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1 Κίνητρο για Εκτίμηση Παραμέτρων

Μέχρι τώρα, η εστίασή μας ήταν στην ανάλυση σήματος: δεδομένου ενός μετρούμενου σή-
ματος, στόχος μας ήταν να χαρακτηρίσουμε τις ιδιότητές του μέσω φασματικής ανάλυσης,
συναρτήσεων συσχέτισης και φιλτραρίσματος. Παρουσιάσαμε μη-παραμετρικά εργαλεία όπως
το περιοδόγραμμα και τη μέθοδοWelch, συζητήσαμε τα φαινόμενα παραθύρωσης, τη διαρροή
(leakage) και τα όρια ανάλυσης (resolution), και αναλύσαμε πώς οι στοχαστικές διεργασίες
και ο θόρυβος διαδίδονται μέσω ΓΧΑ (LTI) συστημάτων καθώς και μέσω φίλτρων FIR/IIR.
Παρότι οι μέθοδοι αυτές είναι ισχυρές, οι μη-παραμετρικές περιγραφές μπορεί να κατασ-

τούν αναξιόπιστες όταν τα διαθέσιμα δεδομένα είναι μικρής διάρκειας, όταν οι μετρήσεις είναι
θορυβώδεις ή χρωματισμένες, ή όταν απαιτείται υψηλή φασματική διακριτική ικανότητα. Σε
τέτοιες περιπτώσεις, οι φασματικές εκτιμήσεις συχνά εμφανίζουν υψηλή διακύμανση και δεν
αξιοποιούν τυχόν υποκείμενη δομή στη διαδικασία παραγωγής του σήματος.
Η παραμετρική εκτίμηση αντιμετωπίζει αυτούς τους περιορισμούς, υιοθετώντας ρητά την

υπόθεση ότι το παρατηρούμενο σήμα παράγεται από ένα μοντέλο με πεπερασμένο αριθμό

παραμέτρων. Αυτή η οπτική είναι ήδη έμμεσα παρούσα στο φιλτράρισμα, όπου τα σήματα
μοντελοποιούνται ως έξοδος ενός συστήματος που διεγείρεται από εισόδους και θόρυβο.
Η εκτίμηση των παραμέτρων τέτοιων μοντέλων μπορεί να οδηγήσει σε πιο συμπαγείς ανα-

παραστάσεις, αυξημένη ανθεκτικότητα στον θόρυβο, και καλύτερη γενίκευση πέρα από τα
παρατηρούμενα δεδομένα.
Ο στόχος αυτού του κεφαλαίου είναι, επομένως, να μεταβούμε από την ανάλυση των

σημάτων στην εκτίμηση των μοντέλων που τα παράγουν. Θα εισαγάγουμε οικογένειες
παραμετρικών μοντέλων και θα μελετήσουμε θεμελιώδεις αρχές εκτίμησης, συμπεριλαμ-
βανομένων των ελαχίστων τετραγώνων, της μέγιστης πιθανοφάνειας, και της Μπεϋζιανής
συμπερασματολογίας.

2 Ελάχιστα Τετράγωνα με Γραμμικό Μοντέλο

Η εκτίμηση Ελαχίστων Τετραγώνων (Least Squares, LS) αποτελεί το βασικό εργαλείο
για την προσαρμογή γραμμικών παραμετρικών μοντέλων στα δεδομένα. Υποθέτουμε ένα
γραμμικό μοντέλο παρατήρησης

y = Xθ +w,

όπου y ∈ RN
είναι το διάνυσμα των μετρήσεων, X ∈ RN×p

είναι ένας γνωστός πίνακας

σχεδίασης (ή regressor) που κατασκευάζεται από τις εισόδους και/ή από παρελθούσες εξό-
δους, θ ∈ Rp

είναι το άγνωστο διάνυσμα παραμέτρων, και w ∈ RN
αποτυπώνει τον θόρυβο

μέτρησης ή/και το σφάλμα μοντελοποίησης. Η αρχή των ελαχίστων τετραγώνων επιλέγει
τις παραμέτρους που ελαχιστοποιούν το συνολικό τετράγωνο του υπολοίπου (σφάλματος
πρόβλεψης),

θ̂ = argmin
θ
∥y −Xθ∥22.

Γεωμετρικά, το Xθ̂ είναι η ορθογώνια προβολή του y στον χώρο στηλών του X, και

το υπόλοιπο r = y−Xθ̂ είναι ορθογώνιο σε αυτόν τον υπόχωρο. Θέτοντας την παράγωγο
(gradient) του κόστους ίση με μηδέν προκύπτουν οι κανονικές εξισώσεις,

XTX θ̂ = XTy.

Αν οX έχει πλήρη τάξη στηλών (οπότε οXTX είναι αντιστρέψιμος), ο μοναδικός ελαχιστοποι-
ητής είναι

θ̂ = (XTX)−1XTy.
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Αν ο X δεν έχει πλήρη τάξη στηλών, υπάρχουν άπειροι ελαχιστοποιητές: η τυπική επιλογή
είναι η λύση ελάχιστης νόρμας, η οποία δίνεται από το Moore–Penrose ψευδοαντίστροφο,

θ̂ = X†y.

Υπό τις συνήθεις στατιστικές υποθέσεις, η LS έχει σημαντικές ιδιότητες βέλτιστου. Αν

το μοντέλο είναι σωστό και E[w] = 0, τότε η θ̂ είναι αμερόληπτη. Αν τοw είναι i.i.d. Γκαου-
σιανό με συνδιακύμανση σ2I, τότε η LS συμπίπτει με τον εκτιμητή μέγιστης πιθανοφάνειας,
και μεταξύ όλων των γραμμικών αμερόληπτων εκτιμητών επιτυγχάνει ελάχιστη διακύμανση

(θεώρημα Gauss–Markov: στην Γκαουσιανή περίπτωση είναι επίσης αποδοτική στην κλάση
των αμερόληπτων εκτιμητών). Οι ιδέες αυτές αποτελούν τη βάση της γραμμικής παλιν-
δρόμησης, της εκτίμησης μοντέλων AR/ARMA (μέσω διατυπώσεων γραμμικών ως προς τις
παραμέτρους), και πολλών αλγορίθμων εκτίμησης που χρησιμοποιούνται στο φιλτράρισμα
και στη μοντελοποίηση χώρου καταστάσεων.

2.1 Απόδειξη Ελαχίστων Τετραγώνων με Γραμμικό Μον-

τέλο

Ξεκινάμε από το γραμμικό μοντέλο παρατήρησης

y = Xθ +w,

όπου το διάνυσμα

w = y −Xθ

αναπαριστά το υπόλοιπο (residual), αποτυπώνοντας τον θόρυβο μέτρησης και το σφάλμα
μοντελοποίησης για μια δεδομένη επιλογή παραμέτρων θ.
Η αρχή των ελαχίστων τετραγώνων επιλέγει το διάνυσμα παραμέτρων που ελαχιστοποιεί

την ενέργεια αυτού του υπολοίπου. Αυτό οδηγεί στη συνάρτηση κόστους

J(θ) = ∥w∥22 = ∥y −Xθ∥22 = (y −Xθ)T(y −Xθ).

Αναπτύσσοντας τη τετραγωνική μορφή προκύπτει

J(θ) = yTy − 2θTXTy + θTXTXθ.

Εφόσον πρόκειται για κυρτή τετραγωνική συνάρτηση ως προς το θ, το ελάχιστό της βρίσ-
κεται θέτοντας την παράγωγο (gradient) ως προς θ ίση με μηδέν:

∇θJ(θ) = −2XTy + 2XTXθ = 0.

Από εδώ προκύπτουν οι κανονικές εξισώσεις

XTX θ̂ = XTy.

Αν ο XTX είναι αντιστρέψιμος (ισοδύναμα, αν ο X έχει πλήρη τάξη στηλών), τότε η
μοναδική λύση ελαχίστων τετραγώνων είναι

θ̂ = (XTX)−1XTy.

Μια σημαντική γεωμετρική ερμηνεία προκύπτει άμεσα από τις κανονικές εξισώσεις. Ορί-
ζοντας το εκτιμώμενο υπόλοιπο

ŵ = y −Xθ̂,
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παίρνουμε τη συνθήκη ορθογωνιότητας

XTŵ = 0.

΄Ετσι, το υπόλοιπο των ελαχίστων τετραγώνων είναι ορθογώνιο στον χώρο στηλών του X,

πράγμα που σημαίνει ότι το προσαρμοσμένο διάνυσμαXθ̂ αποτελεί την ορθογώνια προβολή
του y πάνω σε αυτόν τον υπόχωρο.

2.2 Εκτίμηση Ελαχίστων Τετραγώνων των ΠαραμέτρωνΜον-

τέλου AR

Θεωρούμε ένα αυτοπαλίνδρομο μοντέλο τάξης p,

x[k] = −
p∑

i=1

ai x[k − i] + w[k],

όπου w[k] είναι το σφάλμα πρόβλεψης ενός βήματος μπροστά (residual). Οι άγνωστες
παράμετροι είναι οι συντελεστές AR, οι οποίοι συλλέγονται στο διάνυσμα

a = [a1, . . . , ap]
T.

΄Ενα βασικό σημείο είναι ότι το μοντέλο AR είναι γραμμικό ως προς τις παραμέτρους ai.
Για κάθε χρονικό δείκτη k μπορούμε να γράψουμε μία γραμμική εξίσωση παλινδρόμησης

x[k] = −aTxpast[k] + w[k], xpast[k] =


x[k − 1]
x[k − 2]

...
x[k − p]

 .

΄Ετσι, κάθε δείγμα x[k] (για k ≥ p) παρέχει μία γραμμική εξίσωση ως προς το άγνωστο
διάνυσμα a.
Για να εκτιμήσουμε το a από μία σειρά δειγμάτων {x[0], x[1], . . . , x[N−1]}, στοιβάζουμε

τις εξισώσεις για k = p, . . . , N − 1 σε μορφή πίνακα–διανύσματος:

y = −Xa+w,

με

y =


x[p]

x[p+ 1]
...

x[N − 1]

 , X =


x[p− 1] x[p− 2] · · · x[p− p]
x[p] x[p− 1] · · · x[p− p+ 1]
...

...
. . .

...
x[N − 2] x[N − 3] · · · x[N − 1− p]

 , w =


w[p]

w[p+ 1]
...

w[N − 1]

 .

Η εκτίμηση ελαχίστων τετραγώνων ελαχιστοποιεί το άθροισμα των τετραγώνων των σφαλμάτων

πρόβλεψης ενός βήματος:
â = argmin

a
∥y +Xa∥22.

Η λύση των αντίστοιχων κανονικών εξισώσεων δίνει (όταν ο XTX είναι αντιστρέψιμος)

â = −(XTX)−1XTy,
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και, γενικότερα, â = −X†y χρησιμοποιώντας το ψευδοαντίστροφο.
Είναι χρήσιμο να το αντιπαραβάλουμε αυτό με την προσέγγιση Yule–Walker (YW). Η LS

εκτιμά τους συντελεστές προσαρμόζοντας απευθείας τις εξισώσεις πρόβλεψης δείγμα-προς-
δείγμα, ενώ η YW εκτιμά τις αυτοσυσχετίσεις και στη συνέχεια λύνει ένα Toeplitz γραμμικό
σύστημα που προκύπτει από τις υποθέσεις του AR μοντέλου. ΄Οταν τα δεδομένα ακολουθούν
πράγματι ένα μοντέλο AR(p) και είναι στάσιμα κατά ευρεία έννοια (wide-sense stationary),
οι δύο προσεγγίσεις είναι ασυμπτωτικά ισοδύναμες, αλλά για μικρής διάρκειας καταγραφές
ή για ήπια ασυμφωνία μοντέλου, η LS μπορεί να είναι πιο ακριβής, επειδή αποφεύγει το
ενδιάμεσο βήμα της εκτίμησης των αυτοσυσχετίσεων.

3 Υπερπροσαρμογή και Κανονικοποίηση

Στη γραμμική παλινδρόμηση, η αύξηση του αριθμού των παραμέτρων (ή η χρήση ενός πολύ
≪πλούσιου≫ συνόλου παλινδρομητών) αυξάνει την ευελιξία του μοντέλου. Παρότι αυτό
μπορεί να μειώσει το σφάλμα εκπαίδευσης, αυξάνει επίσης τον κίνδυνο της υπερπροσαρ-
μογής (overfitting): η λύση των ελαχίστων τετραγώνων μπορεί να αρχίσει να προσαρμόζε-
ται όχι μόνο στην υποκείμενη δομή του σήματος, αλλά και στον θόρυβο που υπάρχει στις
μετρήσεις. Τυπικά συμπτώματα περιλαμβάνουν συντελεστές μεγάλου μέτρου, έντονη ευ-
αισθησία σε μικρές διαταραχές των δεδομένων, και ασταθείς προβλέψεις. Ως αποτέλεσμα,
ένα μοντέλο που προσαρμόζεται εξαιρετικά καλά στα διαθέσιμα δεδομένα μπορεί παρ’ όλα
αυτά να γενικεύει φτωχά σε νέα δεδομένα, παράγοντας μη ρεαλιστική ή έντονα ταλαντωτική
συμπεριφορά.
΄Ενας καθιερωμένος τρόπος για τον μετριασμό της υπερπροσαρμογής είναι η εισαγωγή

κανονικοποίησης (regularization), η οποία επιβάλλει ρητά ποινή σε υπερβολικά πολύπλοκες
λύσεις. Η πιο συνηθισμένη επιλογή στα γραμμικά μοντέλα είναι η κανονικοποίηση ridge (ή
Tikhonov), όπου προσθέτουμε μία ποινή ℓ2 στο διάνυσμα παραμέτρων:

θ̂reg = argmin
θ
∥y −Xθ∥22 + λ ∥θ∥22 , λ > 0.

Η παράμετρος λ ελέγχει τον συμβιβασμό μεταξύ προσαρμογής στα δεδομένα και διατήρησης
μικρού μέτρου στο διάνυσμα παραμέτρων. Για λ → 0 η λύση τείνει στα κλασικά ελάχιστα
τετράγωνα, ενώ για μεγαλύτερες τιμές του λ οι συντελεστές ≪συρρικνώνονται≫ όλο και

περισσότερο προς το μηδέν.
Η ridge παλινδρόμηση επιτρέπει κλειστή μορφή λύσης:

θ̂reg =
(
XTX + λI

)−1
XTy.

Η κανονικοποίηση έχει αρκετές σημαντικές επιδράσεις. Πρώτον, μειώνει τη διακύμανση του
εκτιμητή συρρικνώνοντας τα μεγέθη των παραμέτρων, κάτι που συχνά βελτιώνει την απόδοση
πρόβλεψης όταν τα δεδομένα είναι θορυβώδη ή περιορισμένα. Δεύτερον, βελτιώνει τη αρι-
θμητική σταθερότητα: ακόμη κι αν οXTX είναι κακώς υπο-συντεθειμένος (ill-conditioned)
ή ιδιάζων, η προσθήκη του λI καθιστά το σύστημα καλύτερα υπο-συντεθειμένο και συνήθως
αντιστρέψιμο. Τέλος, η κανονικοποίηση μειώνει την ευαισθησία στον θόρυβο και σε μικρά
σφάλματα μοντελοποίησης στους παλινδρομητές.
Το Σχήμα 3.1 απεικονίζει το φαινόμενο σε ένα απλοποιημένο παράδειγμα: ένα πολυώνυμο

υψηλού βαθμού που προσαρμόζεται με κλασικά ελάχιστα τετράγωνα ταλαντώνεται έντονα

ώστε να παρεμβάλει θορυβώδη δείγματα, ενώ η κανονικοποίηση ridge παράγει μια ομαλότερη
καμπύλη που αποτυπώνει καλύτερα την υποκείμενη συνάρτηση.
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Σχήμα 3.1: Υπερπροσαρμογή στα κλασικά ελάχιστα τετράγωνα (πολυώνυμο υψηλού βα-
θμού) και μετριασμός μέσω κανονικοποίησης ridge. Η LS προσαρμογή τείνει να ≪ταιρ-

ιάζει≫ τον θόρυβο και ταλαντώνεται μεταξύ των δειγμάτων, ενώ η ridge συρρικνώνει τους
συντελεστές και οδηγεί σε ένα πιο σταθερό μοντέλο με καλύτερη γενίκευση.

4 Μη-Γραμμικά Ελάχιστα Τετράγωνα

4.1 Εκτίμηση Παραμέτρων ARMA μέσω Ελαχιστοποίησης

του Σφάλματος Πρόβλεψης

Τα μοντέλα αυτοπαλίνδρομου–κινούμενου μέσου (Autoregressive–Moving Average, ARMA)
επεκτείνουν τα μοντέλα AR εισάγοντας ένα μέρος κινούμενου μέσου (MA), το οποίο απο-
τυπώνει τη δομή συσχέτισης στα υπόλοιπα (residuals). Μια διεργασία ARMA(p, q) μπορεί
να γραφεί ως

x[k] = −
p∑

i=1

ai x[k − i] +

q∑
j=1

bj w[k − j] + w[k], w[k] : καινοτομία/λευκός θόρυβος.

Το άγνωστο διάνυσμα παραμέτρων είναι

θ =
[
a1 · · · ap b1 · · · bq

]T ∈ Rp+q.

Γιατί το πρόβλημα γίνεται μη-γραμμικό. Για ένα καθαρό μοντέλο AR(p), οι
παλινδρομητές x[k − 1], . . . , x[k − p] είναι γνωστοί από τα δεδομένα, άρα το μοντέλο είναι
γραμμικό ως προς τους άγνωστους συντελεστές και μπορεί να γραφεί στη μορφή y =
Xa+w, δίνοντας λύση LS σε κλειστή μορφή. Στο ARMA, το μέρος MA εξαρτάται από
παρελθούσες καινοτομίες w[k − j], οι οποίες δεν είναι παρατηρήσιμες. Αν προσπαθήσουμε
να ξαναγράψουμε το μοντέλο ως προς μετρήσιμες ποσότητες, προκύπτει μια αναδρομή για
το σφάλμα πρόβλεψης ενός βήματος (εκτίμηση καινοτομίας). Ξεκινώντας από

w[k] = x[k] +

p∑
i=1

ai x[k − i]−
q∑

j=1

bj w[k − j],

7



ορίζουμε το σφάλμα πρόβλεψης (υπόλοιπο) ως συνάρτηση των παραμέτρων,

ε(k,θ) = x[k] +

p∑
i=1

ai x[k − i]−
q∑

j=1

bj ε(k − j,θ),

με κατάλληλες αρχικές συνθήκες για το ε(k,θ) για k < 0 (συχνά τίθεται μηδέν) και με
πρώτο χρήσιμο δείκτη

k0 = max(p, q),

ώστε όλα τα απαιτούμενα παρελθόντα δείγματα και παρελθόντα σφάλματα να είναι διαθέσιμα.
Το κρίσιμο σημείο είναι ότι το ε(k,θ) εξαρτάται από προηγούμενα ε(k − j,θ), τα οποία με
τη σειρά τους εξαρτώνται από το θ. Επομένως, η ακολουθία υπολοίπων είναι μη-γραμμική
συνάρτηση των παραμέτρων και δεν μπορούμε να διατυπώσουμε το πρόβλημα ως ένα ενιαίο

γραμμικό σύστημα y = Xθ.

Στόχος μη-γραμμικών ελαχίστων τετραγώνων. Μία τυπική προσέγγιση είναι
η ελαχιστοποίηση του σφάλματος πρόβλεψης (prediction error minimization), η οποία
επιλέγει παραμέτρους που ελαχιστοποιούν το άθροισμα των τετραγώνων των σφαλμάτων

πρόβλεψης ενός βήματος:

J(θ) =
1

2

N−1∑
k=k0

ε(k,θ)2.

Ορίζοντας το στοιβαγμένο διάνυσμα υπολοίπων

ε(θ) =


ε(k0,θ)

ε(k0 + 1,θ)
...

ε(N − 1,θ)

 ∈ RM , M = N − k0,

μπορούμε να γράψουμε

J(θ) =
1

2
ε(θ)Tε(θ) =

1

2

∥∥ε(θ)∥∥2

2
, θ̂ = argmin

θ
J(θ).

Σε αντίθεση με τη γραμμική LS, αυτό το πρόβλημα βελτιστοποίησης γενικά δεν έχει λύση
σε κλειστή μορφή και πρέπει να λυθεί επαναληπτικά.

4.2 Gauss–Newton για Μη-Γραμμικά Ελάχιστα Τετράγωνα

Η μέθοδοςGauss–Newton είναι μια κλασική μέθοδος ελαχιστοποίησης συναρτήσεων ελαχίστων
τετραγώνων. Προχωρά τοπικά γραμμικοποιώντας το διάνυσμα υπολοίπων γύρω από την
τρέχουσα εκτίμηση θi. ΄Εστω ότι ο Ιακωβιανός του διανύσματος υπολοίπων είναι

J ε(θ) =
∂ε(θ)

∂θ
∈ RM×P , P = p+ q,

[
J ε(θ)

]
m,ℓ

=
∂ε(k0 +m,θ)

∂θℓ
.

Μια προσέγγιση Taylor πρώτης τάξης δίνει

ε(θi +∆θ) ≈ ε(θi) + J ε(θi)∆θ.
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Η Gauss–Newton επιλέγει τότε ∆θi ως τον ελαχιστοποιητή του προκύπτοντος γραμμικού

υποπροβλήματος ελαχίστων τετραγώνων:

∆θi = argmin
∆θ
∥ε(θi) + J ε(θi)∆θ∥22 .

Αυτό οδηγεί στις κανονικές εξισώσεις

J ε(θi)
TJ ε(θi)∆θi = −J ε(θi)

Tε(θi),

και ακολουθεί η ενημέρωση των παραμέτρων

θi+1 = θi +∆θi,

η οποία μπορεί προαιρετικά να συνδυαστεί με απόσβεση (damping) ή αναζήτηση γραμμής
(line search) για βελτίωση της ευρωστίας.

Ερμηνεία. Σε κάθε επανάληψη, ηGauss–Newton αντικαθιστά την μη-γραμμική απεικόνιση
των υπολοίπων με την τοπική γραμμική της προσέγγιση και λύνει ένα γραμμικό πρόβλημα

ελαχίστων τετραγώνων. Η μέθοδος έχει επίσης μια χρήσιμη ερμηνεία δεύτερης τάξης: για
στόχους ελαχίστων τετραγώνων,

∇J(θ) = J ε(θ)
Tε(θ), ∇2J(θ) = JT

ε J ε +
M∑

m=1

εm(θ)∇2εm(θ),

και η Gauss–Newton προσεγγίζει τον Εσσιανό παραλείποντας τον δεύτερο όρο, δίνοντας

∇2J(θ) ≈ J ε(θ)
TJ ε(θ),

κάτι που αποφεύγει τον υπολογισμό δεύτερων παραγώγων ενώ αξιοποιεί τη δομή των ελαχίστων

τετραγώνων.

4.3 Γενική Μορφή Gauss–Newton

Γενικότερα, έστω υπόλοιπα r(θ) ∈ RM
και αντικειμενική συνάρτηση

J(θ) =
1

2
∥r(θ)∥22 = r(θ)Tr(θ),

με Ιακωβιανό

J r(θ) =
∂r(θ)

∂θ
∈ RM×P ,

η Gauss–Newton υπολογίζει το ∆θi από

J r(θi)
TJ r(θi)∆θi = −J r(θi)

Tr(θi), θi+1 = θi +∆θi.

Στην εκτίμηση ARMA, το r(θ) αντιστοιχεί στα στοιβαγμένα σφάλματα πρόβλεψης ε(θ), και
η μέθοδος βελτιώνει επαναληπτικά τους συντελεστές ώστε να ελαχιστοποιήσει την ενέργεια

του σφάλματος πρόβλεψης ενός βήματος.
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4.4 ΠαράδειγμαGauss–Newton: ΕκτίμησηΜοντέλου ARMA(1,1)

Θεωρούμε το μοντέλο ARMA(1,1)

x[k] = −a x[k − 1] + bw[k − 1] + w[k], w[k] καινοτομία.

Επειδή οι παρελθούσες καινοτομίες w[k − 1] δεν είναι παρατηρήσιμες, εργαζόμαστε με το
σφάλμα πρόβλεψης ενός βήματος (εκτίμηση καινοτομίας)

ε(k,θ) = x[k] + a x[k − 1]− b ε(k − 1,θ), θ =

[
a
b

]
,

με μια τυπική αρχικοποίηση όπως ε(0,θ) = 0. Το κόστος μη-γραμμικών ελαχίστων τετραγώνων
(σφάλμα πρόβλεψης) είναι

J(θ) =
1

2

N−1∑
k=1

ε(k,θ)2 =
1

2

∥∥ε(θ)∥∥2

2
, ε(θ) =

 ε(1,θ)
...

ε(N − 1,θ)

 .

Εφόσον το ε(k,θ) εξαρτάται αναδρομικά από παρελθόντα σφάλματα, είναι μη-γραμμική
συνάρτηση του (a, b), και ελαχιστοποιούμε το J(θ) επαναληπτικά χρησιμοποιώντας Gauss–
Newton.

Ιακωβιανός μέσω αναδρομών. Η Gauss–Newton απαιτεί τον Ιακωβιανό του διανύσ-
ματος υπολοίπων:

J ε(θ) =
∂ε(θ)

∂θ
=

 ∂aε(1,θ) ∂bε(1,θ)
...

...
∂aε(N − 1,θ) ∂bε(N − 1,θ)

 .

Παραγωγίζοντας την αναδρομή ε(k) = x[k]+a x[k− 1]− b ε(k− 1) προκύπτουν εμπρόσθιες
αναδρομές για τις μερικές παραγώγους:

∂aε(k) = x[k − 1]− b ∂aε(k − 1),

∂bε(k) = −ε(k − 1)− b ∂bε(k − 1),

με αρχικές συνθήκες

ε(0) = 0, ∂aε(0) = 0, ∂bε(0) = 0.

΄Ετσι, για μια δεδομένη αρχική εικασία παραμέτρων (a, b), μπορούμε να υπολογίσουμε ε(k),
∂aε(k), και ∂bε(k) σε ένα μόνο εμπρόσθιο πέρασμα μέσα από τα δεδομένα.

Επανάληψη Gauss–Newton. Σε κάθε επανάληψη i, δεδομένου θi = [ai bi]
T, υπολογί-

ζουμε ε(θi) και J ε(θi), και στη συνέχεια λύνουμε το γραμμικό βήμα ελαχίστων τετραγώνων

∆θi = argmin
∆θ
∥ε(θi) + J ε(θi)∆θ∥22 ,

που δίνει τις κανονικές εξισώσεις

J ε(θi)
TJ ε(θi)∆θi = −J ε(θi)

Tε(θi).

Η ενημέρωση είναι

θi+1 = θi +∆θi,

και σταματάμε όταν το ∥∆θi∥ (ή η μείωση του J) είναι μικρό. Στην πράξη, μπορεί να
προστεθεί απόσβεση/αναζήτηση κατά μήκος αν το απλό βήμα είναι ασταθές.
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4.5 Παράδειγμα (Μία επανάληψη Gauss–Newton)

Παίρνουμε τρία δείγματα:

x[0] = 1, x[1] = 0.5, x[2] = −0.2,

και αρχικοποιούμε με

θ0 =

[
0
0

]
⇒ a0 = 0, b0 = 0, ε(0) = 0.

Βήμα 1: υπόλοιπα στο θ0. Χρησιμοποιώντας ε(k) = x[k] + a x[k− 1]− b ε(k− 1) με
a0 = b0 = 0:

ε(1,θ0) = x[1] = 0.5, ε(2,θ0) = x[2] = −0.2.
΄Αρα

ε(θ0) =

[
0.5
−0.2

]
.

Βήμα 2: Ιακωβιανός στο θ0. Με b0 = 0, οι αναδρομές των παραγώγων απλοποιούνται
σε

∂aε(k) = x[k − 1], ∂bε(k) = −ε(k − 1).

Επομένως,
∂aε(1) = x[0] = 1, ∂aε(2) = x[1] = 0.5,

∂bε(1) = −ε(0) = 0, ∂bε(2) = −ε(1) = −0.5.
΄Αρα,

J ε(θ0) =

[
1 0
0.5 −0.5

]
.

Βήμα 3: Βήμα Gauss–Newton. Υπολογίζουμε

JTJ =

[
1.25 −0.25
−0.25 0.25

]
, JTε =

[
0.4
0.1

]
.

Εφόσον det
(
JTJ

)
= 0.25, ο αντίστροφος είναι

(JTJ)−1 =

[
1 1
1 5

]
.

΄Αρα,

∆θ0 = −(JTJ)−1JTε = −
[
1 1
1 5

] [
0.4
0.1

]
=

[
−0.5
−0.9

]
,

και οι ενημερωμένες παράμετροι είναι

θ1 = θ0 +∆θ0 =

[
−0.5
−0.9

]
.

Αυτό δείχνει τη μηχανική της Gauss–Newton: υπολογίζουμε υπόλοιπα και Ιακωβιανό μέσω
εμπρόσθιων αναδρομών, και στη συνέχεια λύνουμε ένα μικρό γραμμικό σύστημα για να
ενημερώσουμε τις παραμέτρους.
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4.6 Πρακτική Οπτική: Μη-Γραμμικά Ελάχιστα Τετράγωνα
μέσα από το Πρίσμα της Βελτιστοποίησης

Τα μη-γραμμικά ελάχιστα τετράγωνα αποτελούν ένα πρόβλημα βελτιστοποίησης της μορφής

min
θ

J(θ), J(θ) =
1

2
∥r(θ)∥22,

όπου r(θ) ∈ RM
είναι το διάνυσμα υπολοίπων (π.χ. τα στοιβαγμένα σφάλματα πρόβ-

λεψης ARMA). Από τη σκοπιά της γενικής βελτιστοποίησης, η Gauss–Newton απλώς
κατασκευάζει, σε κάθε επανάληψη θi, ένα τοπικό τετραγωνικό μοντέλο του J βασισμένο σε
μια γραμμικοποίηση πρώτης τάξης του r και στη συνέχεια πραγματοποιεί ένα βήμα καθόδου.

Παράγωγος και (προσεγγιστικός) Εσσιανός. Χρησιμοποιώντας τον κανόνα αλυσί-
δας,

∇J(θ) = J r(θ)
Tr(θ), J r(θ) =

∂r(θ)

∂θ
.

Ο ακριβής Εσσιανός είναι

∇2J(θ) = J r(θ)
TJ r(θ) +

M∑
m=1

rm(θ)∇2rm(θ),

και η Gauss–Newton χρησιμοποιεί την προσέγγιση

HGN(θ) ≜ J r(θ)
TJ r(θ),

η οποία είναι ακριβής όταν τα υπόλοιπα είναι μικρά κοντά στο βέλτιστο (ή όταν το μοντέλο
είναι κοντά στο σωστό).

Υπολογισμός βήματος ως λύση γραμμικού συστήματος. Η διεύθυνση Gauss–
Newton ∆θi ικανοποιεί

HGN(θi)∆θi = −∇J(θi) = −J r(θi)
Tr(θi).

Αυτό είναι άμεσα ανάλογο με ένα βήμα Newton, αλλά με έναν προσεγγιστικό Εσσιανό που
αποφεύγει τις δεύτερες παραγώγους και αξιοποιεί τη δομή των ελαχίστων τετραγώνων.

Αναζήτηση γραμμής (globalization). ΄Οπως και στη γενική μη-γραμμική βελτιστοποίηση,
το πλήρες βήμα θi+1 = θi+∆θi μπορεί να αποτύχει όταν η αρχική υποθέση ή όταν το τετραγ-

ωνικό μοντέλο δεν είναι ακριβές. Μία τυπική αντιμετώπιση είναι η αναζήτηση γραμμής (line
search):

θi+1 = θi + αi ∆θi, αi ∈ (0, 1],

όπου το αi επιλέγεται ώστε να εξασφαλίζει επαρκή μείωση του J (π.χ. συνθήκη Armijo)
και να διατηρεί τις επαναλήψεις σταθερές. Στην πράξη, μια αναζήτηση γραμμής με οπισθο-
χώρηση (backtracking) είναι συχνά επαρκής: ξεκινάμε από αi = 1 και μειώνουμε επαναληπ-
τικά αi ← ραi (με ρ ∈ (0, 1)) έως ότου το J(θi+1) μειώνεται επαρκώς.
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Απόσβεση (Levenberg–Marquardt). Μια άλλη ευρέως χρησιμοποιούμενη σταθεροποίηση
είναι η απόσβεση (damping), που οδηγεί στο βήμα Levenberg–Marquardt (LM):(

J r(θi)
TJ r(θi) + µiI

)
∆θi = −J r(θi)

Tr(θi), µi > 0.

Για μεγάλο µi, το βήμα συμπεριφέρεται σαν κατάβαση κλίσης (μικρό, συντηρητικό, ευρω-
στό)1; για μικρό µi, προσεγγίζει τη Gauss–Newton (γρήγορη τοπική σύγκλιση). Αυτό
συνδέεται στενά με την οπτική των περιοχών εμπιστοσύνης (trust-region): ο αλγόριθμος
περιορίζει τα βήματα όταν το τοπικό μοντέλο είναι αναξιόπιστο και τα μεγαλώνει όταν η

προβλεπόμενη μείωση συμφωνεί με την πραγματική.

Πρακτικός οδηγός. Δοθέντος του τρέχοντος εκτιμητή θi:

1. Υπολόγισε τα υπόλοιπα r(θi) (π.χ. σφάλματα πρόβλεψης ARMA μέσω εμπρόσθιας
αναδρομής).

2. Υπολόγισε τον Ιακωβιανό J r(θi) (αναλυτικά μέσω αναδρομών, ή αριθμητικά αν χρειάζε-
ται).

3. Υπολόγισε μια διεύθυνση αναζήτησης λύνοντας είτε:

JTJ ∆θ = −JTr (Gauss–Newton), ή (JTJ + µI)∆θ = −JTr (LM).

4. Ενημέρωσε χρησιμοποιώντας μήκος βήματος αi (αναζήτηση κατά μήκος) και/ή παράμετρο
απόσβεσης µi:

θi+1 = θi + αi∆θi.

5. Σταμάτα όταν το J(θi), το ∥∇J(θi)∥, ή το ∥∆θi∥ είναι επαρκώς μικρό.

Τελικές παρατηρήσεις. Από την οπτική της βελτιστοποίησης, η Gauss–Newton είναι
απλώς “η μέθοδος Newton εξειδικευμένη στα ελάχιστα τετράγωνα”, με μια προσέγγιση του
Εσσιανού που είναι φθηνή υπολογιστικά και συχνά πολύ αποτελεσματική. ΄Οταν συνδυάζεται
με τυπικά εργαλεία globalization (αναζήτηση γραμμής ή trust-region/απόσβεση), γίνεται ένα
ευρωστό και πρακτικό εργαλείο για προβλήματα εκτίμησης παραμέτρων όπως η προσαρμογή

ARMA μέσω σφάλματος πρόβλεψης, η μη-γραμμική παλινδρόμηση, και πολλές εργασίες
εκτίμησης παραμέτρων σε μοντέλα χώρου καταστάσεων.

5 Μη-Γραμμικά ΑυτοπαλίνδρομαΜοντέλα και Γραμ-

μικά Μοντέλα σε Χαρακτηριστικά

5.1 Μοντέλα NAR

Πολλά πραγματικά σήματα δεν μπορούν να περιγραφούν με ακρίβεια μέσω γραμμικής αυ-

τοπαλίνδρομης δυναμικής. Φαινόμενα όπως ο κορεσμός, οι νεκρές ζώνες, η υστέρηση, οι
μεταγωγές (switching) και ο θόρυβος που εξαρτάται από την κατάσταση εισάγουν μη-
γραμμικές εξαρτήσεις από τις προηγούμενες τιμές. Μια φυσική επέκταση ενός μοντέλου
AR(p) είναι το μη-γραμμικό αυτοπαλίνδρομο (Nonlinear Autoregressive, NAR) μοντέλο

x[k] = f
(
x[k − 1], x[k − 2], . . . , x[k − p];θ

)
+ w[k],

1
Δεδομένης της προτίμησης ορολογίας, ο όρος “κατάβαση κλίσης” αντιστοιχεί στο gradient descent.
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όπου f(·;θ) είναι μια μη-γραμμική απεικόνιση που παραμετροποιείται από ένα άγνωστο
διάνυσμα θ και w[k] συγκεντρώνει τον θόρυβο και το σφάλμα μοντελοποίησης. Η τάξη
p καθορίζει το μήκος μνήμης, δηλαδή πόσα παρελθόντα δείγματα επηρεάζουν την πρόβλεψη.
Από πλευράς εκτίμησης, η εκτίμηση παραμέτρων των μοντέλων NAR διατυπώνεται

φυσικά ως ένα (γενικά) πρόβλημα μη-γραμμικών ελαχίστων τετραγώνων. Για κάθε k ≥ p
ορίζουμε το υπόλοιπο πρόβλεψης ενός βήματος

ε(k,θ) = x[k]− f
(
x[k − 1], . . . , x[k − p];θ

)
,

και εκτιμούμε τις παραμέτρους ελαχιστοποιώντας το άθροισμα των τετραγώνων των υπ-

ολοίπων:

θ̂ = argmin
θ

1

2

N−1∑
k=p

ε(k,θ)2.

Σε αντίθεση με τα γραμμικά AR, τυπικά δεν υπάρχει λύση σε κλειστή μορφή, οπότε χρησι-
μοποιούμε επαναληπτικές μεθόδους βελτιστοποίησης (κατάβαση κλίσης, Gauss–Newton,
Levenberg–Marquardt). Το πρακτικό υπολογιστικό κόστος αυτών των μεθόδων κυριαρ-
χείται από την επαναλαμβανόμενη (i) αξιολόγηση του f(·;θ) σε όλο το σύνολο δεδομένων
και (ii) τον υπολογισμό παραγώγων των υπολοίπων ως προς θ.
Εννοιολογικά, το NAR γενικεύει το AR αντικαθιστώντας τον γραμμικό προβλέπτη

−
∑p

i=1 aix[k−i] με μια μη-γραμμική συνάρτηση του ίδιου διανύσματος παρελθόντων δειγμάτων.

5.2 Γραμμικά Μοντέλα σε Χαρακτηριστικά

΄Ενας χρήσιμος συμβιβασμός μεταξύ γραμμικής και μη-γραμμικής μοντελοποίησης είναι να
διατηρήσουμε το μοντέλο γραμμικό ως προς τις παραμέτρους ενώ επιτρέπουμε μη-γραμμική
εξάρτηση από τις εισόδους μέσω μιας απεικόνισης χαρακτηριστικών. ΄Εστω x ∈ Rd

ένα

διάνυσμα εισόδου (ή παλινδρομητών), και ορίζουμε ένα διάνυσμα χαρακτηριστικών

ϕ(x) =


ϕ1(x)
ϕ2(x)

...
ϕP (x)

 ∈ RP .

΄Ενα μοντέλο γραμμικό-σε-χαρακτηριστικά είναι

y = θTϕ(x) + w, θ ∈ RP .

Δοθέντων δεδομένων {(xn, yn)}Nn=1, στοιβάζουμε τα διανύσματα χαρακτηριστικών στον
πίνακα σχεδίασης

Φ =


ϕ(x1)

T

ϕ(x2)
T

...
ϕ(xN)

T

 ∈ RN×P , y =


y1
y2
...
yN

 .

Τότε η εκτίμηση παραμέτρων ανάγεται σε κλασικά ελάχιστα τετράγωνα:

θ̂ = argmin
θ
∥y −Φθ∥22, θ̂ = (ΦTΦ)−1ΦTy,

υποθέτοντας ότι ο Φ έχει πλήρη τάξη στηλών (αλλιώς χρησιμοποιούμε Φ†
ή κανονικοποίηση

ridge).

14



Αυτή η οπτική είναι σημαντική διότι επιτρέπει μη-γραμμική προσέγγιση συναρτήσεων,
διατηρώντας ταυτόχρονα την απλότητα των εργαλείων γραμμικής εκτίμησης (LS, ridge/Tikhonov
και τις στατιστικές ερμηνείες τους). Η μη-γραμμικότητα ≪μεταφέρεται≫ στην επιλογή των

συναρτήσεων βάσης ϕi(·), ενώ οι άγνωστες παράμετροι εξακολουθούν να εισάγονται γραμ-
μικά.
Συνηθισμένες επιλογές χαρακτηριστικών περιλαμβάνουν πολυωνυμικές επεκτάσεις βάσης

(π.χ. [1, x, x2, . . .]), τριγωνομετρικά/χαρακτηριστικά Fourier (π.χ. sin(ωx) και cos(ωx)),
ακτινικές συναρτήσεις βάσης (radial basis functions), και μαθημένα χαρακτηριστικά (π.χ.
την έξοδο ενός σταθερού επιπέδου νευρωνικού δικτύου). Η πολυπλοκότητα του μοντέλου
ελέγχεται από τον αριθμό και τον τύπο των χαρακτηριστικών και, στην πράξη, από την
κανονικοποίηση όταν το P είναι μεγάλο σε σχέση με το N .

5.3 Το NAR ως Γραμμική Παλινδρόμηση σε Χαρακτηριστικά
(Ειδική Περίπτωση)

Μια διδακτική ειδική περίπτωση είναι όταν η συνάρτηση NAR εκφράζεται ως γραμμικός
συνδυασμός επιλεγμένων μη-γραμμικών χαρακτηριστικών του διανύσματος παρελθόντων
δειγμάτων. Ορίζουμε τον παλινδρομητή

z[k] =


x[k − 1]
x[k − 2]

...
x[k − p]

 ,

επιλέγουμε μια απεικόνιση χαρακτηριστικών ϕ(z[k]), και μοντελοποιούμε

x[k] = θTϕ(z[k]) + w[k].

Αυτό είναι ένα μη-γραμμικό αυτοπαλίνδρομο μοντέλο ως προς τη συμπεριφορά εισόδου–
εξόδου, αλλά παραμένει γραμμικό ως προς τις άγνωστες παραμέτρους θ, οπότε μπορούμε να
το εκτιμήσουμε μέσω (κανονικοποιημένων) ελαχίστων τετραγώνων. Αυτή η οπτική συχνά
αποκαλείται NAR με συναρτήσεις βάσης (basis-function NAR) και παρέχει μια πρακτική
γέφυρα μεταξύ της εκτίμησης γραμμικών AR και της πλήρως μη-γραμμικής ταυτοποίησης
NAR.

5.4 Λυμένα Παραδείγματα: Γραμμικά Μοντέλα σε Χαρακ-
τηριστικά

Παράδειγμα 1: Αφινικό μοντέλο. Θεωρούμε ξανά την απλή απεικόνιση χαρακ-
τηριστικών

ϕ(x) =

[
1
x

]
, y = θTϕ(x) + w, θ =

[
θ0
θ1

]
.

Υποθέτουμε ότι παρατηρούμε τα εξής τρία δείγματα:

(x1, y1) = (0, 0), (x2, y2) = (1, 1), (x3, y3) = (2, 3).

Ο πίνακας σχεδίασης και το διάνυσμα εξόδου είναι

Φ =

1 0
1 1
1 2

 , y =

01
3

 .
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Υπολογίζουμε

ΦTΦ =

[
3 3
3 5

]
, ΦTy =

[
4
7

]
.

΄Αρα,

θ̂ = (ΦTΦ)−1ΦTy =
1

6

[
5 −3
−3 3

] [
4
7

]
=

[
−1/6
7/6

]
.

Το προσαρμοσμένο μοντέλο είναι επομένως

ŷ(x) = −1

6
+

7

6
x.

Παράδειγμα 2: Τετραγωνικά χαρακτηριστικά. Τώρα αυξάνουμε την ευελιξία
του μοντέλου χρησιμοποιώντας μια τετραγωνική απεικόνιση ως χαρακτηριστικό:

ϕ(x) =

 1
x
x2

 , y = θTϕ(x) + w, θ =

θ0θ1
θ2

 .

Θεωρούμε τέσσερα δείγματα:

(x1, y1) = (−1, 1), (x2, y2) = (0, 0), (x3, y3) = (1, 1), (x4, y4) = (2, 4).

Ο πίνακας σχεδίασης και το διάνυσμα εξόδου είναι

Φ =


1 −1 1
1 0 0
1 1 1
1 2 4

 , y =


1
0
1
4

 .

Υπολογίζουμε

ΦTΦ =

4 2 6
2 6 8
6 8 18

 , ΦTy =

 6
8
18

 .

Λύνοντας (ΦTΦ)θ̂ = ΦTy παίρνουμε

θ̂ =

00
1

 .

΄Αρα, το προσαρμοσμένο μοντέλο είναι

ŷ(x) = x2.

Συμπέρασμα. Αλλάζοντας την απεικόνιση χαρακτηριστικών ϕ(x), μπορούμε να μεταβούμε
από απλά γραμμικά μοντέλα σε πιο εκφραστικούς μη-γραμμικούς προβλέπτες, ενώ εξακολου-
θούμε να βασιζόμαστε ακριβώς στην ίδια μηχανική των ελαχίστων τετραγώνων. Η πολυ-
πλοκότητα του μοντέλου καθορίζεται πλήρως από τα επιλεγμένα χαρακτηριστικά (και, στην
πράξη, από την κανονικοποίηση όταν αυξάνεται η διάσταση των χαρακτηριστικών).
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5.5 Υλοποίηση σε Python

Το ακόλουθο script παρουσιάζει την ιδέα του “γραμμικού μοντέλου σε χαρακτηριστικά” σε
ένα απλοποιημένο πρόβλημα μη-γραμμικής παλινδρόμησης. Δημιουργούμε μια μικρή λίστα
δειγμάτων με θόρυβο από μια μη-γραμμική πραγματική συνάρτηση

ytrue(x) = 0.6 sin(2πx) + 0.3x3 − 0.2x,

και στη συνέχεια την προσαρμόζουμε χρησιμοποιώντας ένα μοντέλο που είναι γραμμικό

ως προς τις παραμέτρους αλλά μη-γραμμικό ως προς την είσοδο μέσω μιας απεικόνισης
χαρακτηριστικών

ϕ(x) =
[
1, x, x2, x3, sin(2πx), cos(2πx)

]T
.

Στοιβάζοντας αυτά τα χαρακτηριστικά για όλα τα δείγματα προκύπτει ένας πίνακας σχεδίασης

Φ και το μοντέλο γραμμικής παλινδρόμησης

y ≈ Φθ.

Συγκρίνονται δύο εκτιμητές:

• Ελάχιστα Τετράγωνα (LS): θ̂LS = argminθ ∥y−Φθ∥22 (υλοποίηση με np.linalg.lstsq).

• Ridge (κανονικοποιημένα LS): θ̂ridge = argminθ ∥y −Φθ∥22 + λ∥θ∥22, που έχει
κλειστή μορφή

θ̂ridge = (ΦTΦ+ λI)−1ΦTy.

Το Σχήμα 5.1 απεικονίζει τα θορυβώδη δείγματα, την πραγματική συνάρτηση και τις προσαρ-
μοσμένες καμπύλες από LS και ridge. Το Σχήμα 5.2 απεικονίζει τα μαθημένα βάρη κάθε
χαρακτηριστικού· η ridge συνήθως συρρικνώνει τους συντελεστές και μειώνει την ευαισθη-
σία στον θόρυβο. Για αναφορά, το script κατασκευάζει επίσης το “πραγματικό” διάνυσμα
συντελεστών (που αντιστοιχεί στη συνάρτηση που παρήγαγε τα δεδομένα σε αυτή τη βάση)
και το συγκρίνει με τα εκτιμώμενα βάρη.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # -----------------------------

5 # 1) Generate nonlinear data

6 # -----------------------------

7 rng = np.random.default_rng (0)

8

9 N = 10

10 x = np.linspace(-1, 1, N)

11 y_true = 0.6*np.sin (2*np.pi*x) + 0.3*x**3 - 0.2*x

12 y = y_true + 0.3* rng.standard_normal(N) # noisy observations

13

14 # Dense grid for smooth plotting

15 x_plot = np.linspace(-1, 1, 500)

16 y_true_plot = 0.6*np.sin (2*np.pi*x_plot) + 0.3* x_plot **3 - 0.2* x_plot

17

18 # -----------------------------

19 # 2) Feature map phi(x)

20 # (polynomials + sin/cos)

21 # -----------------------------

22 def phi(x):
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23 """

24 Feature vector:

25 [1, x, x^2, x^3, sin(2πx), cos(2πx)]
26 """

27 x = np.asarray(x)

28 return np.column_stack ([

29 np.ones_like(x),

30 x,

31 x**2,

32 x**3,

33 np.sin (2*np.pi*x),

34 np.cos (2*np.pi*x),

35 ])

36

37 Phi = phi(x)

38 Phi_plot = phi(x_plot)

39

40 # -----------------------------

41 # 3) Least Squares fit

42 # y ≈ Phi theta

43 # -----------------------------

44 theta_ls , *_ = np.linalg.lstsq(Phi , y, rcond=None)

45 y_ls_plot = Phi_plot @ theta_ls

46

47 # -----------------------------

48 # 4) Ridge fit (regularized LS)

49 # min ||y-Phi theta ||^2 + λ||theta ||^2
50 # -----------------------------

51 lam = 1.

52 I = np.eye(Phi.shape [1])

53 theta_ridge = np.linalg.solve(Phi.T @ Phi + lam*I, Phi.T @ y)

54 y_ridge_plot = Phi_plot @ theta_ridge

55

56 # -----------------------------

57 # 5) Plot results

58 # -----------------------------

59 plt.figure(figsize =(9, 4))

60

61 plt.scatter(x, y, label="Noisy samples", marker="o")

62 plt.plot(x_plot , y_true_plot , linestyle="--", label="True function")

63 plt.plot(x_plot , y_ls_plot , label="LS on features")

64 plt.plot(x_plot , y_ridge_plot , label=f"Ridge on features (λ={lam})")
65

66 plt.xlabel("x")

67 plt.ylabel("y")

68 plt.title("Linear Model on Nonlinear Features")

69 plt.legend ()

70 plt.tight_layout ()

71 plt.show()

72

73 # -----------------------------

74 # 6) Plot feature weights

75 # -----------------------------

76 feature_names = ["1", "x", "x^2", "x^3", "sin(2πx)", "cos(2πx)"]
77 theta_true = np.zeros_like(theta_ridge)

78 theta_true [1] = -0.2

79 theta_true [3] = 0.3

80 theta_true [4] = 0.6
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Σχήμα 5.1: Θορυβώδη δείγματα, πραγματική συνάρτηση, προσαρμογή LS σε χαρακτηριστικά
και προσαρμογή ridge με κανονικοποίηση.

81

82 plt.figure(figsize =(7, 3))

83 idx = np.arange(len(feature_names))

84 plt.stem(idx , theta_ls , linefmt=’b--’, markerfmt=’bo’, basefmt=" ",

label="LS")

85 plt.stem(idx , theta_ridge , linefmt="g--", markerfmt="gD", basefmt=" ",

label="Ridge")

86 plt.stem(idx , theta_true , linefmt="k--", markerfmt="kD", basefmt=" ",

label="True")

87

88 plt.xticks(idx , feature_names)

89 plt.xlabel("Feature")

90 plt.ylabel("Weight")

91 plt.title("Learned Feature Weights")

92 plt.legend ()

93 plt.tight_layout ()

94 plt.show()

95

96 print("theta_ls =", theta_ls)

97 print("theta_ridge=", theta_ridge)

Listing 1: Παράδειγμα Γραμμικής Παλινδρόμησης σε Χαρακτηριστικά

6 Συμπερασματολογία κατά Bayes

6.1 Βασική Ιδέα

Στη συμπερασματολογία κατά Bayes, οι άγνωστες παράμετροι του μοντέλου αντιμετωπί-
ζονται ως τυχαίες μεταβλητές και όχι ως σταθερές αλλά άγνωστες ποσότητες. Αντί να
αναζητούμε μία μοναδική “βέλτιστη” εκτίμηση του θ, αναπαριστούμε την αβεβαιότητά μας
σχετικά με την τιμή του μέσω μιας κατανομής πιθανότητας. Η αβεβαιότητα αυτή, πριν
παρατηρήσουμε οποιαδήποτε δεδομένα, κωδικοποιείται μέσω μιας πρότερης κατανομής p(θ),
η οποία αντικατοπτρίζει προϋπάρχουσα γνώση, φυσικούς περιορισμούς ή υποθέσεις μον-
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Σχήμα 5.2: Εκτιμημένα βάρη χαρακτηριστικών για LS έναντι ridge.

τελοποίησης.
Τα παρατηρούμενα δεδομένα μοντελοποιούνται επίσης πιθανοκρατικά. Δοθέντων των

εισόδων X και των παραμέτρων θ, υποθέτουμε ότι οι έξοδοι Y παράγονται σύμφωνα με
ένα στοχαστικό μοντέλο δεδομένων. Αυτό λαμβάνει ρητά υπόψη τον θόρυβο μέτρησης,
τη μη-μοντελοποιημένη δυναμική και τη στοχαστικότητα στη διαδικασία παραγωγής των
δεδομένων.
Ο κεντρικός στόχος της Μπεϋζιανής συμπερασματολογίας, επομένως, δεν είναι να υπ-

ολογιστεί ένα μοναδικό διάνυσμα παραμέτρων, αλλά να εξαχθεί μια κατανομή πάνω στις
παραμέτρους υπό συνθήκη στα παρατηρούμενα δεδομένα. Η κατανομή αυτή ποσοτικοποιεί
τόσο το ποιες τιμές των παραμέτρων είναι πιθανές, όσο και το πόσο αβέβαιοι είμαστε για
αυτές. Οι Μπεϋζιανές μέθοδοι είναι ιδιαίτερα ελκυστικές, διότι παρέχουν θεμελιωμένες
εκτιμήσεις αβεβαιότητας, ενσωματώνουν την κανονικοποίηση φυσικά μέσω των πρότερων
κατανομών, και επιτρέπουν συστηματική σύγκριση μεταξύ ανταγωνιστικών μοντέλων.

6.2 Πιθανοφάνεια

Η πιθανοφάνεια (likelihood)
p(Y |X,θ)

περιγράφει τον τρόπο με τον οποίο παράγονται τα δεδομένα δεδομένων των παραμέτρων.
Πρόκειται για ένα πιθανοκρατικό μοντέλο των παρατηρήσεων υπό συνθήκη στο θ (και
ενδεχομένως στις εισόδους X).
Η πιθανοφάνεια μπορεί να ερμηνευθεί με δύο συμπληρωματικούς τρόπους.

1. Για σταθερές παραμέτρους θ, είναι μια κατανομή πιθανότητας πάνω σε πιθανά
σύνολα δεδομένων, περιγράφοντας πόσο πιθανές είναι διαφορετικές παρατηρήσεις υπό
το θεωρούμενο μοντέλο.

2. Για σταθερά παρατηρούμενα δεδομένα (X,Y ), γίνεται συνάρτηση του θ
που μετρά πόσο συμβατές είναι διαφορετικές τιμές παραμέτρων με τα δεδομένα.

Η επιλογή της πιθανοφάνειας εξαρτάται από το υποτιθέμενο μοντέλο θορύβου και τη δι-

αδικασία παραγωγής δεδομένων.
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΄Ενα συνηθισμένο παράδειγμα είναι ο προσθετικός Γκαουσιανός θόρυβος:

yi = f(xi;θ) + εi, εi ∼ N (0, σ2).

Υπό την υπόθεση ότι τα δείγματα θορύβου είναι ανεξάρτητα, η πιθανοφάνεια παραγοντοποιεί-
ται ως

p(Y |X,θ) =
N∏
i=1

N
(
yi ; f(xi;θ), σ

2
)
.

Αυτή η επιλογή συνδέει άμεσα τη Μπεϋζιανή συμπερασματολογία με την εκτίμηση ελαχίστων

τετραγώνων, αφού η μεγιστοποίηση της πιθανοφάνειας υπό Γκαουσιανό θόρυβο είναι ισοδύ-
ναμη με την ελαχιστοποίηση ενός αθροίσματος τετραγώνων υπολοίπων.

6.3 Κανόνας του Bayes και η Εκ των Υστέρων Κατανομή

Ο κανόνας του Bayes συνδυάζει την πρότερη γνώση και τα δεδομένα μέσω

p(θ | Y ,X) =
p(Y |X,θ) p(θ)

p(Y |X)
.

Η προκύπτουσα κατανομή p(θ | Y ,X) είναι η εκ των υστέρων κατανομή (posterior), η
οποία αναπαριστά την ενημερωμένη πεποίθησή μας σχετικά με τις παραμέτρους μετά την

παρατήρηση των δεδομένων.
Ο παρονομαστής

p(Y |X) =

∫
p(Y |X,θ) p(θ) dθ

ονομάζεται τεκμήριο (evidence) ή περιθώρια πιθανοφάνεια (marginal likelihood). Εξασ-
φαλίζει ότι η εκ των υστέρων κατανομή ολοκληρώνεται στο ένα και παίζει βασικό ρόλο στη

σύγκριση μοντέλων. Σημαντικό είναι ότι δεν εξαρτάται από το θ όταν κάνουμε εκτίμηση
παραμέτρων.
Μια χρήσιμη σύνοψη είναι

posterior ∝ likelihood× prior.

Η πιθανοφάνεια ωθεί την εκ των υστέρων κατανομή προς τιμές παραμέτρων που εξηγούν

καλά τα δεδομένα, ενώ η πρότερη την ωθεί προς τιμές που θεωρούνται εύλογες πριν δούμε
τα δεδομένα. Η εκ των υστέρων κατανομή αντιπροσωπεύει μια ισορροπία ανάμεσα σε αυτές
τις δύο πηγές πληροφορίας.

6.4 Ερμηνεία των Μπεϋζιανών Ποσοτήτων

Κάθε συνιστώσα του κανόνα του Bayes έχει μια σαφή ερμηνεία. Η πρότερη κατανομή p(θ)
κωδικοποιεί υποθέσεις ή γνώση πεδίου που είναι διαθέσιμες πριν παρατηρήσουμε δεδομένα.
Η πιθανοφάνεια p(Y |X,θ) μετρά πόσο καλά μια συγκεκριμένη επιλογή παραμέτρων εξηγεί
τα παρατηρούμενα δεδομένα. Η εκ των υστέρων κατανομή p(θ | Y ,X) είναι η ενημερ-
ωμένη πεποίθηση που συνδυάζει και τα δύο. Τέλος, η περιθώρια πιθανοφάνεια p(Y | X)
ποσοτικοποιεί πόσο εύλογα είναι τα παρατηρούμενα δεδομένα υπό την υποτιθέμενη κλάση

μοντέλων και την πρότερη κατανομή, και συνεπώς είναι χρήσιμη για τη σύγκριση διαφορε-
τικών μοντέλων.
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Από την οπτική της εκτίμησης, η Μπεϋζιανή συμπερασματολογία γενικεύει τις μεθόδους
που μελετήθηκαν μέχρι τώρα: τα ελάχιστα τετράγωνα και η κανονικοποίηση εμφανίζονται
ως ειδικές περιπτώσεις που αντιστοιχούν σε συγκεκριμένους συνδυασμούς πιθανοφάνειας–
πρότερης κατανομής, ενώ οι Μπεϋζιανές μέθοδοι παρέχουν επιπλέον θεμελιωμένη ποσοτικοποίηση
αβεβαιότητας και μια ενοποιημένη πιθανοκρατική ερμηνεία.

Περιθώρια Πιθανοφάνεια και Σύγκριση Μοντέλων Πέρα από την εκτίμηση

παραμέτρων, η Μπεϋζιανή συμπερασματολογία παρέχει επίσης έναν θεμελιωμένο μηχανισμό
για τη σύγκριση διαφορετικών μοντέλων. Αυτό γίνεται μέσω της περιθώριας πιθανοφάνειας
(marginal likelihood),

p(Y |X) =

∫
p(Y |X,θ) p(θ) dθ.

Σε αντίθεση με την πιθανοφάνεια, η οποία αξιολογεί πόσο καλά μια συγκεκριμένη τιμή
παραμέτρων εξηγεί τα δεδομένα, η περιθώρια πιθανοφάνεια μετρά πόσο καλά μια ολόκληρη
κλάση μοντέλων εξηγεί τα δεδομένα πριν γνωρίσουμε τις παραμέτρους.
Η περιθώρια πιθανοφάνεια μπορεί να ερμηνευθεί ως ένας μέσος όρος της πιθανοφάνειας

ως προς την πρότερη κατανομή. Μοντέλα που αποδίδουν υψηλή πιθανοφάνεια στα παρατηρού-
μενα δεδομένα για πολλές εύλογες τιμές παραμέτρων επιτυγχάνουν υψηλή περιθώρια πι-

θανοφάνεια, ενώ μοντέλα που απαιτούν πολύ ≪συγκεκριμένες≫ (fine-tuned) επιλογές παραμέτρων
για να εξηγήσουν τα δεδομένα τιμωρούνται. Με αυτή την έννοια, η περιθώρια πιθανοφάνεια
εξισορροπεί φυσικά την προσαρμογή στα δεδομένα και την πολυπλοκότητα του μοντέλου.
Αυτή η ποσότητα επιτρέπει τη Μπεϋζιανή σύγκριση μοντέλων. Δοθέντων δύο ανταγ-

ωνιστικών μοντέλωνM1 καιM2, η σχετική υποστήριξή τους από τα δεδομένα δίνεται από
τον παράγοντα Bayes (Bayes factor):

p(Y |X,M1)

p(Y |X,M2)
.

Αν αυτός ο λόγος είναι μεγαλύτερος από το ένα, τα δεδομένα ευνοούν τοM1 έναντι του

M2· αν είναι μικρότερος από το ένα, προτιμάται τοM2.
Μια βασική εννοιολογική συνέπεια είναι το ενσωματωμένο αποτέλεσμα της θεωρίας του

ξυραφιού του Occam (Occam’s razor) στη Μπεϋζιανή συμπερασματολογία. Τα πιο σύνθετα
μοντέλα τυπικά ≪απλώνουν≫ τη μάζα πιθανότητας σε έναν μεγαλύτερο χώρο παραμέτρων

και επομένως τείνουν να έχουν μικρότερη περιθώρια πιθανοφάνεια, εκτός αν τα δεδομένα
παρέχουν ισχυρή υποστήριξη για την επιπλέον πολυπλοκότητα. Ως αποτέλεσμα, η Μπεϋζιανή
σύγκριση μοντέλων πραγματοποιεί αυτόματα έναν συμβιβασμό μεταξύ ποιότητας προσαρ-

μογής και πολυπλοκότητας, χωρίς την ανάγκη για ad hoc ποινές ή ευριστικές διασταυρού-
μενης επικύρωσης (cross-validation).

6.5 Μπεϋζιανή Σημειακή Εκτίμηση μέσω Ελαχιστοποίησης

Κινδύνου

Η Μπεϋζιανή συμπερασματολογία αποδίδει μια πλήρη εκ των υστέρων κατανομή p(θ |
Y ,X), η οποία ποσοτικοποιεί την αβεβαιότητα σχετικά με τις άγνωστες παραμέτρους.
Σε πολλές εφαρμογές, ωστόσο, επιθυμούμε τελικά να αναφέρουμε ένα μοναδικό διάνυσμα

παραμέτρων θ̂ για σκοπούς πρόβλεψης, ελέγχου ή ερμηνείας. Οι Μπεϋζιανοί σημειακοί εκ-
τιμητές κατανοούνται καλύτερα μέσα από μια θεωρητική οπτική αποφάσεων: επιλέγουμε μια
εκτίμηση που ελαχιστοποιεί την αναμενόμενη εκ των υστέρων απώλεια (posterior risk).
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Δοθέντος μίας συνάρτησης κόστους (loss function) L(θ, θ̃), ο βέλτιστος Μπεϋζιανός
κανόνας απόφασης είναι

θ̂ = argmin
θ̃

E
[
L(θ, θ̃)

∣∣∣ Y ,X
]
= argmin

θ̃

∫
L(θ, θ̃) p(θ | Y ,X) dθ.

Διαφορετικές συναρτήσεις κόστους αντιστοιχούν σε διαφορετικές έννοιες του ≪βέλτιστου≫ εκ-

τιμητή και, συνεπώς, οδηγούν σε διαφορετικούς σημειακούς εκτιμητές.

6.5.1 Εκτιμητής MAP (Τρόπος της Εκ των Υστέρων Κατανομής)

Ο εκτιμητής μέγιστης εκ των υστέρων πιθανότητας (Maximum A Posteriori, MAP) επιλέγει
την τιμή της παραμέτρου στην οποία μεγιστοποιείται η εκ των υστέρων πυκνότητα:

θ̂MAP = argmax
θ

p(θ | Y ,X).

Χρησιμοποιώντας τον κανόνα του Bayes,

p(θ | Y ,X) ∝ p(Y |X,θ) p(θ),

οπότε ισοδύναμα

θ̂MAP = argmax
θ

p(Y |X,θ) p(θ).

Σε μορφή βελτιστοποίησης, ο MAP προκύπτει ελαχιστοποιώντας το αρνητικό λογάριθμο
της εκ των υστέρων κατανομής:

θ̂MAP = argmin
θ

(
− log p(Y |X,θ)− log p(θ)

)
.

΄Ετσι, η εκτίμηση MAP μπορεί να ερμηνευθεί ως η ελαχιστοποίηση ενός όρου ασυμφωνίας
με τα δεδομένα (που προέρχεται από την πιθανοφάνεια) συν ενός όρου κανονικοποίησης
(που προέρχεται από την πρότερη κατανομή). Επειδή ο MAP επιλέγει την επικρατούσα τιμή
(mode) της εκ των υστέρων κατανομής, επιλέγει τη μοναδική πιο πιθανή τιμή παραμέτρων
(αν η εκ των υστέρων κατανομή είναι πολυτροπική, ενδέχεται να υπάρχουν πολλαπλές λύσεις
MAP — πολλαπλά τοπικά μέγιστα).

MAP, Πρότερες Κατανομές και Κανονικοποίηση Η σύνδεση μεταξύ προτέρων

κατανομών και κανονικοποίησης γίνεται ρητή σε συνηθισμένους συνδυασμούς πιθανοφάνειας–
πρότερης κατανομής. Για παράδειγμα, μια ισοτροπική Γκαουσιανή πρότερη κατανομή μη-
δενικού μέσου

p(θ) = N (0, α−1I)

συνεπάγεται

− log p(θ) = σταθ. +
α

2
∥θ∥22,

δηλαδή έναν όρο ποινής ℓ2 στις παραμέτρους. Αν η πιθανοφάνεια αντιστοιχεί σε Γκαουσιανό
θόρυβο παρατήρησης,

yi = f(xi;θ) + εi, εi ∼ N (0, σ2),

τότε

− log p(Y |X,θ) = σταθ. +
1

2σ2
∥Y − f(X;θ)∥22.
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Επομένως, ο MAP ανάγεται σε ένα πρόβλημα κανονικοποιημένων ελαχίστων τετραγώνων:

θ̂MAP = argmin
θ

1

2σ2
∥Y − f(X;θ)∥22 +

α

2
∥θ∥22.

Αυτό παρέχει μια ακριβή πιθανοκρατική ερμηνεία της κανονικοποίησης ridge (Tikhonov):
αντιστοιχεί σε μια Γκαουσιανή πρότερη κατανομή στις παραμέτρους.

MLE ως Ειδική Περίπτωση του MAP Αν η πρότερη κατανομή είναι επίπεδη στην

περιοχή ενδιαφέροντος των παραμέτρων,

p(θ) ∝ σταθ.,

τότε ο εκτιμητής MAP ανάγεται στον εκτιμητή μέγιστης πιθανοφάνειας (Maximum Likeli-
hood Estimator, MLE):

θ̂MAP = argmax
θ

p(Y |X,θ) = θ̂MLE.

Με λόγια, ο MAP αξιοποιεί τόσο την πρότερη πληροφορία όσο και τα δεδομένα, ενώ ο MLE
χρησιμοποιεί μόνο τα δεδομένα. Καθώς η ποσότητα των δεδομένων αυξάνεται, η επίδραση
της πρότερης κατανομής συνήθως μειώνεται και οι MAP και MLE συχνά συγκλίνουν σε
παρόμοιες λύσεις.

6.5.2 ΕκτιμητήςMMSE (εκτιμητής ελάχιστου μέσου τετραγωνικού σφάλ-
ματος)

Ο εκτιμητής ελάχιστου μέσου τετραγωνικού σφάλματος (Minimum Mean Square Error,
MMSE) προκύπτει από τη χρήση τετραγωνικής συνάρτησης κόστους:

θ̂MMSE = argmin
θ̃

E
[
∥θ − θ̃∥22

∣∣∣ Y ,X
]
.

Ο μοναδικός ελαχιστοποιητής είναι ο μέσος της εκ των υστέρων κατανομής:

θ̂MMSE = E[θ | Y ,X] =

∫
θ p(θ | Y ,X) dθ.

Διαισθητικά, οMMSE υπολογίζει έναν μέσο όρο όλων των εύλογων τιμών των παραμέτρων,
σταθμισμένο από την εκ των υστέρων πιθανότητά τους. Αυτό μπορεί να είναι πιο ευρωστό
από τον MAP όταν η εκ των υστέρων κατανομή είναι ασύμμετρη ή πολυτροπική, διότι ο
μέσος λαμβάνει υπόψη ολόκληρη τη μάζα της κατανομής και όχι μόνο την κορυφή της.

Ανάλυση. ΄Εστω µ = E[θ | Y ,X]. Θεωρούμε τον εκ των υστέρων κίνδυνο για μια
υποψήφια εκτίμηση θ̃:

E
[
∥θ − θ̃∥22 | Y ,X

]
.

Προσθέτουμε και αφαιρούμε το µ:

∥θ − θ̃∥22 = ∥(θ − µ) + (µ− θ̃)∥22 = ∥θ − µ∥22 + ∥µ− θ̃∥22 + 2(θ − µ)T(µ− θ̃).

Λαμβάνοντας την εκ των υστέρων αναμενόμενη τιμή, ο διασταυρούμενος όρος μηδενίζεται
επειδή E[θ − µ | Y ,X] = 0. Συνεπώς,

E
[
∥θ − θ̃∥22 | ·

]
= E

[
∥θ − µ∥22 | ·

]︸ ︷︷ ︸
ανεξάρτητο του θ̃

+∥µ− θ̃∥22,

το οποίο ελαχιστοποιείται όταν θ̃ = µ.
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6.5.3 Εκτιμητής MMAE (Διάμεσος της Εκ των Υστέρων Κατανομής)

Αν, αντί για τετραγωνική, χρησιμοποιήσουμε απόλυτη συνάρτηση κόστους (κατά συνιστώσα
απώλεια ℓ1),

θ̂MMAE = argmin
θ̃

E
[
∥θ − θ̃∥1

∣∣∣ Y ,X
]
, ∥v∥1 =

∑
i

|vi|,

τότε ο βέλτιστος εκτιμητής είναι η εκ των υστέρων διάμεσος. Στην πράξη, μια συνηθισμένη
επιλογή είναι η κατά συνιστώσα εκ των υστέρων διάμεσος:

θ̂MMAE =
[
διάμεσος(p(θ1 | Y ,X)), . . . , διάμεσος(p(θP | Y ,X))

]T
.

Ο MMAE είναι συχνά πιο ευρωστός σε κατανομές με ≪βαριές≫ ουρές (heavy-tailed) και
σε ακραίες τιμές (outliers) από τον MMSE, διότι οι διάμεσοι επηρεάζονται λιγότερο από
ακραίες τιμές σε σχέση με τους μέσους.

6.5.4 Σύνοψη: MAP vs. MMSE vs. MMAE

Οι τρεις πιο συνηθισμένοι Μπεϋζιανοί σημειακοί εκτιμητές αντιστοιχούν σε διαφορετικές

περιλήψεις της εκ των υστέρων κατανομής:

θ̂MAP = argmax
θ

p(θ | Y ,X) (mode), θ̂MMSE = E[θ | Y ,X] (μέσος),

θ̂MMAE = argmin
θ̃

E
[
∥θ − θ̃∥1 | Y ,X

]
(διάμεσος).

Αν η εκ των υστέρων κατανομή είναι Γκαουσιανή (ή, γενικότερα, συμμετρική και μονοτροπική),
τότε

μέσος = διάμεσος = mode ⇒ θ̂MMSE = θ̂MMAE = θ̂MAP.

Για ασύμμετρες, πολυτροπικές ή με βαριές ουρές εκ των υστέρων κατανομές, οι εκτιμητές
αυτοί μπορεί να διαφέρουν σημαντικά, και η κατάλληλη επιλογή εξαρτάται από τη συνάρτηση
κόστους που αποτυπώνει καλύτερα την έννοια του σφάλματος στην εκάστοτε εφαρμογή.

Γεωμετρική Διαίσθηση Το Σχήμα 6.1 απεικονίζει τη γεωμετρική διαίσθηση πίσω
από τους MAP, MMSE και MMAE στη μία διάσταση. Ο εκτιμητής MAP αντιστοιχεί στην
κορυφή της εκ των υστέρων πυκνότητας (mode), ο εκτιμητής MMSE στο κέντρο μάζας (μέ-
σος), και ο εκτιμητής MMAE στο σημείο που χωρίζει την εκ των υστέρων κατανομή σε δύο
ίσα μέρη πιθανότητας (διάμεσος). Το βασικό συμπέρασμα είναι ότι διαφορετικοί εκτιμητές
αντανακλούν διαφορετικά κριτήρια βελτιστότητας (διαφορετικές συναρτήσεις κόστους).

6.6 ΕκτίμησηΜέγιστης Πιθανοφάνειας (Maximum Likelihood
Estimation, MLE)

Η εκτίμηση μέγιστης πιθανοφάνειας είναι μια συχνοτική (frequentist) προσέγγιση, στην
οποία το άγνωστο διάνυσμα παραμέτρων θ αντιμετωπίζεται ως μια σταθερή (αλλά άγνωστη)
ποσότητα. Υποθέτουμε ένα μοντέλο παρατήρησης που καθορίζει μια πιθανοφάνεια

p(y | θ),

25



4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
De

ns
ity

1D Posterior: MAP vs MMSE vs MMAE
p( Y)
MAP (mode)
MMSE (mean)
MMAE (median)

Σχήμα 6.1: Γεωμετρική διαίσθηση για Μπεϋζιανούς σημειακούς εκτιμητές στη μία διάσταση.

Για μια εκ των υστέρων κατανομή p(θ | Y ): ο εκτιμητής MAP θ̂MAP είναι η επικρατούσα

τιμή (mode) της κατανομής, ο εκτιμητής MMSE θ̂MMSE είναι ο μέσος (κέντρο μάζας),

και ο εκτιμητής MMAE θ̂MMAE είναι η διάμεσος (50% μάζα πιθανότητας σε κάθε πλευρά).
Διαφορετικοί εκτιμητές αντιστοιχούν σε διαφορετικές συναρτήσεις κόστους και μπορεί να

διαφέρουν σημαντικά για ασύμμετρες ή πολυτροπικές εκ των υστέρων κατανομές.

δηλαδή την πιθανότητα (ή πυκνότητα πιθανότητας) να παρατηρηθούν τα δεδομένα y για μια
δεδομένη τιμή των παραμέτρων.
Ο MLE επιλέγει την τιμή των παραμέτρων που καθιστά τα παρατηρούμενα δεδομένα όσο

το δυνατόν πιο πιθανά:
θ̂MLE = argmax

θ
p(y | θ).

Στην πράξη, σχεδόν πάντα εργαζόμαστε σε λογαριθμική κλίμακα (log-likelihood)

L(θ) = log p(y | θ), θ̂MLE = argmax
θ
L(θ),

διότι ο λογάριθμος μετατρέπει γινόμενα σε αθροίσματα και βελτιώνει την αριθμητική στα-

θερότητα, χωρίς να αλλάζει τον μεγιστοποιητή.

Ανεξάρτητα και ομοιόμορφα κατανεμημένα δεδομένα (i.i.d.). Αν τα δείγματα
είναι ανεξάρτητα και ομοιόμορφα κατανεμημένα (independent and identically distributed,
i.i.d.), τότε η πιθανοφάνεια παραγοντοποιείται:

p(y | θ) =
N∏
k=1

p(yk | θ),

οπότε η λογαριθμική πιθανοφάνεια γίνεται άθροισμα:

L(θ) =
N∑
k=1

log p(yk | θ).
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Πιο γενικά, για i.i.d. ζεύγη εισόδου–εξόδου {(xi, yi)}Ni=1 με ένα υπό συνθήκη μοντέλο,

p(Y |X,θ) =
N∏
i=1

p(yi | xi,θ), L(θ) =
N∑
i=1

log p(yi | xi,θ),

και ο MLE είναι

θ̂MLE = argmax
θ

N∑
i=1

log p(yi | xi,θ).

Το κρίσιμο σημείο είναι ότι ο MLE εξαρτάται αποκλειστικά από το υποτιθέμενο μοντέλο
δεδομένων/θορύβου μέσω της p(yi | xi,θ): αλλάζοντας την υπόθεση για το μοντέλο
κατανομής, αλλάζει και ο εκτιμητής.

Πώς υπολογίζεται ο MLE; Αν η λογαριθμική πιθανοφάνεια είναι κοίλη ως προς θ
και έχει απλή μορφή, ο μεγιστοποιητής μπορεί να είναι διαθέσιμος σε κλειστή μορφή (ή
μέσω μιας μοναδικής επίλυσης γραμμικού συστήματος). Διαφορετικά, επιλύουμε αριθμητικά
ένα πρόβλημα βελτιστοποίησης, συνήθως χρησιμοποιώντας τα εργαλεία που έχουμε ήδη
δει στη βελτιστοποίηση: κατάβαση/ανάβαση κλίσης στο −L, τη μέθοδο του Newton, τη
μέθοδο Gauss–Newton (όταν το αντικειμενικό έχει δομή ελαχίστων τετραγώνων), καθώς
και στρατηγικές line search ή trust region για αυξημένη ευρωστία.

Παράδειγμα: γραμμικό μοντέλο με Γκαουσιανό θόρυβο⇒ ελάχιστα τετράγ-
ωνα. Θεωρούμε το μοντέλο γραμμικής παλινδρόμησης

yi = θTxi + wi, θ ∈ Rp,

με i.i.d. Γκαουσιανό θόρυβο wi ∼ N (0, σ2). Τότε

p(yi | xi,θ) = N
(
yi;θ

Txi, σ
2
)
,

και η λογαριθμική πιθανοφάνεια είναι

L(θ) =
N∑
i=1

[
−1

2
log

(
2πσ2

)
− 1

2σ2

(
yi − θTxi

)2]
.

Η μεγιστοποίηση της L(θ) είναι ισοδύναμη με την ελαχιστοποίηση του αθροίσματος τετραγώνων
των υπολοίπων:

θ̂MLE = argmax
θ
L(θ) ⇐⇒ argmin

θ

N∑
i=1

(
yi − θTxi

)2
.

Επομένως, υπό γραμμικό μοντέλο με i.i.d. Γκαουσιανό θόρυβο, ο MLE ταυτίζεται ακριβώς
με τα κλασικά γραμμικά ελάχιστα τετράγωνα. Αυτό παρέχει μια πιθανοκρατική αιτιολόγηση
του κριτηρίου LS και αποσαφηνίζει πώς η υπόθεση για την κατανομή του θορύβου καθορίζει
το αντικειμενικό της εκτίμησης.

6.6.1 Λυμένο Παράδειγμα: MLE για τη Μέση Τιμή Γκαουσιανής (Γνω-
στή Διακύμανση)

΄Εστω ότι παρατηρούμε i.i.d. δείγματα

y1, . . . , yN με yk ∼ N (µ, σ2),

όπου η διακύμανση σ2
είναι γνωστή και η άγνωστη παράμετρος είναι η μέση τιμή θ = µ.
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Πιθανοφάνεια. Εφόσον τα δείγματα είναι i.i.d.,

p(y | µ) =
N∏
k=1

1√
2πσ2

exp

(
−(yk − µ)2

2σ2

)
.

Λογαριθμική πιθανοφάνεια. Λαμβάνοντας λογάριθμο,

L(µ) = log p(y | µ) = −N

2
log

(
2πσ2

)
− 1

2σ2

N∑
k=1

(yk − µ)2.

Επειδή ο πρώτος όρος είναι σταθερός ως προς µ, η μεγιστοποίηση της L(µ) είναι ισοδύναμη
με την ελαχιστοποίηση του

∑N
k=1(yk − µ)2.

Υπολογισμός του μεγιστοποιητή. Υπολογίζουμε την παράγωγο της L(µ) (ή του
ισοδύναμου αντικειμενικού αθροίσματος τετραγώνων) και την εξισώνουμε με το μηδέν:

dL
dµ

= − 1

2σ2

d

dµ

N∑
k=1

(yk − µ)2 = − 1

2σ2

N∑
k=1

2(yk − µ)(−1) = 1

σ2

N∑
k=1

(yk − µ).

Θέτουμε
dL
dµ

= 0:

N∑
k=1

(yk − µ) = 0 ⇒ Nµ =
N∑
k=1

yk ⇒ µ̂MLE =
1

N

N∑
k=1

yk .

΄Αρα, ο MLE της μέσης τιμής μιας Γκαουσιανής (με γνωστή διακύμανση) είναι ο δειγματικός
μέσος.

Αριθμητικό mini-example. ΄Εστω

y1 = 1.2, y2 = 0.7, y3 = 1.5, y4 = 0.6, y5 = 1.0, (N = 5).

Τότε

µ̂MLE =
1

5
(1.2 + 0.7 + 1.5 + 0.6 + 1.0) =

1

5
· 5.0 = 1.0.

Σύνδεση με ελάχιστα τετράγωνα. Σε αυτό το παράδειγμα, η μεγιστοποίηση της

Γκαουσιανής πιθανοφάνειας είναι ισοδύναμη με την ελαχιστοποίηση του
∑N

k=1(yk − µ)2,
δηλαδή με την προσαρμογή ενός σταθερού μοντέλου στα δεδομένα με την έννοια των

ελαχίστων τετραγώνων. Αυτό αντικατοπτρίζει το γενικό γεγονός ότι οMLE με Γκαουσιανό
θόρυβο οδηγεί σε αντικειμενικά τετραγωνικού σφάλματος.

6.6.2 Λυμένο Παράδειγμα: MLE για Γραμμική Παλινδρόμηση με ΄Αγνω-
στη Διακύμανση

Θεωρούμε το τυπικό γραμμικό μοντέλο με Γκαουσιανό θόρυβο:

y = Xθ +w, w ∼ N (0, σ2I),

όπου τόσο οι συντελεστές παλινδρόμησης θ ∈ Rp
όσο και η διακύμανση θορύβου σ2 > 0

είναι άγνωστα.
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Πιθανοφάνεια. Η υπό συνθήκη πυκνότητα του y δεδομένων των (θ, σ2) είναι πολυδιάσ-
τατη Γκαουσιανή:

p(y |X,θ, σ2) = (2πσ2)−N/2 exp

(
− 1

2σ2
∥y −Xθ∥22

)
.

Λογαριθμική πιθανοφάνεια. Λαμβάνοντας λογάριθμο:

L(θ, σ2) = −N

2
log

(
2πσ2

)
− 1

2σ2
∥y −Xθ∥22.

MLE για το θ. Για σταθερό σ2, η μεγιστοποίηση της L ως προς θ είναι ισοδύναμη με
την ελαχιστοποίηση του ∥y−Xθ∥22, άρα ο MLE για το θ είναι η λύση κλασικών ελαχίστων
τετραγώνων:

θ̂MLE = (XTX)−1XTy (υποθέτοντας ότι ο X έχει πλήρη τάξη στηλών).

MLE για το σ2. Αντικαθιστούμε το θ̂MLE στη λογαριθμική πιθανοφάνεια και μεγιστοποιούμε

ως προς σ2. Παραγωγίζουμε την L ως προς σ2:

∂L
∂σ2

= −N

2

1

σ2
+

1

2

1

(σ2)2
∥y −Xθ∥22.

Θέτοντας το ίσο με μηδέν παίρνουμε

−Nσ2 + ∥y −Xθ∥22 = 0 ⇒ σ2 =
1

N
∥y −Xθ∥22.

Επομένως,

σ̂2
MLE =

1

N

∥∥y −Xθ̂MLE

∥∥2

2

(σημείωση: ο αμερόληπτος εκτιμητής διακύμανσης χρησιμοποιεί 1
N−p
αντί για

1
N
).

Αριθμητικό παράδειγμα. Προσαρμόζουμε μια ευθεία y = θ0 + θ1x + w από τρία
δείγματα:

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (2, 2).

Τότε

X =

1 0
1 1
1 2

 , y =

12
2

 .

Υπολογίζουμε

XTX =

[
3 3
3 5

]
, XTy =

[
5
6

]
, (XTX)−1 =

1

6

[
5 −3
−3 3

]
.

΄Αρα

θ̂MLE =
1

6

[
5 −3
−3 3

] [
5
6

]
=

[
7/6
1/2

]
, ⇒ ŷ(x) =

7

6
+

1

2
x.
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Υπόλοιπα:

r̂ = y −Xθ̂MLE =

 1− 7/6
2− (7/6 + 1/2)
2− (7/6 + 1)

 =

−1/61/3
−1/6

 , ∥r̂∥22 =
1

36
+

1

9
+

1

36
=

1

6
.

Επομένως, με N = 3,

σ̂2
MLE =

1

N
∥r̂∥22 =

1

3
· 1
6
=

1

18
.

7 Μπεϋζιανή Γραμμική Παλινδρόμηση

7.1 Μοντέλο, Συμβολισμός και Στόχοι

Η Μπεϋζιανή γραμμική παλινδρόμηση (Bayesian Linear Regression, BLR) συνδυάζει ένα
μοντέλο γραμμικό ως προς τις παραμέτρους με μια πιθανοκρατική περιγραφή της αβεβαιότη-

τας στις παραμέτρους. Παρατηρούμε δεδομένα εκπαίδευσης

D = {(xi, yi)}Ni=1,

επιλέγουμε μια απεικόνιση χαρακτηριστικών

ϕ : Rd → RP , ϕi ≡ ϕ(xi),

και υποθέτουμε το μοντέλο παρατήρησης

yi = ϕT
i θ + wi, wi ∼ N (0, σ2

w), i.i.d.

Στοιβάζοντας τις παρατηρήσεις προκύπτει

y =

y1
...
yN

 , Φ =

ϕ
T
1
...

ϕT
N

 ∈ RN×P , y = Φθ +w, w ∼ N (0, σ2
wI).

Ο Μπεϋζιανός στόχος είναι διττός:

• να εξαχθεί μια εκ των υστέρων κατανομή πάνω στα βάρη, p(θ | D),

• να πραγματοποιηθεί πρόβλεψη σε ένα νέο σημείο εισόδου x∗ με ποσοτικοποίηση

αβεβαιότητας: p(y∗ | x∗,D).

7.2 Πρότερη Κατανομή και Πιθανοφάνεια

Πρότερη κατανομή στα βάρη (συζυγής Γκαουσιανή). Κωδικοποιούμε την
αβεβαιότητα και την εκ των προτέρων γνώση για τα βάρη μέσω μιας Γκαουσιανής πρότερης

κατανομής

p(θ) = N (µ0,Σ0).

Εδώ, το µ0 είναι ο πρότερος μέσος όρος (η καλύτερη εκ των προτέρων εκτίμησή μας
για τα βάρη πριν την παρατήρηση δεδομένων), ενώ το Σ0 είναι η πρότερη συνδιακύμανση

(ποσοτικοποιεί την αβεβαιότητα και τις συσχετίσεις). Μια συχνή ειδική περίπτωση είναι η
ισότροπη πρότερη κατανομή Σ0 = α−1I, η οποία συρρικνώνει τα βάρη προς το µ0 (συχνά
0).
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Πιθανοφάνεια. Υπό συνθήκη στο θ, οι έξοδοι είναι Γκαουσιανές:

p(y | Φ,θ) = N (Φθ, σ2
wI).

Ισοδύναμα, η λογαριθμική πιθανοφάνεια είναι

log p(y | Φ,θ) = −N

2
log

(
2πσ2

w

)
− 1

2σ2
w

∥y −Φθ∥22.

΄Ετσι, ο Γκαουσιανός θόρυβος συνδέεται άμεσα με τα ελάχιστα τετράγωνα (MLE ⇔ LS).

7.3 Εκ των Υστέρων Κατανομή των Βαρών

Ο κανόνας του Bayes δίνει

p(θ | y,Φ) ∝ p(y | Φ,θ) p(θ).

Θα υπολογίσουμε ρητά την εκ των υστέρων κατανομή και θα δείξουμε ότι είναι Γκαουσιανή

(συζυγία).

Βήμα 1: Μη κανονικοποιημένος λογάριθμος της εκ των υστέρων κατανομής.
Αγνοώντας σταθερούς όρους ανεξάρτητους του θ,

log p(θ | y,Φ) = log p(y | Φ,θ) + log p(θ) + const

= − 1

2σ2
w

∥y −Φθ∥22 −
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0) + const.

Βήμα 2: Ανάπτυξη των τετραγωνικών μορφών. Πρώτα,

∥y −Φθ∥22 = yTy − 2θTΦTy + θTΦTΦθ.

Δεύτερον,

(θ − µ0)
TΣ−1

0 (θ − µ0) = θTΣ−1
0 θ − 2θTΣ−1

0 µ0 + µT
0Σ

−1
0 µ0.

Αντικαθιστώντας και συλλέγοντας όρους ως προς θ, παίρνουμε

log p(θ | y,Φ) = −1

2

[
θT

(
Σ−1

0 +
1

σ2
w

ΦTΦ

)
θ − 2θT

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)]
+ const.

Βήμα 3: Αναγνώριση της Γκαουσιανής (συμπλήρωση τετραγώνου). Ορί-
ζουμε τη posterior ακρίβεια και τον αντίστοιχο γραμμικό όρο:

ΛN ≜ Σ−1
0 +

1

σ2
w

ΦTΦ, ηN ≜ Σ−1
0 µ0 +

1

σ2
w

ΦTy.

Τότε

µN = Λ−1
N ηN , ΣN = Λ−1

N ,

και τελικά

p(θ | y,Φ) = N (µN ,ΣN).
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Ερμηνεία μέσω “πρόσθεσης ακριβείας”.

Σ−1
N = Σ−1

0 +
1

σ2
w

ΦTΦ.

Τα δεδομένα προσθέτουν ακρίβεια: περισσότερα ή καθαρότερα δεδομένα μειώνουν την
αβεβαιότητα του posterior.

7.4 ΣύνδεσηMAP: BLR ως Κανονικοποιημένα Ελάχιστα Τετράγ-
ωνα

Ο MAP εκτιμητής είναι το mode του posterior. Εφόσον το posterior είναι Γκαουσιανό,

θ̂MAP = µN .

Ισοδύναμα,

θ̂MAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).

Για µ0 = 0 και Σ0 = α−1I, προκύπτει η ridge παλινδρόμηση:

θ̂MAP = argmin
θ
∥y −Φθ∥22 + λ∥θ∥22, λ = σ2

wα.

΄Ετσι καθίσταται ρητή η αντιστοιχία “πρότερη κατανομή ↔ κανονικοποιητής”.

7.5 Προβλεπτικές Κατανομές

Πρότερη πρόβλεψη (πριν την παρατήρηση δεδομένων)

Για ένα νέο σημείο εισόδου x∗ με διάνυσμα χαρακτηριστικών ϕ∗ = ϕ(x∗), το υπό συνθήκη
μοντέλο είναι

p(y∗ | x∗,θ) = N (ϕT
∗ θ, σ

2
w).

Πριν την παρατήρηση δεδομένων, η προβλεπτική κατανομή προκύπτει με μέση τιμή ως προς
την πρότερη κατανομή:

p(y∗ | x∗) =

∫
p(y∗ | x∗,θ) p(θ) dθ.

Θέτοντας z∗ = ϕT
∗ θ, και δεδομένου ότι θ ∼ N (µ0,Σ0) και το z∗ είναι γραμμικός συνδυασ-

μός,
z∗ ∼ N

(
ϕT

∗µ0, ϕ
T
∗Σ0ϕ∗

)
.

Με ανεξάρτητο προσθετικό θόρυβο y∗ = z∗ + w∗, w∗ ∼ N (0, σ2
w), παίρνουμε

p(y∗ | x∗) = N
(
ϕT

∗µ0, ϕ
T
∗Σ0ϕ∗ + σ2

w

)
.
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Εκ των υστέρων πρόβλεψη (μετά την παρατήρηση δεδομένων)

Μετά την παρατήρηση του συνόλου δεδομένων D, λαμβάνουμε μέσο ως προς την εκ των
υστέρων κατανομή:

p(y∗ | x∗,y,Φ) =

∫
p(y∗ | x∗,θ) p(θ | y,Φ) dθ.

Χρησιμοποιώντας p(θ | y,Φ) = N (µN ,ΣN), το ίδιο γραμμικό–Γκαουσιανό επιχείρημα
οδηγεί σε

p(y∗ | x∗,y,Φ) = N
(
ϕT

∗µN , ϕ
T
∗ΣNϕ∗ + σ2

w

)
.

Αποσύνθεση μέσου και διακύμανσης. Ο προβλεπτικός μέσος είναι

E[y∗ | ·] = ϕT
∗µN ,

ενώ η προβλεπτική διακύμανση διασπάται σε δύο όρους:

Var(y∗ | ·) = ϕT
∗ΣNϕ∗︸ ︷︷ ︸

αβεβαιότητα παραμέτρων

+ σ2
w︸︷︷︸

θόρυβος παρατήρησης

.

Καθώς λαμβάνονται περισσότερα ή πιο πληροφοριακά δεδομένα, η ΣN συρρικνώνεται και

τα διαστήματα αβεβαιότητας στενεύουν: ο μη αναγώγιμος όρος σ2
w παραμένει ως θόρυβος

μέτρησης.

7.6 Πρακτική Σημείωση: Δειγματοληψία από την Πρότερη
Κατανομή (Διαίσθηση στον Χώρο Συναρτήσεων)

Πριν την παρατήρηση δεδομένων, η Μπεϋζιανή γραμμική παλινδρόμηση ορίζει μια κατανομή
πάνω σε συναρτήσεις μέσω δειγματοληψίας των βαρών:

θ(s) ∼ N (µ0,Σ0), z(s)(x) = ϕ(x)Tθ(s).

Προσθέτοντας θόρυβο παρατήρησης, προκύπτουν συνθετικά σύνολα δεδομένων:

y
(s)
i = z(s)(xi) + w

(s)
i , w

(s)
i ∼ N (0, σ2

w).

Αυτός είναι ένας χρήσιμος τρόπος οπτικοποίησης και ελέγχου των πρότερων κατανομών

και των χαρακτηριστικών: δείχνει ποιες συναρτήσεις το μοντέλο θεωρεί εύλογες πριν
παρατηρηθούν δεδομένα.
Το Σχ. 7.1 απεικονίζει μια σημαντική διαίσθηση πίσω από τη Μπεϋζιανή γραμμική παλιν-

δρόμηση: πριν παρατηρηθούν δεδομένα, το μοντέλο ορίζει ήδη μια κατανομή πάνω σε
συναρτήσεις. Η κατανομή αυτή επάγεται από την πρότερη κατανομή p(θ) σε συνδυασμό
με την επιλεγμένη απεικόνιση χαρακτηριστικών ϕ(·).
Αριστερά βλέπουμε πολλαπλά δείγματα συναρτήσεων που προκύπτουν αν πρώτα δειγμα-

τοληφθεί θ ∼ N (µ0,Σ0) και στη συνέχεια υπολογιστεί η αντίστοιχη πρόβλεψη χωρίς
θόρυβο z(x) = ϕ(x)Tθ σε όλο το πεδίο εισόδων. Οι καμπύλες αυτές αναπαριστούν το
σύνολο των συναρτήσεων που η πρότερη κατανομή θεωρεί εύλογες πριν την παρατήρηση

οποιωνδήποτε δεδομένων. Η επιλογή των χαρακτηριστικών και η πρότερη συνδιακύμανση
Σ0 επηρεάζουν έντονα την ομαλότητα, το πλάτος και τη μεταβλητότητά τους.
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΄Ενα συνθετικό σύνολο δεδομένων

Σχήμα 7.1: Διαίσθηση της Μπεϋζιανής γραμμικής παλινδρόμησης μέσω δειγματοληψίας από
την πρότερη κατανομή. Αριστερά: δειγματοληψία βαρών θ ∼ N (µ0,Σ0) και απεικόνιση
των αντίστοιχων συναρτήσεων χωρίς θόρυβο z(x) = ϕ(x)Tθ, ώστε να οπτικοποιηθεί
ποιες συναρτήσεις θεωρεί εύλογες η πρότερη κατανομή. Δεξιά: δειγματοληψία μίας τέ-
τοιας συνάρτησης και προσθήκη Γκαουσιανού θορύβου w ∼ N (0, σ2

w) για τη δημιουργία
ενός συνθετικού συνόλου εκπαίδευσης.

Δεξιά βλέπουμε πώς μπορούν να παραχθούν συνθετικά σύνολα δεδομένων από αυτή

την πρότερη κατανομή. Μία συνάρτηση δειγματοληπτείται και προστίθεται Γκαουσιανός
θόρυβος παρατήρησης w ∼ N (0, σ2

w) ώστε να παραχθούν σημεία εκπαίδευσης. Η διαδικασία
αυτή αντιστοιχεί ακριβώς στο γενετικό (generative) μοντέλο που υποθέτει η Μπεϋζιανή
γραμμική παλινδρόμηση.
Η δειγματοληψία από την πρότερη κατανομή είναι χρήσιμη για πολλούς λόγους. Αποτελεί

έναν έλεγχο λογικής για τον σχεδιασμό των χαρακτηριστικών και την επιλογή της πρότερης

κατανομής, επιτρέποντάς μας να επιβεβαιώσουμε ότι το μοντέλο ενσωματώνει εύλογες υπο-
θέσεις πριν την προσαρμογή στα δεδομένα. Επιπλέον, βοηθά στην κατανόηση της αβεβαιότη-
τας: ακόμη και χωρίς δεδομένα, οι προβλέψεις διαφέρουν επειδή πολλές τιμές παραμέτρων
είναι πιθανές. Τέλος, αποτελεί έναν πρακτικό τρόπο δημιουργίας ελεγχόμενων συνθετικών
συνόλων δεδομένων για πειράματα, επιδείξεις ή ασκήσεις, υπό τις ίδιες ακριβώς υποθέσεις
που χρησιμοποιούνται στη διαδικασία εκτίμησης.

7.7 Παράδειγμα: Μπεϋζιανή Γραμμική Παλινδρόμηση (1Δ,
Κλειστή Μορφή)

Θα εξετάσουμε ένα πλήρες παράδειγμα Μπεϋζιανής γραμμικής παλινδρόμησης για ένα απλό

μονοδιάστατο γραμμικό μοντέλο (σταθερός όρος + κλίση). Στόχος είναι ο υπολογισμός
της εκ των υστέρων κατανομής των βαρών και της εκ των υστέρων προβλεπτικής κατανομής

σε ένα νέο σημείο εισόδου.

Μοντέλο και χαρακτηριστικά. ΄Εστω

ϕ(x) =

[
1
x

]
, yi = ϕ(xi)

Tθ + wi, wi ∼ N (0, σ2
w), θ =

[
θ0
θ1

]
.

Υποθέτουμε διακύμανση θορύβου

σ2
w = 1.
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Πρότερη κατανομή. Χρησιμοποιούμε μια ισότροπη Γκαουσιανή πρότερη κατανομή μη-
δενικού μέσου:

p(θ) = N (0, α−1I), α = 1 ⇒ Σ0 = I, µ0 = 0.

Δεδομένα εκπαίδευσης. Χρησιμοποιούμε τρεις παρατηρήσεις:

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (2, 2).

Τότε

Φ =

1 0
1 1
1 2

 , y =

12
2

 .

Βήμα 1: Υπολογισμός της εκ των υστέρων συνδιακύμανσης ΣN

Η εκ των υστέρων συνδιακύμανση της BLR είναι

ΣN =

(
Σ−1

0 +
1

σ2
w

ΦTΦ

)−1

.

Υπολογίζουμε

Σ−1
0 = I, ΦTΦ =

[
3 3
3 5

]
.

Εφόσον σ2
w = 1,

Σ−1
N = I +ΦTΦ =

[
4 3
3 6

]
.

Αντιστρέφοντας:
det

(
Σ−1

N

)
= 4 · 6− 3 · 3 = 24− 9 = 15,

⇒ ΣN = (Σ−1
N )−1 =

1

15

[
6 −3
−3 4

]
.

Βήμα 2: Υπολογισμός του εκ των υστέρων μέσου µN

Ο εκ των υστέρων μέσος είναι

µN = ΣN

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)
.

Εδώ µ0 = 0 και σ2
w = 1, άρα

µN = ΣNΦ
Ty.

Υπολογίζουμε

ΦTy =

[
1 + 2 + 2

0 · 1 + 1 · 2 + 2 · 2

]
=

[
5
6

]
.

΄Αρα

µN =
1

15

[
6 −3
−3 4

] [
5
6

]
=

1

15

[
30− 18
−15 + 24

]
=

[
4/5
3/5

]
.

Επομένως,

p(θ | D) = N
([

4/5
3/5

]
,
1

15

[
6 −3
−3 4

])
.
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Βήμα 3: Εκ των υστέρων προβλεπτική κατανομή σε νέο σημείο

Θεωρούμε ένα σημείο ελέγχου x∗ = 1.5, οπότε

ϕ∗ = ϕ(1.5) =

[
1
1.5

]
.

Η εκ των υστέρων προβλεπτική κατανομή είναι Γκαουσιανή:

p(y∗ | x∗,D) = N
(
m∗, s

2
∗
)
,

με

m∗ = ϕT
∗µN , s2∗ = ϕT

∗ΣNϕ∗ + σ2
w.

Υπολογισμός προβλεπτικού μέσου:

m∗ =
[
1 1.5

] [4/5
3/5

]
=

4

5
+

4.5

5
=

8.5

5
= 1.7.

Υπολογισμός όρου αβεβαιότητας παραμέτρων:

ΣNϕ∗ =
1

15

[
6 −3
−3 4

] [
1
1.5

]
=

1

15

[
6− 4.5
−3 + 6

]
=

1

15

[
1.5
3

]
=

[
0.1
0.2

]
.

΄Αρα

ϕT
∗ΣNϕ∗ =

[
1 1.5

] [0.1
0.2

]
= 0.1 + 0.3 = 0.4.

Τελικά,
s2∗ = 0.4 + σ2

w = 0.4 + 1 = 1.4.

΄Αρα

p(y∗ | x∗ = 1.5,D) = N (1.7, 1.4).

Ερμηνεία.

• Ο εκ των υστέρων μέσος µN είναι ο MAP εκτιμητής.

• Η εκ των υστέρων συνδιακύμανση ΣN ποσοτικοποιεί την αβεβαιότητα στα βάρη και

συνήθως μειώνεται καθώς προστίθενται δεδομένα.

• Η προβλεπτική διακύμανση διασπάται σε ϕT
∗ΣNϕ∗ (αβεβαιότητα παραμέτρων) και σ2

w

(μη αναγώγιμος θόρυβος μέτρησης).

7.8 Υλοποίηση σε Python

Ο κώδικας κατασκευάζει ένα συνθετικό πρόβλημα παλινδρόμησης όπου η υποκείμενη συνάρτηση

είναι μη γραμμική, αλλά σκόπιμα προσαρμόζουμε ένα μοντέλο πολυωνυμικών χαρακτηρισ-
τικών βαθμού P :

ϕ(x) =
[
1 x x2 · · · xP

]T
, y ≈ θTϕ(x) + w, w ∼ N (0, σ2

w).

Αυτό είναι ένα τυπικό παράδειγμα ≪γραμμικού μοντέλου πάνω σε μη γραμμικά χαρακτηρισ-

τικά≫: το μοντέλο είναι γραμμικό ως προς θ, αλλά μη γραμμικό ως προς το x.
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BLR Posterior Predictive: Mean and Variance
True function
Predictive mean
MAP function ( MAP)
MLE function ( MLE)
±2 predictive std
Training data

Σχήμα 7.2: Εκ των υστέρων προβλεπτική συμπεριφορά στη Μπεϋζιανή γραμμική παλιν-
δρόμηση (BLR), σε σύγκριση με τις σημειακές εκτιμήσεις MLE και MAP. Τα δεδομένα
εκπαίδευσης είναι συγκεντρωμένα σε δύο απομακρυσμένες περιοχές εισόδου (κοντά στο
x ≈ −1 και στο x ≈ +1), αφήνοντας ένα κενό χωρίς παρατηρήσεις. Το σχήμα δείχνει:
(i) τον προβλεπτικό μέσο της BLR (εκ των υστέρων προβλεπτικός μέσος), (ii) μια ζώνη
αβεβαιότητας ±2 προγνωστικών τυπικών αποκλίσεων, (iii) τη MAP συνάρτηση που επάγε-
ται από τα βάρη θMAP (για Γκαουσιανό posterior συμπίπτει με τον posterior μέσο), και (iv)
τη MLE συνάρτηση που επάγεται από θMLE (χωρίς πρότερη κατανομή).

Σχεδιασμός συνόλου δεδομένων: γιατί το κενό έχει σημασία. Οι είσοδοι
δειγματοληπτούνται από δύο ασύνδετα διαστήματα:

x ∈ [−1,−0.8] ∪ [0.8, 1],

οπότε το μοντέλο δεν βλέπει καθόλου δεδομένα στη μεσαία περιοχή. Ακριβώς εκεί η
Μπεϋζιανή προβλεπτική αβεβαιότητα γίνεται ιδιαίτερα πληροφοριακή: η BLR πρέπει να είναι
βέβαιη όπου υπάρχουν δεδομένα και λιγότερο βέβαιη όπου δεν υπάρχουν.

Τρεις διαφορετικοί προβλεπτές στο γράφημα.

• Συνάρτηση MLE (σημειακή εκτίμηση, χωρίς πρότερη κατανομή). Ο κώδικας υπ-
ολογίζει

θMLE = argmax
θ

p(y | θ) ⇐⇒ argmin
θ
∥y −Φθ∥22,

υλοποιημένο ως θMLE = pinv(Φ)y. Αυτό αποδίδει μία μοναδική καμπύλη ŷ(x) =
ϕ(x)TθMLE χωρίς καμία ποσοτικοποίηση αβεβαιότητας.

• ΣυνάρτησηMAP (σημειακή εκτίμηση με πρότερη κατανομή). Η πρότερη κατανομή
είναι Γκαουσιανή,

θ ∼ N (µ0,Σ0), Σ0 = α−1I,
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γεγονός που οδηγεί σε MAP εκτιμητή ισοδύναμο με ridge παλινδρόμηση:

θMAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).

Ο κώδικας υπολογίζει το θMAP ρητά σε κλειστή μορφή. Και εδώ προκύπτει μία
μοναδική καμπύλη, συνήθως πιο ομαλή και λιγότερο ακραία από τη MLE λόγω της
συρρίκνωσης (shrinkage).

• Εκ των υστέρων προβλεπτική BLR (κατανομή πάνω στις εξόδους). Η BLR
δεν επιστρέφει μία μόνο συνάρτηση, αλλά μια προβλεπτική κατανομή:

p(y∗ | x∗,D) = N
(

ϕ(x∗)
TµN︸ ︷︷ ︸

προβλεπτικός μέσος

, ϕ(x∗)
TΣNϕ(x∗)︸ ︷︷ ︸

αβεβαιότητα παραμέτρων

+ σ2
w︸︷︷︸

θόρυβος

)
.

Η σκιασμένη ζώνη στο γράφημα αντιστοιχεί σε ±2 προβλεπτικές τυπικές αποκλίσεις,
δηλαδή περίπου σε διάστημα εμπιστοσύνης 95% υπό το Γκαουσιανό προβλεπτικό μον-
τέλο.

Κύρια συμπεράσματα.

• Οι σημειακοί εκτιμητές (MLE/MAP) δίνουν καμπύλες αλλά όχι αβεβαιότητα.
Δεν μπορούν να εκφράσουν ότι η πρόβλεψη στο κενό είναι λιγότερο αξιόπιστη από

ό,τι κοντά στις περιοχές όπου υπάρχουν δεδομένα.

• Η αβεβαιότητα της BLR αυξάνεται μακριά από τα δεδομένα. Σε περιοχές
με λίγα ή καθόλου σημεία εκπαίδευσης, ο όρος ϕ(x)TΣNϕ(x) αυξάνεται, διευρύνοντας
τη ζώνη αβεβαιότητας.

• Η διαφορά MAP–MLE είναι εντονότερη όταν τα δεδομένα είναι λίγα
ή τα χαρακτηριστικά πολύ εύκαμπτα. Η πρότερη κατανομή συρρικνώνει
τους συντελεστές και αποτρέπει ακραία πολυωνυμική συμπεριφορά, οπότε η καμ-
πύλη MAP είναι συχνά λιγότερο ταλαντωτική από τη MLE (ιδίως εκτός του εύρους
παρατηρήσεων).

Λεπτομέρειες υλοποίησης που αντικατοπτρίζονται στον κώδικα. Ο κώδικας
χρησιμοποιεί τον posterior σε κλειστή μορφή:

Σ−1
N = Σ−1

0 +
1

σ2
w

ΦTΦ, µN = ΣN

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)
,

και στη συνέχεια υπολογίζει τον προβλεπτικό μέσο και τη διακύμανση σε ένα πλέγμα σημείων

μέσω

Var(y∗ | ·) = diag(Φ∗ΣNΦ
T
∗ ) + σ2

w,

υλοποιημένο με το αποδοτικό τέχνασμα της διαγωνίου:

diag(Φ∗ΣNΦ
T
∗ ) =

∑
j

(Φ∗ΣN)·j ⊙ (Φ∗)·j.

Αυτός είναι ο λόγος που ο κώδικας υπολογίζει param var = np.sum(Phi grid @ SigmaN

* Phi grid, axis=1).
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1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # ---------------------------

5 # 1) Synthetic dataset

6 # ---------------------------

7 np.random.seed (1)

8

9 # N = 25

10 # x_data = np.linspace (-1., 1., N)

11 N = 25

12 N_left = N // 2

13 N_right = N - N_left

14

15 x_left = np.linspace (-1.0, -0.8, N_left , endpoint=True)

16 x_right = np.linspace (0.8, 1.0, N_right , endpoint=True)

17

18 x_data = np.concatenate ([x_left , x_right ])

19 sigma_w = 0.1 # noise std

20

21 # True underlying function (just for data gen)

22 def f_true(x):

23 return 0.7*np.sin (2.5*x) + 0.3*x

24

25 y_data = f_true(x_data) + sigma_w*np.random.randn(N)

26

27 # ---------------------------

28 # 2) Feature map (polynomial)

29 # ---------------------------

30 P = 4 # order -> feature dim = P+1

31

32 def phi(x, P):

33 return np.vstack ([x**k for k in range(P+1)]).T

34

35 Phi_data = phi(x_data , P) # (N, P+1)

36

37 # Grid for prediction

38 x_grid = np.linspace (-1.5, 1.5, 300)

39 Phi_grid = phi(x_grid , P)

40

41 y_grid = f_true(x_grid)

42

43 # ---------------------------

44 # 3) Prior over theta

45 # ---------------------------

46 alpha = 2.0

47 mu0 = np.zeros(P+1)

48 Sigma0 = (1/ alpha) * np.eye(P+1)

49

50 # ---------------------------

51 # 4) Posterior (closed form)

52 # ---------------------------

53 SigmaN_inv = np.linalg.inv(Sigma0) + (1/ sigma_w **2) * (Phi_data.T @

Phi_data)

54 SigmaN = np.linalg.inv(SigmaN_inv)

55

56 muN = SigmaN @ (np.linalg.inv(Sigma0) @ mu0 + (1/ sigma_w **2) * Phi_data
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.T @ y_data)

57

58 # ---------------------------

59 # 4b) MAP estimate for theta

60 # ---------------------------

61 # For Gaussian posterior , MAP = posterior mean

62 # theta_map = muN.copy()

63

64 # (Optional explicit ridge/MAP form; should match muN)

65 theta_map = np.linalg.inv(Phi_data.T @ Phi_data + sigma_w **2 * np.

linalg.inv(Sigma0)) @ (Phi_data.T @ y_data + sigma_w **2 * np.linalg.

inv(Sigma0) @ mu0)

66

67 # ---------------------------

68 # 4c) MLE estimate for theta (no prior)

69 # ---------------------------

70 # With N < P+1, use pseudoinverse for stability

71 theta_mle = np.linalg.pinv(Phi_data) @ y_data

72 y_mle = Phi_grid @ theta_mle

73

74 # Function induced by MAP parameters

75 y_map = Phi_grid @ theta_map

76

77 # ---------------------------

78 # 5) Posterior predictive

79 # ---------------------------

80 # Mean

81 y_mean = Phi_grid @ muN

82

83 # Variance = parameter uncertainty + noise

84 param_var = np.sum(Phi_grid @ SigmaN * Phi_grid , axis =1) # diag(Phi Σ
Phi^T)

85 pred_var = param_var + sigma_w **2

86 pred_std = np.sqrt(pred_var)

87

88 # ---------------------------

89 # 6) Plot

90 # ---------------------------

91 plt.figure(figsize =(6.8, 4.0))

92

93 # the actual function

94 plt.plot(x_grid , y_grid , "--", linewidth=2, alpha =0.4, label="True

function")

95

96 # predictive mean

97 plt.plot(x_grid , y_mean , linewidth=2, label="Predictive mean")

98

99 # MAP function

100 plt.plot(x_grid , y_map , "--", linewidth=2, label=r"MAP function ($\
theta_ {\ mathrm{MAP}}$)")

101

102 # MLE function

103 plt.plot(x_grid , y_mle , ":", linewidth =2.5, label=r"MLE function ($\
theta_ {\ mathrm{MLE}}$)")

104

105 # uncertainty band ±2 std

106 plt.fill_between(

107 x_grid ,
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108 y_mean - 2*pred_std ,

109 y_mean + 2*pred_std ,

110 alpha =0.25,

111 label=r"$\pm 2$ predictive std"

112 )

113

114 # data

115 plt.scatter(x_data , y_data , s=35, label="Training data")

116

117 plt.xlabel(r"$x$")
118 plt.ylabel(r"$y$")
119 plt.title("BLR Posterior Predictive: Mean and Variance")

120 plt.legend ()

121 plt.tight_layout ()

122 plt.show()

123

124 print("theta_MAP =", theta_map)

125 print("theta_MLE =", theta_mle)

Listing 2: Bayesian Linear Regression

7.9 ΔιαδοχικήΜπεϋζιανή Γραμμική Παλινδρόμηση (Αναδρομική
Ενημέρωση)

΄Ενα σημαντικό πρακτικό πλεονέκτημα της Μπεϋζιανής γραμμικής παλινδρόμησης είναι ότι

μπορεί να ενημερώνεται online: όταν καταφθάνει ένα νέο δείγμα, ενημερώνουμε το poste-
rior χωρίς να ξανα-επεξεργαστούμε ολόκληρο το σύνολο δεδομένων. ΄Εστω ότι μετά την
παρατήρηση

Dk = {(xi, yi)}ki=1,

το posterior μας είναι
p(θ | Dk) = N (µk,Σk).

΄Ενα νέο σημείο δεδομένων (xk+1, yk+1) επάγει ένα διάνυσμα χαρακτηριστικών

ϕk+1 ≡ ϕ(xk+1), yk+1 = ϕT
k+1θ + wk+1, wk+1 ∼ N (0, σ2

w).

Ο κανόνας του Bayes λέει ότι το ενημερωμένο posterior είναι ανάλογο του προηγούμενου
posterior επί τη νέα πιθανοφάνεια:

p(θ | Dk+1) ∝ p(yk+1 | θ) p(θ | Dk).

Επειδή και οι δύο παράγοντες είναι Γκαουσιανοί ως προς θ, το posterior παραμένει Γκαου-
σιανό:

p(θ | Dk+1) = N (µk+1,Σk+1).

Είναι ιδιαίτερα κομψό να εκφράσουμε την αναδρομή στη μορφή πληροφορίας (information
form). Ορίζουμε τον πίνακα ακρίβειας (πληροφορίας)

Λk ≜ Σ−1
k .

Τότε κάθε νέο δείγμα συνεισφέρει μια αύξηση πληροφορίας τάξης 1:

Λk+1 = Λk +
1

σ2
w

ϕk+1ϕ
T
k+1.
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Αντίστοιχα, ορίζουμε το διάνυσμα πληροφορίας

ηk ≜ Λkµk.

Η ενημέρωση του μέσου γίνεται ένας απλός αθροιστικός κανόνας στον χώρο πληροφορίας:

ηk+1 = ηk +
1

σ2
w

ϕk+1yk+1, µk+1 = Λ−1
k+1ηk+1.

Αυτή η αναπαράσταση αναδεικνύει την ερμηνεία της διαδοχικής BLR: συσσωρεύουμε δι-
αρκώς πληροφορία για το θ. ΄Οταν η διακύμανση θορύβου παρατήρησης σ2

w είναι μικρή,
κάθε δείγμα θεωρείται πιο αξιόπιστο και προσθέτει περισσότερη πληροφορία· όταν σ2

w είναι

μεγάλη, η ενημέρωση είναι μικρότερη.
Η ίδια αναδρομή μπορεί επίσης να γραφτεί σε μορφή τύπου φίλτρου Kalman, η οποία ίσως

είναι πιο διαισθητική αν έχετε δει αναδρομικά ελάχιστα τετράγωνα ή ενημερώσεις Kalman.
Η προβλεπτική κατανομή της νέας εξόδου είναι

yk+1 | Dk ∼ N
(
ϕT

k+1µk, sk+1

)
, sk+1 ≜ ϕT

k+1Σkϕk+1 + σ2
w.

Ορίζουμε την καινοτομία (σφάλμα πρόβλεψης)

ek+1 ≜ yk+1 − ϕT
k+1µk,

και το διάνυσμα κέρδους

Kk+1 ≜
Σkϕk+1

sk+1

.

Τότε ο εκ των υστέρων μέσος και η συνδιακύμανση ενημερώνονται ως

µk+1 = µk +Kk+1ek+1, Σk+1 = Σk −Kk+1ϕ
T
k+1Σk.

Αυτό είναι ακριβώς η ενημέρωση μέτρησης ενός φίλτρου Kalman για μια στατική κατάσταση
θ (χωρίς δυναμική), με πίνακα μέτρησης ϕT

k+1.

7.10 Τι προσθέτει η Μπεϋζιανή Γραμμική Παλινδρόμηση πέρα

από LS / MLE

Τα ελάχιστα τετράγωνα (LS) και η μέγιστη πιθανοφάνεια (MLE) παρέχουν ένα μοναδικό
διάνυσμα παραμέτρων βέλτιστης προσαρμογής. Αντίθετα, η Μπεϋζιανή γραμμική παλιν-
δρόμηση (BLR) παράγει μια πλήρη εκ των υστέρων κατανομή

p(θ | D) = N (µN ,ΣN),

η οποία ποσοτικοποιεί άμεσα την αβεβαιότητά μας για κάθε παράμετρο, καθώς και τις
συσχετίσεις μεταξύ των παραμέτρων.
΄Ενα δεύτερο πλεονέκτημα είναι ότι η BLR ενσωματώνει την κανονικοποίηση με θεμελι-

ωμένο τρόπο μέσω της πρότερης κατανομής. Για Γκαουσιανό πρότερη κατανομή, ο MAP
εκτιμητής συμπίπτει με τον εκ των υστέρων μέσο και είναι ισοδύναμος με ridge παλινδρόμηση:

θ̂MAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).
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΄Ετσι, η πρότερη κατανομή ελέγχει την πολυπλοκότητα του μοντέλου και βελτιώνει τη αρι-
θμητική σταθερότητα, ιδιαίτερα όταν τα δεδομένα είναι λίγα ή η διάσταση των χαρακτηρισ-
τικών είναι μεγάλη.
Το σημαντικότερο πλεονέκτημα είναι ότι η BLR παρέχει προβλεπτική αβεβαιότητα. Για

μια νέα είσοδο x∗ με χαρακτηριστικά ϕ∗, η εκ των υστέρων προβλεπτική κατανομή είναι

p(y∗ | x∗,D) = N
(
ϕT

∗µN , ϕ
T
∗ΣNϕ∗ + σ2

w

)
.

Η προβλεπτική διακύμανση αποσυντίθεται σε δύο διαισθητικά μέρη:

Var(y∗ | ·) = ϕT
∗ΣNϕ∗︸ ︷︷ ︸

αβεβαιότητα στις θ

+ σ2
w︸︷︷︸

θόρυβος παρατήρησης

.

Ο πρώτος όρος μικραίνει όταν τα δεδομένα περιορίζουν ισχυρά τις παραμέτρους (συγκέντρ-
ωση του posterior), ενώ ο δεύτερος όρος είναι μη αναγώγιμος θόρυβος μέτρησης.
Τέλος, η BLR συνδέεται φυσικά με την ασυμπτωτική συμπεριφορά της MLE: καθώς

το N αυξάνεται και τα δεδομένα είναι πληροφοριακά, η εκ των υστέρων συνδιακύμανση
συρρικνώνεται και ο εκ των υστέρων μέσος προσεγγίζει τη MLE υπό τυπικές συνθήκες
κανονικότητας. Με αυτή την έννοια, η BLR μπορεί να ιδωθεί ως LS/MLE εμπλουτισμένη
με πρότερη γνώση και έναν συνεκτικό μηχανισμό ποσοτικοποίησης της αβεβαιότητας.

Glossary (English – Greek)

estimation εκτίμηση (παραμέτρων)

identification εκτίμηση (παραμέτρων)

parameter παράμετρος

model μοντέλο

loss function συνάρτηση κόστους

cost function / objective συνάρτηση κόστους

optimization βελτιστοποίηση

gradient παράγωγος

Hessian Εσσιανός

Jacobian Ιακωβιανός

line search αναζήτηση γραμμής

damping απόσβεση

trust region περιοχή εμπιστοσύνης

least squares (LS) ελάχιστα τετράγωνα

nonlinear least squares μη γραμμικά ελάχιστα τετράγωνα
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regularization κανονικοποίηση

ridge (Tikhonov) regularization κανονικοποίηση ridge (Tikhonov)

prior πρότερη κατανομή

likelihood πιθανοφάνεια

posterior εκ των υστέρων κατανομή

evidence / marginal likelihood περιθώρια πιθανοφάνεια

Bayesian inference Μπεϋζιανή συμπερασματολογία

Bayes’ rule κανόνας του Bayes

maximum likelihood estimation (MLE) μέγιστη πιθανοφάνεια

maximum a posteriori (MAP) μέγιστο εκ των υστέρων

minimum mean square error (MMSE) ελάχιστο μέσο τετραγωνικό σφάλμα

minimum mean absolute error (MMAE) ελάχιστο μέσο απόλυτο σφάλμα

point estimate σημειακή εκτίμηση

posterior mean εκ των υστέρων μέση τιμή

posterior mode εκ των υστέρων επικρατούσα τιμή

posterior median εκ των υστέρων διάμεσος

feature χαρακτηριστικό

feature map απεικόνιση χαρακτηριστικών

basis function συνάρτηση βάσης

design matrix πίνακας σχεδίασης

autoregressive (AR) model αυτοπαλίνδρομο μοντέλο

ARMA model αυτοπαλίνδρομο–κινούμενου μέσου μοντέλο

nonlinear autoregressive (NAR) model μη γραμμικό αυτοπαλίνδρομο μοντέλο

prediction error σφάλμα πρόβλεψης

predictive distribution προβλεπτική κατανομή

predictive mean προβλεπτική μέση τιμή

predictive variance προβλεπτική διασπορά

Bayesian linear regression (BLR) Μπεϋζιανή γραμμική παλινδρόμηση

posterior predictive εκ των υστέρων προβλεπτική κατανομή
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prior predictive πρότερη προβλεπτική κατανομή

uncertainty αβεβαιότητα

parameter uncertainty αβεβαιότητα παραμέτρων

observation noise θόρυβος παρατήρησης

innovation καινοτομία (σφάλμα πρόβλεψης)

precision matrix πίνακας ακρίβειας

information form μορφή πληροφορίας

Kalman filter φίλτρο Kalman

recursive update αναδρομική ενημέρωση
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