
Lecture 16: Dimensionality Reduction
Notes

Konstantinos Chatzilygeroudis
costashatz@upatras.gr

December 22, 2025

Contents

1 Why dimensionality reduction? 3
1.1 What are we trying to achieve? . 3
1.2 The curse of dimensionality . 3
1.3 Redundancy and correlations . 4
1.4 A geometric picture: subspaces and low-rank structure 4
1.5 Formalizing “keep what matters” via variance and reconstruction 4

2 Linear algebra, geometry, and decompositions 5
2.1 Symmetric matrices: orthogonal axes and eigenvectors 5
2.2 Rayleigh quotient: which direction “wins”? 6
2.3 What changes when the matrix is not symmetric? 7
2.4 Singular Value Decomposition (SVD): the universal geometric story . . . 8

3 Principal Component Analysis (PCA) 10
3.1 PCA as a linear latent-variable model . 10
3.2 Problem setup . 11
3.3 Variance-maximizing viewpoint . 11
3.4 Reconstruction (projection) viewpoint . 12
3.5 Explained variance . 12
3.6 Worked example: PCA in R2 . 13
3.7 Example: 3D data lying near a plane . 15
3.8 PCA via SVD: same geometry, different viewpoint 17

4 SVD for Image Compression 18
4.1 Idea: an image is a matrix . 18
4.2 SVD decomposition and geometric meaning 18
4.3 Compression: keeping only the top k terms 19
4.4 Error and “energy” captured . 19
4.5 How many numbers do we store? (compression ratio) 20
4.6 What the demo figure shows . 20
4.7 Code walkthrough (grayscale SVD compression demo) 20
4.8 Practical notes and extensions . 22
4.9 Python Implementation . 23

1

4.10 Why treat an image as a matrix and apply SVD? 25
4.10.1 Is this “PCA in 2 dimensions” (width/height)? 25
4.10.2 How this relates to PCA more formally 26
4.10.3 When this works well (and when it doesn’t) 26

2

1 Why dimensionality reduction?

In many modern applications we observe data vectors in a high-dimensional ambient
space. Concretely, we may collect

xi ∈ RD, i = 1, . . . , N,

where the dimensionD can be very large: pixels in images, readings from multiple sensors,
engineered features, or learned embeddings. Working directly in RD is often expensive
(computationally and statistically), and it may also obscure the underlying structure of
the phenomenon we are studying.

A key motivating idea is that, although observations live in RD, the mechanism that
generated them may be much simpler. In other words, the data may be well-explained
by a small number of degrees of freedom. A common modeling viewpoint is that each
observation can be approximated as

xi ≈ g−1(zi), zi ∈ Rd, d ≪ D,

where zi is a low-dimensional latent representation and g−1(·) is a (possibly nonlinear)
generative mapping into the observation space. The inequality d ≪ D captures the core
promise of dimensionality reduction: the data may have intrinsic dimension d even if it
is measured in a much larger ambient space.

1.1 What are we trying to achieve?

The practical goal is to construct a representation

zi = g(xi) ∈ Rd (d ≪ D)

that preserves the important structure of the data. Here the mapping g(·) is now under-
stood as an encoder (a reduction map) that takes us from the high-dimensional observa-
tion space to a lower-dimensional coordinate system. The word “important” depends on
the task, but several recurring objectives appear across domains.

First, dimensionality reduction enables compression: we can store or transmit xi

using fewer numbers by working with zi instead of the full vector. Second, it supports
visualization: choosing d = 2 or d = 3 lets us plot the data and inspect clusters, trends,
or outliers. Third, it can act as denoising: if some directions in RD mainly contain
noise, projecting away from those directions can yield cleaner representations. Finally, it
improves learning efficiency: reducing dimension typically reduces computation and,
in many settings, lowers the sample complexity by shrinking the space in which we must
estimate patterns.

1.2 The curse of dimensionality

As the ambient dimension D grows, familiar geometric intuition can become unreliable.
With a fixed number of samples N , the data become sparse: the fraction of the volume
of RD that is “covered” by the samples becomes vanishingly small. Consequently, many
tasks that depend on local neighborhoods (such as nearest neighbors, density estimation,
or nonparametric regression) can become much harder unless we dramatically increase
N .

3

Another symptom is that distances can become less informative. In high dimensions,
many points may appear “equally far” under common metrics, weakening methods that
rely on comparing distances. In addition, estimating quantities such as covariances or
probability densities can require much larger datasets, because there are more degrees of
freedom to learn. Informally, one often observes the following trade-off:

more features ⇒ more parameters to estimate ⇒ more data needed.

Dimensionality reduction is one of the main tools for mitigating this problem by identi-
fying a lower-dimensional structure that still captures the essential variation.

1.3 Redundancy and correlations

High-dimensional feature vectors frequently contain correlated or redundant components.
For example, consider

x =


x1

x2

x3
...
xD

 , with relationships like x2 ≈ 2x1, x5 ≈ x1 + x3, . . .

Even though x ∈ RD, such approximate linear dependencies indicate that the data do not
freely explore all D directions. Instead, the observations concentrate near a much lower-
dimensional set. Geometrically, this set might be a line or a plane (a linear subspace),
or it could be a curved object embedded in RD (a manifold). Dimensionality reduction
aims to describe this structure using a smaller number of coordinates.

1.4 A geometric picture: subspaces and low-rank structure

A particularly useful geometric model assumes the data lie approximately in a d-dimensional
linear subspace. One way to express this is

xi ≈ µ+Wzi, W ∈ RD×d, zi ∈ Rd, d ≪ D.

Here µ is the mean of the data (a translation), and the columns ofW span a d-dimensional
subspace that captures most of the variation across samples. The vector zi contains the
coordinates of xi in that subspace. Directions orthogonal to the span of W are assumed
to carry little signal and often correspond to noise or minor variations.

This picture provides the simplest intuition behind methods like Principal Component
Analysis (PCA): find a low-dimensional subspace that approximates the data well, and
represent each point by its coordinates in that subspace.

1.5 Formalizing “keep what matters” via variance and recon-
struction

To turn the idea of “preserving what matters” into mathematics, a common principle is to
preserve variance (or energy). Suppose P is a projection onto a d-dimensional subspace.

4

Then a natural requirement is that the projection does not distort the data too much,
meaning that

∥xi −Pxi∥2 is small for most i.

This quantity is the reconstruction error : it measures how much information is lost
when we replace xi by its projected version Pxi. Minimizing reconstruction error is
closely related to maximizing how much of the data’s spread (variance) is retained by
the projection. Intuitively, if we want to keep as much signal as possible with only d
directions, we should choose directions along which the data vary the most. Note that
Pxi ∈ RD is the projection of xi onto a d-dimensional subspace, not the d-dimensional
coordinate vector itself. The low-dimensional coordinates are given by zi = W⊤xi ∈ Rd.

Thus, for many dimensionality reduction methods (especially linear ones), two equiv-
alent viewpoints recur: (i) choose directions of maximum variance, or (ii) choose a
representation that minimizes reconstruction error. These principles will later lead
directly to the formulation and solution of principal component analysis.

2 Linear algebra, geometry, and decompositions

Dimensionality reduction is, at its core, a geometric idea: we seek a low-dimensional
set (often a subspace) that captures the important structure of the data. To make this
viewpoint precise, we need a small toolkit from linear algebra. In particular, we will re-
peatedly interpret matrices as geometric transformations and use matrix decompositions
to understand how those transformations act on vectors, lengths, and directions.

2.1 Symmetric matrices: orthogonal axes and eigenvectors

A helpful starting point is a symmetric 2× 2 matrix

A =

[
a b
b c

]
, A = A⊤.

It defines a linear map x 7→ Ax in R2. A key geometric fact is that, in the symmetric case,
the action of A is especially clean: it maps the unit circle to an ellipse whose principal
axes are orthogonal. Moreover, those principal axes are aligned with the eigenvectors of
A. Eigenpairs (λk,vk) satisfy

Avk = λkvk.

This equation has a simple geometric meaning: if a vector points exactly along an eigen-
vector direction vk, then applying A does not rotate it—it only scales it by the factor
λk. Thus, the eigenvectors identify directions that are invariant under the transformation
(up to scaling), and the eigenvalues quantify the amount of stretching or shrinking along
those directions.

To see the circle-to-ellipse story explicitly, consider the set of all unit vectors,

C = {x ∈ R2 : ∥x∥ = 1}.

Applying the transformation to every point on the circle yields

E = {Ax : x ∈ C}.

5

When A is symmetric, E is an ellipse. If we write the eigendecomposition

A = QΛQ⊤, Λ = diag(λ1, λ2), Q = [v1 v2], Q⊤Q = I,

then Q performs a rotation (or reflection) into the eigenvector basis, Λ scales along the
coordinate axes in that basis, and Q⊤ rotates back. In that picture (Fig. 1), the ellipse
axes point along v1,v2, and the corresponding semi-axis length scales are |λ1| and |λ2|
when starting from unit vectors. (If an eigenvalue is negative, the associated direction is
also flipped, see Fig. 2; the magnitude still controls stretching.)

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 2

v1

v2

Av1 = 1v1

Av2 = 2v2

Symmetric matrix maps unit circle to an ellipse
(principal axes = eigenvectors)

unit circle
A * unit circle (ellipse)

Figure 1: A symmetric linear transformation mapping the unit circle to an ellipse. Eigen-
vectors define orthogonal directions of pure scaling.

2.2 Rayleigh quotient: which direction “wins”?

A central question in dimensionality reduction is: which direction captures the most sig-
nal? For symmetric matrices, this is formalized by the Rayleigh quotient. For any
nonzero x define

R(x) =
x⊤Ax

x⊤x
.

If ∥x∥ = 1, then R(x) = x⊤Ax. In the symmetric case, the Rayleigh quotient has an
extremal characterization:

max
∥x∥=1

x⊤Ax = λmax, achieved at x = vmax,

min
∥x∥=1

x⊤Ax = λmin, achieved at x = vmin.

6

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5
x 2

v1

v2

Av1 = 1v1

Av2 = 2v2

Symmetric matrix maps unit circle to an ellipse
(principal axes = eigenvectors)

unit circle
A * unit circle (ellipse)

Figure 2: Effect of negative eigenvalues: scaling combined with a direction reversal.

Geometrically, this says that among all unit directions, the maximum value of the quadratic
form x⊤Ax occurs along the eigenvector associated with the largest eigenvalue. This is
precisely the kind of statement we will later use in PCA, where A will be a covariance
matrix: the direction of maximum variance will be the eigenvector of the largest eigen-
value.

2.3 What changes when the matrix is not symmetric?

The symmetric case is unusually well-behaved. If A ̸= A⊤, then the transformation
x 7→ Ax can include effects such as shear in addition to stretching and rotation. Several
important differences appear:

• Eigenvalues may be complex, meaning there may be no real invariant directions in
R2.

• Even when real eigenvectors exist, they need not be orthogonal.

• The image of the unit circle under A is still an ellipse (for any real linear map),
but the ellipse’s principal axes are not generally given by eigenvectors.

So while eigen-decompositions are the right language for symmetric matrices (and,
more generally, normal matrices), they do not always provide the cleanest geometric story
for arbitrary linear transformations. For general matrices, the decomposition that always
gives an orthogonal-axis geometric interpretation is the singular value decomposition.

7

2.4 Singular Value Decomposition (SVD): the universal geo-
metric story

For any matrix
A ∈ Rm×n,

there exists a factorization
A = UΣV⊤,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices (their columns are orthonor-
mal), and Σ ∈ Rm×n is diagonal in the sense that its only possibly nonzero entries lie on
the main diagonal:

σ1 ≥ σ2 ≥ · · · ≥ 0.

The numbers σk are the singular values of A. The SVD describes the linear map x 7→ Ax
as a sequence of three simple transformations:

x
V⊤

−−−→ rotate/reflect in the input space
Σ−−→ axis-aligned scaling

U−−→ rotate/reflect in the output space.

This is exactly the clean “orthogonal axes + scaling” geometry that eigenvectors give in
the symmetric case, but now it holds for every matrix.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2 v1

v2
1u12u2

Non-symmetric A: unit circle -> ellipse
(eigenvectors vs SVD axes)

unit circle
A * unit circle

Figure 3: Geometric interpretation of the SVD: orthogonal input directions are scaled
and mapped to orthogonal output directions.

A particularly intuitive picture arises in R2. Consider the unit circle {x : ∥x∥ = 1}
in the input space. Under the transformation x 7→ Ax, its image is an ellipse. The SVD
tells us precisely how to read that ellipse (Fig. 3):

• The columns of V are the input directions that map to the ellipse’s axes.

8

• The columns of U are the output directions of those axes (where the ellipse axes
point in the output space).

• The singular values σk are the semi-axis lengths of the ellipse.

Unlike eigenvectors, the SVD always exists, always yields orthogonal directions, and
always provides a real geometric interpretation. This is why SVD sits at the foundation
of many dimensionality reduction methods (including PCA): it provides a principled way
to identify the dominant directions of action of a linear map and to approximate that
map with lower rank by keeping only the largest singular values.

Interpreting the SVD one piece at a time

To understand the geometric meaning of the SVD, consider the transformation

A = UΣV⊤

acting on vectors x ∈ Rn. Rather than thinking of A as a single complicated operation,
we interpret it as a sequence of three simple geometric steps.

Step 1: Input directions (V) The matrix V has orthonormal columns

V = [v1 v2 · · · vn], V⊤V = I.

Applying V⊤ to a vector rotates (or reflects) the coordinate system without changing
lengths or angles.

In particular, the vectors vk define special input directions. If we choose x = vk, then

V⊤vk = ek,

the k-th standard basis vector. This means that vk is mapped onto a coordinate axis
before any scaling occurs.

Geometrically, these directions are precisely the directions in the input space that will
become aligned with the principal axes of the output ellipse after the full transformation.
This is why the columns of V are called the input principal directions.

Step 2: Axis-aligned scaling (Σ) The diagonal matrix Σ has the form

Σ =

σ1

σ2

. . .

 , σ1 ≥ σ2 ≥ · · · ≥ 0.

It scales the k-th coordinate axis by the factor σk.
Thus, if a vector has already been aligned with a coordinate axis (as happens after

applying V⊤), Σ simply stretches or compresses it. Directions corresponding to large
singular values are stretched strongly, while directions corresponding to small singular
values are attenuated or possibly collapsed (if σk = 0).

This is the step where the lengths of the ellipse axes are determined.

9

Step 3: Output directions (U) Finally, the matrix U, whose columns

U = [u1 u2 · · ·]

are orthonormal, applies another rotation or reflection. This step does not change the
lengths of vectors; it only changes their orientation in the output space.

If we start with x = vk, then the full transformation gives

Avk = UΣV⊤vk = UΣek = σkuk.

This equation is the key geometric statement of the SVD. It shows that:

• the input direction vk is mapped to the output direction uk,

• the length of the resulting vector is exactly σk.

Putting it all together: unit circle to ellipse Now consider the unit circle {x :
∥x∥ = 1} in the input space. Every point on this circle can be written as a linear
combination of the orthonormal basis vectors vk.

Under the transformation x 7→ Ax:

• directions aligned with vk are sent to directions aligned with uk,

• their lengths are scaled by σk.

As a result, the image of the unit circle is an ellipse whose principal axes:

• point along uk in the output space,

• have semi-axis lengths σk.

Why this matters for dimensionality reduction The SVD orders directions by
decreasing singular value. Keeping only the first d singular values and vectors corresponds
to keeping the directions along which the transformation has the strongest effect. This
provides a principled way to construct low-dimensional approximations and explains why
SVD lies at the heart of PCA and other linear dimensionality reduction methods.

3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the canonical linear dimensionality reduction
method. It formalizes the geometric ideas we have developed so far: projecting data onto
a low-dimensional subspace that captures as much of the data’s variability as possible.

3.1 PCA as a linear latent-variable model

Recall the general idea introduced earlier: although observations live in a high-dimensional
space, they may be well-approximated by a low-dimensional representation,

xi ≈ µ+ g(zi), zi ∈ Rd, d ≪ D.

PCA corresponds to the special case where the generative mapping is linear. Specifi-
cally, PCA assumes that each data point can be approximated as

xi ≈ µ+Wdzi,

where:

10

• µ ∈ RD is the data mean,

• Wd = [w1 · · · wd] ∈ RD×d has orthonormal columns (the principal directions),

• zi ∈ Rd are the low-dimensional latent coordinates (PCA scores).

The latent coordinates are obtained by orthogonal projection:

zi = W⊤
d (xi − µ),

and reconstruction in the original space is given by

x̂i = µ+Wdzi.

3.2 Problem setup

We are given data points
xi ∈ RD, i = 1, . . . , N.

The first step in PCA is to remove the mean:

x̄ =
1

N

N∑
i=1

xi, x̃i = xi − x̄.

Centering ensures that PCA focuses on variation rather than absolute position.
From the centered data we form the sample covariance matrix

Σ =
1

N

N∑
i=1

x̃ix̃
⊤
i ∈ RD×D.

The covariance matrix encodes how the data vary jointly along different directions in
space.

3.3 Variance-maximizing viewpoint

The first principal component is defined as the unit direction along which the projected
data have maximum variance:

w1 = arg max
∥w∥=1

Var(w⊤x̃) = arg max
∥w∥=1

w⊤Σw.

This is exactly a Rayleigh quotient maximization problem. From our earlier discussion,
we know that its solution is the eigenvector of Σ corresponding to the largest eigenvalue.

Subsequent principal components are defined similarly, with the additional constraint
that they be orthogonal to the previous ones:

wk = arg max
∥w∥=1, w⊥w1,...,wk−1

w⊤Σw.

The solution is given by the eigenvectors of Σ, ordered by decreasing eigenvalue:

Σwk = λkwk, λ1 ≥ λ2 ≥ · · · ≥ 0.

11

3.4 Reconstruction (projection) viewpoint

An equivalent way to define PCA is through reconstruction error. Let

Wd = [w1 · · · wd] ∈ RD×d

be a matrix with orthonormal columns. Projecting a centered data point onto this sub-
space gives

x̂i = WdW
⊤
d x̃i.

PCA chooses Wd to minimize the total squared reconstruction error:

Wd = arg min
W⊤W=I

N∑
i=1

∥∥x̃i −WW⊤x̃i

∥∥2
.

This optimization problem has the same solution: the columns of Wd are the top d
eigenvectors of the covariance matrix. Thus, PCA can be seen either as maximizing
retained variance or as minimizing reconstruction error.

The reduced (low-dimensional) coordinates are then

zi = W⊤
d x̃i ∈ Rd.

3.5 Explained variance

An important practical question in PCA is how many components to keep. This is
quantified using the notion of explained variance.

Recall that the eigenvalues of the covariance matrix

Σwk = λkwk, λ1 ≥ λ2 ≥ · · · ≥ 0,

measure the variance of the data along each principal direction. The total variance in
the data is

Vartotal =
D∑

k=1

λk = tr(Σ).

If we keep only the first d principal components, the variance captured by the reduced
representation is

Varretained(d) =
d∑

k=1

λk.

The explained variance ratio is then defined as

EVR(d) =

∑d
k=1 λk∑D
k=1 λk

.

This quantity lies in [0, 1] and measures the fraction of the data’s variability preserved
by the d-dimensional PCA subspace. In practice, one often chooses d such that EVR(d)
exceeds a desired threshold (e.g. 90% or 95%).

Geometric interpretation Geometrically, explained variance measures how much of
the data’s “spread” is retained after orthogonal projection onto the PCA subspace. Di-
rections with small eigenvalues correspond to thin directions of the data cloud; discarding
them removes little variance but may remove noise.

12

Connection to reconstruction error Because PCA minimizes squared reconstruc-
tion error, explained variance is directly related to information loss. The average recon-
struction error per data point when keeping d components is

1

N

N∑
i=1

∥∥x̃i −WdW
⊤
d x̃i

∥∥2
=

D∑
k=d+1

λk.

Thus, the variance not explained by PCA equals the sum of the discarded eigenvalues.
Key takeaway. Explained variance provides a principled criterion for selecting the

dimensionality d and quantifies the trade-off between compression and information loss.

3.6 Worked example: PCA in R2

We illustrate PCA on a tiny 2D dataset (so every step can be done by hand). Consider
the four points

x1 =

[
2
0

]
, x2 =

[
0
2

]
, x3 =

[
3
1

]
, x4 =

[
1
3

]
.

We will compute the first principal component and the 1D projection/reconstruction.

Step 1: Compute the mean and center the data. The sample mean is

x̄ =
1

4

4∑
i=1

xi =
1

4

[
2 + 0 + 3 + 1
0 + 2 + 1 + 3

]
=

[3
2
3
2

]
.

The centered samples x̃i = xi − x̄ are

x̃1 =

[
1
2

−3
2

]
, x̃2 =

[
−3

2
1
2

]
, x̃3 =

[
3
2

−1
2

]
, x̃4 =

[
−1

2
3
2

]
.

Step 2: Form the covariance matrix. Using

Σ =
1

N

N∑
i=1

x̃ix̃
⊤
i with N = 4,

we compute the entries:

Σ11 =
1

4

4∑
i=1

x̃2
i1 =

1

4

(
1

4
+

9

4
+

9

4
+

1

4

)
=

5

4
,

Σ22 =
1

4

4∑
i=1

x̃2
i2 =

1

4

(
9

4
+

1

4
+

1

4
+

9

4

)
=

5

4
,

Σ12 = Σ21 =
1

4

4∑
i=1

x̃i1x̃i2 =
1

4

(
−3

4
− 3

4
− 3

4
− 3

4

)
= −3

4
.

Hence

Σ =

[
5
4

−3
4

−3
4

5
4

]
.

13

Step 3: Eigenvalues/eigenvectors (principal directions). We solve Σw = λw.
A convenient guess is to test the orthogonal directions

w1 =
1√
2

[
1
−1

]
, w2 =

1√
2

[
1
1

]
.

Check w1:

Σ

[
1
−1

]
=

[
5
4
· 1 +

(
−3

4

)
(−1)(

−3
4

)
· 1 + 5

4
(−1)

]
=

[
2
−2

]
= 2

[
1
−1

]
.

So w1 is an eigenvector with eigenvalue λ1 = 2 (largest). Similarly,

Σ

[
1
1

]
=

[
5
4
− 3

4

−3
4
+ 5

4

]
=

[1
2
1
2

]
=

1

2

[
1
1

]
,

so w2 has eigenvalue λ2 =
1
2
.

Interpretation. The directionw1 is the first principal component (maximum variance),
and the variance of the data along it equals λ1 = 2. The orthogonal direction w2 captures
the remaining (smaller) variance λ2 =

1
2
.

Step 4: Project to 1D (scores). Keeping only the first component (d = 1), PCA
coordinates are

zi = w⊤
1 x̃i.

Compute:

z1 =
1√
2

(
1

2
− (−3

2
)

)
=

2√
2
=

√
2, z2 =

1√
2

(
−3

2
− 1

2

)
= − 2√

2
= −

√
2,

z3 =
1√
2

(
3

2
− (−1

2
)

)
=

√
2, z4 =

1√
2

(
−1

2
− 3

2

)
= −

√
2.

So two points share z = +
√
2 and two points share z = −

√
2 (a typical “collapse” when

going to 1D).

Step 5: Reconstruct from 1D. The 1D PCA reconstruction is

x̂i = x̄+w1zi.

For z = +
√
2,

x̂ =

[3
2
3
2

]
+

1√
2

[
1
−1

]√
2 =

[5
2
1
2

]
,

and for z = −
√
2,

x̂ =

[3
2
3
2

]
− 1√

2

[
1
−1

]√
2 =

[1
2
5
2

]
.

Thus the 1D model approximates all four points using only two reconstructed locations.

14

Explained variance. The total variance equals λ1 + λ2 = 2 + 1
2
= 5

2
, so the fraction

explained by the first component is

λ1

λ1 + λ2

=
2
5
2

= 0.8.

So d = 1 retains 80% of the variance, even though it may still lose important geometric
structure (depending on the task).

Summary. This worked example shows the full PCA pipeline:

x → x̃ = x− x̄ → Σ → (λk,wk) → z = w⊤
1 x̃ → x̂ = x̄+w1z.

0.5
0.0

0.5
1.0

1.5
2.0

x1
5.0

4.5
4.0

3.5
3.0

2.5
2.0

1.5
1.0

x 2

1
2
3
4
5
6
7

x 3

3D data: 'S' on a rotated plane + PCA axes

Figure 4: Three-dimensional data approximately lying on a plane, with additional non-
linear structure within the plane.

3.7 Example: 3D data lying near a plane

Consider data points in R3 that approximately lie on a plane (Fig. 4). Each point can be
expressed as:

xi ≈ µ+ ui p1 + vi p2 + εi n,

where p1 and p2 span an unknown plane, n is its normal direction, and the noise εi is
small.

Although the ambient dimension is 3, the intrinsic dimension of the data is close
to 2. However, within the plane the data follow a nonlinear “S”-shaped curve. This
immediately suggests that:

15

3 2 1 0 1 2 3
PC1 coordinate

1.0

0.5

0.0

0.5

1.0
PC

2
co

or
di

na
te

PCA projection to 2D (PC1 vs PC2) should show the 'S'

Figure 5: Projection onto the first two principal components. The intrinsic structure of
the data is preserved.

• reducing from 3 dimensions to 2 should preserve most structure,

• reducing from 3 dimensions to 1 will generally destroy important information.

Why PCA discovers the plane

When we compute the covariance matrix of this dataset, its eigenvalues satisfy

λ1 large, λ2 large, λ3 small.

Geometrically, this means that:

• w1 and w2 span the plane along which the data vary most,

• w3 points approximately along the plane normal, where variance is minimal.

Projecting onto the first two principal components,

W2 = [w1 w2] ∈ R3×2, zi = W⊤
2 x̃i,

produces a faithful 2D representation of the data.

Reconstruction and information loss

Given reduced coordinates zi, the PCA reconstruction in the original space is

x̂i = x̄+W2zi.

16

3 2 1 0 1 2 3
PC1 coordinate

PCA projection to 1D (PC1) structure collapses

Figure 6: Projection onto a single principal component. Nonlinear structure collapses
and becomes indistinguishable.

This is the orthogonal projection of xi onto the PCA plane. The reconstruction error is

∥xi − x̂i∥2 = ∥x̃i −W2W
⊤
2 x̃i∥2.

If we keep only one principal component, W1 = w1, the projection collapses the data
onto a line. For nonlinear structures such as the “S” shape, distant parts of the curve
may overlap after projection, resulting in severe loss of information.

3.8 PCA via SVD: same geometry, different viewpoint

An equivalent and often more practical way to compute PCA is via the singular value
decomposition. Stack the centered data as rows of a matrix:

X̃ =


x̃⊤
1

x̃⊤
2
...
x̃⊤
N

 ∈ RN×D.

Compute its SVD:
X̃ = UΣV⊤.

Then the covariance matrix can be written as

1

N
X̃⊤X̃ = V

(
Σ2

N

)
V⊤.

This shows that:

17

• the principal components are the columns of V,

• the PCA eigenvalues are λk = σ2
k/N ,

• the reduced coordinates (scores) satisfy

X̃Vd = UdΣd ⇔ zi = V⊤
d x̃i.

Key takeaway. PCA identifies orthogonal directions of maximal variance by pro-
jecting data onto the dominant singular directions of the centered data matrix. It is
optimal among all linear methods for variance preservation and squared reconstruction
error, but it cannot capture nonlinear structure.

4 SVD for Image Compression

4.1 Idea: an image is a matrix

A grayscale image with m rows and n columns can be represented as a matrix

X ∈ Rm×n,

where each entry Xij is the intensity of pixel (i, j). If we normalize intensities to [0, 1],
then Xij = 0 is black and Xij = 1 is white.

The central idea of SVD compression is:

Many natural images are approximately low-rank, meaning they can be well-
approximated using only a small number of rank-1 “pattern” components.

4.2 SVD decomposition and geometric meaning

The singular value decomposition (SVD) of X is

X = UΣV⊤,

where:

• U ∈ Rm×r has orthonormal columns (left singular vectors),

• V ∈ Rn×r has orthonormal columns (right singular vectors),

• Σ ∈ Rr×r is diagonal with entries

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

and r = rank(X) (or r = min(m,n) in the “economy” SVD representation).
A very useful way to read the SVD is via its rank-1 expansion:

X =
r∑

k=1

σk ukv
⊤
k ,

where uk is the k-th column of U and vk is the k-th column of V. Each term σk ukv
⊤
k is

a rank-1 image-like pattern (an outer product), scaled by σk.
Intuitively:

18

• uk captures a vertical/spatial pattern across rows,

• vk captures a horizontal/spatial pattern across columns,

• σk says how important that pattern is.

4.3 Compression: keeping only the top k terms

To compress the image, we keep only the first k singular values/vectors:

Xk =
k∑

j=1

σj ujv
⊤
j .

Equivalently, in matrix form:
Xk = UkΣkV

⊤
k ,

where Uk ∈ Rm×k contains the first k columns of U, Σk ∈ Rk×k is the top-left diagonal
block, and Vk ∈ Rn×k contains the first k columns of V.

Why this is optimal (Eckart–Young theorem). Among all rank-k matrices, Xk is
the best approximation to X in Frobenius norm:

Xk = arg min
rank(Y)≤k

∥X−Y∥F .

This is the fundamental theoretical reason SVD is a principled compression method: it
gives the best rank-k approximation.

4.4 Error and “energy” captured

A convenient quantity is the squared Frobenius norm:

∥X∥2F =
∑
i,j

X2
ij.

Using the SVD, one can show

∥X∥2F =
r∑

j=1

σ2
j .

Therefore, the fraction of “energy” captured by keeping the top k singular values is

E(k) =

∑k
j=1 σ

2
j∑r

j=1 σ
2
j

.

This matches the intuition: if singular values decay quickly, then a small k captures most
of the image’s content.

The reconstruction error has a clean expression:

∥X−Xk∥2F =
r∑

j=k+1

σ2
j .

So dropping small singular values discards little energy and typically removes fine de-
tail/noise.

19

4.5 How many numbers do we store? (compression ratio)

The full image storesmn numbers (pixel intensities). A rank-k SVD representation stores:

mk︸︷︷︸
Uk

+ k︸︷︷︸
σ1,...,σk

+ nk︸︷︷︸
Vk

= k(m+ n+ 1) numbers.

A simple compression ratio estimate is:

CR(k) =
mn

k(m+ n+ 1)
.

If CR(k) > 1, we are storing fewer numbers than the raw image. (In practice, real
file formats also involve quantization and entropy coding; the above is a conceptual
numerical-storage comparison.)

4.6 What the demo figure shows

Figure 7 shows:

• the original grayscale image matrix X,

• several rank-k reconstructions Xk (for increasing k),

• the cumulative energy curve E(k),

• the singular value spectrum (often on a log scale).

As k increases, the reconstruction becomes sharper, because more rank-1 components
are included. Typically, the first few components capture coarse structure (large-scale
shading/edges), while later components capture fine texture.

4.7 Code walkthrough (grayscale SVD compression demo)

The following Python script implements the steps above. Here is what each part does
and how it maps to the theory.

1) Imports and output directory.

• numpy for linear algebra and arrays,

• matplotlib for image display and plots.

2) Loading a grayscale image as a matrix X. The function load grayscale(path)

reads an image (PNG/JPG). If the image is RGB (3 channels) or RGBA (4 channels), it
converts to grayscale using a standard luminance combination:

Y = 0.2989R + 0.5870G+ 0.1140B.

Then it normalizes values to [0, 1] so that pixel intensities match our mathematical model.
If IMG PATH=None, the script instead generates a synthetic image() that has smooth

variations and simple shapes. This is useful because it is guaranteed to run without
external files.

At the end of this stage, the code has:

X ∈ Rm×n, with m,n = X.shape.

20

Original (256×256)

Rank-2
Energy=96.9%

CR 63.88×

Rank-5
Energy=99.7%

CR 25.55×

Rank-20
Energy=100.0%

CR 6.39×

Rank-50
Energy=100.0%

CR 2.56×

0 50 100 150 200 250
k (kept singular values)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

en
er

gy

Energy captured by top-k singular values

0 100 200
index

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

102

sin
gu

la
r v

al
ue

Singular values (log scale)

Figure 7: SVD image compression demo: original image, rank-k reconstructions, cumu-
lative energy captured, and singular value spectrum.

3) Computing the SVD. The line

U, s, VT = np.linalg.svd(X, full matrices=False)

computes the economy SVD:
X = U diag(s)V⊤.

In the code:

• U corresponds to U,

• s is the vector (σ1, . . .) of singular values,

• VT corresponds to V⊤.

The line S = np.diag(s) explicitly forms the diagonal matrix Σ.

4) Building rank-k approximations. For chosen ranks ks = [2, 5, 20, 50], the
script forms:

Uk = U(:, 1:k), Σk = Σ(1 :k, 1:k), V⊤
k = V⊤(1 :k, :).

and reconstructs
Xk = UkΣkV

⊤
k .

This is exactly the best rank-k approximation guaranteed by Eckart–Young.
Finally, np.clip(Xk, 0, 1) keeps pixel values in the display range [0, 1] (since trun-

cation can create small overshoots).

21

5) Energy captured curve. The script computes:

sing2 = s**2 ⇒ σ2
j ,

cum energy = cumsum(sing2)/sing2.sum() ⇒ E(k) =

∑
j≤k σ

2
j∑

j σ
2
j

.

This is the same cumulative energy/explained-variance-like curve used in PCA.

6) Compression ratio estimate. The helper

stored = k*(m + n + 1)

implements the theoretical storage count k(m + n + 1) (store Uk, Vk, and σ1, . . . , σk).
Then

full = m*n, return full / stored

computes

CR(k) =
mn

k(m+ n+ 1)
.

The title of each rank-k panel displays the energy E(k) and the approximate compression
ratio.

7) Visualization. The figure has:

• top row: original image and rank-k reconstructions,

• bottom left: energy curve E(k) versus k,

• bottom right: singular values σk on a log scale (to show decay).

4.8 Practical notes and extensions

Choosing k. Common heuristics:

• pick the smallest k such that E(k) ≥ 0.90 or 0.95,

• look for an “elbow” in the energy curve,

• pick k based on a desired compression ratio.

Color images. For RGB images, a simple approach is to apply SVD separately to each
channel (R,G,B). More advanced approaches compress in a transformed color space (e.g.,
YCbCr) or use tensor methods.

Relation to PCA. If you stack centered image samples into a data matrix, PCA can
be computed via SVD. In this compression demo we apply SVD to a single image matrix
to obtain a low-rank approximation.

Limitations. SVD is optimal for squared error (∥ · ∥F), but human visual perception
is not perfectly aligned with MSE. Also, modern codecs (JPEG/WebP/AVIF) use more
specialized transforms and entropy coding, often achieving better compression for the
same perceptual quality.

22

4.9 Python Implementation

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 SVD image compression demo (grayscale)

5 """

6

7 import os

8 import numpy as np

9 import matplotlib.pyplot as plt

10

11 # ---- Load image (grayscale) ----

12 # Set IMG_PATH to a PNG/JPG if you have one; else a synthetic image is

created.

13 IMG_PATH = None # e.g., "lena_gray.png"

14

15 def load_grayscale(path):

16 img = plt.imread(path)

17 if img.ndim == 3:

18 # Convert RGB/RGBA to grayscale via luminance

19 img = img[..., :3] # drop alpha if present

20 coeffs = np.array ([0.2989 , 0.5870 , 0.1140])

21 img = (img * coeffs).sum(axis =2)

22 # Normalize to [0,1]

23 img = img.astype(np.float64)

24 if img.max() > 1.0:

25 img = img / 255.0

26 return img

27

28 def synthetic_image(h=256, w=256):

29 # Smooth gradient + shapes

30 yy , xx = np.mgrid [0:h, 0:w]

31 base = (0.5 + 0.5 * np.sin (2*np.pi*xx/w) * np.cos (2*np.pi*yy/h))

32 # Add a bright square and a dark disk

33 base [40:120 , 40:120] += 0.4

34 center = np.array ([170, 170])

35 rr = np.sqrt((yy - center [0]) **2 + (xx - center [1]) **2)

36 base[rr < 45] -= 0.5

37 return np.clip(base , 0, 1)

38

39 X = load_grayscale(IMG_PATH) if IMG_PATH else synthetic_image ()

40

41 m, n = X.shape

42

43 # ---- SVD ----

44 U, s, VT = np.linalg.svd(X, full_matrices=False) # X = U @ np.diag(s)

@ VT

45 S = np.diag(s)

46

47 # ---- Reconstructions ----

48 ks = [2, 5, 20, 50]

49 recons = {}

50 for k in ks:

51 Uk = U[:, :k]

52 Sk = S[:k, :k]

53 Vk = VT[:k, :]

54 Xk = Uk @ Sk @ Vk

23

55 recons[k] = np.clip(Xk , 0, 1)

56

57 # ---- Energy curve ----

58 sing2 = s**2

59 cum_energy = np.cumsum(sing2) / sing2.sum()

60

61 # ---- Compression ratios ----

62 def compression_ratio(k, m, n):

63 # store U(:,1:k) + s(1:k) + V(:,1:k)

64 stored = k*(m + n + 1)

65 full = m*n

66 return full / stored

67

68 ratios = {k: compression_ratio(k, m, n) for k in ks}

69

70 # ---- Plot layout ----

71 fig = plt.figure(figsize =(11, 7))

72

73 # Original

74 ax1 = plt.subplot2grid ((2, len(ks) + 1), (0,0))

75 ax1.imshow(X, cmap=’gray’, vmin=0, vmax =1)

76 ax1.set_title(f"Original ({m}×{n})")
77 ax1.axis(’off’)

78

79 # Rank -k panels

80 for j, k in enumerate(ks , start =1):

81 ax = plt.subplot2grid ((2, len(ks) + 1), (0, j))

82 ax.imshow(recons[k], cmap=’gray’, vmin=0, vmax =1)

83 ax.set_title(f"Rank -{k}\ nEnergy ={ cum_energy[k -1]*100:.1f}%\ nCR≈{
ratios[k]:.2f}×")

84 ax.axis(’off’)

85

86 # Energy curve

87 axE = plt.subplot2grid ((2, len(ks) + 1), (1,0), colspan =3)

88 axE.plot(np.arange(1, len(s)+1), cum_energy , lw=2)

89 axE.set_xlabel("k (kept singular values)")

90 axE.set_ylabel("Cumulative energy")

91 axE.set_ylim(0, 1.01)

92 axE.grid(True , linestyle=’--’, alpha =0.6)

93 axE.set_title("Energy captured by top -k singular values")

94

95 # Spectrum (singular values)

96 axS = plt.subplot2grid ((2, len(ks) + 1), (1, len(ks) - 1))

97 axS.semilogy(np.arange(1, len(s)+1), s, lw=2)

98 axS.set_xlabel("index")

99 axS.set_ylabel("singular value")

100 axS.grid(True , linestyle=’--’, alpha =0.6)

101 axS.set_title("Singular values (log scale)")

102

103 plt.tight_layout ()

104 plt.show()

Listing 1: SVD for Image Compression

24

4.10 Why treat an image as a matrix and apply SVD?

A grayscale image is naturally a function on a 2D grid:

I : {1, . . . ,m} × {1, . . . , n} → R, (i, j) 7→ I(i, j),

where i indexes the row (height) and j indexes the column (width). Writing these samples
in a table produces a matrix

X ∈ Rm×n, Xij = I(i, j).

This is not an arbitrary choice: it preserves the fact that each pixel intensity depends
jointly on a row coordinate and a column coordinate. Many visual patterns in images
(smooth shading, edges, repeated textures) create strong correlations across rows and
columns, and this often makes X approximately low-rank.

What “low-rank” means for images. Recall the rank-1 outer product form:

X ≈
K∑
k=1

σk ukv
⊤
k .

Each term ukv
⊤
k is a separable 2D pattern: it is the product of a 1D vertical profile uk

(over rows) and a 1D horizontal profile vk (over columns). Keeping only a few such terms
says:

The image can be expressed using a small number of “row patterns” and
“column patterns” whose combinations explain most pixel intensities.

This is a strong inductive bias that is often reasonable for natural images, especially
for smooth regions and simple geometric shapes.

Why SVD is the right tool. SVD is the correct tool for this viewpoint because it
provides the best rank-K approximation in squared error:

XK = arg min
rank(Y)≤K

∥X−Y∥F .

So if you want to compress an image by restricting it to rank K (i.e., to a model with K
separable components), SVD gives the optimal answer.

4.10.1 Is this “PCA in 2 dimensions” (width/height)?

Yes and no — and the distinction is worth stating clearly.

Yes, in a geometric sense. SVD on the image matrix finds:

• orthonormal directions in the row space (height patterns) via U,

• orthonormal directions in the column space (width patterns) via V,

• and strengths (importance) via singular values σk.

This is analogous to PCA because PCA also finds orthonormal directions ordered by
importance (variance/energy). In fact, the SVD is a more fundamental object, and PCA
can be computed via SVD.

25

No, not in the “each pixel is a 2D point” sense. It is not meaningful to interpret
each pixel value Xij as a data point in R2 with coordinates (i, j) and then run PCA on
those coordinates. PCA needs a vector-valued observation per sample. Here (i, j) are
just spatial indices, while Xij is a scalar intensity. Doing PCA on the coordinates (i, j)
would only tell you about the rectangular grid (which is trivial), not about the image
content.

What SVD on X is really doing. SVD is doing a 2D factorization:

Xij ≈
K∑
k=1

σk uk(i) vk(j),

which decomposes the intensity field into a sum of K separable components. This is
sometimes called a separable representation and can be viewed as a low-dimensional
model jointly over the two spatial dimensions.

4.10.2 How this relates to PCA more formally

If we form the matrices

XX⊤ ∈ Rm×m, X⊤X ∈ Rn×n,

then the SVD implies:

XX⊤ = UΣ2U⊤, X⊤X = VΣ2V⊤.

So:

• columns of U are eigenvectors of XX⊤ (patterns across rows),

• columns of V are eigenvectors of X⊤X (patterns across columns),

• eigenvalues are σ2
k.

This looks exactly like PCA/eigendecomposition, but now it is applied to the row/column
correlation structure of a single image matrix.

4.10.3 When this works well (and when it doesn’t)

Works well when:

• the image has large smooth regions, gradual illumination changes,

• simple geometric structure dominates,

• noise is present in fine-scale details (small σk often capture high-frequency compo-
nents).

Works less well when:

• the image contains complex textures everywhere,

• fine details are perceptually critical,

• you care about compression as an actual file format (JPEG/WebP/AVIF usually
outperform plain SVD because they also quantize and entropy-code coefficients).

26

Key takeaway. Doing SVD on the image matrix is a principled way to build the best
rank-K approximation, because it exploits correlations across the two spatial dimensions
directly. It is “PCA-like” in that it finds orthogonal components ordered by importance,
but it is not PCA on the spatial coordinates; it is a low-rank factorization of the 2D
intensity field.

27

	Why dimensionality reduction?
	What are we trying to achieve?
	The curse of dimensionality
	Redundancy and correlations
	A geometric picture: subspaces and low-rank structure
	Formalizing ``keep what matters'' via variance and reconstruction

	Linear algebra, geometry, and decompositions
	Symmetric matrices: orthogonal axes and eigenvectors
	Rayleigh quotient: which direction ``wins''?
	What changes when the matrix is not symmetric?
	Singular Value Decomposition (SVD): the universal geometric story

	Principal Component Analysis (PCA)
	PCA as a linear latent-variable model
	Problem setup
	Variance-maximizing viewpoint
	Reconstruction (projection) viewpoint
	Explained variance
	Worked example: PCA in R2
	Example: 3D data lying near a plane
	PCA via SVD: same geometry, different viewpoint

	SVD for Image Compression
	Idea: an image is a matrix
	SVD decomposition and geometric meaning
	Compression: keeping only the top k terms
	Error and ``energy'' captured
	How many numbers do we store? (compression ratio)
	What the demo figure shows
	Code walkthrough (grayscale SVD compression demo)
	Practical notes and extensions
	Python Implementation
	Why treat an image as a matrix and apply SVD?
	Is this ``PCA in 2 dimensions'' (width/height)?
	How this relates to PCA more formally
	When this works well (and when it doesn't)

