

Εφαρμογή του φίλτρου. Για μια νέα μέτρηση x, η εκτίμηση είναι d̂ = Ŵ
T
x.

2.5.3 Παράδειγμα 3: Αποσυνέλιξη / Ανάμιξη με μη τετριμμένο A

Διατύπωση. Υποθέτουμε έναν γραμμικό τελεστή ανάμιξης (≪θόλωση≫)

x = Ad+ v, A =

[
1 1
0 1

]
, Rdd =

[
1 0
0 1

]
, Rvv =

[
1 0
0 1

]
.

Τότε

Rxd = ARdd = A, Rxx = ARddA
T +Rvv = AAT + I.

Υπολογίζουμε

AAT =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
, Rxx =

[
3 1
1 2

]
.

Αντιστροφή:

det(Rxx) = 3 · 2− 1 · 1 = 5, R−1
xx =

1

5

[
2 −1
−1 3

]
.
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΄Αρα

W ⋆ = R−1
xxRxd =

1

5

[
2 −1
−1 3

] [
1 1
0 1

]
=

1

5

[
2 1
−1 2

]
.

Επομένως d̂ = W T
⋆ x με

W T
⋆ =

1

5

[
2 −1
1 2

]
.

Ερμηνεία. Επειδή ο A αναμειγνύει τις δύο συνιστώσες, ο βέλτιστος εκτιμητής πρέπει
ταυτόχρονα (i) να ≪αναιρεί≫ την ανάμιξη (σαν αντίστροφος) και (ii) να κάνει εξομάλυνση ή
κανονικοποίηση έναντι του θορύβου. Το φίλτρο Wiener πραγματοποιεί ακριβώς αυτόν τον
συμβιβασμό αυτόματα μέσω των όρων συνδιακύμανσης.

2.6 M-tap FIR Φιλτράρισμα Wiener

Μέχρι τώρα, θεωρήσαμε έναν χωρίς μνήμη γραμμικό εκτιμητή της μορφής

d̂[n] = W Tx[n], x[n] ∈ Rp, d[n] ∈ Rq.

Αυτό είναι κατάλληλο όταν το x[n] περιέχει όλη τη σχετική πληροφορία στη χρονική στιγμή
n. Ωστόσο, σε πολλά προβλήματα επεξεργασίας σήματος, η επιθυμητή εκτίμηση στη χρονική
στιγμή n θα πρέπει να εξαρτάται από ένα παράθυρο προηγούμενων παρατηρήσεων, κάτι που
οδηγεί φυσικά σε ένα αιτιατό FIR φίλτρο M συντελεστών (taps).

2.6.1 Συσσωρευμένο Διάνυσμα Δεδομένων και Παραμετροποίηση FIR

Για να προκύψει ένας αιτιατός FIR εκτιμητήςM συντελεστών, σχηματίζουμε ένα διευρυμένο
διάνυσμα δεδομένων στοιβάζοντας την τρέχουσα και τις προηγούμενες μετρήσεις:

xn ≜


x[n]

x[n− 1]
...

x[n−M + 1]

 ∈ RpM . (2.39)

Στη συνέχεια εφαρμόζουμε έναν γραμμικό εκτιμητή στο xn:

d̂[n] = W Txn, W ∈ R(pM)×q. (2.40)

Διαμερίζουμε τονW σε M μπλοκ,

W =


W 0

W 1
...

WM−1

 , W k ∈ Rp×q.

Τότε η (2.40) γράφεται ως

d̂[n] =
[
W T

0 W T
1 · · · W T

M−1

]


x[n]
x[n− 1]

...
x[n−M + 1]

 . (2.41)
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Ισοδύναμα, αυτό είναι ακριβώς μια αιτιατή FIR συνέλιξη:

d̂[n] =
M−1∑
k=0

W T
k x[n− k]. (2.42)

΄Αρα, η συνήθης μορφή LMMSE d̂[n] = W Txn γίνεται ένα FIR φίλτρο Wiener M συντε-

λεστών απλώς επιλέγοντας το xn ώστε να περιλαμβάνει M προηγούμενα δείγματα.

2.6.2 Σχεδίαση του FIRΦίλτρουWiener από Στατιστικά Δεύτερης Τάξης

Το βέλτιστο FIR φίλτρο Wiener προκύπτει ελαχιστοποιώντας το MSE ως προς τον συσσ-
ωρευμένο εκτιμητή (2.40), δηλαδή,

W ⋆ = argmin
W

E
[∥∥d[n]−W Txn

∥∥2

2

]
.

Η λύση έχει την ίδια αλγεβρική μορφή όπως και πριν:

W ⋆ = R−1
xnxn

Rxnd, (2.43)

όπου

Rxnxn ≜ E{xnx
T
n} ∈ RpM×pM , Rxnd ≜ E{xnd[n]

T} ∈ RpM×q.

Στην περίπτωση στάσιμων κατά τη ευρεία έννοια (WSS) διεργασιών, οι πίνακες αυτοί
έχουν δομή μπλοκ-Toeplitz. Ορίζουμε τους πίνακες αυτοσυσχέτισης παρατηρήσεων για
υστέρηση k

Rxx[k] ≜ E{x[n]x[n− k]T}, k ∈ Z,
και τους πίνακες συσχέτισης

Rxd[k] ≜ E{x[n]d[n− k]T}.

Τότε

Rxnxn =


Rxx[0] Rxx[1] · · · Rxx[M − 1]
Rxx[−1] Rxx[0] · · · Rxx[M − 2]

...
...

. . .
...

Rxx[−M + 1] Rxx[−M + 2] · · · Rxx[0]

 ∈ RpM×pM , (2.44)

και

Rxnd =


Rxd[0]
Rxd[1]

...
Rxd[M − 1]

 ∈ RpM×q. (2.45)

Για WSS x[n], ισχύει επίσης η συμμετρία

Rxx[−k] = Rxx[k]
T .

2.6.3 Πρακτικό Φιλτράρισμα Wiener σε Δεδομένα (Περίπτωση FIR)

΄Εστω ότι μας δίνονται μετρήσεις {x[n]}N−1
n=0 και είτε (i) ένα καθαρό σήμα αναφοράς d[n] (επι-

βλεπόμενη μάθηση) είτε (ii) ένα μοντέλο που μας επιτρέπει να σχηματίσουμε τις απαιτούμενες
συσχετίσεις (μη-επιβλεπόμενη μάθηση).
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Βήμα 1: Επιλογή της μορφής του φίλτρου. Επιλέγουμε μήκος FIR M και χρησι-
μοποιούμε το συσσωρευμένο διάνυσμα xn όπως στο (2.39).

Βήμα 2: Εκτίμηση των απαιτούμενων στατιστικών δεύτερης τάξης. Μια
συνηθισμένη αμερόληπτη εκτίμηση δείγματος για τους πίνακες αυτοσυσχέτισης των παρατηρήσεων

είναι

R̂xx[k] =
1

N − k

N−1∑
n=k

x[n]x[n− k]T , k = 0, . . . ,M − 1. (2.46)

Αν υπάρχει καθαρό σήμα αναφοράς, η συσχέτιση μπορεί να εκτιμηθεί ως

R̂xd[k] =
1

N − k

N−1∑
n=k

x[n]d[n− k]T , k = 0, . . . ,M − 1. (2.47)

Αν το d δεν παρατηρείται, χρησιμοποιείται αντ’ αυτού ένα μοντέλο (π.χ. x = Ad+v), μαζί
με εκτιμήσεις των στατιστικών του σήματος και του θορύβου, ώστε να σχηματιστούν οι

R̂xx[k] και R̂xd[k].

Βήμα 3: Κατασκευή του γραμμικού συστήματος Wiener–Hopf. Χρησι-
μοποιώντας τις (2.44)–(2.45) με τις εκτιμημένες συσχετίσεις, σχηματίζουμε

R̂xnxn ∈ RpM×pM , R̂xnd ∈ RpM×q.

Βήμα 4: Επίλυση για τον βέλτιστο πίνακα συντελεστών.

W ⋆ = R̂
−1

xnxn
R̂xnd. (2.48)

(Ισοδύναμα, επιλύουμε το γραμμικό σύστημα R̂xnxnW
⋆ = R̂xnd.)

Βήμα 5: Φιλτράρισμα των δεδομένων. Τέλος, διαμερίζουμε τοW ⋆
στους συντε-

λεστέςW ⋆
0, . . . ,W

⋆
M−1 και εφαρμόζουμε

d̂[n] =
M−1∑
k=0

W ⋆T
k x[n− k]. (2.49)

Παρατήρηση (αιτιότητα και καθυστέρηση). Η παραπάνω κατασκευή οδηγεί σε
ένα αιτιατό FIR φίλτρο που χρησιμοποιεί μόνο τρέχοντα και παρελθοντικά δείγματα. Αν
επιτρέπεται μη αιτιατή εξομάλυνση (π.χ. σε offline επεξεργασία), μπορούμε να συμπερ-
ιλάβουμε και μελλοντικά δείγματα, ώστε να προκύψει ένας δίπλευρος Wiener εξομαλυντής,
ο οποίος συχνά επιτυγχάνει μικρότερο MSE με τίμημα την εισαγωγή καθυστέρησης.

2.6.4 Αριθμητικό Παράδειγμα (1Δ, M = 2)

Παρουσιάζουμε την πλήρη κατασκευή Wiener–Hopf για ένα αιτιατό FIR φίλτρο δύο συντε-
λεστών

d̂[n] = w0x[n] + w1x[n− 1], w =

[
w0

w1

]
.
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Για M = 2, το σύστημα Wiener–Hopf γράφεται[
rxx[0] rxx[1]
rxx[1] rxx[0]

]
︸ ︷︷ ︸

R

w =

[
rxd[0]
rxd[1]

]
︸ ︷︷ ︸

p

, w = R−1p. (2.50)

A) Επιβλεπόμενη περίπτωση (συσχετίσεις από δείγματα). Υποθέτουμε ότι
διαθέτουμε N = 5 ζευγοποιημένα δείγματα {x[n], d[n]}:

d = [1, 0, −1, 0, 1], v = [0.2, −0.1, 0.1, −0.2, 0], x = d+v = [1.2, −0.1, −0.9, −0.2, 1].

Βήμα 1: υπολογισμός του r̂xx[0].

r̂xx[0] =
1

N

N−1∑
n=0

x[n]2 =
1

5

(
1.22 + (−0.1)2 + (−0.9)2 + (−0.2)2 + 12

)
.

Υπολογίζουμε κάθε όρο:

1.22 = 1.44, (−0.1)2 = 0.01, (−0.9)2 = 0.81, (−0.2)2 = 0.04, 12 = 1.

΄Αθροισμα:

1.44 + 0.01 + 0.81 + 0.04 + 1 = 3.30 ⇒ r̂xx[0] = 3.30/5 = 0.66.

Βήμα 2: υπολογισμός του r̂xx[1].

r̂xx[1] =
1

N − 1

N−1∑
n=1

x[n]x[n− 1] =
1

4

(
x[1]x[0] + x[2]x[1] + x[3]x[2] + x[4]x[3]

)
.

Υπολογίζουμε τα γινόμενα:

x[1]x[0] = (−0.1)(1.2) = −0.12, x[2]x[1] = (−0.9)(−0.1) = 0.09,

x[3]x[2] = (−0.2)(−0.9) = 0.18, x[4]x[3] = (1)(−0.2) = −0.20.
΄Αθροισμα:

−0.12 + 0.09 + 0.18− 0.20 = −0.05 ⇒ r̂xx[1] = −0.05/4 = −0.0125.

Βήμα 3: υπολογισμός του r̂xd[0].

r̂xd[0] =
1

N

N−1∑
n=0

x[n]d[n] =
1

5

(
x[0]d[0] + x[1]d[1] + x[2]d[2] + x[3]d[3] + x[4]d[4]

)
.

Υπολογίζουμε:

x[0]d[0] = 1.2 · 1 = 1.2, x[1]d[1] = (−0.1) · 0 = 0, x[2]d[2] = (−0.9) · (−1) = 0.9,

x[3]d[3] = (−0.2) · 0 = 0, x[4]d[4] = (1) · 1 = 1.

΄Αθροισμα:

1.2 + 0 + 0.9 + 0 + 1 = 3.1 ⇒ r̂xd[0] = 3.1/5 = 0.62.
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Βήμα 4: υπολογισμός του r̂xd[1] = E{x[n]d[n− 1]}.

r̂xd[1] =
1

N − 1

N−1∑
n=1

x[n]d[n− 1] =
1

4

(
x[1]d[0] + x[2]d[1] + x[3]d[2] + x[4]d[3]

)
.

Υπολογίζουμε:

x[1]d[0] = (−0.1) · 1 = −0.1, x[2]d[1] = (−0.9) · 0 = 0,

x[3]d[2] = (−0.2) · (−1) = 0.2, x[4]d[3] = 1 · 0 = 0.

΄Αθροισμα:

−0.1 + 0 + 0.2 + 0 = 0.1 ⇒ r̂xd[1] = 0.1/4 = 0.025.

Βήμα 5: κατασκευή και επίλυση του συστήματος Wiener–Hopf. Χρησι-
μοποιώντας την (2.50),

R̂ =

[
0.66 −0.0125
−0.0125 0.66

]
, p̂ =

[
0.62
0.025

]
.

Το αντίστροφο ενός πίνακα 2× 2 της μορφής

[
a b
b a

]
είναι

[
a b
b a

]−1

=
1

a2 − b2

[
a −b
−b a

]
.

Εδώ a = 0.66, b = −0.0125, άρα

a2 − b2 = 0.662 − (−0.0125)2 = 0.4356− 0.00015625 = 0.43544375.

Επομένως,

R̂
−1

=
1

0.43544375

[
0.66 0.0125
0.0125 0.66

]
.

Υπολογίζουμε ŵ = R̂
−1
p̂. Πρώτα ο πολλαπλασιασμός:[
0.66 0.0125
0.0125 0.66

] [
0.62
0.025

]
=

[
0.4095125
0.02425

]
.

Διαίρεση με 0.43544375:

ŵ0 ≈ 0.9404, ŵ1 ≈ 0.0557.

Βήμα 6: εφαρμογή του φίλτρου σε δείγμα. Για παράδειγμα, στο n = 4 (με
x[4] = 1 και x[3] = −0.2),

d̂[4] = ŵ0x[4] + ŵ1x[3] ≈ 0.9293.
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B) Prior AR(1) + λευκός θόρυβος. Υποθέτουμε

x[n] = d[n] + v[n], v[n] λευκός με Var(v) = σ2
v , v ⊥ d,

και ένα prior AR(1)

d[n] = a d[n− 1] + e[n], e[n] ∼ N (0, σ2
e), |a| < 1.

Για AR(1), οι στάσιμες αυτοσυσχετίσεις είναι

rdd[0] =
σ2
e

1− a2
, rdd[1] = a rdd[0].

Χρησιμοποιώντας x = d+ v με λευκό θόρυβο,

rxx[0] = rdd[0] + σ2
v , rxx[1] = rdd[1], rxd[0] = rdd[0], rxd[1] = rdd[1].

Ερμηνεία. Το επιβλεπόμενο παράδειγμα χρησιμοποιεί πολύ λίγα δείγματα (N = 5),
οπότε οι εκτιμήσεις συσχέτισης και κατ’ επέκταση οι συντελεστές (ŵ0, ŵ1) είναι θορυβώδεις.
Οι συντελεστές που βρίσκουμε στη 2η περίπτωση χρησιμοποιούν στατιστικά δεύτερης τάξης
από το υποτιθέμενο μοντέλο AR(1)+λευκού θορύβου, άρα είναι ≪καθαροί≫ και σταθεροί.
Στην πράξη, με αρκετά δεδομένα εκπαίδευσης (ή με κανονικοποίηση), η επιβλεπόμενη προσέγ-
γιση συγκλίνει στη 2η περίπτωση όταν το μοντέλο είναι σωστό.

2.6.5 Υλοποίηση σε Python

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def make_ar1(N, a, sigma_e , seed =0):

5 """Generate AR(1): d[n] = a d[n-1] + e[n], e~N(0,sigma_e ^2)."""

6 rng = np.random.default_rng(seed)

7 e = rng.normal (0.0, sigma_e , size=N)

8 d = np.zeros(N, dtype=float)

9 for n in range(1, N):

10 d[n] = a * d[n-1] + e[n]

11 return d

12

13 def wiener_m2_from_correlations(rxx0 , rxx1 , rxd0 , rxd1):

14 """Solve M=2 Wiener -Hopf system for w=[w0 ,w1]."""

15 R = np.array ([[rxx0 , rxx1],

16 [rxx1 , rxx0]], dtype=float)

17 p = np.array([rxd0 , rxd1], dtype=float)

18 w = np.linalg.solve(R, p)

19 return w # [w0 , w1]

20

21 def estimate_corrs_supervised(x, d):

22 """Estimate rxx[0], rxx[1], rxd[0], rxd [1] from paired data."""

23 N = len(x)

24 rxx0 = np.mean(x * x)

25 rxx1 = np.mean(x[1:] * x[:-1]) # lag 1

26 rxd0 = np.mean(x * d)

27 rxd1 = np.mean(x[1:] * d[:-1]) # E[x[n] d[n-1]]

28 return rxx0 , rxx1 , rxd0 , rxd1

29
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30 def apply_m2_filter(x, w0 , w1):

31 """Apply causal 2-tap FIR: d_hat[n] = w0 x[n] + w1 x[n-1]."""

32 d_hat = np.zeros_like(x, dtype=float)

33 d_hat [0] = w0 * x[0] # assume x[-1]=0

34 d_hat [1:] = w0 * x[1:] + w1 * x[:-1]

35 return d_hat

36

37 # --------------------------

38 # 1) Generate synthetic data

39 # --------------------------

40 N = 800

41 a = 0.9

42 sigma_e = 0.5

43 sigma_v = 0.8

44

45 d = make_ar1(N, a=a, sigma_e=sigma_e , seed =1)

46 rng = np.random.default_rng (2)

47 v = rng.normal (0.0, sigma_v , size=N)

48 x = d + v # denoising setting

49

50 # Split into training/test

51 N_train = N // 2

52 x_tr , d_tr = x[: N_train], d[: N_train]

53 x_te , d_te = x[N_train:], d[N_train :]

54

55 # -----------------------------------------

56 # 2) Supervised M=2 Wiener filter (training)

57 # -----------------------------------------

58 rxx0_hat , rxx1_hat , rxd0_hat , rxd1_hat = estimate_corrs_supervised(x_tr

, d_tr)

59 w_sup = wiener_m2_from_correlations(rxx0_hat , rxx1_hat , rxd0_hat ,

rxd1_hat)

60 w0_sup , w1_sup = w_sup

61

62 # -----------------------------------------

63 # 3) Model -based M=2 Wiener filter (AR(1))

64 # -----------------------------------------

65 # For AR(1): r_dd [0] = sigma_e ^2 / (1-a^2), r_dd [1] = a r_dd [0]

66 rdd0 = (sigma_e **2) / (1.0 - a**2)

67 rdd1 = a * rdd0

68

69 # For x=d+v with white noise var sigma_v ^2:

70 rxx0_model = rdd0 + sigma_v **2

71 rxx1_model = rdd1

72 rxd0_model = rdd0

73 rxd1_model = rdd1

74

75 w_mod = wiener_m2_from_correlations(rxx0_model , rxx1_model , rxd0_model ,

rxd1_model)

76 w0_mod , w1_mod = w_mod

77

78 # --------------------------

79 # 4) Apply filters on test

80 # --------------------------

81 dhat_sup = apply_m2_filter(x_te , w0_sup , w1_sup)

82 dhat_mod = apply_m2_filter(x_te , w0_mod , w1_mod)

83

84 # --------------------------
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85 # 5) Evaluate and plot

86 # --------------------------

87 mse_noisy = np.mean((x_te - d_te)**2)

88 mse_sup = np.mean(( dhat_sup - d_te)**2)

89 mse_mod = np.mean(( dhat_mod - d_te)**2)

90

91 print("Supervised Wiener (M=2) taps: w0 = %.4f, w1 = %.4f" % (w0_sup ,

w1_sup))

92 print("Model -based Wiener (M=2) taps: w0 = %.4f, w1 = %.4f" % (w0_mod ,

w1_mod))

93 print("Test MSE: noisy x vs d: %.4f" % mse_noisy)

94 print("Test MSE: supervised estimate: %.4f" % mse_sup)

95 print("Test MSE: model -based estimate :%.4f" % mse_mod)

96

97 # Plot a short window for readability

98 L = min(250, N - N_train)

99 t = np.arange(L)

100

101 plt.figure ()

102 plt.plot(t, d_te[:L], label="true d[n]")

103 plt.plot(t, x_te[:L], label="observed x[n]")

104 plt.plot(t, dhat_sup [:L], label="Wiener M=2 (supervised)")

105 plt.plot(t, dhat_mod [:L], label="Wiener M=2 (model -based)")

106 plt.xlabel("n (test segment)")

107 plt.ylabel("amplitude")

108 plt.title("2-tap FIR Wiener filtering (supervised vs model -based)")

109 plt.legend ()

110 plt.grid(True)

111 plt.show()

Listing 1: Υλοποίηση φίλτρου Wiener

Η προσομοίωση αυτή υλοποιεί ένα πλήρες, end-to-end παράδειγμα φιλτραρίσματοςWiener
για ένα βαθμωτό (1D) σήμα, χρησιμοποιώντας έναν αιτιατό FIR εκτιμητή δύο συντελεστών
(M = 2). Παρακάτω περιγράφουμε κάθε βήμα του πειράματος με μαθηματικούς όρους.

Μοντέλο σήματος και θορύβου. Το καθαρό σήμα {d[n]} παράγεται ως στάσιμη
αυτοπαλίνδρομη διεργασία πρώτης τάξης:

d[n] = a d[n− 1] + e[n], e[n] ∼ N (0, σ2
e), |a| < 1. (2.51)

Αυτό ορίζει μια διεργασία μηδενικού μέσου, στάσιμη κατά τη ευρεία έννοια, με αυτο-
συσχέτιση

rdd[0] =
σ2
e

1− a2
, rdd[1] = a rdd[0]. (2.52)

Το παρατηρούμενο σήμα προκύπτει μέσω προσθετικού θορύβου:

x[n] = d[n] + v[n], v[n] ∼ N (0, σ2
v), v ⊥ d. (2.53)

Στόχος είναι η εκτίμηση του d[n] από το x[n] με χρήση ενός αιτιατού FIR φίλτρου Wiener.

Δομή εκτιμητή (M = 2). Ο εκτιμητής περιορίζεται στην κλάση των αιτιατών FIR
φίλτρων δύο συντελεστών:

d̂[n] = w0 x[n] + w1 x[n− 1], (2.54)
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Σχήμα 2.1: Δί-συντελεστικό FIR φιλτράρισμα Wiener (M = 2) σε 1Δ.
Παρουσιάζουμε το καθαρό σήμα d[n], την θορυβώδη παρατήρηση x[n] = d[n] + v[n],

και δύο εκτιμήσεις Wiener d̂[n] = w0x[n] + w1x[n − 1]. Το επιβλεπόμενο φίλτρο μα-
θαίνει τους (w0, w1) από ζευγοποιημένα δεδομένα εκπαίδευσης (x[n], d[n]) μέσω εμπειρικών
συσχετίσεων, ενώ το μοντελο-βασισμένο φίλτρο υπολογίζει τους (w0, w1) από υποτιθέμενα
στατιστικά δεύτερης τάξης (π.χ. prior AR(1) για το d[n] και γνωστή διασπορά θορύβου).

ή, ισοδύναμα,

d̂[n] = wTxn, xn =

[
x[n]

x[n− 1]

]
, w =

[
w0

w1

]
.

Κριτήριο βελτιστότητας. Οι συντελεστές (w0, w1) επιλέγονται ώστε να ελαχιστοποιούν
το μέσο τετραγωνικό σφάλμα

E
[
(d[n]− d̂[n])2

]
.

Για M = 2, οι εξισώσεις Wiener–Hopf ανάγονται σε[
rxx[0] rxx[1]
rxx[1] rxx[0]

] [
w0

w1

]
=

[
rxd[0]
rxd[1]

]
, (2.55)

όπου

rxx[k] = E{x[n]x[n− k]}, rxd[k] = E{x[n]d[n− k]}.

Επιβλεπόμενη εκτίμηση συσχετίσεων. Στο επιβλεπόμενο μέρος του πειράματος,
τα ζευγοποιημένα δείγματα {x[n], d[n]} είναι διαθέσιμα σε ένα χρονικό διάστημα εκπαίδευσης.
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Οι αναμενόμενες τιμές στην (2.55) προσεγγίζονται με μέσους όρους δείγματος:

r̂xx[0] =
1

N

N−1∑
n=0

x[n]2, (2.56)

r̂xx[1] =
1

N − 1

N−1∑
n=1

x[n]x[n− 1], (2.57)

r̂xd[0] =
1

N

N−1∑
n=0

x[n]d[n], (2.58)

r̂xd[1] =
1

N − 1

N−1∑
n=1

x[n]d[n− 1]. (2.59)

Αυτές οι εμπειρικές συσχετίσεις εισάγονται στην (2.55), παράγοντας μια εκτίμηση από δε-
δομένα ŵsup. Αυτό αντιστοιχεί στην επίλυση ενός προβλήματος ελαχίστων τετραγώνων για
την επιλεγμένη δομή FIR.

Υπολογισμός συσχετίσεων με μοντέλο. Σε αυτό το μέρος του πειράματος, το
καθαρό σήμα d[n] δεν χρησιμοποιείται άμεσα. Αντίθετα, το πιθανοτικό μοντέλο (2.51)–
(2.53) χρησιμοποιείται για τον αναλυτικό υπολογισμό των συσχετίσεων. Χρησιμοποιώντας
x = d+ v με v ⊥ d, παίρνουμε

rxx[0] = rdd[0] + σ2
v , rxx[1] = rdd[1], (2.60)

και

rxd[0] = rdd[0], rxd[1] = rdd[1]. (2.61)

Αντικαθιστώντας τις αυτοσυσχετίσεις AR(1) από την (2.52), προκύπτει ένα σύστημαWiener–
Hopf κλειστής μορφής, του οποίου η λύση wmodel είναι ο βέλτιστος LMMSE εκτιμητής δύο
συντελεστών υπό τα υποτιθέμενα στατιστικά.

Φιλτράρισμα και αξιολόγηση. Και τα δύο φίλτρα εφαρμόζονται σε ένα ανεξάρτητο
τμήμα ελέγχου (test segment) μέσω της (2.54). Η απόδοση ποσοτικοποιείται με το εμπειρικό
μέσο τετραγωνικό σφάλμα

MSE =
1

Ntest

∑
n

(
d[n]− d̂[n]

)2
,

και συγκρίνεται με το βασικό MSE της θορυβώδους παρατήρησης x[n].

Κύρια ερμηνεία. Το επιβλεπόμενο φιλτράρισμα Wiener προσεγγίζει τη βέλτιστη λύση
μέσω πεπερασμένου πλήθους δειγμάτων για την εκτίμηση των στατιστικών δεύτερης τάξης,
και συνεπώς υπόκειται σε διακύμανση εκτίμησης. Το φιλτράρισμα Wiener βασισμένο σε
μοντέλο χρησιμοποιεί ακριβή (oracle) στατιστικά δεύτερης τάξης που προκύπτουν από το
γενετικό μοντέλο, και συνεπώς βρίσκεται πιο κοντά στην πραγματική λύση LMMSE όταν
το μοντέλο είναι σωστό. Καθώς αυξάνεται το πλήθος των δεδομένων εκπαίδευσης, οι
δύο περιπτώσεις . Αντίθετα, υπό ασυμφωνία μοντέλου (model mismatch), η επιβλεπόμενη
προσέγγιση μπορεί να υπερέχει.
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3 Φιλτράρισμα Kalman

3.1 Κίνητρο: Γιατί Φιλτράρισμα Kalman;

Στην προηγούμενη ενότητα μελετήσαμε το φιλτράρισμα Wiener, το οποίο παρέχει έναν
βέλτιστο γραμμικό εκτιμητή (LMMSE/MMSE υπό Γκαουσιανότητα) για στάσιμες καταστά-
σεις. Σε πολλές εφαρμογές, όμως, το μέγεθος που θέλουμε να εκτιμήσουμε είναι εγγενώς
δυναμικό: εξελίσσεται στον χρόνο και οι μετρήσεις καταφθάνουν διαδοχικά. Τυπικά πα-
ραδείγματα είναι η θέση και η ταχύτητα στη ναυτιλία/πλοήγηση, αργά μεταβαλλόμενα κέρδη
καναλιού στις επικοινωνίες, ή η θερμοκρασία σε ένα θερμικό σύστημα.
Αυτό οδηγεί στην ανάγκη για έναν εκτιμητή με τρεις ιδιότητες. Πρώτον, να είναι

αναδρομικός (online): αντί να επανυπολογίζει μια εκτίμηση από την αρχή όταν φθά-
νουν νέα δεδομένα, να ενημερώνει αποδοτικά την τρέχουσα εκτίμηση χρησιμοποιώντας τη
νέα μέτρηση. Δεύτερον, να είναι βασισμένος σε μοντέλο: να εκμεταλλεύεται τη γνώση
για το πώς εξελίσσεται η κατάσταση στον χρόνο μέσω ενός δυναμικού μοντέλου. Τρίτον, να
είναι ενήμερος ως προς την αβεβαιότητα: να παρακολουθεί όχι μόνο μια σημειακή
εκτίμηση αλλά και την εμπιστοσύνη της, συνήθως μέσω ενός πίνακα συνδιακύμανσης που
ποσοτικοποιεί το σφάλμα εκτίμησης.
Το φίλτρο Kalman καλύπτει ακριβώς αυτή την ανάγκη. Για γραμμικά μοντέλα (στο χώρο

κατάστασης) με Γκαουσιανό θόρυβο, δίνει τον βέλτιστο γραμμικό MMSE εκτιμητή
και, υπό Γκαουσιανές υποθέσεις, συμπίπτει με τον ακριβή Bayesian posterior μέσο. Η
εννοιολογική του δομή είναι απλή και ισχυρή: προβλέπουμε την κατάσταση προς τα εμπρός
χρησιμοποιώντας το μοντέλο και έπειτα διορθώνουμε αυτή την πρόβλεψη χρησιμοποιώντας

τη νέα μέτρηση.

3.2 Μοντελοποίηση στον Χώρο Κατάστασης

Πολλά δυναμικά συστήματα μπορούν να περιγραφούν μέσω μιας λανθάνουσας (κρυφής)
κατάστασης που εξελίσσεται στον χρόνο και παράγει θορυβώδεις παρατηρήσεις. Σε μια
γενική (συνήθως μη γραμμική) μορφή, αυτό γράφεται ως

xk = f(xk−1, uk−1, k − 1) +wk−1, (3.1)

yk = h(xk, k) + vk. (3.2)

΄Οπου,

• xk ∈ Rn
είναι η λανθάνουσα/κρυφή κατάσταση (το μέγεθος προς εκτίμηση),

• yk ∈ Rm
είναι η μέτρηση (παρατηρούμενα δεδομένα),

• uk ∈ Rr
είναι μια γνωστή είσοδος/έλεγχος (μπορεί να απουσιάζει),

• wk−1 είναι ο θόρυβος διεργασίας που αποτυπώνει αβεβαιότητα μοντέλου και μη μον-

τελοποιημένες επιδράσεις,

• vk είναι ο θόρυβος μέτρησης που αποτυπώνει αβεβαιότητα αισθητήρα.

Ο στόχος του Bayesian φιλτραρίσματος είναι:

να συναχθεί το xk από τα y1:k ≜ {y1, . . . ,yk}.

Ισοδύναμα, ζητείται η εκ των υστέρων κατανομή p(xk | y1:k), και συνήθως μια σημειακή
εκτίμηση.
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3.3 Φίλτρο Kalman: Γραμμικές–Γκαουσιανές Υποθέσεις

Το φίλτρο Kalman είναι βέλτιστο στην γραμμική–Γκαουσιανή ειδική περίπτωση των
(3.1)–(3.2). Η κατάσταση εξελίσσεται γραμμικά:

xk = Axk−1 +Buk−1 +wk−1, (3.3)

και οι μετρήσεις είναι γραμμικές συναρτήσεις της τρέχουσας κατάστασης:

yk = Cxk + vk. (3.4)

Οι όροι θορύβου υποτίθεται ότι είναι μηδενικού μέσου, λευκοί και Γκαουσιανοί:

wk ∼ N (0,Qk), vk ∼ N (0,Rk), (3.5)

και αμοιβαία ανεξάρτητοι στον χρόνο και μεταξύ διεργασιών, δηλαδή

E[wkv
T
j ] = 0, ∀k, j, (και αντίστοιχα για διαφορετικούς χρονικούς δείκτες). (3.6)

Τέλος, η αρχική συνθήκη είναι Γκαουσιανή:

x0 ∼ N (x̂0,P 0). (3.7)

Κύρια συνέπεια (κλειστότητα των Γκαουσιανών υπό γραμμικούς μετασχη-
ματισμούς). Υπό τις (3.3)–(3.7), η προβλεπτική κατανομή p(xk | y1:k−1) είναι Γκαου-
σιανή εφόσον p(xk−1 | y1:k−1) είναι Γκαουσιανή. ΄Επειτα, η ενσωμάτωση του γραμμικού
Γκαουσιανού μοντέλου μέτρησης (3.4) διατηρεί τη Γκαουσιανότητα της εκ των υστέρων
κατανομής (posterior). ΄Αρα η κατανομή φιλτραρίσματος παραμένει Γκαουσιανή για όλα τα
k:

p(xk | y1:k) = N
(
x̂k|k, P k|k

)
,

και το φίλτρο Kalman δίνει αναδρομικές εξισώσεις ενημέρωσης για τον posterior μέσο x̂k|k
και τη συνδιακύμανση P k|k.

3.4 Φιλτράρισμα Kalman ως Αναδρομική Bayesian Εκτίμηση

Στόχος του φιλτραρίσματος Kalman είναι ο υπολογισμός της posterior κατανομής της
κρυφής κατάστασης στο χρονικό βήμα k, δεδομένων όλων των μετρήσεων μέχρι εκείνη τη
στιγμή:

p(xk | y1:k).

Αντί να επανυπολογίζουμε αυτή την posterior από την αρχή σε κάθε χρονικό βήμα, εκμετ-
αλλευόμαστε τη χρονική δομή του προβλήματος ώστε να προκύψει μια αναδρομική Bayesian
ενημέρωση.

3.4.1 Αναδρομή Bayesian Φιλτραρίσματος

Το Bayesian φιλτράρισμα αποσυνθέτει τη συμπερασματολογία σε δύο εννοιολογικά διακριτά
βήματα: την πρόβλεψη και τη διόρθωση.

Πρόβλεψη. Δεδομένης της posterior στο χρόνο k−1, προωθούμε την αβεβαιότητα μέσω
της δυναμικής:

p(xk | y1:k−1) =

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1. (3.8)
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Διόρθωση. Μόλις είναι διαθέσιμη μια νέα μέτρηση yk, την ενσωματώνουμε με τον
κανόνα του Bayes:

p(xk | y1:k) ∝ p(yk | xk) p(xk | y1:k−1). (3.9)

Το βήμα πρόβλεψης προωθεί την προηγούμενη πεποίθησή μας (previous posterior belief)
προς τα εμπρός στον χρόνο, ενώ το 2ο βήμα διορθώνει αυτή την πρόβλεψη χρησιμοποιώντας
την νέα μέτρηση/πληροφορία. Για γραμμική δυναμική και Γκαουσιανό θόρυβο, και τα δύο
βήματα διατηρούν τη Γκαουσιανότητα, επιτρέποντας την πλήρη περιγραφή της posterior
μόνο μέσω ενός μέσου και μιας συνδιακύμανσης.

3.4.2 Φίλτρο Kalman: Βήμα Πρόβλεψης

Υποθέτουμε ότι στο χρόνο k − 1 η posterior είναι Γκαουσιανή:

p(xk−1 | y1:k−1) = N (x̂k−1, Σk−1) .

Το γραμμικό μοντέλο στο χώρο κατάστασης είναι

xk = Axk−1 +Buk−1 +wk−1, wk−1 ∼ N (0,Qk−1), (3.10)

όπου η συνδιακύμανση του θορύβου διεργασίας Qk−1 μπορεί να μεταβάλλεται με τον χρόνο.
Εφαρμόζοντας την (3.8) προκύπτει η προβλεπόμενη (prior) κατανομή:

p(xk | y1:k−1) = N
(
x̂−
k , Σ

−
k

)
.

Ο προβλεπόμενος μέσος είναι

x̂−
k = E[xk | y1:k−1] = Ax̂k−1 +Buk−1, (3.11)

και η προβλεπόμενη συνδιακύμανση είναι

Σ−
k = Cov[xk | y1:k−1] = AΣk−1A

⊤ +Qk−1. (3.12)

Η συνδιακύμανση αυξάνεται λόγω του θορύβου διεργασίας, αντανακλώντας την αυξανό-
μενη αβεβαιότητα όταν το σύστημα εξελίσσεται χωρίς ενημερώσεις από μετρήσεις.

3.4.3 Φίλτρο Kalman: Βήμα Διόρθωσης

Μετά το βήμα πρόβλεψης, ενσωματώνουμε τη νέα μέτρηση χρησιμοποιώντας το γραμμικό
μοντέλο στο χώρο κατάστασης για τις παρατηρήσεις:

yk = Cxk + vk, vk ∼ N (0,Rk), (3.13)

όπουRk είναι η (ενδεχομένως χρονικά μεταβαλλόμενη) συνδιακύμανση του θορύβου μέτρησης.
Ορίζουμε την καινοτομία (υπόλοιπο μέτρησης)

rk = yk −Cx̂−
k , (3.14)

και τη συνδιακύμανσή της

Sk = CΣ−
k C

⊤ +Rk. (3.15)
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Το κέρδος Kalman ορίζεται ως

Kk = Σ−
k C

⊤S−1
k . (3.16)

Ο posterior μέσος και η posterior συνδιακύμανση δίνονται από

x̂k = x̂−
k +Kkrk, (3.17)

Σk = (I −KkC)Σ−
k . (3.18)

Το κέρδος Kalman εξισορροπεί την εμπιστοσύνη μεταξύ της πρόβλεψης του μοντέλου
(κωδικοποιημένης στη Σ−

k ) και της μέτρησης (κωδικοποιημένης στη Rk).

3.5 Bayesian Φιλτράρισμα: Το Γενικό Πλαίσιο

Το Bayesian φιλτράρισμα αποτελεί το γενικό μαθηματικό πλαίσιο για αναδρομική εκτίμηση
κατάστασης σε δυναμικά συστήματα. Η βασική ιδέα είναι η διατήρηση μιας πιθανοτικής
κατανομής πάνω στην τρέχουσα κατάσταση (η πεποίθηση, belief) και η διαδοχική ενημέρωσή
της καθώς καταφθάνουν νέες είσοδοι ελέγχου και νέες μετρήσεις.

3.5.1 Κατάσταση, ΄Ελεγχοι, Μετρήσεις και Πεποίθηση

΄Εστω

xk ∈ Rn (κατάσταση), uk ∈ Rr (έλεγχος/είσοδος), yk ∈ Rm (μέτρηση).

Ορίζουμε το ιστορικό μετρήσεων ως y1:k = {y1, . . . ,yk} και το ιστορικό ελέγχων ως
u1:k = {u1, . . . ,uk}.
Η πεποίθηση (belief) στη χρονική στιγμή k ορίζεται ως η κατανομή φιλτραρίσματος

bel(xk) ≜ p(xk | y1:k,u1:k), (3.19)

δηλαδή η posterior κατανομή πάνω στην τρέχουσα κατάσταση, δεδομένης όλης της δια-
θέσιμης πληροφορίας μέχρι τον χρόνο k.

3.5.2 Πιθανοτικές Υποθέσεις (Μοντέλο στο Χώρο Κατάστασης)

Το Bayesian φιλτράρισμα βασίζεται σε δύο βασικές υποθέσεις συνθήκης ανεξαρτησίας.

1) Δυναμική Markov πρώτης τάξης (μοντέλο κίνησης). Η κατάσταση στον
χρόνο k εξαρτάται από το παρελθόν μόνο μέσω της προηγούμενης κατάστασης και του
τρέχοντος ελέγχου:

p(xk | x0:k−1,u1:k) = p(xk | xk−1,uk). (3.20)

Η υπό συνθήκη πυκνότητα p(xk | xk−1,uk) ονομάζεται μοντέλο κίνησης (ή μοντέλο
μετάβασης).
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2) Υπό συνθήκη ανεξαρτησία των μετρήσεων (μοντέλο παρατήρησης). Η
μέτρηση στον χρόνο k εξαρτάται από το παρελθόν μόνο μέσω της τρέχουσας κατάστασης:

p(yk | x0:k,y1:k−1,u1:k) = p(yk | xk). (3.21)

Η υπό συνθήκη πυκνότητα p(yk | xk) ονομάζεται μοντέλο παρατήρησης (ή likelihood
της μέτρησης).
Οι παραπάνω υποθέσεις ορίζουν ένα κρυφό μοντέλο Markov (Hidden Markov Model,

HMM) με εισόδους.

3.5.3 Αναδρομή του Bayes Φίλτρου

Ξεκινώντας από τον ορισμό της πεποίθησης (3.19), εφαρμόζουμε τον κανόνα του Bayes:

bel(xk) = p(xk | y1:k,u1:k)

=
p(yk | xk,y1:k−1,u1:k) p(xk | y1:k−1,u1:k)

p(yk | y1:k−1,u1:k)
. (3.22)

Εισάγουμε τη σταθερά κανονικοποίησης

η ≜
1

p(yk | y1:k−1,u1:k)
, (3.23)

ώστε

bel(xk) = η p(yk | xk,y1:k−1,u1:k) p(xk | y1:k−1,u1:k). (3.24)

Χρησιμοποιώντας την υπόθεση Markov για το μοντέλο παρατήρησης (3.21),

p(yk | xk,y1:k−1,u1:k) = p(yk | xk),

παίρνουμε

bel(xk) = η p(yk | xk) p(xk | y1:k−1,u1:k). (3.25)

3.5.4 Πρόβλεψη μέσω του Νόμου Ολικής Πιθανότητας

Η προβλεπτική κατανομή p(xk | y1:k−1,u1:k) προκύπτει με περιθωριοποίηση ως προς την
προηγούμενη κατάσταση:

p(xk | y1:k−1,u1:k) =

∫
p(xk,xk−1 | y1:k−1,u1:k) dxk−1

=

∫
p(xk | xk−1,y1:k−1,u1:k) p(xk−1 | y1:k−1,u1:k) dxk−1. (3.26)

Χρησιμοποιώντας την υπόθεσηMarkov για το μοντέλο κίνησης (3.20) και παρατηρώντας
ότι

p(xk−1 | y1:k−1,u1:k) = p(xk−1 | y1:k−1,u1:k−1) = bel(xk−1),

καταλήγουμε στο

p(xk | y1:k−1,u1:k) =

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.27)

Αντικαθιστώντας την (3.27) στην (3.25), προκύπτει η αναδρομή του φίλτρου Bayes:

bel(xk) = η p(yk | xk)

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.28)
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3.5.5 Bayesian Φιλτράρισμα σε Δύο Βήματα

Η αναδρομή (3.28) αποσυντίθεται φυσικά σε δύο βήματα.

Πρόβλεψη.

bel(xk) =

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.29)

Διόρθωση.

bel(xk) = η p(yk | xk) bel(xk), (3.30)

όπου η η επιλέγεται ώστε
∫
bel(xk) dxk = 1.

3.5.6 Φιλτράρισμα Kalman ως Ειδική Περίπτωση

Το Bayesian φιλτράρισμα είναι ακριβές αλλά γενικά μη υπολογίσιμο στην πράξη, επειδή η
πεποίθηση bel(xk) είναι μια αυθαίρετη κατανομή στο Rn. Το φιλτράρισμα Kalman προκύπτει
όταν:

• το μοντέλο κίνησης είναι γραμμικό και Γκαουσιανό:

xk = Akxk−1 +Bkuk +wk, wk ∼ N (0,Qk),

• το μοντέλο παρατήρησης είναι γραμμικό και Γκαουσιανό:

yk = Ckxk + vk, vk ∼ N (0,Rk).

Υπό αυτές τις υποθέσεις, η πεποίθηση παραμένει Γκαουσιανή για όλα τα k και η αναδρομή
του φίλτρου Bayes (3.29)–(3.30) ανάγεται στις εξισώσεις ενημέρωσης του φίλτρου Kalman
για τον μέσο και τη συνδιακύμανση.

3.6 Το Φίλτρο Kalman ως Αναδρομικό Φίλτρο Wiener

΄Ενας χρήσιμος τρόπος ερμηνείας του φίλτρου Kalman είναι ως μια χρονικά μεταβαλλόμενη
(αναδρομική) εκδοχή της εκτίμησηςWiener / LMMSE. Στο φιλτράρισμαWiener κατασκευά-
ζουμε έναν βέλτιστο γραμμικό εκτιμητή με βάση δευτεροβάθμια στατιστικά μεγέθη. Στο
φιλτράρισμα Kalman, επιλύουμε ένα στενά συγγενές πρόβλημα LMMSE σε κάθε χρονική
στιγμή, χρησιμοποιώντας τη τρέχουσα προβλεπόμενη συνδιακύμανση, γεγονός που οδηγεί
σε ένα κέρδος που μεταβάλλεται με τον χρόνο.

3.6.1 Κάθε χρονική στιγμή k λύνουμε ένα πρόβλημα LMMSE

Θεωρούμε το γραμμικό–Γκαουσιανό μοντέλο μέτρησης στη χρονική στιγμή k:

yk = Ckxk + vk, vk ∼ N (0,Rk). (3.31)

Υποθέτουμε ότι διαθέτουμε ήδη μια πρότερη (prior) κατανομή:

xk | y1:k−1 ∼ N (x̂−
k ,Σ

−
k ). (3.32)
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Ορίζουμε το σφάλμα εκτίμησης και περιοριζόμαστε σε εκτιμητές της αφινικής μορφής

x̂k = x̂−
k +Kk

(
yk −Ckx̂

−
k

)
, (3.33)

όπουKk είναι ένας πίνακας προς προσδιορισμό. Αυτή είναι ακριβώς η μορφή ενημέρωσης του
φίλτρου Kalman: ξεκινάμε από τον πρότερο μέσο και προσθέτουμε μια διόρθωση ανάλογη
της καινοτομίας/σφάλματος.
Το βασικό σημείο είναι ότι η (3.33) προκύπτει ως λύση ενός προβλήματος LMMSE.

Ορίζουμε

x̃k ≜ xk − x̂−
k , ỹk ≜ yk −Ckx̂

−
k .

Από τις (3.31)–(3.32) έχουμε

ỹk = Ckx̃k + vk, E[x̃k] = 0, Cov(x̃k) = Σ−
k . (3.34)

Περιοριζόμαστε τώρα σε γραμμικούς εκτιμητές της x̃k από την ỹk:̂̃xk = Kkỹk.

Επιλέγουμε Kk ώστε να ελαχιστοποιεί το υπό συνθήκη MSE:

K⋆
k = argmin

K
E
[
∥x̃k −Kỹk∥

2
2

∣∣ y1:k−1

]
. (3.35)

Αυτό είναι ένα τυπικό πρόβλημα Wiener / LMMSE με ≪επιθυμητό σήμα≫ την x̃k και

≪παρατήρηση≫ την ỹk.

3.6.2 Λύση Wiener ⇒ Κέρδος Kalman

Η λύση Wiener / LMMSE έχει τη μορφή

K⋆
k = Rx̃ỹ R

−1
ỹỹ , (3.36)

όπου (η υπό συνθήκη ως προς y1:k−1 είναι έμμεση)

Rx̃ỹ ≜ E{x̃kỹ
T
k }, Rỹỹ ≜ E{ỹkỹ

T
k }.

Χρησιμοποιώντας την (3.34) και την ανεξαρτησία x̃k ⊥ vk, προκύπτει

Rx̃ỹ = Σ−
k C

T
k ,

και

Rỹỹ = CkΣ
−
k C

T
k +Rk.

΄Αρα

Kk = Σ−
k C

T
k

(
CkΣ

−
k C

T
k +Rk

)−1
, (3.37)

που είναι ακριβώς το κέρδος Kalman.

3.6.3 Ερμηνεία: ≪Αναδρομικό≫ Φιλτράρισμα Wiener

Η (3.37) δείχνει ότι το κέρδος Kalman είναι ένα φίλτρο Wiener / LMMSE, υπολογισμένο
online με χρονικά μεταβαλλόμενα στατιστικά:

• Στο φιλτράρισμαWiener, το κέρδος εξαρτάται από (συνήθως σταθερά) δευτεροβάθμια
στατιστικά όπως τα Rxx και Rxd.

• Στο φιλτράρισμα Kalman, τα αντίστοιχα στατιστικά είναι υπό συνθήκη ως προς τα
προηγούμενα δεδομένα και εξελίσσονται με τον χρόνο μέσω της πρόβλεψης, δηλαδή
μέσω της Σ−

k .
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Τι το καθιστά αναδρομικό; Η βασική αναδρομή είναι ότι η πρότερη συνδιακύμανση
Σ−

k προκύπτει από τη διάδοση της προηγούμενης οπισθίας συνδιακύμανσης μέσω του δυναμικού

μοντέλου:
Σ−

k = AkΣk−1A
T
k +Qk−1.

Τι το καθιστά χρονικά μεταβαλλόμενο; Ακόμη και αν οι Ak,Ck είναι σταθερές,
η υπό συνθήκη συνδιακύμανση Σ−

k μεταβάλλεται με τον χρόνο (ιδίως στα μεταβατικά στά-
δια), ενώ και οι θόρυβοι Qk−1,Rk μπορεί να είναι χρονικά μεταβαλλόμενοι. Συνεπώς, το
κέρδοςKk είναι γενικά χρονικά μεταβαλλόμενο, σε αντίθεση με το κλασικό στάσιμο φίλτρο
Wiener.

Συμπέρασμα. Το φιλτράρισμα Kalman μπορεί να ιδωθεί ως εφαρμογή ενός σχεδιασμού
Wiener / LMMSE σε κάθε χρονική στιγμή:

≪κέρδος Kalman≫ = ≪φίλτρο Wiener υπολογισμένο από τις τρέχουσες υπό συνθήκη συνδιακυμάνσεις≫.

Υπό γραμμικές–Γκαουσιανές υποθέσεις, αυτή η αναδρομική οπτική Wiener είναι πλήρως
ισοδύναμη με την αναδρομική οπτική Bayesian.

3.7 Παραδείγματα Kalman Φίλτρου

Σε αυτή την ενότητα θα δούμε παραδείγματα φίλτρων Kalman και θα τα λύσουμε ≪με το

χέρι≫. Τονίζουμε τα δύο βήματα σε κάθε χρόνο k:

Πρόβλεψη: (x̂k−1,Σk−1) 7→ (x̂−
k ,Σ

−
k ), Διόρθωση: (x̂−

k ,Σ
−
k ,yk) 7→ (x̂k,Σk).

Επιτρέπουμε χρονικά μεταβαλλόμενες συνδιακυμάνσεις θορύβου Qk−1 και Rk.

3.7.1 Παράδειγμα 1 (1Δ): Random Walk με Θορυβώδεις Μετρήσεις

Μοντέλο. Εκτιμούμε μια βαθμωτή κατάσταση xk ∈ R από βαθμωτές μετρήσεις yk ∈ R
με

xk = xk−1 + wk−1, wk−1 ∼ N (0, Qk−1), (3.38)

yk = xk + vk, vk ∼ N (0, Rk). (3.39)

΄Αρα A = 1, C = 1, και δεν υπάρχει είσοδος ελέγχου.

Εξισώσεις φίλτρου Kalman (βαθμωτή μορφή). Πρόβλεψη:

x̂−
k = x̂k−1, Σ−

k = Σk−1 +Qk−1. (3.40)

Διόρθωση:

Sk = Σ−
k +Rk, Kk =

Σ−
k

Sk

, (3.41)

x̂k = x̂−
k +Kk (yk − x̂−

k ), Σk = (1−Kk)Σ
−
k . (3.42)
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Αριθμητικές τιμές. Υποθέτουμε prior

x̂0 = 0, Σ0 = 1.

Αφήνουμε τις διακυμάνσεις θορύβου να μεταβάλλονται με τον χρόνο:

Q0 = 0.10, R1 = 0.40, Q1 = 0.20, R2 = 0.10.

Υποθέτουμε ότι λαμβάνουμε μετρήσεις

y1 = 1.20, y2 = 0.90.

Βήμα k = 1. Πρόβλεψη:

x̂−
1 = x̂0 = 0, Σ−

1 = Σ0 +Q0 = 1 + 0.10 = 1.10.

Καινοτομία και κέρδος:

S1 = Σ−
1 +R1 = 1.10 + 0.40 = 1.50, K1 =

Σ−
1

S1

=
1.10

1.50
≈ 0.7333.

Διόρθωση:
x̂1 = x̂−

1 +K1(y1 − x̂−
1 ) = 0 + 0.7333(1.20− 0) ≈ 0.8800,

Σ1 = (1−K1)Σ
−
1 = (1− 0.7333) · 1.10 ≈ 0.2933.

Βήμα k = 2. Πρόβλεψη:

x̂−
2 = x̂1 ≈ 0.8800, Σ−

2 = Σ1 +Q1 ≈ 0.2933 + 0.20 = 0.4933.

Καινοτομία και κέρδος:

S2 = Σ−
2 +R2 ≈ 0.4933 + 0.10 = 0.5933, K2 =

Σ−
2

S2

≈ 0.4933

0.5933
≈ 0.8316.

Διόρθωση:

x̂2 = x̂−
2 +K2(y2 − x̂−

2 ) ≈ 0.8800 + 0.8316(0.90− 0.8800) ≈ 0.8966,

Σ2 = (1−K2)Σ
−
2 ≈ (1− 0.8316) · 0.4933 ≈ 0.0831.

Ερμηνεία. Στο k = 2, ο αισθητήρας είναι πιο αξιόπιστος (το R2 είναι μικρότερο), οπότε
το K2 αυξάνεται και το φίλτρο εμπιστεύεται περισσότερο το y2. Η posterior αβεβαιότητα
Σ2 μειώνεται αντίστοιχα.

3.7.2 Παράδειγμα 2 (2Δ): Μοντέλο Σταθερής Ταχύτητας με Μετρήσεις
Θέσης

Μοντέλο. Τώρα η κατάσταση είναι 2Δ:

xk =

[
pk
vk

]
,

όπου pk είναι η θέση και vk η ταχύτητα. Για περίοδο δειγματοληψίας ∆t = 1, η δυναμική
σταθερής ταχύτητας είναι

xk = Axk−1 +wk−1, A =

[
1 1
0 1

]
, wk−1 ∼ N (0,Qk−1). (3.43)

Υποθέτουμε ότι μετράμε μόνο τη θέση:

yk = Cxk + v
(m)
k , C =

[
1 0

]
, v

(m)
k ∼ N (0, Rk). (3.44)
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Εξισώσεις Kalman. Πρόβλεψη:

x̂−
k = Ax̂k−1, Σ−

k = AΣk−1A
T +Qk−1.

Διόρθωση:

rk = yk −Cx̂−
k , Sk = CΣ−

k C
T +Rk, Kk = Σ−

k C
TS−1

k ,

x̂k = x̂−
k +Kkrk, Σk = (I −KkC)Σ−

k .

Αριθμητικές τιμές (για k = 1). Υποθέτουμε αρχική posterior:

x̂0 =

[
0
1

]
, Σ0 =

[
1 0
0 1

]
.

Επιλέγουμε χρονικά μεταβαλλόμενο θόρυβο διεργασίας (εδώ, στο k = 0):

Q0 =

[
0.10 0
0 0.20

]
, R1 = 0.50.

Υποθέτουμε ότι η πρώτη μέτρηση είναι y1 = 0.70.

Πρόβλεψη μέχρι k = 1.

x̂−
1 = Ax̂0 =

[
1 1
0 1

] [
0
1

]
=

[
1
1

]
.

Για τη συνδιακύμανση, πρώτα υπολογίζουμε

AΣ0A
T = AAT =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
.

΄Επειτα προσθέτουμε Q0:

Σ−
1 =

[
2 1
1 1

]
+

[
0.10 0
0 0.20

]
=

[
2.10 1
1 1.20

]
.

Διόρθωση στο k = 1. Καινοτομία:

r1 = y1 −Cx̂−
1 = 0.70−

[
1 0

] [1
1

]
= 0.70− 1 = −0.30.

Συνδιακύμανση καινοτομίας (βαθμωτή):

S1 = CΣ−
1 C

T +R1 = Σ−
1,11 +R1 = 2.10 + 0.50 = 2.60.

Κέρδος Kalman:

K1 = Σ−
1 C

TS−1
1 =

[
2.10 1
1 1.20

] [
1
0

]
1

2.60
=

[
2.10
1

]
1

2.60
=

[
0.8077
0.3846

]
.
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Posterior μέσος:

x̂1 = x̂−
1 +K1r1 =

[
1
1

]
+

[
0.8077
0.3846

]
(−0.30) ≈

[
0.7577
0.8846

]
.

Posterior συνδιακύμανση:
Σ1 = (I −K1C)Σ−

1 .

Εδώ

K1C =

[
0.8077
0.3846

] [
1 0

]
=

[
0.8077 0
0.3846 0

]
, I −K1C =

[
0.1923 0
−0.3846 1

]
.

΄Αρα

Σ1 =

[
0.1923 0
−0.3846 1

] [
2.10 1
1 1.20

]
≈

[
0.4038 0.1923
0.1923 0.8154

]
.

Ερμηνεία. Παρότι μετράμε μόνο τη θέση, η διόρθωση μεταβάλλει τόσο τη θέση όσο
και την ταχύτητα: το υπόλοιπο θέσης r1 αποδίδεται εν μέρει στην ταχύτητα μέσω της
συνδιακύμανσης κατάστασης (και της σύζευξης στη δυναμική). Το διάνυσμα κέρδους K1

δείχνει πώς μια βαθμωτή μέτρηση ενημερώνει κάθε συνιστώσα της κατάστασης.

3.7.3 Υλοποίηση σε Python

Θεωρούμε ένα πρόβλημα 1Δ παρακολούθησης με 2Δ κατάσταση:

xk =

[
pk
vk

]
,

όπου pk είναι η θέση και vk η ταχύτητα στον διακριτό χρόνο k.

Μοντέλο κίνησης σταθερής ταχύτητας. Με περίοδο δειγματοληψίας ∆t > 0, ένα
τυπικό γραμμικό μοντέλο CV είναι

xk = Axk−1 +wk−1, A =

[
1 ∆t
0 1

]
, wk−1 ∼ N (0,Qk−1). (3.45)

Ο θόρυβος διεργασίας wk−1 αποτυπώνει μη μοντελοποιημένες επιδράσεις (π.χ. μικρές επι-
ταχύνσεις). Γενικά επιτρέπουμε χρονικά μεταβαλλόμενη αβεβαιότητα:

Qk−1 ⪰ 0.

Μοντέλο μέτρησης θέσης. Υποθέτουμε ότι μετράμε μόνο τη θέση:

yk = Cxk + vk, C =
[
1 0

]
, vk ∼ N (0,Rk), (3.46)

όπου yk ∈ R είναι βαθμωτή παρατήρηση και Rk ∈ R1×1
είναι η (χρονικά μεταβαλλόμενη)

συνδιακύμανση του θορύβου μέτρησης (δηλ. η διακύμανση).
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Υποθέσεις ανεξαρτησίας. Υποθέτουμε τις τυπικές συνθήκες Kalman:

wk ⊥ vj ∀k, j, wk και vk είναι λευκοί και μηδενικού μέσου.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # -----------------------------

5 # 2D Kalman Filter (CV model)

6 # State: x_k = [p_k , v_k]^T

7 # Measurement: y_k = p_k + noise

8 # Time -varying Q_k , R_k

9 # -----------------------------

10

11 def simulate_cv_1d(T=80, dt=1.0, q_base =0.05, r_base =0.4, seed =0):

12 """

13 Simulate constant -velocity motion with random acceleration -like

process noise.

14 Returns: true states X (T+1,2), measurements y (T+1,), Q_k list ,

R_k list

15 """

16 rng = np.random.default_rng(seed)

17

18 A = np.array ([[1.0 , dt],

19 [0.0, 1.0]])

20 C = np.array ([[1.0 , 0.0]]) # measure position only

21

22 # True initial state

23 x = np.array ([0.0, 1.0]) # p0 , v0

24

25 X = np.zeros((T + 1, 2), dtype=float)

26 y = np.zeros(T + 1, dtype=float)

27

28 # Time -varying noise levels

29 Q_list = []

30 R_list = []

31

32 # Make time -varying R_k (sensor gets worse in the middle)

33 for k in range(T + 1):

34 bump = 1.0 + 2.5 * np.exp(-0.5 * ((k - 0.6 * T) / (0.12 * T))

** 2)

35 Rk = np.array ([[ r_base * bump]], dtype=float) # scalar

measurement variance

36 R_list.append(Rk)

37

38 # Make time -varying Q_k (process more uncertain near the end)

39 for k in range(T):

40 ramp = 1.0 + 1.5 * (k / max(T - 1, 1))

41 # Simple diagonal Q_k on [p, v]; you can also use a physically -

motivated accel model.

42 Qk = np.array ([[ q_base * ramp , 0.0],

43 [0.0, 2.0 * q_base * ramp]], dtype=

float)

44 Q_list.append(Qk)

45

46 # Generate trajectory + measurements

47 X[0] = x
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48 y[0] = (C @ x.reshape(-1, 1)).item() + rng.normal (0.0, np.sqrt(

R_list [0]. item()))

49

50 for k in range(1, T + 1):

51 # Process noise

52 wk = rng.multivariate_normal(mean=np.zeros (2), cov=Q_list[k -

1])

53 x = A @ x + wk

54 X[k] = x

55

56 # Measurement noise

57 vk = rng.normal (0.0, np.sqrt(R_list[k].item()))

58 y[k] = (C @ x.reshape(-1, 1)).item() + vk

59

60 return A, C, X, y, Q_list , R_list

61

62

63 def kf_filter(A, C, y, Q_list , R_list , x0_hat , Sigma0 , u=None , B=None):

64 """

65 Kalman filter for:

66 x_k = A x_{k-1} + B u_{k-1} + w_{k-1}, w ~ N(0, Q_{k-1})

67 y_k = C x_k + v_k , v ~ N(0, R_k)

68 with time -varying Q_{k-1}, R_k.

69

70 Returns:

71 x_hat (T+1,2), Sigma (T+1,2,2),

72 x_hat_minus (T+1,2), Sigma_minus (T+1,2,2),

73 K (T+1,2,1), innovations r (T+1,)

74 """

75 T = len(y) - 1

76 n = A.shape [0]

77 m = C.shape [0]

78

79 if u is None:

80 u = np.zeros((T, 1))

81 if B is None:

82 B = np.zeros((n, 1))

83

84 x_hat = np.zeros((T + 1, n), dtype=float)

85 x_hat_minus = np.zeros((T + 1, n), dtype=float)

86 Sigma = np.zeros((T + 1, n, n), dtype=float)

87 Sigma_minus = np.zeros((T + 1, n, n), dtype=float)

88 K = np.zeros((T + 1, n, m), dtype=float)

89 r = np.zeros(T + 1, dtype=float)

90

91 # Initialize

92 x_hat [0] = x0_hat

93 Sigma [0] = Sigma0

94

95 # (Optional) incorporate y0 as an update; here we do a standard

update at k=0

96 # Prediction at k=0 is trivial (use initial prior as predicted),

then update with y0

97 x_hat_minus [0] = x_hat [0]

98 Sigma_minus [0] = Sigma [0]

99 S0 = (C @ Sigma_minus [0] @ C.T + R_list [0])

100 K[0] = (Sigma_minus [0] @ C.T) @ np.linalg.inv(S0)

101 r[0] = y[0] - (C @ x_hat_minus [0]. reshape(-1, 1)).item()
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102 x_hat [0] = x_hat_minus [0] + (K[0] * r[0]).reshape (-1)

103 Sigma [0] = (np.eye(n) - K[0] @ C) @ Sigma_minus [0]

104

105 # Main loop

106 for k in range(1, T + 1):

107 # Predict

108 x_hat_minus[k] = (A @ x_hat[k - 1]. reshape(-1, 1) + B @ u[k -

1]. reshape(-1, 1)).reshape (-1)

109 Sigma_minus[k] = A @ Sigma[k - 1] @ A.T + Q_list[k - 1]

110

111 # Update

112 Sk = C @ Sigma_minus[k] @ C.T + R_list[k]

113 K[k] = (Sigma_minus[k] @ C.T) @ np.linalg.inv(Sk)

114 r[k] = y[k] - (C @ x_hat_minus[k]. reshape(-1, 1)).item()

115 x_hat[k] = x_hat_minus[k] + (K[k] * r[k]).reshape (-1)

116

117 # Covariance update (simple form; Joseph form is more

numerically robust)

118 Sigma[k] = (np.eye(n) - K[k] @ C) @ Sigma_minus[k]

119

120 return x_hat , Sigma , x_hat_minus , Sigma_minus , K, r

121

122

123 # -----------------------------

124 # Run example

125 # -----------------------------

126 A, C, X_true , y, Q_list , R_list = simulate_cv_1d(

127 T=120, dt=1.0,

128 q_base =0.04, r_base =0.25,

129 seed=3

130 )

131

132 # Prior (intentionally imperfect)

133 x0_hat = np.array ([0.0, 0.0])

134 Sigma0 = np.array ([[2.0 , 0.0],

135 [0.0, 2.0]])

136

137 x_hat , Sigma , x_hat_minus , Sigma_minus , K, r = kf_filter(

138 A=A, C=C, y=y,

139 Q_list=Q_list , R_list=R_list ,

140 x0_hat=x0_hat , Sigma0=Sigma0

141 )

142

143 # -----------------------------

144 # Plot

145 # -----------------------------

146 t = np.arange(len(y))

147

148 plt.figure ()

149 plt.plot(t, X_true[:, 0], label="true position $p_k$")
150 plt.plot(t, y, label="measured position $y_k$")
151 plt.plot(t, x_hat[:, 0], label="KF estimate $\hat{p}_k$")
152 plt.xlabel("k")

153 plt.ylabel("position")

154 plt.title("2D Kalman filter (state=[position , velocity], measurement=

position)")

155 plt.legend ()

156 plt.grid(True)
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157

158 plt.figure ()

159 plt.plot(t, X_true[:, 1], label="true velocity $v_k$")
160 plt.plot(t, x_hat[:, 1], label="KF estimate $\hat{v}_k$")
161 plt.xlabel("k")

162 plt.ylabel("velocity")

163 plt.title("Velocity is inferred from position -only measurements")

164 plt.legend ()

165 plt.grid(True)

166

167 plt.figure ()

168 plt.plot(t, Sigma[:, 0, 0], label="posterior var(p): $Σ_k[0,0]$")
169 plt.plot(t, Sigma[:, 1, 1], label="posterior var(v): $Σ_k[1,1]$")
170 plt.xlabel("k")

171 plt.ylabel("variance")

172 plt.title("Posterior uncertainties shrink/grow with Q_k and R_k")

173 plt.legend ()

174 plt.grid(True)

175

176 plt.show()

Listing 2: Kalman Filter implementation

3.8 Αλγόριθμος και Πρακτικές Παρατηρήσεις

3.8.1 Αλγόριθμος Φίλτρου Kalman (Πρόβλεψη–Διόρθωση)

Στη συνέχεια συνοψίζουμε το φίλτρο Kalman ως μια απλή αναδρομή πρόβλεψης–ενημέρωσης.
Επιτρέπουμε χρονικά μεταβαλλόμενους πίνακες συστήματος και συνδιακυμάνσεις θορύβου.

Input: {Ak,Bk,Ck}; {Qk,Rk}; αρχικό (x̂0,Σ0); μετρήσεις {yk}k≥1; είσοδοι
{uk}k≥0

Output: Φιλτραρισμένες εκτιμήσεις {(x̂k,Σk)}k≥1

1 for k = 1, 2, . . . do
// Πρόβλεψη

2 x̂−
k ← Akx̂k−1 +Bkuk−1

3 Σ−
k ← AkΣk−1A

⊤
k +Qk−1

// Διόρθωση

4 rk ← yk −Ckx̂
−
k // καινοτομία

5 Sk ← CkΣ
−
k C

⊤
k +Rk // συνδ. καινοτομίας

6 Kk ← Σ−
k C

⊤
k S

−1
k // κέρδος Kalman

7 x̂k ← x̂−
k +Kkrk

8 Σk ← (I −KkCk)Σ
−
k

// ή μορφή Joseph (3.51)

Εννοιολογική σύνοψη. Το φίλτρο Kalman εναλλάσσει:

• Πρόβλεψη: χρήση του μοντέλου για προώθηση του μέσου και της συνδιακύμανσης.

• Διόρθωση: χρήση της μέτρησης για μείωση της αβεβαιότητας και βελτίωση της
εκτίμησης.
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Αυτή η αναδρομή είναι η κλειστής μορφής Γκαουσιανή λύση του φίλτρου Bayes για γραμμικά
συστήματα.

3.8.2 Διαίσθηση I: Ο Ρόλος του Κέρδους Kalman

Στον χρόνο k, το κέρδος Kalman είναι

Kk = Σ−
k C

⊤
k

(
CkΣ

−
k C

⊤
k +Rk

)−1
= Σ−

k C
⊤
k S

−1
k , (3.47)

όπου

Sk = CkΣ
−
k C

⊤
k +Rk (3.48)

είναι η συνδιακύμανση της καινοτομίας.
Η (3.47) δείχνει καθαρά ότι το Kk είναι μια αυτόματη στάθμιση μεταξύ της πρόβλεψης

του μοντέλου και της μέτρησης:

• Μεγάλος θόρυβος μέτρησης Rk ⇒ μεγάλο Sk ⇒ μικρό Kk. Ο όρος ενημέρ-
ωσης Kkrk αποσβένεται και το φίλτρο εμπιστεύεται περισσότερο το μοντέλο (την
πρόβλεψη).

• Μεγάλη prior αβεβαιότητα Σ−
k κάνει μεγάλο τον όρο Σ

−
k C

T
k και αυξάνει τοKk.

Το φίλτρο εμπιστεύεται περισσότερο τη μέτρηση επειδή η πρόβλεψη είναι αβέβαιη.

΄Ετσι, το Kk παίζει τον ρόλο ενός συντελεστή μίξης που καθορίζεται από τα δεδομένα,
ο οποίος εξισορροπεί την αξιοπιστία του μοντέλου έναντι της αξιοπιστίας του αισθητήρα σε

κάθε βήμα χρόνου.

3.8.3 Διαίσθηση II: Καινοτομία = Νέα Πληροφορία

Η καινοτομία (υπόλοιπο μέτρησης) ορίζεται ως

rk = yk −Ckx̂
−
k . (3.49)

Ο όρος Ckx̂
−
k είναι αυτό που το μοντέλο προβλέπει ότι θα έπρεπε να είναι η μέτρηση. Το

υπόλοιπο rk αποτυπώνει το τμήμα της μέτρησης που δεν εξηγείται από την πρόβλεψη.
Δύο οριακές περιπτώσεις είναι διαφωτιστικές:

• Αν rk ≈ 0, η μέτρηση συμφωνεί με την πρόβλεψη, οπότε η ενημέρωση x̂k = x̂−
k +Kkrk

κάνει μόνο μικρή διόρθωση.

• Αν ∥rk∥ είναι μεγάλη, η μέτρηση διαφωνεί με την πρόβλεψη. Η διόρθωση είναι ισχυρή,
αλλά εξακολουθεί να ≪ζυγίζεται≫ από το κέρδος Kk (δηλ. από την αβεβαιότητα).

Με αυτή την έννοια, το rk είναι η νέα πληροφορία που περιέχεται στο yk σε σχέση με όσα

υπονοούν ήδη οι προηγούμενες μετρήσεις και το μοντέλο συστήματος.
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3.8.4 Διαίσθηση III: Γιατί η Αβεβαιότητα Μειώνεται μετά την Ενημέρ-
ωση

Η ενημέρωση της posterior συνδιακύμανσης (βασική μορφή) είναι

Σk = (I −KkCk)Σ
−
k . (3.50)

Αυτό δείχνει ότι η μέτρηση μειώνει την αβεβαιότητα μόνο κατά μήκος διευθύνσεων που

≪βλέπει≫ ο αισθητήρας. Πράγματι, το μοντέλο μέτρησης χαρτογραφεί την κατάσταση στον
χώρο μέτρησης μέσω του Ck· άρα, μόνο οι συνιστώσες του xk που επηρεάζουν το yk

μπορούν να διορθωθούν.
Γεωμετρικά:

• Το βήμα πρόβλεψης προωθεί την αβεβαιότητα μέσω της δυναμικής και εισάγει
θόρυβο διεργασίας (μέσω Qk−1), τυπικά διογκώνοντας το ελλειψοειδές συνδιακύμαν-
σης.

• Το βήμα διόρθωσης χρησιμοποιεί τη μέτρηση για να συστέλλει την αβεβαιότητα
στον παρατηρούμενο υπόχωρο, πολλαπλασιάζοντας με (I −KkCk).

Οι μη παρατηρούμενες διευθύνσεις παραμένουν αβέβαιες (ή μπορεί να συνεχίσουν να αυξάνον-
ται κατά την πρόβλεψη).

Σχόλιο (αριθμητικά ανθεκτική ενημέρωση συνδιακύμανσης). Σε υλοποιή-
σεις συχνά χρησιμοποιείται η μορφή Joseph, η οποία διατηρεί καλύτερα τη συμμετρία και τη
θετική ημιοριστικότητα σε πεπερασμένη ακρίβεια:

Σk = (I −KkCk)Σ
−
k (I −KkCk)

⊤ +KkRkK
⊤
k . (3.51)

3.9 Πρακτικές Παρατηρήσεις

3.9.1 ΄Οταν Παραβιάζονται οι Υποθέσεις

Το κλασικό φίλτρο Kalman είναι ακριβές (και βέλτιστο με την έννοιαMMSE) για γραμμική
δυναμική, γραμμικές παρατηρήσεις και Γκαουσιανό θόρυβο. ΄Οταν αυτές οι υποθέσεις δεν
ισχύουν, ο αλγόριθμος μπορεί να χρησιμοποιηθεί ως προσέγγιση, αλλά η απόδοση μπορεί να
υποβαθμιστεί και, σε ακραίες περιπτώσεις, το φίλτρο μπορεί να γίνει ασυνεπές (πολύ μικρή
συνδιακύμανση) ή ακόμη και να αποκλίνει.

Μη γραμμική δυναμική και/ή μη γραμμικές παρατηρήσεις. Σε πολλά συστή-
ματα τα μοντέλα κατάστασης και μέτρησης έχουν τη μη γραμμική μορφή

xk = f(xk−1,uk−1) +wk−1, yk = h(xk) + vk, (3.52)

με wk−1 ∼ N (0,Qk−1) και vk ∼ N (0,Rk). Σε αυτή την περίπτωση, η αναδρομή του
φίλτρου Bayes παραμένει έγκυρη, αλλά η posterior είναι γενικά μη Γκαουσιανή, άρα δεν
μπορεί να παρασταθεί ακριβώς μόνο από μέσο και συνδιακύμανση.
Συνηθισμένες προσεγγίσεις είναι:

• Εκτεταμένο Φίλτρο Kalman (EKF): γραμμικοποιεί τα f και h γύρω από την
τρέχουσα εκτίμηση με χρήση Ιακωβιανών, και εφαρμόζει ενημέρωση τύπου Kalman
στο τοπικά γραμμικοποιημένο μοντέλο.
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• Ασύμμετρο/Unscented Φίλτρο Kalman (UKF): προωθεί ένα ντετερμινιστικό
σύνολο σημείων sigma μέσα από τα f και h για να προσεγγίσει μέσο/συνδιακύμανση
χωρίς ρητές Ιακωβιανές.

• Φίλτρα σωματιδίων (particle filters): προσεγγίζουν την πεποίθηση με ένα στα-
θμισμένο σύνολο δειγμάτων, επιτρέποντας μη γραμμική και μη Γκαουσιανή συμπερασ-
ματολογία με υψηλότερο υπολογιστικό κόστος.

Μη Γκαουσιανός θόρυβος, βαριές ουρές και ακραίες τιμές. Αν ο θόρυβος
έχει βαριές ουρές (π.χ. περιέχει outliers), η Γκαουσιανή πιθανοφάνεια (likelihood) που υπ-
ονοείται από την ενημέρωση Kalman μπορεί να δώσει υπερβολικό βάρος σε αλλοιωμένες
μετρήσεις. Στην πράξη αυτό μπορεί να οδηγήσει σε μεγάλα υπόλοιπα και λανθασμένες διορ-
θώσεις. Υπάρχει εκτενής βιβλιογραφία για ανθεκτικές παραλλαγές, π.χ. αντικατάσταση
της τετραγωνικής απώλειας (που υποστηρίζει το MMSE) με ανθεκτικές απώλειες (Huber/-
Tukey), ή μοντελοποίηση του θορύβου με κατανομές βαριών ουρών (π.χ. Student-t), που
ουσιαστικά υποβαθμίζουν τα outliers.

Αναντιστοιχία μοντέλου και λανθασμένη προδιαγραφή αβεβαιότητας. Ακόμη
και όταν το μοντέλο είναι γραμμικό, η απόδοση εξαρτάται κρίσιμα από το πόσο καλά οι Qk−1

(αβεβαιότητα διεργασίας) και Rk (αβεβαιότητα μέτρησης) αποτυπώνουν την πραγματικότητα.
Αν ρυθμιστούν λάθος, το φίλτρο μπορεί να γίνει:

• Αργό (υπερβολική εμπιστοσύνη στο μοντέλο),

• Θορυβώδες (υπερβολική εμπιστοσύνη στις μετρήσεις),

• Ασυνεπές (η συνδιακύμανση υποεκτιμά το πραγματικό σφάλμα),

• Αποκλίνον (τα σφάλματα αυξάνονται και η εκτίμηση γίνεται ασταθής).

Συμπέρασμα. Το φίλτρο Kalman είναι τόσο καλό όσο το μοντέλο και η περιγραφή της
αβεβαιότητάς του: οι Qk−1, Rk κωδικοποιούν αυτό που δεν γνωρίζουμε.

3.9.2 Επίδραση της Ρύθμισης των Qk και Rk

Η διαίσθηση της ρύθμισης φαίνεται απευθείας από την έκφραση του κέρδους

Kk = Σ−
k C

⊤
k

(
CkΣ

−
k C

⊤
k +Rk

)−1
. (3.53)

Θυμίζουμε επίσης ότι η prior συνδιακύμανση παράγεται από το βήμα πρόβλεψης:

Σ−
k = AkΣk−1A

⊤
k +Qk−1. (3.54)

Αύξηση του Qk−1 (περισσότερος θόρυβος διεργασίας). Από την (3.54), η
αύξηση του Qk−1 αυξάνει το Σ

−
k , κάτι που τυπικά αυξάνει το Kk στην (3.53). ΄Αρα ο όρος

ενημέρωσης Kkrk γίνεται μεγαλύτερος.
Συμπεριφορά: το φίλτρο εμπιστεύεται περισσότερο τις μετρήσεις. Αυτό κάνει την εκ-

τίμηση πιο ≪αντιδραστική≫ σε αλλαγές, αλλά συνήθως πιο θορυβώδη.
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Αύξηση του Rk (περισσότερος θόρυβος μέτρησης). Από την (3.53), η αύξηση
του Rk αυξάνει τον παρονομαστή CkΣ

−
k C

⊤
k +Rk, άρα μειώνει το Kk.

Συμπεριφορά: το φίλτρο εμπιστεύεται περισσότερο την πρόβλεψη του μοντέλου. Αυτό
κάνει την εκτίμηση πιο ομαλή, αλλά συνήθως πιο αργή στο να αντιδρά σε πραγματικές
αλλαγές.

Μια χρήσιμη βαθμωτή διαίσθηση (σε 1Δ). Αν Ck = 1 και όλα είναι βαθμωτά,

Kk =
Σ−

k

Σ−
k +Rk

, Σ−
k = Σk−1 +Qk−1.

΄Αρα:
Qk−1 ↑ ⇒ Σ−

k ↑ ⇒ Kk ↑, Rk ↑ ⇒ Kk ↓ .

Αυτό δείχνει ρητά πώς τα Q και R ελέγχουν τη στάθμιση μοντέλου–μέτρησης.

Πρακτική συνέπεια. Η ρύθμιση των Qk−1 και Rk δεν είναι απλώς ένα ≪αριθμητικό

trick≫: κωδικοποιεί την πεποίθηση του σχεδιαστή για την αβεβαιότητα και καθορίζει την
ποιοτική συμπεριφορά του φίλτρου.

3.10 Φιλτράρισμα vs. Εξομάλυνση

3.10.1 Φιλτράρισμα vs. Εξομάλυνση

Θεωρούμε ένα γραμμικό–Γκαουσιανό μοντέλο στο χώρο κατάστασης και μια πεπερασμένη
ακολουθία μετρήσεων y1:T .

Φιλτράρισμα (online / αιτιακή συμπερασματολογία). Το φίλτρο Kalman υπ-
ολογίζει την κατανομή φιλτραρίσματος

p(xk | y1:k), (3.55)

η οποία εξαρτάται μόνο από τις μετρήσεις που είναι διαθέσιμες μέχρι τη χρονική στιγμή k.
Η έξοδος του φίλτρου είναι ο posterior μέσος και η συνδιακύμανση

(x̂k,Σk),

και η αναδρομή είναι αιτιακή και κατάλληλη για λειτουργία σε πραγματικό χρόνο.

Εξομάλυνση (offline / μη-αιτιακή συμπερασματολογία). Αν όλες οι μετρήσεις
y1:T είναι διαθέσιμες, μπορούμε αντίθετα να υπολογίσουμε την κατανομή εξομάλυνσης

p(xk | y1:T ), (3.56)

η οποία χρησιμοποιεί τόσο παρελθοντικές όσο και μελλοντικές μετρήσεις ως προς τον χρόνο

k. Αυτό δίνει τις εξομαλυμένες εκτιμήσεις

(x̂ s
k ,Σ

s
k ).
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Βασική ιδιότητα. Η εξομάλυνση δεν μπορεί ποτέ να είναι χειρότερη από το φιλτράρισμα
ως προς την αβεβαιότητα:

Σ s
k ⪯ Σk ∀k, (3.57)

όπου ⪯ δηλώνει τη διάταξη Loewner (θετικά ημιορισμένη). Διαισθητικά, οι μελλοντικές
μετρήσεις περιέχουν πληροφορία για παρελθοντικές καταστάσεις και μπορούν να χρησι-

μοποιηθούν ώστε να διορθώσουν αναδρομικά παλαιότερες εκτιμήσεις.

Εννοιολογική σύνοψη.

• Φιλτράρισμα: πραγματικού χρόνου, αιτιακό, χρησιμοποιεί y1:k.

• Εξομάλυνση: offline, μη-αιτιακό, χρησιμοποιεί y1:T .

• Μελλοντικά δεδομένα πάντα βελτιώνουν (ή αφήνουν αμετάβλητες) τις εκτιμήσεις παρ-
ελθοντικών καταστάσεων.

3.10.2 Εξομάλυνση Kalman: Αλγόριθμος Rauch–Tung–Striebel (RTS)

Για γραμμικά–Γκαουσιανά συστήματα, η εξομάλυνση μπορεί να γίνει αποδοτικά με ένα back-
ward πέρασμα μετά το φιλτράρισμα Kalman. Ο πιο συνηθισμένος εξομαλυντής είναι ο
εξομαλυντής Rauch–Tung–Striebel (RTS).

Forward πέρασμα (φίλτρο Kalman). Τρέχουμε το τυπικό φίλτρο Kalman για k =
0:T και αποθηκεύουμε:

x̂k, x̂−
k+1, Σk, Σ−

k+1.

Backward πέρασμα (αναδρομή εξομάλυνσης). Για k = T − 1, . . . , 0, ορίζουμε
το κέρδος εξομάλυνσης

Gk = ΣkA
⊤
k (Σ

−
k+1)

−1. (3.58)

Ο εξομαλυμένος μέσος ενημερώνεται ως

x̂ s
k = x̂k +Gk

(
x̂ s
k+1 − x̂−

k+1

)
, (3.59)

και η εξομαλυμένη συνδιακύμανση ως

Σ s
k = Σk +Gk

(
Σ s

k+1 −Σ−
k+1

)
G⊤

k . (3.60)

Ερμηνεία. Ο όρος backward διόρθωσης x̂ s
k+1−x̂

−
k+1 αναπαριστά πληροφορία που αποκαλύπτε-

ται από μελλοντικές μετρήσεις. Το κέρδος εξομάλυνσης Gk προωθεί αυτή την πληροφορία

προς τα πίσω μέσω της δυναμικής.

3.10.3 Batch Οπτική: MAP Εκτίμηση Ολόκληρης της Τροχιάς

Το φιλτράρισμα και η εξομάλυνση μπορούν επίσης να ερμηνευθούν από τη σκοπιά της batch
βελτιστοποίησης. Υπό το γραμμικό–Γκαουσιανό μοντέλο, η εκτίμηση ολόκληρης της
τροχιάς κατάστασης x0:T είναι ισοδύναμη με ένα πρόβλημα μέγιστης εκ των υστέρων πι-

θανότητας (MAP).
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Διατύπωση batch MAP. Η posterior κατανομή της πλήρους τροχιάς είναι Γκαουσιανή
και η MAP εκτίμηση προκύπτει από τη λύση

x⋆
0:T = argmin

x0:T

[
T∑

k=1

∥yk −Ckxk∥2R−1
k

+
T∑

k=1

∥xk −Akxk−1 −Bkuk−1∥2Q−1
k−1

+ ∥x0 − x̂0∥2Σ−1
0

]
.

(3.61)
Πρόκειται για ένα τετραγωνικό πρόβλημα ελαχίστων τετραγώνων με block-τριδιαγώνια δομή
ως προς τον χρόνο.

Σχέση με το φιλτράρισμα και την εξομάλυνση Kalman.

• Το φιλτράρισμα Kalman υπολογίζει τη MAP εκτίμηση αναδρομικά, χρησιμοποιώντας
μόνο παρελθοντικά δεδομένα.

• Η εξομάλυνση Kalman υπολογίζει την ίδια λύση με την (3.61), αλλά αποδοτικά, χωρίς
να σχηματίζει ή να επιλύει ρητά το πλήρες batch πρόβλημα.

• Και τα δύο αποτελούν αλγοριθμικές υλοποιήσεις της Γκαουσιανής Bayesian συμπερασ-
ματολογίας.

Η μεγάλη εικόνα.

• Φιλτράρισμα: online λύση ενός προβλήματος συμπερασματολογίας που μεγαλώνει
με τον χρόνο.

• Εξομάλυνση: offline λύση που χρησιμοποιεί όλα τα δεδομένα.

• Batch MAP: καθολική οπτική βελτιστοποίησης.

Το φιλτράρισμα και η εξομάλυνση Kalman δεν είναι ad hoc αλγόριθμοι: είναι αποδοτικοί
αναδρομικοί επιλύτες για δομημένα Γκαουσιανά προβλήματα ελαχίστων τετραγώνων.

Glossary (English – Greek)

State Κατάσταση

State-space model Μοντέλο στο χώρο κατάστασης

Hidden state / Latent state Κρυφή κατάσταση / Λανθάνουσα κατάσταση

Measurement / Observation Μέτρηση / Παρατήρηση

Control / Input ΄Ελεγχος / Είσοδος

Process model / Motion model Μοντέλο διεργασίας / Μοντέλο κίνησης

Observation model / Measurement model Μοντέλο παρατήρησης /Μοντέλο μέτρησης

Process noise Θόρυβος διεργασίας

Measurement noise Θόρυβος μέτρησης
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Covariance matrix Πίνακας συνδιακύμανσης

Prior Πρότερη κατανομή

Posterior Εκ των υστέρων κατανομή

Belief Πεποίθηση (κατανομή κατάστασης)

Prediction / Time update Πρόβλεψη / Ενημέρωση χρόνου

Correction / Measurement update Διόρθωση / Ενημέρωση μέτρησης

Innovation / Residual Καινοτομία / Υπόλοιπο / Σφάλμα

Innovation covariance Συνδιακύμανση καινοτομίας

Kalman gain Κέρδος Kalman

Filtering Φιλτράρισμα

Smoothing Εξομάλυνση

Kalman filter Φίλτρο Kalman

Extended Kalman Filter (EKF) Εκτεταμένο φίλτρο Kalman

Unscented Kalman Filter (UKF) Unscented φίλτρο Kalman

Particle filter Φίλτρο σωματιδίων

Wiener filter Φίλτρο Wiener

Linear Minimum Mean Square Error (LMMSE) Γραμμικό ελάχιστο μέσο τετραγ-
ωνικό σφάλμα

Mean squared error (MSE) Μέσο τετραγωνικό σφάλμα

Recursive estimation Αναδρομική εκτίμηση

Batch estimation Batch εκτίμηση

Maximum a Posteriori (MAP) Μέγιστη εκ των υστέρων πιθανότητα (MAP)

Gaussian distribution Γκαουσιανή κατανομή

White noise Λευκός θόρυβος

Stationary / Wide-sense stationary (WSS) Στάσιμη / Ευρέως στάσιμη

FIR filter FIR φίλτρο (πεπερασμένης κρουστικής απόκρισης)

Time-varying Χρονικά μεταβαλλόμενο

Model-based Βασισμένο σε μοντέλο

Supervised (training) Επιβλεπόμενη (εκπαίδευση)
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Unsupervised Μη επιβλεπόμενη

Second-order statistics Στατιστικά δεύτερης τάξης

Autocorrelation Αυτοσυσχέτιση

Cross-correlation Διασταυρούμενη/Ετερό συσχέτιση

Power spectral density (PSD) Φασματική πυκνότητα ισχύος
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